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A highly sensitive method was developed for measuring polycyclic aromatic 

hydrocarbons and nitro-substituted polycyclic aromatic hydrocarbons in ambient 

aerosol. Using large volume injection, this technique provided an order of magnitude 

increase in sensitivity compare to conventional injection techniques. This method 

facilitated the measurement of the first reported diurnal size distribution of NPAHs. 

Size resolved samples were collected using a Berner low-pressure impactor deployed 

at the Baltimore PM2.5 Supersite in April 2002. Both classes of compounds were 

found predominantly on particles less than 0.49µm with similar size distributions 

among samples for most of the 12 hr periods. A linear relationship between 

compound geometric mass median aerodynamic diameter (GMMAD) and log sub-



  

cooled vapor pressures (pl°) was observed for PAHs and NPAHs, respectively, during 

each sampling period. The inter-relationhips between the slopes and y-intercepts from 

the GMMAD/log vapor pressure correlations suggest the source of PAHs to the 

Baltimore atmosphere reside on particles with GMMADs equal to 0.18 µm, 

consistent with vehicle emissions. 

 Bulk organic aerosol was collected in Baltimore, MD during the spring, 

summer and winter of 2002-2003. Concentrations of n-alkanes, hopanes, polycyclic 

aromatic hydrocarbons (PAH), and nitro-substituted polycyclic aromatic 

hydrocarbons (NPAH) were measured in the gas and particle phase. The organic 

compounds varied little, with seasonal concentrations typical of North American 

urban atmospheres. Principal Components Analysis/Multiple Linear Regression 

(PCA/MLR) and Positive Matrix Factorization (PMF) were used to determine the 

sources of individual compound classes (PAHs, NPAHs, hopanes and alkanes) and 

total particulate carbon and PM2.5 to the Baltimore atmosphere for during 2002-2003. 

PMF was used to determine the total carbon and PM2.5 source estimates to the 

Baltimore atmosphere. The sources identified included tire wear/road dust, gasoline 

and diesel exhaust, oil combustion, biogenic, secondary organic aerosol, incineration, 

and coal explaining 64% of the variability in the total carbon and PM2.5 

concentrations.      
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Chapter 1 

Executive Summary 

 

1.1 Introduction 

There is a significant relationship between atmospheric particulate matter and 

increased mortality in highly polluted areas (Dockery et al., 1993). Organic carbon 

can contribute up to 60% of the ambient aerosol mass (Malm et al., 2004). This 

fraction of ambient aerosol is composed of hundreds of compounds with a myriad of 

functionalities and molecular weights. Deconvoluting the organic matrix is essential 

to understanding the behavior and potential health effects of ambient particulate 

matter. Polar organic moieties can affect the hygroscopicity of ambient particulate 

matter (Novakov and Penner, 1993, Cruz and Pandis, 1997) and the cloud 

condensation properties of ambient aerosol. The total concentration of particulate 

matter has been implicated in increased mortality (EPA, 1996), and the organic 

fraction contains highly mutagenic compounds such as polycyclic aromatic 

hydrocarbons and nitro-substituted polycyclic aromatic hydrocarbons (Arey, 1988, 

IARC, 1989).  

 In recent years, air quality managers have focused on determining the sources 

of particulate matter due to potential health effects. Although sources of ambient 

particulate matter have been estimated using inorganic markers for decades (e.g., 

Gordon, 1980), significant contributors such as gasoline combustion and biogenic 

emissions, can not be identified using elemental markers alone. Recent studies have 
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attempted to resolve organic compounds representative of possible aerosol sources 

(Rogge et al., 1993, 1997a, b, 1998). These profiles are then employed to unravel the 

contribution of each organic signature to the ambient organic aerosol concentration. 

The current methods rely on select organic profiles from a limited number of sources 

to drive mass balance receptor models (Schauer et al., 1996, 2000), most of which 

have been developed for the Southern California region. 

 The introduction of new multivariate techniques, such as Positive Matrix 

Factorization, overcome the limited organic marker source techniques by employing 

literature-reported profiles to guide the identification of resolved sources. The 

multivariate model results are based on the sample to sample covariance of compound 

profiles specific to a receptor site. Both types of models are limited by the temporal 

resolution of previous sampling campaigns (usually 24 hrs), therefore better methods 

are needed to increase temporal resolution, hence our understanding of the sources of 

organic matter to the ambient atmosphere. In addition, select regions such as 

Baltimore, MD have limited organic aerosol composition data available. Therefore, 

implementing multivariate models with extensive chemical characterization, using 

highly sensitive methods will inevitably broaden our understanding of the behavior 

and sources of organic particulate matter.   

1.2 Rational 

In 2000 the United States Environmental Protection Agency awarded $22 million in 

grants for fine particle research to seven University Research Centers: University of 

California (Los Angeles, CA), Washington University (St. Louis, MO), University of 

Texas (Houston, TX), UCCSN/Desert Research Institute (Fresno, CA), State 
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University of New York (New York, NY), Carnegie Mellon University (Pittsburgh, 

PA) and University of Maryland (Baltimore, MD). The lead Primary Investigator for 

the Baltimore Supersite, John Ondov graciously allowed me to participate in three 

sampling intensives during the spring, summer and winter of 2002-2003. The 

objectives of the Baltimore Supersite were to; i) provide an extensive data suited for 

the current advanced factor analysis models, ii) provide information of the health 

effects of particles from different sources, iii) provide significant amount particulate 

matter that has been characterized for chemical species, iv) provide information on 

the sources and composition of organic aerosol in the Baltimore region, v) provide 

support for epidemiology studies related to particulate matter sources. 

 A variety of instrumentation was deployed at the Baltimore Supersite. A real-

time single particle mass spectrometer (RSMS III) using laser ablation time-of-flight 

mass spectrometry captured periods where a burst of pure nitrate particles were 

observed in the 50-90 nm range attributed to condensation of ammonium nitrate 

(Tolocka  et al., 2004). Inorganic analysis of individual particles was also performed 

using this instrument (Lake  et al., 2004). Harrison et al. (2004) evaluated the 

compatibility of 10 min and 24 hr nitrate measurements. The size and formation 

process of nitrate was found to be dependent on the time-of-day (Park et al., 2005). 

Advances in multivariate receptor models have been employed. Bulk particle 

parameters and elements measured on different timescales deconvoluted 9 sources of 

PM2.5 to the Baltimore Atmosphere (Ogulie et al., 2005). Size related compositional 

data has also been analyzed using Partial least Squares (PLS) and Positive Matrix 
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Factorization determining the source of PM2.5 to the Baltimore area (Ogulie et al., 

2006). 

 Previous characterizations of the ambient organic aerosol fraction in the 

Baltimore atmosphere are limited to select compound classes. Polycyclic aromatic 

hydrocarbons (PAHs) have been extensively studied by Offenberg and Baker (1999), 

Dachs and Eisenriech (2000) and Bamford et al. (1999). Bamford and Baker (2003) 

measured the winter and summer nitro-substituted PAHs in Baltimore and a suburban 

location approximately midway between Baltimore and Washington, DC. Elevated 

secondary formation of 2-nitrofluoranthene was observed during the summer and the 

dominant formation pathway was via the OH radical. The sources of PAHs to the 

Baltimore area as determined by Larsen and Baker (2003) consisted of gasoline and 

diesel combustion, wood combustion, oil and coal combustion. 

 The need for a better understanding of the organic fraction of Baltimore 

aerosol is outlined by the objectives of the Baltimore Supersite Program. The 

multitude of meteorological and air quality measurements at the site provide an 

excellent resource to evaluate changes in the organic composition with respect to 

sources and chemical processing. The coordinated studies at the Baltimore Supersite 

created an extensive dataset of ambient atmospheric gas and particle species that will 

be explored for years to come.  

 The overall goal of my dissertation was to improve our understanding of 

particulate organic matter in the atmosphere by developing more sensitive analytical 

methods to measure individual organic species to facilitate our understanding of the 
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sources and behavior of alkanes, hopanes, PAHs and NPAHs to the Baltimore 

atmosphere. Specifically, the main objectives of my thesis were to: 

1. Develop a large-volume gas chromatography mass spectrometry method 

to determine the concentrations of PAHs and NPAHs on hourly 

timescales. 

2. Characterize the seasonal variation in the PAH, NPAH, alkane and hopane 

concentrations in the Baltimore atmosphere. 

3. Measure the first diurnal size distributions of NPAHs  

4. Determine the sources of the carbonaceous aerosol to the Baltimore 

atmosphere using the multivariate receptor model Positive Matrix 

Factorization   

1.3 Strategy 

Three intensives were conducted at the Baltimore Supersite in the spring, summer and 

winter of 2002-2003. With the assistance from David Harrison and Patrick Pancras 

(University of Maryland Department of Chemistry and Biochemistry), I placed 2 

Anderson Hi-Volume samplers on the roof of the sampling trailer. A Berner low-

pressure impactor was acquired by Raymond Hoff of the University of Maryland 

Baltimore County from Environment Canada and placed on the roof during the spring 

and summer of 2002. The Maryland Department of the Environment (MDE) was an 

integral partner at the Baltimore Supersite, providing analysis of gases and VOCs. 

Walt Cooney (MDE) provided an automated VOC canister system that was deployed 

during the same times as the Hi-Volume samplers. These canisters were then 

analyzed for toxics (EPA Method TO-15) at the MDE laboratory in Baltimore, MD. 
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 An Agilent 6890/5973 gas chromatograph/mass spectrometer (GC/MS) 

equipped with a Programmed Temperature Vaporization (PTV) injection port was 

employed to develop a highly sensitive method for determining PAHs and NPAHs. 

This instrument allowed for a larger fraction sample extract to be loaded onto the 

analytical system. Two methods were developed for PAHs and NPAHs, respectively, 

and evaluated using surrogate particulate matter, SRM 1649 and 1650, generously 

supplied by Dianne Poster, Michele Shantz and Steven Wise from the National 

Institutes of Standards and Technology. 

 This sensitive method was then employed to determine the first size resolved 

concentrations of NPAHs. The increased sensitivity of the method improved the 

temporal resolution of size resolved NPAH analysis from 42 days (Kawnaka et al., 

2004) to 12 hrs. Particle and gas phase samples were collected during the spring 

summer and winter 2002-2003 with the assistance of Travis Burrell (University of 

Maryland Center for Environmental Science). I was then able to measure 6 hr NPAH 

concentrations in the Baltimore, MD atmosphere previously limited to 24 hrs 

(Bamford and Baker, 2003). 

 The source contributions of PAHs, NPAHs, alkanes, and hopanes were 

determined using a new Windows-based version of Positive Matrix Factorization 

(PMF) and Principal Components Analysis/Multiple Linear Regression, where 

technical advice from Randy Larsen (St. Mary’s College of Maryland) was essential. 

Philip Hopke (Clarkson University) supplied the authentication key allowing a 

comparison this version of PMF and the widely used PMF2. Air quality data, 

supplied by Patrick Pancras and John Ondov (University of Maryland, College Park), 
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was essential for discriminating possible sources of organics to the Baltimore 

atmosphere. The total carbon and PM2.5 measurements obtained was then used to 

determine the source contribution of these parameters identified using PMF. 
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Chapter 2 

Improved GC/MS Methods for Measuring Hourly PAH and Nitro-PAH 
Concentrations in Urban Particulate Matter 

 

 

2.1 Introduction 

Understanding the evolving chemical composition of atmospheric aerosol is 

critical to accurately assessing aerosol sources and their potential health effects. 

Polycyclic aromatic hydrocarbons (PAHs) and nitro-substituted polycyclic aromatic 

hydrocarbons (NPAHs) are two classes of compounds implicated in the mutagenicity 

of ambient air (Arey et al. 1988, IARC 1989, Gupta et al., 1996). Formed from 

incomplete combustion, PAH profiles have also been utilized in source 

apportionment studies in urban areas (Venkataraman and Friedlander 1994, Harrison 

et al., 1996, Simcik et al., 1999, Larsen and Baker, 2003). NPAHs are either directly 

emitted from combustion sources (i.e. diesel, Paputa-Peck et al., 1983) or formed 

through the oxidation of parent PAHs in the atmosphere (Arey, 1998 and references 

therein).  NPAH isomers are source specific (combustion or oxidation) and therefore 

NPAH fingerprints may be useful to determine primary and secondary aerosol 

sources (Cecinato et al., 1999).  

The observed atmospheric distributions (gas/particle and isomeric) of PAHs 

and NPAHs depend strongly on the temporal scale of the measurement.  Measured 

PAH and NPAH profiles at a receptor site result from the integration of many time 

variable sources. These profiles are influenced by changing wind direction, oxidant 
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concentration and source emission patterns (i.e. traffic) during the sampling period. 

The phase distribution (particle vs. gas) of these semi-volatile organics is governed by 

vapor pressure and hence temperature (Pankow, 1994). Therefore, changes in 

temperature during a sampling period may alter the observed gas and particle 

distributions during extended sampling times (Yamasaki et al., 1982, Mader and 

Pankow, 2000). The collected particulate matter can be exposed to elevated levels of 

oxidants (ozone), concurrently sampled, degrading more labile constituents (Schauer 

et al., 2003). Therefore, minimizing these sampling errors requires measuring PAH 

and NPAH concentrations on timescales relevant to temperature, wind direction and 

source type changes while minimizing exposure to oxidants. 

In the literature PAH and NPAH samples are typically collected using a 

filter/polyurethane plug (PUF) configuration (EPA Method 625, Yamasaki et al., 

1982, Keller and Bidleman, 1984, Offenberg and Baker 1999, Marino et al., 2000, 

Feildberg et al,. 2001, Bamford and Baker, 2003). Potential artifacts associated with 

this technique have been discussed in detail by Turpin et al. (2000). Arguably, the 

most debated artifact of the filter/PUF sampler is the magnitude and correction for 

ad/absorption of organic gases to the filter media (i.e. quartz fiber, glass fiber or 

Teflon). Others have employed a denuder/filter technique for PAHs (Gundel et al., 

1995, Kavouras et al. 1999, Peters et al., 2000, Possanzini et al., 2004) and NPAHs 

(Wilson et al., 1995, Fan et al., 1995) to minimize this artifact by scavenging gas 

phase organics via an annular denuder prior to the filter. This technique disturbs the 

gas/particle equilibrium during sampling, perhaps initiating particulate matter 

volatilization losses. These are collected on a second vapor sorbent after the filter. In 
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addition, entrainment of small particles in the denuder has been observed (Volckens 

and Leith, 2003), further skewing the measured distribution.  

Sampling times for the aforementioned studies, as well as, the standard for 

monitoring campaigns (Integrated Atmospheric Deposition Network, IADN, Gatz et 

al., 1994, Sweet et al., 1996) are usually 24 hrs. To our knowledge, the greatest 

temporal resolution using standard analytical techniques for PAHs was 4 hours in 

Baltimore, MD (Dachs and Eisenreich, 2000) and Southern California (Fraser et al., 

1998) using hi-volume samplers operated at ~0.5 and 0.19 m3/min, respectively. 

Dachs and Eisenreich (2000) evaluated the soot contribution to the PAH gas/particle 

partitioning coefficient (Kp) by modeling the evolving Kp over multiple days. Fraser 

et al. (1998) observed PAH degradation and enhanced NPAH formation downwind 

during a photochemical smog episode.    

In Southern California Reisen et al. (2003) analyzed NPAHs by compositing 

3.5 hr segments over 5 days using a hi-volume filter/PUF sampler (~0.6 m3/min). 

Feildberg et al. (2001) reported selected 12 hr NPAH concentrations in Denmark 

using flow rates >1 m3/min. The flow rates employed in these studies are on the upper 

edge of commercially available instruments (See Watson and Chow, 1992 for 

review). Typical denuder/filter designs have a much lower flow rate (usually 0.1 

m3/min or less, Gundel et al. 1995, Volkens and Leith, 2003, URG, Chapel Hill, NC).  

The temporal resolution of these compounds in ambient air is limited by the 

detection limits of current analytical techniques. Either collecting more sample or 

increasing the analytical sensitivity is required to increase the detectability of PAHs 

and NPAHs in ambient air. Greater sampling flow rates and the corresponding larger 
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pressure drops may increase volatilization losses from the sampling substrate. In 

addition, the higher sample volumes and longer sampling times may increase the 

exposure of PAHs and NPAHs to oxidants. Increasing collection surface area to 

increase sampler flow rates without additional pressure drops may increase both gas 

ab/adsorption and the potential for greater matrix contamination. Therefore increasing 

sample volumes using the current sampling methodology is not a promising approach 

to improve PAH and NPAH detection. 

 While numerous sensitive high-performance liquid chromatography (HPLC) 

methods have been published for the determination of PAHs and NPAHs 

(MacCrehan et al., 1988, Li and Westerholm, 1994, Lee, 1995, Bonfanti et al., 1996), 

gas chromatography/mass spectrometry (GC/MS) is more commonly used due to 

greater separation efficiency of complex non-polar analytes. For GC analysis the final 

volume of the organic extracts is usually >100µL. Using the conventional inlets (hot 

splitless and cool on-column) only 2µL or less of extract is applied to the column. For 

semi-volatile compounds (i.e. PAHs and NPAHs) concentrating extracts below this 

volume may increase losses of the more volatile components. Therefore 98% of the 

analyte mass extracted is not introduced into the chromatographic system. With the 

advent of large volume injection (Vogt et al., 1979), the widely used hot splitless 

injection technique can be modified to load a greater portion of an extract (from 2µL 

to 100s of µL). The use of large volume injection (specifically programmed 

temperature vaporization-large volume injection) has been increasing (see Engewald 

et al. 1999 for review). The commercial availability of the Programmed Temperature 

Vaporization (PTV) inlet has made this injector attractive for trace level analysis. The 
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performance of other large volume techniques, such as cool on-column injection with 

solvent venting (SVE-COC) may be quickly degraded by system fouling from 

complex sample extracts (see Grob and Tiedemann 1996 for review). Like the 

splitless injector, the PTV incorporates a glass sleeve that traps nonvolatile 

contaminants, keeping them from degrading the capillary column.  Zrostlkova et al. 

(2001) reported greater chromatographic stability (peak shape and compound 

response) per number of plant extracts analyzed for a suite of pesticides using the 

PTV in solvent vent mode as compared to a pulsed splitless and cool on-column 

configuration.   

 The PTV can be configured to inject large volumes of liquid depending on the 

volume of the inlet liner (usually <250µL) or in sequential injections of smaller 

volumes. During the injection time, the cool inlet sleeve is purged to remove solvent. 

The initial injector temperature is set below the carrier solvent boiling point and 

optimized to retain (cold trapping) the compounds of interest. The solvent is then 

evacuated through the open split vent. Once the solvent is removed, the split valve is 

closed. Then the inlet is rapidly heated (up to 700°C/min) to a final temperature, 

desorbing analytes to the column. Typical conditions for optimizing the PTV 

injection parameters are outlined in the literature (Mol et al., 1996, Engewald et al. 

1999, Grob and Biedermann 1996).  

 Previously, this technique has been used to quantify numerous classes of 

compounds in a variety of matrices (See Teske and Engewald, 2002 for review). 

Norlock et al. (2002) evaluated the PTV for PAH analysis in air and sediment 

samples. Although this work was extensive using standards, sediment and ambient air 
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collected in Chicago, IL, matrix effects were not evaluated.  In this study, we present 

optimized methods for PAH and NPAH quantification in ambient aerosol. These 

methods outline an efficient way to increase the analytical sensitivity and temporal 

resolution by utilizing a greater percentage of the extract (mass of analyte extracted) 

through large volume injection. Matrix effects are evaluated using Standard 

Reference Materials (National Institutes of Standards and Technology, Gaithersburg, 

MD) and an example of the benefits of increased temporal resolution is presented in 

our analysis of the diurnal size distribution of NPAHs in the Baltimore, MD 

atmosphere. The goal of this study is to develop an analytical method capable of 

pg/m3 detection limits and a precision of 20% for measuring PAHs and NPAHs in 

ambient aerosol samples with one hour resolution.   

2.2 Materials and Methods 

2.2.1 Standards 

The 42 PAHs used in this study were supplied by Ultra Scientific (North 

Kingstown, RI). Two deuterium labeled PAH solutions, internal and surrogate 

standards, were also made using neat standards from Ultra Scientific in hexane. Nitro-

PAH standards were acquired from AccuStandard (New Haven, CT) in concentrated 

solutions (~100mg/mL in toluene) except for 2-nitrofluoranthene and 2-nitropyrene 

which were supplied by Chiron (Trondheim, Norway) and Chemsyn Science 

Laboratories (Lenexa, KS), respectively. The internal standard solution components 

(3-nitrofluoranthene-d9, 6-nitrochrysene-d11, 2-nitrofluorene-d9 and 5-

nitroacenaphthene-d9) were purchased from Cambridge Isotope Laboratories, Inc. 

(Andover, MA). The surrogate solution components were acquired from C/D/N 
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Isotopes (Pointe-Claire, Quebec, Canada, nitronaphthalene-d7) and Cambridge 

Isotope Laboratories, Inc. (9-nitroanthracene-d9 and 1-nitropyrene-d9).  

 

2.2.2 Standard Reference Materials and Ambient Particulate Matter 

Size resolved aerosol was collected at the Baltimore PM2.5 Supersite during 

April 2002. The Berner low-pressure impactor collected 5 particle size cuts (0.04-

0.14, 0.14-0.49, 0.49-1.7, 1.7-6, 6-20µm) at 80Lpm. Non-greased foils ashed at 

450°C for 4 hr and tared to 0.1µg prior to deployment. The particle laden foils were 

prepared in the same manner as the SRM outlined below. 

Urban Dust and Diesel Particulate Matter Standard Reference Materials (SRM 

1649a and SRM 1650a, respectively) were obtained from the National Institute of 

Standards and Technology (NIST, Gaithersburg, MD). Microgram quantities were 

transferred to 20mL test tubes via tared foil (pre-rinsed with DCM) sonicated for 30 

min in dichloromethane (DCM) and stored at -20°C for 48 hrs. Prior to adding DCM, 

PAH (naphthalene-d8, fluorene-d8, fluoranthene-d10, perylene-d12) and NPAH (1-

nitronaphthalene-d7, 9-nitroanthracene-d9, and 1-nitropyrene-d9) surrogates were 

added.  

 The PAH extracts were filtered, concentrated under N2 (Turbovap II, Zymark, 

Hopkinton, MA) to ~200µL and analyzed. PAH internal standard containing 

acenaphthene-d10, phenanthrene-d10, benz[a]anthracene-d12, benzo[a]pyrene-d12 and 

benzo[g,h,i]perylene-d12 were added to each sample just prior to analysis. Further 

purification was required for NPAHs using additional cleanup steps previously 

reported (Bamford et al., 2003) with minor modifications. After PAH analysis, each 
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extract was eluted through an aminopropyl SPE cartridge (Sep-Pak, Waters, Milford, 

MA) using 40mL of a 20% DCM/hexane solution, concentrated under N2 and 

exchanged to hexane. Normal phase LC was then employed for the final clean-up step 

using a 5µm, 9.6mm x 30cm Chromegabond amino/cyano column (ES Industries, 

West Berlin, NJ) using 20% DCM/hexane as the mobile phase. After concentration, 

NPAH internal standards were added just prior to analysis. 

 

2.2.3 Instrumental Parameters 

An Agilent (Palo Alto, CA) 6890/5973 gas chromatograph/mass spectrometer 

equipped with a standard split/splitless and a Programmed Temperature Vaporization 

(PTV, Gerstel, Mülheim an der Ruhr, Germany) inlet was employed in the analysis. 

The instrument was configured for electron ionization (EI) for PAH analysis with a 

source temperature of 230°C. Negative chemical ionization (NCI) using methane 

ionization gas (40ml/min) and a source temperature of 200°C was employed for 

NPAHs. The instrument was tuned to factory specifications and selective ion 

monitoring was used in both MS configurations. Molecular ions were used in PAH 

and NPAH quantification. A 0.25mm x 30m x 0.25µm DB-5ms (Agilent 

Technologies, Palo Alto, CA) capillary column was used in the PAH quantification. 

The initial oven temperature (40°C) was ramped to 280°C at 10°C/min, then ramped 

at 5°C/min to 310°C and held for 10 min. NPAHs were resolved using a 0.25mm x 

30m x 0.25µm DB-17ms capillary column. The oven temperature program for NPAH 

analysis was 40°C (held 1.7 min) ramped to 150°C at 20°C/min, held for 10min, then 
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to 220°C at 10°C/min, held for 10 min and finally ramped to 310°C and held for 15 

min. 

For PAHs the hot splitless injector was configured for 2µL injections at 

250°C. The oven was held at 40°C for 1.0 min. The PTV injector was configured for 

10 injections of 5µL at 45°C held for 1.2 min then ramped to 250°C at 600°C/min 

holding the oven at 40°C for 1.6 min. During the injection process the inlet was held 

at 5psi with a purge flow of 50mL/min. For NPAH analysis the PTV was configured 

to perform ten 5µL injections venting at 100mL/min at 2 psi for 1.10 min. At 1.2 min 

the PTV was ramped at 600°C/min to 280°C. 

2.3 Results 

2.3.1 Reproducibility 

PAHs 

The reproducibility of the split/splitless and PTV injectors are shown in Table 

2.1.  For each injector, a standard containing 43 PAHs and 9 perdeuterated PAHs (5 

internal standards and 4 surrogates), was used to test the reproducibility of each 

injector (N=7). A similar mass (~100pg) of each analyte was introduced into the 

chromatographic system. The mean percent relative standard deviation (%RSD) after 

normalizing the PAHs to their respective internal standards was 2.6% ranging 0.6 to 

9.5% (fluorene-d10 and 3-methylcholanthrene, respectively). Using the PTV, 

naphthalene-d8 exhibited the largest variability (13%) while the %RSD for 

acenaphthene was the lowest (0.4%). The variability of the low molecular weight 
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Table 2.1 Injector precision; 2µL hot splitless (SL) and 50µL PTV in solvent vent mode. 
         
  SL PTV    PTV  
 PAHsa %RSDc 

norm 
%RSD 
norm   NPAHsb %RSD  

norm  

I.S.d acenaphthene-d10    I.S. 5-nitroacenaphthene-d9   
Surre naphthalene-d8 3.5 13   1-nitronaphthalene 4.2  

 naphthalene 3.2 11   2-nitronaphthalene 6.5  
 Azulene 2.2 7.0   2-nitrobiphenyl 2.2  
 2-methylnaphthalene 1.6 4.2   3-nitrobiphenyl 2.3  
 1-methylnaphthalene 1.8 7.3   4-nitrobiphenyl 3.3  
 acenapthylene 1.0 4.9   1,3-dinitronaphthalene 3.8  
 Biphenyl 1.5 2.1   1,5-dinitronaphthalene 3.1  
 Acenaphthene 0.9 0.4   5-nitroacenapthene 2.2  
         

I.S. phenanthrene-d10    I.S. 2-nitrofluorene-d9   
Surr fluorene-d10 0.6 3.3   2-nitrofluorene 1.3  

 Fluorine 2.4 5.0   2,2’-dinitrobiphenyl 3.1  
 phenanthrene 0.9 0.4   9-nitroanthracene 1.3  
 anthracene 3.1 1.8   2-nitroanthracene 1.3  
 1-methylfluorene 2.4 4.1   9-nitrophenanthrene 1.7  
 4,5-methylenephenanthrene 3.0 2.0   3-nitrophenanthrene 4.7  
 2-methylphenanthrene 2.4 2.2   4-nitrophenanthrene 1.5  
 2-methylanthracene 5.9 3.9      
 1-methylanthracene 6.4 5.3  I.S. 3-nitrofluoranthene-d9   
 1-methylphenanthrene 4.1 3.4   2-nitrofluoranthene 1.4  
 9-methylanthracene 7.0 5.4   3-nitrofluoranthene 1.6  
      1-nitropyrene 1.4  

I.S. benz[a]anthracene-d12     2-nitropyrene 2.1  
Surr fluoranthene-d10 4.4 10.2   2,7-dinitrofluorene 4.7  

 Fluoranthene 5.5 11      
 Pyrene 4.4 9.8  I.S. 6-nitrochysene-d11   
 9,10-dimethylanthracene 4.9 8.2   7-nitro[a]anthracene 1.4  
 benzo[a]fluorene 3.7 7.6   6-nitrochysene 0.8  
 benzo[b]fluorene 4.2 7.8   1,3-dinitropyrene 2.4  
 benz[a]anthracene 0.7 1.8   1,6-dinitropyrene 1.4  
 chrysene+triphenylene 4.5 9.2   9,10-dinitroanthracene 4.7  
 napthacene 2.2 10   1,8-dinitropyrene 3.7  
 3-methylcholanthrene 9.5 7.7   6-nitrobenzo[a]pyrene 6.5  
      1-nitrobenzo[e]pyrene 1.5  

I.S. benzo[a]pyrene-d12     3-nitrobenzo[e]pyrene 1.8  
Surr perylene-d12 1.2 7.8   1-nitro- and 3-nitro-    

 benzo[b]fluoranthene 1.5 5.6   benzo[a]pyrene 5.5  
 benzo[k]fluoranthene 4.1 5.2      
 benzo[a]pyrene 2.4 4.0      
 benzo[e]pyrene 3.7 3.3      
 Perylene 1.1 2.8      
 dimethylbenz[a]anthracene 2.4 6.1      
         

I.S. benzo[g,h,i]perylene-d12        
 indeno[1,2,3-c,d]pyrene 2.2 6.0      
 benzo[g,h,i]perylene 1.6 2.3      
 anthanthrene 2.3 6.8      
 dibenz[a,h+a,c]anthracene 2.2 4.6      
 Coronene 3.8 8.1      
         
a.100pg per analyte b.1000pg per analyte c. Relative standard deviation of internal standard normalized responses d. Internal standard e. Surrogate 
standard 
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PAHs were higher using the PTV whereas the largest %RSD using the splitless 

injector was found for the high molecular weight PAHs. Although internal standard 

normalization increased precision, significant variability was found for naphthalene-

d8 using the PTV. Due to the solvent venting during multiple injections, compounds 

with elevated vapor pressures may purge with the carrier solvent (Mol  et al., 1996, 

Bosboom et al., 1996), resulting in greater variability for low molecular weight 

compounds. The elevated precision for internal standard normalized acenapthene is 

due to the use of acenaphthene-d10 as the internal standard for that window.  

 

NPAHs 

Recent studies utilize cool on-column injection for GC analysis of NPAHs 

(Bamford et al. 2003, Bamford and Baker, 2003) due to degradation artifacts using 

hot splitless injections. However, column degradation and contamination associated 

with loading large volumes of sample matrix limit the use of cool on-column 

injection for this application. For the NPAH evaluation, a standard solution 

containing 30 NPAHs and 4 perdeuterated NPAHs (~20 ng/mL) was employed. The 

injection volume was 50µL, introducing ~1ng of each NPAH into the 

chromatographic system. The %RSDs for NPAHs were similar to and often better 

than those of the PAHs (Table 2.1). The geometric mean %RSD for the normalized 

area counts was 2.4 %, ranging 0.8% (6-nitrochrysene) to 6.5% (2-nitronaphthalene 

and 6-nitrobenzo[a]pyrene), with no apparent trend with vapor pressure. The mass 

used in this analysis is approximately 1000 fold greater than the method detection 
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limits presented below. Therefore, the precision reported here is applicable to NPAH 

analysis where concentrations are well above reporting limits. 

 

2.3.2 Mass Transfer Efficiency 

PAHs 

 The major advantage to the PTV is the ability to introduce a larger volume 

(larger fraction) of sample onto the column, thus increasing sensitivity. We evaluated 

the relative mass transfer efficiency of each PAHs from the injection port to the 

column using the hot splitless and the PTV in solvent vent mode (Figure 2.1). If both 

injectors transfer analytes equally, the ratio of the mean detector response from 

injections of equal masses using the PTV and splitless (PTV/SL response) injectors 

should equal one.  The lighter PAHs (naphthalene to acenapthene) have ratios less 

than one with naphthalene exhibiting a response ratio of 0.5. The response ratios are 

greater than 1 for mid to high molecular weight PAHs (166 to 300 amu, fluorene and 

coronene, respectively), with an apparent increase in the response ratio with 

decreasing vapor pressure from fluorene to benzo[b]fluorene. For PAHs larger than 

fluorene the injector response ratio (PTV/SL) is consistently 4 to 5.  

The lighter PAHs naphthalene to acenaphthene (128 and 154, respectively) 

are apparently better transferred using the splitless injector. The loss of low molecular 

weight PAHs in the PTV is due to co-venting the more volatile PAHs with the solvent 

(Mol  et al., 1996, Bosboom et al., 1996). This also corresponds to the lower 

precision observed for the low molecular weight PAHs. A splitless or possibly a large 
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volume cool on-column injection may remedy co-venting losses of lighter PAHs 

(Bosboom et al., 1996). PTV parameters such as the initial temperature and carrier 

 (keeper) solvent may also be altered to compensate for volatiles losses (Mol et al., 

1996).  

Particulate matter contains minimal concentrations of the lightest PAHs. The 

increase in sensitivity using the PTV for PAHs with 4 rings or more 

(benz[a]anthracene to coronene) can not be accounted for by the variability in 

replicate runs. One explanation is the smaller volume of the PTV multi-baffled liner 

compared to the single gooseneck splitless injector liner. The smaller liner volume 

results in large carrier gas velocities. The smaller liner volume results in larger carrier 

gas velocities, less active sites on the liner surface and less exposure to elevated 

temperatures that may degrade analytes (Zrotlikova et al., 2001), thus better transfer 

of PAH mass to the chromatographic column. This problem may be easily solved 

using a different liner in the splitless injector with a volume comparable to the PTV. 

But possible degradation of high molecular weight PAHs may also be attributed to 

thermal degradation in the hot splitless injector as observed for NPAHs (see below).  

 

NPAHs 

To evaluate the mass transfer efficiency of NPAHs using the PTV, 3 PTV 

inlet heating configurations were tested; hot splitless (280°C), temperature 

programmed splitless (initial temperature of 40°C, ramped 600°C/min to 280°C in 

splitless mode), and solvent vent (initial temperature of 40°C, held 1.0 min, then 600 

°C/min to 280°C at 2psi with a purge flow of 100mL/min). The initial oven time was 



 

 22 
 

held for 1.06 min at 40°C for each injector configuration. A 2 µL injection volume 

was used for each mode to eliminate any solvent effects in the hot and programmed 

temperature splitless modes. The response for the hot splitless mode is consistently 

lower than the temperature programmed modes, indicating thermal degradation of 

NPAHs in the injection port (Figure 2.2). The dinitro-substituted PAHs are not 

detectable in the constant temperature mode (10 ng injected). This illustrates the 

degradation of more labile NPAHs in a constant temperature splitless injector. The 

programmed temperature solvent vent and splitless mode responses agree well. In the 

solvent vent and temperature programmed splitless modes, a similar replicate 

precision was observed for all NPAHs with no apparent co-venting of the lighter 

NPAHs (mononitronaphthalenes) in the solvent vent mode. 

 As described above, the PTV uses multiple injections to load larger sample 

volumes to the inlet while venting the solvent. Therefore to test the NPAH trapping 

efficiency, or losses of analytes, during the multiple injections the PTV was 

configured to inject 2 and 10µL (2 times 5µL each) of the NPAH standard containing 

~10ng of each analyte. The area count ratio 10µL/2µL injections (Figure 2.3) 

exhibited no losses of NPAHs with respect to vent time. In fact, a greater relative 

sensitivity (10µL area counts/ 2µL area counts > 5) was achieved with the increased 

mass loadings using the 10µL injection. Therefore we conclude that there are no 

significant losses of NPAHs during the sequential injections. 

2.3.3 Evaluation of Method 

 The advantages of using the PTV in solvent vent mode for PAHs and NPAH 

are two-fold. In addition to loading a larger fraction of the extract to the  
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chromatographic system, the PTV in solvent vent mode apparently allows for a more 

efficient transfer of analyte mass to the GC as compared to the conventional hot 

splitless configuration. To test the applicability of this method for atmospheric 

particulate matter, a series of Standard Reference Materials (SRMs) were quantified 

for PAHs and NPAHs. Microgram quantities of Diesel Particulate Matter and Urban 

Dust (SRM 1650 and 1649a, respectively) were analyzed using standard extraction 

and purification techniques described above. Using these two SRMs as surrogate 

matrices, we can assess the potential use of the PTV to quantify PAHs and NPAHs in 

ambient particulate matter on hourly timescales or better. 

 

PAHs   

Triplicate analysis of SRM 1649 and 1650 (~80µg and 30µg, respectively) 

were performed (Table 2.2). The geometric mean %RSD of the analysis was 22% and 

6.5% for 1649a and 1650, respectively. The Urban Dust SRM PAH concentrations 

(Certificate of Analysis 2001) were consistent with the certified values with the 

exception of the lightest PAHs quantified in this study. Fluoranthene, pyrene, 

benz[a]anthracene, benzo[b]- and benzo[k]fluoranthene, benzo[e]pyrene, perylene, 

indeno[1,2,3-c,d]pyrene, benzo[g,h,i]perylene were within 1 to 2 standard deviations 

(from this study) of the certified values. Phenanthrene, anthracene, 2-

methylphenanthrene, 1-methylphenanthrene and fluorene were consistently 5 to 10-

fold above reported values, of which the latter three are not certified concentrations. 

All of these compounds were quantified using the same internal standard 

(phenanthrene-d10), suggesting possible matrix interference.  
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Table 2.2 PAH SRM comparison using the PTV  
       
  1650 

certified 
1650a this 

study  1649 
 certified 

1649b  
this study 

       
 fluorene    *0.23(0.05) 8.3(1.3) 
 phenanthrene 68.4(8.5) 120c(24)d  4.14(0.37) 20(4.0) 
 anthracene *1.5(0.06) 11(3.1)  0.432(0.082) 2.4(0.54) 
 2-methylphenanthrene *70(4) 108(17)  *0.73(0.12) 11(2.5) 
 1-methylphenanthrene *34(7) 48(10)  *0.37(0.04) 4.3(0.7) 
 fluoranthene 49.9(2.7) 48(16)  6.45(0.18) 5.6(0.7) 
 pyrene 47.5(2.7) 46(2.9)  5.29(0.25) 5.3(1.2) 
 benz[a]anthracene 6.33(0.77) 7.3(0.3)  2.208(0.073) 2.0(0.5) 
 chrysene+triphenylene 26 15(0.8)  4.406 2.4(0.4) 
 benzo[b]fluoranthene 8.81(0.60) 7.0(0.2)  6.45(0.64) 5.0(0.7) 
 benzo[k]fluoranthene 2.64(0.31) 4.1(0.4)  1.913(0.031) 2.3(0.5) 
 benzo[a]pyrene 1.33(0.35) 3.6(0.04)  2.509(0.087) 1.7(0.3) 
 benzo[e]pyrene 7.44(0.53) 42(5.5)  3.09(0.19) 6.6(2.2) 
 perylene 0.16(0.04) 2.8(0.6)  0.646(0.075) 0.54(0.3) 
 indeno[1,2,3-c,d]pyrene 5.62(0.53) 6.8(0.2)  3.18(0.72) 4.8(0.9) 
 benzo[g,h,i]perylene 6.5(0.94) 5.0(0.2)  4.01(0.91) 3.7(0.6) 
 coronene *2(0.1) 1.8(0.3)  NRe 3.4(0.2) 
       
a.Approximately 80µg extracted and analyzed, b. Approximately 30µg extracted and analyzed, c. Geometric mean µg/g  (N=3), d. 1 
Standard deviation 
e.Not reported, * Not certified reference value 
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The Diesel Particulate Matter SRM (Certificate of Analysis 2000) results for 

PAHs were more consistent, exhibiting a geometric mean %RSD of 6.5%. Similar to 

SRM 1649, the most volatile PAHs (phenanthrene, anthracene, 1-methylphenanthrene 

and 2-methylphenanthene) were 1.4 to 7.6-fold above reported values, with 

phenanthrene as the only certified concentration. Fluoranthene, pyrene, 

benz[a]anthracene, indeno[1,2,3-cd]pyrene, benzo[g,h,i]perylene and coronene were 

all within 1 to 2 standard deviations of reported values. The PAHs with molecular 

weight of 252 were greater than two standard deviations above reported values. 

Benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[a]pyrene were 1.2, 1.5 and 

2.7 fold above certified values. Benzo[e]pyrene and perylene were 5 and 17 fold, 

respectively, above certified values. For the majority of PAHs the certification 

process of this SRM employs GC/MS and liquid chromatography with fluorescence 

detection (LC-FL). The latter 2 certified values did not include a LC-FL method. 

Therefore, injection port related matrix affects may be causing the greater 

discrepancy in these 2 compounds which are more pronounced in the Diesel SRM 

than the Urban Dust SRM.  

The SRM values from this study agreed well with certified values for the 

majority of PAHs analyzed. The explanation for the elevated recoveries of the lightest 

PAHs in SRM 1649 is unclear at this time. Therefore the current method is not 

recommended for the lightest PAHs in ambient particulate matter.  

 

NPAHs 
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 NPAH concentrations in the SRMs are orders of magnitude lower than PAHs 

(Bamford et al. 2003). To ensure the detectability of these compounds while retaining 

low particle mass, larger SRM masses (compared to the PAH analysis) were extracted 

(500µg and 200µg, respectively).  These masses are considerably less than the 50 to 

100mg extracted by Bamford et al. (2003) analyzed using cool on-column (2µL) 

injection. The geometric mean of the %RSDs for the triplicate analysis was 9.8% and 

14% for 1650 and 1649, respectively. Poor reproducibility was found for 2-

nitrofluorene (95 %RSD) due to low concentration in SRM 1649a (very close to the 

analytical detection limits). This high uncertainty is consistent with the below 

detection values reported by Bamford et al. (2003). Unlike the PAH results, there was 

no vapor pressure specific trend in NPAH recoveries. This is most likely due to the 

lower vapor pressures of nitro-substituted PAHs relative to parent the PAHs. With the 

exception of 9-nitroanthracene, our results for both SRMs were consistently below 

values previously reported (Bamford et al. 2003). The lower concentrations found in 

this study may be due to matrix-induced thermal degradation of the NPAHs during 

the thermal desorption step or to incomplete extraction. Values previously reported 

below detection limits were quantifiable using this method (2-nitrobiphenyl and 2-

nitrofluorene for 1649 and 1-nitrobenzo[e]pyrene for 1650). 

The dinitropyrenes were not detected in the SRMs (Table 2.3). During our 

analysis, we found these compounds to be very sensitive to matrix-induced 

degradation in the inlet. The relative response of the dinitropyrenes decreased 

dramatically (>2-fold) in the standard solution quantified after the above mentioned  
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Table 2.3 NPAH SRM comparison using PTV 
       
  1650 

Bamford et 
al., 2003b 

1650a  
This study 

 1649 
Bamford et al 

1649 b 
This study 

       
 1-nitronaphthalene 86.4 56c(21)d  6.8 8.4(1.6) 
 2-nitronaphthalene 238 116(2.9)  10 12(1.7) 
 2-nitrobiphenyl 15.3 6.8(0.6)  <5 2.5(1.4) 
 3-nitrobiphenyl 58.1 35(6.0)  3.6 4.7(1.0) 
 4-nitrobiphenyl  78(16)   5.5(3.5) 
 1,3-dinitronaphthalene      
 1,5-dinitronaphthalene      
 5-nitroacenapthene 37 46(5.5)  3.1 4.2(3.1) 
       
 2-nitrofluorene 46.2 44(3.3)  <2 2.6(3.4) 
 2,2’-dinitrobiphenyl      
 9-nitroanthracene 6080 13000(350)  35.9 70(11) 
 2-nitroanthracene  1400(50)   14(2.8) 
 9-nitrophenanthrene 510 320(21)  1.7 2.1(0.6) 
 3-nitrophenanthrene 4350 2040(79)  0.47 1.6(N=1e) 
 4-nitrophenanthrene      
       
 2-nitrofluoranthene 201 230(9.0)  282 190(16) 
 3-nitrofluoranthene 65.2 54(3.8)  4.5 1.9(0.15) 
 1-nitropyrene 18330 16000(1200)  71.5 40(3.6) 
 2-nitropyrene    24.4 7.0(0.1) 
 2,7-dinitrofluorene      
       
 7-nitro[a]anthracene 995 390(48)  35.1 15(2.0) 
 6-nitrochysene 44.4 36(3.4)  4.4 2.5(0.6) 
 1,3-dinitropyrene      
 1,6-dinitropyrene      
 9,10-dinitroanthracene      
 1,8-dinitropyrene      
 6-nitrobenzo[a]pyrene 1442 970(300)    
 1-nitrobenzo[e]pyrene <10 13    
 3-nitrobenzo[e]pyrene 89 70(N=1)    
 1-nitro- and 3-nitro-       
 benzo[a]pyrene      
       

a.Approximately 200µg extracted. See text for specifics, b. Approximately 500µg extracted c.Geometric mean ng/g (N=3) d.1 
standard deviation (N=3), e. Above detection limits in 1 sample 
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SRMs (N=6). Therefore we conclude the dinitropyrenes are not reliably quantified in 

SRMs and ambient aerosols using the current instrumental setup. 

2.4 Method Implications 

The goal of this study is to develop an analytical method for trace level 

analysis of PAHs and NPAHs suited for hourly quantification of PAHs and NPAHs. 

The maximum mass of SRM employed was 500µg. Assuming a particulate matter 

concentration of 50 µg/m3 of Urban Dust SRM, this corresponds to approximately 10 

m3 of air sampled. A collection rate of 0.5m3/min would achieve this mass of 

particulate material in 20 minutes. Therefore, the sampling time intervals can be on 

the order of minutes rather than hours or days.  

Instrumental detection limits (IDLs) were developed from foil blanks 

concurrently analyzed with the SRMs (Table 2.4). These values correspond to the 

instrument noise multiplied by 3 for each compound. This represents the lower limit 

of detection of PAHs and NPAHs. The IDLs for NPAHs are consistently 1 to 2 orders 

of magnitude below PAHs. Due to the ubiquitous nature of PAHs, method detection 

limits (MDLs) are usually determined from the greater of the instrument noise and/or 

contamination. Bamford et al. (1999) reported a minimum detection limit for PAHs 

of 1 pg/m3 using 12 hr (0.5 m3/min flow) corresponding to a minimum detection mass 

of ~400 pg. A similar value can be calculated from the flow and method detection 

limits presented by Halsall et al. (1997) in their study of PAHs in the Artic (Dunai) 

atmosphere. Larger monitoring programs such as the IADN report similar detection 

(1 – 9 pg/m3 for ~600m3 sampled) limits for PAHs using GC/MS analysis.  
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Table 2.4 Instrumental detection limits for PAHs and NPAHs 
     
PAHs IDL (pg)a  NPAHs IDL (pg) 
naphthalene 9.8  1-nitronaphthalene 0.51 
azulene 23  2-nitronaphthalene 0.79 
2-methylnaphthalene 2.7  2-nitrobiphenyl 0.57 
1-methylnaphthalene 9.6  3-nitrobiphenyl 0.26 
acenapthylene 7.6  4-nitrobiphenyl 2.4 
biphenyl 1.8  1,3-dinitronaphthalene 0.57 
acenaphthene 4.4  1,5-dinitronaphthalene 0.23 
   5-nitroacenapthene 0.71 
fluorene 7.4    
phenanthrene 40  2-nitrofluorene 0.15 
anthracene 24  2,2’-dinitrobiphenyl 0.27 
1-methylfluorene 9.2  9-nitroanthracene 0.88 
4,5-methylenephenanthrene 10  2-nitroanthracene 1.0 
2-methylphenanthrene 12  9-nitrophenanthrene 0.19 
2-methylanthracene 19  3-nitrophenanthrene 0.11 
1-methylanthracene 25  4-nitrophenanthrene 0.13 
1-methylphenanthrene 20    
9-methylanthracene 22  2-nitrofluoranthene 0.27 
   3-nitrofluoranthene 0.16 
fluoranthene 25  1-nitropyrene 0.17 
pyrene 11  2-nitropyrene 1.8 
9,10-dimethylanthracene 33  2,7-dinitrofluorene 0.16 
benzo[a]fluorene 6.0    
benzo[b]fluorene 26  7-nitro[a]anthracene 0.30 
benz[a]anthracene 5.0  6-nitrochysene 0.09 
chrysene+triphenylene 2.3  1,3-dinitropyrene 0.53 
napthacene 24  1,6-dinitropyrene 2.85 
3-methylcholanthrene 12  9,10-dinitroanthracene 2.1 
   1,8-dinitropyrene 1.7 
benzo[b]fluoranthene 11  6-nitrobenzo[a]pyrene 0.65 
benzo[k]fluoranthene 7.7  1-nitrobenzo[e]pyrene 1.1 
benzo[a]pyrene 8.2  3-nitrobenzo[e]pyrene 1.8 
benzo[e]pyrene 28  1-nitro- and 3-nitro-   
perylene 3.3  benzo[a]pyrene 12 
dimethylbenz[a]anthracene 30    
     
indeno[1,2,3-c,d]pyrene 5.4    
benzo[g,h,i]perylene 1.7    
anthanthrene 1.5    
diben[a,h+a,c]anthracene 0.44    
coronene 4.4    
     
     
a. 3 times the instrument noise 
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Using similar IDL calculations to this study (3xs the noise) others have found NPAH 

detection limits orders of magnitude above those presented in Table 2.4. Bonfanti et 

al. (1996) found IDLs ranging 1pg to 700pg for 1-nitropyrene and 2-nitrobiphenyl, 

respectively, using particle beam liquid chromatography-mass spectrometry in NCI 

mode. Jinhui et al. (2001) employed a derivatization technique to increase their 

NPAH sensitivity using a GC-electron capture detector as opposed to GC/MS (30 and 

150pg, respectively). This method utilized a hot splitless injector possibly 

contributing to the high (compared to this study) IDLs reported. Fieldberg et al. 

(2001) used a temperature programmed injector and ion trap GC/NCI for NPAH 

analysis in Denmark. The IDLs for 9-nitroanthracene (35pg), 2-nitrofluoranthene 

(20pg), 3-nitrofluoranthene (22), 1-nitropyrene (24pg) and 2-nitropyrene (22pg) are 

also orders of magnitude above the method presented here. Bamford et al. (2003) 

developed method detection limits using 3 times the blank values using cool on-

column injection GC/NCI. From the mean volume (1400m3) collected and the method 

detection limit range (0.001 to 0.12 pg/m3) we can estimate an IDL (including 

possible interferences) ranging 1.4 to 170 pg. This is still 5 to 10 times above the 

majority of the NPAH IDLs presented here.         

From the IDLs presented in this study, an upper limit of the temporal 

resolution of PAHs and NPAHs has been calculated for a variety of samplers (Table 

2.5). For this conservative comparison, a method detection limit was calculated as 

10x the IDL for benzo[a]pyrene and 1-nitropyrene. Mean July 2003 concentrations in 

Baltimore, MD from Bamford and Baker (2003) were chosen as representative  
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ambient concentrations. The lower limit of sampling frequency for 1-nitropyrene 

ranges 0.4 min (hi-vol) to 42 min for a personal sampler. The sampling time required 

for detecting benzo[a]pyrene is approximately half that of 1-nitropyrene.  

This method has been recently employed to measure 12 hr NPAH size 

distributions in Baltimore, MD using a Berner low-pressure impactor with a flow of 

80 Lpm (Crimmins and Baker in preparation). Figure 2.4 depicts a mean size 

distribution of 1-nitropyrene and 2-nitrofluoranthene for two consecutive day and 

night samples collected in April 2002. For all samples 2-nitrofluoranthene and 1-

nitropyrene were above detection limits (0.34 and 0.10 pg/m3) in the four smallest 

size cuts of the impactor (<6.0µm). The concentration in the accumulation mode 

(0.14 – 0.49µm) was greater than 2 orders of magnitude above the MDLs accounting 

for the largest particle mass (~500µg) and concentration of 2-nitrofluoranthene (48 – 

77 pg/m3). A similar trend was found for 1-nitropyrene with the exception of one 

night sample where the stage 3 (0.49 – 1.7µm) concentration was greatest (13 pg/m3). 

During the day approximately 83% of the total 2-nitrofluranthene concentration was 

associated with the greatest particle surface area (i.e. accumulation mode, 0.14 – 

0.49µm) whereas 1-nitropyrene was more evenly distributed among the smallest 3 

particle size classes collected. To our knowledge this is the first reported size 

distribution of NPAH on time scales less than day. Using this method we were able to 

quantify NPAHs consistently from <300µg (extracted per stage) of ambient 

particulate matter mass.  
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2.5 Conclusions 

Enhanced temporal resolution of air toxics such as PAHs and NPAHs is 

critical to understanding their sources and behavior in the ambient atmosphere. We 

present a large volume injection technique for the quantification of both classes of 

compounds. The programmed temperature vaporization large-volume injection 

techniques have similar  precision as the standard hot splitless injection, while 

enhancing the sensitivity per mass injected up to 5-fold for PAHs. The methods were 

verified using microgram quantities of Standard Reference Materials. The dinitro-

substituted PAHs were not quantifiable using this technique, possibly due to matrix-

induced degradation.   

The significance of the increased analytical sensitivity (temporal resolution) is 

demonstrated by the diurnal NPAH size distribution presented here. Using this 

method we were able to present the first reported diurnal NPAH size distribution in 

ambient particulate matter. Further application of this injection technique will 

undoubtedly increase our knowledge and certainty (lower artifacts) of the phase 

distribution, sources, photochemistry and inevitably the real-time health effects 

associated with PAH and NPAHs in the ambient atmosphere. From the detection 

limits presented in this study commercially available sampling equipment may be 

employed to better elucidate PAH and NPAH behavior on timescales of minutes.  

In a broader sense, this technique provides a gentler sample introduction 

technique able to efficiently and consistently increase the method sensitivity of these 

compounds by orders of magnitude using commercially available sampling 

equipment. This increased sensitivity corresponds to greater temporal resolution, 
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hence, minimizes potential artifacts associated with extended sampling times. In the 

future, this injection technique should be further evaluated for other non-polar and 

polar organic tracers analyzed by GC. Encompassing these tracers along with PAHs 

and NPAHs will undoubtedly broaden our understanding particulate organic carbon 

sources, photochemistry and potential health effects.  
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Chapter 3:  

Charaterization of Alkanes, PAHs, Nitro-PAHs and Hopanes in the Baltimore 
Atmosphere: Seasonal Trends and Source Profiles 

 

3.1 Introduction 

Ambient aerosol is a mixture of organic and inorganic constituents. The 

organic fraction, which may contribute up to 60% of the mass (Malm et al., 2004), is 

composed of hundreds of compounds with a variety of functional groups (Rogge et 

al., 1993a). Polycyclic aromatic hydrocarbons (PAHs) and nitro-substituted 

polycyclic aromatic hydrocarbons (NPAHs) contribute to a small fraction of the 

overall particulate matter mass but have been implicated in the increased 

mutagenicity of specific aerosol types (Arey et al., 1988, Gupta et al.¸1996, IARC 

1989).  

Previous studies in Baltimore, MD have examined the aerosol PAH 

distribution and the effect of this urban center on the deposition of contaminants to 

the Chesapeake Bay (Offenberg and Baker, 1999). PAHs have also been employed as 

chemical tracers where diesel was found to be significant source to the Baltimore 

atmosphere (Larsen and Baker, 2003). Recently, Bamford and Baker (2003) reported 

the first concentrations and seasonal distribution of NPAHs in the mid-Atlantic region 

identifying the dominant NPAH formation pathways (primary vs. secondary) in the 

Baltimore urban center and at a suburban site midway between Baltimore and 

Washington DC.  
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N-Alkanes are ubiquitous in ambient air, having biogenic, petroleum, and 

biomass and fossil fuel combustion sources. Characteristic n-alkane profiles have 

been observed in source studies and are useful for determining the relative 

contribution of biomass and fossil fuel contribution of ambient aerosol (Simoneit and 

Mazurek, 1982, Simoneit, 1984, Simoneit t al., 1988, Simoneit, 1989, Rogge et   al., 

1993a, Oros and Simoneit, 2000, Hayes et al.,   2002). Hopanoid compounds are 

extensively used to determine the age of fossil fuels (Nytoft et al., 2000, Price et al., 

1994). These compounds are formed by bacteria on geologic timescales as organic 

matter is converted from plant matter to coal and petroleum (Oros and Simoneit, 

2000). These compounds are also found in aerosol emitted from fossil fuel 

combustion (Rogge et al., 1993e, Rogge et al., 1997b), roofing tar (Rogge et al., 

1997a) and in road dust (Rogge et al.,1993d).  

NPAHs are highly mutagenic and have isomer specific sources (Arey, 1998). 

Unlike PAHs that are primarily formed via incomplete combustion, NPAHs can also 

be formed by gas phase reactions in the atmosphere (Arey et al., 1986, Pitts, 1987). 

The dominant isomer in ambient aerosol is usually 2-nitrofluoranthene, which can be 

formed via OH radical mediated nitrate substitution during the day or direct addition 

via nitrate radical at night (Arey, 1998). 1-nitropyrene has not been observed in 

chamber studies (Arey, 1998), but is one of the dominant NPAH isomer in diesel 

exhaust. Therefore, the isomeric composition of NPAHs are indicators of primary and 

secondary sources as well as the mutagenicity potential of ambient aerosol.      

 The objective of this study is to present the seasonal distribution of alkanes, 

PAH, NPAHs and hopanes at the Baltimore Supersite during the 2002 -2003 spring, 
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summer and winter intensives. The results are combined with collocated gas (NO, 

NO2, O3) and bulk particle phase (organic carbon, OC and elemental carbon, EC), and 

volatile organic compound (VOCs) concentrations to provide insight into possible 

sources to and formation pathways (NPAHs) in the Baltimore atmosphere.  

3.2 Sampling 

The sampling site is described by Harrision et al. (2004) and Ogulei et al. 

(2005) and is briefly summarized here. Aerosol samples were collected at the 

Baltimore PM2.5 Supersite during the spring (April), summer (July-August) and 

winter (January-February) of 2002-2003. Samples were collected ~6 m above the 

asphalt parking lot. The sampling site was flanked to the west (~100 m) by a 

Maryland Transit Authority bus depot. A four lane access road separated the site and 

bus depot spanning south to northwest of the site. A major highway Interstate (I895) 

is positioned to the east (~100 m). The interstate is elevated (~6 m) passing through 

the Baltimore Harbor Tunnel approximately 2 km south of site. An onramp to the 

interstate is located between the site and I895 (~10 m) with limited traffic.  

Aerosol samples were collected using a modified Anderson Hi-Volume 

sampler consisting of a glass fiber filter (GFF) followed by a polyurethane foam 

(PUF) plug for particulate and gas phase organics, respectively (Bamford and Baker, 

2003, Offenberg and Baker, 1999). Sampling times ranged from approximately 6 to 

24 hr at a flow rate of ~0.5 m3 min-1. Prior to deployment, the filters were ashed at 

450°C for >4 hrs in individual foil pouches. The PUF were precleaned by Soxhlet 

extraction with petroleum ether for 24 hrs, dried and stored in ashed glass jars fitted 
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with Teflon lined caps. After deployment, the filters and PUF were returned to their 

respective containers and stored in the dark at -20°C until analysis.  

In addition to the semi-volatile compounds, a series of bulk particulate matter 

parameters (elemental carbon, organic carbon, nitrate and PM2.5 mass) were measured 

during the spring and summer and gas phase parameters (CO, NO, NO2, and ozone) 

were measured during the spring, summer and winter intensives (Park  et al., 2005a, 

b, Harrison  et al., 2004). Some of these constituents were measured on different 

timescales (10 min – 1hr) therefore, a time integrated average was calculated, 

coinciding with the semi-volatile organics collections (6 to 24 hr). Volatile organic 

compounds (VOCs) were also measured using SUMA canisters concurrently 

collected with semivolatiles and analyzed via EPA method TO-15 by the Maryland 

Department of the Environment during the spring, summer and winter. 

 

3.3 Methods 

All PAHs used in this study were supplied by Ultra Scientific (North 

Kingstown, RI) with the exception of 2- and 4-methyldibenzothiophene, 

cyclopenta[c,d]pyrene and 4-methylchrysene which were supplied by Accustandard 

(New Haven, CT). Two deuterium labeled PAH solutions, internal and surrogate 

standards, were made from neat standards (Ultra Scientific) in hexane. Nitro-PAH 

standards were acquired from AccuStandard (New Haven, CT) in concentrated 

solutions (~100 mg mL-1 in toluene) except for 2-nitrofluoranthene and 2-nitropyrene, 

which were supplied by Chiron (Trondheim, Norway) and Chemsyn Science 

Laboratories (Lenexa, KS), respectively. The internal standard solution components 
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(3-nitrofluoranthene-d9, 6-nitrochrysene-d11, 2-nitrofluorene-d9 and 5-

nitroacenaphthene-d9) were purchased from Cambridge Isotope Laboratories, Inc. 

(Andover, MA). The surrogate solution components were acquired from C/D/N 

Isotopes (Pointe-Claire, Quebec, Canada, nitronaphthalene-d7) and Cambridge 

Isotope Laboratories, Inc. (9-nitroanthracene-d9 and 1-nitropyrene-d9). The series of 9 

hopane standards were obtained from Chiron and a series of even n-alkanes (C10 –

C36) with the addition of C17 and C29 were provided by Ultra Scientific. Most odd 

carbon chain alkanes were identified by using the midpoint retention time between 

the adjacent even chain alkanes. Odd alkanes were quantified using the mean 

response factor of the adjacent even carbon alkanes.  

The particle phase (GFF) and gas phase (PUF) were separately Soxhlet 

extracted with dichloromethane (DCM) and petroleum ether, respectively for 24 hrs 

(Bamford and Baker, 2003, Offenberg and Baker 1999). A series of PAH 

(naphthalene-d8, fluorene-d10, fluoranthene-d10, perylene-d12) and NPAH (1-

nitronaphthalene-d7, 9-nitroanthracene-d9, and 1-nitropyrene-d9) surrogates were 

added each sample prior to extraction. Extracts were then concentrated by rotary 

evaporation to ~20 mL and quantitatively transferred to 200 mL tubes, then further 

concentrated under a gentle stream of N2 (Turbovap II, Zymark, Hopkinton, MA) to a 

final volume of 1 mL and transferred to 2 mL vials. A series of perdeuterated PAHs 

(benz[a]anthracene-d12, benzo[a]pyrene-d12 and benzo[g,h,i]perylene-d12) were then 

added as internal standards and PAHs, alkanes and hopanes were analyzed without 

further purification. PAHs, alkanes and hopanes were quantified using an Agilent 

6890/5973 gas chromatograph/mass spectrometer (GC/MS) with electron ionization 



 

 43 
 

(EI) in selective ion mode (SIM). Samples were eluted through a 0.25mm x 30m x 

0.25µm DB-5ms (Agilent Technologies, Palo Alto, CA) capillary column equipped 

with a hot splitless injector at 250°C. The oven was held at 50°C for 0.60 min and 

ramped 10°C/min to 310°C and held for 10 min.  

 The extracts were transferred to 4 mL vials and quantitatively subsampled 

(~1/2). The subsamples were further purified  by elution through an aminopropyl SPE 

cartridge (Sep-Pak, Waters, Milford, MA) with a 20% DCM/hexane solution, 

concentration under N2 and exchange to 100% hexane with a final volume of ~0.25 

mL (Bamford et al., 2003). Normal phase LC was then employed for the final clean-

up step using a 5 µm, 9.6 mm x 30 cm Chromegabond amino/cyano column (ES 

Industries, West Berlin, NJ). The mobile phase was 20% DCM/hexane at a flow rate 

of 5 mL min-1. Two fractions were collected, separating the mono- and dinitro-PAHs. 

The purified extracts were then exchanged to 100% hexane to a final volume of 

~200µL. NPAH internal standards (3-nitrofluoranthene-d9, 6-nitrochrysene-d11, 2-

nitrofluorene-d9 and 5-nitroacenaphthene-d9) were then added just prior to analysis. 

The NPAH analysis was performed as described in Crimmins and Baker 

(2006). The 6890/5973 GC/MS was configured for negative chemical ionization 

(methane reagent gas) in SIM mode. NPAHs were resolved using a 0.25mm x 30m x 

0.25µm DB-17ms capillary column. The oven temperature program for NPAH 

analysis was 40°C (held 1.7 min) ramped to 150°C at 20°C min-1, held for 10 min, 

then to 220°C at 10°C min-1, held for 10 min and finally ramped to 310°C and held 

for 15 min. Sample introduction (50 µL) was performed using a programmed 

temperature vaporization (PTV) injector in solvent vent mode. The injector was 
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configured to introduce 50 µL of sample using a series of ten 5 µL injections at 45°C 

held for 1.5 min then ramped at 600°C min-1 to 280°C.  

3.4 Quality Assurance 

PAHs: The mean PAH surrogate recoveries (naphthalene-d8, fluorene-d10, 

fluoranthene-d10 and perylene-d12) for the PUF samples were 60.1% + 15.1, 113% + 

52, 138% + 43 and 97% + 20 whereas filter surrogate recoveries were 35% + 15, 

125% + 27, 80% + 9, 92% + 6.7.  A series of field and laboratory blanks were 

processed concurrent with samples to assess possible contamination. Field blank 

masses ranged from 1.9 to 5.8 ng (naphthalene and 1,8-dimethylnaphthalene, 

respectively) in the filters and 5.4 to 7.6 ng (1-methylnaphthalene and naphthalene, 

respectively) in the PUF. The field blank values for each matrix were consistently 

higher than laboratory blanks for all compound classes, therefore field blank values 

are used to develop method detection limits (MDL) for each compound. Applying a 

mean volume of 600 m3 to 3 times the field blank masses result in MDLs of 9.5 to 29 

pg m-3 and 27 to 38 pg m-3 for filters and PUF, respectively. 

Alkanes and Hopanes: Due to the low vapor pressure of the hopanes analyzed in this 

study, only particulate phase concentrations were determined. The hopane and alkane 

extraction efficiency was monitored with the PAH surrogates. Hopane field blanks 

ranged from 1.2 to 26 ng for 17β(H),21β(H)-hopane and 17α(H),21β(H)-30-

norhopane, resulting in MDLs ranging 6.0 to 130 pg m-3. Alkane filter and gas phase 

MDLs ranged from 9 (C17) to 58 (C24) pg m-3 and 36 (C19) to 6700 (C21) pg m-3, 

respectively.    
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NPAHs: Lower recoveries were found for the NPAH surrogates 1-nitronaphthalene-

d7, 1-nitroanthracene-d9 and 1-nitropyrene-d9 (36% + 20, 45% + 16, 44% + 17, 

respectively) with more sample to sample variability. This is due to the increased 

purification and concentration steps required for this analysis. Therefore, NPAH 

concentrations were surrogate corrected using a relationship between surrogate 

recovery and retention time. The NPAH MDLs (3x’s blank) for the PUF and filter 

ranged 9.0 to 420 fg m-3 (6-nitrochrysene and 1-nitronaphthalene) and 5.8 to 50 fg m-3 

(3-nitrofluoranthene and 2-nitroanthracene), respectively. 

Procedural Recovery: A series of matrix spikes (filter and PUF) were analyzed to 

assess the analytical accuracy of the extraction methods. Hopanes, PAHs, and NPAHs 

were added to PUF and GFF substrates in triplicate prior to extraction and processed 

using the methods described above. The n-alkane standard consisted of even chain 

number n-alkanes (C10-C36), C17 and C29. The filter spike recoveries were consistently 

above 80%, 75% and 65% for PAHs, hopanes and NPAHs, respectively. Apparent 

contamination was observed in the n-alkane spikes accounting for elevated recoveries 

of (>200%) for C24, C26, C28, C29, C30. C12 and C22 were recovered with 81 and 130% 

efficiency. This contamination was not observed in the PUF spikes therefore, we 

conclude that this contamination was not representative of the dataset.   

 PUF spike alkane recoveries were more consistent than the filters ranging 

65% (C17) to 130% (C10) with the majority of values above 90%. PUF PAH and 

NPAH recoveries exhibited a lower recovery (<40%) of the lightest compounds (C1-, 

C2-naphthalene, biphenyl and nitronaphthalenes, methylnitronaphthalenes and 

nitrobiphenyls) due to volatilization losses during extract concentration. The mid to 
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high molecular weight PAH and NPAH recoveries were usually greater than 80%. 

The lower vapor pressure NPAHs also exhibited better recoveries but, were 

consistently below PAH values (52% to 81%), similar to surrogate values discussed 

above. 

 The sampler was fitted with a second PUF plug downstream of the sampling 

train to assess collection efficiency during the spring and summer (N=3). Significant 

quantities (<50%) of the lightest PAH (molecular weight < fluorene) and alkane (< 

C20) mass was found on the second PUF decreasing with increasing molecular 

weight. Therefore, the concentrations reported here are lower estimates of actual 

concentrations. The total alkane and PAH concentrations presented below have been 

separated into 2 groups, low molecular weight and mid to high molecular weight 

totals. 

3.5 Results 

The seasonal distribution of gases and bulk particle parameters are 

summarized in Table 3.1. Further details and a complete discussion of these air 

quality parameters are presented elsewhere (Park et al., 2005a, b, Harrison  et al., 

2004). PM2.5, elemental carbon (EC), organic carbon (OC), nitrate (NO3
-) and 

semivolatile organic concentrations were concurrently measured during the spring 

and summer only. OC, EC and PM2.5 concentrations were similar among seasons. 

PM2.5 concentration (geometric mean[geometric standard deviation]) increased from 

spring (13[1.5] µg m-3) to summer (19[1.9] µg m-3), whereas NO3
- concentrations 

were lower during the summer (0.6[2.0] µg m-3) compared to spring (1.8[1.8] µg m-3).  
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Ozone concentrations were higher in the summer (31[1.7] ppb), consistent with 

increased photochemical activity, while the NO concentrations were higher during the 

winter intensive (54[1.9] ppb), suggesting increased high temperature combustion or 

decreased mixing. Summer CO (0.26[1.3] ppm) concentrations were not significantly 

different than spring (0.55[1.5] ppm) and winter (0.52[1.5] ppm) periods.  

The bulk particle and gas phase parameters were inter-correlated (p<0.005) 

with the following exceptions (Table 3.2). OC was only significantly correlated with 

CO, NO2, NO3
- and EC. Ozone was negatively correlated with NO. PM2.5 mass was 

less related to CO (p<0.01) concentrations compared to NO2 (P < 0.001). The 

relationship between EC and OC suggests that the organic fraction of the ambient 

aerosol may be dominated by combustion sources. NO is emitted in larger quantities 

during diesel combustion due to a lean air/fuel ratio with a lower fraction of OC to 

EC compared to gasoline combustion (Schauer  et al., 1999, 2002). At this site, OC 

and CO were correlated, whereas OC and NO were not, suggesting that the OC mass 

at this site is not significantly influenced by NO sources.  

Of the non-halogenated VOCs (1,3-butadiene, cyclohexane, heptane, benzene, 

toluene, m- and p-xylene, o-xylene, 1-ethyl-4-methylbenzene, 1,3,5-

trimethylbenzene, and 1,2,4-trimethylbenzene), only 1,3-butadiene exhibited a 

seasonal difference. Lower 1,3-butadiene concentrations in the summer (55[1.8] ppb) 

compared to spring (98[1.8] ppb) and winter (112[1.6] ppb), are likely due to 

photochemical degradation. Photochemical degradation may also explain the higher 

benzene concentration variability during the summer period. The low seasonal 
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variation for the majority of VOCs suggests a relatively constant local source to the 

site.  

A significant (p<0.005) correlation was found among the majority of non-

halogenated VOCs (Figure 3.1). Benzene was less correlated (p<0.01) with the other 

VOCs. The majority of VOCs were significantly (p<0.005) correlated with NO, NO2, 

EC and OC (except, cyclohexane and heptane, p<0.02). Benzene was not 

significantly correlated with these parameters (p > 0.1). The non-halogenated VOCs 

have numerous sources including, gasoline and diesel combustion, fugitive gasoline 

and diesel emissions, coatings, and solvents (Schauer et al., 1999, Watson et al., 2001 

Schauer et al., 2002). The alkybenzene concentrations did not track the ambient 

temperature therefore volatilization from road surfaces or refueling stations appears to 

be a minimal source of these compounds to the site. The correlation of these 

compounds with the combustion parameters (NO, CO, EC) and a lack of seasonal 

variation or temperature dependence indicate a traffic related source of these species.  

Alkanes: The n-alkane concentration, sum of particulate (filter) and gas (PUF) 

phases, (Table 3.3 C20 – C35) exhibited no seasonal difference during the spring, 

summer and winter intensives (91[1.7], 110[1.5], 91[1.4] ng m-3, respectively). When 

the lighter homologues (C15 – C19) are included in the total alkane concentration 

(Figure 3.2), the winter concentration (230 ng m-3) is approximately 2-fold greater 

than the spring and summer (120 ng m-3). No backup PUF was analyzed for the 

winter period (described above) therefore, the PUF collection efficiency at winter 

temperatures (< 5 °C) period is unknown. The latter seasonal difference in the lightest  
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alkanes suggests increased fossil fuel combustion during the winter months, 

consistent with elevated NO concentrations and NPAH distribution (see below) 

during this period. Due to the possible increased collection efficiency of the PUF 

during the colder months, this interpretation must be viewed with caution. 

 Fraser et al. (1997) found similar alkane concentrations (e.g. mean n-

pentacosane of 6.4 ng m-3) using a filter/PUF sampler during a Los Angeles 

photochemical smog event in 1993 (Table 3.4). As part of the Southeast Aerosol 

Research and Characterization (SEARCH) air monitoring network, Zheng et al. 

(2002) measured n-triacontane concentrations on PM2.5 in 4 southeastern urban sites 

(Atlanta, GA, Birmingham, AL, Gulfport, MS and Pensacola, FL). The authors 

reported values ~1/2 or less the mean Baltimore concentrations. Triacontane 

concentrations in Baltimore are similar to urban Houston, TX values (Fraser et al., 

2002). Winter 1995-1996 n-triacontane concentrations measured in California’s San 

Joaquin Valley (Fresno and Bakersfield) during a pollution episode were 

approximately twice the Baltimore levels (Schauer and Cass, 2000). Baltimore and 

Denver, CO, gas + particle pentacosane concentrations are within a factor of 2 

(Foreman and Bidleman, 1990). C28 concentrations reported along the Niagera River 

in January 1983 (0.7 ng m-3, gas + particle, Hoff and Chan, 1987) were well below 

Baltimore concentrations. 

Southeastern rural alkane concentrations from the SEARCH project and 

Galveston Island, TX (Zheng et al., 2002, Fraser et al., 2002) were an order of 

magnitude below Baltimore values. Rural/remote concentrations measured in the 

Northern Highlands State Forest, WI, 200 km away from Green Bay (7 ng m-3, total  
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C11-C32, Doskey and Andren, 1986), Kern Wildlife Refuge south central San Joaquin 

Valley, CA (C28 ~1 ng m-3, Schauer and Cass, 2000), Seney National Wildlife Refuge 

in Northern Michigan (C28 < 2 ng m-3, Sheesley et al., 2004) as much as 14 - fold 

below values reported for Baltimore.  

The Carbon Preference Index (CPI), defined as ∑odd carbon alkane 

concentration / ∑even carbon alkane concentration, has been employed to 

discriminate aerosol sources (Simoneit, 1984, 1989). An odd carbon predominance of 

alkanes or elevated CPIs have been found in regions dominated by biogenic sources 

(Simoneit and Mazurek, 1982, Simoneit, 1984, Simoneit et al., 1988), source studies 

of biomass combustion (Oros and Simoneit, 1999, Hays et al., 2002, Rogge et al., 

1998), and direct leaf wax extraction (Simoneit and Mazurek, 1982, Rogge et al., 

1993b). Fossil fuel aerosol CPIs are closer to 1 with no apparent carbon preference 

(Simoneit, 1984, Oros and Simoneit, 2000). Fossil fuel particle phase emissions are 

dominated by alkanes shorter than C25, whereas plant wax emissions are larger than 

C25 (Simoneit, 1989). Therefore, the CPI of the biogenic (CPIbiogenic) and fossil fuel 

(CPIfossil) ranges can be calculated independently (C26 –C34 and C12 –C25, 

respectively) to better represent alkane sources. For example, at 4 southern California 

urban sites, Fraser et al. (1997) observed an odd carbon predominance for the heavier 

alkanes (C28 – C35) and Hildemann et al. (1996), using biogenic alkane source 

profiles (C27 – C33), calculated 0.2 - 1.0 µg m-3 of the fine aerosol in the Los Angeles 

atmosphere could be attributed to urban vegetation.  

The daily CPIs are shown in Figure 3.2. Since volatilization is governed by 

vapor pressure, CPIs should reflect the relative profile (odd to even) without bias 
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from PUF breakthrough. The spring, summer and winter geometric mean CPIfossil 

values were similar (1.2[1.3], 1.1[1.4] and 1.0[1.2], respectively). CPIbiogenic values in 

the spring (1.4 [1.4]) and summer (1.9[1.8]) were larger than those in the winter 

(1.1[1.3]). Winter CPIfossil and CPIbiogenic values of 1 suggest foliar fuels (wood 

combustion) are not a significant source of alkanes during the winter period. The 

elevated summer CPIbiogenic values are consistent with an increased biogenic input 

during that period. Simoneit (1989) notes particulate matter CPIfossil and CPIbiogenic 

values range 0.9 to 2 and 2 to 13, respectively in rural areas of the western United 

States, while the ranges in urban atmospheres are 0.9 to 1.3 (CPIfossil) and 2 to 3.3 

(CPIbiogenic), well within values observed for Baltimore.  

During the spring and summer periods the alkane with the maximum 

concentration (Cmax) was usually C20 or C21. But 3 of 24 and 4 of 26 samples in the 

spring and summer, respectively, had a Cmax at C29 then C31 (Figure 3.3). CPIbiogenics 

were also greater than 2 for these periods, suggesting an increased biogenic influence 

(Rogge 1993a, Simoneit et al. 2000). The total alkane concentrations (>C20) were not 

significantly different compared to other periods where C29 and C31 were less 

predominant. The biogenic alkane periods were associated with winds from the NNE 

to NNW away from the urban center and adjacent interstates. C20 had the highest 

concentration during the winter and CPIs (CPIfossil  and CPIbiogenic) were close to 1, 

supporting the fossil fuel predominance during this period.  

Select odd alkanes (C21, C23, C25) from the petroleum-dominated alkane 

region (<C27, see above) covaried with EC and OC. The non-halogenated VOCs 

(except benzene) covaried with C21-C27, C30 and C32. Gasoline vehicle (catalyst 
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equipped) particulate matter emissions have elevated concentrations of pentacosane 

(Rogge et al., 1993e). Schauer et al. (2002) found elevated of n-tricosane and n-

pentacosane in gasoline combustion relative their adjacent even carbon homologues, 

not observed in medium duty diesel emissions (Schauer et al., 1999, Rogge et al., 

1993e). In addition, elevated levels of benzene, toluene and alkyl benzenes have been 

observed in gasoline exhaust (compared to diesel, Schauer et al., 1999, 2002). 

Pentacosane is also the dominant alkane measured in vehicle brake linings (Rogge et 

al., 1993d). Elevated levels of n-tricosane have also been observed in pine wood 

fireplace combustion relative to adjacent even homologues (Schauer et al., 2001). A 

slight even predominance in this carbon range has been observed in hot asphalt fumes 

(Rogge et al., 1997a). Even though alkanes have discrete biogenic vs. fossil fuel 

profiles, distinguishing specific source types using alkanes alone is limited. 

In Baltimore, alkane concentrations usually increased from C32 – C35. This is 

consistent with tire wear from the adjacent highway (Rogge et al., 1993d). In 

addition, the two highest molecular weight alkanes (C34 and C35) covaried with traffic 

markers NO, EC and alkylbenzenes. This is expected as tire wear particles should 

covary with traffic intensity. In addition, an even carbon predominance was observed 

during 1, 2, and 1 sampling periods during the spring summer and winter, 

respectively. Previously, this profile has been observed in plastics and plastic 

incineration (Simoneit et al., 2005). This profile occurred at night when the winds 

were from the north. This may be due to plastic incineration or possibly several 

industrial facilites specializing in plastic extruding, shapes, pipe and resins located to 

the northwest of the city.  
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Hopanes: The sum of the 7 particle phase hopanes measured in this study (Table 3.5) 

were similar during the spring (6.8[1.5] ng m-3) and summer (5.0[1.5] ng m-3) and 

winter (8.3[1.4] ng m-3). The seasonal mean 17α(H),21β(H)-hopane concentrations 

were within the range reported in Los Angeles (0.93 ng m-3, Fraser et al., 1997, Table 

3.4).  And were two times greater than those in North Birmingham, AL and Atlanta, 

GA (0.6 ng m-3, Zheng et al., 2002). Hopane levels in rural areas from the same study 

were usually a factor of 100 below values observed in Baltimore. The 

17α(H),21β(H)-hopane concentrations in Fresno, California (~2 ng m-3, Schauer and 

Cass, 2000) were similar to Baltimore concentrations observed during the spring and 

summer and winter. 17α(H),21β(H)-hopane concentrations in Baltimore were 

approximately ten times less than values reported in industrial and suburban sites in 

Houston, TX (Fraser et al., (2002). Background levels of 17α(H),21β(H)-hopane 

observed in the northern Michigan Seney Wildlife Refuge (<0.3 ng m-3, Sheesley et 

al., 2004), Galveston Island, TX (0.02 ng m-3, Fraser et al., 2002), Big Bend National 

Park, TX (<0.01 ng m-3, Brown et al., 2002) are significantly less than Baltimore 

concentrations. 

 The highest hopane concentrations observed, mainly during the evening-night 

samples, did not vary systematically with wind speed or direction. The dominant 

hopanes were 17α(H),21β(H)-30-norhopane and 17α(H),21β(H)-hopane in all 

samples. The patterns did not vary with total hopanoid concentration, suggesting a 

constant source or sources at the site, with dilution (boundary layer mixing) 

controlling concentrations. 17α(H),21β(H)-hopane is the dominant isomer in gasoline 

and diesel vehicle emissions (Rogge et al., 1993e). Oros and Simoneit (2000) found a 
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ratio of ~1 for 17α(H), β(H)-hopane to 17β(H),17α(H)-hopane in bituminous coal 

combustion compared to a mean value of 8.6 + 1.4 (mean + SD) in this study. 

Distillate No. 2 Fuel oil emissions measured by Rogge et al., (1997) had a ratio of ~5 

for 17α(H), 21β(H)-hopane and 22R-17α(H), 21β(H)-30-homohopane compared 2.4 + 

0.4 found in Baltimore. From these source studies it appears that distillate fuel and 

coal combustion are not the dominant sources of the hopanes in the Baltimore 

particulate matter.   

The sum of the seven hopanes analyzed in this study was positively related (p 

< 0.005) to NO and EC and negatively related to ozone and CO. Lower significance 

levels were found for OC and NO3
- (p=0.03 and 0.009, respectively). Non-

halogenated VOCs (except cyclohexane and benzene) were also significantly with all 

hopanes measured in this study except 17α(H)22,29,30-trisnorhopane and 

17α(H),21β(H)-30-norhopane + 17β(H),21α(H)-30-norhopane. The former hopanoid 

was correlated with styrene, whereas the latter compounds were correlated with 

toluene and styrene. Cass (1998) suggests the styrene/butadiene copolymer is a good 

tracer for tire wear as it is the major component of synthetic tire tread. The 

relationship between styrene and the select hopanes may be due to degassing of 

styrene via tire wear. The hopane correlations are similar to the heaviest alkanes, also 

supporting a traffic influence. Similar hopane profiles have been observed for 

gasoline and diesel vehicle emissions due to the co-emission of crankcase oil during 

vehicle operation (Rogge 1993e). The positive relationship between hopanes, C34, C35 

and, NO, EC and VOCs is also consistent with vehicle traffic.  
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PAHs: The total PAH (filter + PUF, Table 3.6) concentrations (molecular weight > 

fluorene) were similar during the spring, summer and winter (51[1.7], 53[1.5] and 

61[0.75] ng m-3, respectively). Greater volatile PAH (VPAHs) concentrations were 

observed during the winter (Figure 3.2). Significant breakthrough of these compounds 

was observed during the spring and summer suggesting increased levels are possibly 

due to better collection efficiency of these compounds on the PUF during colder 

temperature periods. Similar to the alkanes, increased NO concentrations and the 

NPAH profiles (see below) observed during the winter period support a greater 

influence of high temperature combustion.  

Individual PAH concentrations were consistent with previous Baltimore 

measurements (Dachs and Eisenreich, 2000, Offenberg and Baker 1999, Bamford et 

al., 2003, Table 3.4) and concentrations reported along the Niagara River (Hoff and 

Chan, 1987). Pyrene concentrations measured in Chicago, IL (10 ng m-3, Simicik et 

al., 1997), Denver, CO (24 ng m-3, Foreman and Bidleman, 1990) and Los Angeles, 

CA during a photochemical smog episode (Fraser et al., 1998) were 2 to > 4 - fold 

above values reported here. A more recent study in Los Angeles found 

benzo[g,h,i]perylene concentrations similar to those in Baltimore (Fine et al., 2004). 

Baltimore, MD seasonal mean concentrations of PAHs are within the range of 

concentrations reported for southeast urban areas (Atlanta, GA, N. Birmingham, AL, 

Gulfport, MS, and Pensacola, FL, Zheng  et al., 2002), Houston, TX (Fraser et al., 

2002) and New Brunswick and Sandy Hook NJ (Gigliotti et al., 2000).  

Rural PAH concentrations are typically an order of magnitude lower than 

Baltimore values. Offenberg and Baker (1999) found pyrene concentrations on the 
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rural eastern shore of the Chesapeake Bay (Chestertown, MD) approximately an order 

of magnitude lower than reported here. Background values in Texas (Galveston 

Island, Fraser et al., 2002), and rural areas in the southeast (Centerville, AL, Oak 

Grove, MS, and Yorkville, GA, Zheng et al., 2002), northern Michigan (Kern 

Wildlife Refuge, Sheesley et al., 2004), San Joaquin Valley, CA (Schauer and Cass, 

2000) were more than an order of magnitude below Baltimore concentrations.      

In the spring and summer intensives, the greatest concentration of PAHs (> 

150 ng m-3) was often associated with elevated EC concentrations (1.5 – 2.0 µg m-3, 

Figure 3.2) and light winds (< 1.5 m s-1) with no uniform direction,  indicating the 

influence of local sources and reduced mixing. The lower concentration periods (< 30 

ng m-3) were associated with wind speeds greater than 3 m/s from the NNE to NNW. 

The elevated wind speeds and directional dependence (away from urban center) 

suggest the site is less influenced by local sources during the low concentration 

periods, which often coincided with a biogenic alkane profile in aerosols.  

The total PAH concentration was significantly (p<0.005) related to NO, NO2 

and PM 2.5 (p=0.007). Total PAHs were also related to CO, EC, OC and ozone 

(negative) with a lower significance (p=0.03, 0.006, 0.05, and 0.02, respectively, 

Table 3.7). A stronger relationship between PAHs and NO (compared to CO) 

suggests diesel may contribute a significant concentration of the total PAH 

concentration at the site. As expected, total PAHs and OC covary (p < 0.022), with 

combustion sources contributing to the particulate matter organic carbon.  

Among individual PAHs, alkylphenanthrenes and alkylanthracenes, 

fluoranthene, pyrene and cyclopenta[c,d]pyrene were significantly (p<0.005)  
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correlated with the majority of non-halogenated VOCs. Cyclopenta[c,d]pyrene, which 

has been suggested as a unique tracer for gasoline combustion (Daisey et al., 1986), is 

correlated with CO and EC at a slightly lower significance level (p = 0.02 and 0.05, 

respectively). This may be due to the reactivity of this PAH to photochemical 

degradation (t1/2 = 6 – 96 min, Atkinson and Arey, 1994). The total alkyphenanthrene 

(3-, 9-, 1-, 2-methylphenanthrene and 4,5-dimethylphenanthrene) to phenanthrene 

ratio is lower for gasoline (0.7) compared to diesel (>3) combustion (Nielson, 1996, 

Limm et al., 1999). In this study only 1- and 2-methylphenanthrene and 4, 5-

dimethylphenanthrene were quantified. The concentration of these compounds 

relative to phenanthrene is 0.36 (geometric mean). If diesel is the dominant source of 

these compounds, the sum of 3- and 9-methylphenanthrene must be 10 fold greater 

than the total alkylphenanthrenes analyzed in this study, which is not likely. 

Combined with the VOC data it appears that the alkyphenanthrenes may have a 

gasoline engine source. 

In contrast, the benzofluorenes, benzofluoranthenes, benz[a]anthracene were 

significantly correlated with NO and EC. A relatively poor correlation between these 

compounds and non-halogenated VOCs was also observed. Alkylbenzene emissions 

from gasoline combustion are much greater than diesel (Schauer  et al., 1999, 2002), 

therefore a poor relationship with VOCs suggests a diesel combustion source of these 

PAHs. 

NPAH: t-NPAH concentrations (filter + PUF, Table 3.8) were not significantly 

different during the spring (2.8[2.1] ng m-3), summer (0.88[2.1] ng m-3) and winter 

(1.3[1.9] ng m-3). NPAHs of differing sources (primary vs. secondary) did not follow  
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the t-NPAH seasonal trends. For example, 1-nitropyrene is the dominant NPAH 

found in diesel exhaust (Bamford et al., 2003, Zielinska et al., 2004). The winter 

(150[2.4] pg m-3) concentrations were significantly greater than the summer 

(23[2.1]pg m-3). Spring (74 [2.1] pg m-3) concentrations were not significantly 

different than the winter or summer. The dominant particle bound secondary NPAH 

found in the ambient atmosphere is usually 2-nitrofluoranthene and Baltimore 

concentrations were similar during the spring (74[2.9] pg m-3), summer (57[2.5] ng 

m-3) and winter (70[2.3] pg m-3).  

 Similar to Bamford and Baker (2003) and Reisen and Arey (2005), NPAH 

concentrations were a factor of 5 to 1000 below parent PAHs for the phenanthrenes, 

fluoranthenes and pyrenes. In contrast, the nitro-substituted biphenyls, 9-

nitroanthracene and 5-nitroacenaphthene concentrations were up to 6 fold greater than 

parent PAH levels. The latter may be due to the lower collection efficiency mentioned 

above for the lightest PAHs compared. Concentrations of 1-nitropyrene were 2 to 5 

times greater than those in measured at a different downtown Baltimore site in 2001 

(Bamford and Baker, 2003). The differences in the 1-nitropyrene concentrations may 

be due to the proximity of the current site to an interstate and bus depot. Summer and 

winter 2-nitrofluoranthene concentrations in the 2001 study were similar to values 

observed here. The winter mean concentrations of 1-nitropyrene (150 pg m-3) and 2-

nitrofluoranthene (69 pg m-3) are similar to the mean concentration of three winter 

samples (Feb. 1998) reported by Fieldberg et al. (2001) for a heavy traffic area in 

Copenhagen, Denmark. The spring 1-nitropyrene concentration range at this site (80 

– 360 pg m-3, April, 1998, N=5) was up to 4 fold above the mean spring concentration 
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presented here. Dimashki et al. (2000) observed concentrations of 1-nitropyrene (90 

pg m-3) and 2-nitrofluoranthene (221 pg m-3) in Birmingham, UK, also within the 

range reported here. Summer and winter 1-nitropyrene concentrations were consistent 

with those in Athens, Greece (20 and 180 pg m-3, respectively), whereas the 

Baltimore spring concentrations are 3 times higher than the mean value reported by 

Marino et al. (2000). Increased winter concentrations of 2-nitrofluoranthene, reported 

for Athens, were not observed in Baltimore.  

Due to the site location and elevated 1-nitropyrene concentrations, diesel 

exhaust is most likely a significant contributor of NPAHs. The ratio of 2-

nitrofluranthene/1-nitropyrene has been used to determine the primary vs. secondary 

contribution of NPAHs to the ambient atmosphere. Typically values less than 5 

indicate the occurrence of primary sources whereas values greater than 5 indicate 

secondary sources (Ciccioli et al., 1996). The time series of 2-nitrofluoranthene to 1-

nitropyrene is plotted in Figure 3.2 with seasonal mean (+ 1 standard deviation) 

values of 1.0 + 0.8, 2.5 + 1.1, and 0.45 + 0.28 for spring, summer and winter, 

respectively (Table 3.8), confirming the high primary (diesel) NPAH influence at this 

site. Bamford and Baker (2003) found statistically higher values (p<0.05) in July 

compared to January in downtown Baltimore. Values less than 1 have been reported 

for a high traffic area in Copenhagen, Denmark (Feildberg et al., 2001). Mean spring, 

summer and winter values reported for urban residential areas in Athens, Greece (2.3, 

2.0 and 2.8, respectively, Marino et al., 2000) were similar to Baltimore summer 

concentrations with elevated values during the spring and winter. The 2-

nitrofluoranthene/1-nitropyrene ratios illustrate the high primary (diesel) contribution 
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to the NPAH distribution to Baltimore PM2.5 Supersite, with a greater influence of 

secondary reactions in the summer months due to increased greater photochemical 

activity. 

Although the 2-nitroflouranthene/ 1-nitropyrene ratios suggest primary 

sources dominate the NPAH distribution at the site, the ratio of 2-nitrofluoranthene to 

2-nitropyrene provides insight into the formation mechanism of the secondary 

NPAHs. The 2-nitrofluoranthene isomer has primarily two formation pathways (OH 

and NO3), whereas 2-nitropyrene is solely formed via OH attack (Arey et al., 1986, 

Atkinson  et al., 1990). The ratio of these two secondary isomers provides evidence 

of the seasonal dependence of the formation pathway. Gas phase PAHs only react 

with the NO3 at night due the efficient removal of this oxidant by photolysis. Figure 

3.4 shows the ratio of 2-nitrofluoranthene/ 2-nitropyrene for the spring, summer and 

winter samples. Ratios of 10 and 100 denote the OH and NO3 radical formation 

pathways, respectively (Zielinska  et al., 1989a, b, Feilberg  et al., 2001). During the 

spring and winter, the 2-nitrofluoranthene/2-nitropyrene ratios (2NFLN/2NPYR) are 

usually 10 or less and ranged 1.6 – 33 and 6 – 24, respectively. Typical NO/NO2 and 

O3 levels were > 0.5 and < 20 ppb, respectively. During the summer period the 

NO/NO2 concentrations were lower corresponding to an increase of the 

2NFLN/2NPYR ratio and increased O3 concentrations. An inverse relationship 

between the 2NFLN/2NPYR and NO/NO2 ratios is apparent for the summer samples. 

The 2NFLN/2NPYR ratio is less sensitive to O3 concentrations. This is likely due to 

the scavenging of NO3 radicals by NO (NO + NO3 → 2NO2). The sensitivity between 

these two ratios may serve as a predictive tool for determining the dominant oxidant 
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responsible for secondary organics in the urban atmosphere. From Figure 3.4 we see 

that NO3 reactions usually dominate when the ratio between NO and NO2 is <0.2. 

Therefore, during periods where NO/NO2 is less than 0.2, secondary products from 

reaction involving NO3 may dominate the night time chemistry.  

Bamford and Baker (2003) observed a similar seasonal trend in 2001 for 

Baltimore. The current 2NFLN/2NPYR maxima (2NFLN/2NPYR = 160) for the 

summer period was greater than reported in 2001 (2NFLN/2NPYR = 60). These 

levels are also greater than other studies reported for residential Athens, Greece (~2, 

Marino et al., 2000), urban and vehicular influenced Copenhagen, Denmark (2 – 18, 

Feildberg  et al., 2001). Values reported for Claremont, CA during a smog episode 

(Zielinska et al., 1989a) are within the range of the summer 2NFLN/2NPYR maxima 

observed in Baltimore, MD. 

The following equation has been employed to quantify the fractional 

contribution of OH vs. NO3 initiated NPAH formation Feilberg et al. (2001); 

 

αOH = (Robs – RN)/(ROH – RN)      (1) 

 

where αOH corresponds to the relative contribution of the OH pathway, Robs is the 

observed 2NFLN/2NPYR ratio, RN and ROH are the ratio of 2NFLN/2NPYR from the 

NO3 and OH pathway, respectively. RN and ROH are constants. ROH is taken from 

chamber and modeling studies (Atkinson and Arey, 1994, Fan et al., 1995, Kamens  

et al., 1994) and is set to 10. RN is assigned a value of 100 although this may be as 

much as 1000 (Feilberg et al., 2001). When this equation (RN = 100) is applied to the 
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current dataset > 90% of the spring and winter 2-ntrofluoranthene concentrations are 

due to the OH reaction pathway. A larger contribution from NO3 was observed during 

the summer (Figure 3.4). The NO3 mechanism was responsible for > 75% of the 2-

nitrofluoranthene concentrations in 3 out of 31 samples collected during the summer. 

This is consistent with previous results from Baltimore (Bamford and Baker, 2003) 

where as much as 55% of the 2NFLN during a given period was attributed to the NO3 

radical formation process during July 2001 (Bamford and Baker, 2003). Overall the 

dominant mechanism for 2-nitrofluoranthene formation employs OH while NO3 can 

be a significant during select summer periods. 

Among individual NPAH isomers, 1-nitropyrene (Table 3.9) was significantly 

correlated (p<0.005) with NO similar to Fieldberg et al, (2001) at a road side station 

in Copenhagen, Denmark. Bamford and Baker (2003) did not observe this 

relationship in a suburban area between Baltimore, MD and Washington, DC, 

postulating alternate sources of NO to that region. A lower correlation between 1-

nitropyrene and EC (p=0.2) suggests diesel is not the dominant source of EC to the 

site. Ogulei et al. (2005) found that spark ignited vehicle emissions contributed 5 

times the aerosol mass (compared to diesel) to this site during their multivariate 

source apportionment using inorganic species. This is consistent with the poor 1-

nitropyrene and EC relationship. Although NO is emitted in smaller quantities in 

gasoline combustion (compared to diesel engines), the relationship between NO and 

1-nitropyrene suggests diesel emissions (1-nitropyrene and NO) are a significant 

contributor (but not necessarily OC and EC) or covary with PM2.5 during the spring 

and summer.  
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The dominant secondary NPAH, 2-nitrofluoranthene, was positively 

correlated with NO and EC. This may due to the covariance of combustion products 

and secondary organic aerosol. 2-nitropyrene was correlated with NO and EC, and 2-

nitrofluoranthene was significantly correlated with fluoranthene suggesting a NPAH 

formation dependence on PAH concentrations (Fieldberg et al., 2001). Bamford and 

Baker (2003) observed a similar relationship with between 2-nitropyrene and NO at 

the suburban site, but not 2-nitrofluoranthene.  

 Cyclohexane, heptane and alkybenzenes were significantly correlated 

(p<0.005) with 3-nitrobiphenyl, 3-nitrodibenzofuran, 5-nitroacenaphthene, 9-

nitroanthracene, 3- and 4-nitrophenanthrene, and 2-nitrofluoranthene. All of these 

NPAHs can be formed via gas phase reactions (Arey, 1988). The significant 

relationship between the secondary NPAHs and VOCs suggests that the amount of 

secondary organics formed in the Baltimore area are directly linked to anthropogenic 

(vs. biogenic) emissions. In other words, the significant correlation between the 

secondary NPAHs and traffic markers illustrates the connection between gasoline 

combustion emissions and oxidized products (secondary organic aerosol). While 1-

nitropyrene emissions may be dominated by diesel combustion, gasoline emissions 

initiate the atmospheric conditions necessary for secondary NPAH formation. In the 

Baltimore atmosphere, this corresponds to non-diesel emissions indirectly enhancing 

the toxicity of the urban aerosol by promoting secondary NPAH formation.    

3.5.1 Semivolatile Organics Profiles 

Individual sample periods illustrate the different sources or chemistry 

occurring at the Baltimore PM2.5 Supersite. Overall, the alkanes provide the greatest 
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variability for distinguishing primary sources impacting the site. The hopane and 

PAH profiles did not dramatically differ from day to day suggesting similar sources 

of these compounds to the site. The following section provides examples of 

contrasting profiles observed at the Baltimore indicative of different source strengths. 

The April 23 day alkane profile (Figure 3.5) shows elevated concentrations of C29 and 

C31, typical of biogenic sources along with the increasing concentration of from C32 to 

C35 indicative of tire wear (Rogge et al., 1993d). In addition, elevated concentrations 

of C25 relative to C24 and C26 indicate gasoline and diesel combustion sources (Rogge 

et al., 1993e). Road dust is a repository leaf/grass debris, vehicle exhaust and abrasive 

emissions (tire wear), therefore the combination of these individual profiles is 

expected. The 2N-fluoranthene to 1-nitropyrene ratio (0.8) is consistent with a 

primary aerosol sources (Figure 3.6). This day is a typical set of profiles observed at 

the Baltimore Supersite.  

The April 26 alkane profile (Figure 3.5) does not contain the tire wear profile 

intermixed with the biogenic profile. An odd carbon predominance is observed from 

C22 to C35 with a Cmax at C29. The PAH concentrations and profiles are similar among 

these two periods (April 23 and 26) suggesting the dominant source of PAHs and 

alkanes are not linked. Lower concentrations of NPAHs are observed but the profiles 

are similar. The ratio of 2-nitrofluoranthene to 1-nitropyrene is also similar (1.6, 

Figure 3.6) suggesting a primary sources of NPAHs. 

The August 1, night sampling period was characterized by elevated 2-

nitrofluoranthene concentrations relative to 1-nitropyrene (Figure 3.6, 1.1 and 0.06 ng 

m-3, respectively) indicating high secondary NPAH production. The ratio of 2- 
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nitrofluoranthene to 2-nitropyrene (160) suggests the dominant NPAH formation 

pathway is via the NO3 radical (see above). This period was also characterized by an 

elevated 9-nitroanthracene concentration. 9-nitroanthrcene has diesel sources (Paputa-

Peck, et al., 1983, Ciccicioli  et al., 1989, Arey, 1998, Bamford  et al., 2003)  and can 

be formed via heterogeous reactions (Pitts  et al., 1978, Arey  et al. 1989). The 

increased NO3 chemistry suggests heterogeneous reactions are responsible for the 

elevated 9-nitroanthracene concentrations. The alkane profile was typical 

anthropogenic with a decreasing concentration from C22 to C28 and a slight biogenic 

source signature apparent with elevated C29 and C31 concentrations. The PAH profiles 

are similar to previous periods with the exception of decreased concentrations of 

cyclopenta[c,d]pyrene. This is most likely due to degradation of this reactive PAH 

due to increased oxidant concentrations during this period. 

The August 7 night period (Figures 3.5 and 3.6) exhibited a distinct even 

carbon predominance from C22 to C27 (CPIf = 0.5) in the alkane profile consistent 

with plastic incineration (Simoneit et al. 2005). Increased levels of C29 and C31 

relative to adjacent alkanes show a mixed biogenic source also contributing the 

profile. The PAH profile from open burning of plastic bags, roadside litter and 

landfill trash from Chile consists of elevated benzofluoranthenes relative to 

benzo[g,h,i]perylene (~4), but the combustion emissions of US plastic bags did not 

contain detectable levels of these PAHs (Simoneit  et al., 2005). The observed ratio in 

Baltimore, MD during this period was 1.4, suggesting plastic incineration (using 

Chilean profiles) is not the dominant source of PAHs during this period. The ratio of 

2-nitropyrene to 1-nitropyrene (1.9) signifies low photochemical production during 
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this period relative to primary emissions, similar to the previous selected periods.  

The above profiles represent the typical differences among days and compound 

classes observed in Baltimore. Although the alkanes appeared to contain the greatest 

variability, subtle difference in the PAH and hopane profiles may be elucidated using 

multivariate receptor models.  

3.6 Conclusions 

During the spring summer and winter of 2002-2003 a series of nonpolar organic 

compounds were collected at the Baltimore PM2.5 Supersite to evaluate the seasonal 

composition changes of the aerosol organic fraction. The total alkane, PAH and 

hopane concentrations were not significantly different among seasons suggesting 

local sources. Concentrations at the Baltimore Supersite were within the range of 

previous urban studies and up to an order of magnitude above rural values. Various 

alkane source profiles were observed during the ambient sampling including; tire 

wear, biogenic emissions, plastic incineration and vehicle exhaust. Primary sources 

dominated the NPAH distribution at the site with 2-nitrofluoranthene/1-nitropyrene 

concentrations typically less than 5. A greater proportion of secondary NPAHs were 

found during the spring and summer whereas 1-nitropyrene (and NO) concentrations 

were greater during the winter periods due to increased fossil fuel combustion. In 

addition, the formation of secondary NPAHs is dominated by the OH radical during 

the spring and winter, whereas night time NO3 reactions are a significant contributor 

(as much as 100%) to the summer 2-nitrofluoranthene concentrations. The fraction of 

OH initiated secondary NPAH formation is more sensitive to the NO/NO2 ratio than 

ozone illustrating the effect of NO in scavenging the NO3 radical. A strong 
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correlation between secondary NPAHs and VOCs during the three seasons suggests 

the oxidative potential or gas phase oxidants involved in the formation of secondary 

NPAHs are related combustion emissions. Although gasoline combustion is not the 

major source of NPAHs, oxidant precursors (i.e. VOCs) are directly related to the 

formation of secondary NPAHs.   

 Using multiple species from primary and secondary sources, this study 

provides the framework for future studies using these non-polar organic constituents 

as tracers for organic matter. In addition, the NPAH distribution provides information 

on the amount (relative to primary emissions) and mechanism (OH vs. NO3) of 

secondary organic aerosol formation typical for a Mid-Atlantic urban area. 

 
 
 
 
 
 

 



 

 83 
 

Chapter 4:  

Diurnal Size Distributions of Polycyclic Aromatic Hydrocarbons and Nitro-
substituted Polycyclic Aromatic Hydrocarbons in the Baltimore, MD 

Atmosphere 

 

4.1 Introduction 

Size and composition influence the fate of organic particulate matter in the 

ambient atmosphere. Organics make up 20% to 60% of the aerosol mass (Malm et al., 

2004) and this fraction may be an important contributor to cloud condensation nuclei 

(CCN) in remote regions (Novakov and Penner, 1993) but may suppress rain in 

highly polluted regions (Ramanathan et al., 2001). An increasing amount of evidence 

links ambient particulate matter concentrations to increased mortality (Dockery et al., 

1993, Pope, 2000). Particle size determines the penetrating efficiency of particulate 

matter (Phalen et al., 1991, Tsuda et al., 2002) and the removal mechanisms from the 

ambient atmosphere (Slinn and Slinn, 1980, Sehmel, 1980, Poster and Baker, 1996a, 

b, Seinfeld and Pandis, 1998). Polycyclic aromatic hydrocarbons (PAHs) and nitro-

substituted polycyclic aromatic hydrocarbons (NPAHs) constitute a relatively small 

portion of the organic fraction but are implicated in its increased mutagenicity (Arey 

et al. 1988, Gupta et al., 1996, IARC 1989). Formed concurrently with black carbon 

during incomplete combustion, PAHs are often associated with elemental carbon 

(EC) or soot and their size distribution may reflect the source and aging of primary 

ambient particulate matter (van Vaeck and van Cauwenberghe, 1985, Venkataraman 

et al., 1994, Offenberg and Baker, 1999, Schnelle et al., 2001).   
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NPAHs have primary and secondary sources to the ambient atmosphere. 

Certain NPAH isomers have been detected in fossil fuel combustion whereas others 

are formed in the gas phase (reactions with OH and N2O5 radical, Arey, 1998) and/or 

through heterogeneous reactions (Fan et al., 1996) in ambient air. Although some 

isomers can be formed by more than one pathway, certain NPAH isomers are source 

type specific. For example, 1-nitropyrene is a dominant NPAH found in diesel 

exhaust, while 2-nitropyrene is formed via OH mediated gas phase reaction (see 

Arey, 1998 for review). Therefore, the relative abundance of individual congeners 

indicates sources (primary vs. secondary) of NPAHs. 

The size distribution of PAHs has been previous reported in urban, suburban, 

forested and over water atmospheres (van Vaeck and van Cauwenberghe, 1985, 

Aceves et al., 1993, Venkataraman et al. 1994, Poster et. al., 1996, Allen et al., 1996, 

1997, Miguel et al., 1998, Offenberg and Baker, 1999, Schelle-Kreis et al. 2001, 

Sanderson and Farant, 2005, Kawanda et al., 2005). Offenberg and Baker (1999) 

measured the PAH size distribution in Chicago, IL and over Lake Michigan. The 

geometric median diameter of indeno[1,2,3-cd]pyrene decreased from 2.6 µm to 0.73 

µm from the Chicago to Lake Michigan sites under northwest winds, due to 

deposition of larger particles during over-water transport. Poster et al. (1995) found 

that PAHs occurred on particles less than 1µm in Egbert, ON and Chicago, IL. In 

Boston MA, greater than 85% of the indeno[1,2,3-cd]pyrene mass was associated 

with particles less than 1.9 µm (Allen et al., 1996).  Vehicle emissions have found EC 

and PAH mass median diameters less than 0.2 µm (Venkataraman  et al., 1994), 

while road dust PAH size distributions are much greater (>100 µm, Yang et al., 
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1999). Venkataraman et al. (2002) reported mass median aerodynamic diameters of 

~0.5 µm, > 0.7 µm and > 0.8 µm for PAHs emitted during wood, dung-cake, and 

biofuel briquette combustion, respectively. Other PAH size distribution 

measurements have included fly ash (>40 - <105 µm Arditsoglou et al., 2004) and 

residential coal combustion (~0.35 µm, Chen et al., 2004).  

The concentrations of NPAHs in the ambient atmosphere are orders of 

magnitude below those of PAHs. To our knowledge, the only size resolved NPAH 

results are from Kawanaka et al. (2004), who reported the size distribution of 2-

nitrofluoranthene in Tokyo, Japan from a 42 day composite of weekly samples using 

a cascade impactor. They found 72% of the 2-nitrofluoranthene mass was 

concentrated on particles with diameters less than 0.68 µm. Fine and coarse aerosol 

NPAHs have been presented by Cecinato et al. (1999) over successive 12 hr periods 

in Rome. The largest concentrations were found on the fine fraction (0.01-2.5 µm) 

with a lower, but significant contribution in the coarse mode (2.5 µm-10 µm). 

The size distribution of individual compounds in the ambient atmosphere 

depends on their vapor pressure. Lighter PAHs are associated with larger particles 

compared to non-volatile PAHs (Allen et al., 1996, Offenberg and Baker, 1999, 

Poster et al., 1995) with either an increase in the overall PAH size distribution with 

distance from sources (Schnelle et al., 2001, van Vaeck and van Cauwenberghe, 

1985) due to aging or a decrease due to dry deposition of larger particle associated 

PAHs via transport (Offenberg and Baker, 1999). In their modeling study, 

Venkataraman et al. (1999) proposed that volatilization rates of lighter PAHs from 

the nuclei mode (direct emissions) are enhanced due to the Kelvin effect, followed by 
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adsorption of these compounds to accumulation mode particles. Approximately 68% 

of the variability observed in the PAH gas particle partitioning coefficient in Chicago, 

IL ambient air was explained by incorporating compound vapor pressure, particle size 

and organic carbon content (Offenberg and Baker, 2002). Significant correlations 

were also observed between the PAH geometric median diameter and PAH vapor 

pressure.   

We have recently developed a large-volume injection method that increases 

our analytical sensitivity orders of magnitude, allowing for the determination of PAH 

and NPAH size distributions on 12 hr timescales using a Berner low pressure 

impactor (Crimmins and Baker, 2006a). Adding to our understanding of the seasonal 

bulk aerosol organic distribution in Baltimore, MD (Crimmins and Baker, 2006b), the 

objective of this study was to characterize the diurnal size distributions of PAHs and 

NPAHs in the Baltimore, MD atmosphere. These results are the first size-resolved 

comparison of PAHs and primary and secondary NPAHs, providing insight into the 

behavior of these two classes of compounds with respect to particle size and sources 

in the Baltimore, MD atmosphere.  

 

4.2 Methods 

4.2.1 Sampling 

Size resolved 12 hr ambient aerosol samples were collected between April 15 

- 18 and April 22 - 25, 2002 at the Baltimore PM2.5 Supersite, Baltimore, MD. The 

site description has been previously reported by Harrision et al. (2004) and Ogulei et 

al. (2005) and is briefly summarized here. Aerosol samples were collected at the 
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Baltimore PM2.5 Supersite ~6 m above the asphalt parking lot. The sampling site is 

flanked to the west (~100 m) by a Maryland Transit Authority bus depot. A four lane 

access road separates the site and bus depot, spanning south to northwest of the site. 

A major highway interstate (I895) is positioned to the east (~100 m). The interstate is 

elevated (~6 m) passing through the Baltimore Harbor Tunnel approximately 2 km 

south of site. An on ramp to the interstate is located between the site and I895 (~10 

m) with limited traffic.  

 Particulate matter was collected using a Berner low-pressure impactor 

operated for 12 hr at 80 Lpm (Poster et al., 1995). Day and night samples were 

collected approximately 7 am - 7 pm, and 7 pm -7 am EST, respectively. The 

impactor consists of 5 stages (0.04 - 0.14, 0.14 - 0.49, 0.49 - 1.7, 1.7 - 6 and 6 - 

21µm) where particles are collected on non-greased aluminum foils, previously ashed 

at 450°C for 4 hrs and sealed in individual foil pouches. Prior to deployment, each 

foil was tared (0.1µg) using a Mettler (UM T-2) microbalance. Particle loaded foils 

were returned to their respective foil pouches and immediately frozen at -20°C upon 

returning to the laboratory.  

 

4.2.2 Analysis 

Prior to analysis each foil was placed in a desiccator (24 hr) and reweighed. 

The foil was quantitatively subsampled (cut in half) just prior to extraction. The foil 

subsample extraction and processing has been previously described (Crimmins and 

Baker, 2006a). Briefly, each foil was loaded in a 20 mL test tube previously ashed at 

450 °C for 4 hrs. A series of PAH (fluoranthene-d10, perylene-d12) and NPAH (1-
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nitronaphthalene-d7, 9-nitroanthracene-d9, and 1-nitropyrene-d9) surrogates were 

added each tube. Dichloromethane (DCM) was added, the tubes were sealed with 

Teflon lined screw caps and the samples were sonicated for 30 min. Each tube was 

then placed in the freezer (-20°C) for 48 hrs. Extracts were filtered, exchanged to 

hexane and concentrated under a gentle stream of N2 (Turbovap II, Zymark, 

Hopkinton, MA) to 500µL. A series of perdeuterated PAHs (benz[a]anthracene-d12, 

benzo[a]pyrene-d12 and benzo[g,h,i]perylene-d12) were then added as internal 

standards just prior to PAH analysis.  

PAHs were quantified using an Agilent 6890/5973 gas chromatograph/mass 

spectrometer (GC/MS) with electron ionization (EI) in selective ion mode (SIM). A 

programmed temperature vaporization (PTV, Gerstel, Mülheim an der Ruhr, 

Germany) injector was configured for 25µL pulsed splitless injection (Crimmins et 

al., 2004) Extracts were then eluted through a 0.25mm x 30m x 0.25µm DB-5ms 

(Agilent Technologies, Palo Alto, CA) capillary column. 

After PAH analysis, the extracts were further purified using an aminopropyl 

SPE cartridge (Sep-Pak, Waters, Milford, MA) then concentrated under N2 and 

exchanged to hexane (Bamford et al., 2003). Normal phase LC was then employed 

for the final clean-up step using a 5µm, 9.6 mm x 30 cm Chromegabond amino/cyano 

column (ES Industries, West Berlin, NJ). The purified extracts were concentrated to 

~200µL and NPAH internal standards (3-nitrofluoranthene-d9, 6-nitrochrysene-d11, 2-

nitrofluorene-d9 and 5-nitroacenaphthene-d9) were added just prior to analysis. The 

instrumental parameters for NPAH quantification have been previously presented 

(Crimmins and Baker, 2006a). The GC/MS was configured for negative chemical 
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ionization (methane) in SIM mode. The PTV was set in solvent vent mode 

introducing 50µL of each extract to a 0.25mm x 30m x 0.25µm DB-17ms capillary 

column. 

 

4.2.3 Quality Assurance 

Method detection limits (MDLs) were developed using field and laboratory foil 

blanks. MDLs were defined as 3 times the greater of the instrument noise or mean 

blank mass. The PAH and NPAH MDLs ranged 2 to 20 pg/m3 and 0.02 to 0.8 pg/m3 

(benzo[a]anthracene, fluoranthene and 2-nitrofluorene and 2-nitroanthracene, 

respectively) for 30m3 of air. Mean PAH surrogate recoveries were 100 + 9.7% 

(fluoranthene-d10) and 98 + 6.4% (perylene-d12). NPAH surrogate recoveries were 

slightly lower 55 + 11%, 77 + 9.3, and 70 + 9.1% for 1-nitronaphthalene-d7, 9-

nitroanthracene-d9, and 1-nitropyrene-d9, respectively. No systematic trends were 

observed across samples therefore, no surrogate corrections were performed on the 

concentrations presented here.  

The sampling efficiency of the Berner low-pressure impactor has been 

previously evaluated for PAHs (Poster et al., 1996). Adsorption artifacts were 

assessed by passing gas phase deuterated PAHs (fluorene-d10, anthracene-d10, 

fluoranthene-d12 and chrysene-d12) over clean foils, organic film coated foils, and 

foils pre-loaded with particulate matter. Chrysene-d12 on the particulate matter loaded 

foils was the only PAH detected above MDLs at levels ~1% of the gas phase 

concentration. Volatilization losses were assessed by drawing PAH-free air through 

the impactor at 20°C loaded with National Institutes of Standards and Technology 
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(NIST) Ambient Particulate Matter Standard Reference Material (SRM 1649). For 

PAHs with vapor pressures below fluoranthene, less than 15% of the PAH mass was 

lost in the smallest stage (greatest pressure drop). Therefore, our analysis includes 

PAHs and NPAHs with vapor pressures equal to or less than fluoranthene and 5-

nitroacenaphthalene (Poster et al., 1996).  

 

4.2 Results 

4.2.3 Concentration and Size Distributions 

The total PAH particle concentration (sum of 5 stages) ranged from 0.51 to 3.1 ng/m3 

and the total NPAH concentration ranged from 0.014 to 0.31 ng/m3 with a significant 

correlation (p<0.01) between the total PAH and NPAH concentrations. 

Benzo[g,h,i]perylene (180 + 69 pg/m3), indeno[1,2,3-c,d]pyrene (160 + 57 pg/m3), 

fluoranthene (130 + 63 pg/m3 ), benzo[b]fluoranthene (140 + 44 pg/m3), and pyrene 

(120 + 56 pg/m3) had the highest mean concentrations (Table 4.1, geometric mean + 

95% confidence interval). The greatest NPAH (Table 4.2) concentrations were found 

for 9-nitroanthracene (43 + 38 pg/m3), 2-nitrofluoranthene (16 + 30 pg/m3) and 1-

nitropyrene (11 + 7 pg/m3). Previously Bamford and Baker (2003) found summer 

benzo[e]pyrene (55 - 170 pg/m3) and 1-nitropyrene concentrations (3.0 – 16 pg/ m3) 

similar to this study (32  - 177 pg/m3 and 2.9 – 57 pg/ m3, respectively). 

Benzo[g,h,i]perylene and 1-nitropyrene concentrations in Rome (bulk aerosol, 5.0 

and 0.12 ng/ m3, respectively, Cecinato et al., 1999) were an order of magnitude 

higher than values from Baltimore. Concentrations of 1-nitropyrene (20 pg/m3) and 

indeno[1,23-cd]pyrene (60 pg/m3) in Athens are consistent with Baltimore values,
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while 2-nitrofluoranthene is approximately a factor of four above those reported here 

(Marino et al., 2000).  

Figure 4.1 and 4.2 illustrate the mean fractional size distributions of PAHs and 

NPAHs, respectively. These plots only include samples where the concentration of 

each analyte was above MDLs for 3 or more stages. For stages below detection limits, 

MDL values were used in the calculation. During this period, 75 + 10% and 67 + 

8.0% of the PAH and NPAH mass, respectively, was associated with particles 

<0.49µm. Tunnel studies have observed 62% to 80% of the PAH mass associated 

with particles <0.12µm (Venkatarraman et al., 1994, Miguel et al., 1998). Schelle-

Kreis et al. (2001) observed 40% of PAH mass associated with particles <0.13µm 

collected next to a busy road in Germany and increased size distributions (0.26 – 

0.9µm) with winds away from the roadway. PAHs were associated with particles less 

than 1.4 µm in Egbert, Ontario and Chicago, IL (Poster et al., 1996). Chen et al. 

(2004) observed 56% to 76% of the PAH mass (phenanthrene and benzo[e]pyrene, 

respectively) associated with particles <0.49µm in residential coal emissions in 

China. Alves et al. (2000) observed unimodal (~1µm or 0.15µm peak), and a bimodal 

(0.15µm and 2µm peaks) size distribution of PAHs in an Abies boressi forest in 

central Greece.  

 

4.2.4 Size Statistics 

The geometric mass median aerodynamic diameter (GMMAD) and geometric 

standard deviation (σg) were calculated for each PAH and NPAH using equation 1 

and 2, respectively (Hinds, 1982), for compounds above MDLs on 3 or more stages. 



 

 94 
 

 



 

 95 
 

 



 

 96 
 

  

 

ln (GMMAD) = 1/M ∑ mi  ln di      Equation (1) 

ln2 (σg) = 1/M ∑[mi (ln di – ln GMMAD)2]   Equation (2) 

 

where mi is the compound mass on stage i, M is the total compound mass on all 

stages (∑ mi), and di is the particle midpoint diameter for each stage. A sensitivity 

analysis of GMMAD and σg was performed using a uniform and log normal random 

distribution. Input values were 2.7, 7.5, 3.5, 1.8 and 0.45 ng for stages 1 – 5, 

respectively, representing a realistic PAH mass distribution observed in Baltimore. A 

20% error was applied to each stage. The cumulative variance (sample size 200) of 

the GMMAD was 9.1% and 5.4% for the normal and uniform error distribution, 

respectively. Sigma (σg) varied 4.5% and 7.6%, respectively in response to a 20% 

applied error. The smallest stage (0.04 – 0.14µm) dominated the variability in the 

GMMAD and the second to smallest stage (0.14 – 0.49µm) had the greatest affect on 

sigma. In addition, if the first stage is allowed to randomly vary by + 50% using the 

“seed”  PAH size distribution (described above), the percent difference in the 

minimum and maximum GMMAD and sigma is <30%. The error analysis suggests 

GMMAD differences >30% among samples are larger than variation due to sampling 

or analytical errors, even as high as 50%. 

 The mean PAH GMMAD (Table 4.1) for all the samples (excluding 4/22 

night) in this study ranged from 0.37 + 0.04 µm (cyclopenta[1,2,3-c,d]pyrene) to 0.6 

+ 0.4 µm (fluoranthene). Corresponding σg values ranged from 1.2 + 0.3 
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(dibenz[ah+ac]anthracene) to 2.2 + 0.87 (fluoranthene) with no apparent dependence 

on GMMAD. The PAH GMMADs for the sample collected during the 4/23 day 

period were considerably larger, with a GMMAD ranging from 0.51µm 

(benzo[g,h,i]perylene) to 3.0 µm (fluoranthene). The PAH size distribution was 

broader during this time as sigma ranged from 1.67 (benzo[k]fluoranthene) to 4.03 

(pyrene). The elevated wind speeds (> 4 m/s) from the northwest, away from the 

urban center, during this period combined with the increased GMMADs suggests 

non-local sources (Van Vaeck and Cauwenbergh, 1985, Schnelle-Kreis et al., 2001). 

But further inspection of the particle chemistry (see below) revealed road dust is the 

most probable cause of the increased PAH GMMAD for this period consistent with 

the proximity of the site and traffic sources.  

 The mean NPAH GMMADs (Table 4.2) were similar for all samples except 

4/24 night to 4/25 night, ranging 0.31 + 0.03 µm (3-nitrofluoranthene) to 0.48 + 0.2 

µm (2-nitrofluorene). Unlike the PAHs, there was no increase in the GMMAD during 

the 4/22 night sample. A significant increase (~2-fold) in the NPAH GMMAD was 

observed during the 4/24 night – 4/25 night. The elevated NPAH GMMAD straddled 

a rain event that began during the last 2 hrs of the 4/24 night sample and continued 

until ~noon 4/25. Although the NPAHs were associated with larger particles during 

this time, no increase in PAH GMMAD or NPAH σg was observed.  

The PAH GMMADs from this study are consistent with values reported for 

roadside (Pierce and Katz, 1975, Yang et al., 1999, Aceves and Grimalt, 1993, 

Schnelle-Kreis et al., 2001) and residential coal (Chen et al., 2004 in China) 

emissions. Venkataraman et al. (1994) reported PAH mass median diameters <0.2µm 
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in the Caldecott tunnel in southern California. In a later study from that location, 

PAHs were associated with larger particles (0.12 – 2 µm, Miguel et al., 1998). The 

size difference was attributed to increased heavy duty diesel source during the latter 

sampling period. PAH mass median aerodynamic diameters (MMAD) from biomass 

combustion are somewhat larger (>0.5µm Venkataraman et al., 2002). Sandersan and 

Farrant (2005) found PAH GMMADs of ~0.5µm in aerosol collected near an 

aluminum smelter in Quebec, Cananda. Chicago PAH GMMADs reported by 

Offenberg and Baker (1999) were more than 5 times larger than those in Baltimore. 

Kawanaka et al. (2004) found 72% of the 2-nitrofluoranthene mass was associated 

with particles <0.68µm. Cecinato et al., (1999) found significant quantities of 1-

nitropyrene on fine and coarse particulate matter during separate sampling times, 

while 2-nitrofluoranthene was primarily associated with fine particles. The 1-

nitropyrene and 2-nitrofluoranthene mass on Baltimore particulate matter was 

primarily associated with the fine fraction (size cuts <2.5µm).  

Interestingly, the PAH and NPAH size distributions are similar even though 

NPAHs have both primary and secondary sources. The mass of particle bound 

semivolatile organics depends on the ab/adsorptive capacity of the particulate matter 

and its surface area (Pankow, 1987). Similarities in the PAH and NPAH size 

distributions, regardless of source (primary vs. secondary) indicate the gas/particle 

partitioning rather than sources govern their size distribution. The partitioning 

behavior of a compound is, in part, a function of its sub-cooled liquid vapor pressure. 

Therefore, the redistribution of a compound with respect to size may be a function of 

this physical property. In the next section the relationship between compound vapor 
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pressure and GMMAD is examined as it relates to sources and processes governing 

the size distribution of PAHs and NPAHs. 

 

4.4.3 Vapor Pressure/GMMAD Correlations 

The available literature suggests that there is no particle size/vapor pressure 

dependence for PAHs in combustion emissions (Venkataraman et al. 1994, 2000). In 

contrast, ambient measurements have shown that the size distribution of PAHs is not 

constant with respect to vapor pressure. Unimodal and bimodal distributions (Poster 

et al., 1995, Allen et al., 1996, Offenberg et al., 1999, Miguel  et al., 1998, 2004) 

have been explained by different sources and the redistribution of PAHs with respect 

to particle size. During PAH redistribution, PAHs shift to larger particles due to 

cyclic volatization/condensation from primary emissions (enriched in PAHs) to 

ambient aerosol until sorptive equilibrium is reached. The extent of this process is 

driven by the physical (surface area) and chemical properties of the emission and 

ambient particulate matter (Pankow, 1987). The lightest PAHs are usually associated 

with larger particles due to greater gas phase concentrations initiating shorter 

equilibrium times (Allen et al., 1996).  

In the Chicago, IL atmosphere Offenberg and Baker (1999) observed a linear 

relationship between GMMAD and the log sub-cooled liquid vapor pressure (pl°) for 

unsubstituted PAHs. From the general equation GMMAD = mg log pl° + bg, the y-

intercept (bg) of the equation refers to a reference state equal to the GMMAD for a 

compound with pl° = 1 Pa. The slope of the line (mg) represents the change in particle 

size for a group of compounds with respect to vapor pressure (for a given sampling 
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time). In our study, the PAH GMMADs and log pl°s (derived from Offenberg, 1998, 

and Bamford, 2003) were also significantly correlated (p < 0.001, Figure 4.3). The 

PAH GMMAD/vapor pressure dependence was not significantly different for 7 of the 

11 samples where mg = 0.028 + 0.0068 µm Pa-1 and bg = 0.55 + 0.035 µm (mean + 1 

standard deviation) representing a typical size/vapor pressure relationship for the site. 

The April 24 day relationship had a smallest slope and y-intercept (GMMAD = 0.019 

pl° + 0.40) whereas the April 23 day period had an greatest slope and y-intercept 

(GMMAD = 0.094 log pl° + 1.35).  A similar linear relationship was found for the 

NPAHs in all but 3 samples (Figure 4.3). Independent regressions (PAH and NPAH, 

respectively) exist for samples collected during the rain event (4/24 night and 4/25 

day) and the period associated with the increased PAH (relative to NPAH) GMMADs 

(4/17 pm-4/18 pm day). 

The correlations presented above were qualified by determining the minimum 

amount of sampling/measurement error needed to explain the observed slopes. Using 

the equation from the 4/24 day sampling period (GMMAD = 0.019 log pl° + 0.39, R2 

= 0.47), two scenarios were tested using the range of compound log sub-cooled liquid 

vapor pressures (-7.57 to -2.88 Pa) employed in this study. From this equation the 

size distribution would span 0.25 to 0.34 µm (heaviest to lightest). The first case is 

volatilization from the smallest impactor stage (which has the greatest pressure drop). 

The measured GMMAD must be 0.09 µm (lightest – heaviest GMMAD) above the 

“real” size distribution, if the low vapor pressure PAH GMMAD is held constant. 

This represents a 28% difference or GMMAD error. From the error analysis above 
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 this would represent a ~50% measurement/sampling error, well above the <20% 

difference between the Berner and Hi-Vol concentrations discussed above.   

If larger particles bounce to smaller stages, a lower GMMAD will result for 

the heaviest PAHs. If there is no volatilization of the lightest PAHs, the GMMAD for 

the largest PAHs would have ~36% error. Again from the error analysis this 

corresponds to ~70% measurement error, well above that observed in this study. 

Therefore, while particle bounce and volatilization can not be discounted, these errors 

do not explain the observed GMMAD/vapor pressure relationships. In addition, there 

is no trend in the detectable levels of PAHs per stage with respect to vapor pressure, 

negating possible artifacts in the GMMAD calculation itself. When the method 

detection limits were inserted into the GMMAD calculation for values below 

detection limits, similar slopes were found suggesting the relationship between 

GMMAD and vapor is not an artifact of PAH detection limits with respect to vapor 

pressure.  

Further inspection of the particle chemistry using collocated hi-vol 

measurements (Crimmins and Baker, 2006b) helped explain at least one of the PAH 

size shifts. The April 23 day sample showed an increased slope relative to the 

previous period (4/22 night) which exhibited a typical GMMAD/vapor pressure 

relationship. During the transition from 4/22 night to 4/23 day no discernable PAH 

profile changes were observed. The PAH and mass size distributions shifted to larger 

particles. A look at the particle chemistry provides insight into the possible cause 

(source vs. redistribution) of the PAH size differences. The total concentration (gas + 

particle) of semivolatile (pyrene) and non-volatile (benzo[g,h,i]perylene) PAHs from 
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collocated hi-vol measurements were not significantly different (61 and 82 pg m-3, 

and 57 and 62 pg m-3, respectively, Crimmins and Baker, 2006b). But, the alkane 

profile (Figure 4.4, C30 to C35) shifted from a typical biogenic signature (4/22 night) 

to a tire wear pattern (Rogge et al., 1993) during the April 23 day period. Although 

the PAH size distribution of tire debris is not known, it is likely associated with road 

dust which resides on super-micron particles (Yang et al., 1999). Therefore the 

increase in the GMMAD vs. log pl° slope during this period (4/23 day) is probably 

due to an influx of larger particles from the adjacent highway consistent with 

measured wind speeds greater than 4 m/s. From this we conclude that the shift in the 

PAH size distribution is mainly due to changes in sources (road dust/tire debris) and 

not redistribution. The other cases where the GMMAD vs. log vapor pressure line 

differs from the typical relationship are not as easily interpreted, but are most likely a 

combination of source shifts and PAH redistribution.  

Outliers in indivdual GMMAD, pl° regressions were also observed during the 

4/24 night sample, as 2-nitrofluorene and fluoranthene were significantly above the 

95% confidence interval of the regression line. These compounds have similar vapor 

pressures and 2-nitrofluorene has been detected in diesel exhaust (Arey, 1998). The 

individual slopes of the NPAH and PAH regressions were not significantly different 

when both compounds were included (mg = 0.15 and 0.14, respectively) or removed 

(mg = 0.05 and 0.04, respectively). This suggests similar factors affecting the size 

distribution of these two compounds. The elevated GMMADs were associated with 

an increase in the mass GMMAD (0.72 to 1.06µm) and 10-fold increase in 1-

nitropyrene concentration, not reflected in the PAH concentrations from 4/24 day to 
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 4/24 night. 1-nitropyrene is the dominant NPAH found in diesel exhaust therefore the 

elevated mass, fluoranthene and 2-nitrofluorene size distributions may be associated 

with a diesel plume or source that covaries with 1-nitropyrene. 

A rain event occurred during the last two hrs of the 4/24 night sample until 

early afternoon 4/25 day. The increased slope (4/25 day) suggests that the PAHs and 

NPAHs are associated with different particle populations during this period. The 

NPAH size distribution during 4/24 night time was similar to the particle mass 

GMMAD and increased to above the mass GMMAD during 4/25 day. It is unlikely 

that the elevated NPAH GMMADs are due to aged aerosol as the PAH size 

distribution was similar to other locally (dry) influenced periods. At this point it is 

unclear why the PAH and NPAH size distributions differ during the rain event. 

Further studies are needed to investigate this observation. 

The slopes (mg) of the Baltimore correlations (GMMAD = mg log pl° + bg) 

were significantly lower than those reported by Offenberg and Baker (1999) for urban 

(mg = 0.44) and rural samples (mg = 0.39). The authors suggest that the slope of this 

equation will decrease with aging as the PAH size dependence reaches equilibrium. 

Due to the proximity of this site and combustion sources (traffic and industry) the 

more likely explanation for the shallow size/vapor pressure dependence, is the 

dominance of primary emissions.  

The slopes (mg) and y-intercept (bg) of the GMMAD/vapor pressure 

dependencies for PAHs are plotted in Figure 4.5. The relationship between these 2 

parameters suggests a common size/vapor pressure dependence. In this study the 

regression (bh = mh mg + bg) is significant (p<0.05, R2 = 0.99) with a slope (mh = 12), 
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similar to Offenberg and Baker (1999, mh = 9.55). The urban GMMAD/vapor 

pressure dependence (bg and mg) reported by Offenberg and Baker (1999) for 

Chicago, IL were up to 10-fold greater than those found in this study, but the 

similarity of mh from Chicago and this study suggests the relationship between these 

two parameters is not location dependent.  

The slope of this intercorrelation (mh) is related to the redistribution of PAHs 

with respect to vapor pressure. Although the physical meaning of this dependence is 

still unclear, it may be related to the different equilibrium times associated with the 

size dependent partitioning of PAHs. Specifically, PAH size distributions are 

predictable regardless of aerosol composition or source (see below). The y-intercept 

of this plot (bh) corresponds to the GMMAD of PAHs when the slope (mg) of the 

GMMAD/vapor pressure dependence is low (~ 0). In other words, a constant PAH 

GMMAD regardless of vapor pressure. Assuming the affinity for a given class of 

compounds (PAHs) is the same with respect to particle size, bh may represent the 

equilibrium GMMAD. But due to the location of this site and the low vapor pressures 

of heavier PAHs, reaching this size dependent equilibrium is not likely. Therefore, bh 

represents the PAH size distribution of one or a combination of the emission sources.  

In our study, a bh value of 0.18 µm is consistent with vehicle PAH size 

distributions from tunnel and roadside measurements (Venkataraman et al., 1994, 

Yang et al., 2005, Schnelle-Kreis et al., 2001). This agrees with high vehicle 

influence at the current sampling site. A previous source apportionment study in the 

southern region of Baltimore City found vehicle emissions were a significant source 

of PAHs to downtown Baltimore (~25%, Larsen and Baker, 2003). Offenberg and 
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Baker (1999) found a bh value of 0.61µm for the Chicago/Lake Michigan region. This 

is above the value determined for Baltimore. But, a GMMAD range of 0.48 – 0.6 µm 

for coal combustion was observed by Sandersan and Farrant (2005) and MMD of 

~0.6 µm was reported for an area dominated by fossil fuel combustion from domestic 

heating by Van Vaeck and Van Cauwenbergh (1985). These values are similar to the 

bh value observed in Chicago/Lake Michigan aerosol. An aerosol source 

apportionment study for the Chicago, IL area, concurrent with the Offenberg and 

Baker (1999) study, found the dominant source of PAHs was coal (48%) followed by 

natural gas (26%) combustion (Simicik et al., 1999). Therefore, bh values are 

consistent with source study size distributions. Moreover, this type of analysis may 

provide insight into dominant the source of PAHs in a region regardless of the age 

and dilution. PAHs and EC are coemitted on similar size particles during combustion 

(Venkataraman et al., 1994, 2002). If the intercept (bh) from the PAH/vapor pressure 

slopes and y-intercept intercorrelation represents the size of the dominant combustion 

source, the intercept may represent the ambient size distribution of elemental carbon 

Baltimore, MD.  

4.4 Conclusions 

Diurnal PAH and NPAH size distributions were measured in the Baltimore 

atmosphere in April, 2002. Similar PAH and NPAH size distributions were observed 

for the majority of samples. The NPAH (but not PAH) size distributions increased 

during a rain event suggesting different sources or physical properties of PAH and 

NPAH containing particles. The PAH and NPAH and GMMADs correlated with their 

respective log sub-cooled liquid vapor pressures regardless of compound class and 
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source suggesting gas/particle partitioning dictates the size distribution. Utilizing the 

slopes (mg) and y-intercepts (bg) from the size/vapor pressure correlations, the 

dominant source of PAHs and possibly EC may be determined for the ambient 

atmosphere regardless of aging.  

 
 

 

 

 

 

 

 

 



 

 110 
 

Chapter 5   

Estimating the Sources of Carbonaceous Particulate Matter in the Baltimore 
Atmosphere Using Organic Markers and Positive Matrix Factorization 

 

 

5.1 Introduction 

The sources of atmospheric particulate matter are of great interest to air 

quality managers and governmental agencies due to the detrimental health affects of 

elevated ambient particulate matter (Pope III, 1996). Individual organic compounds 

can be used as fingerprints (organic markers) of individual sources. Several studies 

have employed organic markers with the Chemical Mass Balance approach (CMB, 

Zheng  et al., 2002, Schauer  et al., 1996, 2000), but the success of this technique 

relies on prior knowledge of the sources and profiles associated with each source-type 

affecting a receptor site. To date, only a few organic source characterizations have 

been performed in the Baltimore, MD area. The majority of source studies have been 

performed in the western United States (Rogge  et al., 1993a,b, 1997a, b, 1998, 

Schauer et al., 1999a, b, 2001, 2002a, b). Extrapolating published profiles between 

regions may introduce unknown error into this type of model. The mass balance 

approach is predicated on the assumption that profiles are conserved from emission 

source to receptor site, and reactivity may limit the utility of organic compounds as 

source markers. In addition, a significant amount of organic aerosol results from 

secondary production, not captured using the mass balance approach. 
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 Multivariate techniques do not constrain the number and profiles of possible 

sources. Unlike CMB, literature profiles are used to identify potential sources, not 

drive the model results. One multivariate method, Principal Components Analysis, 

has been used to determine the source of polycylic aromatic hydrocarbons (PAHs) in 

aerosol (Simcik et al., 1999, Harrison et al., 1996, Larsen and Baker, 2003). The use 

of PCA with multiple compound classes assumes a constant measurement error 

among species. For multiple classes of compounds this is not likely due to systematic 

differences in sample preparation and instrumental analysis. In addition, PCA often 

results in negative source contributions, which are physically not interpretable.  

Positive Matrix Factorization (PMF) is an alternative multivariate technique 

that overcomes the physically meaningless negative source loadings generated by 

PCA. This technique also enables the application of sample and species specific error 

estimates, providing a more realistic weighting of the potential marker compounds 

(Paatero and Tapper, 1994). This technique has been used primarily for inorganic and 

bulk particulate matter species (Polissar et al., 1999, 2001, Huang et al., 2001, Ogulei 

et al., 2005, Kim  et al. 2005). Recently Larsen and Baker (2003) compared PMF and 

PCA to estimate the sources of PAHs to the Baltimore, MD atmosphere. 

Interestingly, the profiles and general temporal trends generated from PCA and PMF 

were similar. However, PMF was the only model able to resolve vehicular PAH 

source into gasoline and diesel exhaust.  

Recently, a Windows based version of Positive Matrix Factorization was 

released by EPA (EPA PMF 1.1). This program is currently in the beta testing form, 

but provides additional features to increase the productivity and ease of using PMF. 
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The algorithm is based on the multiple-linear engine variant of PMF (Paatero, 1999). 

The data preparation and error calculations (see below) are similar to previous 

versions (PMF-2), but editing the compound list and adjusting error estimates can be 

performed without altering input files, speeding the analysis. The semi-volatile 

organic compounds measured at the Baltimore PM2.5 Supersite during the spring, 

summer and winter of 2002-2003 (Chapter 3) provide an excellent dataset to evaluate 

this new version of PMF for broad application to organic source apportionment 

studies. 

The objectives of this study were to determine the sources of alkanes, PAHs, 

hopanes and NPAHs to the Baltimore atmosphere using PCA and PMF. The 

Windows based version of Positive Matrix Factorization (EPA PMF 1.1) was then 

employed to determine the sources of carbonaceous aerosol and PM2.5 to the 

Baltimore, MD atmosphere using alkanes, PAHs, hopanes and nitro-substituted 

PAHs. This study expands on earlier work by Larsen and Baker (2003) in the 

Baltimore, MD atmosphere while providing the first multivariate derived organic and 

PM2.5 source contributions to this region using organic markers.  

 

5.2 Methods 

The site description and collection parameters have been previously described in 

Harrison et al. (2004), Ogulei et al. (2005) and Chapter 3 and will be briefly 

discussed here. The gaseous and particulate phase hopanes, PAHs, NPAHs and 

alkanes employed in this study were collected at the Baltimore Supersite during the 

spring, summer and winter of 2002-2003. The site was located in an urban setting east 
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of downtown Baltimore. The sampling apparatus was approximately 6m above an 

asphalt parking lot adjacent to a major interstate (I895) and bus maintenance facility. 

Two tunnels (Harbor and Fort McHenry) are positioned approximately 2km south of 

the site.   

Gas and particle phase organics were collected using a modified Andersen hi-

volume sampler was fitted with an ashed (450°C) glass fiber filter followed by a 

precleaned polyurethane plug (PUF) to collected particulate and gas phase organics 

(Chapter 3). Sampling times were 6, 12 or 24 hrs. Samples collected on different 

timescales were treated as discrete snapshots of ambient aerosol profiles at the site 

and no attempt was made to average analyte concentrations collected on different 

timescales. The underlying assumption to this method is that samples on shorter 

timescales may provide seed profiles that may be masked by samples collected on 

longer timescales (i.e. 24 hrs). The concentration summary and seasonal distribution 

is discussed elsewhere (Chapter 3). In addition to the semi-volatile compounds, gas 

phase parameters (CO, NO, NOx, and ozone) were measured during the spring, 

summer and winter intensives (Park et al., 2005a, b, Harrison  et al., 2004). Some of 

these constituents were measured on different timescales (10 min – 1hr) therefore, a 

time integrated average was calculated, coinciding with the semi-volatile organics 

collections (6 to 24 hr). For the organic compounds presented, PMF and PCA were 

performed on the combined gas and particle phase concentrations.  

5.3 Model Description 
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5.3.1  PCA 

Principal Components analysis attempts to explain the total variance in a sample 

matrix with a minimum number of orthogonal factors. For this analysis, raw data 

(concentrations) were converted into z-score format (standard deviation units away 

from the mean) using the following equation: 

 

Z = (x – xm) / σ 

 

where Z is the standardized normal deviate, x is the measured concentration, xm is the 

mean concentration of the species and σ is the standard deviation of x in the sample 

population. SPSS statistical software was employed for this analysis, extracting 

factors with eigenvalues greater than 1.  

 The subsequent multiple linear regression analysis from extracted factors was 

performed in accordance with Larsen and Baker (2003). Briefly, the factor scores 

were regressed against the z-scores of the total concentration of specified analytes in 

the PCA analysis using the following equation; 

 

ZT = Σ BiFSi + r 

 

where ZT is the standardized normal deviate of total concentration of the input 

compounds for a sampling period, Bi is the regression coefficient associated with 

factor score i (FSi), and r is the y-intercept of the resulting equation. This regression 

was performed using SPSS software in a stepwise fashion eliminating those factors 
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that fall below the default significance value of 0.10 during the addition of new 

factors into the regression. The mean percent contribution of each factor was 

calculated by normalizing Bi to the total B (Bi/ΣBi). The daily source contribution is 

calculated by the following equation; 

 

daily contribution of source i = mean Σ(analyte concentration) x (Bi/ΣBi) + BiσAFSi  

 

where σA is the standard deviation of total concentration of analytes among sampling 

periods. 

5.3.2 PMF 

PMF solves the following equation with positive constraints; 

 

Xij = Σ fki gkj + eij  

 

where Xij if the concentration of species j during period i, fki is the fraction of factor k 

that is species j and gki is the source contribution of  factor k during period j, eij is the 

model generated error of species j during period i (residuals). This equation is solved 

by minimizing the sum of squares represented by; 

 

Q = (eij/sij)2 

 

where sij is the input error associated with species j during period i. The program is 

set to run in robust mode (Paatero, 1997), which downweights outliers generated 
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during the iteration process. For the aerosol organics data, concentrations below 

detection limits were replaced by ½ the MDL prior to using PMF. The error estimates 

were calculated using a variant of the equation employed by Brinkman et al. (2006); 

 

Sij = { [ ( αfi Xfij )2 + (βfi DLfi)2 ] * σfi + [ (αpi Xpij)2 + (βpi DLpi)2 ]* σpi } 

 

where Sij is the error associated with compound i in sample j and σfi and σpi are the 

fraction of analyte in the particle and gas (PUF) phase, respectively for each sample. 

The uncertainty coefficients (fraction) for the detection limit (β) and measurements 

(α), αpi, αfi and βpi and βfi, were calculated for each analyte in the PUF and filter, 

respectively. These values were determined from the percent relative standard 

deviation of the blanks (β) and surrogate values (α). The detection limits (DL) were 

determined from the method detection limits for each phase using three times the 

greater of the blank or instrumental detection limit. Xfij and Xpij are the concentrations 

of compound j in sample i in the particle and gas phases, respectively. For values 

below the method detection limit the calculated error was multiplied by a factor of 10. 

Error estimates for the gas data were determined as 10% of the measure values. 

Values below detection limits were replaced with half the minimum measured values 

with respective error values were multiplied by 10.   

The current version of Positive Matrix Factorization (EPA PMF 1.1) allows 

for an additional percent uncertainty to be applied to the entire analyte list. The Q 

value was loosely used as a guide for correct model fit. Minimum Q are equal to the 

number of analytes times the number of samples minus the number of factors (e.g. the 
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model explained error is equal to the input error). Due to elevated Q values during the 

analysis (> 5 fold theoretical) an additional 2% error (scaled to concentration) was 

added to the estimates calculated above allowing for more realistic calculated Q 

values. Upon the initial runs, it was determined that the error estimates for the alkanes 

were too high resulting in a low explained variance (R2) in the dataset. This was most 

likely due to elevated blank levels in our laboratory (Chapter 3). Therefore, the 

calculated error values for the alkanes were reduced by ½, resulting in a better fit of 

the model to our data. The majority of the R2 values were > 0.7 (Table 5.1 and 5.2) 

for the optimized number of factors presented below. 

5.4 Results 

A previous study in the Baltimore atmosphere utilized PMF and PCA to determine 

sources of PAHs (Larsen and Baker, 2003). That study found PMF distinguished a 

greater number of PAH sources. Expanding on that work, PCA and PMF were 

employed to determine the sources of alkanes, hopanes, PAHs and NPAHs to the 

Baltimore atmosphere. The following sections compare the results using PMF and 

PCA to determine the individual compound class sources. Unlike PCA, the order in 

which the PMF factors are presented is not related to their relative significance.  

 

5.4.1  Alkanes 

PMF: PMF resolved 6 factors (Alkane PMF Factors 1 – 6) for the alkanes and 

hopanes Figure 5.1. Alkane PMF Factor 1 showed an odd carbon preference for the 

alkanes with C29 as the dominant alkane. C29 is usually the dominant alkane in 

biogenic emissions from leaf waxes (Rogge et al., 1993). The carbon preference
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index (CPI = sum odd alkane concentration/ sum even alkane concentration) for C26 – 

C35 for this profile was 9, consistent with biogenic emissions in rural areas (2 – 13, 

Simoneit, 1989). The contribution of this factor to total alkane and hopane 

concentrations is also greater during the summer (Figure 5.2) period.  

In contrast, Alkane PMF Factor 2 was heavily loaded in the even alkanes with 

a maximum concentration at C24. No seasonal trend was apparent and the time series 

plots show select days where this source is impacting the site. A recent study by 

Simoneit  et al. (2005) found plastic extracts and plastic combustion particulate 

matter displayed this unusual alkane profile. Industrial sources of the plastic source 

can not be ruled out, therefore this factor is genericly denoted plastic.  

Alkane PMF Factors 3 and 4 displayed similar alkane and hopane profiles. 

Both factors have elevated concentrations of C25, consistent with vehicle emissions 

(Schauer et al., 1999, 2002). In addition, the hopane profiles are typical of vehicle 

exhaust. Factor 4 has a greater concentration of hopanes relative to factor 3, 

suggesting diesel and gasoline emissions, respectively. But, this designation does not 

agree with the PMF analyses using PAHs and the dataset as a whole (see below).  

Alkane PMF Factor 5 has an odd carbon preference from C28 - C33, but 

elevated concentrations of alkanes <C27 indicate a fossil fuel source. Elevated 

contributions of this source to the alkane and hopane concentrations occur during the 

spring and summer periods suggesting a seasonal source. The ratio of 17α(H), 

21β(H)-30-norhopane to 17β(H), 21α(H)-hopane (1.6) is similar to bituminous coal 

(~1, Oros and Simoneit, 2000). The similar temporal contribution of a coal PAH 

source (see below) support designating this factor as coal. 
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Alkane PMF Factor 6 exhibited the highest concentrations of hopanes of the 

resolved factors. The alkanes showed an increase in the concentration from C32 to C35 

consistent with tire wear (Rogge et al., 1993). In addition, a slight odd carbon 

preference for C29 and C31 is evident, indicating a biogenic influence. This factor also 

exhibits no seasonal dependence, suggesting a constant source to the site. Since the 

road surface is a repository for vehicle and vegetative debris, road dust would have a 

mixed biogenic/anthropogenic/petrogenic source profile explaining the hopanes 

(crank case oil, Schauer  et al., 1999, 2002), biogenic (leaf litter, grass clippings), and 

tire wear profiles. Therefore this source is identified as tire wear/road debris. 

PCA: PCA only resolved 4 factors (Figure 5.3, Alkane PCA Factors 1 – 4). The 

profiles of these factors were similar to those identified by EPA PMF.  Alkane PCA 

Factor 1 explained 38% of the variance and was heavily weighted in C34 and C35 and 

the hopanes measured in this study consistent with road dust. The temporal profile of 

this factor (Figure 5.4) is similar to the Alkane PMF analysis with no seasonal trend. 

Alkane PCA Factor 2 was weighted in the even alkanes, and Alkane PCA Factor 3 

exhibited the characteristic odd carbon alkane weighting indicative of plastic and 

plant waxes accounting for 24% and 15% of the variance, respectively. Both of these 

factor track well with the Alkane PMF results. The highest weighting in Factor 4 

(15% variance) was in the C22 – C27 alkanes. The elevated weighting for C25 is similar 

to PMF Alkane PCA Factor 4 indicating a vehicular signature. But the time series 

source contribution of Alkane PCA Factor 4 is more similar to the coal factor 

identified using PMF (Alkane PMF Factor 5). Therefore, this factor was either 
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misidentified by the profiles alone or most likely, PCA was unable to distinguish 

between the coal and vehicle sources of these compounds. The source contribution 

from the coal factor in the PAH PMF analysis is > 5-fold the gasoline or diesel 

values. Therefore, the mixed source identified by PCA is dominated by the loadings 

from coal compared to vehicles. Therefore, this is assigned a mixed source.   

 

5.4.2 PAHs 

PMF: For the PAH PMF the number of factors and source profiles agree well with 

those previously reported for the Baltimore atmosphere (Larsen and Baker, 2003). 

PAH PMF Factors 1 and 2 have similar profiles (Figure 5.5), with elevated 

concentrations of coronene, benzo[g,h,i]perylene and indeno[1,2,3-cd]pyrene, 

suggesting a vehicular source (Harrison  et al., 1996). Similar to Larsen and Baker 

(2003), elevated benzo[b]-and benzo[k]fluoranthene were used to distinguish diesel 

(PAH PMF Factor 1) from gasoline (PAH PMF Factor 2) combustion for these two 

factors. Phenanthrene, fluoranthene and pyrene emission rates from diesel exhaust are 

approximately an order of magnitude above those from gasoline engines (Schauer et 

al., 1999, 2002), also consistent with the current profiles and source assignments. A 

greater contribution of gasoline compared to diesel exhaust emissions was observed 

in the winter compared to spring (Figure 5.6). 

PAH PMF Factor 3 was enriched in retene, methylanthracenes and 

methylphenanthrenes and phenanthrene. This profile is consistent with the Baltimore 

wood combustion profile identified by Larsen and Baker (2003). This factor exhibited  
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elevated concentrations in the spring and winter. The contribution of Factor 4 to the 

PAH concentrations was primarily during the winter. This factor was heavily loaded 

with the lightest PAHs including naphthalene, methyl- and dimethylnaphthalenes. In 

addition, the concentrations of the heaviest PAHs were also observed (indeno[1,2,3-

cd]pyerne, benzo[g,h,i]perylene and coronene) consistent with an oil source profile 

previously identified. Residential oil furnaces are common throughout Baltimore city, 

and the seasonal dependence of this source profile supports home heating oil as the 

source of this factor. 

PAH PMF Factor 5 has elevated loadings of phenanthrene, 2-

methylphenanthrene and pyrene (not fluoranthene). The elevated pyrene 

concentration relative to fluorathene may indicate an incinerator source (Harrison et 

al., 1996). Elevated contributions from this source during the spring and winter may 

be due to the influence of meteorological parameters such as mixing height.  

PAH PMF Factor 6 is heavily weighted in fluoranthene, pyrene, 

phenanthrene, anthracene and fluorene with elevated concentrations during the 

summer sampling periods. A similar source profile and temporal distribution was 

observed by Larsen and Baker (2003) for the PAH coal source. Elevated 

concentrations of this factor are found during the summer season, possibly due to 

increased energy demand during the warmer periods (i.e., electricity demand for air 

conditioning). The contribution of this coal source tracks well with the seasonal 

contribution Alkane PMF Factor 5 indicating that the fossil fuel source identified by 

the alkane profile is most likely a coal combustion profile.   
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PCA: PCA only resolved 4 factors, similar to the previous Baltimore study, 

explaining 48%, 25%, 10% and 6% of the total variance in the PAH concentrations. 

PAH PCA Factor 1 (Figure 5.7) was heavily weighted in the lightest (naphthalene, 

 methylnaphthalenes, dimethylnaphthalenes) and heaviest PAHs (benzofluorenes to 

coronene) measured at the site, consistent with vehicle emissions. The temporal 

source contribution (Figure 5.8) is consistent with the PAH PMF results if the 

gasoline and diesel are combined. PAH PCA Factor 2 was initially deemed wood 

combustion due to the elevated retene, methylphenanthrenes, anthracenes and 

fluoranthene and pyrene. But when the alkanes were added to the PCA analysis (see 

below) this factor may also be a gasoline combustion source. PAH PCA Factors 3 and 

4 are identified as fossil fuel sources. The elevated loadings of phenanthrene and 

anthracene in Factor 3 relative to 4 suggested that this is coal while Factor 4 is oil due 

to elevated napththalene, and methyl- and dimethyl derivatives. The temporal source 

contribution PAH PCA Factor 3 (coal) is consistent with the PAH PMF results 

discussed above. The PAH PCA oil source did not track the PAH PMF oil source 

well. This is possibly due to the elevated concentrations of this source during the 

winter months. 

 

5.4.3 NPAHs 

PMF: The underlying premise of multivariate models is the composition of organic 

aerosol is a linear combination of individual sources that are conserved from source 

to receptor site. Although NPAHs have primary and secondary sources, evaluating 

this class of compounds may provide insight into the possible sources (primary and  



 

 132 
 

 



 

 133 
 

 



 

 134 
 

secondary) to the ambient atmosphere. Three factors were resolved by PMF in this 

study (Figure 5.9). NPAH PMF Factor 1 contains both primary and secondary 

NPAHs. The 2-nitrofluoranthene/1-nitropyrene ratio of this factor (0.85) suggests a 

primary source even though this factor is significantly loaded with 2-nitropyrene and 

3-nitrobiphenyl, which are formed solely from the OH mediated mechanism (Arey et 

al., 1986, Atkinson  et al., 1990). The presence of primary and secondary NPAHs 

may indicate that this source is a mixed air mass possibly from long range transport. 

This factor is significant during select spring periods (Figure 5.10) especially during 

the day time samples. Therefore this factor is denoted as aged primary aerosol.  

 NPAH PMF Factor 2 is heavily loaded with primary NPAHs (1-nitropyrene, 

1- and 2-nitronaphthalene) which have been detected in diesel exhaust (Bamford et 

al., 2003, Zielinska et al., 2004). This profile is found predominantly in the spring 

and winter samples similar to the diesel source profiles determined in the PAH and 

alkane analysis. The temporal distribution of the NPAH diesel source does not track 

well with the diesel PAH and alkane source contributions. Like PAHs, NPAH 

isomers have numerous primary sources in addition to secondary production (Arey, 

1998). Primary source studies incorporating more than a select few of these 

compounds are scarce. Therefore, using this marker as a definitive diesel marker 

needs further exploration through intensive source aerosol characterizations. 

 The third factor identified (NPAH PMF Factor 3) is heavily weighted in 9-

nitroanthracene, 5-nitroacenaphthene and 2-nitrofluoranthene, suggesting a secondary 

source profile. The ratio of 2-nitrofluoranthene/2-nitropyrene is 140, consistent with 

an elevated NO3 radical activity. This source has an increased contribution during the  
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summer samples consistent with previous results (Chapter 3). In addition, elevated 

loadings of this factor are observed during the night samples, when NO3 is not 

photolyzed. Therefore, this factor is denoted as NO3 radical secondary organic 

aerosol (SOA). 

PCA: PCA resolved 4 factors for the NPAHs explaining 29%, 29%, 19% and 8.6% 

of the variance (Figure 5.11). The first factor (NPAH PCA Factor 1) was heavily 

weighted in 4-nitrophenanthrene, 5-nitroacenapthene, and 2-nitrofluoranthene, the 

latter of which is the dominant secondary NPAH isomer in the ambient atmosphere. 

3-nitrobiphenyl is also enriched in this factor and is believed to be formed via an OH 

radical initiated pathway (Arey, 1998). Therefore this factor is a secondary NPAH 

source, possibly OH initiated. This factor exhibited contribution spikes during 2 

consecutive day (12 hr) sample periods during the spring (Figure 5.12), consistent 

with daytime OH radical chemistry. NPAH PCA Factor 2 is heavily weighted in 

primary NPAHs 3-nitrofluoranthene, 2-nitrofluorene, 2-nitrobiphenyl and the 

secondary isomer 2-nitropyrene. The mixture of these isomers may indicate an aged 

primary source of this factor. This factor is a significant contributor to the total 

NPAH concentration during the spring. NPAH PCA Factor 3 is dominated by the 

nitronaphthalene isomers, 3-nitrodibenzofuran and 4-nitrobiphenyl. All of these 

compounds (except 3-nitrobenzofuran, for which no source information was found) 

have combustion sources. Zeilinska et al. (2004) found that gasoline exhaust contains 

small amounts of the low molecular weight NPAHs, this profile may be identified as 

gasoline exhaust. The last factor (NPAH PCA Factor 4) is heavily weighted in 1- 
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nitropyrene and 4-nitrobiphenyl suggesting a diesel source (Arey, 1998). The 

temporal source contribution agrees well with the NPAH PMF Factor 2 (diesel). 

 

5.4.4 Combined Compound Classes 

PMF consistently resolved a greater number of sources compared to PCA for the 

compound classes analyzed. Although similar profiles were obtained for the majority 

of cases, the output of PMF in concentration units allows for direct comparison of 

individual compounds within a source, aiding identification. This is illustrated by 

Alkane PCA Factor 4. A fossil fuel factor was generated by PCA which could have 

been easily misidentified from the component matrix alone, whereas the Alkane PMF 

results was able to correctly identify this factor using the ratio of 17α(H), 21β(H)-30-

norhopane to 17β(H), 21α(H)-hopane. Although this is a limitation of PCA, 

increasing the number and diversity of analytes may solve this short coming. In the 

next section, compound classes are combined and analyzed using PCA and PMF 

accounting for a greater number of potential markers. This analysis allows for a direct 

comparison of the different multivariate techniques and the affect of additional 

analytes of multiple classes on the resolving power of PMF and PCA. 

PMF: The alkanes, PAHs and hopanes, 1-nitropyrene, 2-nitrofluoranthene, NO, NOx 

ozone and CO were used as input parameters to EPA PMF 1.1 to compare the use of 

multiple compound classes and gas phase species to individual organic compound 

class results presented above. The model parameters were similar to those employed 

for the individual class analysis. This species compilation resolved 9 sources to the 

Baltimore atmosphere (All Data PMF Factors 1 – 9). All Data PMF Factor 1 was 



 

 140 
 

 



 

 141 
 

 



 

 142 
 

 

heavily weighted in C34 and C35, and exhibited the greatest concentration of hopanes 

of all of the factors. From the previous alkane + hopane analysis this source is 

identified as a tire wear/road dust source (Figure 5.13). 

All Data PMF Factors 2 and 7 appear to be vehicular emissions. Both factors 

are heavily weighted in coronene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene. 

The concentrations of NO and NOx are lower in All Data PMF Factor 2 compared to 

7. 1-nitropyrene was associated with All Data PMF Factor 7 and not 2 and a 

significant (>0) contribution of the lightest PAHs was also present. From these 

observations and the correlation analysis presented in Chapter 3, All Data PMF 

Factor 7 is assigned a diesel source, whereas All Data PMF Factor 2 is denoted 

gasoline emissions. The elevated benzofluoranthenes, used to distinguish gasoline 

from diesel in the PAH analysis alone were not evident when multiple classes of 

compounds were used as input parameters. Therefore, these compounds may have 

limited value in distinguishing these two sources when multiple classes of compounds 

are used.  

 All Data PMF Factor 3 is heavily loaded in the lightest PAHs, a slight even 

alkane carbon preference and a decreasing alkane concentration with increased 

molecular weight from C22 to C30 suggesting a petrogenic source. The PAH profile is 

consistent with oil combustion. Significant quantities of CO, NO and NOx were also 

associated with this factor which was primarily observed during the winter (Figure 

5.14). Therefore this factor was assigned an oil source, most likely from domestic 

home heating. 
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 All Data PMF Factor 4 was identified as biogenic from the strong odd carbon 

preference in the alkane profile with a maximum concentration at C29 and was 

associated with increased levels of ozone. Interestingly, this factor also contained 

elevated concentrations of phenanthrene, fluoranthene and pyrene. This may be due 

to the covariance of biogenic emissions with long range transport of combustion 

emissions to the Baltimore region. The temporal source contribution was well 

correlated (R2 = 0.89) with the biogenic source identified using alkanes only with the 

greatest concentrations during the spring and summer periods. 

 All Data PMF Factor 5 exhibited the greatest ozone concentration and a slight 

odd carbon predominance, decreasing in concentration from C22 to C32. The greatest 

concentration of 2-nitrofluoranthene and elevated concentrations of fluroanthene and 

pyrene are also apparent. High ozone and fluoranthene, pyrene and 2-

nitrofluoranthene were associated with this profile, representative of fossil fuel 

initiated secondary organic aerosol formation. NOx was elevated for this factor, 

whereas the NO concentration was not greater than 0 ng/m3, indicative of high 

photochemical conversion of primary NO to NO2, consistent with a secondary 

organic aerosol factor. 

 All Data PMF Factor 6 exhibited elevated concentrations of pyrene relative to 

fluoranthene, significant levels of phenanthrene, and was the major contributor to 3,6-

dimethylphenanthrene. No carbon preference was observed in the alkane profile and 

the ratio of 2-nitrofluoranthene/1-nitropyrene was 0.4, consistent with primary NPAH 

formation (Ciccioli et al., 1996). The elevated levels of phenanthrene and pyrene 

(relative to fluoranthene) have been reported for incinerator sources (see above), 
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therefore this factor is denoted as the incineration source for the combined organic 

analysis. Elevated concentrations of this factor were observed during the spring and 

winter months similar to the incinerator source identified by the PAHs alone. 

 All Data PMF Factor 8 had the highest concentrations of phenanthrene, 

fluoranthene, pyrene and decreasing alkane concentrations with molecular weight 

(C22 – C28) and elevated NO and NOx concentrations. A significant concentration of 

ozone and a greater secondary NPAH contribution (2-nitrofluoranthene/1-nitropyrene 

= 7) compared to the factor 3 (oil) suggests aged aerosol. From the PAH profiles we 

assigned this as a coal combustion profile. The aged component of this profile may 

indicate that this source is not local, most likely from electricity generation via coal 

fired power plants. Although the alkane source contribution for this factor was better 

correlated than the PAHs (R2 = 0.83 and 0.20, respectively) peak contributions of this 

factor are similar among the three analyses. 

 The last factor (All Data PMF Factor 9) was identified from the unique even 

alkane carbon preference and low PAH concentrations characteristic of plastic 

incineration (Simoneit et al., 2005). The temporal source contribution was well 

correlated with the alkane only analysis (R2 = 0.90). The soft wood combustion 

source identified using PAHs was not resolved when all of the compounds were 

added to the PMF analysis. This may be due to the low contribution of this source to 

the Baltimore area for these sampling periods compared to the other sources resolved 

when alkanes and NPAHs were added to the input matrix. This also may illustrate the 

loss of statistical power from the increase in the number of analytes compared to 

samples in the analysis (Brinkman et al., 2005).  
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PCA: The PCA results when PAHs, alkanes, hopanes, 1-nitropyrene, 2-

nitrofluoranthene, NO, CO, O3, and NOx were combined as an input matrix differ 

from the All Data PMF results, but are consistent with the individual compound class 

PCA (Figure 5.15). The explained variance for the 8 significant factors was 31, 15, 

14, 8, 6, 5, 5, 2 and 3 percent, respectively. All Data PCA Factor 1 contains the 

greatest loadings in the lightest and heaviest PAHs and, NO and NOx. This profile is 

consistent with the PAH PCA vehicle profile. Compared to the All Data PMF results 

this appears to be a combination of the oil and diesel signature as the greatest 

contribution is found during the winter (Figure 5.16).   

 All Data PCA Factor 2 (15% variance) contains the elevated retene and alkyl 

phenanthrenes and anthracenes identified as wood combustion in the PAH PCA. But 

the elevated contributions from the lightest alkanes especially C25 relative to C24 and 

C26 indicating a gasoline profile. The grouping of these compounds is consistent with 

the gasoline source previously identified using correlation analysis (Chapter 3). But 

as discussed above the temporal profile is more consistent with the coal source 

identified using PMF (PAH PMF Factor 6). Therefore a definitive assignment is not 

possible. 

 All Data PCA Factors 3 and 4 are easily identified as road dust and plastic, 

respectively due to their characteristic alkane profiles discussed above. All Data PCA 

Factor 6 (5.2 % variance) was heavily weighted in the odd carbon alkanes denoting a 

biogenic source. These sources track well with the All Data PMF results affirming 

their source designation. 
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All Data PCA Factor 5 was weighted with phenanthrene, anthracene and 

fluorene and initially assigned a coal source. Again, the temporal source contribution 

does not track with the All Data PMF results. ALL Data PCA Factors 7 and 8 were 

not assigned sources due to the ambiguous weighting of the analytes. All Data PCA 

Factor 7 had the highest weighting in methyldibenzothiophenes and 

methylanthracenes and methylphenanthrenes while All Data PCA Factor 8 was 

heavily weighted in 2-nitrofluoranthene. This may indicate a secondary organic 

aerosol factor, but the low ozone weighting does not support this. The temporal 

source contribution agreed well with the NO3 radical designation from the NPAH 

PMF analysis (NPAH Factor 3) during the spring and summer. 

 

5.5 Discussion 

Similar to the previous analysis using PAHs in the Baltimore atmosphere, PCA 

and PMF produce similar source profiles and contributions when individual 

compound classes are analyzed. PMF consistently resolved more factors than PCA 

for the individual compound class analysis. For the alkane + hopanes and PAHs, PCA 

was unable to distinguish gasoline and diesel sources. 

A drastic difference was observed when multiple classes of compounds were 

simultaneously analyzed with PCA and PMF. Both models generated replicate 

profiles and contributions sources that relied on distinct alkane profiles (biogenic, 

plastic, and road dust). In the All Data analysis, sources that relied on PAH profiles 

did not agree well among PCA and PMF. One of the benefits of using PMF is the 

ability to introduce analyte specific error into the model. It is unlikely that the errors 
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associated with different classes of compounds are equal, which is assumed by PCA. 

Therefore the unique error associated with each input variable may skew the results 

when multiple classes of compounds are used (See Tables 5.3 and 5.4 for summary). 

This may explain the discrepancies between PCA and PMF in the All Data PCA and 

All Data PMF results. In addition, correctly identifying the factors is probably the 

most difficult part of multivariate source apportionment. The output of PMF is in 

concentration units, which can be used to evaluate the relative concentration of 

potential markers within a factor. Although the compounds driving the variability in a 

prescribed factor may be determined using PCA, the relative concentration of 

individual compounds can not be directly evaluated within a factor. This is illustrated 

in the two factors from the All Data PCA that were not identifiable (All Data Factors 

7 and 8). Therefore in the following sections the PMF results are used to calculate the 

seasonal contribution of the identified sources to individual compound class, total 

carbon and PM2.5 concentrations measured in Baltimore. 

 

5.5.1 Seasonal Source Contributions of PAHs, NPAHs, Alkanes and Hopanes  
 

The seasonal distribution of alkanes, hopanes, PAHs and NPAHs were 

calculated using the individual class PMF results. The superior resolving ability 

provides a better estimate of the sources and source contributions (described above) 

compared to PCA. Therefore, the seasonal source contributions using PCA/MLR are 

not presented. The mean spring, summer and winter percent contribution of alkanes 

and hopanes using PCA and PMF are shown in Figure 5.17. In the PMF results, the 

diesel and gasoline contribution of these compounds decreases in the summer,  
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whereas the coal and biogenic fraction increases during the summer. The contribution 

of gasoline exhaust is about two fold greater than diesel in the spring and summer. In 

contrast, the winter period exhibited a larger diesel contribution relative to gasoline. 

In the spring the dominant sources of organics are coal and gasoline exhaust (24%).  

The coal source appears to dominate the contribution of alkanes and hopane 

during the summer period accounting for 42% of the alkane and hopane 

concentration. During the winter, alkane and hopane concentrations were evenly 

impacted by all the sources identified, with the exception of the biogenic source. 

 The dominant source of PAHs during the spring and summer was coal (Figure 

5.18), accounting for ~50% and 70% of the PAH concentration, respectively. The 

winter PAHs were dominated by oil combustion, accounting for 72% of the observed 

concentrations. Gasoline was the dominant vehicle source of alkanes in all seasons 

with the greatest difference during the spring. The largest contribution of PAHs from 

the soft wood combustion source was observed during the spring. 

 The mean concentration of the PMF resolved NPAH sources in the spring 

were similar (Figure 5.19). The aged primary source concentration was greater during 

the spring compared to summer and winter. The secondary NO3 source was the 

highest contributor to the total NPAH concentration during the summer (65%) 

followed by the diesel source (33%). The abundance of this source during the summer 

is consistent with previous results (Chapter 3), where an elevated ratio of 2-

nitrofluoranthene/2-nitropyrene indicated greater secondary production of NPAHs via 

the NO3 pathway. The winter period was dominated by the diesel NPAH source,  
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accounting for 80% of the observed concentration of total NPAHs in the Baltimore 

atmosphere.  

 

5.5.2 Total Carbon and PM2.5 Source Estimates 

The source contributions resolved from PMF were regressed against total carbon (TC, 

elemental + organic carbon) measured at the site. The mean sourcecontribution using 

these markers only applies for the spring and summer 2002 due to missing TC data 

during the winter. Also, the TC was measured on particles with diameters less than 

2.5µm whereas the organics data was measured on total suspended particulate matter. 

The nine factors identified explained 64% of the variance in TC. The largest 

contributor to the total carbon mass is the anthropogenic secondary factor (24%) 

followed by diesel (20%) and gasoline (16%) combustion (Figure 5.20). The road 

dust/tire wear, incinerator and coal factor account for 10, 12 and 4% of the total 

carbon. The fraction of TC from the oil source was not significantly greater than 0 

during the spring and summer consistent with the temporal source contributions 

(Figure 5.14). A negative contribution to TC was found for the plastic source. This 

negative concentration is not physically possible, but theoretically this indicates the 

decrease in the TC concentration when this source is present. Therefore, this factor 

was removed from the regression equation.  

 A similar analysis was performed for the measured PM2.5 at the site explained 

64% of the temporal variance in PM2.5. Only spring and summer PM2.5 was available 

for the regression analysis. Organic tracers do not resolve inorganic sources such as 

secondary sulfate, nitrate and sea salt. Therefore, this analysis does not attempt a full  
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PM2.5 mass closure. Using the organics sources, anthropogenic secondary organic 

aerosol contributed the greatest PM2.5 concentration (31%, Figure 5.21). This is 

similar to the percent contribution of secondary sulfate (23%) and nitrate (23%) 

observed by Ogulei et al. (2005) for the Baltimore Supersite using inorganic markers. 

The sum of the vehicle emissions (diesel + gasoline) from Ogulie et al. (27%) is 

similar to our results (30%). In our study diesel and gasoline account for similar 

contributions to the PM2.5 mass (13 and 16 %, respectively) whereas the previous 

study found that gasoline emissions (26%) dominated the vehicular signature. The 

discrepancy between these two studies illustrates the difficulty in differentiating 

gasoline and diesel sources to the ambient atmosphere. The coal (2 and 3%) and 

incinerator (10 and 9%) contributions agree very well between this study and Ogulei 

et al. (2005), respectively. The oil source from this study was a significant source of 

PM2.5 for the spring and summer. This is not unexpected as this source is 

predominantly found in the winter.    

5.6 Conclusions 

PMF and PCA were used to determine the sources of alkanes, PAHs, hopanes 

and NPAHs to the Baltimore, MD. PMF source profiles and contributions identified 

by individual compound classes were similar to those resolved when all of the species 

were included. PCA consistently resolved fewer sources than PMF with less certainty 

in the source identification. The loss of statistical power using PMF was evident as 

the number of species increased, as the wood source identified in the PAH only runs 

was not resolved when hopanes, alkanes, NPAHs and gases were added to the input 

matrix.   
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Combining these compound classes explained 64% total carbon and PM2.5 

concentration. The identified total carbon and PM2.5 sources in Baltimore were road 

dust (10% and 23%), gasoline combustion (16% and 16%), oil (9% and 0%), biogenic 

(3.8% and 7.6%), secondary organic aerosol (24% and 31%), incinerator (12% and 

10%), diesel (20% and 13%), and coal (3.5% and 1.7%). The results from this study 

provide the first total carbon and PM2.5 estimates to the Baltimore atmosphere using 

organic tracers in a multivariate receptor model. In addition, the ability of the EPA 

PMF 1.1 to generate this solution without the need for manual rotational 

manipulations suggests that this program is suitable for wider applications in the 

aerosol community. 
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Chapter 6   

Summary of Results 

 

6.1 Chapter 2 

Two methods were developed to quantify polycyclic aromatic hydrocarbons 

(PAHs) and nitro-substituted polycyclic aromatic hydrocarbons (NPAH), 

respectively, using large-volume injection gas chromatography/mass spectrometry 

(GC/MS). Both methods (PAH and NPAH, respectively) employed a programmed 

temperature vaporization injector (PTV) in solvent vent mode, optimized using 

standard solutions. For the PAH method, the precision of the PTV was comparable to 

hot splitless injection, exhibiting a percent relative standard deviation (%RSD) 

consistently below 8% for 100 pg injections. Compound %RSDs for the NPAH 

method were consistently below 5% using the PTV. Microgram quantities (30 – 

500µg) of particulate matter Standard Reference Materials (SRM 1649 and 1650, 

National Institutes of Standards and Technology) were analyzed to simulate PAH and 

NPAH quantification on small quantities of aerosol mass. The method detection 

limits from this study suggest PAHs and NPAHs can be easily quantified using low 

volume samplers (> 5 Lpm) on hourly timescales under in typical urban atmospheres. 

In addition, this technique enabled the quantification 12 hr NPAH size distributions in 

the Baltimore, MD atmosphere.  
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6.2 Chapter 3 

Organic aerosol was collected in Baltimore, MD during the spring, summer and 

winter of 2002-2003. Concentrations of n-alkanes, hopanes, polycyclic aromatic 

hydrocarbons (PAH), and nitro-substituted polycyclic aromatic hydrocarbons 

(NPAH) were measured in the gas and particle phase to determine the composition 

and seasonal variability of organic aerosol. The organic compounds varied little with 

time, with seasonal concentrations typical of North American urban atmospheres. 

Elevated concentrations of 1-nitropyrene, a potential diesel exhaust marker, were 

observed in the winter intensive. The mean 2-nitrofluoranthene concentrations were 

consistent among seasons with greater variability in the spring and summer. Each of 

the compound classes were correlated with collocated gas (NO, NO2, CO and ozone) 

and bulk particulate phase (EC, OC, nitrate and PM2.5 mass) measurements as well 

as non-halogenated volatile organic compounds (VOCs). The intercorrelation among 

species resolved several traffic related source profiles, including a tire wear-like 

alkane profile consisting of elevated hopanes and C34 and C35 alkanes. Other profiles 

were possibly from gasoline, diesel and biogenic sources. In addition, correlations 

between 1-nitropyrene and NO support diesel as the dominant source of this NPAH 

isomer to the Baltimore atmosphere. OH was found to be the dominant formation 

pathway of 2-nitrofluoranthene production during the spring and winter, while the 

NO3 radical was responsible for > 90% of the 2-nitrofluoranthene production during 

select summer periods. Secondary NPAHs also covaried with primary VOCs, 

indicating secondary organic aerosol formed at this site is driven by oxidants with 

anthropogenic rather than biogenic precursors.  
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6.3 Chapter 4 

Diurnal size distributions of polycyclic aromatic hydrocarbons (PAHs) and 

nitro-substituted polycylic aromatic hydrocarbons (NPAHs) provide insight into the 

dynamics of primary (PAHs and NPAHs) and secondary (NPAHs) toxics to the 

ambient atmosphere. Size resolved samples were collected using a Berner low-

pressure impactor deployed at the Baltimore PM2.5 Supersite in April 2002. Both 

classes of compounds (PAHs and NPAHs) were found predominantly on particles 

less than 0.49µm with similar size distributions among samples for most of the 12 hr 

periods. A linear relationship between compound geometric mass median 

aerodynamic diameter (GMMAD) and log sub-cooled vapor pressures (pl°) was 

observed for PAHs and NPAHs, respectively, during each sampling period. For the 

majority of samples, PAHs and NPAH correlations were not significantly different. 

The slope and y-intercepts from the GMMAD/log vapor pressure correlations suggest 

the source of PAHs to the Baltimore atmosphere reside on particles with GMMADs 

equal to 0.18 µm. This particle size is consistent with vehicle emission source studies 

and the location of the sampling site. 

6.4 Chapter 5 

Principal Component Analysis/Multiple Linear Regression (PCA/MLR) and Positive 

Matrix Factorization (PMF) were employed to determine the sources and contribution 

of alkanes, hopane, PAHs and NPAHs to the Baltimore atmosphere during the spring, 

summer and winter 2002-2003. Using these two methods, parallel analysis of these 

compound classes illustrate the greater resolving ability of PMF compared to PCA. 

Although similar sources were determined using both techniques, PMF usually 
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resolved a greater number of identifiable sources. PAH sources to the Baltimore 

atmosphere included vehicle, oil combustion, coal combustion and wood combustion. 

Alkane + hopane sources included leaf waxes, plastic incineration, gasoline and 

diesel exhaust, coal combustion and road dust.  PMF was able separate the vehicle 

factor into diesel and gasoline for alkane +hopane and PAH analysis compared to 

PCA/MLR. PCA/MLR and PMF resolved 4 and 3 sources, respectively, of NPAHs to 

the Baltimore atmosphere consisting of diesel, nitrate radical secondary, aged primary 

and a possible gasoline source. The individual compound classes were also analyzed 

together in PMF. The resulting profiles and temporal contributions agreed well with 

the sources identified using individual classes. The results from this analysis were 

regressed against total carbon (TC) and PM2.5 measured during the spring and 

summer. The 9 sources (% contribution) of TC resolved using PMF were 

anthropogenic secondary organics (24%), diesel (20%), gasoline (16%), road dust 

(10%), incinerator (12%) and coal (4%) explaining 64% of the variance. Similarly, 

the mean PM2.5 source contribution of these factors was 31% (anthropogenic 

secondary factor), 13% (diesel), 16% (gasoline), 2% (coal), 10% (incinerator).   

6.5 Implications 

The implications of this body of work are as follows; 

1) The large volume injection method developed in Chapter 2 has proven 

successful with PAHs and NPAHs. This method could be easily extrapolated 

to other analytes identified as organic source markers. The power of 

multivariate models depends on profile variability from sample to sample. 

Greater temporal resolution in ambient aerosol sampling campaigns will 
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provide concentration data on timescales similar to the sources and processes 

(chemical, meteorological) affecting the organic composition.  

2) The covariance of secondary NPAHs with primary emissions in the Baltimore 

suggests the oxidation potential of the Baltimore atmosphere may be driven 

by anthropogenic (as opposed to biogenic) sources. Therefore, human 

exposure to mutagenic organic species such as NPAHs is driven by primary 

(possibly gasoline exhaust) emission precursors. 

3) This study was the first to measure the diurnal size distribution NPAHs in the 

ambient atmosphere. For the spring of 2002, the size distributions of PAHs 

and NPAHs were similar. Since the penetrating efficiency of particulate 

matter is governed by size, the exposure to NPAHs in the ambient atmosphere 

will be similar to their parent mutagens PAHs. 

4) The vapor pressure/size dependence of PAHs in the Baltimore atmosphere 

may indicate the source particle size of the dominant PAH emissions. Using 

this information in conjunction with organic source markers may provide a 

better understanding of the sources and behavior of PAHs in the ambient 

atmosphere. 

5) This study was the first study to determine the sources of total carbon and 

PM2.5 to the Baltimore, MD region using organic markers. From this analysis 

the largest contribution to the carbon and PM2.5 appear to be secondary 

products. These results suggest greater attention must be to secondary organic 

precursors to control the carbonaceous aerosol.   
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Appendix A 
 Gas and Particle Concentrations of Alkanes, PAHs, NPAHs and Hopanes 
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 8 MT 9 MT 10 MT 11 MT 12 MT 13 MT 16
Start Date 032302 032402 032802 032902 033002 033102 040202 040302 040402 040802 040902 041002 041402
Start Time 1906 1914 1920 2016 1809 1936 1927 1924 1930 1720 1835 1905 1555

Stop Date 032402 032502 032902 033002 033102 040102 040302 040402 040502 040902 041002 041102 041502
Stop Time 1800 1740 1901 1706 1802 1750 1758 1813 325 1808 1823 1826 1802

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
C10 <BG 0.30 0.07 <BG 0.30 <BG <BG <BG <BG 0.07 0.08 <BG <BG
C11 0.25 0.48 0.34 0.38 0.10 0.06 0.10 0.09 0.11 0.11 0.10 <BG 0.10
C12 0.11 0.10 0.05 0.04 0.04 0.04 <BG 0.05 0.09 0.03 0.02 <BG 0.02
C13 1.65 1.31 0.47 0.06 0.04 0.17 0.09 0.29 0.61 0.04 0.44 0.02 0.04
C14 0.15 0.24 0.19 0.18 0.14 0.12 0.20 0.13 0.15 0.17 0.16 0.03 0.12
C15 0.19 0.17 0.09 0.16 0.04 0.14 0.17 0.16 0.20 0.07 0.09 0.03 0.04
C16 0.53 0.62 0.35 16.15 0.14 0.21 0.21 0.29 0.47 0.16 0.20 0.06 0.52
C17 0.46 0.27 0.20 0.17 0.11 0.20 0.24 0.36 0.42 0.16 0.22 0.05 0.15

C18 0.17 0.26 0.24 0.18 0.06 0.12 0.15 0.18 0.49 0.21 0.06 0.08 0.03
C19 0.64 0.48 0.39 0.18 0.18 0.29 0.41 0.64 0.75 0.31 0.27 0.28 0.17
C20 0.74 0.84 0.47 0.31 0.37 0.45 0.70 0.77 1.51 0.55 0.44 0.45 0.25
C21 1.44 1.09 0.98 0.51 0.53 0.67 1.08 0.97 1.65 0.96 0.61 0.67 0.36
C22 2.80 2.07 1.98 0.65 0.86 0.89 1.20 1.79 3.82 1.13 0.80 0.93 0.37
C23 3.38 3.27 5.10 1.07 1.45 1.10 2.12 1.69 2.67 2.30 1.40 2.42 1.00
C24 3.17 3.21 6.96 1.53 1.91 1.32 4.54 2.42 5.51 3.73 1.71 3.04 1.50
C25 5.00 4.78 9.68 2.61 2.80 2.51 9.07 3.47 3.99 7.79 3.53 4.98 4.45
C26 2.69 2.68 9.17 2.60 1.52 1.36 6.31 2.50 4.57 5.25 1.73 2.72 2.53
C27 1.91 2.76 7.84 3.42 1.64 1.72 7.58 3.16 2.72 6.99 2.79 3.50 5.52
C28 3.01 2.40 5.16 1.95 1.57 1.87 4.22 3.27 4.64 4.46 1.48 2.37 1.46
C29 3.13 3.96 4.83 4.35 2.00 2.75 7.39 4.63 3.67 8.68 2.45 4.43 3.44

C30 1.77 1.96 3.61 1.67 1.27 1.14 2.84 3.90 3.87 2.96 1.67 3.01 1.47
C31 2.64 3.42 2.80 2.12 2.18 1.98 3.79 4.04 2.99 4.56 2.42 4.36 2.77
C32 1.26 1.42 1.80 1.20 1.09 0.95 1.93 2.91 2.48 1.87 1.47 2.06 1.54
C33 2.06 2.06 2.37 1.39 1.25 1.33 2.53 2.90 2.02 2.78 2.00 2.95 1.55
C34 4.49 3.13 5.74 3.33 1.91 2.28 4.41 3.02 3.19 2.93 3.65 4.35 1.50
C35 4.02 3.47 5.41 3.20 2.15 2.24 5.00 2.88 3.71 5.16 3.69 4.60 1.81
C36 0.51 0.87 0.68 0.82 0.70 0.91 1.60 1.41 1.65 1.53 0.92 1.99 0.61  
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Sample ID MT 17 MT 18 MT 19 MT 20 MT 21 MT 22 MT 23 MT 25 MT 26 MT 27 MT 28 MT 29 MT 30 MT 32
Start Date 041502 041602 041602 041702 041702 042202 042302 042402 042402 042502 042502 042602 042702 042902
Start Time 1834 0846 1957 0855 1856 1833 0834 0913 1926 0855 1840 1905 1710 1734

Stop Date 041602 041602 041702 041702 041802 042302 042302 042402 042502 042502 042602 042702 042802 043002
Stop Time 742 1854 735 1759 1745 808 1839 1933 800 1814 1843 1700 1645 1704

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
C10 <BG <BG <BG <BG <BG <BG 0.19 0.20 ND <BG 0.11 0.28 <BG 0.13
C11 0.29 0.57 0.38 0.51 0.19 0.11 <BG 0.23 0.16 0.11 0.10 0.19 0.15 0.14
C12 0.10 0.07 0.16 0.10 0.32 0.04 <BG <BG 0.08 0.07 0.05 0.09 0.05 <BG
C13 0.87 0.29 1.40 0.40 0.05 0.52 0.17 0.09 ND 0.10 0.49 1.27 0.05 0.29
C14 0.18 0.52 0.22 0.65 0.19 0.09 0.29 0.25 ND 0.23 0.20 0.37 0.10 0.18
C15 0.07 0.20 0.11 0.37 0.07 0.11 0.22 0.57 0.04 0.09 0.19 0.11 0.03 0.17
C16 0.35 2.12 0.50 7.09 0.29 0.14 0.38 0.77 17.47 0.11 0.60 1.05 0.12 0.27
C17 0.58 0.56 0.63 0.80 0.15 0.27 0.33 0.56 0.10 0.14 0.38 0.22 0.10 0.36

C18 0.45 0.38 0.39 0.67 0.17 0.19 0.31 0.38 0.05 0.14 0.13 0.24 0.15 0.15
C19 0.98 0.50 0.80 0.83 0.28 0.47 0.42 0.47 0.15 0.21 0.47 0.33 0.19 0.36
C20 1.95 0.56 1.36 0.81 0.51 0.87 0.60 0.72 0.29 0.35 0.43 0.26 0.31 0.43
C21 3.20 1.08 2.85 1.41 0.79 1.32 0.99 1.15 0.48 0.49 0.79 0.50 0.36 0.58
C22 3.74 0.77 2.69 1.41 0.83 1.40 1.40 1.74 0.64 0.55 1.18 0.77 0.37 0.78
C23 6.54 3.47 6.48 4.56 2.01 1.69 1.82 2.31 1.26 1.36 3.05 2.56 1.16 1.67
C24 5.93 3.48 4.22 5.14 2.71 1.39 1.90 2.43 1.06 1.58 3.24 2.24 1.50 1.52
C25 9.93 7.11 9.74 9.92 5.17 3.33 3.40 3.78 2.25 3.27 6.41 5.13 3.46 3.32
C26 9.18 3.15 4.16 5.54 2.70 2.19 2.08 2.10 1.78 1.32 3.25 2.32 1.60 1.45
C27 7.07 10.73 15.81 10.98 7.88 3.82 3.11 3.08 2.97 2.49 6.15 5.05 2.09 3.12
C28 4.26 3.42 3.43 3.87 2.52 1.87 2.61 1.44 0.88 1.16 3.25 2.35 1.06 1.33
C29 5.91 10.13 6.34 7.91 6.31 7.12 5.55 3.61 5.06 4.06 10.98 7.71 3.44 5.18

C30 3.68 3.13 3.64 4.39 2.93 1.80 2.20 1.70 1.16 1.46 2.96 2.00 1.37 1.55
C31 5.30 6.34 6.52 7.37 5.74 5.50 4.10 2.92 4.47 3.48 9.55 7.03 3.53 4.56
C32 1.96 2.55 2.39 3.28 2.33 1.35 1.88 1.13 0.80 1.56 2.17 1.80 0.65 1.56
C33 3.09 3.23 3.50 4.48 3.32 2.68 2.71 1.86 2.84 2.30 4.77 4.15 2.57 3.26
C34 6.43 5.29 7.02 9.72 6.15 1.67 3.62 3.38 1.09 5.68 4.31 3.87 4.60 2.64
C35 6.13 3.97 5.94 8.94 5.91 1.73 3.98 3.21 1.70 6.81 3.23 4.20 5.35 2.81
C36 1.98 1.56 2.63 3.56 2.42 1.16 1.45 1.04 0.51 0.25 0.94 1.24 0.87 0.96  
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Sample ID MT 33 MT 34 MT 35 MT 36 MT 37 MT 38 MT 39 MT 40 MT 41 MT 42 MT 43 MT 45 MT 46
Start Date 070902 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072102 072202
Start Time 1705 1845 1915 1835 1923 1921 1903 1850 1905 1853 1935 1819 1832

Stop Date 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072002 072202 072302
Stop Time 1745 1805 1720 1820 1811 1757 1754 1801 1804 1850 1828 1740 727

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
C10 0.17 0.12 <BG 0.16 0.09 <BG 0.19 <BG 0.22 <BG ND 0.16 0.40
C11 0.04 0.06 0.09 0.09 0.06 0.04 0.12 0.07 0.08 0.04 0.06 0.04 <BG
C12 0.89 0.38 0.20 0.85 0.20 0.11 1.36 0.18 0.29 0.15 0.72 0.40 1.64
C13 0.13 0.06 0.07 0.09 0.07 0.05 0.13 0.04 0.16 0.10 0.10 0.14 0.15
C14 0.15 0.30 0.44 0.25 0.21 0.10 0.36 0.25 0.13 0.24 0.26 0.29 0.44
C15 0.02 0.05 0.03 0.26 <BG 0.05 0.05 0.09 0.09 0.06 0.09 0.07 0.08
C16 0.20 0.14 0.16 0.15 0.10 0.07 0.25 0.21 0.21 0.27 0.20 0.25 0.37
C17 0.11 0.17 0.17 0.12 0.06 0.08 0.14 0.25 0.08 0.08 0.16 0.09 0.21

C18 0.27 0.17 0.11 0.10 0.02 0.04 0.04 0.17 0.38 0.06 0.04 0.39 0.56
C19 0.16 0.18 0.21 0.13 0.06 0.11 0.14 0.20 0.10 0.10 0.09 0.14 0.25
C20 0.26 0.15 0.30 0.18 0.09 0.20 0.20 0.26 0.17 0.19 0.14 0.24 0.42
C21 0.31 0.27 0.34 0.20 0.09 0.18 0.25 0.34 0.16 0.19 0.13 0.25 0.43
C22 0.41 0.37 0.41 0.25 0.10 0.23 0.37 0.42 0.21 0.23 0.18 0.32 0.59
C23 0.79 1.01 0.91 0.53 0.22 0.44 0.85 0.83 0.48 0.52 0.47 0.66 1.39
C24 1.45 1.17 1.77 1.04 0.59 1.03 1.43 1.61 1.12 1.21 0.82 1.00 1.82
C25 2.96 5.20 4.35 2.66 0.89 1.54 3.53 3.68 1.68 1.32 1.75 2.65 4.59
C26 1.50 1.48 2.64 1.77 0.56 1.08 1.71 1.91 0.97 0.94 1.04 1.67 2.36
C27 3.97 10.83 8.06 5.19 1.85 1.94 5.66 6.79 2.90 2.16 4.10 4.78 7.48
C28 2.24 1.95 2.92 1.60 0.70 1.62 1.90 2.14 1.27 0.93 1.04 2.17 3.35
C29 8.58 16.55 8.78 5.98 2.29 2.87 8.96 9.69 5.23 4.19 0.72 6.59 11.82

C30 2.16 1.61 2.26 1.14 0.65 1.96 1.92 2.18 1.29 1.39 1.11 1.65 2.25
C31 7.01 10.58 6.87 4.00 1.71 3.20 6.86 7.38 3.98 3.37 1.31 4.64 6.83
C32 1.96 1.43 2.41 0.71 0.48 1.73 1.56 1.96 0.99 1.21 1.03 1.32 1.37
C33 3.38 3.71 3.16 1.70 0.93 2.62 3.37 3.22 2.20 2.02 0.23 2.18 3.06
C34 4.79 1.95 2.22 1.79 2.51 4.18 2.79 2.27 1.56 3.13 1.06 2.30 5.92
C35 4.64 2.20 3.08 2.10 2.31 3.85 3.49 3.03 2.15 3.18 0.10 2.60 5.69
C36 1.58 1.16 1.46 0.53 0.51 1.56 1.35 1.09 1.11 1.17 0.62 0.86 0.95  
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Sample ID MT 47 MT 49 MT 51 MT 52 MT 53 MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63
Start Date 072302 072902 072902 073002 073002 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802
Start Time 734 620 1854 650 1250 1824 1759 1900 100 700 1900 745 1900 800 1900

Stop Date 072402 072902 073002 073002 073002 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902
Stop Time 800 1124 605 1245 1814 750 807 100 700 1900 746 1900 754 1900 803

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
C10 0.12 <BG 0.35 0.31 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C11 0.07 <BG 0.12 0.19 0.28 0.07 0.12 <BG <BG 0.18 <BG 0.14 0.13 0.08 0.12
C12 0.67 0.16 0.43 0.32 <BG 0.22 1.20 <BG <BG 0.28 <BG 0.26 0.32 0.18 0.14
C13 0.11 <BG 0.15 <BG <BG 0.39 0.39 0.06 0.10 0.11 0.04 0.11 0.91 0.03 0.59
C14 0.06 0.26 0.36 0.33 0.20 0.44 0.36 <BG 0.07 0.19 0.07 0.13 0.34 0.17 0.12
C15 0.05 0.14 0.13 0.13 0.11 0.10 0.08 <BG <BG 0.18 0.06 0.12 0.04 0.08 0.08
C16 0.11 0.33 0.15 0.24 0.14 0.19 0.26 0.16 0.10 0.32 1.09 0.23 0.19 0.12 0.20
C17 0.15 0.25 0.14 0.21 0.17 0.22 0.29 0.13 0.13 0.34 0.14 0.24 0.38 0.16 0.19

C18 0.41 0.37 0.18 0.05 0.06 0.14 0.22 0.19 0.09 0.30 0.18 0.22 0.18 0.13 0.04
C19 0.13 0.20 0.19 0.18 0.17 0.16 0.22 0.16 0.16 0.45 0.20 0.35 0.27 0.24 0.39
C20 0.27 0.32 0.38 0.24 0.17 0.46 0.41 0.23 0.27 0.71 0.33 0.97 0.98 0.52 0.48
C21 0.28 0.35 0.39 0.26 0.39 0.31 0.37 0.32 0.38 0.78 0.48 0.48 0.64 0.37 0.63
C22 0.44 0.36 0.42 0.34 0.37 1.04 1.43 0.49 0.72 1.60 0.91 1.63 4.00 1.20 1.27
C23 0.96 0.65 0.94 0.70 0.87 1.12 1.70 0.81 1.03 2.54 1.40 1.42 1.45 0.90 2.02
C24 1.66 1.58 1.31 1.36 1.38 2.80 5.96 1.39 2.01 3.55 1.83 2.86 8.58 2.27 8.57
C25 3.30 2.36 2.17 3.22 3.39 2.76 3.57 2.38 3.49 10.21 4.77 4.87 4.03 2.30 4.54
C26 2.09 1.24 1.07 1.45 2.63 3.57 5.38 1.95 2.21 3.97 1.93 2.86 8.98 2.34 18.24
C27 5.71 3.32 3.32 6.63 5.41 4.64 3.69 3.54 5.01 20.78 10.10 8.70 6.77 3.17 4.84
C28 1.91 1.29 0.84 2.13 2.09 2.74 4.45 1.40 2.53 4.40 2.22 2.17 5.90 2.48 15.35
C29 10.37 7.57 5.71 15.78 12.00 6.77 5.36 5.32 9.46 33.63 17.90 11.16 7.43 5.03 6.40

C30 1.68 1.77 0.90 2.21 1.81 2.12 3.36 1.73 2.65 3.20 1.83 2.63 3.86 2.17 11.57
C31 6.69 5.03 4.18 9.84 7.52 5.29 4.45 4.16 6.91 18.59 10.12 7.62 5.40 4.14 6.05
C32 1.34 1.42 0.62 1.83 1.38 1.65 2.01 1.53 1.94 2.48 1.23 1.89 2.48 1.58 7.67
C33 3.01 2.86 1.88 4.05 3.08 2.22 2.38 2.33 3.22 5.84 3.25 3.03 2.59 2.01 3.32
C34 3.92 4.31 2.26 3.73 3.55 2.67 5.05 3.06 6.42 5.39 3.27 3.36 4.09 3.73 8.69
C35 4.09 4.09 0.86 3.47 4.11 2.36 3.48 3.52 7.71 4.70 3.07 3.03 3.16 3.75 4.47
C36 1.30 1.38 0.66 1.70 1.17 0.88 1.44 1.16 1.82 1.73 0.93 1.42 1.70 1.21 4.57  
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Sample ID MT 64 MT 65 MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012703 012803 012803 012803 012903 012903 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 1830 1230 820 1800 30 745 1837 30 810 1830 700 1825 735 1745 110

Stop Date 012803 012803 012803 012903 012903 012903 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 802 800 1734 30 630 1831 30 630 1830 1830 1820 735 1740 110 710

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
C10 0.27 0.65 <BG <BG <BG <BG <BG <BG 0.20 <BG <BG 0.28 0.21 <BG <BG
C11 0.22 0.47 0.13 0.24 0.41 0.23 0.67 0.37 0.16 0.13 0.09 0.97 0.16 <BG <BG
C12 0.52 0.13 0.09 0.16 0.20 0.67 0.28 0.41 0.16 0.07 0.25 0.13 0.47 0.34 <BG
C13 0.28 0.49 0.16 0.25 0.92 <BG 0.15 0.06 0.04 0.04 0.03 0.17 0.08 0.14 0.04
C14 0.36 0.78 0.13 0.16 0.11 0.11 0.38 0.24 0.18 0.18 0.10 0.20 0.10 0.08 0.09
C15 1.55 2.81 0.47 0.72 0.36 1.71 2.04 0.93 0.27 1.32 0.51 2.68 0.44 0.11 0.09
C16 3.48 7.09 0.74 1.05 1.21 0.64 2.57 1.58 0.40 0.36 0.91 2.24 0.47 0.16 0.17
C17 6.19 11.49 1.27 2.14 1.89 0.92 2.87 2.47 0.48 0.38 1.63 5.01 0.60 0.30 0.36

C18 11.43 18.32 3.50 4.00 3.91 2.36 3.90 5.65 1.10 0.67 3.08 9.38 1.38 0.63 0.93
C19 13.17 16.21 9.97 7.85 7.12 3.22 6.79 10.99 3.15 1.93 5.05 14.33 3.76 0.94 2.65
C20 13.72 16.63 14.04 7.39 10.79 9.42 23.81 15.75 7.08 4.01 7.73 26.46 7.08 1.65 6.23
C21 9.21 10.39 10.52 5.07 10.70 7.72 10.87 15.17 8.72 4.47 5.78 16.87 6.58 2.81 7.67
C22 9.17 11.11 7.72 4.28 9.47 10.83 34.74 12.99 8.97 5.59 4.72 19.69 5.78 4.02 6.88
C23 6.35 8.42 5.48 3.87 7.42 5.94 10.34 9.80 6.98 4.82 3.55 9.75 4.07 4.83 5.34
C24 6.11 9.28 4.40 3.14 5.39 6.32 25.10 7.09 5.69 3.99 3.07 11.05 3.40 4.45 3.73
C25 6.90 10.81 5.44 4.06 5.92 4.19 9.65 9.04 7.24 3.86 3.96 8.78 4.37 5.27 4.52
C26 4.07 8.16 2.94 2.20 2.68 3.33 17.17 4.58 6.37 2.89 2.45 6.93 2.30 3.06 4.03
C27 3.50 5.86 2.31 2.25 2.76 2.24 5.37 4.01 3.32 2.35 3.00 5.21 2.39 2.76 1.74
C28 3.51 5.51 2.90 2.08 1.88 3.94 11.02 4.35 3.65 1.80 2.79 6.74 2.62 2.55 2.39
C29 4.11 5.44 3.50 3.36 4.79 3.98 6.77 3.90 4.61 3.31 6.28 7.38 3.94 3.63 3.06

C30 2.23 3.38 2.74 1.87 1.90 2.28 7.52 2.44 2.86 1.86 2.90 4.70 2.02 1.91 1.88
C31 2.79 3.37 2.53 2.62 4.15 2.63 4.91 2.86 3.64 2.59 4.56 5.47 2.82 2.29 1.70
C32 1.87 2.17 1.86 1.14 1.37 1.47 4.06 1.54 2.34 1.49 2.26 3.64 1.57 1.08 0.79
C33 2.03 2.43 1.74 1.73 2.01 1.99 3.00 1.98 2.51 1.64 2.79 3.40 1.80 1.69 1.42
C34 3.55 4.96 2.75 4.59 3.34 3.45 7.49 5.50 9.13 2.52 4.19 5.71 2.87 5.43 5.33
C35 3.07 3.94 2.26 5.83 3.43 3.78 6.36 4.95 11.08 2.94 3.98 5.10 2.66 6.67 6.08
C36 1.43 1.33 1.10 1.06 0.60 0.97 2.90 1.23 1.60 0.83 1.73 1.72 1.23 0.75 ND  
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 8 MT 9 MT 10 MT 11 MT 12 MT 13 MT 16 MT 17
Start Date 032302 032402 032802 032902 033002 033102 040202 040302 040402 040802 040902 041002 041402 041502
Start Time 1906 1914 1920 2016 1809 1936 1927 1924 1930 1720 1835 1905 1555 1834

Stop Date 032402 032502 032902 033002 033102 040102 040302 040402 040502 040902 041002 041102 041502 041602
Stop Time 1800 1740 1901 1706 1802 1750 1758 1813 325 1808 1823 1826 1802 742

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

C10 0.55 0.08 0.53 ND 0.03 ND 0.10 0.25 0.22 ND ND 0.05 ND 0.33
C11 39.95 10.66 27.33 4.71 0.64 0.47 2.02 12.88 25.10 0.95 <BG 0.22 <BG 2.81
C12 20.52 7.43 13.97 5.12 <BG <BG 0.79 0.63 14.78 0.68 <BG <BG <BG 1.81
C13 1.00 <BG 1.51 <BG <BG <BG 1.39 <BG <BG 1.41 <BG <BG <BG <BG
C14 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C15 0.75 0.66 0.85 0.62 0.36 0.90 0.94 1.27 0.55 1.37 0.47 0.30 0.44 4.01
C16 1.40 1.21 1.74 1.10 0.74 1.79 1.87 2.69 1.31 2.57 1.01 0.61 0.82 10.52
C17 3.56 2.86 2.17 2.23 <BG 4.10 3.86 5.01 2.90 4.74 2.03 <BG <BG 7.39

C18 13.30 6.70 7.56 3.56 2.10 7.24 5.07 8.60 5.42 7.49 2.94 1.54 3.25 14.94
C19 26.94 20.04 17.12 8.06 3.58 11.77 7.49 10.48 5.38 12.44 6.22 4.59 6.98 19.11
C20 22.09 21.93 19.81 15.76 5.18 11.62 14.03 9.67 6.22 21.67 10.08 8.31 21.12 22.97
C21 14.37 16.32 14.87 14.47 <BG 9.40 15.87 6.11 <BG 22.92 11.37 7.91 27.32 27.45
C22 5.50 8.02 11.31 9.75 2.33 5.23 13.06 3.52 2.03 16.31 7.41 4.82 18.08 14.95
C23 1.67 3.05 7.62 4.63 1.46 2.49 13.45 1.54 0.44 14.36 4.90 2.72 16.39 19.13
C24 0.45 0.85 3.64 2.08 0.73 1.01 9.95 0.54 0.31 10.17 2.17 1.22 7.46 8.64
C25 <BG 0.41 1.55 1.34 0.36 0.68 5.40 <BG 0.27 6.43 1.78 1.13 6.40 8.43
C26 <BG <BG 0.43 <BG <BG <BG 1.98 <BG <BG 1.97 0.50 0.97 2.00 3.62
C27 <BG <BG <BG <BG 0.29 <BG 1.18 <BG 0.29 0.83 <BG 1.25 1.07 2.27
C28 <BG <BG <BG <BG <BG <BG 0.88 <BG <BG <BG <BG 1.27 0.33 2.12
C29 <BG <BG <BG <BG <BG <BG 0.87 <BG <BG 0.41 <BG 1.35 <BG 1.54

C30 <BG <BG 0.08 <BG 0.17 0.28 0.69 <BG 0.19 0.26 <BG 1.24 0.22 1.02
C31 <BG <BG 0.10 0.14 0.20 0.32 1.05 <BG 0.17 0.48 <BG 1.37 0.21 0.93
C32 0.05 <BG <BG <BG 0.10 0.10 0.48 <BG 0.09 0.14 ND 0.73 0.05 0.47
C33 <BG <BG <BG 0.03 0.05 0.11 0.36 <BG 0.06 0.18 ND 0.39 ND 0.32
C34 0.03 0.01 0.05 0.03 0.03 0.02 0.19 0.02 0.01 0.30 ND 0.16 ND 0.08
C35 <BG <BG <BG <BG <BG <BG 0.07 <BG <BG <BG ND 0.08 ND ND
C36 0.10 0.07 0.03 <BG <BG 0.06 0.47 ND 0.03 0.03 ND 0.03 ND ND  
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Sample ID MT 18 MT 19 MT 20 MT 21 MT 22 MT 23 MT 24 MT 25 MT 26 MT 27 MT 28 MT 29 MT 30 MT 31 MT 32
Start Date 041602 041602 041702 041702 042202 042302 042302 042402 042402 042502 042502 042602 042702 042802 042902
Start Time 0846 1957 0855 1856 1833 0834 1942 0913 1926 0855 1840 1905 1710 1655 1734

Stop Date 041602 041702 041702 041802 042302 042302 042402 042402 042502 042502 042602 042702 042802 042902 043002
Stop Time 1854 735 1759 1745 808 1839 807 1933 800 1814 1843 1700 1645 1720 1704

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

C10 ND 0.26 0.11 0.04 0.09 ND 0.42 ND 1.47 1.88 0.22 ND 0.22 0.21 0.63
C11 ND 2.93 <BG 25.00 1.45 ND 2.29 ND ND ND 0.25 ND 0.25 0.24 ND
C12 <BG 2.31 <BG 35.81 1.55 <BG 2.11 <BG 1.71 ND <BG ND <BG <BG ND
C13 <BG 2.47 <BG 2.31 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C14 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C15 1.03 5.47 <BG 1.66 2.46 1.40 7.35 1.73 2.46 1.51 0.52 0.59 0.53 0.51 1.34
C16 1.84 9.72 0.85 2.84 6.44 3.31 17.88 3.84 5.41 3.16 0.63 0.72 0.64 0.62 2.91
C17 3.41 10.48 <BG 2.59 8.84 6.96 25.18 11.60 7.37 7.36 <BG <BG <BG <BG 6.51

C18 6.12 24.01 1.87 5.29 7.46 14.10 19.56 21.18 9.37 18.09 0.32 0.36 0.32 0.31 17.24
C19 9.80 32.25 3.29 6.67 6.10 17.61 13.95 20.11 8.95 21.24 0.36 0.41 0.36 0.35 21.86
C20 19.90 35.58 5.24 9.82 4.08 13.75 7.47 12.89 7.36 17.65 0.41 0.47 0.42 0.40 18.27
C21 42.08 41.73 <BG 22.23 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG 12.15
C22 30.99 21.50 8.08 18.35 1.32 3.67 1.50 2.65 2.94 7.22 0.60 0.69 0.61 0.59 5.90
C23 39.79 32.76 9.33 30.07 1.27 1.59 0.68 1.17 2.11 4.53 0.73 0.84 0.74 0.72 3.67
C24 18.85 12.04 3.90 9.37 0.42 0.51 0.22 0.40 0.85 2.39 0.91 1.04 0.93 0.89 1.47
C25 18.79 10.76 3.43 12.97 0.41 <BG <BG <BG 0.78 1.42 1.14 1.30 1.16 1.12 0.71
C26 7.13 3.46 2.08 3.02 <BG <BG <BG <BG <BG <BG 1.48 1.70 1.50 1.45 <BG
C27 4.16 1.63 2.45 2.18 <BG <BG <BG <BG <BG <BG 1.87 2.14 1.90 2.66 <BG
C28 0.93 <BG 2.36 <BG <BG <BG <BG <BG <BG <BG 2.49 2.85 2.52 ND <BG
C29 <BG <BG 2.47 <BG <BG <BG <BG <BG <BG <BG 2.59 2.96 2.63 2.53 <BG

C30 ND 0.30 2.02 0.07 <BG <BG <BG <BG 0.64 0.71 0.99 1.13 1.00 0.97 0.32
C31 0.27 0.64 1.70 <BG <BG ND <BG 0.23 0.88 1.54 1.28 1.47 1.30 1.84 0.68
C32 0.10 0.12 1.06 ND ND ND 0.07 ND 0.44 0.47 1.93 2.20 1.95 ND 0.23
C33 ND 0.23 0.71 ND <BG ND ND ND 0.46 ND 3.84 4.38 3.89 ND ND
C34 ND 0.12 0.20 ND ND ND ND ND ND ND ND ND ND ND ND
C35 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C36 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND  
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Sample ID MT 33 MT 34 MT 35 MT 36 MT 37 MT 38 MT 39 MT 40 MT 41 MT 42 MT 43 MT 45 MT 46 MT 47
Start Date 070902 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072102 072202 072302
Start Time 1705 1845 1915 1835 1923 1921 1903 1850 1905 1853 1935 1819 1832 734

Stop Date 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072002 072202 072302 072402
Stop Time 1745 1805 1720 1820 1811 1757 1754 1801 1804 1850 1828 1740 727 800

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

C10 ND ND 0.07 0.00 ND 0.12 0.11 ND ND 0.30 0.22 0.02 ND 0.04
C11 <BG <BG <BG 0.00 <BG <BG ND <BG ND <BG 0.26 ND <BG <BG
C12 <BG <BG <BG 0.00 <BG ND <BG <BG <BG ND 0.80 <BG ND ND
C13 <BG <BG <BG 0.00 <BG <BG <BG <BG ND ND <BG ND <BG ND
C14 <BG <BG <BG 0.00 <BG <BG <BG <BG ND ND <BG ND ND ND
C15 0.37 0.29 0.63 0.00 0.35 0.31 0.26 0.42 ND 0.54 0.30 0.47 1.84 0.40
C16 0.63 0.71 1.15 0.00 0.50 0.53 0.41 0.87 0.51 0.74 0.40 0.58 3.05 0.69
C17 <BG 1.56 2.26 0.00 <BG <BG <BG 1.75 <BG <BG <BG <BG 5.66 1.39

C18 2.14 1.86 3.22 0.00 1.49 1.20 1.10 2.46 1.76 1.10 1.28 2.06 8.85 1.23
C19 4.07 4.27 8.44 0.00 2.50 2.78 2.72 6.61 2.51 1.93 2.21 2.86 12.89 2.23
C20 6.87 6.99 17.92 0.00 6.31 6.65 4.60 15.56 4.38 4.08 3.99 5.26 20.25 3.79
C21 11.84 8.06 18.25 0.00 9.29 10.67 9.01 26.36 9.93 8.75 <BG 11.43 20.49 8.38
C22 10.45 5.38 15.47 0.00 8.08 10.21 9.79 23.99 11.21 11.50 5.05 15.40 18.61 9.40
C23 12.51 5.71 10.70 0.00 8.74 9.16 14.48 22.72 19.17 17.01 7.21 18.46 26.32 10.01
C24 5.33 2.26 6.92 0.00 5.61 5.84 5.34 12.90 7.42 8.00 2.66 12.45 18.13 5.78
C25 5.02 2.35 3.41 0.00 5.77 5.63 5.68 13.26 9.84 9.07 2.91 14.74 20.09 5.65
C26 1.40 0.43 1.48 0.00 2.73 2.23 1.38 4.13 2.37 3.20 0.84 4.22 7.84 1.55
C27 1.22 0.51 0.53 0.00 2.07 1.51 1.07 2.98 2.40 3.08 0.75 3.35 4.42 1.15
C28 <BG <BG <BG 0.00 1.06 0.44 <BG 0.70 0.57 0.80 <BG 0.85 1.23 <BG
C29 <BG <BG <BG 0.00 0.67 <BG <BG 0.47 0.40 0.86 <BG 0.70 0.68 0.48

C30 0.08 <BG <BG 0.00 0.55 0.10 <BG ND 0.08 0.29 0.07 0.10 0.14 <BG
C31 0.13 0.26 0.20 0.00 0.53 ND ND ND 0.14 0.28 ND <BG 0.18 0.18
C32 ND ND ND 0.00 0.18 ND ND ND ND ND ND 0.06 ND <BG
C33 ND ND ND 0.00 0.14 ND ND ND ND ND ND ND ND ND
C34 ND ND ND 0.00 ND ND ND ND ND ND ND ND ND ND
C35 ND ND ND 0.00 ND ND ND ND ND ND ND ND ND ND
C36 ND ND ND 0.00 ND ND ND ND ND ND ND ND ND ND
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Sample ID MT 49 MT 50 MT 51 MT 52 MT 53 MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63
Start Date 072902 072902 072902 073002 073002 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802
Start Time 620 1206 1854 650 1250 1824 1759 1900 100 700 1900 745 1900 800 1900

Stop Date 072902 072902 073002 073002 073002 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902
Stop Time 1124 1758 605 1245 1814 750 807 100 700 1900 746 1900 754 1900 803

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

C10 ND 0.50 0.27 ND ND 0.08 ND 0.18 0.13 0.07 0.06 0.08 0.10 ND ND
C11 <BG <BG <BG ND <BG <BG <BG ND ND <BG <BG ND ND ND ND
C12 <BG <BG <BG <BG <BG <BG ND ND <BG <BG <BG <BG <BG <BG <BG
C13 <BG <BG <BG <BG <BG <BG ND ND <BG <BG <BG <BG <BG <BG ND
C14 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C15 0.81 0.70 1.88 <BG 0.77 0.94 0.84 1.03 1.34 0.64 0.89 0.60 1.33 0.36 0.73
C16 1.56 1.44 3.75 1.06 1.58 3.30 1.59 2.08 3.49 1.86 2.23 2.49 4.83 1.22 1.68
C17 <BG <BG 5.70 <BG <BG 4.30 3.13 <BG 5.76 3.69 3.99 <BG 6.30 <BG 3.65

C18 5.66 4.30 6.82 2.88 6.18 9.60 9.56 4.51 9.06 6.91 5.60 5.58 20.32 2.96 8.43
C19 9.11 7.37 8.76 5.16 9.29 9.28 10.03 7.67 7.32 13.18 6.49 6.20 10.48 3.78 10.57
C20 19.07 14.67 12.83 9.49 13.89 15.71 24.01 14.11 11.11 20.27 9.11 14.46 37.71 9.84 44.81
C21 <BG <BG 14.20 <BG <BG 11.52 17.20 <BG <BG 13.88 <BG 13.84 <BG <BG 15.06
C22 16.25 12.92 11.89 9.53 9.10 11.76 18.86 11.53 8.73 12.19 6.59 14.30 28.34 9.30 46.11
C23 19.65 13.10 18.19 10.64 9.31 13.33 14.57 11.59 7.51 5.91 3.32 6.45 5.40 4.58 8.68
C24 9.60 7.19 6.67 4.51 4.41 6.21 7.80 5.99 3.73 3.49 1.98 3.94 8.25 2.70 23.98
C25 8.76 7.78 7.52 4.69 4.15 5.34 6.10 5.72 2.67 1.67 0.86 1.35 0.98 1.13 2.82
C26 2.02 3.24 1.56 1.35 <BG 1.71 2.88 2.07 <BG 0.78 <BG 0.71 1.10 <BG 3.56
C27 <BG 2.74 1.59 1.25 <BG 1.39 1.02 1.26 <BG 0.79 <BG <BG <BG <BG 1.02
C28 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG 0.71
C29 <BG <BG <BG <BG <BG <BG <BG <BG <BG 0.91 <BG <BG <BG <BG <BG

C30 ND <BG <BG <BG <BG <BG ND ND <BG <BG <BG ND <BG ND 0.29
C31 ND <BG <BG ND 0.41 <BG ND ND <BG 0.51 <BG ND ND ND 0.20
C32 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C33 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C34 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C35 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C36 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND  
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Sample ID MT 64 MT 65 MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012703 012803 012803 012803 012903 012903 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 1830 1230 820 1800 30 745 1837 30 810 1830 700 1825 735 1745 110

Stop Date 012803 012803 012803 012903 012903 012903 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 802 800 1734 30 630 1831 30 630 1830 1830 1820 735 1740 110 710

Conc ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3 ng/m3

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

C10 0.11 0.35 0.25 0.11 0.33 0.22 0.21 0.15 ND 0.13 0.06 0.08 0.09 0.12 0.05
C11 0.60 1.55 0.88 <BG 0.86 0.51 <BG <BG ND 0.45 <BG 0.38 <BG <BG <BG
C12 1.78 4.41 2.37 <BG 1.57 1.24 <BG <BG <BG 0.74 <BG 0.98 <BG <BG <BG
C13 5.29 12.47 6.14 <BG 4.18 2.80 <BG 3.41 <BG 1.73 <BG 2.67 <BG <BG <BG
C14 10.37 23.45 12.99 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C15 18.57 35.58 28.14 16.27 29.98 16.78 20.49 35.99 15.20 9.95 6.52 19.25 10.11 6.31 12.84
C16 32.20 39.76 52.41 25.44 56.09 36.79 60.34 63.02 36.62 20.21 13.73 41.89 26.78 13.02 26.78
C17 27.32 22.37 56.22 23.76 57.81 55.45 37.68 64.84 56.56 30.59 18.82 41.63 35.25 19.22 31.86

C18 8.52 4.87 32.34 10.94 33.24 50.76 48.08 40.32 36.67 18.70 9.51 36.46 20.01 15.05 20.80
C19 1.50 0.83 11.75 3.32 20.00 32.92 16.58 22.10 23.58 13.09 4.97 13.81 11.61 10.71 13.60
C20 <BG <BG 2.13 <BG 8.87 17.59 22.39 10.22 12.71 6.76 1.67 6.60 4.15 7.64 7.63
C21 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C22 0.32 0.74 1.84 2.62 3.53 1.93 1.91 3.82 1.54 1.20 0.56 0.99 2.28 3.41 1.42
C23 <BG <BG 0.97 1.49 1.90 <BG <BG 1.87 <BG <BG <BG <BG 1.29 1.71 <BG
C24 0.19 0.34 0.43 0.82 0.90 0.24 0.40 0.83 0.28 0.20 0.29 0.33 0.68 0.97 0.40
C25 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG 0.51 <BG <BG
C26 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C27 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C28 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
C29 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG

C30 <BG <BG ND <BG ND <BG <BG ND <BG <BG <BG <BG <BG <BG <BG
C31 <BG <BG ND <BG <BG <BG ND ND <BG ND <BG <BG <BG ND <BG
C32 <BG 0.10 ND ND ND ND ND ND <BG ND <BG ND ND ND <BG
C33 ND 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND
C34 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C35 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
C36 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND  
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 8 MT 9 MT 10 MT 11 MT 12 MT 13 MT 16 MT 17
Start Date 032302 032402 032802 032902 033002 033102 040202 040302 040402 040802 040902 041002 041402 041502
Start Time 1906 1914 1920 2016 1809 1936 1927 1924 1930 1720 1835 1905 1555 1834

Stop Date 032402 032502 032902 033002 033102 040102 040302 040402 040502 040902 041002 041102 041502 041602
Stop Time 1800 1740 1901 1706 1802 1750 1758 1813 325 1808 1823 1826 1802 742

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Tm 763 559 642 552 276 389 433 373 511 703 522 574 242 824
a,b - norhopane 2576 2063 2404 1909 1116 1462 1955 1326 1745 2831 1865 2368 1599 3483

a,a + b, a-norhopane 445 409 370 421 220 256 420 261 309 523 404 369 236 690
a-hopane 2503 1913 2422 2083 1085 1479 1991 1271 1682 2670 2092 1996 1331 3386
moretane 267 173 242 254 131 166 196 121 152 324 212 218 126 380

a,b-S-Homohopane 1314 1041 1316 970 604 777 1161 717 916 1532 1004 1219 843 1982
a,b-R-Homohopane 1037 857 988 787 479 587 892 564 726 1194 782 962 663 1589  
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Sample ID MT 18 MT 19 MT 20 MT 21 MT 22 MT 23 MT 25 MT 26 MT 27 MT 28 MT 29 MT 30 MT 32
Start Date 041602 041602 041702 041702 042202 042302 042402 042402 042502 042502 042602 042702 042902
Start Time 0846 1957 0855 1856 1833 0834 0913 1926 0855 1840 1905 1710 1734

Stop Date 041602 041702 041702 041802 042302 042302 042402 042502 042502 042602 042702 042802 043002
Stop Time 1854 735 1759 1745 808 1839 1933 800 1814 1843 1700 1645 1704

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Tm 620 968 919 843 338 462 501 191 763 443 366 506 293
a,b - norhopane 2281 3691 3661 2951 1234 1629 1549 813 2564 1881 1525 1909 1141

a,a + b, a-norhopane 420 708 766 672 222 273 222 141 646 234 254 390 232
a-hopane 2763 3921 4252 3445 1239 1701 1546 719 3291 1674 1448 2144 1122
moretane 396 470 515 450 145 196 164 99 459 196 164 265 120

a,b-S-Homohopane 1533 2095 2425 1660 633 871 866 429 1299 983 854 1017 600
a,b-R-Homohopane 1259 1737 1902 1261 537 727 571 328 1008 751 690 800 486  
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MT 33 MT 34 MT 35 MT 36 MT 37 MT 38 MT 39 MT 40 MT 41 MT 42 MT 43 MT 45 MT 46
Start Date 070902 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072102 072202
Start Time 1705 1845 1915 1835 1923 1921 1903 1850 1905 1853 1935 1819 1832

Stop Date 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072002 072202 072302
Stop Time 1745 1805 1720 1820 1811 1757 1754 1801 1804 1850 1828 1740 727

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Tm 585 221 279 189 333 368 441 252 263 333 97 163 746
a,b - norhopane 2096 909 1176 670 1007 1263 1418 1091 885 1125 383 707 2581

a,a + b, a-norhopane 474 194 234 168 283 298 337 278 252 251 171 638
a-hopane 2525 980 1350 942 1377 1570 1786 1232 1032 1350 413 892 3268
moretane 330 129 118 138 208 199 217 167 144 193 92 459

a,b-S-Homohopane 1191 549 789 471 572 758 785 815 519 612 258 605 1375
a,b-R-Homohopane 932 443 682 386 477 599 606 641 413 495 191 494 1081  
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MT 47 MT 49 MT 51 MT 52 MT 53 MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63
Start Date 072302 072902 072902 073002 073002 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802
Start Time 734 620 1854 650 1250 1824 1759 1900 100 700 1900 745 1900 800 1900

Stop Date 072402 072902 073002 073002 073002 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902
Stop Time 800 1124 605 1245 1814 750 807 100 700 1900 746 1900 754 1900 803

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Tm 351 657 291 481 521 271 286 310 927 718 449 329 323 446 445
a,b - norhopane 1200 1935 994 1561 1739 954 1203 1161 2848 2365 1605 1136 1330 1370 1729

a,a + b, a-norhopane 274 572 320 564 486 255 273 360 694 449 391 203 340 349 311
a-hopane 1487 2469 1213 1857 2077 1103 1415 1355 3626 2694 1850 1219 1433 1639 1877
moretane 181 329 162 267 305 136 197 170 444 377 258 149 195 183 223

a,b-S-Homohopane 716 1134 545 980 966 517 806 643 1361 1443 868 747 812 824 1043
a,b-R-Homohopane 565 893 453 728 914 477 645 467 1202 1141 676 672 669 650 827  
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MT 64 MT 65 MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012703 012803 012803 012803 012903 012903 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 1830 1230 820 1800 30 745 1837 30 810 1830 700 1825 735 1745 110

Stop Date 012803 012803 012803 012903 012903 012903 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 802 800 1734 30 630 1831 30 630 1830 1830 1820 735 1740 110 710

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Tm 532 702 430 676 508 601 907 826 1207 355 623 791 406 928 976
a,b - norhopane 1913 2636 1749 2110 2006 2282 3299 2932 4153 1403 2147 3176 1697 3042 3229

a,a + b, a-norhopane 287 458 251 656 259 444 857 746 891 178 383 448 266 726 759
a-hopane 1611 2229 1419 2365 1770 2165 3635 2695 4676 1200 2011 2606 1408 3700 3500
moretane 118 177 126 303 200 264 429 344 600 122 235 244 154 531 492

a,b-S-Homohopane 1006 1355 922 1126 1171 1128 1526 1338 2043 791 1224 1612 932 1424 1557
a,b-R-Homohopane 808 1140 888 858 812 882 1379 1133 1637 611 998 1267 725 1122 1190
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 8 MT 9 MT 10
Start Date 032302 032402 032802 032902 033002 033102 040202 040302 040402
Start Time 1906 1914 1920 2016 1809 1936 1927 1924 1930

Stop Date 032402 032502 032902 033002 033102 040102 040302 040402 040502
Stop Time 1800 1740 1901 1706 1802 1750 1758 1813 325

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 40.5% 48.2% 44.1% 30.9% 39.1% 45.6% 35.1% 39.9% 40.8%
d10-Fluorene 127.9% 144.0% 147.3% 116.5% 133.4% 120.1% 138.0% 125.9% 126.8%
d10-Fluoranthene 71.9% 77.4% 86.6% 70.7% 82.9% 81.9% 90.2% 79.9% 83.1%
d12-Perylene 82.9% 88.5% 93.6% 81.5% 83.7% 94.4% 92.1% 93.7% 96.0%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 7.8E+01 3.7E+01 6.3E+01 2.1E+01 2.8E+01 2.7E+01 3.3E+01 1.7E+01 3.3E+01
2-Methylnaphthalene 1.1E+02 5.1E+01 8.9E+01 2.6E+01 3.4E+01 2.6E+01 4.3E+01 2.3E+01 3.8E+01
Azulene 3.8E+00 ND ND ND 1.4E+00 4.8E+00 3.2E+00 3.3E+00 5.0E+00
1-Methylnaphthalene 5.7E+01 2.2E+01 3.9E+01 1.0E+01 1.3E+01 1.1E+01 1.8E+01 1.1E+01 1.9E+01
Biphenyl 1.3E+01 1.3E+01 1.3E+01 7.2E+00 7.2E+00 7.6E+00 1.3E+01 6.3E+00 1.2E+01
2,7-Dimethylnaphthalene 1.2E+02 2.6E+01 4.3E+01 1.8E+01 1.5E+01 2.0E+01 2.8E+01 3.5E+01 6.9E+01
1,3-Dimethylnaphthalene 1.0E+02 4.6E+01 5.1E+01 2.2E+01 2.0E+01 2.1E+01 3.5E+01 4.3E+01 7.1E+01
1,6-Dimethylnaphthalene 5.7E+01 2.3E+01 4.6E+01 1.4E+01 1.6E+01 9.1E+00 2.7E+01 1.3E+01 2.0E+01
1,4-Dimethylnaphthalene 2.0E+01 8.0E+00 1.3E+01 4.3E+00 5.3E+00 4.2E+00 7.4E+00 3.5E+00 5.2E+00
1,5-Dimethylnaphthalene 5.5E+01 3.2E+01 4.7E+01 3.1E+01 2.6E+01 1.9E+01 7.7E+01 2.6E+01 4.2E+01
Acenapthylene 9.2E+00 2.1E+01 1.6E+01 9.3E+00 6.4E+00 7.7E+00 1.5E+01 8.5E+00 1.5E+01
1,2-Dimethylnapthalene 8.1E+01 3.1E+01 2.8E+01 1.9E+01 1.7E+01 1.4E+01 2.2E+01 2.1E+01 5.2E+01
1,8-Dimethylnapthalene 3.6E+01 2.7E+01 <BG <BG <BG <BG <BG ND ND
Acenapthene 5.4E+00 ND 1.2E+01 9.4E+00 7.2E+00 8.7E+00 6.7E+00 1.1E+01 1.2E+01

2,3,5-Trimethylnapthalene 3.1E+01 7.0E+01 2.2E+01 ND 1.8E+01 ND ND ND 4.3E+01
Fluorene 2.3E+01 2.8E+01 3.0E+01 1.3E+01 1.3E+01 1.4E+01 2.2E+01 1.4E+01 2.1E+01
1-Methylfuorene 5.0E+01 4.2E+01 2.3E+01 ND ND ND ND 1.4E+01 2.0E+01
Dibenzothiophene 2.6E+01 3.0E+01 2.4E+01 1.4E+01 1.5E+01 2.5E+01 2.1E+01 3.4E+01 4.7E+01
Phenanthrene 2.2E+02 3.0E+02 2.5E+02 1.4E+02 1.1E+02 1.7E+02 2.4E+02 2.0E+02 2.9E+02
Anthracene 2.7E+01 4.7E+01 3.9E+01 1.8E+01 1.0E+01 2.2E+01 3.4E+01 2.8E+01 4.1E+01
2-Methyldibenzothiophene 5.5E+01 2.2E+01 1.4E+01 1.7E+01 1.1E+01 2.2E+01 1.8E+01 2.8E+01 3.7E+01
4-Methyldibenzothiophene 1.9E+01 2.4E+01 1.7E+01 1.2E+01 9.4E+00 1.8E+01 2.2E+01 2.9E+01 3.9E+01
2-Methylphenanthrene 9.0E+01 9.1E+01 8.3E+01 4.7E+01 4.1E+01 6.5E+01 9.5E+01 9.1E+01 1.2E+02
2-Methylanthracene 2.1E+01 2.5E+01 2.3E+01 1.3E+01 1.5E+01 8.5E+00 2.7E+01 1.0E+01 1.6E+01
4,5-Methylenephenanthrene 1.6E+01 3.0E+01 2.0E+01 9.5E+00 8.5E+00 1.4E+01 2.3E+01 2.3E+01 2.9E+01
1-Methylanthracene 3.0E+01 2.8E+01 2.7E+01 1.2E+01 9.7E+00 1.6E+01 3.1E+01 2.2E+01 3.3E+01
1-Methylphenanthrene 1.5E+01 2.2E+01 1.4E+01 9.7E+00 8.6E+00 1.3E+01 1.7E+01 1.5E+01 2.2E+01
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 2.0E+01 2.2E+01 1.9E+01 9.7E+00 9.9E+00 1.7E+01 2.4E+01 2.6E+01 3.6E+01
Fluoranthene 2.5E+02 4.8E+02 3.2E+02 1.8E+02 1.9E+02 2.7E+02 4.6E+02 3.4E+02 5.5E+02
3,6-Dimethylphenanthrene 1.7E+02 1.6E+02 ND 4.4E+01 4.1E+01 8.3E+01 1.2E+02 1.4E+02 2.4E+02
Pyrene 2.6E+02 4.2E+02 3.0E+02 1.8E+02 1.5E+02 2.5E+02 4.3E+02 3.5E+02 5.4E+02
3,6-Dimethylphenanthrene 1.7E+02 1.6E+02 ND 4.4E+01 4.1E+01 8.3E+01 1.2E+02 1.4E+02 2.4E+02
Benzo[a]fluorene 4.7E+01 6.4E+01 4.5E+01 2.3E+01 2.6E+01 3.7E+01 7.6E+01 5.1E+01 8.6E+01
Retene 5.1E+01 5.1E+01 3.8E+01 1.9E+01 2.4E+01 2.2E+01 4.6E+01 3.5E+01 6.3E+01
Benzo[b]fluorene 3.4E+01 5.6E+01 3.5E+01 1.9E+01 2.4E+01 3.0E+01 7.6E+01 3.9E+01 6.8E+01
Cyclopenta[c,d]pyrene 1.8E+02 ND 1.1E+02 8.4E+01 6.3E+01 ND ND ND ND
Benz[a]anthracene 1.4E+02 2.3E+02 1.3E+02 7.0E+01 6.0E+01 9.3E+01 3.2E+02 1.3E+02 2.3E+02
Chrysene+Triphenylene 2.6E+02 3.6E+02 2.6E+02 1.7E+02 1.4E+02 1.9E+02 4.3E+02 2.4E+02 3.6E+02
Napthacene 1.9E+01 4.0E+01 3.0E+01 1.6E+01 8.1E+00 1.5E+01 2.5E+01 2.0E+01 4.0E+01
4-Methylchrysene 3.1E+01 4.4E+01 3.7E+01 1.9E+01 1.1E+01 1.7E+01 5.0E+01 2.6E+01 3.5E+01

Benzo[b]fluoranthene 3.9E+02 5.8E+02 3.8E+02 2.5E+02 2.3E+02 2.5E+02 9.4E+02 3.2E+02 4.5E+02
Benzo[k]fluoranthene 2.0E+02 3.0E+02 2.0E+02 1.3E+02 1.2E+02 1.2E+02 5.6E+02 1.7E+02 2.5E+02
Dimethylbenz[a]anthracene 1.5E+01 2.6E+01 2.2E+01 1.3E+01 7.6E+00 9.5E+00 2.6E+01 1.4E+01 1.9E+01
Benzo[e]pyrene 2.0E+02 3.0E+02 2.0E+02 1.4E+02 1.1E+02 1.3E+02 4.4E+02 1.6E+02 2.4E+02
Benzo[a]pyrene 1.7E+02 2.8E+02 1.5E+02 1.0E+02 6.6E+01 1.1E+02 3.4E+02 1.6E+02 2.5E+02
Perylene 3.3E+01 4.4E+01 3.7E+01 2.1E+01 1.3E+01 2.4E+01 6.6E+01 2.7E+01 5.0E+01
3-Methylchloanthrene 4.4E+00 7.1E+00 6.9E+00 4.4E+00 <BG 4.8E+00 8.3E+00 6.4E+00 8.7E+00

Indeno[1,2,3-c,d]pyrene 2.3E+02 3.4E+02 2.1E+02 1.4E+02 1.3E+02 1.5E+02 5.8E+02 1.8E+02 2.8E+02
Dibenz[a,h+ac]anthracene 1.1E+01 2.1E+01 1.5E+01 9.8E+00 9.4E+00 9.4E+00 4.2E+01 1.3E+01 2.0E+01
Benzo[g,h,i]perylene 2.3E+02 2.7E+02 1.7E+02 1.3E+02 1.0E+02 1.2E+02 3.3E+02 1.4E+02 2.1E+02
Anthanthrene 1.4E+01 2.5E+01 8.4E+00 9.8E+00 5.0E+00 8.6E+00 1.8E+01 1.3E+01 1.5E+01
Coronene 1.3E+02 1.1E+02 6.9E+01 6.7E+01 4.8E+01 5.1E+01 1.1E+02 6.1E+01 9.5E+01  
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Sample ID MT 11 MT 12 MT 13 MT 16 MT 17 MT 18 MT 19 MT 20 MT 20 Back
Start Date 040802 040902 041002 041402 041502 041602 041602 041702 041702
Start Time 1720 1835 1905 1555 1834 0846 1957 0855 0855

Stop Date 040902 041002 041102 041502 041602 041602 041702 041702 041702
Stop Time 1808 1823 1826 1802 742 1854 735 1759 1759

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 32.6% 37.0% 4.7% 44.2% 34.5% 37.3% 42.1% 40.7% 53.5%
d10-Fluorene 112.8% 129.1% 137.7% 129.9% 144.7% 201.9% 164.8% 187.8% 138.4%
d10-Fluoranthene 74.5% 88.7% 88.5% 84.4% 81.0% 96.1% 83.4% 87.7% 93.5%
d12-Perylene 80.9% 92.1% 90.7% 91.3% 83.6% 84.8% 87.4% 84.0% 92.0%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 5.0E+01 2.1E+01 <BG 2.5E+01 5.8E+01 1.0E+02 7.6E+01 2.3E+02 <BG
2-Methylnaphthalene 7.0E+01 2.5E+01 <BG 2.9E+01 8.8E+01 1.3E+02 1.0E+02 3.1E+02 <BG
Azulene 1.7E+00 4.1E+00 5.6E-01 1.9E+00 ND ND ND 8.6E+00 4.2E+00
1-Methylnaphthalene 3.0E+01 9.7E+00 3.2E+00 1.2E+01 3.0E+01 5.2E+01 3.3E+01 1.4E+02 5.1E+01
Biphenyl 1.4E+01 8.8E+00 2.7E+00 7.7E+00 2.6E+01 4.5E+01 2.7E+01 7.9E+01 1.7E+01
2,7-Dimethylnaphthalene 4.2E+01 1.7E+01 7.4E+00 1.7E+01 5.2E+01 1.1E+02 8.4E+01 2.0E+02 8.3E+01
1,3-Dimethylnaphthalene 3.4E+01 2.5E+01 4.8E+00 1.5E+01 4.7E+01 6.6E+01 4.9E+01 1.5E+02 3.5E+01
1,6-Dimethylnaphthalene 3.6E+01 1.2E+01 6.6E+00 2.3E+01 4.8E+01 5.0E+01 6.8E+01 1.3E+02 2.4E+01
1,4-Dimethylnaphthalene 1.2E+01 3.3E+00 7.2E+00 4.4E+00 1.3E+01 2.3E+01 1.4E+01 4.4E+01 3.5E+00
1,5-Dimethylnaphthalene 2.3E+01 2.9E+01 1.7E+01 4.4E+01 4.2E+01 1.0E+02 3.8E+01 3.8E+02 1.5E+02
Acenapthylene 2.4E+01 8.3E+00 4.3E+00 1.2E+01 2.8E+01 4.1E+01 4.9E+01 6.7E+01 3.4E+01
1,2-Dimethylnapthalene 1.2E+01 1.7E+01 4.0E+00 8.6E+00 2.4E+01 1.9E+01 2.4E+01 5.7E+01 3.4E+01
1,8-Dimethylnapthalene <BG <BG <BG <BG <BG <BG <BG ND <BG
Acenapthene 2.3E+01 3.9E+00 1.6E+00 8.3E+00 1.5E+01 1.8E+01 1.8E+01 6.0E+01 1.2E+01

2,3,5-Trimethylnapthalene 4.4E+01 ND ND ND 5.5E+01 ND 5.5E+01 1.2E+02 3.2E+01
Fluorene 4.5E+01 1.4E+01 2.5E+01 1.3E+01 5.5E+01 5.0E+01 6.1E+01 1.1E+02 3.9E+01
1-Methylfuorene 2.0E+01 2.6E+01 ND 9.8E+00 ND 3.4E+01 3.8E+01 5.8E+01 ND
Dibenzothiophene 3.6E+01 1.7E+01 2.5E+01 1.5E+01 4.3E+01 4.8E+01 4.5E+01 8.4E+01 1.5E+01
Phenanthrene 4.8E+02 1.4E+02 2.3E+02 1.4E+02 5.2E+02 4.9E+02 4.8E+02 9.5E+02 2.7E+01
Anthracene 7.0E+01 1.8E+01 3.4E+01 1.6E+01 4.5E+01 5.7E+01 5.5E+01 1.5E+02 3.1E+00
2-Methyldibenzothiophene 2.6E+01 1.3E+01 1.7E+01 1.2E+01 3.6E+01 3.3E+01 4.4E+01 6.2E+01 2.1E+01
4-Methyldibenzothiophene 2.4E+01 1.8E+01 3.8E+01 1.2E+01 5.1E+01 4.5E+01 3.9E+01 7.5E+01 3.7E+01
2-Methylphenanthrene 1.2E+02 6.2E+01 8.8E+01 4.9E+01 2.3E+02 1.5E+02 2.1E+02 2.8E+02 1.3E+01
2-Methylanthracene 2.9E+01 1.3E+01 2.9E+01 1.6E+01 6.8E+01 9.8E+01 7.3E+01 1.4E+02 2.6E+00
4,5-Methylenephenanthrene 4.2E+01 1.2E+01 1.3E+01 8.2E+00 3.7E+01 2.7E+01 3.2E+01 5.8E+01 9.8E-01
1-Methylanthracene 3.8E+01 1.8E+01 2.6E+01 1.3E+01 5.8E+01 3.6E+01 5.2E+01 6.7E+01 4.3E+00
1-Methylphenanthrene 2.2E+01 1.0E+01 1.5E+01 8.3E+00 3.7E+01 2.9E+01 3.9E+01 5.7E+01 2.2E+00
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 2.7E+01 1.9E+01 1.8E+01 1.3E+01 8.2E+01 3.7E+01 6.9E+01 5.9E+01 5.8E+00
Fluoranthene 8.3E+02 2.3E+02 3.2E+02 1.8E+02 8.3E+02 8.7E+02 6.4E+02 1.4E+03 3.2E+01
3,6-Dimethylphenanthrene 5.8E+01 7.7E+00 1.1E+02 4.1E+01 2.4E+02 8.3E+01 2.0E+02 1.3E+02 5.2E+01
Pyrene 7.2E+02 2.5E+02 3.7E+02 1.6E+02 6.6E+02 5.8E+02 6.2E+02 1.1E+03 2.5E+01
3,6-Dimethylphenanthrene 5.8E+01 7.7E+00 1.1E+02 4.1E+01 2.4E+02 8.3E+01 2.0E+02 1.3E+02 5.2E+01
Benzo[a]fluorene 7.3E+01 3.3E+01 4.8E+01 2.1E+01 7.9E+01 6.4E+01 7.6E+01 1.2E+02 4.3E+00
Retene 4.2E+01 3.1E+01 2.4E+01 1.4E+01 ND 4.3E+01 7.4E+01 9.1E+01 3.1E+01
Benzo[b]fluorene 7.1E+01 2.5E+01 3.8E+01 1.7E+01 7.9E+01 4.8E+01 6.8E+01 8.9E+01 1.9E+00
Cyclopenta[c,d]pyrene ND ND ND ND ND ND 7.8E+02 3.0E+02 1.0E+01
Benz[a]anthracene 3.2E+02 9.3E+01 1.6E+02 7.0E+01 2.6E+02 1.9E+02 2.8E+02 3.8E+02 <BG
Chrysene+Triphenylene 4.2E+02 2.0E+02 2.7E+02 1.3E+02 3.8E+02 3.5E+02 4.0E+02 6.5E+02 1.3E+01
Napthacene 6.5E+01 2.1E+01 3.6E+01 1.5E+01 3.7E+01 4.2E+01 4.3E+01 8.1E+01 4.0E+00
4-Methylchrysene 5.2E+01 2.7E+01 3.2E+01 1.8E+01 5.0E+01 4.3E+01 4.6E+01 6.5E+01 <BG

Benzo[b]fluoranthene 6.5E+02 2.4E+02 4.8E+02 2.2E+02 5.2E+02 6.3E+02 5.3E+02 9.3E+02 2.5E+01
Benzo[k]fluoranthene 3.6E+02 1.1E+02 2.3E+02 1.1E+02 2.5E+02 3.2E+02 3.1E+02 4.3E+02 1.5E+01
Dimethylbenz[a]anthracene 2.9E+01 1.3E+01 1.9E+01 1.1E+01 2.2E+01 2.5E+01 4.5E+01 3.3E+01 <BG
Benzo[e]pyrene 3.2E+02 1.2E+02 2.7E+02 1.2E+02 2.9E+02 3.7E+02 3.0E+02 4.4E+02 1.8E+01
Benzo[a]pyrene 3.8E+02 1.2E+02 2.4E+02 1.1E+02 3.3E+02 3.0E+02 4.5E+02 4.2E+02 2.1E+01
Perylene 8.2E+01 2.7E+01 4.5E+01 2.3E+01 6.1E+01 5.2E+01 7.1E+01 8.8E+01 <BG
3-Methylchloanthrene 1.3E+01 7.2E+00 8.1E+00 3.4E+00 6.9E+00 9.9E+00 9.6E+00 1.5E+01 <BG

Indeno[1,2,3-c,d]pyrene 3.5E+02 1.4E+02 3.3E+02 1.2E+02 3.1E+02 3.8E+02 4.0E+02 4.3E+02 3.3E+01
Dibenz[a,h+ac]anthracene 3.3E+01 9.4E+00 1.6E+01 8.8E+00 2.2E+01 2.8E+01 1.9E+01 3.3E+01 <BG
Benzo[g,h,i]perylene 2.3E+02 1.2E+02 4.8E+02 1.1E+02 3.6E+02 4.5E+02 4.0E+02 3.8E+02 3.7E+01
Anthanthrene 2.2E+01 1.1E+01 2.2E+01 9.9E+00 2.8E+01 1.6E+01 6.4E+01 2.1E+01 <BG
Coronene 8.8E+01 5.9E+01 2.5E+02 5.6E+01 1.9E+02 2.6E+02 2.6E+02 2.1E+02 ND  
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Sample ID MT 21 MT 22 MT 23 MT 25 MT 26 MT 27 MT 29 MT 30 MT 32
Start Date 041702 042202 042302 042402 042402 042502 042602 042702 042902
Start Time 1856 1833 0834 0913 1926 0855 1905 1710 1734

Stop Date 041802 042302 042302 042402 042502 042502 042702 042802 043002
Stop Time 1745 808 1839 1933 800 1814 1700 1645 1704

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 44.8% 43.4% 48.2% 47.9% 33.0% 48.8% 25.0% 36.6% 35.9%
d10-Fluorene 158.9% 130.6% 108.0% 141.1% 111.1% 120.5% 120.6% 123.9% 121.5%
d10-Fluoranthene 98.8% 92.5% 79.7% 100.1% 92.1% 78.3% 88.9% 91.8% 93.2%
d12-Perylene 90.6% 92.6% 97.2% 103.0% 99.6% 86.1% 90.8% 87.6% 88.9%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 6.6E+01 1.6E+01 6.1E+01 5.1E+01 2.0E+01 2.7E+01 3.0E+01 4.6E+01 <BG
2-Methylnaphthalene 8.5E+01 2.0E+01 5.1E+01 4.7E+01 1.8E+01 2.4E+01 3.2E+01 4.1E+01 1.5E+01
Azulene 3.0E+00 2.2E+00 ND 1.6E+01 ND ND 3.2E+00 4.8E+00 8.9E-01
1-Methylnaphthalene 3.6E+01 8.9E+00 2.2E+01 2.2E+01 7.9E+00 7.5E+00 1.4E+01 1.6E+01 3.6E+00
Biphenyl 2.0E+01 6.4E+00 1.3E+01 2.3E+01 6.6E+00 7.5E+00 1.2E+01 1.2E+01 3.6E+00
2,7-Dimethylnaphthalene 4.6E+01 2.6E+01 3.4E+01 4.9E+01 1.6E+01 1.7E+01 6.0E+01 4.6E+01 7.7E+00
1,3-Dimethylnaphthalene 3.8E+01 3.4E+01 3.4E+01 5.3E+01 1.2E+01 1.2E+01 4.1E+01 3.2E+01 5.5E+00
1,6-Dimethylnaphthalene 5.3E+01 8.5E+00 1.9E+01 2.1E+01 9.6E+00 8.7E+00 1.5E+01 2.1E+01 1.1E+01
1,4-Dimethylnaphthalene 1.4E+01 3.5E+00 7.7E+00 1.2E+01 2.7E+00 2.8E+00 5.2E+00 5.0E+00 1.4E+00
1,5-Dimethylnaphthalene 5.9E+00 2.0E+01 1.7E+01 1.3E+02 1.6E+01 6.4E+00 4.7E+01 4.4E+01 1.1E+01
Acenapthylene 2.6E+01 7.0E+00 1.7E+01 1.4E+01 5.0E+00 7.3E+00 2.0E+01 2.2E+01 3.5E+00
1,2-Dimethylnapthalene 1.4E+01 2.8E+01 5.4E+00 3.2E+01 1.1E+01 4.6E+00 4.3E+01 3.9E+01 3.1E+00
1,8-Dimethylnapthalene <BG <BG ND ND ND ND ND ND <BG
Acenapthene 2.9E+01 6.2E+00 2.6E+01 2.2E+01 5.2E+00 5.4E+00 8.5E+00 4.4E+00 4.9E+00

2,3,5-Trimethylnapthalene 3.3E+01 1.5E+01 2.5E+01 2.9E+01 1.3E+01 9.9E+00 5.0E+01 4.2E+01 7.9E+00
Fluorene 4.9E+01 1.4E+01 3.7E+01 2.8E+01 8.9E+00 1.2E+01 2.3E+01 1.7E+01 5.9E+00
1-Methylfuorene 2.4E+01 1.1E+01 1.4E+01 1.6E+01 8.1E+00 9.8E+00 1.7E+01 6.4E+01 7.7E+00
Dibenzothiophene 3.6E+01 3.2E+01 4.3E+01 4.6E+01 1.1E+01 1.3E+01 2.6E+01 2.0E+01 6.1E+00
Phenanthrene 3.9E+02 1.4E+02 3.1E+02 2.6E+02 9.6E+01 1.2E+02 2.8E+02 1.7E+02 5.5E+01
Anthracene 4.6E+01 1.6E+01 5.0E+01 4.7E+01 9.7E+00 1.4E+01 3.3E+01 2.3E+01 6.2E+00
2-Methyldibenzothiophene 2.9E+01 2.6E+01 4.2E+01 3.2E+01 1.1E+01 1.7E+01 1.9E+01 1.7E+01 7.4E+00
4-Methyldibenzothiophene 3.6E+01 2.1E+01 4.2E+01 5.1E+01 1.1E+01 1.5E+01 1.7E+01 1.6E+01 1.0E+01
2-Methylphenanthrene 1.1E+02 7.3E+01 1.2E+02 9.2E+01 3.3E+01 5.3E+01 1.0E+02 5.6E+01 2.5E+01
2-Methylanthracene 4.9E+01 6.9E+00 1.6E+01 1.4E+01 5.3E+00 6.5E+00 2.0E+01 2.0E+01 7.7E+00
4,5-Methylenephenanthrene 3.1E+01 1.6E+01 2.9E+01 2.1E+01 6.4E+00 1.1E+01 2.0E+01 1.1E+01 5.0E+00
1-Methylanthracene 2.9E+01 2.3E+01 3.8E+01 2.4E+01 1.1E+01 1.4E+01 2.7E+01 1.5E+01 6.6E+00
1-Methylphenanthrene 2.0E+01 1.4E+01 2.1E+01 1.6E+01 6.4E+00 9.3E+00 1.9E+01 9.6E+00 4.2E+00
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 3.0E+01 2.8E+01 3.6E+01 2.1E+01 1.1E+01 1.6E+01 2.9E+01 1.6E+01 8.6E+00
Fluoranthene 6.7E+02 2.9E+02 5.1E+02 4.2E+02 1.4E+02 2.1E+02 4.5E+02 2.5E+02 8.9E+01
3,6-Dimethylphenanthrene 5.0E+01 9.2E+01 1.1E+02 6.2E+01 4.8E+01 4.4E+01 1.5E+02 8.6E+01 6.7E+00
Pyrene 5.7E+02 3.2E+02 5.1E+02 3.5E+02 1.2E+02 2.3E+02 4.1E+02 2.3E+02 8.3E+01
3,6-Dimethylphenanthrene 5.0E+01 9.2E+01 1.1E+02 6.2E+01 4.8E+01 4.4E+01 1.5E+02 8.6E+01 6.7E+00
Benzo[a]fluorene 6.0E+01 5.6E+01 7.6E+01 4.6E+01 2.0E+01 3.1E+01 5.0E+01 2.7E+01 8.7E+00
Retene 3.4E+01 3.1E+01 3.8E+01 6.8E+01 1.5E+01 3.9E+01 3.6E+01 2.2E+01 2.1E+01
Benzo[b]fluorene 5.1E+01 5.1E+01 6.1E+01 4.4E+01 1.4E+01 2.2E+01 4.4E+01 2.6E+01 8.0E+00
Cyclopenta[c,d]pyrene 1.3E+02 8.8E+01 1.5E+02 1.1E+02 3.3E+01 6.6E+01 1.5E+02 1.1E+02 3.3E+01
Benz[a]anthracene 1.8E+02 1.0E+02 2.0E+02 1.4E+02 4.6E+01 8.2E+01 1.8E+02 1.0E+02 2.8E+01
Chrysene+Triphenylene 3.1E+02 1.6E+02 3.2E+02 2.4E+02 1.0E+02 1.3E+02 3.1E+02 1.7E+02 5.9E+01
Napthacene 4.3E+01 1.9E+01 4.0E+01 2.3E+01 9.7E+00 1.3E+01 3.5E+01 1.8E+01 4.7E+00
4-Methylchrysene 3.4E+01 1.7E+01 4.0E+01 2.2E+01 1.0E+01 1.3E+01 3.3E+01 1.9E+01 6.5E+00

Benzo[b]fluoranthene 4.1E+02 2.2E+02 3.3E+02 3.4E+02 2.6E+02 1.6E+02 4.3E+02 3.0E+02 1.3E+02
Benzo[k]fluoranthene 2.4E+02 1.3E+02 1.8E+02 1.7E+02 1.0E+02 9.2E+01 2.4E+02 1.7E+02 5.6E+01
Dimethylbenz[a]anthracene 2.0E+01 1.4E+01 1.7E+01 1.4E+01 9.7E+00 6.0E+00 1.7E+01 1.7E+01 5.4E+00
Benzo[e]pyrene 2.3E+02 1.1E+02 1.8E+02 1.8E+02 1.3E+02 8.6E+01 2.3E+02 1.6E+02 6.3E+01
Benzo[a]pyrene 2.4E+02 1.4E+02 2.3E+02 1.8E+02 7.3E+01 9.5E+01 2.6E+02 1.5E+02 4.5E+01
Perylene 5.1E+01 1.8E+01 4.3E+01 3.0E+01 1.3E+01 2.2E+01 4.0E+01 2.4E+01 1.6E+01
3-Methylchloanthrene 1.0E+01 5.8E+00 1.0E+01 8.0E+00 <BG <BG 8.7E+00 5.2E+00 <BG

Indeno[1,2,3-c,d]pyrene 2.3E+02 1.4E+02 2.0E+02 3.9E+02 2.9E+02 1.1E+02 2.6E+02 1.9E+02 9.1E+01
Dibenz[a,h+ac]anthracene 2.0E+01 1.3E+01 1.9E+01 4.5E+01 3.3E+01 8.5E+00 1.7E+01 1.2E+01 5.0E+00
Benzo[g,h,i]perylene 2.1E+02 1.2E+02 1.6E+02 2.9E+02 2.1E+02 1.1E+02 2.4E+02 1.8E+02 7.8E+01
Anthanthrene 2.2E+01 1.6E+01 2.5E+01 4.1E+01 1.5E+01 1.3E+01 1.6E+01 8.3E+00 3.7E+00
Coronene 1.1E+02 6.4E+01 7.1E+01 1.6E+02 1.0E+02 5.7E+01 1.3E+02 1.1E+02 4.9E+01  
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Sample ID MT 33 MT 34 MT 35 MT 36 MT 37 MT 38 MT 39 MT 40 MT 41
Start Date 070902 071002 071102 071202 071302 071402 071502 071602 071702
Start Time 1705 1845 1915 1835 1923 1921 1903 1850 1905

Stop Date 071002 071102 071202 071302 071402 071502 071602 071702 071802
Stop Time 1745 1805 1720 1820 1811 1757 1754 1801 1804

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 7.2% 22.0% 5.0% 44.2% 16.4% 13.7% 39.0% 22.0% 8.2%
d10-Fluorene 97.4% 113.5% 96.5% 137.2% 78.3% 85.6% 127.4% 107.1% 92.0%
d10-Fluoranthene 78.4% 73.0% 67.8% 75.5% 70.2% 73.6% 71.9% 67.3% 73.2%
d12-Perylene 94.5% 92.6% 84.6% 93.5% 90.5% 88.5% 94.2% 83.9% 91.7%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 1.0E+01 1.4E+01 <BG 1.6E+01 <BG <BG 2.0E+01 4.1E+01 <BG
2-Methylnaphthalene 1.3E+01 1.2E+01 1.4E+01 1.7E+01 6.4E+00 1.1E+01 2.2E+01 4.9E+01 1.3E+01
Azulene ND ND 2.1E+00 ND ND 1.2E+00 ND ND ND
1-Methylnaphthalene 3.6E+00 4.6E+00 4.5E+00 5.8E+00 <BG 3.4E+00 9.1E+00 1.7E+01 2.4E+00
Biphenyl 4.8E+00 4.4E+00 4.3E+00 4.5E+00 <BG 3.4E+00 6.6E+00 1.2E+01 4.1E+00
2,7-Dimethylnaphthalene 2.1E+01 1.1E+01 8.3E+00 1.9E+01 9.9E+00 1.3E+01 2.4E+01 3.3E+01 2.3E+01
1,3-Dimethylnaphthalene ND 5.5E+00 8.2E+00 ND 2.4E+00 5.3E+00 8.5E+00 1.9E+01 ND
1,6-Dimethylnaphthalene ND 7.2E+00 1.4E+01 ND 8.9E+00 1.4E+01 2.6E+01 1.6E+01 ND
1,4-Dimethylnaphthalene 2.5E+00 2.8E+00 5.4E+00 1.6E+00 <BG 1.6E+00 5.2E+00 9.9E+00 2.3E+00
1,5-Dimethylnaphthalene 9.9E+00 5.7E+00 2.1E+01 1.7E+01 4.3E+00 7.9E+00 8.8E+00 9.7E+00 1.7E+01
Acenapthylene 1.2E+01 6.7E+00 7.1E+00 5.1E+00 2.4E+00 5.3E+00 7.5E+00 2.0E+01 7.6E+00
1,2-Dimethylnapthalene 3.2E+00 ND 3.9E+00 ND 1.3E+00 ND 5.0E+00 6.7E+00 ND
1,8-Dimethylnapthalene ND <BG <BG ND <BG <BG <BG <BG ND
Acenapthene 1.0E+01 7.3E+00 9.5E+00 1.1E+01 3.7E+00 6.7E+00 8.4E+00 1.8E+01 5.6E+00

2,3,5-Trimethylnapthalene 1.6E+01 5.6E+00 1.2E+01 4.2E+00 6.8E+00 6.8E+00 6.9E+00 1.1E+01 ND
Fluorene 2.1E+01 1.3E+01 1.6E+01 8.7E+00 4.4E+00 9.2E+00 1.3E+01 4.7E+01 1.2E+01
1-Methylfuorene 2.0E+01 6.9E+00 9.5E+00 6.2E+00 4.7E+00 8.2E+00 9.9E+00 2.3E+01 1.2E+01
Dibenzothiophene 2.0E+01 1.0E+01 1.9E+01 1.2E+01 2.9E+00 7.5E+00 1.3E+01 3.0E+01 1.1E+01
Phenanthrene 3.2E+02 1.2E+02 1.8E+02 7.1E+01 4.4E+01 1.1E+02 1.5E+02 4.7E+02 1.6E+02
Anthracene 4.2E+01 2.5E+01 7.9E+01 4.7E+01 4.1E+00 1.7E+01 6.6E+01 1.1E+02 6.0E+01
2-Methyldibenzothiophene 1.9E+01 1.0E+01 1.4E+01 5.6E+00 3.7E+00 8.3E+00 1.0E+01 2.7E+01 8.5E+00
4-Methyldibenzothiophene 1.3E+01 1.5E+01 1.0E+01 5.3E+00 1.8E+00 5.8E+00 8.2E+00 2.0E+01 5.6E+00
2-Methylphenanthrene 9.5E+01 4.2E+01 6.8E+01 2.5E+01 1.3E+01 3.7E+01 4.8E+01 1.3E+02 5.0E+01
2-Methylanthracene 1.8E+01 9.7E+00 2.4E+01 1.2E+01 4.2E+00 7.2E+00 1.2E+01 2.7E+01 1.6E+01
4,5-Methylenephenanthrene 2.8E+01 8.5E+00 1.2E+01 5.8E+00 2.5E+00 7.2E+00 1.1E+01 2.8E+01 1.1E+01
1-Methylanthracene 5.1E+01 2.1E+01 3.6E+01 1.2E+01 6.4E+00 1.6E+01 2.6E+01 6.5E+01 2.4E+01
1-Methylphenanthrene 3.7E+01 1.7E+01 2.2E+01 8.4E+00 4.8E+00 1.3E+01 1.9E+01 4.6E+01 1.9E+01
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 1.8E+01 7.7E+00 1.1E+01 4.7E+00 2.3E+00 5.6E+00 9.0E+00 2.3E+01 7.2E+00
Fluoranthene 5.6E+02 1.8E+02 2.1E+02 8.2E+01 5.8E+01 1.4E+02 2.4E+02 4.3E+02 2.1E+02
3,6-Dimethylphenanthrene 1.0E+01 4.9E+00 6.7E+00 4.8E+00 4.2E+00 6.8E+00 8.4E+00 4.8E+00 5.9E+00
Pyrene 5.1E+02 1.8E+02 2.1E+02 7.4E+01 5.1E+01 1.3E+02 2.0E+02 3.5E+02 1.9E+02
3,6-Dimethylphenanthrene 1.0E+01 4.9E+00 6.7E+00 4.8E+00 4.2E+00 6.8E+00 8.4E+00 4.8E+00 5.9E+00
Benzo[a]fluorene 6.3E+01 2.1E+01 2.5E+01 9.0E+00 6.0E+00 1.2E+01 2.3E+01 3.7E+01 1.9E+01
Retene 2.1E+01 1.5E+01 1.2E+01 8.8E+00 6.4E+00 7.6E+00 1.1E+01 1.3E+01 7.5E+00
Benzo[b]fluorene 3.7E+01 1.6E+01 1.5E+01 7.3E+00 3.9E+00 9.8E+00 1.8E+01 2.7E+01 1.3E+01
Cyclopenta[c,d]pyrene ND ND ND ND ND ND ND ND ND
Benz[a]anthracene 2.8E+02 9.3E+01 1.0E+02 2.8E+01 2.4E+01 6.3E+01 8.6E+01 1.5E+02 7.9E+01
Chrysene+Triphenylene 3.9E+02 1.7E+02 1.7E+02 5.8E+01 4.7E+01 1.2E+02 1.8E+02 2.0E+02 1.4E+02
Napthacene 5.4E+01 1.7E+01 2.3E+01 6.5E+00 6.7E+00 1.5E+01 1.6E+01 2.5E+01 2.0E+01
4-Methylchrysene 3.7E+01 2.3E+01 2.3E+01 6.4E+00 4.6E+00 1.4E+01 1.7E+01 2.1E+01 1.3E+01

Benzo[b]fluoranthene 5.2E+02 1.7E+02 2.4E+02 8.6E+01 7.7E+01 1.6E+02 2.4E+02 3.7E+02 2.0E+02
Benzo[k]fluoranthene 3.1E+02 1.1E+02 1.4E+02 4.8E+01 3.9E+01 7.9E+01 1.1E+02 2.2E+02 1.2E+02
Dimethylbenz[a]anthracene 2.5E+01 1.1E+01 1.5E+01 6.8E+00 2.7E+00 8.5E+00 1.2E+01 1.5E+01 1.4E+01
Benzo[e]pyrene 2.9E+02 1.1E+02 1.5E+02 5.4E+01 4.5E+01 9.9E+01 1.3E+02 2.2E+02 1.2E+02
Benzo[a]pyrene 3.4E+02 1.0E+02 1.3E+02 3.9E+01 2.5E+01 8.6E+01 1.2E+02 2.0E+02 9.7E+01
Perylene 7.0E+01 1.9E+01 2.4E+01 8.7E+00 6.3E+00 1.8E+01 2.2E+01 4.3E+01 1.6E+01
3-Methylchloanthrene ND 5.1E+00 ND ND ND ND 7.3E+00 ND ND

Indeno[1,2,3-c,d]pyrene 4.9E+02 1.6E+02 2.3E+02 9.5E+01 7.5E+01 1.6E+02 1.9E+02 3.7E+02 1.9E+02
Dibenz[a,h+ac]anthracene 5.0E+01 1.6E+01 2.1E+01 6.8E+00 6.3E+00 1.3E+01 1.9E+01 2.8E+01 1.4E+01
Benzo[g,h,i]perylene 4.2E+02 2.0E+02 2.8E+02 1.2E+02 8.3E+01 2.1E+02 2.1E+02 3.8E+02 2.1E+02
Anthanthrene 6.6E+01 2.4E+01 3.0E+01 1.1E+01 7.0E+00 1.9E+01 2.8E+01 4.0E+01 2.1E+01
Coronene 1.5E+02 1.1E+02 1.8E+02 8.7E+01 5.9E+01 1.4E+02 1.3E+02 1.9E+02 1.3E+02  
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Sample ID MT 42 MT 43 MT 45 MT 46 MT 47 MT 49 MT 51 MT 52 MT 53
Start Date 071802 071902 072102 072202 072302 072902 072902 073002 073002
Start Time 1853 1935 1819 1832 734 620 1854 650 1250

Stop Date 071902 072002 072202 072302 072402 072902 073002 073002 073002
Stop Time 1850 1828 1740 727 800 1124 605 1245 1814

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 37.0% 21.4% 25.8% 42.9% 28.6% 19.6% 63.9% 68.1% 34.8%
d10-Fluorene 108.4% 89.3% 95.3% 128.5% 82.8% 76.3% 144.0% 161.5% 119.0%
d10-Fluoranthene 75.1% 73.9% 71.6% 75.0% 73.6% 71.5% 73.9% 76.9% 76.1%
d12-Perylene 91.8% 86.0% 84.0% 90.4% 95.3% 94.9% 93.9% 96.0% 99.6%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 3.2E+01 1.3E+01 2.3E+01 3.1E+01 1.6E+01 <BG 5.3E+01 5.4E+01 <BG
2-Methylnaphthalene 2.5E+01 2.0E+01 2.5E+01 4.1E+01 2.2E+01 3.8E+01 4.9E+01 5.8E+01 3.6E+01
Azulene ND 3.5E+00 ND ND ND ND ND ND ND
1-Methylnaphthalene 6.3E+00 6.5E+00 6.8E+00 1.3E+01 6.3E+00 1.6E+01 1.5E+01 1.9E+01 1.3E+01
Biphenyl 7.2E+00 5.4E+00 6.0E+00 8.5E+00 4.2E+00 1.3E+01 1.4E+01 1.6E+01 1.4E+01
2,7-Dimethylnaphthalene 2.0E+01 7.2E+00 3.0E+01 4.4E+01 1.9E+01 2.4E+01 3.2E+01 4.8E+01 3.9E+01
1,3-Dimethylnaphthalene 8.0E+00 8.1E+00 1.1E+01 ND 7.4E+00 1.7E+01 1.6E+01 2.5E+01 1.5E+01
1,6-Dimethylnaphthalene 3.1E+01 2.8E+01 2.2E+01 ND 2.0E+01 1.4E+01 1.2E+01 1.5E+01 1.4E+01
1,4-Dimethylnaphthalene 2.5E+00 3.2E+00 5.1E+00 6.5E+00 2.1E+00 8.7E+00 8.5E+00 8.1E+00 3.7E+00
1,5-Dimethylnaphthalene 3.7E+01 3.1E+01 2.1E+01 1.4E+01 2.8E+00 9.8E+00 1.0E+01 1.3E+01 1.3E+01
Acenapthylene 7.2E+00 4.9E+00 7.4E+00 1.4E+01 8.7E+00 1.2E+01 9.2E+00 1.5E+01 9.5E+00
1,2-Dimethylnapthalene 4.2E+00 5.4E+00 3.8E+00 8.5E+00 3.0E+00 ND ND ND ND
1,8-Dimethylnapthalene <BG ND ND <BG <BG <BG <BG ND <BG
Acenapthene 6.5E+00 5.5E+00 8.5E+00 1.5E+01 6.4E+00 1.8E+01 1.4E+01 1.5E+01 1.3E+01

2,3,5-Trimethylnapthalene 7.8E+00 8.0E+00 ND 1.0E+01 8.8E+00 8.8E+00 9.7E+00 ND ND
Fluorene 1.3E+01 1.0E+01 1.3E+01 2.6E+01 1.2E+01 2.0E+01 2.3E+01 2.4E+01 2.3E+01
1-Methylfuorene 9.3E+00 9.7E+00 1.4E+01 1.8E+01 9.0E+00 2.7E+01 1.2E+01 1.3E+01 1.2E+01
Dibenzothiophene 9.9E+00 1.1E+01 1.5E+01 1.9E+01 1.2E+01 1.5E+01 1.2E+01 1.9E+01 1.5E+01
Phenanthrene 1.4E+02 9.1E+01 1.6E+02 2.0E+02 1.5E+02 2.3E+02 1.5E+02 2.2E+02 1.8E+02
Anthracene 2.8E+01 1.9E+01 1.9E+01 4.3E+01 2.4E+01 2.6E+01 1.3E+01 3.2E+01 7.8E+01
2-Methyldibenzothiophene 8.2E+00 6.6E+00 1.3E+01 1.3E+01 1.1E+01 1.7E+01 9.1E+00 1.5E+01 1.5E+01
4-Methyldibenzothiophene 6.3E+00 4.5E+00 7.2E+00 9.9E+00 8.7E+00 1.7E+01 9.4E+00 2.3E+01 1.5E+01
2-Methylphenanthrene 4.2E+01 3.0E+01 5.3E+01 6.0E+01 5.4E+01 7.0E+01 4.3E+01 7.0E+01 6.1E+01
2-Methylanthracene 2.1E+01 1.9E+01 1.8E+01 2.2E+01 1.3E+01 7.3E+00 1.6E+01 9.1E+00 1.2E+01
4,5-Methylenephenanthrene 1.2E+01 5.7E+00 1.1E+01 1.1E+01 1.3E+01 1.4E+01 6.6E+00 1.7E+01 1.2E+01
1-Methylanthracene 2.2E+01 1.3E+01 2.7E+01 2.9E+01 3.0E+01 3.0E+01 2.1E+01 3.4E+01 3.1E+01
1-Methylphenanthrene 1.5E+01 1.1E+01 1.9E+01 2.2E+01 1.9E+01 2.8E+01 1.6E+01 2.4E+01 2.5E+01
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 6.2E+00 4.3E+00 7.9E+00 1.2E+01 1.1E+01 1.5E+01 1.2E+01 1.2E+01 1.0E+01
Fluoranthene 2.3E+02 1.1E+02 2.0E+02 2.5E+02 2.7E+02 3.0E+02 1.6E+02 3.6E+02 2.8E+02
3,6-Dimethylphenanthrene 1.0E+01 4.5E+00 ND 2.2E+01 3.6E+00 1.2E+01 3.5E+00 ND ND
Pyrene 2.0E+02 8.9E+01 1.7E+02 2.1E+02 2.3E+02 2.7E+02 1.4E+02 3.1E+02 2.5E+02
3,6-Dimethylphenanthrene 1.0E+01 4.5E+00 ND 2.2E+01 3.6E+00 1.2E+01 3.5E+00 ND ND
Benzo[a]fluorene 2.2E+01 1.1E+01 2.0E+01 2.5E+01 2.9E+01 2.5E+01 1.3E+01 3.2E+01 2.9E+01
Retene 9.0E+00 9.3E+00 1.5E+01 2.9E+01 1.2E+01 2.0E+01 1.2E+01 2.1E+01 1.9E+01
Benzo[b]fluorene 1.6E+01 9.2E+00 1.3E+01 1.6E+01 1.7E+01 1.9E+01 1.2E+01 2.1E+01 1.8E+01
Cyclopenta[c,d]pyrene ND ND ND ND ND ND ND ND ND
Benz[a]anthracene 9.6E+01 4.1E+01 7.7E+01 7.7E+01 1.1E+02 1.1E+02 3.8E+01 1.4E+02 1.2E+02
Chrysene+Triphenylene 1.5E+02 8.5E+01 1.2E+02 1.3E+02 1.9E+02 2.0E+02 9.1E+01 2.5E+02 2.2E+02
Napthacene 2.2E+01 6.9E+00 1.2E+01 1.4E+01 1.8E+01 1.7E+01 ND 3.1E+01 2.0E+01
4-Methylchrysene 1.3E+01 1.0E+01 1.4E+01 1.3E+01 2.0E+01 1.5E+01 8.2E+00 2.2E+01 2.2E+01

Benzo[b]fluoranthene 2.0E+02 1.2E+02 1.7E+02 1.7E+02 2.3E+02 2.0E+02 1.1E+02 2.6E+02 2.2E+02
Benzo[k]fluoranthene 1.1E+02 5.7E+01 9.6E+01 7.6E+01 1.1E+02 1.1E+02 5.4E+01 1.6E+02 1.1E+02
Dimethylbenz[a]anthracene 8.9E+00 6.3E+00 9.0E+00 1.2E+01 1.1E+01 1.2E+01 6.9E+00 1.3E+01 1.3E+01
Benzo[e]pyrene 1.1E+02 6.9E+01 1.0E+02 9.2E+01 1.3E+02 1.2E+02 6.0E+01 1.5E+02 1.2E+02
Benzo[a]pyrene 1.3E+02 5.0E+01 8.1E+01 7.7E+01 1.2E+02 1.2E+02 4.2E+01 1.7E+02 1.3E+02
Perylene 2.5E+01 8.3E+00 1.7E+01 1.7E+01 2.8E+01 2.0E+01 7.9E+00 3.0E+01 2.6E+01
3-Methylchloanthrene 5.8E+00 ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene 1.7E+02 1.1E+02 1.6E+02 1.6E+02 2.1E+02 1.9E+02 9.2E+01 2.5E+02 1.9E+02
Dibenz[a,h+ac]anthracene 1.8E+01 1.1E+01 1.6E+01 1.5E+01 2.1E+01 1.5E+01 7.2E+00 2.5E+01 2.2E+01
Benzo[g,h,i]perylene 1.7E+02 1.2E+02 1.8E+02 1.7E+02 2.1E+02 2.4E+02 1.1E+02 2.8E+02 2.1E+02
Anthanthrene 2.5E+01 1.4E+01 2.7E+01 2.8E+01 3.1E+01 3.2E+01 1.4E+01 4.5E+01 3.7E+01
Coronene 1.0E+02 7.5E+01 9.4E+01 1.0E+02 1.2E+02 1.4E+02 6.8E+01 1.3E+02 1.3E+02  
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Sample ID MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63
Start Date 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802
Start Time 1824 1759 1900 100 700 1900 745 1900 800 1900

Stop Date 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902
Stop Time 750 807 100 700 1900 746 1900 754 1900 803

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 43.2% 28.2% 43.7% 58.2% 45.0% 32.8% 43.7% 36.3% 40.0% 39.0%
d10-Fluorene 123.6% 117.0% 95.6% 123.2% 124.0% 96.1% 99.4% 75.0% 95.6% 106.5%
d10-Fluoranthene 74.2% 66.7% 75.6% 74.9% 75.2% 83.7% 77.4% 70.7% 79.3% 83.7%
d12-Perylene 94.2% 84.8% 96.1% 98.4% 100.9% 101.1% 99.7% 92.2% 99.7% 102.8%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 2.0E+01 2.4E+01 <BG 4.8E+01 4.6E+01 1.8E+01 3.7E+01 2.6E+01 3.7E+01 4.9E+01
2-Methylnaphthalene 1.8E+01 3.4E+01 <BG 4.5E+01 4.4E+01 1.7E+01 3.6E+01 2.8E+01 2.3E+01 4.1E+01
Azulene ND ND ND ND ND ND ND ND ND ND
1-Methylnaphthalene 6.9E+00 1.2E+01 <BG 1.4E+01 1.5E+01 8.9E+00 1.6E+01 8.8E+00 1.2E+01 1.6E+01
Biphenyl 7.5E+00 1.1E+01 <BG 1.2E+01 1.2E+01 5.9E+00 1.1E+01 7.4E+00 8.0E+00 1.1E+01
2,7-Dimethylnaphthalene 1.7E+01 1.9E+01 1.6E+01 3.1E+01 5.6E+01 1.1E+01 ND 1.6E+01 ND 3.4E+01
1,3-Dimethylnaphthalene 1.1E+01 1.9E+01 9.1E+00 1.8E+01 2.7E+01 1.8E+01 2.5E+01 1.9E+01 1.8E+01 3.9E+01
1,6-Dimethylnaphthalene 2.1E+01 4.4E+01 <BG 9.6E+00 1.8E+01 6.3E+00 1.0E+01 2.2E+01 8.5E+00 9.8E+00
1,4-Dimethylnaphthalene 3.0E+00 8.0E+00 2.2E+00 6.1E+00 1.1E+01 3.6E+00 2.8E+01 4.2E+00 3.8E+00 ND
1,5-Dimethylnaphthalene 1.4E+01 9.5E+00 ND 4.7E+00 2.0E+01 7.6E+00 4.8E+00 6.1E+00 9.3E+00 ND
Acenapthylene 9.9E+00 1.8E+01 7.2E+00 8.8E+00 1.8E+01 6.7E+00 1.1E+01 1.1E+01 3.8E+01 6.7E+01
1,2-Dimethylnapthalene 7.7E+00 1.4E+01 4.0E+00 7.2E+00 8.7E+00 7.7E+00 1.4E+01 1.3E+01 ND 1.9E+01
1,8-Dimethylnapthalene <BG <BG <BG <BG <BG ND <BG <BG <BG <BG
Acenapthene 9.3E+00 ND 1.2E+01 4.3E+01 5.0E+01 1.1E+01 3.2E+01 1.5E+01 1.9E+01 3.3E+01

2,3,5-Trimethylnapthalene ND ND ND 1.0E+01 ND 4.3E+00 5.2E+00 3.4E+00 5.3E+00 8.0E+00
Fluorene 1.1E+01 2.3E+01 1.9E+01 3.8E+01 4.9E+01 1.4E+01 3.8E+01 1.6E+01 2.7E+01 4.6E+01
1-Methylfuorene 8.9E+00 1.4E+01 1.2E+01 1.2E+01 1.7E+01 1.1E+01 9.6E+00 1.1E+01 1.5E+01 1.7E+01
Dibenzothiophene 1.3E+01 2.7E+01 1.5E+01 1.7E+01 3.5E+01 1.4E+01 2.5E+01 1.7E+01 3.2E+01 4.1E+01
Phenanthrene 1.2E+02 2.3E+02 1.7E+02 2.0E+02 3.6E+02 1.3E+02 2.6E+02 1.5E+02 3.1E+02 4.3E+02
Anthracene 2.4E+01 8.6E+01 2.5E+01 2.8E+01 5.5E+01 2.1E+01 4.2E+01 3.6E+01 6.2E+01 1.4E+02
2-Methyldibenzothiophene 1.1E+01 1.5E+01 1.4E+01 1.3E+01 3.0E+01 1.5E+01 2.2E+01 1.1E+01 3.1E+01 3.6E+01
4-Methyldibenzothiophene 8.0E+00 9.9E+00 8.8E+00 1.2E+01 4.7E+01 1.8E+01 3.2E+01 1.5E+01 4.2E+01 4.5E+01
2-Methylphenanthrene 4.4E+01 7.8E+01 4.7E+01 5.4E+01 1.2E+02 5.0E+01 8.8E+01 6.3E+01 1.2E+02 1.2E+02
2-Methylanthracene 1.7E+01 3.3E+01 9.5E+00 5.8E+00 1.8E+01 5.8E+00 1.3E+01 1.2E+01 2.5E+01 3.7E+01
4,5-Methylenephenanthrene 8.0E+00 1.1E+01 1.4E+01 1.5E+01 3.4E+01 1.0E+01 2.3E+01 1.1E+01 4.9E+01 6.3E+01
1-Methylanthracene 2.4E+01 3.5E+01 2.5E+01 2.8E+01 6.5E+01 2.8E+01 4.6E+01 3.3E+01 7.1E+01 8.4E+01
1-Methylphenanthrene 1.5E+01 2.4E+01 1.7E+01 2.0E+01 4.6E+01 1.9E+01 3.1E+01 2.2E+01 4.8E+01 5.2E+01
9-Methylanthracene ND ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 9.6E+00 1.4E+01 1.1E+01 1.1E+01 2.5E+01 1.4E+01 2.0E+01 1.6E+01 2.7E+01 2.5E+01
Fluoranthene 1.6E+02 2.4E+02 2.7E+02 3.2E+02 5.8E+02 2.0E+02 4.0E+02 2.1E+02 5.8E+02 7.8E+02
3,6-Dimethylphenanthrene ND 6.6E+00 ND 1.1E+01 5.9E+00 6.0E+00 ND ND 7.7E+00 ND
Pyrene 1.5E+02 2.0E+02 2.4E+02 3.1E+02 5.1E+02 2.1E+02 3.5E+02 2.1E+02 6.0E+02 8.4E+02
3,6-Dimethylphenanthrene ND 6.6E+00 ND 1.1E+01 5.9E+00 6.0E+00 ND ND 7.7E+00 ND
Benzo[a]fluorene 2.0E+01 2.4E+01 2.6E+01 3.8E+01 6.4E+01 2.5E+01 4.3E+01 3.0E+01 8.7E+01 1.3E+02
Retene ND 1.4E+01 2.0E+01 2.1E+01 2.5E+01 ND 2.2E+01 1.7E+01 2.2E+01 ND
Benzo[b]fluorene 1.2E+01 1.6E+01 2.1E+01 2.8E+01 4.3E+01 1.7E+01 3.1E+01 2.1E+01 6.1E+01 9.7E+01
Cyclopenta[c,d]pyrene ND ND ND ND ND ND ND ND ND ND
Benz[a]anthracene 6.7E+01 8.9E+01 1.1E+02 2.1E+02 2.9E+02 9.1E+01 2.2E+02 1.1E+02 3.6E+02 5.0E+02
Chrysene+Triphenylene 1.2E+02 1.7E+02 1.8E+02 2.8E+02 5.6E+02 1.7E+02 3.8E+02 1.8E+02 4.3E+02 4.9E+02
Napthacene 9.5E+00 1.8E+01 2.6E+01 4.4E+01 5.7E+01 1.6E+01 4.0E+01 1.7E+01 5.8E+01 7.9E+01
4-Methylchrysene 1.4E+01 1.7E+01 1.9E+01 2.5E+01 6.8E+01 2.1E+01 4.4E+01 2.4E+01 4.4E+01 5.3E+01

Benzo[b]fluoranthene 1.3E+02 1.8E+02 1.8E+02 2.9E+02 5.5E+02 1.9E+02 3.8E+02 2.2E+02 4.4E+02 6.9E+02
Benzo[k]fluoranthene 8.1E+01 9.8E+01 1.3E+02 2.0E+02 3.0E+02 1.0E+02 2.1E+02 1.2E+02 2.8E+02 4.7E+02
Dimethylbenz[a]anthracene 8.3E+00 7.6E+00 1.2E+01 1.4E+01 3.2E+01 1.3E+01 2.6E+01 1.2E+01 2.1E+01 3.4E+01
Benzo[e]pyrene 8.3E+01 1.1E+02 1.1E+02 1.7E+02 3.3E+02 1.1E+02 2.1E+02 1.3E+02 2.6E+02 4.1E+02
Benzo[a]pyrene 7.0E+01 9.0E+01 1.3E+02 1.9E+02 3.3E+02 1.0E+02 2.7E+02 1.1E+02 4.1E+02 6.8E+02
Perylene 1.6E+01 2.2E+01 2.3E+01 5.0E+01 7.5E+01 2.4E+01 5.4E+01 2.5E+01 6.9E+01 1.1E+02
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene 1.3E+02 1.6E+02 1.7E+02 2.6E+02 4.6E+02 1.8E+02 3.2E+02 2.1E+02 4.3E+02 7.3E+02
Dibenz[a,h+ac]anthracene 1.1E+01 1.5E+01 1.6E+01 3.0E+01 5.3E+01 1.7E+01 3.5E+01 1.8E+01 5.0E+01 8.4E+01
Benzo[g,h,i]perylene 1.5E+02 2.0E+02 1.9E+02 2.5E+02 4.5E+02 2.1E+02 3.1E+02 2.4E+02 3.7E+02 6.5E+02
Anthanthrene 2.1E+01 2.2E+01 4.0E+01 5.0E+01 6.3E+01 3.3E+01 4.5E+01 3.2E+01 7.3E+01 1.4E+02
Coronene 8.7E+01 1.3E+02 1.2E+02 1.3E+02 1.8E+02 1.0E+02 1.3E+02 1.5E+02 1.1E+02 1.9E+02  
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Sample ID MT 64 MT 65 MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72
Start Date 012703 012803 012803 012803 012903 012903 012903 013003 013003
Start Time 1830 1230 820 1800 30 745 1837 30 810

Stop Date 012803 012803 012803 012903 012903 012903 013003 013003 013003
Stop Time 802 800 1734 30 630 1831 30 630 1830

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 41.8% 72.1% 21.8% 51.8% 51.9% 38.1% 72.6% 73.2% 49.7%
d10-Fluorene 120.4% 148.6% 61.6% 125.6% 116.5% 92.5% 128.8% 139.2% 102.4%
d10-Fluoranthene 76.9% 75.9% 49.0% 79.1% 79.1% 75.5% 73.9% 76.3% 73.0%
d12-Perylene 100.0% 94.7% 61.9% 100.6% 96.9% 97.7% 96.7% 96.6% 95.3%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 5.8E+01 1.1E+02 5.6E+01 5.0E+01 5.3E+01 3.8E+01 9.4E+01 6.5E+01 5.1E+01
2-Methylnaphthalene 5.1E+01 1.2E+02 6.2E+01 3.6E+01 5.3E+01 3.7E+01 8.4E+01 5.5E+01 4.6E+01
Azulene ND ND 5.3E+00 1.3E+01 ND 8.6E+00 3.1E+01 1.7E+01 ND
1-Methylnaphthalene 2.4E+01 5.2E+01 2.7E+01 1.6E+01 2.3E+01 1.1E+01 3.4E+01 2.4E+01 1.5E+01
Biphenyl 2.6E+01 5.2E+01 1.9E+01 1.7E+01 1.8E+01 1.3E+01 5.3E+01 2.7E+01 2.2E+01
2,7-Dimethylnaphthalene 8.8E+01 1.3E+02 6.0E+01 1.1E+02 1.6E+02 5.4E+01 5.2E+01 3.4E+01 ND
1,3-Dimethylnaphthalene 1.6E+02 2.8E+02 1.0E+02 1.1E+02 2.0E+02 8.5E+01 2.0E+02 1.6E+02 6.3E+01
1,6-Dimethylnaphthalene 2.6E+01 7.0E+01 2.0E+01 1.1E+01 2.2E+01 8.6E+00 2.9E+01 2.2E+01 9.3E+00
1,4-Dimethylnaphthalene 2.4E+01 5.2E+01 4.4E+01 4.1E+01 6.7E+01 1.2E+01 2.9E+01 1.7E+01 3.2E+01
1,5-Dimethylnaphthalene 5.9E+01 6.8E+01 2.2E+01 2.1E+01 3.8E+01 3.0E+01 6.8E+01 4.2E+01 1.3E+01
Acenapthylene 8.3E+01 1.1E+02 3.2E+01 2.5E+01 4.4E+01 2.6E+01 7.6E+01 3.9E+01 2.7E+01
1,2-Dimethylnapthalene 1.6E+02 1.8E+02 5.1E+01 8.8E+01 1.1E+02 6.8E+01 1.0E+02 8.7E+01 5.0E+01
1,8-Dimethylnapthalene 8.3E+01 <BG <BG <BG <BG <BG <BG <BG <BG
Acenapthene 2.1E+01 4.5E+01 1.8E+01 1.5E+01 2.5E+01 ND ND 3.4E+01 1.3E+01

2,3,5-Trimethylnapthalene ND 2.2E+02 ND 3.4E+01 ND ND ND ND 3.0E+01
Fluorene 1.3E+02 2.4E+02 6.8E+01 5.4E+01 7.2E+01 3.1E+01 9.4E+01 6.5E+01 1.7E+01
1-Methylfuorene 2.2E+02 4.0E+02 6.2E+01 8.2E+01 8.6E+01 4.8E+01 1.3E+02 9.8E+01 2.3E+01
Dibenzothiophene 3.2E+02 3.2E+02 2.2E+02 1.7E+02 2.3E+02 6.4E+01 1.6E+02 2.4E+02 6.6E+01
Phenanthrene 2.2E+03 2.9E+03 1.1E+03 9.2E+02 1.2E+03 6.5E+02 1.1E+03 9.4E+02 3.2E+02
Anthracene 1.6E+02 1.7E+02 8.4E+01 4.4E+01 9.9E+01 5.8E+01 9.3E+01 8.3E+01 3.7E+01
2-Methyldibenzothiophene 2.5E+02 4.4E+02 1.5E+02 1.8E+02 3.2E+02 1.6E+02 2.1E+02 3.1E+02 1.0E+02
4-Methyldibenzothiophene 3.2E+02 3.9E+02 2.3E+02 1.9E+02 3.4E+02 2.2E+02 2.5E+02 ND 1.2E+02
2-Methylphenanthrene 1.3E+03 1.9E+03 4.9E+02 5.5E+02 8.3E+02 4.6E+02 8.0E+02 9.4E+02 2.1E+02
2-Methylanthracene 7.3E+01 1.0E+02 3.9E+01 3.2E+01 7.0E+01 6.2E+01 7.0E+01 7.3E+01 2.2E+01
4,5-Methylenephenanthrene 2.7E+02 3.6E+02 1.1E+02 7.6E+01 1.4E+02 9.8E+01 1.3E+02 1.4E+02 4.1E+01
1-Methylanthracene 6.2E+02 8.8E+02 2.3E+02 2.4E+02 4.3E+02 2.5E+02 4.1E+02 4.8E+02 1.2E+02
1-Methylphenanthrene 4.9E+02 7.5E+02 2.3E+02 2.1E+02 3.4E+02 2.4E+02 3.2E+02 3.9E+02 1.0E+02
9-Methylanthracene ND ND ND ND ND ND ND ND ND

9,10-Dimethylanthracene 4.3E+02 6.0E+02 2.2E+02 1.7E+02 2.9E+02 1.8E+02 2.8E+02 4.6E+02 1.0E+02
Fluoranthene 2.4E+03 3.2E+03 1.6E+03 1.1E+03 1.7E+03 1.7E+03 1.4E+03 1.5E+03 9.7E+02
3,6-Dimethylphenanthrene 4.7E+02 5.0E+02 2.9E+02 2.0E+02 5.7E+02 4.6E+02 ND 5.9E+02 ND
Pyrene 2.6E+03 3.4E+03 1.5E+03 9.0E+02 1.9E+03 1.8E+03 1.6E+03 2.0E+03 1.1E+03
3,6-Dimethylphenanthrene 4.7E+02 5.0E+02 2.9E+02 2.0E+02 5.7E+02 4.6E+02 ND 5.9E+02 ND
Benzo[a]fluorene 4.1E+02 5.0E+02 2.6E+02 1.7E+02 2.9E+02 3.5E+02 3.6E+02 3.7E+02 2.0E+02
Retene 2.3E+02 2.9E+02 3.7E+02 3.4E+02 2.7E+02 1.7E+03 6.6E+02 3.8E+02 2.7E+02
Benzo[b]fluorene 3.4E+02 4.4E+02 2.1E+02 1.3E+02 2.2E+02 2.7E+02 2.7E+02 2.8E+02 1.3E+02
Cyclopenta[c,d]pyrene ND ND ND ND ND ND ND ND ND
Benz[a]anthracene 7.5E+02 9.4E+02 5.4E+02 2.6E+02 6.3E+02 8.9E+02 1.0E+03 8.6E+02 4.2E+02
Chrysene+Triphenylene 8.6E+02 1.1E+03 7.1E+02 5.3E+02 8.4E+02 9.5E+02 1.2E+03 9.7E+02 8.5E+02
Napthacene 7.9E+01 1.0E+02 6.4E+01 2.7E+01 7.9E+01 9.1E+01 1.0E+02 8.3E+01 4.8E+01
4-Methylchrysene 5.4E+01 6.2E+01 4.5E+01 2.7E+01 5.2E+01 5.5E+01 7.4E+01 7.3E+01 3.5E+01

Benzo[b]fluoranthene 7.9E+02 1.0E+03 7.3E+02 6.1E+02 7.6E+02 9.9E+02 1.4E+03 1.0E+03 8.6E+02
Benzo[k]fluoranthene 5.5E+02 7.1E+02 5.0E+02 3.9E+02 6.1E+02 8.3E+02 1.0E+03 6.6E+02 6.2E+02
Dimethylbenz[a]anthracene 2.9E+01 2.4E+01 2.3E+01 2.3E+01 2.6E+01 6.7E+01 4.9E+01 3.7E+01 2.7E+01
Benzo[e]pyrene 4.2E+02 5.1E+02 3.9E+02 3.2E+02 4.1E+02 5.3E+02 7.2E+02 5.0E+02 4.7E+02
Benzo[a]pyrene 6.9E+02 8.1E+02 5.2E+02 3.4E+02 6.2E+02 7.7E+02 1.1E+03 7.8E+02 2.5E+02
Perylene 9.4E+01 1.2E+02 7.6E+01 4.6E+01 8.3E+01 1.0E+02 1.3E+02 1.1E+02 5.7E+01
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene 8.9E+02 1.2E+03 8.0E+02 6.3E+02 8.0E+02 1.2E+03 1.6E+03 1.0E+03 9.9E+02
Dibenz[a,h+ac]anthracene 6.8E+01 8.1E+01 7.1E+01 4.9E+01 5.6E+01 8.2E+01 1.1E+02 7.1E+01 5.2E+01
Benzo[g,h,i]perylene 7.7E+02 1.0E+03 6.9E+02 5.3E+02 6.7E+02 1.0E+03 1.4E+03 8.8E+02 1.0E+03
Anthanthrene 1.9E+02 2.1E+02 1.1E+02 7.1E+01 1.3E+02 1.8E+02 2.6E+02 1.9E+02 6.0E+01
Coronene 4.6E+02 6.0E+02 3.0E+02 2.1E+02 2.8E+02 4.5E+02 8.1E+02 4.4E+02 3.9E+02  
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Sample ID MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 013003 020503 020503 020603 020603 020703
Start Time 1830 700 1825 735 1745 110

Stop Date 013103 020503 020603 020603 020703 020703
Stop Time 1830 1820 735 1740 110 710

Media Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
d8-Naphthalene 44.6% 35.5% 40.8% 28.7% 65.6% 73.8%
d10-Fluorene 113.6% 108.6% 126.1% 97.0% 137.8% 149.4%
d10-Fluoranthene 73.1% 75.7% 82.5% 85.7% 76.0% 75.4%
d12-Perylene 92.5% 97.8% 96.3% 98.0% 99.5% 97.9%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 3.0E+01 3.2E+01 7.7E+01 3.0E+01 6.1E+01 5.1E+01
2-Methylnaphthalene 3.2E+01 3.3E+01 6.9E+01 3.0E+01 4.2E+01 3.7E+01
Azulene ND ND 7.7E+00 ND ND ND
1-Methylnaphthalene 1.0E+01 1.3E+01 2.9E+01 1.4E+01 1.7E+01 1.6E+01
Biphenyl 2.2E+01 1.5E+01 3.1E+01 1.2E+01 1.4E+01 1.6E+01
2,7-Dimethylnaphthalene ND 2.5E+01 6.8E+01 ND ND 2.6E+01
1,3-Dimethylnaphthalene 3.8E+01 8.3E+01 2.2E+02 4.9E+01 5.0E+01 4.2E+01
1,6-Dimethylnaphthalene 8.3E+00 1.8E+01 3.1E+01 1.2E+01 1.2E+01 1.3E+01
1,4-Dimethylnaphthalene 2.7E+01 1.2E+01 4.7E+01 1.1E+01 2.4E+01 4.7E+00
1,5-Dimethylnaphthalene 6.4E+00 3.4E+01 6.9E+01 2.8E+01 ND 1.5E+01
Acenapthylene 2.1E+01 2.1E+01 9.1E+01 2.2E+01 1.4E+01 2.7E+01
1,2-Dimethylnapthalene 3.1E+01 9.2E+01 1.7E+02 6.1E+01 2.9E+01 1.8E+01
1,8-Dimethylnapthalene <BG <BG 7.9E+01 <BG <BG <BG
Acenapthene 7.4E+00 1.6E+01 3.8E+01 1.0E+01 6.9E+00 8.1E+00

2,3,5-Trimethylnapthalene ND 8.5E+01 ND ND ND ND
Fluorene 1.5E+01 7.9E+01 1.6E+02 4.1E+01 1.7E+01 3.5E+01
1-Methylfuorene 2.1E+01 9.3E+01 2.0E+02 3.8E+01 1.9E+01 3.1E+01
Dibenzothiophene 3.5E+01 2.5E+02 6.5E+02 1.8E+02 3.1E+01 5.7E+01
Phenanthrene 2.6E+02 1.1E+03 2.3E+03 6.3E+02 2.8E+02 4.8E+02
Anthracene 2.5E+01 8.4E+01 2.1E+02 5.7E+01 2.0E+01 3.6E+01
2-Methyldibenzothiophene 4.5E+01 1.7E+02 5.2E+02 8.7E+01 3.6E+01 6.7E+01
4-Methyldibenzothiophene 5.8E+01 1.9E+02 5.2E+02 1.6E+02 6.4E+01 8.0E+01
2-Methylphenanthrene 1.6E+02 5.5E+02 1.5E+03 2.5E+02 1.6E+02 2.5E+02
2-Methylanthracene 1.5E+01 3.3E+01 1.4E+02 3.0E+01 1.2E+01 2.1E+01
4,5-Methylenephenanthrene 3.0E+01 1.1E+02 2.6E+02 5.6E+01 2.4E+01 6.1E+01
1-Methylanthracene 8.2E+01 2.6E+02 8.3E+02 1.4E+02 7.7E+01 1.2E+02
1-Methylphenanthrene 6.4E+01 2.3E+02 6.5E+02 1.1E+02 6.8E+01 1.1E+02
9-Methylanthracene ND ND ND ND ND ND

9,10-Dimethylanthracene 6.9E+01 1.9E+02 6.7E+02 1.2E+02 4.5E+01 1.1E+02
Fluoranthene 6.6E+02 1.5E+03 2.9E+03 1.2E+03 4.5E+02 1.1E+03
3,6-Dimethylphenanthrene ND ND ND 3.2E+02 ND ND
Pyrene 7.1E+02 1.4E+03 3.4E+03 1.2E+03 4.0E+02 1.2E+03
3,6-Dimethylphenanthrene ND ND ND 3.2E+02 ND ND
Benzo[a]fluorene 1.2E+02 1.9E+02 5.3E+02 1.9E+02 7.2E+01 2.2E+02
Retene 1.8E+02 9.6E+01 3.8E+02 1.3E+02 1.1E+02 7.3E+01
Benzo[b]fluorene 9.1E+01 1.6E+02 4.6E+02 1.5E+02 5.5E+01 1.8E+02
Cyclopenta[c,d]pyrene ND ND ND ND ND ND
Benz[a]anthracene 3.9E+02 4.6E+02 1.2E+03 4.7E+02 1.2E+02 4.0E+02
Chrysene+Triphenylene 6.4E+02 6.7E+02 1.3E+03 6.7E+02 3.8E+02 8.3E+02
Napthacene 4.8E+01 8.5E+01 1.6E+02 6.2E+01 2.1E+01 3.2E+01
4-Methylchrysene 3.5E+01 4.8E+01 1.1E+02 3.4E+01 2.4E+01 4.0E+01

Benzo[b]fluoranthene 7.1E+02 6.9E+02 1.3E+03 6.8E+02 4.3E+02 8.6E+02
Benzo[k]fluoranthene 4.3E+02 4.4E+02 9.1E+02 4.8E+02 2.8E+02 6.0E+02
Dimethylbenz[a]anthracene 2.0E+01 3.0E+01 6.1E+01 2.3E+01 1.7E+01 1.0E+01
Benzo[e]pyrene 3.5E+02 3.7E+02 6.9E+02 3.8E+02 2.2E+02 4.3E+02
Benzo[a]pyrene 2.5E+02 4.3E+02 1.1E+03 4.3E+02 1.2E+02 2.9E+02
Perylene 4.8E+01 7.1E+01 1.7E+02 6.5E+01 2.2E+01 5.7E+01
3-Methylchloanthrene ND 1.6E+01 ND ND ND ND

Indeno[1,2,3-c,d]pyrene 7.5E+02 6.6E+02 1.3E+03 7.8E+02 4.4E+02 9.6E+02
Dibenz[a,h+ac]anthracene 4.3E+01 6.0E+01 1.1E+02 6.4E+01 3.4E+01 6.7E+01
Benzo[g,h,i]perylene 7.7E+02 5.9E+02 1.2E+03 7.1E+02 3.8E+02 7.8E+02
Anthanthrene 5.4E+01 9.8E+01 3.0E+02 1.0E+02 3.1E+01 6.6E+01
Coronene 3.1E+02 2.0E+02 4.6E+02 2.4E+02 1.5E+02 3.0E+02  
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 Back MT 6 MT 7 MT 8 MT 9
Start Date 032302 032402 032802 032902 033002 033002 033102 040202 040302
Start Time 1906 1914 1920 2016 1809 1809 1936 1927 1924

Stop Date 032402 032502 032902 033002 033102 033102 040102 040302 040402
Stop Time 1800 1740 1901 1706 1802 1802 1750 1758 1813

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 65.3% 68.0% 61.4% 58.1% 34.9% 30.9% 51.1% 55.8% 74.6%
d10-Fluorene 100.9% 106.1% 105.9% 92.0% 69.8% 68.0% 74.4% 80.1% 132.3%
d10-Fluoranthene 170.0% 199.2% 208.6% 175.0% 65.7% 70.2% 164.3% 198.8% 108.7%
d12-Perylene 102.5% 97.4% 99.7% 103.3% 50.5% 59.8% 97.0% 113.0% 101.6%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 6.2E+02 4.3E+02 4.5E+02 2.3E+02 5.3E+02 3.7E+02 6.5E+02 4.3E+02 1.1E+03
2-Methylnaphthalene 7.0E+02 6.5E+02 5.7E+02 3.2E+02 7.1E+02 5.2E+02 9.1E+02 5.5E+02 1.5E+03
Azulene ND 1.2E+01 ND 4.0E+00 1.9E+00 2.8E+01 3.3E+00 1.5E+00 6.1E+00
1-Methylnaphthalene 2.8E+02 2.5E+02 2.4E+02 1.2E+02 2.8E+02 2.2E+02 3.6E+02 2.4E+02 5.8E+02
Biphenyl 1.5E+02 1.8E+02 1.6E+02 8.6E+01 1.6E+02 1.2E+02 1.6E+02 1.9E+02 3.0E+02
2,7-Dimethylnaphthalene 2.7E+02 2.8E+02 3.3E+02 1.6E+02 2.8E+02 2.6E+02 3.7E+02 3.3E+02 7.5E+02
1,3-Dimethylnaphthalene 2.9E+02 3.0E+02 4.3E+02 1.6E+02 2.8E+02 2.9E+02 4.0E+02 3.6E+02 7.2E+02
1,6-Dimethylnaphthalene 1.5E+02 1.6E+02 2.1E+02 9.5E+01 1.7E+02 1.5E+02 2.3E+02 2.1E+02 4.4E+02
1,4-Dimethylnaphthalene 8.6E+01 1.1E+02 1.3E+02 7.0E+01 9.0E+01 1.1E+02 1.3E+02 1.2E+02 2.1E+02
1,5-Dimethylnaphthalene 3.4E+01 3.5E+01 4.9E+01 2.0E+01 3.3E+01 2.8E+01 4.2E+01 4.8E+01 9.9E+01
Acenapthylene 1.1E+02 2.8E+02 1.3E+02 4.6E+01 8.5E+01 1.4E+02 1.3E+02 2.3E+02 3.8E+02
1,2-Dimethylnapthalene 6.8E+01 8.1E+01 1.1E+02 4.4E+01 6.1E+01 7.0E+01 8.7E+01 8.6E+01 1.5E+02
1,8-Dimethylnapthalene ND <BG <BG <BG ND <BG ND ND ND
Acenapthene 2.2E+02 1.6E+02 1.7E+02 2.2E+02 2.2E+02 2.2E+02 3.4E+02 3.1E+02 3.8E+02

2,3,5-Trimethylnapthalene 4.1E+02 3.6E+02 5.5E+02 2.1E+02 3.8E+02 2.9E+02 6.1E+02 6.8E+02 8.1E+02
Fluorene 1.6E+03 1.3E+03 1.2E+03 9.4E+02 1.1E+03 9.2E+02 2.2E+03 2.1E+03 2.1E+03
1-Methylfuorene 2.2E+03 2.1E+03 1.7E+03 5.6E+02 4.0E+02 5.4E+02 1.2E+03 9.9E+02 1.1E+03
Dibenzothiophene 1.8E+03 2.6E+03 2.0E+03 1.1E+03 1.6E+02 7.1E+02 1.6E+03 2.0E+03 9.4E+02
Phenanthrene 1.7E+04 2.2E+04 1.5E+04 1.4E+04 1.1E+03 7.9E+03 1.8E+04 2.5E+04 9.7E+03
Anthracene 6.0E+02 1.2E+03 5.7E+02 4.3E+02 4.5E+01 2.9E+02 4.5E+02 1.5E+03 4.5E+02
2-Methyldibenzothiophene 1.5E+03 3.1E+03 1.8E+03 1.0E+03 3.7E+01 5.3E+02 9.6E+02 2.3E+03 7.6E+02
4-Methyldibenzothiophene 9.5E+02 2.1E+03 1.3E+03 6.7E+02 1.5E+01 3.8E+02 6.0E+02 1.7E+03 4.7E+02
2-Methylphenanthrene 4.0E+03 7.5E+03 3.7E+03 2.9E+03 2.2E+01 1.3E+03 2.6E+03 5.7E+03 2.0E+03
2-Methylanthracene 6.1E+01 3.5E+02 1.0E+02 1.1E+02 1.4E+00 2.8E+01 5.0E+01 2.6E+02 ND
4,5-Methylenephenanthrene 7.5E+02 1.1E+03 6.3E+02 5.9E+02 6.1E+00 3.4E+02 6.2E+02 1.5E+03 5.0E+02
1-Methylanthracene 2.0E+03 3.9E+03 2.0E+03 1.5E+03 1.0E+01 6.8E+02 1.2E+03 3.4E+03 9.5E+02
1-Methylphenanthrene 1.7E+03 3.1E+03 1.7E+03 1.3E+03 7.2E+00 5.8E+02 1.0E+03 2.6E+03 8.6E+02
9-Methylanthracene ND 9.5E+01 4.3E+01 2.9E+01 <BG 1.4E+01 2.0E+01 6.1E+01 ND

9,10-Dimethylanthracene 1.2E+03 2.7E+03 1.6E+03 1.4E+03 <BG 3.2E+02 8.8E+02 1.5E+03 5.4E+02
Fluoranthene 4.0E+03 4.8E+03 4.4E+03 5.8E+03 <BG 1.9E+03 5.2E+03 1.1E+04 2.3E+03
3,6-Dimethylphenanthrene 1.2E+02 4.8E+02 3.9E+02 2.5E+02 ND 4.0E+01 2.7E+02 7.1E+02 ND
Pyrene 4.0E+03 5.1E+03 3.8E+03 4.0E+03 <BG 1.3E+03 3.4E+03 8.7E+03 1.8E+03
3,6-Dimethylphenanthrene 1.2E+02 4.8E+02 3.9E+02 2.5E+02 ND 4.0E+01 2.7E+02 7.1E+02 ND
Benzo[a]fluorene 1.2E+02 2.2E+02 1.9E+02 1.4E+02 ND 4.9E+01 1.1E+02 4.4E+02 6.5E+01
Retene 2.1E+02 3.3E+02 3.5E+02 2.6E+02 ND 7.4E+01 1.7E+02 3.8E+02 5.7E+01
Benzo[b]fluorene 1.3E+02 2.4E+02 1.7E+02 1.2E+02 ND 5.1E+01 1.4E+02 5.5E+02 6.4E+01
Cyclopenta[c,d]pyrene 3.0E+00 1.3E+01 4.0E+00 2.4E+00 ND 3.8E+00 1.7E+00 8.0E+01 7.9E-01
Benz[a]anthracene ND 3.4E+01 9.3E+00 2.4E+01 <BG 7.4E+00 1.8E+01 2.2E+02 3.2E+00
Chrysene+Triphenylene 8.2E+01 2.3E+02 2.1E+02 2.0E+02 1.4E+00 6.5E+01 1.4E+02 9.7E+02 4.5E+01
Napthacene ND ND ND ND ND ND ND ND ND
4-Methylchrysene ND 5.7E+00 2.8E+00 4.9E+00 <BG 1.1E+00 7.6E+00 1.8E+01 2.0E+00

Benzo[b]fluoranthene 3.1E+00 1.5E+01 7.9E+00 2.6E+01 3.1E+00 7.4E+00 3.4E+01 7.4E+01 2.8E+00
Benzo[k]fluoranthene ND 4.1E+00 ND 6.2E+00 <BG <BG 5.9E+00 1.8E+01 <BG
Dimethylbenz[a]anthracene ND ND ND ND <BG ND ND ND ND
Benzo[e]pyrene <BG 5.0E+00 2.1E+00 9.7E+00 2.0E+00 3.0E+00 1.4E+01 2.0E+01 1.3E+00
Benzo[a]pyrene ND ND ND ND <BG <BG ND 1.0E+01 ND
Perylene ND ND ND ND <BG ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND <BG ND 7.6E+00 ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND 6.7E-01 1.8E+00 ND 6.9E+00 ND
Anthanthrene ND ND ND ND ND ND ND ND ND
Coronene ND ND ND ND ND ND ND ND ND  
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Sample ID MT 11 MT 12 MT 13 MT 16 MT 17 MT 18 MT 19 MT 20
Start Date 040802 040902 041002 041402 041502 041602 041602 041702
Start Time 1720 1835 1905 1555 1834 0846 1957 0855

Stop Date 040902 041002 041102 041502 041602 041602 041702 041702
Stop Time 1808 1823 1826 1802 742 1854 735 1759

Media PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 48.4% 50.9% 39.0% 56.5% 46.6% 59.6% 38.9% 39.9%
d10-Fluorene 1117.4% 82.1% 70.7% 78.0% 76.5% 105.9% 68.2% 48.8%
d10-Fluoranthene 188.7% 111.0% 103.9% 189.3% 121.4% 176.7% 161.6% 55.6%
d12-Perylene 105.8% 101.1% 62.2% 90.1% 87.7% 98.5% 94.8% 41.8%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 3.1E+02 3.1E+02 1.7E+02 2.6E+02 2.3E+03 5.0E+02 3.6E+03 2.4E+02
2-Methylnaphthalene 5.4E+02 3.6E+02 2.5E+02 2.9E+02 3.3E+03 6.8E+02 4.5E+03 3.2E+02
Azulene 1.1E+00 8.2E-01 ND 6.0E-01 1.6E+01 1.7E+01 ND 8.2E+00
1-Methylnaphthalene 2.4E+02 1.3E+02 8.7E+01 1.2E+02 1.4E+03 2.7E+02 1.9E+03 1.2E+02
Biphenyl 1.9E+02 8.8E+01 6.7E+01 6.1E+01 8.6E+02 2.1E+02 1.0E+03 1.1E+02
2,7-Dimethylnaphthalene 4.2E+02 1.6E+02 1.4E+02 1.6E+02 1.8E+03 3.4E+02 2.1E+03 1.7E+02
1,3-Dimethylnaphthalene 4.6E+02 1.6E+02 1.4E+02 1.4E+02 1.9E+03 3.3E+02 2.5E+03 1.9E+02
1,6-Dimethylnaphthalene 2.8E+02 8.6E+01 7.4E+01 8.9E+01 1.1E+03 2.1E+02 1.4E+03 1.0E+02
1,4-Dimethylnaphthalene 2.1E+02 8.4E+01 5.5E+01 5.5E+01 7.1E+02 4.1E+02 9.3E+02 1.1E+02
1,5-Dimethylnaphthalene 2.4E+02 2.1E+01 1.3E+01 1.4E+01 1.8E+02 4.4E+01 2.6E+02 2.1E+01
Acenapthylene 1.0E+02 1.3E+02 1.2E+02 4.6E+01 7.8E+02 9.3E+01 1.4E+03 4.8E+01
1,2-Dimethylnapthalene 9.8E+01 3.3E+01 4.1E+01 3.3E+01 4.0E+02 7.7E+01 5.7E+02 4.8E+01
1,8-Dimethylnapthalene <BG ND <BG ND <BG ND ND <BG
Acenapthene 6.5E+02 1.4E+02 6.5E+01 2.6E+02 3.2E+03 5.7E+02 5.0E+03 2.0E+02

2,3,5-Trimethylnapthalene 9.4E+02 2.1E+02 1.4E+02 2.2E+02 3.4E+03 4.2E+02 4.8E+03 1.5E+02
Fluorene 2.5E+03 9.4E+02 3.5E+02 9.1E+02 1.2E+04 2.0E+03 2.0E+04 7.3E+02
1-Methylfuorene 1.4E+03 6.3E+02 4.5E+02 4.5E+02 3.5E+03 6.7E+02 4.9E+03 2.9E+02
Dibenzothiophene 2.4E+03 1.2E+03 9.4E+02 1.6E+03 5.0E+03 1.7E+03 6.2E+03 9.4E+02
Phenanthrene 2.4E+04 1.5E+04 1.1E+04 2.4E+04 7.1E+04 2.3E+04 7.9E+04 1.4E+04
Anthracene 7.7E+02 7.1E+02 7.1E+02 9.4E+02 2.9E+03 7.7E+02 2.9E+03 5.1E+02
2-Methyldibenzothiophene 2.9E+03 1.1E+03 1.4E+03 2.1E+03 3.1E+03 2.0E+03 3.5E+03 8.1E+02
4-Methyldibenzothiophene 2.1E+03 7.7E+02 1.0E+03 1.3E+03 2.0E+03 1.7E+03 2.3E+03 7.2E+02
2-Methylphenanthrene 6.1E+03 3.6E+03 3.9E+03 6.0E+03 8.8E+03 7.0E+03 9.4E+03 3.2E+03
2-Methylanthracene 3.5E+03 1.5E+02 2.3E+02 6.1E+01 4.3E+02 1.3E+02 4.1E+02 5.7E+01
4,5-Methylenephenanthrene 1.0E+03 8.5E+02 7.0E+02 1.2E+03 2.4E+03 1.7E+03 2.3E+03 1.0E+03
1-Methylanthracene 3.2E+03 1.9E+03 2.1E+03 2.9E+03 4.3E+03 4.1E+03 4.9E+03 1.7E+03
1-Methylphenanthrene 2.8E+03 1.5E+03 1.7E+03 2.5E+03 3.6E+03 3.2E+03 3.8E+03 1.5E+03
9-Methylanthracene 6.2E+01 3.8E+01 4.7E+01 6.5E+01 8.1E+01 1.1E+02 8.0E+01 3.2E+01

9,10-Dimethylanthracene 2.6E+03 9.5E+02 1.1E+03 1.8E+03 2.3E+03 2.6E+03 3.0E+03 8.2E+02
Fluoranthene 7.8E+03 5.3E+03 3.1E+03 9.0E+03 1.7E+04 2.4E+04 1.7E+04 1.1E+04
3,6-Dimethylphenanthrene 6.7E+02 ND 1.9E+02 4.2E+02 ND ND 5.1E+02 1.1E+02
Pyrene 5.9E+03 3.3E+03 3.8E+03 6.0E+03 9.9E+03 1.7E+04 1.1E+04 5.7E+03
3,6-Dimethylphenanthrene 6.7E+02 ND 1.9E+02 4.2E+02 ND ND 5.1E+02 1.1E+02
Benzo[a]fluorene 6.0E+02 1.0E+02 1.2E+02 1.9E+02 2.7E+02 4.6E+02 2.8E+02 1.1E+02
Retene 5.3E+02 1.6E+02 1.7E+02 3.7E+02 3.6E+02 8.7E+02 4.7E+02 2.4E+02
Benzo[b]fluorene 2.8E+02 1.1E+02 1.3E+02 1.6E+02 2.4E+02 2.9E+02 2.8E+02 1.0E+02
Cyclopenta[c,d]pyrene 2.3E+02 1.3E+01 9.6E+00 3.7E+00 6.3E+01 1.6E+01 3.8E+01 9.1E+00
Benz[a]anthracene 4.2E+01 1.8E+01 2.1E+01 3.7E+01 1.0E+02 1.1E+02 5.9E+01 2.3E+01
Chrysene+Triphenylene 4.9E+02 1.1E+02 1.1E+02 2.9E+02 3.3E+02 8.6E+02 2.7E+02 2.1E+02
Napthacene 8.2E+02 ND 1.7E+00 ND 8.3E+00 1.3E+01 1.3E+01 ND
4-Methylchrysene 3.8E+01 1.8E+00 1.9E+00 6.4E+00 9.7E+00 2.2E+01 1.1E+01 4.9E+00

Benzo[b]fluoranthene 4.5E+01 1.4E+01 6.1E+00 4.6E+01 2.1E+01 1.2E+02 1.5E+01 2.2E+01
Benzo[k]fluoranthene 4.2E+01 ND <BG 8.1E+00 6.7E+00 3.4E+01 5.1E+00 4.8E+00
Dimethylbenz[a]anthracene 3.5E+00 ND ND ND ND ND ND ND
Benzo[e]pyrene 1.3E+01 4.9E+00 3.4E+00 1.9E+01 9.0E+00 5.1E+01 4.6E+00 8.5E+00
Benzo[a]pyrene <BG ND 4.2E+00 ND 5.2E+00 ND ND 6.8E+00
Perylene <BG ND ND ND ND ND ND ND
3-Methylchloanthrene <BG ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene <BG ND 1.6E+00 ND ND ND ND ND
Dibenz[a,h+ac]anthracene 4.8E-01 ND ND ND ND ND ND ND
Benzo[g,h,i]perylene 7.8E-01 ND 3.3E+00 ND ND ND ND ND
Anthanthrene <BG ND ND ND ND ND ND ND
Coronene <BG ND ND ND ND ND ND ND  
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Sample ID MT 21 MT 22 MT 23 MT 24 MT 25 MT 26 MT 27 MT 28
Start Date 041702 042202 042302 042302 042402 042402 042502 042502
Start Time 1856 1833 0834 1942 0913 1926 0855 1840

Stop Date 041802 042302 042302 042402 042402 042502 042502 042602
Stop Time 1745 808 1839 807 1933 800 1814 1843

Media PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 42.5% 54.7% 57.8% 77.2% 64.8% 58.5% 56.9% 56.0%
d10-Fluorene 73.5% 370.0% 146.0% 152.4% 119.8% 121.1% 124.8% 107.0%
d10-Fluoranthene 175.6% 105.8% 130.6% 143.7% 140.2% 177.1% 182.8% 197.4%
d12-Perylene 105.0% 103.2% 104.4% 93.4% 90.2% 96.5% 101.8% 96.2%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 3.4E+02 1.9E+03 8.1E+02 6.2E+03 8.2E+02 1.3E+03 8.1E+02 2.8E+02
2-Methylnaphthalene 7.0E+02 2.7E+03 1.3E+03 1.1E+04 1.2E+03 1.9E+03 1.2E+03 4.2E+02
Azulene 1.4E+01 1.2E+01 3.2E+00 3.5E+01 4.7E+00 4.5E+00 2.7E+00 1.7E+00
1-Methylnaphthalene 2.9E+02 1.2E+03 4.8E+02 4.8E+03 5.2E+02 8.2E+02 5.3E+02 1.8E+02
Biphenyl 2.0E+02 6.9E+02 3.4E+02 2.6E+03 3.7E+02 4.5E+02 2.8E+02 1.3E+02
2,7-Dimethylnaphthalene 4.8E+02 1.8E+03 8.1E+02 6.0E+03 7.1E+02 1.1E+03 6.7E+02 3.5E+02
1,3-Dimethylnaphthalene 5.1E+02 2.0E+03 7.5E+02 7.1E+03 8.1E+02 1.2E+03 7.5E+02 3.6E+02
1,6-Dimethylnaphthalene 3.0E+02 1.1E+03 4.9E+02 4.0E+03 4.9E+02 6.9E+02 4.2E+02 2.3E+02
1,4-Dimethylnaphthalene 2.4E+02 8.2E+02 2.4E+02 2.1E+03 2.7E+02 3.8E+02 2.6E+02 1.1E+02
1,5-Dimethylnaphthalene 5.1E+01 9.2E+02 7.8E+01 8.2E+02 1.1E+02 1.4E+02 8.8E+01 4.9E+01
Acenapthylene 1.3E+02 9.2E+02 2.3E+02 2.5E+03 2.0E+02 1.9E+02 2.2E+02 4.8E+01
1,2-Dimethylnapthalene 1.1E+02 4.0E+02 1.8E+02 1.4E+03 1.7E+02 2.3E+02 1.8E+02 8.0E+01
1,8-Dimethylnapthalene 2.1E+01 3.6E+01 <BG <BG <BG <BG <BG <BG
Acenapthene 7.1E+02 7.6E+02 5.9E+02 4.8E+03 7.3E+02 5.4E+02 6.6E+02 2.3E+02

2,3,5-Trimethylnapthalene 6.7E+02 2.1E+03 1.2E+03 6.0E+03 1.5E+03 1.4E+03 1.7E+03 5.1E+02
Fluorene 2.9E+03 3.4E+03 3.4E+03 7.5E+03 4.7E+03 2.8E+03 4.1E+03 1.4E+03
1-Methylfuorene 7.3E+02 1.1E+03 1.4E+03 2.1E+03 1.6E+03 9.0E+02 1.8E+03 1.4E+03
Dibenzothiophene 1.3E+03 8.1E+02 1.3E+03 1.2E+03 1.4E+03 8.4E+02 1.4E+03 1.5E+03
Phenanthrene 1.6E+04 7.5E+03 1.4E+04 1.2E+04 1.3E+04 6.9E+03 1.4E+04 1.8E+04
Anthracene 5.4E+02 3.9E+02 6.5E+02 5.3E+02 4.5E+02 7.2E+03 5.2E+02 7.5E+02
2-Methyldibenzothiophene 1.1E+03 5.9E+02 8.3E+02 1.1E+03 9.6E+02 4.6E+02 9.3E+02 1.1E+03
4-Methyldibenzothiophene 9.7E+02 3.7E+02 5.0E+02 6.7E+02 6.2E+02 3.0E+02 5.7E+02 6.6E+02
2-Methylphenanthrene 4.6E+03 1.4E+03 2.6E+03 2.6E+03 2.3E+03 1.2E+03 2.7E+03 3.6E+03
2-Methylanthracene 1.5E+02 5.5E+01 4.5E+01 3.9E+01 ND 1.0E+01 9.4E+01 5.4E+01
4,5-Methylenephenanthrene 1.3E+03 3.7E+02 5.9E+02 5.3E+02 4.5E+02 2.5E+02 5.2E+02 7.1E+02
1-Methylanthracene 2.5E+03 6.8E+02 1.3E+03 1.3E+03 1.2E+03 6.1E+02 1.3E+03 1.8E+03
1-Methylphenanthrene 2.1E+03 5.9E+02 1.1E+03 1.1E+03 9.7E+02 5.2E+02 1.2E+03 1.5E+03
9-Methylanthracene 6.0E+01 ND ND ND ND ND ND 3.6E+01

9,10-Dimethylanthracene 1.7E+03 3.5E+02 8.6E+02 9.3E+02 6.8E+02 5.4E+02 1.4E+03 1.8E+03
Fluoranthene 1.5E+04 1.6E+03 4.2E+03 2.7E+03 3.3E+03 2.8E+03 4.8E+03 5.9E+03
3,6-Dimethylphenanthrene 3.4E+02 3.7E+01 7.9E+01 ND 4.9E+01 1.1E+02 3.0E+02 2.4E+02
Pyrene 9.4E+03 1.3E+03 2.9E+03 2.4E+03 2.1E+03 2.0E+03 3.9E+03 5.2E+03
3,6-Dimethylphenanthrene 3.4E+02 3.7E+01 7.9E+01 ND 4.9E+01 1.1E+02 3.0E+02 2.4E+02
Benzo[a]fluorene 2.9E+02 3.6E+01 7.4E+01 5.0E+01 1.3E+02 1.2E+02 1.1E+02 1.7E+02
Retene 3.7E+02 3.7E+01 9.3E+01 6.8E+01 9.4E+01 1.1E+02 2.4E+02 1.8E+02
Benzo[b]fluorene 2.5E+02 4.8E+01 4.8E+01 8.0E+01 6.1E+01 1.3E+02 1.2E+02 1.8E+02
Cyclopenta[c,d]pyrene 7.9E+00 <BG ND ND ND ND ND 9.8E+00
Benz[a]anthracene 5.8E+01 4.7E+00 4.4E+00 ND 3.0E+00 6.4E+00 2.4E+01 ND
Chrysene+Triphenylene 3.2E+02 4.1E+00 2.6E+01 2.9E+01 3.5E+01 1.5E+02 1.2E+02 1.3E+02
Napthacene ND 5.1E+01 ND ND ND ND 6.0E+00 ND
4-Methylchrysene 5.4E+00 <BG ND ND 5.4E+00 1.2E+01 5.6E+00 3.5E+00

Benzo[b]fluoranthene 1.3E+01 <BG ND ND 1.2E+01 5.4E+01 2.5E+01 6.2E+00
Benzo[k]fluoranthene ND <BG ND ND <BG 1.3E+01 ND ND
Dimethylbenz[a]anthracene ND <BG ND ND ND ND ND ND
Benzo[e]pyrene 2.8E+00 <BG ND ND ND 2.5E+01 1.6E+01 ND
Benzo[a]pyrene ND <BG ND ND ND ND ND ND
Perylene ND <BG ND ND ND ND ND ND
3-Methylchloanthrene ND <BG ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND <BG ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND <BG ND ND ND ND ND ND
Benzo[g,h,i]perylene ND <BG ND ND ND ND ND ND
Anthanthrene ND <BG ND ND ND ND ND ND
Coronene ND <BG ND ND ND ND ND ND  
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Sample ID MT 29 MT 30 MT 31 MT 32 MT 33 MT 34
Start Date 042602 042702 042802 042902 070902 071002
Start Time 1905 1710 1655 1734 1705 1845

Stop Date 042702 042802 042902 043002 071002 071102
Stop Time 1700 1645 1720 1704 1745 1805

Media PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 63.3% 69.1% 56.4% 60.2% 66.1% 77.3%
d10-Fluorene 101.1% 102.1% 126.3% 124.8% 141.0% 130.5%
d10-Fluoranthene 198.5% 113.3% 124.5% 252.0% 170.2% 142.4%
d12-Perylene 92.7% 99.1% 107.5% 90.3% 110.3% 117.5%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 2.0E+02 4.1E+02 4.9E+02 3.1E+02 9.6E+01 1.2E+02
2-Methylnaphthalene 2.8E+02 9.0E+02 5.8E+02 4.8E+02 1.5E+02 1.6E+02
Azulene 1.1E+01 2.8E+00 1.6E+00 2.2E+00 2.1E+00 2.2E+00
1-Methylnaphthalene 1.0E+02 4.1E+02 2.3E+02 1.9E+02 7.0E+01 7.2E+01
Biphenyl 8.5E+01 2.7E+02 1.4E+02 1.6E+02 4.6E+01 5.0E+01
2,7-Dimethylnaphthalene 1.4E+02 6.7E+02 3.0E+02 3.7E+02 1.1E+02 1.1E+02
1,3-Dimethylnaphthalene 1.7E+02 7.3E+02 3.0E+02 3.5E+02 1.0E+02 1.5E+02
1,6-Dimethylnaphthalene 7.8E+01 4.5E+02 1.8E+02 2.4E+02 5.5E+01 7.5E+01
1,4-Dimethylnaphthalene 5.2E+01 2.6E+02 1.1E+02 1.2E+02 5.4E+01 6.2E+01
1,5-Dimethylnaphthalene 1.9E+01 8.5E+01 2.8E+01 4.8E+01 1.1E+01 1.6E+01
Acenapthylene 4.3E+01 1.4E+02 1.9E+02 4.2E+01 5.8E+01 4.6E+01
1,2-Dimethylnapthalene 5.1E+01 1.3E+02 7.0E+01 7.6E+01 2.5E+01 2.9E+01
1,8-Dimethylnapthalene <BG ND <BG <BG ND <BG
Acenapthene 1.1E+02 3.1E+02 2.2E+02 3.4E+02 1.4E+02 2.3E+02

2,3,5-Trimethylnapthalene 1.5E+02 8.0E+02 4.5E+02 7.6E+02 1.6E+02 1.8E+02
Fluorene 6.1E+02 1.8E+03 1.3E+03 1.8E+03 6.3E+02 7.9E+02
1-Methylfuorene 8.2E+02 1.4E+03 6.8E+02 1.2E+03 3.7E+02 3.6E+02
Dibenzothiophene 1.5E+03 1.9E+03 8.9E+02 1.0E+03 7.1E+02 7.1E+02
Phenanthrene 1.6E+04 2.3E+04 1.1E+04 1.4E+04 1.2E+04 9.8E+03
Anthracene 6.1E+02 8.7E+02 4.5E+02 4.7E+02 5.7E+02 5.4E+02
2-Methyldibenzothiophene 1.6E+03 1.3E+03 7.4E+02 8.2E+02 9.9E+02 6.8E+02
4-Methyldibenzothiophene 1.0E+03 8.1E+02 4.6E+02 5.0E+02 8.3E+02 5.1E+02
2-Methylphenanthrene 4.2E+03 3.2E+03 2.5E+03 2.8E+03 4.3E+03 2.1E+03
2-Methylanthracene 1.4E+02 1.3E+02 9.4E+01 1.9E+01 1.4E+02 8.8E+01
4,5-Methylenephenanthrene 7.3E+02 8.5E+02 5.5E+02 4.8E+02 1.2E+03 5.9E+02
1-Methylanthracene 2.1E+03 1.7E+03 1.2E+03 1.3E+03 2.2E+03 1.1E+03
1-Methylphenanthrene 1.8E+03 1.4E+03 1.1E+03 1.1E+03 1.9E+03 9.6E+02
9-Methylanthracene 4.9E+01 3.2E+01 2.6E+01 ND 4.8E+01 2.3E+01

9,10-Dimethylanthracene 2.1E+03 8.1E+02 7.5E+02 1.8E+03 1.4E+03 6.2E+02
Fluoranthene 5.5E+03 5.1E+03 3.4E+03 6.3E+03 1.2E+04 3.9E+03
3,6-Dimethylphenanthrene 3.4E+02 1.7E+02 1.5E+02 2.0E+02 1.3E+02 4.4E+01
Pyrene 5.0E+03 3.1E+03 2.3E+03 4.3E+03 6.3E+03 2.6E+03
3,6-Dimethylphenanthrene 3.4E+02 1.7E+02 1.5E+02 2.0E+02 1.3E+02 4.4E+01
Benzo[a]fluorene 1.4E+02 1.1E+02 8.7E+01 1.2E+02 1.6E+02 7.1E+01
Retene 2.4E+02 2.0E+02 1.1E+02 1.9E+02 2.4E+02 1.2E+02
Benzo[b]fluorene 1.5E+02 1.3E+02 8.7E+01 8.7E+01 1.6E+02 8.0E+01
Cyclopenta[c,d]pyrene 8.0E+00 1.4E+01 1.1E+01 ND 1.3E+01 6.5E+00
Benz[a]anthracene 1.1E+01 3.4E+01 2.2E+01 ND 2.5E+01 1.3E+01
Chrysene+Triphenylene 1.9E+02 1.6E+02 8.8E+01 1.5E+02 1.9E+02 8.0E+01
Napthacene 3.1E+02 3.7E+00 ND ND ND ND
4-Methylchrysene 7.7E+00 7.5E+00 5.5E+00 4.3E+00 2.8E+00 1.6E+00

Benzo[b]fluoranthene 2.3E+01 1.2E+01 1.3E+01 6.0E+00 9.8E+00 6.5E+00
Benzo[k]fluoranthene ND 2.5E+00 4.0E+00 3.3E+00 1.8E+00 <BG
Dimethylbenz[a]anthracene ND ND ND ND ND ND
Benzo[e]pyrene 9.4E+00 4.0E+00 5.6E+00 ND 3.7E+00 3.3E+00
Benzo[a]pyrene 4.2E+00 ND ND ND <BG ND
Perylene ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND ND ND
Anthanthrene ND ND ND ND ND ND
Coronene ND ND ND ND ND ND  
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Sample ID MT 35 MT 37 MT 38 MT 39 MT 40 MT 41 MT 42 MT 43
Start Date 071102 071302 071402 071502 071602 071702 071802 071902
Start Time 1915 1923 1921 1903 1850 1905 1853 1935

Stop Date 071202 071402 071502 071602 071702 071802 071902 072002
Stop Time 1720 1811 1757 1754 1801 1804 1850 1828

Media PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 77.4% 68.3% 83.3% 77.6% 63.1% 60.2% 67.8% 84.3%
d10-Fluorene 112.3% 6541.3% 131.8% 132.4% 138.2% 130.6% 124.7% 165.1%
d10-Fluoranthene 203.0% 143.7% 177.9% 137.3% 206.7% 151.8% 188.5% 192.9%
d12-Perylene 114.4% 118.0% 121.6% 111.4% 122.8% 112.2% 125.0% 133.4%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 1.9E+02 1.4E+02 1.3E+02 1.1E+02 1.4E+02 1.2E+02 3.1E+02 2.8E+02
2-Methylnaphthalene 2.4E+02 1.4E+02 1.6E+02 1.6E+02 1.6E+02 1.6E+02 4.4E+02 3.5E+02
Azulene 2.1E+00 1.1E+00 2.2E+00 3.7E+00 ND ND 3.7E+01 3.9E+00
1-Methylnaphthalene 8.6E+01 5.8E+01 6.0E+01 6.5E+01 6.8E+01 6.9E+01 2.0E+02 1.5E+02
Biphenyl 8.8E+01 4.6E+01 5.5E+01 5.1E+01 6.0E+01 4.0E+01 1.1E+02 8.8E+01
2,7-Dimethylnaphthalene 1.5E+02 7.5E+01 1.1E+02 1.1E+02 1.3E+02 8.2E+01 1.5E+02 2.5E+02
1,3-Dimethylnaphthalene 1.2E+02 5.9E+01 9.4E+01 9.9E+01 1.1E+02 8.3E+01 2.8E+02 1.9E+02
1,6-Dimethylnaphthalene 6.7E+01 3.5E+01 5.4E+01 5.0E+01 5.7E+01 4.4E+01 1.6E+02 1.1E+02
1,4-Dimethylnaphthalene 7.1E+01 4.5E+01 6.6E+01 5.6E+01 4.8E+01 4.2E+01 9.3E+01 7.2E+01
1,5-Dimethylnaphthalene 1.5E+01 7.6E+00 1.1E+01 1.2E+01 9.4E+00 9.1E+00 6.3E+01 2.3E+01
Acenapthylene 4.3E+01 3.4E+01 3.0E+01 2.7E+01 4.2E+01 2.8E+01 1.3E+02 7.9E+01
1,2-Dimethylnapthalene 4.8E+01 1.6E+01 2.2E+01 3.3E+01 2.5E+01 2.0E+01 8.2E+01 4.6E+01
1,8-Dimethylnapthalene 2.2E+01 <BG <BG <BG <BG <BG <BG <BG
Acenapthene 1.4E+02 8.4E+01 1.6E+02 2.4E+02 2.7E+02 2.1E+02 5.4E+02 3.6E+02

2,3,5-Trimethylnapthalene 1.1E+02 6.6E+01 1.1E+02 1.0E+02 1.6E+02 9.8E+01 2.4E+02 1.9E+02
Fluorene 6.9E+02 3.9E+02 5.3E+02 8.0E+02 1.0E+03 5.8E+02 1.3E+03 1.0E+03
1-Methylfuorene 3.4E+02 2.3E+02 2.2E+02 1.8E+02 3.3E+02 1.7E+02 2.9E+02 2.2E+02
Dibenzothiophene 1.2E+03 9.2E+02 6.0E+02 7.5E+02 1.1E+03 4.2E+02 6.9E+02 4.9E+02
Phenanthrene 1.6E+04 1.6E+04 8.7E+03 1.2E+04 1.7E+04 5.8E+03 9.9E+03 6.5E+03
Anthracene 7.3E+02 4.8E+02 4.9E+02 6.9E+02 8.3E+02 2.3E+02 3.1E+02 2.1E+02
2-Methyldibenzothiophene 1.4E+03 7.2E+02 6.2E+02 5.2E+02 1.3E+03 3.9E+02 6.9E+02 4.4E+02
4-Methyldibenzothiophene 1.2E+03 5.2E+02 5.5E+02 4.8E+02 1.3E+03 3.5E+02 6.0E+02 4.0E+02
2-Methylphenanthrene 5.2E+03 2.0E+03 2.7E+03 2.3E+03 7.0E+03 1.8E+03 2.9E+03 1.9E+03
2-Methylanthracene 2.1E+02 3.8E+01 1.1E+02 7.7E+01 3.1E+02 4.6E+01 5.2E+01 4.3E+01
4,5-Methylenephenanthrene 1.2E+03 7.0E+02 7.7E+02 8.7E+02 2.3E+03 5.6E+02 8.1E+02 5.2E+02
1-Methylanthracene 2.7E+03 1.0E+03 1.4E+03 1.1E+03 3.7E+03 9.3E+02 1.4E+03 1.0E+03
1-Methylphenanthrene 2.4E+03 8.7E+02 1.2E+03 1.1E+03 3.2E+03 8.8E+02 1.3E+03 9.2E+02
9-Methylanthracene 6.1E+01 2.3E+01 2.7E+01 1.8E+01 7.1E+01 2.0E+01 3.5E+01 6.7E+00

9,10-Dimethylanthracene 1.8E+03 5.4E+02 1.1E+03 8.5E+02 2.0E+03 8.4E+02 1.2E+03 7.8E+02
Fluoranthene 1.0E+04 6.2E+03 8.5E+03 1.2E+04 1.9E+04 9.6E+03 1.0E+04 9.3E+03
3,6-Dimethylphenanthrene 3.0E+02 4.2E+01 1.3E+02 8.3E+01 2.0E+02 8.6E+01 2.1E+01 9.7E+01
Pyrene 7.4E+03 2.8E+03 4.9E+03 5.8E+03 1.2E+04 5.1E+03 5.4E+03 5.1E+03
3,6-Dimethylphenanthrene 3.0E+02 4.2E+01 1.3E+02 8.3E+01 2.0E+02 8.6E+01 2.1E+01 9.7E+01
Benzo[a]fluorene 2.2E+02 6.7E+01 1.2E+02 1.1E+02 3.5E+02 1.3E+02 1.3E+02 1.3E+02
Retene 3.6E+02 1.4E+02 2.4E+02 1.8E+02 4.3E+02 2.2E+02 2.4E+02 2.6E+02
Benzo[b]fluorene 2.0E+02 8.5E+01 1.2E+02 1.1E+02 3.7E+02 1.4E+02 1.9E+02 1.3E+02
Cyclopenta[c,d]pyrene 1.9E+01 8.6E+00 1.5E+01 9.5E+00 5.8E+01 1.7E+01 1.5E+01 1.4E+01
Benz[a]anthracene 4.2E+01 1.5E+01 3.0E+01 1.4E+01 1.5E+02 2.7E+01 2.1E+01 2.1E+01
Chrysene+Triphenylene 2.3E+02 1.0E+02 1.5E+02 1.6E+02 4.4E+02 1.9E+02 1.7E+02 1.8E+02
Napthacene 3.5E+00 ND ND ND ND ND ND ND
4-Methylchrysene 6.0E+00 2.1E+00 3.6E+00 2.4E+00 1.4E+01 4.3E+00 9.5E+00 5.0E+00

Benzo[b]fluoranthene 1.0E+01 8.4E+00 2.1E+01 4.2E+00 5.4E+01 5.9E+00 6.2E+00 2.1E+01
Benzo[k]fluoranthene 1.9E+00 <BG 3.8E+00 ND 8.7E+00 <BG <BG 5.1E+00
Dimethylbenz[a]anthracene ND ND ND ND ND ND ND ND
Benzo[e]pyrene 4.3E+00 2.7E+00 8.4E+00 1.6E+00 1.5E+01 2.8E+00 ND 8.0E+00
Benzo[a]pyrene ND ND ND ND ND ND ND ND
Perylene ND ND ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND 1.7E+00 ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND ND ND ND ND
Anthanthrene ND ND ND ND ND ND 1.1E+00 ND
Coronene ND ND ND ND ND ND ND ND  
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Sample ID MT 44 MT 45 MT 46 MT 47 MT 49 Back MT 49 MT 50 MT 50 Back MT 51
Start Date 072002 072102 072202 072302 072902 072902 072902 072902 072902
Start Time 1849 1819 1832 734 620 620 1206 1206 1854

Stop Date 072102 072202 072302 072402 072902 072902 072902 072902 073002
Stop Time 1800 1740 727 800 1124 1124 1758 1758 605

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 78.4% 27.8% 85.2% 67.9% 76.9% 79.4% 81.1% 49.8% 77.5%
d10-Fluorene 155.1% 427.2% 70.2% 11951.4% 137.6% 80.2% 130.5% 61.1% 111.1%
d10-Fluoranthene 153.8% 87.6% 137.3% 145.5% 110.5% 130.4% 136.9% 86.3% 146.4%
d12-Perylene 130.1% 39.2% 86.9% 113.5% 116.9% 89.0% 121.4% 82.0% 114.2%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 1.5E+02 1.2E+02 7.2E+02 2.6E+02 3.0E+02 4.0E+02 5.9E+02 2.5E+02 9.9E+02
2-Methylnaphthalene 2.1E+02 1.6E+02 1.1E+03 3.4E+02 3.7E+02 4.9E+02 7.6E+02 4.2E+02 1.5E+03
Azulene 5.0E+00 5.8E+00 8.4E+00 2.8E+00 3.3E+00 8.1E+00 ND ND 1.2E+01
1-Methylnaphthalene 9.4E+01 6.5E+01 5.6E+02 1.6E+02 1.6E+02 2.2E+02 3.1E+02 1.3E+02 7.1E+02
Biphenyl 7.5E+01 4.9E+01 4.9E+02 1.0E+02 1.5E+02 2.1E+02 2.2E+02 8.6E+01 4.8E+02
2,7-Dimethylnaphthalene 1.5E+02 1.1E+02 1.1E+03 2.2E+02 2.5E+02 3.2E+02 3.9E+02 1.5E+02 1.0E+03
1,3-Dimethylnaphthalene 1.5E+02 1.1E+02 1.1E+03 2.3E+02 2.6E+02 3.1E+02 3.3E+02 1.7E+02 1.2E+03
1,6-Dimethylnaphthalene 8.2E+01 5.8E+01 6.3E+02 1.3E+02 1.4E+02 1.8E+02 2.1E+02 9.6E+01 6.7E+02
1,4-Dimethylnaphthalene 8.7E+01 6.7E+01 4.0E+02 1.1E+02 1.0E+02 1.9E+02 1.2E+02 1.5E+02 4.0E+02
1,5-Dimethylnaphthalene 1.3E+01 9.1E+00 1.3E+02 2.2E+01 2.1E+01 3.9E+01 4.1E+01 2.3E+01 1.3E+02
Acenapthylene 6.1E+01 3.3E+01 3.2E+02 1.2E+02 8.5E+01 1.2E+02 9.6E+01 4.8E+01 2.7E+02
1,2-Dimethylnapthalene 3.9E+01 2.4E+01 2.4E+02 5.3E+01 5.6E+01 7.7E+01 6.9E+01 2.8E+02 2.2E+02
1,8-Dimethylnapthalene <BG <BG <BG <BG <BG ND <BG <BG <BG
Acenapthene 2.1E+02 1.3E+02 1.8E+03 2.3E+02 6.7E+02 8.7E+02 8.7E+02 4.4E+02 1.6E+03

2,3,5-Trimethylnapthalene 1.7E+02 1.2E+02 1.1E+03 2.5E+02 3.3E+02 3.8E+02 3.5E+02 2.0E+02 1.0E+03
Fluorene 9.9E+02 5.1E+02 6.3E+03 9.8E+02 1.9E+03 2.6E+03 2.7E+03 1.3E+03 4.1E+03
1-Methylfuorene 3.9E+02 2.1E+02 1.7E+03 4.4E+02 9.8E+02 1.0E+03 6.8E+02 3.9E+02 1.2E+03
Dibenzothiophene 9.8E+02 5.1E+02 3.1E+03 1.1E+03 9.9E+02 2.2E+03 2.0E+03 9.2E+02 2.5E+03
Phenanthrene 1.4E+04 6.5E+03 4.9E+04 1.5E+04 1.0E+04 3.0E+04 2.8E+04 1.1E+04 4.0E+04
Anthracene 3.9E+02 2.7E+02 1.1E+03 5.7E+02 5.3E+02 1.7E+03 1.7E+03 5.6E+02 8.6E+02
2-Methyldibenzothiophene 6.3E+02 5.9E+02 1.8E+03 8.5E+02 2.6E+02 1.5E+03 1.2E+03 3.3E+02 1.4E+03
4-Methyldibenzothiophene 4.9E+02 5.7E+02 1.3E+03 7.6E+02 9.7E+01 1.0E+03 9.2E+02 1.3E+02 9.8E+02
2-Methylphenanthrene 1.8E+03 2.8E+03 6.0E+03 3.4E+03 2.5E+02 4.6E+03 3.8E+03 3.7E+02 4.4E+03
2-Methylanthracene 5.9E+01 7.2E+01 6.8E+01 1.2E+02 1.3E+01 2.1E+02 1.7E+02 1.3E+01 9.4E+01
4,5-Methylenephenanthrene 6.3E+02 7.0E+02 1.9E+03 9.6E+02 8.3E+01 1.3E+03 1.6E+03 1.8E+02 1.8E+03
1-Methylanthracene 8.4E+02 1.5E+03 2.8E+03 1.7E+03 1.2E+02 2.3E+03 1.8E+03 1.8E+02 2.1E+03
1-Methylphenanthrene 7.8E+02 1.4E+03 2.4E+03 1.5E+03 9.0E+01 2.0E+03 1.7E+03 1.3E+02 1.9E+03
9-Methylanthracene ND 3.4E+01 ND ND ND ND ND ND 6.6E+00

9,10-Dimethylanthracene 4.6E+02 1.4E+03 1.5E+03 1.1E+03 1.5E+01 1.2E+03 1.0E+03 1.7E+01 1.1E+03
Fluoranthene 5.5E+03 1.1E+04 1.3E+04 1.2E+04 4.0E+01 1.2E+04 1.6E+04 9.4E+01 1.3E+04
3,6-Dimethylphenanthrene 8.8E+01 3.2E+02 1.3E+02 ND ND ND ND ND ND
Pyrene 2.6E+03 6.2E+03 6.6E+03 6.2E+03 <BG 6.8E+03 8.3E+03 4.2E+01 6.6E+03
3,6-Dimethylphenanthrene 8.8E+01 3.2E+02 1.3E+02 ND ND ND ND ND ND
Benzo[a]fluorene 6.7E+01 2.3E+02 1.5E+02 1.5E+02 ND 1.6E+02 1.6E+02 ND 1.5E+02
Retene 9.1E+01 3.6E+02 3.7E+02 2.6E+02 ND 3.4E+02 3.0E+02 ND 2.3E+02
Benzo[b]fluorene 6.7E+01 1.8E+02 1.7E+02 1.4E+02 ND 2.4E+02 1.6E+02 ND 1.7E+02
Cyclopenta[c,d]pyrene 3.2E+00 1.1E+01 1.3E+01 1.7E+01 ND 3.1E+01 1.4E+01 ND 1.3E+01
Benz[a]anthracene 1.1E+01 5.5E+01 1.8E+01 2.7E+01 ND 3.9E+01 4.8E+01 ND 2.1E+01
Chrysene+Triphenylene 6.3E+01 3.5E+02 2.0E+02 1.8E+02 ND 1.3E+02 2.6E+02 ND 1.4E+02
Napthacene ND ND ND ND ND ND ND ND ND
4-Methylchrysene ND 1.8E+01 7.4E+00 2.8E+00 ND <BG 7.7E+00 ND 2.8E+00

Benzo[b]fluoranthene 2.7E+00 5.3E+01 2.3E+01 8.4E+00 ND 1.3E+01 2.8E+01 ND 8.5E+00
Benzo[k]fluoranthene <BG 2.5E+00 3.8E+00 2.3E+00 ND <BG 7.6E+00 ND <BG
Dimethylbenz[a]anthracene ND 2.0E+00 ND ND ND ND ND ND ND
Benzo[e]pyrene ND 2.2E+01 9.5E+00 3.6E+00 ND ND 1.2E+01 ND 4.6E+00
Benzo[a]pyrene ND ND ND 4.2E+00 ND ND ND ND <BG
Perylene ND ND ND ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND ND ND ND ND ND
Anthanthrene ND ND ND ND ND ND ND ND ND
Coronene ND ND ND ND ND ND ND ND ND  
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Sample ID MT 52 MT 53 MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60
Start Date 073002 073002 073002 080102 080502 080602 080602 080602 080702
Start Time 650 1250 1824 1759 1900 100 700 1900 745

Stop Date 073002 073002 073102 080202 080602 080602 080602 080702 080702
Stop Time 1245 1814 750 807 100 700 1900 746 1900

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 85.6% 72.8% 71.9% 75.6% 67.4% 70.5% 59.4% 54.8% 61.1%
d10-Fluorene 139.4% 90.9% 126.5% 2315.2% 4680.6% 127.7% 119.7% 67.7% 74.0%
d10-Fluoranthene 135.8% 115.5% 163.6% 147.3% 131.7% 129.3% 150.1% 103.1% 119.0%
d12-Perylene 124.4% 84.3% 123.0% 96.9% 120.5% 132.0% 126.9% 79.0% 90.3%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 2.7E+02 5.0E+02 8.8E+02 8.3E+02 7.9E+02 9.2E+02 4.2E+02 6.0E+02 5.1E+02
2-Methylnaphthalene 4.0E+02 8.3E+02 1.3E+03 1.0E+03 8.7E+02 1.5E+03 5.8E+02 8.9E+02 7.0E+02
Azulene 4.0E+00 ND 6.1E+00 1.7E+01 ND ND ND ND ND
1-Methylnaphthalene 2.0E+02 4.1E+02 6.2E+02 4.4E+02 3.8E+02 7.2E+02 2.9E+02 4.0E+02 3.0E+02
Biphenyl 1.5E+02 2.9E+02 3.5E+02 3.2E+02 2.8E+02 4.5E+02 1.8E+02 2.8E+02 1.8E+02
2,7-Dimethylnaphthalene 2.7E+02 5.9E+02 8.4E+02 5.9E+02 2.9E+02 1.4E+03 4.5E+02 7.3E+02 3.9E+02
1,3-Dimethylnaphthalene 2.9E+02 6.7E+02 1.0E+03 5.4E+02 4.6E+02 1.5E+03 5.1E+02 7.2E+02 3.6E+02
1,6-Dimethylnaphthalene 1.6E+02 3.7E+02 5.6E+02 3.2E+02 2.8E+02 8.8E+02 2.8E+02 4.2E+02 2.1E+02
1,4-Dimethylnaphthalene 1.4E+02 3.1E+02 3.3E+02 1.9E+02 1.7E+02 5.0E+02 1.7E+02 2.4E+02 1.2E+02
1,5-Dimethylnaphthalene 3.5E+01 6.3E+01 1.2E+02 7.2E+01 5.7E+01 1.6E+02 5.6E+01 8.6E+01 3.9E+01
Acenapthylene 7.8E+01 1.6E+02 3.9E+02 2.7E+02 9.0E+01 3.5E+02 1.8E+02 2.6E+02 1.1E+02
1,2-Dimethylnapthalene 6.1E+01 1.5E+02 2.1E+02 1.5E+02 1.3E+02 3.5E+02 1.5E+02 1.7E+02 8.5E+01
1,8-Dimethylnapthalene <BG <BG <BG <BG <BG ND <BG ND <BG
Acenapthene 7.2E+02 1.8E+03 1.3E+03 6.9E+02 1.1E+03 1.4E+03 9.9E+02 9.0E+02 6.8E+02

2,3,5-Trimethylnapthalene 3.3E+02 9.5E+02 1.2E+03 6.7E+02 5.3E+02 1.8E+03 6.6E+02 9.5E+02 3.9E+02
Fluorene 2.2E+03 4.7E+03 5.2E+03 4.0E+03 3.6E+03 4.3E+03 3.1E+03 3.4E+03 1.9E+03
1-Methylfuorene 7.3E+02 1.2E+03 1.6E+03 1.5E+03 1.1E+03 1.2E+03 1.2E+03 1.2E+03 5.6E+02
Dibenzothiophene 1.8E+03 2.5E+03 2.6E+03 3.2E+03 2.3E+03 1.7E+03 2.4E+03 1.4E+03 1.3E+03
Phenanthrene 2.3E+04 3.2E+04 3.1E+04 4.3E+04 3.3E+04 2.1E+04 2.9E+04 1.6E+04 1.7E+04
Anthracene 1.5E+03 1.9E+03 1.0E+03 1.3E+03 6.1E+02 6.9E+02 1.8E+03 9.5E+02 1.1E+03
2-Methyldibenzothiophene 1.2E+03 1.4E+03 1.8E+03 1.9E+03 1.5E+03 1.1E+03 1.7E+03 1.1E+03 1.1E+03
4-Methyldibenzothiophene 8.8E+02 9.4E+02 1.2E+03 1.4E+03 1.0E+03 7.6E+02 1.3E+03 7.7E+02 8.4E+02
2-Methylphenanthrene 3.7E+03 3.7E+03 4.6E+03 6.1E+03 4.1E+03 2.7E+03 4.3E+03 2.7E+03 3.1E+03
2-Methylanthracene 1.9E+02 2.0E+02 1.9E+02 2.3E+02 5.2E+01 1.2E+02 1.6E+02 1.8E+02 1.3E+02
4,5-Methylenephenanthrene 1.2E+03 1.4E+03 1.2E+03 1.9E+03 1.3E+03 8.2E+02 1.4E+03 7.0E+02 9.2E+02
1-Methylanthracene 1.8E+03 1.7E+03 2.2E+03 2.8E+03 1.9E+03 1.3E+03 2.2E+03 1.3E+03 1.5E+03
1-Methylphenanthrene 1.7E+03 1.6E+03 1.9E+03 2.5E+03 1.7E+03 1.1E+03 1.9E+03 1.2E+03 1.3E+03
9-Methylanthracene 9.4E+00 4.7E+01 ND ND ND <BG ND ND ND

9,10-Dimethylanthracene 9.3E+02 9.2E+02 1.2E+03 1.8E+03 1.1E+03 6.1E+02 1.3E+03 6.9E+02 8.0E+02
Fluoranthene 9.7E+03 1.3E+04 8.7E+03 1.5E+04 9.6E+03 6.3E+03 1.1E+04 3.5E+03 7.5E+03
3,6-Dimethylphenanthrene ND ND ND ND 1.6E+02 ND ND ND ND
Pyrene 5.6E+03 7.0E+03 5.1E+03 7.7E+03 4.9E+03 3.3E+03 6.2E+03 2.5E+03 4.5E+03
3,6-Dimethylphenanthrene ND ND ND ND 1.6E+02 ND ND ND ND
Benzo[a]fluorene 1.2E+02 1.2E+02 1.3E+02 2.0E+02 1.3E+02 9.7E+01 1.4E+02 7.9E+01 1.1E+02
Retene 2.2E+02 1.9E+02 2.1E+02 2.7E+02 2.3E+02 1.5E+02 2.5E+02 1.1E+02 1.9E+02
Benzo[b]fluorene 2.0E+02 2.6E+02 1.6E+02 2.0E+02 1.4E+02 8.9E+01 1.3E+02 8.3E+01 1.0E+02
Cyclopenta[c,d]pyrene 1.9E+01 7.9E+00 1.4E+01 1.6E+01 1.1E+01 ND 4.1E+00 7.2E+00 3.3E+00
Benz[a]anthracene 2.9E+01 2.3E+01 2.4E+01 2.0E+01 1.9E+01 1.6E+01 9.1E+00 1.2E+01 1.1E+01
Chrysene+Triphenylene 1.3E+02 1.4E+02 1.3E+02 1.7E+02 1.3E+02 8.5E+01 1.3E+02 6.1E+01 1.0E+02
Napthacene ND ND ND ND ND ND ND ND ND
4-Methylchrysene 7.3E+00 ND 5.0E+00 1.0E+01 ND ND ND 2.1E+00 ND

Benzo[b]fluoranthene 1.8E+01 ND 1.1E+01 1.2E+01 2.2E+01 1.8E+01 1.3E+01 ND 7.2E+00
Benzo[k]fluoranthene <BG ND <BG 1.3E+01 ND 9.8E+00 6.0E+00 ND ND
Dimethylbenz[a]anthracene ND ND ND ND ND ND ND ND ND
Benzo[e]pyrene 9.3E+00 ND 3.8E+00 6.0E+00 4.4E+00 ND 8.8E+00 ND <BG
Benzo[a]pyrene <BG ND ND ND <BG ND 1.2E+01 ND ND
Perylene ND ND ND ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND ND ND ND ND ND
Anthanthrene ND ND ND ND ND ND ND ND ND
Coronene ND ND ND ND ND ND ND ND ND  
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Sample ID MT 61 MT 62 MT 63 MT 64 MT 65 MT 66 MT 67 MT 68 MT 69
Start Date 080702 080802 080802 012703 012803 012803 012803 012903 012903
Start Time 1900 800 1900 1830 1230 820 1800 30 745

Stop Date 080802 080802 080902 012803 012803 012803 012903 012903 012903
Stop Time 754 1900 803 802 800 1734 30 630 1831

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 57.3% 68.5% 37.3% 38.6% 48.1% 57.2% 47.8% 68.6% 80.9%
d10-Fluorene 54.8% 119.6% 45.1% 101.7% 97.7% 96.2% 62.8% 108.6% 88.1%
d10-Fluoranthene 110.3% 137.3% 117.0% 84.0% 88.0% 87.5% 81.8% 90.3% 104.1%
d12-Perylene 92.1% 123.3% 87.5% 87.0% 89.9% 91.2% 82.1% 88.2% 90.4%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 8.2E+02 3.5E+02 5.9E+02 1.2E+04 2.7E+04 1.4E+04 1.0E+04 2.9E+04 2.8E+04
2-Methylnaphthalene 1.3E+03 4.1E+02 6.8E+02 1.6E+04 3.4E+04 1.9E+04 1.5E+04 4.3E+04 3.7E+04
Azulene ND ND ND 8.9E+01 2.0E+02 5.3E+01 6.7E+01 1.7E+02 1.5E+02
1-Methylnaphthalene 6.2E+02 1.8E+02 2.8E+02 7.0E+03 1.5E+04 6.2E+03 6.6E+03 1.8E+04 1.6E+04
Biphenyl 3.5E+02 1.1E+02 2.1E+02 4.5E+03 6.7E+03 6.9E+03 4.7E+03 1.0E+04 8.5E+03
2,7-Dimethylnaphthalene 1.0E+03 2.3E+02 3.9E+02 1.0E+04 1.6E+04 1.0E+04 8.7E+03 2.7E+04 1.8E+04
1,3-Dimethylnaphthalene 1.1E+03 2.2E+02 3.9E+02 1.2E+04 1.7E+04 9.0E+03 9.4E+03 3.0E+04 2.1E+04
1,6-Dimethylnaphthalene 6.6E+02 1.3E+02 2.3E+02 6.4E+03 9.4E+03 5.6E+03 5.3E+03 1.7E+04 1.1E+04
1,4-Dimethylnaphthalene 3.6E+02 8.5E+01 1.5E+02 3.5E+03 4.3E+03 3.0E+03 2.8E+03 8.9E+03 6.7E+03
1,5-Dimethylnaphthalene 1.2E+02 2.2E+01 4.4E+01 1.2E+03 1.8E+03 9.8E+02 9.2E+02 2.4E+03 2.3E+03
Acenapthylene 3.5E+02 7.9E+01 3.4E+02 4.6E+03 6.9E+03 5.0E+03 4.1E+03 7.6E+03 1.8E+04
1,2-Dimethylnapthalene 2.4E+02 7.7E+01 1.1E+02 2.3E+03 3.0E+03 2.1E+03 1.8E+03 5.7E+03 4.3E+03
1,8-Dimethylnapthalene ND <BG <BG ND <BG <BG <BG <BG 8.6E+01
Acenapthene 9.8E+02 4.3E+02 4.6E+02 2.2E+03 2.4E+03 2.5E+03 2.4E+03 5.1E+03 4.7E+03

2,3,5-Trimethylnapthalene 1.4E+03 2.2E+02 5.7E+02 6.7E+03 6.9E+03 8.3E+03 4.4E+03 1.7E+04 1.6E+04
Fluorene 4.1E+03 1.3E+03 2.6E+03 5.9E+03 6.3E+03 8.7E+03 5.0E+03 1.2E+04 1.5E+04
1-Methylfuorene 1.6E+03 3.8E+02 1.2E+03 2.4E+03 2.3E+03 4.0E+03 1.7E+03 5.1E+03 5.6E+03
Dibenzothiophene 2.3E+03 1.0E+03 1.9E+03 1.2E+03 1.1E+03 1.2E+03 6.3E+02 2.4E+03 2.6E+03
Phenanthrene 2.8E+04 1.3E+04 2.4E+04 1.3E+04 1.4E+04 1.7E+04 9.6E+03 2.2E+04 2.8E+04
Anthracene 1.3E+03 8.6E+02 1.0E+03 2.8E+02 4.1E+02 5.7E+02 3.4E+02 1.1E+03 2.5E+03
2-Methyldibenzothiophene 1.6E+03 7.5E+02 1.3E+03 1.1E+03 1.0E+03 1.3E+03 5.9E+02 2.7E+03 2.3E+03
4-Methyldibenzothiophene 1.1E+03 5.8E+02 9.6E+02 6.1E+02 5.7E+02 6.4E+02 3.3E+02 1.9E+03 1.5E+03
2-Methylphenanthrene 4.4E+03 2.3E+03 3.6E+03 3.0E+03 2.4E+03 4.8E+03 1.9E+03 7.1E+03 6.4E+03
2-Methylanthracene 2.9E+02 1.2E+02 1.9E+02 ND 9.8E+00 ND ND 2.5E+02 4.0E+02
4,5-Methylenephenanthrene 1.2E+03 6.9E+02 1.1E+03 6.2E+02 6.6E+02 8.6E+02 4.8E+02 9.9E+02 1.4E+03
1-Methylanthracene 2.2E+03 1.2E+03 1.8E+03 1.3E+03 1.1E+03 2.2E+03 8.2E+02 3.2E+03 3.2E+03
1-Methylphenanthrene 1.9E+03 1.0E+03 1.6E+03 1.2E+03 1.0E+03 2.0E+03 8.2E+02 2.9E+03 2.8E+03
9-Methylanthracene 2.4E+01 ND ND 9.8E+00 ND 3.0E+01 ND 6.5E+01 6.0E+01

9,10-Dimethylanthracene 1.2E+03 6.0E+02 9.6E+02 2.1E+02 1.2E+02 7.4E+02 2.8E+02 1.2E+03 1.3E+03
Fluoranthene 6.3E+03 5.8E+03 6.4E+03 1.0E+03 7.5E+02 1.9E+03 1.5E+03 2.2E+03 3.6E+03
3,6-Dimethylphenanthrene ND ND ND ND 1.0E+01 1.2E+01 ND 6.7E+01 9.3E+01
Pyrene 4.2E+03 3.5E+03 4.3E+03 4.8E+02 4.3E+02 1.5E+03 1.1E+03 2.2E+03 3.7E+03
3,6-Dimethylphenanthrene ND ND ND ND 1.0E+01 1.2E+01 ND 6.7E+01 9.3E+01
Benzo[a]fluorene 1.4E+02 8.6E+01 1.5E+02 5.4E+00 7.2E+00 1.0E+01 1.7E+01 6.2E+01 1.4E+02
Retene 1.7E+02 1.4E+02 1.5E+02 9.1E+00 1.2E+01 1.3E+01 1.9E+01 6.7E+01 1.5E+02
Benzo[b]fluorene 1.4E+02 8.3E+01 1.6E+02 1.3E+01 1.4E+01 9.1E+00 2.7E+01 6.7E+01 1.3E+02
Cyclopenta[c,d]pyrene 6.4E+00 2.6E+00 1.2E+01 3.6E+00 1.8E+01 ND 6.2E+00 1.3E+01 2.7E+01
Benz[a]anthracene 1.9E+01 9.9E+00 1.6E+01 3.2E+00 1.3E+01 <BG 5.0E+00 4.9E+00 1.5E+01
Chrysene+Triphenylene 9.8E+01 5.6E+01 1.3E+02 4.2E+00 1.7E+01 4.4E+00 1.4E+01 2.1E+01 3.7E+01
Napthacene ND ND ND ND ND ND ND ND 2.3E+00
4-Methylchrysene ND ND 1.7E+00 ND <BG ND ND ND ND

Benzo[b]fluoranthene 7.9E+00 ND 3.3E+00 4.6E+00 1.9E+01 <BG 1.2E+01 6.7E+00 4.7E+00
Benzo[k]fluoranthene 3.8E+00 ND 6.0E+00 3.6E+00 6.5E+00 <BG <BG <BG 6.4E+00
Dimethylbenz[a]anthracene ND ND ND ND ND <BG ND ND ND
Benzo[e]pyrene <BG ND ND <BG 1.1E+01 <BG 5.2E+00 <BG ND
Benzo[a]pyrene ND ND ND <BG 1.2E+01 <BG 1.0E+01 ND ND
Perylene ND ND ND ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND 1.4E+01 ND ND ND ND
Anthanthrene ND ND ND ND ND ND ND ND ND
Coronene ND ND ND ND ND ND ND ND ND  
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Sample ID MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 1837 30 810 1830 700 1825 735 1745 110

Stop Date 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 30 630 1830 1830 1820 735 1740 110 710

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
d8-Naphthalene 38.3% 35.4% 48.3% 60.2% 40.7% 89.3% 51.5% 36.9% 36.5%
d10-Fluorene 82.1% 98.4% 149.0% 79.0% 69.4% 149.1% 80.9% 62.9% 59.5%
d10-Fluoranthene 83.1% 92.7% 99.5% 98.2% 91.6% 107.6% 85.8% 96.0% 57.4%
d12-Perylene 77.3% 83.7% 84.1% 86.2% 82.4% 88.1% 78.9% 91.8% 55.6%

Conc pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Naphthalene 1.6E+04 1.7E+04 1.1E+04 8.0E+03 5.3E+03 1.8E+04 9.4E+03 3.6E+03 1.1E+04
2-Methylnaphthalene 2.2E+04 2.6E+04 1.9E+04 1.1E+04 8.2E+03 3.1E+04 1.2E+04 4.7E+03 1.4E+04
Azulene 8.4E+01 9.4E+01 5.9E+01 3.3E+01 3.0E+01 1.4E+01 3.5E+01 1.3E+01 4.2E+01
1-Methylnaphthalene 1.1E+04 1.0E+04 7.9E+03 4.0E+03 3.4E+03 1.4E+04 4.9E+03 1.8E+03 5.8E+03
Biphenyl 7.8E+03 6.5E+03 5.6E+03 3.4E+03 1.5E+03 7.8E+03 3.0E+03 2.0E+03 3.6E+03
2,7-Dimethylnaphthalene 1.6E+04 1.6E+04 1.0E+04 5.4E+03 4.0E+03 2.2E+04 5.4E+03 3.0E+03 9.1E+03
1,3-Dimethylnaphthalene 1.9E+04 1.7E+04 1.1E+04 5.4E+03 4.3E+03 2.6E+04 6.1E+03 2.9E+03 9.6E+03
1,6-Dimethylnaphthalene 1.0E+04 9.6E+03 6.3E+03 3.1E+03 2.4E+03 1.4E+04 3.4E+03 1.8E+03 5.4E+03
1,4-Dimethylnaphthalene 6.0E+03 5.1E+03 3.6E+03 1.7E+03 1.4E+03 7.9E+03 1.9E+03 9.8E+02 2.9E+03
1,5-Dimethylnaphthalene 1.9E+03 1.7E+03 1.4E+03 5.1E+02 5.1E+02 3.3E+03 7.6E+02 3.6E+02 9.7E+02
Acenapthylene 1.5E+04 9.0E+03 1.0E+04 4.8E+03 1.8E+03 1.1E+04 4.5E+03 2.4E+03 6.4E+03
1,2-Dimethylnapthalene 4.2E+03 3.5E+03 2.7E+03 1.2E+03 9.0E+02 5.3E+03 1.4E+03 6.8E+02 1.9E+03
1,8-Dimethylnapthalene <BG <BG <BG <BG <BG 7.3E+01 <BG <BG <BG
Acenapthene 4.7E+03 3.1E+03 3.0E+03 1.6E+03 1.2E+03 4.5E+03 1.7E+03 1.0E+03 1.6E+03

2,3,5-Trimethylnapthalene 1.6E+04 1.3E+04 1.1E+04 5.4E+03 4.1E+03 1.7E+04 5.3E+03 3.7E+03 7.6E+03
Fluorene 1.8E+04 9.9E+03 1.3E+04 8.3E+03 4.1E+03 1.2E+04 5.3E+03 4.6E+03 6.3E+03
1-Methylfuorene 5.5E+03 4.5E+03 4.8E+03 2.7E+03 1.5E+03 5.3E+03 2.1E+03 1.8E+03 2.5E+03
Dibenzothiophene 2.7E+03 2.2E+03 2.0E+03 1.3E+03 7.4E+02 2.3E+03 7.9E+02 9.2E+02 1.5E+03
Phenanthrene 3.2E+04 2.2E+04 2.5E+04 1.8E+04 9.5E+03 2.3E+04 1.0E+04 1.0E+04 1.3E+04
Anthracene 2.8E+03 1.5E+03 1.9E+03 1.5E+03 2.8E+02 1.5E+03 6.2E+02 5.6E+02 1.3E+03
2-Methyldibenzothiophene 2.3E+03 2.5E+03 2.0E+03 1.3E+03 7.1E+02 2.6E+03 8.9E+02 7.2E+02 1.3E+03
4-Methyldibenzothiophene 1.6E+03 1.6E+03 1.3E+03 8.1E+02 4.2E+02 1.8E+03 5.3E+02 4.6E+02 9.7E+02
2-Methylphenanthrene 6.4E+03 6.0E+03 6.0E+03 3.5E+03 2.3E+03 6.3E+03 2.9E+03 2.5E+03 3.4E+03
2-Methylanthracene 4.9E+02 3.5E+02 3.7E+02 2.4E+02 ND 2.2E+02 ND 5.5E+01 2.2E+02
4,5-Methylenephenanthrene 1.7E+03 1.1E+03 1.3E+03 9.0E+02 4.8E+02 1.0E+03 5.7E+02 5.5E+02 7.5E+02
1-Methylanthracene 3.1E+03 2.9E+03 3.0E+03 1.8E+03 1.0E+03 3.1E+03 1.4E+03 1.2E+03 1.7E+03
1-Methylphenanthrene 2.9E+03 2.5E+03 2.7E+03 1.5E+03 9.3E+02 2.6E+03 1.3E+03 1.1E+03 1.5E+03
9-Methylanthracene 2.4E+01 5.1E+01 6.4E+01 ND ND 5.4E+01 2.5E+01 2.6E+01 3.4E+01

9,10-Dimethylanthracene 1.0E+03 1.2E+03 1.3E+03 6.2E+02 3.3E+02 1.2E+03 5.2E+02 5.6E+02 7.2E+02
Fluoranthene 4.3E+03 2.4E+03 3.7E+03 3.0E+03 1.4E+03 2.5E+03 1.5E+03 2.1E+03 2.2E+03
3,6-Dimethylphenanthrene 6.2E+01 5.9E+01 7.3E+01 ND 1.1E+01 3.3E+01 2.1E+01 4.9E+01 6.7E+01
Pyrene 4.1E+03 2.6E+03 3.9E+03 2.9E+03 8.8E+02 2.4E+03 1.5E+03 2.0E+03 2.2E+03
3,6-Dimethylphenanthrene 6.2E+01 5.9E+01 7.3E+01 ND 1.1E+01 3.3E+01 2.1E+01 4.9E+01 6.7E+01
Benzo[a]fluorene 1.4E+02 8.8E+01 1.1E+02 9.6E+01 1.9E+01 4.4E+01 2.5E+01 7.2E+01 8.8E+01
Retene 5.2E+02 1.4E+02 1.1E+02 1.3E+02 1.2E+01 2.7E+01 1.4E+01 1.5E+02 1.1E+02
Benzo[b]fluorene 1.8E+02 9.9E+01 1.3E+02 1.1E+02 1.9E+01 4.3E+01 3.6E+01 8.0E+01 1.1E+02
Cyclopenta[c,d]pyrene 7.6E+01 2.7E+01 1.6E+01 4.2E+01 2.8E+00 6.2E+00 1.7E+00 7.3E+00 3.4E+01
Benz[a]anthracene 2.5E+01 1.4E+01 8.1E+00 1.1E+01 3.4E+00 6.0E+00 <BG 6.5E+00 1.5E+01
Chrysene+Triphenylene 5.8E+01 3.0E+01 2.9E+01 3.7E+01 7.9E+00 1.1E+01 7.1E+00 3.1E+01 3.6E+01
Napthacene 7.1E+00 2.6E+00 ND ND ND ND ND ND <BG
4-Methylchrysene ND ND ND ND ND ND ND <BG ND

Benzo[b]fluoranthene 1.2E+01 ND 4.6E+00 3.1E+00 7.3E+00 7.9E+00 ND ND 5.4E+00
Benzo[k]fluoranthene ND ND ND <BG <BG 3.6E+00 ND ND ND
Dimethylbenz[a]anthracene ND ND ND ND ND ND ND ND ND
Benzo[e]pyrene ND ND ND ND 3.5E+00 3.6E+00 ND <BG ND
Benzo[a]pyrene ND ND ND ND <BG 7.1E+00 ND ND ND
Perylene ND ND ND ND ND ND ND ND ND
3-Methylchloanthrene ND ND ND ND ND ND ND ND ND

Indeno[1,2,3-c,d]pyrene ND ND ND ND ND ND ND ND ND
Dibenz[a,h+ac]anthracene ND ND ND ND ND ND ND ND ND
Benzo[g,h,i]perylene ND ND ND ND ND ND ND ND ND
Anthanthrene ND ND ND ND ND ND ND ND ND
Coronene ND ND ND ND ND ND ND ND ND  
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 8 MT 9 MT 10 MT 11 MT 12 MT 13 MT 16 MT 17
Start Date 032302 032402 032802 032902 033002 033102 040202 040302 040402 040802 040902 041002 041402 041502
Start Time 1906 1914 1920 2016 1809 1936 1927 1924 1930 1720 1835 1905 1555 1834

Stop Date 032402 032502 032902 033002 033102 040102 040302 040402 040502 040902 041002 041102 041502 041602
Stop Time 1800 1740 1901 1706 1802 1750 1758 1813 325 1808 1823 1826 1802 742

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
1N-Napthalene-d7 12.4% 25.4% 15.2% 16.3% 21.3% 19.5% 32.3% 23.5% 23.0% 19.5% 26.8% 22.7% 30.1% 19.8%
1N-anthracene d9 33.8% 44.9% 29.9% 23.5% 40.7% 47.8% 61.5% 55.2% 41.2% 47.4% 48.3% 46.0% 60.3% 43.7%
1N-pyrene d9 30.6% 27.0% 25.8% 26.2% 35.2% 45.5% 29.5% 48.1% 34.3% 33.9% 46.8% 29.0% 42.9% 38.6%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 6.7E+00 2.2E+00 6.3E+00 2.8E+00 3.5E+00 5.2E+00 3.9E+00 3.2E+00 5.1E+00 5.4E+00 3.2E+00 2.4E+00 3.5E+00 1.1E+01
2N-napthalene 8.2E+00 5.5E+00 5.1E+00 6.4E+00 4.3E+00 6.1E+00 4.1E+00 7.0E+00 1.3E+01 5.5E+00 3.5E+00 4.0E+00 3.6E+00 1.3E+01
2N-biphenyl 1.6E+00 1.5E+00 1.6E+00 1.7E+00 8.4E-01 4.2E-01 6.7E-01 1.6E+00 1.3E+00 4.5E-01 1.1E+00 1.2E+00 1.1E+00 1.3E+00
3N-biphenyl 5.3E-01 5.7E-01 4.6E-01 8.7E-01 5.4E-01 4.4E-01 3.3E-01 4.6E-01 6.0E-01 3.0E-01 5.6E-01 2.6E-01 4.6E-01 1.6E+00
4-Nitrobiphenyl 8.7E-01 3.6E-01 ND 5.1E-01 3.2E-01 1.4E+00 7.8E-01 8.5E-01 2.8E+00 5.3E-01 3.9E-01 ND 1.2E+00 3.6E+00
3N-dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,3-dinitronaphthalene ND ND 8.2E-01 ND 4.0E-01 ND ND 4.2E-01 ND ND ND ND 2.6E-01 7.6E-01
1,5-dinitronaphthalene ND ND ND ND 1.0E-01 ND ND 1.2E-01 ND ND ND ND 1.1E-01 1.4E-01
5N-acenapthene 1.3E+00 2.4E-01 4.8E-01 8.3E-01 4.4E-01 6.3E-01 2.4E-01 6.5E-01 6.0E-01 1.3E+00 5.5E-01 2.8E-01 5.1E-01 3.9E+00

2N-fluorene 2.3E+00 2.3E-01 5.3E-01 2.3E-01 1.7E-01 4.9E+00 3.2E-01 9.8E-01 3.3E+00 4.1E-01 2.0E-01 2.3E-01 3.9E-01 2.2E+00
2,2'-dinitrobiphenyl 2.1E+00 2.8E+00 2.6E+00 3.0E+00 1.8E+00 <BG 1.2E+00 1.2E+00 1.4E+00 2.0E+00 1.4E+00 1.3E+00 1.3E+00 3.2E+00
9N-anthracene 1.4E+02 2.4E+02 1.2E+02 3.9E+01 8.9E+01 2.3E+01 6.7E+01 5.1E+01 1.1E+02 5.1E+01 2.7E+01 9.5E+01 3.1E+01 3.0E+02
2N-anthracene ND <BG ND ND 8.5E-01 1.6E+00 ND <BG ND ND <BG ND ND <BG
9N-phenanthrene 1.5E+01 2.5E+00 3.2E+00 1.5E+00 1.5E+00 2.0E+01 1.8E+00 4.1E+00 9.7E+00 2.8E+00 1.2E+00 2.0E+00 3.6E+00 1.7E+01
3N-phenanthrene 5.5E+00 2.1E+00 2.1E+00 2.4E+00 1.9E+00 9.7E+00 1.7E+00 2.3E+00 3.5E+00 3.3E+00 1.8E+00 1.6E+00 2.8E+00 1.7E+01
4N-phenanthrene 5.4E-01 6.4E-01 2.8E-01 3.3E-01 7.4E-01 3.8E-01 4.9E-01 2.2E-01 3.8E-01 7.9E-01 2.8E-01 3.2E-01 3.4E-01 2.8E+00

2N-fluoranthene 3.7E+01 1.2E+02 4.1E+01 4.4E+01 4.0E+01 1.4E+01 1.7E+01 8.2E+00 3.6E+01 2.0E+01 2.5E+01 7.8E+01 2.9E+01 3.7E+02
3N-fluoranthene 1.1E+00 5.4E-01 1.7E+00 2.1E-01 2.1E-01 3.4E+00 4.1E-01 8.3E-01 6.1E-01 2.3E+00 3.2E-01 3.6E-01 2.8E+00 1.8E+00
1N-pyrene 6.5E+01 9.1E+01 4.8E+01 2.4E+01 1.5E+01 8.4E+01 2.4E+01 2.2E+01 4.1E+01 9.6E+01 2.8E+01 8.2E+01 8.5E+01 1.2E+02
2N-pyrene 2.8E+00 7.2E+00 2.3E+00 4.5E+00 2.1E+00 1.3E+00 1.4E+00 4.9E-01 1.1E+00 2.8E+00 1.8E+00 6.9E+00 2.3E+00 2.3E+01

7-nitrobenz[a]anthracene 1.9E+01 1.6E+02 1.4E+01 5.0E+00 1.2E+01 9.2E+00 2.6E+01 3.7E+00 1.0E+01 3.0E+01 3.9E+00 5.1E+01 1.9E+01 4.6E+01
6N-chrysene 1.5E+00 6.4E+00 1.3E+00 3.5E-01 2.0E-01 3.8E+00 ND 8.2E-01 1.1E+00 7.7E+00 2.6E-01 2.0E+00 3.6E+00 1.8E+00  
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Sample ID MT 18 MT 19 MT 20 MT 20 Back MT 21 MT 22 MT 23 MT 25 MT 26 MT 27 MT 28 MT 29 MT 30 MT 32
Start Date 041602 041602 041702 041702 041702 042202 042302 042402 042402 042502 042502 042602 042702 042902
Start Time 0846 1957 0855 0855 1856 1833 0834 0913 1926 0855 1840 1905 1710 1734

Stop Date 041602 041702 041702 041702 041802 042302 042302 042402 042502 042502 042602 042702 042802 043002
Stop Time 1854 735 1759 1759 1745 808 1839 1933 800 1814 1843 1700 1645 1704

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
1N-Napthalene-d7 36.9% 28.7% 6.7% 0.0% 25.2% 19.3% 0.0% 72.8% 44.0% 21.7% 19.9% 17.6% 17.6% 12.6%
1N-anthracene d9 59.7% 42.7% 14.0% 0.0% 47.7% 44.2% 0.0% 56.7% 46.0% 51.0% 41.0% 37.3% 49.4% 26.6%
1N-pyrene d9 41.0% 38.0% 13.6% 0.0% 37.8% 49.1% 0.0% 57.2% 54.4% 52.2% 33.0% 31.3% 51.1% 26.5%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 5.5E+00 8.7E+00 1.4E+01 ND 6.0E+00 4.7E+00 1.5E+00 4.3E+00 8.9E-01 2.0E+00 7.3E+00 4.7E+00 2.7E+00 6.0E+00
2N-napthalene 9.0E+00 1.3E+01 1.9E+01 5.1E-01 5.1E+00 5.5E+00 3.4E+00 4.6E+00 1.3E+00 1.9E+00 9.0E+00 7.5E+00 1.9E+00 5.0E+00
2N-biphenyl 1.9E+00 1.4E+00 5.1E+00 4.0E-01 5.6E-01 ND 4.8E+00 2.0E+00 ND 2.6E-01 1.9E+00 2.4E+00 ND 2.6E+01
3N-biphenyl 1.2E+00 1.1E+00 4.8E+00 1.1E-01 6.6E-01 3.2E-01 2.6E-01 1.9E+00 2.0E-01 3.4E-01 3.8E-01 5.2E-01 1.6E-01 3.6E-01
4-Nitrobiphenyl ND 9.7E-01 ND ND ND 1.6E+00 1.1E+00 2.2E+00 6.7E-01 <BG 1.1E+00 ND 6.6E-01 4.4E-01
3N-dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,3-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,5-dinitronaphthalene ND ND ND 2.2E-01 ND ND ND ND ND ND ND ND ND ND
5N-acenapthene 2.2E+00 3.3E+00 6.0E+00 1.3E+00 2.3E+00 7.9E-01 6.2E-01 1.9E+00 3.2E-01 2.9E-01 6.9E-01 9.8E-01 5.5E-01 1.6E+00

2N-fluorene 2.1E-01 1.2E+00 8.1E-01 ND 5.2E-01 2.2E+00 9.2E-01 1.6E+00 4.1E+00 3.9E-01 1.7E+00 1.8E-01 5.0E-01 8.6E-01
2,2'-dinitrobiphenyl 3.2E+00 5.7E+00 <BG 3.1E+00 4.0E+00 <BG <BG <BG <BG <BG 1.5E+00 2.6E+00 1.2E+00 <BG
9N-anthracene 1.5E+02 2.6E+02 6.5E+02 <BG 6.0E+01 6.0E+01 2.0E+01 2.0E+01 2.3E+01 9.3E+00 9.2E+01 1.5E+02 1.1E+01 6.0E+01
2N-anthracene ND <BG ND ND ND 1.4E+00 <BG ND 2.5E+00 <BG ND ND <BG 2.1E+00
9N-phenanthrene 1.5E+00 8.8E+00 4.2E+00 ND 3.9E+00 4.9E+00 4.8E+00 3.8E+00 3.3E+01 3.7E+00 1.6E+01 2.1E+00 2.9E+00 4.3E+00
3N-phenanthrene 6.8E+00 1.1E+01 2.7E+01 ND 8.9E+00 2.6E+00 2.5E+00 3.8E+00 1.1E+01 2.4E+00 8.0E+00 1.5E+00 1.8E+00 3.9E+00
4N-phenanthrene 2.1E+00 2.2E+00 8.2E+00 ND 1.5E+00 2.7E-01 2.9E-01 4.7E-01 3.7E-01 1.9E-01 3.4E-01 4.5E-01 3.0E-01 4.0E-01

2N-fluoranthene 2.7E+02 3.7E+02 1.2E+03 ND 1.5E+02 1.1E+01 5.6E+00 1.6E+01 7.1E+00 8.1E+00 3.6E+01 7.5E+01 1.2E+01 2.2E+01
3N-fluoranthene 6.8E-01 1.0E+00 2.0E+00 ND 2.2E+00 3.9E-01 2.6E-01 5.3E-01 4.0E+00 2.1E-01 3.8E+00 3.5E-01 7.4E-01 3.9E+00
1N-pyrene 3.8E+01 7.6E+01 1.2E+02 ND 5.4E+01 2.3E+01 2.3E+01 2.0E+01 9.1E+01 2.3E+01 1.5E+02 3.9E+01 2.1E+01 7.4E+01
2N-pyrene 1.4E+01 1.1E+01 7.1E+01 ND 6.9E+00 6.0E-01 ND 4.6E-01 1.1E+00 1.1E+00 3.9E+00 4.2E+00 9.5E-01 6.9E-01

7-nitrobenz[a]anthracene 6.4E+00 2.3E+01 1.7E+01 ND 1.9E+01 3.1E+00 2.0E+00 1.9E+00 1.4E+01 1.4E+00 3.3E+01 3.2E+01 2.2E+00 6.5E+00
6N-chrysene 1.3E+00 1.1E+00 5.5E+00 ND 3.6E+00 3.5E-01 ND ND 2.5E+00 2.3E-01 6.2E+00 1.2E+00 5.3E-01 2.7E+00  
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Sample ID MT 33 MT 34 MT 35 MT 36 MT 37 MT 38 MT 39 MT 40 MT 41 MT 42 MT 43 MT 45 MT 46 MT 47
Start Date 070902 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072102 072202 072302
Start Time 1705 1845 1915 1835 1923 1921 1903 1850 1905 1853 1935 1819 1832 734

Stop Date 071002 071102 071202 071302 071402 071502 071602 071702 071802 071902 072002 072202 072302 072402
Stop Time 1745 1805 1720 1820 1811 1757 1754 1801 1804 1850 1828 1740 727 800

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
1N-Napthalene-d7 44.9% 53.3% 32.8% 72.3% 28.5% 54.5% 53.8% 39.7% 22.0% 50.1% 55.1% 34.5% 49.1% 32.0%
1N-anthracene d9 57.9% 48.4% 46.2% 63.0% 51.1% 49.8% 53.5% 48.9% 28.8% 54.8% 54.0% 48.2% 40.8% 37.4%
1N-pyrene d9 45.1% 49.3% 41.4% 59.2% 55.1% 53.4% 49.7% 41.7% 28.2% 56.2% 57.2% 59.3% 42.6% 45.9%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 1.2E+00 2.9E-01 8.9E-01 4.7E-01 2.5E-01 6.3E-01 9.1E-01 1.7E+00 1.2E+00 1.1E+00 7.6E-01 6.5E-01 2.8E+00 1.1E+00
2N-napthalene 1.1E+00 8.3E-01 ND 6.1E-01 5.9E-01 1.5E+00 1.0E+00 2.3E+00 1.9E+00 7.8E-01 7.8E-01 7.0E-01 1.6E+00 9.7E-01
2N-biphenyl ND 2.4E-01 3.2E-01 3.2E-02 8.7E-02 ND 5.2E-02 ND ND ND 1.7E-01 ND <BG 7.5E-02
3N-biphenyl 1.4E-01 8.6E-02 2.8E-01 6.9E-02 ND 1.2E-01 2.1E-01 3.5E-01 3.8E-01 6.6E-02 1.6E-01 1.6E-01 1.8E-01 8.0E-02
4-Nitrobiphenyl 4.1E-01 2.0E-01 4.8E-01 2.4E-01 ND 3.7E-01 ND 4.8E-01 ND ND 5.5E-01 3.6E-01 4.4E-01 3.9E-01
3N-dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,3-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND 2.6E-01 ND ND ND
1,5-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND 2.7E-02 ND ND ND
5N-acenapthene 7.4E-01 3.4E-01 5.6E-01 4.6E-01 3.3E-01 3.9E-01 8.1E-01 1.9E+00 ND 8.1E-01 8.8E-01 5.1E-01 1.3E+00 4.1E-01

2N-fluorene 2.5E-01 1.3E-01 2.1E-01 1.2E-01 4.6E-02 3.0E-01 ND 1.7E-01 2.1E-01 ND ND 2.8E-01 4.5E-01 4.4E-01
2,2'-dinitrobiphenyl 1.5E+00 <BG 1.2E+00 <BG <BG 9.1E-01 <BG 1.2E+00 <BG <BG 1.1E+00 <BG ND <BG
9N-anthracene 3.3E+01 2.9E+01 1.4E+02 3.2E+01 6.9E+00 1.4E+01 7.7E+01 1.5E+02 7.4E+01 8.5E+01 6.3E+01 4.3E+01 3.4E+02 4.2E+01
2N-anthracene ND ND ND ND ND ND ND ND ND ND ND ND ND ND
9N-phenanthrene 1.6E+00 9.5E-01 2.3E+00 1.2E+00 3.6E-01 1.2E+00 8.0E-01 1.3E+00 1.1E+00 4.8E-01 6.6E-01 2.0E+00 3.4E+00 2.3E+00
3N-phenanthrene 2.9E+00 1.4E+00 3.2E+00 1.2E+00 1.0E+00 2.8E+00 1.9E+00 4.6E+00 2.7E+00 1.7E+00 1.7E+00 3.1E+00 6.0E+00 3.0E+00
4N-phenanthrene 3.3E-01 3.1E-01 1.1E+00 2.2E-01 1.2E-01 2.5E-01 5.5E-01 1.1E+00 2.8E-01 2.6E-01 4.0E-01 2.9E-01 1.3E+00 3.2E-01

2N-fluoranthene 5.2E+01 1.4E+01 7.1E+01 2.0E+01 3.1E+01 6.2E+01 4.5E+01 8.1E+01 5.5E+01 2.8E+01 4.2E+01 8.1E+01 1.1E+02 2.9E+01
3N-fluoranthene 4.6E-01 1.6E-01 5.7E-01 3.8E-01 1.9E-01 7.1E-01 3.7E-01 3.3E-01 9.8E-01 2.1E-01 1.7E-01 4.9E-01 1.2E+00 1.8E+00
1N-pyrene 2.8E+01 1.4E+01 3.5E+01 1.1E+01 6.7E+00 2.1E+01 1.1E+01 2.6E+01 2.3E+01 9.9E+00 7.0E+00 2.1E+01 4.5E+01 6.3E+01
2N-pyrene 1.5E+00 6.5E-01 4.8E+00 7.6E-01 8.5E-01 2.4E+00 9.3E-01 9.1E+00 1.6E+00 5.4E-01 7.2E-01 2.0E+00 2.0E+00 1.1E+00

7-nitrobenz[a]anthracene 7.4E+00 3.3E+00 1.3E+01 2.1E+00 1.2E+00 2.1E+00 3.3E+00 1.2E+01 5.8E+00 1.6E+00 2.2E+00 2.9E+00 6.4E+00 3.2E+00
6N-chrysene 3.9E-01 1.1E-01 7.1E-01 2.1E-01 1.3E-01 2.8E-01 1.9E-01 3.4E-01 6.8E-01 1.9E-01 1.1E-01 2.2E-01 5.5E-01 1.0E+00  
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Sample ID MT 49 MT 51 MT 53 MT 53 Back MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63
Start Date 072902 072902 073002 073002 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802
Start Time 620 1854 1250 1250 1824 1759 1900 100 700 1900 745 1900 800 1900

Stop Date 072902 073002 073002 073002 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902
Stop Time 1124 605 1814 1814 750 807 100 700 1900 746 1900 754 1900 803

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
1N-Napthalene-d7 23.2% 57.3% 55.4% 46.6% 48.1% 33.6% 42.1% 57.1% 68.4% 55.5% 57.6% 38.4% 36.3% 69.7%
1N-anthracene d9 30.3% 53.0% 49.1% 37.1% 40.2% 37.9% 54.5% 57.6% 57.3% 56.2% 60.9% 47.7% 47.9% 53.2%
1N-pyrene d9 35.6% 61.1% 55.7% 36.3% 47.7% 41.3% 58.0% 59.7% 47.6% 60.2% 56.7% 51.9% 51.2% 54.8%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 1.7E+00 1.3E+00 4.1E-01 5.0E-01 2.3E+00 3.0E+00 6.6E-01 4.4E-01 5.3E-01 4.5E-01 3.9E-01 7.5E-01 6.4E-01 8.8E-01
2N-napthalene 3.1E+00 9.3E-01 9.9E-01 1.3E+00 1.7E+00 4.1E+00 1.1E+00 1.4E+00 1.7E+00 9.3E-01 1.2E+00 1.3E+00 1.5E+00 1.6E+00
2N-biphenyl 2.3E+00 1.2E-01 ND ND ND ND ND ND ND 5.5E-01 2.7E-01 3.3E-01 4.0E-01 9.0E-02
3N-biphenyl 8.1E-01 8.7E-02 2.1E-01 2.0E-01 1.0E-01 3.3E-01 2.1E-01 <BG 1.4E-01 1.3E-01 1.0E-01 2.0E-01 1.9E-01 1.7E-01
4-Nitrobiphenyl ND ND ND ND ND 1.0E+00 ND <BG 3.6E-01 <BG <BG ND ND 4.5E-01
3N-dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,3-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,5-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND ND ND ND ND
5N-acenapthene 3.4E+00 7.2E-01 1.4E+00 ND 1.0E+00 1.7E+00 ND ND 1.4E+00 6.0E-01 1.6E+00 7.2E-01 2.1E+00 8.8E-01

2N-fluorene 6.2E-01 2.9E-01 <BG ND 1.7E-01 3.4E-01 <BG 4.4E-01 7.2E-01 6.1E-01 2.3E-01 4.4E-01 2.1E-01 3.9E-01
2,2'-dinitrobiphenyl <BG <BG <BG <BG <BG 2.2E+00 <BG 3.1E+00 3.1E+00 <BG <BG 2.2E+00 <BG 3.7E+00
9N-anthracene 2.9E+01 2.1E+02 5.4E+01 1.2E+01 1.3E+02 4.3E+02 1.5E+01 1.1E+01 2.1E+01 1.1E+01 1.5E+01 3.2E+01 1.7E+01 6.0E+01
2N-anthracene ND ND ND ND ND ND ND ND ND ND ND ND ND ND
9N-phenanthrene 2.5E+00 1.9E+00 6.4E-01 5.6E-01 1.4E+00 3.7E+00 9.3E-01 1.4E+00 8.4E+00 4.5E+00 1.7E+00 4.3E+00 2.6E+00 4.4E+00
3N-phenanthrene 4.9E+00 3.2E+00 3.2E+00 2.7E+00 3.8E+00 1.2E+01 1.6E+00 2.6E+00 6.2E+00 2.2E+00 3.0E+00 4.0E+00 3.0E+00 4.2E+00
4N-phenanthrene 3.2E-01 5.2E-01 6.7E-01 2.2E-01 1.2E+00 2.9E+00 1.2E-01 2.6E-01 4.5E-01 2.0E-01 3.4E-01 1.0E+00 3.0E-01 1.0E+00

2N-fluoranthene 5.8E+01 4.6E+01 2.8E+01 3.7E+01 5.7E+01 8.5E+02 4.6E+01 2.7E+01 2.7E+01 1.4E+01 1.7E+01 6.3E+01 1.6E+01 6.1E+01
3N-fluoranthene 8.3E-01 4.7E-01 3.3E-01 2.0E-01 2.7E-01 1.7E+00 1.5E-01 4.3E-01 6.7E-01 4.6E-01 3.5E-01 2.4E-01 5.8E-01 5.2E-01
1N-pyrene 3.2E+01 2.4E+01 1.4E+01 1.8E+01 1.9E+01 5.2E+01 8.3E+00 1.4E+01 2.5E+01 2.8E+01 1.5E+01 3.6E+01 1.2E+01 4.2E+01
2N-pyrene 2.6E+00 1.9E+00 1.0E+00 2.3E+00 1.3E+00 6.4E+00 9.2E-01 1.6E+00 1.4E+00 1.1E+00 7.6E-01 4.6E+00 7.7E-01 5.7E+00

7-nitrobenz[a]anthracene 1.7E+00 5.2E+00 1.2E+00 1.7E+00 3.7E+00 1.1E+01 2.4E+00 1.8E+00 7.0E+00 2.8E+00 2.9E+00 6.8E+00 2.2E+00 8.5E+00
6N-chrysene <BG 2.2E-01 ND 4.0E-01 1.7E-01 5.5E-01 <BG ND ND 1.2E-01 ND 2.0E-01 1.5E-01 2.0E-01  
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Sample ID MT 64 MT 65 MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012703 012803 012803 012803 012903 012903 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 1830 1230 820 1800 30 745 1837 30 810 1830 700 1825 735 1745 110

Stop Date 012803 012803 012803 012903 012903 012903 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 802 800 1734 30 630 1831 30 630 1830 1830 1820 735 1740 110 710

Media Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter

Surrogate (% Recovery)
1N-Napthalene-d7 43.3% 45.4% 35.8% 96.5% 69.0% 56.4% 69.1% 48.5% 84.3% 60.7% 60.2% 44.1% 57.2% 67.5% 61.3%
1N-anthracene d9 35.9% 34.9% 32.1% 50.2% 46.2% 36.8% 38.7% 40.8% 39.2% 40.8% 49.7% 27.1% 47.1% 51.7% 52.3%
1N-pyrene d9 62.7% 50.2% 37.8% 50.8% 52.6% 33.4% 35.5% 51.5% 44.8% 45.0% 56.8% 39.7% 54.2% 63.7% 55.8%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 1.7E+02 5.6E+02 1.8E+01 1.8E+01 9.4E+00 6.4E+00 3.3E+01 1.3E+01 1.3E+00 5.3E-01 1.2E+01 2.9E+01 7.3E+00 1.8E+00 2.8E+00
2N-napthalene 1.1E+02 2.6E+02 2.3E+01 2.6E+01 1.2E+01 8.7E+00 1.9E+01 1.2E+01 7.7E+00 2.7E+00 1.7E+01 4.2E+01 1.3E+01 3.0E+00 5.1E+00
2N-biphenyl 1.9E+01 3.3E+01 6.9E+00 8.7E+00 1.9E+00 1.4E+00 5.0E+00 4.3E+00 1.3E+00 1.2E+00 7.4E+00 1.9E+01 2.9E+00 2.7E-01 8.1E-01
3N-biphenyl 1.1E+01 1.4E+01 2.4E+01 1.9E+01 3.0E+00 4.8E+00 9.1E+00 6.7E+00 3.7E+00 1.4E+00 6.0E+00 1.0E+01 1.1E+01 8.6E-01 1.1E+00
4-Nitrobiphenyl 6.4E+01 1.4E+02 2.9E+01 4.6E+01 1.5E+01 3.2E+00 9.3E+00 1.8E+02 2.1E+00 1.1E+00 3.9E+01 1.6E+02 1.4E+01 1.0E+00 7.9E+00
3N-dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,3-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
1,5-dinitronaphthalene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
5N-acenapthene 1.1E+01 1.8E+01 1.1E+01 3.1E+00 4.9E+00 2.4E+00 3.8E+00 1.3E+01 1.5E+00 1.1E+00 4.4E+00 2.0E+01 4.3E+00 4.3E-01 4.0E+00

2N-fluorene 1.2E+01 2.1E+01 3.7E+00 3.2E+00 7.2E+00 2.8E+00 1.9E+00 5.7E+01 3.5E+00 3.5E+00 6.8E+00 3.9E+01 2.4E+00 5.9E-01 1.0E+01
2,2'-dinitrobiphenyl 2.4E+00 8.0E+00 <BG <BG 4.6E+00 <BG 6.9E+00 <BG 4.2E+00 2.5E+00 <BG 5.8E+00 2.0E+00 <BG <BG
9N-anthracene 9.0E+01 6.9E+01 3.6E+01 8.9E+01 9.8E+01 9.3E+01 6.3E+01 5.9E+01 4.7E+01 4.0E+01 1.9E+01 2.1E+02 2.6E+01 1.7E+01 2.7E+01
2N-anthracene 3.6E+00 5.7E+00 ND ND ND ND <BG 5.2E+00 ND ND ND 7.2E+00 ND ND ND
9N-phenanthrene 3.3E+01 5.7E+01 1.6E+01 4.7E+00 1.5E+01 1.5E+01 9.2E+00 6.9E+01 1.0E+01 2.3E+01 2.4E+01 6.2E+01 1.1E+01 5.8E+00 2.2E+01
3N-phenanthrene 1.8E+01 3.4E+01 8.1E+00 3.7E+00 1.1E+01 9.0E+00 6.3E+00 6.1E+01 8.1E+00 7.1E+00 9.2E+00 4.6E+01 4.8E+00 2.4E+00 2.1E+01
4N-phenanthrene 5.4E+00 8.4E+00 2.0E+00 1.1E+00 2.6E+00 1.4E+00 1.9E+00 4.4E+00 6.8E-01 7.5E-01 1.0E+00 5.8E+00 6.6E-01 1.2E-01 6.2E-01

2N-fluoranthene 7.4E+01 8.8E+01 4.3E+01 8.7E+01 2.5E+02 1.6E+02 1.1E+02 5.3E+01 6.1E+01 2.8E+01 1.2E+01 3.0E+02 7.8E+01 3.0E+01 3.4E+01
3N-fluoranthene 1.3E+01 1.4E+01 2.4E+00 1.3E+00 1.6E+00 1.0E+00 6.8E-01 2.7E+00 9.4E-01 1.0E+00 1.5E+00 5.9E+00 6.5E-01 1.1E+00 2.2E+00
1N-pyrene 5.9E+02 8.0E+02 1.2E+02 6.4E+01 1.6E+02 1.3E+02 1.5E+02 2.4E+02 1.3E+02 9.4E+01 9.4E+01 3.6E+02 4.6E+01 3.9E+01 3.4E+02
2N-pyrene 1.0E+01 1.1E+01 4.8E+00 6.2E+00 1.5E+01 9.7E+00 1.2E+01 8.7E+00 7.4E+00 3.6E+00 1.3E+00 1.2E+01 3.3E+00 2.1E+00 5.0E+00

7-nitrobenz[a]anthracene 3.6E+01 4.0E+01 4.8E+00 7.0E+01 1.3E+02 2.8E+01 2.9E+01 3.9E+01 8.1E+00 6.4E+00 3.5E+00 6.5E+01 2.7E+00 3.7E+00 1.3E+01
6N-chrysene 4.5E+00 6.2E+00 1.1E+00 1.4E+00 1.5E+00 1.6E+00 2.0E+00 2.2E+00 1.6E+00 1.2E+00 8.4E-01 2.8E+00 3.9E-01 5.1E-01 1.8E+00  
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Sample ID MT 2 MT 3 MT 4 MT 5 MT 6 MT 7 MT 9 MT 10 MT 11 MT 12 MT 13 MT 16 MT 17 MT 18
Start Date 032302 032402 032802 032902 033002 033102 040302 040402 040802 040902 041002 041402 041502 041602
Start Time 1906 1914 1920 2016 1809 1936 1924 1930 1720 1835 1905 1555 1834 0846

Stop Date 032402 032502 032902 033002 033102 040102 040402 040502 040902 041002 041102 041502 041602 041602
Stop Time 1800 1740 1901 1706 1802 1750 1813 325 1808 1823 1826 1802 742 1854

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
1N-Napthalene-d7 37.4% 42.1% 26.0% 21.8% 11.7% 16.7% 16.9% 11.8% 18.5% 13.8% 12.5% 21.1% 16.8% 16.1%
1N-anthracene-d9 66.0% 84.1% 52.0% 61.8% 40.8% 46.5% 72.3% 23.6% 53.7% 44.1% 15.6% 49.7% 18.0% 54.7%
1N-pyrene-d9 77.5% 76.9% 64.3% 57.0% 51.1% 59.4% 58.8% 32.6% 65.6% 70.9% 24.4% 57.6% 25.7% 64.4%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 2.7E+03 3.9E+02 3.1E+03 1.5E+02 3.4E+02 2.7E+03 6.5E+02 1.2E+03 1.3E+03 5.7E+02 2.5E+02 5.6E+02 6.5E+03 8.9E+02
2N-napthalene 9.8E+02 3.5E+02 1.1E+03 1.7E+02 2.8E+02 1.5E+03 1.9E+02 4.3E+02 7.3E+02 3.1E+02 4.0E+02 5.5E+02 2.5E+03 1.2E+03
2N-biphenyl 2.1E+02 2.1E+01 5.5E+01 1.3E+01 6.5E+01 7.0E+01 8.7E+00 2.4E+01 1.3E+02 3.4E+01 5.0E+01 2.1E+02 1.9E+02 2.9E+02
3N-biphenyl 1.4E+02 4.1E+01 3.5E+01 2.3E+01 8.4E+01 3.0E+01 5.0E+00 2.1E+01 1.0E+02 2.4E+01 7.9E+01 1.2E+02 1.2E+02 7.9E+02
4-Nitrobiphenyl 9.1E+01 1.3E+01 1.0E+02 6.9E+00 <BG 3.2E+02 2.1E+01 4.9E+01 9.4E+01 5.4E+01 2.9E+01 2.0E+02 1.3E+02 6.2E+01
3N-dibenzofuran 2.8E+01 6.1E+00 2.9E+01 4.4E+00 <BG 6.8E+01 4.5E+00 8.4E+00 4.0E+01 1.7E+01 2.2E+01 7.0E+01 8.3E+01 3.6E+01
1,3-dinitronaphthalene 1.5E+00 4.9E-01 1.8E+00 3.5E-01 5.4E-01 3.6E+00 2.7E-01 <BG 5.3E+00 1.7E+00 2.1E+00 9.8E+00 4.9E+00 7.8E+00
1,5-dinitronaphthalene 3.2E-01 1.3E-01 8.2E-01 2.2E-01 <BG 1.4E+00 1.8E-01 <BG 2.3E+00 7.1E-01 8.0E-01 2.2E+00 5.2E+00 1.4E+00
5N-acenapthene 8.3E+01 5.8E+00 1.3E+01 7.6E+00 6.7E+01 1.3E+01 1.6E+00 6.0E+00 1.1E+02 2.1E+01 2.3E+01 1.6E+02 4.5E+02 4.1E+02

2N-fluorene 6.7E+01 2.1E+00 1.1E+01 1.2E+00 5.4E+01 2.8E+01 2.7E+00 3.5E+00 8.1E+01 4.5E+00 6.0E+00 1.0E+02 1.8E+01 1.3E+02
2,2'-dinitrobiphenyl 2.8E+00 9.7E+00 1.0E+01 4.8E+00 4.9E+00 3.3E+01 1.1E+00 1.1E+01 2.9E+00 1.8E+01 8.3E+01 3.6E+00 8.8E+01 7.7E+00
9N-anthracene 2.1E+02 2.0E+02 1.4E+02 4.1E+01 9.5E+01 7.3E+01 1.2E+01 4.7E+01 3.0E+02 7.3E+01 2.5E+02 4.5E+02 8.3E+02 6.2E+02
2N-anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG 2.9E-01 <BG <BG <BG <BG
9N-phenanthrene 8.0E+01 6.0E+00 3.1E+01 4.3E+00 4.7E+01 8.7E+01 1.1E+01 1.0E+01 1.3E+02 1.4E+01 2.6E+01 2.6E+02 6.7E+01 1.4E+02
3N-phenanthrene 3.2E+01 3.5E+00 6.8E+00 2.4E+00 3.1E+01 1.2E+01 8.9E-01 1.4E+00 4.4E+01 5.8E+00 1.3E+01 5.8E+01 5.6E+01 1.1E+02
4N-phenanthrene 2.4E+00 1.6E+00 2.0E+00 7.6E-01 <BG 4.1E+00 5.9E-01 1.6E+00 3.8E+00 1.8E+00 6.1E+00 9.3E+00 2.7E+01 1.3E+01

2N-fluoranthene 5.3E+01 3.0E+00 2.4E+00 2.8E+00 4.4E+01 3.0E+00 3.3E-01 6.4E-01 5.7E+01 3.9E+00 9.1E+00 6.6E+01 5.2E+01 2.7E+02
3N-fluoranthene 3.6E+01 <BG 1.4E-01 <BG 3.0E+01 3.0E-01 <BG <BG 3.2E+01 7.6E-02 <BG 3.6E+01 <BG 9.0E+01
1N-pyrene 5.4E+01 1.2E+00 2.0E+00 9.6E-01 4.8E+01 4.8E+00 2.4E-01 4.2E-01 7.9E+01 2.4E+00 7.0E+00 7.2E+01 1.2E+01 1.6E+02
2N-pyrene 3.1E+01 <BG <BG <BG 2.1E+01 <BG <BG <BG 2.2E+01 <BG <BG 2.7E+01 <BG 7.0E+01

7-nitrobenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG 2.4E-01 7.5E-02 <BG 4.4E-01 8.1E-01 <BG
6N-chrysene 4.2E+01 <BG <BG <BG 3.6E+01 <BG <BG <BG 4.2E+01 <BG <BG 4.8E+01 <BG 1.2E+02  
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Sample ID MT 20 MT 23 MT 24 MT 25 MT 26 MT 27 MT 28 MT 29 MT 30 MT 31 MT 32 MT 33 MT 34 MT 37
Start Date 041702 042302 042302 042402 042402 042502 042502 042602 042702 042802 042902 070902 071002 071302
Start Time 0855 0834 1942 0913 1926 0855 1840 1905 1710 1655 1734 1705 1845 1923

Stop Date 041702 042302 042402 042402 042502 042502 042602 042702 042802 042902 043002 071002 071102 071402
Stop Time 1759 1839 807 1933 800 1814 1843 1700 1645 1720 1704 1745 1805 1811

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
1N-Napthalene-d7 27.7% 21.0% 32.1% 21.9% 0.0% 0.0% 1.0% 2.1% 18.3% 23.4% 8.8% 46.7% 78.6% 78.0%
1N-anthracene-d9 56.8% 67.5% 59.1% 64.4% 0.0% 0.0% 0.0% 0.0% 58.0% 65.7% 0.0% 37.7% 53.2% 34.0%
1N-pyrene-d9 52.9% 52.2% 52.8% 61.8% 0.0% 0.0% 0.0% 0.0% 72.0% 69.4% 0.0% 53.1% 55.5% 45.9%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 1.4E+03 1.0E+03 8.9E+02 1.0E+03 1.8E+03 5.4E+02 3.0E+03 7.0E+02 6.2E+02 1.1E+03 4.3E+02 3.2E+01 4.3E+01 6.9E+01
2N-napthalene 7.4E+02 6.8E+02 5.9E+02 7.5E+02 1.0E+03 4.0E+02 1.2E+03 5.8E+02 2.8E+02 4.7E+02 2.5E+02 4.1E+01 3.7E+01 1.0E+02
2N-biphenyl 4.6E+01 1.7E+02 1.6E+02 1.9E+02 1.8E+02 9.8E+01 1.3E+02 1.2E+02 3.0E+01 3.5E+01 3.4E+01 1.5E+01 5.4E+00 1.5E+01
3N-biphenyl 1.0E+02 2.6E+02 1.9E+02 2.7E+02 2.0E+02 1.4E+02 7.2E+01 9.3E+01 2.2E+01 1.3E+01 3.4E+01 2.1E+01 6.3E+00 1.2E+01
4-Nitrobiphenyl 1.9E+02 1.1E+01 1.7E+01 1.3E+01 6.7E+01 1.5E+01 1.1E+02 1.6E+01 4.0E+01 6.7E+01 5.1E+01 2.8E+01 9.1E+00 1.4E+01
3N-dibenzofuran 7.3E+01 2.9E+00 4.0E+00 2.2E+00 1.3E+01 5.5E+00 3.3E+01 7.2E+00 2.5E+01 4.3E+01 1.2E+01 2.1E+01 3.4E+00 8.7E+00
1,3-dinitronaphthalene <BG 1.4E+00 8.9E-01 1.4E+00 1.8E+00 1.2E+00 2.5E+00 8.4E-01 1.2E+00 1.9E+00 9.8E-01 1.0E+00 3.5E-01 5.7E-01
1,5-dinitronaphthalene <BG <BG <BG <BG 4.7E-01 1.7E-01 8.9E-01 1.3E-01 5.5E-01 7.7E-01 3.3E-01 2.9E+00 1.5E-01 1.3E+00
5N-acenapthene 7.3E+02 1.9E+02 1.3E+02 1.8E+02 1.4E+02 9.9E+01 4.1E+01 5.1E+01 1.9E+01 2.3E+01 3.8E+01 1.1E+02 1.9E+01 6.7E+01

2N-fluorene 2.5E+01 1.4E+02 9.4E+01 1.4E+02 1.1E+02 6.7E+01 4.7E+01 3.0E+01 1.2E+01 1.6E+01 3.4E+01 6.8E+00 1.4E+00 2.4E+00
2,2'-dinitrobiphenyl 2.1E+01 1.2E+01 7.4E+01 5.9E+00 9.8E+00 5.4E+01 1.6E+00 4.3E+00 2.3E+00 5.0E+00 1.1E+01 4.5E+00 3.5E+00 7.9E+00
9N-anthracene 2.6E+03 2.7E+02 2.5E+02 2.6E+02 2.2E+02 1.5E+02 1.3E+02 1.7E+02 5.5E+01 1.3E+02 9.1E+01 3.1E+02 9.4E+01 1.3E+02
2N-anthracene <BG <BG <BG <BG <BG <BG <BG <BG 4.0E-01 <BG <BG <BG <BG <BG
9N-phenanthrene 1.2E+02 1.4E+02 9.1E+01 1.2E+02 1.1E+02 6.9E+01 1.2E+02 3.3E+01 6.1E+01 7.0E+01 6.7E+01 4.4E+01 7.4E+00 1.8E+01
3N-phenanthrene 8.6E+01 8.3E+01 5.6E+01 7.6E+01 6.4E+01 4.4E+01 2.4E+01 1.8E+01 9.2E+00 9.5E+00 2.6E+01 2.2E+01 4.5E+00 1.3E+01
4N-phenanthrene 2.4E+01 7.3E-01 7.7E-01 4.8E-01 1.5E+00 1.0E+00 3.8E+00 1.4E+00 3.3E+00 3.9E+00 1.4E+00 7.4E+00 1.8E+00 4.0E+00

2N-fluoranthene 1.6E+02 1.8E+02 1.0E+02 1.5E+02 1.2E+02 8.2E+01 3.2E+01 3.8E+01 4.7E+00 3.3E+00 3.0E+01 3.2E+01 3.4E+00 3.4E+01
3N-fluoranthene 2.0E+00 1.2E+02 7.1E+01 1.0E+02 8.4E+01 5.5E+01 2.1E+01 2.4E+01 2.8E-01 4.6E-01 2.0E+01 3.7E-01 <BG 2.6E-01
1N-pyrene 2.5E+00 2.2E+02 9.9E+01 1.4E+02 1.3E+02 7.9E+01 3.0E+01 4.3E+01 4.9E+00 8.7E+00 2.7E+01 7.6E+00 1.6E+00 6.3E+00
2N-pyrene <BG 1.1E+02 6.3E+01 8.5E+01 6.5E+01 4.7E+01 2.0E+01 2.0E+01 <BG <BG 1.6E+01 <BG <BG <BG

7-nitrobenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG 1.4E-01 1.8E-01 <BG 2.7E-01 <BG 2.8E-01
6N-chrysene <BG 3.8E+02 1.0E+02 1.7E+02 1.4E+02 9.5E+01 3.6E+01 4.1E+01 <BG 9.9E-02 2.3E+01 <BG <BG <BG  
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Sample ID MT 38 MT 39 MT 40 MT 41 MT 42 MT 43 MT 45 MT 46 MT 47 MT 49 MT 49 Back MT 50 MT 50 Back MT 51
Start Date 071402 071502 071602 071702 071802 071902 072102 072202 072302 072902 072902 072902 072902 072902
Start Time 1921 1903 1850 1905 1853 1935 1819 1832 734 620 620 1206 1206 1854

Stop Date 071502 071602 071702 071802 071902 072002 072202 072302 072402 072902 072902 072902 072902 073002
Stop Time 1757 1754 1801 1804 1850 1828 1740 727 800 1124 1124 1758 1758 605

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
1N-Napthalene-d7 46.8% 59.6% 97.0% 45.1% 46.4% 87.9% 39.0% 37.2% 159.0% 52.7% 62.2% 13.3% 39.1% 109.3%
1N-anthracene-d9 34.0% 41.5% 41.1% 39.6% 45.3% 47.2% 44.6% 34.1% 45.8% 54.7% 51.9% 13.6% 68.2% 68.6%
1N-pyrene-d9 50.8% 44.7% 52.2% 43.1% 41.8% 54.3% 65.1% 40.8% 52.1% 46.4% 57.4% 8.7% 60.1% 61.7%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 1.5E+02 1.8E+01 9.8E+01 8.2E+01 5.3E+01 5.1E+01 8.3E+01 7.1E+02 1.1E+02 2.8E+02 3.3E+02 6.9E+01 2.6E+02 6.0E+02
2N-napthalene 1.0E+02 2.7E+01 8.0E+01 7.3E+01 6.5E+01 7.3E+01 5.8E+01 2.3E+02 1.0E+02 2.9E+02 1.5E+02 2.4E+01 1.7E+02 2.7E+02
2N-biphenyl 1.8E+01 3.6E+00 1.5E+01 7.1E+00 8.7E+00 1.0E+01 7.0E+00 3.1E+01 1.5E+01 2.3E+01 7.5E+00 4.5E+00 1.2E+01 4.3E+01
3N-biphenyl 2.7E+01 1.1E+01 6.2E+01 1.5E+01 1.7E+01 6.6E+00 2.5E+01 1.7E+01 1.8E+01 2.5E+01 <BG <BG 1.0E+01 1.0E+01
4-Nitrobiphenyl 5.5E+01 9.9E+00 3.5E+01 3.8E+01 2.2E+01 2.4E+00 1.4E+02 4.8E+01 2.5E+01 8.9E+01 2.4E+00 <BG 3.0E+01 2.7E+01
3N-dibenzofuran 1.8E+01 1.2E+01 2.9E+01 1.8E+01 1.4E+01 3.6E+00 6.2E+01 1.9E+01 1.5E+01 2.0E+01 <BG <BG 9.4E+00 1.1E+01
1,3-dinitronaphthalene 2.9E+00 1.9E+00 2.3E+00 3.7E+00 4.0E+00 3.5E-01 4.5E+00 1.9E+00 1.5E+00 3.4E+00 <BG <BG 2.9E+00 <BG
1,5-dinitronaphthalene 1.7E+00 8.6E-01 2.1E+00 3.3E+00 2.4E+00 6.7E-01 4.3E+00 2.7E+00 2.4E+00 2.3E+00 <BG 5.0E-01 1.7E+00 1.8E+00
5N-acenapthene 7.6E+01 1.1E+02 3.2E+02 1.6E+02 7.6E+01 4.2E+01 1.6E+02 1.8E+02 1.5E+02 7.9E+01 <BG <BG 1.2E+02 1.5E+02

2N-fluorene 8.9E+00 2.6E+00 5.1E+00 7.7E+00 4.0E+00 6.8E-01 3.9E+01 7.4E+00 4.8E+00 1.6E+01 <BG <BG 5.8E+00 4.4E+00
2,2'-dinitrobiphenyl 4.2E+00 5.3E+00 2.5E+00 1.9E+00 7.7E+00 1.2E+01 2.0E+00 3.2E+01 8.3E+00 4.2E+00 3.3E+00 <BG 1.3E+00 6.9E+00
9N-anthracene 1.4E+02 2.9E+02 1.9E+03 6.9E+02 3.6E+02 1.2E+02 5.6E+02 6.0E+02 2.6E+02 1.0E+02 <BG <BG 9.0E+01 7.4E+02
2N-anthracene <BG <BG <BG <BG 7.2E-01 <BG <BG <BG <BG 2.7E+00 <BG <BG <BG <BG
9N-phenanthrene 3.9E+01 2.7E+01 1.8E+01 4.4E+01 1.8E+01 7.8E+00 1.4E+02 4.6E+01 2.5E+01 4.7E+01 1.1E+00 <BG 1.5E+01 2.5E+01
3N-phenanthrene 2.2E+01 2.1E+01 4.8E+01 2.9E+01 1.8E+01 6.7E+00 3.9E+01 2.6E+01 2.1E+01 3.7E+01 <BG <BG 2.0E+01 2.4E+01
4N-phenanthrene 7.0E+00 4.4E+00 2.9E+01 9.3E+00 2.5E+00 1.7E+00 1.0E+01 4.7E+00 8.6E+00 1.4E+01 <BG <BG 7.5E+00 7.6E+00

2N-fluoranthene 2.6E+01 4.5E+01 1.0E+02 6.5E+01 5.5E+01 1.3E+01 2.6E+01 2.3E+01 2.6E+01 1.6E+01 <BG <BG 1.8E+01 2.9E+01
3N-fluoranthene 2.6E-01 2.7E-01 3.5E-01 4.1E-01 4.7E-01 <BG 2.1E+00 3.6E-01 3.6E-01 6.2E-01 <BG <BG <BG <BG
1N-pyrene 5.0E+00 4.9E+00 2.1E+01 8.2E+00 7.5E+00 1.7E+00 6.5E+01 6.4E+00 5.7E+00 1.3E+01 <BG <BG 5.5E+00 5.7E+00
2N-pyrene <BG <BG 4.4E+00 5.0E-01 <BG <BG 5.7E-01 <BG <BG <BG <BG <BG <BG <BG

7-nitrobenz[a]anthracene 2.1E-01 9.9E-02 1.1E+00 3.8E-01 2.7E-01 1.6E-01 7.2E-01 3.1E-01 <BG <BG <BG <BG <BG 6.0E-01
6N-chrysene <BG <BG <BG <BG <BG <BG 1.4E-01 <BG <BG <BG <BG <BG <BG <BG  
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Sample ID MT 52 MT 53 MT 54 MT 55 MT 56 MT 57 MT 58 MT 59 MT 60 MT 61 MT 62 MT 63 MT 64 MT 65
Start Date 073002 073002 073002 080102 080502 080602 080602 080602 080702 080702 080802 080802 012703 012803
Start Time 650 1250 1824 1759 1900 100 700 1900 745 1900 800 1900 1830 1230

Stop Date 073002 073002 073102 080202 080602 080602 080602 080702 080702 080802 080802 080902 012803 012803
Stop Time 1245 1814 750 807 100 700 1900 746 1900 754 1900 803 802 800

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
1N-Napthalene-d7 43.9% 46.7% 74.7% 31.4% 31.9% 73.7% 47.0% 54.5% 41.4% 57.2% 43.6% 65.9% 53.5% 38.2%
1N-anthracene-d9 57.9% 46.3% 48.6% 23.7% 41.2% 90.9% 59.9% 66.6% 58.9% 62.5% 74.0% 80.5% 60.8% 47.2%
1N-pyrene-d9 59.4% 53.5% 41.8% 19.1% 40.0% 68.2% 35.8% 44.1% 41.4% 46.8% 44.1% 63.1% 41.2% 28.7%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 7.3E+01 7.7E+01 3.0E+02 6.8E+02 2.9E+02 2.5E+02 8.9E+01 2.9E+02 7.6E+01 2.4E+02 5.8E+01 1.4E+02 1.6E+02 3.5E+02
2N-napthalene 1.2E+02 9.2E+01 2.4E+02 5.7E+02 2.7E+02 1.3E+02 6.0E+01 1.0E+02 8.0E+01 2.2E+02 4.8E+01 1.7E+01 4.5E+01 3.6E+02
2N-biphenyl 1.6E+01 6.2E+00 3.2E+01 3.1E+01 2.9E+01 2.0E+01 4.8E+00 9.1E+00 3.3E+00 1.4E+01 2.5E+00 5.0E-01 8.2E-01 1.8E+01
3N-biphenyl 1.5E+01 9.1E+00 1.2E+01 4.3E+01 1.2E+01 6.0E+00 4.7E+00 2.9E+00 5.4E+00 9.9E+00 5.2E+00 3.1E-01 <BG 2.0E+01
4-Nitrobiphenyl 1.2E+01 1.7E+01 1.5E+01 7.6E+01 1.2E+01 2.3E+01 2.2E+01 1.2E+01 8.3E+00 9.0E+00 5.0E+00 1.8E+00 <BG 1.2E+01
3N-dibenzofuran 6.1E+00 7.6E+00 1.1E+01 3.0E+01 1.8E+01 5.1E+00 4.5E+00 5.1E+00 3.1E+00 5.8E+00 2.4E+00 <BG <BG 1.1E+01
1,3-dinitronaphthalene 1.1E+00 2.4E+00 8.6E-01 5.1E+00 <BG <BG 3.4E-01 <BG <BG 4.7E-01 <BG <BG <BG 8.0E-01
1,5-dinitronaphthalene 4.7E-01 <BG 1.5E+00 3.6E+00 2.2E+00 8.0E-01 1.9E-01 2.0E-01 9.4E-02 1.3E-01 9.0E-02 <BG <BG 2.6E-01
5N-acenapthene 5.7E+01 9.1E+01 9.5E+01 4.1E+02 9.7E+01 2.5E+01 2.0E+01 1.5E+01 2.0E+01 7.6E+01 2.0E+01 <BG <BG 1.5E+02

2N-fluorene 2.4E+00 4.0E+00 2.3E+00 7.6E+00 2.2E+00 2.9E+00 2.6E+00 2.5E+00 1.8E+00 1.7E+00 1.8E+00 <BG <BG 3.4E+00
2,2'-dinitrobiphenyl 4.7E+00 <BG 3.4E+01 1.1E+01 <BG 1.2E+01 2.6E+00 6.0E+00 1.6E+00 2.4E+00 1.3E+00 <BG 2.4E+01 <BG
9N-anthracene 9.1E+01 8.3E+01 3.6E+02 1.5E+03 2.8E+02 1.1E+02 2.9E+01 1.1E+02 3.1E+01 3.6E+02 2.7E+01 2.6E+00 1.0E+00 7.9E+02
2N-anthracene <BG <BG <BG <BG <BG <BG 8.3E-01 <BG <BG <BG 1.1E+00 <BG <BG <BG
9N-phenanthrene 1.0E+01 1.4E+01 1.8E+01 8.0E+01 1.6E+01 1.0E+01 1.4E+01 1.5E+01 1.5E+01 1.1E+01 2.1E+01 1.8E-01 <BG 3.6E+01
3N-phenanthrene 1.7E+01 2.1E+01 1.7E+01 8.4E+01 1.7E+01 6.2E+00 5.3E+00 4.4E+00 5.2E+00 1.4E+01 5.0E+00 <BG <BG 2.5E+01
4N-phenanthrene 8.1E+00 6.3E+00 3.8E+00 1.8E+01 7.4E+00 1.8E+00 2.2E+00 1.5E+00 1.8E+00 4.5E+00 2.4E+00 <BG <BG 7.2E+00

2N-fluoranthene 1.3E+01 7.9E+00 2.2E+01 2.1E+02 2.6E+01 1.3E+01 2.7E+00 3.2E+00 3.9E+00 8.9E+00 1.8E+00 4.0E-01 <BG 1.5E+01
3N-fluoranthene 4.7E-01 <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
1N-pyrene 5.4E+00 2.2E+00 3.6E+00 1.1E+01 5.7E+00 1.9E+00 7.8E-01 2.8E+00 1.1E+00 3.1E+00 8.2E-01 1.5E+00 <BG 3.0E+00
2N-pyrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG

7-nitrobenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
6N-chrysene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG  
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Sample ID MT 66 MT 67 MT 68 MT 69 MT 70 MT 71 MT 72 MT 73 MT 74 MT 75 MT 76 MT 77 MT 78
Start Date 012803 012803 012903 012903 012903 013003 013003 013003 020503 020503 020603 020603 020703
Start Time 820 1800 30 745 1837 30 810 1830 700 1825 735 1745 110

Stop Date 012803 012903 012903 012903 013003 013003 013003 013103 020503 020603 020603 020703 020703
Stop Time 1734 30 630 1831 30 630 1830 1830 1820 735 1740 110 710

Media PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF PUF

Surrogate (% Recovery)
1N-Napthalene-d7 48.5% 56.6% 62.6% 79.4% 77.8% 59.5% 110.9% 235.5% 69.5% 71.2% 68.1% 56.7% 38.4%
1N-anthracene-d9 70.1% 64.1% 50.6% 52.0% 54.1% 62.9% 61.5% 63.4% 52.8% 70.4% 66.4% 59.1% 35.9%
1N-pyrene-d9 46.1% 37.0% 38.8% 56.5% 43.3% 45.0% 54.5% 59.7% 50.3% 60.9% 67.9% 57.9% 27.1%

Conc (Surrogate corrected) pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

1N-napthalene 4.2E+02 2.2E+02 5.7E+02 4.5E+02 1.0E+02 1.0E+03 5.7E+02 2.2E+02 3.5E+02 1.2E+03 2.6E+02 2.0E+02 1.3E+03
2N-napthalene 1.7E+02 1.1E+02 4.0E+02 3.1E+02 1.3E+02 3.5E+02 4.2E+02 1.9E+02 1.5E+02 4.7E+02 1.5E+02 9.6E+01 5.2E+02
2N-biphenyl 3.1E+00 2.1E+00 8.6E+00 1.7E+01 8.5E+00 4.5E+01 1.5E+01 1.0E+01 1.5E+00 1.8E+01 3.2E+00 7.1E+00 2.3E+01
3N-biphenyl 2.3E+00 1.4E+00 1.8E+01 4.0E+01 4.0E+01 2.1E+01 6.9E+01 6.1E+01 7.3E-01 8.5E+00 6.3E+00 1.5E+01 1.7E+01
4-Nitrobiphenyl 3.0E+00 2.4E+00 3.2E+01 3.2E+01 1.2E+01 1.1E+02 4.0E+01 2.2E+01 2.5E+00 7.1E+00 3.9E+00 1.9E+01 1.5E+02
3N-dibenzofuran <BG <BG 3.5E+00 7.6E+00 4.2E+00 5.1E+00 3.2E+00 5.7E+00 <BG 8.2E-01 <BG 4.3E+00 1.3E+01
1,3-dinitronaphthalene <BG <BG <BG 3.3E-01 <BG <BG <BG <BG <BG <BG <BG <BG <BG
1,5-dinitronaphthalene <BG <BG <BG 1.4E-01 <BG <BG <BG 1.5E-01 8.4E-02 <BG <BG <BG 3.6E-01
5N-acenapthene <BG <BG 1.3E+00 3.8E+00 <BG 1.6E+00 1.9E+00 2.2E+00 3.6E-01 7.9E-01 <BG 3.2E+00 7.1E+00

2N-fluorene <BG <BG <BG 1.1E+00 <BG 7.3E-01 <BG <BG <BG 1.6E-01 <BG 1.2E+00 5.6E+00
2,2'-dinitrobiphenyl <BG <BG <BG 3.9E+01 5.9E+01 1.3E+02 1.5E+02 2.7E+01 6.7E+01 1.8E+01 2.1E+01 1.9E+01 4.2E+02
9N-anthracene <BG 6.1E+00 2.0E+01 3.2E+01 2.9E+01 2.6E+01 1.7E+01 2.1E+01 3.1E+00 9.1E+00 2.3E+00 2.6E+01 4.9E+01
2N-anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
9N-phenanthrene <BG <BG <BG 3.7E+00 1.0E+00 1.6E+00 1.0E+00 1.3E+00 5.1E-01 2.2E-01 1.6E-01 3.7E+00 5.2E+00
3N-phenanthrene <BG <BG <BG 9.8E-01 <BG 4.3E-01 <BG 3.0E-01 2.3E-01 2.2E-01 <BG 6.3E-01 1.8E+00
4N-phenanthrene <BG <BG <BG 7.1E-01 4.2E-01 3.5E-01 4.4E-01 2.5E-01 1.8E-01 1.1E-01 <BG 4.3E-01 8.4E-01

2N-fluoranthene <BG 9.2E-01 <BG 1.1E+00 1.4E+00 6.3E-01 4.7E-01 8.0E-01 5.0E-01 6.6E-01 3.1E-01 1.0E+00 2.1E+00
3N-fluoranthene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
1N-pyrene <BG <BG <BG 5.6E-01 <BG <BG <BG <BG 3.6E-01 5.0E-01 2.5E-01 1.1E+00 1.6E+00
2N-pyrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG

7-nitrobenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
6N-chrysene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG  
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Appendix B 

Berner Low Pressure Impactor PAH and NPAH Size Distributions 
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Appendix C 

PAH and NPAH Berner Impactor Concentration Summary 
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Sample ID MT 17 MT 17 MT 17 MT 17 MT 17 MT 18 MT 18 MT 18 MT 18 MT 18
Start Date 041502 041502 041502 041502 041502 041602 041602 041602 041602 041602
Start Time 1834 1834 1834 1834 1834 0846 0846 0846 0846 0846

Stop Date 041602 041602 041602 041602 041602 041602 041602 041602 041602 041602
Stop Time 742 742 742 742 742 1854 1854 1854 1854 1854

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 9% 10% 11% 9% 8% 11% 10% 12% 9% 7%
d10 Fluorene 75% 78% 79% 77% 76% 77% 85% 68% 82% 74%
d10 Fluoranthene 93% 87% 84% 87% 93% 95% 96% 83% 106% 100%
d12 Perylene 91% 93% 92% 92% 92% 96% 93% 86% 107% 97%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene 6.2E+01 1.4E+02 7.4E+01 3.7E+01 <BG 3.5E+01 8.2E+01 3.8E+01 <BG <BG
Pyrene 4.4E+01 1.2E+02 5.8E+01 2.9E+01 7.2E+00 3.2E+01 8.1E+01 3.5E+01 1.4E+01 <BG
3,6Dimethylphenanthrene 4.8E+00 1.0E+01 5.8E+00 <BG <BG <BG 7.4E+00 <BG <BG <BG
9,10,dimethylanthracene 6.8E+00 1.7E+01 6.2E+00 <BG <BG <BG 9.5E+00 <BG <BG <BG
Benzo[a]fluorene 5.0E+00 1.5E+01 6.9E+00 3.7E+00 <BG <BG 7.5E+00 4.7E+00 <BG <BG
Benzo[b]fluorene 4.2E+00 1.2E+01 4.9E+00 <BG <BG <BG 5.4E+00 3.8E+00 <BG <BG
Benz[a]anthracene 2.4E+01 6.4E+01 2.4E+01 8.6E+00 2.6E+00 9.9E+00 3.6E+01 1.4E+01 5.0E+00 <BG
Cyclopenta(c,d)pyrene 3.6E+01 9.6E+01 3.1E+01 1.0E+01 <BG 1.8E+01 4.6E+01 1.3E+01 <BG <BG
Chrysene + Triphenylene 3.9E+01 1.0E+02 3.4E+01 1.5E+01 <BG 2.2E+01 6.6E+01 2.4E+01 9.2E+00 <BG
Napthacene 5.5E+00 1.0E+01 5.9E+00 <BG <BG 7.0E+00 6.8E+00 <BG <BG <BG
Retene <BG 1.9E+01 <BG <BG <BG <BG <BG <BG <BG <BG
Benzo[b]fluoranthene 4.6E+01 1.2E+02 3.9E+01 1.2E+01 3.5E+00 4.8E+01 1.4E+02 3.8E+01 1.4E+01 4.9E+00
Benzo[k]fluoranthene 3.6E+01 8.8E+01 2.7E+01 8.2E+00 <BG 2.4E+01 7.2E+01 2.1E+01 7.8E+00 <BG
Benzo[e]pyrene 3.5E+01 8.0E+01 2.4E+01 8.5E+00 2.0E+00 3.4E+01 9.3E+01 2.6E+01 8.8E+00 2.6E+00
Benzo[a]pyrene 3.8E+01 9.1E+01 3.4E+01 1.1E+01 <BG 2.6E+01 6.7E+01 2.4E+01 <BG <BG
Perylene 8.3E+00 1.6E+01 <BG 1.2E+01 1.2E+01 <BG 1.1E+01 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 5.1E+01 1.5E+02 5.4E+01 1.2E+01 2.7E+00 5.3E+01 2.0E+02 4.3E+01 8.5E+00 <BG
Benzo[g,h,i]perylene 7.0E+01 1.6E+02 5.1E+01 1.7E+01 <BG 8.9E+01 2.2E+02 5.1E+01 1.3E+01 <BG
Anthanthrene 1.1E+01 2.0E+01 6.5E+00 2.1E+00 <BG 4.8E+00 1.4E+01 4.7E+00 <BG <BG
Dibenz[a,h+ac]anthracene 6.8E+00 1.4E+01 4.1E+00 <BG <BG 3.5E+00 2.1E+01 3.7E+00 <BG <BG
Coronene 2.6E+01 4.3E+01 1.7E+01 5.0E+00 <BG 3.4E+01 8.8E+01 1.6E+01 <BG <BG
Mass Conc (ug/m3) 1.9E+00 8.0E+00 8.1E+00 6.5E+00 1.0E+00 3.1E+00 1.2E+01 9.3E+00 6.7E+00 1.4E+00  
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Sample ID MT 19 MT 19 MT 19 MT 19 MT 19 MT 20 MT 20 MT 20 MT 20 MT 20
Start Date 041602 041602 041602 041602 041602 041702 041702 041702 041702 041702
Start Time 1957 1957 1957 1957 1957 0855 0855 0855 0855 0855

Stop Date 041702 041702 041702 041702 041702 041702 041702 041702 041702 041702
Stop Time 735 735 735 735 735 1759 1759 1759 1759 1759

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 9% 11% 10% 9% 8% 9% 10% 8% 9% 8%
d10 Fluorene 85% 75% 77% 86% 90% 84% 82% 89% 84% 96%
d10 Fluoranthene 114% 94% 86% 109% 117% 109% 101% 107% 110% 111%
d12 Perylene 98% 95% 93% 99% 105% 104% 93% 97% 101% 104%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene 5.5E+01 1.3E+02 6.2E+01 3.2E+01 <BG 6.1E+01 1.4E+02 9.2E+01 5.2E+01 <BG
Pyrene 4.8E+01 1.4E+02 5.3E+01 3.0E+01 <BG 4.3E+01 1.3E+02 7.3E+01 3.8E+01 1.3E+01
3,6Dimethylphenanthrene <BG 7.4E+00 <BG <BG <BG <BG 1.1E+01 <BG <BG <BG
9,10,dimethylanthracene 7.9E+00 1.5E+01 5.0E+00 <BG <BG <BG 1.7E+01 7.4E+00 <BG 4.8E+01
Benzo[a]fluorene 5.9E+00 1.4E+01 5.6E+00 4.3E+00 <BG 4.8E+00 1.2E+01 6.9E+00 5.0E+00 <BG
Benzo[b]fluorene 3.8E+00 1.3E+01 5.3E+00 3.9E+00 <BG <BG 8.9E+00 4.8E+00 <BG <BG
Benz[a]anthracene 2.6E+01 7.4E+01 2.1E+01 8.5E+00 <BG 1.3E+01 4.6E+01 2.5E+01 1.3E+01 4.7E+00
Cyclopenta(c,d)pyrene 6.7E+01 2.0E+02 4.3E+01 1.1E+01 <BG 1.8E+01 5.0E+01 2.0E+01 <BG <BG
Chrysene + Triphenylene 3.4E+01 9.9E+01 2.9E+01 1.5E+01 3.5E+00 2.9E+01 9.4E+01 4.6E+01 2.1E+01 6.8E+00
Napthacene 4.4E+00 1.1E+01 <BG <BG <BG <BG <BG <BG <BG <BG
Retene <BG 1.2E+01 <BG <BG <BG <BG <BG <BG <BG <BG
Benzo[b]fluoranthene 5.5E+01 1.4E+02 3.6E+01 1.6E+01 3.4E+00 4.2E+01 1.1E+02 4.7E+01 2.7E+01 9.7E+00
Benzo[k]fluoranthene 3.1E+01 1.1E+02 1.9E+01 9.4E+00 <BG 2.2E+01 8.1E+01 3.6E+01 2.0E+01 8.8E+00
Benzo[e]pyrene 3.9E+01 9.5E+01 2.5E+01 1.3E+01 5.0E+00 3.0E+01 8.4E+01 3.3E+01 2.0E+01 6.7E+00
Benzo[a]pyrene 4.7E+01 1.4E+02 3.6E+01 1.3E+01 <BG 2.1E+01 5.5E+01 3.1E+01 2.4E+01 <BG
Perylene 9.2E+00 2.5E+01 <BG <BG <BG <BG 9.9E+00 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 5.8E+01 2.0E+02 5.6E+01 8.9E+00 3.6E+00 3.3E+01 1.1E+02 5.8E+01 2.7E+01 7.4E+00
Benzo[g,h,i]perylene 9.1E+01 2.4E+02 6.5E+01 1.5E+01 <BG 5.6E+01 1.5E+02 5.4E+01 2.6E+01 1.1E+01
Anthanthrene 1.2E+01 5.0E+01 1.5E+01 <BG <BG 6.4E+00 1.2E+01 3.9E+00 <BG <BG
Dibenz[a,h+ac]anthracene <BG 7.3E+00 <BG <BG <BG <BG 5.8E+00 <BG <BG <BG
Coronene 3.1E+01 9.0E+01 2.7E+01 5.0E+00 <BG 2.3E+01 5.4E+01 2.1E+01 7.7E+00 <BG
Mass Conc (ug/m3) 2.2E+00 8.6E+00 1.2E+01 8.1E+00 1.7E+00 4.1E+00 1.4E+01 1.1E+01 1.0E+01 2.8E+00  
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Sample ID MT 21 MT 21 MT 21 MT 21 MT 21 MT 22 MT 22 MT 22 MT 22 MT 22
Start Date 041702 041702 041702 041702 041702 042202 042202 042202 042202 042202
Start Time 1856 1856 1856 1856 1856 1833 1833 1833 1833 1833

Stop Date 041802 041802 041802 041802 041802 042302 042302 042302 042302 042302
Stop Time 1745 1745 1745 1745 1745 808 808 808 808 808

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 8% 11% 11% 9% 8% 8% 7% 8% 8% 7%
d10 Fluorene 89% 87% 82% 83% 88% 81% 85% 76% 88% 91%
d10 Fluoranthene 117% 96% 86% 94% 109% 99% 112% 95% 114% 115%
d12 Perylene 101% 91% 96% 97% 104% 97% 104% 98% 83% 113%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene 2.8E+01 6.2E+01 3.0E+01 2.3E+01 1.3E+01 <BG 3.2E+01 1.9E+01 <BG <BG
Pyrene 2.3E+01 5.7E+01 2.8E+01 1.5E+01 9.4E+00 9.0E+00 3.3E+01 2.0E+01 <BG <BG
3,6Dimethylphenanthrene <BG 4.2E+00 <BG <BG <BG <BG <BG <BG <BG <BG
9,10,dimethylanthracene 2.6E+00 5.7E+00 <BG <BG <BG <BG <BG <BG <BG <BG
Benzo[a]fluorene <BG 4.5E+00 2.7E+00 2.0E+00 <BG <BG 5.7E+00 3.4E+00 <BG <BG
Benzo[b]fluorene <BG 3.2E+00 2.0E+00 <BG <BG <BG 5.0E+00 2.9E+00 <BG <BG
Benz[a]anthracene 5.8E+00 1.9E+01 1.1E+01 6.2E+00 3.8E+00 4.1E+00 1.7E+01 6.8E+00 2.0E+00 <BG
Cyclopenta(c,d)pyrene 9.1E+00 2.0E+01 8.5E+00 3.8E+00 <BG <BG 1.6E+01 7.1E+00 <BG <BG
Chrysene + Triphenylene 1.3E+01 3.6E+01 1.6E+01 1.0E+01 5.0E+00 5.5E+00 2.2E+01 9.9E+00 <BG <BG
Napthacene <BG <BG <BG 2.6E+00 <BG <BG <BG <BG <BG <BG
Retene <BG <BG <BG 1.0E+01 <BG <BG <BG <BG <BG <BG
Benzo[b]fluoranthene 2.1E+01 5.0E+01 2.3E+01 1.5E+01 7.5E+00 7.1E+00 2.8E+01 1.4E+01 3.5E+00 <BG
Benzo[k]fluoranthene 1.3E+01 3.2E+01 1.8E+01 8.6E+00 3.9E+00 5.9E+00 2.2E+01 8.0E+00 <BG <BG
Benzo[e]pyrene 1.7E+01 4.1E+01 1.9E+01 1.1E+01 5.2E+00 5.6E+00 1.7E+01 7.9E+00 <BG 1.8E+00
Benzo[a]pyrene 1.5E+01 3.4E+01 1.8E+01 9.8E+00 6.5E+00 7.6E+00 2.1E+01 1.1E+01 <BG <BG
Perylene <BG 5.7E+00 <BG <BG <BG <BG 7.0E+00 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 2.2E+01 7.5E+01 3.0E+01 1.3E+01 5.5E+00 8.4E+00 2.6E+01 1.2E+01 <BG <BG
Benzo[g,h,i]perylene 4.1E+01 9.3E+01 3.6E+01 1.4E+01 7.6E+00 1.2E+01 3.1E+01 1.4E+01 <BG <BG
Anthanthrene 2.6E+00 7.8E+00 2.7E+00 <BG <BG <BG 4.5E+00 <BG <BG <BG
Dibenz[a,h+ac]anthracene <BG 3.5E+00 2.4E+00 <BG <BG <BG <BG <BG <BG <BG
Coronene 1.7E+01 3.5E+01 1.3E+01 4.4E+00 <BG 4.3E+00 9.5E+00 4.4E+00 <BG <BG
Mass Conc (ug/m3) 2.6E+00 9.3E+00 6.3E+00 4.9E+00 1.8E+00 4.1E-01 3.1E+00 2.5E+00 8.7E-01 5.2E-01  
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Sample ID MT 23 MT 23 MT 23 MT 23 MT 23 MT 24 MT 24 MT 24 MT 24 MT 24
Start Date 042302 042302 042302 042302 042302 042302 042302 042302 042302 042302
Start Time 0834 0834 0834 0834 0834 1942 1942 1942 1942 1942

Stop Date 042302 042302 042302 042302 042302 042402 042402 042402 042402 042402
Stop Time 1839 1839 1839 1839 1839 807 807 807 807 807

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 8% 7% 8% 8% 12% 9% 12% 8% 8% 8%
d10 Fluorene 80% 76% 95% 90% 82% 73% 77% 74% 86% 94%
d10 Fluoranthene 103% 104% 117% 109% 103% 90% 90% 92% 108% 107%
d12 Perylene 107% 89% 106% 108% 100% 93% 95% 96% 109% 108%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene <BG 2.6E+01 2.2E+01 <BG 4.7E+01 3.1E+01 8.7E+01 5.2E+01 2.0E+01 <BG
Pyrene 1.5E+01 2.5E+01 1.7E+01 1.3E+01 1.3E+01 3.8E+01 1.0E+02 4.8E+01 1.7E+01 9.9E+00
3,6Dimethylphenanthrene <BG <BG <BG <BG <BG <BG 6.1E+00 <BG <BG <BG
9,10,dimethylanthracene <BG <BG <BG <BG <BG 4.3E+00 1.1E+01 <BG <BG <BG
Benzo[a]fluorene <BG <BG <BG <BG 4.4E+00 5.5E+00 1.5E+01 7.6E+00 <BG <BG
Benzo[b]fluorene <BG <BG <BG <BG 1.0E+01 4.5E+00 1.5E+01 6.7E+00 <BG <BG
Benz[a]anthracene 5.5E+00 7.7E+00 5.6E+00 6.0E+00 4.4E+00 2.6E+01 6.2E+01 2.7E+01 5.8E+00 3.4E+00
Cyclopenta(c,d)pyrene <BG <BG <BG <BG <BG 2.7E+01 6.7E+01 2.7E+01 <BG <BG
Chrysene + Triphenylene 1.0E+01 1.4E+01 1.1E+01 8.3E+00 5.5E+00 3.0E+01 7.6E+01 3.4E+01 8.8E+00 5.0E+00
Napthacene <BG <BG <BG <BG <BG <BG 1.3E+01 5.0E+00 <BG <BG
Retene <BG <BG <BG <BG 1.9E+01 <BG 1.8E+01 <BG <BG <BG
Benzo[b]fluoranthene 9.4E+00 1.3E+01 9.8E+00 9.3E+00 4.4E+00 3.7E+01 9.7E+01 3.7E+01 8.3E+00 4.1E+00
Benzo[k]fluoranthene <BG 7.3E+00 7.6E+00 7.1E+00 <BG 2.7E+01 7.3E+01 2.9E+01 5.6E+00 <BG
Benzo[e]pyrene 8.5E+00 1.0E+01 7.0E+00 5.6E+00 4.2E+00 2.3E+01 5.5E+01 1.9E+01 4.8E+00 2.9E+00
Benzo[a]pyrene <BG 1.3E+01 <BG <BG 1.7E+01 3.1E+01 7.6E+01 3.0E+01 8.1E+00 <BG
Perylene <BG <BG <BG <BG <BG <BG 1.4E+01 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 1.0E+01 1.1E+01 8.3E+00 7.3E+00 3.8E+00 3.8E+01 9.5E+01 4.2E+01 3.4E+00 2.9E+00
Benzo[g,h,i]perylene 1.8E+01 1.8E+01 1.4E+01 1.1E+01 <BG 4.8E+01 8.9E+01 3.4E+01 8.6E+00 <BG
Anthanthrene 5.5E+00 <BG <BG <BG <BG 4.1E+00 1.1E+01 5.4E+00 <BG <BG
Dibenz[a,h+ac]anthracene 7.5E+00 <BG <BG <BG <BG <BG 6.3E+00 <BG <BG <BG
Coronene 1.3E+01 8.9E+00 <BG <BG <BG 1.7E+01 3.5E+01 1.3E+01 <BG <BG
Mass Conc (ug/m3) 9.0E-01 2.4E+00 2.5E+00 2.5E+00 1.3E+00 1.7E+00 4.5E+00 2.9E+00 2.2E+00 9.9E-01  
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Sample ID MT 25 MT 25 MT 25 MT 25 MT 25 MT 26 MT 26 MT 26 MT 26 MT 26
Start Date 042402 042402 042402 042402 042402 042402 042402 042402 042402 042402
Start Time 0913 0913 0913 0913 0913 1926 1926 1926 1926 1926

Stop Date 042402 042402 042402 042402 042402 042502 042502 042502 042502 042502
Stop Time 1933 1933 1933 1933 1933 800 800 800 800 800

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 8% 10% 8% 7% 10% 8% 9% 7% 7% 9%
d10 Fluorene 90% 82% 89% 80% 75% 81% 80% 89% 82% 81%
d10 Fluoranthene 111% 101% 102% 89% 100% 92% 86% 104% 106% 104%
d12 Perylene 106% 103% 84% 98% 101% 100% 94% 106% 102% 102%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene 2.8E+01 4.1E+01 2.3E+01 <BG <BG <BG 2.1E+01 1.8E+01 <BG 1.6E+01
Pyrene 2.1E+01 3.2E+01 1.5E+01 <BG <BG 7.2E+00 1.9E+01 1.2E+01 <BG <BG
3,6Dimethylphenanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
9,10,dimethylanthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Benzo[a]fluorene <BG 4.5E+00 <BG <BG <BG <BG 3.9E+00 <BG <BG <BG
Benzo[b]fluorene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Benz[a]anthracene 1.1E+01 1.9E+01 6.2E+00 3.2E+00 <BG 3.9E+00 1.6E+01 4.7E+00 2.1E+00 2.1E+00
Cyclopenta(c,d)pyrene 1.1E+01 1.2E+01 <BG <BG <BG <BG 1.2E+01 <BG <BG <BG
Chrysene + Triphenylene 2.3E+01 3.0E+01 1.2E+01 4.8E+00 <BG 8.7E+00 3.1E+01 1.4E+01 4.1E+00 <BG
Napthacene <BG <BG <BG <BG <BG <BG 4.8E+00 <BG <BG <BG
Retene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Benzo[b]fluoranthene 4.4E+01 7.3E+01 1.3E+01 6.1E+00 <BG 2.0E+01 1.1E+02 2.4E+01 4.6E+00 <BG
Benzo[k]fluoranthene 2.7E+01 4.3E+01 7.7E+00 <BG <BG 1.6E+01 8.1E+01 1.4E+01 <BG <BG
Benzo[e]pyrene 3.0E+01 5.2E+01 8.1E+00 3.1E+00 <BG 1.7E+01 8.7E+01 1.5E+01 2.2E+00 <BG
Benzo[a]pyrene 2.7E+01 4.2E+01 <BG <BG <BG 1.2E+01 6.1E+01 1.3E+01 <BG <BG
Perylene <BG 1.1E+01 <BG <BG <BG <BG 1.3E+01 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG <BG 5.4E+00 <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 5.3E+01 8.5E+01 1.1E+01 3.4E+00 <BG 3.3E+01 1.7E+02 2.4E+01 2.5E+00 <BG
Benzo[g,h,i]perylene 5.3E+01 8.4E+01 1.8E+01 <BG <BG 3.5E+01 1.4E+02 2.5E+01 <BG <BG
Anthanthrene 3.0E+00 4.8E+00 <BG <BG <BG <BG 6.2E+00 <BG <BG <BG
Dibenz[a,h+ac]anthracene 7.6E+00 1.2E+01 <BG <BG <BG 3.5E+00 3.9E+01 3.7E+00 <BG <BG
Coronene 1.4E+01 2.1E+01 <BG <BG <BG 8.4E+00 3.1E+01 6.2E+00 <BG <BG
Mass Conc (ug/m3) 3.1E+00 4.5E+00 2.7E+00 2.4E+00 1.2E+00 1.2E+00 4.0E+00 4.0E+00 3.0E+00 9.3E-01  
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Sample ID MT 27 MT 27 MT 27 MT 27 MT 27
Start Date 042502 042502 042502 042502 042502
Start Time 0855 0855 0855 0855 0855

Stop Date 042502 042502 042502 042502 042502
Stop Time 1814 1814 1814 1814 1814

Media Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogates (% Recovery)
d8 Napthalene 8% 8% 8% 9% 8%
d10 Fluorene 76% 87% 78% 81% 83%
d10 Fluoranthene 93% 101% 85% 91% 96%
d12 Perylene 95% 100% 95% 99% 102%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

Fluoranthene <BG 4.7E+01 2.4E+01 <BG <BG
Pyrene 1.3E+01 4.3E+01 2.1E+01 1.0E+01 <BG
3,6Dimethylphenanthrene <BG <BG <BG <BG <BG
9,10,dimethylanthracene <BG 6.4E+00 <BG <BG <BG
Benzo[a]fluorene <BG 8.4E+00 <BG <BG <BG
Benzo[b]fluorene <BG 4.6E+00 <BG <BG <BG
Benz[a]anthracene 6.1E+00 2.7E+01 8.1E+00 4.0E+00 <BG
Cyclopenta(c,d)pyrene <BG 2.9E+01 <BG <BG <BG
Chrysene + Triphenylene 1.1E+01 3.9E+01 1.4E+01 5.7E+00 <BG
Napthacene <BG <BG <BG <BG <BG
Retene <BG 2.8E+01 <BG <BG <BG
Benzo[b]fluoranthene 1.5E+01 6.7E+01 2.5E+01 6.7E+00 <BG
Benzo[k]fluoranthene 8.8E+00 4.4E+01 2.1E+01 <BG <BG
Benzo[e]pyrene 9.9E+00 4.1E+01 1.8E+01 4.0E+00 <BG
Benzo[a]pyrene 1.2E+01 5.5E+01 1.8E+01 <BG <BG
Perylene <BG 1.2E+01 <BG <BG <BG
Dimethylbenz[a]anthracene <BG <BG <BG <BG <BG
3Methylcholanthrene <BG <BG <BG <BG <BG
Indeno[1,2,3-c,d]pyrene 1.3E+01 5.9E+01 3.4E+01 5.1E+00 <BG
Benzo[g,h,i]perylene 2.7E+01 8.1E+01 3.6E+01 <BG <BG
Anthanthrene <BG 7.8E+00 3.1E+00 <BG <BG
Dibenz[a,h+ac]anthracene <BG 4.5E+00 <BG <BG <BG
Coronene 6.6E+00 2.1E+01 8.8E+00 <BG <BG
Mass Conc (ug/m3) 1.1E+00 5.7E+00 5.7E+00 2.3E+00 1.1E+00  
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Sample ID MT 17 MT 17 MT 17 MT 17 MT 17 MT 18 MT 18 MT 18 MT 18 MT 18
Start Date 041502 041502 041502 041502 041502 041602 041602 041602 041602 041602
Start Time 1834 1834 1834 1834 1834 0846 0846 0846 0846 0846

Stop Date 041602 041602 041602 041602 041602 041602 041602 041602 041602 041602
Stop Time 742 742 742 742 742 1854 1854 1854 1854 1854

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogate (% Recovery)
1N-Napthalene-d7 78% 74% 37% 49% 64% 46% 53% 62% 48% 24%
1N-Anthracene-d9 83% 90% 69% 80% 89% 91% 93% 85% 79% 75%
1N-Pyrene-d9 66% 74% 56% 57% 68% 77% 80% 65% 82% 62%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

2N-fluorene 6.9E-02 2.4E-01 7.3E-02 ND ND ND ND 8.4E-02 ND 5.3E-02
9N-anthracene 2.1E+01 1.0E+02 2.2E+01 3.3E+00 1.0E+00 5.7E+00 2.5E+01 1.2E+01 1.6E+00 <BG
2N-anthracene ND <BG <BG <BG <BG 1.2E+00 1.1E+00 <BG <BG <BG
9N-phenanthrene 5.2E-01 1.9E+00 4.4E-01 2.7E-01 ND 1.2E-01 4.2E-01 2.0E-01 ND <BG
3N-phenanthrene 5.8E-01 2.6E+00 6.5E-01 2.3E-01 ND 4.1E-01 2.0E+00 6.0E-01 2.2E-01 ND
4N-phenanthrene 1.9E-01 6.3E-01 1.4E-01 4.6E-02 4.2E-02 7.6E-02 2.1E-01 2.0E-01 <BG ND
2N-fluoranthene 1.9E+01 7.0E+01 7.3E+00 1.9E+00 3.0E-01 1.5E+01 7.2E+01 1.3E+01 1.9E+00 <BG
3N-fluoranthene 1.4E-01 3.5E-01 7.6E-02 ND ND ND 1.4E-01 1.3E-01 ND ND
1N-pyrene 8.0E+00 2.4E+01 2.2E+00 8.0E-01 <BG 2.5E+00 1.1E+01 2.0E+00 4.0E-01 1.7E-01
2N-pyrene 1.2E+00 3.9E+00 8.2E-01 1.4E+00 ND 1.3E+00 6.1E+00 7.0E-01 ND <BG
7-nitrobenz[a]anthracen 1.6E+00 4.9E+00 5.5E-01 1.8E-01 <BG 1.4E-01 6.1E-01 1.9E-01 ND ND
6N-chrysene 8.8E-02 1.1E-01 <BG ND <BG <BG 4.3E-01 1.1E-01 ND <BG  
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Sample ID MT 19 MT 19 MT 19 MT 19 MT 19 MT 20 MT 20 MT 20 MT 20 MT 20
Start Date 041602 041602 041602 041602 041602 041702 041702 041702 041702 041702
Start Time 1957 1957 1957 1957 1957 0855 0855 0855 0855 0855

Stop Date 041702 041702 041702 041702 041702 041702 041702 041702 041702 041702
Stop Time 735 735 735 735 735 1759 1759 1759 1759 1759

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogate (% Recovery)
1N-Napthalene-d7 64% 40% 55% 64% 44% 61% 50% 55% 53% 44%
1N-Anthracene-d9 74% 66% 73% 72% 64% 75% 72% 72% 73% 62%
1N-Pyrene-d9 79% 81% 84% 69% 44% 70% 73% 69% 67% 50%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

2N-fluorene ND 9.4E-02 4.0E-02 3.6E-02 <BG ND ND ND ND ND
9N-anthracene 1.1E+01 6.1E+01 3.5E+01 1.5E+00 <BG 1.3E+01 3.8E+01 1.7E+01 3.7E+00 2.1E+00
2N-anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
9N-phenanthrene 2.4E-01 6.9E-01 4.2E-01 1.3E-01 ND 1.1E-01 3.5E-01 1.2E-01 ND ND
3N-phenanthrene 3.2E-01 1.2E+00 5.3E-01 <BG ND 5.6E-01 1.9E+00 6.8E-01 1.7E-01 ND
4N-phenanthrene 1.1E-01 2.7E-01 1.6E-01 <BG ND 1.3E-01 2.5E-01 2.0E-01 5.4E-02 <BG
2N-fluoranthene 1.5E+01 4.8E+01 1.3E+01 1.4E+00 <BG 2.3E+01 7.8E+01 1.5E+01 2.8E+00 <BG
3N-fluoranthene 8.7E-02 1.4E-01 6.9E-02 ND ND 5.1E-02 1.0E-01 <BG <BG <BG
1N-pyrene 3.3E+00 1.1E+01 1.4E+01 4.7E-01 8.6E-02 2.5E+00 7.3E+00 1.7E+00 4.4E-01 1.4E-01
2N-pyrene 5.8E-01 1.2E+00 5.1E-01 ND ND 1.4E+00 5.0E+00 9.1E-01 <BG ND
7-nitrobenz[a]anthracen 5.2E-01 1.9E+00 7.9E-01 1.2E-01 <BG <BG 3.8E-01 <BG <BG ND
6N-chrysene ND <BG <BG ND ND <BG <BG <BG ND <BG  
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Sample ID MT 21 MT 21 MT 21 MT 21 MT 21 MT 22 MT 22 MT 22 MT 22 MT 22
Start Date 041702 041702 041702 041702 041702 042202 042202 042202 042202 042202
Start Time 1856 1856 1856 1856 1856 1833 1833 1833 1833 1833

Stop Date 041802 041802 041802 041802 041802 042302 042302 042302 042302 042302
Stop Time 1745 1745 1745 1745 1745 808 808 808 808 808

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogate (% Recovery)
1N-Napthalene-d7 57% 47% 70% 48% 56% 60% 64% 59% 33% 42%
1N-Anthracene-d9 73% 68% 88% 73% 74% 75% 76% 70% 66% 66%
1N-Pyrene-d9 69% 68% 69% 71% 64% 74% 80% 76% 74% 50%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

2N-fluorene 2.6E-02 4.9E-02 5.1E-02 ND <BG <BG 5.0E-02 3.3E-02 ND ND
9N-anthracene 3.6E+01 8.5E+01 3.0E+01 3.7E+00 1.2E+00 9.1E-01 3.9E+00 2.2E+00 1.1E+00 <BG
2N-anthracene ND <BG <BG <BG <BG <BG <BG <BG <BG ND
9N-phenanthrene 2.0E-01 4.4E-01 2.9E-01 5.4E-02 <BG <BG 1.8E-01 1.0E-01 <BG ND
3N-phenanthrene 4.2E-01 1.2E+00 5.9E-01 1.2E-01 <BG <BG 1.4E-01 ND <BG ND
4N-phenanthrene 1.0E-01 2.6E-01 1.7E-01 3.7E-02 <BG ND ND ND <BG ND
2N-fluoranthene 9.1E+00 2.2E+01 6.1E+00 9.3E-01 2.9E-01 <BG 9.3E-01 3.8E-01 <BG <BG
3N-fluoranthene 1.1E-01 2.9E-01 1.0E-01 <BG ND ND ND ND <BG 8.2E-02
1N-pyrene 3.6E+00 8.4E+00 2.2E+00 4.1E-01 1.1E-01 7.1E-01 2.3E+00 5.4E-01 1.9E-01 <BG
2N-pyrene 2.9E-01 7.5E-01 2.2E-01 ND ND ND ND ND ND ND
7-nitrobenz[a]anthracen 7.5E-01 1.8E+00 4.9E-01 <BG <BG 1.1E-01 4.3E-01 1.4E-01 <BG <BG
6N-chrysene 1.3E-01 2.0E-01 6.3E-02 <BG <BG ND ND ND <BG <BG  
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Sample ID MT 23 MT 23 MT 23 MT 23 MT 23 MT 24 MT 24 MT 24 MT 24 MT 24
Start Date 042302 042302 042302 042302 042302 042302 042302 042302 042302 042302
Start Time 0834 0834 0834 0834 0834 1942 1942 1942 1942 1942

Stop Date 042302 042302 042302 042302 042302 042402 042402 042402 042402 042402
Stop Time 1839 1839 1839 1839 1839 807 807 807 807 807

Media Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil
Stage 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um 0.04 - 0.14 um 0.14 - 0.49 um 0.49 - 1.7 um 1.7 - 6 um 6 - 20 um

Surrogate (% Recovery)
1N-Napthalene-d7 59% 46% 61% 74% 74% 66% 58% 54% 63% 60%
1N-Anthracene-d9 74% 60% 71% 85% 84% 82% 72% 80% 84% 84%
1N-Pyrene-d9 74% 62% 66% 65% 69% 80% 66% 66% 69% 65%

Concentration pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3

2N-fluorene ND ND ND ND ND 1.3E-01 3.1E-01 7.6E-02 6.4E-02 ND
9N-anthracene <BG <BG <BG <BG <BG 1.5E+01 3.4E+01 1.2E+01 3.6E+00 2.5E+00
2N-anthracene <BG <BG <BG <BG <BG <BG <BG <BG <BG <BG
9N-phenanthrene <BG 9.6E-02 <BG ND ND 1.1E+00 2.5E+00 8.4E-01 3.4E-01 9.2E-02
3N-phenanthrene <BG <BG <BG ND ND 4.1E-01 8.3E-01 2.8E-01 <BG <BG
4N-phenanthrene <BG <BG <BG ND <BG 6.7E-02 1.2E-01 4.4E-02 <BG ND
2N-fluoranthene 9.4E-01 <BG <BG <BG <BG 5.7E+00 1.1E+01 2.8E+00 4.9E-01 <BG
3N-fluoranthene 9.4E-02 <BG <BG <BG ND 1.5E-01 2.3E-01 5.7E-02 ND ND
1N-pyrene 1.1E+00 9.0E-01 4.3E-01 5.0E-01 <BG 6.7E+00 1.3E+01 3.2E+00 1.2E+00 2.8E-01
2N-pyrene ND ND ND ND ND 2.8E-01 5.3E-01 ND ND ND
7-nitrobenz[a]anthracene ND <BG 3.7E+00 <BG <BG 1.5E+00 2.2E+00 4.9E-01 1.2E-01 ND
6N-chrysene <BG <BG <BG <BG ND 9.4E-02 1.4E-01 ND <BG <BG
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