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1. Satellite Orbit Calculations (Satellite Orbit-Plane Coordinate System)

The path of a satellite orbiting around the earth takes the form of an ellipse. This section describes some of
the quantities and properties related to the satellite orbit. For simplicity, a satellite orbit-plane coordinate
system is chosen, so that the satellite orbit lies in the x-y plane, and we can deal with a 2-D instead of a
3-D system. The following are some of the parameters and equations that describe this path.

S – satellite

E – earth

O – geometric center of orbit

Ph – perifocus (point at which, satellite is closest to earth)

Ah – apofocus (point at which, satellite is furthest from earth)

a – semimajor axis

e – eccentricity (circle: e = 0, ellipse: 0 < e < 1)

b – semiminor axis b = a
p

1 − e2

p – semiperimeter p = a(1 − e2)

ν – true anomaly

r – position vector

r – distance between earth and satellite

V – velocity vector

V – speed of satellite

µ =
mass of earth + mass ofsatellite

mass of earth
≈ 1

k – gravitational constant of earth k ≈ 1. 9965 × 107m3/2 / s

t – current time

T – time of perifocal passage (time at which, the satellite was at Ph)

P – period of revolution (time taken by satellite to revolve once around the earth)

P, Q, W – unit vectors along xω, yω and zω respectively
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Fig. 1. Orbital plane view of a satellite orbit around the earth.

1.1. Satellite Orbit Specification

To specify the shape of the satellite orbit, and position of the satellite in the orbit, the following parameters
need to be given: a, e, and T .

1.2. Period of Revolution

Given a, we can calculate P:

P =
2π

k
pµ

a3/2.

Vice-versa, given P, we can calculate a:

a =
�

kP
pµ

2π

�2/3
.
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1.3. Distance of satellite from the center of the earth

Given the true anomaly, the distance of the satellite from the earth is

r =
a(1 − e2)

1 + e cos ν
.

Satellite is closest to the earth at ν = 0, cos ν = 1:

rPh
= a(1 − e)

and furthest from the earth at ν = π, cos ν = −1:

rAh
= a(1 + e).

1.4. Displacement vector

r =

"
a(1 − e2) cos ν

1 + e cos ν

#
P +

"
a(1 − e2) sin ν

1 + e cos ν

#
Q

1.5. Speed of Satellite

V = k

s
µ
a

�
1 + 2e cos ν + e2

1 − e2

�

Speed is maximum at perifocus ν = 0, cos ν = 1, and minimum at apofocus ν = π, cos ν = −1:

Vmax = k

s
µ
a

�
1 + e
1 − e

�
Vmin = k

s
µ
a

�
1 − e
1 + e

�

1.6. Velocity of Satellite

Tangential component:

Vt = k(1 + e cos ν)

r
µ
a

1
1 − e2

Radial component:

Vr = ke sin ν
r

µ
a

1
1 − e2

Velocity vector:

V =

"
−k sin ν

r
µ
a

1
1 − e2

#
P +

"
k(cos ν + e)

r
µ
a

1
1 − e2

#
Q
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1.7. Satellite position at time t

Given the current time t , first solve for the apparent anomaly E using

E
� π

180

�
− e sin E =

k
pµ

a3/2
�

t − T
�
.

To solve this, use the following algorithm:

(i) Set E0  
�

180
π

�
k
pµ

a3/2
�

t − T
�

; k  0.

(ii) Set Ek+1  
e sin Ek − eEk cos Ek + E0

π
180

π
180 − e cos Ek

. If
jEk+1 − Ek j
jEk j

< 10−5, stop; otherwise, set k  k + 1,

and repeat step (ii).

Note: The above algorithm assumes that E is in radians.

Then, solve for the true anomaly ν from

cos ν =
cos E − e

1 − e cos E
; sin ν =

p
1 − e2 sin E
1 − e cos E

Then, use ν in the equations above.

2. Latitude-Longitude-Altitude Coordinate System

The earth is not a perfect sphere, but rather closer to an ellipsoid.

ae – equatorial radius (semimajor axis) ae ≈ 6. 37815 × 106m

be – polar radius (semiminor axis)

f – flattening f =
ae − be

ae
=

1
298. 30

Usually, on earth, the location of a point is specified by two angular coordinates (latitude–longitude) and
the altitude above/below the adopted reference ellipsoid. Because the earth is an ellipsoid, there are three
kinds of latitude defined—geocentric latitude, geodetic latitude and astronomical latitude.

2.1. Latitude

φ0 (Geocentric latitude) – The acute angle measures perpendicular to the equatorial plane between the
equator and a line connecting the geometric center of the earth with the point formed by the intersection
of the surface of the refence ellipsoid and the normal to a tangent plane touching the reference ellipsoid
that contains the point.

φ (Geodetic latitude) – The acute angle measures perpendicular to the equatorial plane between that nor-
mal to a tangent plane touching the reference ellipsoid, and passing through the point, and the equatorial
plane.

φa (Astronomical latitude) – The acute angle measured perpendicular to the equatorial plane formed by
the intersection of a gravity ray with the equatorial plane.

Since the astronomical latitude is a function of the local gravitational field, it is affected by local surface
anomalies like mountains, seas, etc.. It is usually used as an approximation to geodetic latitude, when the
latter is not available.
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Geodetic latitude is the one commonly used in maps, etc.. When not specified, geodetic latitude is
assumed.

Conversion between geodetic and geocentric latitudes are as follows:

φ = tan−1
�

1
(1 − f )2 tan φ0

�
; φ0 = tan−1

�
(1 − f )2 tan φ

�
.

2.2. Longitude

There are two kinds of longitude used:

λE (East longitude) – Angle measured towards the east, in the equatorial plane between the prime
meridian (0°) and the meridian crossing the surface point.

λW (West longitude) – Angle measured towards the west, in the equatorial plane between the prime
meridian (0°) and the meridian crossing the surface point.

East longitude is the more common of the two. Conversion between the two is as follows:

λW = 360° − λE .

2.3. Altitude

H (Altitude) – Height of the object above/below the reference ellipsoid, measured normal to a tangent
plane touching the surface; the normal passing through the point and the point of contact of the tangent
plane with the reference point.
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Fig. 2. Geodetic and Geometric latitude of a point.

3. Right Ascension-Declination Coordinate System

Calculations in space are best carried out in an inertial or fixed coordinate system. The right ascension-
declination system is the basic astrodynamical system. This section explains this coordinate system and
the next section shows how to specify a satellite orbit in this coordinate system.

The origin is fixed at the center of the earth. The x-axis points to the vernal equinox (a certain distant star)
in the equatorial plane, the y-axis is perpendicular to the x-axis and also lies in the equatorial plane, and
the z-axis points to the north-pole.

I, J, K – unit vectors along the x, y, and z axes respectively.

α (Right Ascension) – Angle measured in the plane of the equator from the vernal equinox to a plane
normal to the equator (meridian) that contains the object. 0° ≤ α ≤ 360°.

δ (Declination) – Angle between object and equator measured in a plane normal to the equator, which
contains the object and the origin. −90° ≤ δ ≤ 90°.

r (Radial distance) – The distance between the origin and the object.
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Fig. 3. Right Ascension-Declination Coordinate System.

3.1. Conversions

Given [x, y, z] coordinates in the right ascension-declination system, computation of [α ,δ, r] is as follows:

r =
q

x2 + y2 + z2

Solve for δ from cos δ =
p

x2 + y2

r
; sin δ =

z
r

Solve for α from cos α =
xp

x2 + y2
; sin α =

yp
x2 + y2

Given [α ,δ, r] coordinates in the right ascension-declination system, computation of [x, y, z] is as follows:

x = r cos δ cos α

y = r cos δ sin α

z = r sin δ

4. Satellite Orbit Orientation in Space

In Section 1, we discussed satellite orbit calculations in the orbital-plane coordinate system [P, Q, W]. In
this section, we discuss how the satellite orbit is actually oriented in space (i.e., with respect to an inertial
frame of reference). We shall specify orbit orientation in the right ascension-declination system.
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ι (Orbital Inclination) – Angle between orbital and equatorial planes measured in a plane perpendicular
to a line defining their respective intersection. 0° ≤ i ≤ 180°

Ω (Longitude of the ascending node) – The angle measured in the equatorial plane between the principal
axis (vernal equinox) and the line defining the intersection of the orbital and equatorial planes, as a point
passes through the equator from −z to +z. 0 ≤ Ω ≤ 360°

ω (Argument of the perigee) – Angle measured in the orbital plane from the line joining defined by the
longitude of the ascending node to another line in the orbital plane, which contains the focus and passes
through the perifocus. 0 ≤ ω ≤ 360°

Ω
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x  (Vernal equinox)

I

z

K
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xω

Satellite orbit

Q

yω

W

zω

Origin
Equatorial Plane

ι

Fig. 4. Satellite Orbit Orientation in the Right Ascension-Declination Coordinate System.

4.1. Conversions

Conversion from the [P, Q, W] to the [I, J, K] coordinate system is as follows:

" P
Q
W

#
=

" cos ω sin ω 0
− sin ω cos ω 0

0 0 1

#" 1 0 0
0 cos ι sin ι
0 − sin ι cos ι

#" cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

#" I
J
K

#

Conversion from the [I, J, K] to the [P, Q, W] coordinate system is as follows:

" I
J
K

#
=

" cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

#" 1 0 0
0 cos ι − sin ι
0 sin ι cos ι

#" cos ω − sin ω 0
sin ω cos ω 0

0 0 1

#" P
Q
W

#
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5. Calculation of Local Siderial Time

Relating an earth-fixed coordinate system to the right ascension-declination system requires the calcula-
tion of local siderial time of any point on the earth’s surface.

θg – siderial time (in degrees)

λE – East longitude of observer (known)

θ – local siderial time (in degrees)

L – number of days in a tropical year

Tu – Number of Julian Centuries since 1900

J.D. – Julian date

U.T. – Universal Time (Greenwich Mean Time and Date)

∆t – Time of day, in seconds

Local siderial time is given by

θ = θg + λE

where siderial time is given by

θg = θg0 + ∆t
dθ
dt

θg0 = (99. 69098329 + 36000. 76893Tu + 3. 87080 × 10−4T 2
u )°

dθ
dt

=
1

240

�
1 +

1
L

�
° / sec

L = 365. 24219879 − 6. 14 × 10−6Tu days

Tu =
J.D. − 2415020. 0

36525
J.D. = 2415020. 0 + Number of days since Jan 0, 1900
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Fig. 5. Siderial time and Local Siderial time.

5.1. Example

What is the local siderial time at Wantig, West Antigua (λE = 298. 2213°) at U.T. of 1962 October 12day

10hr 15min 30sec.

Step 1: Calculate J.D. and ∆t

J . D. = 2415020. 0 to Jan 0, 1900

+22645. 0 to Jan 0, 1962

+273. 0 to Oct 0, 1962

+0. 5 to Oct 1, 1962

+11 to Oct 12, 1962

= 2437949. 5 days

∆t = 10hr 15min 30sec = 36930sec

Step 2: Calculate Tu

Tu = 0. 62777550

Step 3: Calculate L
L = 365. 2421949

Step 4: Calculate dθ / dt
dθ
dt

= 4. 178075 × 10−3° / sec
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Step 5: Calculate θg0

θg0 = 22700. 09171°

Step 6: Calculate θg

θg = 22854. 38801°

Step 7: Calculate θ

θ = 22854. 38801 + 298. 2213 = 23152. 60931 ≡ 112. 6093 mod 360°

Therefore, local siderial time is θ = 112. 6093°.

6. Azimuth-Elevation Coordinate System

The Azimuth-elevation coordinate system places a point on the surface of the earth (observer) at the
origin of the coordinate system. The coordinate system is fixed with reference to the earth, and therefore,
rotates as the earth rotates. In this coordinate system, the position of any object is described by the
following three quantities:

h (Elevation) – Angular elevation of an object above the observer’s horizon. −90° ≤ h ≤ 90°

A (Azimuth) – The angle from the North to the object’s meridian, measured in the observer’s horizontal
plane. 0° ≤ A ≤ 360°

ρh (Slant Range) – Distance between the object and the observer.

A

h

x   SouthhNorth

West

y    Easth

z

Zenith

Object

Origin

Observer’s
Horizontal Plane

ρ h

Fig. 6. Azimuth-Elevation Coordinate System
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7. Conversions

In this section, we give the transformations between the three coordinate systems discussed in previous
sections. Calculation of certain parameters require that the satellite and/or observer (ground station) be
in one of the coordinate systems. For example, antenna direction and performance computation can be
best done if the satellite position is represented in the azimuth-elevation coordinate system. Footprint
calculation is best done when the satellite is represented in the latitude-longitude-altitude coordinate sys-
tem. We have already discussed how to represent the satellite position in the right ascension-declination
system. Therefore, in this section, we give transformations between this system and the others.

7.1. From Right Ascension-Declination to Azimuth-Elevation

Given satellite coordinates [x, y, z] (or [α ,δ, r]) in the right ascension-declination system, and ground
station coordinates [φ,λE , H , t] to compute the satellites azimuth-elevation coordinates with respect to
the ground-station: [A, h, ρh].

Satellite Coordinates

x, y, z – satellite’s coordinates in the right ascension-declination system

Note: If the satellite’s coordinates are given in the form [α ,δ, r], conversion to the [x, y, z] form can be
done as in Section 3.

Ground-station coordinates

φ – Station’s geodetic latitude

λE – Station’s east longitude

H – Station’s elevation above sea-level

t – Universal time (U.T.)

Azimuth-Elevation coordinates

A – Azimuth angle of satellite from ground station

h – Elevation angle of satellite from ground station

ρh – Distance between ground station and satellite

First, compute station’s siderial time θ , from λE and t , as shown in Section 5. Next, compute

G1 =
aep

1 − (2f − f 2) sin2 φ
+ H

G2 =
ae(1 − f )2p

1 − (2f − f 2) sin2 φ
+ H

xo = G1 cos φ cos θ

yo = G1 cos φ sin θ

zo = G2 sin φ

ρx = x − xo

ρy = y − yo

ρz = z − zo

Distance between satellite and ground station is therefore, given by
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ρh =
q

ρ2
x + ρ2

y + ρ2
z"Lxh

Lyh
Lzh

#
=

" sin φ cos θ sin φ sin θ − cos φ
− sin θ cos θ 0

cos θ cos φ sin θ cos φ sin φ

#" ρx / ρ
ρy / ρ
ρz / ρ

#

Elevation can be computed from

sin h = Lzh

cos h =
q

1 − L2
zh

and Azimuth from

sin A =
Lyhq

1 − L2
zh

cos A =
Lxhq

1 − L2
zh

7.2. From Azimuth-Elevation to Right Ascension-Declination

Given satellite coordinates [A, h, ρh] in the azimuth-elevation coordinate system with respect to the ground
station with coordinates [φ,λE , H , t], to compute the satellite’s coordinates: [x, y, z] (or [α ,δ, r]) in the
right ascension-declination system.

Satellite Coordinates

[A, h, ρh] – satellite’s coordinates in the azimuth-elevation coordinate system

A – Azimuth angle of satellite from ground station

h – Elevation angle of satellite from ground station

ρh – Distance between ground station and satellite

Ground-station coordinates

φ – Station’s geodetic latitude

λE – Station’s east longitude

H – Station’s elevation above sea-level

t – Universal time (U.T.)

Right Ascension-Declination coordinates [x, y, z] – satellite’s coordinates in the right ascension-declina-
tion coordinate system. These can be converted to [α ,δ, r] as in Section 3.

First, compute station’s siderial time θ , from λE and t , as shown in Section 5. Next, compute

Lxh = −cos A cos h

Lyh = sin A cos h

Lzh = sin h

G1 =
aep

1 − (2f − f 2) sin2 φ
+ H
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G2 =
ae(1 − f )2p

1 − (2f − f 2) sin2 φ
+ H

xo = G1 cos φ cos θ

yo = G1 cos φ sin θ

zo = G2 sin φ"Lx
Ly
Lz

#
=

" sin φ cos θ sin φ sin θ − cos φ
− sin θ cos θ 0

cos θ cos φ sin θ cos φ sin φ

#" Lxh
Lyh
Lzh

#

ρx = ρhLx

ρy = ρhLy

ρz = ρhLz

The satellite coordinates are then, given by

x = ρx + xo

y = ρy + yo

z = ρz + zo

7.3. From Right Ascension-Declination to Latitude-Longitude-Altitude

Given the satellite’s coordinates [x, y, z] (or equivalently, [α ,δ, r]) in the right ascension-declination coor-
dinate, and the universal time (U.T.), compute its position in the latitude-longitude-altitude coordinate
system.

Right Ascension-Declination Coordinates

x, y, z – satellite’s rectangular coordinates in the right ascension-declination coordinate system.

Note: If the satellite’s coordinates are given in the [α ,δ, r] form, they may be converted to this form as in
Section 3.

Latitude-Longitude-Altitude Coordinates

U.T. – Universal time (U.T.) (GMT and date.)

φ – Satellite’s geodetic latitude

λE – Satellite’s east longitude

H – Satellite’s altitude above sea-level

First, compute siderial time θg from the Universal Time (U.T.) as in Section 5. Next, compute α from the
following equations

sin α =
yp

x2 + y2

cos α =
xp

x2 + y2

Then, compute the satellite’s east longitude as

λE = α − θg mod 360°
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Next, compute φ and H from the following iterative algorithm:

(i) Step 1: Compute r and δ (−90° ≤ δ ≤ 90°) from

r =
q

x2 + y2 + z2

sin δ =
z
r

cos δ =
p

x2 + y2

r

Set φ0

0 = δ , k = 0.

(ii) Step 2:

rc,k = ae

s
1 − (2f − f 2)

1 − (2f − f 2) cos2 φ0

k

φk = tan−1
�

1
(1 − f )2 tan φ0

k

�
, −90° ≤ φk ≤ 90°

Hk =
q

r2 − r2
c,k sin2(φk − φ0

k) − rc,k cos(φk − φ0

k)

φ0

k+1 = δ − sin−1
�

Hk
r

sin(φk − φ0

k)
�

(iii) Step 3: If
jφ0

k+1 − φ0

kj
jφ0

k+1j
< 10−5, then go to Step (iv). Otherwise, set k  k + 1 and go to Step (ii).

(iv) Step 4: Set

H = Hk

φ = tan−1
�

1
(1 − f )2 tan φ0

k+1

�
, −90° ≤ φ ≤ 90°

7.4. From Latitude-Longitude-Altitude to Right Ascension-Declination

Given the satellite’s coordinates [φ,λE , H , t] in the latitude-longitude-altitude coordinate system, compute
its [x, y, z] coordinates in the right ascension-declination coordinate.

Latitude-Longitude-Altitude Coordinates

t – Universal time (U.T.) (GMT and date.)

φ – Satellite’s geodetic latitude

λE – Satellite’s east longitude

H – Satellite’s altitude above sea-level

Right Ascension-Declination Coordinates

[α ,δ, r] – satellite’s coordinates in the right ascension-declination coordinate system.

Note: Once the satellite’s [α ,δ, r] coordinates are found, they may be converted into the [x, y, z][α ,δ, r]
form as in Section 3.
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First, compute siderial time θg from the Universal Time (t) as in Section 5. Also, compute the satellite’s
geocentric latitude φ0 from its geodetic latitude φ as in Section 2. Next, compute

r2
c =

a2
e

h
1 − (2f − f 2)

i
1 − (2f − f 2) cos2 φ0

r =
q

r2
c + H 2 + 2rc H cos(φ − φ0)

α = θg − (360° − λE), 0° ≤ α ≤ 360°

δ = φ0 + sin−1
�

H
r

sin(φ − φ0)
�

, −90° ≤ δ ≤ 90°

8. Ground-Station Computations

In this section, we discuss various parameters related to antenna adjustments from the ground station.

8.1. Satellite Visibility

To check whether the satellite is visible (above the local horizon) from the position of the ground-station,
compute satellite coordinates in the azimuth-elevation coordinate system with the ground-station at the
reference. If the angle of elevation is positive, the satellite is visible, and this angle gives the angle of
elevation of the satellite above the horizontal at that point. If, on the other hand, the angle is negative,
then the satellite is not visible from this ground-station at the current time.

8.2. Antenna Direction and Range of Satellite

To compute the directionin which to point the antenna, simply compute the satellite’s coordinates in the
azimuth-elevation system with the ground-station as the origin. The azimuth and elevation angles give
the direction in which, to point the antenna. The distance of the satellite is given by the third coordinate.

8.3. Antenna Misdirection

Let the position of a satellite in the azimuth-elevation coordinate system with the ground station at the
reference be [A, h, ρh]. Let the antenna at the ground station be pointed in the direction: Azimuth A0 and
elevation h0. To calculate the antenna mismatch angle, ε , which is the angular displacement between the
antenna direction and the satellite direction, proceed as follows:

Sx = cos A cos h

Sy = sin A cos h

Sz = sin h

S0

x = cos A0 cos h0

S0

y = sin A0 cos h0

S0

z = sin h0

Compute ε from

cos ε = SxS0

x + Sy S0

y + SzS0

z 0° ≤ ε ≤ 180°
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9. Satellite Computations

In this section, we discuss various parameters related to the satellite’s positioning with reference to the
earth.

9.1. Satellite Position and Altitude

To compute the location on the earth’s surface (latitude and longitude) over which, the satellite is directly
overhead, simply compute the satellite’s position in the latitude-longitude-altitude coordinate system.
The satellite’s altitude is given by the third coordinate.

9.2. Footprint radius

Let the satellite’s position be specified in the latitude-longitude-altitude coordinate system as [φ,λE , H ].
Given an angle γ , the satellite footprint radius rf is the maximum distance (along the earth’s surface)
from the coordinate [φ,λE ] at which, the angle of elevation of the satellite is no less than γ . (Therefore,
the footprint of the satellite consists of all those points on the earth surface where the antenna elevation
required will be γ or more.) We compute rf as follows:

ce = ae

�
1 −

f
2

�

β = cos−1
�

ce cos γ
H + ce

�
− γ, 0° ≤ β ≤ 90°

rf = ce

�
2π
360

β
�
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