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Social scientists and researchers frequently use latent variable models to analyze 

the relationships between observed variables and latent variables representing the 

hypothesized constructs. The population, or true, model is not always known, resulting in 

a degree of misspecification in the relationships between variables in the model. 

Therefore, model- and item-fit statistics have been developed in order to provide 

evidence for the validity of a specific latent variable model. 



  

Conditions for mathematical equivalence between two popular latent variable 

modeling methods, confirmatory factors analysis (CFA) and item response theory (IRT), 

have been established, availing the researcher and practitioner of a variety of model- and 

item-fit indices. This dissertation employs a simulation design to examine the behavior of 

three model-fit indices (χ2/df, RMSEA, and GDDM) and three item-fit indices (S-χ2, 

Modification Index, Wald Test) under various conditions of model misspecification and 

test design conditions. The results of this study show the empirically-derived cut points to 

out-perform the theoretical and suggested cut points when true models are estimated; 

these cut points are employed in subsequent analysis of misspecified models. In addition 

to examining the statistical power of each fit index to correctly reject the misspecified 

models, recommendations are made for the use of each fit statistic according to the model 

misspecification and test design conditions manipulated in the simulation study. Analysis 

of a real data set is provided as an illustration.  
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Chapter 1 

Introduction 

1.1.Background 

Latent variable models define a probabilistic relationship between observed 

responses to stimuli, such as test questions or items, and hypothesized constructs or 

abilities. Frequently employed among these are confirmatory factor analysis (CFA; see 

e.g., Brown, 2006; Gorsuch, 1983) and multidimensional item response theory (MIRT; 

see e.g., Ackerman, 1994; Embretson & Reise, 2000; Reckase, 2009) models which are 

both capable of representing specific relationships among observed responses and 

hypothesized latent constructs. These theoretical dependence relationships are 

represented using a priori constructed structures that serve to constrain the patterns of 

factor loadings or item discrimination parameters in CFA and MIRT models, 

respectively. That is to say that these structures constrain the associations between 

categorical response variables, or test items, and continuous latent variables, 

characterizing persons or examinees. 

In the CFA literature, such dependence structures are referred to as the patterns of 

factor loadings in the measurement model and represented as the factor loading matrix 

Λ; in psychometric research the structure may be referred to as a Q-matrix, which is often 

used to connect items to latent variables according to an a priori theory about task or item 

demands (Tatsuoka, 1983, 1984, 1990). The structures constructed to describe these 

connections are analogous to patterns of factor loadings specified in CFA models. 
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1.2.Model Specification 

Specification of the model may correctly or incorrectly represent the underlying 

theory regarding the connections between observed and latent variables, regardless of 

whether the CFA or MIRT framework is employed. Correct model specification implies 

that the hypothesized model structure, as represented by the factor loading matrix or Q-

matrix, matches that present in the population. Estimation of such a model may result in 

sample parameter estimates that differ from the population parameters – this does imply 

model misspecification but instead is the result of random sampling. Differences between 

sample estimates and population parameters reflect what Brown and Cudeck (1993) have 

termed “errors of estimation” and represent the degree of misfit between the sample and 

population model-implied covariance matrices.  

Model misspecification can occur as a result of incorrect population distribution 

assumptions, use of an inappropriate link function in the item response function, missing 

data, unmodelled measurement error, failure to account for variable dependencies 

(Kaplan, 1990), or the misrepresentation of the theoretical association between observed 

and latent variables via the factor loading matrix or Q-matrix. Moreover, within a 

simulation context, correct model specification refers to the condition in which the 

estimating model matches the generating model; misspecification of the measurement 

model refers to models in which “(a) one or more parameters are estimated whose 

population values are zeros (i.e., an over-parameterized misspecified model), (b) one or 

more parameters are fixed to zeros whose population values are non-zeros (i.e., an under-

parameterized misspecified model), or both” (p. 427, Hu & Bentler, 1998). Measurement 

model misspecification corresponds to misspecification of the pattern of factor loadings 
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in the estimating model – an incorrect Q-matrix. Subsequently, one important practical 

aspect of the successful and appropriate application of CFA or MIRT models includes the 

assessment of goodness-of-fit of the estimated models.  

1.3.Estimation Frameworks 

Generally, CFA is used to validate a hypothesized model structure or compare 

competing models. Under the CFA framework– and structural equation modeling (SEM) 

by extension – interpretations are typically made of the model as a whole; hence global- 

or model-fit statistics. From this foundation, statistics and methods have arisen to test the 

goodness-of-fit of estimated CFA models against absolute criterion, null models, and 

competing models. Additional statistics have been developed to detect and suggest 

modifications in the model that would improve goodness-of-fit. These goodness-of-fit 

indices have been shown to be differentially sensitive to types of misfit such as under-

factoring, over-factoring, and misspecification of the measurement model (Fan & Sivo, 

2005, 2007; Hu & Bentler, 1998).  

Users of unidimensional item response theory (IRT) and MIRT, on the other 

hand, are typically concerned with the interpretation of specific observed variables or test 

items and the unobserved or latent ability of examinees. Stemming from the assumption 

that the IRT or MIRT model being applied is correct or valid, fit indices then describe the 

deviation of items or examinees from the given item response model. Therefore, few 

model-fit indices have been specifically developed for application under an IRT or MIRT 

framework; instead the focus has been on person- and item-fit indices. Item fit analysis 

describes model-data fit for each item by comparing model predictions to actual 

responses. The resulting statistics are useful in describing the functioning of the test in 
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terms of items and students, however, IRT models do not typically yield diagnostic 

information regarding model-fit such those provided when CFA models are estimated. 

Fortunately, the equivalence between MIRT and CFA models has been 

established providing a number of assumptions are met (Kamata & Bauer, 2008; Takane 

& de Leeuw, 1987), which will be discussed further in Chapter 2. When these 

assumptions are met, IRT and CFA models yield parameters that are interchangeable 

after application of known transformation formulae (Takane & de Leeuw, 1987). Though 

these models differ in regards to the purpose for which they are typically been employed 

and the subsequent inferences made based on the results, statistical equivalence between 

models suggests that desirable features of both can be employed to explore and describe 

global, model-fit and local, item-fit. 

Recently, research has been conducted regarding the application and behaviour of 

select model-fit indices adopted from the factor analytic framework within an IRT 

context (Harrell, 2009). However, there has been no research specifically investigating 

the implications of wide-spread measurement model misspecification on model-fit 

indices applied within a MIRT context. Further, research adjudging model-fit has been 

limited in scope, examining the effects of fixing or freeing only one or two loadings, and 

has failed to fully consider the effects of other aspects of the data that would be of 

interest in large-scale assessment, such as item difficulty (D. Jackson, personal 

communication, November 4, 2009).  

The current study proposes a Monte Carlo simulation in the examination of 

model- and item-fit for data generated under conditions of equivalence between CFA and 
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MIRT models per Takane and de Leeuw (1987), to which various types of measurement 

model misspecification are applied under a range of varying test characteristics. These 

characteristics include varying sample size, varying item difficulty and item 

discrimination parameter specifications, varying dimensional correlations, and varying 

types of Q-matrices. 

The results of this study will provide researchers with information about the 

performance of model- and item-fit indices under various item difficulty and 

discrimination conditions and the impact of potential measurement model 

misspecification. Specifically, it will inform researchers about which types of fit statistics 

designed and applied to equivalent CFA and MIRT models are most suitable to detecting 

different kinds of model misspecifications. 

1.4.Organization 

This dissertation follows a seven-chapter structure. Chapter 1 has introduced the 

concepts and background for the research. In Chapter 2, the conditions necessary for 

equivalence between CFA and MIRT models are described and literature describing and 

demonstrating the construction and use of Q-matrices are reviewed. Subsequent to a 

summary of notational conventions, an overview of the literature on the properties of 

model- and item-fit indices is provided. Chapter 3 describes the methodology applied in 

this dissertation after clearly stating the objectives in the form of research questions. In 

this chapter, the simulation and model estimation conditions are described and the 

methods of evaluation of the resulting estimates are detailed. Chapters 4 and 5 present the 

results of the simulation according to true model estimation or misspecified model 

estimation, respectively. Within each of these chapters, estimation issues and recovery of 
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person and item parameters are first examined, then the performance of the model- and 

item-fit statistics are separately described. In Chapter 4, theoretical and empirical cut 

points are described; in Chapter 5 power is demonstrated as resulting from the application 

of the empirical cut points. Chapter 5 concludes by synthesizing and summarizing the 

information provided by model- and item-fit results. With information about the 

performance of model- and item-fit statistics under various simulation conditions, the fit 

of various Q-matrices to a real data set is evaluated in Chapter 6. Lastly, Chapter 7 

concludes with a summary of the key findings, theoretical and practical implications for 

these results, consideration for the limitations of the current research, and suggested 

topics for future research. 
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Chapter 2 

Literature Review 

This chapter first describes the conditions necessary to establish equivalence 

between the confirmatory factor analysis (CFA) and multidimensional item response 

theory (MIRT) frameworks, detailing specific assumptions and transformations required 

to be able to employ one or both frameworks in the study of measurement model 

misspecification. The definition of the Q-matrix and its role in the CFA and MIRT 

frameworks is described. To be applied under each of the frameworks in the evaluation of 

measurement model misspecification, the notions of model- and item-fit are described. 

This is followed by a review of the literature that is focused on the properties of those 

model-fit and item-fit indices that are identified as appropriate for detecting measurement 

model misspecification when estimating CFA and MIRT models. 

2.1.Model Equivalence and Parameter Relationships 

In educational and psychological measurement, two classes of models are 

commonly utilized for the purpose of relating multiple observed or manifest variables to 

one or more latent variables. The following sections describe the core ideas and results; 

more detailed descriptions can be found in sources such as Brown (2006) for CFA, 

Reckase (2009) for MIRT, as well as McDonald (1999) and Thissen and Wainer (2001), 

which describe the statistical and practical connections between these two modeling 

frameworks.  

Factor analytic (FA; Gorsuch, 1983) models estimate patterns of covariation via 

linear relationships between the observed response variables and multiple latent variables 

when the observed variables are continuous. Item response theory models (IRT; e.g. Lord 
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& Novick, 1968; Embretson & Reise, 2000), on the other hand, define nonlinear 

relationships between the hypothesized latent variable and observed responses, which are 

assumed to be discrete. Specifically, multidimensional IRT models (MIRT; e.g., 

Ackerman, 1994) extend unidimensional IRT models to allow for more than one latent 

variable. Similarly, nonlinear factor analysis (NLFA) or item factor analysis (IFA) 

models (e.g., De Champlain, 1999; McDonald, 1999) attempt to overcome the technical 

issues presented when the data is non-continuous.  

Fortunately, there has also been a large amount of research establishing the formal 

similarity between IRT and IFA approaches (Kamata & Bauer, 2001; Mislevy, 1986; 

McDonald, 1999; Takane & de Leeuw, 1987); the equivalence between one- and two-

parameter IRT and CFA models has been established providing a number of assumptions 

are met (Kamata & Bauer, 2008; Takane & de Leeuw, 1987).  

Specifically, under the two-parameter normal-ogive MIRT model (Reckase, 

2009), the probability of a correct response to binary item j given abilities θ1… θk is 

calculated as1: 

( )2 21
( 1| , , )

2

z
z

j j jP x b e dz
π

−

−∞

= = ∫a θ  

where ( )j jz b′= −a θ , aj is a 1 x k row vector of item discrimination parameters for item 

j, θ is the row vector of k latent variable scores, and bj is an item difficulty parameter. The 

general FA model, however, presumes continuous observed variables and is typically 

expressed as: 

* = + +Y τ Λθ ε  

                                                           
1 Subscript i indexing students or examinees 1, …, N has been excluded from this section for clarity. 



 

 9 
 

where Y* is the j x 1 vector of observed continuous responses where j indexes items 1, … 

J; τ are the j x 1 intercepts or threshold parameters; Λ is the j x k matrix of slopes or 

factor loadings where k indicates the number of latent factor scores and k < j; θ is the k x 

1 vector of latent factor scores; and ε is the j x 1 vector of random errors. 

The general FA or CFA model assumes that errors are normally distributed as 

~ ( , )Nε 0 Ψ , where Ψ is a j x j diagonal matrix of variance in ε, and that errors and latent 

factors are uncorrelated, cov(θ, ε) = 0. The marginal distribution of the continuous 

observed response is assumed to follow 

* ~ ( , )NY τ Σ  

where the threshold parameters are usually assumed to be τ = 0 and ′+Σ=ΛφΛ Ψ  given 

the k x k inter-factor correlation matrix φ. The conditional distribution of Y* given θ is 

* | ~ ( , )NY θ Λθ Ψ  

In order to use the common FA model to analyze dichotomous data similar to MIRT 

models, it is necessary to make the further assumption that *
jy  is an unobserved 

continuous response which is manifested by a dichotomized variable xj given the 

following relationship: 

*

*

1 if 

0 if 
j j

j
j j

y
x

y

τ

τ

 ≥
= 

<
. 

Following the above assumptions, the marginal probability that xj = 1 conditional 

on θ is obtained under a CFA framework as 

( 1| ) ( 1| ) j j
j j j

j
j

P x f x dy
τ

τ

ψ

∞  −
= = = =   

 
∫

λ θ
θ θ Φ  
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where ψj, residual or standard error for item j as the j th diagonal from Ψ, can be 

alternately set to ψj = 1.0 or estimated as 1j j jψ ′= −λ φλ  (Kamata & Bauer, 2008; 

McDonald, 1999).  

Formal equivalence between CFA and MIRT models is, therefore, established 

given that the errors in ε are assumed to be normally distributed and independent, often 

referred to as the assumption of local independence, and that the latent factors in the CFA 

model are scaled to have a multivariate normal distribution, θ ~ MVN(0, Σ). 

Slope and threshold parameters in the CFA framework are related to 

discrimination and difficulty in the IRT framework as2 j
j

jψ
=
λ

a  and j
j

j

d
τ

ψ
= − . For 

MIRT, item difficulty and discrimination values can be represented as scalars MDIFF 

and MDISC for each item (Reckase, 2009). When the means of the latent variables are set 

to θk = 0 for scale identification, MDIFF represents the distance from the origin of the k-

dimensional item response surface to the point of steepest slope; it is calculated as 

2

1

MDIFF
m

j jk
k

d a
=

= − ∑

 

, and 2

1

m

j j jk
k

d b a
=

= − ∑  when the alternate parameterization for 

difficulty has been used. Similar to the unidimensional b-parameter, positive MDIFF 

values indicate more difficult items while negative values indicate easier items.  

The value of the multidimensional discrimination parameter, MDISC, is 

calculated as 2

1

MDISC
m

jk
k

a
=

= ∑
 
and represents the slope in the item response surface at 

the location indicated by MDIFF. Values of MDIFF and MDISC can be displayed 

                                                           
2 Kamata and Bauer (2008) describe other parameterizations the use of reference indicators typical of FA 
research. The current paper focuses on the typical IRT practice of defining the latent trait as θ ~ N(0, 1). 
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graphically in item vector plots whereby the base of each i item vector is located at 

MDIFF and the angle, ja l , with respect to coordinate axis l , calculated as: 

2

1

cos
m

j j jk
k

a a a
=

= ∑l l . The length of each item vector is determined as MDISC. 

2.2. Q-Matrices 

2.2.1 Structure and Function of Q-matrices 

The original definition and description of Q-matrices was provided by Kikumi 

Tatsuoka (1983, 1984, 1990) as k x j incidence matrices where k indexes attributes and j 

indexes test items. In early applications, the Q-matrix was used to represent the specific 

operations that were necessary to successfully answer each item on a mathematics 

assessment; the specific operations included concepts or attributes like addition, 

subtraction, and multiplication. The Q-matrix was then utilized within a multidimensional 

classification framework to analyze student response data for the purpose of diagnosing 

"bugs" or difficulties with respect to one or multiple of the attributes.  

Since that time, Q-matrices have been typically presented as j x k incidence 

matrices indicating specific requirements for test items, often corresponding to cognitive 

demands (see Rupp, Templin, & Henson, 2010 for state of the art applications and 

examples). Formally, element qjk = 1 in the Q-matrix indicates that item j loads on / 

requires / measures attribute / latent factor / dimension k for a successful response, and qjk 

= 0 indicates that item j does not load on / require / measure attribute / latent factor / 

dimension k. The unidimensional IRT model is a special case in which the Q-matrix is 

simply described as a column vector for which all entries are 1, indicating that the item 
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discrimination values are associated with the single latent factor and freely estimated. 

Further, the granularity of the attributes and resulting interpretations of the incidence 

elements of any Q-matrix is not limited to cognitive processes or other such fine 

differentiations but can be as broad or detailed as the substantive theory necessitates.  

Under multidimensional CFA and MIRT models, items may demonstrate either 

between-item multidimensionality or within-item multidimensionality (Adams, Wilson, & 

Wang, 1997), respectively known as simple or complex structure in the CFA literature. 

Items demonstrating between-item multidimensionality conform to simple structure and 

are associated with a single latent factor; the Q-matrix row j contains only one element 

where qjk = 1. Within-item multidimensionality, however, is used to describe items with 

complex loading structures; multiple entries of qjk = 1 are present for item j. 

From a statistical standpoint, the Q-matrix serves to clearly define the theorized 

associations between observed and latent variables. Item and person characteristics are 

subsequently reported with respect to the latent factors or attributes represented by the 

columns in the Q-matrix. Put differently, the Q-matrix serves to represent the constraints 

that are applied to certain model parameters for the purpose of representing substantive 

theory. Under the CFA and MIRT models, entries of the Q-matrix imply the pattern of 

fixed and freely estimated measurement model parameters. In this dissertation, the Q-

matrix is used as a structural component in parametric latent variable models (i.e., CFA 

and MIRT models) where it serves to constrain the factor loadings (CFA) or item 

discrimination parameters (MIRT).  
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2.2.2 Illustrative Examples of Q-matrix Use in Previous Research 

Before describing the simulation conditions and specific use of the Q-matrix in 

this dissertation, the following studies demonstrate instances where Q-matrices were 

applied, or could have been applied, to item response data. These examples highlight 

implicit or explicit application of Q-matrices within CFA and MIRT frameworks 

according to differing numbers of latent factors, or dimensions, and demonstrating 

between-item multidimensionality (simple structure) or within-item multidimensionality 

(complex structure). 

The first study considered is that by Wu and Adams (2006) in which students’ 

responses to mathematics problem solving tasks were explored. The authors first posed a 

four-dimensional problem solving framework based on three principles: (1) the latent 

factors or dimensions needed to be related to instructionally-relevant information and 

performance; (2) the dimensions must be associated with observable student behavior; 

and (3) test response data could be modeled and analyzed using available software. From 

these principles, four dimensions were defined as (1) reading/extracting all information 

from the question; (2) real-life and common sense approach to problem-solving; (3) 

mathematics concepts, “mathematisation”, and reasoning; and (4) standard computational 

skills and carefulness in carrying out computations. Using these definitions, four different 

test forms were designed which comprised a total of 48 items, one-quarter of which were 

multiple-choice while the majority were polytomously scored. These test forms were 

administered to 951 grade 5 and 6 students in the suburbs of Sydney and Melbourne, 

Australia.  
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Item response data was modeled using the Random Coefficient Multinomial Logit 

Model (Adams, Wilson, & Wang, 1997) implemented in the ConQuest software (Wu, 

Adams, & Wilson, 1998) which estimates the partial credit model – a polytomous 

extension of the Rasch IRT model. Two different models were estimated which followed 

between-item multidimensionality (simple structure): the two-dimensional model 

grouped items as (1) heavy reading and (2+3+4) all others; the three-dimensional model 

grouped items as (1) heavy reading, (2) common-sense mathematics, and (3+4) all others. 

A unidimensional model was also estimated for the sake of comparison. Though Q-

matrices were not provided for this study, general forms can be seen in Table 2.1.  
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Table 2.1: 
Between-Item Multidimensional Q-matrices for Wu and Adams (2006) 

   2-Dimensional  3-Dimensional 
Item 

Group 
Uni- 

dimensional  
Reading/ 
extracting 

All 
Others  

Reading/ 
extracting 

Common 
Sense 

All 
Others 

Heavy 
Reading 

1 
 

1 0 
 

1 0 0 

… 1 
 

1 0 
 

1 0 0 
Common 

Sense 
1 

 
0 1 

 
0 1 0 

… 1 
 

0 1 
 

0 1 0 
Math 

Concepts 
1 

 
0 1 

 
0 0 1 

… 1 
 

0 1 
 

0 0 1 
Comp- 
utation 

1 
 

0 1 
 

0 0 1 

… 1 
 

0 1 
 

0 0 1 
 

Tests of model deviance showed that the three-dimensional model fit best 

compared to the two-dimensional and unidimensional model. Additionally, a four-

dimensional within-item multidimensional model was estimated according to the four 

specified dimensions plus additional factor loadings suggested by confirmatory factor 

analysis (these are not detailed in the paper); the general form of the four-dimensional Q-

matrix is also presented in Table 2.2.  

Table 2.2: 
Within-Item Multidimensional Q-matrix for Wu and Adams (2006) 

Item Group 
Reading/ 
extracting 

Common 
Sense 

Math 
Concepts 

Compu- 
tation 

Heavy Reading 1 * * * 
… 1 * * * 

Common Sense * 1 * * 
… * 1 * * 

Math Concepts * * 1 * 
… * * 1 * 

Computation * * * 1 
… * * * 1 

* Additional factor loadings not detailed by author. 
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When compared to the results of exploratory factor analysis (EFA), the authors 

found that the MIRT results produced interpretable student profile information while the 

EFA results were uninformative and prone to representing idiosyncratic disturbances in 

item features. While the inter-factor correlations for the multidimensional models suggest 

unidimensionality, ranging ρ = [0.79, 0.95], the multidimensional model demonstrated 

better fit than the unidimensional model. Further, these values were shown to be 

comparable to those reported for the Programme for International Student Assessment 

(PISA; Adams & Wu, 2002). 

In a second example, Hartig and Höhler (2008) modeled German, Austrian, and 

Italian students’ responses to English reading and listening comprehension tests. 

Specifically, the authors were interested in whether between- or within-item 

multidimensional models resulted in different substantive implications, as demonstrated 

by the goodness-of-fit results and the patterns of factor loadings.  

Two English as a foreign language tests were administered to 9557 grade 9 

students: the reading comprehension test consisted of 46 multiple-choice items requiring 

students to decode and understand short text passages written in English; the listening 

comprehension test required that students answer 51 multiple-choice questions in real-

time, responding to audio recordings of short English passages. Following from the 

definitions of the tests, the within-item multidimensional model was specified according 

to two dimensions: (1) a general “text comprehension” dimension, representing the 

abilities required by items on both tests, and (2) an “auditory processing” dimension, 

specific to items on the listening comprehension test, only. For the within-item 

multidimensional model, the inter-factor correlation was fixed to zero. A between-item 
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multidimensional model was also specified where the two dimensions directly reflected 

the test content as (1) the “reading comprehension” dimension and (2) the “listening 

comprehension” dimension. For the between-item multidimensional model, the 

correlation between latent factors was freely estimated. Similar to the Wu and Adams 

(2006) study, a unidimensional model was also estimated for comparison. The implied Q-

matrices for this study are presented in Table 2.3. 

Table 2.3: 
Q-matrices for Hartig and Höhler (2008) 

  
 Between-Item 

Multidimensional 
 Within-Item 

Multidimensional 

Items 
Uni- 

dimensional 
 Reading  

Comp. 
Listening 

Comp. 
 Text 

Comp. 
Auditory 

Processing 
1 (R)* 1  1 0  1 0 

… 1  1 0  1 0 
46 (R) 1  1 0  1 0 
47 (L) 1  0 1  1 1 

… 1  0 1  1 1 
91 (L) 1  0 1  1 1 

* R = Reading; L = Listening. 

All of the models were estimated according to a generalized 2PL item response 

model using the Mplus 4.21 software (Muthén & Muthén, 2007), in which factor loadings 

were constrained to be equal for items loading on the same dimension. While the 

estimated inter-factor correlation for the between-item multidimensional model was very 

high (ρ = 0.91), the results of this analysis found that both multidimensional models 

demonstrated better fit than the unidimensional model. The patterns of factor loadings for 

the two multidimensional models offer differing interpretations of student performance 

with regards to skills and abilities. While factor loadings for the reading comprehension 

test on factor 1 (“reading comprehension” or “text comprehension”) were equivalent 

across models, factor loadings for factor 2 were lower for the within-item 
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multidimensional model (“auditory processing”) than for the between-item 

multidimensional model (“listening comprehension”). These results indicate that the 

within-item multidimensional model decomposes the abilities required for listening 

comprehension items, providing information about the mixture of skills necessary for 

successful performance. The between-item multidimensional model, however, simply 

separates performance according to test content and suggests a high degree of overlap via 

the inter-factor correlation but does not specifically differentiate skills or abilities. 

In the studies above, item responses were modeled according to Q-matrices 

shown to demonstrate both between- and within-item multidimensionality under a variety 

of test and sample design characteristics. These Q-matrices are seen to both describe 

substantive theory and constrain parameter estimation for each of the associated item 

response models. In each of the studies, the fit statistics were then examined to facilitate 

discussion and interpretation of the best fitting model and the corresponding Q-matrix. 

2.3.Summary of Notational Conventions 

Having described the conditions necessary to achieve equivalence between CFA 

models and MIRT models and the role that Q-matrices can play in both, the following are 

the notational conventions that will be used in this dissertation:  

• i indexes subjects / respondents / persons / examinees; it is removed from most 

equations in this dissertation for the purpose of clarity;  

• j indexes observed / manifest variables, which are scores from test questions / 

assessment items; in this dissertation, only binary item scores will be modeled, 

• k indexes the latent variables / factors / statistical dimensions in a MIRT or CFA 

model, 
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• qjk denotes a binary entry in the Q-matrix so that qjk = 1 indicates that item j loads on / 

requires / measures attribute / latent factor / dimension k for a successful response, 

and qjk = 0 indicates that item j does not load on / require / measure attribute / latent 

factor / dimension k. 

• θk, denotes the kth continuous latent variable in a MIRT or CFA model,  

• item difficulty is represented by either bj and dj in unidimensional IRT models, 

MDIFF in MIRT models, and by τj, the threshold parameter, in CFA models.  

• item discrimination is represented by ajk in unidimensional IRT models, MDISCk in 

MIRT models, and λjk in CFA models.  

2.4. Properties of Model-Fit Indices 

Given a set of j-observed variables, the covariance structure hypothesized in CFA 

is Σ0 = Σ(ω), where Σ(ω) is a j x j covariance matrix of the observed variables or items in 

the population, Σ(ω) is the model-implied covariance matrix, and ω is a vector of free or 

estimated parameters in the model. Sample estimates,ω̂ , are calculated that minimize the 

discrepancy between the model implied covariance matrix, Σ( ω̂ ), and the observed 

covariance matrix, S, according to the discrepancy function F̂ [S, Σ(ω̂ )]. The larger the 

discrepancy, the greater the value of F̂ ; therefore, model parameters are estimated such 

that they minimize the value of the discrepancy function.  

There are many estimators of the minimum fit function (Fmin) but the weighted 

least squares mean- and variance-adjusted estimator (WLSMV; Muthén & Muthén, 1998-

2001; Muthén, Du Toit. & Spisic, 1997) has been shown to be most appropriate for 

estimating CFA models when the observed variables are dichotomous. Similar to normal 
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theory estimators, the WLSMV requires the calculation of a full weight matrix, which is 

the asymptotic covariance matrix that contains tetrachoric correlation estimates when 

binary responses are modeled; however, only the diagonal of this weight matrix is used to 

calculate factor model parameter estimates. Subsequent to parameter estimation, the full 

asymptotic covariance matrix is again employed to calculate the goodness-of-fit χ2 which 

then has a mean and variance adjustment factor applied to account for the categorical 

nature of the data (Muthén, Du Toit. & Spisic, 1997).  

The use of normal-theory estimators, such as maximum likelihood (ML) and 

generalized least squares (GLS) methods have been shown to produce inflated goodness-

of-fit chi-square estimates when modeling categorical data (Bentler & Dudgeon, 1996; 

Bollen, 1989; Finney & DiStefano, 2006). As implemented in the Mplus software 

package, version 5 (Muthén & Muthén, 1998-2007), results have shown that the 

WLSMV yields acceptable Type-I error rates and parameter estimate bias when three-

dimensional models were estimated with 12 observed variables and sample sizes ranging 

greater than 200 (Muthén et al., 1997). 

One of the most popular methods for evaluating model fit is the goodness-of-fit χ2 

statistic (Hu & Bentler, 1999), which assesses the magnitude of discrepancy between the 

estimated and predicted covariance matrices as follows: 

χ
2= Fmin(N - 1) 

where N denotes the sample size. It follows χ
2 distribution when the model is correctly 

specified, with an expected value equal to the degrees of freedom (df) and variance of 
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2df3. A significant χ2 value may reflect model misspecification, including violations of 

some of the underlying assumptions (Hu & Bentler, 1998). 

While the χ2 statistic features prominently in the adjudication of model fit (Gierl 

& Mulvenon, 1995); a variety of other model fit indexes exist, having been developed to 

overcome the shortcomings of this statistic, specifically its sensitivity to sample size 

(Fan, Thompson, & Wang, 1999) and the violation of distributional assumptions. These 

statistics can be classified as incremental, absolute, and parsimony-adjusted fit indexes 

(Bandalos & Finney, 2010; Bollen, 1989; Gerbing & Anderson, 1993; Hu & Bentler, 

1995; Marsh, Balla, & McDonald, 1988; Tanaka, 1993).  

Incremental or baseline fit indices (Curran, Bollen, Chen, Paxton, & Kirby, 2003) 

calculate the improvement in model fit offered by the hypothesized, estimated, model in 

comparison with a more restricted, nested, baseline model. Typically, this null model 

considers all observed variables to be uncorrelated (Bandalos & Finney, 2010; Bentler & 

Bonett, 1980). Incremental fit indices, however, are excluded from this dissertation as 

they have been shown to demonstrate undesirable sensitivity to factors such as sample 

size and number of observed variables while being minimally sensitive to Q-matrix 

misspecification, the model characteristic of interest in this dissertation (Beauducel, & 

Wittmann, 2005; Fan & Sivo, 2005, 2007; Fan, Thompson, & Wang, 1999; Hartig & 

Höhler, 2008; Jackson, 2007; Janssen & De Boeck, 1999; Marsh, Hau, & Wen, 2004; 

Sivo, Fan, Witta, & Willse, 2006; Thurber, Shinn, & Smolkowski, 2002; Wolfe, Hickey, 

& Kindfield, 2009).  

                                                           
3 Model misspecification, however, results in a non-central χ2

 distribution with an expectation of df + λ (the 
non-centrality parameter) and variance of 2df + 4λ (Curran et al., 2003; Steiger, Shaprio, and Browne, 
1985).  
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Absolute fit indices are another category of goodness-of-fit statistics, which 

assess how well an a priori model reproduces the sample data. No reference model is 

used to assess the amount of increment in model fit, but an implicit or explicit 

comparison may be made to a saturated model that exactly reproduces the sample 

covariance matrix. Included in this category is the classic goodness-of-fit χ2 statistic, 

described above, as well as alternatives to this model fit index such as McDonald’s Mc 

index (McDonald, 1989), and the standardized root-mean-square residual (SRMR; 

Jöreskog & Sörbom, 1981; Steiger, 1989). Though Hu and Bentler (1998) included the 

root mean square of error approximation (RMSEA) in this category, it is more 

appropriately classified as a parsimony-adjusted fit index (Browne & Cudeck, 1993; 

Steiger & Lind, 1980). 

Similar to absolute fit indices are the parsimony-adjusted indices which also 

measure the discrepancy between observed and model-implied covariances, but also 

incorporate some type of penalty adjusting for degrees of freedom or model complexity. 

Therefore, these indices describe the amount of increment in model fit relative to the 

number of parameters required to obtain this increase in model fit. These indices include 

the Parsimony Goodness of Fit Index (PGFI) and Parsimonious Normed Fit Index 

(PNFI), which were developed by Mulaik et al. (1989) to overcome issues with the GFI 

and NFI incremental fit indices and include a parsimony ratio,
0

df

df
, in which the degrees 

of freedom for the hypothesized model, df, are divided by the degrees of freedom for the 

null model, df0. As it also accounts for model complexity, the RMSEA model-fit index is 

included in this category and described in detail later. 



 

 23 
 

Model, or global, fit indices considered in this study were selected from the 

families of absolute and parsimony-adjusted fit indices based on three primary criteria. 

First, they had to have been rather frequently investigated by researchers so that a strong 

empirical research base was already available upon which this dissertation work sought to 

expand. Second, they had to have shown sensitivity to measurement model 

misspecification in previous work. Third, they had to have been shown to be sufficiently 

robust to test design conditions in previous work.  

Utilizing these criteria, the selected indices for this dissertation were the χ2/df 

ratio, an absolute fit index adjusted for model complexity, and the root mean square 

error of approximation (RMSEA). Both of these indices are available in most CFA and 

SEM software packages.  

This dissertation also investigates the generalized dimensionality discrepancy 

measure (GDDM; Levy & Svetina, 2010), which was developed in application under the 

MIRT framework. Given the equivalence between CFA and MIRT models established 

previously, all three of these statistics can be employed in the evaluation of model-fit 

when the appropriate modeling assumptions have been met. The following sections 

describe the structure of and prior research on these indices in more detail. 

2.4.1 The χ2/df Model-Fit Index 

The χ2/df ratio model-fit statistic is simply a rescaling of the goodness-of-fit χ2 

index described earlier according to the model degrees of freedom which has been 

recommended as appropriate for evaluating models under conditions of model 

misspecification (Beauducel & Wittman, 2005; Jackson, 2007; Marsh, Hau, & Wen, 

2004).  
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In simulation studies, the χ2/df has demonstrated values that increase with sample 

size and model complexity increased when misspecified models are estimated (Beauducel 

& Wittman, 2005; Jackson, 2007; Marsh, Hau, & Wen, 2004), suggesting that this 

statistic becomes more powerful under these conditions. It has also been shown to 

demonstrate stable nominal Type-I error rates (Marsh, Hau, & Wen, 2004) and generally 

outperformed all other fit indices in correctly rejecting misspecified models as one of the 

model-fit indices most sensitive to model misspecification (Jackson, 2007; Marsh, Hau, 

& Wen, 2004). Additionally, Wolfe, Hickey, and Kindfield (2009) found that the χ2/df 

model-fit index was able to distinguish between competing MIRT models of two and 

three dimensions when applied to real-world data describing student performance on a 

test of introductory genetics. 

2.4.2 The RMSEA Index 

The RMSEA index (Browne and Cudeck, 1993; Steiger, 2000; Steiger and Lind, 

1980) is a parsimony-adjusted model fit index which is based on a non-central goodness-

of-fit (GOF) χ2. The sample estimate of RMSEA (ê) is calculated as: 

2

0

ˆ
ˆˆ /

( 1) ( 1)

GOF df
e F df

df N df N

χ λ−
= = =

− −
 

where 0̂F  is the sample estimate of the error of approximation (Browne and Cudeck, 

1993) or the degree of misfit between the population covariance matrix (Σ0) and the 

model-implied population covariance matrix (0Σ% ) – which is estimated as the 

discrepancy function F0 = (Σ0, 0Σ
% ) according to the specified estimation procedure. 

Given that the degrees of freedom can exceed the GOF χ2, the minimum of this 
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denominator is set to zero and the sample estimate of ê ranges from zero to infinity, 

where zero indicates perfect fit and larger values indicate worse fit. The degrees of 

freedom also indicate the number of dimensions by which the data are free to differ from 

a model with estimated parameters; the RMSEA is a measure of the average lack of fit 

per the degrees of freedom or potential lack of fit (Heene, Hilbert, Draxler, Ziegler, and 

Bühner, 2011). 

In the seminal paper by Hu and Bentler (1998), a large body of literature on 

model fit was used to inform the design of a simulation study for the purpose of 

evaluating the performance of model-fit indices, including the RMSEA. This study has 

informed a great deal of subsequent research into the performance of the RMSEA which 

has been shown to demonstrate appropriate sensitivity to model misspecification while 

also maintaining minimal sensitivity to other factors and has been specifically 

recommended for use in detecting measurement model misspecification (Beauducel & 

Wittman, 2005; Curran et al., 2003; Fan & Sivo, 2005, 2007; Fan, Thompson, & Wang, 

1999; Jackson, 2007; Sivo, Fan, Witta, & Willse, 2006). 

Examination of the performance of the RMSEA has found that it demonstrates 

minimal-to-modest sensitivity to various factors, defined as the proportion of variance in 

the RMSEA attributed to the specific source. Factors to which the RMSEA has been 

shown to be minimally sensitive include sample size, the distributional form of observed 

continuous responses, and estimation method (i.e., Maximum Likelihood, Generalized 

Least Squares, or Asymptotic Distribution Free estimation) (Hu & Bentler, 1998; 

Beauducel & Wittman, 2005; Curran et al., 2003; Fan & Sivo, 2005, 2007; Fan, 

Thompson, & Wang, 1999; Sivo, Fan, Witte, & Willse, 2006). Additionally, values of the 
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RMSEA have been shown to increase with number of latent factors under true and 

misspecified model estimation (Beauducel & Wittman, 2005; Fan & Sivo, 2007). When 

models were misspecified, the RMSEA has shown sensitivity to such model 

misspecification, typically as a result of under-factoring (Hu & Bentler, 1998; Fan & 

Sivo, 2005; Fan, Thompson, & Wang, 1999), corresponding to large discrepancies 

between values resulting from correctly estimated models in comparison to those 

estimated from the misspecified models (Sivo, Fan, Witte, & Willse, 2006). Further, the 

RMSEA demonstrates acceptable power rates when rejecting misspecified models 

(Beauducel & Wittman, 2005). A final important consideration is that the RMSEA has 

shown little systematic bias and random variation in simulation studies for sample sizes 

of n = 200 or greater (Curran et al., 2003; Fan, Thompson, & Wang, 1999). All of these 

results suggest the RMSEA as an appropriate model-fit index for inclusion in this 

dissertation. 

2.4.3 The Generalized Dimensionality Discrepancy Measure 

The generalized dimensionality discrepancy measure (GDDM) is a new model-fit 

statistic that was developed original under a posterior predictive model-checking (PPMC) 

framework for MIRT (Levy & Svetina, 2010). Under a correctly specified model, 

responses to items for a given person are locally independent if 

1

( | , ) ( | , )
J

j j
j

P P x
=

=∏X θ ω θ ω  where ( | , )j jP x θ ω  is the item response function for item j 

given student ability θ over k-dimensions and ω is the collection of item-specific 

parameters accounting for the presumed MIRT model. Violations of this assumption are a 
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result of model-data misfit and produce biased item parameter estimates, test statistics, 

and student ability estimates (Zenisky, Hambleton, Sireci, 2002).  

The GDDM is essentially the mean of the absolute squared differences between 

observed and expected responses computed over all unique item pairs: 

( )( ) ( )( )1
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J J

−
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− −

=
−

∑ ∑ θ ω θ ω

. 

Values of this statistic range from zero, indicating no conditional covariance between all 

items on a test, to infinity with larger values indicating greater dependence. Large 

GDDM values, therefore, indicate poor model fit.  

In a Monte Carlo simulation by Levy and Svetina (2010), the GDDM was found 

to perform at nominal levels in identifying misfit, violations of local independence, when 

applied to two- and three-dimensional 2PNO MIRT models. Additionally, the GDDM 

was used to examine responses to the 1996 National Assessment of Educational Progress 

(NAEP) in science according to a three-dimensional, 3PNO MIRT model. Applied to the 

actual responses of 1,020 examinees to 16 items, the GDDM coupled with item-level 

information provided by the MBC was successfully used to diagnose overall test 

performance and identify misfitting items which are candidates for subsequent review. 

This section described the properties of the χ
2/df, RMSEA, and GDDM model-fit 

indices, including the mathematical foundations and brief reviews of previous research. 

These fit indices have been selected for inclusion in the current dissertation since they 

have demonstrated desirable performance for the purpose of detecting CFA or MIRT 

model misspecification while being minimally sensitive to other factors. In the following 

section, item-fit indices are similarly considered. 
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2.5.Properties of Item Fit Indices 

Item fit analysis is concerned with the assessment of model-data fit at the level of 

individual score variables, rather than at the aggregate level that the model-fit statistics 

represent. Under the CFA framework the two most commonly used local fit indices are 

the Modification Index (MI; Sörbom, 1989) and the Wald Test (Buse, 1982). Within the 

IRT framework there has been comparatively little research on item-fit for MIRT models 

even though the S-χ2 statistic has been shown to be a potentially promising candidate 

based on preliminary research (Zhang & Stone, 2008; see also Li & Rupp, 2012). As with 

the model-fit indices described previously, equivalence between the CFA and MIRT 

models allows these item-fit indices to be applied to a wide variety of latent variable 

models. 

2.5.1 The S-χ2 Statistic 

Though numerous unidimensional IRT item-fit indices have been proposed, very 

little research on item fit indices under a MIRT framework has been conducted. One 

statistic that has been investigated is the S-χ2 statistic proposed by Orlando and Thissen 

(2000) which has been subsequently adapted for application to MIRT models (Zhang & 

Stone, 2008). This statistic is a desirable candidate because (1) it employs total score and 

does not rely on ability estimation, (2) the statistic is a function of observed proportions 

making the null distribution easy to describe, and (3) the contingency table required to 

compute the statistic is manageable in size which has the additional effect of limiting the 

potential for sparse data structures. 

The performance of the S-χ2statistic within a MIRT framework was evaluated by 

Zhang and Stone (2008) using a Monte Carlo simulation design examining Type-I error 
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rates and power in detecting a misfitting item that either violated monotonicity or ignored 

guessing. When data was generated under simple structure, the Type-I error rates were 

appropriate for all other conditions. When the data were generated according to complex 

structure, however, Type-I error rates were inflated when the dimensions were highly 

correlated and when the sample size was large.  

Across conditions, the power to detect violation of monotonicity increased across 

sample sizes to nearly 100%, and increased with inter-factor correlation, demonstrating 

the highest power rates by correlations of 0.6 which persist for stronger correlations. 

Power to detect item misfit due to ignoring a guessing effect was low to moderate, 

increasing with sample size and inter-factor correlation. The results of this study show the 

S-χ2 statistic to be a viable option for assessing item fit under a MIRT framework, though 

it results in “liberal rejection of model-fitting items” (Zhang & Stone, 2008, p. 193) when 

the test structure is complex. 

2.5.2 The Modification Index 

Modification indices (MI; Sörbom, 1989) are a function of the first order 

derivatives of the fitting function evaluated at each fixed parameter or factor loading and 

are scaled to a χ2 metric (Kaplan, 1991). MI values reflect the approximate decrease in the 

overall model χ2 if the current parameter were freely estimated and are, therefore, 

analogous to the χ2 difference test or likelihood ratio between two nested models. The use 

of the MI has been shown to facilitate revision of misspecified models when the revision 

is theoretically justifiable and substantively interpretable (Jöreskog, 1993; Kaplan, 1989, 

1990; MacCallum, 1986; Silvia & MacCallum, 1988). 
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A Monte Carlo simulation study was conducted by Hutchinson (1998) to examine 

the stability of the results of an automated specification search or successive sequential 

revision according to significant MI values when applied to two- and four-factor CFA 

models estimated according to four levels of severity of misspecification. Her results 

found that recovery of the population model as a result of MI-based model revision 

improved as sample size increased from 200 to 1200 and worsened as the severity of 

misspecification increased, defined according to number and magnitude of factor 

loadings fixed to zero. When misspecification was slight, stability was achieved and the 

population model recovered at least 90% of the time at n = 800 for the two-factor model 

and n = 1200 for the four-factor model; under severe misspecification, the four-factor 

model better recovered the population model and achieved 90% recovery at n = 1200. 

Overall, the study suggests that MI is useful though sensitive to sample size, model 

complexity, and the magnitude of omitted factor loadings. 

2.5.3 The Wald Test 

The Wald Test (Buse, 1982) is a univariate χ2 typically presented as the square of 

the normal z-value for each freely estimated parameter, and can be thought of as 

complementary to the MI as it indicates whether a freely estimated parameter should be 

fixed or set to zero. This local-fit statistic has been shown to be asymptotically equivalent 

to the likelihood-ratio test between two nested models (Buse, 1982; Kaplan, 1989). 

Even though this index has been rarely studied empirically, a Monte Carlo 

simulation by Chou and Bentler (2002) examined the performance of the Wald Test in 

backward searches on misspecified structural parameters in two different SEM models. 

When the saturated model contained fewer misspecifications, the Wald Test was able to 
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correctly reject parameters in 75% of the replications while incorrectly rejecting true 

nonzero parameters 12% of the time; success rates improved when candidate parameters 

were limited according to theoretical justification. For the saturated model that contained 

a greater number of misspecified parameters, misspecified parameters were rejected 

greater than 65% of the time and true nonzero parameters were rarely rejected; 

performance increased to greater than 95% when selection was limited by theoretical 

justification. 

2.6.Summary 

Prior to description of the simulation study conducted in this dissertation, this 

chapter described the necessary mathematical conditions establishing equivalence 

between CFA and MIRT models. Making the assumptions that unobserved continuous 

response are manifest as dichotomous item responses, that errors are normally and 

independently distributed, and that latent factors follow a multivariate normal distribution 

with unit variance, parameters resulting from CFA and MIRT models are seen to be 

equivalent through known transformations.  

Description of the Q-matrix, a structure that both operationalizes substantive 

theory as well as serving to constrain model parameters, provides additional information 

necessary to understand the correspondence between CFA and MIRT models as well as 

providing a clear device within which model misspecification may be expressed. In the 

CFA context, the Q-matrix may represent either simple or complex structure and defines 

the pattern of fixed and freely-estimated factor loadings. In the MIRT context, the Q-

matrix represents between- or within-item multidimensionality as binary elements 

indicating fixed or freely-estimated item discrimination parameters.  
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Further, owing to the equivalence between CFA and MIRT models, model- and 

item-fit statistics typically available separately for these two models may be employed 

together in the evaluation of model fit under true, correctly, estimated models and 

misspecified models. Previous research having described or demonstrated appropriate 

and desirable qualities in detecting model misspecification under CFA or MIRT models 

while being minimally sensitive to other factors, the model-fit indices included in the 

subsequent simulation study are the χ
2/df, RMSEA, and GDDM and the item-fit indices 

are the S-χ2, Modification Index, and Wald Test. 
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Chapter 3 

Methods 

3.1.Objective 

This study seeks to examine the performance of various global and local fit 

indices under Multidimensional Item Response Theory (MIRT) and Confirmatory Factor 

Analysis (CFA) frameworks according to different test design and respondent population 

conditions. Specifically, factors that include sample size, test length (number of items), 

model complexity (simple- or complex-structure), model dimensionality (number of 

latent factors), inter-factor correlation, and item type (jointly defined by difficulty and 

discrimination) will be manipulated within a simulation study for the purpose of 

answering the following research questions. 

1) In terms of baseline performance under correct model specification: 

a) How well are key parameters (e.g., item difficulties, item discriminations, 

inter-factor correlations, person estimates) recovered under various simulation 

conditions, as indicated by average bias and root mean-squared error? 

b) How do cut-off points associated with different significance levels (0.10, 0.05, 

0.01) resulting from the empirical sampling distributions for each fit statistic 

align with those of the theoretical sampling distributions under different 

simulation conditions? 

c) What proportion of variance in the empirically-derived cut-off values in each 

fit index is accounted for by each of the simulation conditions? 

2) In terms of performance under model misspecification – specifically Q-matrix 

misspecification: 
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a) How is item parameter recovery affected by Q-matrix misspecification under 

different simulation conditions? 

b) What is the power of different fit indices to detect Q-matrix misspecification 

using the empirically-derived cut-off values as suggested under correct model 

specification? 

c) What proportion of variance of power values of the different fit indices is 

accounted for by each of the simulation conditions? 

3)  How can the findings from the simulation studies be used to evaluate and revise 

potentially misspecified Q-matrices for real data sets when the data-collection 

design conditions are similar to the simulation design conditions? 

3.1.1 Simulation Conditions 

In this section, the specific conditions employed during the data generation phase 

of this dissertation are described. Sample size, test length, model dimensionality and 

complexity, and Q-matrix structure are often directly manipulated by or under the control 

of researchers whereas item characteristics such as difficulty and discrimination as well 

as correlational dimensions are model parameters that are estimated and not directly 

controllable. The full simulation design is summarized in Table 3.1. 
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Table 3.1: 
Simulation Design Summary 

Purpose Condition Levels Description 
Generation 

 
Model Dimensionality 

 
2 Low (2 latent factors); Moderate (3) 

 
Test length 

 
3 Short (12 items); Moderate (24 items);  

Long (36 items) 

 
Respondent sample size 

 
2 Small (n = 250), Large (n = 1,000) 

 
Model Complexity 

 
2 Simple-structure; Complex-structure 

 
Inter-factor correlation 3 Weak (r = 0.25); Moderate (r = 0.50);  

Strong (r = 0.75) 

 
Item type (disc. & diff.)* 

 
6 HH; HM; HL; MH; MM; ML 

 Total 432  
Estimation 

 
Framework 

 
2** CFA; MIRT 

 
(Mis)specification 

 
3 True model; Moderate (17%); Severe (33%) 

 Total 6  
Total  1296***   

* Item type is denoted according to discrimination and item difficulty discrepancy from the population 
mean (“difficulty”). H = high discrimination or difficulty; M = moderate discrimination or difficulty; and 
L = low difficulty only. 
* Though two estimation frameworks are specified, models are only estimated once given the equivalence 
of MIRT and CFA under the conditions specified for this study. 
** The conditions represent a fully-crossed simulation design. 

3.1.1.1 Model Dimensionality 

The number of latent variables assigned to subjects, examinees, or students in this 

study will represent two or three abilities, attributes, or dimensions. These latent factors, 

θk, will be generated as θ ~ MVN(0, Σ) where Σ is a k x k covariance matrix described 

according to the levels of the inter-factor correlation condition. Though two or three 

factors seem small, previous studies examining global or local fit under CFA or MIRT 

frameworks typically considered few latent factors (e.g., Fan & Sivo, 2005, 2007; Finch, 

2010, 2011; Ximénez, 2009). Three latent factors was the median number of first-order 
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factors reported in reviews of CFA studies by Baumgartner and Homburg (2006) and 

Jackson, Gillaspy, and Purc-Stephenson (2009). 

3.1.1.2 Test Length 

Describing the number of observed variables or test items present on an 

instrument, the current study specifies a short test length (12 items), a medium test length 

(24 items) and a long test length (36 items). These lengths are chosen to reflect 

prototypical educational assessment conditions in that shorter tests are typically applied 

in classroom settings by teachers while longer tests are common in large-scale, high-

stakes assessment situations. Moreover, these lengths ensure equal numbers of items per 

latent factor for each of the latent factor conditions. For example, a short test of 12 items 

yields 6 items per factor under the 2-factor model and 4 items per factor under the 3-

factor model; similarly, a longer test of 36 items yields 18 items per factor under the 2-

factor model and 12 items per factor under the 3-factor model. This follows the practice 

of previous research (de la Torre, 2008; Henson & Templin, 2006) and ensures that the 

same numbers of pieces of statistical information are available on each latent factor for 

estimating respondent parameters. 

The number of observed variables or items considered in previous studies on local 

or global fit vary widely; the minimum number of items per dimension was four while 

the maximum was sixty and the minimum total number of items was four and the 

maximum was 97. The median number of observed variables reported in the review by 

Baumgartner and Homburg (2006) was 11 while that reported by Jackson, Gillaspy, and 

Purc-Stephenson (2009) was 17 with both reporting ranges lower than 10 and greater 

than 20. Finch (2010, 2011) has shown that item parameter recovery is largely unaffected 
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by test length, which is important to consider as item parameters are instrumental in the 

calculation of local fit indices like the S-χ2. This is confirmed by findings from Orlando 

and Thissen (2003) who showed that the S-χ
2 demonstrated favorable detection rates for 

misfitting items when the tests were composed of more than 10 items. 

3.1.1.3 Sample Size 

Manipulating the number of observations, small (n = 250) and large (n = 1000) 

sample sizes will be employed in the current study. Based on the range of sample sizes 

reported across studies under the CFA framework (ranging 30 to 5,000; Beauducel, & 

Wittmann, 2005; Fan & Sivo, 2005; Fan & Sivo, 2007; Fan, Thompson, & Wang, 1999; 

Jackson, 2007; Marsh, Hau, & Wen, 2004; Sivo, Fan, Witta, & Willse, 2006; Thurber, 

Shinn, & Smolkowski, 2002) and the MIRT framework (200 to 10,000; Hartig & Höhler, 

2008; Janssen & De Boeck, 1999; Wolfe, Hickey, Kindfield, 2009) a sample size of 250 

represents an acceptable lower bound across CFA and MIRT studies while approximately 

one-quarter of the CFA studies employed sample sizes of 1,000 or greater. Reviews of 

studies applying CFA models in marketing and consumer research (Baumgartner & 

Homburg, 2006) found that sample sizes ranged n = 143 to n = 305, suggesting the small 

sample size; much larger sample sizes were found in reviews of CFA applications in the 

field of social work (n = 120 to 6,424; Guo, Perron, & Gillespie, 2009) and in journals of 

applied, counseling, and personality psychology (n = 58 to 46,133; Jackson, Gillaspy, & 

Purc-Stephenson, 2009) While measures of model fit, especially the RMSEA, have been 

found to be largely insensitive to sample size (Fan & Sivo, 2005, 2007; Ximénez, 2009), 

the S-χ2 index performs marginally well at sample sizes of 500 and favorably at sample 
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sizes of 1000. Therefore, the sample sizes used in this study should allow for an 

appropriate detection of the degree of sensitivity of these indices. 

3.1.1.4 Model Complexity 

A key design characteristic of an instrument is the number of latent factors 

associated with each item. Recall that the characteristic of item multidimensionality 

(Adams, Wilson, & Wang, 1997) is represented via row vectors in the Q-matrix whereby 

items associated with a single latent factor are referred to as between-item 

multidimensional and items associated with multiple latent factors are referred to as 

demonstrating within-item multidimensionality. In CFA terminology, a simple-structure 

model is composed entirely of items demonstrating between-item multidimensionality 

while a complex-structure model is comprised of at least one item demonstrating within-

item multidimensionality. In maintaining the MIRT and CFA terminology, the 

dimensionality of items and models is differentiated by referring to the former as 

between- or within-item multidimensional and referring to the latter as simple- and 

complex-structure.  

A separate Q-matrix following simple-structure, comprised solely of items 

demonstrating between-item multidimensionality, is specified for each combination of 

the levels of the Test Length (i.e., 12 items, 24, and 36) and the Model Size (i.e., 2 latent 

factors or 3), resulting in 6 between-item multidimensional Q-matrices which are 

presented in the Appendix. Each of these Q-matrices is constructed such that the k 

marginal column proportions – the number of items associated with each of the k latent 

factors – is equal, providing a degree of measurement consistency since the generating 
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item difficulty and discrimination (or factor loading) values are similar within Item Type 

conditions. 

Q-matrices following complex-structure, containing items demonstrating within-

item multidimensionality, are constructed using the simple-structure Q-matrices as a 

starting point. For this condition, one-third of the j items in the two latent factor condition 

and one-quarter of the j items in the three latent factor condition are defined in the 

respective Q-matrix as within-item multidimensional and strategically associated with a 

second latent factor, qjk = 1, such that the equality of the marginal column proportions 

was maintained. The remaining items in each Q-matrix were left specified as between-

item multidimensional. These Q-matrices are also presented in the Appendix. 

In simulation studies conducted by Fan and Sivo (2005, 2007) and Hu and Bentler 

(1998, 1999) model fit was found to be better for misspecified models when the 

generating model followed simple-structure and the estimating models followed 

complex-structure; model fit was comparatively worse for those models generated as 

complex-structure and estimated as simple-structure. At the local, or item, fit level, 

Zhang and Stone (2008) found that under conditions of between-item 

multidimensionality, Type-I error rates for detecting misfitting items approached the 

nominal level while Type-I error rates were inflated under within-item 

multidimensionality and especially as test length and inter-factor correlation increased. 

Finch (2011) notes that within-item multidimensionality produces overestimates of MIRT 

discrimination parameters and underestimates of difficulty parameters, thereby affecting 

measures of item fit when the model is correctly specified. 
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3.1.1.5 Inter-Factor Correlation 

The two or three latent factors assigned to each examinee in this study are 

specified as correlated to a certain degree. The current study considers weak (r = 0.25), 

moderate (r = 0.50), and strong (r = 0.75) inter-factor correlations, equal for all pairs of 

factors. Studies emulating the results of Hu and Bentler (1998) employed inter-factor 

correlations of 0.3 to 0.5 (Fan & Sivo, 2005, 2007); inter-factor correlations included in 

the study by Ximénez (2009) ranged 0.3 to 0.9. The studies by Finch (2010, 2011) found 

that as inter-factor correlation increased from 0.0 through 0.8 so too did the bias in item 

parameter estimates, suggesting sensitivity of local fit indices to such dependencies.  

3.1.1.6 Item Types 

Further unobservable characteristics of instruments and variables, though 

controllable in a simulation study, are the item difficulty and discrimination parameters. 

In this dissertation, discrimination and difficulty are fully-crossed and specified jointly 

according to six item types:  

• High discrimination / high difficulty (HH); 

• High discrimination / moderate difficulty (HM); 

• High discrimination / low difficulty (HL); 

• Moderate discrimination / high difficulty (MH); 

• Moderate discrimination / moderate difficulty (MM); and 

• Moderate discrimination / low difficulty (ML).  

Item difficulty and discrimination values vary across Model Complexity, Model 

Size, Test Length, and Item Type conditions, resulting in 72 parameter sets which are 

constant across all other data generation conditions; the exact values are presented along 
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with the Q-matrices in the Appendix. Multidimensional item discrimination (MDISC) 

values for this study are strategically distributed as a j x 1 vector across items with range 

= [+0.9, +1.1] and mean = +1.0 for the moderate discrimination conditions while range = 

[+1.4, +1.6] and mean = +1.5 for the high discrimination conditions. Higher 

discrimination values serve to differentiate clearly among examinees while the moderate 

discrimination condition approximates the Rasch model (Embretson & Reise, 2000; 

Rasch, 1960/1980), frequently applied in the analysis of assessment data. 

Multidimensional item difficulty (MDIFF) values in this study are specified 

according to the degree of discrepancy between the distribution of item difficulty 

parameters and the distribution of the generating ability parameters, θ; the suffix 

“difficulty” is retained instead of “discrepancy” to facilitate later discussion and labeling. 

Low difficulty items represent low discrepancy and are well-targeted to the ability 

distribution in the population; moderate difficulty items represent moderate discrepancy 

and the distribution is, therefore, slightly shifted away from the examinee ability 

distribution; lastly, high difficulty items represent high discrepancy and the distribution 

of item difficulty values is severely shifted away from the distribution of examinee 

ability. Degree of discrepancy in the current study is manipulated by shifting the 

distribution of MDIFF parameters from an approximately normal distribution under the 

low difficulty conditions to a strongly-negatively skewed distribution under the high 

difficulty conditions; mean difficulty increases with discrepancy, resulting in fewer 

correct responses by the simulated examinees. Since previous research has shown that 

item fit is not sensitive to item difficulty (Dodeen, 2004; Reise, 1990), conditions of 

increasing discrepancy were selected over conditions representing easy or difficult items, 
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since the latter would likely present redundant fit information. Similar to the MDISC 

values, MDIFF values are also strategically distributed across items as a j x 1 vector, 

where mean = 1.0 (approximately) for high difficulty items, mean = 0.50 (approximately) 

for moderate difficulty items, and mean = 0.0 for low difficulty. A half-logit increase in 

MDIFF across conditions approximates the difficulty increase between grades described 

by Kolen and Tong (2010). Further, MDIFF values for all conditions in the current study 

are defined by range = [-2.0, +2.0] thus ensuring that items represent and provide 

information across the range of ability of approximately 95% of the simulated examinees. 

Table 3.2 presents surface plots for prototypical items of each type, as both between- and 

within-item multidimensional. Additionally, Figure 3.1 presents the kernel-smoothed 

density plots of the distribution MDIFF values by number of items and difficulty together 

with the means and inter-quartile ranges. 
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Table 3.2: 
MIRT Surface Plots for Each Item Type 

Item  
Type 

MDIFF / 
MDISC 

Between-Item 
Multidimensional 

Within-Item 
Multidimensional 

LM 
 

0.0 / 1.0 

  
MM 

 
0.5 / 1.0 

  
HM 

 
1.0 / 1.0 

  
 

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.
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Item  
Type 

MDIFF / 
MDISC 

Between-Item 
Multidimensional 

Within-Item 
Multidimensional 

LH 
 

0.0 / 2.0 

  
MH 

 
0.5 / 2.0 

 
HH 

 
1.0 / 2.0 

  
 

  

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.

θ1

θ2

Prob.
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Figure 3.1.Kernel-smoothed density plots of the distributions of MDIFF values by Test 
Length and difficulty.  
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These item types do not cover the full range of difficulty and discrimination 

parameter combinations but reflect a selection similar to the values employed in MIRT 

studies such as Finch (2011) and Zhang and Stone (2008). Item discrimination values for 

simple-structure models in the study by Finch (2011) were randomly generated as a1 ~ 

N(0.9657, 0.3161) and constrained within 0.7 and 2.0. For complex-structure models, 

secondary dimensions were assigned by specifying additional randomly-generated 

discrimination values a2 ~ N(0.35, 0.15) with a minimum of 0.10 and a maximum of 

0.60. Item difficulty was randomly generated as b ~ N(0,1). Zhang and Stone (2008) 

randomly generated the discrimination values for the first factor in a MIRT model as  

a1 ~ U[0.4, 2.0] then determined the discrimination values for the second factor by 

randomly sampling the composite angle as γ ~ U[0,20] for simple-structure models or  

γ ~ U[20,45] and calculating the remaining discrimination values for each j item in closed 

form as ,2 ,11 2 cos( )j j ja a γ =   (Reckase, 2009). The multidimensional difficulty 

(MDIFF) and discrimination (MDISC) values corresponding to the ranges employed in 

the above studies are presented in Table 3.3. 

Table 3.3: 
Summary of MIRT Item Parameters 

 Model MDIFF  MDISC 
Study Complexity Min Max  Min Max 

Zhang & Stone (2008) Simple -5.000 5.000  0.600 2.540 
 Complex -3.721 3.721  0.806 2.430 

Finch (2011) Simple -2.121 2.121  0.990 2.828 
 Complex -2.121 2.121  0.141 0.849 
 

Studies examining the impact of model misspecification under the CFA 

framework have typically emulated the approach and specifications of Hu and Bentler 

(1998) whereby item discrimination values range 0.98 to 1.33 (e.g., Curran et al., 2003; 
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Fan & Sivo, 2005, 2007); Ximénez (2009) considered a wider range of values, 0.31 to 

2.06. More recently, Heene et al. (2011) manipulated a large range (0.3 to 0.9) of factor 

loadings considering the effect of such parameters on model fit evaluation which reflect a 

range of item discrimination values (approximately 0.3 to 2.1) greater than typically seen 

in IRT or MIRT studies. None of these studies, however, manipulated the magnitude of 

item discrimination as a factor of interest nor did they explicitly consider item difficulty 

via threshold parameters nor did the studies by Finch (2010, 2011) explicitly manipulate 

item difficulty or discrimination. 

3.1.2 Data Generation. 

For each of the 432 data generation cells across the simulation conditions 

presented in Table 3.1, 1000 replications will be performed under True model 

misspecification while 250 replications will be performed for the Moderate and Severe 

misspecification conditions, thus allowing for the examination of distributional 

properties, the calculation of various descriptive statistics, and the computation of 

specific analysis-of-variance (ANOVA) models as described below. 

For each combination of the simulation factors described, item responses for 

examinees i = 1,…, I (determined by Sample Size) to items j = 1,… , J (Test Length) are 

calculated according examinee ability on each of the k latent factors, θik, given the 2-

parameter normal-ogive multidimensional item response model (2-PNO MIRT; De 

Ayala, 2009; Lord, 1952; Reckase, 2009). If the probability of a correct response by 

examinee i to item j given abilities θi1… θik is greater than the corresponding value from 

an i x j matrix, U, of random uniform values ranging [0, 1], then a correct item response 

is generated (xij = 1), otherwise an incorrect item response is generated (xij = 0). 
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Comparing item response probabilities against U introduces random error as suggested 

by Luecht (1996). Data generation was conducted in the R software package (R 

Development Core Team, 2011). This procedure is summarized in the following outline: 

1. Q-Matrix Generation – for each level of Model Dimensionality, Test Length, and 

Item Dimensionality 

1.1. Generate j x k matrix, Q, where j indexes items, k indexes latent factors, and qjk = 

1 or 0. 

1.2. First, create simple-structure Q 

1.3. Using simple-structure Q, modify to create complex-structure Q*  

2. Item Type Generation – for each level of Model Complexity, Model Dimensionality, 

Test Length, and Item Type  

2.1. Generate j x 1 vector of item difficulty values, B 

2.2. Generate j x k matrix of item discrimination values, A 

3. Latent Ability Generation – for each level of Inter-Factor Correlation and Sample 

Size 

3.1. Generate a k x k inter-factor correlation matrix, Σ, where Σkk = 1.0, Σkk is defined 

according to the inter-factor correlation conditions and the three correlations in 

the three-factor model being constrained to equality. 

3.2. Generate i x k matrix of latent ability distributed as multivariate normal,  

θ ~ MVN(0, Σ) 

4. Item Response Generation – for each level of Model Complexity, Model 

Dimensionality, Inter-Factor Correlation, Test Length, Item Dimensionality, Item 

Type, and Sample Size  
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4.1. Constrain item discrimination values, A, according to an element-by-element 

multiplication of Q or Q* elements, as appropriate. 

4.2. Generate an i x j matrix of probabilities of correct responses, P, according to the  

2-parameter normal-ogive multidimensional item response theory model (2-PNO 

MIRT; De Ayala, 2009; Lord, 1952; Reckase, 2009). 

4.3. Generate an i x j matrix of random uniform values, U 

4.4. Generate an i x j matrix of observed dichotomous responses, X 

4.4.1. if Pij ≤ Uij then Xij = 0  

4.4.2. if Pij > Uij then Xij = 1 

3.2.Estimation Conditions 

The current study employs the weighted least squares mean- and variance-

adjusted estimator (WLSMV; Muthén & Muthén, 1998-2001; Muthen, Du Toit. & Spisic, 

1997) as implemented in the Mplus software package, version 6.11 (Muthén & Muthén, 

1998-2010) for the estimation of models under the CFA framework. The MIRT model is 

also estimated using the Mplus software with similar estimation specifications as the 

CFA model. Mplus estimates a 2-PNO MIRT model, using the probit link function (Φ), 

resulting in comparable item parameters according to the transformations provided by 

Takane and de Leeuw (1987). Additionally, a study by Maydeu-Olivares (2001) 

demonstrated that parameter estimates obtained using the Normal Ogive Harmonic 

Analysis Robust Method software (NOHARM; Fraser & McDonald, 1988), which 

estimates the two-parameter MIRT model via an approximation to the normal ogive, 

were comparable to those obtained from Mplus. Default Mplus settings were typically 

employed, meaning that ten random sets of starting values were generated and 10 
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optimizations were carried out for each replication, with the exception that the number of 

processors was specified to take advantage of the four CPU’s available on some 

computers used in this dissertation (PROCESSORS = 4). 

3.2.1 Model Misspecification 

Each of the original Q-matrices are misspecified as ′Q  such that specific entries 

of Q are set to q jk′ = 0 when q jk = 1 or q jk′ = 1 when q jk = 0. Misspecified Q-matrix 

entries can reflect one of three possible types: alternate-factor misspecification, 

underfactoring, or overfactoring. Alternate-factor misspecification represents instances 

where an item is estimated as loading on a latent factor differing from the generating 

factor, underfactoring represents the estimation of fewer factor loadings than specified 

during response generation, and overfactoring represents the estimation of more factor 

loadings than specified during response generation. To limit the complexity of this 

dissertation, alternate-factor misspecification is applied only to items demonstrating 

between-item multidimensionality and underfactoring is applied to items demonstrating 

within-item dimensionality; to limit the complexity of this dissertation as well as 

corresponding to previous studies of model misspecification, overfactoring is excluded 

from the study design. 

For the True Model condition, no items are misspecified. For all other models, the 

misspecifications are pre-specified and strategically balanced within each experimental 

cell such that the marginal proportions of items per attribute are maintained. For models 

estimated according to the Moderate Misspecification condition, one-sixth of all items are 

alternate-factor misspecified; only items demonstrating between-item 

multidimensionality are misspecified. This means that a misspecified item is instead 
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estimated as an indicator of a single latent factor differing from the generating latent 

factor. Model estimation according to the Severe Misspecification condition means that 

one-third of all items are misspecified, which includes those that were previously 

misspecified under the Moderate Misspecification condition as well as an additional, 

equal, number of items. Under the simple-structure model condition these additional 

items reflect alternate-factor misspecification while misspecified items under complex-

structure models reflect underfactoring. Further, correctly specified items are maintained 

across conditions; specific items are correctly specified regardless of the complexity or 

degree of misspecification of the model. The misspecified Q-matrices are presented in the 

Appendix. 

3.2.2  Fit Indices 

Model fit indices considered in this study were selected based on sensitivity to 

measurement model misspecification demonstrated in previous studies of measurement 

model misspecification, their frequency of use by practitioners, and their availability in 

software programs (see the review by Gierl & Mulvenon, 1995). These indices include 

the χ2/df, the Root Mean Square Error of Approximation (RMSEA; Browne & Cudeck, 

1993; Steiger & Lind, 1980), Modification Indices (MI; Sörbom, 1989), and the Wald 

Test (Buse, 1982). The generalized dimensionality discrepancy measure (GDDM; Levy 

& Svetina, 2010) and the S-χ2 (Orlando & Thissen, 2003) will be employed in the current 

study, representing the assessment of global- and local fit under the MIRT framework. 

While the χ2/df, RMSEA, MI, and Wald Test statistics are all commonly available 

in CFA and SEM software packages, the GDDM and S-χ2 were programmed by the 

author in the R software package (R Development Core Team, 2011). Calculation of the 
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GDDM is straightforward according to the formula; calculation of the S-χ2 is detailed as 

follows. 

The S-χ2 statistic is calculated using the joint likelihood for each total score k, Sk, 

or the summation of all likelihoods across all distinct response patterns for each total 

score category. Using a recursive algorithm, the joint likelihood is computed one item at 

a time. Subsequently, the expected proportion of correct responses to item j under total 

score t, or Ejt, is computed as  
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tS−  is the joint likelihood for total score category t – 1 without item j (obtained from the 

recursive algorithm). The integrals in the numerator and denominator can be 

approximated by rectangular quadratures over the combination of equally spaced 

increments of θ1and θ2. The calculation of Ejt is generalized by expanding the integrals in 

the numerator and denominator to include response probability, population distributions, 

and derivatives with respect to k dimensions. Finally, the statistic is computed as  

2
2

1

( )

(1 )

T
t jt jt

jt jtt

N O E
S

E E
χ

=

−
− =

−∑  

where Ojt is simply the observed proportion correct for item j in total score category t and 

Nt is the number of examinees in total score category t.  
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3.2.3 Performance of Fit Statistics 

Prior to analysis of the fit statistics, the model estimation process is first evaluated 

by examining estimation issues, commonly defined in terms of convergence failures and 

Heywood cases which result in negative error variances for the estimated parameters. The 

model estimation process is further evaluated by examining the recovery of item 

parameters, specifically MDIFF, MDISC, inter-factor correlations, and person estimates 

or θi, via calculations of the root mean-squared error (RMSE) and average bias. Root 

mean-squared error is calculated as  

( )2

1

ˆ( )
R

r r R
r

RMSE Nω ω ω
=

= −∑ ; 

where ω indicates the population or generating parameter of interest, �� is the estimated 

parameter, and r indexes the 250 or 1000 replications within each cell of the simulation 

design. This statistic describes the empirical standard error of the parameter estimates 

where smaller values indicate better recovery of the original, generating values. 

Similarly, average bias is calculated as: 
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and is a signed-indicator of the magnitude of the discrepancy between the estimated and 

generating parameters. 

With the exception of the GDDM, each of the fit indices (i.e., RMSEA, χ2/df, MI, 

Wald Test, and S-χ2) is posited to follow a theoretical distribution – typically χ2 – and, 

therefore, hypothesized distributional properties can be described for each, including 

mean, variance, skewness, kurtosis, and percentiles associated with the typical 
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significance levels (0.10, 0.05, 0.01). Aggregating over simulation replications, the 

empirical sampling distributions of the fit indices will be compared to the expected, 

theoretical, critical values according to the various simulation conditions. Comparison of 

the theoretical and empirical sampling distributions will reveal whether model 

complexity, model size, test length, sample size, item type, or degree of model 

misspecification result in violations of the assumptions of the null distribution. Suggested 

by authors such as Tay and Drasgow (2011), empirically-derived cut points for each fit 

index are then derived as the values corresponding to the 95th percentile, representing a 

significance level of α = 0.05.  

As stated by Fan and Sivo (2007), fit indices should be sensitive to model 

specification errors; sensitivity to conditions other than model misspecification is 

typically demonstrated as the proportion of variation in the outcome statistic attributable 

to the conditions resulting from a factorial analysis of variance (ANOVA). Large 

proportions of variance attributed to one or multiple simulation conditions indicate 

variability between the levels of the condition or interaction of conditions and are said to 

suggest sensitivity of the outcome statistic to those conditions. For each fit index a 

factorial ANOVA is conducted to evaluate how each model and item fit index is 

influenced by the various simulation conditions; the sum-of-squares attributable to a 

factor, or simulation condition, and the total sum of squares are used to calculate  

η
2 = 100 x SSSource/SSTotal where η2 represents the percentage of the sum of squares 

attributable to each of the experimental or simulation conditions or interactions thereof 

(SSSource) and the total sum of squares, SSTotal. The current study follows a balanced 

design which results in orthogonal factors and the factorial ANOVA partitions the 
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variance of the fit indices into different components according to the simulation 

conditions.  

In this dissertation, sensitivity is defined as η
2 ≥ 1.000% indicating that there is a 

non-trivial amount of variability between the levels of the conditions. Alternately, when 

η
2 is smaller than 1.000% the outcome statistic is stated to be insensitive to that condition 

or conditions. The threshold of 1.000% has been selected for descriptive reasons, 

indicating a non-zero amount of variability attributable to the simulation condition. While 

not explicitly stated, previous research on fit index sensitivity typically discusses non-

zero values of η2 (Fan & Sivo, 2005, 2007; Jackson, 2007). The outcome statistics of 

interest from the successfully estimated replications are subjected to separate factorial 

ANOVA calculations to explore the sensitivity of each model and item fit index to test 

length, sample size, model complexity or item multidimensionality (depending on the 

unit of analysis), model size, the strength of the inter-factor correlations, and item type. 

Under true model specification, the sensitivity of the empirically-derived cut points will 

be examined as these values represent the decision points in model evaluation and should, 

therefore, appropriately indicate misspecified models under all simulation conditions. 

The effect of model misspecification on the performance of the various item and 

model fit indices is of primary interest in this study. Analysis of the specific effect of 

degree of Model Misspecification will follow the overall procedure described earlier, 

considering Model Misspecification as both a factor in the ANOVA calculations as well 

as examining the performance of the fit indices separately according to each level of 

misspecification. Further, Type-I error rates and power will be evaluated for each of the 

fit indices. Type-I error rates for each model fit index are calculated as the proportion of 
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true, correctly specified, models yielding fit values falling outside the critical range; 

Type-I error rates for item fit indices are the proportion of correctly specified replications 

for which the item was judged to demonstrate poor fit. Power is assessed using the 

empirical cut-off values that ensure approximately nominal Type-I error rates and is 

computed as either the proportion of misspecified models which are correctly rejected by 

the model fit index or the proportion of misspecified items which are correctly rejected 

by the item fit index. Summaries of power for item-fit indices will be computed 

separately for the correctly- versus incorrectly-specified items. 

3.3.Real Data Application 

A real-data component is included in this dissertation to (1) to serve as an 

illustrative example of how the findings from the current research can be applied in 

practice and (2) to suggest direction and applications for future research. Item-level 

responses for a high-stakes grade 6 mathematics achievement assessment from a large 

Midwestern state were obtained via an arrangement between the state department of 

education and the author of this dissertation. This de-identified dataset is an early return 

dataset collected by the test vendor for the purpose of item calibration and early research. 

Additionally, this administration corresponds to test materials that have been released 

into the public domain by the state allowing for examination of content such as item 

stems and item response option. 

A promotional requirement for every student in grade 6, the full achievement data 

set represents the population of students in the state and contained responses for 12,861 

to 39 items, which include binary-scored multiple choice items, short answer items worth 

2 points each, and extended response items worth 4 points each. For the purposes of this 
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study, the dataset is reduced to include only the 32 binary-scored items and a random 

sample of 1,000 examinees is drawn to represent the large sample size condition 

simulated in this dissertation. Since test content was available for consideration, the Q-

matrix was constructed as part of an earlier research study (Gushta, Yumoto, & Williams, 

2009) by assigning items to appropriate levels of the revised Bloom’s Taxonomy for 

Educational Objectives (Anderson & Krathwohl, 2001; Bloom, 1956). These categories 

describe the cognitive processes necessary to successfully answer test items, independent 

of specific subject-area requirements, according to the Cognitive Process Dimension. 

While there are 6 categories in the Cognitive Process Dimension, only 3 were represented 

in this assessment: Remembering, which is the most basic cognitive process indicating 

that test items require only retrieval of stored information; Understanding, a more 

complex process requiring summarizing and comparing; and Application, for items 

requiring the use of procedures to solve familiar and novel tasks. The 2-parameter normal 

ogive (2-PNO) multidimensional item response theory (MIRT) model will be estimated 

using this data and the Q-matrix resulting from the Cognitive Process Dimensions as well 

as Q-matrices suggested by the content standards for this assessment as well as a Q-

matrix suggested by exploratory factor analysis. The resulting values of the χ2/df, 

RMSEA, GDDM, Modification Indices, S-χ2, and Wald Test fit indices are then 

examined according to the simulation-suggested cut points, for the purpose of selecting 

the most appropriate Q-matrix, identifying model or Q-matrix misspecification, and 

suggesting subsequent Q-matrix revision. 
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Chapter 4 

Results of True Model Estimation 

Latent variable models were estimated for dichotomous response data varying in 

sample size, test length, item discrimination and difficulty, difficulty (i.e., magnitude of 

discrepancy from average examinee ability), item multidimensionality, number of latent 

factors, and degree of inter-factor correlation. The current chapter presents the results of 

estimating correctly specified, true, models. The performance of model- and item-fit 

statistics estimated for these models will be used as evidence in answering the following 

research questions: 

1) How similar are key percentiles (i.e., 90th, 95th, and 99th) from the empirical 

sampling distributions to the corresponding percentiles from the theoretical 

sampling distributions? In other words, how strongly do the empirical and 

theoretical sampling distributions differ in their upper tails? 

2) How much do the percentiles from the empirical sampling distributions vary as a 

function of different test design and model conditions?   

3) How much does the use of the percentiles from the theoretical sampling 

distributions inflate or deflate the nominal type-I error rate? 

Additionally, the bias and precision of item and person parameters will be calculated in 

order to evaluate parameter recovery under true model estimation conditions. Lastly, 

application of the theoretical or suggested cut points are then discussed as Type I error 

rates.  
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4.1.Estimation Issues 

For each of the 432 true model conditions enough replications were conducted so 

as to obtain 1000 successfully converged replications for each cell in the design of the 

simulation study. On a 64-bit dual-core 2.53GHz computer with 4.00GB of RAM the true 

model conditions took approximately 490 hours to complete. For the majority of the cells 

in the experimental design all of the 1000 replications resulted in successful estimation 

runs; however, 167 (38.66%) of the 432 true model conditions required additional 

replications with a minimum of one additional replication through to a maximum of 369 

additional replications for models with 3 weakly correlated latent factors, 12 high 

discrimination / high difficulty items estimated as within-item multidimensional, and a 

sample size of 250. Table 4.1 presents the simulation conditions requiring greater than an 

additional 1% to achieve the necessary 1000 replications. 
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Table 4.1 
Convergence 

Test Sample Item 2 Dimensions 3 Dimensions 
Length Size Multi. Type L* M H   L M H 

12 250 B HH 101% 102% **  125% 115% 106% 
   HM  125% 111% 102% 
   HL  106% 103% 
   MH  106% 102% 105% 
   MM  103% 102% 102% 
   ML  102% 
  W HH 104% 103% 111%  137% 123% 113% 
   HM 101% 101% 103%  119% 112% 105% 
   HL  108% 104% 102% 
   MH 104%  105% 103% 115% 
   MM 102%  104% 102% 112% 
   ML 101%  105% 

24 250 B HH 102%  103% 106% 103% 
   HM  101% 
   HL  101% 
  W HH 101% 101% 103%  106% 105% 105% 
   HM  102% 102% 
   HL  102% 
   MH  101% 

36 250 B HH  102% 102% 
   HM  101% 
   HL  101% 
  W HH 102%  103% 105% 102% 
  HM  102% 102% 

* Indicates inter-factor correlation: L = Low, M = Moderate, and H = High. 
** 100% convergence omitted for clarity. 
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Generally, the proportion of replications that needed to be replaced corresponded 

with shorter test lengths and small sample sizes; moreover, a greater number of 

replications were necessary for the three-dimensional models than the two-dimensional 

models. These results suggest that the models are generally estimable; however, the 

smaller sample sizes and increased model complexity corresponded to a larger number of 

estimation failures and more parameters that were imprecisely estimated. 

4.1.1 Results for MDIFF 

Specifically, summaries of the root mean-squared error (RMSE) and average bias 

for MDIFF, MDISC, inter-factor correlations, and ability (i.e., θ) are presented in Table 

4.2. Overall, values of the RMSE values for the MDIFF are small (mean = 0.222,  

median of 0.161) with the largest RMSE values corresponding to the smallest sample size  

(n = 250) but otherwise varied with respect to condition. Average bias of MDIFF is also 

small (mean = -0.001; median = -0.005) with the largest values occurring under the 

smallest sample size. Thus, overall, recovery of MDIFF parameters was mostly 

dependent upon sample size, though the degree of discrepancy between the true and 

estimated values was small across all conditions.  

4.1.2 Results for MDISC 

RMSE values for MDISC are slightly larger than those seen for MDIFF  

(mean = 0.332; median = 0.221) and the average bias values are also more positive (mean 

= 0.001; median = 0.003), suggesting an increased number of discrepancies of greater 

magnitude. The largest RMSE values are seen under conditions of the smallest sample 

size, shortest test length, highly discriminating items, and highly correlated latent factors. 
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Average bias shows behavior similar to the RMSE, though values increase as inter-factor 

correlation becomes stronger. Recovery of discrimination parameters is seen to be 

dependent on sample size, though this relationship is not straightforward. 

4.1.3 Results for Inter-Factor Correlations 

Inter-factor correlations across two- and three-dimensional models demonstrate 

small-to-moderate RMSE values, with means ranging 0.053 to 0.280 and medians of 

0.048 to 0.180, where the larger values are associated with two-dimensional models. 

Average bias for the inter-factor correlations demonstrates similar ranges and behavior. 

The largest values of RMSE and average bias are associated with three-dimensional 

models following simple-structure, in which latent factors are highly correlated, the test 

length is short, and items are highly-discriminating. Further, the largest average bias 

values suggest that estimated inter-factor correlations are more than double the 

generating values. 

4.1.4 Results for Person Parameter Estimation 

Finally, recovery of the person parameters, alternate known as examinee ability or 

θ, is examined. RMSE values are small for ability across two- and three-dimensional 

models (mean = 0.059 to 0.072; median = 0.065 to 0.070), however, average bias is large 

(mean = 0.961 to 1.695; median = 0.900 to 0.965), indicating that the majority of the 

values were closely recovered. There are, however, many person parameter values which 

were poorly recovered as demonstrated in the wide range of average bias values (-19.045 

to 23.364). While large RMSE values are typically associated with small sample sizes, 
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simple-structure three-dimensional models with highly discriminating and difficulty 

items, extreme average bias values follow no discernible pattern. 

4.1.5 Summary of Estimation Issues 

Overall, variability of parameters recovery as described by RMSE appears to be 

small and impacted mainly by sample size, suggesting that parameters are less precise at 

the smallest sample size. The magnitude of the discrepancies, indicated by average bias, 

is generally small for item parameters but suggests the presence of overestimated values, 

in the case of inter-factor correlations, and extreme values, for ability estimates, 

frequently associated with three-dimensional models following simple-structure with 

highly-discriminating items. 

Table 4.2 
Descriptive Statistics for Root Mean-Squared Error and Average Bias of Key Parameters 

  Param. Min 25th% Mean Median 75th% Max SD 
RMSE MDIFF 0.063 0.105 0.222 0.161 0.253 3.291 0.279 

MDISC 0.085 0.153 0.332 0.221 0.398 4.751 0.359 
ρ12 0.018 0.044 0.280 0.180 0.511 0.786 0.273 
ρ13 0.019 0.036 0.054 0.049 0.067 0.125 0.023 
ρ23 0.019 0.035 0.053 0.048 0.066 0.121 0.023 
θ1 0.031 0.039 0.059 0.065 0.071 0.117 0.019 
θ2 0.032 0.050 0.072 0.070 0.086 0.194 0.030 
θ3 0.031 0.048 0.072 0.069 0.087 0.174 0.031 

Average MDIFF -0.333 -0.031 -0.001 -0.005 0.034 0.233 0.069 
Bias MDISC -0.317 -0.004 0.001 0.003 0.014 0.162 0.047 

ρ12 -0.354 0.000 0.508 0.409 1.010 1.821 0.528 
ρ13 -0.037 0.004 0.019 0.009 0.029 0.361 0.032 
ρ23 -0.616 0.039 0.209 0.218 0.365 0.904 0.274 
θ1 -19.045 0.581 1.349 0.900 0.989 21.495 3.882 
θ2 -11.553 0.875 1.695 0.965 0.997 23.364 3.535 

  θ3 -14.917 0.828 0.961 0.955 1.000 16.221 2.923 
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In a study by Finch (2011), the RMSE for item difficulty parameters estimated 

according to correctly specified 2-PNO models ranged 0.86 to 0.99 while RMSE for item 

discrimination parameters ranged 0.34 to 0.54. While the results of the current study 

suggest that levels of the simulation conditions affect parameter estimates and subsequent 

statistics dependent on these values, the parameters are generally well-recovered 

compared to previous research.  

4.2.Distributional Characteristics of Model Fit Indices 

The 90th, 95th, and 99th percentiles from the empirical sampling distributions 

across the 1,000 successful replications were stored and submitted to an ANOVA that 

included the test design and model conditions as factors. In the following, the 

distributional characteristics of the χ2/df ratio, RMSEA, and GDDM model-fit indices as 

well as that of the S-χ2, Modification Index, and Wald Test item-fit indices are examined 

via descriptive statistics such as means, medians, standard deviations, and inter-quartile 

ranges, as well as graphically using box-and-whisker plots and empirical cumulative 

distribution functions for each fit index. For ease of interpretation and presentation, these 

statistics are summarized according to the simulation conditions for which the 

empirically-derived cut points, the 95th percentiles representing a nominal significance 

level of α = 0.05, demonstrate sensitivity resulting from the factorial ANOVA 

calculations for each fit index. 

The proportion of variance in the empirically-derived cut points for each model-

fit index are presented as percentages in Table 4.3 according to main effects of simulation 

conditions and interactions thereof for which the cut points demonstrated sensitivity.  
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Table 4.3 
Selected Percentages of Variance for Empirically-Derived Model-Fit Cut Points Under 
True Model Specification 

Source χ
2/df RMSEA GDDM 

Number of Dimensions (1) 0.161 0.103 6.078 
Test Length (2) 69.925 40.126 13.885 
Sample Size (3) 0.193 38.663 18.746 

Item Multidimensionality (4) 2.125 1.793 0.024 
Inter-Factor Correlation (5) 1.932 1.510 0.006 

Item Type (6) 1.711 0.999 53.563 
2*3 0.816 6.585 1.227 
2*6 0.404 0.510 2.517 
3*6 4.059 1.250 1.041 

2*3*6 2.189 0.583 0.078 
Residuals 9.303 3.456 1.095 

4.2.1 Results for χ2/df 

Large percentages of variance are attributable to test length in the empirical cut 

points of the χ2/df (η2 = 69.925) while a lesser degree of sensitivity is demonstrated to 

multidimensionality, inter-factor correlation, item type, the first-order interaction of test 

length and item type, and the second-order interaction between test length, sample size, 

and item type. Descriptive statistics for the χ
2/df model fit index resulting from True 

Model estimation are therefore presented according to test length, sample size, and item 

type (see the Appendix); the box-and-whisker plot shown in Figure 4.1 depicts these 

values graphically. As demonstrated by the medians and inter-quartile ranges, the True 

Models typically fit the data well resulting in values of approximately χ2/df = 1.The 

interaction of test length and sample size is clear, however, in the ranges of χ2/df and the 

corresponding fluctuations in the 90th, 95th, and 99th percentiles. The empirical 

cumulative distribution functions for the χ2/df are depicted in Figure 4.2 according to the 
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same conditions where they are seen to deviate from the theoretical distribution4. The 

distribution of this fit statistic most closely approaches the theoretical distribution under 

the short test length condition and shows increasing deviation from the theoretical 

distribution as the test length increases, more closely approximating 1.000. Overall, 

positive skewness in the distribution of the χ
2/df indicates that the suggested cut points of 

2 or 3 (Byrne, 1989; Carmines & McIver, 1981; Marsh & Hocevar, 1985) are 

inappropriate for the conditions presented in this study as they are much larger than the 

empirically-derived cut points corresponding to the 90th, 95th, and 99th percentiles. 

  

                                                           
4 Values for the theoretical distribution of χ2/df can be fully determined by sample size and test length. 
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Figure 4.1. Box-and-whisker plot for the χ2/df ratio. 

Presented according to item type, test length (rows), and sample size (columns) . The 
solid lines represent the 90th percentile (blue), 95th percentile (green), and 99th percentile 
(red); the dashed line represents the most conservative suggested cut point (χ

2/df = 2). 
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Figure 4.2.Cumulative distribution functions for the χ2/df ratio. 

Presented according to item type, test length (rows), and sample size (columns). The 
black line represents the theoretical distribution; the dashed line represents the most 
conservative suggested cut point (χ

2/df = 2).  
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4.2.2 Results for RMSEA 

Most importantly, values for the RMSEA index under correct model specification 

are frequently close to 0 as one would theoretically expect. Similar to the χ2/df, the 

largest percentage of variance in the RMSEA empirical cut points is attributable to test 

length (η2 = 40.126) with substantial variance also attributable to sample size (η2 = 

38.663) and the interaction of these two simulation conditions (η2 = 6.585). The RMSEA 

demonstrates very little sensitivity to the conditions of multidimensionality, inter-factor 

correlation, and the interaction of sample size and item type. Descriptive statistics for the 

RMSEA model fit index under True Model estimation are, therefore, presented according 

to test length, sample size, and multidimensionality in the Appendix and as box-and-

whisker plots in Figure 4.3 The RMSEA values reflect that the True Models fit the data 

well, as the median and inter-quartile ranges approximate 0.000 and values corresponding 

to the 90th, 95th, and 99th percentiles range from 0.007 to 0.049. Values of the RMSEA 

typically decrease with sample size and test length; decrease due to sample size is 

pronounced though less noticeable as test length decreases. The modest effect of 

multidimensionality can be seen under the simple-structure as RMSEA values 

demonstrate greater variability than under complex-structure. Overall, approximately half 

of all replications resulted in RMSEA values approaching zero. It must be noted that 

RMSEA values of zero do not necessarily indicate perfect fit but only a degree of misfit 

smaller than the precision of the software is able to detect. 

The empirical cumulative distribution functions (ECDFs) for the RMSEA are 

depicted against the theoretical distribution in Figure 4.4 separately for different test 

length, sample size, and dimensionality conditions. Severe positive skewness is 
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demonstrated in these graphs which suggest that the empirical distributions of the 

RMSEA do not follow the theoretical distribution and are strongly influenced by the 

large proportion of RMSEA values estimated to be zero; Therefore, comparing the 

ECDFs against the suggested cut points of RMSEA = 0.05 or 0.06 (Hu & Bentler,1999) 

indicates that the empirical cut points differ under a number of conditions and are not 

well represented or approximated by the suggested, static, cut points which are typically 

much larger than the 90th, 95th, and 99th percentiles. 
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Figure 4.3. Box-and-whisker plots for RMSEA. 

Presented according to multidimensionality, test length (rows), and sample size 
(columns). The solid lines represent the 90th percentile (blue), 95th percentile (green), and 
99th percentile (red); the dashed line represents the most conservative suggested cut point 
(RMSEA = 0.05).  
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Figure 4.4. Empirical cumulative distribution functions for the RMSEA. 

Presented according to multidimensionality, test length (rows), and sample size 
(columns). The theoretical distribution is displayed as a black line; the most conservative 
suggested cut point is displayed as a dashed line (RMSEA = 0.05). 
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4.2.3 Results for GDDM 

Most importantly, values for the GDDM under correct model specification are 

numerically very close to 0 as one would theoretically expect. Nevertheless, a follow-up 

analysis of the variation of the values for the GDDM was conducted to further describe 

the trends in these values. Unlike the other model-fit indices, empirical cut points for the 

GDDM demonstrate the greatest sensitivity to item type (η2 = 16.133) while also being 

sensitive to sample size (η2 = 18.746) and test length (η2 = 13.885). The last of the 

descriptive statistics for model-fit indices are also presented in the Appendix, according 

to item type, sample size, and test length. From these statistics and the box-and-whiskers 

plots illustrating the descriptive statistics (Figure 4.5), it is seen that values of the GDDM 

decrease substantially with both item discrimination and item difficulty. Additionally, 

GDDM values for the empirical cut points decrease with test length, especially when 

sample sizes are large; under small sample sizes, values of the GDDM reduce less 

drastically by test length. GDDM cut points are smallest when 36 high-discrimination / 

high-difficulty items are estimated using a sample size of n = 1000. 

While the GDDM follows no known theoretical distribution, the empirical 

cumulative distribution functions are plotted in Figure 4.6 according to test length, 

sample size, and item type. The effect of item type and test length is evident as values of 

the GDDM decrease with item discrimination, difficulty, and test length, as seen in the 

box-and-whisker plots. There are no suggested or theoretical cut points against which to 

compare the 90th, 95th, and 99th percentiles. 
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Figure 4.5. Box-and-whisker plots for GDDM. 

Presented according to item type, test length (rows), and sample size (columns). The solid 
lines represent the 90th percentile (blue), 95th percentile (green), and 99th percentile 
(red). Outliers excluded for clarity. 
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Figure 4.6. Empirical cumulative distribution functions for the GDDM. 

Presented according to item type, test length (rows), and sample size (columns).  
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4.3.Distributional Characteristics of Item Fit Indices 

Main effects and specific interactions for the S-χ
2, Modification Index, and Wald 

Test item-fit indices, in which the empirically-derived cut points demonstrated sensitivity 

resulting from the factorial ANOVAs are presented in Table 4.4 as percentages. 

Table 4.4 
Selected Percentages of Variance for Item-Fit Statistics by Simulation Condition Under 
True Model Specification 

  Modification Index  Wald Test 
Source S-χ2 1 2 3 1 2 3 

Dimensions (1) 0.039 10.954 10.252  0.931 0.004 
Test Length (2) 35.624 9.325 9.914 9.921  2.600 2.081 3.432 
Sample Size (3) 21.280 16.899 15.888 22.029  15.694 12.417 18.597 

Item Multidm. (4) 10.177 0.448 0.532 0.954  54.543 61.438 48.333 
Inter-factor Corr. (5) 11.199 37.758 38.188 40.368  0.423 0.345 0.514 

Item Type (6) 0.411 9.246 9.146 10.827  10.750 10.208 14.303 
1*2 0.108 1.221 0.567  0.012 0.104 
2*3 1.722 4.196 4.358 4.627  0.173 0.107 0.183 
2*5 0.779 3.254 3.150 3.518  0.071 0.054 0.150 
2*6 0.625 1.076 1.446 1.128  0.204 0.113 0.222 
3*4 1.478 0.026 0.001 0.254  3.836 3.349 2.752 
3*5 1.850 0.309 0.607 0.515  0.044 0.028 0.056 
3*6 1.187 0.534 0.848 0.868  0.749 0.699 1.222 
4*6 2.418 0.070 0.135 0.159  4.660 5.948 5.139 
5*6 2.429 0.553 0.688 1.447  0.015 0.015 0.025 

3*4*5 1.349 0.004 0.007 0.087  0.117 0.071 0.249 
Residuals 1.560 1.542 1.378 1.220  0.362 0.449 0.578 

 

4.3.1 Results for S-χ2 

The 95th percentiles of the S-χ2 item fit index resulting from True Model 

estimation demonstrate sensitivity to a great number of main effects and interactions, 

largest among these are the sensitivity to test length (η2 = 35.624), sample size  

(η2 = 21.280), and inter-factor correlation (η2 = 11.199). Descriptive statistics for the S-χ
2 

item-fit index are provided in the Appendix according to these conditions and graphically 
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depicted as box-and-whisker plots in Figure 4.7. Values of the S-χ2 range from 

approximately zero to 35 across conditions; the range and magnitude of S-χ2 values 

increases with sample size and test length. Further, this item-fit index shows an effect of 

inter-factor correlation under large sample sizes as values of S-χ2 increase with the degree 

of inter-factor correlation.  

While the S-χ2 appears to roughly approximate the theoretical χ
2 distribution 

(Figure 4.8), under small sample sizes for the longest test, the empirical cumulative 

distribution function increasingly deviates from the theoretical distribution under the 

larger sample size and smaller test lengths. Deviation from the theoretical distribution is 

also induced by strong inter-factor correlation.  

These aggregate descriptive statistics cannot be compared to theoretical cut points 

as the degrees of freedom for the S-χ
2 are specific to each item and set of simulation 

conditions based on the number of valid observed score categories. However, noting that 

the cut point for one degree of freedom is χ
2 = 3.841 and the cut point for 35 degrees of 

freedom, the maximum possible, is S-χ
2 = 49.801, the theoretical cut points always 

exceed the empirical values for small sample sizes while they may approximate the 95th 

percentile under large sample sizes when latent factors are highly correlated. 
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Figure 4.7. Box-and-whisker plots for S-χ2. 

Presented according to inter-factor correlation, test length (rows), and sample size 
(columns). The solid lines represent the 90th percentile (blue), 95th percentile (green), and 
99th percentile (red). Outliers have been omitted for clarity. 
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Figure 4.8. Empirical cumulative distribution functions for the S-χ2. 

Presented according to item type, test length (rows), and sample size (columns). The 
theoretical distribution is displayed as a black line.  
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4.3.2 Results for Modification Indices 

The 95th percentiles of the Modification indices across all three latent factors 

demonstrate greatest sensitivity to inter-factor correlation (η2 = 37.758 to 40.368) and 

sample size (η2 = 15.88 to 22.029). Modification indices for latent factors 1 and 2 next 

demonstrate sensitivity to test length (η
2 = 9.325 to 9.914) while Modification Index 3 is 

next-most sensitive to item type (η2 = 10.827), though the magnitude of difference from 

the test length factor (η2 = 9.921) is very small, a difference that is likely the result of 

removing number of dimensions from the ANOVA since Modification Index 3 can only 

be estimated for models with three latent factors.  

Descriptive statistics for all three Modification indices are presented in the 

Appendix according to inter-factor correlation, sample size, and test length. The box-and-

whisker plots for these three item-fit indices are presented in Figure 4.9. Considering the 

descriptive statistics together with the sensitivity analysis results, it is apparent that the 

Modification indices perform similarly regardless of the dimension for which the statistic 

was estimated; subsequently, only Modification Index 1 will be discussed as 

representative of all three values.  

Values of the Modification Index approximate zero and are typically less than 

5.000, indicating that items are estimated as loading correctly on the associated latent 

factor, though the range of values decreases as inter-factor correlation increases. 

Additionally, values demonstrate an increase in magnitude and variability with larger 

sample sizes while decreasing with additional latent factors. At a nominal significance of 

0.05, the theoretical cut point for the Modification Index is χ2 = 3.841 with one degree of 

freedom which overestimates some of the empirical percentiles representing usual 
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nominal significance values but more often underestimates values of the empirically-

derived cut scores, indicating that a greater proportion of items would be identified as 

misspecified as a result of using the theoretical cut points.  

Empirical cumulative distribution functions for all three Modification indices are 

presented in Figure 4.10 according to inter-factor correlation, number of dimensions, and 

sample size. Generally, values of this fit index appear to well-approximate the theoretical 

distribution when the inter-factor correlation is high. As the degree of correlation 

decreases, however, the empirical distributions demonstrate increasing negative skewness 

and deviation from the theoretical distribution. This deviation is amplified under the 

larger sample size condition and models with three latent factors. 
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Figure 4.9. Box-and-whisker plots for the Modification Indices. 

Presented according to inter-factor correlation, number of dimensions (rows), and 
sample size (columns). The solid lines represent the 90th percentile (blue), 95th percentile 
(green), and 99th percentile (red); the dotted line indicates the theoretical cut point. 
Outliers have been omitted for clarity. 
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Figure 4.10. Empirical cumulative distribution functions for the Modification Index on 
latent factor 1. 

By inter-factor correlation, number of dimensions (rows), and sample size (columns). The 
theoretical distribution is displayed as a black line; the theoretical cut point (MI = 3.841) 
is displayed as a dashed line.  
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4.3.3 Results for Wald Test Statistics 

Wald Test statistics indicate significance of a freely estimated factor loading in a 

confirmatory factor model; therefore, there is a Wald Test value for each factor that an 

item is associated with; between-item multidimensionality results in a single Wald Test 

value while within-item multidimensionality as defined in this study results in two Wald 

Test values. As an indicator of significance for the estimated factor loading, critical 

values for the Wald Test indicate the lower bound necessary for a parameter to be 

considered as correctly estimated. Unlike the other fit indices, Wald Test values smaller 

than the critical values indicate misspecification; therefore, empirically-derived cut points 

are calculated for the 10th, 5th, and 1st percentiles. 

The patterns of sensitivity in the 95th percentiles of the Wald Test values are 

similar across the three dimensions, therefore, discussion will refer to the Wald Test in 

general rather than the values associated with a particular latent factor. The Wald Test 

demonstrates greatest sensitivity to item multidimensionality (η2 ranges 48.333 to 

61.438), sample size (η2 ranges 12.417 to 18.597), and item type (η
2 ranges 10.208 to 

14.303). Descriptive statistics for all three Wald Test indices are presented in the 

Appendix according to these simulation conditions and the box-and-whisker plots are 

presented in Figure 4.11. Values of the Wald Test range approximately zero to 50 for 

between-item multidimensionality, increasing with sample size and discrimination while 

decreasing with difficulty. Values of the Wald Test under within-item 

multidimensionality range approximately zero to 20 and demonstrate similar patterns as 

under within-item dimensionality though less extreme and within a more restricted range. 

For sample sizes of 1000 and within-item multidimensionality the theoretical cut point, 
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calculated as a χ2 = 3.841 with one degree of freedom, approximates the empirically-

derived cut point (i.e., 5th percentile), however, the theoretical cut point approximates the 

median Wald Test value under the smaller sample size while largely underestimating the 

distribution of values when items are between-item multidimensional. 

Empirical cumulative distribution functions for the Wald Test (on latent factor 1) 

are presented according to item type, item multidimensionality, and sample size in Figure 

4.12. It appears that the observed values of the Wald Test do not follow the theoretical χ2 

distribution with one degree of freedom; except when sample sizes are small and items 

are estimated as within-item multidimensional, otherwise values of the Wald Test are 

typically much larger than expected. Large sample sizes and tests comprised of highly-

discriminating between-item multidimensional items show the greatest deviation of Wald 

Test values from the theoretical distribution. 
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Figure 4.11. Box-and-whisker plots for the Wald Tests. 

Presented according to item type or test length, multidimensionality (rows), and sample 
size (columns). The solid lines represent the 10th percentile (blue), 5th percentile (green), 
and 1st percentile (red); the dotted line indicates the theoretical cut point. 
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Figure 4.12. Empirical cumulative distribution functions for the Wald Test on latent 
factor 1  

Presented according to test length, multidimensionality (rows), and sample size 
(columns). The theoretical distribution is displayed as a dotted line; the theoretical cut 
point is a dashed line. 
  

Wald Test 1

P
ro

po
rti

on

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

250

0 10 20 30 40

1000

0 10 20 30 40

B
W

Test Length

12 24 36 Theory



 

 88 
 

4.4.Estimation Bias for Type-I Error Rates under Theoretical Sampling Distributions 

Based on the previously observed discrepancies between theoretical and empirical 

sampling distributions, if theoretical cut points (e.g., χ2 with one degree of freedom for 

the Modification Index and Wald Test) were employed in evaluating correctly specified 

models, the actual type-I error rate would differ from the nominal type-I error rate. 

Similarly, it is interesting to explore from a hypothesis-testing perspective what type-I 

error rates for the RMSEA would be like if cut points suggested by previous research 

(e.g., Byrne, 1989; Carmines & McIver, 1981; Hu & Bentler, 1999; Marsh & Hocevar, 

1985) were incorrectly perceived as being associated with hypothesis testing, rather than 

effect size quantification. 

Actual type-I error rates resulting from the application of the most conservative 

suggested cut point to the χ2/df ratio model fit index (χ2/df = 2.0) are presented as box-

and-whisker plots in Figure 4.13 according to item type, test length, and sample size – the 

same conditions to which empirical sensitivity was demonstrated. The suggested cut 

point results in underestimation of the Type-I error rate for all simulation conditions. 

Generally, the suggested cut point fails to reject any of the models, evidenced by median 

values approximating zero, with Type-I error rates approaching 0.01 under small sample 

sizes of short tests comprised of highly-discriminating items.  
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Figure 4.13. Actual Type-I error rates for the χ2/df ratio. 

Results are evaluated against the most conservative theoretical cut point (χ2/df = 2.0). 
Displayed according to item type, test length (rows), and sample size (columns). The 
dotted line indicates the nominal significance level 
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Figure 4.14 shows similar results when models are evaluated against the 

suggested RMSEA cut point of 0.05, though small samples and short tests following 

simple-structure show increased Type-I error rates – approaching the expected nominal 

level of 0.05. In other words, correct models often have RMSEA values much lower than 

0.05, which means that they would certainly be considered as well-fitting which is 

desirable from a descriptive perspective. From a hypothesis-testing perspective this 

technically does not ensure nominal type-I error rates, however, for which a finer 

differentiation of RMSEA values closer to 0 under different test design conditions is 

necessary. This situation is very similar for the GDDM, which is a discrepancy measure 

where a GDDM of 0 indicates perfect model-data fit. While values close to 0 are 

desirable, a finer differentiation of values closer to 0 under different test design 

conditions is necessary if the GDDM is to be used within a hypothesis-testing framework.  
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Figure 4.14. Actual Type-I error rates for the RMSEA. 

Correctly estimated models are evaluated against the most conservative suggested cut 
point (RMSEA = 0.05). Across multidimensionality, test length (rows), and sample size 
(columns). The dotted line indicates the nominal significance level. 
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Considering the actual Type-I error rates of the various item-fit indices reveals 

patterns of True Model rejection that greatly differ from that observed for the model fit 

indices. Actual Type-I error rates resulting from the application of the theoretical cut 

points for the S-χ2, Modification Index (MI = 3.841), and Wald Test (Wald Test = 3.841) 

are presented in Figure 4.15 through Figure 4.17, respectively. Unlike the other two item-

fit indices, the theoretical cut points for the S-χ
2 are determined for each item separately 

as a function of the total score point categories containing an appropriate number of 

observations, therefore, no overall cut point can be stated.  

Actual Type-I error rates for the S-χ2 approximate the nominal significance level 

for small sample sizes, long tests, and low inter-factor correlations. Decreases in test 

length, increases in sample size, and shorter test length all contribute to increased Actual 

Type-I error rates; the median Type-I error rate for 1000 examinees responding to 12 

items when latent factors are highly correlated is approximately 0.6. Application of the 

theoretical cut point to the Modification Index results in approximately nominal Type-I 

error rates under small sample sizes and high inter-factor correlations. Increases in 

sample size and decreases in inter-factor correlation result in increased actual Type-I 

rates; fewer latent factors corresponds to a slight increase in actual Type-I error rates. 

When two-dimensional models with low inter-factor correlation and 1000 examinees are 

estimated, the median Type-I error rate is approximately 0.2.  

Lastly, the Wald Test under-rejects items estimated as between-item 

multidimensional with actual Type-I error rates approaching zero. Items that are within-

item multidimensional are generally over-rejected under small sample sizes (median 

Type-I error rates ranging 0.20 to 0.55) and moderately over-rejected under large sample 
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sizes; high-discrimination and high difficulty correspond to increases in actual Type-I 

error rates under these conditions.  
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Figure 4.15. Actual Type-I error rates for the S-χ2.  

Correctly estimated models are evaluated against the theoretical cut point (MI = 3.841). 
Across inter-factor correlation, test length (rows), and sample size (columns). The dotted 
line indicates the nominal significance level. 
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Figure 4.16. Type I error rates for the Modification Index estimated against latent factor 
1.  

Correctly estimated models are evaluated against the theoretical cut point (MI = 3.841). 
Across inter-factor correlation, number of dimensions (rows), and sample size (columns). 
The dotted line indicates the nominal significance level. 
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Figure 4.17. Actual Type-I error rates for the Wald Test on latent factor 1. 

Correctly estimated models are evaluated against the theoretical cut point  
(Wald = 3.841). Across item type, multidimensionality (rows), and sample size (columns). 
The dotted line indicates the nominal significance level. 
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4.5.Summary 

Analysis of the model-fit indices (χ2/df ratio, RMSEA, and GDDM) and item-fit 

indices (Modification Index, S-χ2, and Wald Test) under true model specification indicate 

that the 95th percentiles of these statistics, to be subsequently employed as empirically-

derived cut points, each demonstrate sensitivity to the various simulation conditions. The 

current dissertation showed the 95th percentiles of the χ2/df to be especially sensitive to 

test length while the RMSEA and GDDM also showed sensitivity to sample size. 

Previous research by Jackson (2007) found that sample size attributed for 19% of the 

variance in RMSEA; no studies, however, had so far examined the sensitivity of 

empirically-derived cut points from a hypothesis-testing perspective. The GDDM 

demonstrated great sensitivity to item type (i.e., item discrimination and the degree of 

discrepancy between item difficulty and the mean of the latent factor distributions) even 

though absolute values of this index remained very small. The three item-fit indices all 

demonstrated substantial sensitivity to sample size; S-χ2 is additionally sensitive to test 

length, the Modification Index is additionally sensitive to inter-factor correlation, and the 

Wald Test is additionally sensitive to item multidimensionality. 

Given these sensitivities, the use of theoretical or suggested cut points results in 

actual Type-I error rates that differ greatly from the expected nominal rate of 0.05. For 

example, the suggested cut points for the χ
2/df and RMSEA fail to reject most models, 

resulting in underestimated Type-I error rates. This is inconsistent with Marsh, Hau and 

Wen’s (2004) findings for the χ2/df, for which Type I error rates were 9% and 15% when 

sample sizes were n = 250 and 1,000, likely resulting from differences in parameter 

specifications. Application of the theoretical cut points to the S-χ2 results in inflated 
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actual Type-I error rates as items are over-rejected in all but a few specific conditions. 

Actual Type-I error rates for the S-χ2 were seen to range up to 0.16 and 0.28, increasing 

with sample size, for models estimated as between- and within-item multidimensional by 

Zhang and Stone (2008). These results agree with the results of the current study. 

According to the Modification Indices, items estimated under the True Model are only 

rejected at the nominal rate for small sample sizes when inter-factor correlation is strong, 

otherwise actual Type-I error rates are inflated. Finally, the Wald Test is seen to under-

reject items that are between-item multidimensional and over-reject items that are within-

item multidimensional, though this effect is lessened under large sample sizes. 

The results of this section show that the theoretical and suggested cut points are 

generally inadequate for correctly evaluating model- and item-fit when True Models are 

estimated under a variety of simulation conditions. Actual Type-I error rates were shown 

to be both inflated and underestimated depending on the statistic and the specific data 

generation conditions. It should be noted that suggested cut points, especially those 

provided by Hu and Bentler (1999), were the result of descriptive analysis of model fit 

results which attempted to minimize Type-I and Type-II error rates in proposing 

appropriate, generalized “rule of thumb” criteria. Unlike the Hu and Bentler criteria, the 

empirical cut points calculated in this study control Type-I error and allow inferential 

model-fit testing. These cut points are calculated as the 95th percentile resulting from the 

empirical sampling distribution within each experimental cell, explicitly controlling the 

nominal significance level as α = 0.05. 

As stated by Fan, Thompson, and Wang (1999), “the degree of model 

misspecification should be the major contributor to the variation of a [model- or item-] fit 
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index” (p. 60); conditions to which a fit statistic demonstrates sensitivity should, 

therefore, be explicitly considered during model- and item-fit evaluation. Therefore, 

empirically-derived, design-appropriate cut points are instead employed in subsequent 

analyses evaluating model and item misspecification in this study. The empirically-

derived cut points for each fit index are specified as the 95th percentiles, or 5th percentiles 

in the case of the Wald Test, resulting from the empirical distribution of 1000 replications 

within each cell of the simulation design5. Utilizing these values thus ensures a nominal 

Type-I error rate of α = 0.05 and precise computations of power given the number of 

replications in this study. 

 

                                                           
5 Prior simulation work for exploring an appropriate number of replications to help determine these cut-off 
values with a reasonable degree of precision and without making the running time of the simulation study 
unduly long, has suggested that 1000 replications is a defensible choice; please see the Appendix for a 
study exploring this issue. 
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Chapter 5 

Results of Misspecified Model Estimation 

The behavior of model- and item-fit indices under correct, or true, model 

estimation was examined in the previous chapter; the current chapter examines the same 

indices under the same simulation conditions for moderate or severe model 

misspecification. First, the bias and precision of item and person parameters is examined 

in comparison to the results observed for true model estimation. Next, the performance of 

the model- and item-fit indices is considered in regards to the following research 

questions: 

4) How large is the power of different model- and item-fit statistics for detecting 

different types of Q-matrix misspecification under different test design conditions 

when the appropriate percentiles from the empirical sampling distribution are 

used? 

5) How much of the variation in empirically observed power rates is due to the 

different Q-matrix misspecification and test design conditions? 

Descriptive statistics and power for the model-fit indices are considered first, having 

applied the empirically-derived cut points calculated from the values obtained under true 

model estimation. Next, the descriptive statistics and power for the item-fit indices are 

considered. After addressing these questions, model- and item-fit performance are 

considered simultaneously, providing holistic information on model evaluation. 

5.1.Estimation Issues  

Each of the 864 true model conditions were replicated until 250 successful 

replications for each cell was achieved. Running on a 64-bit dual-core 2.53GHz computer 
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with 4.00GB of RAM the moderately misspecified conditions took approximately 130 

hours to complete and the severely misspecified conditions took approximately 265 

hours, for a total of nearly 400 computing hours in estimating and collecting the results of 

the misspecified models. The majority of the cells in the experimental design required 

additional replications to achieve the required 250 successful replications; Table 5.1 

presents the top 5 simulation conditions for each of 2- and 3-dimensional models 

requiring additional replications.  

Of the 432 moderately misspecified conditions, 260 (60.185%) conditions 

required a minimum of 251 replications and a maximum of 2425 replications, when 

estimating models under small sample sizes with 36 high-discrimination / high-difficulty 

items which follow complex-structure where latent factor are highly correlated. Severely 

misspecified models required additional replications for 361 (83.565%) of the 432 

experimental cells, with a minimum of 251 replications and a maximum of 107,725 

replications, when models with 3 weakly correlated factors following simple structure 

were estimated for 1000 examinees and 12 high-discrimination / moderate difficulty 

items.  
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Table 5.1 
Top 5 Percentages of Additional Replications Required when Estimated Models are 
Misspecified 

2 Dimensions 3 Dimensions 

Miss. 
Test 

Length 
Sample 

Size Multi. 
Item 
Type L* M H L M H 

Mod 12 250 W HH ** 4% 8% 
Mod 12 250 W HM 4% 5% 8% 
Mod 36 250 W HH 10% 

Sev 12 250 B HM 4% 4% 72% 29% 9% 
Sev 12 250 W HM 4% 5% 8% 
Sev 12 250 W HL 6% 
Sev 12 1000 B HH 88% 44% 9% 
Sev 12 1000 B HM 431% 70% 9% 
Sev 12 1000 B HL 114% 45% 8% 
Sev 12 1000 B MH 3% 
Sev 12 1000 B MM 4% 4% 
Sev 12 1000 B ML 55% 29% 7% 

* Indicates inter-factor correlation: L = Low, M = Moderate, and H = High. 
** Only the top 5 conditions by inter-factor correlation and number of dimensions are presented for 
clarity. 

 

Generally, the severely misspecified models required more additional replications 

than the moderately misspecified models. Additional replications were required for 

moderately misspecified models when two latent factors were estimated according to 

complex structure, small sample sizes, and high-discrimination items; when models were 

severely misspecified, the majority of the models requiring additional replications were 

comprised of 3 latent factors following simple structure containing 12 items of high 

discrimination. These results suggest that increasing misspecification results in poor or 

unreliable estimation, as would be expected. The magnitude of the number of additional 

replications required in some instances, however, suggests that those conditions are near-

unestimable and the results of such models should be interpreted with caution.  
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Summaries of the root mean-squared error (RMSE) and average bias for MDIFF, 

MDISC, inter-factor correlations, and ability (i.e., θ) are presented in Table 5.2. Overall, 

values of the RMSE values for the MDIFF are small (mean = 0.222, median of 0.161) 

with the largest RMSE values corresponding to the smallest sample size (n = 250) but 

otherwise varied with respect to condition; average bias of MDIFF is also small  

(mean = -0.001; median = -0.005), indicating that the magnitude of the discrepancy 

between estimated and generating values is small, with the largest values occurring under 

the smallest sample size. Recovery of item difficulty is shown to be most dependent on 

sample size, though the degree of discrepancy is small. Median RMSE and average bias 

values for the MDIFF parameters are approximately 2 times as large as those seen under 

true model estimation. 

RMSE values for MDISC are slightly larger (mean = 0.332; median = 0.221) and 

the average bias values are more positive (mean = 0.001; median = 0.003) than those seen 

for MDIFF, suggesting more discrepancies of greater magnitude. The largest RMSE 

values are seen for the smallest sample size, the shortest test length, when items are 

highly discriminating, and factors are highly correlated; average bias shows similar 

behavior, though values increase as inter-factor correlation becomes stronger. Recovery 

of discrimination parameters is seen to also be tied to sample size, though also subject to 

more complex consideration. Median RMSE and average bias values for the MDISC 

parameters are also approximately 2 times as large as those seen under true model 

estimation. 

Inter-factor correlations across two- and three-dimensional models demonstrate 

small-to-moderate RMSE values, with means ranging 0.053 to 0.280 and medians of 
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0.048 to 0.180, where the larger values are associated with two-dimensional models; 

average bias demonstrates similar ranges and behavior. The largest values of RMSE and 

relative bias are associated with three-dimensional models demonstrating simple-

structure and high inter-factor correlation, with the fewest, highly-discriminating items; 

the largest average bias values suggest that estimated inter-factor correlations are more 

than double the generating values. In comparison to the true model, median RMSE values 

for the inter-factor correlations under misspecified models are 10 times larger and median 

average bias is up to 3 times larger. 

Finally, recovery of examinee ability, θ, is examined. RMSE values are small for 

ability across two- and three-dimensional models (mean = 0.059 to 0.072;  

median = 0.065 to 0.070), however, average bias is large (mean = 0.961 to 1.695;  

median = 0.900 to 0.965), indicating that the majority of the values were recovered 

within 1 to 2 logits on the θ scale. These statistics were likely influenced by a number of 

extreme values which were poorly recovered, demonstrated by the wide range of average 

bias values (-19.045 to 23.364). While bias of approximately 20 is quite large, it is 

important to note that Mplus does not employ procedures to correct for extreme θ values, 

unlike IRT software such as Winsteps (Linacre, 2011). While large RMSE values are 

typically associated with small sample sizes, simple-structure three-dimensional models 

with highly discriminating and difficulty items, extreme average bias values follow no 

discernible pattern. Interestingly, the median RMSE and average bias for the latent 

factors is quite similar to the values seen under true model estimation. 
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Table 5.2 
Descriptive Statistics for RMSE and Average Bias for Moderately Misspecified Models 

  Parameter Min 25th% Mean Median 75th% Max SD 
RMSE MDIFF 0.071 0.180 0.431 0.291 0.443 19.855 1.154 

MDISC 0.100 0.237 1.506 0.407 2.249 18.498 2.191 
ρ12 0.135 0.344 0.616 0.676 0.907 0.975 0.300 
ρ13 0.141 0.209 0.396 0.405 0.554 0.701 0.170 
ρ23 0.035 0.061 0.079 0.074 0.093 0.158 0.024 
θ1 0.029 0.038 0.060 0.064 0.072 0.132 0.022 
θ2 0.030 0.045 0.067 0.067 0.080 0.168 0.026 
θ3 0.031 0.038 0.061 0.063 0.073 0.126 0.021 

Average MDIFF -2.551 -0.227 -0.126 0.040 0.097 0.261 0.383 
Bias MDISC -0.840 -0.188 -0.069 -0.091 0.042 0.621 0.186 

ρ12 0.147 0.405 1.218 0.722 1.640 6.456 1.080 
ρ13 0.177 0.257 1.001 0.702 1.875 4.632 0.808 
ρ23 -0.830 0.508 0.885 0.913 1.351 2.520 0.647 
θ1 -56.898 0.667 0.962 0.945 1.044 45.734 7.376 
θ2 -42.839 0.826 2.359 0.972 1.040 99.021 8.679 
θ3 -33.656 0.721 1.133 0.988 1.263 23.003 5.187 
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Table 5.3 
Descriptive Statistics for RMSE and Average Bias for Severely Misspecified Models 

  Parameter Min 25th% Mean Median 75th% Max SD 
RMSE MDIFF 0.051 0.195 0.644 0.319 0.585 31.832 2.315 

MDISC 0.144 0.281 2.457 0.497 4.135 26.081 3.492 
ρ12 0.189 0.438 0.691 0.750 0.956 0.991 0.285 
ρ13 0.172 0.228 0.444 0.453 0.629 0.740 0.190 
ρ23 0.047 0.075 0.122 0.099 0.172 0.265 0.058 
θ1 0.027 0.037 0.058 0.063 0.071 0.124 0.020 
θ2 0.030 0.040 0.063 0.066 0.075 0.172 0.024 
θ3 0.029 0.039 0.061 0.064 0.073 0.126 0.022 

Average MDIFF -4.725 -0.627 -0.328 0.021 0.094 0.826 0.723 
Bias MDISC -1.120 -0.205 -0.033 -0.069 0.175 0.577 0.254 

ρ12 0.196 0.466 1.152 0.938 1.569 3.691 0.877 
ρ13 0.199 0.284 0.969 0.715 1.419 2.752 0.761 
ρ23 -1.541 0.902 1.095 1.119 1.323 2.803 0.543 
θ1 -49.678 0.631 1.300 0.940 1.098 56.566 8.595 
θ2 -45.735 0.797 1.865 0.966 1.094 37.962 6.192 

  θ3 -22.727 0.797 1.508 0.979 1.091 32.819 6.142 
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Overall, variability of parameter recovery as described by RMSE appears to be 

small and impacted mainly by sample size, suggesting that parameters are less precise at 

the smallest sample size. The magnitude of the discrepancies, indicated by average bias, 

is generally small for item parameters but suggests the presence of overestimated values, 

in the case of inter-factor correlations, and extreme values, for ability estimates, 

frequently associated with three-dimensional models following simple-structure with 

highly-discriminating items. These values are typically increased over those seen under 

true model estimation, indicating the effect of misspecification. While mean and median 

values of the latent factors are recovered similar to values under true model estimation, 

though true models demonstrated a narrower range of values, the inter-factor correlations 

appear to be the least well-recovered parameters suggesting that these parameters are 

more susceptible to model misspecification. 

5.2.Analysis of Model-Fit Indices under Model Misspecification 

5.2.1 Distributional Characteristics of Model Fit Indices 

Moderately and severely misspecified models were estimated and the values of 

the χ2/df ratio, RMSEA, and GDDM model-fit indices submitted to separate ANOVAs 

including test design and model conditions as factors. Descriptive statistics for these 

indices under model misspecification are presented graphically in Figure 5.1 to Figure 5.3 

and are summarized according to the simulation conditions for which the specific index 

demonstrates the greatest sensitivity resulting from the factorial ANOVA. This means 

that the ranges presented in the tables and figures represent ranges of the fit index values 

across the simulation conditions which are not presented. Table 5.4 presents the 
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percentages of variance associated with main effects and interactions thereof for which 

the model-fit indices demonstrated sensitivity (η
2 ≥ 1.000).  

Table 5.4 
Selected Percentages of Variance for Model-Fit Indices Under Model Misspecification, 
by Simulation Conditions 

Source χ
2/df RMSEA GDDM 

Model Misspecification (0) 0.105 0.212 1.607 
Number of Dimensions (1) 5.828 10.918 17.275 

Test Length (2) 3.600 6.712 5.289 
Sample Size (3) 23.943 1.648 2.942 

Item Multidimensionality (4) 0.800 1.257 0.137 
Inter-Factor Correlation (5) 22.070 52.471 24.827 

Item Type (6) 6.237 9.851 18.634 
0*4 0.003 0.011 1.314 
0*5 0.045 0.038 1.072 
1*3 2.385 0.011 0.012 
1*4 1.663 2.606 0.075 
1*5 2.232 1.268 2.534 
1*6 0.822 0.538 3.321 
2*3 1.130 0.081 0.497 
2*5 1.583 1.155 0.035 
2*6 0.990 1.052 1.089 
3*5 9.537 0.090 0.119 
3*6 2.827 0.158 0.191 
5*6 2.501 1.422 2.502 

3*5*6 1.089 0.107 0.056 
Residuals 1.090 2.198 7.819 

Note: Highlighted cells indicate conditions presented in the box-and-whiskers plots. 

5.2.1.1 Results for χ2/df 

It is first notable that the majority (almost 99%) of the variance in the χ2/df ratio is 

attributable to main effects and interactions of the simulation conditions. Of the 

conditions demonstrating sensitivity under model misspecification, the greatest among 

these are the main effects of sample size (η
2 = 23.943%) and inter-factor correlation  

(η2 = 22.070%) and the first-order interaction of these two factors (η2 = 9.537%). Item 

type is attributable for the next largest percentage of variance (η2 = 6.237%) while the 
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χ
2/df ratio is shown to be insensitive to degree of model misspecification (η2 = 0.105%) 

or multidimensionality (η2 = 0.800%), representing model estimation by different types 

of Q-matrices. These conditions differ from the conditions demonstrating sensitivity 

under true model estimation, which included test length and the interaction of sample size 

and item type. The effect of these sensitivities is presented as a 90%-winsorized box-and-

whiskers plot in Figure 5.1 according to sample size, inter-factor correlation, and item 

type. Values of the χ2/df approximate 1.0 under small sample sizes with high inter-factor 

correlations, suggesting that the misspecified models fit the data, and increase with 

sample size and item discrimination while decreasing with inter-factor correlation and 

item difficulty; the effect of item type becomes more pronounced as inter-factor 

correlation decreases. Values of the χ
2/df are largest, indicating the model misfit, for large 

sample sizes, low inter-factor correlations, and items of high-discrimination / low-

difficulty – resulting in an inter-quartile range (IQR) of χ2/df = [8.606, 16.591] and a 

maximum of χ2/df = 37.884. Descriptive statistics are presented in the Appendix 

according to the same conditions as the box-and-whiskers plot. 
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Figure 5.1. Box-and-Whiskers Plots for χ2/df under Model Misspecification. 

Presented according to conditions associated with sensitivity: item type (HH = high discrimination / high 
difficulty; HM = high discrimination / moderate difficulty; HL = high discrimination / low difficulty;  
MH = moderate discrimination / high difficulty; MM = moderate discrimination / moderate difficulty;  
ML = moderate discrimination / low difficulty), sample size (rows), and inter-factor correlation (columns; 
H = correlations of 0.75; M = correlations of 0.50; L = correlations of 0.25). 

5.2.1.2 Results for RMSEA 

Based on the model-fit χ2, the RMSEA demonstrates sensitivities similar to the 

χ
2/df ratio – almost 98% of the variance in the RMSEA is attributable to main effects and 

interactions of the simulation conditions. Similar to the χ2/df, the RMSEA demonstrates 

sensitivity to inter-factor correlation (η2 = 52.471%) and item type (η2 = 9.851%); unlike 

the χ2/df, the number of dimensions (η2 = 10.918%) is included in the top three 

simulation conditions for sensitivity as resulting from the factorial ANOVA. This is quite 

different from the conditions demonstrating sensitivity under true model estimation (i.e., 

test length, sample size, and multidimensionality). The 90%-winsorized box-and-

whiskers plot for the RMSEA is presented in Figure 5.2 according to inter-factor 

correlation, item type, and number of dimensions and the corresponding descriptive 

statistics are included in the Appendix. 
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Similar to the χ2/df, model-fit index, RMSEA values are seen to decrease with 

inter-factor correlation, increase with item discrimination, and decrease with item 

difficulty when misspecified models are estimated. Additionally, RMSEA values 

decrease with the number of dimensions or latent factors. The lowest RMSEA values 

resulting from misspecified models are found when highly-correlated 3-dimensional 

models with moderately-discriminating / high-difficulty items are estimated  

(IQR = [0.015, 0.023], maximum RMSEA = 0.062) while the largest RMSEA values 

result from weakly-correlated 2-dimensional models comprised of highly-discriminating / 

low-difficulty items (IQR = [0.100, 0.138], maximum RMSEA = 0.203). 

 

Figure 5.2. Box-and-Whiskers Plots for RMSEA under Model Misspecification. 

Presented according to conditions associated with sensitivity: item type, number of latent factors(rows), 
and inter-factor correlation (columns). 

5.2.1.3 Results for GDDM 

Lastly, when estimated models are misspecified the GDDM demonstrates less 

sensitivity to simulation conditions than the other model-fit indices; 92.181% of variance 

is attributable to the simulation conditions. The GDDM demonstrates greatest sensitivity 
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to inter-factor correlation (η2 = 24.827%), then item type (η2 = 18.634%), and number of 

dimensions  

(η2 = 17.275%). These simulation conditions are included as factors in the presentation of 

the descriptive statistics (Appendix) and the 90%-winsorized box-and-whiskers plot 

(Figure 5.3). The effect of sensitivity to item type is very similar to that seen under true 

model estimation. The best-fitting misspecified models (3 highly-correlated dimensions 

estimated for highly-discriminating / high-difficulty items) demonstrate GDDM values 

with IQR = [0.004, 0.005] and the maximum value is GDDM = 0.007 while the worst-

fitting models (2 weakly-correlated dimensions estimated for moderately-discriminating / 

low-difficulty items) demonstrate GDDM values with IQR = [0.012, 0.170] with a 

maximum value of GDDM = 0.027. 

 

Figure 5.3. Box-and-Whiskers Plots for GDDM under Model Misspecification. 

Presented according to conditions associated with sensitivity: item type, number of dimension (rows), and 
inter-factor correlation (columns). 



 

 113 
 

5.2.2 Power of Model-fit Indices 

All of the models estimated in the moderate and severe misspecification 

conditions were, obviously, misspecified to a degree via alternate-factoring or under-

factoring of specific elements of the estimating Q-matrix. As such, power can be 

calculated as the average rate of model rejection, aggregated over simulation conditions 

and across replications. Specifically, values of the χ2/df ratio, RMSEA, and GDDM 

model-fit indices are compared to suggested or empirical cut points and subsequently 

indicating model fit or misfit.   

The empirically-determined cut points were determined separately for each cell of 

the simulation design as the 95th percentile values for all model-fit indices, thereby fixing 

the nominal Type-I error rate to approximately 0.05. This is an approximate rate because 

1000 replications of the true models still results in some small imprecision at determining 

an exact cut-off point to achieve the exact nominal rate even though the preliminary work 

showed that the approximation is reasonably close (see the Appendix).  

Even though the χ2/df ratio, RMSEA, and GDDM demonstrate wide variation in 

values resulting from the various simulation conditions under moderate and severe model 

misspecification, the statistics generally demonstrate moderate to high power in correctly 

rejecting misspecified models. Specific sensitivities for the power of each of the model-

fit indices to the various simulation conditions are presented in Table 5.5  as the results of 

yet another factorial ANOVA. 

  



 

 114 
 

Table 5.5 
Selected Percentages of Variance for Power of Model-Fit Statistics 

Source χ
2/df RMSEA GDDM 

Model Misspecification (0) 0.067 0.072 0.104 
Number of Dimensions (1) 3.441 3.341 3.288 

Test Length (2) 6.007* 6.168 4.898 
Sample Size (3) 10.458 10.234 9.478 

Item Multidimensionality (4) 0.126 0.119 0.043 
Inter-Factor Correlation (5) 17.769 17.195 17.969 

Item Type (6) 2.324 2.268 4.680 
1*3 2.547 2.531 2.157 
1*5 3.848 3.781 4.467 
2*3 4.312 4.589 3.094 
3*6 1.456 1.484 2.922 
5*6 2.456 2.385 5.263 
3*5 14.294 14.074 13.229 
2*5 6.488 6.829 5.504 

2*3*5 4.111 4.572 2.932 
3*5*6 1.317 1.350 2.880 
1*3*5 2.562 2.605 2.657 

Residuals 3.435 3.555 2.679 
* Cells highlighted in dark grey indicate top-three sources of variance; cells highlighted in light grey 
indicate top main effects suggested by top-three interactions. 

5.2.2.1 Power for χ2/df 

Figure 5.4 presents the power values and ranges for the χ2/df model-fit statistic, 

summarized according to the simulation conditions that for which power of the χ2/df was 

shown to be mostly sensitive: sample size, test length, and inter-factor correlation. Across 

conditions, the χ2/df demonstrates ranges of power that approach 1.0, however, when 

sample size is small, the test is comprised of few items, and when inter-factor correlations 

are strong the summarized simulation conditions result in ranges of power less than 1.0. 

That is to say, the ability of the χ2/df ratio to correctly reject misspecified models 

improves as sample size and test length increase, regardless of other conditions such as 

those included in the current study. Specifically, for short tests with a small sample size 

and highly-correlated latent factors, the power of the χ2/df demonstrates an  
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IQR = [0.271, 0.714] with a median of 0.432. When the empirically-derived cut points 

are applied to misspecified models with large sample sizes, many items, and low inter-

factor correlations, however, all of the models are correctly rejected.  

 
Figure 5.4. Box-and-Whiskers Plots for Power of χ2/df ratio. 

Presented according to conditions associated with sensitivity: test length, inter-factor correlation (rows), 
and sample size (columns). 

5.2.2.2 Power for RMSEA 

The RMSEA demonstrates a pattern similar to that of the χ2/df ratio with power 

that approaches 1.0 as sample size and test length increase and when inter-factor 

correlation is weak (Figure 5.5). Again, the lowest and widest proportions of correctly 

rejected misspecified models occurred for those models comprised of 12 items, 250 

examinees, and highly-correlated latent factors (IQR = 0.285 to 0.721; median = 0.454).  
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Figure 5.5. Box-and-Whiskers Plots for Power of the RMSEA. 

Presented according to conditions associated with sensitivity: test length, inter-factor correlation (rows), 
and sample size (columns). 

5.2.2.3 Power for GDDM 

Box-and-whisker plots illustrating power for the GDDM to correctly reject 

misspecified models is presented in Figure 5.6 and, like the other model-fit indices, 

shows moderate-to-high power across simulation conditions, including inter-factor 

correlation, sample size, and test length. Misspecified models are most often correctly 

rejected when weakly-correlated factors are estimated for long tests and large sample 

sizes; IQR = [1.000, 1.000], median = 1.000. Conversely, power is worst for small 

sample sizes when models with highly-correlated latent factors are estimated from short 

tests; IQR = [0.384, 0.797], median = 0.620. 
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Figure 5.6. Box-and-Whiskers Plots for Power of the GDDM. 

Presented according to conditions associated with sensitivity: test length, inter-factor correlation (rows), 
and sample size (columns). 

5.2.3 Summary for Model-Fit Indices 

Overall, the model-fit indices are shown to demonstrate large values, indicating 

misfit of the misspecified models, when items are highly discriminating, tests are short in 

length, and sample sizes are small. Following from this, the highest power rates for 

correctly rejecting misspecified models very clearly correspond to large sample sizes, 

long test lengths, and weakly-correlated latent factors. Conversely, the model-fit indices 

perform poorly in rejecting the misspecified models when sample sizes are small, tests 

are short, and the dimensions are highly-correlated. The conditions under which models 

were seen to demonstrate greatest estimation difficulties (severely misspecified 3-

dimensional models with weakly- and moderately-correlated factors following simple, 

comprised of high-discrimination items) do correspond with conditions of poor fit but 

this does not appear to be a determining factor in the power associated with the model-fit 

indices. 



 

 118 
 

As expected, the χ2/df and RMSEA demonstrate similar patterns of sensitivity to 

simulation conditions and power when rejecting misspecified models; both fit indices 

correctly reject misspecified models at rates approaching 1.0. Further, these indices best 

detect misfit when latent factors are distinct (i.e., low inter-factor correlation) and items 

target the distribution of the latent factors (i.e., low difficulty, interpreted as minimal 

discrepancy from the examinee latent variable distribution). The seminal research by Hu 

and Bentler (1999) showed that power of the RMSEA increased with both degree of 

misspecification and sample size; at RMSEA = 0.045, the cut point closest to the mean 

and median of the empirical cut points in this dissertation, Hu and Bentler reported power 

that approached 1.0 for the RMSEA. Jackson (2007) reported the power of the ML-χ2 to 

increase with sample size, test length, and magnitude of factor loadings. For the smallest 

misspecification and n = 200 power was shown to range 0.13 to 0.26 but approaches 1.00 

when sample size was increased to n = 800. Factor loadings employed in the Jackson 

(2007) study ranged 0.60 to 0.80, which yield MDISC values lower than those simulated 

in the current study. The results of this dissertation follow those presented in previous 

research with respect to the χ
2/df and RMSEA model-fit indices. 

Though it is not based off of the model χ
2, the GDDM demonstrates magnitudes 

and patterns of power rates similar to the other model-fit indices. For sample sizes of 

1000, the GDDM almost perfectly rejects all of the misspecified models; power rates are 

lower under smaller sample sizes though still moderate-to-high. The study by Levy and 

Svetina (2010) found that the GDDM correctly identified model misspecification when a 

more restrictive model was estimated for 1000 examinee responses to a 36-item test with 

uncorrelated latent factors. When a 2-factor simple structure model was estimated, 



 

 119 
 

identification rates for the GDDM approached 1.00 for data generated according to 3 

uncorrelated latent factors following complex-structure and decreased to 0.08 for data 

generated according to 2 latent factors correlated at ρ = 0.5 following complex-structure. 

These results generally agree with those found in the current study, as power is seen to be 

strongly influenced by the degree of inter-factor correlation. Though not one of the top 

sources of sensitivity, it is important to note that power under the GDDM is influenced by 

item type – an effect which strongly appeared under true model estimation. 

When estimating misspecified models, it is important to highlight that neither the 

χ
2/df, RMSEA, or the GDDM demonstrated sensitivity the degree of misspecification 

(moderate versus severe) and only the GDDM demonstrated sensitivity to 

multidimensionality, which reflects different types of Q-matrices. Additionally, all of the 

model-fit indices demonstrated sensitivity to item type (to some degree). 

5.3.Analysis of Item-Fit Indices 

5.3.1 Distributional Characteristics of Item-Fit Indices under Model Misspecification 

In addition to the typical simulation conditions, type of misspecification is added 

to the following analyses of the item-fit indices indicating that items were (1) correctly 

estimated, (2) alternate-factor misspecified, or (3) underfactored, as described in Chapter 

3. Prior to the analysis the item-fit indices, the effect of alternate-factoring on the 

estimated MDISC values is explored to ensure that this misspecification does not simply 

result in the deletion of factor loading and the addition of a “nuisance” parameter – a 

relatively insignificant factor loading or MDISC value.  

When items were misspecified according to alternate-factoring, the effect of 

deleting the primary factor while adding a nuisance factor can be assessed by examining 
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the RMSE and bias of the resulting MDISC estimates on the misspecified factor. It can be 

expected that a nuisance factor would be indicated by low estimated MDISC values (i.e., 

weak factor loadings) that differ greatly from the original MDISC values and likely 

approach zero. Therefore, RMSE values would be expected to be large and bias values 

would be negative, indicating smaller estimates of MDISC compared to the generating 

values. Further, key descriptive statistics for alternate-factored items can be calculated to 

ascertain whether these parameters suggest the presence of a nuisance factor. Table 5.6 

contrasts descriptive statistics for MDISC values resulting from correct and alternate-

factored items as well as presenting the ratio of those values and the RMSE and bias, 

aggregated over all other conditions. These results are also presented graphically in 

Figure 5.7. 

As can be seen from these results, the MDISC values associated with items that 

have been misspecified due to alternate-factoring are systematically lower than values for 

the correctly specified items; alternate-factored values for MDISC are between 0.637 and 

1.424 while the MIDSC values for correctly specified items are between 0.813 and 2.183. 

This is further indicated by the generally negative bias values associated with the 

alternate-factored items. The RMSE, however, is notably smaller for these misspecified 

items than for the correctly specified items. From these results, it appears that items 

misspecified according to alternate-factoring yield lower MDISC parameter estimates 

which are not small enough to be considered nuisance parameters – the MDISC values 

are substantial in comparison to the correctly estimated parameter values. 
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Table 5.6 
Descriptive Statistics for MDISC Values when Items were Correctly Specified or 
Alternate-Factored  

Statistic Misspecification Mean Median SD Min Max 
Mean Correct 1.260 1.209 0.286 0.813 2.183 

 Alternate 0.978 0.937 0.217 0.637 1.424 
Ratio Alternate /  

Correct 
0.780 0.790 0.079 0.530 0.927 

RMSE Correct 1.314 1.116 1.032 0.162 6.608 
 Alternate 0.312 0.279 0.143 0.096 0.993 

Average Correct -0.149 -0.136 0.102 -0.896 0.004 
Bias Alternate -0.307 -0.260 0.242 -2.902 -0.076 

 

 

Figure 5.7. Box-and-Whiskers Plots for MDISC Values when Items were Correctly 
Specified or Alternate-Factored. 
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Misspecification of items according to alternate-factoring or underfactoring does 

not occur across all levels of all the other simulation conditions, resulting in an 

incomplete factorial design (Table 5.7). Such a design compromises the use of ANOVA 

in calculating sensitivity of the item-fit indices as the sum-of-squares are no longer 

orthogonal. A full-factorial design for analyzing item-fit values is achieved through the 

creation of a compound factor comprised of model misspecification, estimated item 

multidimensionality, and type of item misspecification. This compound factor is included 

as a simulation design condition in subsequent analysis of the item-fit statistics. 

Table 5.7 
Types of Item Misspecification Present by Model Misspecification and Item 
Multidimensionality 

Type of Misspecification 
Model 

Misspecification 
Estimated Item 

Multidim. Correct 
Alternate-
Factoring 

Under- 
factoring 

Moderate Between x x 
Within x 

Severe Between x x x 
Within x 

 

Descriptive statistics for the S-χ2, Modification Index, and Wald Test item-fit 

indices under model misspecification are available in the Appendix and presented 

graphically in Figure 5.8 to Figure 5.10 according to main effects and interactions 

demonstrating sensitivity in the item-fit indices. For each main effect and interaction 

demonstrating sensitivity (η2 ≥ 1.000), Table 5.8 presents the percentages of variance 

associated with simulation conditions and their interactions resulting from the factorial 

ANOVAs conducted for each item-fit index. 
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Table 5.8 
Selected Percentages of Variance for Item-Fit Statistics by Simulation Condition Under Model Misspecification 

   Modification Index  Wald Test 
Source S-χ2 1 2 3 1 2 3 

Number of Dimensions (1) 0.245* 3.035 4.353 1.233 5.342 
Test Length (2) 0.100 0.079 0.140 0.126 1.244 1.348 2.106 
Sample Size (3) 0.415 4.332 2.937 3.831 18.893 21.407 24.159 

Inter-factor Correlation (5) 0.261 3.536 2.405 3.100 1.015 0.362 2.813 
Item Type (6) 0.157 0.823 0.379 1.900 10.091 13.132 11.747 

Misspecification Type (7) 2.917 1.104 0.923 1.512 40.534 36.090 32.334 
1*2 0.031 0.037 0.034 0.001 0.177 
1*3 0.011 1.492 2.134 0.118 0.564 
1*5 0.102 1.199 1.695 0.014 0.120 
1*7 0.730 2.446 2.154 0.989 0.023 
3*5 0.015 1.599 1.043 1.307 0.099 0.031 0.261 
3*6 0.046 0.418 0.192 1.014 0.974 1.266 1.137 
3*7 0.198 0.554 0.435 0.753 4.010 3.146 3.111 
5*7 1.349 0.434 0.366 0.604 0.703 0.563 1.620 
6*7 0.834 0.108 0.097 0.529 2.574 2.988 3.248 

1*2*7 0.213 1.327 0.211 0.040 0.015 
1*3*7 0.226 1.243 0.997 0.081 0.010 
1*6*7 1.024 0.284 0.154 0.328 0.012 

Residuals 78.047 68.911 74.432 82.054 15.391 11.840 15.442 
* Cells highlighted in dark grey indicate top-three sources of variance; cells highlighted in light grey indicate top main effects suggested by top-three 
interactions. 
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5.3.1.1 Distributional Characteristics of the S-χ2 

The S-χ2 demonstrates sensitivity to simulation conditions though the majority of 

variance in this item-fit statistic is due to unique item variability (η2 = 78.047%). 

Specifically, the S-χ2 shows sensitivity to type of misspecification (η
2 = 2.917%), the 

first-order interaction of inter-factor correlation and type of misspecification  

(η2 = 1.349%), and the second-order interaction of number of dimensions with item type 

and misspecification type (η2 = 1.024%). These sensitivities differ from those observed 

under true model estimation (i.e., test length, sample size, and inter-factor correlation). 

The effect of these sensitivities is presented in Figure 5.8 as a 90%-winsorized box-and-

whiskers plot according to the main effects suggested by the sensitivity analysis: number 

of dimensions, inter-factor correlation, and type of misspecification. The interaction of 

misspecification type with inter-factor correlation is apparent as values of the S-χ
2 

generally increase with inter-factor correlation (suggesting misfit) and type of 

misspecification (alternate-factoring and underfactoring) and decrease with item 

multidimensionality. Interestingly, values of the S-χ2 appear to decrease slightly across 

degree of model misspecification, indicated via the type of misspecification factor. Fit is 

worst (i.e., largest values) when 2-dimensional models were estimated as moderately 

misspecified and between-item multidimensional items were estimated as associated with 

an alternate factor: IQR = 18.680, 45.400]; median = 28.258. Alternately, the best fit 

occurs for between-item multidimensional items correctly estimated within weakly-

correlated, 2-dimensional model, moderately misspecified models:  

IQR = [10.580, 22.366]; median = 16.048. 
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Figure 5.8. Box-and-Whiskers Plots for the S-χ2 Under Model Misspecification. 

Presented according to conditions associated with sensitivity: inter-factor correlation, number of 
dimensions (rows), and type of misspecification (columns). Type of misspecification presented as degree of 
misspecification (Moderate, Severe), item multidimensionality (Between = 1, Within = 2), and item 
misspecification (Same = Correct, Switch = Alternate-factoring, Under = Underfactoring). 

5.3.1.2 Distributional Characteristics of the Modification Index 

The Modification Index (MI) indicates the approximate decrease in model-fit χ2 if 

the current parameter were freely estimated. For the purpose of identifying model 

misspecification, MI values indicate Q-matrix elements that would improve model fit if 

the item were associated with the latent factor. MI values are, therefore, separately 

estimated for each of the 2 or 3 latent factors (i.e., MI1, MI2, and MI3). Since MI3 can 

only be calculated for models containing 3 latent factors, number of dimensions is 

excluded from the factorial ANOVA when calculating sensitivity. Otherwise, the patterns 

of sensitivity are seen to be similar across Modification Indices; given the similarity of 

the patterns, subsequent discussion is limited to MI1 in an effort to the complexity of 

analysis and interpretation. Unique variation is seen to account for the majority of 

variance (η2 = 68.911%) followed by sample size (η2 = 4.332%), number of dimensions 
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(η2 = 3.035%), and inter-factor correlation (η2 = 3.536%). This pattern is the same as the 

pattern of sensitivity demonstrated under true model estimation. The distribution of the 

Modification Index 1 is presented in Figure 5.9 in a 90%-winsorized box-and-whiskers 

plot according to sample size, number of dimensions, and inter-factor correlation. Values 

of MI1 are seen to increase with sample size and decrease with number of dimensions 

and strength of inter-factor correlations. The largest values of MI1, indicating 

misspecification, are demonstrated when weakly-correlated 2-dimensional models are 

estimated with 1000 examinees: IQR = [12.033, 42.221]; median = 21.580. The smallest 

values of MI1 are demonstrated when highly-correlated 3-dimensional models are 

estimated with 250 examinees: IQR = [0.106, 1.369], median = 1.0861. 

 
Figure 5.9. Box-and-Whiskers Plots for Modification Index 1. 

Presented according to conditions associated with sensitivity: inter-factor correlation, sample size (rows), 
and number of dimensions (columns). 
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5.3.1.3 Distributional Characteristics of the Wald Test 

Like the Modification Indices, the Wald Test demonstrates similar patterns of 

sensitivity across latent factors, therefore, only Wald Test 1 will be discussed. Before 

interpreting the Wald Test values it is important to recall that this item-fit statistic is used 

to test significance of specific factor loadings; smaller values suggest misspecification 

indicating that the estimated factor loading, or Q-matrix entry, is non-significant. 

Keeping all this in mind, the Wald Test is seen to demonstrate sensitivities strikingly 

similar to the pattern and magnitude seen under true, correct model specification; a large 

portion of total variance in this fit index is attributable to the compound factor of 

misspecification type (η2 = 40.534%), which includes item multidimensionality – the 

largest source of variance in the Wald Test values under true model estimation; lesser 

percentages of variance are attributed to sample size (η2 = 18.893%) and item type  

(η2 = 10.091%). Depicted in Figure 5.10, values of Wald Test 1 appear to generally 

decrease with item discrimination, item difficulty, sample size, type of misspecification 

(alternate-factoring and underfactoring). Values of the Wald Test are smallest, suggesting 

misspecification, when high discrimination / high difficulty items are modeled as within-

item multidimensional and when they estimated as underfactored within severely 

misspecified models and small sample sizes: IQR = [-0.569, 1.896];  median = 0.835. 
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Figure 5.10. Box-and-Whiskers Plots for Wald Test 1. 

Presented according to conditions associated with sensitivity: item type, sample size (rows), and type of 
misspecification (columns). 

5.3.2 Power of Item-fit Indices 

In this dissertation, items were either correctly estimated or misspecified as being 

associated with an alternate factor or underfactoring via the deletion of a Q-matrix entry, 

within each of the model misspecification conditions. This allows for the calculation of 

power as the average rejection rate for misspecified items calculated by aggregating over 

item type and across replications. Rejection results from correct identification of an item 

as misfitting via the application of design-appropriate empirical cut points, which were 

calculated as the 95th percentile for each of the S-χ2, Modification Indices, and Wald 

Tests according to each cell in the simulation design. These proportions are then 

computed for each cell in the simulation design, aggregating over replications. The 

sensitivity of each item-fit index’s ability to correctly reject misspecified items is 

presented in Table 5.9 as the percentage of variance attributable to the simulation 
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conditions and interactions resulting from factorial ANOVAs conducted for each fit 

index. 
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Table 5.9 
Selected Percentages of Variance for Power of Item-Fit Statistics 

   Modification Index  Wald Test 
Source S-χ2 1 2 3 1 2 3 

Number of Dimensions (1) 16.218 
 

4.642 12.398 
  

13.567 
  

Test Length (2) 6.135 
 

1.360 0.006 2.862 
 

0.050 0.013 1.559 
Sample Size (3) 21.840 

 
20.293 16.152 15.325 

 
0.770 0.047 0.354 

Inter-factor Correlation (5) 1.711 
 

12.512 8.067 8.397 
 

19.237 25.335 12.921 
Item Type (6) 9.760 

 
4.458 3.033 3.850 

 
11.262 9.123 29.265 

Misspecification Type (7) 8.901 
 

3.144 12.727 15.231 
 

11.551 17.097 19.681 
1*2 0.861 

 
3.758 0.211 

  
2.221 

  
1*3 0.001 

 
1.813 2.907 

  
0.030 

  
1*5 2.175 

 
0.983 1.238 

  
0.697 

  
1*6 3.015 

 
0.378 1.097 

  
8.083 

  
1*7 5.383 

 
0.179 1.720 

  
1.134 

  
2*3 0.876 

 
1.607 0.151 0.004 

 
0.138 0.000 0.334 

2*7 1.952 
 

0.997 5.163 19.257 
 

0.976 0.119 0.293 
3*5 0.348 

 
0.892 0.305 1.652 

 
1.156 1.392 0.143 

3*7 4.840 
 

0.066 0.851 2.666 
 

1.379 0.399 1.186 
5*6 0.688 

 
0.092 0.098 0.251 

 
3.041 9.008 14.473 

5*7 0.743 
 

0.123 0.818 3.165 
 

3.339 16.592 0.655 
6*7 1.402 

 
0.079 0.165 0.779 

 
5.825 6.201 12.293 

1*2*6 0.109 
 

0.128 0.292 
  

2.711 
  

1*2*7 0.353 
 

11.613 11.619 
  

0.194 
  

1*3*7 1.829 
 

0.639 1.323 
  

0.141 
  

1*6*7 0.820 
 

0.171 0.434 
  

1.216 
  

2*6*7 0.657 
 

0.189 0.337 2.179 
 

1.336 0.313 0.776 
3*6*7 1.383 

 
0.064 0.318 0.445 

 
0.646 0.340 0.157 

5*6*7 0.144 
 

0.109 0.164 0.281 
 

1.783 5.890 1.889 
Residuals 1.866 

 
22.545 5.968 8.685 

 
1.042 2.050 0.727 

* Cells highlighted in dark grey indicate top-three sources of variance; cells highlighted in light grey indicate top main effects suggested by top-three 
interactions. 
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5.3.2.1 Power of S-χ2 

The largest percentage of variance in proportion of misfitting items correctly 

rejected by the S-χ2 can be attributed to sample size (η2 = 21.840%), next is the number 

of dimensions or latent factors (η2 = 16.218%), and lastly item type (η2 = 9.760%). 

Power of the S-χ2 item-fit index to detect misspecified items is presented in Figure 5.11 

and summarized according to those simulation conditions for which it demonstrated 

sensitivity. Power is seen to increase with sample size and item discrimination but 

decrease with number of dimensions and item difficulty. Power is highest for  

2-dimensional models with highly-discriminating / low-difficulty items estimated on 

large sample sizes (n = 1000), IQR = [0.576, 0.890] and median = 0.714, while power is 

lowest for 3-dimensional models and sample sizes of n = 250 where the S-χ2 is shown to 

rarely detect item misspecification, with power rates approaching zero. 
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Figure 5.11. Box-and-Whiskers Plots for Power of the S-χ2. 

Presented according to conditions associated with sensitivity: item type, number of dimensions (rows), and 
sample size (columns). 

5.3.2.2 Power of the Modification Index 

Power of the Modification Index is shown to be sensitive to a variety of 

simulations conditions and the interactions thereof as well as differing depending on the 

latent factor being considered. It is also important to consider that the Modification 

Indices are estimated as a result of specific Q-matrix properties. Modification Index 

values are estimated for null (“0”) entries in the estimated Q-matrix; MI1, therefore, 

directly results from actual null Q-matrix entries as well as alternate- and underfactoring 

of the specific Q-matrix element; MI2 is similar to MI1 except under 3-dimensional 

models where it only directly results from null entries and underfactoring of the Q-

matrix; MI3 results from all null Q-matrix entries but only present when 3-dimensional 

models are estimated.  
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MI1 (Figure 5.12) is shown to be sensitive to sample size (η2 = 20.293%), inter-

factor correlation (η2 = 12.512%), and the second-order interaction of number of 

dimensions, test length, and type of misspecification (η2 = 11.613%), plus a variety of 

other conditions to a lesser degree. MI2 (Figure 5.13) demonstrates sensitivity to sample 

size (η2 = 16.152%), type of misspecification (η2 = 12.727%), and number of dimensions 

(η2 = 12.398%). Lastly, MI3 (Figure 5.14) demonstrates sensitivity to the interaction of 

test length and type of misspecification (η
2 = 19.257%), sample size (η2 = 15.325%), and 

the main effect of misspecification type (η2 = 15.231%). Though the three Modification 

Indices demonstrate different sensitivities and power rates there are overall patterns that 

can be observed. Power is seen to increase with sample size, degree of model 

misspecification, and item misspecification – larger values for underfactoring than 

alternate-factoring. MI1 demonstrates the highest consistent power for weakly-correlated 

2-dimensional models estimated with large sample sizes: IQR = [0.724, 0.978] and 

median = 0.869.Alternately, power decreases with number of dimensions estimated, such 

that alternate-factoring under 3-dimensional models with small sample sizes results in 

power rates approaching zero. 
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Figure 5.12. Box-and-Whiskers Plots for Power of the Modification Index 1. 

Presented according to conditions associated with sensitivity: sample size, number of dimensions (rows), 
and inter-factor correlation (columns). 
 

 
Figure 5.13. Box-and-Whiskers Plots for Power of the Modification Index 2. 

Presented according to conditions associated with sensitivity: sample size, number of dimensions (rows), 
and type of misspecification (columns). 
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Figure 5.14. Box-and-Whiskers Plots for Power of the Modification Index 3. 

Presented according to conditions associated with sensitivity: sample size, test length (rows), and type of 
misspecification (columns). 

5.3.2.3 Power of the Wald Test 

When using the empirically-derived cut points, the power rates for the Wald Test 

are generally shown to be low across conditions for all three indices. The patterns of 

sensitivity across Wald Test 1, Wald Test 2, and Wald Test 3 demonstrate notable 

similarities, with the simulation conditions accounting for approximately 90% of the 

variance in each statistic. For Wald Test 1, the largest percentages of variance is 

attributed to inter-factor correlation (η2 = 19.237%), the number of dimensions  

(η2 = 13.567%), and the type of misspecification (η
2 = 11.551%). Wald Test 2 also 

demonstrates great sensitivity to inter-factor correlation (η2 = 25.335%), the main effect 

of type of misspecification (η2 = 17.097%) and the interaction of inter-factor correlation 

with type of misspecification (η2 = 16.592%), as well as demonstrating sensitivity to item 

type (η2 = 9.123%). There is no effect of number of dimensions for Wald Test 2 since 
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misspecified items are only associated with latent factor 1 or 3. Finally, Wald Test 3 is 

sensitive to inter-factor correlation (η2 = 12.921%, via interaction with item type), type of 

misspecification (η2 = 19.681%), and item type (η2 = 29.265%).  

Across the Wald Test item-fit indices, power rates are seen to increase with the 

number of dimensions and the severity of model misspecification while decreasing with 

inter-factor correlation, item discrimination, and item difficulty. Power rates are highest 

for Wald Test 1 when items are severely misspecified according alternate-factoring 

within a weakly-correlated 3-dimensional model: IQR = [0.448, 0.784], median = 0.593. 

The lowest power rates are observed when high-difficulty / high-discrimination items are 

underfactored within severely-misspecified highly-correlated 2-dimensional models. 

 
Figure 5.15. Box-and-Whiskers Plots for Power of the Wald Test 1. 

Presented according to conditions associated with sensitivity: number of dimensions, inter-factor 
correlation (rows), and type of misspecification (columns). 
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 Figure 5.16. Box-and-Whiskers Plots for Power of the Wald Test 2. 

Presented according to conditions associated with sensitivity: item type, inter-factor correlation (rows), 
and type of misspecification (columns). 
 

 
Figure 5.17. Box-and-Whiskers Plots for Power of the Wald Test 3. 

Presented according to conditions associated with sensitivity: item type, inter-factor correlation (rows), 
and type of misspecification (columns). 
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5.3.3 Summary for Item-Fit Indices 

Overall, the item-fit indices often demonstrated the ability to correctly reject 

misspecified items when there were 2 weakly correlated latent factors, large sample sizes, 

and items of low difficulty. The item-fit indices demonstrated poor ability to detect 

misspecified items under strongly-correlated 3-dimensional models which were estimated 

on small sample sizes. The S-χ
2, Modification Indices, and Wald Test statistics each 

demonstrated variable power rates with respect to simulation conditions, described earlier 

and summarized below. Considering the estimation issues described at the beginning of 

this chapter, the following results often correspond with the conditions resulting in 

estimation difficulties, however, the two are not completely aligned, indicating that 

estimation issues do not entirely account for the observed effects. 

Power of the S-χ2 is seen to be highest 2-dimensional models estimated on large 

sample sizes with items of high discrimination / low difficulty. These rates range 

typically between 0.3 and 0.9 and are comparable to those of Li and Rupp (2011) who 

found power to be 0.4 and 0.8 for moderate and high inter-factor correlations when data 

generated according to a 2-dimensional 2PL-MIRT model was estimated according to a 

unidimensional model – that is, subject to underfactoring. Also, Zhang and Stone (2008) 

found the power to detect misspecification using the S-χ2 to range 0.7 to 0.93 for items 

estimated according to a 2PL-MIRT model and misspecified as violating the assumption 

of monotonicity. 

Similar to the S-χ2, Modification Indices show power rates that are highest under 

weakly-correlated 2-dimensional models and when test are short in length. Under these 

conditions, power rates vary between approximately 0.4 and 0.8, while the extreme 
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opposite conditions demonstrate power rates that approach zero. Previous research has 

shown model revision and recovery of the correct population model via Modification 

Indices to be moderately successful under large sample sizes when misspecification is 

moderate (Kaplan, 1990; MacCallum, 1986). These findings correspond with the modest 

power rates especially under large sample sizes found in this dissertation.  

Similar to the previous item-fit indices, the Wald Test statistics demonstrate the 

highest power rates when inter-factor correlation is low; unlike the previous item fit 

indices, however, power rates for the Wald Test increase with the number of latent 

factors. Additionally, power is seen to increase with severe alternate-factoring while 

decreasing with item discrimination and difficulty. Chou and Bentler (2002) found that 

the Wald Test correctly indicated misspecified parameters in 88 out of 100 instances 

when a saturated 5-dimensional CFA model was estimated and the Wald Test was 

examined to suggest parameter deletion in an attempt to recover the true population 

model. These results are aligned with the expectations for the Wald Test presented in this 

dissertation. 

Considering the results of presented for these three item-fit indices it is important 

to note that the S-χ2 and the Modification Indices demonstrated sensitivities to observable 

design characteristics such as sample size and number of dimensions – where power 

increases with the former and decreases with the latter. The Wald Test, however, is 

typically sensitive to those unobserved characteristics that would only be discovered 

upon model estimation. Lastly, we see that the Modification Indices are able to detect 

underfactoring at high rates and severe alternate-factoring results in increased power rates 
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for both the Modification Indices and the Wald Test; the S-χ2, however, was less sensitive 

to degree and type of misspecification than the other simulation conditions described. 

5.4.Synthesis of Model- and Item-Fit Performance Under Model Misspecification 

In the evaluation of model and item fit under conditions of potential 

misspecification, it is important to understand the sensitivity of the fit indices to the 

experimental or simulation conditions currently employed. Appropriate consideration of 

the effects of model and test characteristics on the selected model- and item-fit indices 

will allow modelers – practitioners and researchers, alike – to make appropriate decisions 

when considering model validity and revision. Adequate power to correctly detect model 

misspecification is generally demonstrated by the χ
2/df ratio, RMSEA, and GDDM 

model-fit indices, with certain exceptions such as when sample sizes are small and short 

tests are employed. Power to detect item misspecification by the S-χ2, Modification 

Index, and Wald Test item-fit indices, however, is quite variable demonstrating power 

rates that are often low. Since model- and item-fit indices are both typically presented in 

model estimation output – for example, Mplus version 6.11 (Muthén & Muthén,  

1998-2010) can output necessary information for the χ2/df ratio, RMSEA, Modification 

Index, and Wald Test– the power of the two types of indices are next considered in 

conjunction for the purpose of providing additional information and guidance regarding 

identification of item and model (i.e., Q-matrix) misspecification. The power of each 

item-fit index to correctly identify misspecified items was calculated for each model-fit 

index separately, according to whether the model-fit index correctly identified the 

misspecified model.  
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5.4.2 Misspecification Correctly Detected by Model Fit Indices 

Seen in Figure 5.18, correct model rejection according to the χ2/df results in 

modest increases in rejection of misspecified items by the S-χ2, though the power rates 

are still modest overall and poor for 3-dimensional models. After allowing for a modest 

increase, the pattern and magnitude of power to detect misspecified items using the S-χ
2 

when the models were identified as misspecified is remarkably similar to when model fit 

was not considered. For example, the IQR for power rates under 2-dimensional models 

estimated for 1000 examinees and highly-discriminating / low difficulty items was 

approximately 0.6 to 0.8 overall but increases to 0.6 to 1.0 when the χ2/df first identifies 

the model as misspecified. A similar effect is seen for the Modification Index (MI1 is 

presented for ease of interpretation); the patterns of power rates are similar to the overall 

pattern but the initial identification of the misspecified model results in increased power 

rates for the item-fit statistic overall. Power for the Modification Index is highest for  

2-dimensional models estimated as weakly-correlated with large samples sizes, with an 

IQR ranging approximately 0.7 to 1.0; after successful identification by χ2/df, the IQR 

increases to approximately 0.8 to 1.0, with a median of 1.0. The Wald Test, also limiting 

presentation to latent factor 1, appears to be least affected by initial identification of 

model misspecification as power rates are seen to differ little from the overall power 

rates. For weakly-correlated, severely misspecified, 3-dimensional models the IQR for 

underfactored items was approximately 0.4 to 0.8 (demonstrating the highest power 

overall) which increases to 0.3 to 0.85 subsequent to identification by the χ2/df model fit 

index. 
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Figure 5.19 shows the power rates for the S-χ
2, MI1, and Wald Test 1 subsequent 

to correct identification of model misspecification by the RMSEA The previously 

established similarities in performance between the χ2/df and RMSEA model fit indices 

again provide nearly identical results; generally, the magnitude of the power rates is 

increased but the overall pattern of power is maintained. 

Lastly, Figure 5.20 presents the power rates for the item-fit indices under correct 

identification of model misspecification by the GDDM model-fit index. As is apparent, 

these results are similar to those previously presented and require no further discussion. 
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Figure 5.18. Power of item fit indices when χ2/df ratio correctly indicates model misfit.  

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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Figure 5.19. Power of item fit indices when RMSEA correctly indicates model misfit. 

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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Figure 5.20. Power of item fit indices when GDDM correctly indicates model misfit. 

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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5.4.3 Misspecification Not Detected by Model Fit Indices 

When the χ2/df, RMSEA, or GDDM model fit indices unsuccessfully reject a 

misspecified model, Figure 5.21 through Figure 5.23 shows that the item-fit indices 

subsequently reject misspecified items at rates generally lower than when the model-fit 

indices successfully rejected misspecified models, though evidencing the same patterns. 

There are a few instances where distributions of power rates are missing from the figures, 

indicating that all models within that combination of simulation conditions were correctly 

rejected by the model-fit index. For example, all weak- and moderate-correlated models 

with sample sizes of 1000 were correctly identified as misspecified by χ2/df.  

There are also some instances where the performance of the item-fit statistics 

deviates from the description above. For items of moderate discrimination and low-to-

moderate difficulty estimated under 3-dimensional models, the inter-quartile ranges and 

median power rates for the S-χ2 increase when the misspecified model is unidentified by 

the χ2/df (approximate median for identified = 0.15; approximate median for  

unidentified = 0.25) and the RMSEA (identified = 0.15; unidentified = 0.25), but not for 

the GDDM. 
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Figure 5.21. Power of item fit indices when χ2/df ratio fails to indicate model misfit.  

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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Figure 5.22. Power of item fit indices when RMSEA fails to indicate model misfit.  

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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Figure 5.23. Power of item fit indices when GDDM fails to indicate model misfit, for 
between-item multidimensional items. 

S-χ2 (top) is presented according to item type, number of dimensions (rows), and sample size (columns). 
Modification Index 1 (middle) is presented according to sample size, number of dimensions (rows), and 
inter-factor correlation (columns).Wald Test 1 (bottom) is presented according to number of dimensions, 
inter-factor correlation (rows), and type of misspecification (columns).  
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5.5.Summary 

This section presented a unified approach to the evaluation of model 

misspecification, considering model- and item-fit results simultaneously. As these 

statistics are often presented or otherwise available together during model estimation, 

joint evaluation provides richer data with which to judge the Q-matrix specifying the 

measurement model or pattern of factor loadings. When the model-fit indices correctly 

rejected the models, the ability of the item-fit indices to reject or identify misspecified 

items generally increased. Power rates for the model-fit indices uniformly increased with 

larger samples, longer test lengths, and weaker inter-factor correlations. Alternately, 

failure to correctly reject misspecified models resulted in slightly decreased power rates 

compared to those demonstrated when model evaluation was not initially considered, 

with the exception of the S-χ2 under 3-dimensional models which demonstrated slight 

improvements. These results suggest that the information provided by the S-χ2, 

Modification Index, and Wald Test item-fit statistics is consistent, regardless of whether 

the model-fit statistic was able to detect misspecification. A further implication of this 

behavior is that item-fit indices can validly be used during model criticism and evaluation 

procedures, even when the overall model was judged to fit the data. 

All of the item-fit indices demonstrated power ranging from poor to strong, 

depending on the simulation conditions considered. Having initially identified a 

misspecified model as such, the S-χ
2 is able to detect misspecified items with a power of 

greater than 0.5 when sample sizes are large, the model is estimated as 2-dimensional, 

and items are highly-discriminating. The Modification Index is able to detect 

misspecified items with a power greater than 0.5 when sample sizes are large and latent 
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factors are weakly correlated or moderately correlated, though only for 2-dimensional 

models. The Wald Test, however, is only able to detect misspecified items with a power 

of 0.5 or greater when a weakly-correlated 3-dimensional is severely misspecified and the 

items have been subject to alternate-factoring. When the overall model has not been 

identified as misspecified, the utility of the S-χ
2 is similar to that described above, though 

power is slightly lessened overall; the utility of the Modification Index is limited to 2-

dimensional models, only; and Wald Test continues to demonstrate lower power rates. 

The poor performance of the Wald Test can be attributed to the fact that the estimated 

values are typically large and range widely; calculated as the ratio of the factor loading to 

the standard error of the estimate, it may be surmised that the Wald Test would be more 

informative in detecting misspecification for items with lower factor loadings or item 

discrimination values than those specified in this dissertation. 
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Chapter 6 

Real Data Analysis 

6.1.Introduction 

The final research question posed in this dissertation is in regards to the 

application of findings from the simulation studies to real data:  

How can results from the simulation studies inform model criticism and model 

revision for real data analysis contexts when Q-matrices are potentially 

misspecified?  

The Q-matrices employed in estimating these models are constructed according to (1) the 

results of exploratory factor analyses (EFA) and (2) the assignment of test items to levels 

of the revised Bloom’s Taxonomy for Educational Objectives (Anderson & Krathwohl, 

2001; Bloom et al., 1956). 

Two-parameter normal-ogive (2-PNO) multidimensional item response theory 

(MIRT) models are then estimated using item response data from a grade 6 mathematics 

achievement assessment administered in a large Midwestern state. These models are 

specified according to the aforementioned Q-matrices; test and sample characteristics 

resulting from each of the estimated models are then examined for correspondence to 

conditions employed in the simulation study portion of this dissertation. Design-

appropriate empirical cut points resulting from simulation conditions best approximating 

the real data analysis conditions are then applied to the model- and item-fit indices for the 

purpose of adjudicating fit. Further, lessons learned about the behavior and power of the 

fit indices under various simulated test design and model estimation conditions are 
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incorporated in evaluating overall model fit and suggesting Q-matrix revisions. A single 

iteration of model revision is presented for illustrative purposes. 

6.2.Methods 

The full data set represents the population of students in the state and is comprised 

of 12,861 students’ responses to 39 multiple-choice and constructed response items; for 

this analysis, a random sample of 1000 examinee responses to the 32 multiple-choice 

items only are included, thus focusing on dichotomously-scored responses and 

approximating a sample size and test length condition in the simulation study. 

Model estimation according to EFA-derived Q-matrices first required that the 

number of latent factors be determined. To account for potential sampling bias, the 

number of factors was determined using Horn’s Parallel Analysis (1956) method, 

implemented in R as psych::fa.parallel.poly (Revelle, 2011), for 250 random 

samples of n = 1000 drawn from the population data. The number of factors extracted 

ranged from 2 to 13 with mean, median, and mode all suggesting a six-dimensional 

model which is larger than any of the Q-matrices used in the simulation study. The data 

set yielding this six-dimensional solution was retained and employed in all subsequent 

analyses.  

To facilitate the use of the empirical cut points determined in the simulation study 

a two-dimensional EFA solution is also considered in this analysis. The two- and six-

dimensional Q-matrices were then constructed from the EFA results by estimating 

oblique two- and six-dimensional factor solutions and defining qjk = 1 as the one or two 

largest positive factors loadings across dimensions. This method of Q-matrix construction 

ensures that item-dimensionality is similar to that of the simulation study as well as 
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capturing positive relationships between the observed and latent variables, as would be 

expected for MDISC values. The resulting two- and six-dimensional Q-matrices follow 

complex-structure and show high proportions of items which are within-item 

multidimensional; 21 of the 32 items in the two-dimensional solution are within-item 

multidimensional (EFA2) and all of the 32 items in the six-dimensional solution (EFA6) 

are within-item multidimensional. The Q-matrices constructed from the exploratory 

analyses are presented in Table 6.1. 

Lastly, a three-dimensional Q-matrix representing test content and cognitive 

psychological theory is also employed in this study. This Q-matrix was constructed as 

part of an earlier research study (Gushta, Yumoto, & Williams, 2009) by assigning items 

to appropriate levels of the revised Bloom’s Taxonomy for Educational Objectives 

(Anderson & Krathwohl, 2001; Bloom, 1956) which describe the cognitive processes 

necessary to successfully answer test items according to the Cognitive Process 

Dimension, independent of specific subject-area requirements. While there are six 

categories in the Cognitive Process Dimension, only 3 were represented in this 

assessment: Remembering (Factor 1; 3 items), which is the most basic cognitive process 

indicating that test items require only retrieval of stored information; Understanding 

(Factor 2; 14 items), a more complex process requiring summarizing and comparing; and 

Application (Factor 3; 15 items), for items requiring the use of procedures to solve 

familiar and novel tasks. Unlike the Q-matrices resulting from EFA solutions, the 

cognitive complexity Q-matrix (COG) follows simple-structure and the items are all 

between-item multidimensional. This Q-matrix is also presented in Table 6.1. 
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Table 6.1 
Q-matrices Resulting from 2- and 6-Dimensional Exploratory Factor Analysis and 
Cognitive Complexity 

 EFA2  EFA6  COG 
Item 1* 2  1 2 3 4 5 6  1 2 3 

1 0 1  1 0 0 1 0 0  0 0 1 
2 1 1  0 1 0 0 0 1  0 1 0 
3 1 1  0 0 1 0 0 1  1 0 0 
4 0 1  1 0 0 0 0 1  0 0 1 
5 1 0  0 0 0 1 0 1  0 0 1 
6 1 1  0 1 0 1 0 0  0 1 0 
7 1 1  0 1 1 0 0 0  0 1 0 
8 1 0  0 1 0 0 0 1  0 1 0 
9 1 1  1 1 0 0 0 0  0 1 0 
10 1 1  0 1 1 0 0 0  1 0 0 
11 1 1  0 1 0 0 0 1  0 0 1 
12 1 0  0 1 1 0 0 0  0 1 0 
13 1 1  1 1 0 0 0 0  0 1 0 
14 1 1  0 1 1 0 0 0  0 0 1 
15 1 0  0 1 0 1 0 0  0 0 1 
16 1 1  0 0 1 0 0 1  0 1 0 
17 1 1  1 0 0 1 0 0  1 0 0 
18 1 1  0 1 0 0 1 0  0 1 0 
19 1 1  1 1 0 0 0 0  0 0 1 
20 1 0  0 0 1 1 0 0  0 1 0 
21 1 0  0 0 0 0 1 1  0 0 1 
22 1 1  0 1 0 1 0 0  0 0 1 
23 1 1  1 1 0 0 0 0  0 0 1 
24 1 0  0 0 1 0 1 0  0 0 1 
25 1 0  0 1 0 0 0 1  0 1 0 
26 1 0  0 0 0 1 1 0  0 0 1 
27 1 1  0 0 0 1 1 0  0 1 0 
28 1 1  0 0 1 1 0 0  0 0 1 
29 1 1  0 1 0 1 0 0  0 0 1 
30 1 1  0 0 1 1 0 0  0 0 1 
31 1 1  1 0 0 0 0 1  0 1 0 
32 1 1  0 1 0 0 1 0  0 1 0 

Note: Shaded entries indicate misfit according to the joint criteria; strikethrough indicates Q-matrix 
revision. 
* Numbers denote latent factors. 



 

 156 
 

6.3.Results 

6.3.1 Original Models 

Two-parameter normal-ogive (2-PNO) multidimensional item response theory 

(MIRT) models were fit for each of the EFA2, EFA6, and COG Q-matrices using Mplus 

version 6.11 (Muthén & Muthén, 1998-2010) and the specifications detailed in Chapter 3. 

MDIFF values in the simulation study portion of this dissertation were specified as low, 

moderate, and high difficulty and represent increasing discrepancy from the mean of the 

latent factor scores. As such, negative MDIFF values were not included but are 

hypothesized to affect fit indices as would positive MDIFF values of similar magnitude. 

Therefore, absolute MDIFF estimates and the minimum, mean, median, and maximum of 

such resulting from the real data analysis will be compared to the MDIFF values 

specified in the simulation design conditions to determine the corresponding item type. 

Item parameter estimates for EFA2 are presented in Table 6.2  with minimum, 

mean, median, and maximum absolute MDIFF = [0.024, 1.006, 0.668, 8.918], 

respectively; estimated MDISC values range [0.124, 1.552] with a mean of 0.603; inter-

factor correlation is estimated as ���,� � 	0.447, and latent factor scores, or student 

ability, is distributed ��� �  �0.006,0.038�  with ��� �  �0.886, 0.725�. These 

characteristics suggest that EFA2 approximates the moderate inter-factor correlation and 

moderate-discrimination / high-difficulty (i.e., large discrepancy between MDIFF and 

mean latent factor scores) conditions employed in the previous simulation study. 
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Table 6.2 
Item Statistics Estimated for the 2-Dimensional Exploratory Factor Analysis Model 

          MI     Wald   

Item MDIFF MDISC   S-χ2 1 2   1 2 
1 -8.918 0.149 

 
30.605 4.361† 

   
-1.824*† 

2 -0.786 0.672 
 

14.377 
   

10.950 -0.863*† 
3 -0.379 0.521 

 
25.439 

   
7.481 -3.071*† 

4 -0.913 1.396 
 

45.948*† 4.356† 
   

-13.859* 
5 -0.516 0.840 

 
17.075 

 
0.236 

 
20.360 

 
6 0.529 0.268 

 
18.671 

   
4.347* -0.940*† 

7 -2.455 0.462 
 

32.443 
   

6.460 -2.029*† 
8 -0.024 0.124 

 
26.002 

 
1.722 

 
2.811*† 

 
9 -1.358 0.479 

 
13.387 

   
6.756 -2.734*† 

10 -1.096 0.564 
 

30.457 
   

8.074 -2.743*† 
11 -0.380 0.809 

 
23.422 

   
12.802 -2.295*† 

12 0.326 0.467 
 

21.542 
 

0.766 
 

10.538* 
 

13 -0.760 0.993 
 

36.626*† 
   

13.125 -3.658*† 
14 -0.621 0.846 

 
18.229 

   
13.199 -1.115*† 

15 -1.111 0.582 
 

13.909 
 

0.279 
 

13.518* 
 

16 -0.901 0.460 
 

40.203*† 
   

6.900 -2.488*† 
17 -2.032 0.486 

 
32.176 

   
4.826* -4.155* 

18 -1.853 0.321 
 

19.577 
   

4.914* -1.413*† 
19 -0.456 1.552 

 
51.566*† 

   
2.185*† -8.964 

20 1.453 0.701 
 

32.349† 
 

0.004 
 

12.052* 
 

21 -0.087 0.706 
 

25.340 
 

0.030 
 

16.694 
 

22 -0.765 0.559 
 

30.872 
   

8.735 -1.317*† 
23 -0.714 0.402 

 
14.542 

   
6.125 -2.013*† 

24 0.380 0.585 
 

37.522*† 
 

1.639 
 

13.213* 
 

25 0.260 0.456 
 

25.230 
 

0.305 
 

10.280* 
 

26 0.266 0.862 
 

44.436*† 
 

0.029 
 

18.821 
 

27 -0.201 0.543 
 

23.729 
   

8.465 -2.240*† 
28 1.057 0.542 

 
14.683 

   
8.231 -1.534*† 

29 -0.195 0.653 
 

24.413 
   

9.954 -2.366*† 
30 0.414 0.338 

 
20.857 

   
5.417* -1.228*† 

31 -0.731 0.505 
 

23.979 
   

4.471* -5.506 
32 -0.242 0.450 

 
30.557 

   
7.478 -0.946*† 

Note: Shaded entries indicate misfit according to the joint criteria. 
* Misfit according to empirical cut point. 
† Misfit according to theoretical cut point. 
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Table 6.3 presents the item parameter estimates for EFA6 with minimum, mean, 

median, maximum absolute MDIFF values of [0.032,0.825,0.589,4.082]; MDISC values 

ranging [0.095,3.251] with a mean of 0.725; inter-factor correlations are estimated as: 

�� �
��
��
��

10.543 10.370 0.310 10.482 0.433 0.832 10.435 0.821 0.520 0.607 10.782 0.432 0.719 0.536 0.608 1  !
!!
!"
; 

and latent factor scores are distributed ���  = [-0.061, -0.006, 0.006, -0.002, 0.012,  

-0.006] and ��� = [0.771, 0.850, 0.654, 0.771,0.792, 0.783]. Parameter estimates for the 

EFA6 model suggest that it approximates the moderate inter-factor correlation and 

moderate-discrimination / high-difficulty condition specified in the simulation study.  
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Table 6.3 
Item Statistics Estimated for the 6-Dimensional Exploratory Factor Analysis Model 

        MI           Wald           
Item MDIFF MDISC S-χ2 1 2 3 4 5 6 1 2 3 4 5 6 

1 -4.082 0.333 45.128*† 
 

0.006 2.897 
 

5.203*† 0.003 3.202*† 
  

-1.425*† 
  

2 -0.962 0.555 17.671 0.927 
 

0.372 0.967 0.934 
  

3.047*† 
   

2.876*† 
3 -0.335 0.649 27.494 3.142 0.726 

 
0.257 0.064 

   
2.320*† 

  
3.661* 

4 -0.770 2.343 22.650 
 

0.002 2.798 1.111 1.296 
 

6.909 
    

-0.607*† 
5 -0.604 0.742 29.852† 6.485*† 0.754 0.427 

 
0.826 

    
5.465 

 
3.329*† 

6 0.358 0.399 57.584*† 0.189 
 

0.001 
 

0.862 0.023 
 

2.722*† 
 

-0.569*† 
  

7 -2.146 0.534 35.246*† 1.037 
  

2.838 1.042 0.538 
 

5.679 0.317†* 
   

8 -0.032 0.095 41.875*† 2.086 
 

0.016 0.572 0.097 
  

0.764*† 
   

0.447*† 
9 -1.258 0.522 17.994 

  
0.014 0.034 0.771 0.345 1.288*† 7.060 

    
10 -1.083 0.583 31.640† 0.400 

  
0.029 0.808 0.275 

 
4.668* 2.559*† 

   
11 -0.439 0.722 24.054 0.397 

 
0.006 0.285 0.004 

  
3.899* 

   
3.382*† 

12 0.376 0.406 28.580† 0.360 
  

0.027 0.130 0.927 
 

4.600* 1.608*† 
   

13 -0.680 1.175 34.731*† 
  

0.253 0.895 0.720 0.175 1.005*† 13.247 
    

14 -0.668 0.800 18.591 0.335 
  

1.083 0.237 0.489 
 

6.631 2.355*† 
   

15 -1.336 0.496 15.502 0.127 
 

0.118 
 

0.248 0.052 
 

1.372*† 
 

2.451*† 
  

16 -0.491 0.947 43.118*† 1.715 0.771 
 

1.106 0.057 
   

-1.242*† 
  

5.050* 
17 -1.852 0.55 34.096*† 

 
0.940 0.000 

 
0.709 1.819 3.675*† 

  
5.038* 

  
18 -2.052 0.291 22.526 0.655 

 
0.237 0.003 

 
0.783 

 
1.840*† 

  
0.921*† 

 
19 -0.528 1.154 27.618† 

  
0.398 

 
0.246 1.709 6.409 2.892*† 

    
20 1.500 0.721 26.863† 0.592 0.054 

   
0.379 

  
4.080* 3.003*† 

  
21 -0.107 0.575 32.303† 0.505 1.199 2.142 0.065 

      
4.645* 3.191*† 

22 -0.573 0.766 56.644*† 0.767 
 

0.243 
 

0.376 1.626 
 

4.858* 
 

-0.720*† 
  

23 -0.650 0.445 22.087 
  

0.252 1.824 2.732 0.232 0.852*† 6.602 
    

24 0.422 0.539 38.982*† 2.207 0.669 
 

0.042 
 

1.221 
  

2.681*† 
 

4.558* 
 

25 0.333 0.358 25.456 1.288 
 

0.143 0.077 0.144 
  

1.884*† 
   

2.325*† 
26 0.117 3.251 37.679*† 0.035 0.003 3.050 

  
0.130 

   
-1.112*† 2.425*† 

 
27 -0.213 0.541 36.953*† 3.769* 0.056 0.002 

      
1.986*† 2.592*† 

 
28 0.954 0.630 16.552 1.205 0.064 

  
0.471 2.993 

  
2.105*† 5.902 

  
29 -0.220 0.599 22.847 1.478 

 
2.233 

 
0.798 2.151 

 
2.875*† 

 
2.111*† 

  
30 0.280 0.537 17.389 0.335 0.684 

  
0.203 0.832 

  
4.903* 0.632*† 

  
31 -0.695 0.547 26.066 

 
0.444 0.427 2.879 1.185 

 
3.651*† 

    
4.960* 

32 -0.271 0.406 29.925† 0.001 
 

1.713 0.003 
 

2.091 
 

1.133*† 
  

2.505*† 
 

Note: Shaded entries indicate misfit according to the joint criteria. 
* Misfit according to empirical cut point. 
† Misfit according to theoretical cut point. 
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Parameter estimates for the final model, COG, are presented in Table 6.4. 

Absolute values of the MDIFF minimum, mean, median, and maximum are [0.025, 

1.179, 0.612, 15.988], respectively; the MDISC values range 0.082 to 1.148 with a mean 

of 0.594; inter-factor correlations are estimated as �� � # 10.918 10.940 0.981 1 $; and latent 

factor scores are distributed ��� �  �0.003,0.003,0.004� and ��� �  �0.862, 0.899,0.903�. 
Given these estimates, the COG model approximates the highly-correlated, moderate-

discrimination / high-difficulty condition from the simulation design. 
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Table 6.4 
Item Statistics Estimated for the Cognitive Complexity Model 

Item MDIFF MDISC S-χ2 MI1 MI2 MI3 Wald 1 Wald 2 Wald 3 
1 -15.988 0.082 33.488† 4.814† 2.404 

   
1.340*† 

2 -0.758 0.694 19.310 0.053 
 

0.024 
 

16.663 
 

3 -0.309 0.653 75.387*† 
 

0.446 0.601 12.992* 
  

4 -1.32 0.679 20.011 0.144 0.516 
   

16.593 
5 -0.535 0.790 17.693 0.012 0.282 

   
19.806 

6 0.477 0.297 19.609 0.049 
 

0.039 
 

6.844* 
 

7 -2.130 0.534 32.856† 3.385 
 

6.054*† 
 

11.073* 
 

8 -0.025 0.119 35.350† 1.306 
 

1.497 
 

2.748* 
 

9 -1.162 0.561 13.211 2.262 
 

0.069 
 

13.184* 
 

10 -0.903 0.703 87.309*† 
 

1.941 3.861 14.088* 
  

11 -0.347 0.886 24.913 0.026 0.305 
   

22.400 
12 0.334 0.453 22.019 0.203 

 
0.113 

 
10.454* 

 
13 -0.666 1.148 56.987† 0.895 

 
0.276 

 
27.220 

 
14 -0.600 0.867 18.354 0.020 0.782 

   
21.728 

15 -1.148 0.558 16.650 3.600 0.134 
   

13.403* 
16 -0.777 0.534 38.607† 0.113 

 
0.560 

 
12.800* 

 
17 -1.667 0.594 64.357*† 

 
3.936† 5.947*† 11.180* 

  
18 -1.630 0.365 18.206 0.582 

 
0.433 

 
8.454* 

 
19 -0.517 0.961 22.197 2.234 2.100 

   
24.110 

20 1.495 0.672 34.368† 1.346 
 

2.894 
 

11.842* 
 

21 -0.090 0.672 26.402 0.937 0.805 
   

16.514 
22 -0.711 0.601 32.389† 0.067 

    
14.446* 

23 -0.624 0.460 18.699 0.230 0.714 
   

10.943* 
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Item MDIFF MDISC S-χ2 MI1 MI2 MI3 Wald 1 Wald 2 Wald 3 
24 0.394 0.558 40.234† 2.158 4.051† 

   
12.991* 

25 0.267 0.442 25.785 0.041 
 

0.018 
 

10.184* 
 

26 0.276 0.813 43.706† 1.425 1.948 
   

18.509 
27 -0.177 0.615 25.229 1.492 

 
2.952 

 
14.455* 

 
28 0.967 0.593 21.334 0.475 0.032 

   
12.913* 

29 -0.175 0.729 24.254 1.360 0.011 
   

17.555 
30 0.375 0.372 29.002 2.309 0.117 

   
8.567* 

31 -0.653 0.553 21.738 1.624 
 

1.522 
 

13.098* 
 

32 -0.227 0.479 29.504 1.889 
 

0.186 
 

11.396* 
 

Note: Shaded entries indicate misfit according to the joint criteria. 
* Misfit according to empirical cut point. 
† Misfit according to theoretical cut point. 
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The design-appropriate cut points for each model- and item-fit index are selected 

as the empirical cut points calculated from those simulated true model conditions that 

closely approximate the characteristics of the EFA2, EFA6, and COG models presented 

in Table 6.5. While cut points for six-dimensional models cannot be directly obtained 

from the results of the simulation study, none of the model-fit indices demonstrated 

sensitivity to number of dimensions, similar to the findings of Jackson (2007); therefore, 

the cut points for the three-dimensional model were employed with EFA6.  

Table 6.5 
Design Appropriate Cut Points for the Grade 6 Mathematics Achievement Real-Data 
Analysis 

  EFA2   EFA6   COG 
Fit Statistic B W B W B 

Model χ
2/df 1.074 1.073 1.073 (1.070) 

RMSEA 0.009 0.009 0.009 (0.008) 
GDDM 0.004 0.004 0.004 (0.004) 

Item S-χ2 37.519 33.740 35.844 32.718 40.250 (41.466) 
MI 9.061 3.472 3.300 5.086 (6.325) 

Wald 15.284 5.626 12.883 5.438 13.498 (14.887) 
 

Model-fit for the EFA2 model is estimated as χ
2/df = 1.205, RMSEA = 0.014, and 

GDDM = 0.012 which suggests model misfit for all three indices according to the 

empirical cut points but does not suggest misfit according to the theoretical cut points 

(χ2/df = 2.0; RMSEA = 0.05). Model-fit values and cut points differ slightly for the EFA6 

model: χ2/df = 1.099, RMSEA = 0.010, and GDDM = 0.006 suggesting misfit for all 

three indices but again does not suggest model misfit under the theoretical cut points. The 

COG model demonstrates the worst fit overall as χ
2/df = 1.490, RMSEA = 0.022, and 

GDDM = 0.007 which also suggests misfit according to all three model-fit indices but, as 

with the previous models, does not demonstrate misfit under the theoretical cut points. 
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Noting that the model-fit indices generally reject these three models as misspecified, 

lessons learned from the simulation study presented in this dissertation can be applied to 

the examination of specific item-fit results for the purpose of model revision and Q-

matrix amendment as follows. 

The simulation study in this dissertation suggested that, under conditions similar 

to those of the real data analysis, the S-χ
2 has poor-to-moderate power overall to predict 

misspecified items when the model has been identified as misspecified, the Modification 

Indices have moderate-to-strong power for the EFA2 model and poor-to-moderate power 

for EFA6 and COG, and Wald Tests have poor power for the EFA2 and COG models and 

poor-to-moderate power for the EFA6 model. Additionally, of the three item-fit indices 

only the Modification Index demonstrated sensitivity to number of dimensions and, 

therefore, requires special consideration in application to EFA6. To account for this 

sensitivity, Modification Index cut points for six dimensions were extrapolated based on 

the ratio of the values observed for the two- and three-dimensional models. These values 

were calculated separately for simple- and complex-structure models and presented in 

Table 6.5 along with all other model- and item-fit cut points.  

Further, previous research has suggested that model revision according to 

Modification Indices when misspecification is severe resulted in poor recovery of the true 

population model (Hutchinson, 1998) while the Wald Test performed well in identifying 

misspecified parameters when guided by theoretical justification (Chou & Bentler, 2002). 

The Modification Indices and Wald Test statistics indicate direct or implied change in 

overall model fit should a particular parameter be freed or fixed; thus, whenever these 

statistics indicated multiple parameter revisions, only the most strongly indicated revision 
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was considered. For example, given multiple significant MI values, the largest MI value 

will be selected for revision; with multiple Wald Test statistics indicating misfit, the 

value closest to zero is selected for use in model revision. Joint criteria for identifying 

misfit using the three types of item-fit indices are, therefore, defined as requiring a 

significant S-χ2and a significant MI or Wald Test value – the S-χ
2 results providing a 

conservative limitation to the number of statistically-determined model revisions. The 

following revisions of the three Q-matrices are suggested according to the joint criteria. 

Evaluating item-fit for the EFA2 model according to the empirical cut points 

leads S-χ2 to reject six of 32 items, MI1 and MI2 to reject none of the items, Wald Test 1 

to reject 12 of 30 items since only items loading on factor 1 are eligible for this statistic, 

and Wald Test 2 to reject 21 out of 23 items. When the item-fit results are considered 

jointly, the combination of S-χ2 and either the Modification Index or Wald Test indicates 

that the Q-matrix entries for Item 13 should be re-specified as Q13,(1,2) = [1, 0], Item 16 re-

specified as Q16,(1,2) = [1, 0], and Item 19 as Q19,(1,2) = [0, 1], where the bolded Q-matrix 

elements indicate deletion based on the joint information provided by the S-χ2 and Wald 

Test fit values (see also Table 6.1). Although Items 4 and 24 are indicated as misspecified 

by the joint criteria, these items are not re-specified since the Wald Test results suggest 

deleting the only Q-matrix entry for those items. Were the theoretical cut points 

employed, five items would be indicated as misfitting overall with the Modification 

Indices over-identifying misfit and the Wald Test statistics under-identifying misfit. 

When the EFA6 model is estimated, 11 of the 32 items are identified as misfitting 

according to the empirical S-χ2 cut points; two items are identified as misfitting by MI1, 

one item was identified as misfitting according to MI5, and none were identified as 
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misfitting by MI2, MI3, MI4, and MI6. The Wald Tests indicated that six to 13 of the 

items were misfitting. Combining this evidence according to the joint criteria described 

earlier, we can conclude that 11 items demonstrate misfit; the suggested revisions are 

presented in Table 6.1. Had the theoretical cut points been used, 18 items would have 

been identified as misspecified by the joint criteria. 

Lastly, the COG model demonstrated the worst overall model-fit but the best 

overall item-fit. Five misfitting items were identified as misfitting by the S-χ2 index, two 

items were identified as misfitting by the MI3 index, three items were identified as 

misfitting by the Wald Test 1, 12 items were identified as misfitting by the Wald Test 2, 

and seven items were identified as misfitting by the Wald Test 3. The result is that only 3 

misfitting items are identified according to the joint criteria. According to the theoretical 

cut points, four items would be indicated as misfitting.  

As shown in Table 6.1, the misfitting items for the COG model are suggested to 

be re-specified as Q3,(1,2,3) = [0, 0, 0], Q10,(1,2,3) = [0, 0, 0], Q17,(1,2,3) = [0, 0, 1]. These 

results suggest that all Q-matrix entries associated with the first factor, Remembering, be 

deleted. Taking this into consideration the COG model is re-specified as a two-

dimensional model; Item 3 and Item 10 are subsequently associated with latent factor 3, 

Application, based on the largest MI value. Interpreting this revision with respect to 

Bloom’s Taxonomy, these items are suggested to require higher-order cognitive 

operations than originally presumed; items categorized as Remembering which were not 

part of topics delivered directly via instruction would result in higher cognitive demands 

than originally anticipated. The suggested re-specification for Item 17 can be interpreted 

with respect to levels of Bloom’s Taxonomy as suggesting that the item requires the 
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cognitive operations associated with Application instead of Understanding, again 

suggesting higher-order cognitive processing. Examination of the test content could show 

these to be a reasonable re-specifications of the Q-matrix.  

6.3.2 Revised Models 

A variety of suggestions were made for the revision of the EFA2, EFA6, and 

COG Q-matrices in the previous section. Since the COG model was reduced from a 

three-dimensional to two-dimensional model additional, appropriate, cut points are 

provided in parentheses in Table 6.5; otherwise, the same empirical cut points are applied 

to the model- and item-fit estimates resulting from estimation of models according to the 

revised Q-matrices. These revised Q-matrices were constructed and the models re-

estimated. The resulting model-fit estimates are presented in Table 6.6  against those 

resulting from the original Q-matrices, revealing a complicated picture. While all models 

continue to demonstrate misfit, fit of EFA2 worsens according to the χ2/df and RMSEA 

but improves according to the GDDM; fit of EFA6 worsens according to the χ2/df and 

RMSEA but remains the same according to the GDDM; and fit of the COG model 

improves according to the χ2/df while staying the same for the RMSEA and GDDM. 
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Table 6.6 
Model-Fit Estimates for the Original and Revised Models 

Model Statistic Original Revised 
EFA2 χ

2/df 1.205 1.229 
RMSEA 0.014 0.015 
GDDM 0.012 0.010 

EFA6 χ
2/df 1.099 1.110 

RMSEA 0.010 0.011 
GDDM 0.006 0.006 

COG χ
2/df 1.490 1.486 

RMSEA 0.022 0.022 
  GDDM 0.007 0.007 

 

Table 6.7 presents the item-fit results for the revised EFA2 model, for which the 

Q-matrix entries for items 13, 16, and 19 were modified as shown in Table 6.1. As a 

result of these revisions, the S-χ
2 now identifies five items as misfitting (six were 

identified in the original model), no items are identified as misfitting according to the 

Modification Indices (similar to the original model), 12  items are identified as misfitting 

by Wald Test 1 and 19 by Wald Test 2 (previously 12 and 21). The joint criteria indicate 

that the Q-matrix entries for two items should be additionally revised; indicated as 

misfitting under the original model, the Wald Test results suggest that Q-matrix entries 

associating items 16 and 24 with latent factor 1 be deleted. However, these items would 

then be unassociated with any latent factor, therefore, these revisions are not advised. 
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Table 6.7 
Item-Fit Values for the Revised EFA2 Model 

  MI   Wald  
Item S-χ2 1 2 

 
1 2 

1 30.768 4.377 
   

-1.695* 
2 13.728 

   
9.864 0.020* 

3 25.103 
   

6.499 -2.573* 
4 60.341* 

    
-20.479 

5 18.983 
 

2.533 
 

20.175 
 

6 18.283 
   

3.455* -1.124* 
7 32.130 

   
6.163 -1.041* 

8 26.447 
 

2.176 
 

2.788* 
 

9 13.179 
   

6.302 -1.653* 
10 30.750 

   
6.945 -2.433* 

11 25.031 
   

11.912 -1.022* 
12 23.083 

 
0.078 

 
10.504* 

 
13 32.104 

 
7.518 

 
27.780 

 
14 19.770 

   
11.772 -0.252* 

15 14.723 
 

0.085 
 

13.455* 
 

16 44.114* 
 

2.572 
 

12.859* 
 

17 31.993 
   

4.490* -3.200* 
18 19.281 

   
4.117* -1.291* 

19 129.910* 0.498 
   

-24.699 
20 35.444 

 
0.204 

 
12.008* 

 
21 26.861 

 
0.523 

 
16.622 

 
22 29.621 

   
7.858 -0.752* 

23 14.909 
   

5.512 -1.466* 
24 38.862* 

 
3.396 

 
13.134* 

 
25 26.801 

 
0.102 

 
10.276* 

 
26 48.559* 

 
0.177 

 
18.652 

 
27 24.270 

   
7.458 -1.793* 

28 15.323 
   

7.198 -1.147* 
29 25.264 

   
8.996 -1.696* 

30 21.244 
   

4.570* -1.119* 
31 26.540 

   
3.973* -4.700* 

32 32.040 
   

6.744 -0.347* 
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The item-fit results for the revised EFA6 model, presented in Table 6.8, present a 

picture as complicated as the original model. The S-χ2 statistic indicates that 14 items are 

misspecified, the Modification Indices suggest a total of 16 revisions, and the Wald Tests 

suggest 47 revisions; as compared to 11, 3, and 55 revision suggestions under the original 

model. Further, the joint criteria suggest that 11 items are candidates for revision – the 

same number and a certain degree of overlap with the item-fit results evidenced under the 

original model (8 items).  The number of Q-matrix revisions suggested by these results is 

greater than can be reasonably described within the scope of this dissertation; therefore 

specific recommendations are not presented. These results do indicate that as Q-matrix 

entries are deleted via the Wald Test results, Modification Indices suggest alternate 

associations between items and latent factors. Additional iterations of Q-matrix and item-

fit evaluation and revision appear to be necessary to achieve a point of stability in which 

revisions are no longer necessary or possible. 
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Table 6.8 
Item-Fit Values for the Revised EFA6 Model 

 
  

MI 
      

Wald 
     

Item S-χ2  
1 2 3 4 5 6 

 
1 2 3 4 5 6 

1 82.828* 
  

1.365 6.326* 3.944* 
 

0.016 
 

4.175* 
   

-3.081* 
 

2 18.601 
 

1.080 
 

0.114 3.607* 0.653 
   

3.461* 
   

1.835* 
3 30.315 

 
1.476 0.117 

 
0.450 2.230 

    
3.661* 

  
1.756* 

4 22.909 
  

12.274* 6.826* 6.208* 6.080* 
  

7.984 
    

-1.943* 
5 39.167* 

 
3.299 2.576 0.232 

 
0.674 

     
4.827* 

 
4.147* 

6 35.752* 
 

0.635 
 

0.215 0.130 0.021 0.025 
  

6.871* 
    

7 37.464* 
 

0.138 
  

2.514 0.154 0.340 
  

11.162* 
    

8 51.117* 
 

2.456 
 

0.026 1.437 0.769 
   

2.775* 
    

9 19.855 
   

0.004 0.192 1.131 0.029 
 

0.608* 4.556* 
    

10 29.025 
 

0.182 
  

0.000 0.263 0.731 
  

2.608* 2.945* 
   

11 23.652 
 

0.393 
 

0.184 0.432 0.065 
   

3.275* 
   

2.888* 
12 28.920 

 
2.478 

  
2.040 0.795 1.867 

  
3.537* 1.246* 

   
13 35.523* 

 
0.494 

 
0.008 0.003 

 
0.009 

  
27.192 

    
14 17.428 

 
1.661 

  
0.003 0.398 1.055 

  
5.550 1.948* 

   
15 16.887 

 
0.009 

 
0.737 

 
0.691 0.347 

  
2.956* 

 
2.121* 

  
16 45.574* 

 
3.023 0.138 0.387 0.922 0.354 

       
11.266* 

17 34.899* 
  

14.685* 3.496* 6.709* 6.857* 9.542* 
 

12.517* 
     

18 22.744 
 

1.643 
 

0.060 0.088 
 

1.485 
  

1.271* 
  

1.453* 
 

19 32.851* 
    

0.484 1.005 6.144* 
 

5.808 -0.755* 
    

20 29.325 
 

1.242 0.509 
  

0.514 0.722 
   

3.578* 2.939* 
  

21 24.964 
 

0.133 0.115 0.533 1.611 
       

4.595* 2.715* 
22 34.148* 

 
0.354 

 
0.373 0.026 0.401 1.034 

  
14.432 

    
23 22.650 

   
0.025 0.543 0.991 0.003 

 
0.884* 3.871* 

    
24 37.479* 

 
0.108 1.245 3.941* 0.174 

 
4.450* 

     
13.446* 

 
25 25.969 

 
1.051 

 
0.001 0.086 0.002 

   
1.391* 

   
2.215* 

26 53.005* 
 

0.005 0.011 0.356 0.709 
 

0.019 
     

18.288 
 

27 35.792* 
  

0.396 0.553 2.107 
 

2.254 
 

2.301* 
   

6.262 
 

28 20.271 
 

2.960 0.144 
  

1.634 2.199 
   

1.690* 4.604* 
  

29 24.633 
 

2.391 
 

3.190 
 

0.369 1.488 
  

5.658 
 

1.651* 
  

30 18.034 
 

0.066 0.278 
  

1.499 0.290 
   

5.068* -0.476* 
  

31 24.863 
  

2.203 0.003 3.848* 1.620 
  

4.268* 
    

2.639* 
32 35.236* 

 
0.103 

 
1.587 0.006 

 
1.587 

  
1.034* 

  
2.606* 
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Fewer revisions to the COG model were suggested according to the joint criteria 

than for either the EFA2 or EFA6 model. After making the three suggested revisions, 

collapsing the model to two latent factors, and estimating the model according to the 

revised Q-matrix, the S-χ2 identifies two items as misfitting, the Modification Indices do 

not identify any items as misfitting, and the Wald Tests identify 21 items. The original 

model had identified 5 items, 2 items, and 22 items as misfitting. No items are identified 

as misfitting according to the joint criteria (Table 6.9) when the revised COG model is 

estimated. 
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Table 6.9 
Item-Fit Values for the Revised COG Model 

   MI   Wald  
Item S-χ2  1 2 

 
1 2 

1 32.406  2.008 
   

1.342* 
2 29.355  

 
0.014 

 
16.662 

 
3 30.762  0.168 

   
14.846* 

4 19.358  0.511 
   

16.603 
5 18.069  0.342 

   
19.876 

6 16.937  
 

0.037 
 

6.844* 
 

7 37.829  
 

5.798 
 

11.070* 
 

8 29.555  
 

1.414 
 

2.747* 
 

9 18.400  
 

0.016 
 

13.188* 
 

10 31.481  0.072 
   

15.883 
11 25.693  0.428 

   
22.394 

12 20.632  
 

0.092 
 

10.452* 
 

13 81.323*  
 

0.174 
 

27.217 
 

14 18.167  0.730 
   

21.771 
15 15.929  0.225 

   
13.405* 

16 41.456  
 

0.660 
 

12.802* 
 

17 33.557  
    

12.651* 
18 18.250  

 
0.388 

 
8.452* 

 
19 22.339  1.619 

   
24.185 

20 32.486  
 

2.960 
 

11.840* 
 

21 26.527  0.912 
   

16.535 
22 31.132  

    
14.442* 

23 17.173  0.886 
   

10.946* 
24 39.015  3.935 

   
12.980* 

25 24.081  
 

0.013 
 

10.183* 
 

26 44.602*  1.958 
   

18.487 
27 29.801  

 
2.916 

 
14.455* 

 
28 19.625  

    
12.901* 

29 24.115  
    

17.553 
30 26.128  0.041 

   
8.571* 

31 26.891  
 

1.409 
 

13.099* 
 

32 30.381  
 

0.094 
 

11.393* 
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6.4.Summary 

This real data analysis demonstrates the usefulness in considering the 

psychometric properties of items and models as well as sample characteristics of the 

assessment data when examining model- and item-fit for the purpose of evaluating the Q-

matrix. The use of fit index cut points appropriate for the number of latent factors, sample 

size, test length, strength of inter-factor correlations, item multidimensionality, and the 

broad classifications of item discrimination and difficulty to jointly consider model- and 

item-fit information identified a manageable number of model revisions. Use of the 

suggested or theoretical cut points, however, leads to dissonant results as the model-fit 

statistics would suggest that all three models fit the data while the item-fit statistics would 

generally over-identify item misfit. 

Applying the empirical, design-appropriate, cut points in a single iteration of 

model criticism and evaluation, the three Q-matrices were re-specified according to the 

joint information provided by the item-fit indices. Model-fit information resulting from 

these Q-matrix re-specifications does not clearly indicate overall improvement or 

worsening of model-fit. Item-fit information, however, does suggest that correctly 

specified Q-matrices can be obtained through such an iterative re-specification process. 

Information provided by the initial model estimation and first iteration of revisions 

indicate consistent and reasonable results. 

Estimation of the EFA2 model, which represented a general under-factoring of the 

model vis-à-vis the best-fitting dimensionality structure suggested by exploratory 

analysis, resulted in a degree of model- and item-misfit which could be improved by Q-

matrix edits for a modest number of misfitting items. Revision of the Q-matrix and re-
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estimation of the model resulted in fewer items flagged as misspecified and fewer items 

identified as candidates for revision, though it should be noted that some of the final 

suggested revisions are not feasible or require item deletion.  

The EFA6 model, which estimates the number of dimensions suggested by 

exploratory analysis, demonstrates some degree of model misfit as well as the greatest 

degree of item misfit and largest number of suggested Q-matrix revisions. The item-fit 

results for the original Q-matrix suggested numerous deletions of Q-matrix entries as a 

result of the Wald Test statistic values; item-fit results subsequent to these edits, 

however, indicate an increased number of additions to the Q-matrix as suggested by the 

Modification Indices. While it was not in the scope of this study to iterate the Q-matrix 

revision to a point of stability with regards to the item-fit results it is apparent that the fit 

statistics are suggesting modest and reasonable restructuring of the Q-matrix and not 

simply attempting to build a saturated model.  

Finally, the COG model, specified according to theory, yielded the worst overall 

model fit but the fewest overall revisions of the Q-matrix according to the joint 

information provided by the item-fit results. Upon making these edits, overall item misfit 

was greatly reduced; the joint criteria used to identify candidate items for further revision 

failed to identify further misfitting items. In a single revision, the Q-matrix achieved 

stability with respect to item-fit information. While these results may suggest that the Q-

matrix resulting from the COG model is a candidate for the correct, or true, Q-matrix, 

there are two additional considerations that must be noted. First, the final inter-factor 

correlation for the revised COG model is r = 0.98, suggesting that the model is actually 

unidimensional, though this concern can be disputed on the grounds of evidence 
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presented in previous research (Adams & Wu, 2002; Wu & Adams, 2006). Second, the 

Wald Test statistics continue to suggest that a number of Q-matrix entries be deleted, 

which can be understood by considering the MDISC values. Shown to be sensitive to 

MDISC in Chapter 4, the Wald Test values are nearly perfectly positively correlated with 

the MDISC estimates, suggesting that the weak-to-moderate discrimination of items 

estimated by this model is directly contributing to the identification of item misfit. 

At the conclusion of this first iteration of model revision, it must be noted that all 

of the models continue to demonstrate misfit even though the Q-matrix has been revised. 

While some of the model-fit indices show improvement, others do not and this is 

especially true for the COG model. The fact that model improvement is suggested by the 

item-fit indices but fails to materialize when models are revised and re-estimated suggests 

that the Q-matrices may represent random patterns of associations which would not be 

expected to appropriately capture variability in the model. Final acceptance of any of the 

Q-matrices presented in the real data analysis portion of this dissertation would require 

further analysis and substantive consideration, beyond the scope of the current study. 

The task of evaluating and revising Q-matrices when applied to real data is further 

complicated by the fact that the true or correct Q-matrix is unknown and, therefore, its 

recovery cannot be directly evaluated. It is in fact possible that any number of equivalent 

models could result in the estimation of vastly different parameters but the same sets of 

statistical fit indices (Raykov & Marcoulides, 2001); alternately, it is possible that 

mathematically equivalent Q-matrices exist for an accepted Q-matrix (Bechger, 

Verstralen, & Verhelst, 2002). Raykov and Marcoulides (2001) state that, since statistical 
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indices do not exist which can distinguish equivalent models, model selection under such 

conditions must be managed by substantive consideration.  

The use of empirically-derived model- and item-fit cut points yields results 

demanding thoughtful and careful consideration of the elements of these three different 

Q-matrices, for which the first round of model criticism and revision has been presented. 

Had the theoretical cut points been employed to evaluate model- and item-fit they would 

have first suggested that the overall model fit the data well, likely deterring further model 

criticism which would then have been complicated by inflated counts of misfitting items, 

as suggested by the inflated Type-I error rates presented in Chapter 4. Rich, appropriate, 

statistical information as provided by the multiple fit indices employed in this study 

serves to facilitate the decisions required of practitioners and researchers during the 

process of model evaluation. 
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Chapter 7 

Discussion 

The current study extends research on model- and item-fit sensitivity to consider 

the influence of item type, defined jointly according to item discrimination and item 

difficulty, and model misspecification via Q-matrix elements. Specifically the 

performance of three model-fit indices (χ
2/df, RMSEA, and GDDM) and three item-fit 

indices (S-χ2, Modification Index, and Wald Test) was investigated in a simulation study 

manipulating item type and degree of model misspecification as well as sample size, 

number of observed variables (test length), item multidimensionality (simple or complex 

factor structure), the number of latent factors, and the strength of the correlation between 

latent factors. These fit indices are typically available within either a confirmatory factor 

analysis (CFA) framework or multidimensional item response theory (MIRT) framework. 

Equivalence between models estimated within these two frameworks, however, is 

achieved by satisfying specific assumptions and parameter constraints, detailed in 

previous research (Kamata & Bauer, 2008; Takane & de Leeuw, 1987), providing 

researchers and practitioners with additional information in the evaluation of model 

performance and validity. 

This chapter begins with a summary of key findings from the study. The original 

research questions focused on the distributional forms of the fit indices under true model 

estimation conditions, the sensitivity of the fit indices under true and misspecified model 

estimation, and the influence of simulation conditions on power rates for each model- and 

item-fit index. The results are, therefore, summarized with these points in mind. A 

discussion of its limitations and suggestions for future research follows.  
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7.1.Summary of Key Findings 

The first investigation in this dissertation is an examination of the distributional 

forms of the model- and item-fit indices. The distributional forms of five of the six fit 

indices included in this study have been described according to known distributions; no 

distributional form of the generalized dimensionality discrepancy measure (GDDM; Levy 

& Svetina, 2010) has been defined. The χ
2/df ratio and RMSEA fit indices are stated to 

follow rescaled χ2 distributions (Browne and Cudeck, 1993; Steiger, 2000; Steiger and 

Lind, 1980) with degrees of freedom defined as the model degrees of freedom; the S-χ
2 

(Orlando & Thissen, 2000, 2003; Zhang & Stone, 2008) is χ2-distributed with degrees of 

freedom equal to the number of valid total score categories adjusted for the number of 

item parameters; and values of the Modification Index (Sörbom, 1989) and Wald Test 

(Buse, 1982) are evaluated as being χ
2-distributed with a single degree of freedom. 

Previous research has suggested cut points of χ
2/df = 2 or 3 (Byrne, 1989; Carmines & 

McIver, 1981; Hu & Bentler, 1999; Marsh & Hocevar, 1985) and RMSEA = 0.05 or 0.06 

(Hu & Bentler, 1999) while cut points for the item-fit indices have been defined 

according to the critical values corresponding to a nominal significance level of α = 0.05. 

The empirical cumulative distribution functions and measures of sensitivity, η2, resulting 

from estimation of the true models, however, indicate that these indices do not strictly 

adhere to the proscribed distributions and vary according to many of the conditions 

manipulated in this study. Further, many of the suggested cut points were determined 

based on descriptive analysis of model fit (e.g., Hu & Bentler, 1999), not inferential 

methods. Therefore, the 95th percentiles calculated in the current study were employed as 



 

 180 
 

cut points, allowing for explicit model- and item-fit testing in subsequent analysis of 

misspecified models and items. 

Summarizing the behavior of the model- and item-fit indices according to the 

various simulation conditions provides an interesting and complex picture. Key findings 

for the model- and item-fit indices according to the simulation conditions manipulated in 

this study are reviewed below. Additionally, Table 7.1 provides a quick reference 

indicating the conditions for which estimated models demonstrated the best fit under true 

model estimation, worst fit under misspecified model estimation, and the highest power 

rates for each of the fit indices. 
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Table 7.1: 
Summary of Model and Item Fit Statistic Behaviour by Model Characteristics and Test Design Specifications 

Fit 
Statistic Interpretation 

Number of 
Dimensions Test Length Sample Size 

Multi- 
Dimensionality 

Inter-Factor 
Correlation Item Type Misspecification 

χ2/df Best fit:  Longer tests    Interacts with 
sample size: for 
small samples, 
lower item 
discrimination; for 
large samples, 
higher item 
discrimination 

 

 Worst fit:   Larger sample 
sizes 

 Weaker 
correlations 

Higher item 
discrimination; 
well-targeted item 
difficulty 

 

 Best detection: 
 

 Longer tests Larger sample 
sizes 

 Weaker 
correlations 

  

RMSEA Best fit:  Longer tests Larger sample 
sizes 

    

 Worst fit: Fewer dimensions    Weaker 
correlations 

Higher item 
discrimination; 
well-targeted item 
difficulty 

 

 Best detection: 
 

 Longer tests Larger sample 
sizes 

 Weaker 
correlations 

  

GDDM Best fit:  Longer tests Larger sample 
sizes 

  Higher item 
discrimination; 
well-targeted item 
difficulty 

 

 Worst fit: Fewer dimensions    weak correlation Moderate item 
discrimination; 
well-targeted item 
difficulty 

 

 Best detection: 
 

 Longer tests Larger sample 
sizes 

 weak correlation   

S-χ2 Best fit:  Shorter tests Smaller sample 
sizes 

 Weaker 
correlations 

  

 Worst fit: Fewer dimensions    Stronger 
correlations 

 Alternate-factoring 
(moderate misspecification); 
under-factoring 
(severe misspecification) 

 Best detection: Fewer dimensions  Larger sample 
sizes 

  Higher item 
discrimination; 
well-target item 
difficulty 
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Fit 
Statistic Interpretation 

Number of 
Dimensions Test Length Sample Size 

Multi- 
Dimensionality 

Inter-Factor 
Correlation Item Type Misspecification 

Modification 
Index 

Best fit: More dimensions  Smaller sample 
sizes 

 Stronger 
correlations 

  

 Worst fit: 
 

Fewer dimensions  Larger sample 
sizes 

 Weaker 
correlations 

  

 Best detection: Fewer dimensions Shorter tests Larger sample 
sizes 

 Weaker 
correlations 

 Under-factoring 
(severe misspecification) 

Wald 
Test 

Best fit:  Longer tests  Between-item 
multi-
dimensionality  
(simple structure) 

 Higher item 
discrimination; 
well-targeted item 
difficulty 

 

 Worst fit:   Smaller sample 
sizes 

  Moderate item 
discrimination; 
poorly-targeted 
item difficulty 

Under-factoring 
(severe misspecification) 

 Best detection: More dimensions    Weaker 
correlations 

Moderate item 
discrimination; 
well-targeted item 
difficulty 

Alternate-factoring 
(moderate misspecification) 
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Very few effects due to simulation condition 1: number of dimensions were 

observed, none of them for model-fit indices. These results conform with that of previous 

research which showed that values of the χ
2/df and RMSEA are not sensitive to the 

number of latent factors in a misspecified model (Beauducel & Wittman, 2005; Jackson, 

2007). Looking back to the formulas for the model-fit indices, it can be seen that the 

number of latent factors are not directly included, with the exception of the GDDM. The 

result is that any effect of the number of latent factors appears only indirectly through 

other parameters. Values of the Modification Indices under true model estimation are 

seen to increase with number of dimensions, suggesting better fit. The S-χ2, however, 

demonstrates decreased power to detect misfitting items as the number of factors 

increases. 

Many fit indices demonstrated sensitivity to simulation condition 2: test length 

when true models were estimated. All of the model-fit indices as well as the Wald Test 

statistics demonstrated improved fit for true models as test length increased. Hu and 

Bentler (1999) and Jackson (2007) both reported power rates for the RMSEA that 

increased with test length. This effect could be anticipated as an increase in the number of 

observed variables corresponds to an increase in overall precision when the variables are 

of high discriminatory power. Values of the S-χ
2, however, increase with test length, 

indicating worse fit, which also corresponds to the findings of Zhang and Stone (2008). 

One component of the S-χ2 is the joint likelihood of all possible response patterns which 

increases with every additional item. Further investigation is necessary is required to 

determine if this directly corresponds to power rates. 
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An effect of simulation condition 3: sample size is present across many of the fit 

indices. Under true model estimation, the values of the RMSEA and Wald Test statistics 

decrease with sample size. Previous research has suggested that increased sample size 

results in decreased sampling variability and, therefore, improved model fit (e.g., 

Beauducel & Wittman; Hu & Bentler, 1999; Jackson, 2007). The values of the GDDM, 

S-χ2, and Modification Indices, however, increase with sample size, denoting worsened 

fit. These fit statistics fail to explicitly incorporate sample size in their calculations and 

may benefit from sample size adjustment. When misspecified models are estimated, 

power increases with sample size for the χ
2/df, RMSEA, S-χ2, and Modification Indices. 

This is aligned with previous research that showed the χ2/df  (Marsh, Hau, & Wen, 2004) 

and RMSEA (Beauducel & Wittman, 2005; Curran et al., 2003; Fan & Sivo, 2005, 2007; 

Fan, Thompson, & Wang, 1999; Sivo, Fan, Witte, & Willse, 2006) to be modestly 

sensitive to sample size and the power rates of the S-χ2 and Modification Indices to 

increase with sample size (Hutchinson, 1998; Zhang & Stone, 2008).  

None of the model-fit indices demonstrated sensitivity to simulation condition 4: 

multidimensionality under true model estimation. The Wald Test statistics, however, were 

shown to worsen for within-item multidimensionality. Since the Wald Test is calculated 

as the ratio of a factor loading to its standard error, these results suggest that within-item 

multidimensionality contributes to imprecision of parameter estimates. Under 

misspecified model estimation, power rates calculated according to the GDDM are seen 

to increase for complex-structure models, where items demonstrate within-item 

multidimensionality. Previous research by Fan and Sivo (2005, 2007) and Hu and Bentler 

(1998) found that model fit according to the χ
2/df and RMSEA fit indices worsened for 
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models estimated as under-factored. With fewer estimated parameters, the remaining 

parameters are increasingly subject to sampling variability and, therefore, likely to result 

in misfit. 

Simulation condition 5: inter-factor correlation also demonstrated little effect on 

model-fit indices when true models were estimated. Stronger correlations, however, 

corresponded to worse fit for the S-χ
2 and better fit for the Modification Indices. Power 

rates for the χ2/df, RMSEA, Modification Indices, and Wald Test statistics were all 

highest when inter-factor correlation was weak. These results correspond to those found 

by Ximénez (2009) who reported that RMSEA values decreased for misspecified models 

when factors were moderately correlated versus uncorrelated. 

Finally, simulation condition 6: item type showed very little effect on the majority 

of the fit indices when true models were estimated, though fit according to the Wald Test 

statisitics improved with larger MDISC values and worsened as MDIFF became 

increasingly discrepant from the mean of the latent factor distribution. Under model 

misspecification, however, effects of item type on power rates appear. The GDDM 

correctly rejects misspecified models at higher rates when items are both highly 

discriminating and highly discrepant from the latent factor distribution, the S-χ2 

demonstrates the highest power when items are also highly discriminating but well-

targeted to the latent factor distribution, and the Wald Test statistics demonstrate power 

rates that are higher for moderately-discriminating, well-targeted items. There is some 

precedent for the effect of MDISC in the literature: Beauducel and Wittman (2005) and 

Jackson (2007) showed that the χ2/df and and RMSEA demonstrated sensitivity to 

indicator reliability, where higher reliabilities resulted in larger fit values which correctly 
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indicated misspecification. Indicator reliabilities, or factor loadings, and MDISC differ as 

a matter of a known transformation, therefore, these results are similar and applicable to 

the results shown in this dissertation. 

Notably missing from the above descriptions of fit statistic performance is the 

effect of model misspecification. Degree of model misspecification, moderate or severe, 

was associated with very small percentages of variance in the model-fit statistics 

indicating little to no effect. These results differ from previous studies which showed the 

RMSEA and χ2/df to indicate worse fit as degree of misspecification increased (Fan & 

Sivo, 2005, 2007; Jackson, 2007; Ximénez, 2009). Modification Indices and Wald Test 

statistics, however, were found to be sensitive to the specific types misfit introduced as a 

result of the specific types of model misspecification. Modification Indices demonstrated 

higher power rates when items were subject to under-factoring than when items were 

misspecified according to alternate-factoring. Wald Test statistics were also sensitive to 

the type of misspecification; power rates for this item-fit index were highest for items that 

were subject to alternate-factoring in comparison to those misspecified according to 

under-factoring. 

7.2.Considerations for Future Research 

The simulation design conditions in this study resulted from specific decisions 

made by the author and, though they were made with the intention of being generalizable 

to various test designs and sample populations, they reflect certain limitations that could 

be further examined. The number and proportion of estimation issues encountered in this 

dissertation must also be considered. Lastly, this section presents additional methods for 

the construction and validation of Q-matrices. 
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First, the number of dimensions, test lengths, and sample sizes in this dissertation 

were constrained by practical restrictions on time and computing resources as well as 

being informed by a review of previous literature. More extreme levels of these 

conditions are present in other research (see Baumgartner & Homberg, 1996, for 

example), which could potentially produce larger effects for those fit indices 

demonstrating sensitivity. Similarly, the range of the MDISC and MDIFF item 

parameters selected for the six item types reflect a subset of all possible discrimination 

and difficulty values. These values were selected to be representative of typical 

educational assessment conditions; factor loadings from the seminal study by Hu and 

Bentler (1998) can be shown to approximate MDISC values of 0.98 to 1.33 while the 

values employed by Beauducel and Wittman (2005) and Jackson (2007) correspond to 

MDISC values which range 0.44 to 1.61. As described in Chapter 3, the range of MDIFF 

values is also less extreme than those employed by Finch (2011) and Zhang and Stone 

(2008), which were approximately -2.0 to +2.0 and -5.0 to +5.0, respectively. Degree and 

type of model misspecification is another condition which could be further manipulated. 

Over-factoring, the inclusion of additional parameters in the estimating Q-matrix, was not 

included in this study and is not a condition to frequently appear in model 

misspecification research as this type of misspecification allows the number of potential 

models to explode very quickly, becoming again a matter of selection on the part of the 

researcher. Regarding the degree of misspecification, the majority of RMSEA values 

observed in the misspecified conditions ranged 0.02 to 0.15 which imply marginal-to-

poor fit, therefore, the effects of more extreme misspecification could be explored. Fan 
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and Sivo (2005; 2007) discuss methods by which the degree of misspecification can be 

explicitly controlled other than direct manipulation of the Q-matrix.  

Returning now to the issues encountered in the estimation of the misspecified 

models. Chen, Curran, Bollen, Kirby, and Paxton (2008) report a maximum of 29% of 

replicated models resulting in estimation issues; Fan, Thompson, and Wang (1999) 

reported that 3% of all replications of misspecified models resulted in estimation issues 

for sample sizes of 200 or greater; and Ximénez (2009) reported approximately 40% of 

misspecified model replications resulting in estimation issues. While these numbers are 

large, severely-misspecified models estimated for a sample size of 1000 with 3 weakly 

correlated factors, 12 high-discrimination / moderate-difficulty items which followed 

between-item multidimensionality in the current dissertation required a total of 107,725 

replications to achieve 250 successful replications. For comparison, the estimation failure 

rate was 99.8% suggesting that this condition is essentially unestimable. In a preliminary 

study, models were estimated in this dissertation without requesting the output of factor 

scores, resulting in a percentage of rejected replications which were more aligned with 

the results of previous research. Upon requesting the output of factor scores, Mplus 

reported estimated inter-factor correlations that were greatly inflated, and greater than 

1.0, which prevented subsequent estimation of factor scores. As a result of these findings, 

the degree of misspecification was lessened to produce fewer estimation failures. Further, 

the parameter recovery results demonstrate that the inter-factor correlation is highly 

sensitive to model misspecification and is poorly recovered when models are severely 

misspecified. These results suggest that previous research failed to output factor scores, 

therefore, sidestepping the resulting estimation issues. Designed to produce factor scores, 
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IRT software such as NOHARM (Fraser & McDonald, 1988) and Winsteps (Linacre, 

2011) may provide robust estimation options which avoid related issues of estimation 

failure. 

Decisions regarding both the initial selection of the simulation conditions and the 

subsequent revisions necessary due to observed estimation failures serve to limit the 

generalizability of the current study. In the first case, the specific levels of each 

simulation factor or condition represent but a sampling of all conditions possible. Further, 

these levels and conditions represent reasonable or feasible conditions under which the 

replications of the current study were expected to be successful. Consideration could be 

given to values beyond these ranges which may be considered unreasonable but still 

possible in the broader population. With regards to the revision of the simulation 

conditions as a result of the numerous estimation failures, the results of the current study 

for those specific conditions may be considered overly optimistic. Acknowledging the 

high rate of estimation failures, it may not be possible to generalize these results to other 

studies as the current study essentially describes results for conditions that cannot be 

successfully estimated. Having pursued successful estimation of such models and 

conditions, however, the current study describes conditions where successful estimation 

is likely not possible while also describing the performance of model- and item-fit indices 

should such models be successfully estimated. 

The definition and construction of the Q-matrices in this dissertation was based on 

a very narrow sample of the vast population of Q-matrices that could be applied in both 

simulation and real data analysis. This study limited the Q-matrix both in the number of 

attributes and the number of associations permitted between those attributes and the 
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observed variables. Q-matrix definition is nearly unbounded, limited only by the 

imagination of researchers or constraints applied during the estimation process. Rupp, 

Templin, and Henson (2010) provide a good overview on the construction and 

interpretation of Q-matrices. Further, the Q-matrices employed in this study simply 

represent the associations between observed variables or test items and unobserved 

variables, such as latent constructs or abilities. This method of Q-matric construction is 

said to be simple because it requires only consideration of the direct relationships 

between items and latent variables; the method is agnostic to strategies or methods 

employed by the subject or examinee in demonstrating the types of behavior necessary 

for success.  

The Attribute Hierarchy Method (AHM; Leighton, Gierl, & Hunka, 2004) is an 

alternate approach to Q-matrix specification that has been proposed which takes into 

account the strategies necessary for successful performance and incorporates such 

dependencies in the final Q-matrix. In AHM, an initial assumption is made that the latent 

variables are considered to be hierarchically related or structured reflecting empirical 

and/or theoretical considerations.  Next, a series of matrices (i.e., adjacency, reachability, 

incidence, and reduced incidence) are developed to represent performance profiles (see 

Tatsuoka, 1983, 1995, 1996). The k x k adjacency matrix indicates the direct 

relationships posited between the latent variables; the k x k reachability matrix indicates 

the direct and indirect relationships between latent variables; the k x (2k-1) incidence 

matrix contains a single instance or item for each combination of attributes; and, lastly, 

the reduced incidence matrix retains only those columns from the incidence matrix which 

are logically permissible given the reachability matrix. This final matrix can be used 
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during the test development process to specify item types and demands to be assessed or 

transposed columns from the reduced incidence matrix could be used to construct a Q-

matrix to be applied to an existing assessment. Following this alternate method of Q-

matrix construction accounts for anticipated or hypothesized strategies and relationships 

between latent variables, not just the relationships between items and latent variables. 

This process is similar to the specification of attribute hierarchies in parametric 

diagnostic measurement models, which generally serve to reduce the complexity of the 

structural component of these models (see Rupp, Templin, & Henson, 2010; chapter 10). 

Regardless of the method used in constructing the Q-matrix, Raykov and 

Marcoulides (2001) and Bechger, Verstralen, and Verhelst (2002) showed that it is 

possible for there to exist any number of equivalent models or Q-matrices. Therefore, 

researchers are encouraged to consider evidence beyond what is offered by model- and 

item-fit statistics in selecting a valid model estimated from real data. When estimating 

models applied to real data, the impact of the potential models on certain outcomes can 

provide additional evidence for the validity of the model. For example, the real data 

analysis example provided in this dissertation included an assessment designed to 

measure student-level math ability; therefore, outcomes estimated by this model should 

exhibit a reasonable degree of correspondence to other measures of math ability.  

Further, if scores for the latent dimensions were estimated and interpreted, it 

could be expected that these scores would be associated with the results of similar 

measures (e.g., processing speed, general intelligence). Validity studies can be designed 

to evaluate the impact of the estimated model on such concurrent or criterion measures 

related to the initial assessment and/or latent dimensions. The validity of the selected 
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model, in comparison to any number of equivalent models, might also be examined 

through sensitivity to intervention activities applied to affect change in the latent 

dimensions. Should these dimensions truly represents skills or attributes then activities 

targeted at specifically affecting change should be seen to influence scores over the 

course of longitudinal observation. In additional to statistical measures of model- and 

item-fit, well-designed studies that seek to provide empirical evidence about the 

nomothetic span of the proposed latent dimensions provide important secondary evidence 

for model validity. 

7.3.Conclusion 

The theoretical cut points for each of the model- and item-fit indices were shown 

in this dissertation to produce inflated Type-I error rates; moreover, it was shown how 

suggested descriptive cut-off values for the χ
2/df and RMSEA statistic cannot be correctly 

used as cut-offs for hypothesis tests to control a nominal Type-I error rate. The results of 

this dissertation provide evidence for the use of cut points that account for the various 

sensitivities demonstrated by these fit indices. While a simulation study such as the one 

presented here is beyond the scope of most researchers wishing to evaluate model fit, a 

boostrap approach as suggested by Tay and Drasgow (2012) may provide a reasonable 

option.  

For the majority of conditions considered in this study, the model-fit indices 

demonstrated high power rates in correctly rejecting misspecified models. As a result of 

this, a two-stage approach to Q-matrix evaluation is presented wherein global 

misspecification is first evaluated via model-fit indices then local misspecification is 

explored by examining values of the item-fit indices. The results of such an approach 
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yields increased power rates for the item fit indices, suggesting that joint evaluation of 

model and item fit is likely to lead to appropriate revisions of misspecified Q-matrices. 

Increased consideration of item fit information and alternate approaches to the evaluation 

of model fit have been suggested by others such as Heene, Hilbert, Draxler, Ziegler, and 

Bühner (2011) and Saris, Satorra, and van der Veld (2009).  

The amount of information presented in this dissertation can be distilled into two 

salient points: (1) fit index values under correctly specified models vary systematically 

across test design conditions, including the generally-expected effects of sample size and 

test length but also due to differences in item operating characteristics; and (2) though the 

power of item-fit indices to identify misspecified items is generally poor-to-moderate 

when design-appropriate empirical cut points are used, the power of model-fit indices is 

high and can be used to increase the likelihood of identifying Q-matrix misspecification 

when the two types of fit indices are jointly applied during model evaluation. Statistical 

power is demonstrated throughout this dissertation as the application of design-

appropriate empirical cut points in rejecting misspecified models and items. However, the 

results of this dissertation also present power more generally, providing information on 

the most appropriate application of a wide variety of fit indices for the purpose of 

evaluating and refining Q-matrices, or measurement model structures, whether the 

models are estimated according to confirmatory factor analysis or multidimensional item 

response theory. 
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Appendix A 

Q Matrices 

Table A.1 
Q-Matrix for 2 Latent Factors and 12 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 
 

1 1 
 

1 1 
 

-2 -2 -2 1.4 0.9 
2 1 1 

 
1 1 

 
0 1 

 
-0.25 -0.75 -1 1.4 0.9 

3 1 0 
 

1 0 
 

1 0 
 

-0.1 -0.25 -0.75 1.6 1.1 
4 1 0 

 
1 0 

 
1 0 

 
1 -0.1 -0.5 1.6 1.1 

5 0 1 
 

0 1 
 

0 1 
 

1.13 0.1 -0.25 1.4 0.9 
6 0 1 

 
1 0 

 
1 0 

 
1.25 0.5 -0.1 1.4 0.9 

7 1 0 
 

0 1 
 

0 1 
 

1.38 1 0.1 1.4 0.9 
8 1 0 

 
1 0 

 
1 0 

 
1.5 1.2 0.25 1.4 0.9 

9 0 1 
 

0 1 
 

0 1 
 

1.63 1.4 0.5 1.6 1.1 
10 0 1 

 
0 1 

 
0 1 

 
1.75 1.6 0.75 1.6 1.1 

11 1 1 
 

1 1 
 

1 0 
 

1.88 1.8 1 1.4 0.9 
12 1 1 

 
1 1 

 
1 1 

 
2 2 2 1.4 0.9 
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Table A.2 
Q-Matrix for 2 Latent Factors and 12 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 0 
 

1 0 
 

1 0 
 

-2 -2 -2 1.4 0.9 
2 1 0 

 
1 0 

 
0 1 

 
-0.25 -0.75 -1 1.4 0.9 

3 1 0 
 

1 0 
 

1 0 
 

-0.1 -0.25 -0.75 1.6 1.1 
4 1 0 

 
1 0 

 
1 0 

 
1 -0.1 -0.5 1.6 1.1 

5 0 1 
 

0 1 
 

0 1 
 

1.13 0.1 -0.25 1.4 0.9 
6 0 1 

 
1 0 

 
1 0 

 
1.25 0.5 -0.1 1.4 0.9 

7 1 0 
 

0 1 
 

0 1 
 

1.38 1 0.1 1.4 0.9 
8 1 0 

 
1 0 

 
1 0 

 
1.5 1.2 0.25 1.4 0.9 

9 0 1 
 

0 1 
 

0 1 
 

1.63 1.4 0.5 1.6 1.1 
10 0 1 

 
0 1 

 
0 1 

 
1.75 1.6 0.75 1.6 1.1 

11 0 1 
 

0 1 
 

1 0 
 

1.88 1.8 1 1.4 0.9 
12 0 1 

 
0 1 

 
0 1 

 
2 2 2 1.4 0.9 
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Table A.3 
Q-Matrix for 2 Latent Factors and 24 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 
 

1 1 
 

1 1 
 

-2 -2 -2 1.4 0.9 
2 1 1 

 
1 1 

 
1 1 

 
-0.75 -1.67 -1.67 1.4 0.9 

3 1 1 
 

1 1 
 

0 1 
 

-0.25 -0.75 -1.33 1.4 0.9 
4 1 1 

 
1 1 

 
0 1 

 
0.25 -0.667 -1 1.4 0.9 

5 1 0 
 

1 0 
 

1 0 
 

0.5 -0.25 -0.75 1.6 1.1 
6 1 0 

 
1 0 

 
1 0 

 
1 -0.179 -0.667 1.6 1.1 

7 1 0 
 

1 0 
 

1 0 
 

1.056 -0.107 -0.583 1.6 1.1 
8 1 0 

 
1 0 

 
1 0 

 
1.111 -0.036 -0.5 1.6 1.1 

9 0 1 
 

0 1 
 

0 1 
 

1.167 0.036 -0.25 1.4 0.9 
10 0 1 

 
0 1 

 
0 1 

 
1.222 0.107 -0.179 1.4 0.9 

11 0 1 
 

1 0 
 

1 0 
 

1.278 0.5 -0.107 1.4 0.9 
12 0 1 

 
1 0 

 
1 0 

 
1.333 0.583 -0.036 1.4 0.9 

13 1 0 
 

0 1 
 

0 1 
 

1.389 1 0.036 1.4 0.9 
14 1 0 

 
0 1 

 
0 1 

 
1.444 1 0.107 1.4 0.9 

15 1 0 
 

1 0 
 

1 0 
 

1.5 1 0.179 1.4 0.9 
16 1 0 

 
1 0 

 
1 0 

 
1.556 1 0.25 1.4 0.9 

17 0 1 
 

0 1 
 

0 1 
 

1.611 1 0.5 1.6 1.1 
18 0 1 

 
0 1 

 
0 1 

 
1.667 1.143 0.583 1.6 1.1 

19 0 1 
 

0 1 
 

0 1 
 

1.722 1.286 0.667 1.6 1.1 
20 0 1 

 
0 1 

 
0 1 

 
1.778 1.429 0.75 1.6 1.1 

21 1 1 
 

1 1 
 

1 0 
 

1.833 1.571 1 1.4 0.9 
22 1 1 

 
1 1 

 
1 0 

 
1.889 1.714 1.333 1.4 0.9 

23 1 1 
 

1 1 
 

1 1 
 

1.944 1.857 1.667 1.4 0.9 
24 1 1 

 
1 1 

 
1 1 

 
2 2 2 1.4 0.9 
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Table A.4 
Q-Matrix for 2 Latent Factors and 24 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 0 
 

1 0 
 

1 0 
 

-2 -2 -2 1.4 0.9 
2 1 0 

 
1 0 

 
1 0 

 
-0.75 -1.67 -1.67 1.4 0.9 

3 1 0 
 

1 0 
 

0 1 
 

-0.25 -0.75 -1.33 1.4 0.9 
4 1 0 

 
1 0 

 
0 1 

 
0.25 -0.667 -1 1.4 0.9 

5 1 0 
 

1 0 
 

1 0 
 

0.5 -0.25 -0.75 1.6 1.1 
6 1 0 

 
1 0 

 
1 0 

 
1 -0.179 -0.667 1.6 1.1 

7 1 0 
 

1 0 
 

1 0 
 

1.056 -0.107 -0.583 1.6 1.1 
8 1 0 

 
1 0 

 
1 0 

 
1.111 -0.036 -0.5 1.6 1.1 

9 0 1 
 

0 1 
 

0 1 
 

1.167 0.036 -0.25 1.4 0.9 
10 0 1 

 
0 1 

 
0 1 

 
1.222 0.107 -0.179 1.4 0.9 

11 0 1 
 

1 0 
 

1 0 
 

1.278 0.5 -0.107 1.4 0.9 
12 0 1 

 
1 0 

 
1 0 

 
1.333 0.583 -0.036 1.4 0.9 

13 1 0 
 

0 1 
 

0 1 
 

1.389 1 0.036 1.4 0.9 
14 1 0 

 
0 1 

 
0 1 

 
1.444 1 0.107 1.4 0.9 

15 1 0 
 

1 0 
 

1 0 
 

1.5 1 0.179 1.4 0.9 
16 1 0 

 
1 0 

 
1 0 

 
1.556 1 0.25 1.4 0.9 

17 0 1 
 

0 1 
 

0 1 
 

1.611 1 0.5 1.6 1.1 
18 0 1 

 
0 1 

 
0 1 

 
1.667 1.143 0.583 1.6 1.1 

19 0 1 
 

0 1 
 

0 1 
 

1.722 1.286 0.667 1.6 1.1 
20 0 1 

 
0 1 

 
0 1 

 
1.778 1.429 0.75 1.6 1.1 

21 0 1 
 

0 1 
 

1 0 
 

1.833 1.571 1 1.4 0.9 
22 0 1 

 
0 1 

 
1 0 

 
1.889 1.714 1.333 1.4 0.9 

23 0 1 
 

0 1 
 

0 1 
 

1.944 1.857 1.667 1.4 0.9 
24 0 1 

 
0 1 

 
0 1 

 
2 2 2 1.4 0.9 
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Table A.5 
Q-Matrix for 2 Latent Factors and 36 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 
 

1 1 
 

1 1 
 

-2 -2 -2 1.4 0.9 
2 1 1 

 
1 1 

 
1 1 

 
-0.75 -1.8 -1.8 1.4 0.9 

3 1 1 
 

1 1 
 

1 1 
 

-0.25 -1.6 -1.6 1.4 0.9 
4 1 1 

 
1 1 

 
0 1 

 
-0.2 -0.75 -1.4 1.4 0.9 

5 1 1 
 

1 1 
 

0 1 
 

-0.15 -0.7 -1.2 1.4 0.9 
6 1 1 

 
1 1 

 
0 1 

 
-0.1 -0.65 -1 1.4 0.9 

7 1 0 
 

1 0 
 

1 0 
 

-0.05 -0.25 -0.75 1.6 1.1 
8 1 0 

 
1 0 

 
1 0 

 
-0.01 -0.2 -0.7 1.6 1.1 

9 1 0 
 

1 0 
 

1 0 
 

0.5 -0.15 -0.65 1.6 1.1 
10 1 0 

 
1 0 

 
1 0 

 
1 -0.1 -0.6 1.6 1.1 

11 1 0 
 

1 0 
 

1 0 
 

1.038 -0.05 -0.55 1.6 1.1 
12 1 0 

 
1 0 

 
1 0 

 
1.077 -0.01 -0.5 1.6 1.1 

13 0 1 
 

0 1 
 

0 1 
 

1.115 0.01 -0.25 1.4 0.9 
14 0 1 

 
0 1 

 
0 1 

 
1.154 0.05 -0.2 1.4 0.9 

15 0 1 
 

0 1 
 

0 1 
 

1.192 0.1 -0.15 1.4 0.9 
16 0 1 

 
1 0 

 
1 0 

 
1.231 0.5 -0.1 1.4 0.9 

17 0 1 
 

1 0 
 

1 0 
 

1.269 0.625 -0.05 1.4 0.9 
18 0 1 

 
1 0 

 
1 0 

 
1.308 0.75 -0.01 1.4 0.9 

19 1 0 
 

0 1 
 

0 1 
 

1.346 1 0.01 1.4 0.9 
20 1 0 

 
0 1 

 
0 1 

 
1.385 1.059 0.05 1.4 0.9 

21 1 0 
 

0 1 
 

0 1 
 

1.423 1.118 0.1 1.4 0.9 
22 1 0 

 
1 0 

 
1 0 

 
1.462 1.176 0.15 1.4 0.9 

23 1 0 
 

1 0 
 

1 0 
 

1.5 1.235 0.2 1.4 0.9 
24 1 0 

 
1 0 

 
1 0 

 
1.538 1.294 0.25 1.4 0.9 
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  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 
25 0 1 

 
0 1 

 
0 1 

 
1.577 1.353 0.5 1.6 1.1 

26 0 1 
 

0 1 
 

0 1 
 

1.615 1.412 0.55 1.6 1.1 
27 0 1 

 
0 1 

 
0 1 

 
1.654 1.471 0.6 1.6 1.1 

28 0 1 
 

0 1 
 

0 1 
 

1.692 1.529 0.65 1.6 1.1 
29 0 1 

 
0 1 

 
0 1 

 
1.731 1.588 0.7 1.6 1.1 

30 0 1 
 

0 1 
 

0 1 
 

1.769 1.647 0.75 1.6 1.1 
31 1 1 

 
1 1 

 
1 0 

 
1.808 1.706 1 1.4 0.9 

32 1 1 
 

1 1 
 

1 0 
 

1.846 1.765 1.2 1.4 0.9 
33 1 1 

 
1 1 

 
1 0 

 
1.885 1.824 1.4 1.4 0.9 

34 1 1 
 

1 1 
 

1 1 
 

1.923 1.882 1.6 1.4 0.9 
35 1 1 

 
1 1 

 
1 1 

 
1.962 1.941 1.8 1.4 0.9 

36 1 1 
 

1 1 
 

1 1 
 

2 2 2 1.4 0.9 
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Table A.6 
Q-Matrix for 2 Latent Factors and 36 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 0 
 

1 0 
 

1 0 
 

-2 -2 -2 1.4 0.9 
2 1 0 

 
1 0 

 
1 0 

 
-0.75 -1.8 -1.8 1.4 0.9 

3 1 0 
 

1 0 
 

1 0 
 

-0.25 -1.6 -1.6 1.4 0.9 
4 1 0 

 
1 0 

 
0 1 

 
-0.2 -0.75 -1.4 1.4 0.9 

5 1 0 
 

1 0 
 

0 1 
 

-0.15 -0.7 -1.2 1.4 0.9 
6 1 0 

 
1 0 

 
0 1 

 
-0.1 -0.65 -1 1.4 0.9 

7 1 0 
 

1 0 
 

1 0 
 

-0.05 -0.25 -0.75 1.6 1.1 
8 1 0 

 
1 0 

 
1 0 

 
-0.01 -0.2 -0.7 1.6 1.1 

9 1 0 
 

1 0 
 

1 0 
 

0.5 -0.15 -0.65 1.6 1.1 
10 1 0 

 
1 0 

 
1 0 

 
1 -0.1 -0.6 1.6 1.1 

11 1 0 
 

1 0 
 

1 0 
 

1.038 -0.05 -0.55 1.6 1.1 
12 1 0 

 
1 0 

 
1 0 

 
1.077 -0.01 -0.5 1.6 1.1 

13 0 1 
 

0 1 
 

0 1 
 

1.115 0.01 -0.25 1.4 0.9 
14 0 1 

 
0 1 

 
0 1 

 
1.154 0.05 -0.2 1.4 0.9 

15 0 1 
 

0 1 
 

0 1 
 

1.192 0.1 -0.15 1.4 0.9 
16 0 1 

 
1 0 

 
1 0 

 
1.231 0.5 -0.1 1.4 0.9 

17 0 1 
 

1 0 
 

1 0 
 

1.269 0.625 -0.05 1.4 0.9 
18 0 1 

 
1 0 

 
1 0 

 
1.308 0.75 -0.01 1.4 0.9 

19 1 0 
 

0 1 
 

0 1 
 

1.346 1 0.01 1.4 0.9 
20 1 0 

 
0 1 

 
0 1 

 
1.385 1.059 0.05 1.4 0.9 

21 1 0 
 

0 1 
 

0 1 
 

1.423 1.118 0.1 1.4 0.9 
22 1 0 

 
1 0 

 
1 0 

 
1.462 1.176 0.15 1.4 0.9 

23 1 0 
 

1 0 
 

1 0 
 

1.5 1.235 0.2 1.4 0.9 
24 1 0 

 
1 0 

 
1 0 

 
1.538 1.294 0.25 1.4 0.9 
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  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 
25 0 1 

 
0 1 

 
0 1 

 
1.577 1.353 0.5 1.6 1.1 

26 0 1 
 

0 1 
 

0 1 
 

1.615 1.412 0.55 1.6 1.1 
27 0 1 

 
0 1 

 
0 1 

 
1.654 1.471 0.6 1.6 1.1 

28 0 1 
 

0 1 
 

0 1 
 

1.692 1.529 0.65 1.6 1.1 
29 0 1 

 
0 1 

 
0 1 

 
1.731 1.588 0.7 1.6 1.1 

30 0 1 
 

0 1 
 

0 1 
 

1.769 1.647 0.75 1.6 1.1 
31 0 1 

 
0 1 

 
1 0 

 
1.808 1.706 1 1.4 0.9 

32 0 1 
 

0 1 
 

1 0 
 

1.846 1.765 1.2 1.4 0.9 
33 0 1 

 
0 1 

 
1 0 

 
1.885 1.824 1.4 1.4 0.9 

34 0 1 
 

0 1 
 

0 1 
 

1.923 1.882 1.6 1.4 0.9 
35 0 1 

 
0 1 

 
0 1 

 
1.962 1.941 1.8 1.4 0.9 

36 0 1 
 

0 1 
 

0 1 
 

2 2 2 1.4 0.9 
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Table A.7 
Q-Matrix for 3 Latent Factors and 12 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9 
2 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1 1.5 1 
3 0 1 0 0 1 0 0 1 0 -0.1 -0.25 -0.75 1.6 1.1 
4 0 0 1 0 0 1 0 0 1 1 -0.1 -0.5 1.4 0.9 
5 1 0 0 1 0 0 1 0 0 1.13 0.1 -0.25 1.5 1 
6 1 0 1 1 0 1 1 0 1 1.25 0.5 -0.1 1.6 1.1 
7 0 1 0 0 1 0 0 1 0 1.38 1 0.1 1.6 1.1 
8 0 0 1 0 0 1 0 0 1 1.5 1.2 0.25 1.5 1 
9 1 0 0 1 0 0 1 0 0 1.63 1.4 0.5 1.4 0.9 
10 0 1 0 0 1 0 0 1 0 1.75 1.6 0.75 1.6 1.1 
11 0 0 1 1 0 0 1 0 0 1.88 1.8 1 1.5 1 
12 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9 
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Table A.8 
Q-Matrix for 3 Latent Factors and 12 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9 
2 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1 1.5 1 
3 0 1 0 0 1 0 0 1 0 -0.1 -0.25 -0.75 1.6 1.1 
4 0 0 1 0 0 1 0 0 1 1 -0.1 -0.5 1.4 0.9 
5 1 0 0 1 0 0 1 0 0 1.13 0.1 -0.25 1.5 1 
6 0 1 0 0 1 0 0 1 0 1.25 0.5 -0.1 1.6 1.1 
7 0 1 0 0 1 0 0 1 0 1.38 1 0.1 1.6 1.1 
8 0 0 1 0 0 1 0 0 1 1.5 1.2 0.25 1.5 1 
9 1 0 0 1 0 0 1 0 0 1.63 1.4 0.5 1.4 0.9 
10 0 1 0 0 1 0 0 1 0 1.75 1.6 0.75 1.6 1.1 
11 0 0 1 1 0 0 1 0 0 1.88 1.8 1 1.5 1 
12 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9 
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Table A.9 
Q-Matrix for 3 Latent Factors and 24 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9 
2 1 1 0 1 1 0 1 0 0 -0.75 -1.67 -1.67 1.4 0.9 
3 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1.33 1.5 1 
4 1 0 0 0 0 1 0 0 1 0.25 -0.667 -1 1.5 1 
5 0 1 0 0 1 0 0 1 0 0.5 -0.25 -0.75 1.6 1.1 
6 0 1 0 0 1 0 0 1 0 1 -0.179 -0.667 1.6 1.1 
7 0 0 1 0 0 1 0 0 1 1.056 -0.107 -0.583 1.4 0.9 
8 0 0 1 0 0 1 0 0 1 1.111 -0.036 -0.5 1.4 0.9 
9 1 0 0 1 0 0 1 0 0 1.167 0.036 -0.25 1.5 1 
10 1 0 0 1 0 0 1 0 0 1.222 0.107 -0.179 1.5 1 
11 1 0 1 1 0 1 1 0 1 1.278 0.5 -0.107 1.6 1.1 
12 1 0 1 1 0 1 1 0 1 1.333 0.583 -0.036 1.6 1.1 
13 0 1 0 0 1 0 0 1 0 1.389 1 0.036 1.6 1.1 
14 0 1 0 0 1 0 0 1 0 1.444 1 0.107 1.6 1.1 
15 0 0 1 0 0 1 0 0 1 1.5 1 0.179 1.5 1 
16 0 0 1 0 0 1 0 0 1 1.556 1 0.25 1.5 1 
17 1 0 0 1 0 0 1 0 0 1.611 1 0.5 1.4 0.9 
18 1 0 0 1 0 0 1 0 0 1.667 1.143 0.583 1.4 0.9 
19 0 1 0 0 1 0 0 1 0 1.722 1.286 0.667 1.6 1.1 
20 0 1 0 0 1 0 0 1 0 1.778 1.429 0.75 1.6 1.1 
21 0 0 1 1 0 0 1 0 0 1.833 1.571 1 1.5 1 
22 0 0 1 1 0 0 1 0 0 1.889 1.714 1.333 1.5 1 
23 0 1 1 0 1 1 0 0 1 1.944 1.857 1.667 1.4 0.9 
24 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9 
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Table A.10 
Q-Matrix for 3 Latent Factors and 24 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9 
2 0 0 1 0 0 1 1 0 0 -0.75 -1.67 -1.67 1.4 0.9 
3 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1.33 1.5 1 
4 1 0 0 0 0 1 0 0 1 0.25 -0.667 -1 1.5 1 
5 0 1 0 0 1 0 0 1 0 0.5 -0.25 -0.75 1.6 1.1 
6 0 1 0 0 1 0 0 1 0 1 -0.179 -0.667 1.6 1.1 
7 0 0 1 0 0 1 0 0 1 1.056 -0.107 -0.583 1.4 0.9 
8 0 0 1 0 0 1 0 0 1 1.111 -0.036 -0.5 1.4 0.9 
9 1 0 0 1 0 0 1 0 0 1.167 0.036 -0.25 1.5 1 
10 1 0 0 1 0 0 1 0 0 1.222 0.107 -0.179 1.5 1 
11 0 1 0 0 1 0 0 1 0 1.278 0.5 -0.107 1.6 1.1 
12 0 1 0 0 1 0 0 1 0 1.333 0.583 -0.036 1.6 1.1 
13 0 1 0 0 1 0 0 1 0 1.389 1 0.036 1.6 1.1 
14 0 1 0 0 1 0 0 1 0 1.444 1 0.107 1.6 1.1 
15 0 0 1 0 0 1 0 0 1 1.5 1 0.179 1.5 1 
16 0 0 1 0 0 1 0 0 1 1.556 1 0.25 1.5 1 
17 1 0 0 1 0 0 1 0 0 1.611 1 0.5 1.4 0.9 
18 1 0 0 1 0 0 1 0 0 1.667 1.143 0.583 1.4 0.9 
19 0 1 0 0 1 0 0 1 0 1.722 1.286 0.667 1.6 1.1 
20 0 1 0 0 1 0 0 1 0 1.778 1.429 0.75 1.6 1.1 
21 0 0 1 1 0 0 1 0 0 1.833 1.571 1 1.5 1 
22 0 0 1 1 0 0 1 0 0 1.889 1.714 1.333 1.5 1 
23 1 0 0 1 0 0 0 0 1 1.944 1.857 1.667 1.4 0.9 
24 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9 
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Table A.11 
Q-Matrix for 3 Latent Factors and 36 Items according to Within-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9 
2 1 1 0 1 1 0 1 0 0 -0.75 -1.8 -1.8 1.4 0.9 
3 1 1 0 1 1 0 1 0 0 -0.25 -1.6 -1.6 1.4 0.9 
4 1 0 0 0 0 1 0 0 1 -0.2 -0.75 -1.4 1.5 1 
5 1 0 0 0 0 1 0 0 1 -0.15 -0.7 -1.2 1.5 1 
6 1 0 0 0 0 1 0 0 1 -0.1 -0.65 -1 1.5 1 
7 0 1 0 0 1 0 0 1 0 -0.05 -0.25 -0.75 1.6 1.1 
8 0 1 0 0 1 0 0 1 0 -0.01 -0.2 -0.7 1.6 1.1 
9 0 1 0 0 1 0 0 1 0 0.5 -0.15 -0.65 1.6 1.1 
10 0 0 1 0 0 1 0 0 1 1 -0.1 -0.6 1.4 0.9 
11 0 0 1 0 0 1 0 0 1 1.038 -0.05 -0.55 1.4 0.9 
12 0 0 1 0 0 1 0 0 1 1.077 -0.01 -0.5 1.4 0.9 
13 1 0 0 1 0 0 1 0 0 1.115 0.01 -0.25 1.5 1 
14 1 0 0 1 0 0 1 0 0 1.154 0.05 -0.2 1.5 1 
15 1 0 0 1 0 0 1 0 0 1.192 0.1 -0.15 1.5 1 
16 1 0 1 1 0 1 1 0 1 1.231 0.5 -0.1 1.6 1.1 
17 1 0 1 1 0 1 1 0 1 1.269 0.625 -0.05 1.6 1.1 
18 1 0 1 1 0 1 1 0 1 1.308 0.75 -0.01 1.6 1.1 
19 0 1 0 0 1 0 0 1 0 1.346 1 0.01 1.6 1.1 
20 0 1 0 0 1 0 0 1 0 1.385 1.059 0.05 1.6 1.1 
21 0 1 0 0 1 0 0 1 0 1.423 1.118 0.1 1.6 1.1 
22 0 0 1 0 0 1 0 0 1 1.462 1.176 0.15 1.5 1 
23 0 0 1 0 0 1 0 0 1 1.5 1.235 0.2 1.5 1 
24 0 0 1 0 0 1 0 0 1 1.538 1.294 0.25 1.5 1 
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  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 
25 1 0 0 1 0 0 1 0 0 1.577 1.353 0.5 1.4 0.9 
26 1 0 0 1 0 0 1 0 0 1.615 1.412 0.55 1.4 0.9 
27 1 0 0 1 

 
0 1 0 0 1.654 1.471 0.6 1.4 0.9 

28 0 1 0 0 1 0 0 1 0 1.692 1.529 0.65 1.6 1.1 
29 0 1 0 0 1 0 0 1 0 1.731 1.588 0.7 1.6 1.1 
30 0 1 0 0 1 0 0 1 0 1.769 1.647 0.75 1.6 1.1 
31 0 0 1 1 0 0 1 0 0 1.808 1.706 1 1.5 1 
32 0 0 1 1 0 0 1 0 0 1.846 1.765 1.2 1.5 1 
33 0 0 1 1 0 0 1 0 0 1.885 1.824 1.4 1.5 1 
34 0 1 1 0 1 1 0 0 1 1.923 1.882 1.6 1.4 0.9 
35 0 1 1 0 1 1 0 0 1 1.962 1.941 1.8 1.4 0.9 
36 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9 
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Table A.12 
Q-Matrix for 3 Latent Factors and 36 Items according to Between-Item Multidimensionality 

  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 

1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9 
2 0 0 1 0 0 1 1 0 0 -0.75 -1.8 -1.8 1.4 0.9 
3 0 0 1 0 0 1 1 0 0 -0.25 -1.6 -1.6 1.4 0.9 
4 1 0 0 0 0 1 0 0 1 -0.2 -0.75 -1.4 1.5 1 
5 1 0 0 0 0 1 0 0 1 -0.15 -0.7 -1.2 1.5 1 
6 1 0 0 0 0 1 0 0 1 -0.1 -0.65 -1 1.5 1 
7 0 1 0 0 1 0 0 1 0 -0.05 -0.25 -0.75 1.6 1.1 
8 0 1 0 0 1 0 0 1 0 -0.01 -0.2 -0.7 1.6 1.1 
9 0 1 0 0 1 0 0 1 0 0.5 -0.15 -0.65 1.6 1.1 
10 0 0 1 0 0 1 0 0 1 1 -0.1 -0.6 1.4 0.9 
11 0 0 1 0 0 1 0 0 1 1.038 -0.05 -0.55 1.4 0.9 
12 0 0 1 0 0 1 0 0 1 1.077 -0.01 -0.5 1.4 0.9 
13 1 0 0 1 0 0 1 0 0 1.115 0.01 -0.25 1.5 1 
14 1 0 0 1 0 0 1 0 0 1.154 0.05 -0.2 1.5 1 
15 1 0 0 1 0 

 
1 0 0 1.192 0.1 -0.15 1.5 1 

16 0 1 0 0 1 0 0 1 0 1.231 0.5 -0.1 1.6 1.1 
17 0 1 0 0 1 0 0 1 0 1.269 0.625 -0.05 1.6 1.1 
18 0 1 0 0 1 0 0 1 0 1.308 0.75 -0.01 1.6 1.1 
19 0 1 0 0 1 0 0 1 0 1.346 1 0.01 1.6 1.1 
20 0 1 0 0 1 0 0 1 0 1.385 1.059 0.05 1.6 1.1 
21 0 1 0 0 1 0 0 1 0 1.423 1.118 0.1 1.6 1.1 
22 0 0 1 0 0 1 0 0 1 1.462 1.176 0.15 1.5 1 
23 0 0 1 0 0 1 0 0 1 1.5 1.235 0.2 1.5 1 
24 0 0 1 0 0 1 0 0 1 1.538 1.294 0.25 1.5 1 
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  True   Mod.   Sev.   MDIFF  MDISC  
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M 
25 1 0 0 1 0 0 1 0 0 1.577 1.353 0.5 1.4 0.9 
26 1 0 0 1 0 0 1 0 0 1.615 1.412 0.55 1.4 0.9 
27 1 0 0 1 0 0 1 0 0 1.654 1.471 0.6 1.4 0.9 
28 0 1 0 0 1 0 0 1 0 1.692 1.529 0.65 1.6 1.1 
29 0 1 0 0 1 0 0 1 0 1.731 1.588 0.7 1.6 1.1 
30 0 1 0 0 1 0 0 1 0 1.769 1.647 0.75 1.6 1.1 
31 0 0 1 1 0 0 1 0 0 1.808 1.706 1 1.5 1 
32 0 0 1 1 0 0 1 0 0 1.846 1.765 1.2 1.5 1 
33 0 0 1 1 0 0 1 0 0 1.885 1.824 1.4 1.5 1 
34 1 0 0 1 0 0 0 0 1 1.923 1.882 1.6 1.4 0.9 
35 1 0 0 1 0 0 0 0 1 1.962 1.941 1.8 1.4 0.9 
36 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9 
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Appendix B 

Key Descriptive Statistics Under True Model Estimation 

Table B.1 
Key Descriptive Statistics for the χ2/df Model-Fit Index Under True Model Estimation 
 

Test 
Length 

Sample 
Size 

Item 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

12 250 HH 0.655 0.964 1.086 1.060 1.173 1.307 1.404 1.661 3.391 0.180 1.570 7.425 
12 250 HL 0.556 0.913 1.031 1.007 1.121 1.249 1.339 1.580 3.205 0.176 1.545 8.036 
12 250 HM 0.644 0.948 1.057 1.033 1.137 1.261 1.347 1.572 3.346 0.167 1.769 10.020 
12 250 MH 0.536 0.857 0.968 0.954 1.062 1.176 1.245 1.393 1.693 0.156 0.554 0.520 
12 250 ML 0.453 0.873 0.995 0.981 1.102 1.223 1.301 1.466 2.092 0.174 0.518 0.635 
12 250 MM 0.464 0.861 0.977 0.965 1.077 1.195 1.270 1.421 1.826 0.164 0.523 0.530 
12 1000 HH 0.533 0.858 0.953 0.939 1.033 1.133 1.196 1.342 1.744 0.138 0.675 1.081 
12 1000 HL 0.467 0.838 0.954 0.936 1.051 1.170 1.251 1.447 1.858 0.167 0.720 1.101 
12 1000 HM 0.528 0.853 0.951 0.937 1.033 1.138 1.213 1.372 1.812 0.145 0.698 1.147 
12 1000 MH 0.450 0.844 0.974 0.960 1.091 1.210 1.288 1.463 1.867 0.182 0.474 0.416 
12 1000 ML 0.426 0.863 1.000 0.986 1.118 1.254 1.342 1.512 2.045 0.194 0.514 0.573 
12 1000 MM 0.381 0.851 0.984 0.971 1.101 1.231 1.313 1.492 1.911 0.188 0.463 0.404 
24 250 HH 0.876 0.987 1.026 1.020 1.057 1.097 1.124 1.191 1.388 0.056 0.802 1.479 
24 250 HL 0.837 0.959 0.996 0.990 1.026 1.067 1.094 1.156 1.503 0.055 0.833 2.231 
24 250 HM 0.848 0.969 1.005 0.999 1.035 1.073 1.101 1.161 1.475 0.053 0.960 2.875 
24 250 MH 0.826 0.963 1.003 0.999 1.038 1.077 1.101 1.151 1.283 0.057 0.353 0.269 
24 250 ML 0.797 0.962 1.006 1.003 1.046 1.089 1.117 1.172 1.305 0.064 0.328 0.274 
24 250 MM 0.809 0.957 0.999 0.995 1.038 1.079 1.104 1.159 1.249 0.061 0.349 0.209 
24 1000 HH 0.795 0.938 0.978 0.973 1.012 1.055 1.082 1.137 1.302 0.058 0.550 0.707 
24 1000 HL 0.750 0.929 0.976 0.971 1.017 1.064 1.096 1.160 1.349 0.067 0.523 0.672 
24 1000 HM 0.769 0.932 0.973 0.968 1.007 1.051 1.080 1.141 1.364 0.060 0.587 1.053 
24 1000 MH 0.741 0.943 0.996 0.992 1.045 1.095 1.126 1.194 1.359 0.076 0.303 0.249 
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Test 
Length 

Sample 
Size 

Item 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

24 1000 ML 0.746 0.950 1.006 1.003 1.058 1.109 1.143 1.211 1.401 0.080 0.252 0.178 
24 1000 MM 0.733 0.947 1.001 0.998 1.052 1.105 1.136 1.198 1.379 0.079 0.239 0.165 
36 250 HH 0.916 0.987 1.008 1.004 1.025 1.047 1.060 1.090 1.220 0.029 0.740 1.235 
36 250 HL 0.912 0.975 0.995 0.992 1.012 1.034 1.049 1.083 1.226 0.030 0.819 1.721 
36 250 HM 0.929 0.985 1.004 1.001 1.019 1.040 1.054 1.084 1.232 0.028 1.038 3.070 
36 250 MH 0.905 0.989 1.010 1.008 1.029 1.049 1.063 1.088 1.181 0.030 0.322 0.304 
36 250 ML 0.892 0.984 1.008 1.006 1.030 1.052 1.067 1.095 1.173 0.034 0.290 0.218 
36 250 MM 0.901 0.978 0.999 0.997 1.019 1.040 1.054 1.083 1.136 0.031 0.420 0.353 
36 1000 HH 0.873 0.963 0.988 0.985 1.010 1.036 1.053 1.089 1.172 0.037 0.539 0.767 
36 1000 HL 0.862 0.956 0.982 0.979 1.005 1.033 1.051 1.089 1.211 0.039 0.562 0.938 
36 1000 HM 0.874 0.960 0.979 0.977 0.996 1.016 1.033 1.068 1.192 0.030 0.674 1.516 
36 1000 MH 0.862 0.971 1.002 1.001 1.030 1.059 1.077 1.110 1.191 0.044 0.216 0.061 
36 1000 ML 0.816 0.971 1.004 1.003 1.036 1.066 1.085 1.118 1.243 0.048 0.129 0.011 
36 1000 MM 0.840 0.968 0.999 0.998 1.029 1.058 1.078 1.114 1.211 0.046 0.239 0.141 
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Table B.2 
Key Descriptive Statistics for the RMSEA Model-Fit Index Under True Model Estimation 
 

Test 
Length 

Sample 
Size 

Item 
Multi. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

12 250 B 0.000 0.000 0.013 0.009 0.024 0.033 0.038 0.049 0.098 0.014 0.800 -0.141 
12 250 W 0.000 0.000 0.010 0.000 0.019 0.028 0.034 0.042 0.076 0.012 0.985 -0.136 
12 1000 B 0.000 0.000 0.004 0.000 0.009 0.014 0.017 0.021 0.032 0.006 1.120 0.078 
12 1000 W 0.000 0.000 0.004 0.000 0.008 0.013 0.016 0.021 0.032 0.006 1.387 0.864 
24 250 B 0.000 0.000 0.008 0.007 0.015 0.019 0.022 0.027 0.045 0.008 0.560 -0.846 
24 250 W 0.000 0.000 0.005 0.000 0.011 0.016 0.019 0.024 0.035 0.007 1.034 -0.108 
24 1000 B 0.000 0.000 0.003 0.000 0.006 0.009 0.011 0.014 0.020 0.004 1.007 -0.224 
24 1000 W 0.000 0.000 0.002 0.000 0.005 0.009 0.011 0.013 0.020 0.004 1.322 0.557 
36 250 B 0.000 0.000 0.006 0.006 0.011 0.014 0.016 0.020 0.030 0.006 0.471 -0.958 
36 250 W 0.000 0.000 0.004 0.000 0.008 0.012 0.014 0.017 0.027 0.005 1.052 -0.100 
36 1000 B 0.000 0.000 0.002 0.000 0.005 0.007 0.009 0.010 0.015 0.003 1.005 -0.252 
36 1000 W 0.000 0.000 0.002 0.000 0.004 0.007 0.008 0.010 0.016 0.003 1.374 0.704 
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Table B.3 
Key Descriptive Statistics for the GDDM Model-Fit Index Under True Model Estimation 
 

Test 
Length 

Sample 
Size 

Item 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

12 250 HH 1.569 1.844 1.915 1.906 1.972 2.049 2.106 2.237 2.931 0.108 0.909 2.941 
12 250 HL 1.249 1.676 1.741 1.738 1.797 1.867 1.922 2.048 2.401 0.107 0.511 1.876 
12 250 HM 1.467 1.743 1.804 1.801 1.857 1.916 1.963 2.091 2.498 0.096 0.628 2.059 
12 250 MH 1.474 1.779 1.867 1.852 1.942 2.037 2.102 2.230 3.038 0.130 0.754 1.674 
12 250 ML 1.115 1.560 1.645 1.633 1.717 1.813 1.878 2.026 2.428 0.130 0.627 1.342 
12 250 MM 1.374 1.643 1.716 1.708 1.778 1.856 1.907 2.033 3.180 0.113 0.933 5.035 
12 1000 HH 6.647 7.347 7.496 7.496 7.644 7.775 7.859 8.032 8.671 0.224 0.049 0.311 
12 1000 HL 5.901 6.583 6.760 6.815 6.945 7.036 7.088 7.188 7.530 0.247 -0.554 -0.401 
12 1000 HM 6.297 6.985 7.138 7.171 7.299 7.406 7.471 7.602 7.970 0.229 -0.382 -0.130 
12 1000 MH 6.231 6.954 7.120 7.117 7.288 7.440 7.534 7.745 8.476 0.256 0.080 0.369 
12 1000 ML 5.371 6.084 6.238 6.265 6.404 6.517 6.591 6.764 7.371 0.240 -0.248 0.037 
12 1000 MM 5.796 6.515 6.661 6.679 6.822 6.945 7.021 7.162 7.545 0.235 -0.284 -0.017 
24 250 HH 0.415 0.493 0.519 0.516 0.540 0.565 0.581 0.613 0.694 0.036 0.475 0.436 
24 250 HL 0.352 0.448 0.479 0.475 0.505 0.534 0.555 0.595 0.709 0.042 0.563 0.603 
24 250 HM 0.381 0.482 0.513 0.509 0.540 0.571 0.592 0.630 0.749 0.044 0.519 0.458 
24 250 MH 0.395 0.504 0.534 0.531 0.561 0.590 0.609 0.646 1.135 0.043 0.651 3.513 
24 250 ML 0.332 0.446 0.481 0.477 0.512 0.546 0.567 0.612 0.720 0.049 0.448 0.297 
24 250 MM 0.359 0.483 0.520 0.516 0.553 0.590 0.614 0.662 0.775 0.053 0.458 0.262 
24 1000 HH 1.690 1.830 1.881 1.873 1.923 1.974 2.010 2.071 2.286 0.070 0.580 0.459 
24 1000 HL 1.400 1.605 1.650 1.653 1.694 1.738 1.769 1.829 2.020 0.072 0.095 0.499 
24 1000 HM 1.573 1.738 1.788 1.782 1.831 1.885 1.920 1.991 2.188 0.074 0.510 0.733 
24 1000 MH 1.562 1.803 1.860 1.855 1.911 1.967 2.004 2.082 2.316 0.083 0.454 0.573 
24 1000 ML 1.314 1.505 1.560 1.556 1.611 1.667 1.701 1.773 1.959 0.082 0.347 0.316 
24 1000 MM 1.447 1.663 1.729 1.722 1.786 1.852 1.896 1.987 2.152 0.094 0.499 0.428 
36 250 HH 0.210 0.259 0.274 0.273 0.288 0.303 0.313 0.330 0.383 0.022 0.341 0.163 
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Test 
Length 

Sample 
Size 

Item 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

36 250 HL 0.176 0.238 0.255 0.254 0.271 0.287 0.298 0.318 0.368 0.024 0.351 0.183 
36 250 HM 0.196 0.244 0.260 0.259 0.274 0.289 0.299 0.320 0.366 0.023 0.374 0.251 
36 250 MH 0.211 0.275 0.293 0.292 0.309 0.327 0.337 0.357 0.409 0.026 0.293 0.159 
36 250 ML 0.185 0.249 0.269 0.268 0.287 0.306 0.317 0.340 0.391 0.028 0.310 0.134 
36 250 MM 0.193 0.258 0.276 0.275 0.294 0.311 0.323 0.345 0.394 0.027 0.284 0.126 
36 1000 HH 0.750 0.851 0.882 0.878 0.909 0.939 0.958 0.998 1.067 0.042 0.518 0.293 
36 1000 HL 0.638 0.752 0.781 0.780 0.809 0.838 0.857 0.893 0.986 0.044 0.193 0.255 
36 1000 HM 0.722 0.802 0.829 0.826 0.852 0.878 0.894 0.928 1.022 0.038 0.436 0.353 
36 1000 MH 0.747 0.862 0.896 0.893 0.926 0.958 0.979 1.020 1.115 0.048 0.360 0.215 
36 1000 ML 0.591 0.729 0.764 0.761 0.795 0.830 0.851 0.893 1.022 0.050 0.355 0.190 
36 1000 MM 0.666 0.794 0.827 0.824 0.857 0.891 0.911 0.951 1.027 0.048 0.358 0.152 
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Table B.4 
Key Descriptive Statistics for the S-χ2/df Item-Fit Index Under True Model Estimation 
 

Test 
Length 

Sample 
Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

12 250 H 0.025 5.384 8.552 7.580 10.406 13.706 16.155 23.390 1049.197 8.239 35.224 2586.406 
12 250 L 0.002 3.148 5.512 4.901 7.205 9.814 11.664 15.714 35.360 3.234 1.204 2.310 
12 250 M 0.009 3.973 6.391 5.801 8.179 10.842 12.714 16.767 191.404 3.388 1.925 41.936 
12 1000 H 0.367 11.074 17.706 15.943 22.291 29.610 35.687 50.105 249.584 9.514 1.417 4.578 
12 1000 L 0.029 4.935 7.697 7.096 9.787 12.764 14.877 19.383 53.894 3.842 1.030 1.874 
12 1000 M 0.173 7.378 11.100 10.350 13.977 18.002 20.811 26.966 52.949 5.239 0.944 1.532 
24 250 H 0.122 9.465 13.368 12.669 16.387 20.296 22.971 29.101 883.094 6.664 17.832 1298.712 
24 250 L 0.028 7.471 11.143 10.525 14.141 17.911 20.404 25.641 58.741 5.080 0.759 0.918 
24 250 M 0.064 8.197 11.877 11.271 14.873 18.639 21.152 26.457 51.549 5.096 0.751 0.922 
24 1000 H 1.531 17.537 23.830 22.685 28.773 35.362 40.258 51.394 129.345 9.003 0.923 1.700 
24 1000 L 0.503 11.429 15.559 14.929 19.002 23.237 26.075 32.005 61.481 5.820 0.684 0.863 
24 1000 M 0.994 13.986 18.535 17.895 22.387 27.032 30.128 36.715 68.149 6.490 0.646 0.909 
36 250 H 0.020 12.263 16.995 16.327 20.919 25.599 28.692 35.262 877.334 7.003 5.923 393.160 
36 250 L 0.032 10.421 15.055 14.472 19.020 23.570 26.526 32.611 60.133 6.428 0.579 0.465 
36 250 M 0.176 11.101 15.765 15.157 19.717 24.320 27.304 33.504 60.870 6.449 0.595 0.489 
36 1000 H 2.639 24.299 31.093 30.049 36.689 43.963 49.011 59.974 119.123 9.969 0.756 1.461 
36 1000 L 0.915 17.416 22.588 21.926 27.037 32.292 35.711 42.929 84.508 7.383 0.566 0.690 
36 1000 M 1.421 20.296 25.735 25.091 30.477 35.960 39.619 47.702 93.720 7.914 0.554 0.877 
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Table B.5 
Key Descriptive Statistics for Modification Index 1 Under True Model Estimation 
 

Corr. 
Sample 

Size Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
H 250 2 0.000 0.097 0.994 0.435 1.287 2.680 3.860 6.945 32.864 1.469 3.243 17.640 
H 250 3 0.000 0.077 0.782 0.342 1.007 2.112 3.045 5.491 23.134 1.155 3.164 15.799 
H 1000 2 0.000 0.139 1.399 0.615 1.800 3.758 5.453 9.846 38.154 2.065 3.156 15.508 
H 1000 3 0.000 0.113 1.113 0.494 1.447 3.002 4.308 7.660 33.481 1.619 3.065 14.666 
L 250 2 0.000 0.178 1.800 0.795 2.336 4.844 6.972 12.488 71.149 2.638 3.178 16.843 
L 250 3 0.000 0.136 1.364 0.606 1.775 3.688 5.299 9.310 35.164 1.982 3.042 14.418 
L 1000 2 0.000 0.236 2.403 1.053 3.107 6.466 9.365 16.662 74.634 3.531 3.123 15.415 
L 1000 3 0.000 0.179 1.805 0.805 2.348 4.865 6.988 12.369 45.988 2.616 3.004 13.746 
M 250 2 0.000 0.145 1.459 0.644 1.891 3.938 5.664 10.108 40.309 2.132 3.097 15.018 
M 250 3 0.000 0.114 1.147 0.510 1.494 3.091 4.439 7.868 35.917 1.668 3.083 15.201 
M 1000 2 0.000 0.198 2.026 0.893 2.627 5.453 7.875 14.087 58.378 2.978 3.165 16.075 
M 1000 3 0.000 0.158 1.570 0.703 2.050 4.233 6.059 10.722 42.264 2.268 3.015 14.131 
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Table B.6 
Key Descriptive Statistics for Modification Index 2 Under True Model Estimation 
 

Corr. 
Sample 

Size Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
H 250 2 0.000 0.103 1.097 0.465 1.383 2.943 4.308 7.975 61.844 1.689 3.831 31.155 
H 250 3 0.000 0.080 0.824 0.358 1.061 2.222 3.210 5.778 25.763 1.222 3.251 17.434 
H 1000 2 0.000 0.143 1.433 0.634 1.852 3.865 5.581 9.967 36.341 2.101 3.100 14.783 
H 1000 3 0.000 0.117 1.164 0.514 1.502 3.136 4.521 8.049 31.514 1.704 3.113 15.091 
L 250 2 0.000 0.175 1.776 0.781 2.292 4.788 6.909 12.296 59.575 2.613 3.220 17.410 
L 250 3 0.000 0.148 1.515 0.666 1.956 4.079 5.870 10.579 46.767 2.240 3.263 17.568 
L 1000 2 0.000 0.233 2.379 1.048 3.096 6.441 9.236 16.365 63.426 3.469 3.061 14.629 
L 1000 3 0.000 0.197 1.991 0.879 2.579 5.369 7.712 13.816 61.323 2.917 3.135 15.718 
M 250 2 0.000 0.146 1.477 0.655 1.917 3.988 5.728 10.168 60.358 2.158 3.199 18.143 
M 250 3 0.000 0.122 1.246 0.550 1.615 3.359 4.831 8.646 43.595 1.829 3.170 16.305 
M 1000 2 0.000 0.196 2.017 0.886 2.612 5.431 7.846 14.043 50.223 2.964 3.127 15.358 
M 1000 3 0.000 0.169 1.691 0.749 2.198 4.552 6.562 11.692 51.361 2.464 3.053 14.402 
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Table B.7 
Key Descriptive Statistics for Modification Index 3 Under True Model Estimation 
 

Corr. 
Sample 

Size 
Test 

Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
H 250 12 0.000 0.089 0.872 0.391 1.141 2.336 3.355 5.909 23.883 1.263 3.166 16.562 
H 250 24 0.000 0.083 0.837 0.372 1.091 2.258 3.223 5.755 18.633 1.218 3.085 14.918 
H 250 36 0.000 0.073 0.759 0.329 0.979 2.056 2.965 5.288 16.309 1.119 3.105 14.827 
H 1000 12 0.000 0.103 0.981 0.443 1.285 2.643 3.779 6.626 20.199 1.403 2.942 13.220 
H 1000 24 0.000 0.116 1.133 0.508 1.481 3.052 4.374 7.709 26.582 1.634 2.990 13.606 
H 1000 36 0.000 0.119 1.178 0.522 1.529 3.174 4.573 8.125 42.498 1.713 3.080 15.352 
L 250 12 0.000 0.118 1.175 0.520 1.514 3.162 4.575 8.162 23.693 1.719 3.042 13.867 
L 250 24 0.000 0.135 1.359 0.600 1.767 3.667 5.291 9.387 34.637 1.974 3.000 13.722 
L 250 36 0.000 0.138 1.397 0.618 1.812 3.749 5.396 9.698 38.330 2.057 3.226 17.015 
L 1000 12 0.000 0.134 1.299 0.588 1.709 3.498 4.975 8.722 25.510 1.851 2.905 12.722 
L 1000 24 0.000 0.178 1.741 0.786 2.282 4.706 6.722 11.597 39.082 2.489 2.947 13.404 
L 1000 36 0.000 0.195 1.970 0.883 2.573 5.316 7.599 13.456 47.901 2.850 3.027 14.191 
M 250 12 0.000 0.107 1.043 0.474 1.365 2.781 4.003 7.090 28.023 1.503 3.098 15.560 
M 250 24 0.000 0.117 1.180 0.525 1.541 3.172 4.565 8.111 24.494 1.711 3.027 13.971 
M 250 36 0.000 0.117 1.168 0.520 1.519 3.148 4.515 8.036 35.831 1.697 3.078 15.026 
M 1000 12 0.000 0.122 1.177 0.533 1.549 3.153 4.544 7.988 21.466 1.682 2.925 12.744 
M 1000 24 0.000 0.157 1.562 0.700 2.048 4.226 6.025 10.492 37.916 2.238 2.940 13.285 
M 1000 36 0.000 0.173 1.726 0.771 2.258 4.647 6.653 11.795 36.322 2.489 2.977 13.445 
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Table B.8 
Key Descriptive Statistics for Wald Test 1 Under True Model Estimation 
 

Item 
Dim. 

Sample 
Size 

Test 
Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

B 250 12 -1.057 14.132 11.409 10.636 8.075 6.199 5.171 3.382 42.443 4.596 0.783 0.644 
B 250 24 0.262 17.379 14.019 13.032 9.958 7.851 6.694 4.487 52.599 5.506 0.784 0.642 
B 250 36 -0.049 18.414 14.819 13.751 10.505 8.332 7.181 5.162 55.000 5.769 0.783 0.530 
B 1000 12 3.336 26.937 21.941 20.449 16.236 13.355 11.865 9.593 55.259 7.471 0.611 -0.305 
B 1000 24 4.106 33.040 26.625 24.892 19.720 16.526 14.712 11.729 64.095 8.817 0.528 -0.455 
B 1000 36 5.418 34.999 28.135 26.190 20.787 17.378 15.645 12.954 68.048 9.347 0.565 -0.477 
W 250 12 -1.676 4.877 3.671 3.479 2.280 1.330 0.779 -0.205 14.597 1.963 0.519 0.320 
W 250 24 -2.343 5.853 4.548 4.344 3.044 2.015 1.443 0.421 17.803 2.113 0.513 0.342 
W 250 36 -2.570 6.260 4.931 4.713 3.384 2.335 1.771 0.798 20.202 2.162 0.540 0.330 
W 1000 12 -1.223 8.878 6.988 6.674 4.735 3.244 2.497 1.375 20.733 3.080 0.545 0.097 
W 1000 24 -0.408 10.690 8.622 8.352 6.183 4.561 3.768 2.438 23.225 3.305 0.489 0.067 
W 1000 36 -0.207 11.462 9.368 9.067 6.890 5.255 4.463 3.193 23.686 3.352 0.502 0.031 
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Table B.9 
Key Descriptive Statistics for Wald Test 2 Under True Model Estimation 
 

Item 
Dim. 

Sample 
Size 

Test 
Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

B 250 HH 1.615 18.908 15.854 15.148 11.979 9.602 8.368 6.330 131.289 5.493 1.091 3.680 
B 250 HM 2.012 20.610 17.481 17.167 13.888 11.123 9.633 7.320 75.702 5.165 0.573 1.108 
B 250 HL 1.722 23.453 20.278 20.039 16.910 13.971 11.914 7.864 66.262 5.269 0.286 0.740 
B 250 MH 0.451 11.882 10.100 9.764 7.954 6.541 5.777 4.456 32.298 3.026 0.709 0.982 
B 250 MM 0.377 12.958 11.115 10.899 9.032 7.485 6.607 5.095 32.596 2.988 0.491 0.579 
B 250 ML 1.145 14.290 12.401 12.211 10.305 8.690 7.753 6.017 35.974 3.042 0.402 0.490 
B 1000 HH 8.482 32.358 28.433 28.067 24.138 20.826 18.957 15.889 60.631 6.095 0.313 -0.008 
B 1000 HM 9.715 37.334 32.570 32.934 27.801 23.229 20.873 17.280 63.758 6.845 -0.073 -0.277 
B 1000 HL 10.417 43.055 38.431 38.926 34.549 29.375 25.456 18.422 66.212 7.036 -0.488 0.640 
B 1000 MH 6.440 21.045 18.794 18.491 16.235 14.331 13.246 11.415 36.856 3.664 0.428 0.163 
B 1000 MM 7.739 23.573 20.979 20.967 18.323 15.806 14.493 12.320 38.620 3.926 0.081 -0.125 
B 1000 ML 8.107 26.598 23.674 23.829 20.909 18.244 16.583 13.489 40.101 4.141 -0.181 -0.098 
W 250 HH -4.316 5.626 3.988 3.959 2.242 0.806 0.014 -1.147 17.444 2.453 0.178 -0.114 
W 250 HM -2.426 5.566 4.112 3.962 2.522 1.317 0.637 -0.376 16.863 2.242 0.363 0.083 
W 250 HL -1.458 6.061 4.690 4.516 3.146 2.074 1.500 0.517 16.338 2.138 0.448 0.180 
W 250 MH -2.407 4.646 3.453 3.321 2.138 1.178 0.623 -0.320 13.168 1.852 0.377 0.122 
W 250 MM -2.136 4.586 3.458 3.362 2.219 1.288 0.754 -0.171 14.417 1.751 0.338 0.161 
W 250 ML -1.917 4.916 3.774 3.689 2.533 1.591 1.057 0.089 13.074 1.755 0.302 0.112 
W 1000 HH -1.476 10.803 8.454 8.378 5.971 3.918 2.616 0.794 22.094 3.565 0.150 -0.219 
W 1000 HM -0.628 10.810 8.743 8.565 6.454 4.796 3.908 2.497 21.747 3.148 0.339 -0.084 
W 1000 HL 0.284 11.701 9.435 9.248 7.025 5.403 4.554 3.186 21.892 3.178 0.232 -0.475 
W 1000 MH -1.279 8.667 6.857 6.750 4.924 3.531 2.788 1.489 17.420 2.615 0.200 -0.349 
W 1000 MM -1.177 8.721 6.972 6.945 5.098 3.767 3.076 1.886 18.284 2.481 0.151 -0.382 
W 1000 ML -0.840 9.223 7.392 7.384 5.470 4.127 3.445 2.230 17.731 2.503 0.089 -0.523 
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Table B.10 
Key Descriptive Statistics for Wald Test 3 Under True Model Estimation 
 

Item 
Dim. 

Sample 
Size 

Test 
Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

B 250 12 -1.152 11.484 9.099 8.619 6.324 4.353 3.132 1.492 42.415 4.003 0.611 0.545 
B 250 24 -0.912 14.566 11.687 10.872 8.293 6.345 5.147 2.765 46.684 4.766 0.735 0.692 
B 250 36 -0.600 15.429 12.446 11.551 8.910 6.943 5.770 3.413 58.543 4.949 0.802 0.953 
B 1000 12 1.831 21.563 17.524 16.600 13.095 10.218 8.397 4.617 46.658 6.328 0.476 0.006 
B 1000 24 3.454 27.478 22.261 20.630 16.909 14.109 12.470 8.729 52.629 7.269 0.549 -0.325 
B 1000 36 4.264 28.963 23.594 21.797 18.006 15.265 13.706 10.661 55.421 7.464 0.607 -0.296 
W 250 12 -1.693 5.054 3.794 3.590 2.367 1.368 0.793 -0.236 14.298 2.024 0.485 0.215 
W 250 24 -2.281 6.134 4.756 4.521 3.159 2.103 1.512 0.472 15.542 2.222 0.506 0.152 
W 250 36 -2.586 6.545 5.119 4.881 3.471 2.390 1.789 0.787 23.057 2.272 0.500 0.153 
W 1000 12 -0.703 9.258 7.338 6.980 5.015 3.525 2.757 1.552 20.811 3.193 0.586 0.132 
W 1000 24 0.388 11.190 9.100 8.637 6.495 4.916 4.131 2.864 24.470 3.538 0.627 0.085 
W 1000 36 0.352 11.939 9.768 9.271 7.084 5.477 4.684 3.388 25.030 3.627 0.619 0.032 
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Appendix C 

Investigation into Convergence and Replication Issues 

When determining the total number of replications, precision and stability of the 

resulting estimates as well as feasibility and computing time must be considered. An 

analysis of convergence issues showed that the most stable model – a 2-factor model with 

low inter-factor correlation, 36 high-discrimination/low-difficulty (HL) items, one-half of 

which demonstrated within-item multidimensionality, and 1,000 examinees – produced 

no estimation failures while the success rate for the least stable model – a 3-factor of high 

inter-factor correlation, 12 moderately-discriminating/high-difficulty items of within-item 

multidimensionality, and 250 examinees – was less than 25%, indicating a number of 

estimation failures. An analysis of the standard errors of the key distributional 

characteristics from the empirical sampling distributions (i.e., mean, median, 90th 

percentile, 95th percentile) of the outcome statistics of interest (e.g., S-χ2 statistic, 

GDDM) indicated reasonable stable standard errors when about 100 to 200 replications 

were used.  

The computing time required to estimate 1000 replications of the least stable 

model was approximately 20 minutes; the total time to estimate 1000 replications of all 

864 experimental cells, therefore, would be approximately 18,000 minutes or 300 hours. 

The required computing time to achieve 100, 200, or 250 successful replications can be 

interpolated from these results as approximately 44, 90, and 110 hours, respectively. 

Since the computing time for 1000 replications is excessive given the desired time frame 

for completion of this dissertation, 250 replications of the misspecified model were 

chosen as a reasonable compromise between the statistical desideratum for reasonable 
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precision and stability of sampling distribution estimates and practical feasibility. The full 

1000 replications are employed in the estimation of the true models. 

C.1. Non-Convergent and Heywood Cases 

Examining the 1000 replications of the model estimated according to the most 

stable conditions (correct or true model specification; 2 factors, low inter-factor 

correlation, 36 highly-discriminating/moderately-difficult items of within-item 

multidimensionality, and 1,000 examinees) evidenced no estimation issues; no 

replacement replications were required. The least stable boundary condition was 

identified as the estimation of 3 factors of high inter-factor correlation, 12 moderately-

discriminating/low-difficulty items of within-item multidimensionality, 250 examinees. 

Suggested by previous research (Jackson, 2007), moderately misspecified models were 

estimated in anticipation that they would result in the greatest proportion of estimation 

failures. To achieve 1000 successful replications, a total of 4234 replications were 

required, a 23.6% success rate. This success rate for replications is smaller than that seen 

in previous research (Fan, Thompson, & Wang, 1999; Ximénez, 2009), suggesting that 

the degree of misspecification and other simulation conditions differ substantially.  

C.2. Determining the Optimal Number of Replications 

A study was conducted to determine the number of replications necessary to 

accurately describe the performance of the model- and item-fit statistics considered in the 

full study. Specifically, the objective was to find a cut-off for the number of replications 

beyond which increases in stability of the distributional characteristics (i.e., changes in 

estimated standard errors) would be practically negligible. Two experimental cells, one 
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representing a case where one would expect relatively stable model estimations and one 

where one would expect relatively unstable model estimations, were first identified. For 

each of these two cells 1,000 replications of the data-generation and model estimation 

process were computed. Then, using a boostrapping method, 100 random samples of 

varying numbers of replications were drawn with replacement from the set of 1,000 

replications. Specifically, 100 random draws of sizes 10, 50, 100, 200, 250, 500, and 

1000 were made from the 1,000 replications and the mean and standard deviation (i.e., 

standard error) of key distributional indicators (i.e., mean, median, 90th percentile, 95th 

percentile, skewness, kurtosis) were then calculated across replication sets for each fit 

index.  

An accurate assessment of the performance of model- and item- fit statistics in 

this Monte Carlo simulation study is also affected by missing information due to non-

convergence of estimation and improper parameter estimates (e.g., Heywood cases). 

Notably, the omission or elimination of these replications would result in an unbalanced 

simulation design because different experimental cells would have different numbers of 

replications associated with them. To avoid this scenario, Haywood cases and non-

converged models will be replaced with additional replications to ensure a balanced 

design as in previous studies (Fan, Thompson, & Wang, 1999; Jackson, 2007; Ximénez, 

2009). The number of additional replications necessary to achieve the number suggested 

by the previous analysis for each of the two representative simulation conditions 

described above will be computed and used to inform the number of replications in the 

full study alongside the estimates of the distributional characteristics noted earlier. 
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C.3. Replications and the Two Factor Model 

Representing the most stable estimation conditions, a 2-factor model was 

estimated for which the intra-factor correlation was specified as low and responses to 36 

high-discrimination/low-difficulty (HL) items, one-half of which demonstrated within-

item multidimensionality, were simulated for a sample size of 1,000 examinees.  

The mean and variance of the distributional indicators and key indicators 

according to partition are presented for each of the model fit statistics in Table C.1. 

Figure C.1 depicts the model fit indices graphically with different plotting symbols 

representing the various values of the distributional and key indicators: empty circles 

represent mean values, stars represent median values, shaded squares represent the 90th 

percentile, shaded circles represent the 95th percentile, and shaded triangles represent the 

99th percentile. For each model-fit index, point estimates and dispersion of the mean, 

median, and standard deviation are near-constant across replication sets, with the 

exception of the median RMSEA which decreases with number of replications due to the 

increasing proportion of replications where RMSEA is zero. The key indicators (90th, 

95th, and 99th percentiles) generally appear to be stable at 100 replications and greater. 

Point estimates for each of the key indicators are differentiated at the hundredths decimal 

place for the χ2/df and the thousandths decimal place for the RMSEA; key indicators of 

the GDDM are not well-differentiated even at the thousandths decimal place due to the 

fact that values of the GDDM are extremely small. Variability of the key indicators is 

typically less than 0.001, decreasing over replication sets with the largest decreases 

occurring between 10, 50, and 100 replications. 
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Table C.1 
2-Factor Model: Distributional and Key Indicators for Model Fit Indices Across Partition Sets 

Fit 
Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
χ2/df 10 (1) mean 0.983 0.980 0.031 0.246 0.061 1.019 1.028 1.035 

 
 

(2) var 0.000 0.000 0.000 0.220 1.544 0.000 0.000 0.000 
 50 (1) mean 0.982 0.979 0.033 0.408 0.547 1.022 1.036 1.062 
 

 
(2) var 0.000 0.000 0.000 0.131 1.034 0.000 0.000 0.000 

 100 (1) mean 0.982 0.979 0.033 0.475 0.609 1.024 1.037 1.066 
 

 
(2) var 0.000 0.000 0.000 0.068 0.473 0.000 0.000 0.000 

 200 (1) mean 0.982 0.979 0.033 0.516 0.666 1.024 1.038 1.071 
 

 
(2) var 0.000 0.000 0.000 0.048 0.396 0.000 0.000 0.000 

 250 (1) mean 0.982 0.979 0.033 0.523 0.701 1.024 1.039 1.073 
 

 
(2) var 0.000 0.000 0.000 0.035 0.298 0.000 0.000 0.000 

 500 (1) mean 0.982 0.979 0.033 0.514 0.700 1.024 1.038 1.075 
 

 
(2) var 0.000 0.000 0.000 0.020 0.145 0.000 0.000 0.000 

 1000 (1) mean 0.982 0.979 0.033 0.539 0.742 1.025 1.038 1.078 
 

 
(2) var 0.000 0.000 0.000 0.008 0.074 0.000 0.000 0.000 

RMSEA 10 (1) mean 0.001 0.000 0.002 1.292 2.863 0.004 0.005 0.006 
 

 
(2) var 0.000 0.000 0.000 0.338 14.898 0.000 0.000 0.000 

 50 (1) mean 0.001 0.000 0.002 1.796 3.011 0.005 0.006 0.008 
 

 
(2) var 0.000 0.000 0.000 0.215 7.360 0.000 0.000 0.000 

 100 (1) mean 0.001 0.000 0.002 1.842 2.763 0.005 0.006 0.008 
 

 
(2) var 0.000 0.000 0.000 0.099 2.175 0.000 0.000 0.000 

 200 (1) mean 0.001 0.000 0.002 1.853 2.683 0.005 0.006 0.008 
 

 
(2) var 0.000 0.000 0.000 0.062 1.468 0.000 0.000 0.000 

 250 (1) mean 0.001 0.000 0.002 1.860 2.675 0.005 0.006 0.008 
 

 
(2) var 0.000 0.000 0.000 0.055 1.323 0.000 0.000 0.000 

 500 (1) mean 0.001 0.000 0.002 1.887 2.704 0.005 0.006 0.009 
 

 
(2) var 0.000 0.000 0.000 0.023 0.512 0.000 0.000 0.000 

 1000 (1) mean 0.001 0.000 0.002 1.885 2.654 0.005 0.006 0.009 
 

 
(2) var 0.000 0.000 0.000 0.010 0.220 0.000 0.000 0.000 
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Fit 
Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 

GDDM 10 (1) mean 0.004 0.004 0.000 -0.039 0.087 0.004 0.004 0.004 
 

 
(2) var 0.000 0.000 0.000 0.287 2.065 0.000 0.000 0.000 

 50 (1) mean 0.004 0.004 0.000 0.120 0.155 0.004 0.004 0.004 
 

 
(2) var 0.000 0.000 0.000 0.122 0.779 0.000 0.000 0.000 

 100 (1) mean 0.004 0.004 0.000 0.046 0.219 0.004 0.004 0.004 
 

 
(2) var 0.000 0.000 0.000 0.091 0.534 0.000 0.000 0.000 

 200 (1) mean 0.004 0.004 0.000 0.120 0.350 0.004 0.004 0.005 
 

 
(2) var 0.000 0.000 0.000 0.050 0.287 0.000 0.000 0.000 

 250 (1) mean 0.004 0.004 0.000 0.115 0.293 0.004 0.004 0.005 
 

 
(2) var 0.000 0.000 0.000 0.036 0.204 0.000 0.000 0.000 

 500 (1) mean 0.004 0.004 0.000 0.075 0.198 0.004 0.004 0.005 
 

 
(2) var 0.000 0.000 0.000 0.016 0.113 0.000 0.000 0.000 

 1000 (1) mean 0.004 0.004 0.000 0.100 0.252 0.004 0.004 0.005 
 

 
(2) var 0.000 0.000 0.000 0.009 0.065 0.000 0.000 0.000 
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Figure C.1. Distributional and key indicators for model fit indices, 2-factor models. 
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Fit results for this study are presented separately for items estimated as between-

item multidimensional (Table C.2 and Figure C.2) and within-item multidimensional 

(Table C.3 and Figure C.3). Values for the Modification Index and Wald Test are 

presented for only a single factor as items loading on the second factor were similar in 

magnitude and patterns of behavior. Point estimates of the distributional indicators 

achieve stability between 100 and 200 replications; for 100 replications and greater, 

values for the S-χ2 and Modification Index typically differ in the tenths decimal place 

while the Wald Test values differ at the hundreths decimal place. Point estimates of the 

90th and 95th percentiles achieve stability at 100 replications while the 99th percentile is 

somewhat unstable across all replication sets. Representing the largest, most extreme 

item fit values, the precision of the key indicators is seen to increase by 100 and 250 

replications; though the variance is still quite large for these indicators, proportional 

decreases are largest across replication sets 10, 50, and 100. 
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Table C.2 
2-Factor Model: Distributional and Key Indicators for Item Fit Indices Across Partition Sets, Between-Item Multidimensionality 

Fit 
Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
S-χ2 10 (1) mean 27.7138 26.9725 7.41778 0.29765 0.13205 36.1733 38.5074 40.3748 

  
(2) var 5.987 7.794 4.163 0.198 1.634 21.610 25.916 34.596 

 
50 (1) mean 27.827 27.114 7.691 0.573 0.668 37.330 40.682 46.686 

  
(2) var 0.992 1.672 0.979 0.198 3.069 4.657 6.915 26.081 

 
100 (1) mean 27.750 26.892 7.663 0.700 1.067 37.532 40.882 47.614 

  
(2) var 0.642 0.984 0.623 0.193 3.787 2.422 5.535 22.907 

 
200 (1) mean 27.601 26.804 7.582 0.766 1.408 37.487 40.932 47.310 

  
(2) var 0.276 0.359 0.233 0.103 3.164 1.057 3.072 6.309 

 
250 (1) mean 27.731 26.865 7.747 0.772 1.309 37.759 41.748 48.175 

  
(2) var 0.285 0.401 0.232 0.079 1.844 0.678 2.499 7.095 

 
500 (1) mean 27.642 26.825 7.645 0.738 1.171 37.626 41.562 48.133 

  
(2) var 0.093 0.174 0.100 0.044 1.177 0.247 1.198 1.862 

 
1000 (1) mean 27.714 26.928 7.660 0.751 1.290 37.674 41.679 48.329 

  
(2) var 0.060 0.080 0.057 0.025 0.595 0.135 0.547 0.878 

Mod. 10 (1) mean 1.984 1.321 2.270 0.301 0.568 3.921 4.351 4.694 
Index 

 
(2) var 2.543 1.319 4.948 0.171 7.297 12.662 16.731 20.651 

 
50 (1) mean 2.316 1.025 3.381 1.917 5.913 5.336 8.103 12.043 

  
(2) var 0.614 0.232 1.955 0.529 23.138 6.345 13.154 26.719 

 
100 (1) mean 2.238 0.952 3.383 2.387 7.938 5.654 8.630 13.807 

  
(2) var 0.253 0.116 0.884 0.482 27.486 3.785 9.986 16.417 

 
200 (1) mean 2.303 0.976 3.523 2.730 9.745 5.771 9.287 15.624 

  
(2) var 0.143 0.064 0.456 0.322 26.193 2.028 6.487 9.759 

 
250 (1) mean 2.268 0.908 3.510 2.729 9.398 5.865 9.438 15.999 

  
(2) var 0.132 0.046 0.407 0.317 20.132 2.136 6.359 12.229 

 
500 (1) mean 2.251 0.921 3.519 2.907 10.382 5.763 9.547 16.782 

  
(2) var 0.079 0.020 0.239 0.156 11.315 1.093 3.584 9.367 

 
1000 (1) mean 2.259 0.926 3.541 2.965 10.578 5.711 9.746 17.111 

  
(2) var 0.038 0.016 0.104 0.092 6.640 0.564 1.751 4.687 
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Fit 
Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
Wald 10 (1) mean 40.749 40.540 4.067 0.064 -0.117 44.576 45.204 45.707 
Test 

 
(2) var 4.575 5.334 2.834 0.177 4.514 8.326 10.149 12.133 

 
50 (1) mean 41.318 40.899 4.420 0.363 0.137 46.630 48.209 50.478 

  
(2) var 0.863 1.603 0.529 0.199 1.736 2.112 4.112 7.588 

 
100 (1) mean 41.145 40.605 4.459 0.462 0.054 46.825 48.520 51.523 

  
(2) var 0.438 0.673 0.200 0.087 0.861 1.403 1.759 4.637 

 
200 (1) mean 41.275 40.706 4.494 0.476 0.059 47.155 49.003 52.161 

  
(2) var 0.250 0.305 0.110 0.060 0.426 0.914 1.146 4.102 

 
250 (1) mean 41.273 40.683 4.487 0.498 0.064 47.133 49.026 52.599 

  
(2) var 0.163 0.216 0.079 0.040 0.337 0.649 0.837 2.742 

 
500 (1) mean 41.215 40.624 4.485 0.512 0.105 47.141 49.053 52.689 

  
(2) var 0.085 0.090 0.047 0.025 0.185 0.367 0.488 1.816 

 
1000 (1) mean 41.216 40.633 4.495 0.512 0.107 47.152 49.051 53.039 

  
(2) var 0.027 0.029 0.022 0.008 0.091 0.149 0.330 0.853 
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Figure C.2. Distributional and key indicators for item fit indices, 2-factor models, 
between-item multidimensionality. 
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Table C.3 
2-Factor Model: Distributional and Key Indicators for Item Fit Indices Across Partition Sets, Within-Item Multidimensionality 

Fit Index Split Statistic Mean Median SD Skew Kurtosis 90%ile 95%ile 99%ile 
S-χ2 10 (1) mean 15.222 14.661 5.473 0.439 0.754 20.996 23.358 25.247 

 
(2) var 2.549 3.726 2.904 0.338 4.158 11.418 16.447 27.335 

50 (1) mean 15.385 14.660 5.516 0.778 1.234 22.198 24.862 29.823 

 
(2) var 0.667 0.648 0.520 0.182 2.841 2.572 5.225 14.080 

100 (1) mean 15.376 14.744 5.560 0.820 1.285 22.284 25.137 31.183 

 
(2) var 0.307 0.318 0.275 0.089 1.010 1.489 3.404 13.034 

200 (1) mean 15.314 14.713 5.566 0.873 1.517 22.311 25.035 32.141 

 
(2) var 0.174 0.187 0.113 0.058 0.889 0.704 1.094 9.736 

250 (1) mean 15.302 14.649 5.597 0.900 1.480 22.315 25.284 32.671 

 
(2) var 0.102 0.122 0.098 0.040 0.524 0.509 0.871 6.998 

500 (1) mean 15.350 14.708 5.585 0.896 1.511 22.350 25.336 32.958 

 
(2) var 0.059 0.067 0.070 0.023 0.311 0.374 0.577 6.278 

1000 (1) mean 15.341 14.699 5.610 0.913 1.530 22.400 25.412 33.923 

 
(2) var 0.027 0.036 0.024 0.009 0.119 0.180 0.233 1.384 

Wald 10 (1) mean 13.215 13.228 2.401 -0.008 -0.010 15.838 16.419 16.884 
Test 

 
(2) var 0.653 0.824 0.327 0.211 1.410 1.321 1.624 2.370 

50 (1) mean 13.214 13.272 2.417 -0.040 -0.217 16.179 16.976 18.100 

 
(2) var 0.135 0.182 0.060 0.078 0.243 0.307 0.370 0.807 

100 (1) mean 13.231 13.306 2.409 -0.014 -0.199 16.248 17.092 18.353 

 
(2) var 0.056 0.081 0.023 0.040 0.137 0.193 0.248 0.383 

200 (1) mean 13.179 13.267 2.417 -0.037 -0.296 16.230 17.054 18.420 

 
(2) var 0.028 0.041 0.012 0.018 0.062 0.110 0.118 0.255 

250 (1) mean 13.179 13.227 2.419 0.009 -0.259 16.277 17.101 18.567 

 
(2) var 0.022 0.028 0.011 0.011 0.040 0.083 0.071 0.202 

500 (1) mean 13.200 13.266 2.440 0.010 -0.282 16.351 17.193 18.693 

 
(2) var 0.014 0.016 0.004 0.008 0.018 0.040 0.046 0.120 

1000 (1) mean 13.198 13.269 2.425 -0.002 -0.271 16.333 17.172 18.686 
  

 
(2) var 0.005 0.010 0.003 0.003 0.008 0.025 0.014 0.040 
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Figure C.3. Distributional and key indicators for item fit indices, 2-factor models, within-
item multidimensionality. 
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Items estimated as within-item multidimensional present patterns comparable to 

those seen in the between-item multidimensional items, though it is notable that the 

dispersion of the values for the within-item multidimensional items is greater. Means, 

medians, and key indicator values are generally smaller compared to the between-item 

multidimensional results with similar precision, following the pattern of results seen for 

the between-item multidimensional items. 

C.4. Replications and the Three-Factor Model 

The highly-correlated 3-factor model, comprised of responses to 12 moderately-

discriminating / high-difficulty (MH) between-item multidimensional items by 250 

simulated examinees was identified as the second boundary condition and anticipated to 

yield the most unstable results. Again, 1,000 replications were divided into equally-sized 

partitions. 

Model fit results for this model are presented in Table C.4 and Figure C.4 . 

Distributional indicators for the model fit indices appear to be stable and precise by 100 

replications; the averages are quite stable and the variances are less than 0.001 with the 

largest decreases in variance occurring by 200 replications. As seen in the two-factor 

model, the key indicators for all three model fit indices also achieve stability by 100 

replications, though the mean of the 99th percentile shows some fluctuation across 

replication sets, with the exception of the GDDM, again likely due to the fact that values 

of this index are very small. 
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Table C.4 
3-Factor Model: Distributional and Key Indicators for Model Fit Indices Across Partition Sets 

Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
χ2/df 10 (1) mean 0.969 0.955 0.146 0.263 0.095 1.130 1.177 1.214 

 
(2) var 0.002 0.003 0.001 0.247 2.282 0.008 0.008 0.011 

50 (1) mean 0.960 0.947 0.140 0.465 0.349 1.135 1.198 1.294 

 
(2) var 0.000 0.001 0.000 0.113 0.947 0.001 0.002 0.004 

100 (1) mean 0.961 0.946 0.142 0.487 0.329 1.145 1.208 1.326 

 
(2) var 0.000 0.000 0.000 0.076 0.414 0.001 0.002 0.005 

200 (1) mean 0.960 0.945 0.142 0.538 0.442 1.145 1.208 1.340 

 
(2) var 0.000 0.000 0.000 0.032 0.256 0.001 0.001 0.002 

250 (1) mean 0.960 0.944 0.143 0.544 0.399 1.149 1.211 1.341 

 
(2) var 0.000 0.000 0.000 0.023 0.190 0.000 0.000 0.002 

500 (1) mean 0.960 0.946 0.142 0.525 0.439 1.146 1.208 1.350 

 
(2) var 0.000 0.000 0.000 0.012 0.088 0.000 0.000 0.001 

1000 (1) mean 0.961 0.946 0.142 0.519 0.399 1.150 1.211 1.352 

 
(2) var 0.000 0.000 0.000 0.007 0.049 0.000 0.000 0.001 

RMSEA 10 (1) mean 0.008 0.002 0.011 0.952 1.047 0.021 0.025 0.028 

 
(2) var 0.000 0.000 0.000 0.339 11.280 0.000 0.000 0.000 

50 (1) mean 0.007 0.000 0.010 1.263 0.727 0.023 0.028 0.034 

 
(2) var 0.000 0.000 0.000 0.098 1.425 0.000 0.000 0.000 

100 (1) mean 0.007 0.000 0.011 1.303 0.631 0.024 0.029 0.036 

 
(2) var 0.000 0.000 0.000 0.050 0.570 0.000 0.000 0.000 

200 (1) mean 0.007 0.000 0.011 1.351 0.744 0.024 0.029 0.037 

 
(2) var 0.000 0.000 0.000 0.035 0.398 0.000 0.000 0.000 

250 (1) mean 0.007 0.000 0.011 1.345 0.677 0.024 0.029 0.037 

 
(2) var 0.000 0.000 0.000 0.024 0.264 0.000 0.000 0.000 

500 (1) mean 0.007 0.000 0.011 1.347 0.666 0.024 0.029 0.037 

 
(2) var 0.000 0.000 0.000 0.014 0.160 0.000 0.000 0.000 
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Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
1000 (1) mean 0.007 0.000 0.011 1.331 0.581 0.025 0.029 0.037 

 
(2) var 0.000 0.000 0.000 0.006 0.069 0.000 0.000 0.000 

GDDM 10 (1) mean 0.003 0.003 0.000 -0.076 0.072 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.218 1.623 0.000 0.000 0.000 

50 (1) mean 0.003 0.003 0.000 -0.137 -0.001 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.101 0.622 0.000 0.000 0.000 

100 (1) mean 0.003 0.003 0.000 -0.129 -0.052 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.056 0.381 0.000 0.000 0.000 

200 (1) mean 0.003 0.003 0.000 -0.090 -0.012 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.029 0.105 0.000 0.000 0.000 

250 (1) mean 0.003 0.003 0.000 -0.082 -0.041 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.017 0.096 0.000 0.000 0.000 

500 (1) mean 0.003 0.003 0.000 -0.106 -0.005 0.004 0.004 0.004 

 
(2) var 0.000 0.000 0.000 0.012 0.054 0.000 0.000 0.000 

1000 (1) mean 0.003 0.003 0.000 -0.116 -0.047 0.004 0.004 0.004 
  

 
(2) var 0.000 0.000 0.000 0.006 0.019 0.000 0.000 0.000 
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Figure C.4. Distributional and key indicators for model fit indices, 3-factor models. 
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Item fit results for the 3-factor model are presented in Table C.5 and Figure C.5. 

Distributional indicators for the S-χ2are stable at 100 replications and the greatest gains 

in precision are also achieved at 100 replications. The key indicators are less stable and 

precise, as expected, though the means and variances show the greatest improvements 

between 100 and 200 replications. Though the results for the Modification Index and 

Wald test show similar patterns for the distributional indicators, the key indicators for 

these statistics under a 3-factor model show greater instability and imprecision across 

replication sets. While the means and variances of the 90th and 95th percentiles for the 

item fit indices are relatively stable and precise by 100 replications, means and variances 

of the 99th percentiles show fluctuation across replication sets and large decreases in 

variances for replication sets of 250 replications and larger.  

 



 

 240 
 

Table C.5 
3-Factor Model: Distributional and Key Indicators for Item Fit Indices Across Partition Sets 

Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
S-χ2 10 (1) mean 7.099 6.659 3.127 0.504 0.885 10.411 11.821 12.949 

 
(2) var 0.977 1.315 1.066 0.353 4.312 3.459 6.117 10.830 

50 (1) mean 7.227 6.833 3.336 0.850 1.453 11.357 13.029 16.097 

 
(2) var 0.201 0.339 0.192 0.216 4.580 1.078 1.884 5.093 

100 (1) mean 7.157 6.756 3.293 0.959 1.899 11.226 12.959 16.584 

 
(2) var 0.091 0.133 0.103 0.155 2.837 0.627 1.273 5.428 

200 (1) mean 7.125 6.740 3.329 1.031 2.042 11.262 13.165 17.443 

 
(2) var 0.063 0.091 0.059 0.076 1.512 0.392 0.706 4.748 

250 (1) mean 7.114 6.749 3.287 0.994 1.839 11.252 13.018 17.197 

 
(2) var 0.053 0.050 0.052 0.059 1.059 0.332 0.654 3.646 

500 (1) mean 7.146 6.751 3.300 1.059 2.089 11.269 13.223 17.623 

 
(2) var 0.020 0.031 0.027 0.035 0.577 0.126 0.371 2.715 

1000 (1) mean 7.135 6.748 3.312 1.080 2.188 11.281 13.175 17.824 

 
(2) var 0.009 0.014 0.013 0.018 0.303 0.081 0.116 1.855 

Mod. 10 (1) mean 0.800 0.524 0.907 0.643 1.094 1.779 2.075 2.311 
Index 

 
(2) var 0.193 0.279 0.259 0.245 6.919 0.831 1.198 1.612 

50 (1) mean 0.839 0.388 1.206 2.073 6.529 2.142 2.909 4.692 

 
(2) var 0.054 0.026 0.243 0.832 45.069 0.450 0.804 4.963 

100 (1) mean 0.850 0.385 1.211 2.377 8.186 2.188 3.073 5.185 

 
(2) var 0.025 0.010 0.109 0.750 54.749 0.204 0.570 2.811 

200 (1) mean 0.861 0.386 1.289 3.149 16.122 2.238 3.079 5.488 

 
(2) var 0.014 0.006 0.083 1.600 197.872 0.107 0.311 2.099 

250 (1) mean 0.861 0.375 1.331 3.326 17.389 2.251 3.115 6.098 

 
(2) var 0.010 0.003 0.064 1.471 206.422 0.073 0.259 2.209 

500 (1) mean 0.847 0.379 1.279 3.441 19.374 2.240 3.097 5.966 

 
(2) var 0.006 0.002 0.032 1.139 192.483 0.049 0.168 1.273 
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Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile 
1000 (1) mean 0.845 0.380 1.276 3.705 23.317 2.240 3.037 6.023 

 
(2) var 0.002 0.001 0.018 0.865 150.121 0.016 0.064 1.125 

Wald 10 (1) mean 8.210 8.033 2.056 0.102 0.448 9.768 10.035 10.248 
Test 

 
(2) var 2.597 2.733 1.218 0.114 4.496 4.888 5.619 6.301 

50 (1) mean 8.314 8.154 2.471 0.263 0.525 11.162 12.070 13.063 

 
(2) var 0.489 0.634 0.218 0.279 1.993 1.429 1.997 2.950 

100 (1) mean 8.273 8.162 2.440 0.317 0.325 11.295 12.166 13.573 

 
(2) var 0.180 0.280 0.124 0.167 1.175 0.750 1.009 1.844 

200 (1) mean 8.184 8.050 2.405 0.354 0.418 11.199 12.169 14.014 

 
(2) var 0.085 0.131 0.060 0.129 0.827 0.258 0.702 1.497 

250 (1) mean 8.242 8.099 2.401 0.382 0.432 11.258 12.246 14.173 

 
(2) var 0.076 0.075 0.032 0.089 0.634 0.189 0.426 1.041 

500 (1) mean 8.215 8.056 2.382 0.393 0.393 11.257 12.291 14.323 

 
(2) var 0.031 0.038 0.020 0.043 0.286 0.130 0.253 0.678 

1000 (1) mean 8.250 8.087 2.417 0.412 0.341 11.296 12.458 14.604 
  

 
(2) var 0.015 0.012 0.009 0.022 0.126 0.074 0.149 0.254 
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Figure C.5. Distributional and key indicators for item fit indices, 3-factor models. 
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Overall, fluctuations and instability in the S-χ2 is typically the result of large 

item-specific estimates, especially under the 2-factor model where the mean was 

approximately 27. The magnitude of differences between means and variances for each 

replication set are, therefore, greater than those seen for other indices. Similarly, the 

stability and precision of the Wald Test must be considered in the context of large item-

specific values. Instability of the Modification Index is owed to the positive skewness 

(typically greater than 2.0) under each replication set, indicating a distribution with a long 

tail containing a few exceptionally large positive values.  

The results of this study suggest that model- and item-fit indices achieve and 

acceptable level of precision and stability at 100 to 200 replications, though some 

exceptions exist. Means, medians, and standard deviations for all indices were 

demonstrated to be extremely precise and stable across all levels of replication; estimates 

of 90th, 95th, and 99th percentiles evidence less precision and stability owing to the 

extreme nature of these values. 
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Appendix D 

Key Descriptive Statistics Under Misspecified Model Estimation 

Table D.1 
Key Descriptive Statistics for the χ2/df Model-Fit Index Under Misspecified Model Estimation 
 

Item 
Type 

Sample 
Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

HH 250 H 0.797 1.105 1.265 1.185 1.338 1.572 1.771 2.253 3.053 0.252 2.253 6.903 
HH 250 M 0.966 1.406 1.787 1.613 1.991 2.509 2.934 3.736 5.441 0.548 1.842 4.314 
HH 250 L 1.110 1.776 2.429 2.166 2.785 3.652 4.359 5.575 7.785 0.907 1.658 3.173 
HH 1000 H 1.026 1.587 1.986 1.773 2.280 2.826 3.192 3.916 5.296 0.579 1.468 2.164 
HH 1000 M 1.980 3.188 4.404 3.778 5.294 6.738 8.035 9.862 13.024 1.685 1.414 1.800 
HH 1000 L 3.205 5.339 7.593 6.486 9.043 11.716 15.042 17.748 20.820 3.168 1.488 2.004 
HM 250 H 0.833 1.085 1.232 1.160 1.300 1.516 1.685 2.093 4.914 0.232 3.016 21.125 
HM 250 M 0.866 1.404 1.830 1.650 2.062 2.660 3.069 3.923 5.345 0.597 1.655 3.204 
HM 250 L 1.320 1.930 2.741 2.392 3.251 4.390 5.118 6.367 8.902 1.133 1.389 1.814 
HM 1000 H 1.123 1.558 2.100 1.890 2.377 3.196 3.645 4.463 6.547 0.735 1.417 1.904 
HM 1000 M 1.979 3.424 5.281 4.584 6.267 9.114 10.420 12.544 14.662 2.442 1.201 0.895 
HM 1000 L 3.600 6.291 9.794 8.565 11.736 16.609 20.292 23.547 28.403 4.722 1.176 0.846 
HL 250 H 0.784 1.130 1.340 1.243 1.443 1.727 1.987 2.497 3.766 0.309 2.060 5.701 
HL 250 M 1.165 1.622 2.250 2.016 2.583 3.394 4.098 5.138 7.353 0.847 1.541 2.572 
HL 250 L 1.547 2.366 3.560 3.161 4.246 5.837 6.970 8.532 11.328 1.574 1.338 1.588 
HL 1000 H 1.370 2.044 2.886 2.510 3.489 4.481 5.219 6.412 8.800 1.127 1.302 1.530 
HL 1000 M 2.942 4.962 7.592 6.634 9.440 12.373 15.033 17.647 21.367 3.430 1.114 0.752 
HL 1000 L 4.595 8.606 13.486 11.984 16.591 22.491 28.081 31.673 37.884 6.376 1.130 0.713 
MH 250 H 0.640 1.041 1.110 1.093 1.162 1.263 1.360 1.589 2.444 0.140 1.346 6.241 
MH 250 M 0.710 1.249 1.446 1.368 1.561 1.828 2.028 2.543 3.574 0.305 1.777 5.110 
MH 250 L 0.932 1.530 1.902 1.747 2.119 2.607 2.973 3.856 5.433 0.543 1.782 4.362 
MH 1000 H 0.648 1.415 1.672 1.574 1.854 2.177 2.385 2.944 4.028 0.382 1.403 2.941 
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Item 
Type 

Sample 
Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

MH 1000 M 1.410 2.560 3.380 3.048 3.947 4.938 5.672 7.067 9.066 1.121 1.363 1.993 
MH 1000 L 2.539 4.025 5.597 4.964 6.693 8.559 10.054 12.444 16.616 2.122 1.318 1.663 
MM 250 H 0.639 1.046 1.134 1.103 1.198 1.314 1.422 1.693 2.489 0.158 1.573 6.070 
MM 250 M 0.811 1.302 1.567 1.465 1.733 2.070 2.294 2.868 4.457 0.376 1.595 3.688 
MM 250 L 1.084 1.664 2.173 1.974 2.481 3.134 3.590 4.627 5.872 0.706 1.515 2.705 
MM 1000 H 0.783 1.499 1.835 1.720 2.080 2.463 2.738 3.243 4.279 0.460 1.224 1.934 
MM 1000 M 1.884 2.887 3.943 3.564 4.695 5.962 6.755 8.156 9.920 1.391 1.098 0.862 
MM 1000 L 2.650 4.750 6.794 6.051 8.251 10.747 12.137 14.455 18.097 2.664 1.030 0.635 
ML 250 H 0.544 1.089 1.202 1.161 1.272 1.434 1.585 1.855 2.390 0.188 1.450 3.835 
ML 250 M 0.942 1.412 1.747 1.620 1.948 2.373 2.672 3.374 5.200 0.467 1.590 3.486 
ML 250 L 1.290 1.863 2.507 2.291 2.901 3.672 4.301 5.429 6.732 0.863 1.436 2.314 
ML 1000 H 0.906 1.651 2.073 1.930 2.374 2.856 3.163 3.897 5.134 0.563 1.213 1.695 
ML 1000 M 2.222 3.316 4.691 4.267 5.658 7.113 8.194 9.919 12.408 1.735 1.080 0.888 
ML 1000 L 3.274 5.470 8.169 7.383 10.062 12.801 15.158 18.075 20.618 3.345 1.019 0.644 
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Table D.2 
Key Descriptive Statistics for the RMSEA Model-Fit Index Under Misspecified Model Estimation 
 

Item 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
HH 2 H 0.000 0.027 0.035 0.034 0.042 0.049 0.056 0.070 0.091 0.012 0.595 1.143 
HH 2 M 0.016 0.051 0.064 0.062 0.073 0.086 0.092 0.105 0.133 0.016 0.517 0.143 
HH 2 L 0.043 0.072 0.087 0.086 0.099 0.117 0.125 0.137 0.165 0.020 0.557 -0.113 
HH 3 H 0.000 0.021 0.025 0.024 0.028 0.034 0.039 0.051 0.089 0.008 0.912 4.833 
HH 3 M 0.000 0.041 0.047 0.046 0.052 0.059 0.064 0.073 0.126 0.009 0.687 2.072 
HH 3 L 0.021 0.056 0.064 0.063 0.072 0.081 0.086 0.096 0.124 0.012 0.458 0.382 
HM 2 H 0.000 0.027 0.036 0.035 0.044 0.051 0.056 0.066 0.115 0.012 0.509 0.506 
HM 2 M 0.027 0.055 0.070 0.068 0.083 0.095 0.102 0.111 0.132 0.018 0.251 -0.587 
HM 2 L 0.049 0.082 0.100 0.099 0.118 0.134 0.142 0.153 0.178 0.024 0.185 -0.649 
HM 3 H 0.000 0.018 0.023 0.023 0.028 0.033 0.037 0.047 0.125 0.008 0.751 5.513 
HM 3 M 0.000 0.040 0.048 0.048 0.056 0.062 0.067 0.073 0.091 0.011 0.164 -0.378 
HM 3 L 0.036 0.059 0.070 0.070 0.080 0.088 0.093 0.102 0.117 0.014 0.088 -0.551 
HL 2 H 0.000 0.036 0.046 0.045 0.054 0.064 0.069 0.079 0.105 0.013 0.401 -0.079 
HL 2 M 0.040 0.070 0.086 0.084 0.100 0.115 0.123 0.133 0.159 0.020 0.304 -0.544 
HL 2 L 0.062 0.100 0.121 0.117 0.138 0.160 0.168 0.178 0.203 0.026 0.349 -0.637 
HL 3 H 0.000 0.023 0.030 0.030 0.036 0.042 0.046 0.055 0.083 0.010 0.256 1.070 
HL 3 M 0.026 0.050 0.060 0.059 0.070 0.079 0.084 0.093 0.109 0.014 0.352 -0.455 
HL 3 L 0.047 0.072 0.085 0.083 0.098 0.109 0.116 0.125 0.144 0.017 0.366 -0.571 
MH 2 H 0.000 0.021 0.026 0.026 0.032 0.037 0.041 0.049 0.076 0.010 -0.297 1.097 
MH 2 M 0.000 0.042 0.051 0.050 0.058 0.066 0.072 0.082 0.101 0.012 0.241 0.631 
MH 2 L 0.026 0.060 0.071 0.070 0.081 0.093 0.100 0.112 0.133 0.016 0.447 0.064 
MH 3 H 0.000 0.015 0.018 0.020 0.023 0.027 0.030 0.039 0.062 0.008 -0.461 0.834 
MH 3 M 0.000 0.032 0.037 0.037 0.042 0.048 0.052 0.059 0.083 0.009 -0.619 2.822 
MH 3 L 0.000 0.046 0.053 0.052 0.059 0.065 0.071 0.078 0.099 0.010 0.240 0.851 
MM 2 H 0.000 0.023 0.029 0.029 0.035 0.041 0.045 0.053 0.077 0.010 -0.311 1.105 
MM 2 M 0.013 0.048 0.058 0.057 0.066 0.075 0.080 0.088 0.118 0.013 0.244 -0.016 
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Item 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
MM 2 L 0.041 0.070 0.082 0.081 0.093 0.104 0.111 0.123 0.140 0.017 0.280 -0.172 
MM 3 H 0.000 0.016 0.020 0.021 0.025 0.029 0.032 0.040 0.059 0.009 -0.391 0.643 
MM 3 M 0.000 0.035 0.041 0.041 0.046 0.052 0.056 0.064 0.089 0.009 -0.216 1.855 
MM 3 L 0.018 0.051 0.058 0.058 0.065 0.072 0.076 0.085 0.102 0.011 0.238 0.211 
ML 2 H 0.000 0.028 0.034 0.034 0.040 0.047 0.051 0.059 0.075 0.010 -0.202 1.361 
ML 2 M 0.007 0.056 0.065 0.064 0.074 0.083 0.089 0.100 0.130 0.014 0.349 0.148 
ML 2 L 0.043 0.079 0.092 0.091 0.103 0.117 0.125 0.135 0.151 0.017 0.432 -0.146 
ML 3 H 0.000 0.020 0.024 0.024 0.028 0.033 0.037 0.047 0.066 0.009 -0.320 1.665 
ML 3 M 0.000 0.040 0.046 0.046 0.052 0.059 0.064 0.072 0.093 0.010 0.223 1.243 
ML 3 L 0.034 0.057 0.065 0.064 0.072 0.081 0.087 0.096 0.121 0.012 0.524 0.236 
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Table D.3 
Key Descriptive Statistics for the GDDM Model-Fit Index Under Misspecified Model Estimation 
 

Item 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
HH 2 H 0.003 0.005 0.006 0.005 0.006 0.007 0.007 0.009 0.015 0.001 1.726 7.479 
HH 2 M 0.005 0.006 0.008 0.007 0.009 0.010 0.011 0.013 0.020 0.002 1.220 3.489 
HH 2 L 0.006 0.008 0.010 0.009 0.011 0.013 0.014 0.017 0.026 0.002 1.071 1.343 
HH 3 H 0.003 0.004 0.004 0.004 0.005 0.005 0.006 0.006 0.007 0.001 0.304 -0.141 
HH 3 M 0.003 0.005 0.006 0.005 0.006 0.007 0.007 0.008 0.009 0.001 0.606 0.349 
HH 3 L 0.004 0.006 0.007 0.007 0.007 0.008 0.009 0.009 0.010 0.001 0.555 0.045 
HM 2 H 0.004 0.006 0.007 0.007 0.008 0.009 0.010 0.014 0.019 0.002 2.041 6.706 
HM 2 M 0.006 0.009 0.010 0.010 0.011 0.012 0.013 0.017 0.023 0.002 1.427 4.607 
HM 2 L 0.008 0.011 0.013 0.013 0.015 0.017 0.019 0.022 0.030 0.003 0.975 1.310 
HM 3 H 0.003 0.004 0.005 0.005 0.006 0.006 0.006 0.007 0.008 0.001 -0.183 -0.492 
HM 3 M 0.004 0.006 0.006 0.006 0.007 0.007 0.008 0.008 0.010 0.001 0.058 -0.136 
HM 3 L 0.004 0.007 0.008 0.008 0.008 0.009 0.010 0.010 0.012 0.001 0.315 0.070 
HL 2 H 0.005 0.007 0.008 0.008 0.009 0.010 0.011 0.014 0.019 0.002 1.381 4.158 
HL 2 M 0.008 0.011 0.013 0.013 0.014 0.016 0.017 0.019 0.025 0.002 0.688 0.735 
HL 2 L 0.011 0.014 0.017 0.016 0.020 0.023 0.024 0.026 0.032 0.004 0.674 -0.445 
HL 3 H 0.004 0.005 0.006 0.006 0.007 0.008 0.008 0.009 0.011 0.001 0.132 -0.812 
HL 3 M 0.005 0.007 0.008 0.008 0.009 0.010 0.010 0.011 0.013 0.001 0.179 -0.627 
HL 3 L 0.006 0.009 0.010 0.010 0.011 0.012 0.013 0.014 0.015 0.002 0.062 -0.959 
MH 2 H 0.004 0.005 0.007 0.007 0.008 0.009 0.009 0.012 0.016 0.002 1.021 3.162 
MH 2 M 0.005 0.007 0.008 0.008 0.009 0.010 0.011 0.012 0.020 0.002 0.821 2.842 
MH 2 L 0.006 0.008 0.010 0.009 0.011 0.013 0.013 0.015 0.022 0.002 0.644 0.218 
MH 3 H 0.004 0.005 0.006 0.006 0.007 0.007 0.008 0.009 0.012 0.001 0.038 -0.312 
MH 3 M 0.005 0.006 0.007 0.007 0.008 0.008 0.009 0.009 0.011 0.001 0.263 -0.384 
MH 3 L 0.004 0.007 0.008 0.008 0.009 0.009 0.010 0.011 0.012 0.001 0.566 0.063 
MM 2 H 0.005 0.006 0.008 0.008 0.009 0.010 0.011 0.013 0.223 0.004 40.679 2012.237 
MM 2 M 0.006 0.008 0.010 0.010 0.011 0.012 0.013 0.015 0.022 0.002 0.601 1.575 
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Item 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
MM 2 L 0.007 0.010 0.012 0.012 0.014 0.015 0.016 0.018 0.026 0.002 0.525 0.140 
MM 3 H 0.004 0.006 0.007 0.007 0.008 0.008 0.008 0.009 0.012 0.001 -0.273 -0.763 
MM 3 M 0.005 0.007 0.008 0.008 0.008 0.009 0.009 0.010 0.012 0.001 -0.112 -0.395 
MM 3 L 0.006 0.008 0.009 0.009 0.010 0.010 0.011 0.012 0.014 0.001 0.100 -0.083 
ML 2 H 0.005 0.007 0.009 0.009 0.010 0.012 0.013 0.015 0.249 0.004 44.307 2837.669 
ML 2 M 0.007 0.010 0.012 0.012 0.013 0.014 0.015 0.017 0.027 0.002 0.394 0.313 
ML 2 L 0.009 0.012 0.015 0.014 0.017 0.019 0.020 0.022 0.027 0.003 0.455 -0.519 
ML 3 H 0.005 0.006 0.008 0.008 0.009 0.010 0.010 0.011 0.013 0.002 -0.067 -1.013 
ML 3 M 0.006 0.008 0.009 0.009 0.010 0.011 0.012 0.013 0.014 0.001 0.067 -0.597 
ML 3 L 0.007 0.010 0.011 0.011 0.012 0.013 0.013 0.014 0.016 0.002 0.027 -0.447 
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Table D.4 
Key Descriptive Statistics for the S-χ2/df Item-Fit Index Under Misspecified Model Estimation 
 

Miss. 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

mod.1.same 2 H 0.748 14.014 23.465 21.500 30.648 39.147 45.100 64.045 485.515 13.171 2.419 27.817 

mod.1.same 2 M 0.288 12.043 19.338 18.137 25.191 31.917 36.235 46.744 394.960 10.067 2.269 34.697 

mod.1.same 2 L 0.019 10.580 17.132 16.048 22.366 28.547 32.573 41.612 377.607 9.216 2.799 50.131 

mod.1.same 3 H 0.257 13.827 22.943 20.693 29.867 39.170 45.611 61.612 112.091 12.308 1.106 1.876 

mod.1.same 3 M 0.128 12.372 20.023 18.560 26.061 33.698 38.925 50.517 109.151 10.314 0.886 1.180 

mod.1.same 3 L 0.020 11.279 18.531 17.216 24.321 31.609 36.376 46.423 87.870 9.706 0.804 0.827 

mod.1.switch 2 H 1.051 18.973 33.159 27.897 40.930 60.721 76.713 107.132 175.100 20.947 1.662 3.574 

mod.1.switch 2 M 0.487 18.904 36.535 28.279 43.396 71.487 98.827 143.678 262.609 28.094 2.156 5.792 

mod.1.switch 2 L 0.345 18.680 38.908 28.599 45.400 78.869 114.221 168.741 302.292 33.249 2.333 6.573 

mod.1.switch 3 H 0.894 14.434 25.193 21.871 33.861 45.398 51.610 63.412 104.602 13.880 0.883 0.443 

mod.1.switch 3 M 0.551 12.384 20.241 18.627 26.857 34.235 38.641 48.059 102.568 10.176 0.735 0.489 

mod.1.switch 3 L 0.066 10.909 17.448 16.338 22.883 29.252 33.149 41.379 78.703 8.679 0.697 0.500 

mod.2.same 2 H 0.219 13.770 125.725 22.163 46.997 258.663 609.841 1812.885 27021.276 441.816 12.792 352.564 

mod.2.same 2 M 0.116 10.579 52.242 16.111 24.678 60.954 186.305 836.792 8545.377 210.272 15.099 353.989 

mod.2.same 2 L 0.169 9.540 36.172 14.583 21.375 35.270 93.543 512.590 9566.105 160.495 22.045 778.277 

mod.2.same 3 H 0.308 11.145 23.281 16.977 24.424 34.249 50.723 166.019 1115.139 38.028 10.923 170.145 

mod.2.same 3 M 0.063 9.599 19.738 14.858 21.287 28.961 37.868 142.120 850.963 32.115 10.499 146.042 

mod.2.same 3 L 0.216 8.648 18.346 13.781 20.465 28.412 35.104 117.972 759.482 29.303 10.564 145.485 

sev.1.same 2 H 0.487 12.808 20.929 19.375 27.331 34.767 39.547 51.848 256.565 11.134 2.039 18.214 

sev.1.same 2 M 0.292 12.029 19.323 18.094 25.177 31.987 36.422 46.876 223.324 9.896 1.472 10.703 

sev.1.same 2 L 0.057 11.442 18.608 17.290 24.167 31.324 36.202 46.950 160.560 9.721 1.129 4.074 

sev.1.same 3 H 0.341 13.815 22.249 20.298 28.731 37.337 42.995 58.703 126.347 11.589 1.156 2.594 

sev.1.same 3 M 0.256 12.605 19.808 18.578 25.786 32.842 37.349 46.717 89.693 9.665 0.728 0.678 

sev.1.same 3 L 0.237 11.653 18.828 17.502 24.540 31.849 36.662 47.022 104.341 9.728 0.848 1.113 

sev.1.switch 2 H 0.555 14.594 24.221 21.340 30.858 42.378 51.020 69.023 118.980 13.581 1.245 2.009 

sev.1.switch 2 M 0.716 14.647 25.236 21.699 31.906 45.547 55.720 76.167 181.082 15.252 1.514 3.469 
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Miss. 
Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

sev.1.switch 2 L 0.383 14.428 26.234 21.816 32.771 48.455 61.153 90.836 210.926 17.611 1.877 5.257 

sev.1.switch 3 H 0.023 12.684 22.273 19.682 29.570 39.727 46.237 58.746 107.643 12.491 1.003 1.077 

sev.1.switch 3 M 0.141 10.959 18.216 16.797 24.138 31.199 35.461 44.120 94.217 9.429 0.773 0.629 

sev.1.switch 3 L 0.006 9.581 15.808 14.743 20.909 26.896 30.639 38.361 79.900 8.174 0.741 0.683 

sev.1.under 2 H 1.074 17.267 32.311 26.576 41.167 59.746 70.317 110.733 266.057 22.507 2.635 13.728 

sev.1.under 2 M 1.915 15.634 27.523 23.643 35.644 49.677 56.892 77.783 224.509 16.503 1.912 9.006 

sev.1.under 2 L 1.581 14.518 24.692 21.616 32.033 43.939 50.602 63.724 213.732 13.950 1.594 7.146 

sev.1.under 3 H 1.573 15.254 30.655 23.724 43.684 57.771 65.842 91.402 122.018 19.425 1.066 0.832 

sev.1.under 3 M 1.014 12.940 24.641 20.478 34.122 44.001 50.278 77.761 122.946 15.096 1.337 2.763 

sev.1.under 3 L 0.673 11.167 20.497 17.783 27.208 35.454 41.743 69.777 136.841 12.739 1.752 5.598 

sev.2.under 2 H 0.104 14.654 258.076 28.113 137.582 630.501 1245.783 3545.207 25650.776 833.805 9.667 148.726 

sev.2.under 2 M 0.244 11.258 89.472 18.693 38.651 174.465 412.608 1302.873 11114.762 313.766 12.359 249.235 

sev.2.under 2 L 0.187 9.739 45.737 15.609 25.612 73.307 173.169 606.862 8238.769 155.991 16.747 528.486 

sev.2.under 3 H 0.383 11.592 60.316 17.880 29.049 93.866 245.155 1013.244 2966.346 184.734 7.362 67.712 

sev.2.under 3 M 0.707 11.695 71.013 17.420 27.518 117.722 317.521 1257.509 2901.645 214.683 6.008 42.606 

sev.2.under 3 L 0.533 12.290 74.911 18.570 31.213 160.476 372.017 1084.404 2537.487 193.634 4.907 28.110 
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Table D.5 
Key Descriptive Statistics for Modification Index 1 Under Misspecified Model Estimation 
 

Corr. 
Sample 

Size Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 
H 250 2 0 0.202 1.960 0.811 2.242 4.843 7.680 17.191 999.000 4.758 108.522 22441.240 
H 250 3 0 0.106 1.086 0.465 1.369 2.900 4.263 7.869 38.018 1.655 3.518 21.060 
H 1000 2 0 1.322 8.731 3.676 8.527 20.597 38.001 82.686 220.633 15.650 4.141 22.161 
H 1000 3 0 0.262 3.205 1.124 3.457 8.337 14.187 29.278 84.052 5.711 3.795 19.278 
M 250 2 0 0.689 5.470 2.292 5.619 12.943 22.819 50.937 999.000 11.927 31.789 2479.710 
M 250 3 0 0.204 2.326 0.909 2.753 6.180 9.561 19.029 73.667 3.824 3.719 20.974 
M 1000 2 0 5.708 27.726 11.482 23.778 66.156 129.919 257.235 999.000 48.995 3.846 18.245 
M 1000 3 0 0.481 9.211 2.372 8.645 24.811 47.543 91.987 999.000 18.331 4.258 48.841 
L 250 2 0 1.566 10.450 4.384 10.100 24.873 45.890 98.091 999.000 19.795 9.602 332.279 
L 250 3 0 0.287 3.877 1.325 4.193 10.284 17.050 35.383 122.883 6.952 3.853 20.546 
L 1000 2 0 12.033 52.968 21.580 42.221 127.962 258.624 485.490 999.000 92.389 3.599 14.881 
L 1000 3 0 0.611 16.778 3.330 15.458 46.895 90.985 171.267 999.000 34.257 3.721 20.257 
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Table D.6 
Key Descriptive Statistics for Wald Test 1 Under Misspecified Model Estimation 
 

Item 
Type 

Sample 
Size 

Miss. 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

HH 250 mod.1.same 0.307 18.577 14.939 14.576 11.060 8.183 6.045 2.300 56.130 5.760 0.335 0.514 

HH 250 mod.1.switch -0.023 14.485 11.918 11.413 8.791 6.734 5.691 3.974 41.015 4.407 0.802 1.339 

HH 250 mod.2.same -3.530 2.958 1.830 1.701 0.420 -0.635 -1.018 -1.683 13.516 1.972 0.649 0.755 

HH 250 sev.1.same 0.415 18.201 14.749 14.381 11.066 8.296 5.638 2.075 51.451 5.696 0.321 0.658 

HH 250 sev.1.switch -1.490 13.888 10.954 10.735 7.808 4.424 2.263 1.202 54.378 5.083 0.579 1.735 

HH 250 sev.1.under 0.901 20.530 15.191 15.627 8.086 3.621 2.976 2.146 70.524 8.371 0.413 0.594 

HH 250 sev.2.under -4.205 1.896 0.753 0.835 -0.569 -1.360 -1.735 -2.415 9.264 1.609 0.158 -0.312 

HH 1000 mod.1.same 3.492 33.936 27.913 27.557 21.978 17.461 14.315 8.448 58.854 8.468 0.057 -0.270 

HH 1000 mod.1.switch 5.306 24.397 21.042 20.785 17.424 14.737 13.151 10.644 42.694 5.052 0.261 -0.118 

HH 1000 mod.2.same -4.207 3.733 2.553 2.073 0.588 -0.633 -1.155 -2.255 17.531 3.001 1.369 2.601 

HH 1000 sev.1.same 3.105 32.949 27.479 27.025 22.163 18.114 14.285 7.693 58.810 8.092 0.024 0.050 

HH 1000 sev.1.switch 0.685 24.081 19.894 20.271 16.357 11.341 7.574 4.398 42.284 6.246 -0.344 0.133 

HH 1000 sev.1.under 4.911 38.424 30.173 31.202 21.909 13.251 11.018 7.999 68.020 11.396 -0.105 -0.669 

HH 1000 sev.2.under -4.030 2.375 1.194 1.198 -0.077 -0.993 -1.508 -2.469 7.455 1.699 0.110 -0.279 

HM 250 mod.1.same -0.218 19.945 16.008 15.838 11.703 8.299 6.523 4.286 46.859 5.969 0.303 -0.026 

HM 250 mod.1.switch 1.131 16.086 13.013 12.768 9.587 7.179 6.028 4.293 43.268 4.635 0.426 0.176 

HM 250 mod.2.same -4.519 3.014 1.639 1.610 -0.059 -1.019 -1.418 -2.080 13.035 2.097 0.451 0.161 

HM 250 sev.1.same 1.582 20.127 16.151 15.963 11.950 8.623 6.479 3.875 44.850 5.933 0.233 -0.037 

HM 250 sev.1.switch -1.452 15.181 11.653 11.373 7.734 5.001 3.729 2.316 43.866 5.171 0.387 -0.043 

HM 250 sev.1.under 1.371 19.346 15.201 14.568 10.037 6.859 5.519 3.933 64.068 6.889 0.817 1.428 

HM 250 sev.2.under -3.443 2.291 1.084 1.140 -0.324 -1.180 -1.541 -2.186 7.577 1.723 0.184 -0.480 

HM 1000 mod.1.same 6.978 37.679 30.643 30.624 23.600 18.186 15.719 12.269 63.542 9.203 0.033 -0.714 

HM 1000 mod.1.switch 5.266 29.203 24.117 23.720 18.767 15.494 13.780 10.821 47.566 6.807 0.172 -0.642 

HM 1000 mod.2.same -2.609 4.105 2.999 2.579 1.339 0.235 -0.357 -1.073 15.529 2.504 1.096 1.519 

HM 1000 sev.1.same 7.215 37.813 30.992 30.703 24.212 19.653 16.994 12.863 60.853 8.780 0.050 -0.691 

HM 1000 sev.1.switch 2.375 27.353 22.046 21.575 16.812 12.594 10.311 7.035 47.947 7.311 0.137 -0.512 
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Item 
Type 

Sample 
Size 

Miss. 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

HM 1000 sev.1.under 7.596 36.945 30.459 30.323 23.509 18.126 15.573 11.300 67.929 9.311 0.131 -0.375 

HM 1000 sev.2.under -3.132 3.535 2.106 1.928 0.555 -0.352 -0.805 -1.573 9.231 1.981 0.341 -0.446 

HL 250 mod.1.same 0.668 20.019 16.691 16.653 13.294 9.638 7.543 5.047 48.125 5.361 0.210 0.406 

HL 250 mod.1.switch 2.756 17.551 14.768 14.496 11.650 9.395 8.345 6.544 39.729 4.281 0.434 0.228 

HL 250 mod.2.same -3.655 3.171 1.892 1.871 0.422 -0.716 -1.150 -1.867 12.376 1.990 0.371 0.163 

HL 250 sev.1.same 2.576 20.146 17.160 16.915 13.937 11.141 9.227 6.270 47.937 4.944 0.365 0.666 

HL 250 sev.1.switch 1.003 16.965 13.734 13.675 10.330 7.315 5.867 4.092 37.117 4.822 0.218 -0.092 

HL 250 sev.1.under 2.933 22.633 18.109 17.879 12.824 9.253 7.673 5.621 60.712 6.896 0.431 0.125 

HL 250 sev.2.under -3.819 2.608 1.475 1.423 0.187 -0.728 -1.176 -1.886 8.018 1.727 0.309 -0.132 

HL 1000 mod.1.same 4.689 36.937 31.590 32.316 27.138 20.282 16.752 11.868 60.663 7.813 -0.422 0.028 

HL 1000 mod.1.switch 10.622 32.551 28.138 28.053 23.597 20.131 18.257 15.395 51.105 6.123 0.100 -0.494 

HL 1000 mod.2.same -2.648 5.121 3.765 3.411 1.980 0.829 0.186 -0.807 16.938 2.564 0.795 0.715 

HL 1000 sev.1.same 8.028 37.005 32.400 32.746 28.190 23.392 20.168 15.377 58.706 6.786 -0.249 0.069 

HL 1000 sev.1.switch 4.789 31.573 26.302 26.803 21.348 16.277 13.604 9.549 48.851 7.215 -0.222 -0.416 

HL 1000 sev.1.under 8.584 42.662 35.106 35.453 27.127 20.418 17.710 13.530 74.101 10.700 0.030 -0.565 

HL 1000 sev.2.under -2.257 4.065 2.630 2.252 0.974 0.052 -0.418 -1.011 11.934 2.195 0.616 -0.081 

MH 250 mod.1.same 0.495 11.641 9.638 9.364 7.311 5.740 4.881 3.534 27.537 3.209 0.525 0.356 

MH 250 mod.1.switch -0.758 8.919 7.387 7.203 5.661 4.355 3.661 2.398 20.770 2.482 0.502 0.676 

MH 250 mod.2.same -2.880 2.444 1.505 1.403 0.404 -0.462 -0.783 -1.335 10.147 1.551 0.576 0.614 

MH 250 sev.1.same 0.573 11.512 9.547 9.246 7.266 5.698 4.849 3.479 27.011 3.178 0.541 0.388 

MH 250 sev.1.switch -1.344 8.784 7.125 7.032 5.305 3.820 3.049 1.738 21.063 2.616 0.350 0.362 

MH 250 sev.1.under 1.975 13.546 10.829 10.725 7.790 5.553 4.597 3.459 30.410 4.047 0.379 0.036 

MH 250 sev.2.under -2.470 1.453 0.687 0.694 -0.196 -0.776 -1.040 -1.468 6.114 1.120 0.242 -0.236 

MH 1000 mod.1.same 5.883 21.470 18.219 17.800 14.691 12.419 11.226 9.347 38.585 4.666 0.332 -0.372 

MH 1000 mod.1.switch 2.533 15.965 13.798 13.704 11.595 9.807 8.782 6.834 25.069 3.156 0.101 -0.161 

MH 1000 mod.2.same -2.256 3.812 2.654 2.350 1.083 -0.016 -0.515 -1.105 14.786 2.286 0.958 1.291 

MH 1000 sev.1.same 5.142 21.172 18.083 17.568 14.709 12.543 11.359 9.397 37.919 4.558 0.394 -0.272 

MH 1000 sev.1.switch 1.340 15.762 13.518 13.551 11.318 9.237 7.899 5.047 27.619 3.385 -0.089 0.126 

MH 1000 sev.1.under 6.618 24.870 21.265 21.282 17.661 14.045 12.125 9.575 39.774 5.342 0.011 -0.293 
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Item 
Type 

Sample 
Size 

Miss. 
Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt 

MH 1000 sev.2.under -3.154 1.926 1.003 1.052 0.054 -0.825 -1.257 -1.933 6.327 1.351 0.008 -0.259 

MM 250 mod.1.same 0.954 12.430 10.318 10.031 7.940 6.282 5.427 3.987 28.140 3.291 0.479 0.226 

MM 250 mod.1.switch 0.008 9.783 8.099 7.946 6.287 4.889 4.098 2.750 24.221 2.595 0.370 0.361 

MM 250 mod.2.same -2.477 2.488 1.574 1.499 0.533 -0.340 -0.690 -1.232 9.806 1.480 0.492 0.512 

MM 250 sev.1.same -17.904 12.477 10.403 10.100 8.032 6.462 5.603 4.179 27.486 3.271 0.374 0.952 

MM 250 sev.1.switch -15.813 9.316 7.636 7.477 5.772 4.376 3.559 2.161 20.670 2.663 0.312 0.606 

MM 250 sev.1.under -16.963 12.925 10.866 10.581 8.487 6.765 5.811 4.230 29.879 3.436 0.352 1.862 

MM 250 sev.2.under -2.629 1.694 0.929 0.918 0.092 -0.585 -0.875 -1.384 6.360 1.144 0.200 -0.129 

MM 1000 mod.1.same 5.705 23.259 19.599 19.128 15.787 13.266 11.966 9.859 37.653 5.044 0.266 -0.553 

MM 1000 mod.1.switch 3.912 17.790 15.265 15.129 12.640 10.634 9.508 7.465 28.256 3.637 0.138 -0.328 

MM 1000 mod.2.same -2.087 3.940 2.795 2.569 1.336 0.278 -0.283 -0.897 11.838 2.096 0.706 0.575 

MM 1000 sev.1.same 5.678 23.443 19.760 19.235 16.017 13.720 12.499 10.422 37.016 4.867 0.272 -0.583 

MM 1000 sev.1.switch 1.058 17.101 14.527 14.451 11.943 9.729 8.479 5.752 28.248 3.774 0.046 -0.149 

MM 1000 sev.1.under 7.399 24.534 21.050 21.160 17.616 14.540 12.942 10.223 39.679 4.866 -0.028 -0.382 

MM 1000 sev.2.under -2.362 2.380 1.494 1.454 0.548 -0.289 -0.663 -1.299 7.517 1.367 0.276 0.054 

ML 250 mod.1.same 0.649 12.194 10.317 10.147 8.233 6.615 5.667 4.060 31.537 3.011 0.389 0.407 

ML 250 mod.1.switch -0.141 10.664 9.078 8.981 7.363 5.992 5.216 3.850 22.728 2.478 0.286 0.238 

ML 250 mod.2.same -2.358 2.610 1.686 1.635 0.661 -0.229 -0.631 -1.191 9.568 1.480 0.418 0.433 

ML 250 sev.1.same -19.132 12.273 10.451 10.244 8.439 6.870 6.003 4.463 27.042 2.945 0.365 1.037 

ML 250 sev.1.switch -13.168 10.369 8.710 8.619 6.898 5.458 4.637 3.180 21.886 2.603 0.234 0.508 

ML 250 sev.1.under -25.022 14.453 12.127 12.002 9.625 7.511 6.408 4.766 29.106 3.640 0.142 1.540 

ML 250 sev.2.under -2.386 1.822 1.027 1.004 0.148 -0.543 -0.842 -1.341 6.899 1.205 0.286 -0.090 

ML 1000 mod.1.same 4.438 22.679 19.611 19.569 16.583 13.801 12.202 9.704 38.238 4.435 0.018 -0.245 

ML 1000 mod.1.switch 3.983 19.776 17.381 17.351 14.963 12.979 11.858 10.096 30.710 3.385 0.046 -0.310 

ML 1000 mod.2.same -2.183 4.423 3.200 3.020 1.761 0.687 0.079 -0.727 12.306 2.062 0.517 0.230 

ML 1000 sev.1.same 4.863 22.681 19.830 19.757 16.905 14.462 13.082 10.760 36.646 4.164 0.091 -0.217 

ML 1000 sev.1.switch 3.046 19.222 16.669 16.754 14.188 11.820 10.517 8.036 29.621 3.655 -0.111 -0.200 

ML 1000 sev.1.under 6.919 27.051 23.112 23.420 19.108 15.244 13.617 11.109 43.129 5.605 -0.088 -0.489 

ML 1000 sev.2.under -2.383 2.854 1.889 1.798 0.824 -0.086 -0.555 -1.209 9.759 1.557 0.404 0.281 
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