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Chapter 1

I ntroduction

1.1.Background

Latent variable models define a probabilistic relationship betweeeraus
responses to stimuli, such as test questions or items, and hypadhesizstructs or
abilities. Frequently employed among these are confirmatatprfanalysis (CFA; see
e.g., Brown, 2006; Gorsuch, 1983) and multidimensional item response theory;(MIR
see e.g., Ackerman, 1994; Embretson & Reise, 2000; Reckase, 2009) mioidblsre
both capable of representing specific relationships among obseespdnses and
hypothesized latent constructs. These theoretical dependencéonstlgas are
represented using a priori constructed structures that senansgtrain the patterns of
factor loadings or item discrimination parameters in CFA andRMImodels,
respectively. That is to say that these structures congtnaimassociations between
categorical response variables, or test items, and continuous lasgrbles,

characterizing persons or examinees.

In the CFA literature, such dependence structures are referasdthe patterns of
factor loadingsin the measurement model and represented amd¢ha loading matrix
A; in psychometric research the structure may be referred tQamatrix which is often
used to connect items to latent variables according to an athgory about task or item
demands (Tatsuoka, 1983, 1984, 1990). The structures constructed to descebe thes

connections are analogous to patterns of factor loadings specified in CFA models.



1.2.Model Specification

Specification of the model may correctly or incorrectly repré the underlying
theory regarding the connections between observed and latent variepksiless of
whether the CFA or MIRT framework is employed. Correct modelipatoon implies
that the hypothesized model structure, as represented by tbeléexting matrix or Q-
matrix, matches that present in the population. Estimation of auebdel may result in
sample parameter estimates that differ from the population pteesni- this does imply
model misspecification but instead is the result of random samplifigrences between
sample estimates and population parameters reflect what Brav@wadeck (1993) have
termed “errors of estimation” and represent the degree oftrbetfiveen the sample and

population model-implied covariance matrices.

Model misspecification can occur as a result of incorrect populdtginbution
assumptions, use of an inappropriate link function in the item respamst@fy missing
data, unmodelled measurement error, failure to account for varialplendkncies
(Kaplan, 1990), or the misrepresentation of the theoretical aisadmeetween observed
and latent variables via the factor loading matrix or Q-matioreover, within a
simulation context, correct model specification refers to the conditn which the
estimating model matches the generating mohesspecification of the measurement
model refers to models in which “(a) one or more parameters armmatetl whose
population values are zeros (i.e., an over-parameterized misspecdabl), (b) one or
more parameters are fixed to zeros whose population values arerosrfize, an under-
parameterized misspecified model), or both” (p. 427, Hu & Bentler, 1883)surement

model misspecification corresponds to misspecification of the patfefactor loadings



in the estimating model — an incorrect Q-matrix. Subsequentlyjnopertant practical
aspect of the successful and appropriate application of CFA or MidUEIls includes the

assessment of goodness-of-fit of the estimated models.

1.3.Estimation Frameworks

Generally, CFA is used to validate a hypothesized model steuctucompare
competing models. Under the CFA framework— and structural equatdelimg (SEM)
by extension — interpretations are typically made of the madalvahole; hencglobat
or model-fitstatistics. From this foundation, statistics and methods have #oisest the
goodness-of-fit of estimated CFA models against absoluteignfenull models, and
competing models. Additional statistics have been developed tatdmtd suggest
modifications in the model that would improve goodness-of-fit. Thysminess-of-fit
indices have been shown to be differentially sensitive to typessiit such as under-
factoring, over-factoring, and misspecification of the measuremmedel (Fan & Sivo,

2005, 2007; Hu & Bentler, 1998).

Users of unidimensional item response theory (IRT) and MIRT, on tmer ot
hand, are typically concerned with the interpretation of specificobdevariables or test
items and the unobserved or latent ability of examinees. Stemrmomgtiie assumption
that the IRT or MIRT model being applied is correct or validnfiices then describe the
deviation of items or examinees from the given item response mbdusiefore, few
model-fit indices have been specifically developed for applicatnater an IRT or MIRT
framework; instead the focus has been on person- and item-fiegndiem fit analysis
describes model-data fit for each item by comparing modaligirens to actual

responses. The resulting statistics are useful in desciibnéunctioning of the test in



terms of items and students, however, IRT models do not typicallg giagnostic

information regarding model-fit such those provided when CFA models are estimated.

Fortunately, the equivalence between MIRT and CFA models has been
established providing a number of assumptions are met (Kamata &, 2008; Takane
& de Leeuw, 1987), which will be discussed further in Chapter 2. Whese the
assumptions are met, IRT and CFA models yield parameters rthabtarchangeable
after application of known transformation formulae (Takane & de Le&@®7). Though
these models differ in regards to the purpose for which they pically been employed
and the subsequent inferences made based on the results, statisiicalence between
models suggests that desirable features of both can be employgidai@ @nd describe

global, model-fit and local, item-fit.

Recently, research has been conducted regarding the applicatiorhantbeof
select model-fit indices adopted from the factor analytienéaork within an IRT
context (Harrell, 2009). However, there has been no researchicgBcihvestigating
the implications of wide-spread measurement model misspeaficaitn model-fit
indices applied within a MIRT context. Further, research adjudgindel-fit has been
limited in scope, examining the effects of fixing or freeomyy one or two loadings, and
has failed to fully consider the effects of other aspects ofd#ta that would be of
interest in large-scale assessment, such as item diffi¢@ity Jackson, personal

communication, November 4, 2009).

The current study proposes a Monte Carlo simulation in the ex@omnaf

model- and item-fit for data generated under conditions of equivalegteveen CFA and



MIRT models per Takane and de Leeuw (1987), to which various typasasurement
model misspecification are applied under a range of varyingckestacteristics. These
characteristics include varying sample size, varying iteifficulty and item

discrimination parameter specifications, varying dimensionaletamons, and varying

types of Q-matrices.

The results of this study will provide researchers with infeionaabout the
performance of model- and item-fit indices under various itenficdify and
discrimination conditions and the impact of potential measurement model
misspecification. Specifically, it will inform researchatsout which types of fit statistics
designed and applied to equivalent CFA and MIRT models are most sudatetecting

different kinds of model misspecifications.

1.4.0Organization

This dissertation follows a seven-chapter structure. Chapter ithtneduced the
concepts and background for the research. In Chapter 2, the conditiossangder
equivalence between CFA and MIRT models are described andulitedgscribing and
demonstrating the construction and use of Q-matrices are rekieSudbsequent to a
summary of notational conventions, an overview of the literature on therpespef
model- and item-fit indices is provided. Chapter 3 describes the metigydapplied in
this dissertation after clearly stating the objectives infoinen of research questions. In
this chapter, the simulation and model estimation conditions are lukbcand the
methods of evaluation of the resulting estimates are detailed.eCsdpand 5 present the
results of the simulation according to true model estimation isspacified model

estimation, respectively. Within each of these chapters, estimasues and recovery of



person and item parameters are first examined, then the peré@rmofthe model- and
item-fit statistics are separately described. In Chaptehehrétical and empirical cut
points are described; in Chapter 5 power is demonstrated as resulting frqplitetian
of the empirical cut points. Chapter 5 concludes by synthesizinguamdarizing the
information provided by model- and item-fit results. With informatidoowd the
performance of model- and item-fit statistics under variousilaition conditions, the fit
of various Q-matrices to a real data set is evaluated in Ghépteastly, Chapter 7
concludes with a summary of the key findings, theoretical andigabhonplications for
these results, consideration for the limitations of the curremtarels, and suggested

topics for future research.



Chapter 2

Literature Review

This chapter first describes the conditions necessary to ehtadjuivalence
between the confirmatory factor analysis (CFA) and multdlisional item response
theory (MIRT) frameworks, detailing specific assumptions aadsfiormations required
to be able to employ one or both frameworks in the study of measntemodel
misspecification. The definition of the Q-matrix and its role he CFA and MIRT
frameworks is described. To be applied under each of the frameworks in thaienaltia
measurement model misspecification, the notions of model- and iterefidescribed.
This is followed by a review of the literature that is focus@& the properties of those
model-fit and item-fit indices that are identified as appropfi@teletecting measurement

model misspecification when estimating CFA and MIRT models.

2.1.Model Equivalence and Parameter Relationships

In educational and psychological measurement, two classes of maeels a
commonly utilized for the purpose of relating multiple observed or festnvariables to
one or more latent variables. The following sections describe teeideas and results;
more detailed descriptions can be found in sources such as Brown (20CBlAor
Reckase (2009) for MIRT, as well as McDonald (1999) and ThissehVairter (2001),
which describe the statistical and practical connections betwesse two modeling
frameworks.

Factor analytic (FA; Gorsuch, 1983) models estimate patterns ofizioma via
linear relationships between the observed response variables aipdentatént variables

when the observed variables are continuous. Item response theory (iRletsg. Lord



& Novick, 1968; Embretson & Reise, 2000), on the other hand, define nonlinear
relationships between the hypothesized latent variable and obsespedses, which are
assumed to be discrete. Specifically, multidimensional IRT mo@&RT; e.g.,
Ackerman, 1994) extend unidimensional IRT models to allow for more thamatar
variable. Similarly, nonlinear factor analysis (NLFA) oent factor analysis (IFA)
models (e.g., De Champlain, 1999; McDonald, 1999) attempt to overcome thedéchni
issues presented when the data is non-continuous.

Fortunately, there has also been a large amount of research estaltisHorgial
similarity between IRT and IFA approaches (Kamata & BaBéfl; Mislevy, 1986;
McDonald, 1999; Takane & de Leeuw, 1987); the equivalence between onevand
parameter IRT and CFA models has been established providing a mnafnalssumptions
are met (Kamata & Bauer, 2008; Takane & de Leeuw, 1987).

Specifically, under the two-parameter normal-ogive MIRT modetckidse,
2009), the probability of a correct response to binary itegiven abilitiesd;... 6k is

calculated ds

© 1 —(22/2)
P(x =1la,,h 0)=| —¢€ d:
j=1la,. I o
wherez=a (0'-h), g is a 1 xk row vector of item discrimination parameters for item

j, 0 is the row vector ok latent variable scores, abgis an item difficulty parameter. The
general FA model, however, presumes continuous observed variablés typdtally

expressed as:

Y =1+A0+¢

! Subscripi indexing students or examinees 1, N has been excluded from this section for clarity.



whereY’ is thej x 1 vector of observed continuous responses wiadexes items 1, ...
J; T are thej x 1 intercepts or threshold parametexsis thej x k matrix of slopes or
factor loadings wherk indicates the number of latent factor scoreslkang; 0 is thek x
1 vector of latent factor scores; ani$ thej x 1 vector of random errors.

The general FA or CFA model assumes that errors are ngraiattibuted as
e~ N(0,¥), where¥ is aj x j diagonal matrix of variance i and that errors and latent
factors are uncorrelated, c@y(¢) = 0. The marginal distribution of the continuous
observed response is assumed to follow

Y ~N(r,X)
where the threshold parameters are usually assumedrte bandX = AgA'+W¥ given
thek x k inter-factor correlation matrig. The conditional distribution of* given 0 is
Y |0 ~N(AO,¥)
In order to use the common FA model to analyze dichotomous datarsioilIRT

models, it iIs necessary to make the further assumption yhats an unobserved

continuous response which is manifested by a dichotomized varalderen the

following relationship:

X oo
0ify; <7

) {1 ify, >z,
Following the above assumptions, the marginal probabilityxhatl conditional
on 0 is obtainedunder a CFA framework as

t A0-1
P(x, =1|9)=j f(x =100 )dy =@ =

i

Yj



where y;, residual or standard error for itejnas thej™ diagonal from¥, can be
alternately set tay; = 1.0 or estimated ag; =,/1—Nj(pkj (Kamata & Bauer, 2008;

McDonald, 1999).

Formal equivalence between CFA and MIRT modelghsrefore, established
given that the errors ia are assumed to be normally distributed and inddgr@n often
referred to as the assumption of local independearathat the latent factors in the CFA
model are scaled to have a multivariate normatiddigion, ® ~ MVN(O, X).

Slope and threshold parameters in the CFA framewark related to

A T
discrimination and difficulty in the IRT frameworks$ a, =—- and d; =——-. For

Vi Vi
MIRT, item difficulty and discrimination values cde represented as scald®IFF
andMDISCfor each item (Reckase, 2009). When the meartsedatent variables are set
to 6« = O for scale identification, MDIFF represents thstance from the origin of tHe

dimensional item response surface to the pointte¢épest slope; it is calculated as

MDIFF:—dj/ > &, ,andd, =-b /kz a, When the alternate parameterization for
=1

k=1
difficulty has been used. Similar to the unidimensil b-parameter, positive MDIFF
values indicate more difficult items while negatixadues indicate easier items.

The value of the multidimensional discrimination rgraeter, MDISC, is
m

calculated adMDISC = /Zafk and represents the slope in the item responsecsuata
k=1

the location indicated by MDIFF. Values of MDIFFdamMDISC can be displayed

2 Kamata and Bauer (2008) describe other paramatieniss the use of reference indicators typical&f F
research. The current paper focuses on the tylRGapractice of defining the latent trait 4s- N(O, 1).
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graphically in item vector plots whereby the ba$esachi item vector is located at

MDIFF and the angle,a,, with respect to coordinate axis, calculated as:

il
cosy; = aﬂ/ /Z qzk . The length of each item vector is determined &43(C.
k=1

2.2. Q-Matrices

2.2.1 Structure and Function of Q-matrices

The original definition and description of Q-ma&scwas provided by Kikumi
Tatsuoka (1983, 1984, 1990) kag | incidence matrices whekeindexes attributes arjd
indexes test items. In early applications, the Qrimavas used to represent the specific
operations that were necessary to successfully esngach item on a mathematics
assessment; the specific operations included ctsicep attributes like addition,
subtraction, and multiplication. The Q-matrix whaern utilized within a multidimensional
classification framework to analyze student respateta for the purpose of diagnosing
"bugs" or difficulties with respect to one or mplé of the attributes.

Since that time, Q-matrices have been typicallysgnéed ag x k incidence
matrices indicating specific requirements for ié=ins, often corresponding to cognitive
demands (see Rupp, Templin, & Henson, 2010 foe stétthe art applications and
examples). Formally, elemenj = 1 in the Q-matrix indicates that itejrloads on /
requires / measures attribute / latent factor /esisionk for a successful response, apd
= 0 indicates that item does not load on / require / measure attribuegent factor /
dimensionk. The unidimensional IRT model is a special caswhich the Q-matrix is

simply described as a column vector for which alries are 1, indicating that the item
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discrimination values are associated with the sirigtent factor and freely estimated.
Further, the granularity of the attributes and it@sy interpretations of the incidence
elements of any Q-matrix is not limited to cogretiprocesses or other such fine
differentiations but can be as broad or detailetheasubstantive theory necessitates.

Under multidimensional CFA and MIRT models, itemayndemonstrate either
between-item multidimensionality within-item multidimensionalityAdams, Wilson, &
Wang, 1997), respectively known as simple or compgleucture in the CFA literature.
Items demonstrating between-item multidimensiopalinform to simple structure and
are associated with a single latent factor; the &isnrowj contains only one element
whereqy = 1. Within-item multidimensionality, however, ised to describe items with
complex loading structures; multiple entriegjef= 1 are present for item

From a statistical standpoint, the Q-matrix seneeslearly define the theorized
associations between observed and latent varialbdes. and person characteristics are
subsequently reported with respect to the latectbfa or attributes represented by the
columns in the Q-matrix. Put differently, the Q-maserves to represent the constraints
that are applied to certain model parameters ferpilrpose of representing substantive
theory. Under the CFA and MIRT models, entriesh&f Q-matrix imply the pattern of
fixed and freely estimated measurement model pammeln this dissertation, the Q-
matrix is used as a structural component in pandeniatent variable models (i.e., CFA
and MIRT models) where it serves to constrain taetdr loadings (CFA) or item

discrimination parameters (MIRT).
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2.2.2 lllustrative Examples of Q-matrix Use in PrevioussRarch

Before describing the simulation conditions andcgpmeuse of the Q-matrix in
this dissertation, the following studies demonstraistances where Q-matrices were
applied, or could have been applied, to item respahata. These examples highlight
implicit or explicit application of Q-matrices with CFA and MIRT frameworks
according to differing numbers of latent factors, ddmensions, and demonstrating
between-item multidimensionality (simple structuoe)within-item multidimensionality
(complex structure).

The first study considered is that by Wu and Ad48806) in which students’
responses to mathematics problem solving tasks eguered. The authors first posed a
four-dimensional problem solving framework basedtbree principles: (1) the latent
factors or dimensions needed to be related touctsbnally-relevant information and
performance; (2) the dimensions must be associaittdobservable student behavior;
and (3) test response data could be modeled amgzadaising available software. From
these principles, four dimensions were definedlagdading/extracting all information
from the question; (2) real-life and common sengpr@ach to problem-solving; (3)
mathematics concepts, “mathematisation”, and reagpand (4) standard computational
skills and carefulness in carrying out computatidwsing these definitions, four different
test forms were designed which comprised a totdBatems, one-quarter of which were
multiple-choice while the majority were polytomopscored. These test forms were
administered to 951 grade 5 and 6 students in ubarbs of Sydney and Melbourne,

Australia.

13



Item response data was modeled using the Randoffickoe Multinomial Logit
Model (Adams, Wilson, & Wang, 1997) implementedtlie ConQuest software (Wu,
Adams, & Wilson, 1998) which estimates the partieédit model — a polytomous
extension of the Rasch IRT model. Two different elsdvere estimated which followed
between-item multidimensionality (simple structureghe two-dimensional model
grouped items as (1) heavy reading and (2+3+4)th#rs; the three-dimensional model
grouped items as (1) heavy reading, (2) commoneserahematics, and (3+4) all others.
A unidimensional model was also estimated for takesof comparison. Though Q-

matrices were not provided for this study, genfmahs can be seen in Table 2.1.
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Table 2.1:
Between-Item Multidimensional Q-matrices for Wu Addms (2006)

2-Dimensional 3-Dimensional
[tem Uni- Reading/ All Reading/ Common  All
Group dimensional extracting Others  extracting Sense Others

Heavy

Reading 1 1 0 1 0 0

1 1 0 1 0 0

Common 1 0 1 0 1 0
Sense

1 0 1 0 1 0

Math 1 0 1 0 0 1
Concepts

1 0 1 0 0 1

Comp- 1 0 1 0 0 1
utation

1 0 1 0 0 1

Tests of model deviance showed that the three-dimeal model fit best
compared to the two-dimensional and unidimensianaldel. Additionally, a four-
dimensional within-item multidimensional model wastimated according to the four
specified dimensions plus additional factor loadirsgiggested by confirmatory factor
analysis (these are not detailed in the paper)gémeral form of the four-dimensional Q-
matrix is also presented in Table 2.2.

Table 2.2:
Within-ltem Multidimensional Q-matrix for Wu andakds (2006)

Reading/  Common Math Compu-
Item Group extracting Sense Concepts tation

Heavy Reading 1 * * *
1 * * *

Common Sense * 1 * *
* 1 * *

Math Concepts * * 1 *
* * 1 *
Computation * * * 1

* * * 1

* Additional factor loadings not detailed by author
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When compared to the results of exploratory faetwalysis (EFA), the authors
found that the MIRT results produced interpretadilelent profile information while the
EFA results were uninformative and prone to reprisg idiosyncratic disturbances in
item features. While the inter-factor correlatidosthe multidimensional models suggest
unidimensionality, ranging = [0.79, 0.95], the multidimensional model demaaisd
better fit than the unidimensional model. Furthérese values were shown to be
comparable to those reported for the Programmdnfrnational Student Assessment
(PISA; Adams & Wu, 2002).

In a second example, Hartig and Hohler (2008) nexti€erman, Austrian, and
Italian students’ responses to English reading #sténing comprehension tests.
Specifically, the authors were interested in whetheetween- or within-item
multidimensional models resulted in different sabsive implications, as demonstrated
by the goodness-of-fit results and the patterrfaabr loadings.

Two English as a foreign language tests were adberr@dd to 9557 grade 9
students: the reading comprehension test consiétéd multiple-choice items requiring
students to decode and understand short text pEEssagten in English; the listening
comprehension test required that students answenutiple-choice questions in real-
time, responding to audio recordings of short Etglpassages. Following from the
definitions of the tests, the within-item multidinsonal model was specified according
to two dimensions: (1) a general “text comprehenisidimension, representing the
abilities required by items on both tests, and g&)“auditory processing” dimension,
specific to items on the listening comprehensiost, t®nly. For the within-item

multidimensional model, the inter-factor correlativas fixed to zero. A between-item
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multidimensional model was also specified wheretihe@ dimensions directly reflected
the test content as (1) the “reading comprehensimiension and (2) the “listening
comprehension” dimension. For the between-item idioiensional model, the
correlation between latent factors was freely emtith. Similar to the Wu and Adams
(2006) study, a unidimensional model was also egéthfor comparison. The implied Q-

matrices for this study are presented in Table 2.3.

Table 2.3:
Q-matrices for Hartig and Hohler (2008)
Between-Item Within-ltem
Multidimensional M ultidimensional
Uni- Reading  Listening Text  Auditory
Items dimensional Comp. Comp. Comp. Processing
1 (R)* 1 1 0 1 0
1 1 0 1 0
46 (R) 1 1 0 1 0
47 (L) 1 0 1 1 1
1 0 1 1 1
91 (L) 1 0 1 1 1

* R = Reading; L = Listening.

All of the models were estimated according to aegalived 2PL item response
model using the Mplus 4.21 software (Muthén & Muth2007), in which factor loadings
were constrained to be equal for items loading loe $ame dimension. While the
estimated inter-factor correlation for the betw&em multidimensional model was very
high (p = 0.91), the results of this analysis found thathbmultidimensional models
demonstrated better fit than the unidimensional ehothe patterns of factor loadings for
the two multidimensional models offer differing enpretations of student performance
with regards to skills and abilities. While factoadings for the reading comprehension
test on factor 1 (“reading comprehension” or “teximprehension”) were equivalent

across models, factor loadings for factor 2 weravelo for the within-item
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multidimensional model (“auditory processing”) thafor the between-item
multidimensional model (“listening comprehensionThese results indicate that the
within-item multidimensional model decomposes th®litees required for listening
comprehension items, providing information abowe thixture of skills necessary for
successful performance. The between-item multidgiogral model, however, simply
separates performance according to test contersuggests a high degree of overlap via
the inter-factor correlation but does not spedcifjcdifferentiate skills or abilities.

In the studies above, item responses were modealedrding to Q-matrices
shown to demonstrate both between- and within-itraunttidimensionality under a variety
of test and sample design characteristics. Theseatfices are seen to both describe
substantive theory and constrain parameter esbmdtr each of the associated item
response models. In each of the studies, theafiisits were then examined to facilitate

discussion and interpretation of the best fittingdel and the corresponding Q-matrix.

2.3.Summary of Notational Conventions
Having described the conditions necessary to aeheguivalence between CFA
models and MIRT models and the role that Q-matragsplay in both, the following are
the notational conventions that will be used is tfissertation:
e i indexes subjects / respondents / persons / examirnieis removed from most
equations in this dissertation for the purposedanty;
e | indexes observed / manifest variables, which a@es from test questions /
assessment items; in this dissertation, only birtang scores will be modeled,
e k indexes the latent variables / factors / staasttimensions in a MIRT or CFA

model,
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e (Qj denotes a binary entry in the Q-matrix so tat 1 indicates that itefnloads on /
requires / measures attribute / latent factor /etisionk for a successful response,
andgy = 0 indicates that iteqndoes not load on / require / measure attribuégeht
factor / dimensiork.

e 0 denotes the'kcontinuous latent variable in a MIRT or CFA model,

e item difficulty is represented by eithds and d; in unidimensional IRT models,
MDIFF in MIRT models, and by, the threshold parameter, in CFA models.

e item discriminationis represented bgy in unidimensional IRT model$VDISC in

MIRT models, andj in CFA models.

2.4. Properties of Model-Fit Indices

Given a set of-observed variables, the covariance structure ingsited in CFA
is Xy =X(m), whereX(m) is aj x j covariance matrix of the observed variables onstén
the populationX(m) is the model-implied covariance matrix, ands a vector of free or

estimated parameters in the model. Sample estipaat@se calculated that minimize the

discrepancy between the model implied covariancérixnaZ(®), and the observed
covariance matrix$S, according to the discrepancy functié{S, Y (®)]. The larger the

discrepancy, the greater the valuel%;‘ therefore, model parameters are estimated such
that they minimize the value of the discrepancycfiom.

There are many estimators of the minimum fit fumct{F.,,) but the weighted
least squares mean- and variance-adjusted estiWdk@MV; Muthén & Muthén, 1998-
2001; Muthén, Du Toit. & Spisic, 1997) has beenvaihdo be most appropriate for

estimating CFA models when the observed variabiesl@hotomous. Similar to normal
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theory estimators, the WLSMV requires the calcalaif a full weight matrix, which is
the asymptotic covariance matrix that containsatétoric correlation estimates when
binary responses are modeled; however, only trgodel of this weight matrix is used to
calculate factor model parameter estimates. Subksédqo parameter estimation, the full
asymptotic covariance matrix is again employedaloutate the goodness-of-fit which
then has a mean and variance adjustment factoredpia account for the categorical
nature of the data (Muthén, Du Toit. & Spisic, 197

The use of normal-theory estimators, suchrmaximum likelihood(ML) and
generalized least squaré&LS) methods have been shown to produce inflgtediness-
of-fit chi-square estimates when modeling categbritata (Bentler & Dudgeon, 1996;
Bollen, 1989; Finney & DiStefano, 2006). As implexted in the Mplus software
package, version 5 (Muthén & Muthén, 1998-2007kulte have shown that the
WLSMYV vyields acceptable Type-I error rates and peter estimate bias when three-
dimensional models were estimated with 12 obsevagidbles and sample sizes ranging
greater than 200 (Muthén et al., 1997).

One of the most popular methods for evaluating rhfitis the goodness-of-fi?
statistic (Hu & Bentler, 1999), which assessesntlagnitude of discrepancy between the
estimated and predicted covariance matrices asasil

%°= Fmin(N - 1)
whereN denotes the sample size. It follogsdistribution when the model is correctly

specified, with an expected value equal to the ekgof freedomdf) and variance of
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2df. A significanty® value may reflect model misspecification, inclugliviolations of
some of the underlying assumptions (Hu & Bentl888).

While the)? statistic features prominently in the adjudicatafmmodel fit (Gierl
& Mulvenon, 1995); a variety of other model fit ks exist, having been developed to
overcome the shortcomings of this statistic, speadlfy its sensitivity to sample size
(Fan, Thompson, & Wang, 1999) and the violatioristributional assumptions. These
statistics can be classified m&remental, absoluteand parsimony-adjustedit indexes
(Bandalos & Finney, 2010; Bollen, 1989; Gerbing &d&rson, 1993; Hu & Bentler,
1995; Marsh, Balla, & McDonald, 1988; Tanaka, 1993)

Incremental or baseline fit indices (Curran, BoJl@men, Paxton, & Kirby, 2003)
calculate the improvement in model fit offered bg hypothesized, estimated, model in
comparison with a more restricted, nested, basetindel. Typically, this null model
considers all observed variables to be uncorrel@addalos & Finney, 2010; Bentler &
Bonett, 1980). Incremental fit indices, however axcluded from this dissertation as
they have been shown to demonstrate undesirabsgtisiy to factors such as sample
size and number of observed variables while beimginmally sensitive to Q-matrix
misspecification, the model characteristic of iagtrin this dissertation (Beauducel, &
Wittmann, 2005; Fan & Sivo, 2005, 2007; Fan, Thoomps& Wang, 1999; Hartig &
Hohler, 2008; Jackson, 2007; Janssen & De Boec®9;1Marsh, Hau, & Wen, 2004;
Sivo, Fan, Witta, & Willse, 2006; Thurber, Shinn,Snolkowski, 2002; Wolfe, Hickey,

& Kindfield, 2009).

% Model misspecification, however, results in a memtraly® distribution with an expectation df + 1 (the
non-centrality parameter) and variance df 2 41 (Curran et al., 2003; Steiger, Shaprio, and Brqgwne
1985).
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Absolute fit indices are another category of gomgraf-fit statistics, which
assess how well aa priori model reproduces the sample data. No referencesln®d
used to assess the amount of increment in modelb@it an implicit or explicit
comparison may be made to a saturated model thedtlgxreproduces the sample
covariance matrix. Included in this category is thassic goodness-of-fif2 statistic,
described above, as well as alternatives to thideinfit index such as McDonald’s Mc
index (McDonald, 1989), and the standardized roe&msquare residual (SRMR;
Joreskog & Sorbom, 1981; Steiger, 1989). ThoughaKd Bentler (1998) included the
root mean square of error approximation (RMSEA) tims category, it is more
appropriately classified as a parsimony-adjustédnfiex (Browne & Cudeck, 1993;
Steiger & Lind, 1980).

Similar to absolute fit indices are the parsimodjuated indices which also
measure the discrepancy between observed and rnngoledd covariances, but also
incorporate some type genaltyadjusting for degrees of freedom or model compjexi
Therefore, these indices describe the amount otinent in model fit relative to the
number of parameters required to obtain this iregea model fit. These indices include
the Parsimony Goodness of Fit Index (PGFI) and ilarsous Normed Fit Index

(PNFI), which were developed by Mulaik et al. (189 overcome issues with the GFI

and NFI incremental fit indices and include a paiy ratio%, in which the degrees
0

of freedom for the hypothesized mod#, are divided by the degrees of freedom for the
null model,df,. As it also accounts for model complexity, the REASmModel-fit index is

included in this category and described in desén.
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Model, or global, fit indices considered in thisidy were selected from the
families of absolute and parsimony-adjusted fitided based on three primary criteria.
First, they had to have been rather frequentlystigated by researchers so that a strong
empirical research base was already available which this dissertation work sought to
expand. Second, they had to have shown sensititoty measurement model
misspecification in previous work. Third, they hadhave been shown to be sufficiently
robust to test design conditions in previous work.

Utilizing these criteria, the selected indices fhis dissertation were the/df
ratio, an absolute fit index adjusted for model ptexity, and theroot mean square
error of approximationRMSEA). Both of these indices are available in foBA and
SEM software packages.

This dissertation also investigates tgeneralized dimensionality discrepancy
measurg GDDM; Levy & Svetina, 2010), which was developadpplication under the
MIRT framework. Given the equivalence between CFA MIRT models established
previously, all three of these statistics can beleyed in the evaluation of model-fit
when the appropriate modeling assumptions have Ibeetn The following sections

describe the structure of and prior research osetir@ices in more detail.

2.4.1 They?/df Model-Fit Index

The »*/df ratio model-fit statistic is simply a rescaling the goodness-of-fit?
index described earlier according to the model elegrof freedom which has been
recommended as appropriate for evaluating modelderurconditions of model
misspecification (Beauducel & Wittman, 2005; Jacksa007; Marsh, Hau, & Wen,

2004).
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In simulation studies, th¢/df has demonstrated values that increase with sample
size and model complexity increased when missgetifiodels are estimated (Beauducel
& Wittman, 2005; Jackson, 2007; Marsh, Hau, & We004), suggesting that this
statistic becomes more powerful under these camditi It has also been shown to
demonstrate stable nominal Type-I error rates (NMatgu, & Wen, 2004) and generally
outperformed all other fit indices in correctlyeejing misspecified models as one of the
model-fit indices most sensitive to model misspeatfon (Jackson, 2007; Marsh, Hau,

& Wen, 2004). Additionally, Wolfe, Hickey, and Kifidid (2009) found that the?/df
model-fit index was able to distinguish between peting MIRT models of two and
three dimensions when applied to real-world datcudeing student performance on a

test of introductory genetics.

2.4.2 The RMSEA Index

The RMSEA index (Browne and Cudeck, 1993; Steig@00; Steiger and Lind,

1980) is a parsimony-adjusted model fit index whgbased on a non-central goodness-

of-fit (GOF) °. The sample estimate of RMSER)(is calculated as:

= GOF 4 — df 2
=\ F [ df = =
df (N-1) df(N-1)

where If0 is the sample estimate of the error of approxiomaiiBrowne and Cudeck,

D>

1993) or the degree of misfit between the poputattovariance matrix3p) and the

model-implied population covariance matrix¥%) — which is estimated as the
discrepancy function F= (Zo, £0) according to the specified estimation procedure.

Given that the degrees of freedom can exceed th& @Othe minimum of this
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denominator is set to zero and the sample estiofat ranges from zero to infinity,
where zero indicates perfect fit and larger valireicate worse fit. The degrees of
freedom also indicate the number of dimensions biglvthe data are free to differ from
a model with estimated parameters; the RMSEA iseasure of the average lack of fit
per the degrees of freedom or potential lack ofHieene, Hilbert, Draxler, Ziegler, and
Bihner, 2011).

In the seminal paper by Hu and Bentler (1998), rgeldbody of literature on
model fit was used to inform the design of a simafa study for the purpose of
evaluating the performance of model-fit indicegluling the RMSEA. This study has
informed a great deal of subsequent research het@érformance of the RMSEA which
has been shown to demonstrate appropriate sehsitivimodel misspecification while
also maintaining minimal sensitivity to other fastoand has been specifically
recommended for use in detecting measurement nmasipecification (Beauducel &
Wittman, 2005; Curran et al., 2003; Fan & Sivo, 20P007; Fan, Thompson, & Wang,
1999; Jackson, 2007; Sivo, Fan, Witta, & WillseQ@D

Examination of the performance of the RMSEA hastbthat it demonstrates
minimal-to-modest sensitivity to various factorgfided as the proportion of variance in
the RMSEA attributed to the specific source. Factiar which the RMSEA has been
shown to be minimally sensitive include sample ,sike distributional form of observed
continuous responses, and estimation method Klaximum Likelihood, Generalized
Least Squares, or Asymptotic Distribution Free neation) (Hu & Bentler, 1998;
Beauducel & Wittman, 2005; Curran et al., 2003; RanSivo, 2005, 2007; Fan,

Thompson, & Wang, 1999; Sivo, Fan, Witte, & Will2006). Additionally, values of the
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RMSEA have been shown to increase with number w@tafactors under true and
misspecified model estimation (Beauducel & Wittma@Q05; Fan & Sivo, 2007). When
models were misspecified, the RMSEA has shown 8egi to such model
misspecification, typically as a result of undectéaing (Hu & Bentler, 1998; Fan &
Sivo, 2005; Fan, Thompson, & Wang, 1999), corredpan to large discrepancies
between values resulting from correctly estimateddabs in comparison to those
estimated from the misspecified models (Sivo, Faiite, & Willse, 2006). Further, the
RMSEA demonstrates acceptable power rates wherctirgje misspecified models
(Beauducel & Wittman, 2005). A final important catexation is that the RMSEA has
shown little systematic bias and random variatiosimulation studies for sample sizes
of n = 200 or greater (Curran et al., 2003; Fan, Thamp& Wang, 1999). All of these
results suggest the RMSEA as an appropriate madeldex for inclusion in this

dissertation.

2.4.3 The Generalized Dimensionality Discrepancy Measure

Thegeneralized dimensionality discrepancy meag@®DM) is a new model-fit
statistic that was developed original under a pasteredictive model-checking (PPMC)
framework for MIRT (Levy & Svetina, 2010). Under @rrectly specified model,

responses to items for a given person are locallgdependent if

J
P(X|0,0)=]JP(x 8@, ) where P(x, |6,0,) is the item response function for itgm
-1

given student abilityd over k-dimensions andw is the collection of item-specific

parameters accounting for the presumed MIRT madelations of this assumption are a
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result of model-data misfit and produce biased ifErameter estimates, test statistics,
and student ability estimates (Zenisky, Hamble&ireci, 2002).

The GDDM is essentially the mean of the absoluteased differences between
observed and expected responses computed ovenglieitem pairs:
J
2.

GDDM =421

ng(xj ~E(% 18,0 )% - E X 10 ,or))\
J(J-1) '

Values of this statistic range from zero, indicgtimo conditional covariance between all

items on a test, to infinity with larger values irating greater dependence. Large

GDDM values, therefore, indicate poor model fit.

In a Monte Carlo simulation by Levy and Svetinal@)) the GDDM was found
to perform at nominal levels in identifying misfitiolations of local independence, when
applied to two- and three-dimensional 2PNO MIRT eled Additionally, the GDDM
was used to examine responses to the Nidnal Assessment of Educational Progress
(NAEP) in science according to a three-dimensicB@NO MIRT model. Applied to the
actual responses of 1,020 examinees to 16 iteresGIDDM coupled with item-level
information provided by the MBC was successfullyedisto diagnose overall test
performance and identify misfitting items which aendidates for subsequent review.

This section described the properties of;gtﬁdf, RMSEA, and GDDM model-fit
indices, including the mathematical foundations bandf reviews of previous research.
These fit indices have been selected for inclugmthe current dissertation since they
have demonstrated desirable performance for thpogarof detecting CFA or MIRT
model misspecification while being minimally sen&tto other factors. In the following

section, item-fit indices are similarly considered.
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2.5.Properties of Item Fit Indices

Item fit analysis is concerned with the assessmkntodel-data fit at the level of
individual score variables, rather than at the egate level that the model-fit statistics
represent. Under the CFA framework the two mostroomly used local fit indices are
the Modification Index(MI; Sérbom, 1989) and the¢/ald TestBuse, 1982). Within the
IRT framework there has been comparatively litdeearch on item-fit for MIRT models
even though th&s? statistic has been shown to be a potentially pstmgi candidate
based on preliminary research (Zhang & Stone, 2688;also Li & Rupp, 2012). As with
the model-fit indices described previously, equevale between the CFA and MIRT
models allows these item-fit indices to be applieda wide variety of latent variable

models.

2.5.1 The Sy Statistic

Though numerous unidimensional IRT item-fit indi¢es/e been proposed, very
little research on item fit indices under a MIRBrfrework has been conducted. One
statistic that has been investigated is&ilaé statistic proposed by Orlando and Thissen
(2000) which has been subsequently adapted forcapiph to MIRT models (Zhang &
Stone, 2008). This statistic is a desirable candilacause (1) it employs total score and
does not rely on ability estimation, (2) the statiss a function of observed proportions
making the null distribution easy to describe, &dthe contingency table required to
compute the statistic is manageable in size whashthe additional effect of limiting the
potential for sparse data structures.

The performance of th®+statistic within a MIRT framework was evaluated by

Zhang and Stone (2008) using a Monte Carlo sinarladiesign examining Type-1 error
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rates and power in detecting a misfitting item #iglter violated monotonicity or ignored

guessing. When data was generated under simplets&u the Type-Il error rates were
appropriate for all other conditions. When the daéme generated according to complex
structure, however, Type-l error rates were inflatehen the dimensions were highly
correlated and when the sample size was large.

Across conditions, the power to detect violatiomadnotonicity increased across
sample sizes to nearly 100%, and increased witdr-fattor correlation, demonstrating
the highest power rates by correlations of 0.6 tipersist for stronger correlations.
Power to detect item misfit due to ignoring a guegssffect was low to moderate,
increasing with sample size and inter-factor catreh. The results of this study show the
S+ statistic to be a viable option for assessing ifiemnder a MIRT framework, though
it results in “liberal rejection of model-fittingeams” (Zhang & Stone, 2008, p. 193) when

the test structure is complex.

2.5.2 The Modification Index

Modification indices (MI; Sérbom, 1989) are a function of the first erd
derivatives of the fitting function evaluated atledixed parameter or factor loading and
are scaled to # metric (Kaplan, 1991). MI values reflect the appneate decrease in the
overall modely? if the current parameter were freely estimated angl therefore,
analogous to thg” difference test or likelihood ratio between tweteel models. The use
of the MI has been shown to facilitate revisiomuo$specified models when the revision
is theoretically justifiable and substantively imieetable (Jéreskog, 1993; Kaplan, 1989,

1990; MacCallum, 1986; Silvia & MacCallum, 1988).
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A Monte Carlo simulation study was conducted bydHirtson (1998) to examine
the stability of the results of an automatgxkcification searclor successive sequential
revision according to significant Ml values wherpkgd to two- and four-factor CFA
models estimated according to four levels of séyesf misspecification. Her results
found that recovery of the population model as sulteof MI-based model revision
improved as sample size increased from 200 to E@Dworsened as the severity of
misspecification increased, defined according toniber and magnitude of factor
loadings fixed to zero. When misspecification wighs, stability was achieved and the
population model recovered at least 90% of the ttne = 800 for the two-factor model
and n = 1200 for the four-factor model; under sevaisspecification, the four-factor
model better recovered the population model andeaed 90% recovery at n = 1200.
Overall, the study suggests that MI is useful thosgnsitive to sample size, model

complexity, and the magnitude of omitted factodiogs.

2.5.3 The Wald Test

TheWald Test(Buse, 1982) is a univariag@typically presented as the square of
the normalzvalue for each freely estimated parameter, and lmanthought of as
complementary to the MI as it indicates whetheregliy estimated parameter should be
fixed or set to zero. This local-fit statistic Haeen shown to be asymptotically equivalent
to the likelihood-ratio test between two nested eto@Buse, 1982; Kaplan, 1989).

Even though this index has been rarely studied ecafly, a Monte Carlo
simulation by Chou and Bentler (2002) examinedpgbgormance of the Wald Test in
backward searchesn misspecified structural parameters in two déife SEM models.

When the saturated model contained fewer misspatidins, the Wald Test was able to
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correctly reject parameters in 75% of the replaadi while incorrectly rejecting true
nonzero parameters 12% of the time; success mra@®ved when candidate parameters
were limited according to theoretical justificatidfor the saturated model that contained
a greater number of misspecified parameters, nuffggee parameters were rejected
greater than 65% of the time and true nonzero peten: were rarely rejected,;
performance increased to greater than 95% whemwmtgelewas limited by theoretical

justification.

2.6.Summary

Prior to description of the simulation study contédlcin this dissertation, this
chapter described the necessary mathematical cmmglitestablishing equivalence
between CFA and MIRT models. Making the assumptibias unobserved continuous
response are manifest as dichotomous item respotisas errors are normally and
independently distributed, and that latent facfoli®w a multivariate normal distribution
with unit variance, parameters resulting from CHAd aMIRT models are seen to be
equivalent through known transformations.

Description of the Q-matrix, a structure that baiperationalizes substantive
theory as well as serving to constrain model patarsgprovides additional information
necessary to understand the correspondence bete&rand MIRT models as well as
providing a clear device within which model missfieation may be expressed. In the
CFA context, the Q-matrix may represent either $&ngp complex structure and defines
the pattern of fixed and freely-estimated factadiogs. In the MIRT context, the Q-
matrix represents between- or within-item multidmei@nality as binary elements

indicating fixed or freely-estimated item discriratron parameters.
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Further, owing to the equivalence between CFA arnBT™models, model- and
item-fit statistics typically available separatdty these two models may be employed
together in the evaluation of model fit under trwesrectly, estimated models and
misspecified models. Previous research having tbestror demonstrated appropriate
and desirable qualities in detecting model misdpation under CFA or MIRT models
while being minimally sensitive to other factorBetmodel-fit indices included in the
subsequent simulation study are jfilf, RMSEA, and GDDM and the item-fit indices

are the S, Modification Index, and Wald Test.
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Chapter 3
Methods

3.1.0Objective

This study seeks to examine the performance ofowariglobal and local fit
indices under Multidimensional Item Response ThéMiRT) and Confirmatory Factor
Analysis (CFA) frameworks according to differengttdesign and respondent population
conditions. Specifically, factors that include sdgpize, test length (number of items),
model complexity (simple- or complex-structure), dab dimensionality (number of
latent factors), inter-factor correlation, and itéype (jointly defined by difficulty and
discrimination) will be manipulated within a simtitmmn study for the purpose of
answering the following research questions.

1) Interms of baseline performance under correct ingpukification:

a) How well are key parameters (e.g., item difficudtietem discriminations,
inter-factor correlations, person estimates) recayender various simulation
conditions, as indicated by average bias and reatmsquared error?

b) How do cut-off points associated with differentrsfggance levels (0.10, 0.05,
0.01) resulting from the empirical sampling distitibns for each fit statistic
align with those of the theoretical sampling dmitions under different
simulation conditions?

c) What proportion of variance in the empirically-dexd cut-off values in each
fit index is accounted for by each of the simulattmnditions?

2) In terms of performance under model misspecificatiospecifically Q-matrix

misspecification:
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3)

3.1.1

a) How is item parameter recovery affected by Q-matnigspecification under
different simulation conditions?

b) What is the power of different fit indices to det€xmatrix misspecification
using the empirically-derived cut-off values asgegged under correct model
specification?

c) What proportion of variance of power values of thH#erent fit indices is
accounted for by each of the simulation conditions?

How can the findings from the simulation studiesused to evaluate and revise

potentially misspecified Q-matrices for real dagsswhen the data-collection

design conditions are similar to the simulationigiegonditions?

Simulation Conditions

In this section, the specific conditions employeding the data generation phase

of this dissertation are described. Sample sizs, length, model dimensionality and

complexity, and Q-matrix structure are often dieatanipulated by or under the control

of researchers whereas item characteristics sudiffacsilty and discrimination as well

as correlational dimensions are model parameteas are estimated and not directly

controllable. The full simulation design is summad in Table 3.1.
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Table 3.1:
Simulation Design Summary

Purpose Condition Levels Description
Generation Model Dimensionality 2  Low (2 latent factors); Moderate (3)

Testlength 3  Short (12 items); Moderate (24 items);
Long (36 items)
Respondent sample size 2  Small (n = 250), Large (n = 1,000)

Model Complexity 2  Simple-structure; Complex-structure
Inter-factor correlation 3  Weak (r = 0.25); Moderate (r = 0.50);

Strong (r = 0.75)
Item type (disc. & diff.)* 6  HH; HM; HL; MH; MM; ML

Total 432
Estimation Framework 2** CFA; MIRT

(Mis)specification 3  True model; Moderate (17%); Severe (33%)

Total 6

Total 1296***
* [tem type is denoted according to discriminatend item difficulty discrepancy from the population
mean (“difficulty”). H = high discrimination or difculty; M = moderate discrimination or difficultygnd
L = low difficulty only.
* Though two estimation frameworks are specifieddets are only estimated once given the equivalence
of MIRT and CFA under the conditions specifiedtfis study.
** The conditions represent a fully-crossed simigdatdesign.

3.1.1.1Model Dimensionality

The number of latent variables assigned to subjegeminees, or students in this
study will represent two or three abilities, atirtds, or dimensions. These latent factors,
Ok, will be generated a& ~ MVN(O, X) whereX is ak x k covariance matrix described
according to the levels of the inter-factor cortiela condition. Though two or three
factors seem small, previous studies examiningaglob local fit under CFA or MIRT
frameworks typically considered few latent facteg., Fan & Sivo, 2005, 2007; Finch,

2010, 2011; Ximénez, 2009). Three latent factors the median number of first-order
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factors reported in reviews of CFA studies by Baartiger and Homburg (2006) and

Jackson, Gillaspy, and Purc-Stephenson (2009).

3.1.1.2Test Length

Describing the number of observed variables or tEsns present on an
instrument, the current study specifies a shottléegyth (12 items), a medium test length
(24 items) and a long test length (36 items). Thiesgyths are chosen to reflect
prototypical educational assessment conditiondan shorter tests are typically applied
in classroom settings by teachers while longerstase common in large-scale, high-
stakes assessment situations. Moreover, thesehtergsure equal numbers of items per
latent factor for each of the latent factor cormmfi. For example, a short test of 12 items
yields 6 items per factor under the 2-factor maatedl 4 items per factor under the 3-
factor model; similarly, a longer test of 36 itegislds 18 items per factor under the 2-
factor model and 12 items per factor under thecBfamodel. This follows the practice
of previous research (de la Torre, 2008; Hensonegnflin, 2006) and ensures that the
same numbers of pieces of statistical informatim available on each latent factor for
estimating respondent parameters.

The number of observed variables or items congidererevious studies on local
or global fit vary widely; the minimum number oéihs per dimension was four while
the maximum was sixty and the minimum total numbgeritems was four and the
maximum was 97. The median number of observed Wasareported in the review by
Baumgartner and Homburg (2006) was 11 while thabnted by Jackson, Gillaspy, and
Purc-Stephenson (2009) was 17 with both reportangges lower than 10 and greater

than 20. Finch (2010, 2011) has shown that iterarpater recovery is largely unaffected
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by test length, which is important to consider tagni parameters are instrumental in the
calculation of local fit indices like th&4?. This is confirmed by findings from Orlando
and Thissen (2003) who showed that thg 8emonstrated favorable detection rates for

misfitting items when the tests were composed afenisan 10 items.

3.1.1.3Sample Size

Manipulating the number of observations, small (256) and large (n = 1000)
sample sizes will be employed in the current stighsed on the range of sample sizes
reported across studies under the CFA frameworkg(ng 30 to 5,000; Beauducel, &
Wittmann, 2005; Fan & Sivo, 2005; Fan & Sivo, 206&n, Thompson, & Wang, 1999;
Jackson, 2007; Marsh, Hau, & Wen, 2004; Sivo, Mditta, & Willse, 2006; Thurber,
Shinn, & Smolkowski, 2002) and the MIRT framewo200 to 10,000; Hartig & Hohler,
2008; Janssen & De Boeck, 1999; Wolfe, Hickey, Kigld, 2009) a sample size of 250
represents an acceptable lower bound across CFM#ER@ studies while approximately
one-quarter of the CFA studies employed samplessifel, 000 or greater. Reviews of
studies applying CFA models in marketing and coreumnesearch (Baumgartner &
Homburg, 2006) found that sample sizes ranged #3=td n = 305, suggesting the small
sample size; much larger sample sizes were foumeviews of CFA applications in the
field of social work (n = 120 to 6,424; Guo, Perr&nGillespie, 2009) and in journals of
applied, counseling, and personality psychology 68 to 46,133; Jackson, Gillaspy, &
Purc-Stephenson, 2009) While measures of modeaddecially the RMSEA, have been
found to be largely insensitive to sample size (&abivo, 2005, 2007; Ximénez, 2009),

the S+? index performs marginally well at sample size600 and favorably at sample
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sizes of 1000. Therefore, the sample sizes usethig study should allow for an

appropriate detection of the degree of sensitmitthese indices.

3.1.1.4Model Complexity

A key design characteristic of an instrument is thenber of latent factors
associated with each item. Recall that the chaiatite of item multidimensionality
(Adams, Wilson, & Wang, 1997) is represented via v@ctors in the Q-matrix whereby
items associated with a single latent factor aréermed to as between-item
multidimensionaland items associated with multiple latent factars referred to as
demonstratingvithin-item multidimensionalityln CFA terminology, a simple-structure
model is composed entirely of items demonstratiegvben-item multidimensionality
while a complex-structure model is comprised deast one item demonstrating within-
item multidimensionality. In maintaining the MIRTn& CFA terminology, the
dimensionality of items and models is differentthtey referring to the former as
between- or within-item multidimensional and refiegr to the latter as simple- and
complex-structure.

A separate Q-matrix following simple-structure, qoieed solely of items
demonstrating between-item multidimensionality spgecified for each combination of
the levels of the Test Length (i.e., 12 items,&#j 36) and the Model Size (i.e., 2 latent
factors or 3), resulting in 6 between-item multidimsional Q-matrices which are
presented in the Appendix. Each of these Q-matrisesonstructed such that the
marginal column proportions — the number of iteresoaiated with each of thelatent

factors — is equal, providing a degree of measun¢roensistency since the generating
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item difficulty and discrimination (or factor loadj) values are similar within Item Type
conditions.

Q-matrices following complex-structure, containitgms demonstrating within-
item multidimensionality, are constructed using #imple-structure Q-matrices as a
starting point. For this condition, one-third oéfhtems in the two latent factor condition
and one-quarter of theitems in the three latent factor condition areirdsf in the
respective Q-matrix as within-item multidimensio&d strategically associated with a
second latent factogy = 1, such that the equality of the marginal colupnaportions
was maintained. The remaining items in each Q-matere left specified as between-
item multidimensional. These Q-matrices are ales@mted in the Appendix.

In simulation studies conducted by Fan and Siv@%2@007) and Hu and Bentler
(1998, 1999) model fit was found to be better foisspecified models when the
generating model followed simple-structure and th&timating models followed
complex-structure; model fit was comparatively wofer those models generated as
complex-structure and estimated as simple-structétethe local, or item, fit level,
Zhang and Stone (2008) found that wunder conditiong between-item
multidimensionality, Type-l error rates for detecti misfitting items approached the
nominal level while Type-l error rates were inflhiteunder within-item
multidimensionality and especially as test lengtld anter-factor correlation increased.
Finch (2011) notes that within-item multidimensibtygproduces overestimates of MIRT
discrimination parameters and underestimates @tudlfy parameters, thereby affecting

measures of item fit when the model is correctlycsied.
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3.1.1.5Inter-Factor Correlation

The two or three latent factors assigned to eadmeee in this study are
specified as correlated to a certain degree. Themustudy considers weak (r = 0.25),
moderate (r = 0.50), and strong (r = 0.75) intetda correlations, equal for all pairs of
factors. Studies emulating the results of Hu andtlBe (1998) employed inter-factor
correlations of 0.3 to 0.5 (Fan & Sivo, 2005, 2QQi)er-factor correlations included in
the study by Ximénez (2009) ranged 0.3 to 0.9. Sthdies by Finch (2010, 2011) found
that as inter-factor correlation increased fromti@ugh 0.8 so too did the bias in item

parameter estimates, suggesting sensitivity ofl liitcdadices to such dependencies.

3.1.1.6ltem Types
Further unobservable characteristics of instrumeatsl variables, though
controllable in a simulation study, are the iterfficlilty and discrimination parameters.
In this dissertation, discrimination and difficulye fully-crossed and specified jointly
according to six item types:
e High discrimination / high difficulty (HH);
e High discrimination / moderate difficulty (HM);
e High discrimination / low difficulty (HL);
e Moderate discrimination / high difficulty (MH);
e Moderate discrimination / moderate difficulty (MMgnd
e Moderate discrimination / low difficulty (ML).
Item difficulty and discrimination values vary assoModel Complexity, Model
Size, Test Length, and Item Type conditions, rasgllin 72 parameter sets which are

constant across all other data generation congititire exact values are presented along
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with the Q-matrices in the Appendix. Multidimensabritem discrimination (MDISC)
values for this study are strategically distribuéedaj x 1 vector across items with range
= [+0.9, +1.1] and mean = +1.0 for the moderaterdisnation conditions while range =
[+1.4, +1.6] and mean = +1.5 for the high discriation conditions. Higher
discrimination values serve to differentiate clgainong examinees while the moderate
discrimination condition approximates the Rasch eho@Embretson & Reise, 2000;
Rasch, 1960/1980), frequently applied in the analgbassessment data.
Multidimensional item difficulty (MDIFF) values irthis study are specified
according to the degree of discrepancy betweendib&ibution of item difficulty
parameters and the distribution of the generatibgitya parameters,d; the suffix
“difficulty” is retained instead of “discrepancyt facilitate later discussion and labeling.
Low difficulty items represent low discrepancy aace well-targeted to the ability
distribution in the population; moderate difficuitgms represent moderate discrepancy
and the distribution is, therefore, slightly shifteway from the examinee ability
distribution; lastly, high difficulty items reprasehigh discrepancy and the distribution
of item difficulty values is severely shifted aw&pm the distribution of examinee
ability. Degree of discrepancy in the current studymanipulated by shifting the
distribution of MDIFF parameters from an approxiglatnormal distribution under the
low difficulty conditions to a strongly-negativelskewed distribution under the high
difficulty conditions; mean difficulty increases twi discrepancy, resulting in fewer
correct responses by the simulated examinees. $meous research has shown that
item fit is not sensitive to item difficulty (Dodeg2004; Reise, 1990), conditions of

increasing discrepancy were selected over conditiepresenting easy or difficult items,
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since the latter would likely present redundantirfformation. Similar to the MDISC
values, MDIFF values are also strategically distilol across items asja 1 vector,
where mean = 1.0 (approximately) for high diffiguliems, mean = 0.50 (approximately)
for moderate difficulty items, and mean = 0.0 fowldifficulty. A half-logit increase in
MDIFF across conditions approximates the difficultgrease between grades described
by Kolen and Tong (2010). Further, MDIFF valuesdtirconditions in the current study
are defined by range = [-2.0, +2.0] thus ensurihgt titems represent and provide
information across the range of ability of approately 95% of the simulated examinees.
Table 3.2 presents surface plots for prototypiahs of each type, as both between- and
within-item multidimensional. Additionally, Figur8.1 presents the kernel-smoothed
density plots of the distribution MDIFF values bymber of items and difficulty together

with the means and inter-quartile ranges.
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Figure 3.1Kernel-smoothed density plots of the distributi@isVIDIFF values by Test
Length and difficulty.
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These item types do not cover the full range ofialifty and discrimination
parameter combinations but reflect a selectionlamtio the values employed in MIRT
studies such as Finch (2011) and Zhang and St@@8)2Item discrimination values for
simple-structure models in the study by Finch (304&re randomly generated as ~
N(0.9657, 0.3161) and constrained within 0.7 and Edr complex-structure models,
secondary dimensions were assigned by specifyingitiacal randomly-generated
discrimination values, ~ N(0.35, 0.15) with a minimum of 0.10 and a maximufm o
0.60. Item difficulty was randomly generated las- N(0,1). Zhang and Stone (2008)
randomly generated the discrimination values fa@r fiinst factor in a MIRT model as
a; ~ U[0.4, 2.0] then determined the discrimination valder the second factor by
randomly sampling the composite angleyas U[0,20] for simple-structure models or

v ~U[20,45] and calculating the remaining discriminati@lues for eachitem in closed

form as ajlzz\/J/Z[ajvl/cosﬁ/j )| (Reckase, 2009). The multidimensional difficulty

(MDIFF) and discrimination (MDISC) values corresporg to the ranges employed in

the above studies are presented in Table 3.3.

Table 3.3:
Summary of MIRT Item Parameters
Model MDIFF MDISC
Study Complexity Min M ax Min M ax
Zhang & Stone (2008) Simple -5.000 5.000 0.600 2.540
Complex -3.721 3.721 0.806 2.430
Finch (2011) Simple -2.121 2.121 0.990 2.828
Complex -2.121 2.121 0.141 0.849

Studies examining the impact of model misspecificatunder the CFA
framework have typically emulated the approach spekifications of Hu and Bentler

(1998) whereby item discrimination values range8a® 1.33 (e.g., Curran et al., 2003;
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Fan & Sivo, 2005, 2007); Ximénez (2009) considemedider range of values, 0.31 to
2.06. More recently, Heene et al. (2011) manipdiatdéarge range (0.3 to 0.9) of factor
loadings considering the effect of such parameiermnodel fit evaluation which reflect a
range of item discrimination values (approximat@l§ to 2.1) greater than typically seen
in IRT or MIRT studies. None of these studies, hasve manipulated the magnitude of
item discrimination as a factor of interest nor thdy explicitly consider item difficulty

via threshold parameters nor did the studies bgH-{2010, 2011) explicitly manipulate

item difficulty or discrimination.

3.1.2 Data Generation.

For each of the 432 data generation cells acrossstmulation conditions
presented in Table 3.1, 1000 replications will berfgrmed under True model
misspecification while 250 replications will be feemed for the Moderate and Severe
misspecification conditions, thus allowing for thexamination of distributional
properties, the calculation of various descriptstatistics, and the computation of
specific analysis-of-variance (ANOVA) models asatiésed below.

For each combination of the simulation factors dbed, item responses for
examinees = 1,...,| (determined by Sample Size) to items 1,... ,J (Test Length) are
calculated according examinee ability on each efkthatent factorsfi, given the 2-
parameter normal-ogive multidimensional item resgomodel (2-PNO MIRT; De
Ayala, 2009; Lord, 1952; Reckase, 2009). If thebaiumlity of a correct response by
examined to itemj given abilitiesd;... O is greater than the corresponding value from
ani x j matrix, U, of random uniform values ranging [0, 1], thenoarect item response

is generatedxf = 1), otherwise an incorrect item response is gegad &; = 0).
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Comparing item response probabilities agalliahtroduces random error as suggested
by Luecht (1996). Data generation was conductedhmm R software package (R
Development Core Team, 2011). This procedure iswsamzed in the following outline:
1. Q-Matrix Generation— for each level of Model Dimensionality, Test gém and
Item Dimensionality
1.1. Generatg x k matrix, Q, wherej indexes itemsk indexes latent factors, auqg =
1or0.
1.2. First, create simple-structu€g
1.3. Using simple-structur®, modify to create complex-structu@®
2. Item Type Generation for each level of Model Complexity, Model Dimé&nsality,
Test Length, and Item Type
2.1.Generatg x 1 vector of item difficulty value®
2.2.Generatg x k matrix of item discrimination values,
3. Latent Ability Generation- for each level of Inter-Factor Correlation ananfple
Size
3.1.Generate & x k inter-factor correlation matrix, whereXyx = 1.0,y is defined
according to the inter-factor correlation condiscend the three correlations in
the three-factor model being constrained to equalit
3.2.Generatei x k matrix of latent ability distributed as multivaieéa normal,
0 ~MVN(OQ, X)
4. Item Response Generatior for each level of Model Complexity, Model
Dimensionality, Inter-Factor Correlation, Test Lédngltem Dimensionality, Item

Type, and Sample Size
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4.1.Constrain item discrimination valuesg,, according to an element-by-element
multiplication ofQ or Q* elements, as appropriate.

4.2.Generate anx j matrix of probabilities of correct responsBsaccording to the
2-parameter normal-ogive multidimensional item oese theory model (2-PNO
MIRT; De Ayala, 2009; Lord, 1952; Reckase, 2009).

4.3.Generate anx j matrix of random uniform values),

4.4.Generate anx j matrix of observed dichotomous respon3es,
44.1. if Pj<Ujthen X =0

4.42. ifPj>Ujthen X = 1

3.2.Estimation Conditions

The current study employs the weighted least sguanean- and variance-
adjusted estimator (WLSMV; Muthén & Muthén, 199820Muthen, Du Toit. & Spisic,
1997) as implemented in the Mplus software packagesion 6.11 (Muthén & Muthén,
1998-2010) for the estimation of models under tkR& @amework. The MIRT model is
also estimated using the Mplus software with siméatimation specifications as the
CFA model. Mplus estimates a 2-PNO MIRT model, gdime probit link function®),
resulting in comparable item parameters accordinghé transformations provided by
Takane and de Leeuw (1987). Additionally, a study Maydeu-Olivares (2001)
demonstrated that parameter estimates obtained) ubkm Normal Ogive Harmonic
Analysis Robust Methodoftware (NOHARM; Fraser & McDonald, 1988), which
estimates the two-parameter MIRT model via an appration to the normal ogive,
were comparable to those obtained from Mplus. Defdplus settings were typically

employed, meaning that ten random sets of stan@mlges were generated and 10
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optimizations were carried out for each replicatiith the exception that the number of
processors was specified to take advantage of dbhe €PU’s available on some

computers used in this dissertation (PROCESSORS =4

3.2.1 Model Misspecification

Each of the original Q-matrices are misspecifiedssuch that specific entries
of Q are set toqg) = 0 whenq, =1 or g = 1 whengq, = 0. Misspecified Q-matrix
entries can reflect one of three possible typakernate-factor misspecification,
underfactoring or overfactoring Alternate-factor misspecification represents anses
where an item is estimated as loading on a latectof differing from the generating
factor, underfactoring represents the estimatiofewfer factor loadings than specified
during response generation, and overfactoring semits the estimation of more factor
loadings than specified during response generaflanlimit the complexity of this
dissertation, alternate-factor misspecificationajgplied only to items demonstrating
between-item multidimensionality and underfactoriagapplied to items demonstrating
within-item dimensionality; to limit the complexitpf this dissertation as well as
corresponding to previous studies of model mis$igation, overfactoring is excluded
from the study design.

For theTrue Modelcondition, no items are misspecified. For all otim@dels, the
misspecifications are pre-specified and stratelyidalanced within each experimental
cell such that the marginal proportions of items gi¢&ribute are maintained. For models
estimated according to tiModerate Misspecificationondition, one-sixth of all items are
alternate-factor misspecified; only items demorstga  between-item

multidimensionality are misspecified. This meanatth misspecified item is instead
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estimated as an indicator of a single latent fadiffering from the generating latent
factor. Model estimation according to tBevere Misspecificatiocondition means that
one-third of all items are misspecified, which ks those that were previously
misspecified under the Moderate Misspecificatiomditon as well as an additional,
equal, number of items. Under the simple-structmiedel condition these additional
items reflect alternate-factor misspecification hinisspecified items under complex-
structure models reflect underfactoring. Furtheryectly specified items are maintained
across conditions; specific items are correctlycsjgel regardless of the complexity or
degree of misspecification of the model. The missjgel Q-matrices are presented in the

Appendix.

3.2.2 FitIndices

Model fit indices considered in this study wereest#d based on sensitivity to
measurement model misspecification demonstratgutémious studies of measurement
model misspecification, their frequency of use bgctitioners, and their availability in
software programs (see the review by Gierl & Mulwen1995). These indices include
the y?/df, the Root Mean Square Error of Approximati¢RMSEA; Browne & Cudeck,
1993; Steiger & Lind, 1980), Modification Indice®ll{ Sérbom, 1989), and the Wald
Test (Buse, 1982). The generalized dimensionalggrdpancy measure (GDDM; Levy
& Svetina, 2010) and th®+* (Orlando & Thissen, 2003) will be employed in therent
study, representing the assessment of global-aad fit under the MIRT framework.

While they%/df, RMSEA, MI, and Wald Test statistics are all conmiycavailable
in CFA and SEM software packages, the GDDM &3y were programmed by the

author in the R software package (R Developmenea&am, 2011). Calculation of the
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GDDM is straightforward according to the formulalaulation of theS+? is detailed as
follows.

The S-;(z statistic is calculated using the joint likelihofmat each total scork, S,
or the summation of all likelihoods across all idist response patterns for each total
score category. Using a recursive algorithm, tlet jiikelihood is computed one item at
a time. Subsequently, the expected proportion afecb responses to itejunder total
scoret, or Eg, is computed as

(P05 101000090,
 [[s fa.0,0000,

jt
where f (6,,6,) is the population distribution of ability undetvao-dimensional MIRT,

*_jl Is the joint likelihood for total score categdry 1 without itermy (obtained from the

recursive algorithm). The integrals in the numaratnd denominator can be
approximated by rectangular quadratures over thebomation of equally spaced
increments ofhandé.. The calculation oE;; is generalized by expanding the integrals in
the numerator and denominator to include responseapility, population distributions,

and derivatives with respect kalimensions. Finally, the statistic is computed as

S— ;{ i Nt(ojt E]t)
By (1-Ey)

t=1
whereQy is simply the observed proportion correct for iteim total score categotyand

N; is the number of examinees in total score category
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3.2.3 Performance of Fit Statistics

Prior to analysis of the fit statistics, the modsiimation process is first evaluated
by examining estimation issues, commonly defineteims of convergence failures and
Heywood cases which result in negative error vaearfor the estimated parameters. The
model estimation process is further evaluated bgneming the recovery of item
parameters, specifically MDIFF, MDISC, inter-facimorrelations, and person estimates
or &;, via calculations of the root mean-squared erRIVISE) and average bias. Root

mean-squared error is calculated as

RMSE(w)=J§(a1 —a) / N

r=1

wherew indicates the population or generating paramet@nterest,& is the estimated
parameter, and indexes the 250 or 1000 replications within eael af the simulation
design. This statistic describes the empirical ddiach error of the parameter estimates
where smaller values indicate better recovery o tiriginal, generating values.
Similarly, average bias is calculated as:

R

> (& o)

Bias(@ )= =—;
NR

and is a signed-indicator of the magnitude of tiserdpancy between the estimated and
generating parameters.

With the exception of the GDDM, each of the fitices (i.e., RMSEAf/df, M,
Wald Test, and5+?) is posited to follow a theoretical distributiontypically x> — and,
therefore, hypothesized distributional propertiesm de described for each, including

mean, variance, skewness, kurtosis, and percentikesociated with the typical
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significance levels (0.10, 0.05, 0.01). Aggregatioxer simulation replications, the
empirical sampling distributions of the fit indicedgll be compared to the expected,
theoretical, critical values according to the vasi@imulation conditions. Comparison of
the theoretical and empirical sampling distribusionvill reveal whether model

complexity, model size, test length, sample sizemi type, or degree of model
misspecification result in violations of the asstimps of the null distribution. Suggested
by authors such as Tay and Drasgow (2011), em[iyridarived cut points for each fit

index are then derived as the values corresportdirige 95' percentile, representing a
significance level oé. = 0.05.

As stated by Fan and Sivo (2007), fit indices stiobé sensitive to model
specification errors; sensitivity to conditions @ththan model misspecification is
typically demonstrated as the proportion of vapiatin the outcome statistic attributable
to the conditions resulting from a factorial an@y®f variance (ANOVA). Large
proportions of variance attributed to one or midtigimulation conditions indicate
variability between the levels of the conditionimteraction of conditions and are said to
suggest sensitivity of the outcome statistic tosth@onditions. For each fit index a
factorial ANOVA is conducted to evaluate how eacldel and item fit index is
influenced by the various simulation conditionse tbum-of-squares attributable to a
factor, or simulation condition, and the total swh squares are used to calculate
;72 = 100 X SSoucdSSo Where? represents the percentage of the sum of squares
attributable to each of the experimental or simotatonditions or interactions thereof
(SSourcd and the total sum of squareSS.. The current study follows a balanced

design which results in orthogonal factors and fihetorial ANOVA partitions the
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variance of the fit indices into different compotgeraccording to the simulation
conditions.

In this dissertation, sensitivity is defined/#s> 1.000% indicating that there is a
non-trivial amount of variability between the levelf the conditions. Alternately, when
n? is smaller than 1.000% the outcome statisticagestto be insensitive to that condition
or conditions. The threshold of 1.000% has beewrcssll for descriptive reasons,
indicating a non-zero amount of variability attriible to the simulation condition. While
not explicitly stated, previous research on fitardsensitivity typically discusses non-
zero values ofy? (Fan & Sivo, 2005, 2007; Jackson, 2007). The outstatistics of
interest from the successfully estimated replicatiare subjected to separate factorial
ANOVA calculations to explore the sensitivity ofocBamodel and item fit index to test
length, sample size, model complexity or item nalitiensionality (depending on the
unit of analysis), model size, the strength of ititer-factor correlations, and item type.
Under true model specification, the sensitivitytledé empirically-derived cut points will
be examined as these values represent the depwilais in model evaluation and should,
therefore, appropriately indicate misspecified niededer all simulation conditions.

The effect of model misspecification on the perfante of the various item and
model fit indices is of primary interest in thisudy. Analysis of the specific effect of
degree of Model Misspecification will follow the esall procedure described earlier,
considering Model Misspecification as both a fadctothe ANOVA calculations as well
as examining the performance of the fit indicesasajely according to each level of
misspecification. Further, Type-I error rates ansver will be evaluated for each of the

fit indices. Type-I error rates for each modelifilex are calculated as the proportion of
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true, correctly specified, models yielding fit vatufalling outside the critical range;
Type-I error rates for item fit indices are the podion of correctly specified replications
for which the item was judged to demonstrate paiorHower is assessed using the
empirical cut-off values that ensure approximatebminal Type-l error rates and is
computed as either the proportion of misspecifiediels which are correctly rejected by
the model fit index or the proportion of misspemifiitems which are correctly rejected
by the item fit index. Summaries of power for itéinindices will be computed

separately for the correctly- versus incorrectlgeafped items.

3.3.Real Data Application

A real-data component is included in this dissematto (1) to serve as an
illustrative example of how the findings from tharient research can be applied in
practice and (2) to suggest direction and appbaoatifor future research. Item-level
responses for a high-stakes grade 6 mathematigésvaahent assessment from a large
Midwestern state were obtained via an arrangemetwden the state department of
education and the author of this dissertation. Teigsdentified dataset is an early return
dataset collected by the test vendor for the pw@dstem calibration and early research.
Additionally, this administration corresponds tsttenaterials that have been released
into the public domain by the state allowing foramination of content such as item
stems and item response option.

A promotional requirement for every student in gr&d the full achievement data
set represents the population of students in #ie sind contained responses for 12,861
to 39 items, which include binary-scored multipf®ice items, short answer items worth

2 points each, and extended response items wqrthrids each. For the purposes of this
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study, the dataset is reduced to include only théiBary-scored items and a random
sample of 1,000 examinees is drawn to representlatge sample size condition
simulated in this dissertation. Since test contea$ available for consideration, the Q-
matrix was constructed as part of an earlier rebestudy (Gushta, Yumoto, & Williams,
2009) by assigning items to appropriate levelshaf tevisedBloom’s Taxonomy for
Educational ObjectivegAnderson & Krathwohl, 2001; Bloom, 1956). Thesgegories
describe the cognitive processes necessary tossfaltg answer test items, independent
of specific subject-area requirements, accordinght Cognitive Process Dimension.
While there are 6 categories in the Cognitive Psed@mension, only 3 were represented
in this assessmenRememberingwhich is the most basic cognitive process indicat
that test items require only retrieval of storedofmation; Understanding a more
complex process requiring summarizing and comparargd Application for items
requiring the use of procedures to solve familiadt aovel tasks. The 2-parameter normal
ogive (2-PNO) multidimensional item response thedMRT) model will be estimated
using this data and the Q-matrix resulting from @ognitive Process Dimensions as well
as Q-matrices suggested by the content standardbifoassessment as well as a Q-
matrix suggested by exploratory factor analysise Tesulting values of the?/df,
RMSEA, GDDM, Modification Indices, §% and Wald Test fit indices are then
examined according to the simulation-suggestedooutts, for the purpose of selecting
the most appropriate Q-matrix, identifying model @rmatrix misspecification, and

suggesting subsequent Q-matrix revision.
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Chapter 4
Results of True Model Estimation

Latent variable models were estimated for dichotasnesponse data varying in
sample size, test length, item discrimination aifficdlty, difficulty (i.e., magnitude of
discrepancy from average examinee ability), itenttiditnensionality, number of latent
factors, and degree of inter-factor correlatione Tarrent chapter presents the results of
estimating correctly specified, true, models. Thefgrmance of model- and item-fit
statistics estimated for these models will be wse@vidence in answering the following
research questions:

1) How similar are key percentiles (i.e.,™095" and 94) from the empirical
sampling distributions to the corresponding pelitentfrom the theoretical
sampling distributions? In other words, how strgnglo the empirical and
theoretical sampling distributions differ in thapper tails?

2) How much do the percentiles from the empirical damgpdistributions vary as a
function of different test design and model cormfis?

3) How much does the use of the percentiles from theoretical sampling
distributions inflate or deflate the nominal typertor rate?

Additionally, the bias and precision of item andgo® parameters will be calculated in
order to evaluate parameter recovery under trueemestimation conditions. Lastly,
application of the theoretical or suggested cunhyoare then discussed as Type | error

rates.
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4.1 .Estimation Issues

For each of the 432 true model conditions enoughcaions were conducted so
as to obtain 1000 successfully converged replinatior each cell in the design of the
simulation study. On a 64-bit dual-core 2.53GHz pater with 4.00GB of RAM the true
model conditions took approximately 490 hours tmptete. For the majority of the cells
in the experimental design all of the 1000 repiaat resulted in successful estimation
runs; however, 167 (38.66%) of the 432 true modwmddions required additional
replications with a minimum of one additional reglion through to a maximum of 369
additional replications for models with 3 weaklyradated latent factors, 12 high
discrimination / high difficulty items estimated @asthin-item multidimensional, and a
sample size of 250. Table 4.1 presents the sinonlatonditions requiring greater than an

additional 1% to achieve the necessary 1000 rejuita
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Table 4.1

Convergence
Test Sample Item 2 Dimensions 3 Dimensions
Length Size Multi. Type L* M H L M H
12 250 B HH 101% 102% o 125% 115% 106%
HM 125% 111% 102%
HL 106% 103%
MH 106% 102% 105%
MM 103% 102% 102%
ML 102%
w HH 104% 103% 111% 137% 123% 113%
HM 101% 101% 103% 119% 112% 105%
HL 108% 104% 102%
MH 104% 105% 103% 115%
MM 102% 104% 102% 112%
ML 101% 105%
24 250 B HH 102% 103% 106% 103%
HM 101%
HL 101%
w HH 101% 101% 103% 106% 105% 105%
HM 102% 102%
HL 102%
MH 101%
36 250 B HH 102% 102%
HM 101%
HL 101%
w HH 102% 103% 105% 102%
HM 102% 102%

* Indicates inter-factor correlation: L = Low, M Moderate, and H = High.
** 100% convergence omitted for clarity.
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Generally, the proportion of replications that resd be replaced corresponded
with shorter test lengths and small sample sizesreaver, a greater number of
replications were necessary for the three-dimeasiorodels than the two-dimensional
models. These results suggest that the models erergly estimable; however, the
smaller sample sizes and increased model compleartgsponded to a larger number of

estimation failures and more parameters that wepgdcisely estimated.

4.1.1 Results for MDIFF

Specifically, summaries of the root mean-squareor dRMSE) and average bias
for MDIFF, MDISC, inter-factor correlations, andiliy (i.e., #) are presented in Table
4.2. Overall, values of the RMSE values for the MPlare small (mean = 0.222,
median of 0.161) with the largest RMSE values spoading to the smallest sample size
(n = 250) but otherwise varied with respect to ¢bol. Average bias of MDIFF is also
small (mean = -0.001; median = -0.005) with thegdéat values occurring under the
smallest sample size. Thus, overall, recovery of IIMD parameters was mostly
dependent upon sample size, though the degreesofegancy between the true and

estimated values was small across all conditions.

4.1.2 Results for MDISC

RMSE values for MDISC are slightly larger than thoseen for MDIFF
(mean = 0.332; median = 0.221) and the averagevbiass are also more positive (mean
= 0.001; median = 0.003), suggesting an increaseaber of discrepancies of greater
magnitude. The largest RMSE values are seen urolitons of the smallest sample

size, shortest test length, highly discriminatitegs, and highly correlated latent factors.
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Average bias shows behavior similar to the RMSBugih values increase as inter-factor
correlation becomes stronger. Recovery of disctatndm parameters is seen to be

dependent on sample size, though this relationsmpt straightforward.

4.1.3 Results for Inter-Factor Correlations

Inter-factor correlations across two- and threeafimional models demonstrate
small-to-moderate RMSE values, with means rangifad® to 0.280 and medians of
0.048 to 0.180, where the larger values are adsdcwmith two-dimensional models.
Average bias for the inter-factor correlations destmates similar ranges and behavior.
The largest values of RMSE and average bias areciagsd with three-dimensional
models following simple-structure, in which latdattors are highly correlated, the test
length is short, and items are highly-discrimingtifrurther, the largest average bias
values suggest that estimated inter-factor coroglat are more than double the

generating values.

4.1.4 Results for Person Parameter Estimation

Finally, recovery of the person parameters, alterkaown as examinee ability or
0, is examined. RMSE values are small for abilityoas two- and three-dimensional
models (mean = 0.059 to 0.072; median = 0.0650@0), however, average bias is large
(mean = 0.961 to 1.695; median = 0.900 to 0.96%H)icating that the majority of the
values were closely recovered. There are, howevany person parameter values which
were poorly recovered as demonstrated in the vadge of average bias values (-19.045

to 23.364). While large RMSE values are typicalbgaciated with small sample sizes,
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simple-structure three-dimensional models with higtiscriminating and difficulty

items, extreme average bias values follow no dmbkr pattern.

4.1.5 Summary of Estimation Issues

Overall, variability of parameters recovery as diéed by RMSE appears to be

small and impacted mainly by sample size, sugggshiat parameters are less precise at

the smallest sample size. The magnitude of theepancies, indicated by average bias,

is generally small for item parameters but suggiésgpresence of overestimated values,

in the case of inter-factor correlations, and extevalues, for ability estimates,

frequently associated with three-dimensional model®wing simple-structure with

highly-discriminating items.

Table 4.2
Descriptive Statistics for Root Mean-Squared Ewmnd Average Bias of Key Parameters
Param. Min 25th% Mean Median 75th% Max SD
RMSE MDIFF  0.063 0.105 0.222 0.161 0.253 3.291 9.27
MDISC 0.085 0.153 0.332 0.221 0.398 4.751 0.359
P12 0.018 0.044 0.280 0.180 0.511 0.786 0.273
P13 0.019 0.036 0.054 0.049 0.067 0.125 0.023
P23 0.019 0.035 0.053 0.048 0.066 0.121 0.023
61 0.031 0.039 0.059 0.065 0.071 0.1127 0.019
0> 0.032 0.050 0.072 0.070 0.086 0.194 0.030
03 0.031 0.048 0.072 0.069 0.087 0.174 0.031
Average MDIFF  -0.333 -0.031 -0.001 -0.005 0.034 38.2 0.069
Bias MDISC -0.317 -0.004 0.001 0.003 0.014 0.162040D.
P12 -0.354 0.000 0.508 0.409 1.010 1.821 0.528
P13 -0.037 0.004 0.019 0.009 0.029 0.361 0.032
P23 -0.616 0.039 0.209 0.218 0.365 0.904 0.274
61 -19.045 0.581 1.349 0.900 0.989 21.495 3.882
0> -11.553 0.875 1.695 0.965 0.997 23.364 3.535
03 -14.917 0.828 0.961  0.955 1.000 16.221 2.923
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In a study by Finch (2011), the RMSE for item diffity parameters estimated
according to correctly specified 2-PNO models ran@®86 to 0.99 while RMSE for item
discrimination parameters ranged 0.34 to 0.54. gtk results of the current study
suggest that levels of the simulation conditioriscifparameter estimates and subsequent
statistics dependent on these values, the paraneter generally well-recovered

compared to previous research.

4.2 Distributional Characteristics of Model Fit lo€s

The 98", 95" and 99' percentiles from the empirical sampling distribag
across the 1,000 successful replications were cstanel submitted to an ANOVA that
included the test design and model conditions agofs. In the following, the
distributional characteristics of th&/df ratio, RMSEA, and GDDM model-fit indices as
well as that of the $2, Modification Index, and Wald Test item-fit indare examined
via descriptive statistics such as means, med&tasadard deviations, and inter-quartile
ranges, as well as graphically using box-and-whigkets and empirical cumulative
distribution functions for each fit index. For eadanterpretation and presentation, these
statistics are summarized according to the simaratconditions for which the
empirically-derived cut points, the 95ercentiles representing a nominal significance
level of a = 0.05, demonstrate sensitivity resulting from tfaetorial ANOVA
calculations for each fit index.

The proportion of variance in the empirically-dexivcut points for each model-
fit index are presented as percentages in Tablact@rding to main effects of simulation

conditions and interactions thereof for which themoints demonstrated sensitivity.
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Table 4.3
Selected Percentages of Variance for Empiricallyizzl Model-Fit Cut Points Under
True Model Specification

Source v/df  RMSEA GDDM

Number of Dimensions (1) 0.161 0.103 _6.078
Test Length (2) 69.925 40.126 13.885
Sample Size (3) 0.193 38.663 18.746
Item Multidimensionality (4) 2.125 1.793 0.024
Inter-Factor Correlation (5) 1.932 1.510 0.006
Item Type (6) 1.711 0.999 53.563

2*3  0.816 6.585  1.227
2*6  0.404 0.510 _2.517

3*6  4.059 1.250 1.041
2*3*6 2.189 0.583 0.078
Residuals  9.303 3.456 1.095

4.2.1 Results for2/df

Large percentages of variance are attributablegsolength in the empirical cut
points of they?/df (° = 69.925) while a lesser degree of sensitivitgésnonstrated to
multidimensionality, inter-factor correlation, itetype, the first-order interaction of test
length and item type, and the second-order interadietween test length, sample size,
and item type. Descriptive statistics for tjfédf model fit index resulting from True
Model estimation are therefore presented accorttirtgst length, sample size, and item
type (see the Appendix); the box-and-whisker plodven in Figure 4.1 depicts these
values graphically. As demonstrated by the medants inter-quartile ranges, the True
Models typically fit the data well resulting in w&s of approximately?df = 1.The
interaction of test length and sample size is cleawever, in the ranges g#/df and the
corresponding fluctuations in the '§095", and 98' percentiles. The empirical

cumulative distribution functions for thé/df are depicted in Figure 4.2 according to the
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same conditions where they are seen to deviate fhantheoretical distributidn The
distribution of this fit statistic most closely appches the theoretical distribution under
the short test length condition and shows increpslaviation from the theoretical
distribution as the test length increases, moreetyjoapproximating 1.000. Overall,
positive skewness in the distribution of t{fé&df indicates that the suggested cut points of
2 or 3 (Byrne, 1989; Carmines & Mclver, 1981; Mar&h Hocevar, 1985) are
inappropriate for the conditions presented in #tigly as they are much larger than the

empirically-derived cut points corresponding to @8, 95", and 99' percentiles.

* Values for the theoretical distributiongfdf can be fully determined by sample size andlesith.
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Figure 4.1.Box-and-whisker plot for thg/df ratio.

Presented according to item type, test length (Jjpwsd sample size (columns) . The
solid lines represent the B(percentile (blue), 98 percentile (green), and percentile
(red); the dashed line represents the most consigevauggested cut poing/df = 2).
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Figure 4.2Cumulative distribution functions for th&df ratio.

Presented according to item type, test length (Jpwad sample size (columns). The
black line represents the theoretical distributidhg dashed line represents the most
conservative suggested cut pojitdf = 2).
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4.2.2 Results for RMSEA

Most importantly, values for the RMSEA index underrect model specification
are frequently close to 0 as one would theoreticekpect. Similar to the?df, the
largest percentage of variance in the RMSEA engdigot points is attributable to test
length ¢® = 40.126) with substantial variance also attriblgato sample sizenf =
38.663) and the interaction of these two simulationditions 4 = 6.585). The RMSEA
demonstrates very little sensitivity to the corah of multidimensionality, inter-factor
correlation, and the interaction of sample size itemd type. Descriptive statistics for the
RMSEA model fit index under True Model estimatior,aherefore, presented according
to test length, sample size, and multidimensiopatit the Appendix and as box-and-
whisker plots in Figure 4.3 The RMSEA values rdfldat the True Models fit the data
well, as the median and inter-quartile ranges apprate 0.000 and values corresponding
to the 9", 95", and 99 percentiles range from 0.007 to 0.049. Valueshef RMSEA
typically decrease with sample size and test lenddtrease due to sample size is
pronounced though less noticeable as test lengtnedses. The modest effect of
multidimensionality can be seen under the simpleetire as RMSEA values
demonstrate greater variability than under comgkeneture. Overall, approximately half
of all replications resulted in RMSEA values apptuag zero. It must be noted that
RMSEA values of zero do not necessarily indicatéege fit but only a degree of misfit
smaller than the precision of the software is abldetect.

The empirical cumulative distribution functions (BEs) for the RMSEA are
depicted against the theoretical distribution iigure 4.4 separately for different test

length, sample size, and dimensionality conditio®®vere positive skewness is
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demonstrated in these graphs which suggest thatemmgirical distributions of the
RMSEA do not follow the theoretical distributiondamre strongly influenced by the
large proportion of RMSEA values estimated to beoz&herefore, comparing the
ECDFs against the suggested cut points of RMSEAOS 6r 0.06 (Hu & Bentler,1999)
indicates that the empirical cut points differ undenumber of conditions and are not
well represented or approximated by the suggestatl¢, cut points which are typically

much larger than the 8095", and 99 percentiles.
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Figure 4.3.Box-and-whisker plots for RMSEA.

Presented according to multidimensionality, teshgl®d (rows), and sample size
(columns). The solid lines represent th& @@rcentile (blue), 98 percentile (green), and
og" percentile (red); the dashed line represents tlstrnonservative suggested cut point
(RMSEA = 0.05).
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Figure 4.4.Empirical cumulative distribution functions for tRMSEA.

Presented according to multidimensionality, teshgtld (rows), and sample size
(columns). The theoretical distribution is displdyes a black line; the most conservative
suggested cut point is displayed as a dashed RMSEA = 0.05).
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4.2.3 Results for GDDM

Most importantly, values for the GDDM under correabdel specification are
numerically very close to 0 as one would theoré{icaxpect. Nevertheless, a follow-up
analysis of the variation of the values for the GWas conducted to further describe
the trends in these values. Unlike the other méteidices, empirical cut points for the
GDDM demonstrate the greatest sensitivity to itgpet? = 16.133) while also being
sensitive to sample size*(= 18.746) and test lengty’(= 13.885). The last of the
descriptive statistics for model-fit indices arsapresented in the Appendix, according
to item type, sample size, and test length. Fragsdtlstatistics and the box-and-whiskers
plots illustrating the descriptive statistics (Figu4.5), it is seen that values of the GDDM
decrease substantially with both item discriminatand item difficulty. Additionally,
GDDM values for the empirical cut points decreasth iest length, especially when
sample sizes are large; under small sample sizdsewy of the GDDM reduce less
drastically by test length. GDDM cut points are Hest when 36 high-discrimination /
high-difficulty items are estimated using a sang#e ofn = 1000.

While the GDDM follows no known theoretical distutiion, the empirical
cumulative distribution functions are plotted ingtiie 4.6 according to test length,
sample size, and item type. The effect of item tgpe test length is evident as values of
the GDDM decrease with item discrimination, diffigy and test length, as seen in the
box-and-whisker plots. There are no suggestedemrétical cut points against which to

compare the 99 95" and 99 percentiles.
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Figure 4.5.Box-and-whisker plots for GDDM.

Presented according to item type, test length (Joarsd sample size (columns). The solid
lines represent the 80percentile (blue), 9% percentile (green), and $9percentile
(red). Outliers excluded for clarity.
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Figure 4.6.Empirical cumulative distribution functions for t&DDM.

Presented according to item type, test length (joarsd sample size (columns).
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4 .3.Distributional Characteristics of Item Fit Inds

Main effects and specific interactions for the°SModification Index, and Wald
Test item-fit indices, in which the empirically-éezd cut points demonstrated sensitivity
resulting from the factorial ANOVAs are presentedable 4.4 as percentages.
Table 4.4

Selected Percentages of Variance for Iltem-Fit Stia§ by Simulation Condition Under
True Model Specification

M odification Index Wald Test
Source S+ 1 2 3 1 2 3
Dimensions (1) 0.039 | 10.954 10.252 0.931 0.004

Test Length (2) 35.624 9.325 9.914 9.921 2.600 2.081 3.432

Sample Size (3 21.280 16.899 15.888 22.029  15.694 12.417 18.597

Item Multidm. (4) 10.177 0.448 0.532 0.954 54.543 61.438 48.333

Inter-factor Corr. (5) 11.199 37.758 38.188 40.368 0.423 0.345 0514

ltem Type (6) 0.411 9.246 9.146 10.827 | 10.750 10.208 14.303
1*2 0.108 1.221 0.567 0.012 0.104

2*3 1722 4.196 4.358 4.627 0.173 0.107 0.183

2*5  0.779 3.254 3.150 3.518 0.071 0.054 0.150

2*6  0.625 1.076 1446 1.128 0.204 0.113 0.222

3*4 1478 0.026 0.001 0.254 3.836 3.349 2.752

3*5 1.850 0.309 0.607 0.515 0.044 0.028 0.056

3*6 1.187 0.534 0.848 0.868 0.749 0.699 1.222

4*6  2.418 0.070 0.135 0.159 4.660 5.948 5.139

5*6 2.429 0.553 0.688 1.447 0.015 0.015 0.025

3*4*5 1.349 0.004 0.007 0.087 0.117 0.071 0.249

Residuals 1.560 1.542 1.378 1.220 0.362 0.449 0.578

4.3.1 Results for Sg2

The 99" percentiles of the §2 item fit index resulting from True Model
estimation demonstrate sensitivity to a great nundfemain effects and interactions,
largest among these are the sensitivity to tesgtlher(;y2 = 35.624), sample size
(7% = 21.280), and inter-factor correlatiojf € 11.199). Descriptive statistics for the/5-

item-fit index are provided in the Appendix accoglio these conditions and graphically
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depicted as box-and-whisker plots in Figure 4.7lu¥® of the S# range from
approximately zero to 35 across conditions; thegeaand magnitude of )@32 values
increases with sample size and test length. Furthisritem-fit index shows an effect of
inter-factor correlation under large sample sizesaues of Srz increase with the degree
of inter-factor correlation.

While the SXZ appears to roughly approximate the theoretjﬁadistribution
(Figure 4.8), under small sample sizes for the éshgest, the empirical cumulative
distribution function increasingly deviates frometttheoretical distribution under the
larger sample size and smaller test lengths. Dewidtom the theoretical distribution is
also induced by strong inter-factor correlation.

These aggregate descriptive statistics cannot impaed to theoretical cut points
as the degrees of freedom for the Sare specific to each item and set of simulation
conditions based on the number of valid observedescategories. However, noting that
the cut point for one degree of freedomyis= 3.841 and the cut point for 35 degrees of
freedom, the maximum possible, isyS= 49.801, the theoretical cut points always
exceed the empirical values for small sample sizeite they may approximate the "95

percentile under large sample sizes when latetaraare highly correlated.
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Figure 4.7.Box-and-whisker plots for $2

Presented according to inter-factor correlationstdength (rows), and sample size
(columns). The solid lines represent th& @@rcentile (blue), 98 percentile (green), and
99" percentile (red). Outliers have been omitted farity.
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Figure 4.8.Empirical cumulative distribution functions for tiSe;’.

Presented according to item type, test length (Jpwad sample size (columns). The
theoretical distribution is displayed as a blackdi
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4.3.2 Results for Modification Indices

The 95" percentiles of the Modification indices across thllee latent factors
demonstrate greatest sensitivity to inter-factoredation ¢® = 37.758 to 40.368) and
sample sizesf = 15.88 to 22.029). Modification indices for latdactors 1 and 2 next
demonstrate sensitivity to test lengifi € 9.325 to 9.914) while Modification Index 3 is
next-most sensitive to item typg®(= 10.827), though the magnitude of difference from
the test length facton? = 9.921) is very small, a difference that is likéhe result of
removing number of dimensions from the ANOVA sidedification Index 3 can only
be estimated for models with three latent factors.

Descriptive statistics for all three Modificatiomdices are presented in the
Appendix according to inter-factor correlation, sdensize, and test length. The box-and-
whisker plots for these three item-fit indices presented in Figure 4.9. Considering the
descriptive statistics together with the sensigidhalysis results, it is apparent that the
Modification indices perform similarly regardlesitbe dimension for which the statistic
was estimated; subsequently, only Modification d& will be discussed as
representative of all three values.

Values of the Modification Index approximate zerwdaare typically less than
5.000, indicating that items are estimated as haadiorrectly on the associated latent
factor, though the range of values decreases as-faattor correlation increases.
Additionally, values demonstrate an increase in mitade and variability with larger
sample sizes while decreasing with additional fatectors. At a nominal significance of
0.05, the theoretical cut point for the Modificatimdex isy® = 3.841 with one degree of

freedom which overestimates some of the empiricaicgntiles representing usual
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nominal significance values but more often undereges values of the empirically-
derived cut scores, indicating that a greater pmogo of items would be identified as
misspecified as a result of using the theoretiaéboints.

Empirical cumulative distribution functions for dliree Modification indices are
presented in Figure 4.10 according to inter-factorelation, number of dimensions, and
sample size. Generally, values of this fit indepeqgr to well-approximate the theoretical
distribution when the inter-factor correlation isglihn As the degree of correlation
decreases, however, the empirical distributionsatestnate increasing negative skewness
and deviation from the theoretical distribution.isTldeviation is amplified under the

larger sample size condition and models with thaeent factors.
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Figure 4.9.Box-and-whisker plots for the Modification Indices.

Presented according to inter-factor correlation, nmoer of dimensions (rows), and
sample size (columns). The solid lines represen®fi percentile (blue), 95 percentile
(green), and 99 percentile (red); the dotted line indicates thedtetical cut point.
Outliers have been omitted for clarity.
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Figure 4.10 Empirical cumulative distribution functions for tModification Index on
latent factor 1.

By inter-factor correlation, number of dimensionsxs), and sample size (columns). The
theoretical distribution is displayed as a blaakdj the theoretical cut point (MI = 3.841)
is displayed as a dashed line.
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4.3.3 Results for Wald Test Statistics

Wald Test statistics indicate significance of alyeestimated factor loading in a
confirmatory factor model; therefore, there is al&Vaest value for each factor that an
item is associated with; between-item multidimenaliy results in a single Wald Test
value while within-item multidimensionality as deéd in this study results in two Wald
Test values. As an indicator of significance foe thstimated factor loading, critical
values for the Wald Test indicate the lower boumdtessary for a parameter to be
considered as correctly estimated. Unlike the ofih@ndices, Wald Test values smaller
than the critical values indicate misspecificatitirerefore, empirically-derived cut points
are calculated for the £p5", and #' percentiles.

The patterns of sensitivity in the ®%ercentiles of the Wald Test values are
similar across the three dimensions, thereforesudson will refer to the Wald Test in
general rather than the values associated withriecylar latent factor. The Wald Test
demonstrates greatest sensitivity to item multidisienality ¢ ranges 48.333 to
61.438), sample size;{ ranges 12.417 to 18.597), and item typeranges 10.208 to
14.303). Descriptive statistics for all three Walést indices are presented in the
Appendix according to these simulation conditionsl ahe box-and-whisker plots are
presented in Figure 4.11. Values of the Wald Tasge approximately zero to 50 for
between-item multidimensionality, increasing witimgle size and discrimination while
decreasing with difficulty. Values of the Wald Tesunder within-item
multidimensionality range approximately zero to &t demonstrate similar patterns as
under within-item dimensionality though less exteeamd within a more restricted range.

For sample sizes of 1000 and within-item multidisienality the theoretical cut point,
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calculated as & = 3.841 with one degree of freedom, approximatesempirically-
derived cut point (i.e.,"5percentile), however, the theoretical cut pointragimates the
median Wald Test value under the smaller sampkeslale largely underestimating the
distribution of values when items are between-iteaitidimensional.

Empirical cumulative distribution functions for tNgald Test (on latent factor 1)
are presented according to item type, item multehisionality, and sample size in Figure
4.12. It appears that the observed values of thiel West do not follow the theoreticgﬂ
distribution with one degree of freedom; except mwlample sizes are small and items
are estimated as within-item multidimensional, othge values of the Wald Test are
typically much larger than expected. Large sampessand tests comprised of highly-
discriminating between-item multidimensional itesf®w the greatest deviation of Wald

Test values from the theoretical distribution.
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Figure 4.11 Box-and-whisker plots for the Wald Tests.

Presented according to item type or test lengthltidinensionality (rows), and sample
size (columns). The solid lines represent th& dercentile (blue),  percentile (green),
and T' percentile (red); the dotted line indicates thedtetical cut point.
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Figure 4.12 Empirical cumulative distribution functions for thiéald Test on latent
factor 1

Presented according to test length, multidimendigna(rows), and sample size
(columns). The theoretical distribution is displdy&s a dotted line; the theoretical cut
point is a dashed line.
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4.4 .Estimation Bias for Type-I Error Rates undeedttetical Sampling Distributions

Based on the previously observed discrepancieseeetiheoretical and empirical
sampling distributions, if theoretical cut pointsd.,* with one degree of freedom for
the Modification Index and Wald Test) were employedtvaluating correctly specified
models, the actual type-l error rate would diffeoni the nominal type-l error rate.
Similarly, it is interesting to explore from a hyhesis-testing perspective what type-I
error rates for the RMSEA would be like if cut p@irsuggested by previous research
(e.g., Byrne, 1989; Carmines & Mclver, 1981; Hu &rBler, 1999; Marsh & Hocevar,
1985) were incorrectly perceived as being assatiaith hypothesis testing, rather than
effect size quantification.

Actual type-I error rates resulting from the apation of the most conservative
suggested cut point to thé&/df ratio model fit index /df = 2.0) are presented as box-
and-whisker plots in Figure 4.13 according to itigpe, test length, and sample size — the
same conditions to which empirical sensitivity wdasmonstrated. The suggested cut
point results in underestimation of the Type-l emate for all simulation conditions.
Generally, the suggested cut point fails to regaut of the models, evidenced by median
values approximating zero, with Type-I error raa@proaching 0.01 under small sample

sizes of short tests comprised of highly-discrirtimgitems.
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Figure 4.13 Actual Type-I error rates for thé/df ratio.

Results are evaluated against the most conservitizeretical cut point,£/df = 2.0).
Displayed according to item type, test length (rpvesxd sample size (columns). The
dotted line indicates the nominal significance leve
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Figure 4.14 shows similar results when models araluated against the
suggested RMSEA cut point of 0.05, though small@amand short tests following
simple-structure show increased Type-I error rategpproaching the expected nominal
level of 0.05. In other words, correct models oft@ve RMSEA values much lower than
0.05, which means that they would certainly be wed as well-fitting which is
desirable from a descriptive perspective. From gaothesis-testing perspective this
technically does not ensure nominal type-lI errdesahowever, for which a finer
differentiation of RMSEA values closer to 0 undeffaeslent test design conditions is
necessary. This situation is very similar for thB@M, which is a discrepancy measure
where a GDDM of 0 indicates perfect model-data Vithile values close to 0 are
desirable, a finer differentiation of values cloger O under different test design

conditions is necessary if the GDDM is to be usé@tiwa hypothesis-testing framework.
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Figure 4.14 Actual Type-I error rates for the RMSEA.

Correctly estimated models are evaluated againstrtiost conservative suggested cut
point (RMSEA = 0.05). Across multidimensionaligsttlength (rows), and sample size
(columns). The dotted line indicates the nomingthidicance level.
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Considering the actual Type-I error rates of thaous item-fit indices reveals
patterns of True Model rejection that greatly diffeom that observed for the model fit
indices. Actual Type-l error rates resulting frohre tapplication of the theoretical cut
points for the 5‘;{3, Modification Index (Ml = 3.841), and Wald Test &l Test = 3.841)
are presented in Figure 4.15 through Figure 4dspectively. Unlike the other two item-
fit indices, the theoretical cut points for the/Sare determined for each item separately
as a function of the total score point categoriestaining an appropriate number of
observations, therefore, no overall cut point carstated.

Actual Type-I error rates for the ;S-approximate the nominal significance level
for small sample sizes, long tests, and low indetdr correlations. Decreases in test
length, increases in sample size, and shortetetiegth all contribute to increased Actual
Type-l error rates; the median Type-I error rate 600 examinees responding to 12
items when latent factors are highly correlatedpproximately 0.6. Application of the
theoretical cut point to the Modification Index wés in approximately nominal Type-I
error rates under small sample sizes and high-fattor correlations. Increases in
sample size and decreases in inter-factor coroelatsult in increased actual Type-I
rates; fewer latent factors corresponds to a sligtrease in actual Type-I error rates.
When two-dimensional models with low inter-factarmlation and 1000 examinees are
estimated, the median Type-I error rate is apprasety 0.2.

Lastly, the Wald Test under-rejects items estimatag between-item
multidimensional with actual Type-I error rates aggehing zero. Items that are within-
item multidimensional are generally over-rejectatter small sample sizes (median

Type-l error rates ranging 0.20 to 0.55) and maeéraver-rejected under large sample
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sizes; high-discrimination and high difficulty cespond to increases in actual Type-|

error rates under these conditions.
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Figure 4.15Actual Type-I error rates for the 8-

Correctly estimated models are evaluated againsttieoretical cut point (Ml = 3.841).
Across inter-factor correlation, test length (rowahd sample size (columns). The dotted
line indicates the nominal significance level.
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1.

Correctly estimated models are evaluated againsttieoretical cut point (Ml = 3.841).
Across inter-factor correlation, number of dimem&drows), and sample size (columns).
The dotted line indicates the nominal significalese!.
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Figure 4.17 Actual Type-I error rates for the Wald Test on tétiactor 1.

Correctly estimated models are evaluated againse ttheoretical cut point
(Wald = 3.841). Across item type, multidimensiayaliows), and sample size (columns).
The dotted line indicates the nominal significalese!.
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4.5.Summary

Analysis of the model-fit indiceg/{df ratio, RMSEA, and GDDM) and item-fit
indices (Modification Index, $?, and Wald Test) under true model specificatioriciaig
that the 95 percentiles of these statistics, to be subsequentployed as empirically-
derived cut points, each demonstrate sensitivityréovarious simulation conditions. The
current dissertation showed the™9Bercentiles of the?/df to be especially sensitive to
test length while the RMSEA and GDDM also showedsg#/ity to sample size.
Previous research by Jackson (2007) found that Isasipe attributed for 19% of the
variance in RMSEA; no studies, however, had so émamined the sensitivity of
empirically-derived cut points from a hypothesistieg perspective. The GDDM
demonstrated great sensitivity to item type (ii'em discrimination and the degree of
discrepancy between item difficulty and the meatheflatent factor distributions) even
though absolute values of this index remained wengll. The three item-fit indices all
demonstrated substantial sensitivity to sample; $2€ is additionally sensitive to test
length, the Modification Index is additionally s@n& to inter-factor correlation, and the
Wald Test is additionally sensitive to item multiginsionality.

Given these sensitivities, the use of theoreticadumgested cut points results in
actual Type-I error rates that differ greatly fréhe expected nominal rate of 0.05. For
example, the suggested cut points for tfidf and RMSEA fail to reject most models,
resulting in underestimated Type-I error ratessTiiinconsistent with Marsh, Hau and
Wen’s (2004) findings for thg?/df, for which Type | error rates were 9% and 15%ew
sample sizes wera = 250 and 1,000, likely resulting from differencesparameter

specifications. Application of the theoretical qutints to the S results in inflated
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actual Type-I error rates as items are over-rejecteall but a few specific conditions.
Actual Type-I error rates for the 8-were seen to range up to 0.16 and 0.28, increasing
with sample size, for models estimated as betwaed-within-item multidimensional by
Zhang and Stone (2008). These results agree wehrdbults of the current study.
According to the Modification Indices, items estteth under the True Model are only
rejected at the nominal rate for small sample siesn inter-factor correlation is strong,
otherwise actual Type-I error rates are inflatedalfy, the Wald Test is seen to under-
reject items that are between-item multidimensi@mal over-reject items that are within-
item multidimensional, though this effect is less@ninder large sample sizes.

The results of this section show that the theaabtnd suggested cut points are
generally inadequate for correctly evaluating medeld item-fit when True Models are
estimated under a variety of simulation conditiohstual Type-I error rates were shown
to be both inflated and underestimated dependingherstatistic and the specific data
generation conditions. It should be noted that eatgyl cut points, especially those
provided by Hu and Bentler (1999), were the restiltiescriptive analysis of model fit
results which attempted to minimize Type-l and Hjperror rates in proposing
appropriate, generalized “rule of thumb” critefignlike the Hu and Bentler criteria, the
empirical cut points calculated in this study cohffype-I error and allow inferential
model-fit testing. These cut points are calculatedhe 95 percentile resulting from the
empirical sampling distribution within each expeemtal cell, explicitly controlling the
nominal significance level as= 0.05.

As stated by Fan, Thompson, and Wang (1999), ‘“tegree of model

misspecification should be the major contributotht® variation of a [model- or item-] fit
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index” (p. 60); conditions to which a fit statistdemonstrates sensitivity should,
therefore, be explicitly considered during modehd atem-fit evaluation. Therefore,
empirically-derived, design-appropriate cut poiate instead employed in subsequent
analyses evaluating model and item misspecificatiorthis study. The empirically-
derived cut points for each fit index are specifistthe 9% percentiles, or'Bpercentiles

in the case of the Wald Test, resulting from theieical distribution of 1000 replications
within each cell of the simulation desfgtutilizing these values thus ensures a nominal
Type-l error rate ofr = 0.05 and precise computations of power givenriln@ber of

replications in this study.

® Prior simulation work for exploring an appropriaiember of replications to help determine theseoit
values with a reasonable degree of precision atitbwi making the running time of the simulationdstu
unduly long, has suggested that 1000 replicatissdefensible choice; please see the Appendix for
study exploring this issue.
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Chapter 5
Results of Misspecified M odel Estimation

The behavior of model- and item-fit indices undenrect, or true, model
estimation was examined in the previous chapterctirrent chapter examines the same
indices under the same simulation conditions fordenate or severe model
misspecification. First, the bias and precisiont&in and person parameters is examined
in comparison to the results observed for true rhesiEmation. Next, the performance of
the model- and item-fit indices is considered imgarels to the following research
guestions:

4) How large is the power of different model- and itBtrstatistics for detecting
different types of Q-matrix misspecification undkiferent test design conditions
when the appropriate percentiles from the empirgahpling distribution are
used?

5) How much of the variation in empirically observedwer rates is due to the
different Q-matrix misspecification and test destgmditions?

Descriptive statistics and power for the modelifilices are considered first, having
applied the empirically-derived cut points calcathfrom the values obtained under true
model estimation. Next, the descriptive statisaosl power for the item-fit indices are
considered. After addressing these questions, maad item-fit performance are

considered simultaneously, providing holistic imi@tion on model evaluation.

5.1.Estimation Issues

Each of the 864 true model conditions were repigatntil 250 successful

replications for each cell was achieved. Running @4-bit dual-core 2.53GHz computer
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with 4.00GB of RAM the moderately misspecified ctimhs took approximately 130
hours to complete and the severely misspecifieditions took approximately 265
hours, for a total of nearly 400 computing hourgstimating and collecting the results of
the misspecified models. The majority of the callgshe experimental design required
additional replications to achieve the required 2b@cessful replications; Table 5.1
presents the top 5 simulation conditions for eath2-0and 3-dimensional models
requiring additional replications.

Of the 432 moderately misspecified conditions, 2&0.185%) conditions
required a minimum of 251 replications and a maximof 2425 replications, when
estimating models under small sample sizes withigB-discrimination / high-difficulty
items which follow complex-structure where lateattbr are highly correlated. Severely
misspecified models required additional replicagicior 361 (83.565%) of the 432
experimental cells, with a minimum of 251 replicas and a maximum of 107,725
replications, when models with 3 weakly correlatadtors following simple structure
were estimated for 1000 examinees and 12 highidistation / moderate difficulty

items.
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Table 5.1

Top 5 Percentages of Additional Replications Remfiiwhen Estimated Models are
Misspecified

2 Dimensions 3 Dimensions
Test Sample [tem

Miss. Length Size Multi. Type L* M H L M H
Mod 12 250 w HH ** 4% 8%
Mod 12 250 w HM 4% 5% 8%
Mod 36 250 w HH 10%
Sev 12 250 B HM 4% 4% 72% 29% 9%
Sev 12 250 W HM 4% 5% 8%
Sev 12 250 wW HL 6%
Sev 12 1000 B HH 88% 44% 9%
Sev 12 1000 B HM 431% 70% 9%
Sev 12 1000 B HL 114% 45% 8%
Sev 12 1000 B MH 3%
Sev 12 1000 B MM 4% 4%
Sev 12 1000 B ML 55% 29% 7%

* Indicates inter-factor correlation: L = Low, M Moderate, and H = High.

** Only the top 5 conditions by inter-factor coregion and number of dimensions are presented for
clarity.

Generally, the severely misspecified models reguinere additional replications
than the moderately misspecified models. Additioreplications were required for
moderately misspecified models when two latentdiactvere estimated according to
complex structure, small sample sizes, and higbrdmsnation items; when models were
severely misspecified, the majority of the modelguiring additional replications were
comprised of 3 latent factors following simple stire containing 12 items of high
discrimination. These results suggest that incngasiisspecification results in poor or
unreliable estimation, as would be expected. Thgnitade of the number of additional
replications required in some instances, howeugygasts that those conditions are near-

unestimable and the results of such models shauldtbrpreted with caution.
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Summaries of the root mean-squared error (RMSE)aardage bias for MDIFF,
MDISC, inter-factor correlations, and ability (i.6) are presented in Table 5.2. Overall,
values of the RMSE values for the MDIFF are smiaéén = 0.222, median of 0.161)
with the largest RMSE values corresponding to thmallest sample size (n = 250) but
otherwise varied with respect to condition; averdgas of MDIFF is also small
(mean = -0.001; median = -0.005), indicating tha tagnitude of the discrepancy
between estimated and generating values is sméil tke largest values occurring under
the smallest sample size. Recovery of item difficid shown to be most dependent on
sample size, though the degree of discrepancy &l.sikbedian RMSE and average bias
values for the MDIFF parameters are approximateiyn2s as large as those seen under
true model estimation.

RMSE values for MDISC are slightly larger (mean.332; median = 0.221) and
the average bias values are more positive (mea@G10median = 0.003) than those seen
for MDIFF, suggesting more discrepancies of greatagnitude. The largest RMSE
values are seen for the smallest sample size, tbdest test length, when items are
highly discriminating, and factors are highly cdated; average bias shows similar
behavior, though values increase as inter-factoretaiion becomes stronger. Recovery
of discrimination parameters is seen to also lthesample size, though also subject to
more complex consideration. Median RMSE and avetsge values for the MDISC
parameters are also approximately 2 times as lagg¢hose seen under true model
estimation.

Inter-factor correlations across two- and threeafisional models demonstrate

small-to-moderate RMSE values, with means rangifi$® to 0.280 and medians of
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0.048 to 0.180, where the larger values are adsdciith two-dimensional models;
average bias demonstrates similar ranges and lmehdte largest values of RMSE and
relative bias are associated with three-dimensiamaldels demonstrating simple-
structure and high inter-factor correlation, wilte ttewest, highly-discriminating items;
the largest average bias values suggest that éstnmater-factor correlations are more
than double the generating values. In comparisthedrue model, median RMSE values
for the inter-factor correlations under misspedifirerodels are 10 times larger and median
average bias is up to 3 times larger.

Finally, recovery of examinee ability, is examined. RMSE values are small for

ability across two- and three-dimensional modelsegm = 0.059 to 0.072;

median = 0.065 to 0.070), however, average biamrge (mean = 0.961 to 1.695;

median = 0.900 to 0.965), indicating that the mgjoof the values were recovered
within 1 to 2 logits on th@ scale. These statistics were likely influencedabhyumber of
extreme values which were poorly recovered, dennatest by the wide range of average
bias values (-19.045 to 23.364). While bias of appnately 20 is quite large, it is
important to note that Mplus does not employ proces to correct for extrentevalues,
unlike IRT software such as Winsteps (Linacre, 201¥hile large RMSE values are
typically associated with small sample sizes, savgttucture three-dimensional models
with highly discriminating and difficulty items, &eme average bias values follow no

discernible pattern. Interestingly, the median RM&fktl average bias for the latent

factors is quite similar to the values seen under model estimation.
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Table 5.2

Descriptive Statistics for RMSE and Average Biadfoderately Misspecified Models

Parameter Min 25th% Mean Median 75th% M ax SD
RMSE MDIFF 0.071 0.180 0.431 0.291 0.443 19.855 1.154
MDISC 0.100 0.237 1.506 0.407 2.249 18.498 2.191
P12 0.135 0.344 0.616 0.676 0.907 0.975 0.300
P13 0.141 0.209 0.396 0.405 0.554 0.701 0.170
p23 0.035 0.061 0.079 0.074 0.093 0.158 0.024
61 0.029 0.038 0.060 0.064 0.072 0.132 0.022
6> 0.030 0.045 0.067 0.067 0.080 0.168 0.026
03 0.031 0.038 0.061 0.063 0.073 0.126 0.021
Average MDIFF -2.551 -0.227 -0.126 0.040 0.097 0.261 0.383
Bias MDISC -0.840 -0.188 -0.069 -0.091 0.042 0.621 0.186
P12 0.147 0.405 1.218 0.722 1.640 6.456 1.080
P13 0.177 0.257 1.001 0.702 1.875 4,632 0.808
p23 -0.830 0.508 0.885 0.913 1.351 2.520 0.647
61 -56.898 0.667 0.962 0.945 1.044 45.734 7.376
0> -42.839 0.826 2.359 0.972 1.040 99.021 8.679
03 -33.656 0.721 1.133 0.988 1.263 23.003 5.187
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Table 5.3

Descriptive Statistics for RMSE and Average BiasSkverely Misspecified Models

Parameter Min 25th% Mean Median 75th% M ax SD
RMSE MDIFF 0.051 0.195 0.644 0.319 0.585 31.832 12.3

MDISC 0.144 0.281 2.457 0.497 4,135 26.081 3.492
P12 0.189 0.438 0.691 0.750 0.956 0.991 0.285
P13 0.172 0.228 0.444 0.453 0.629 0.740 0.190
p23 0.047 0.075 0.122 0.099 0.172 0.265 0.058
61 0.027 0.037 0.058 0.063 0.071 0.124 0.020
0> 0.030 0.040 0.063 0.066 0.075 0.172 0.024
03 0.029 0.039 0.061 0.064 0.073 0.126 0.022

Average MDIFF -4.725 -0.627 -0.328 0.021 0.094 6.82 0.723

Bias MDISC -1.120 -0.205 -0.033 -0.069 0.175 0.577 0.254
P12 0.196 0.466 1.152 0.938 1.569 3.691 0.877
P13 0.199 0.284 0.969 0.715 1.419 2.752 0.761
p23 -1.541 0.902 1.095 1.119 1.323 2.803 0.543
01 -49.678 0.631 1.300 0.940 1.098 56.566 8.595
) -45.735 0.797 1.865 0.966 1.094 37.962 6.192
03 -22.727 0.797 1.508 0.979 1.091 32.819 6.142
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Overall, variability of parameter recovery as ddmut by RMSE appears to be
small and impacted mainly by sample size, sugggskiat parameters are less precise at
the smallest sample size. The magnitude of theapsacies, indicated by average bias,
is generally small for item parameters but suggiéstpresence of overestimated values,
in the case of inter-factor correlations, and ewgrevalues, for ability estimates,
frequently associated with three-dimensional model®wing simple-structure with
highly-discriminating items. These values are tgflicincreased over those seen under
true model estimation, indicating the effect of spiscification. While mean and median
values of the latent factors are recovered sintdavalues under true model estimation,
though true models demonstrated a narrower rangaloés, the inter-factor correlations
appear to be the least well-recovered parametaggesting that these parameters are

more susceptible to model misspecification.
5.2.Analysis of Model-Fit Indices under Model Missfication

5.2.1 Distributional Characteristics of Model Fit Indices

Moderately and severely misspecified models wetenated and the values of
the x°/df ratio, RMSEA, and GDDM model-fit indices subteil to separate ANOVAs
including test design and model conditions as fact®escriptive statistics for these
indices under model misspecification are presegtaghically in Figure 5.1 to Figure 5.3
and are summarized according to the simulation itond for which the specific index
demonstrates the greatest sensitivity resultinghfthe factorial ANOVA. This means
that the ranges presented in the tables and figapeesent ranges of the fit index values

across the simulation conditions which are not emé=d. Table 5.4 presents the
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percentages of variance associated with main sffaetl interactions thereof for which
the model-fit indices demonstrated sensitiviﬁ/z{ 1.000).
Table 5.4

Selected Percentages of Variance for Model-FitdadiUnder Model Misspecification,
by Simulation Conditions

Source v2/df RMSEA GDDM
Model Misspecification (0)  0.105 0.212 _1.607
Number of Dimensions (1) 5.828 10.918 17.275
Test Length (2) 3.600 6.712 5.289
Sample Size (3  23.943 1.648 2.942
Item Multidimensionality (4) 0.800 1.257 0.137
Inter-Factor Correlation (5  22.070 52.471 24.827
Item Type (6) 6.237 9.851 18.634
0*4 0.003 0.011 ~1.314
0*5 0.045 0.038 _1.072
1*3 2.385 0.011 0.012
1*4 1.663 2.606 0.075
1*5 2.232 1.268 2.534
1*6 0.822 0.538 _3.321
2*3 1.130 0.081 0.497
2*5 1.583 1.155 0.035
2*6 0.990 1.052 1.089
3*5 9.537 0.090 0.119
3*6 2.827 0.158 0.191
5*6 2.501 1.422 2.502
3*5*6 1.089 0.107 0.056
Residuals 1.090 2.198 7.819

Note: Highlighted cells indicate conditions presahin the box-and-whiskers plots.

5.2.1.1Results for*/df
It is first notable that the majority (almost 9986)the variance in thg?/df ratio is

attributable to main effects and interactions oé teimulation conditions. Of the
conditions demonstrating sensitivity under modes$specification, the greatest among
these are the main effects of sample siZe<( 23.943%) and inter-factor correlation
(n* = 22.070%) and the first-order interaction of théwo factors f* = 9.537%). ltem

type is attributable for the next largest perceatafvariance ¢ = 6.237%) while the
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»°/df ratio is shown to be insensitive to degree ofdel misspecificationsf = 0.105%)

or multidimensionality ;(2 = 0.800%), representing model estimation by d#ffértypes
of Q-matrices. These conditions differ from the aitions demonstrating sensitivity
under true model estimation, which included tesgik and the interaction of sample size
and item type. The effect of these sensitivitigsressented as a 90%-winsorized box-and-
whiskers plot in Figure 5.1 according to samples sinter-factor correlation, and item
type. Values of tthldf approximate 1.0 under small sample sizes wiigh imter-factor
correlations, suggesting that the misspecified nsodie the data, and increase with
sample size and item discrimination while decrepsinth inter-factor correlation and
item difficulty; the effect of item type becomes mopronounced as inter-factor
correlation decreases. Values of jif are largest, indicating the model misfit, farde
sample sizes, low inter-factor correlations, aremg of high-discrimination / low-
difficulty — resulting in an inter-quartile rangéQR) of y*/df = [8.606, 16.591] and a
maximum of y%/df = 37.884. Descriptive statistics are preseniedthe Appendix

according to the same conditions as the box-angkehs plot.
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Figure 5.1.Box-and-Whiskers Plots fqrz/df under Model Misspecification.

y2df

Presented according to conditions associated wathsgivity: item type (HH = high discrimination igh
difficulty; HM = high discrimination / moderate diulty; HL = high discrimination / low difficulty;
MH = moderate discrimination / high difficulty; MM moderate discrimination / moderate difficulty;
ML = moderate discrimination / low difficulty), sghe size (rows), and inter-factor correlation (coios;
H = correlations of 0.75; M = correlations of 0.5Q;= correlations of 0.25).

5.2.1.2Results for RMSEA
Based on the model-fi, the RMSEA demonstrates sensitivities similartte t

»*/df ratio — almost 98% of the variance in the RMSEAttributable to main effects and
interactions of the simulation conditions. Simitarthey?/df, the RMSEA demonstrates
sensitivity to inter-factor correlatiom{ = 52.471%) and item typ@i{= 9.851%); unlike
the y’/df, the number of dimensions;’(= 10.918%) is included in the top three
simulation conditions for sensitivity as resultimgm the factorial ANOVA. This is quite
different from the conditions demonstrating ser#itiunder true model estimation (i.e.,
test length, sample size, and multidimensionalitfhe 90%-winsorized box-and-
whiskers plot for the RMSEA is presented in Figwr® according to inter-factor
correlation, item type, and number of dimensiond #me corresponding descriptive

statistics are included in the Appendix.
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Similar to they?/df, model-fit index, RMSEA values are seen to gase with
inter-factor correlation, increase with item disunation, and decrease with item
difficulty when misspecified models are estimateddditionally, RMSEA values
decrease with the number of dimensions or latectofa. The lowest RMSEA values
resulting from misspecified models are found wheghly-correlated 3-dimensional
models with moderately-discriminating / high-diffity items are estimated
(IQR = [0.015, 0.023], maximum RMSEA = 0.062) whtlee largest RMSEA values
result from weakly-correlated 2-dimensional modslmprised of highly-discriminating /

low-difficulty items (IQR = [0.100, 0.138], maximuRMSEA = 0.203).
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Figure 5.2.Box-and-Whiskers Plots for RMSEA under Model Misspeation.

Presented according to conditions associated wahsgivity: item type, number of latent factors(e)w
and inter-factor correlation (columns).

5.2.1.3Results for GDDM
Lastly, when estimated models are misspecified GidEOM demonstrates less

sensitivity to simulation conditions than the othevdel-fit indices; 92.181% of variance

is attributable to the simulation conditions. ThBIBV demonstrates greatest sensitivity
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to inter-factor correlationnf = 24.827%), then item typez(: 18.634%), and number of
dimensions

(7% = 17.275%). These simulation conditions are inetlids factors in the presentation of
the descriptive statistics (Appendix) and the 90%sarized box-and-whiskers plot
(Figure 5.3). The effect of sensitivity to item &5 very similar to that seen under true
model estimation. The best-fitting misspecified misd(3 highly-correlated dimensions
estimated for highly-discriminating / high-diffiayl items) demonstrate GDDM values
with IQR = [0.004, 0.005] and the maximum valugSGBDM = 0.007 while the worst-
fitting models (2 weakly-correlated dimensions restied for moderately-discriminating /
low-difficulty items) demonstrate GDDM values willQR = [0.012, 0.170] with a

maximum value of GDDM = 0.027.
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Figure 5.3.Box-and-Whiskers Plots for GDDM under Model Missifieation.

Presented according to conditions associated wéthsgivity: item type, number of dimension (rovesjd
inter-factor correlation (columns).
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5.2.2 Power of Model-fit Indices
All of the models estimated in the moderate andemevmisspecification

conditions were, obviously, misspecified to a degwa alternate-factoring or under-
factoring of specific elements of the estimatingm@trix. As such, power can be
calculated as the average rate of model rejectiggregated over simulation conditions
and across replications. Specifically, values crf;gﬁdf ratio, RMSEA, and GDDM
model-fit indices are compared to suggested or ecapicut points and subsequently
indicating model fit or misfit.

The empirically-determined cut points were deteediseparately for each cell of
the simulation design as the"™®percentile values for all model-fit indices, tHeydixing
the nominal Type-I error rate to approximately 0.0Bis is an approximate rate because
1000 replications of the true models still resultsome small imprecision at determining
an exact cut-off point to achieve the exact nomiatd even though the preliminary work
showed that the approximation is reasonably clsse the Appendix).

Even though thQZ/df ratio, RMSEA, and GDDM demonstrate wide vagatin
values resulting from the various simulation coiodis under moderate and severe model
misspecification, the statistics generally dematstmoderate to high power in correctly
rejecting misspecified models. Specific sensitgtior the power of each of the model-
fit indices to the various simulation conditiong @resented in Table 5.5 as the results of

yet another factorial ANOVA.

113



Table 5.5
Selected Percentages of Variance for Power of MbBdebtatistics

Source v/df RMSEA GDDM

Model Misspecification (0) 0.067 0.072 0.104
Number of Dimensions (1) 3.441 3.341 3.288
Test Length (2) 6.007* 6.168 4.898
Sample Size (3 10.458 10.234 9.478
Item Multidimensionality (4) 0.126 0.119 0.043
Inter-Factor Correlation (5 17.769 17.195 17.969
Item Type (6) 2.324 2.268 4.680
1*3  2.547 2.531 2.157
1*5  3.848 3.781 4.467
2*3  4.312 4.589 3.094
3*6  1.456 1.484 2.922
56  2.456 2.385 5.263
3*5  14.294 14.074 13.229
2*5  6.488 6.829 5.504
2*3*5  4.111 4.572 2.932
3*5*6  1.317 1.350 2.880
1*3*5  2.562 2.605 2.657
Residuals 3.435 3.555 2.679

* Cells highlighted in dark grey indicate top-threeurces of variance; cells highlighted in lighegr
indicate top main effects suggested by top-thresaations.

5.2.2.1Power fory?/df
Figure 5.4 presents the power values and rangethdof/df model-fit statistic,

summarized according to the simulation conditidra for which power of thg?/df was

shown to be mostly sensitive: sample size, tegjtherand inter-factor correlation. Across
conditions, the ’/df demonstrates ranges of power that approachhb@ever, when

sample size is small, the test is comprised ofifems, and when inter-factor correlations
are strong the summarized simulation conditionalteés ranges of power less than 1.0.
That is to say, the ability of thg’/df ratio to correctly reject misspecified models
improves as sample size and test length increagardless of other conditions such as
those included in the current study. Specificdly, short tests with a small sample size

and highly-correlated latent factors, the power thie y%df demonstrates an
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IQR = [0.271, 0.714] with a median of 0.432. Whae empirically-derived cut points
are applied to misspecified models with large sangites, many items, and low inter-

factor correlations, however, all of the models @@aectly rejected.
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Figure 5.4.Box-and-Whiskers Plots for Power gfdf ratio.

Presented according to conditions associated wéthsgivity: test length, inter-factor correlatiomofvs),
and sample size (columns).

5.2.2.2Power for RMSEA
The RMSEA demonstrates a pattern similar to thahef?/df ratio with power

that approaches 1.0 as sample size and test lengthase and when inter-factor
correlation is weak (Figure 5.5). Again, the lowastd widest proportions of correctly
rejected misspecified models occurred for those elsodomprised of 12 items, 250

examinees, and highly-correlated latent factor&k(KX.285 to 0.721; median = 0.454).
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Figure 5.5.Box-and-Whiskers Plots for Power of the RMSEA.

Presented according to conditions associated wéthsgivity: test length, inter-factor correlatiomofvs),
and sample size (columns).

5.2.2.3Power for GDDM
Box-and-whisker plots illustrating power for the GBI to correctly reject

misspecified models is presented in Figure 5.6 &Rd, the other model-fit indices,
shows moderate-to-high power across simulation itond, including inter-factor
correlation, sample size, and test length. Misd@ecimodels are most often correctly
rejected when weakly-correlated factors are eséthdor long tests and large sample
sizes; IQR = [1.000, 1.000], median = 1.000. Coselsr, power is worst for small
sample sizes when models with highly-correlatedniafactors are estimated from short

tests; IQR =[0.384, 0.797], median = 0.620.
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Figure 5.6.Box-and-Whiskers Plots for Power of the GDDM.

Presented according to conditions associated wéthsgivity: test length, inter-factor correlatiomofvs),
and sample size (columns).

5.2.3 Summary for Model-Fit Indices

Overall, the model-fit indices are shown to demiatstlarge values, indicating
misfit of the misspecified models, when items aghly discriminating, tests are short in
length, and sample sizes are small. Following fris, the highest power rates for
correctly rejecting misspecified models very clgatbrrespond to large sample sizes,
long test lengths, and weakly-correlated latentdigc Conversely, the model-fit indices
perform poorly in rejecting the misspecified modedsen sample sizes are small, tests
are short, and the dimensions are highly-correlafée conditions under which models
were seen to demonstrate greatest estimation wlifés (severely misspecified 3-
dimensional models with weakly- and moderately-elated factors following simple,
comprised of high-discrimination items) do corrasgpavith conditions of poor fit but
this does not appear to be a determining facttinerpower associated with the model-fit

indices.
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As expected, thgzldf and RMSEA demonstrate similar patterns of sexitsi to
simulation conditions and power when rejecting mpessfied models; both fit indices
correctly reject misspecified models at rates apghnong 1.0. Further, these indices best
detect misfit when latent factors are distinct.(ilew inter-factor correlation) and items
target the distribution of the latent factors (ilew difficulty, interpreted as minimal
discrepancy from the examinee latent variable ibigtion). The seminal research by Hu
and Bentler (1999) showed that power of the RMSBEérdased with both degree of
misspecification and sample size; at RMSEA = 0.@Q#48,cut point closest to the mean
and median of the empirical cut points in this elitation, Hu and Bentler reported power
that approached 1.0 for the RMSEA. Jackson (20839nted the power of the My*to
increase with sample size, test length, and madmiti factor loadings. For the smallest
misspecification and n = 200 power was shown tgegh13 to 0.26 but approaches 1.00
when sample size was increasethte 800. Factor loadings employed in the Jackson
(2007) study ranged 0.60 to 0.80, which yield MDI&ues lower than those simulated
in the current study. The results of this dissentafollow those presented in previous
research with respect to thgdf and RMSEA model-fit indices.

Though it is not based off of the mogé) the GDDM demonstrates magnitudes
and patterns of power rates similar to the othedehfit indices. For sample sizes of
1000, the GDDM almost perfectly rejects all of thesspecified models; power rates are
lower under smaller sample sizes though still maideto-high. The study by Levy and
Svetina (2010) found that the GDDM correctly idéatd model misspecification when a
more restrictive model was estimated for 1000 eramresponses to a 36-item test with

uncorrelated latent factors. When a 2-factor simgtieicture model was estimated,
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identification rates for the GDDM approached 1.00 dlata generated according to 3
uncorrelated latent factors following complex-stume and decreased to 0.08 for data
generated according to 2 latent factors correlated= 0.5 following complex-structure.
These results generally agree with those founterctirrent study, as power is seen to be
strongly influenced by the degree of inter-factorrelation. Though not one of the top
sources of sensitivity, it is important to notetthawer under the GDDM is influenced by
item type — an effect which strongly appeared utider model estimation.

When estimating misspecified models, it is impartanhighlight that neither the
;(zldf, RMSEA, or the GDDM demonstrated sensitivitye tdegree of misspecification
(moderate versus severe) and only the GDDM denmatestr sensitivity to
multidimensionality, which reflects different typet Q-matrices. Additionally, all of the

model-fit indices demonstrated sensitivity to itgype (to some degree).
5.3.Analysis of Item-Fit Indices

5.3.1 Distributional Characteristics of Iltem-Fit Indicesder Model Misspecification

In addition to the typical simulation conditiongpé of misspecification is added
to the following analyses of the item-fit indiceglicating that items were (1) correctly
estimated, (2) alternate-factor misspecified, gruiderfactored, as described in Chapter
3. Prior to the analysis the item-fit indices, tafect of alternate-factoring on the
estimated MDISC values is explored to ensure thiatrhisspecification does not simply
result in the deletion of factor loading and theliidn of a “nuisance” parameter — a
relatively insignificant factor loading or MDISC .

When items were misspecified according to alterfed®oring, the effect of

deleting the primary factor while adding a nuisafazgor can be assessed by examining
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the RMSE and bias of the resulting MDISC estimateshe misspecified factor. It can be
expected that a nuisance factor would be indichieldw estimated MDISC values (i.e.,
weak factor loadings) that differ greatly from tbaginal MDISC values and likely
approach zero. Therefore, RMSE values would be @ggdeo be large and bias values
would be negative, indicating smaller estimated@fiISC compared to the generating
values. Further, key descriptive statistics foeralate-factored items can be calculated to
ascertain whether these parameters suggest thenpeesf a nuisance factor. Table 5.6
contrasts descriptive statistics for MDISC valuesutting from correct and alternate-
factored items as well as presenting the ratiohot¢ values and the RMSE and bias,
aggregated over all other conditions. These resarésalso presented graphically in
Figure 5.7.

As can be seen from these results, the MDISC vadsssciated with items that
have been misspecified due to alternate-factoniaggstematically lower than values for
the correctly specified items; alternate-factoratugs for MDISC are between 0.637 and
1.424 while the MIDSC values for correctly spedfieems are between 0.813 and 2.183.
This is further indicated by the generally negathvas values associated with the
alternate-factored items. The RMSE, however, ialplgtsmaller for these misspecified
items than for the correctly specified items. Frdmese results, it appears that items
misspecified according to alternate-factoring yi&ever MDISC parameter estimates
which are not small enough to be considered nues@acameters — the MDISC values

are substantial in comparison to the correctlynestied parameter values.

120



Table 5.6

Descriptive Statistics for MDISC Values when Itevese Correctly Specified or

Alternate-Factored

Statistic Misspecification Mean Median SD Min M ax
Mean Correct 1.260 1.209 0.286 0.813 2.183
Alternate 0.978 0.937 0.217 0.637 1.424
Ratio Alternate / 0.780 0.790 0.079 0.530 0.927
Correct
RMSE Correct 1.314 1.116 1.032 0.162 6.608
Alternate 0.312 0.279 0.143 0.096 0.993
Average Correct -0.149 -0.136 0.102 -0.896 0.004
Bias Alternate -0.307 -0.260 0.242 -2.902 -0.076
Mod Sev
2.0-
015-
n
(@)
) ‘
1.0- ‘ ‘
Correct Alternate Correct Alternate

Misspecification

Figure 5.7.Box-and-Whiskers Plots for MDISC Values when Itemere Correctly
Specified or Alternate-Factored.
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Misspecification of items according to alternatetésing or underfactoring does
not occur across all levels of all the other siiata conditions, resulting in an
incomplete factorial design (Table 5.7). Such agiesompromises the use of ANOVA
in calculating sensitivity of the item-fit indicess the sum-of-squares are no longer
orthogonal. A full-factorial design for analyzinggm-fit values is achieved through the
creation of a compound factor comprised of modetspecification, estimated item
multidimensionality, and type of item misspecifioat This compound factor is included
as a simulation design condition in subsequentyarsabf the item-fit statistics.

Table 5.7

Types of Item Misspecification Present by Modekpksification and Item
Multidimensionality

Type of Misspecification

Model Estimated Item Alternate- Under-
Misspecification Multidim. Correct Factoring factoring
Moderate Between X X
Within X
Severe Between X X X
Within X

Descriptive statistics for the ;g,- Modification Index, and Wald Test item-fit
indices under model misspecification are availainlethe Appendix and presented
graphically in Figure 5.8 to Figure 5.10 accordittg main effects and interactions
demonstrating sensitivity in the item-fit indicéSor each main effect and interaction
demonstrating sensitivityzy;( > 1.000), Table 5.8 presents the percentages cancei
associated with simulation conditions and theienattions resulting from the factorial

ANOVASs conducted for each item-fit index.
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Table 5.8
Selected Percentages of Variance for Item-Fit Stia§ by Simulation Condition Under Model Misspeation

M odification I ndex Wald Test
Source Sy 1 2 3 1 2 3
Number of Dimensions (1  0.245* 3.035 4.353 1.233 5.342
Test Length (2) 0.100 0.079 0.140 0.126 _1.244 1.348 2.106
Sample Size (3) 0.415 4.332 2.937 3.831 18.893 21.407 24.159
Inter-factor Correlation (5 0.261 3.536 2.405 3.100 1.015 0.362 2.813
Item Type (6) 0.157 0.823 0.379 1.900 10.091 13.132 11.747
Misspecification Type (7.  2.917 1.104 0.923 1.512 40.534 36.090 32.334
1*2 0.031 0.037 0.034 0.001 0.177
1*3 0.011 1.492 2.134 0.118 0.564
1*5 0.102 1.199 1.695 0.014 0.120
1*7 0.730 2.446 2.154 0.989 0.023
3*5 0.015 1.599 1.043 1.307 0.099 0.031 0.261
3*6 0.046 0.418 0.192 _1.014 0.974 1.266 1.137
3*7 0.198 0.554 0.435 0.753 _4.010 3.146 3.111
5*7 1.349 0.434 0.366 0.604 0.703 0.563 _1.620
6*7 0.834 0.108 0.097 0.529 2.574 2.988 3.248
1*2*7 0.213 1.327 0.211 0.040 0.015
1*3*7 0.226 1.243 0.997 0.081 0.010
1*6*7 1.024 0.284 0.154 0.328 0.012
Residuals 78.047 68.911 74.432 82.054 15.391 11.840 15.442

* Cells highlighted in dark grey indicate top-thresmurces of variance; cells highlighted in lightegrindicate top main effects suggested by top-three
interactions.
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5.3.1.1Distributional Characteristics of the/3-

The Sy demonstrates sensitivity to simulation condititmsugh the majority of
variance in this item-fit statistic is due to unéqitem variability > = 78.047%).
Specifically, the S# shows sensitivity to type of misspecificatioff € 2.917%), the
first-order interaction of inter-factor correlatiomnd type of misspecification
(n* = 1.349%), and the second-order interaction of memof dimensions with item type
and misspecification type;{ = 1.024%). These sensitivities differ from thosmserved
under true model estimation (i.e., test length, @ansize, and inter-factor correlation).
The effect of these sensitivities is presentedigufe 5.8 as a 90%-winsorized box-and-
whiskers plot according to the main effects suggksbty the sensitivity analysis: number
of dimensions, inter-factor correlation, and tygemosspecification. The interaction of
misspecification type with inter-factor correlatios apparent as values of they’s-
generally increase with inter-factor correlationuggesting misfit) and type of
misspecification (alternate-factoring and undeddog) and decrease with item
multidimensionality. Interestingly, values of theySappear to decrease slightly across
degree of model misspecification, indicated viatipe of misspecification factor. Fit is
worst (i.e., largest values) when 2-dimensional el®dvere estimated as moderately
misspecified and between-item multidimensional gemere estimated as associated with
an alternate factor: IQR = 18.680, 45.400]; medt@a8.258. Alternately, the best fit
occurs for between-item multidimensional items ecdtlly estimated within weakly-
correlated, 2-dimensional model, moderately mis§pelc  models:

IQR = [10.580, 22.366]; median = 16.048.
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Figure 5.8.Box-and-Whiskers Plots for the;8-Under Model Misspecification.

Presented according to conditions associated wimsgivity: inter-factor correlation, number of
dimensions (rows), and type of misspecificatiodufoms). Type of misspecification presented as @egfe
misspecification (Moderate, Severe), item multidisi@nality (Between = 1, Within = 2), and item
misspecification (Same = Correct, Switch = Alteeédctoring, Under = Underfactoring).

5.3.1.2Distributional Characteristics of the Modificatitmdex
The Modification Index (MI) indicates the approximalecrease in model-fi if

the current parameter were freely estimated. Fer ghrpose of identifying model
misspecification, Ml values indicate Q-matrix elertsethat would improve model fit if
the item were associated with the latent factor. Wlues are, therefore, separately
estimated for each of the 2 or 3 latent factoes,(MI1, MI2, and MI3). Since MI3 can
only be calculated for models containing 3 latemttdrs, number of dimensions is
excluded from the factorial ANOVA when calculatisgnsitivity. Otherwise, the patterns
of sensitivity are seen to be similar across Madiibn Indices; given the similarity of
the patterns, subsequent discussion is limited kb iM an effort to the complexity of
analysis and interpretation. Unique variation ignséo account for the majority of

variance 42 = 68.911%) followed by sample siz¢2(: 4.332%), number of dimensions
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(;72 = 3.035%), and inter-factor correlatior?(: 3.536%). This pattern is the same as the
pattern of sensitivity demonstrated under true rhedémation. The distribution of the
Modification Index 1 is presented in Figure 5.9air®90%-winsorized box-and-whiskers
plot according to sample size, number of dimensiand inter-factor correlation. Values
of MI1 are seen to increase with sample size amdedse with number of dimensions
and strength of inter-factor correlations. The déatg values of MI1, indicating
misspecification, are demonstrated when weaklyatated 2-dimensional models are
estimated with 1000 examinees: IQR = [12.033, 4Q;22edian = 21.580. The smallest
values of MI1 are demonstrated when highly-coreglaB-dimensional models are

estimated with 250 examinees: IQR =[0.106, 1.368&dian = 1.0861.

20~

15-
250

10-

Modification Index 1

1000

o o

H M L H M L
Inter-Factor Correlation

Figure 5.9.Box-and-Whiskers Plots for Modification Index 1.

Presented according to conditions associated wetisgivity: inter-factor correlation, sample siz@s),
and number of dimensions (columns).
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5.3.1.3Distributional Characteristics of the Wald Test

Like the Modification Indices, the Wald Test demates similar patterns of
sensitivity across latent factors, therefore, ovlgld Test 1 will be discussed. Before
interpreting the Wald Test values it is importantecall that this item-fit statistic is used
to test significance of specific factor loadingmadler values suggest misspecification
indicating that the estimated factor loading, orm@trix entry, is non-significant.
Keeping all this in mind, the Wald Test is seend@monstrate sensitivities strikingly
similar to the pattern and magnitude seen under, trorrect model specification; a large
portion of total variance in this fit index is dputable to the compound factor of
misspecification typen@ = 40.534%), which includes item multidimensionakt the
largest source of variance in the Wald Test valusder true model estimation; lesser
percentages of variance are attributed to sample @2 = 18.893%) and item type
(n2 = 10.091%). Depicted in Figure 5.10, values of &Vakst 1 appear to generally
decrease with item discrimination, item difficullsample size, type of misspecification
(alternate-factoring and underfactoring). Valueshef Wald Test are smallest, suggesting
misspecification, when high discrimination / higiffidulty items are modeled as within-
item multidimensional and when they estimated asletiactored within severely

misspecified models and small sample sizes: IQR5§9, 1.896]; median = 0.835.
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Figure 5.10Box-and-Whiskers Plots for Wald Test 1.

Presented according to conditions associated wathsiivity: item type, sample size (rows), and tgpe
misspecification (columns).

5.3.2 Power of Item-fit Indices

In this dissertation, items were either correctlfiraated or misspecified as being
associated with an alternate factor or underfangovia the deletion of a Q-matrix entry,
within each of the model misspecification condigoithis allows for the calculation of
power as the average rejection rate for misspekcifeans calculated by aggregating over
item type and across replications. Rejection redutim correct identification of an item
as misfitting via the application of design-appiajg empirical cut points, which were
calculated as the &5percentile for each of the /8; Modification Indices, and Wald
Tests according to each cell in the simulation glesiThese proportions are then
computed for each cell in the simulation designgragating over replications. The
sensitivity of each item-fit index’s ability to aectly reject misspecified items is

presented in Table 5.9 as the percentage of variatwibutable to the simulation
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conditions and interactions resulting from factoWdNOVAs conducted for each fit

index.
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Table 5.9
Selected Percentages of Variance for Power of F#rntatistics

M odification | ndex Wald Test
Source Sy 1 2 3 1 2 3
Number of Dimensions (1  16.218 4.642 12.398 13.567
Test Length (2) 6.135 1.360 0.006 2.862 0.050 0.013 ~1.559
Sample Size (3. 21.840 20.293 16.152 15.325 0.770 0.047 0.354
Inter-factor Correlation (5) 1.711 12.512 8.067 8.397 19.237 25.335 12.921
ltem Type (6)  9.760 4.458 3.033 3.850 11.262 9.123 29.265
Misspecification Type (7) 8.901 3.144 12.727 15.231 11.551 17.097 19.681
1*2 0.861 3.758 0.211 2.221
1*3 0.001 1.813 2.907 0.030
1*5 2.175 0.983 1.238 0.697
1*6 3.015 0.378 -1.097 8.083
1*7 5.383 0.179 1.720 1.134
2*3 0.876 1.607 0.151 0.004 0.138 0.000 0.334
2*7 1.952 0.997 5.163 19.257 0.976 0.119 0.293
3*5 0.348 0.892 0.305 1.652 1.156 1.392 0.143
3*7 4.840 0.066 0.851 _2.666 1.379 0.399 1.186
5*6 0.688 0.092 0.098 0.251 3.041 9.008 14.473
5*7 0.743 0.123 0.818 ~3.165 3.339 16.592 0.655
6*7 1.402 0.079 0.165 0.779 5.825 6.201 12.293
1*2*6 0.109 0.128 0.292 2.711
1*2%7 0.353 11.613 11.619 0.194
1*3*7 1.829 0.639 1.323 0.141
1*6*7 0.820 0.171 0.434 1.216
2*6*7 0.657 0.189 0.337 2.179 1.336 0.313 0.776
3*6*7 1.383 0.064 0.318 0.445 0.646 0.340 0.157
5*6*7 0.144 0.109 0.164 0.281 1.783 5.890 1.889
Residuals 1.866 22.545 5.968 8.685 1.042 2.050 0.727

* Cells highlighted in dark grey indicate top-thresmurces of variance; cells highlighted in lightegrindicate top main effects suggested by top-three
interactions.
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5.3.2.1Power ofS+?

The largest percentage of variance in proportiommagfitting items correctly
rejected by thé&+? can be attributed to sample siz€ € 21.840%), next is the number
of dimensions or latent factorg = 16.218%), and lastly item typ@2 = 9.760%).
Power of theS+? item-fit index to detect misspecified items isg@eted in Figure 5.11
and summarized according to those simulation cmmditfor which it demonstrated
sensitivity. Power is seen to increase with sangige and item discrimination but
decrease with number of dimensions and item ditficuPower is highest for
2-dimensional models with highly-discriminating dw-difficulty items estimated on
large sample sizes & 1000), IQR =[0.576, 0.890] and median = 0.7#4MHile power is
lowest for 3-dimensional models and sample sizes0250 where th&=? is shown to

rarely detect item misspecification, with powelesaapproaching zero.
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Figure 5.11 Box-and-Whiskers Plots for Power of t8e?.

Presented according to conditions associated wetisgivity: item type, number of dimensions (rowas)l
sample size (columns).

5.3.2.2Power of the Modification Index
Power of the Modification Index is shown to be séves to a variety of

simulations conditions and the interactions thegeofvell as differing depending on the
latent factor being considered. It is also impdrtem consider that the Modification
Indices are estimated as a result of specific Qimatroperties. Modification Index
values are estimated for null (“0”) entries in tbstimated Q-matrix; MI1, therefore,
directly results from actual null Q-matrix entrias well as alternate- and underfactoring
of the specific Q-matrix element; MI2 is similar MI1 except under 3-dimensional
models where it only directly results from null ee$ and underfactoring of the Q-
matrix; MI3 results from all null Q-matrix entridsit only present when 3-dimensional

models are estimated.
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MI1 (Figure 5.12) is shown to be sensitive to sargize {12 = 20.293%), inter-
factor correlation > = 12.512%), and the second-order interaction ofiver of
dimensions, test length, and type of misspeciiim:}st(zy2 = 11.613%), plus a variety of
other conditions to a lesser degree. MI2 (FigulsShdemonstrates sensitivity to sample
size (12 = 16.152%), type of misspecificatio:f(: 12.727%), and number of dimensions
(;72 = 12.398%). Lastly, MI3 (Figure 5.14) demonstragessitivity to the interaction of
test length and type of misspecificatioﬁ € 19.257%), sample sizgz(: 15.325%), and
the main effect of misspecification typ¢2 & 15.231%). Though the three Modification
Indices demonstrate different sensitivities and @orates there are overall patterns that
can be observed. Power is seen to increase witlpleasize, degree of model
misspecification, and item misspecification — larga&lues for underfactoring than
alternate-factoring. MI1 demonstrates the highessistent power for weakly-correlated
2-dimensional models estimated with large samptessilQR = [0.724, 0.978] and
median = 0.869.Alternately, power decreases withber of dimensions estimated, such
that alternate-factoring under 3-dimensional modalth small sample sizes results in

power rates approaching zero.
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Figure 5.12 Box-and-Whiskers Plots for Power of the Modificatimdex 1.

Presented according to conditions associated wéthsgivity: sample size, number of dimensions (Jows
and inter-factor correlation (columns).
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Figure 5.13 Box-and-Whiskers Plots for Power of the Modificatimdex 2.

Presented according to conditions associated wéthsgivity: sample size, number of dimensions (Jows
and type of misspecification (columns).
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Figure 5.14 Box-and-Whiskers Plots for Power of the Modificatimdex 3.

Presented according to conditions associated wathsgivity: sample size, test length (rows), arqetyf
misspecification (columns).

5.3.2.3Power of the Wald Test

When using the empirically-derived cut points, gosver rates for the Wald Test
are generally shown to be low across conditionsalbthree indices. The patterns of
sensitivity across Wald Test 1, Wald Test 2, andidVEest 3 demonstrate notable
similarities, with the simulation conditions accting for approximately 90% of the
variance in each statistic. For Wald Test 1, thegdst percentages of variance is
attributed to inter-factor correlationsy = 19.237%), the number of dimensions
(7* = 13.567%), and the type of misspecificatiof € 11.551%). Wald Test 2 also
demonstrates great sensitivity to inter-factor elation (72 = 25.335%), the main effect
of type of misspecificationnf = 17.097%) and the interaction of inter-factorretation
with type of misspecificatiomf = 16.592%), as well as demonstrating sensitiatite¢m

type 672 = 9.123%). There is no effect of number of dimensifor Wald Test 2 since
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misspecified items are only associated with lataotor 1 or 3. Finally, Wald Test 3 is
sensitive to inter-factor correlatiomz(: 12.921%, via interaction with item type), type o
misspecification® = 19.681%), and item typ@{(= 29.265%).

Across the Wald Test item-fit indices, power raaes seen to increase with the
number of dimensions and the severity of model pasgication while decreasing with
inter-factor correlation, item discrimination, aitdm difficulty. Power rates are highest
for Wald Test 1 when items are severely misspetifecording alternate-factoring
within a weakly-correlated 3-dimensional model: I@R0.448, 0.784], median = 0.593.
The lowest power rates are observed when highedIfff / high-discrimination items are

underfactored within severely-misspecified hightyrelated 2-dimensional models.
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Figure 5.15 Box-and-Whiskers Plots for Power of the Wald Test 1

Presented according to conditions associated wi#msgivity: number of dimensions, inter-factor
correlation (rows), and type of misspecificationl(anns).
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Figure 5.16 Box-and-Whiskers Plots for Power of the Wald Test 2

Presented according to conditions associated wéhsgivity: item type, inter-factor correlation (),
and type of misspecification (columns).
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Figure 5.17 Box-and-Whiskers Plots for Power of the Wald Test 3

Presented according to conditions associated wéthsgivity: item type, inter-factor correlation (),
and type of misspecification (columns).
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5.3.3 Summary for Item-Fit Indices

Overall, the item-fit indices often demonstrate@ thbility to correctly reject
misspecified items when there were 2 weakly cotedldatent factors, large sample sizes,
and items of low difficulty. The item-fit indicesethonstrated poor ability to detect
misspecified items under strongly-correlated 3-disienal models which were estimated
on small sample sizes. They%-Modification Indices, and Wald Test statisticxlea
demonstrated variable power rates with respedtalation conditions, described earlier
and summarized below. Considering the estimatisneis described at the beginning of
this chapter, the following results often corresponith the conditions resulting in
estimation difficulties, however, the two are naimpletely aligned, indicating that
estimation issues do not entirely account for theeoved effects.

Power of the S is seen to be highest 2-dimensional models estiinan large
sample sizes with items of high discrimination Ivldlifficulty. These rates range
typically between 0.3 and 0.9 and are comparabkhdee of Li and Rupp (2011) who
found power to be 0.4 and 0.8 for moderate and imtgr-factor correlations when data
generated according to a 2-dimensional 2PL-MIRT ehahs estimated according to a
unidimensional model — that is, subject to undédi@cg. Also, Zhang and Stone (2008)
found the power to detect misspecification using 8> to range 0.7 to 0.93 for items
estimated according to a 2PL-MIRT model and misi§igelcas violating the assumption
of monotonicity.

Similar to the S¢, Modification Indices show power rates that arghleist under
weakly-correlated 2-dimensional models and whehadess short in length. Under these

conditions, power rates vary between approxima@#s and 0.8, while the extreme
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opposite conditions demonstrate power rates thatoaph zero. Previous research has
shown model revision and recovery of the correqiutation model via Modification
Indices to be moderately successful under largepkasizes when misspecification is
moderate (Kaplan, 1990; MacCallum, 1986). Theseiffigs correspond with the modest
power rates especially under large sample sizasifouthis dissertation.

Similar to the previous item-fit indices, the Waldst statistics demonstrate the
highest power rates when inter-factor correlatisniow; unlike the previous item fit
indices, however, power rates for the Wald Testease with the number of latent
factors. Additionally, power is seen to increaséhwsevere alternate-factoring while
decreasing with item discrimination and difficulghou and Bentler (2002) found that
the Wald Test correctly indicated misspecified psaters in 88 out of 100 instances
when a saturated 5-dimensional CFA model was estinand the Wald Test was
examined to suggest parameter deletion in an attémpecover the true population
model. These results are aligned with the expectatior the Wald Test presented in this
dissertation.

Considering the results of presented for theseetheen-fit indices it is important
to note that the $% and the Modification Indices demonstrated serisigivto observable
design characteristics such as sample size and eruaibdimensions — where power
increases with the former and decreases with ttierlarhe Wald Test, however, is
typically sensitive to those unobserved charadtesigshat would only be discovered
upon model estimation. Lastly, we see that the Kimation Indices are able to detect

underfactoring at high rates and severe alterreatifing results in increased power rates
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for both the Modification Indices and the Wald Teke Sy® however, was less sensitive

to degree and type of misspecification than thersimulation conditions described.

5.4.Synthesis of Model- and Item-Fit Performancel&imVodel Misspecification

In the evaluation of model and item fit under coiotis of potential
misspecification, it is important to understand gensitivity of the fit indices to the
experimental or simulation conditions currently éoypd. Appropriate consideration of
the effects of model and test characteristics enseétlected model- and item-fit indices
will allow modelers — practitioners and researchalike — to make appropriate decisions
when considering model validity and revision. Adatgupower to correctly detect model
misspecification is generally demonstrated by #helf ratio, RMSEA, and GDDM
model-fit indices, with certain exceptions suchndmen sample sizes are small and short
tests are employed. Power to detect item misspatifin by the $° Modification
Index, and Wald Test item-fit indices, howevergiste variable demonstrating power
rates that are often low. Since model- and itenmtilices are both typically presented in
model estimation output — for example, Mplus versi®.11 (Muthén & Muthén,
1998-2010) can output necessary information foryffdf ratio, RMSEA, Modification
Index, and Wald Test— the power of the two typesndices are next considered in
conjunction for the purpose of providing additiomaflormation and guidance regarding
identification of item and model (i.e., Q-matrix)igspecification. The power of each
item-fit index to correctly identify misspecifietems was calculated for each model-fit
index separately, according to whether the modeiddex correctly identified the

misspecified model.
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5.4.2 Misspecification Correctly Detected by Model Fitlices

Seen in Figure 5.18, correct model rejection adongrdo the y/df results in
modest increases in rejection of misspecified itdyshe Sy? though the power rates
are still modest overall and poor for 3-dimensiomaldels. After allowing for a modest
increase, the pattern and magnitude of power tectietisspecified items using the s-
when the models were identified as misspecifiegmsarkably similar to when model fit
was not considered. For example, the IQR for pawtss under 2-dimensional models
estimated for 1000 examinees and highly-discrinmigat low difficulty items was
approximately 0.6 to 0.8 overall but increases.®t0 1.0 when thg?/df first identifies
the model as misspecified. A similar effect is sé@nthe Modification Index (MI1 is
presented for ease of interpretation); the pattefrmwer rates are similar to the overall
pattern but the initial identification of the misgified model results in increased power
rates for the item-fit statistic overall. Power fitre Modification Index is highest for
2-dimensional models estimated as weakly-correlatitlal large samples sizes, with an
IQR ranging approximately 0.7 to 1.0; after suchiésslentification by,*/df, the IQR
increases to approximately 0.8 to 1.0, with a medial.0. The Wald Test, also limiting
presentation to latent factor 1, appears to bet lafiscted by initial identification of
model misspecification as power rates are seenffer dittle from the overall power
rates. For weakly-correlated, severely misspecifiadimensional models the IQR for
underfactored items was approximately 0.4 to 0@8m@hstrating the highest power
overall) which increases to 0.3 to 0.85 subseqteeittentification by the/%/df model fit

index.

141



Figure 5.19 shows the power rates for the,9v11, and Wald Test 1 subsequent
to correct identification of model misspecificatidody the RMSEA The previously
established similarities in performance between;(ﬁ‘[da‘ and RMSEA model fit indices
again provide nearly identical results; generalhe magnitude of the power rates is
increased but the overall pattern of power is naamnatd.

Lastly, Figure 5.20 presents the power rates feritdm-fit indices under correct
identification of model misspecification by the GBDmodel-fit index. As is apparent,

these results are similar to those previously mteskeand require no further discussion.
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Figure 5.18 Power of item fit indices wheyf/df ratio correctly indicates model misfit.

S+ (top) is presented according to item type, numifedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (fooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missgigation (columns).
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Figure 5.19.Power of item fit indices when RMSEA correctly indies model misfit.

S+ (top) is presented according to item type, nunmtfedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (tooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missjieation (columns).
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Figure 5.20.Power of item fit indices when GDDM correctly indtes model misfit.

S+ (top) is presented according to item type, nunifedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (tooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missjieation (columns).
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5.4.3 Misspecification Not Detected by Model Fit Indices

When they’/df, RMSEA, or GDDM model fit indices unsuccessfulieject a
misspecified model, Figure 5.21 through Figure 5sP®ws that the item-fit indices
subsequently reject misspecified items at rateermgdlyg lower than when the model-fit
indices successfully rejected misspecified modéisugh evidencing the same patterns.
There are a few instances where distributions afggaates are missing from the figures,
indicating that all models within that combinatiohsimulation conditions were correctly
rejected by the model-fit index. For example, allak- and moderate-correlated models
with sample sizes of 1000 were correctly identifisdmisspecified by’/df.

There are also some instances where the performainttee item-fit statistics
deviates from the description above. For items ofienate discrimination and low-to-
moderate difficulty estimated under 3-dimensionaldels, the inter-quartile ranges and
median power rates for the)3increase when the misspecified model is unidentifiy
the ,’/df (approximate median for identified = 0.15; apgmate median for
unidentified = 0.25) and the RMSEA (identified 48; unidentified = 0.25), but not for

the GDDM.

146



250 1000

1_07 . - - . . .
08" | :
06 | |
2
04- ‘
30 pE=N ]
500"
510 - . . T 3 -
3
[=]
Tos |
06 7
. . . . . 5
0.4 : : : 3 E
0.2- £ ’J_‘ £ ! 4
H ,—‘—‘ H H
007 I I ] 1 1 I I I 1 I I I
HH  HM HL MH MM ML HH  HM HL  MH MM ML
Item Type
H M L

c o o o =~
M P O ®® O
h \ | \ ;

E - - . 2
©°
E - -
§ ; i
©
£0.0-
g1.0- . . .
= &
508- 3 +
o 5 5
206 i
o . . . 3

o4 i )

0.2- L

0'0_ I I 1 1 I 1

250 1000 250 1000 250 1000
Sample Size
mod.1.switch sev.1.switch sev.1.under
1.0~ .

o
o
|

« see

+0ee 0 00

Wald T

o o

o o

T

tee o ses o

. e

w- il <{ }>. %....

..

PR
ES

e v e

ool !—‘—\ )

50.4-

f

2 3 2
Dimensions

Figure 5.21 Power of item fit indices wheyf/df ratio fails to indicate model misfit.

S+ (top) is presented according to item type, nuntfedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (tooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missgigation (columns).
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Figure 5.22 Power of item fit indices when RMSEA fails to indie model misfit.

2 3

S+ (top) is presented according to item type, nuntfedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (fooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missjieation (columns).
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Figure 5.23 Power of item fit indices when GDDM fails to indteamodel misfit, for
between-item multidimensional items.

S+ (top) is presented according to item type, nunifedimensions (rows), and sample size (columns).
Modification Index 1 (middle) is presented accogdio sample size, number of dimensions (rows), and
inter-factor correlation (columns).Wald Test 1 (tooh) is presented according to number of dimensions
inter-factor correlation (rows), and type of missgigation (columns).
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5.5.Summary

This section presented a unified approach to thaluation of model
misspecification, considering model- and item-fésults simultaneously. As these
statistics are often presented or otherwise aMailtdgether during model estimation,
joint evaluation provides richer data with which jtmige the Q-matrix specifying the
measurement model or pattern of factor loadingseWtme model-fit indices correctly
rejected the models, the ability of the item-fitlites to reject or identify misspecified
items generally increased. Power rates for the ivfiddadices uniformly increased with
larger samples, longer test lengths, and weaker-fattor correlations. Alternately,
failure to correctly reject misspecified modelsuleed in slightly decreased power rates
compared to those demonstrated when model evatuatas not initially considered,
with the exception of the $ under 3-dimensional models which demonstratechslig
improvements. These results suggest that the imfitom provided by the &
Modification Index, and Wald Test item-fit statestiis consistent, regardless of whether
the model-fit statistic was able to detect misdjeation. A further implication of this
behavior is that item-fit indices can validly beedsduring model criticism and evaluation
procedures, even when the overall model was jutigétthe data.

All of the item-fit indices demonstrated power ramp from poor to strong,
depending on the simulation conditions considerBidving initially identified a
misspecified model as such, the’3s able to detect misspecified items with a poofer
greater than 0.5 when sample sizes are large, tuelnis estimated as 2-dimensional,
and items are highly-discriminating. The Modificati Index is able to detect

misspecified items with a power greater than 0.2whkample sizes are large and latent
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factors are weakly correlated or moderately coreelathough only for 2-dimensional

models. The Wald Test, however, is only able t@ctemisspecified items with a power
of 0.5 or greater when a weakly-correlated 3-dinmrad is severely misspecified and the
items have been subject to alternate-factoring. Wihe overall model has not been
identified as misspecified, the utility of theySis similar to that described above, though
power is slightly lessened overall; the utility thie Modification Index is limited to 2-

dimensional models, only; and Wald Test continwesiédmonstrate lower power rates.
The poor performance of the Wald Test can be atgibto the fact that the estimated
values are typically large and range widely; calted as the ratio of the factor loading to
the standard error of the estimate, it may be sedthat the Wald Test would be more
informative in detecting misspecification for itemsth lower factor loadings or item

discrimination values than those specified in thésertation.
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Chapter 6
Real Data Analysis

6.1.Introduction

The final research question posed in this disserats in regards to the
application of findings from the simulation studieseal data:

How can results from the simulation studies informadel criticism and model

revision for real data analysis contexts when Qfmmas are potentially

misspecified?
The Q-matrices employed in estimating these maaelsonstructed according to (1) the
results of exploratory factor analyses (EFA) andtif2 assignment of test items to levels
of the revisedBloom’s Taxonomy for Educational Objecti@nderson & Krathwohl,
2001; Bloom et al., 1956).

Two-parameter normal-ogive (2-PNO) multidimensiontain response theory
(MIRT) models are then estimated using item respalada from a grade 6 mathematics
achievement assessment administered in a large @digw state. These models are
specified according to the aforementioned Q-madricest and sample characteristics
resulting from each of the estimated models ara #eamined for correspondence to
conditions employed in the simulation study portioh this dissertation. Design-
appropriate empirical cut points resulting from glation conditions best approximating
the real data analysis conditions are then appti¢de model- and item-fit indices for the
purpose of adjudicating fit. Further, lessons ledrabout the behavior and power of the

fit indices under various simulated test design amadel estimation conditions are
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incorporated in evaluating overall model fit andjgesting Q-matrix revisions. A single

iteration of model revision is presented for ilhasive purposes.

6.2.Methods

The full data set represents the population ofesitglin the state and is comprised
of 12,861 students’ responses to 39 multiple-chait@ constructed response items; for
this analysis, a random sample of 1000 examinggonses to the 32 multiple-choice
items only are included, thus focusing on dichotosipscored responses and
approximating a sample size and test length carditi the simulation study.

Model estimation according to EFA-derived Q-masidest required that the
number of latent factors be determined. To accdantpotential sampling bias, the
number of factors was determined using HorRarallel Analysis(1956) method,
implemented in R apsych: : fa. paral |l el . pol y (Revelle, 2011), for 250 random
samples oh = 1000 drawn from the population data. The nundfeiactors extracted
ranged from 2 to 13 with mean, median, and modeswadjgesting a six-dimensional
model which is larger than any of the Q-matricesdus the simulation study. The data
set yielding this six-dimensional solution was metd and employed in all subsequent
analyses.

To facilitate the use of the empirical cut poin&tesmined in the simulation study
a two-dimensional EFA solution is also considenedhis analysis. The two- and six-
dimensional Q-matrices were then constructed frowd EFA results by estimating
oblique two- and six-dimensional factor solutiomsl @efininggy = 1 as the one or two
largest positive factors loadings across dimensiohis method of Q-matrix construction

ensures that item-dimensionality is similar to tbétthe simulation study as well as
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capturing positive relationships between the oletrand latent variables, as would be
expected for MDISC values. The resulting two- anddsmensional Q-matrices follow
complex-structure and show high proportions of g&erwhich are within-item
multidimensional; 21 of the 32 items in the two-dimsional solution are within-item
multidimensional (EFA2) and all of the 32 itemstle six-dimensional solution (EFAG)
are within-item multidimensional. The Q-matricesnstucted from the exploratory
analyses are presented in Table 6.1.

Lastly, a three-dimensional Q-matrix representiegt tcontent and cognitive
psychological theory is also employed in this stutllyis Q-matrix was constructed as
part of an earlier research study (Gushta, Yum&t@d/illiams, 2009) by assigning items
to appropriate levels of the revisdéloom’s Taxonomy for Educational Objectives
(Anderson & Krathwohl, 2001; Bloom, 1956) which dele the cognitive processes
necessary to successfully answer test items acaprtb the Cognitive Process
Dimension, independent of specific subject-areauireqents. While there are six
categories in the Cognitive Process Dimension, oBlywere represented in this
assessmenRememberingFactor 1; 3 items), which is the most basic cgmiprocess
indicating that test items require only retrievdl sbored information;Understanding
(Factor 2; 14 items), a more complex process ragusummarizing and comparing; and
Application (Factor 3; 15 items), for items requiring the wudeprocedures to solve
familiar and novel tasks. Unlike the Q-matricesutasg from EFA solutions, the
cognitive complexity Q-matrix (COG) follows simp#tructure and the items are all

between-item multidimensional. This Q-matrix iscapsesented in Table 6.1.
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Table 6.1
Q-matrices Resulting from 2- and 6-Dimensional Braiory Factor Analysis and
Cognitive Complexity

EFA2 EFAG COG
[tem 1* 2 1 2 3 4 5 6 1 2 3
1 0 1 1 0 0 1 0 0 0 0 1
2 1 1 0 1 0 0 0 1 0 1 0
3 1 1 0 0 1 0 0 1 1 0 0
4 0 1 1 0 0 0 0 1 0 0 1
5 1 0 0 0 0 1 0 1 0 0 1
6 1 1 0 1 0 1 0 0 0 1 0
7 1 1 0 1 1 0 0 0 0 1 0
8 1 0 0 1 0 0 0 1 0 1 0
9 1 1 1 1 0 0 0 0 0 1 0
10 1 1 0 1 1 0 0 0 1 0 0
11 1 1 0 1 0 0 0 1 0 0 1
12 1 0 0 1 1 0 0 0 0 1 0
13 1 1 1 1 0 0 0 0 0 1 0
14 1 1 0 1 1 0 0 0 0 1
15 1 0 0 1 0 1 0 0 0 0 1
16 1 1 0 0 1 0 0 1 0 1 0
17 1 1 1 0 0 1 0 0 1 0 0
18 1 1 0 1 0 0 1 0 0 1 0
19 1 1 1 1 0 0 0 0 0 0 1
20 1 0 0 0 1 1 0 0 0 1 0
21 1 0 0 0 0 0 1 1 0 0 1
22 1 1 0 1 0 1 0 0 0 0 1
23 1 1 1 1 0 0 0 0 0 0 1
24 1 0 0 0 1 0 1 0 0 0 1
25 1 0 0 1 0 0 0 1 0 1 0
26 1 0 0 0 0 1 1 0 0 0 1
27 1 1 0 0 0 1 1 0 0 1 0
28 1 1 0 0 1 1 0 0 0 0 1
29 1 1 0 1 0 1 0 0 0 0 1
30 1 1 0 0 1 1 0 0 0 0 1
31 1 1 1 0 0 0 0 1 0 1 0
32 1 1 0 1 0 0 1 0 0 1 0

Note: Shaded entries indicate misfit according e foint criteria; strikethrough indicates Q-matrix
revision.
* Numbers denote latent factors.
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6.3.Results

6.3.1 Original Models

Two-parameter normal-ogive (2-PNO) multidimensioitain response theory
(MIRT) models were fit for each of the EFA2, EFAGd COG Q-matrices using Mplus
version 6.11 (Muthén & Muthén, 1998-2010) and thectications detailed in Chapter 3.
MDIFF values in the simulation study portion ofghlissertation were specified as low,
moderate, and high difficulty and represent indreasliscrepancy from the mean of the
latent factor scores. As such, negative MDIFF valweere not included but are
hypothesized to affect fit indices as would positMDIFF values of similar magnitude.
Therefore, absolute MDIFF estimates and the minirmuean, median, and maximum of
such resulting from the real data analysis will dmmpared to the MDIFF values
specified in the simulation design conditions ttedmine the corresponding item type.

Item parameter estimates for EFA2 are presentethble 6.2 with minimum,
mean, median, and maximum absolute MDIFF = [0.02406, 0.668, 8.918],
respectively; estimated MDISC values range [0.12852] with a mean of 0.603; inter-
factor correlation is estimated @&, = —0.447, and latent factor scores, or student
ability, is distributed 8’ = [0.006,0.038] with &, = [0.886,0.725]. These
characteristics suggest that EFA2 approximatesnibaerate inter-factor correlation and
moderate-discrimination / high-difficulty (i.e.,rge discrepancy between MDIFF and

mean latent factor scores) conditions employetienprevious simulation study.
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Table 6.2

Item Statistics Estimated for the 2-Dimensionall&rgiory Factor Analysis Model

MI Wald
ltem MDIFF MDISC Sy 1 2 1 2

1 -8.918  0.149 30.605 4.361t -1.824*F
2 -0.786  0.672 14.377 10.950  -0.863*t
3 -0.379  0.521 25.439 7.481  -3.071*t
4 -0.913  1.396 45.948*t 4.356%1 -13.859*
5 -0.516  0.840 17.075 0.236 20.360

6 0.529 0.268 18.671 4347  -0.940*t
7 2.455  0.462 32.443 6.460  -2.029*t
8 -0.024  0.124 26.002 1.722 2.811*t

9 -1.358  0.479 13.387 6.756  -2.734*t
10  -1.096  0.564 30.457 8.074  -2.743*t
11  -0.380  0.809 23.422 12.802  -2.295*t
12 0.326 0.467 21.542 0.766 10.538*

13 -0.760  0.993 36.626*t 13.125 -3.658*t
14  -0.621  0.846 18.229 13.199  -1.115*t
15  -1.111  0.582 13.909 0.279 13.518*

16  -0.901  0.460 40.203*t 6.900  -2.488*t
17  -2.032  0.486 32.176 4.826*  -4.155*
18  -1.853  0.321 19.577 4.914*  -1.413*t
19 -0.456  1.552 51.566*t 2.185*t  -8.964
20 1.453 0.701 32.349t 0.004 12.052*
21 -0.087  0.706 25.340 0.030 16.694
22  -0.765  0.559 30.872 8.735  -1.317*t
23 -0.714  0.402 14.542 6.125  -2.013*t
24  0.380  0.585 37.522*% 1.639 13.213*
25 0.260 0.456 25.230 0.305 10.280*
26 0.266 0.862  44.436*t 0.029 18.821
27  -0.201  0.543 23.729 8.465  -2.240*t
28 1.057 0.542 14.683 8.231  -1.534*t
29  -0.195  0.653 24.413 9.954  -2.366*t
30 0.414 0.338 20.857 5.417*  -1.228*t
31 -0.731  0.505 23.979 4.471* -5.506
32 -0.242  0.450 30.557 7.478  -0.946*t

Note: Shaded entries indicate misfit accordingh® jpint criteria.
* Misfit according to empirical cut point.
T Misfit according to theoretical cut point.
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Table 6.3 presents the item parameter estimateSFa6 with minimum, mean,
median, maximum absolute MDIFF values of [0.0328,8.589,4.082]; MDISC values
ranging [0.095,3.251] with a mean of 0.725; intectdr correlations are estimated as:

1
0.543 1
0.370 0.310 1
0.482 0.433 0.832 1
0.435 0.821 0.520 0.607 1
10.782 0.432 0.719 0.536 0.608 1-

)
I

and latent factor scores are distribut@t = [-0.061, -0.006, 0.006, -0.002, 0.012,
-0.006] anday = [0.771, 0.850, 0.654, 0.771,0.792, 0.783]. Patamestimates for the
EFA6 model suggest that it approximates the modenatier-factor correlation and

moderate-discrimination / high-difficulty conditi@pecified in the simulation study.
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Table 6.3

Item Statistics Estimated for the 6-Dimensionall&rgiory Factor Analysis Model

MI Wald

ltem MDIFF MDISC Sy? 1 2 3 4 5 6 1 2 3 4 5 6
1 -4.082 0.333 45.128*t 0.006 2.897 5.203*f 0.003 3.202*t -1.425*t

-0.962 0.555 17.671 0.927 0.372 0.967 0.934 3.047*t 2.876*t
3 -0.335 0.649 27.494 3.142 0.726 0.257 0.064 2.320*t 3.661*
4 -0.770 2.343 22.650 0.002 2.798 1.111 1.296 6.909 -0.607*t
5 -0.604 0.742 29.852t 6.485*t 0.754 0.427 0.826 5.465 3.329*t
6 0.358 0.399 57.584*t 0.189 0.001 0.862 0.023 2.722*t -0.569*t
7 -2.146  0.534 35.246*t 1.037 2.838 1.042 0.538 5.679 0.317t*
8 -0.032  0.095 41.875*t 2.086 0.016 0.572 0.097 0.764*t 0.447*t
9 -1.258 0.522 17.994 0.014 0.034 0.771 0.345 1.288*t 7.060
10 -1.083 0.583 31.640t 0.400 0.029 0.808 0.275 4.668*  2.559*t
11 -0.439 0.722 24.054 0.397 0.006 0.285 0.004 3.899* 3.382*t
12 0.376 0.406 28.580t 0.360 0.027 0.130 0.927 4.600* 1.608*t
13 -0.680 1.175 34.731*t 0.253 0.895 0.720 0.175 1.005*t 13.247
14 -0.668 0.800 18.591 0.335 1.083 0.237 0.489 6.631  2.355*f
15 -1.336 0.496 15.502 0.127 0.118 0.248 0.052 1.372*t 2.451*t
16 -0.491  0.947 43.118*F 1.715 0.771 1.106 0.057 -1.242*t 5.050*
17 -1.852 0.55  34.096*t 0.940 0.000 0.709 1.819 3.675*t 5.038*
18 -2.052 0.291 22.526 0.655 0.237 0.003 0.783 1.840*t 0.921*t
19 -0.528 1.154 27.618t 0.398 0.246 1.709 6.409 2.892*t
20 1.500 0.721 26.863t 0.592 0.054 0.379 4.080*  3.003*f
21 -0.107 0.575 32.303t 0.505 1.199 2.142 0.065 4.645*  3.191*t
22 -0.573 0.766 56.644*t 0.767 0.243 0.376 1.626 4.858* -0.720*t
23 -0.650 0.445 22.087 0.252 1.824 2732 0.232 0.852*f 6.602
24 0.422 0.539 38.982*F 2.207 0.669 0.042 1.221 2.681*t 4.558*
25 0.333 0.358 25.456 1.288 0.143 0.077 0.144 1.884*t 2.325*t
26 0.117 3.251 37.679*t 0.035 0.003 3.050 0.130 -1.112%F  2.425%t
27 -0.213  0.541 36.953*F 3.769* 0.056 0.002 1.986*t 2.592*t
28 0.954 0.630 16.552 1.205 0.064 0.471  2.993 2.105*t 5.902
29 -0.220 0.599 22.847 1.478 2.233 0.798 2.151 2.875*t 2.111*t
30 0.280 0.537 17.389 0.335 0.684 0.203 0.832 4.903*  0.632*t
31 -0.695 0.547 26.066 0.444 0.427 2.879 1.185 3.651*t 4.960*
32 -0.271 0.406 29.925% 0.001 1.713 0.003 2.091 1.133*t 2.505*t

Note: Shaded entries indicate misfit accordinghi® jpint criteria.
* Misfit according to empirical cut point.
T Misfit according to theoretical cut point.
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Parameter estimates for the final model, COG, aesemted in Table 6.4.
Absolute values of the MDIFF minimum, mean, mediand maximum are [0.025,

1.179, 0.612, 15.988], respectively; the MDISC ealuange 0.082 to 1.148 with a mean

1
of 0.594; inter-factor correlations are estimategp a= [0.918 1 ]; and latent
0940 0981 1

factor scores are distributéd = [0.003,0.003,0.004] and@, = [0.862,0.899,0.903].
Given these estimates, the COG model approximatesighly-correlated, moderate-

discrimination / high-difficulty condition from theimulation design.
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Table 6.4

Item Statistics Estimated for the Cognitive ComipfeModel

ltem MDIFF MDISC Sy° MI1 MI2 MI3 Wald 1 Wald 2 Wald 3
1 -15.988 0.082 33.488t 4.814t 2.404 1.340*F
2 -0.758 0.694 19.310 0.053 0.024 16.663
3 -0.309 0.653 75.387*t 0.446 0.601 12.992*

4 -1.32 0.679 20.011 0.144 0.516 16.593
5 -0.535 0.790 17.693 0.012 0.282 19.806
6 0.477 0.297 19.609 0.049 0.039 6.844*

7 -2.130 0.534 32.856t 3.385 6.054*t 11.073*

8 -0.025 0.119 35.350t 1.306 1.497 2.748*

9 -1.162 0.561 13.211 2.262 0.069 13.184*

10 -0.903 0.703 87.309*t 1.941 3.861 14.088*

11 -0.347 0.886 24.913 0.026 0.305 22.400
12 0.334 0.453 22.019 0.203 0.113 10.454*

13 -0.666 1.148 56.9877 0.895 0.276 27.220

14 -0.600 0.867 18.354 0.020 0.782 21.728
15 -1.148 0.558 16.650 3.600 0.134 13.403*
16 -0.777 0.534 38.6077 0.113 0.560 12.800*

17 -1.667 0.594 64.357*t 3.9361 5.947*t 11.180*

18 -1.630 0.365 18.206 0.582 0.433 8.454*

19 -0.517 0.961 22.197 2.234 2.100 24.110
20 1.495 0.672 34.368t 1.346 2.894 11.842*

21 -0.090 0.672 26.402 0.937 0.805 16.514
22 -0.711 0.601 32.389t 0.067 14.446*
23 -0.624 0.460 18.699 0.230 0.714 10.943*
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ltem MDIFF MDISC Sy? MI11 MI12 MI13 Wald 1 Wald 2 Wald 3

24 0.394 0.558 40.234% 2.158 4.051% 12.991*
25 0.267 0.442 25.785 0.041 0.018 10.184*
26 0.276 0.813 43.706% 1.425 1.948 18.509
27 -0.177 0.615 25.229 1.492 2.952 14.455*
28 0.967 0.593 21.334 0.475 0.032 12.913*
29 -0.175 0.729 24.254 1.360 0.011 17.555
30 0.375 0.372 29.002 2.309 0.117 8.567*
31 -0.653 0.553 21.738 1.624 1.522 13.098*
32 -0.227 0.479 29.504 1.889 0.186 11.396*

Note: Shaded entries indicate misfit accordinghi® jpint criteria.
* Misfit according to empirical cut point.
T Misfit according to theoretical cut point.
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The design-appropriate cut points for each modsd-ieem-fit index are selected
as the empirical cut points calculated from thaseukated true model conditions that
closely approximate the characteristics of the EFARAG, and COG models presented
in Table 6.5. While cut points for six-dimensiomabdels cannot be directly obtained
from the results of the simulation study, none loé model-fit indices demonstrated
sensitivity to number of dimensions, similar to thedings of Jackson (2007); therefore,
the cut points for the three-dimensional model vesnployed with EFAG.

Table 6.5

Design Appropriate Cut Points for the Grade 6 Matiagics Achievement Real-Data
Analysis

EFA2 EFA6 COG
Fit Statistic B W B W B
Model v2df 1.074 1.073 1.073 (1.070)
RMSEA 0.009 0.009 0.009 (0.008)
GDDM 0.004 0.004 0.004 (0.004)
ltem S¢? 37.519 33.740 35.844 32.718 40.250 (41.466)
Ml 9.061 3.472  3.300 5.086 (6.325)
Wald 15.284  5.626 12.883  5.438 13.498 (14.887)

Model-fit for the EFA2 model is estimated g#df = 1.205, RMSEA = 0.014, and
GDDM = 0.012 which suggests model misfit for alragé indices according to the
empirical cut points but does not suggest misfitoading to the theoretical cut points
(¥’/df = 2.0; RMSEA = 0.05). Model-fit values and @aiints differ slightly for the EFA6
model: ¥*/df = 1.099, RMSEA = 0.010, and GDDM = 0.006 sudigesmisfit for all
three indices but again does not suggest modeitmigler the theoretical cut points. The
COG model demonstrates the worst fit overall@df = 1.490, RMSEA = 0.022, and
GDDM = 0.007 which also suggests misfit accordim@lt three model-fit indices but, as

with the previous models, does not demonstrateitmisfler the theoretical cut points.
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Noting that the model-fit indices generally rejgbese three models as misspecified,
lessons learned from the simulation study preseintélais dissertation can be applied to
the examination of specific item-fit results foretipurpose of model revision and Q-
matrix amendment as follows.

The simulation study in this dissertation suggeshed, under conditions similar
to those of the real data analysis, thg’ ®as poor-to-moderate power overall to predict
misspecified items when the model has been idedtéis misspecified, the Modification
Indices have moderate-to-strong power for the ER&2lel and poor-to-moderate power
for EFA6 and COG, and Wald Tests have poor powethi® EFA2 and COG models and
poor-to-moderate power for the EFA6 model. Addisityy of the three item-fit indices
only the Modification Index demonstrated sensigivib number of dimensions and,
therefore, requires special consideration in appbn to EFA6. To account for this
sensitivity, Modification Index cut points for stimensions were extrapolated based on
the ratio of the values observed for the two- dmdd-dimensional models. These values
were calculated separately for simple- and comptexeture models and presented in
Table 6.5 along with all other model- and itemefit points.

Further, previous research has suggested that mmdedion according to
Modification Indices when misspecification is sexeesulted in poor recovery of the true
population model (Hutchinson, 1998) while the Waksbt performed well in identifying
misspecified parameters when guided by theorgtissification (Chou & Bentler, 2002).
The Modification Indices and Wald Test statistingicate direct or implied change in
overall model fit should a particular parameterfi@ed or fixed; thus, whenever these

statistics indicated multiple parameter revisiandy the most strongly indicated revision
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was considered. For example, given multiple sigaiit Ml values, the largest Ml value
will be selected for revision; with multiple Walde3t statistics indicating misfit, the
value closest to zero is selected for use in maoelakion. Joint criteria for identifying
misfit using the three types of item-fit indiceseatherefore, defined as requiring a
significant Sy’and a significant Ml or Wald Test value — the/Sresults providing a
conservative limitation to the number of statidticaletermined model revisions. The
following revisions of the three Q-matrices aregegjed according to the joint criteria.

Evaluating item-fit for the EFA2 model according tlee empirical cut points
leads S¢? to reject six of 32 items, MI1 and MI2 to rejecte of the items, Wald Test 1
to reject 12 of 30 items since only items loadimgfactor 1 are eligible for this statistic,
and Wald Test 2 to reject 21 out of 23 items. Wtienitem-fit results are considered
jointly, the combination of 2 and either the Modification Index or Wald Testioades
that the Q-matrix entries for Item 13 should bepecified as ¢ 1,2)= [1,0], Item 16 re-
specified as @ 1,2 = [1, 0], and Item 19 as £91,2)= [0, 1], where the bolded Q-matrix
elements indicate deletion based on the joint m&dion provided by the $*and Wald
Test fit values (see also Table 6.1). Although Behand 24 are indicated as misspecified
by the joint criteria, these items are not re-djpatisince the Wald Test results suggest
deleting the only Q-matrix entry for those items.eMY the theoretical cut points
employed, five items would be indicated as misfgtioverall with the Modification
Indices over-identifying misfit and the Wald Tesdtsstics under-identifying misfit.

When the EFA6 model is estimated, 11 of the 32stane identified as misfitting
according to the empirical §-cut points; two items are identified as misfitting MI1,

one item was identified as misfitting according M#5, and none were identified as
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misfitting by MI2, MI3, MI4, and MI6. The Wald Testindicated that six to 13 of the
items were misfitting. Combining this evidence adaag to the joint criteria described
earlier, we can conclude that 11 items demonstrasfit; the suggested revisions are
presented in Table 6.1. Had the theoretical cuhtpdbeen used, 18 items would have
been identified as misspecified by the joint créter

Lastly, the COG model demonstrated the worst ovenaldel-fit but the best
overall item-fit. Five misfitting items were idefiéid as misfitting by the $? index, two
items were identified as misfitting by the MI3 indethree items were identified as
misfitting by the Wald Test 1, 12 items were ideetl as misfitting by the Wald Test 2,
and seven items were identified as misfitting by ¥Wald Test 3. The result is that only 3
misfitting items are identified according to thénfocriteria. According to the theoretical
cut points, four items would be indicated as nisi.

As shown in Table 6.1, the misfitting items for t6©G model are suggested to
be re-specified as £323= [0, 0, 0], Qo,1,23= [0, O, O], Q7123 = [0, O, 1]. These
results suggest that all Q-matrix entries assatiafi¢gh the first factorRememberingbe
deleted. Taking this into consideration the COG eho$ re-specified as a two-
dimensional model; Item 3 and Item 10 are subsedtyuassociated with latent factor 3,
Application based on the largest MI value. Interpreting ti@igision with respect to
Bloom’s Taxonomy, these items are suggested to ineghigher-order cognitive
operations than originally presumed; items categoriasRememberingvhich were not
part of topics delivered directly via instructiorowld result in higher cognitive demands
than originally anticipated. The suggested re-gpation for Item 17 can be interpreted

with respect to levels of Bloom’s Taxonomy as swfjgg that the item requires the

166



cognitive operations associated withpplication instead of Understanding again
suggesting higher-order cognitive processing. Eraftion of the test content could show

these to be a reasonable re-specifications of thea@ix.

6.3.2 Revised Models

A variety of suggestions were made for the revisidrthe EFA2, EFA6, and
COG Q-matrices in the previous section. Since tl¥GQ0Omodel was reduced from a
three-dimensional to two-dimensional model addaiprappropriate, cut points are
provided in parentheses in Table 6.5; otherwise sdime empirical cut points are applied
to the model- and item-fit estimates resulting fregtimation of models according to the
revised Q-matrices. These revised Q-matrices werstacted and the models re-
estimated. The resulting model-fit estimates amsgmted in Table 6.6 against those
resulting from the original Q-matrices, revealingamplicated picture. While all models
continue to demonstrate misfit, fit of EFA2 worsemsording to the”df and RMSEA
but improves according to the GDDM:; fit of EFA6 wens according to the/df and
RMSEA but remains the same according to the GDDM] &t of the COG model

improves according to thé/df while staying the same for the RMSEA and GDDM.
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Table 6.6
Model-Fit Estimates for the Original and Revisedddls

Model Statistic Original Revised

EFA2  »%/df 1.205  1.229
RMSEA 0.014  0.015
GDDM  0.012  0.010

EFA6  »*/df 1.099  1.110
RMSEA 0.010  0.011
GDDM  0.006  0.006

COG  2df 1.490  1.486
RMSEA 0.022  0.022
GDDM  0.007  0.007

Table 6.7 presents the item-fit results for thased EFA2 model, for which the
Q-matrix entries for items 13, 16, and 19 were riedias shown in Table 6.1. As a
result of these revisions, theyS-now identifies five items as misfitting (six were
identified in the original model), no items are ntiBed as misfitting according to the
Modification Indices (similar to the original moglel2 items are identified as misfitting
by Wald Test 1 and 19 by Wald Test 2 (previouslyahd 21). The joint criteria indicate
that the Q-matrix entries for two items should loeigonally revised; indicated as
misfitting under the original model, the Wald Tessults suggest that Q-matrix entries
associating items 16 and 24 with latent factor Hélketed. However, these items would

then be unassociated with any latent factor, tbeeethese revisions are not advised.
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Table 6.7
ltem-Fit Values for the Revised EFA2 Model

MI Wald
ltem Sy 1 2 1 2

1 30.768  4.377 -1.695*
2 13.728 9.864  0.020*
3 25.103 6.499 -2.573*
4 60.341* -20.479
5 18.983 2.533 20.175

6 18.283 3.455% -1.124*
7 32.130 6.163  -1.041*
8 26.447 2.176 2.788*

9 13.179 6.302  -1.653*
10 30.750 6.945  -2.433*
11 25.031 11.912 -1.022*
12 23.083 0.078  10.504*

13 32.104 7.518 27.780

14 19.770 11.772  -0.252*
15 14.723 0.085  13.455*

16 44.114* 2572  12.859*

17 31.993 4.490%  -3.200*
18 19.281 4117  -1.291*
19 129.910* 0.498 -24.699
20 35.444 0.204  12.008*

21 26.861 0.523 16.622

22 29.621 7.858  -0.752*
23 14.909 5512  -1.466*
24 38.862* 3.396  13.134*

25 26.801 0.102  10.276*

26 48.559* 0.177 18.652

27 24.270 7.458  -1.793*
28 15.323 7.198  -1.147*
29 25.264 8.996  -1.696*
30 21.244 4570 -1.119*
31 26.540 3.973* -4.700*
32 32.040 6.744  -0.347*
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The item-fit results for the revised EFA6 modeksented in Table 6.8, present a
picture as complicated as the original model. Thé Satistic indicates that 14 items are
misspecified, the Modification Indices suggesttaltof 16 revisions, and the Wald Tests
suggest 47 revisions; as compared to 11, 3, amdvd&ion suggestions under the original
model. Further, the joint criteria suggest thatiteins are candidates for revision — the
same number and a certain degree of overlap watlteéim-fit results evidenced under the
original model (8 items). The number of Q-matm@xisions suggested by these results is
greater than can be reasonably described withirs¢bpe of this dissertation; therefore
specific recommendations are not presented. Thesdts do indicate that as Q-matrix
entries are deleted via the Wald Test results, Ruzdion Indices suggest alternate
associations between items and latent factors.tiaai iterations of Q-matrix and item-
fit evaluation and revision appear to be necesganchieve a point of stability in which

revisions are no longer necessary or possible.
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Table 6.8

ltem-Fit Values for the Revised EFA6 Model

MI Wald
tem S—Xz 1 2 3 4 5 6 1 2 3 4 5 6
1 82.828* 1.365 6.326* 3.944* 0.016 4.175* -3.081*
2 18.601 1.080 0.114 3.607* 0.653 3.461* 1.835*
3 30.315 1.476 0.117 0.450 2.230 3.661* 1.756*
4 22.909 12.274*  6.826* 6.208* 6.080* 7.984 -1.943*
5 39.167* 3.299 2.576 0.232 0.674 4.827* 4.147*
6 35.752* 0.635 0.215 0.130 0.021 0.025 6.871*
7 37.464* 0.138 2514 0.154 0.340 11.162*
8 51.117* 2.456 0.026 1.437 0.769 2.775*
9 19.855 0.004 0.192 1.131 0.029 0.608* 4.556*
10 29.025 0.182 0.000 0.263 0.731 2.608* 2.945*
11 23.652 0.393 0.184 0.432 0.065 3.275* 2.888*
12 28.920 2.478 2.040 0.795 1.867 3.537* 1.246*
13 35.523* 0.494 0.008 0.003 0.009 27.192
14 17.428 1.661 0.003 0.398 1.055 5.550 1.948*
15 16.887 0.009 0.737 0.691 0.347 2.956* 2.121*
16 45.574* 3.023 0.138 0.387 0.922 0.354 11.266*
17 34.899* 14.685* 3.496* 6.709* 6.857* 9.542* 12.517*
18 22.744 1.643 0.060 0.088 1.485 1.271* 1.453*
19 32.851* 0.484 1.005 6.144* 5.808 -0.755*
20 29.325 1.242 0.509 0.514 0.722 3.578*  2.939*
21 24.964 0.133 0.115 0.533 1.611 4.595* 2.715*%
22 34.148* 0.354 0.373 0.026 0.401 1.034 14.432
23 22.650 0.025 0.543 0.991 0.003 0.884* 3.871*
24 37.479* 0.108 1.245 3.941* 0.174 4.450* 13.446*
25 25.969 1.051 0.001 0.086 0.002 1.391* 2.215*%
26 53.005* 0.005 0.011 0.356 0.709 0.019 18.288
27 35.792* 0.396 0.553 2.107 2.254 2.301* 6.262
28 20.271 2.960 0.144 1.634 2.199 1.690*  4.604*
29 24.633 2.391 3.190 0.369 1.488 5.658 1.651*
30 18.034 0.066 0.278 1.499 0.290 5.068* -0.476*
31 24.863 2.203 0.003 3.848* 1.620 4.268* 2.639*
32 35.236* 0.103 1.587 0.006 1.587 1.034* 2.606*
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Fewer revisions to the COG model were suggesteardicg to the joint criteria
than for either the EFA2 or EFA6 model. After makithe three suggested revisions,
collapsing the model to two latent factors, andnesting the model according to the
revised Q-matrix, the $* identifies two items as misfitting, the Modificati Indices do
not identify any items as misfitting, and the Walests identify 21 items. The original
model had identified 5 items, 2 items, and 22 iteassnisfitting. No items are identified
as misfitting according to the joint criteria (Tal$.9) when the revised COG model is

estimated.
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Table 6.9
Iltem-Fit Values for the Revised COG Model

MI Wald
ltem Sy’ 1 2 1 2
1 32406 2.008 1.342*
2  29.355 0.014  16.662
3 30.762 0.168 14.846*
4 19.358 0.511 16.603
5 18.069 0.342 19.876
6  16.937 0.037  6.844*
7  37.829 5.798  11.070*
8  29.555 1.414  2.747*
9  18.400 0.016 13.188*
10 31.481 0.072 15.883
11  25.693 0.428 22.394
12 20.632 0.092  10.452*
13  81.323* 0174  27.217
14  18.167 0.730 21.771
15 15.929 0.225 13.405*
16 41.456 0.660 12.802*
17  33.557 12.651*
18  18.250 0.388  8.452*
19 22.339 1.619 24.185
20 32.486 2.960 11.840*
21  26.527 0.912 16.535
22  31.132 14.442*
23 17.173 0.886 10.946*
24 39.015 3.935 12.980*
25  24.081 0.013  10.183*
26 44.602* 1.958 18.487
27  29.801 2.916  14.455*
28  19.625 12.901*
29  24.115 17.553
30 26.128 0.041 8.571*
31 26.891 1.409  13.099*
32 30.381 0.094 11.393*
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6.4.Summary

This real data analysis demonstrates the usefulnessconsidering the
psychometric properties of items and models as aglsample characteristics of the
assessment data when examining model- and iteiorfihe purpose of evaluating the Q-
matrix. The use of fit index cut points approprigiethe number of latent factors, sample
size, test length, strength of inter-factor comielss, item multidimensionality, and the
broad classifications of item discrimination anfidulty to jointly consider model- and
item-fit information identified a manageable numlzér model revisions. Use of the
suggested or theoretical cut points, however, léadsissonant results as the model-fit
statistics would suggest that all three modelthétdata while the item-fit statistics would
generally over-identify item misfit.

Applying the empirical, design-appropriate, cutmsiin a single iteration of
model criticism and evaluation, the three Q-masriaere re-specified according to the
joint information provided by the item-fit indiceModel-fit information resulting from
these Q-matrix re-specifications does not clearigicate overall improvement or
worsening of model-fit. Item-fit information, hower does suggest that correctly
specified Q-matrices can be obtained through suchegative re-specification process.
Information provided by the initial model estimati@and first iteration of revisions
indicate consistent and reasonable results.

Estimation of the EFA2 model, which represente@megal under-factoring of the
model vis-a-vis the best-fitting dimensionality ustiure suggested by exploratory
analysis, resulted in a degree of model- and itasifinwhich could be improved by Q-

matrix edits for a modest number of misfitting i®nRevision of the Q-matrix and re-
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estimation of the model resulted in fewer itemgdled as misspecified and fewer items
identified as candidates for revision, though ibwld be noted that some of the final
suggested revisions are not feasible or requine deletion.

The EFA6 model, which estimates the number of dsmars suggested by
exploratory analysis, demonstrates some degreeodelmisfit as well as the greatest
degree of item misfit and largest number of suggke€-matrix revisions. The item-fit
results for the original Q-matrix suggested numesrdaletions of Q-matrix entries as a
result of the Wald Test statistic values; item+fesults subsequent to these edits,
however, indicate an increased number of additiorthe Q-matrix as suggested by the
Modification Indices. While it was not in the scopkthis study to iterate the Q-matrix
revision to a point of stability with regards teetliem-fit results it is apparent that the fit
statistics are suggesting modest and reasonaltieiatesing of the Q-matrix and not
simply attempting to build a saturated model.

Finally, the COG model, specified according to tiyegielded the worst overall
model fit but the fewest overall revisions of then@trix according to the joint
information provided by the item-fit results. Uporaking these edits, overall item misfit
was greatly reduced; the joint criteria used taiidg candidate items for further revision
failed to identify further misfitting items. In angle revision, the Q-matrix achieved
stability with respect to item-fit information. Waithese results may suggest that the Q-
matrix resulting from the COG model is a candidatethe correct, or true, Q-matrix,
there are two additional considerations that mesnbted. First, the final inter-factor
correlation for the revised COG modelris 0.98, suggesting that the model is actually

unidimensional, though this concern can be dispuiadthe grounds of evidence

175



presented in previous research (Adams & Wu, 200@;&Adams, 2006). Second, the
Wald Test statistics continue to suggest that abaunof Q-matrix entries be deleted,
which can be understood by considering the MDIS{ies&a Shown to be sensitive to
MDISC in Chapter 4, the Wald Test values are negaelyectly positively correlated with
the MDISC estimates, suggesting that the weak-tderade discrimination of items
estimated by this model is directly contributinghe identification of item misfit.

At the conclusion of this first iteration of modelvision, it must be noted that all
of the models continue to demonstrate misfit ebeugh the Q-matrix has been revised.
While some of the model-fit indices show improvemesthers do not and this is
especially true for the COG model. The fact thatdelamprovement is suggested by the
item-fit indices but fails to materialize when mésdare revised and re-estimated suggests
that the Q-matrices may represent random patterassociations which would not be
expected to appropriately capture variability ie thodel. Final acceptance of any of the
Q-matrices presented in the real data analysisomodf this dissertation would require
further analysis and substantive considerationpbéyhe scope of the current study.

The task of evaluating and revising Q-matrices wéygplied to real data is further
complicated by the fact that the true or correan@ix is unknown and, therefore, its
recovery cannot be directly evaluated. It is int fa@ssible that any number of equivalent
models could result in the estimation of vastlhfediént parameters but the same sets of
statistical fit indices (Raykov & Marcoulides, 2Q0lalternately, it is possible that
mathematically equivalent Q-matrices exist for aocepted Q-matrix (Bechger,

Verstralen, & Verhelst, 2002). Raykov and Marcoetid2001) state that, since statistical
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indices do not exist which can distinguish equinal@odels, model selection under such
conditions must be managed by substantive considera

The use of empirically-derived model- and item-<€iit points yields results
demanding thoughtful and careful considerationhef ¢lements of these three different
Q-matrices, for which the first round of model icigm and revision has been presented.
Had the theoretical cut points been employed tduat& model- and item-fit they would
have first suggested that the overall model fitdbta well, likely deterring further model
criticism which would then have been complicatedriflated counts of misfitting items,
as suggested by the inflated Type-I error ratesgmted in Chapter 4. Rich, appropriate,
statistical information as provided by the multigie indices employed in this study
serves to facilitate the decisions required of fianers and researchers during the

process of model evaluation.
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Chapter 7

Discussion

The current study extends research on model- anaHit sensitivity to consider
the influence of item type, defined jointly acceomglito item discrimination and item
difficulty, and model misspecification via Q-matrixelements. Specifically the
performance of three model-fit indiceg/(f, RMSEA, and GDDM) and three item-fit
indices (Sy?, Modification Index, and Wald Test) was investaghin a simulation study
manipulating item type and degree of model misspation as well as sample size,
number of observed variables (test length), itenttidionensionality (simple or complex
factor structure), the number of latent factorg] #re strength of the correlation between
latent factors. These fit indices are typically itakde within either a confirmatory factor
analysis (CFA) framework or multidimensional iteesponse theory (MIRT) framework.
Equivalence between models estimated within these frameworks, however, is
achieved by satisfying specific assumptions andarpater constraints, detailed in
previous research (Kamata & Bauer, 2008; Takanee&lLdeuw, 1987), providing
researchers and practitioners with additional mfation in the evaluation of model
performance and validity.

This chapter begins with a summary of key findifrgen the study. The original
research questions focused on the distributiomahdoof the fit indices under true model
estimation conditions, the sensitivity of the fitlices under true and misspecified model
estimation, and the influence of simulation comdfit on power rates for each model- and
item-fit index. The results are, therefore, summedi with these points in mind. A

discussion of its limitations and suggestions tdufe research follows.
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7.1.Summary of Key Findings

The first investigation in this dissertation is @xamination of the distributional
forms of the model- and item-fit indices. The dimitional forms of five of the six fit
indices included in this study have been descrdmmmbrding to known distributions; no
distributional form of the generalized dimensiotyatliscrepancy measure (GDDM; Levy
& Svetina, 2010) has been defined. Hklf ratio and RMSEA fit indices are stated to
follow rescaledy? distributions (Browne and Cudeck, 1993; Steig@®)® Steiger and
Lind, 1980) with degrees of freedom defined asrttuelel degrees of freedom; thes-
(Orlando & Thissen, 2000, 2003; Zhang & Stone, 306§°-distributed with degrees of
freedom equal to the number of valid total scornegaries adjusted for the number of
item parameters; and values of the ModificationebndSorbom, 1989) and Wald Test
(Buse, 1982) are evaluated as bejdglistributed with a single degree of freedom.
Previous research has suggested cut poingd/dff= 2 or 3 (Byrne, 1989; Carmines &
Mclver, 1981; Hu & Bentler, 1999; Marsh & Hocevaf85) and RMSEA = 0.05 or 0.06
(Hu & Bentler, 1999) while cut points for the itéih-indices have been defined
according to the critical values corresponding tweninal significance level of = 0.05.
The empirical cumulative distribution functions ameasures of sensitivity?, resulting
from estimation of the true models, however, inticdnat these indices do not strictly
adhere to the proscribed distributions and varyoming to many of the conditions
manipulated in this study. Further, many of thegasged cut points were determined
based on descriptive analysis of model fit (e.qu, & Bentler, 1999), not inferential

methods. Therefore, the ©percentiles calculated in the current study wenpleyed as
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cut points, allowing for explicit model- and item-festing in subsequent analysis of
misspecified models and items.

Summarizing the behavior of the model- and itemsfdices according to the
various simulation conditions provides an intergst@nd complex picture. Key findings
for the model- and item-fit indices according te gimulation conditions manipulated in
this study are reviewed below. Additionally, Tablel provides a quick reference
indicating the conditions for which estimated medé¢émonstrated the best fit under true
model estimation, worst fit under misspecified mogkimation, and the highest power

rates for each of the fit indices.
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Table 7.1:

Summary of Model and Item Fit Statistic BehavioguMwndel Characteristics and Test Design Specificati

Fit Number of Multi- I nter-Factor
Statistic I nter pretation Dimensions Test Length Sample Size Dimensionality Correlation Item Type Misspecification
y2df Best fit: Longer tests Interacts with
sample size: for
small samples,
lower item
discrimination; for
large samples,
higher item
discrimination
Worst fit: Larger sample Weaker Higher item
sizes correlations discrimination;
well-targeted item
difficulty
Best detection: Longer tests Larger sample Weaker
sizes correlations
RMSEA Best fit: Longer tests Larger sample
sizes
Worst fit:  Fewer dimensions Weaker Higher item
correlations discrimination;
well-targeted item
difficulty
Best detection: Longer tests Larger sample Weaker
sizes correlations
GDDM Best fit: Longer tests Larger sample Higher item
sizes discrimination;
well-targeted item
difficulty
Worst fit:  Fewer dimensions weak correlation ddmte item
discrimination;
well-targeted item
difficulty
Best detection: Longer tests Larger sample weak correlation
sizes
S+ Best fit: Shorter tests Smaller sample Weaker
sizes correlations
Worst fit:  Fewer dimensions Stronger Alternate-factoring

Best detection:

correlations

(moderate misspecification);
under-factoring
(severe misspecification)

Fewer dimensions

Larger sample
sizes

Higher item
discrimination;
well-target item
difficulty
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Fit Number of Multi- I nter-Factor

Statistic I nter pretation Dimensions Test Length Sample Size Dimensionality Correlation Item Type Misspecification
Modification Best fit:  More dimensions Smaller sample Stronger
Index sizes correlations
Worst fit:  Fewer dimensions Larger sample Weaker
sizes correlations
Best detection: Fewer dimensions  Shorter tests gdragample Weaker Under-factoring
sizes correlations (severe misspecification)
Wald Best fit: Longer tests Between-item Higher item
Test multi- discrimination;
dimensionality well-targeted item
(simple structure) difficulty
Worst fit: Smaller sample Moderate item Under-factoring
sizes discrimination; (severe misspecification)
poorly-targeted
item difficulty
Best detection:  More dimensions Weaker Moderate item Alternate-factoring
correlations discrimination; (moderate misspecification)
well-targeted item
difficulty
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Very few effects due tsimulation condition 1:number of dimensions/ere
observed, none of them for model-fit indices. Thesailts conform with that of previous
research which showed that values of $Helf and RMSEA are not sensitive to the
number of latent factors in a misspecified modagiducel & Wittman, 2005; Jackson,
2007). Looking back to the formulas for the modelkidices, it can be seen that the
number of latent factors are not directly includetth the exception of the GDDM. The
result is that any effect of the number of lateattbérs appears only indirectly through
other parameters. Values of the Modification Indiesder true model estimation are
seen to increase with number of dimensions, suipgebetter fit. The S, however,
demonstrates decreased power to detect misfittiegnsi as the number of factors
increases.

Many fit indices demonstrated sensitivity $onulation condition 2: test length
when true models were estimated. All of the moddhtlices as well as the Wald Test
statistics demonstrated improved fit for true meda$ test length increased. Hu and
Bentler (1999) and Jackson (2007) both reportedeponates for the RMSEA that
increased with test length. This effect could bicgrated as an increase in the number of
observed variables corresponds to an increasedralbyprecision when the variables are
of high discriminatory power. Values of theXS-however, increase with test length,
indicating worse fit, which also corresponds to tinelings of Zhang and Stone (2008).
One component of the B-is the joint likelihood of all possible responsatprns which
increases with every additional item. Further itigagion is necessary is required to

determine if this directly corresponds to poweesat
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An effect ofsimulation condition 3sample sizés present across many of the fit
indices. Under true model estimation, the valuehhefRMSEA and Wald Test statistics
decrease with sample size. Previous research lygested that increased sample size
results in decreased sampling variability and, dftee, improved model fit (e.g.,
Beauducel & Wittman; Hu & Bentler, 1999; Jacksof0?2). The values of the GDDM,
S+ and Modification Indices, however, increase veitmple size, denoting worsened
fit. These fit statistics fail to explicitly incogpate sample size in their calculations and
may benefit from sample size adjustment. When resfipd models are estimated,
power increases with sample size for ief, RMSEA, Sy?, and Modification Indices.
This is aligned with previous research that shotteg’/df (Marsh, Hau, & Wen, 2004)
and RMSEA (Beauducel & Wittman, 2005; Curran et2003; Fan & Sivo, 2005, 2007;
Fan, Thompson, & Wang, 1999; Sivo, Fan, Witte, &II%¢, 2006) to be modestly
sensitive to sample size and the power rates ofSthe and Modification Indices to
increase with sample size (Hutchinson, 1998; Zi&a&gone, 2008).

None of the model-fit indices demonstrated sensjtio simulation condition 4:
multidimensionalityunder true model estimation. The Wald Test stesishowever, were
shown to worsen for within-item multidimensionalityince the Wald Test is calculated
as the ratio of a factor loading to its standardrethese results suggest that within-item
multidimensionality contributes to imprecision ofarpmeter estimates. Under
misspecified model estimation, power rates caledlatccording to the GDDM are seen
to increase for complex-structure models, wheranstedemonstrate within-item
multidimensionality. Previous research by Fan awd £005, 2007) and Hu and Bentler

(1998) found that model fit according to tifédf and RMSEA fit indices worsened for
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models estimated as under-factored. With fewemedéd parameters, the remaining
parameters are increasingly subject to samplinguidity and, therefore, likely to result
in misfit.

Simulation condition 5: inter-factor correlatioalso demonstrated little effect on
model-fit indices when true models were estimat8ttonger correlations, however,
corresponded to worse fit for theySand better fit for the Modification Indices. Power
rates for they’/df, RMSEA, Modification Indices, and Wald Test tigtics were all
highest when inter-factor correlation was weak.SEheesults correspond to those found
by Ximénez (2009) who reported that RMSEA valuesrelgsed for misspecified models
when factors were moderately correlated versusroeleded.

Finally, simulation condition 6: item typghowed very little effect on the majority
of the fit indices when true models were estimatiedygh fit according to the Wald Test
statisitics improved with larger MDISC values andrgsened as MDIFF became
increasingly discrepant from the mean of the lafactor distribution. Under model
misspecification, however, effects of item type power rates appear. The GDDM
correctly rejects misspecified models at higheresatvhen items are both highly
discriminating and highly discrepant from the latefactor distribution, the $?
demonstrates the highest power when items are haggdy discriminating but well-
targeted to the latent factor distribution, and ¥iald Test statistics demonstrate power
rates that are higher for moderately-discriminativwgll-targeted items. There is some
precedent for the effect of MDISC in the literatuB2auducel and Wittman (2005) and
Jackson (2007) showed that th&df and and RMSEA demonstrated sensitivity to

indicator reliability, where higher reliabilitiegsulted in larger fit values which correctly
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indicated misspecification. Indicator reliabilitjes factor loadings, and MDISC differ as
a matter of a known transformation, therefore, éhesults are similar and applicable to
the results shown in this dissertation.

Notably missing from the above descriptions ofshiéitistic performance is the
effect of model misspecification. Degree of modesspecification, moderate or severe,
was associated with very small percentages of wegiain the model-fit statistics
indicating little to no effect. These results diffeom previous studies which showed the
RMSEA andy?/df to indicate worse fit as degree of misspecifaincreased (Fan &
Sivo, 2005, 2007; Jackson, 2007; Ximénez, 2009)dif@tion Indices and Wald Test
statistics, however, were found to be sensitivihéospecific types misfit introduced as a
result of the specific types of model misspecifmat Modification Indices demonstrated
higher power rates when items were subject to ufaltoring than when items were
misspecified according to alternate-factoring. Waést statistics were also sensitive to
the type of misspecification; power rates for itesn-fit index were highest for items that
were subject to alternate-factoring in comparisontitose misspecified according to

under-factoring.

7.2.Considerations for Future Research

The simulation design conditions in this study hegslifrom specific decisions
made by the author and, though they were madethaétintention of being generalizable
to various test designs and sample populationy, rifféeect certain limitations that could
be further examined. The number and proportionstfr&tion issues encountered in this
dissertation must also be considered. Lastly, dbidion presents additional methods for

the construction and validation of Q-matrices.
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First, the number of dimensions, test lengths, sardple sizes in this dissertation
were constrained by practical restrictions on tiamel computing resources as well as
being informed by a review of previous literatutdore extreme levels of these
conditions are present in other research (see Barngy & Homberg, 1996, for
example), which could potentially produce largerfeefs for those fit indices
demonstrating sensitivity. Similarly, the range tfe MDISC and MDIFF item
parameters selected for the six item types reflestibset of all possible discrimination
and difficulty values. These values were selectedbé representative of typical
educational assessment conditions; factor loadirgga the seminal study by Hu and
Bentler (1998) can be shown to approximate MDISCies of 0.98 to 1.33 while the
values employed by Beauducel and Wittman (2005) Jawkson (2007) correspond to
MDISC values which range 0.44 to 1.61. As describe@hapter 3, the range of MDIFF
values is also less extreme than those employdéirnmh (2011) and Zhang and Stone
(2008), which were approximately -2.0 to +2.0 abd) to +5.0, respectively. Degree and
type of model misspecification is another conditwimich could be further manipulated.
Over-factoring, the inclusion of additional paraarstin the estimating Q-matrix, was not
included in this study and is not a condition tceeqgmently appear in model
misspecification research as this type of misspmtion allows the number of potential
models to explode very quickly, becoming again d@tenaf selection on the part of the
researcher. Regarding the degree of misspecifitatle majority of RMSEA values
observed in the misspecified conditions ranged ®00.15 which imply marginal-to-

poor fit, therefore, the effects of more extremespecification could be explored. Fan
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and Sivo (2005; 2007) discuss methods by whichddgree of misspecification can be
explicitly controlled other than direct manipulatiof the Q-matrix.

Returning now to the issues encountered in themasibn of the misspecified
models. Chen, Curran, Bollen, Kirby, and PaxtonO@0report a maximum of 29% of
replicated models resulting in estimation issuean, FThompson, and Wang (1999)
reported that 3% of all replications of misspecifimodels resulted in estimation issues
for sample sizes of 200 or greater; and XiménegR0eported approximately 40% of
misspecified model replications resulting in estioraissues. While these numbers are
large, severely-misspecified models estimated feample size of 1000 with 3 weakly
correlated factors, 12 high-discrimination / modedifficulty items which followed
between-item multidimensionality in the currentseigtation required a total of 107,725
replications to achieve 250 successful replicati®ios comparison, the estimation failure
rate was 99.8% suggesting that this condition semsally unestimable. In a preliminary
study, models were estimated in this dissertatidhout requesting the output of factor
scores, resulting in a percentage of rejected aajdins which were more aligned with
the results of previous research. Upon requestiegadutput of factor scores, Mplus
reported estimated inter-factor correlations thatengreatly inflated, and greater than
1.0, which prevented subsequent estimation of festores. As a result of these findings,
the degree of misspecification was lessened toym®tewer estimation failures. Further,
the parameter recovery results demonstrate thatintiee-factor correlation is highly
sensitive to model misspecification and is poodgavered when models are severely
misspecified. These results suggest that previessarch failed to output factor scores,

therefore, sidestepping the resulting estimatisnds. Designed to produce factor scores,
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IRT software such as NOHARM (Fraser & McDonald, 8p&nd Winsteps (Linacre,
2011) may provide robust estimation options whigbic related issues of estimation
failure.

Decisions regarding both the initial selectionlod simulation conditions and the
subsequent revisions necessary due to observedatistn failures serve to limit the
generalizability of the current study. In the firsase, the specific levels of each
simulation factor or condition represent but a samypof all conditions possible. Further,
these levels and conditions represent reasonallieasible conditions under which the
replications of the current study were expecteddasuccessful. Consideration could be
given to values beyond these ranges which may beidered unreasonable but still
possible in the broader population. With regardsthe revision of the simulation
conditions as a result of the numerous estimatdares, the results of the current study
for those specific conditions may be consideredrlgveptimistic. Acknowledging the
high rate of estimation failures, it may not be gibke to generalize these results to other
studies as the current study essentially descriegglts for conditions that cannot be
successfully estimated. Having pursued successdtimation of such models and
conditions, however, the current study describexlitions where successful estimation
is likely not possible while also describing theéfpenance of model- and item-fit indices
should such models be successfully estimated.

The definition and construction of the Q-matriceshis dissertation was based on
a very narrow sample of the vast population of Qrites that could be applied in both
simulation and real data analysis. This study &ahithe Q-matrix both in the number of

attributes and the number of associations permittedveen those attributes and the
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observed variables. Q-matrix definition is nearlgbaunded, limited only by the

imagination of researchers or constraints appliednd the estimation process. Rupp,
Templin, and Henson (2010) provide a good overview the construction and

interpretation of Q-matrices. Further, the Q-masieemployed in this study simply
represent the associations between observed \esiabl test items and unobserved
variables, such as latent constructs or abilifléss method of Q-matric construction is
said to be simple because it requires only consgiaer of the direct relationships

between items and latent variables; the methodgisostic to strategies or methods
employed by the subject or examinee in demonsgahe types of behavior necessary
for success.

The Attribute Hierarchy MethodAHM; Leighton, Gierl, & Hunka, 2004) is an
alternate approach to Q-matrix specification thas been proposed which takes into
account the strategies necessary for successflibrpemce and incorporates such
dependencies in the final Q-matrix. In AHM, animitassumption is made that the latent
variables are considered to be hierarchically edlatr structured reflecting empirical
and/or theoretical considerations. Next, a sefaesatrices (i.e., adjacency, reachability,
incidence, and reduced incidence) are developadpesent performance profiles (see
Tatsuoka, 1983, 1995, 1996). THe x k adjacency matrixindicates the direct
relationships posited between the latent variatitesk x k reachability matrixindicates
the direct and indirect relationships between latariables; thek x (2‘-1) incidence
matrix contains a single instance or item for each coatlmn of attributes; and, lastly,
thereduced incidence matrbetains only those columns from the incidence mathich

are logically permissible given the reachabilitytrixa This final matrix can be used
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during the test development process to specify tigmas and demands to be assessed or
transposed columns from the reduced incidence xneduild be used to construct a Q-
matrix to be applied to an existing assessmeniowolg this alternate method of Q-
matrix construction accounts for anticipated ordtipesized strategies and relationships
between latent variables, not just the relatiorstoptween items and latent variables.
This process is similar to the specification ofriltite hierarchies in parametric
diagnostic measurement models, which generallyeseyweduce the complexity of the
structural component of these models (see Ruppplien& Henson, 2010; chapter 10).

Regardless of the method used in constructing thma@ix, Raykov and
Marcoulides (2001) and Bechger, Verstralen, andh#lst (2002) showed that it is
possible for there to exist any number of equivialmndels or Q-matrices. Therefore,
researchers are encouraged to consider evidenomdeyhat is offered by model- and
item-fit statistics in selecting a valid model estted from real data. When estimating
models applied to real data, the impact of the rg@kemodels on certain outcomes can
provide additional evidence for the validity of theodel. For example, the real data
analysis example provided in this dissertation udedd an assessment designed to
measure student-level math ability; therefore, omes estimated by this model should
exhibit a reasonable degree of correspondencén&r oteasures of math ability.

Further, if scores for the latent dimensions wesBneted and interpreted, it
could be expected that these scores would be assdcwith the results of similar
measures (e.g., processing speed, general intetkgeValidity studies can be designed
to evaluate the impact of the estimated model @h fwncurrent or criterion measures

related to the initial assessment and/or latentedsions. The validity of the selected

191



model, in comparison to any number of equivalendel® might also be examined
through sensitivity to intervention activities ajgpol to affect change in the latent
dimensions. Should these dimensions truly represskitls or attributes then activities
targeted at specifically affecting change shouldsken to influence scores over the
course of longitudinal observation. In additional statistical measures of model- and
item-fit, well-designed studies that seek to previdmpirical evidence about the
nomothetic span of the proposed latent dimensiomgge important secondary evidence

for model validity.

7.3.Conclusion

The theoretical cut points for each of the modetl aem-fit indices were shown
in this dissertation to produce inflated Type-loerrates; moreover, it was shown how
suggested descriptive cut-off values for 4fef and RMSEA statistic cannot be correctly
used as cut-offs for hypothesis tests to contrmbminal Type-I error rate. The results of
this dissertation provide evidence for the use wifpoints that account for the various
sensitivities demonstrated by these fit indices.ilgva simulation study such as the one
presented here is beyond the scope of most researalishing to evaluate model fit, a
boostrap approach as suggested by Tay and Dragtfiil2)(may provide a reasonable
option.

For the majority of conditions considered in thisdy, the model-fit indices
demonstrated high power rates in correctly rejgctmsspecified models. As a result of
this, a two-stage approach to Q-matrix evaluatien presented wherein global
misspecification is first evaluated via model-fitdices then local misspecification is

explored by examining values of the item-fit indicdhe results of such an approach
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yields increased power rates for the item fit iedicsuggesting that joint evaluation of
model and item fit is likely to lead to appropriatrisions of misspecified Q-matrices.
Increased consideration of item fit information atigrnate approaches to the evaluation
of model fit have been suggested by others sudtease, Hilbert, Draxler, Ziegler, and
Buhner (2011) and Saris, Satorra, and van der {2€1d9).

The amount of information presented in this disgenh can be distilled into two
salient points: (1) fit index values under corngedpecified models vary systematically
across test design conditions, including the gelyesapected effects of sample size and
test length but also due to differences in itenmratpeg characteristics; and (2) though the
power of item-fit indices to identify misspecifiatkms is generally poor-to-moderate
when design-appropriate empirical cut points aedughe power of model-fit indices is
high and can be used to increase the likelihoodexitifying Q-matrix misspecification
when the two types of fit indices are jointly agoliduring model evaluation. Statistical
power is demonstrated throughout this dissertatsn the application of design-
appropriate empirical cut points in rejecting megped models and items. However, the
results of this dissertation also present powereng@nerally, providing information on
the most appropriate application of a wide varietyfit indices for the purpose of
evaluating and refining Q-matrices, or measuremaodel structures, whether the
models are estimated according to confirmatoryofaahalysis or multidimensional item

response theory.
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Appendix A

Q Matrices
Table A.1
Q-Matrix for 2 Latent Factors and 12 Items accoglio Within-ltem Multidimensionality
True Mod. Sev. MDIFF MDISC
ltem Q1 Q2 Q3 01 Q2 Q3 01 Q2 Q3 H M L H M

1 1 1 1 1 1 1 -2 -2 -2 1.4 0.9
2 1 1 1 1 0 1 -0.25 -0.75 -1 14 0.9
3 1 0 1 0 1 0 -0.1 -0.25 -0.75 1.6 11
4 1 0 1 0 1 0 1 -0.1 -0.5 1.6 11
5 0 1 0 1 0 1 1.13 0.1 -0.25 14 0.9
6 0 1 1 0 1 0 1.25 0.5 -0.1 1.4 0.9
7 1 0 0 1 0 1 1.38 1 0.1 14 0.9
8 1 0 1 0 1 0 15 1.2 0.25 1.4 0.9
9 0 1 0 1 0 1 1.63 14 0.5 1.6 1.1
10 0 1 0 1 0 1 1.75 1.6 0.75 1.6 11
11 1 1 1 1 1 0 1.88 1.8 1 14 0.9
12 1 1 1 1 1 1 2 2 2 14 0.9
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Table A.2

Q-Matrix for 2 Latent Factors and 12 Iltems accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 0 1 0 1 0 -2 -2 -2 1.4 0.9
2 1 0 1 0 0 1 -0.25 -0.75 -1 1.4 0.9
3 1 0 1 0 1 0 -0.1 -0.25 -0.75 1.6 1.1
4 1 0 1 0 1 0 1 -0.1 -0.5 1.6 1.1
5 0 1 0 1 0 1 1.13 0.1 -0.25 1.4 0.9
6 0 1 1 0 1 0 1.25 0.5 -0.1 1.4 0.9
7 1 0 0 1 0 1 1.38 1 0.1 1.4 0.9
8 1 0 1 0 1 0 1.5 1.2 0.25 1.4 0.9
9 0 1 0 1 0 1 1.63 1.4 0.5 1.6 1.1
10 0 1 0 1 0 1 1.75 1.6 0.75 1.6 1.1
11 0 1 0 1 1 0 1.88 1.8 1 1.4 0.9
12 0 1 0 1 0 1 2 2 2 1.4 0.9
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Table A.3

Q-Matrix for 2 Latent Factors and 24 Iltems accoglio Within-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 1 1 1 1 1 -2 -2 -2 1.4 0.9
2 1 1 1 1 1 1 -0.75 -1.67 -1.67 1.4 0.9
3 1 1 1 1 0 1 -0.25 -0.75 -1.33 1.4 0.9
4 1 1 1 1 0 1 0.25 -0.667 -1 1.4 0.9
5 1 0 1 0 1 0 0.5 -0.25 -0.75 1.6 1.1
6 1 0 1 0 1 0 1 -0.179 -0.667 1.6 1.1
7 1 0 1 0 1 0 1.056 -0.107 -0.583 1.6 1.1
8 1 0 1 0 1 0 1.111 -0.036 -0.5 1.6 1.1
9 0 1 0 1 0 1 1.167 0.036 -0.25 1.4 0.9
10 0 1 0 1 0 1 1.222 0.107 -0.179 1.4 0.9
11 0 1 1 0 1 0 1.278 0.5 -0.107 1.4 0.9
12 0 1 1 0 1 0 1.333 0.583 -0.036 1.4 0.9
13 1 0 0 1 0 1 1.389 1 0.036 1.4 0.9
14 1 0 0 1 0 1 1.444 1 0.107 1.4 0.9
15 1 0 1 0 1 0 1.5 1 0.179 1.4 0.9
16 1 0 1 0 1 0 1.556 1 0.25 1.4 0.9
17 0 1 0 1 0 1 1.611 1 0.5 1.6 1.1
18 0 1 0 1 0 1 1.667 1.143 0.583 1.6 1.1
19 0 1 0 1 0 1 1.722 1.286 0.667 1.6 1.1
20 0 1 0 1 0 1 1.778 1.429 0.75 1.6 1.1
21 1 1 1 1 1 0 1.833 1.571 1 1.4 0.9
22 1 1 1 1 1 0 1.889 1.714 1.333 1.4 0.9
23 1 1 1 1 1 1 1.944 1.857 1.667 1.4 0.9
24 1 1 1 1 1 1 2 2 2 1.4 0.9
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Table A.4
Q-Matrix for 2 Latent Factors and 24 Iltems accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 0 1 0 1 0 -2 -2 -2 1.4 0.9
2 1 0 1 0 1 0 -0.75 -1.67 -1.67 1.4 0.9
3 1 0 1 0 0 1 -0.25 -0.75 -1.33 1.4 0.9
4 1 0 1 0 0 1 0.25 -0.667 -1 1.4 0.9
5 1 0 1 0 1 0 0.5 -0.25 -0.75 1.6 1.1
6 1 0 1 0 1 0 1 -0.179 -0.667 1.6 1.1
7 1 0 1 0 1 0 1.056 -0.107 -0.583 1.6 1.1
8 1 0 1 0 1 0 1.111 -0.036 -0.5 1.6 1.1
9 0 1 0 1 0 1 1.167 0.036 -0.25 1.4 0.9
10 0 1 0 1 0 1 1.222 0.107 -0.179 1.4 0.9
11 0 1 1 0 1 0 1.278 0.5 -0.107 1.4 0.9
12 0 1 1 0 1 0 1.333 0.583 -0.036 1.4 0.9
13 1 0 0 1 0 1 1.389 1 0.036 1.4 0.9
14 1 0 0 1 0 1 1.444 1 0.107 1.4 0.9
15 1 0 1 0 1 0 1.5 1 0.179 1.4 0.9
16 1 0 1 0 1 0 1.556 1 0.25 1.4 0.9
17 0 1 0 1 0 1 1.611 1 0.5 1.6 1.1
18 0 1 0 1 0 1 1.667 1.143 0.583 1.6 1.1
19 0 1 0 1 0 1 1.722 1.286 0.667 1.6 1.1
20 0 1 0 1 0 1 1.778 1.429 0.75 1.6 1.1
21 0 1 0 1 1 0 1.833 1.571 1 1.4 0.9
22 0 1 0 1 1 0 1.889 1.714 1.333 1.4 0.9
23 0 1 0 1 0 1 1.944 1.857 1.667 1.4 0.9
24 0 1 0 1 0 1 2 2 2 1.4 0.9
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Table A.5

Q-Matrix for 2 Latent Factors and 36 Items accoglio Within-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 1 1 1 1 1 -2 -2 -2 1.4 0.9
2 1 1 1 1 1 1 -0.75 -1.8 -1.8 1.4 0.9
3 1 1 1 1 1 1 -0.25 -1.6 -1.6 1.4 0.9
4 1 1 1 1 0 1 -0.2 -0.75 -1.4 1.4 0.9
5 1 1 1 1 0 1 -0.15 -0.7 -1.2 1.4 0.9
6 1 1 1 1 0 1 -0.1 -0.65 -1 1.4 0.9
7 1 0 1 0 1 0 -0.05 -0.25 -0.75 1.6 1.1
8 1 0 1 0 1 0 -0.01 -0.2 -0.7 1.6 1.1
9 1 0 1 0 1 0 0.5 -0.15 -0.65 1.6 1.1
10 1 0 1 0 1 0 1 -0.1 -0.6 1.6 1.1
11 1 0 1 0 1 0 1.038 -0.05 -0.55 1.6 1.1
12 1 0 1 0 1 0 1.077 -0.01 -0.5 1.6 1.1
13 0 1 0 1 0 1 1.115 0.01 -0.25 1.4 0.9
14 0 1 0 1 0 1 1.154 0.05 -0.2 1.4 0.9
15 0 1 0 1 0 1 1.192 0.1 -0.15 1.4 0.9
16 0 1 1 0 1 0 1.231 0.5 -0.1 1.4 0.9
17 0 1 1 0 1 0 1.269 0.625 -0.05 1.4 0.9
18 0 1 1 0 1 0 1.308 0.75 -0.01 1.4 0.9
19 1 0 0 1 0 1 1.346 1 0.01 1.4 0.9
20 1 0 0 1 0 1 1.385 1.059 0.05 1.4 0.9
21 1 0 0 1 0 1 1.423 1.118 0.1 1.4 0.9
22 1 0 1 0 1 0 1.462 1.176 0.15 1.4 0.9
23 1 0 1 0 1 0 1.5 1.235 0.2 1.4 0.9
24 1 0 1 0 1 0 1.538 1.294 0.25 1.4 0.9
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True Mod. Sev. MDIFF MDISC

[tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H

25 0 1 0 1 0 1 1.577 1.353 0.5 1.6 1.1
26 0 1 0 1 0 1 1.615 1.412 0.55 1.6 1.1
27 0 1 0 1 0 1 1.654 1.471 0.6 1.6 1.1
28 0 1 0 1 0 1 1.692 1.529 0.65 1.6 1.1
29 0 1 0 1 0 1 1.731 1.588 0.7 1.6 1.1
30 0 1 0 1 0 1 1.769 1.647 0.75 1.6 1.1
31 1 1 1 1 1 0 1.808 1.706 1 1.4 0.9
32 1 1 1 1 1 0 1.846 1.765 1.2 1.4 0.9
33 1 1 1 1 1 0 1.885 1.824 1.4 1.4 0.9
34 1 1 1 1 1 1 1.923 1.882 1.6 1.4 0.9
35 1 1 1 1 1 1 1.962 1.941 1.8 1.4 0.9
36 1 1 1 1 1 1 2 2 2 1.4 0.9
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Table A.6
Q-Matrix for 2 Latent Factors and 36 Items accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
[tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 0 1 0 1 0 -2 -2 -2 1.4 0.9
2 1 0 1 0 1 0 -0.75 -1.8 -1.8 1.4 0.9
3 1 0 1 0 1 0 -0.25 -1.6 -1.6 1.4 0.9
4 1 0 1 0 0 1 -0.2 -0.75 -1.4 1.4 0.9
5 1 0 1 0 0 1 -0.15 -0.7 -1.2 1.4 0.9
6 1 0 1 0 0 1 -0.1 -0.65 -1 1.4 0.9
7 1 0 1 0 1 0 -0.05 -0.25 -0.75 1.6 1.1
8 1 0 1 0 1 0 -0.01 -0.2 -0.7 1.6 1.1
9 1 0 1 0 1 0 0.5 -0.15 -0.65 1.6 1.1
10 1 0 1 0 1 0 1 -0.1 -0.6 1.6 1.1
11 1 0 1 0 1 0 1.038 -0.05 -0.55 1.6 1.1
12 1 0 1 0 1 0 1.077 -0.01 -0.5 1.6 1.1
13 0 1 0 1 0 1 1.115 0.01 -0.25 1.4 0.9
14 0 1 0 1 0 1 1.154 0.05 -0.2 1.4 0.9
15 0 1 0 1 0 1 1.192 0.1 -0.15 1.4 0.9
16 0 1 1 0 1 0 1.231 0.5 -0.1 1.4 0.9
17 0 1 1 0 1 0 1.269 0.625 -0.05 1.4 0.9
18 0 1 1 0 1 0 1.308 0.75 -0.01 1.4 0.9
19 1 0 0 1 0 1 1.346 1 0.01 1.4 0.9
20 1 0 0 1 0 1 1.385 1.059 0.05 1.4 0.9
21 1 0 0 1 0 1 1.423 1.118 0.1 1.4 0.9
22 1 0 1 0 1 0 1.462 1.176 0.15 1.4 0.9
23 1 0 1 0 1 0 1.5 1.235 0.2 1.4 0.9
24 1 0 1 0 1 0 1.538 1.294 0.25 1.4 0.9
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True Mod. Sev. MDIFF MDISC

[tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H

25 0 1 0 1 0 1 1.577 1.353 0.5 1.6 1.1
26 0 1 0 1 0 1 1.615 1.412 0.55 1.6 1.1
27 0 1 0 1 0 1 1.654 1.471 0.6 1.6 1.1
28 0 1 0 1 0 1 1.692 1.529 0.65 1.6 1.1
29 0 1 0 1 0 1 1.731 1.588 0.7 1.6 1.1
30 0 1 0 1 0 1 1.769 1.647 0.75 1.6 1.1
31 0 1 0 1 1 0 1.808 1.706 1 1.4 0.9
32 0 1 0 1 1 0 1.846 1.765 1.2 1.4 0.9
33 0 1 0 1 1 0 1.885 1.824 1.4 1.4 0.9
34 0 1 0 1 0 1 1.923 1.882 1.6 1.4 0.9
35 0 1 0 1 0 1 1.962 1.941 1.8 1.4 0.9
36 0 1 0 1 0 1 2 2 2 1.4 0.9
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Table A.7

Q-Matrix for 3 Latent Factors and 12 Items accoglio Within-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
Item Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L
1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9
2 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1 1.5 1
3 0 1 0 0 1 0 0 1 0 -0.1 -0.25 -0.75 1.6 1.1
4 0 0 1 0 0 1 0 0 1 1 -0.1 -0.5 1.4 0.9
5 1 0 0 1 0 0 1 0 0 1.13 0.1 -0.25 1.5 1
6 1 0 1 1 0 1 1 0 1 1.25 0.5 -0.1 1.6 1.1
7 0 1 0 0 1 0 0 1 0 1.38 1 0.1 1.6 1.1
8 0 0 1 0 0 1 0 0 1 1.5 1.2 0.25 1.5 1
9 1 0 0 1 0 0 1 0 0 1.63 1.4 0.5 1.4 0.9
10 0 1 0 0 1 0 0 1 0 1.75 1.6 0.75 1.6 1.1
11 0 0 1 1 0 0 1 0 0 1.88 1.8 1 1.5 1
12 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9
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Table A.8
Q-Matrix for 3 Latent Factors and 12 Iltems accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9
2 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1 1.5 1
3 0 1 0 0 1 0 0 1 0 -0.1 -0.25 -0.75 1.6 1.1
4 0 0 1 0 0 1 0 0 1 1 -0.1 -0.5 1.4 0.9
5 1 0 0 1 0 0 1 0 0 1.13 0.1 -0.25 1.5 1
6 0 1 0 0 1 0 0 1 0 1.25 0.5 -0.1 1.6 1.1
7 0 1 0 0 1 0 0 1 0 1.38 1 0.1 1.6 1.1
8 0 0 1 0 0 1 0 0 1 1.5 1.2 0.25 1.5 1
9 1 0 0 1 0 0 1 0 0 1.63 1.4 0.5 1.4 0.9
10 0 1 0 0 1 0 0 1 0 1.75 1.6 0.75 1.6 1.1
11 0 0 1 1 0 0 1 0 0 1.88 1.8 1 1.5 1
12 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9
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Table A.9

Q-Matrix for 3 Latent Factors and 24 Iltems accoglio Within-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 01 Q2 Q3 Q1 Q2 Q3 H M L H
1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9
2 1 1 0 1 1 0 1 0 0 -0.75 -1.67 -1.67 1.4 0.9
3 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1.33 1.5 1
4 1 0 0 0 0 1 0 0 1 0.25 -0.667 -1 1.5 1
5 0 1 0 0 1 0 0 1 0 0.5 -0.25 -0.75 1.6 1.1
6 0 1 0 0 1 0 0 1 0 1 -0.179 -0.667 1.6 1.1
7 0 0 1 0 0 1 0 0 1 1.056 -0.107 -0.583 1.4 0.9
8 0 0 1 0 0 1 0 0 1 1.111 -0.036 -0.5 1.4 0.9
9 1 0 0 1 0 0 1 0 0 1.167 0.036 -0.25 1.5 1
10 1 0 0 1 0 0 1 0 0 1.222 0.107 -0.179 1.5 1
11 1 0 1 1 0 1 1 0 1 1.278 0.5 -0.107 1.6 1.1
12 1 0 1 1 0 1 1 0 1 1.333 0.583 -0.036 1.6 1.1
13 0 1 0 0 1 0 0 1 0 1.389 1 0.036 1.6 1.1
14 0 1 0 0 1 0 0 1 0 1.444 1 0.107 1.6 1.1
15 0 0 1 0 0 1 0 0 1 1.5 1 0.179 1.5 1
16 0 0 1 0 0 1 0 0 1 1.556 1 0.25 1.5 1
17 1 0 0 1 0 0 1 0 0 1.611 1 0.5 1.4 0.9
18 1 0 0 1 0 0 1 0 0 1.667 1.143 0.583 1.4 0.9
19 0 1 0 0 1 0 0 1 0 1.722 1.286 0.667 1.6 1.1
20 0 1 0 0 1 0 0 1 0 1.778 1.429 0.75 1.6 1.1
21 0 0 1 1 0 0 1 0 0 1.833 1.571 1 1.5 1
22 0 0 1 1 0 0 1 0 0 1.889 1.714 1.333 1.5 1
23 0 1 1 0 1 1 0 0 1 1.944 1.857 1.667 1.4 0.9
24 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9
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Table A.10
Q-Matrix for 3 Latent Factors and 24 Iltems accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 01 Q2 Q3 Q1 Q2 Q3 H M L H
1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9
2 0 0 1 0 0 1 1 0 0 -0.75 -1.67 -1.67 1.4 0.9
3 1 0 0 0 0 1 0 0 1 -0.25 -0.75 -1.33 1.5 1
4 1 0 0 0 0 1 0 0 1 0.25 -0.667 -1 1.5 1
5 0 1 0 0 1 0 0 1 0 0.5 -0.25 -0.75 1.6 1.1
6 0 1 0 0 1 0 0 1 0 1 -0.179 -0.667 1.6 1.1
7 0 0 1 0 0 1 0 0 1 1.056 -0.107 -0.583 1.4 0.9
8 0 0 1 0 0 1 0 0 1 1.111 -0.036 -0.5 1.4 0.9
9 1 0 0 1 0 0 1 0 0 1.167 0.036 -0.25 1.5 1
10 1 0 0 1 0 0 1 0 0 1.222 0.107 -0.179 1.5 1
11 0 1 0 0 1 0 0 1 0 1.278 0.5 -0.107 1.6 1.1
12 0 1 0 0 1 0 0 1 0 1.333 0.583 -0.036 1.6 1.1
13 0 1 0 0 1 0 0 1 0 1.389 1 0.036 1.6 1.1
14 0 1 0 0 1 0 0 1 0 1.444 1 0.107 1.6 1.1
15 0 0 1 0 0 1 0 0 1 1.5 1 0.179 1.5 1
16 0 0 1 0 0 1 0 0 1 1.556 1 0.25 1.5 1
17 1 0 0 1 0 0 1 0 0 1.611 1 0.5 1.4 0.9
18 1 0 0 1 0 0 1 0 0 1.667 1.143 0.583 1.4 0.9
19 0 1 0 0 1 0 0 1 0 1.722 1.286 0.667 1.6 1.1
20 0 1 0 0 1 0 0 1 0 1.778 1.429 0.75 1.6 1.1
21 0 0 1 1 0 0 1 0 0 1.833 1.571 1 1.5 1
22 0 0 1 1 0 0 1 0 0 1.889 1.714 1.333 1.5 1
23 1 0 0 1 0 0 0 0 1 1.944 1.857 1.667 1.4 0.9
24 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9
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Table A.11
Q-Matrix for 3 Latent Factors and 36 Items accoglio Within-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
ltem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H M
1 1 1 0 1 1 0 1 0 0 -2 -2 -2 1.4 0.9
2 1 1 0 1 1 0 1 0 0 -0.75 -1.8 -1.8 1.4 0.9
3 1 1 0 1 1 0 1 0 0 -0.25 -1.6 -1.6 1.4 0.9
4 1 0 0 0 0 1 0 0 1 -0.2 -0.75 -1.4 1.5 1
5 1 0 0 0 0 1 0 0 1 -0.15 -0.7 -1.2 1.5 1
6 1 0 0 0 0 1 0 0 1 -0.1 -0.65 -1 1.5 1
7 0 1 0 0 1 0 0 1 0 -0.05 -0.25 -0.75 1.6 1.1
8 0 1 0 0 1 0 0 1 0 -0.01 -0.2 -0.7 1.6 1.1
9 0 1 0 0 1 0 0 1 0 0.5 -0.15 -0.65 1.6 1.1
10 0 0 1 0 0 1 0 0 1 1 -0.1 -0.6 1.4 0.9
11 0 0 1 0 0 1 0 0 1 1.038 -0.05 -0.55 1.4 0.9
12 0 0 1 0 0 1 0 0 1 1.077 -0.01 -0.5 1.4 0.9
13 1 0 0 1 0 0 1 0 0 1.115 0.01 -0.25 15 1
14 1 0 0 1 0 0 1 0 0 1.154 0.05 -0.2 1.5 1
15 1 0 0 1 0 0 1 0 0 1.192 0.1 -0.15 1.5 1
16 1 0 1 1 0 1 1 0 1 1.231 0.5 -0.1 1.6 1.1
17 1 0 1 1 0 1 1 0 1 1.269 0.625 -0.05 1.6 1.1
18 1 0 1 1 0 1 1 0 1 1.308 0.75 -0.01 1.6 1.1
19 0 1 0 0 1 0 0 1 0 1.346 1 0.01 1.6 1.1
20 0 1 0 0 1 0 0 1 0 1.385 1.059 0.05 1.6 1.1
21 0 1 0 0 1 0 0 1 0 1.423 1.118 0.1 1.6 1.1
22 0 0 1 0 0 1 0 0 1 1.462 1.176 0.15 1.5 1
23 0 0 1 0 0 1 0 0 1 1.5 1.235 0.2 1.5 1
24 0 0 1 0 0 1 0 0 1 1.538 1.294 0.25 1.5 1
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True Mod. Sev. MDIFF MDISC

ltem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H

25 1 0 0 1 0 0 1 0 0 1.577 1.353 0.5 1.4 0.9
26 1 0 0 1 0 0 1 0 0 1.615 1.412 0.55 1.4 0.9
27 1 0 0 1 0 1 0 0 1.654 1.471 0.6 1.4 0.9

28 0 1 0 0 1 0 0 1 0 1.692 1.529 0.65 1.6 1.1
29 0 1 0 0 1 0 0 1 0 1.731 1.588 0.7 1.6 1.1
30 0 1 0 0 1 0 0 1 0 1.769 1.647 0.75 1.6 1.1
31 0 0 1 1 0 0 1 0 0 1.808 1.706 1 1.5 1

32 0 0 1 1 0 0 1 0 0 1.846 1.765 1.2 1.5 1

33 0 0 1 1 0 0 1 0 0 1.885 1.824 1.4 15 1

34 0 1 1 0 1 1 0 0 1 1.923 1.882 1.6 1.4 0.9
35 0 1 1 0 1 1 0 0 1 1.962 1.941 1.8 1.4 0.9
36 0 1 1 0 1 1 0 0 1 2 2 2 1.4 0.9
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Table A.12
Q-Matrix for 3 Latent Factors and 36 Items accoglio Between-ltem Multidimensionality

True Mod. Sev. MDIFF MDISC
tem Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 H M L H
1 0 0 1 0 0 1 1 0 0 -2 -2 -2 1.4 0.9
2 0 0 1 0 0 1 1 0 0 -0.75 -1.8 -1.8 1.4 0.9
3 0 0 1 0 0 1 1 0 0 -0.25 -1.6 -1.6 1.4 0.9
4 1 0 0 0 0 1 0 0 1 -0.2 -0.75 -1.4 1.5 1
5 1 0 0 0 0 1 0 0 1 -0.15 -0.7 -1.2 1.5 1
6 1 0 0 0 0 1 0 0 1 -0.1 -0.65 -1 1.5 1
7 0 1 0 0 1 0 0 1 0 -0.05 -0.25 -0.75 1.6 1.1
8 0 1 0 0 1 0 0 1 0 -0.01 -0.2 -0.7 1.6 1.1
9 0 1 0 0 1 0 0 1 0 0.5 -0.15 -0.65 1.6 1.1
10 0 0 1 0 0 1 0 0 1 1 -0.1 -0.6 1.4 0.9
11 0 0 1 0 0 1 0 0 1 1.038 -0.05 -0.55 1.4 0.9
12 0 0 1 0 0 1 0 0 1 1.077 -0.01 -0.5 1.4 0.9
13 1 0 0 1 0 0 1 0 0 1.115 0.01 -0.25 1.5 1
14 1 0 0 1 0 0 1 0 0 1.154 0.05 -0.2 1.5 1
15 1 0 0 1 0 1 0 0 1.192 0.1 -0.15 1.5 1
16 0 1 0 0 1 0 0 1 0 1.231 0.5 -0.1 1.6 1.1
17 0 1 0 0 1 0 0 1 0 1.269 0.625 -0.05 1.6 1.1
18 0 1 0 0 1 0 0 1 0 1.308 0.75 -0.01 1.6 1.1
19 0 1 0 0 1 0 0 1 0 1.346 1 0.01 1.6 1.1
20 0 1 0 0 1 0 0 1 0 1.385 1.059 0.05 1.6 1.1
21 0 1 0 0 1 0 0 1 0 1.423 1.118 0.1 1.6 1.1
22 0 0 1 0 0 1 0 0 1 1.462 1.176 0.15 1.5 1
23 0 0 1 0 0 1 0 0 1 1.5 1.235 0.2 1.5 1
24 0 0 1 0 0 1 0 0 1 1.538 1.294 0.25 1.5 1
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True Mod. Sev. MDIFF MDISC

[tem Q1 Q2 Q3 01 Q2 Q3 01 Q2 Q3 H M H

25 1 0 0 1 0 0 1 0 0 1.577 1.353 0.5 1.4 0.9
26 1 0 0 1 0 0 1 0 0 1.615 1.412 0.55 1.4 0.9
27 1 0 0 1 0 0 1 0 0 1.654 1.471 0.6 1.4 0.9
28 0 1 0 0 1 0 0 1 0 1.692 1.529 0.65 1.6 1.1
29 0 1 0 0 1 0 0 1 0 1.731 1.588 0.7 1.6 1.1
30 0 1 0 0 1 0 0 1 0 1.769 1.647 0.75 1.6 1.1
31 0 0 1 1 0 0 1 0 0 1.808 1.706 1 1.5 1

32 0 0 1 1 0 0 1 0 0 1.846 1.765 1.2 1.5 1

33 0 0 1 1 0 0 1 0 0 1.885 1.824 1.4 1.5 1

34 1 0 0 1 0 0 0 0 1 1.923 1.882 1.6 1.4 0.9
35 1 0 0 1 0 0 0 0 1 1.962 1.941 1.8 1.4 0.9
36 1 0 0 1 0 0 0 0 1 2 2 2 1.4 0.9
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Table B.1

Key Descriptive Statistics Under True M odel Estimation

Appendix B

Key Descriptive Statistics for th@/df Model-Fit Index Under True Model Estimation

Test Sample Item
Length Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
12 250 HH 0.655 0.964 1.086 1.060 1.173 1307 1404 1.661 3.38180 1.570 7.425
12 250 HL 0.556 0.913 1.031 1.007 1121 1249 1339 1580 3.20376 1.545 8.036
12 250 HM 0.644 0.948 1.057 1.033 1.137 1261 1.347 1572 3.33467 1.769 10.020
12 250 MH 0.536 0.857 0.968 0.954 1.062 1176 1.245 1.393 1.69356 0.554 0.520
12 250 ML 0.453 0.873 0.995 0.981 1.102 1.223 1301 1466 2.08274 0.518 0.635
12 250 MM 0.464 0.861 0.977 0.965 1.077 1195 1270 1.421 1.82664 0.523 0.530
12 1000 HH 0.533 0.858 0.953 0.939 1.033 1.133 1.196 1.342 1.7438 0.675 1.081
12 1000 HL 0.467 0.838 0.954 0.936 1.051 1170 1.251 1.447 1.8%867 0.720 1.101
12 1000 HM 0.528 0.853 0.951 0.937 1.033 1.138 1.213 1.372 1.81245 0.698 1.147
12 1000 MH 0.450 0.844 0.974 0.960 1.091 1210 1.288 1463 1.86182 0.474 0.416
12 1000 ML 0.426 0.863 1.000 0.986 1.118 1.254 1.342 1512 2.04394 0.514 0.573
12 1000 MM 0.381 0.851 0.984 0.971 1.101 1231 1313 1492 1.91188 0.463 0.404
24 250 HH 0.876 0.987 1.026 1.020 1.057 1.097 1.124 1.191 1.38856 0.802 1.479
24 250 HL 0.837 0.959 0.996 0.990 1.026 1.067 1.094 1.156 1.50855 0.833 2.231
24 250 HM 0.848 0.969 1.005 0.999 1.035 1.073 1.101 1.161 1.40853 0.960 2.875
24 250 MH 0.826 0.963 1.003 0.999 1.038 1.077 1.101 1.151 1.28857 0.353 0.269
24 250 ML 0.797 0.962 1.006 1.003 1.046 1.089 1.117 1.172 1.30964 0.328 0.274
24 250 MM 0.809 0.957 0.999 0.995 1.038 1.079 1.104 1.159 1.22961 0.349 0.209
24 1000 HH 0.795 0.938 0.978 0.973 1.012 1.055 1.082 1.137 1.30P58 0.550 0.707
24 1000 HL 0.750 0.929 0.976 0.971 1.017 1064 1.096 1.160 1.33967 0.523 0.672
24 1000 HM 0.769 0.932 0.973 0.968 1.007 1.051 1.080 1.141 1.38460 0.587 1.053
24 1000 MH 0.741 0.943 0.996 0.992 1.045 1.095 1.126 1.194 1.35976 0.303 0.249
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Test Sample Item
Length Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt

24 1000 ML 0.746 0.950 1.006 1.003 1.058 1.109 1.143 1.211 1.40080 0.252 0.178
24 1000 MM 0.733 0.947 1.001 0.998 1.052 1.105 1.136 1.198 1.30979 0.239 0.165

36 250 HH 0.916 0.987 1.008 1.004 1.025 1.047 1.060 1.090 1.22029 0.740 1.235
36 250 HL 0.912 0.975 0.995 0.992 1.012 1.034 1.049 1.083 1.22630 0.819 1.721
36 250 HM 0.929 0.985 1.004 1.001 1.019 1.040 1.054 1.084 1.23P28 1.038 3.070
36 250 MH 0.905 0.989 1.010 1.008 1.029 1.049 1.063 1.088 1.18D30 0.322 0.304
36 250 ML 0.892 0.984 1.008 1.006 1.030 1.052 1.067 1.095 1.10834 0.290 0.218
36 250 MM 0.901 0.978 0.999 0.997 1.019 1.040 1.054 1.083 1.13631 0.420 0.353

36 1000 HH 0.873 0.963 0.988 0.985 1.010 1.036 1.053 1.089 1.10P37 0.539 0.767
36 1000 HL 0.862 0.956 0.982 0.979 1.005 1.033 1.051 1.089 1.21039 0.562 0.938
36 1000 HM 0.874 0.960 0.979 0.977 099 1.016 1.033 1.068 1.1@P30 0.674 1.516
36 1000 MH 0.862 0.971 1.002 1.001 1.030 1.059 1.077 1110 1.1@0D44 0.216 0.061
36 1000 ML 0.816 0.971 1.004 1.003 1.036 1.066 1.085 1.118 1.24848 0.129 0.011
36 1000 MM 0.840 0.968 0.999 0.998 1.029 1.058 1.078 1.114 1.20046 0.239 0.141
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Table B.2

Key Descriptive Statistics for the RMSEA Modelhritex Under True Model Estimation

Test Sample Item

Length Size Multi. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
12 250 B 0.000 0.000 0.013 0.009 0.024 0.033 0.038 0.049 0.09814 0.800 -0.141
12 250 w  0.000 0.000 0.010 0.000 0.019 0.028 0.034 0.042 0.07612 0.985 -0.136
12 1000 B 0.000 0.000 0.004 0.000 0.009 0.014 0.017 0.021 0.03R06 1.120 0.078
12 1000 w  0.000 0.000 0.004 0.000 0.008 0.013 0.016 0.021 0.03R06 1.387 0.864
24 250 B 0.000 0.000 0.008 0.007 0.015 0.019 0.022 0.027 0.02808 0.560 -0.846
24 250 w  0.000 0.000 0.005 0.000 0.0112 0.016 0.019 0.024 0.08907 1.034 -0.108
24 1000 B 0.000 0.000 0.003 0.000 0.006 0.009 0.011 0.014 0.02004 1.007 -0.224
24 1000 W  0.000 0.000 0.002 0.000 0.005 0.009 0.011 0.013 0.02004 1.322 0.557
36 250 B 0.000 0.000 0.006 0.006 0.012 0.014 0.016 0.020 0.023006 0.471 -0.958
36 250 w  0.000 0.000 0.004 0.000 0.008 0.012 0.014 0.017 0.02905 1.052 -0.100
36 1000 B 0.000 0.000 0.002 0.000 0.005 0.007 0.009 0.010 0.01503 1.005 -0.252
36 1000 W 0.000 0.000 0.002 0.000 0.004 0.007 0.008 0.010 0.01603 1.374 0.704
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Table B.3

Key Descriptive Statistics for the GDDM Model-Fitlex Under True Model Estimation

Test Sample Item
Length Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
12 250 HH 1569 1.844 1915 1.906 1.972 2.049 2106 2.237 2.93108 0.909 2.941
12 250 HL 1.249 1676 1.741 1.738 1.797 1.867 1922 2.048 2.40107 0.511 1.876
12 250 HM 1467 1.743 1.804 1.801 1.857 1916 1963 2.091 2.49896 0.628 2.059
12 250 MH 1474 1.779 1867 1.852 1.942 2.037 2102 2.230 3.03830 0.754 1.674
12 250 ML 1.115 1560 1.645 1.633 1.717 1813 1878 2.026 2.42830 0.627 1.342
12 250 MM 1374 1.643 1.716 1.708 1.778 1.856 1907 2.033 3.18013 0.933 5.035
12 1000 HH 6.647 7.347 7.496 7.496 7644 7775 7.859 8.032 8.67224 0.049 0.311
12 1000 HL 5.901 6.583 6.760 6.815 6.945 7.036 7.088 7.188 7.53@47 -0.554 -0.401
12 1000 HM 6.297 6.985 7.138 7.171 7.299 7406 7471 7.602 7.97@29 -0.382 -0.130
12 1000 MH 6.231 6.954 7.120 7.117 7.288 7.440 7534 7.745 8.47@56 0.080 0.369
12 1000 ML 5.371 6.084 6.238 6.265 6.404 6.517 6.591 6.764 7.37.240 -0.248 0.037
12 1000 MM 5.796 6.515 6.661 6.679 6.822 6.945 7.021 7.162 7.53235 -0.284 -0.017
24 250 HH 0.415 0.493 0.519 0516 0540 0.565 0581 0.613 0.624036 0.475 0.436
24 250 HL 0.352 0.448 0.479 0475 0505 0534 0555 0595 0.7M@942 0.563 0.603
24 250 HM 0.381 0.482 0.513 0.509 0.540 0571 0592 0.630 0./944 0.519 0.458
24 250 MH 0.395 0.504 0.534 0.531 0.561 0590 0.609 0.646 1.18943 0.651 3.513
24 250 ML 0.332 0.446 0.481 0.477 0.512 0546 0.567 0.612 0.72049 0.448 0.297
24 250 MM 0.359 0483 0520 0.516 0553 0590 0.614 0.662 O0.74953 0.458 0.262
24 1000 HH 1.690 1.830 1.881 1.873 1.923 1974 2.010 2.071 2.28670 0.580 0.459
24 1000 HL 1.400 1.605 1.650 1.653 1.694 1.738 1.769 1829 2.02072 0.095 0.499
24 1000 HM 1573 1.738 1.788 1.782 1.831 1885 1920 1991 2.18874 0.510 0.733
24 1000 MH 1562 1.803 1.860 1.855 1911 1967 2.004 2.082 2.31683 0.454 0.573
24 1000 ML 1.314 1505 1560 1.556 1.611 1667 1.701 1.773 1.9%982 0.347 0.316
24 1000 MM 1447 1663 1.729 1.722 1.786 1.852 1.896 1.987 2.1BP94 0.499 0.428
36 250 HH 0.210 0.259 0.274 0.273 0.288 0.303 0.313 0.330 0.38822 0.341 0.163
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Test Sample Item

Length Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
36 250 HL 0.176 0.238 0.255 0.254 0.271 0.287 0.298 0.318 0.3®824 0.351 0.183
36 250 HM 0.196 0.244 0.260 0.259 0.274 0.289 0.299 0.320 0.3®623 0.374 0.251
36 250 MH 0.211 0.275 0.293 0.292 0.309 0.327 0.337 0.357 0.40926 0.293 0.159
36 250 ML 0.185 0.249 0.269 0.268 0.287 0306 0.317 0.340 0.32028 0.310 0.134
36 250 MM 0.193 0.258 0.276 0.275 0.294 0.311 0.323 0.345 0.39027 0.284 0.126
36 1000 HH 0.750 0.851 0.882 0.878 0909 0.939 0958 0.998 1.0BP42 0.518 0.293
36 1000 HL 0.638 0.752 0.781 0.780 0.809 0.838 0.857 0.893 0.98644 0.193 0.255
36 1000 HM 0.722 0.802 0.829 0826 0.852 0.878 0.894 0.928 1.02P38 0.436 0.353
36 1000 MH 0.747 0.862 0.896 0.893 0926 0958 0.979 1.020 1.1a848 0.360 0.215
36 1000 ML 0.591 0.729 0.764 0.761 0.795 0.830 0.851 0.893 1.02P50 0.355 0.190
36 10000 MM 0.666 0.794 0.827 0.824 0.857 0.891 0.911 0.951 1.02P48 0.358 0.152
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Table B.4

Key Descriptive Statistics for they3/df Item-Fit Index Under True Model Estimation

Test Sample
Length Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile  Max SD  Skew Kurt
12 250 H 0025 5384 8552 7.580 10.406 13.706 586.123.390 1049.1978.239 35.224 2586.406
12 250 L 0.002 3.148 5,512 4.901 7.205 9.814 11.688.714 35.360 3.2341.204 2.310
12 250 M 0009 3973 6.391 5.801 8.179 10.842 1.716.767 191.404 3.3881.925 41.936
12 1000 H 0.367 11.074 17.70615.943 22.291 29.610 35.687 50.105 249.584 9.51417 4.578
12 1000 L 0.029 40935 7.697 7.096 9.787 12.764 TIA.819.383 53.894 3.8421.030 1.874
12 1000 M 0173 7.378 11.10010.350 13.977 18.002 20.811 26.966 52.949 5.28944 1.532
24 250 H 0122 9465 13.36812.669 16.387 20.296 22971 29.101 883.094 6.664832 1298.712
24 250 L 0.028 7.471 11.14310.525 14.141 17.911 20.404 25.641 58.741 5.080759 0.918
24 250 M 0.064 8.197 11.87711.271 14.873 18.639 21.152 26.457 51.549 5.096/51 0.922
24 1000 H 1531 17.537 23.83022.685 28.773 35.362 40.258 51.394 129.345 9.00323 1.700
24 1000 L 0503 11429 1555914929 19.002 23.237 26.075 32.005 61.481 5.82(0684 0.863
24 1000 M 0994 13.986 18.53517.895 22.387 27.032 30.128 36.715 68.149 6.490646 0.909
36 250 H 0.020 12.263 16.99516.327 20.919 25599 28.692 35.262 877.334 7.06323 393.160
36 250 L 0.032 10.421 15.05514.472 19.020 23.570 26.526 32.611 60.133 6.4R%79 0.465
36 250 M 0176 11.101 15.76515.157 19.717 24.320 27.304 33.504 60.870 6.48%95 0.489
36 1000 H 2.639 24.299 31.09330.049 36.689 43.963 49.011 59.974 119.123 9.96956 1.461
36 1000 L 0915 17.416 2258821926 27.037 32.292 35.711 42929 84.508 7.383%66 0.690
36 1000 M 1421 20.296 25.73525.091 30.477 35.960 39.619 47.702 93.720 7.90454 0.877
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Table B.5
Key Descriptive Statistics for Modification IndexJhder True Model Estimation

Sample
Corr. Size Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt

H 250 2 0.000 0.097 0.994 0435 1287 2.680 3.860 6.945 32.86469 3.243 17.640
H 250 3 0.000 0.077 0.782 0.342 1.007 2.112 3.045 5491 23.1B455 3.164 15.799
H 1000 2 0.000 0.139 1.399 0.615 1.800 3.758 5.453 9.846 38.1A865 3.156 15.508
H 1000 3 0.000 0.113 1.113 0.494 1.447 3.002 4.308 7.660 33.4B619 3.065 14.666
L 250 2 0.000 0.178 1.800 0.795 2336 4.844 6.972 12.488 71.124838 3.178 16.843
L 250 3 0.000 0.136 1.364 0.606 1.775 3.688 5299 9.310 35.16882 3.042 14.418
L 1000 2 0.000 0.236 2403 1.053 3.107 6.466 9.365 16.662 74.68831 3.123 15.415
L 1000 3 0000 0.179 1.805 0.805 2.348 4.865 6.988 12.369 45.98816 3.004 13.746
M 250 2 0.000 0.145 1.459 0.644 1.891 3938 5.664 10.108 40.30932 3.097 15.018
M 250 3 0000 0.114 1.147 0.510 1494 3.091 4.439 7.868 3591868 3.083 15.201
M 1000 2 0.000 0.198 2.026 0.893 2.627 5453 7.875 14.087 58.3/878 3.165 16.075
M 1000 3 0.000 0.158 1.570 0.703 2.050 4.233 6.059 10.722 42.26268 3.015 14.131
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Table B.6

Key Descriptive Statistics for Modification IndexJAder True Model Estimation

Sample
Corr. Size Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
H 250 2 0.000 0.103 1.097 0.465 1.383 2.943 4.308 7.975 61.844 1.689 3.831 31.155
H 250 3 0.000 0.080 0.824 0.358 1.061 2.222 3.210 5.778 25.763 1.222 3.251 17.434
H 1000 2 0.000 0.143 1433 0.634 1852 3.865 5.581 9.967 36.341 2.101 3.100 14.783
H 1000 3 0.000 0.117 1.164 0514 1502 3.136 4.521 8.049 31.514 1.704 3.113 15.091
L 250 2 0.000 0.175 1.776 0.781 2.292 4.788 6.909 12.296 59.575 2.613 3.220 17.410
L 250 3 0.000 0.148 1515 0.666 1956 4.079 5.870 10.579 46.767 2.240 3.263 17.568
L 1000 2 0.000 0.233 2.379 1.048 3.096 6.441 9.236 16.365 63.426 3.469 3.061 14.629
L 1000 3 0.000 0.197 1.991 0.879 2579 5369 7.712 13.816 61.323 2.917 3.135 15.718
M 250 2 0.000 0.146 1.477 0.655 1917 3.988 5.728 10.168 60.358 2.158 3.199 18.143
M 250 3 0.000 0.122 1.246 0550 1.615 3.359 4.831 8.646 43.595 1.829 3.170 16.305
M 1000 2 0.000 0.196 2.017 0.886 2.612 5.431 7.846 14.043 50.223 2.964 3.127 15.358
M 1000 3 0.000 0.169 1.691 0.749 2.198 4552 6.562 11.692 51.361 2.464 3.053 14.402
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Table B.7
Key Descriptive Statistics for Modification IndexJBder True Model Estimation

Sample  Test
Corr. Size Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
H 250 12 0.000 0.089 0.872 0.391 1.141 2.336 3.355 5909 23.883 1.263 3.166
H 250 24 0.000 0.083 0.837 0.372 1.091 2.258 3.223 5755 18.633 1.218 3.085
H 250 36 0.000 0.073 0.759 0.329 0.979 2.056 2.965 5.288 16.309 1.119 3.105
H 1000 12 0.000 0.103 0.981 0.443 1.285 2.643 3.779 6.626 20.199 1.403 2.942
H 1000 24 0.000 0.116 1.133 0.508 1.481 3.052 4.374 7.709 26.582 1.634 2.990
H 1000 36 0.000 0.119 1.178 0.522 1.529 3.174 4573 8.125 42.498 1.713 3.080
L 250 12 0.000 0.118 1.175 0.520 1.514  3.162 4.575 8.162 23.693 1.719 3.042
L 250 24 0.000 0.135 1.359 0.600 1.767  3.667 5.291 9.387 34.637 1.974 3.000
L 250 36 0.000 0.138 1.397 0.618 1.812 3.749 5.396 9.698 38.330 2.057 3.226
L 1000 12 0.000 0.134 1.299 0.588 1.709 3.498 4.975 8.722 25,510 1.851 2.905
L 1000 24 0.000 0.178 1.741 0.786 2.282  4.706 6.722 11597 39.082 2.489 2.947
L 1000 36 0.000 0.195 1970 0.883 2573 5.316 7.599 13.456 47.901 2.850 3.027
M 250 12 0.000 0.107 1.043 0.474 1.365 2.781 4.003 7.090 28.023 1.503 3.098
M 250 24 0.000 0.117 1.180 0.525 1541  3.172 4.565 8.111 24494 1.711 3.027
M 250 36 0.000 0.117 1.168 0.520 1.519 3.148 4515 8.036 35.831 1.697 3.078
M 1000 12 0.000 0.122 1.177 0.533 1549 3.153 4.544 7.988 21.466 1.682 2.925
M 1000 24 0.000 0.157 1562 0.700 2.048  4.226 6.025 10.492 37.916 2.238 2.940
M 1000 36 0.000 0.173 1.726 0.771 2.258  4.647 6.653 11.795 36.322 2.489 2.977
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Table B.8
Key Descriptive Statistics for Wald Test 1 UndexelModel Estimation

[tem Sample Test
Dim. Size Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD  Skew Kurt

1000 12 -1.223 8.878 6.988 6.674 4.735  3.244  2.497 1.375 20.733 3.080 0.545 0.097
1000 24 -0.408 10.690 8.622  8.352 6.183 4561 3.768 2.438 23.225 3.305 0.489 0.067
1000 36 -0.207 11.462 9.368  9.067 6.890 5255 4463 3.193 23.686 3.352 0.502 0.031

B 250 12 -1.057 14.132 11409 10.636 8.075 6.199 5.171 3.382 42443 4596 0.783 0.644
B 250 24 0.262 17.379 14.019 13.032 9.958 7.851 6.694 4487 52.599 5.506 0.784 0.642
B 250 36 -0.049 18.414 14819 13.751 10.505 8.332 7.181 5.162 55.000 5.769 0.783 0.530
B 1000 12 3.336 26.937 21.941 20.449 16.236 13.355 11.865 9.593 55.259 7.471 0.611 -0.305
B 1000 24 4106 33.040 26.625 24.892 19.720 16.526 14.712 11.729 64.095 8.817 0.528 -0.455
B 1000 36 5418 34999 28.135 26.190 20.787 17.378 15.645 12.954 68.048 9.347 0.565 -0.477
w 250 12 -1.676 4.877 3.671 3.479 2.280 1.330 0.779 -0.205 14.597 1.963 0.519 0.320
w 250 24 -2.343 5.853 4548 4.344 3.044  2.015 1.443 0.421 17.803 2.113 0.513 0.342
W 250 36 -2570 6.260 4931 4.713 3.384  2.335 17712  0.798 20.202 2.162 0.540 0.330
w

w
w
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Table B.9
Key Descriptive Statistics for Wald Test 2 UndexelModel Estimation

Iltem Sample Test

Dim. Size  Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%%ile Max SD  Skew  Kurt

B 250 HH 1.615 18908 15.854 15.148 11.979 9.602 368. 6.330 131.289 5493 1.091 3.680
B 250 HM 2.012 20.610 17.481 17.167 13.888 11.123.63® 7.320 75.702 5.165 0.573 1.108
B 250 HL 1.722 23.453 20.278 20.039 16.910 13.9711.9M4 7.864 66.262 5.269 0.286 0.740
B 250 MH 0.451 11.882 10.100 9.764 7.954 6.541 B.774.456  32.298 3.026 0.709 0.982
B 250 MM 0.377 12,958 11.115 10.899 9.032 7.485 0B.6 5095 32596 2988 0.491 0.579
B 250 ML 1.145 14290 12.401 12.211 10.305 8.690 753. 6.017 35.974 3.042 0.402 0.490
B 1000 HH 8.482 32.358 28.433 28.067 24.138 20.82B.957 15.889 60.631 6.095 0.313 -0.008
B 1000 HM 9.715 37.334 32570 32934 27.801 23.22%.873 17.280 63.758 6.845 -0.073 -0.277
B 1000 HL 10.417 43.055 38.431 38.926 34.549 29.37%.456 18422 66.212 7.036 -0.488 0.640
B 1000 MH 6.440 21.045 18.794 18.491 16.235 14.3313.246 11.415 36.856 3.664 0.428 0.163
B 1000 MM 7.739 23573 20.979 20.967 18.323 15.804.493 12.320 38.620 3.926 0.081 -0.125
B 1000 ML 8.107 26.598 23.674 23.829 20.909 18.2446.583 13.489 40.101 4.141 -0.181 -0.098
w 250 HH -4.316 5.626  3.988 3.959 2.242 0.806 0.0141.147 17.444 2453 0.178 -0.114
w 250 HM -2.426 5566  4.112 3.962 2.522 1.317 0.6370.376  16.863 2.242 0.363 0.083
w 250 HL -1.458 6.061  4.690 4.516 3.146 2.074 1.500.517 16.338 2.138 0.448 0.180
w 250 MH -2.407 4.646  3.453 3.321 2.138 1.178 0.6230.320 13.168 1.852 0.377 0.122
w 250 MM  -2.136 4586  3.458 3.362 2.219 1.288 0.7540.171 14.417 1.751 0.338 0.161
w 250 ML -1.917 4916 3.774 3.689 2.533 1.591 1.0570.089 13.074 1.755 0.302 0.112
w 1000 HH -1.476 10.803 8.454 8.378 5.971 3.918 1@.6 0.794 22.094 3565 0.150 -0.219
w 1000 HM -0.628 10.810 8.743 8.565 6.454 4796 089 2497 21.747 3.148 0.339 -0.084
w 1000 HL 0.284 11.701 9.435 9.248 7.025 5403 4553.186 21.892 3.178 0.232 -0.475
w 1000 MH -1.279  8.667  6.857 6.750 4.924 3531 @.781.489 17420 2.615 0.200 -0.349
w 1000 MM  -1.177 8721  6.972 6.945 5.098 3.767 @.07 1886  18.284 2.481 0.151 -0.382
W 1000 ML -0.840 9.223  7.392 7.384 5.470 4127 8442230 17.731 2503 0.089 -0.523
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Table B.10
Key Descriptive Statistics for Wald Test 3 UndexelModel Estimation

[tem Sample Test

Dim. Size Length Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD  Skew Kurt
B 250 12 -1.152 11.484 9.099  8.619 6.324 4353 3.132 1492 42415 4.003 0.611
B 250 24 -0.912 14566 11.687 10.872 8.293 6.345 5147 2765 46.684 4.766 0.735
B 250 36 -0.600 15.429 12446 11551 8.910 6.943 5770 3.413 58543 4.949 0.802
B 1000 12 1.831 21563 17.524 16.600 13.095 10.218 8.397 4.617 46.658 6.328 0.476
B 1000 24 3.454 27478 22.261 20.630 16.909 14.109 12.470 8.729 52.629 7.269 0.549
B 1000 36 4.264 28963 23.594 21.797 18.006 15.265 13.706 10.661 55.421 7.464 0.607
w 250 12 -1.693 5.054 3.794  3.590 2.367 1368 0.793 -0.236 14.298 2.024 0.485
w 250 24 -2.281 6.134 4756  4.521 3.159 2103 1512 0.472 15542 2.222 0.506
w 250 36 -2.586 6.545 5119 4.881 3471 2390 1.789 0.787 23.057 2.272 0.500
w 1000 12 -0.703 9.258 7.338  6.980 5.015 3525 2.757 1552 20.811 3.193 0.586
w 1000 24 0.388 11.190 9.100 8.637 6.495 4916 4.131 2864 24.470 3.538 0.627
w 1000 36 0.352 11939 9.768 9.271 7.084 5477 4684 3.388 25.030 3.627 0.619
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Appendix C

I nvestigation into Convergence and Replication | ssues

When determining the total number of replicatigmgcision and stability of the
resulting estimates as well as feasibility and cotimg time must be considered. An
analysis of convergence issues showed that the stadde model — a 2-factor model with
low inter-factor correlation, 36 high-discriminatitow-difficulty (HL) items, one-half of
which demonstrated within-item multidimensionalignd 1,000 examinees — produced
no estimation failures while the success rateHerl¢ast stable model — a 3-factor of high
inter-factor correlation, 12 moderately-discrimingthigh-difficulty items of within-item
multidimensionality, and 250 examinees — was lbss 25%, indicating a number of
estimation failures. An analysis of the standardorer of the key distributional
characteristics from the empirical sampling disttibns (i.e., mean, median, 90th
percentile, 95th percentile) of the outcome stasof interest (e.g., $2 statistic,
GDDM) indicated reasonable stable standard errdvsnwabout 100 to 200 replications
were used.

The computing time required to estimate 1000 repbns of the least stable
model was approximately 20 minutes; the total ttmestimate 1000 replications of all
864 experimental cells, therefore, would be appnaxely 18,000 minutes or 300 hours.
The required computing time to achieve 100, 2058 successful replications can be
interpolated from these results as approximately 9B} and 110 hours, respectively.
Since the computing time for 1000 replicationsxsessive given the desired time frame
for completion of this dissertation, 250 replicagoof the misspecified model were

chosen as a reasonable compromise between thetisghtdesideratum for reasonable
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precision and stability of sampling distributiortiestes and practical feasibility. The full

1000 replications are employed in the estimatiotheftrue models.

C.1. Non-Convergent and Heywood Cases

Examining the 1000 replications of the model estadaaccording to the most
stable conditions (correct or true model speciicgt 2 factors, low inter-factor
correlation, 36 highly-discriminating/moderatelyfitiult items of within-item
multidimensionality, and 1,000 examinees) evidenasal estimation issues; no
replacement replications were required. The ledables boundary condition was
identified as the estimation of 3 factors of higiter-factor correlation, 12 moderately-
discriminating/low-difficulty items of within-itenmultidimensionality, 250 examinees.
Suggested by previous research (Jackson, 2007)enatety misspecified models were
estimated in anticipation that they would resulthe greatest proportion of estimation
failures. To achieve 1000 successful replicatiomstotal of 4234 replications were
required, a 23.6% success rate. This successoratefdiications is smaller than that seen
in previous research (Fan, Thompson, & Wang, 199®énez, 2009), suggesting that

the degree of misspecification and other simulatiomditions differ substantially.

C.2. Determining the Optimal Number of Replications

A study was conducted to determine the number phlicaions necessary to
accurately describe the performance of the moahel-item-fit statistics considered in the
full study. Specifically, the objective was to fiadcut-off for the number of replications
beyond which increases in stability of the disttiboal characteristics (i.e., changes in

estimated standard errors) would be practicalligide. Two experimental cells, one

223



representing a case where one would expect rdiatstable model estimations and one
where one would expect relatively unstable modeinedions, were first identified. For
each of these two cells 1,000 replications of taga-deneration and model estimation
process were computed. Then, using a boostrappetyars, 100 random samples of
varying numbers of replications were drawn withlaepment from the set of 1,000
replications. Specifically, 100 random draws ofesiZ0, 50, 100, 200, 250, 500, and
1000 were made from the 1,000 replications andriean and standard deviation (i.e.,
standard error) of key distributional indicator®(i mean, median, 90th percentile, 95th
percentile, skewness, kurtosis) were then caladilatxoss replication sets for each fit
index.

An accurate assessment of the performance of madel-item- fit statistics in
this Monte Carlo simulation study is also affectedmissing information due to non-
convergence of estimation and improper parameteéma®s (e.g., Heywood cases).
Notably, the omission or elimination of these regfions would result in an unbalanced
simulation design because different experimenth$ @eould have different numbers of
replications associated with them. To avoid thienseio, Haywood cases and non-
converged models will be replaced with additiongpblications to ensure a balanced
design as in previous studies (Fan, Thompson, &gVaA99; Jackson, 2007; Ximénez,
2009). The number of additional replications neaps$o achieve the number suggested
by the previous analysis for each of the two regmestive simulation conditions
described above will be computed and used to infibvennumber of replications in the

full study alongside the estimates of the distiimdl characteristics noted earlier.
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C.3. Replications and the Two Factor Model

Representing the most stable estimation conditians?-factor model was
estimated for which the intra-factor correlationswspecified as low and responses to 36
high-discrimination/low-difficulty (HL) items, onbalf of which demonstrated within-
item multidimensionality, were simulated for a séengize of 1,000 examinees.

The mean and variance of the distributional indicatand key indicators
according to partition are presented for each ef itiodel fit statistics in Table C.1.
Figure C.1 depicts the model fit indices graphicadlith different plotting symbols
representing the various values of the distribwicend key indicators: empty circles
represent mean values, stars represent mediansyal@ded squares represent the 90th
percentile, shaded circles represent the 95th peleeand shaded triangles represent the
99th percentile. For each model-fit index, pointireates and dispersion of the mean,
median, and standard deviation are near-constamssacreplication sets, with the
exception of the median RMSEA which decreases witmber of replications due to the
increasing proportion of replications where RMSEAzero. The key indicators (90th,
95th, and 99th percentiles) generally appear tsthble at 100 replications and greater.
Point estimates for each of the key indicatorsdifferentiated at the hundredths decimal
place for theg2/df and the thousandths decimal place for the RM3¢€y indicators of
the GDDM are not well-differentiated even at theusandths decimal place due to the
fact that values of the GDDM are extremely smakurighbility of the key indicators is
typically less than 0.001, decreasing over repboatsets with the largest decreases

occurring between 10, 50, and 100 replications.
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Table C.1

2-Factor Model: Distributional and Key IndicatorsrfModel Fit Indices Across Partition Sets

Fit
Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile
x2/df 10 (1) mean 0.983 0.980 0.031 0.246 0.061 1.019 1.028 1.035
(2) var  0.000 0.000 0.000 0.220 1.544 0.000 0.000 0.000
50 (1) mean 0.982 0.979 0.033 0.408 0.547 1.022 1.036 1.062
(2) var  0.000 0.000 0.000 0.131 1.034 0.000 0.000 0.000
100 (1) mean 0.982 0.979 0.033 0.475 0.609 1.024 1.037 1.066
(2) var  0.000 0.000 0.000 0.068 0.473 0.000 0.000 0.000
200 (1) mean 0.982 0.979 0.033 0.516 0.666 1.024 1.038 1.071
(2) var  0.000 0.000 0.000 0.048 0.396 0.000 0.000 0.000
250 (1) mean 0.982 0.979 0.033 0.523 0.701 1.024 1.039 1.073
(2) var  0.000 0.000 0.000 0.035 0.298 0.000 0.000 0.000
500 (1) mean 0.982 0.979 0.033 0.514 0.700 1.024 1.038 1.075
(2) var  0.000 0.000 0.000 0.020 0.145 0.000 0.000 0.000
1000 (1) mean 0.982 0.979 0.033 0.539 0.742 1.025 1.038 1.078
(2) var  0.000 0.000 0.000 0.008 0.074 0.000 0.000 0.000
RMSEA 10 (1) mean 0.001 0.000 0.002 1.292 2.863 0.004 0.005 0.006
(2) var  0.000 0.000 0.000 0.338 14.898 0.000 0.000 0.000
50 (1) mean 0.001 0.000 0.002 1.796 3.011 0.005 0.006 0.008
(2) var  0.000 0.000 0.000 0.215 7.360 0.000 0.000 0.000
100 (1) mean 0.001 0.000 0.002 1.842 2.763 0.005 0.006 0.008
(2) var  0.000 0.000 0.000 0.099 2.175 0.000 0.000 0.000
200 (1) mean 0.001 0.000 0.002 1.853 2.683 0.005 0.006 0.008
(2) var  0.000 0.000 0.000 0.062 1.468 0.000 0.000 0.000
250 (1) mean 0.001 0.000 0.002 1.860 2.675 0.005 0.006 0.008
(2) var  0.000 0.000 0.000 0.055 1.323 0.000 0.000 0.000
500 (1) mean 0.001 0.000 0.002 1.887 2.704 0.005 0.006 0.009
(2) var  0.000 0.000 0.000 0.023 0.512 0.000 0.000 0.000
1000 (1) mean 0.001 0.000 0.002 1.885 2.654 0.005 0.006 0.009
(2) var  0.000 0.000 0.000 0.010 0.220 0.000 0.000 0.000
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Fit

Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile
GDDM 10 (1) mean 0.004 0.004 0.000 -0.039 0.087 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.287 2.065 0.000 0.000 0.000
50 (1) mean 0.004 0.004 0.000 0.120 0.155 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.122 0.779 0.000 0.000 0.000
100 (1) mean 0.004 0.004 0.000 0.046 0.219 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.091 0.534 0.000 0.000 0.000
200 (1) mean 0.004 0.004 0.000 0.120 0.350 0.004 0.004 0.005
(2) var  0.000 0.000 0.000 0.050 0.287 0.000 0.000 0.000
250 (1) mean 0.004 0.004 0.000 0.115 0.293 0.004 0.004 0.005
(2) var  0.000 0.000 0.000 0.036 0.204 0.000 0.000 0.000
500 (1) mean 0.004 0.004 0.000 0.075 0.198 0.004 0.004 0.005
(2) var  0.000 0.000 0.000 0.016 0.113 0.000 0.000 0.000
1000 (1) mean 0.004 0.004 0.000 0.100 0.252 0.004 0.004 0.005
(2) var  0.000 0.000 0.000 0.009 0.065 0.000 0.000 0.000
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Figure C.1.Distributional and key indicators for model fidices, 2-factor models.
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Fit results for this study are presented separdteljtems estimated as between-
item multidimensional (Table C.2 and Figure C.2J amithin-item multidimensional
(Table C.3 and Figure C.3). Values for the Modiima Index and Wald Test are
presented for only a single factor as items loadinghe second factor were similar in
magnitude and patterns of behavior. Point estimafeshe distributional indicators
achieve stability between 100 and 200 replicatidos;100 replications and greater,
values for the §2 and Modification Index typically differ in thertéhs decimal place
while the Wald Test values differ at the hundredesimal place. Point estimates of the
90th and 95th percentiles achieve stability at tHjfications while the 99th percentile is
somewhat unstable across all replication sets. é3epting the largest, most extreme
item fit values, the precision of the key indicatas seen to increase by 100 and 250
replications; though the variance is still quitegk for these indicators, proportional

decreases are largest across replication set©18n8 100.
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Table C.2

2-Factor Model: Distributional and Key Indicatorsrfltem Fit Indices Across Partition Sets, Betwéem Multidimensionality

Fit
Index Split Statistic Mean M edian SD Skew Kurt. 90%ile 95%ile 99%ile
S42 10 (1) mean 27.7138 26.9725 7.41778 0.29765 0.13205 36.1733 5038. 40.3748
(2) var 5.987 7.794 4.163 0.198 1.634 21.610 25.916 34.596
50 (1) mean 27.827 27.114 7.691 0.573 0.668 37.330 40.682 66.68
(2) var 0.992 1.672 0.979 0.198 3.069 4.657 6.915 26.081
100 (1) mean 27.750 26.892 7.663 0.700 1.067 37.532 40.882 47.61
(2) var 0.642 0.984 0.623 0.193 3.787 2.422 5.535 22.907
200 (1) mean 27.601 26.804 7.582 0.766 1.408 37.487 40.932 87.31
(2) var 0.276 0.359 0.233 0.103 3.164 1.057 3.072 6.309
250 (1) mean 27.731 26.865 7.747 0.772 1.309 37.759 41.748 88.17
(2) var 0.285 0.401 0.232 0.079 1.844 0.678 2.499 7.095
500 (1) mean 27.642 26.825 7.645 0.738 1171 37.626 41.562 38.13
(2) var 0.093 0.174 0.100 0.044 1.177 0.247 1.198 1.862
1000 (1) mean 27.714 26.928 7.660 0.751 1.290 37.674 41.679 88.32
(2) var 0.060 0.080 0.057 0.025 0.595 0.135 0.547 0.878
Mod. 10 (1) mean 1.984 1.321 2.270 0.301 0.568 3.921 4.351 4.694
Index (2) var 2.543 1.319 4.948 0.171 7.297 12.662 16.731 20.651
50 (1) mean  2.316 1.025 3.381 1.917 5.913 5.336 8.103 12.043
(2) var 0.614 0.232 1.955 0.529 23.138 6.345 13.154 26.719
100 (1) mean  2.238 0.952 3.383 2.387 7.938 5.654 8.630 13.807
(2) var 0.253 0.116 0.884 0.482 27.486 3.785 9.986 16.417
200 (1) mean  2.303 0.976 3.523 2.730 9.745 5.771 9.287 15.624
(2) var 0.143 0.064 0.456 0.322 26.193 2.028 6.487 9.759
250 (1) mean  2.268 0.908 3.510 2.729 9.398 5.865 9.438 15.999
(2) var 0.132 0.046 0.407 0.317 20.132 2.136 6.359 12.229
500 (1) mean  2.251 0.921 3.519 2.907 10.382 5.763 9.547 16.782
(2) var 0.079 0.020 0.239 0.156 11.315 1.093 3.584 9.367
1000 (1) mean  2.259 0.926 3.541 2.965 10.578 5.711 9.746 17.111
(2) var 0.038 0.016 0.104 0.092 6.640 0.564 1.751 4.687
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Fit

Index Split Statistic Mean M edian SD Skew Kurt. 90%ile 95%ile 99%ile
Wald 10 (1) mean 40.749 40.540 4.067 0.064 -0.117 44.576 45.204 045.7
Test (2) var 4.575 5.334 2.834 0.177 4514 8.326 10.149 12.133
50 (1) mean 41.318 40.899 4.420 0.363 0.137 46.630 48.209 80.47
(2) var 0.863 1.603 0.529 0.199 1.736 2.112 4.112 7.588
100 (1) mean 41.145 40.605 4.459 0.462 0.054 46.825 48.520 81.52
(2) var 0.438 0.673 0.200 0.087 0.861 1.403 1.759 4.637
200 (1) mean 41.275 40.706 4.494 0.476 0.059 47.155 49.003 32.16
(2) var 0.250 0.305 0.110 0.060 0.426 0.914 1.146 4.102
250 (1) mean 41.273 40.683 4.487 0.498 0.064 47.133 49.026 952.59
(2) var 0.163 0.216 0.079 0.040 0.337 0.649 0.837 2.742
500 (1) mean 41.215 40.624 4.485 0.512 0.105 47.141 49.053 52.68
(2) var 0.085 0.090 0.047 0.025 0.185 0.367 0.488 1.816
1000 (1) mean 41.216 40.633 4.495 0.512 0.107 47.152 49.051 53.03
(2) var 0.027 0.029 0.022 0.008 0.091 0.149 0.330 0.853
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Figure C.2.Distributional and key indicators for item fit ilceés, 2-factor models,
between-item multidimensionality.
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Table C.3

2-Factor Model: Distributional and Key Indicatorsrfltem Fit Indices Across Partition Sets, Withtarh Multidimensionality

FitIndex  Split Statistic Mean M edian SD Skew Kurtoss 90%ile 9S%ile 99%ile
S«2 10 (1) mean 15.222 14.661 5.473 0.439 0.754 20.996 23.358 25.24
(2) var  2.549 3.726 2.904 0.338 4.158 11.418 16.447 27.335
50 (1) mean 15.385 14.660 5.516 0.778 1.234 22.198 24.862 29.82
(2) var  0.667 0.648 0.520 0.182 2.841 2.572 5.225 14.080
100 (1) mean 15.376 14.744 5.560 0.820 1.285 22.284 25.137 31.18
(2) var  0.307 0.318 0.275 0.089 1.010 1.489 3.404 13.034
200 (1) mean 15.314 14.713 5.566 0.873 1.517 22.311 25.035 32.14
(2)var 0.174 0.187 0.113 0.058 0.889 0.704 1.094 9.736
250 (1) mean 15.302 14.649 5.597 0.900 1.480 22.315 25.284 32.67
(2)var  0.102 0.122 0.098 0.040 0.524 0.509 0.871 6.998
500 (1) mean 15.350 14.708 5.585 0.896 1.511 22.350 25.336 82.95
(2) var  0.059 0.067 0.070 0.023 0.311 0.374 0.577 6.278
1000 (1) mean 15.341 14.699 5.610 0.913 1.530 22.400 25.412 33.92
(2) var  0.027 0.036 0.024 0.009 0.119 0.180 0.233 1.384
Wald 10 (1) mean 13.215 13.228 2.401 -0.008 -0.010 15.838 16.419  88%6.
Test (2)var  0.653 0.824 0.327 0.211 1.410 1.321 1.624 2.370
50 (1) mean 13.214 13.272 2.417 -0.040 -0.217 16.179 16.976  1018.
(2)var  0.135 0.182 0.060 0.078 0.243 0.307 0.370 0.807
100 (1) mean 13.231 13.306 2.409 -0.014 -0.199 16.248 17.092  35B8.
(2) var  0.056 0.081 0.023 0.040 0.137 0.193 0.248 0.383
200 (1) mean 13.179 13.267 2.417 -0.037 -0.296 16.230 17.054  4218.
(2) var  0.028 0.041 0.012 0.018 0.062 0.110 0.118 0.255
250 (1) mean 13.179 13.227 2.419 0.009 -0.259 16.277 17.101 6¥8.5
(2) var  0.022 0.028 0.011 0.011 0.040 0.083 0.071 0.202
500 (1) mean 13.200 13.266 2.440 0.010 -0.282 16.351 17.193 988.6
(2)var  0.014 0.016 0.004 0.008 0.018 0.040 0.046 0.120
1000 (1) mean 13.198 13.269 2.425 -0.002 -0.271 16.333 17.172  6888.
(2) var  0.005 0.010 0.003 0.003 0.008 0.025 0.014 0.040
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Figure C.3.Distributional and key indicators for item fit ilw@s, 2-factor models, within-
item multidimensionality.
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Items estimated as within-item multidimensionalsarg patterns comparable to
those seen in the between-item multidimensionahstethough it is notable that the
dispersion of the values for the within-item multié@nsional items is greater. Means,
medians, and key indicator values are generallylemeompared to the between-item
multidimensional results with similar precision)léaving the pattern of results seen for

the between-item multidimensional items.

C.4. Replications and the Three-Factor Model

The highly-correlated 3-factor model, comprisedegponses to 12 moderately-
discriminating / high-difficulty (MH) between-itermultidimensional items by 250
simulated examinees was identified as the seconddawy condition and anticipated to
yield the most unstable results. Again, 1,000 oapions were divided into equally-sized
partitions.

Model fit results for this model are presented iable C.4 and Figure C.4 .
Distributional indicators for the model fit indiceppear to be stable and precise by 100
replications; the averages are quite stable anddhances are less than 0.001 with the
largest decreases in variance occurring by 200cegmns. As seen in the two-factor
model, the key indicators for all three model fidices also achieve stability by 100
replications, though the mean of the 99th percergthows some fluctuation across
replication sets, with the exception of the GDDIMai likely due to the fact that values

of this index are very small.
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Table C.4

3-Factor Model: Distributional and Key IndicatorerfModel Fit Indices Across Partition Sets

Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile
x2/df 10 (1) mean 0.969 0.955 0.146 0.263 0.095 1.130 1.177 1.214
(2) var  0.002 0.003 0.001 0.247 2.282 0.008 0.008 0.011
50 (1) mean 0.960 0.947 0.140 0.465 0.349 1.135 1.198 1.294
(2) var  0.000 0.001 0.000 0.113 0.947 0.001 0.002 0.004
100 (1) mean 0.961 0.946 0.142 0.487 0.329 1.145 1.208 1.326
(2) var  0.000 0.000 0.000 0.076 0.414 0.001 0.002 0.005
200 (1) mean 0.960 0.945 0.142 0.538 0.442 1.145 1.208 1.340
(2) var  0.000 0.000 0.000 0.032 0.256 0.001 0.001 0.002
250 (1) mean 0.960 0.944 0.143 0.544 0.399 1.149 1.211 1.341
(2) var  0.000 0.000 0.000 0.023 0.190 0.000 0.000 0.002
500 (1) mean 0.960 0.946 0.142 0.525 0.439 1.146 1.208 1.350
(2) var  0.000 0.000 0.000 0.012 0.088 0.000 0.000 0.001
1000 (1) mean 0.961 0.946 0.142 0.519 0.399 1.150 1.211 1.352
(2) var  0.000 0.000 0.000 0.007 0.049 0.000 0.000 0.001
RMSEA 10 (1) mean 0.008 0.002 0.011 0.952 1.047 0.021 0.025 0.028
(2) var  0.000 0.000 0.000 0.339 11.280 0.000 0.000 0.000
50 (1) mean 0.007 0.000 0.010 1.263 0.727 0.023 0.028 0.034
(2) var  0.000 0.000 0.000 0.098 1.425 0.000 0.000 0.000
100 (1) mean 0.007 0.000 0.011 1.303 0.631 0.024 0.029 0.036
(2) var  0.000 0.000 0.000 0.050 0.570 0.000 0.000 0.000
200 (1) mean 0.007 0.000 0.011 1.351 0.744 0.024 0.029 0.037
(2) var  0.000 0.000 0.000 0.035 0.398 0.000 0.000 0.000
250 (1) mean 0.007 0.000 0.011 1.345 0.677 0.024 0.029 0.037
(2) var  0.000 0.000 0.000 0.024 0.264 0.000 0.000 0.000
500 (1) mean 0.007 0.000 0.011 1.347 0.666 0.024 0.029 0.037
(2) var  0.000 0.000 0.000 0.014 0.160 0.000 0.000 0.000
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Fit Index Split Statistic Mean Median SD Skew Kurt. 90%ile 9%5S%ile 99%%ile
1000 (1) mean 0.007 0.000 0.011 1.331 0.581 0.025 0.029 0.037
(2) var  0.000 0.000 0.000 0.006 0.069 0.000 0.000 0.000
GDDM 10 (1) mean 0.003 0.003 0.000 -0.076 0.072 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.218 1.623 0.000 0.000 0.000
50 (1) mean 0.003 0.003 0.000 -0.137 -0.001 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.101 0.622 0.000 0.000 0.000
100 (1) mean 0.003 0.003 0.000 -0.129 -0.052 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.056 0.381 0.000 0.000 0.000
200 (1) mean 0.003 0.003 0.000 -0.090 -0.012 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.029 0.105 0.000 0.000 0.000
250 (1) mean 0.003 0.003 0.000 -0.082 -0.041 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.017 0.096 0.000 0.000 0.000
500 (1) mean 0.003 0.003 0.000 -0.106 -0.005 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.012 0.054 0.000 0.000 0.000
1000 (1) mean 0.003 0.003 0.000 -0.116 -0.047 0.004 0.004 0.004
(2) var  0.000 0.000 0.000 0.006 0.019 0.000 0.000 0.000
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Figure C.4.Distributional and key indicators for model fitices, 3-factor models.

238



Item fit results for the 3-factor model are presenin Table C.5 and Figure C.5.
Distributional indicators for the f2are stable at 100 replications and the greatess ga
in precision are also achieved at 100 replicatidiiie key indicators are less stable and
precise, as expected, though the means and vasiamoev the greatest improvements
between 100 and 200 replications. Though the edalt the Modification Index and
Wald test show similar patterns for the distribo@ibindicators, the key indicators for
these statistics under a 3-factor model show greasgtability and imprecision across
replication sets. While the means and variancet®®0th and 95th percentiles for the
item fit indices are relatively stable and predigel00 replications, means and variances
of the 99th percentiles show fluctuation acrosdicapon sets and large decreases in

variances for replication sets of 250 replicatiand larger.
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Table C.5

3-Factor Model: Distributional and Key Indicatorsrfltem Fit Indices Across Partition Sets

Fit Index  Split Statistic Mean Median SD Skew Kurt. 90%ile 95%ile 99%ile

S+2 10 (1) mean 7.099 6.659 3.127 0.504 0.885 10.411 11.821 12.949
(2)var 0.977 1.315 1.066 0.353 4.312 3.459 6.117 10.830
50 (1) mean 7.227 6.833 3.336 0.850 1.453 11.357 13.029 16.097

(2)var 0.201 0.339 0.192 0.216 4.580 1.078 1.884 5.093
100 (1) mean 7.157 6.756 3.293 0.959 1.899 11.226 12.959 16.584

(2) var 0.091 0.133 0.103 0.155 2.837 0.627 1.273 5.428
200 (1) mean 7.125 6.740 3.329 1.031 2.042 11.262 13.165 17.443

(2) var 0.063 0.091 0.059 0.076 1.512 0.392 0.706 4.748
250 (1) mean 7.114 6.749 3.287 0.994 1.839 11.252 13.018 17.197

(2) var  0.053 0.050 0.052 0.059 1.059 0.332 0.654 3.646

500 (1) mean 7.146 6.751 3.300 1.059 2.089 11.269 13.223 17.623

(2) var  0.020 0.031 0.027 0.035 0.577 0.126 0.371 2.715
1000 (1) mean 7.135 6.748 3.312 1.080 2.188 11.281 13.175 17.824

(2) var  0.009 0.014 0.013 0.018 0.303 0.081 0.116 1.855

Mod. 10 (1) mean 0.800 0.524 0.907 0.643 1.094 1.779 2.075 2.311
Index (2)var 0.193 0.279 0.259 0.245 6.919 0.831 1.198 1.612
50 (1) mean 0.839 0.388 1.206 2.073 6.529 2.142 2.909 4.692

(2) var 0.054 0.026 0.243 0.832 45.069 0.450 0.804 4.963

100 (1) mean 0.850 0.385 1.211 2.377 8.186 2.188 3.073 5.185

(2) var  0.025 0.010 0.109 0.750 54.749 0.204 0.570 2.811

200 (1) mean 0.861 0.386 1.289 3.149 16.122 2.238 3.079 5.488

(2)var 0.014 0.006 0.083 1.600 197.872 0.107 0.311 2.099

250 (1) mean 0.861 0.375 1.331 3.326 17.389 2.251 3.115 6.098

(2) var 0.010 0.003 0.064 1.471 206.422 0.073 0.259 2.209

500 (1) mean 0.847 0.379 1.279 3.441 19.374 2.240 3.097 5.966

(2) var  0.006 0.002 0.032 1.139 192.483 0.049 0.168 1.273
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Fit Index  Split Statistic Mean Median SD Skew Kurt. 90%ile 95S%ile 99%%ile

1000 (1) mean 0.845 0.380 1.276 3.705 23.317 2.240 3.037 6.023

(2) var  0.002 0.001 0.018 0.865 150.121 0.016 0.064 1.125

Wald 10 (1) mean 8.210 8.033 2.056 0.102 0.448 9.768 10.035 10.248
Test (2) var 2.597 2.733 1.218 0.114 4.496 4.888 5.619 6.301
50 (1) mean 8.314 8.154 2.471 0.263 0.525 11.162 12.070 13.063

(2) var  0.489 0.634 0.218 0.279 1.993 1.429 1.997 2.950

100 (1) mean 8.273 8.162 2.440 0.317 0.325 11.295 12.166 13.573

(2) var 0.180 0.280 0.124 0.167 1.175 0.750 1.009 1.844
200 (1) mean 8.184 8.050 2.405 0.354 0.418 11.199 12.169 14.014

(2) var  0.085 0.131 0.060 0.129 0.827 0.258 0.702 1.497

250 (1) mean 8.242 8.099 2.401 0.382 0.432 11.258 12.246 14.173

(2)var 0.076 0.075 0.032 0.089 0.634 0.189 0.426 1.041

500 (1) mean 8.215 8.056 2.382 0.393 0.393 11.257 12.291 14.323

(2) var 0.031 0.038 0.020 0.043 0.286 0.130 0.253 0.678
1000 (1) mean 8.250 8.087 2.417 0.412 0.341 11.296 12.458 14.604

(2) var 0.015 0.012 0.009 0.022 0.126 0.074 0.149 0.254
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Figure C.5.Distributional and key indicators for item fit ilveés, 3-factor models.
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Overall, fluctuations and instability in they@-is typically the result of large
item-specific estimates, especially under the 2sfagnodel where the mean was
approximately 27. The magnitude of differences leetwmeans and variances for each
replication set are, therefore, greater than thsesen for other indices. Similarly, the
stability and precision of the Wald Test must bastdered in the context of large item-
specific values. Instability of the Modificationdex is owed to the positive skewness
(typically greater than 2.0) under each replicaet) indicating a distribution with a long
tail containing a few exceptionally large positixadues.

The results of this study suggest that model- d@enh-fit indices achieve and
acceptable level of precision and stability at 00200 replications, though some
exceptions exist. Means, medians, and standardatiavs for all indices were
demonstrated to be extremely precise and stabtssail levels of replication; estimates
of 90th, 95th, and 99th percentiles evidence lesgigion and stability owing to the

extreme nature of these values.
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Table D.1
Key Descriptive Statistics for th@/df Model-Fit Index Under Misspecified Model Esdtran

Key Descriptive Statistics Under Misspecified Model Estimation

Appendix D

Item Sample

Type Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD  Skew Kurt
HH 250 H 0.797 1.105 1.265 1.185 1.338 1.572 1.7712.253 3.053 0.252 2.253 6.903
HH 250 M 0.966 1.406 1.787 1.613 1.991 2.509 2.9343.736 5441 0.548 1.842 4314
HH 250 L 1.110 1.776 2.429 2.166 2.785 3.652 4.359%.575 7.785 0.907 1.658 3.173
HH 1000 H 1.026  1.587 1.986 1.773 2.280 2.826 3.1923.916 5296 0.579 1.468 2.164
HH 1000 M 1.980 3.188 4.404 3.778 5.294 6.738 8.0399.862 13.024 1.685 1.414 1.800
HH 1000 L 3.205 5.339 7.593 6.486 9.043 11.716 45.0 17.748 20.820 3.168 1.488 2.004
HM 250 H 0.833 1.085 1.232 1.160 1.300 1.516 1.6852.093 4914 0.232 3.016 21.125
HM 250 M 0.866  1.404 1.830 1.650 2.062 2.660 3.0693.923 5345 0.597 1.655 3.204
HM 250 L 1.320 1.930 2.741 2.392 3.251 4.390 5.1186.367 8.902 1.133 1.389 1.814
HM 1000 H 1.123 1.558 2.100 1.890 2.377 3.196 3.6454.463 6.547 0.735 1.417 1.904
HM 1000 M 1.979 3.424 5.281 4.584 6.267 9.114 10.4212.544 14.662 2.442 1.201 0.895
HM 1000 L 3.600 6.291 9.794 8.565 11.736 16.609 22D. 23547 28.403 4.722 1.176 0.846
HL 250 H 0.784 1.130 1.340 1.243 1.443 1.727 1.9872.497 3.766 0.309 2.060 5.701
HL 250 M 1.165 1.622 2.250 2.016 2.583 3.394 4.0985.138 7.353 0.847 1541 2572
HL 250 L 1547 2.366 3.560 3.161 4.246 5.837 6.9708.532 11.328 1574 1.338 1.588
HL 1000 H 1.370 2.044 2.886 2.510 3.489 4.481 5.219%6.412 8.800 1.127 1.302 1.530
HL 1000 M 2.942  4.962 7.592 6.634 9.440 12.373 3%.0 17.647 21.367 3.430 1.114 0.752
HL 1000 L 4595 8.606 13.486 11984 16.591 22.4918.0&21 31.673 37.884 6.376 1.130 0.713
MH 250 H 0.640 1.041 1.110 1.093 1.162 1.263 1.3601.589 2.444 0.140 1.346 6.241
MH 250 M 0.710 1.249 1.446 1.368 1.561 1.828 2.0282.543 3.574 0.305 1.777 5.110
MH 250 L 0.932 1.530 1.902 1.747 2.119 2.607 2.9733.856 5433 0543 1.782 4.362
MH 1000 H 0.648 1.415 1.672 1574 1.854 2.177 2.3852.944 4028 0.382 1.403 2941
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Item Sample

Type Size Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD  Skew Kurt

MH 1000 M 1.410 2.560 3.380 3.048 3.947 4.938 5.6727.067 9.066 1.121 1.363 1.993
MH 1000 L 2.539 4.025 5.597 4.964 6.693 8.559 140.0512.444 16.616 2.122 1.318 1.663
MM 250 H 0.639 1.046 1.134 1.103 1.198 1.314 1.4221.693 2489 0.158 1573 6.070
MM 250 M 0.811 1.302 1.567 1.465 1.733 2.070 2.2942.868 4457 0.376 1595 3.688
MM 250 L 1.084 1.664 2.173 1.974 2.481 3.134 3.5904.627 5872 0.706 1515 2.705
MM 1000 H 0.783 1.499 1.835 1.720 2.080 2.463 2.7383.243 4279 0.460 1.224 1.934
MM 1000 M 1.884 2.887 3.943 3.564 4.695 5.962 6.7558.156 9.920 1.391 1.098 0.862
MM 1000 L 2.650 4.750 6.794 6.051 8.251  10.747 32.1 14455 18.097 2.664 1.030 0.635
ML 250 H 0.544 1.089 1.202 1.161 1.272 1.434 1.5851.855 2390 0.188 1.450 3.835
ML 250 M 0.942 1.412 1.747 1.620 1.948 2.373 2.6723.374 5.200 0.467 1590 3.486
ML 250 L 1.290 1.863 2.507 2.291 2.901 3.672 4.3015.429 6.732 0.863 1.436 2.314
ML 1000 H 0.906 1.651 2.073 1.930 2.374 2.856 3.1633.897 5.134 0563 1.213 1.695
ML 1000 M 2.222 3.316 4.691 4.267 5.658 7.113 8.1949.919 12408 1.735 1.080 0.888
ML 1000 L 3.274 5.470 8.169 7.383 10.062 12.801 13%. 18.075 20.618 3.345 1.019 0.644
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Table D.2

Key Descriptive Statistics for the RMSEA Modelhratex Under Misspecified Model Estimation

Item

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew  Kurt
HH 2 H 0.000 0.027 0.035 0.034 0.042 0.049 0.056 07®. 0.091 0.012 0.595 1.143
HH 2 M 0.016 0.051 0.064 0.062 0.073 0.086 0.092 10®». 0.133 0.016 0.517 0.143
HH 2 L 0.043 0.072 0.087 0.086 0.099 0.117 0.125 13D. 0.165 0.020 0.557 -0.113
HH 3 H 0.000 0.021 0.025 0.024 0.028 0.034 0.039 05D. 0.089 0.008 0.912 4.833
HH 3 M 0.000 0.041 0.047 0.046 0.052 0.059 0.064 07®. 0.126 0.009 0.687 2.072
HH 3 L 0.021  0.056 0.064 0.063 0.072 0.081 0.086 09®. 0.124 0.012 0.458 0.382
HM 2 H 0.000 0.027 0.036 0.035 0.044 0.051 0.056 06®. 0.115 0.012 0.509 0.506
HM 2 M 0.027  0.055 0.070 0.068 0.083 0.095 0.102 110. 0.132 0.018 0.251 -0.587
HM 2 L 0.049 0.082 0.100 0.099 0.118 0.134 0.142 158. 0.178 0.024 0.185 -0.649
HM 3 H 0.000 0.018 0.023 0.023 0.028 0.033 0.037 04D. 0.125 0.008 0.751 5.513
HM 3 M 0.000  0.040 0.048 0.048 0.056 0.062 0.067 07®. 0.091 0.011 0.164 -0.378
HM 3 L 0.036  0.059 0.070 0.070 0.080 0.088 0.093 10B. 0.117 0.014 0.088 -0.551
HL 2 H 0.000 0.036 0.046 0.045 0.054 0.064 0.069 07®. 0.105 0.013 0.401 -0.079
HL 2 M 0.040 0.070 0.086 0.084 0.100 0.115 0.123 13®. 0.159 0.020 0.304 -0.544
HL 2 L 0.062 0.100 0.121 0.117 0.138 0.160 0.168 17®. 0.203 0.026 0.349 -0.637
HL 3 H 0.000 0.023 0.030 0.030 0.036 0.042 0.046 05%. 0.083 0.010 0.256 1.070
HL 3 M 0.026  0.050 0.060 0.059 0.070 0.079 0.084 09®. 0.109 0.014 0.352 -0.455
HL 3 L 0.047  0.072 0.085 0.083 0.098 0.109 0.116 12®. 0.144 0.017 0.366 -0.571
MH 2 H 0.000 0.021 0.026 0.026 0.032 0.037 0.041 04®. 0.076 0.010 -0.297 1.097
MH 2 M 0.000 0.042 0.051 0.050 0.058 0.066 0.072 08h. 0.101 0.012 0.241 0.631
MH 2 L 0.026  0.060 0.071 0.070 0.081 0.093 0.100 11». 0.133 0.016 0.447 0.064
MH 3 H 0.000 0.015 0.018 0.020 0.023 0.027 0.030 03®. 0.062 0.008 -0.461 0.834
MH 3 M 0.000 0.032 0.037 0.037 0.042 0.048 0.052 059. 0.083 0.009 -0.619 2.822
MH 3 L 0.000 0.046 0.053 0.052 0.059 0.065 0.071 07®. 0.099 0.010 0.240 0.851
MM 2 H 0.000 0.023 0.029 0.029 0.035 0.041 0.045 058. 0.077 0.010 -0.311 1.105
MM 2 M 0.013 0.048 0.058 0.057 0.066 0.075 0.080 088. 0.118 0.013 0.244 -0.016
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ltem

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew  Kurt
MM 2 L 0.041 0.070  0.082 0.081 0.093 0.104 0.111 128. 0.140 0.017 0.280 -0.172
MM 3 H 0.000 0.016 0.020 0.021 0.025 0.029 0.032 040. 0.059 0.009 -0.391 0.643
MM 3 M 0.000 0.035 0.041 0.041 0.046 0.052 0.056 064. 0.089 0.009 -0.216 1.855
MM 3 L 0.018 0.051 0.058 0.058 0.065 0.072 0.076 088. 0.102 0.011 0.238 0.211
ML 2 H 0.000 0.028 0.034 0.034 0.040 0.047 0.051 059. 0.075 0.010 -0.202 1.361
ML 2 M 0.007  0.056 0.065 0.064 0.074 0.083 0.089 100. 0.130 0.014 0.349 0.148
ML 2 L 0.043  0.079 0.092 0.091 0.103 0.117 0.125 138. 0.151 0.017 0.432 -0.146
ML 3 H 0.000 0.020 0.024 0.024 0.028 0.033 0.037 04pD. 0.066 0.009 -0.320 1.665
ML 3 M 0.000 0.040 0.046 0.046 0.052 0.059 0.064 07P. 0.093 0.010 0.223 1.243
ML 3 L 0.034  0.057 0.065 0.064 0.072 0.081 0.087 096. 0.121 0.012 0.524 0.236
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Table D.3

Key Descriptive Statistics for the GDDM Model-Fitlex Under Misspecified Model Estimation

Item

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%%ile Max SD Skew Kurt
HH 2 H 0.003 0.005 0.006 0.005 0.006 0.007 0.007 00®. 0.015 0.001 1.726 7.479
HH 2 M 0.005 0.006 0.008 0.007 0.009 0.010 0.011 01®. 0.020 0.002 1.220 3.489
HH 2 L 0.006 0.008 0.010 0.009 0.011 0.013 0.014 01p. 0.026 0.002 1.071 1.343
HH 3 H 0.003 0.004 0.004 0.004 0.005 0.005 0.006 00®. 0.007 0.001 0.304 -0.141
HH 3 M 0.003 0.005 0.006 0.005 0.006 0.007 0.007 00®. 0.009 0.001 0.606 0.349
HH 3 L 0.004 0.006 0.007 0.007 0.007 0.008 0.009 00®. 0.010 0.001 0.555 0.045
HM 2 H 0.004 0.006 0.007 0.007 0.008 0.009 0.010 014. 0.019 0.002 2.041 6.706
HM 2 M 0.006 0.009 0.010 0.010 0.011 0.012 0.013 01p. 0.023 0.002 1.427 4.607
HM 2 L 0.008 0.011 0.013 0.013 0.015 0.017 0.019 02B. 0.030 0.003 0.975 1.310
HM 3 H 0.003 0.004 0.005 0.005 0.006 0.006 0.006 00D. 0.008 0.001 -0.183 -0.492
HM 3 M 0.004 0.006 0.006 0.006 0.007 0.007 0.008 00®. 0.010 0.001 0.058 -0.136
HM 3 L 0.004 0.007 0.008 0.008 0.008 0.009 0.010 010. 0.012 0.001 0.315 0.070
HL 2 H 0.005 0.007 0.008 0.008 0.009 0.010 0.011 014. 0.019 0.002 1.381 4.158
HL 2 M 0.008 0.011 0.013 0.013 0.014 0.016 0.017 019. 0.025 0.002 0.688 0.735
HL 2 L 0.011 0.014 0.017 0.016 0.020 0.023 0.024 026. 0.032 0.004 0.674 -0.445
HL 3 H 0.004 0.005 0.006 0.006 0.007 0.008 0.008 00®. 0.011 0.001 0.132 -0.812
HL 3 M 0.005 0.007 0.008 0.008 0.009 0.010 0.010 01D. 0.013 0.001 0.179 -0.627
HL 3 L 0.006 0.009 0.010 0.010 0.011 0.012 0.013 014. 0.015 0.002 0.062 -0.959
MH 2 H 0.004 0.005 0.007 0.007 0.008 0.009 0.009 01®». 0.016 0.002 1.021 3.162
MH 2 M 0.005 0.007 0.008 0.008 0.009 0.010 0.011 01B. 0.020 0.002 0.821 2.842
MH 2 L 0.006 0.008 0.010 0.009 0.011 0.013 0.013 01®. 0.022 0.002 0.644 0.218
MH 3 H 0.004 0.005 0.006 0.006 0.007 0.007 0.008 00®. 0.012 0.001 0.038 -0.312
MH 3 M 0.005 0.006 0.007 0.007 0.008 0.008 0.009 009. 0.011 0.001 0.263 -0.384
MH 3 L 0.004 0.007 0.008 0.008 0.009 0.009 0.010 01D. 0.012 0.001 0.566 0.063
MM 2 H 0.005 0.006 0.008 0.008 0.009 0.010 0.011 01®. 0.223 0.004 40.679 2012.237
MM 2 M 0.006 0.008 0.010 0.010 0.011 0.012 0.013 01b. 0.022 0.002 0.601 1.575
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Item

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
MM 2 L 0.007 0.010 0.012 0.012 0.014 0.015 0.016 018. 0.026 0.002 0.525 0.140
MM 3 H 0.004 0.006 0.007 0.007 0.008 0.008 0.008 009. 0.012 0.001 -0.273 -0.763
MM 3 M 0.005 0.007 0.008 0.008 0.008 0.009 0.009 010. 0.012 0.001 -0.112 -0.395
MM 3 L 0.006 0.008 0.009 0.009 0.010 0.010 0.011 01p. 0.014 0.001 0.100 -0.083
ML 2 H 0.005 0.007 0.009 0.009 0.010 0.012 0.013 01®. 0.249 0.004 44.307 2837.669
ML 2 M 0.007 0.010 0.012 0.012 0.013 0.014 0.015 01@. 0.027 0.002 0.394 0.313
ML 2 L 0.009 0.012 0.015 0.014 0.017 0.019 0.020 02p. 0.027 0.003 0.455 -0.519
ML 3 H 0.005 0.006 0.008 0.008 0.009 0.010 0.010 01®. 0.013 0.002 -0.067 -1.013
ML 3 M 0.006 0.008 0.009 0.009 0.010 0.011 0.012 018. 0.014 0.001 0.067 -0.597
ML 3 L 0.007 0.010 0.011 0.011 0.012 0.013 0.013 014. 0.016 0.002 0.027 -0.447
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Table D.4

Key Descriptive Statistics for they3/df Item-Fit Index Under Misspecified Model Estiroa

Miss.

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile M ax SD Skew Kurt
mod.1l.same 2 H 0.748 14.014 23.465 21500 30.648.1439 45.100 64.045 485.515 13.171 2.419 27.817
mod.1l.same 2 M 0.288 12.043 19.338 18.137 25.191 .9131 36.235 46.744 394.960 10.067 2.269  34.697
mod.1l.same 2 L 0.019 10.580 17.132 16.048 22.366 .5428 32.573 41.612 377.607 9.216 2799 50.131
mod.1l.same 3 H 0.257 13.827 22.943 20.693 29.867.1769 45.611 61.612 112.091 12.308 1.106 1.876
mod.1l.same 3 M 0.128 12.372 20.023 18.560 26.061 .6983 38.925 50.517 109.151 10.314 0.886 1.180
mod.1l.same 3 L 0.020 11.279 18.531 17.216 24.321.6091 36.376 46.423 87.870 9.706 0.804 0.827
mod.1.switch 2 H 1.051 18.973 33.159 27.897 40.9360.721 76.713 107.132 175.100 20.947 1.662 3.574
mod.1.switch 2 M 0.487 18.904 36.535 28.279  43.3981.487 98.827 143.678 262.609 28.094 2.156 5.792
mod.1.switch 2 L 0.345 18.680 38.908 28.599 45.4008.869 114.221 168.741 302.292 33.249 2.333 6.573
mod.1.switch 3 H 0.894 14.434 25.193 21.871 33.8645.398 51.610 63.412 104.602 13.880 0.883 0.443
mod.1.switch 3 M 0.551 12.384 20.241 18.627 26.8534.235 38.641 48.059 102.568 10.176  0.735 0.489
mod.1.switch 3 L 0.066 10.909 17.448 16.338 22.8829.252 33.149 41.379 78.703 8.679 0.697 0.500
mod.2.same 2 H 0.219 13.770 125.725 22.163 46.9938.683 609.841 1812.885 27021.276 441.816 12.792.588
mod.2.same 2 M 0.116 10.579 52.242 16.111 24.678.9580 186.305 836.792 8545.377 210.272 15.099 393.98
mod.2.same 2 L 0.169 9.540 36.172 14.583 21.375 2785. 93.543 512.590 9566.105 160.495 22.045 778.277
mod.2.same 3 H 0.308 11.145 23.281 16.977 24.424.2484 50.723 166.019 1115.139 38.028 10.923 170.145
mod.2.same 3 M 0.063 9.599 19.738 14.858 21.287 9628. 37.868 142.120 850.963 32.115 10.499 146.042
mod.2.same 3 L 0.216 8.648 18.346 13.781 20.465 4128. 35.104 117.972 759.482 29.303 10.564 145.485
sev.l.same 2 H 0.487 12.808 20.929 19.375 27.331.76B34 39.547 51.848 256.565 11.134 2.039 18.214
sev.l.same 2 M 0.292 12.029 19.323 18.094 25.177.9831 36.422 46.876 223.324 9.896 1.472  10.703
sev.l.same 2 L 0.057 11.442 18.608 17.290 24.167.3231 36.202 46.950 160.560 9.721 1.129 4.074
sev.l.same 3 H 0.341 13.815 22.249 20.298 28.731.33B7 42.995 58.703 126.347 11.589 1.156 2.594
sev.l.same 3 M 0.256 12.605 19.808 18.578 25.786.8432 37.349 46.717 89.693 9.665 0.728 0.678
sev.l.same 3 L 0.237 11.653 18.828 17.502 24.540.8491 36.662 47.022 104.341 9.728 0.848 1.113
sev.1.switch 2 H 0.555 14594 24.221 21.340 30.8582.378 51.020 69.023 118.980 13.581 1.245 2.009
sev.1.switch 2 M 0.716 14.647 25.236 21.699 31.9085.547 55.720 76.167 181.082 15.252 1.514 3.469
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Miss.

Type Dim. Corr. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile M ax SD Skew Kurt
sev.1l.switch 2 L 0.383 14.428 26.234 21.816 32.7748.455 61.153 90.836 210.926 17.611 1.877 5.257
sev.l.switch 3 H 0.023 12.684 22.273 19.682 29.5789.727 46.237 58.746 107.643 12.491  1.003 1.077
sev.1.switch 3 M 0.141 10.959 18.216 16.797 24.1381.199 35.461 44.120 94.217 9.429 0.773 0.629
sev.l.switch 3 L 0.006 9.581 15.808 14.743  20.9096.895 30.639 38.361 79.900 8.174  0.741 0.683
sev.l.under 2 H 1.074 17.267 32.311 26.576 41.16P.746 70.317 110.733 266.057 22507 2.635 13.728
sev.l.under 2 M 1915 15.634 27.523 23.643 35.6449.674 56.892 77.783 224.509 16.503 1.912 9.006
sev.l.under 2 L 1581 14.518 24.692 21.616 32.0333.939 50.602 63.724 213.732 13.950 1.594 7.146
sev.l.under 3 H 1573 15.254 30.655 23.724 43.6847.774% 65.842 91.402 122.018 19.425 1.066 0.832
sev.l.under 3 M 1.014 12,940 24.641 20.478 34.1224.004 50.278 77.761 122.946 15.096  1.337 2.763
sev.l.under 3 L 0.673 11.167 20.497 17.783 27.2086.458  41.743 69.777 136.841 12.739 1.752 5.598
sev.2.under 2 H 0.104 14.654 258.076 28.113 137.3830.501 1245.783 3545.207 25650.776 833.805 9.6648.726
sev.2.under 2 M 0.244 11.258 89.472 18.693 38.6574.465 412.608 1302.873 11114.762 313.766 12.359.228
sev.2.under 2 L 0.187 9.739 45737 15609 25.612 .3073 173.169 606.862 8238.769 155.991 16.747 588.48
sev.2.under 3 H 0.383 11.592 60.316 17.880 29.048.868 245.155 1013.244 2966.346 184.734 7.362 @7.71
sev.2.under 3 M 0.707 11.695 71.013 17.420 27.5187.7R2 317.521 1257.509 2901.645 214.683 6.008 062.6
sev.2.under 3 L 0.533 12.290 74.911 18.570 31.2180.4¥6 372.017 1084.404 2537.487 193.634 4.907 1@8.1
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Table D.5
Key Descriptive Statistics for Modification IndexJhder Misspecified Model Estimation

Sample
Corr. Sizz Dim. Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
H 250 2 0 0.202 1.960 0.811 2.242 4.843 7.680 17.1999.000 4.758 108.522 22441.240
H 250 3 0 0.106  1.086 0.465 1.369 2.900 4,263 7.8698.018 1.655 3.518 21.060
H 1000 2 0 1.322 8.731 3.676 8.527 20.597 38.001 .6882 220.633 15.650 4.141 22.161
H 1000 3 0 0.262  3.205 1.124 3.457 8.337 14.187 273. 84.052 5.711 3.795 19.278
M 250 2 0 0.689 5.470 2.292 5.619 12,943 22.819 9&FH0. 999.000 11.927 31.789 2479.710
M 250 3 0 0.204  2.326 0.909 2.753 6.180 9.561 .02/3.667 3.824 3.719 20.974
M 1000 2 0 5,708 27.726 11.482 23.778 66.156 129.9957.235 999.000 48.995 3.846 18.245
M 1000 3 0 0.481 9.211 2.372 8.645 24.811 47.543 9871 999.000 18.331 4.258 48.841
L 250 2 0 1566 10.450 4.384 10.100 24.873 45.89B.099 999.000 19.795 9.602 332.279
L 250 3 0 0.287  3.877 1.325 4,193 10.284 17.050 38%. 122.883 6.952 3.853 20.546
L 1000 2 0 12.033 52.968 21.580 42.221 127.962 6298. 485.490 999.000 92.389 3.599 14.881
L 1000 3 0 0.611 16.778 3.330 15.458 46.895 90.98%1.267 999.000 34.257 3.721 20.257
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Table D.6
Key Descriptive Statistics for Wald Test 1 Undesdgecified Model Estimation

Item  Sample Miss.

Type Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
HH 250 mod.1l.same 0.307 18577 14939 14576 11.060183 6.045 2300 56.130 5.760 0.335 0.514
HH 250 mod.1l.switch  -0.023 14485 11.918 11.413 9B.7 6.734 5.691 3.974 41.015 4.407 0.802 1.339
HH 250 mod.2.same -3.530 2.958 1.830 1.701 0.420 .6350 -1.018 -1.683 13,516 1.972 0.649 0.755
HH 250 sev.l.same 0.415 18.201 14.749 14.381 11.066296 5.638 2.075 51451 5696 0.321 0.658
HH 250 sev.1.switch -1.490 13.888 10.954 10.735 0.8 4.424 2.263 1.202 54378 5.083 0.579 1.735
HH 250 sev.l.under 0.901 20.530 15.191 15.627 8.088.621 2.976 2.146 70.524 8371 0.413 0.594
HH 250 sev.2.under -4.205 1.896 0.753 0.835 -0.564.360 -1.735 -2.415 9.264 1.609 0.158 -0.312
HH 1000 mod.1l.same 3.492 33.936 27913 27557 81.917.461 14.315 8.448 58.854 8.468 0.057 -0.270
HH 1000  mod.1.switch 5.306 24.397 21.042 20.785 424. 14.737 13.151 10.644 42.694 5.052 0.261  -0.118
HH 1000 mod.2.same -4.207 3.733 2.553 2.073 0.58®.633 -1.155 -2.255 17.531 3.001 1.369 2.601
HH 1000 sev.l.same 3.105 32.949 27479 27.025 22.168.114 14.285 7.693 58.810 8.092 0.024 0.050
HH 1000 sev.l.switch 0.685 24.081 19.894 20.271 38k6. 11.341 7.574 4.398 42284 6.246 -0.344  0.133
HH 1000 sev.l.under 4911 38.424 30.173 31.202 021.913.251 11.018 7.999 68.020 11.396 -0.105 -0.669
HH 1000 sev.2.under -4.030 2.375 1.194 1.198 -0.07D.993 -1.508 -2.469 7.455 1.699 0.110 -0.279
HM 250 mod.1l.same -0.218 19.945 16.008 15.838 B1.708.299 6.523 4286 46.859 5.969 0.303 -0.026
HM 250 mod.1.switch 1.131 16.086 13.013 12.768 B.58 7.179 6.028 4.293 43.268 4.635 0.426 0.176
HM 250 mod.2.same -4.519 3.014 1.639 1.610 -0.0549.019 -1.418 -2.080 13.035 2.097 0.451 0.161
HM 250 sev.l.same 1.582 20.127 16.151 15.963 11.98623 6.479 3.875 44850 5.933 0.233  -0.037
HM 250 sev.1.switch -1.452 15.181 11.653 11.373 34.7 5.001 3.729 2316 43.866 5.171 0.387  -0.043
HM 250 sev.l.under 1.371 19.346 15.201 14.568 10.036.859 5.519 3.933 64.068 6.889 0.817 1.428
HM 250 sev.2.under -3.443 2.291 1.084 1.140 -0.324..180 -1.541 -2.186 7.577 1.723 0.184 -0.480
HM 1000 mod.1l.same 6.978 37.679 30.643 30.624 P3.608.186 15.719 12.269 63.542 9.203 0.033 -0.714
HM 1000  mod.1.switch 5.266 29.203 24.117 23.720 7@B. 15.494 13.780 10.821 47.566 6.807 0.172  -0.642
HM 1000 mod.2.same -2.609 4.105 2.999 2.579 1.339.2350 -0.357 -1.073 15.529 2.504 1.096 1.519
HM 1000 sev.l.same 7.215 37.813 30.992 30.703 24.219.653 16.994 12.863 60.853 8.780 0.050 -0.691
HM 1000 sev.1.switch 2.375 27.353 22.046 21.575 8mB. 12594 10.311 7.035 47.947 7.311 0.137 -0.512
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Item  Sample Miss.

Type Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt

HM 1000 sev.l.under 7.596 36.945 30.459 30.323 (23.518.126 15.573 11.300 67.929 9.311 0.131  -0.375
HM 1000 sev.2.under -3.132 3.535 2.106 1.928 0.5580.352 -0.805 -1573 9.231 1981 0.341 -0.446
HL 250 mod.1.same 0.668 20.019 16.691 16.653 13.291638 7.543 5.047 48.125 5.361 0.210 0.406
HL 250 mod.1.switch 2.756 17551 14.768 14.496 31.6 9.395 8.345 6.544 39.729 4.281 0.434 0.228
HL 250 mod.2.same -3.655 3.171 1.892 1.871 0.422 .71 -1.150 -1.867 12.376 1.990 0.371 0.163
HL 250 sev.l.same 2.576 20.146 17.160 16.915 13.931.141 9.227 6.270 47.937 4944  0.365 0.666
HL 250 sev.1.switch 1.003 16.965 13.734 13.675 3m.3 7.315 5.867 4,092 37.117 4.822 0.218 -0.092
HL 250 sev.l.under 2.933 22.633 18.109 17.879 ¥2.829.253 7.673 5.621 60.712 6.896 0.431 0.125
HL 250 sev.2.under -3.819 2.608 1.475 1.423 0.1870.728 -1.176 -1.886 8.018 1.727 0.309 -0.132
HL 1000 mod.1.same 4.689 36.937 31590 32.316 87.120.282 16.752 11.868 60.663 7.813 -0.422 0.028
HL 1000 mod.1.switch  10.622 32551 28.138 28.053 .5ZB 20.131 18.257 15.395 51.105 6.123 0.100 -0.494
HL 1000 mod.2.same -2.648 5.121 3.765 3.411 1.980.8290 0.186 -0.807 16.938 2.564 0.795 0.715
HL 1000 sev.l.same 8.028 37.005 32.400 32.746 08.193.392 20.168 15.377 58.706 6.786 -0.249  0.069
HL 1000 sev.l.switch 4.789 31573 26.302 26.803 34A. 16.277 13.604 9.549 48851 7.215 -0.222 -0.416
HL 1000 sev.l.under 8.584 42,662 35.106 35.453 277.120.418 17.710 13530 74.101 10.700 0.030 -0.565
HL 1000 sev.2.under -2.257 4.065 2.630 2.252 0.970€.052 -0.418 -1.011 11934 2195 0.616 -0.081
MH 250 mod.1.same 0.495 11.641  9.638 9.364 7.311 7405. 4.881 3.534 27.537 3.209 0.525 0.356
MH 250 mod.1.switch  -0.758 8.919 7.387 7.203 5.6614.355 3.661 2.398 20.770 2.482 0.502 0.676
MH 250 mod.2.same -2.880 2.444 1.505 1.403 0.404 4620 -0.783 -1.335 10.147 1551 0.576 0.614
MH 250 sev.l.same 0.573 11.512  9.547 9.246 7.266 6985. 4.849 3.479 27.011 3.178 0.541 0.388
MH 250 sev.1.switch -1.344 8.784 7.125 7.032 5.3053.820 3.049 1.738 21.063 2.616 0.350 0.362
MH 250 sev.l.under 1.975 13.546 10.829 10.725  7.798.553 4.597 3.459 30.410 4.047 0.379 0.036
MH 250 sev.2.under -2.470 1.453 0.687 0.694 -0.198.776  -1.040 -1.468 6.114 1.120 0.242 -0.236
MH 1000 mod.1.same 5.883 21470 18.219 17.800 14.692.419 11.226 9.347 38585 4.666 0.332 -0.372
MH 1000  mod.1.switch 2.533 15965 13.798 13.704 594. 9.807 8.782 6.834 25.069 3.156 0.101 -0.161
MH 1000 mod.2.same -2.256 3.812 2.654 2.350 1.083.016 -0.515 -1.105 14.786 2.286 0.958 1.291
MH 1000 sev.l.same 5.142 21.172 18.083 17.568 94.702.543 11.359 9.397 37.919 4.558 0.394 -0.272
MH 1000 sev.l.switch 1.340 15.762 13.518 13,551 318. 9.237 7.899 5.047 27.619 3.385 -0.089 0.126
MH 1000 sev.l.under 6.618 24870 21.265 21.282 617.614.045 12.125 9575 39.774 5.342 0.011 -0.293
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Item  Sample Miss.

Type Size Type Min 25%ile Mean Median 75%ile 90%ile 95%ile 99%ile Max SD Skew Kurt
MH 1000 sev.2.under -3.154 1.926 1.003 1.052 0.0540.825 -1.257 -1.933 6.327 1.351 0.008 -0.259
MM 250 mod.1.same 0.954 12.430 10.318 10.031  7.94@.282 5.427 3.987 28.140 3.291 0.479 0.226
MM 250 mod.1.switch 0.008 9.783 8.099 7.946 6.287 .88¢  4.098 2.750 24.221 2595 0.370 0.361
MM 250 mod.2.same -2.477 2.488 1574 1.499 0.533 .34@ -0.690 -1.232 9.806 1480 0.492 0.512
MM 250 sev.l.same -17.904  12.477 10.403 10.100 28.036.462 5.603 4,179 27.486 3.271 0.374 0.952
MM 250 sev.l.switch  -15.813 9.316 7.636 7.477 5.7724.376 3.559 2.161 20.670 2.663 0.312 0.606
MM 250 sev.l.under -16.963 12,925 10.866 10.581 8B.4 6.765 5.811 4230 29.879 3.436 0.352 1.862
MM 250 sev.2.under -2.629 1.694 0.929 0.918 0.0920.585 -0.875 -1.384 6.360 1.144 0.200 -0.129
MM 1000 mod.1.same 5.705 23.259 19.599 19.128 7¥5.783.266 11.966 9.859 37.653 5.044 0.266 -0.553
MM 1000  mod.1.switch 3.912 17.790 15.265 15.129 64@. 10.634 9.508 7.465 28.256 3.637 0.138 -0.328
MM 1000 mod.2.same -2.087 3.940 2.795 2.569 1.336.2780 -0.283 -0.897 11.838 2.096 0.706 0.575
MM 1000 sev.l.same 5.678 23.443 19.760 19.235 7¥6.013.720 12.499 10.422 37.016 4.867 0.272  -0.583
MM 1000 sev.1.switch 1.058 17.101 14527 14.451 943. 09.729 8.479 5.752 28.248 3.774 0.046  -0.149
MM 1000 sev.l.under 7.399 24534 21.050 21.160 167.614.540 12.942 10.223 39.679 4.866 -0.028 -0.382
MM 1000 sev.2.under -2.362 2.380 1.494 1.454 0.5480.289 -0.663 -1.299 7.517 1.367 0.276 0.054
ML 250 mod.1.same 0.649 12.194 10.317 10.147  8.238.615 5.667 4.060 31.537 3.011 0.389 0.407
ML 250 mod.1.switch  -0.141 10.664  9.078 8.981 7.3635.992 5.216 3.850 22.728 2.478 0.286 0.238
ML 250 mod.2.same -2.358 2.610 1.686 1.635 0.661 .229 -0.631 -1.191 9568 1480 0.418 0.433
ML 250 sev.l.same -19.132  12.273 10.451 10.244 98.436.870 6.003 4463 27.042 2945 0.365 1.037
ML 250 sev.l.switch -13.168 10.369  8.710 8.619 8.89 5.458 4.637 3.180 21.886 2.603 0.234 0.508
ML 250 sev.l.under  -25.022  14.453 12.127 12.002 2®.6 7.511 6.408 4766 29.106 3.640 0.142 1.540
ML 250 sev.2.under -2.386 1.822 1.027 1.004 0.1480.543 -0.842 -1.341 6.899 1205 0.286 -0.090
ML 1000 mod.1.same 4.438 22.679 19.611 19.569 B6.583.801 12.202 9.704 38.238 4.435 0.018 -0.245
ML 1000  mod.1.switch 3.983 19.776 17.381 17.351 963. 12.979 11.858 10.096 30.710 3.385 0.046 -0.310
ML 1000 mod.2.same -2.183 4.423 3.200 3.020 1.761.680 0.079 -0.727 12306 2.062 0.517 0.230
ML 1000 sev.l.same 4.863 22.681 19.830 19.757 56.904.462 13.082 10.760 36.646 4.164 0.091 -0.217
ML 1000 sev.1.switch 3.046 19.222 16.669 16.754 188. 11.820 10.517 8.036 29.621 3.655 -0.111 -0.200
ML 1000 sev.l.under 6.919 27.051 23.112 23.420 (®.115.244 13.617 11.109 43.129 5.605 -0.088 -0.489
ML 1000 sev.2.under -2.383 2.854 1.889 1.798 0.8240.086 -0.555 -1.209 9.759 1557 0.404 0.281
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