
 

 

WP 17-05 

The Contributions of Weather, Technological 
Change, and Adaptation to Agricultural 
Productivity Growth 
 

Robert G. Chambers 
University of Maryland  
Department of Agricultural and Resource Economics 
 

Simone Pieralli 
European Commission 
Joint Research Centre 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2017 by Robert G. Chambers and Simone Pieralli 

All rights reserved.  Readers may make verbatim copies of this document for non-commercial purposes by any 
means, provided that this copyright notice appears on all such copies. 

http://www.arec.umd.edu


The Contributions of Weather, Technological Change, and

Adaptation to Agricultural Productivity Growth

Robert G Chambers1 and Simone Pieralli2

March 20, 2017

1Agricultural and Resource Economics, University of Maryland, School of Economics, University of

Queensland.
2European Commission, Joint Research Centre. The work has been performed outside the European

Commission and does not represent in any case the views of this organization on this topic.



1 Introduction

Much of what is known about the production effects of climate change comes from agricultural

studies (Dell, Jones, and Olken 2014). Broadly speaking, two approaches have evolved for investi-

gating the effects of weather on agricultural production. One, often referred to as the "production-

function" or "agronomic" approach, uses experimental data to construct a "production function"

that incorporates climatic factors. These production functions are then combined with data from

climate-change models to approximate possible climatic effects upon production levels (see for ex-

ample, Adams 1989; Adams et al. 1990; Rosenzweig and Parry 1994). Another, often referred to

as Ricardian, relates economic returns from farming to weather variates econometrically and then

links those results to climate-change models (see for example, Mendelsohn, Nordhaus, and Shaw

1994; Schlenker, Hanemann, and Fisher 2005; Deschênes and Greenstone 2007; Fisher, Hanemann,

Roberts, and Schlenker 2012; Yang and Shumway 2016).

This paper examines the interrelationship between weather variates and agricultural production

from a different perspective. It examines the interplay between aggregate agricultural productivity

measures and weather variates. US agriculture offers a peculiarly appropriate laboratory for such

an analysis because it has proven capable of continuously increasing aggregate production with

minimal increases in aggregate input use. This tendency, first noted almost seven decades ago by

Barton and Cooper (1948), has now persisted for a century (Barton and Cooper 1948; Ball, Wang,

Nehring, and Mosheim 2015) and distinguishes agriculture from many other industrial sectors where

the primary driver of production growth is input growth (Jorgenson, Ho, and Stiroh 2005).1

Working from Abramovitz’s (1956) hypothesis that the measured difference between output

growth and input growth, the so-called Solow residual, was a "measure of our ignorance", early

agricultural productivity studies strove to eliminate this residual. These early efforts culminated

in Griliches (1963). His classic analysis emphasized the importance of changes in input quality

and economies of scale rather than technical change in explaining observed productivity growth.

Since that time, however, US agriculture has undergone a massive consolidation. Moreover, the

quality corrections advocated by Griliches’(1960; 1963) were long ago incorporated into total factor

productivity (TFP) calculations. But the residual remains, and the conventional wisdom is that

most of aggregate US agricultural output growth results from technical progress (Jorgenson, Ho,

Stiroh 2005; Wang, Heisey, Schimmelfpfennig, and Ball 2015).

Although US agricultural productivity has grown steadily, that growth has become quite vari-

able. Figure 1, which depicts annual growth rates of US agricultural TFP from 1948-2013, illus-

trates. Prior to 1970, growth was relatively stable. But around 1970, it became less stable. Some of

this instability is attributable to external factors including the first and second oil shocks and gov-

1While aggregate agricultural input use has remained remarkably stable for almost a century, the composition of

that aggregate input has changed markedly over the last 40 years as the usage of intermediate inputs has steadily

supplanted both capital (including land) and labor in the aggregate input. Ball, Wang, Nehring, and Mosheim (2015)

contains a detailed discussion of this changing composition.
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ernment production-reduction programs. But even after adjusting for these factors, US agricultural

TFP growth after 1990 was clearly more variable than it had been prior to 1970.

Another perspective on the same phenomenon comes from examining US state-level agricultural

TFP patterns. In Figure 2, we have plotted smoothed estimated kernel densities for state-level agri-

cultural TFP for each of the 48 contiguous US states over two 14-year time periods 1961-1974 and

1991-2004. As demonstrated by the apparent mean shift, average state-level TFP grew dramatically

between these two periods. Given the observed level of national agricultural productivity growth,

this mean shift is to be expected. But the 1991-2004 TFP distribution is also more platykurtic than

that for 1961-1974. In the 1961-1974 period the observed kurtosis is 6.9647,2 with a standard error

of 0.1882 indicative of a leptokurtic distribution with a long, fat tail. For 1991-2004, the calculated

kurtosis is 3.5515 indicative of a slightly leptokurtic and more symmetric distribution.

A natural suspect for this increased variability is weather. There seems little doubt that US

weather patterns changed during the last half of the 20th century. And some empirical evidence

suggests that regional weather patterns play a significant role in explaining national-level agricul-

tural TFP variability (Liang, Wu, Chambers et al. 2017). But even though weather-determined

factors, such as precipitation, are inputs to agricultural production, they are typically excluded in

agricultural TFP calculations. Thus, while offi cial statistics account for inputs, such as climate-

control and irrigation, that are devoted to mitigating the effects of adverse weather outcomes, the

weather events driving these expenditures are absent from the accounting.

This paper investigates the interaction between US state-level agricultural TFP growth and

weather outcomes using growth-accounting techniques. The focus is on determining whether that

interaction was different at the end of the 20th century than in the 1960s. To that end, United

States Department of Agriculture (USDA) state-level productivity data for 1960-2004 are combined

with matching data on growing degree days and moisture (Schlenker and Roberts 2008, 2009). The

combined data are used to construct an aggregate agricultural production frontier that incorporates

observed weather variates into the empirical approximation of the technology. The constructed

frontier is used to decompose observed state-level agricultural TFP growth into four components:

technical change, weather-related shifts in the frontier, aggregate input growth, and adaptation to

the frontier.

The productivity frontier is developed using mathematical programming techniques. These

techniques do not require specific assumptions on economic behavior or functional form. The

analysis focuses on comparing agricultural TFP performance during two 14-year sub-periods 1961-

74 and 1991-2004 that correspond to the beginning and the end of our sample period. The periods

are chosen to omit the policy-driven shocks to agricultural TFP of the Payment-In-Kind (PIK)

2Kurtosis is calculated as,

(n− 1)

(n− 2)(n− 3)

(
(n+ 1)

1
n

∑n
i=1 (xi − x̄)4(

1
n

∑n
i=1 (xi − x̄)2

)2 − 3(n− 1)

)
+ 3

(Harald Cramér 1946, pp. 386-387).
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agricultural programs of the early 1980s. The empirical analysis suggests that the perceived changes

in state-level TFP growth as captured by its average and its distribution can largely be attributed

to technical change and changes in the pattern of states adopting existing technical improvements.

And while weather-related effects are important for some key states, weather effects on the average

state-level TFP growth and on the distribution of TFP growth appear minimal.

In what follows, the basic model is developed. The process by which state-level data is used to

construct an approximation to the agricultural production frontier is detailed. The traditional TFP

measure is decomposed, using index method techniques, into four parts relative to that frontier.

The four parts are a weather index, an index of technical change, an effi ciency or adaptation

measure, and a measure of true TFP or scale effects. We then briefly discuss a computational issue

associated with our approach and how that issue can be used to infer information about weather-

related effects. The empirical analysis then follows. Average results, results for the distributions of

the various measures, and results for four subgroups of states are then discussed. The paper then

concludes.

2 The Basic Model

2.1 Constructing the Productivity Frontier

Our data consist of annual observations for the period 1960-2004 for the 48 contiguous US states

on total agricultural output, total agricultural input, and two measured weather variates. The

first weather variate consists of state-level observations on degree days (DD) between 8o and 30o

Celsius between March and August, and the second consists of inches of precipitation over the same

period.3

The essential idea is to use these data to construct an empirical approximation to the aggregate

production technology relating aggregate output to the aggregate input measures and weather

variates. By incorporating weather variates as inputs to the production process, we recognize the

fundamentally stochastic nature of agricultural production that derives from its dependence upon

physical inputs that are beyond the producer’s control. This contrasts strongly with many existing

studies of agricultural TFP that are built upon a model of a nonstochastic technology that denies

the essential nature of agricultural production.4

To approximate the technology underlying these data, we rely on techniques originally developed

3All of our data were obtained from V. Eldon Ball of the Economic Research Service, United States Department

of Agriculture to whom we are deeply indebted.
4A sizable literature has evolved on attempting to explain measured aggregate agricultural TFP. Alston, Norton,

and Pardey (1995) provide a thorough introduction and explanation of the approach and the technical issues involved.

The basic approach is to construct an aggregate TFP measure and then in a second stage use regression analysis to

relate those measures to potential "explanatory variables" or "productivity drivers", some of which include weather

variates.
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by Farrell (1957) and Afriat (1972) as extended by a number of authors under the general rubrics of

"nonparametric productivity analysis" and "data envelopment analysis" (Charnes, Cooper, Golany,

Seiford, and Stutz 1985; Färe, Grosskopf, Lovell, and Pasurka 1989; Färe, Grosskopf, Lovell, and

Yaisawarng 1993; Byrnes, Färe, Grosskopf, and Lovell, 1988; Kumar and Russell 2002; Henderson

and Russell 2005).5 The basic idea behind this approach, which has its ultimate roots in the activity-

analysis model of Koopmans (1951), is that each observed input-output combination (process) can

be recognized as one manifestation of the feasible technology. That underlying technology is then

approximated by incorporating these observed processes with basic axioms of production to arrive

at a conservative approximation to the underlying technology. The ultimate result is an approxi-

mation that can be expressed completely in terms of inequalities involving linear combinations of

the observed processes. That polyhedral approximation to the technology can be analyzed using

relatively simple mathematical programming techniques.

The first step is to envelop the observed data on output, inputs, and weather variates by

taking their convex hull (the smallest convex set containing all the observed data points). This

envelopment gives the smallest set of outputs, inputs, and weather variates that are consistent

with the observed data and the existence of convex production technology. This convex hull thus

represents the most conservative approximation to the data consistent with a convex technology.

After that envelopment is accomplished, additional assumptions on the underlying technology are

invoked to extend that approximation.

Denote aggregate agricultural output for the kth state at time t by ytk, aggregate agricultural

input use for the kth state at time t by xtk, and the two-vector of measured weather variates for

the kth state at time t by wtk. The convex hull of these observations is given by

C (t) =

{
(y, x, w) : y =

∑t
j=1

∑48
k=1 µjkyjk, w =

∑t
j=1

∑48
k=1 µjkwjk, x =

∑t
j=1

∑48
k=1 µjkxjk,

1 =
∑t
j=1

∑48
k=1 µjk, µjk ≥ 0, j = 1, . . . , t

}
.

The next step in forming the approximation is to assume that if a particular (y, x, w) is technically

feasible any radial contraction of that (y, x, w) is also technically feasible. Intuitively, this ensures

that the approximation to the technology does not exhibit increasing returns and that inaction is

technically feasible.6 Mathematically, this is accomplished by replacing the µjk "activity variates"

in C (t) with new activity variates, call them λjk, while requiring the latter’s sum to be less than

or equal to one as opposed to one for the former. The result is

N (t) =

{
(y, x, w) : y =

∑t
j=1

∑48
k=1 λjkyjk, w =

∑t
j=1

∑48
k=1 λjkwjk, x =

∑t
j=1

∑48
k=1 λjkxjk,

1 ≥
∑t
j=1

∑48
k=1 λjk, λjk ≥ 0, j = 1, . . . , t

}
5Färe, Grosskopf, and Lovell (1994) contains a relatively complete survey in textbook form of the early economic

work on nonparametric productivity analysis. After the contribution of Charnes, Cooper, and Rhodes (1978), a

closely related literature has developed in parallel in the area of operations research. These contributions have been

summarized in Charnes, Cooper, Lewin and Seiford (1994).
6See the discussion in the Infeasibilities section for more on this assumption.
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The final step is to impose "free disposability" of (y, x) upon the observations. This is accomplished

by converting the equalities in N (t) relating to (y, x) into weak inequalities. In intuitive terms, this

ensures that the marginal product of x in producing y is nonnegative. The resulting approximation

to the technology at time t is

T (t) =

{
(y, x, w) : y ≤

∑t
j=1

∑48
k=1 λjkyjk, w =

∑t
j=1

∑48
k=1 λjkwjk, x ≥

∑t
j=1

∑48
k=1 λjkxjk,

1 ≥
∑t
j=1

∑48
k=1 λjk, λjk ≥ 0, j = 1, . . . , t

}

There are several things to note. First, free disposability is not imposed upon the weather

variates in our approximation to the technology. This reflects the fact that either too much heat or

too much moisture applied to a fixed x can be destructive to the agricultural production process. In

fact, one of the main biological problems associated with plant growth is heat stress while another is

excess moisture. Thus, where our approximation requires x ≥
∑t
j=1

∑48
k=1 λjkxjk, for the weather

variates it requires w =
∑t
j=1

∑48
k=1 λjkwjk.

Second, technical change is assumed to be progressive, that is, for t′ > t, T (t) ⊆ T (t′) . This can

be ascertained by noting, for example, that T (1) is constructed from the state-level observations for

the 48 contiguous states for the first-year in the sample. T (2) is based on the observations used in

T (1) plus the observations from the second year and so on. Our rationale for imposing progressive

technical change is simple. It seems impossible to believe that technical know how for a given set

of inputs (including weather, climate conditions, etc.) would degrade in modern times. As Kumar

and Russell (2002) memorably queried: "Does knowledge decay? Were "blueprints" lost?"

Because confusion appears to exist in some quarters on this issue, it is important to empha-

size that this claim presumes proper accounting of all factors affecting production. It is clear, for

example, that certain practices can degrade the natural-resource base to preclude achieving pre-

vious levels of yields from application of a given bundle of variable inputs (including weather and

other climate-controlled factors). Soil exhaustion by improper rotational techniques is an obvious

example from agriculture. In some quarters, this has been perceived as technical regression. That

is incorrect. Properly speaking, such examples do not constitute a change in what is technically

possible from a given bundle of inputs, but either a degraded quasi-fixed factor of production or a

degraded flow from such a factor. Modern accounting practices for quasi-fixed inputs, such as land

and capital, make explicit corrections using hedonic and other methods in an attempt to ensure

measured resource flow units are consistently defined from one period to the next (Ball, Wang, and

Nehring 2015).

From this representation of the underlying technology, we can construct the following represen-

tation of the maximal feasible output at time t as conditioned by aggregate input and the weather

variates as

ft (x,w) = max

{ ∑t
j=1

∑48
k=1 λjkyjk : w =

∑t
j=1

∑48
k=1 λjkwjk, x ≥

∑t
j=1

∑48
k=1 λjkxjk,

1 ≥
∑t
j=1

∑48
k=1 λjk, λjk ≥ 0, j = 1, . . . , t

}
.
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2.2 The Components of TFP Change

Because the empirical procedure relies on enveloping observed data, some observations will fall

below the piece-wise linear approximation to the productivity frontier. The observations that lie

inside the productivity frontier are usually construed as being technically ineffi cient. A measure of

that ineffi ciency is given by the ratio

Et (yt, xt, wt) =
yt

ft (xt, wt)

that relates observed output, yt, to the maximal feasible output for (xt,wt) , ft (xt, wt). If Et (yt, xt, wt) =

1, it reflects "state-of-the-art" performance relative to that frontier signalling that the state in ques-

tion has completely adapted to existing technical possibilities. If Et (yt, xt, wt) < 1, its adaptation

to the best-practice frontier remains imperfect.

Using Et (yt, xt, wt) and decomposition techniques pioneered by Färe, Grosskopf, Norris, and

Zhang (1994), Kumar and Russell (2002), and Henderson and Russell (2005) observed changes in

a TFP index over time can be decomposed into four components. At time t, the index of TFP

relative to the base period 0 is defined by7

TFP (t, 0) ≡ yt/xt
y0/x0

.

Using Et (yt, xt, wt) , that index can be rewritten as

yt/xt
y0/x0

=
Et (yt, xt, wt) ft (xt, wt)x0
E0 (y0, x0, w0) f0 (x0, w0)xt

=

(
f0 (xt, wt) ft (xt, wt)

f0 (xt, w0) ft (xt, w0)

) 1
2
(
ft (x0, w0) ft (xt, wt)

f0 (x0, w0) f0 (xt, wt)

) 1
2
(
f0 (xt, w0) /xt
f0 (x0, w0) /x0

ft (xt, w0) /xt
ft (x0, w0) /x0

) 1
2 Et (yt, xt, wt)

E0 (y0, x0, w0)
.

The second equality breaks the observed index into four separate measures.8

7Given the presence of w in f, the "TFP" measure that we employ is more appropriately interpreted as a partial-

productivity measure giving the "productivity of x”. A true total factor productivity measure would directly incor-

porate the weather variates into the calculation of the aggregate input. However, y/x is the standard or conventional

TFP measure as calculated by USDA, and so we adhere to that naming convention in our discussion.
8Geometric averages are used in the decomposition because, for example, both

yt/xt
y0/x0

=
Et (yt, xt, wt) ft (xt, wt) f0 (xt, wt) f0 (xt, w0)x0
E0 (y0, x0, w0) f0 (xt, wt) f0 (xt, w0) f0 (x0, w0)xt

,

and
yt/xt
y0/x0

=
Et (yt, xt, wt) ft (x0, w0) ft (xt, wt) ft (xt, w0)x0
E0 (y0, x0, w0) f0 (x0, w0) ft (xt, w0) ft (x0, w0)xt

,

decompose observed productivity growth into a technical change index, a weather index, and an effi ciency component.

In the former, the weather index is ft(xt,wt)
ft(xt,w0)

while in the latter it is f0(xt,wt)
f0(xt,w0)

. One describes the weather effect relative

to the t-relevant technology and the other to the 0-relevant technology. The same is true for the index of the aggregate

input effect. Similarly for the technical change index, one makes the comparison for the t-relevant data and the other

for 0-relevant data. In each case, either a different data point or a different f is used as the base of comparison, and

will typically result in different measures much in the same manner that more traditional Laspeyres and Paasche

indices differ from one another. And unless the underlying technology satisfies a restrictive neutrality condition, the
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The first measure, (
f0 (xt, wt) ft (xt, wt)

f0 (xt, w0) ft (xt, w0)

) 1
2

,

is the geometric average of two measures of how changes in w affect maximal production at time

t and at time 0 holding aggregate input utilization fixed at xt.9 We refer to it as the weather

component of the productivity index.

The second component, (
ft (x0, w0) ft (xt, wt)

f0 (x0, w0) f0 (xt, wt)

) 1
2

,

represents the geometric average of the shift in the production function between 0 and t as evaluated

at the observed aggregate input and weather variates for 0 and t. We refer to it as the technical

change component of the productivity index.

The third component, the input component of the productivity index,(
f0 (xt, w0) /xt
f0 (x0, w0) /x0

ft (xt, w0) /xt
ft (x0, w0) /x0

) 1
2

is the geometric average of the index of total factor productivity for input xt relative to x0 computed

using maximal feasible output for the 0 period technology (holding weather fixed at w0),

f0 (xt, w0) /xt
f0 (x0, w0) /x0

,

and the same TFP index computed for the t period technology,

ft (xt, w0) /xt
ft (x0, w0) /x0

Each component differs from TFP (t, 0) by replacing observed output with maximal feasible output

(holding w0 fixed). Thus, each component may be thought of as the potential TFP of xt relative

to x0 for the respective technologies. A standard computation, however, also shows that if average

product, fk (x,w) /x for k = 0, t , is increasing in x, some economies of scale in x exist as one moves

along the maximal output frontier holding w constant. Thus, if, say, ft(xt,w0)/xtft(x0,w0)/x0
> 1, it provides

evidence of exploitation of existing scale economies in x for technology t.

resulting decompositions will differ. Caves, Christensen, and Diewert (1982), Färe, Grosskopf, Norris, and Zhang

(1994), and Kumar and Russell (2002) suggest resolving the resulting indeterminacy by using the "Fisher ideal"

version of the two measures. Adopting that suggestion results in the geometric averaging procedure.
9Another possibility is to hold the input bundle constant at x0,(

f0 (x0, wt) ft (x0, wt)

f0 (x0, w0) ft (x0, w0)

) 1
2

,

in computing the weather index. This measure can be geometrically averaged with the current measure to generate

an even more general weather index. But as a practical matter, this construction exacerbates the infeasibility problem

discussed below and so was avoided.
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The final component of the decomposition,

Et (yt, xt, wt)

E0 (y0, x0, w0)

compares the relative effi ciency with which the technology is used in time t and in time 0. If it is

greater than one, the state has moved closer to the frontier between time 0 and time t signalling

adaptation to changing technical practice. If it is less than one, the state has moved further away

from the frontier, signalling failure to keep up with the "best-practice" technology.

Logarithmic differences in agricultural TFP, which approximate percentage changes, between t

and 0 can thus be decomposed into four parts:

ln
yt
xt
− ln

y0
x0

= T∆t,0 (wt, w0, xt, x0) +W∆t,0 (wt, w0, xt, x0) +X∆t,0 (wt, w0, xt, x0)

+E∆t,0 (yt, y0, wt, w0, xt, x0) ,

where the technical change indicator is

T∆t,0 (wt, w0, xt, x0) =
1

2
[ln ft (xt, wt)− ln f0 (xt, wt) + ln ft (x0, w0)− ln f0 (x0, w0)] ,

the weather change indicator is

W∆t,0 (wt, w0, xt, x0) =
1

2
[ln ft (xt, wt)− ln ft (xt, w0) + ln f0 (xt, wt)− ln f0 (xt, w0)] ,

the input change indicator is,

X∆t,0 (wt, w0, xt, x0) =
1

2
[ln (ft (xt, w0)x0)− ln (ft (x0, w0)xt) + ln (f0 (xt, w0)x0)− ln (f0 (x0, w0)xt)]

and the effi ciency change indicator is

E∆t,0 (yt, y0, wt, w0, xt, x0) = lnEt (yt, xt, wt)− lnE0 (y0, x0, w0) .

2.3 Infeasibilities

Because we do not require the weather inputs to be freely disposable and because our empirical

technique uses conservative methods to approximate the technology as applied to a panel of data,

the possibility arises that some components of our decomposition of TFP change (TFP∆) may not

be calculable for certain time periods. The basic problem can be illustrated by considering two data

points for, say, a single state taken at different points in time. Figure 3 illustrates the situation.

There we have treated the weather variates as though they can be combined into a single variable

that is measured along the axis labelled w. The aggregate agricultural input is measured along the

axis labelled x and the aggregate output is measured along the axis measured y. The two points

are presented in Figure 3a as (w0, x0, y0) and (wt, xt, yt) and we presume that 0 is the base period

that precedes period t.

8



Under our maintained assumptions, the approximation to the period 0 technology would be

given by the shaded area in Figure 3b. Because the input pair (xt, wt) falls outside of that shaded

area, it is not consistent with producing any output using the 0 approximation to the technology. In

such instances components of the productivity decomposition, for example, ft (wt, xt) /f0 (wt, xt),

are not calculable.

Such problems could be resolved by using "less conservative" approximating procedures. For

example, if one imposes free disposability upon the weather variate, the 0 approximation to the

technology now extends parallel to the w axis (at vertical level y0) towards the bottom of the figure

(see panel c of Figure 3). And, one can now calculate f0 (wt, xt) using this "less conservative"

approximation. But making this extension requires imposing global structure on a technology that

is known to be repeatedly violated. For that reason, it is avoided in our empirical analysis.

The empirical presence of infeasibilities is more than just a technical diffi culty. It communicates

information, albeit conservatively, about the changing structure of technical possibilities. As Figure

3b illustrates, components of the decomposition are not calculable because (wt, xt) falls outside the

range of actual experience at time 0. And thus incorporating it into the technology approximation

for time 0 requires extrapolating beyond practical experience. This, of course, can be achieved

by imposing appropriate statistical structure and fitting curves. But that requires making further

assumptions beyond ours on the structure of the technology. In particular, it necessitates choosing

a functional specification for the technology. And such choices are typically made on the basis of

computational tractability rather than on physical plausibility.

3 Empirical Analysis

Our empirical analysis focuses on two sub periods 1961-1974 and 1991-2004. There are different

ways to examine long-term, productivity-growth patterns. For example, one might simply choose

the first observed period and the last observed period and perform productivity analysis across that

44 year period. Weather, however, is notoriously variable, and such a procedure risks misstating

long-term weather effects as a result of choosing the comparison points. For that reason, our long-

term productivity comparisons and decompositions were made across 14 different 30-year time

horizons that were chosen to match our first and second sub-period. Before we look at those

comparisons, we first examine each state’s productivity performance relative to the productivity

frontier in both sub periods.

3.1 Performance Relative to the Productivity Frontier and Adaptation

Table 1 presents summary information on calculated effi ciency scores for each contiguous state for

the sub periods 1961-1974 and 1991-2004. States with effi ciency scores close to 1 are on or very

near the productivity frontier. States with effi ciency scores less than 1 fall inside the productivity

frontier. Because the empirical methodology uses states on the productivity frontier to construct

9



the empirical envelope of the observed data, it is reasonable to interpret the relatively effi cient states

as operating technical processes that determine the placement of the frontier, which describes best

available technical practices. These are the states that have done the best job of adapting to

the overall operating environment including weather patterns as captured by the measured weather

variates. States lying below the frontier are less well adapted to changing technological possibilities.

The further inside the frontier, the less well the state has adapted to the technical environment.

Six states (Arizona, California, Florida, Iowa, Rhode Island, and Texas) have average effi ciency

scores exceeding .9 for both of the sample periods. Arizona is a geographically large southwestern

state, but in 2012 it ranked 32 (out of 50) in terms of value of agricultural production. Therefore,

in production value terms it is on the small side. Its primary commodities are cattle, milk, animal

forage, and lettuce. California is the largest agricultural state in production-value terms and has

perhaps the most diverse agriculture in the United States with heavy concentrations in fruits and

nuts, dairy products, vegetables, and livestock (cattle). Iowa ranks second in production-value

terms and is heavily concentrated in corn, soybean, and livestock (hogs and cattle) production.

Florida falls slightly above the national average in value terms ($8.46 billion in 2014). Its primary

crops are oranges, nursery products, and vegetables. Rhode Island is the smallest of the 48 con-

tiguous states in value terms ($75 million in 2014) and its minuscule production is concentrated in

nursery products.10 In 2012, Texas ranked third overall in value of agricultural production behind

California and Iowa. It ranked first in livestock production value with livestock accounting for

approximately three quarters of its total production value.

Arizona (3), California (2), Florida (1), and Iowa (4) had the four highest measured TFPs at

the beginning our sample (1960). At the beginning, calculated TFP for California and Florida was

virtually identical at .8643 and .8649 (base year 1996), respectively. Arizona at .7057 and Iowa

at .6733 fell somewhat further behind these two leaders. At the end of the sample, California’s

measured TFP was approximately 1.8 while Florida’s stood at 1.63 after having peaked at 1.79 in

2001. Iowa’s measured TFP was 1.5297 which tied it with Illinois for third highest. Arizona’s TFP

stood at 1.38 and (11th overall), and Texas had fallen to 43rd (falling from 24th in 1960) in terms

of measured TFP by 2004.

Early in the sample, Arizona was both highly effi cient, well adapted to the technical environ-

ment, and highly productive. At the end of the sample, it remained well adapted to the changing

technical environment, but its position as a productivity leader had clearly eroded. Rhode Island,

on the other hand, stood 35th in terms of productivity in 1960 but had risen to 8th in 2004. So

where it once was an also-ran in terms of TFP, it was emerging as a productivity leader by the end

of the sample. Nevertheless, because of its very small geographical size, its continued presence at or

near the frontier may seem unusual. One interpretation is that smallness is mainly attributable to

its small agricultural "plant size" and not to the ineffi ciency with which it conducts its agricultural

industry. Regardless, Rhode Island’s agricultural operation is so tiny relative to the rest of US

10Alaska, which is not in our sample, has an even smaller agricultural sector.
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agriculture, approximately .01% of total production value, that developments in that state cannot

reasonably be interpreted as driving developments for production agriculture.

Figure 4 depicts smoothed kernel density estimates for computed effi ciency scores for the two

sub periods. The 1961-1974 distribution is clearly bimodal. Effi ciency scores are concentrated both

in the neighborhood of 1 and slightly below the sample mean of approximately .71. The 1991-2004

distribution is also bimodal but appears to have shifted to the left, the new mean is approximately

.68 and less mass is concentrated in the neighborhood of 1 and more mass is concentrated in the

very low effi ciency scores.

This bimodality is evocative of a relatively small "breakaway pack" of innovative and technically

effi cient states followed by a much larger "peloton" of less innovative and less effi cient states. It

suggests that the breakaway pack forges the main technical innovations that advance the productiv-

ity frontier to which the larger peloton adapts. The perceived loss of mass in the neighborhood of 1

suggests that US agricultural innovation became increasingly concentrated between 1961-1974 and

1991-2004. Fewer states were performing in a manner that could be perceived as well adapted to

the operating environment, and an increasing number of states were exhibiting technical operations

that would be classed as poorly adapted to the operating environment.

There are different possible explanations. One is that innovative states make innovations that

are peculiarly appropriate and increasingly specialized for their agricultures. Such innovations

may not spillover immediately into other states. The perceived shift towards a smaller breakaway

pack could signal that as agricultural technologies become increasingly refined, innovations become

increasingly specific to the commodities for which they are targeted. For example, innovations

made in the mechanical harvesting of tree crops, such as almonds, likely have little or no spillover

effects for row agriculture. Conversely, improvements in procedures for the planting and tilling of

row crops may bring few benefits to producers of tree crops.

Another relates to what measured "effi ciency" captures. It measures distance to a common

frontier constructed by enveloping the observed data. That frontier rationalizes observed input-

output combinations under a set of regularity conditions placed on the underlying hypothetical

technology. Consequently, measured ineffi ciency can have other explanations besides simple eco-

nomic incompetence. It also reflects lags involved in adapting or adopting technical improvements

made in one state to the needs and capabilities of other states with similar agricultural plants.

Beyond that measured ineffi ciency undoubtedly also incorporates elements of heterogeneity that

would be relegated to an error term in an econometric framework. And some of these may have

little to do directly with the underlying technology, particularly if they reflect institutional or reg-

ulatory differences between states. Thus, another interpretation is that the perceived shift in the

effi ciency distribution is a consequence of US agriculture becoming increasingly heterogeneous and,

possibly, increasingly specialized.

Similar observations elsewhere have inspired a vast literature that uses a two-stage procedure

to estimate and then explain measured ineffi ciency. In the first stage, data envelopment procedures
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are used to measure ineffi ciency, and in the second stage measured ineffi ciency is regressed upon

a set of explanatory variables. Simar and Wilson (2007) both review and propose an alternative

approach to this literature. Because our intent is not to explain the potential sources of ineffi ciency,

we make no attempt to undertake a detailed econometric investigation of measured effi ciency. Still,

one cannot help but notice that both the moisture variate and the temperature variate also exhibit

bimodality over these periods (Figure 5). The hypothesis that some of this measured ineffi ciency

is attributable to changing weather patterns seems natural.

To investigate this potential relation, we estimated three different bias-corrected regression

models relating measured effi ciency to our temperature and moisture variates. One model was

estimated for the whole sample period (1961-2004), and one each for the two sub-periods. The

bias-corrected regression procedure is due to Kneip, Simar, and Wilson (2015).11 Results are

reported in Table 2.

Overall, the weather variates explain only a tiny percentage of measured ineffi ciency. Thus, the

bulk of this measured ineffi ciency seems attributable to other sources of heterogeneity. Nonetheless,

the estimated coeffi cients in each case appear to be significantly different from zero at all traditional

levels of significance and suggest that measured effi ciency is positively correlated with the moisture

variate but negatively correlated with the temperature variate.

From these results, we can infer that relatively fewer states are well adapted to low-moisture

operating conditions than ones that are well-adapted to higher-moisture operating conditions. For

example, one might expect states operating in chronically arid environments to have arranged quasi-

fixed-input infrastructure to permit relatively productive operation even when rainfall is low. Such

infrastructural arrangements might include investment in surface irrigation and pumping facilities

(Schlenker, Hanemann, and Fisher 2005). On the other hand, states that typically operate in more

moist conditions, may find it very diffi cult to make short-run adjustments to drought-induced lack

of rainfall. The short-run empirical consequence might be a perceived drop in measured effi ciency

relative to the enveloping production frontier. And when production conditions returned to more

normal moisture levels, that short-run measured ineffi ciency might disappear.

These results also suggest that measured ineffi ciency is higher when temperatures approach

extreme levels. Again one plausible inference is that relatively few states have agricultural plants

that are well adapted to operating at extreme temperatures. Thus, few states will operate near the

production-frontier envelope for those higher temperatures. And when other states are exposed to

such extreme temperatures as a result of variability in their weather patterns, short-run adjustments

11The bias correction is needed to correct for the manner in which the effi ciency scores are generated and their one-

sided nature (Kneip, Simar, and Wilson 2015). The procedure relies on a jackknife bias correction. The jackknife bias

correction is calculated by averaging over independent estimators, obtained from independent subsets of the original

sample. The original sample is split into two subsamples by dividing the states in two groups. All observations relative

to a state are all in one of the two subsamples. The effi ciency calculation is repeated in each subset separately and two

associated regression estimates are obtained. The jackknife bias estimate is obtained by averaging these estimates.

This bias estimate is used to correct the original regression estimate.
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are diffi cult to make and the empirical result is relatively large measured ineffi ciencies. On the other

hand, more states appear to be well adapted to lower or more moderate temperature patterns and

thus will tend to operate closer to the boundary of the production frontier when those weather

conditions occur.

3.2 The Observed Components of Agricultural TFP Growth

Our productivity growth calculations were carried out for 14 30-year periods (1961-1991, 1962-

1992,..., 1974-2004). TFP change and its components were calculated for each of these 30-year

time periods for each of the 48 states in the sample.12

Figure 6 presents smoothed kernel density estimates for TFP change and each of its four compo-

nents. Over the 48 contiguous states, the 30-year period TFP growth rates averaged approximately

49.6% suggesting that the average state could get approximately 1.5 times more output from the

same input base in, for example, 1991 than it could in 1961. As is evidenced by panel a in Figure

6, productivity growth appears unimodal around the observed mean with a calculated kurtosis of

3.0504.

Turning to the components of that TFP change, one sees quite different patterns emerge for each

component. The observed distributions for X∆ and W∆ appear quite leptokurtic around means

of approximately .2% and −1.3% suggesting that, on average, neither contributed significantly to

average TFP growth. The calculated kernel density for W∆ appears to be unimodal around its

mean, while the calculated kernel density for X∆ contains a hint of bimodality with some mass

concentrated slightly above the mean. Calculated kurtosis for W∆ is 15.4535, while calculated

kurtosis for X∆ is 9.7210.

Because weather effects are stochastic and beyond the control of the individual producer, ob-

serving that W∆ contributed relatively little to average productivity growth is not surprising. One

naturally expects relatively good and bad growing conditions to balance one another. Recalling

that X∆ accounts for scale-related differences associated with the differing input bundles between

the two time periods, the evidence suggests that the effect on observed TFP change over the 30

year periods was negligible.

Both calculated E∆ and T∆ measures have more platykurtic calculated kernel densities than

either X∆ and W∆ as is evidenced by a calculated kurtosis for E∆ of 5.0403 and for T∆ of

6.7822. The E∆ distribution is centered around a mean of −4.3% suggesting that over these 30

year periods, the average state struggled to adapt to the evolving productivity frontier. Moreover,

the lower tail of the E∆ distribution appears to be slightly thicker than its upper tail. This is not

inconsistent with the evidence reported in Figure 4 and suggests that the more innovative states

are gradually pulling away from the less innovative states. It conveys the sense that an increasing

number of states were failing to adapt to the ever-changing production environment at the end of

this thirty-year periods.

12A more complete summary of those results is available from the authors upon request.
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Again an obvious suspect for this struggle to adapt is weather. As noted, the directly calculated

W∆′s effects are quite small. But the results in Table 2 suggest that effi ciency levels are positively

correlated with the moisture variate and negatively correlated with the temperature variate. Nat-

urally, E∆, being derived from levels, would manifest a similar tendency. That implies that a

movement towards higher moisture levels, as has occurred, would push in the direction of more

effi cient production, a positive adaptation. On the other hand, the results in Table 2 also suggest

that the general trend to warmer temperatures might retard adaptation to the changing technical

frontier. Hence, there appears to be the potential for changing weather patterns to have a pull-push

effect on the rate at which states adapt to changing technical possibilities.

The calculated kernel densities for T∆ give slight evidence of bimodality with mass concentrated

near the calculated mean of 54.9% and around 63-65% hinting at a "twin peak" phenomenon

characterized by a group of more rapidly innovating states diverging from less rapidly innovating

states. The overall picture that emerges is one of technical innovation outpacing observed TFP

growth by approximately 5% over the 30 year periods with effi ciency loss (failure to adapt or adopt)

accounting for the bulk of the difference and weather being a slightly more important determinant

(again negative) of average TFP growth than input adjustments, but only marginally so.

Table 3 reports information on the average components of TFP change for these 14 30-year

periods for 21 states. There are four groupings of states. The first grouping consists of 7 states

that were leaders in terms of observed TFP at the beginning of our sample (1960) or at the end

of the sample (2004). The second group consists of TFP laggards at the beginning of the sample

(1960) or at the end of the sample (2004). The third group consists of states having the highest

average TFP growth between 1960 and 2004 (as calculated by USDA) and the final group consists

of those states having the slowest average TFP growth between 1960 and 2004 (as calculated by

USDA). There is some overlap between groups and so some states appear in more than one group.

For each state, their TFP rank in 1960 and 2004, their average (over the 14 separate 30-year

periods) TFP∆ score (not to be confused with the 1960-2004 change), their average E∆ score, their

average T∆ score, their average X∆ score, and their average W∆ score are all reported. The final

column in Table 3 reports calculated values for the observed coeffi cient of variation (in absolute

value terms) for theW∆ scores. Entries followed by a diamond, �, indicate calculated average scores
taken over observations where infeasible calculations were reported. (Averages reflect averages only

on feasible scores in these instances. Thus, if there were 13 feasible scores and 1 infeasible score

the weighting factor for each observed score was 1
13 .)

A later section considers the infeasible calculations in more detail. But glancing at Table 3, one

cannot help but notice that more instances of calculated infeasibilities for W∆ are encountered in

the first group, the leading TFP states (five of the seven entries), than in any of the other groupings.

This suggests, as we indicated earlier, that these states who operated in the neighborhood of the

technical frontier in the 1960s likely encountered weather conditions in the 1990s that were outside

the realm of experience in the earlier part of the century.
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Looking at the first group, one sees that in 1960 the states with the highest observed TFP were,

in order, Florida, California, Arizona, Iowa, and Alabama. As already noted, Florida and California

had virtually identical TFP scores in 1960 while Arizona, Iowa, and Alabama fell somewhat further

behind. By 2004, California and Florida had switched places, Iowa was now third and virtually

tied with Illinois and Delaware had moved into fifth position from 6th in 1960. Meanwhile, Arizona

and Alabama had fallen to 11th and 8th, respectively.

Several characteristics of the changes for Arizona and Alabama, the states that fell out of the

top 5, are to be remarked. First, these states are in different regions of the country and have

different agricultures. As noted, Arizona’s livestock industry is concentrated in cattle and calves

while Alabama’s livestock production, which accounts for about 70-80% of its production value, is

heavily concentrated in poultry. The calculated average T∆ scores for both of these states is below

the national average of 54.9%. Alabama’s, at 51.4% is about 3.5 points below the national average,

and Arizona’s, at roughly 40%, is almost 15 points below the national average. The precise cause of

Arizona’s relatively slow rate of technical change cannot be determined from our data. But Arizona

clearly operated in a neighborhood of the frontier that was moving less quickly than more rapidly

developing neighborhoods. Its average E∆ score of about 1.5 indicates that it had moved closer to

the technical frontier in the 1990s than it had been in the 1960s and 1970s. Alabama, on the other

hand, realized an average T∆ score that was closer to the national average, but its average effi ciency

change score was approximately −8.5 percent. Technical improvements were available to Alabama,

but the state was not able to incorporate these technical improvements effectively into its production

practices as it fell behind the advancing frontier. Neither Alabama nor Arizona had relatively large

X∆ scores. Both were indicative of a negative scale effect, Alabama’s was almost imperceptible

while Arizona’s was larger at approximately -1.9%. Both states had average W∆ scores that were

approximately zero (not unexpected), and both experienced relatively more variability (as measured

by the coeffi cient of variation) than all of the leading TFP states except for Florida. Moreover, both

experienced instances of infeasibilities suggesting that the production conditions, including weather,

that they encountered in the 1990s were outside the range of technical experience in the earlier part

of our sample. Thus, while the average effect of weather on their calculated TFP growth seems

to be relatively small, clear evidence also exists that both states experienced somewhat different

production conditions at the end of the century than at the middle part of the century.

The two states that moved into the leading TFP group at the end of our sample period (Delaware

and Illinois) are quite dissimilar in size and in composition of their agricultural industries. Delaware

is heavily concentrated in broiler production with a relatively sizable concentration of grains and

oilseeds that support the broiler industry. Illinois’s primary production commodities are grains

and oilseeds and their main livestock industry is hog and pig production. Both states apparently

experienced worse operating weather conditions, on average, in the 1991-2004 era than in the 1961-

1974 era. Delaware’sW∆ score averaged−3.77% and Illinois’sW∆ score averaged−2.05%. Because

broiler production involves containment of the animals, the relatively large negative weather effect
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for Delaware may seem paradoxical at first glance. However, it must be remembered that TFP

accounts for both outputs and inputs. And thus, the observed warming of weather required larger

expenditures on climate control and disease control and helped retard TFP growth. As indirect

evidence of this effect, we note that for the 1990-2000 decade, the use of energy inputs by Delaware

agriculture grew at an average annual rate of 4.98%, which was the highest observed across the 48

contiguous states (New Mexico’s was second at 2.85%).

Over the 14 30-year periods, Illinois’s average TFP growth rate was very close to the national

average of 49%. Delawares was considerably lower at 42.9. Part of Illinois’s quicker growth is

explained by it experiencing a more rapid rate of technical change, 58.4%, than Delaware, 48.2%.

The former was about 3.5 points higher than the national average and the latter was about 6 points

below the national average. Interestingly, despite moving into the top 5 in terms of TFP, neither of

these states kept pace with the advancing technical frontier. Both experienced average E∆ scores

of approximately −11%. Delaware and Illinois differed dramatically in their size adjustments,

Delaware had an average X∆ of 13% suggesting that it successfully exploited available economies

of scale for x during these three decades. Illinois also experienced increasing frontier returns, but

at a much lower level of approximately 4%. The picture that emerges is of two states struggling

to adapt to the advancing technical frontier. One state, Delaware, compensates by more effective

exploitation of economies of scale, while the other, Illinois, benefits from a much more rapid rate of

technical change. And, in both instances, weather related changes dampened productivity growth

perceptibly.

The three states that appeared in the top five both at the beginning of our sample and at the

end of our sample, Florida, California, and Iowa are from very disparate regions of the country.

Two of these states, California and Iowa are the top agricultural producing states in the United

States. In 2012, with $42.6 billion in agricultural production value, California ranked first overall,

first in crop production, and third in livestock production. Iowa, with $30.8 billion in production

value, ranked second overall, second in crop production, and second in livestock production (behind

Texas). Florida, known for its relatively temperate climate and orange production (in which it ranks

first), is a moderately-sized agricultural state that falls just outside the top 20 in terms of total

production value.

Their observed patterns of TFP growth over the 14 30-year time periods, however, are quite dif-

ferent. California experienced extremely rapid technical change that averaged 65%, approximately

11 percentage points higher than the national average. It remained almost continuously on the

production frontier as its E∆ score was less than .8%. Thus, any reasonable interpretation of the

data suggests that it was directly responsible for many of the technical innovations that pushed

the technical frontier outward during that 30 year period. Its average W∆ score was 1.5% with a

coeffi cient of variation of 6.0 suggesting that weather, on average, was slightly better in production

terms in the 1991-2004 period than earlier and more variable than many states experienced, but

still relatively minor.
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The greatest drag on California’s productivity growth was its large (in absolute value terms)

and negative X∆. In each of the 14 30-year periods, its X∆ score was negative, and it averaged

−16%. Given its extremely large magnitude and the fact that California is virtually always on the

frontier, this effect requires further comment. Recall that the index measure is(
f0 (xt, w0) /xt
f0 (x0, w0) /x0

) 1
2
(
ft (xt, w0) /xt
ft (x0, w0) /x0

) 1
2

,

which gives California’s average product for xt and x0 as measured relative to technology 0 and t.

There is thus a strong indication that aggregate input growth over these 30-year periods outstripped

maximal output growth. In 1960, the index of California aggregate input stood at 3.8835 (base

is Alabama in 1996). In 2004, it measured 5.0492, a roughly 30% increase. Our 30-year results

suggest that the associated growth in maximal output was considerably lower. This served as an

effective brake on California’s TFP growth despite its ability to make very rapid and significant

technical advances.

Iowa, on the other hand, experienced a much lower rate of technical change at 49%, about 5

percentage points below the national average. However, in each of the 14 30-year time periods, its

X∆ score was positive and averaged 8% overall indicating that it successfully exploited available

economies associated with x over the 30 time horizons. This adjustment was associated with a

downsizing of its "agricultural plant size". In 1960, its input index stood at 4.2611 and by 2004 that

had fallen to 3.3940. This observed input adjustment corresponds nicely with the "farm problem"

as it was perceived at the beginning of our sample. In the Kennedy era, the practical policy

problem for most of US agriculture was one of overproduction and "getting excess resources out

of agriculture" (Hillman 2011). The evidence suggests that Iowa made this adjustment effectively.

The ultimate consequence was its ability to maintain its role as an agricultural TFP leader despite

experiencing a relatively low rate of measured technical change.

Thus, where California relied on rapid technical change but seemingly allowed its plant size to

grow too quickly, Iowa streamlined its agricultural operations to maintain a high rate of produc-

tivity. While it is highly problematic to draw precise inferences from such aggregate data, one is

tempted to suggest that California’s experience may be indicative of extreme "research" success

but modest "educative" success. Iowa’s experience, on the other hand, might be indicative of "ed-

ucative" success but more modest "research" success. Given the nature of the data and the clear

lack of an explanatory model, it’s misleading to speak of "reasoning" here. But the heuristic is

that prior to 1960, Iowa may have overexpanded its "plant size". Eventually it adjusted by moving

resources out of agriculture. The exact process, of course, is something this study can say noth-

ing about. Clearly, competitive pressures were in play. On the other hand, technological advances

seemed to have been so rapid in California that they supplanted the need for some of its agricultural

"capacity" as measured by x.

Unlike California, Iowa tended to fall behind the advancing technical frontier. Its average E∆

score was -4.4% (approximately the same as the national average) suggesting that it was further from
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the effi cient frontier in the 1990s than it had been in the 1960s. Its average W∆ score was −2.5%

with a coeffi cient of variation of 3.5%. Iowa’s weather patterns, as measured in production terms,

were slightly less variable than experienced by California. And, unlike California, Iowa experienced

one instance (1963-1993 comparison) of an "infeasibility" in its W∆ calculation indicating that it

experienced production circumstances in 1993 that were outside the range of relevant production

experience in 1963. (More on this later.)

The characteristic that most distinguishes Florida’s TFP growth pattern from those of California

and Iowa is its W∆ score. Although, the average score is quite small, the coeffi cient of variation

at 28.6 is the largest reported in Table 3. Moreover, of the 14 30-year time periods, half were

characterized by W∆ infeasibilities indicating that Florida in the 1991-2004 period was operating

under quite different circumstances in terms of its input base than in 1961-1974. Florida was almost

exactly the "average" US state in terms of its observed T∆ score. Moreover, it remained almost

continuously on the technical frontier suggesting that its innovations, rather than those of others,

helped drive the placement of the frontier. The latter observation is particularly important in

light of the large number of observed infeasibilities. The operating conditions at the portion of the

frontier relevant for Florida in both the 1961-1974 period and the 1991-2004 were Florida’s.

Turning to the TFP laggards, first consider Louisiana. Although we report evidence on that

state’s TFP decompositions, we emphasize that the tabulated evidence for that state, apart from

the E∆, is borderline noninformative. The average reported is for a single observation, a direct

manifestations of "infeasiblities" for Louisiana’s 1991-2004 input combinations relative to the earlier

relevant technology (more on this later). Thus, all that can be said with confidence is that Louisiana,

whose 1960 TFP ranked 44th, had improved its TFP ranking to 37th for 2004. And, on average,

in the 1991-2004 period it operated closer to the frontier than in the earlier period.

Looking at the TFP laggard group, we next focus on Oregon and Michigan. Casting either

as "laggard" is problematic semantically. While both were TFP laggards in 1960, they had long

shriven that mantle by 2004. Over the intervening four decades, Oregon’s annual average growth

rate was the highest and Michigan’s was third highest with Rhode Island falling second.

For our three-decade periods, Oregon’s average rate of TFP change was 65% placing it 16 points

higher than the national average. That rapid growth rate was a combination of a slightly below

average T∆ effect (53%), a steady process of positive adaptation to new technologies (11% average

E∆), and very minor x−size effects, X∆, and weather effects. Michigan’s average rate of TFP

change for those three decades was 71%. That rapid growth rate was a combination of a higher

than average T∆ (58%), a steady movement towards the technical frontier (11% average E∆), a

positive X∆ effect (5%), and a small, but perceptible, weather component ( −3% average W∆).

The latter suggests that Michigan was forced to cope with more negative weather conditions in

1991-2004 than in the earlier periods.

Looking at the "other TFP laggards" reveals a distinct pattern: slow TFP∆ associated with

states failing to keep pace with the evolving technical frontier (E∆ quite negative). In the main,
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none of these laggard states experienced overly slow measured rates of technical change or much

poorer weather operating conditions. Rather frontier opportunities seemed available, but these

states were simply not capable of taking advantage of them. As already mentioned, other factors

beyond increasing technical incompetence may be at play. For example, these measures might

reflect institutional disparities across different states that prevent technology developed in one

setting being transferrable to others, so that the "measured" T∆ may be a misleading indicator of

availability of technical opportunities. Regardless of whether that is true and the effect represents

continued incompetence, what is undeniable is that these laggard states were incapable of keeping

pace agriculturally with other states. The anemic performances of Oklahoma and Wyoming are

particularly to be remarked. Both states had average TFP∆ scores of less than 30% for these three

decades while both experienced average E∆ scores well smaller than −20%. Where Oklahoma was

a relative TFP leader in 1960 (at number 13), it was racing to the bottom in these 30-year period

and had become an agricultural also-ran by 2004.

Examining the decompositions of TFP∆ for the remaining states in Table 3 reveals a very

clear pattern. None of the fastest or the slowest growing states experienced infeasibilities between

the two periods. This suggests, at least in terms of observed weather patterns, that these states

experienced weather patterns in the latter period that were relatively similar to those present in the

first period. With the exception of Colorado, the coeffi cient of variation for their W∆ scores were

below the national average indicative of relatively modulated weather patterns, at least as measured

by agricultural production effects. Several of the fastest growing states experienced perceptible

average W∆ effects. Indiana experienced a higher than average (in absolute value terms) negative

weather impact of approximately −3%. On the other hand, Massachussetts average W∆ effect was

strongly positive at approximately 7% and helped offset its negative size adjustment.

For most of the fastest-growing or slowest-growing states, the bulk of observed TFP∆ can be

attributed to either T∆ or E∆. Thus, the fastest growing states tended to experience quite rapid

technical change or to catch up with the technical frontier. On the other hand, the slowest growing

states typically experienced slightly above average to slightly below average T∆ but tended to

plunge away from the technical frontier as their E∆ scores fell well below the national average.

A clear message that emerges from Table 3 is that in terms of average TFP∆,most of the growth

that emerges or that fails to emerge can be attributed to either technical change, as measured by

T∆, and either successful adoption of available technical improvements or failure to adopt available

technical improvements as measured by E∆. W∆ is important for some states, but on average its

overall effect is relatively small. The same is true for X∆. And, in particular, it seems clear that

negative weather effects did not play a prominent role in contributing to poor TFP growth over

the long term in the slowest productivity-growing states. In short, slow growth is attributable to

either a failure to innovate or a failure to adapt innovations.
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3.3 Weather and the Distribution of TFP Growth

To gauge further the overall contribution that W∆ makes to agricultural TFP growth, we have

performed counterfactual experiments similar to ones employed by Kumar and Russell (2002) and

Henderson and Russell (2005). A key goal is to determine whether observed TFP growth can be

adequately explained by T∆, E∆, and X∆ without resorting to W∆. The results summarized

in Table 3 seem to suggest that this may be true but more can be said by looking at the entire

distribution of TFP∆ and its component parts.

Thus, for each state for each year between 1961 and 1974, we have taken state-level TFP and

multiplied it successively by one plus its measured 30-year percentage technical change, by one plus

its 30-year effi ciency change, and by one plus its 30 year X∆ score to arrive at a hypothetical TFP

that would have occurred in the absence of W∆ over the 30 years. This was done in stages, adding

in first the 30-year technical change, then the 30-year effi ciency change, and then the 30-year input

change. We also performed a similar experiment to determine whether T∆, E∆, and W∆ together

could account for observed productivity change without the presence of X∆. At each stage, we

conducted a nonparametric test of equality of the resulting hypothetical distribution with the true

TFP distribution for 1991-2004 (Li, Maasoumi, Racine 2009).13

The hypothesis test results are summarized in Table 4 and the results are illustrated graphically

in Figures 7 and 8. The null hypothesis for Table 4 and the figures is that the observed distribution

for TFP and the hypothetical distributions are the same. As both the table and the figures illus-

trate, this null hypothesis is rejected at all traditional levels of significance when the hypothetical

distribution only includes T∆. Differences remain to be explained. When E∆ is introduced, it

is no longer possible to reject the null hypotheses at traditional levels of significance. Thus, as a

practical matter, strong statistical discrimination between the observed TFP distribution and the

hypothetical distributions created by including T∆ and E∆ is not possible. Once again, the data

seem to suggest that in terms of aggregate behavior, the primary drivers of productivity change

are the abilities to innovate and to adapt to those innovations and not weather or size effects.

3.4 Infeasibilities and Indexing Weather

Recall that the weather index, (
f0 (xt, wt) ft (xt, wt)

f0 (xt, w0) ft (xt, w0)

) 1
2

,

is a cardinal index, measured in units of aggregate agricultural output, of the production effects of

(wt, w0) holding aggregate input at xt measured using the 0 technology and the t technology. If this

index is poorly defined, it communicates information about the technical feasibility of wt and w0
that is available from our conservative approximation to the underlying aggregate technology. By

the manner in which that approximation is developed, the component of the index defined relative

13Similar results were obtained using a Kolmogorov-Smirnov test, and these are available from the authors upon

request.
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to the t technology, ft(xt,wt)ft(xt,w0)
is always well defined. Thus, if an infeasibility occurs, it will be in the

component defined relative to the 0 technology, which in our case refers the technology that existed

in the 1961-1974 sub period.

We focus on the experience of 4 states: Arizona, Florida, Iowa, and Louisiana. Three of these

states (Arizona, Florida, and Louisiana) experienced large numbers of infeasibilities. Three of these

states routinely perform very close to the frontier (Arizona, Florida, and Iowa). One state (Arizona)

moved from being a relatively top-ranked state in terms of productivity to a lower ranking, two

(Florida and Iowa) did not, and one (Louisiana) was a relatively low-ranked state in productivity

terms for both periods.

Table 5 tabulates the years for which an infeasibility occurred. In every instance, the infeasi-

bilities occurred because we could not calculate f0 (xt, wt). Given that we have maintained free

disposability of x, this is not unexpected. Thus, the infeasibilities emerge from two sources: not

imposing free disposability on w and the fact that the weather variates in 1991-2004, were more

extreme than in 1961-1974. Producers faced different productive conditions in the latter period

than in the former. The fact that production continued in the second period implies that producers

adapted to these more extreme conditions in some fashion. A closer glimpse of how they adapted

can be gleaned from examining their relative experience.

Arizona and Florida experienced warmer operating conditions in 1991-2004. At the same time

Florida was quite wet, while Arizona experienced low humidity. As a consequence, f0 (xt, wt) was

often not producible using our conservative approximation to the technology. This happened to

Florida in 1991, 1994,1995, 1997, 1998, 2002, and 2003 and to Arizona in 1992, 1994, 1996, 1997,

2000, 2001, 2002, 2003, and 2004. During both the latter period and the former period, both states

stayed relatively close to the technical frontier, suggesting that they were doing the best that was

observed. Whether this was the best that was possible is something our analysis cannot determine.

Florida remained one of the top performers in TFP terms, although its TFP was quite variable. Its

productivity actually peaked at 1.79 in 2001 before falling back to its ending level in 2004. Arizona,

on the other hand, tumbled from third in the 1960 TFP rankings to eleventh (1.38) at the end of

the sample. Thus, evidence suggests the combination of increased heat stress and low humidity

were an important drag on Arizona’s TFP performance relative to that of Florida.

Louisiana experienced higher humidity in the latter period. Relative to what occurred in 1961-

2004, these conditions were so extreme that the weather index could be computed in only one year.

And for that instance, the computed effect was quite negative. Louisiana was somewhat of a TFP

also-ran in 1960 and largely remained one.

That brings us to Iowa. Its sole infeasibility occurred in 1993. That summer massive flooding

in Iowa caused at least 17 fatalities and over $2 billion in damages. In some areas of the state, it

rained 130 consecutive days and flooding occurred multiple times. The experience was so significant

that Iowa Homeland Security and Management has called it "...one of the most defining natural

disaster incidents in Iowa history". The agricultural response was a massive drop in yields. But as
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already noted, after its recovery, Iowa remained a TFP leader at the end of our sample period.

4 Concluding Remarks

Methods for approximating the aggregate stochastic agricultural technology that incorporate weather

elements directly into the approximation were developed. Using the aggregate technology as the

reference base, the traditional measure of agricultural TFP growth was decomposed into four com-

ponents (weather, technological change, effi ciency, and input). Using the USDA state-level TFP

panel combined with data drawn from Schlenker and Roberts (2008; 2009), decomposition analyses

of observed 30 year changes in agricultural TFP for each of the 48 contiguous US states have been

performed and analyzed.

Before summarizing results, it is important to emphasize this study’s intent. The analysis is

not meant to explain what drives TFP growth. That craft is left to others. We do note, however,

that its execution typically requires different and more restrictive assumptions than ours. Our goal

is more conservative: to examine empirically the different components of observed TFP change.

In the end, the intended result is essentially an empirical exercise in blackboard economics. To

visualize, draw ft (xt, w) on two axes holding xt constant while varying w. One component of the

weather index, ft (xt, wt) /ft (xt, w0) , is measured as relative lengths along the horizontal axis. All

of the remaining components of our indices are illustrated similarly.

Thus, rather than explaining TFP growth, our intent is to use index procedures to get different

empirical snapshots of how agricultural TFP is changing. The basic idea follows Polya’s (1945)

heuristic for problem solving. Start by identifying what is known and what is unknown. Then

determine the question that needs to be answered, what is needed to answer the question, and

what constitutes an answer. Our goal is to contribute to the first stage in the process. Before

attempting to isolate causal factors, the goal is a more precise understanding of what has actually

happened. After that is known more precisely, the proper search for causality can commence.

The results indicate that the pattern of average state-level TFP growth and the distribution of

that growth are closely approximated by the patterns of the technical change, T∆, and effi ciency

change, E∆, components of the decomposition. A shift in the frontier of the technology made

it possible, on average, to get about 1.54 times as much product in 1991-2004 than was possible

in 1961-74. At the same time, E∆ was negative on average and slowed measured TFP growth.

That change was also evocative of a more diffuse effi ciency distribution. Fewer states perform

in the neighborhood of the technical frontier and more states lag behind. Thus, the observed

increased diffusion of state-level TFP (Figure 2) seems mainly comprised of a combination of fewer

innovative states and more states struggling to maintain pace with an ever advancing frontier.

There is clear evidence of bimodality in the distribution of effi ciency with which states exploit

the technology. Moreover, that bimodality seems to have shifted towards a lower concentration

of technically effi cient states and greater concentration of laggard states. Some evidence of the
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emergence of a "twin peak" phenomenon in technical innovation, T∆, also exists. In terms of what

can be inferred from our data, W∆ and X∆ do not appear to have been important components of

observed differences in the changes of the distribution of TFP.

In pivoting from an examination of the grouped data to a closer examination of state-level

performance, clear differences emerge. Some states have experienced both positive and negative

W∆ effects. A number of states on the technical frontier experienced weather conditions in 1991-

2004 that were so different from 1961-1974 that our conservative methodology does not permit

calculation of weather-related effects on agricultural TFP in some time periods. Of the three

leading TFP states (California, Florida, and Iowa), this indeterminacy was most pronounced for

Florida, was not experienced for California, and was experienced only once for Iowa (the result of

a massive flood event). Arizona, a TFP leader in 1960, encountered this phenomenon repeatedly

as a consequence of increased heat stress in 1991-2004. Having started our sample period (1960)

ranked third in observed TFP, it had fallen to eleventh in 2004.

As always, caveats exist and further research is needed. Our analysis is aggregate. And while this

has desirable characteristics in terms of providing a broader perspective on "what’s going on with

agriculture and weather", it has well-known drawbacks. It is not intended to and does not pretend

to supplant continued disaggregate analyses. On the other hand, very few truly relevant aggregate

conclusions can be drawn from very disaggregate analysis. Moving from the highly disaggregate to

the aggregate requires well-defined and conceptually consistent aggregation schemes. Even though

it is not simply a matter of "adding up effects", an inescapable reality is that most "aggregation"

schemes eventually require summing somewhere in the procedure. Once imposed anywhere in the

scheme, it has been well-known since the time of Gorman (1953, 1968) that some form linearity

elsewhere is a prerequisite for consistent aggregability. And in that regard, weather promises to

be particularly problematic because its potential impacts on agricultural systems are likely quite

nonlinear. And so, for example, knowing what’s happening in Montgomery County, Maryland

weather may not prove particularly informative nationally. And knowing what’s going on at the

farm or field level is potentially even less informative.
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Figure 1: Annual growth rates of total factor productivity, U.S. agriculture, 1949-2013
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Figure 4: Smoothed kernel densities of efficiency scores, comparison 1991-2004 and 1961-1974

4



a) Temperature in the US (GDD)
0 1000 2000 3000 4000

K
er

ne
l D

en
si

ty

×10-4

0

1

2

3

4

5

6

7

8

9

1961-1974
1991-2004

b) Moisture in the US (g/L) 
-5 0 5 10 15 20 25

K
er

ne
l D

en
si

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1961-1974
1991-2004

Figure 5: Kernel densities of temperature and moisture, comparison 1991-2004 and 1961-1974
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Table 1: Summary statistics of efficiency scores 1961-1974 and 1991-2004

1961-1974 1991-2004 1961-1974 1991-2004

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

ALL US 0.7058 0.1663 0.6814 0.1725

AL 0.7215 0.1325 0.6626 0.1037 NC 0.7972 0.0625 0.8508 0.0696

AR 0.7003 0.0592 0.7247 0.0435 ND 0.5607 0.0782 0.5855 0.0555

AZ 0.9392 0.0586 0.9612 0.0660 NE 0.7037 0.0599 0.7062 0.0574

CA 0.9990 0.0037 1.0000 0.0477 NH 0.5688 0.0456 0.5066 0.0409

CO 0.6468 0.0236 0.5786 0.0379 NJ 0.6896 0.0865 0.6842 0.0441

CT 0.6391 0.1147 0.6575 0.0574 NM 0.5237 0.0323 0.5272 0.0316

DE 0.9938 0.0114 0.8833 0.1013 NV 0.8603 0.0813 0.8985 0.1077

FL 0.9989 0.0041 0.9947 0.0155 NY 0.8056 0.0759 0.6463 0.0848

GA 0.7614 0.0616 0.8234 0.0575 OH 0.6618 0.0603 0.6484 0.0813

IA 0.9916 0.0245 0.9487 0.0552 OK 0.5526 0.0473 0.4387 0.0204

ID 0.7093 0.0295 0.7430 0.0365 OR 0.5533 0.0468 0.6200 0.0495

IL 0.9081 0.0577 0.8146 0.0760 PA 0.6582 0.0726 0.6148 0.0760

IN 0.7281 0.0722 0.7180 0.0764 RI 0.9908 0.0343 0.9423 0.1188

KS 0.6944 0.0575 0.6112 0.0485 SC 0.7031 0.1063 0.8122 0.1077

KY 0.6313 0.1146 0.5865 0.0475 SD 0.5976 0.0506 0.5757 0.0330

LA 0.7278 0.2064 0.7152 0.1040 TN 0.5690 0.0634 0.4836 0.0515

MA 0.6723 0.1067 0.6882 0.1092 TX 0.9712 0.0350 0.9101 0.0851

MD 0.6415 0.0424 0.6298 0.0368 UT 0.5816 0.0440 0.5225 0.0404

ME 0.6876 0.1110 0.6029 0.0689 VA 0.5814 0.0211 0.6012 0.0369

MI 0.5373 0.0267 0.6033 0.0433 VT 0.6693 0.0548 0.5795 0.0361

MN 0.7860 0.0851 0.8159 0.0477 WA 0.7035 0.0420 0.7380 0.0408

MO 0.6505 0.0699 0.5502 0.0470 WI 0.7975 0.0703 0.7365 0.0603

MS 0.6296 0.0787 0.6354 0.0923 WV 0.3999 0.1737 0.3508 0.0259

MT 0.5198 0.0321 0.4303 0.0379 WY 0.4624 0.0195 0.3499 0.0180
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Table 2: Bias-corrected regression results correlating efficiency to weather

Period: 1961-2004 Coefficient R2

Temperature -0.00015 *** 0.01260

Moisture 0.04064 ***

Constant -0.54670 ***

Period: 1961-1974 Coefficient R2

Temperature -0.00043 *** 0.01185

Moisture 0.07633 ***

Constant -0.99701 ***

Period 1991-2004 Coefficient R2

Temperature -0.00014 *** 0.02540

Moisture 0.04182 ***

Constant -0.41733 ***
∗ ∗ ∗ indicates significance at 1% level. ∗∗ indicates significance at 5% level and ∗ indicates significance at 10% level.
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Table 3: Decomposed changes for specific groups of US States

Rank

1960 2004 TFP ∆ E ∆ T ∆ X ∆ W ∆ CVW ∆

TOP TFP

AL 5 8 0.4340 -0.0853 0.5143 � -0.0029 � -0.0017 � 21.5720

AZ 3 19 0.4284 0.0148 0.4033 � -0.0194 � -0.0028 � 13.5120

CA 2 1 0.4985 0.0089 0.6502 -0.1684 0.0156 6.0103

DE 6 5 0.4296 -0.1113 0.4824 0.1317 -0.0377 � 2.2540

FL 1 2 0.4784 0.0068 0.5432 � -0.0559 -0.0033 � 28.6553

IA 4 3 0.4803 -0.0439 0.4918 � 0.0817 -0.0257 � 3.5024

IL 7 4 0.4992 -0.1110 0.5844 0.0463 -0.0206 6.2889

BOTTOM TFP

LA 44 37 0.5024 0.0105 0.5864 � -0.1136 -0.0873 � NA

MI 47 28 0.7140 0.1145 0.5814 0.0510 -0.0330 2.4960

MT 42 44 0.3470 -0.1906 0.5425 -0.0003 -0.0046 4.7860

NH 45 35 0.4288 -0.1159 0.6199 � -0.0513 -0.0270 2.1980

OK 13 45 0.2949 -0.2285 0.5195 0.0019 0.0020 8.8600

WV 48 47 0.4843 -0.0838 0.5561 � -0.0055 -0.0056 1.0590

WY 43 48 0.2363 -0.2790 0.5183 0.0012 0.0217 5.2720

TN 39 46 0.4184 -0.1625 0.5785 0.0086 -0.0174 5.6560

OR 46 15 0.6535 0.1143 0.5348 0.0027 0.0018 6.3620

FASTEST TFP RATE of ∆ 1960-2004

IN 27 7 0.6123 -0.0151 0.6245 0.0395 -0.0362 3.5819

OR 46 15 0.6535 0.1143 0.5348 0.0027 0.0018 6.3620

MA 28 10 0.5608 0.0231 0.5483 -0.0425 0.0742 3.2400

MI 47 28 0.7140 0.1145 0.5814 0.0510 -0.0330 2.4960

SLOWEST TFP RATE of ∆ 1960-2004

CO 9 32 0.4218 -0.1128 0.5409 -0.0001 0.0004 18.2950

KS 8 36 0.3887 -0.1275 0.5749 -0.0296 -0.0291 3.2410

OK 13 35 0.2949 -0.2285 0.5195 0.0019 0.0020 8.8600

TN 39 46 0.4184 -0.1625 0.5785 0.0086 -0.0174 5.6560

WY 43 48 0.2363 -0.2790 0.5183 0.0012 0.0217 5.2720

Average (48) 0.4965 -0.0438 0.5495 0.0018 -0.0131 7.2070
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Table 4: Li tests on counterfactual 30-year decomposition changes between 1991-2004 and 1961-

1974

All 48 US States

Null Hypothesis (H0) Statistic p-value

f( ytxt
) = hT ( y0x0

∗ exp(T∆t,0)) 2.1836 0.0000

f( ytxt
) = hE( y0x0

∗ exp(T∆t,0) ∗ exp(E∆t,0)) -4.2246 0.2080

f( ytxt
) = hX( y0x0

∗ exp(T∆t,0) ∗ exp(E∆t,0) ∗ exp(X∆t,0)) -2.6611 0.3660

f( ytxt
) = hW ( y0x0

∗ exp(T∆t,0) ∗ exp(E∆t,0) ∗ exp(W∆t,0)) -1.3766 0.5840

Note: The function f is a (kernel) function for the actual data in 1991-2004,

while hT , hE , hX , and hW are (kernel) counterfactual distributions obtained

by adjusting the 1961-1974 data for the effects of technological change (hT ),

efficiency and technological changes (hE), efficiency, technological and input

changes (hX), and efficiency, technological and weather changes (hW ), respectively.
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Table 5: Infeasible cases by state in decomposition changes, 1991-2004 on 1961-1974

Climate and technological changes

State Number Years

AZ 9 1992,1994,1996,1997,2000,2001,2002,2003,2004

FL 7 1991,1994,1995,1997,1998,2002,2003

IA 1 1993

LA 13 1991,1992,1993,1994,1995,1996,1997,1999,2000,2001,2002,2003,2004
Note: All cases of infeasibility are caused by the impossibility of computing the

following element in the proposed decomposition: f0 (xt, wt).
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