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Most pathogenic bacteria communicate with each other using signaling 

molecules. Their coordinated behavior, known as quorum sensing (QS), enables them 

to infect host organisms collectively and form drug-resistant biofilms. The study of 

bacterial signaling pathways may lead to discovery of new antimicrobials. Lab-on-a-

chip technology can significantly accelerate the screening of candidate drugs that 

inhibit QS. This dissertation develops for the first time miniaturized sensors 

embedded in microfluidic channels to monitor the activity of an enzymatic pathway 

that produces signaling molecules. These devices can be used as building blocks of 

future high-throughput systems for drug discovery.  

 The sensors presented here are gold-coated microcantilevers, and they detect the 

aminoacid homocysteine, a byproduct of the bacterial signaling pathway. It binds to 

the gold surface, causing stress and cantilever displacement that is measured 

optically. Samples are synthesized using bacterial enzymes and tested with the 



  

sensors. The minimal detected concentration of homocysteine is 1µM. It is 

demonstrated that deactivation of the enzymes causes a change in the sensor 

response; this effect can be used for finding drugs that inhibit the enzyme.  

 The traditional method for measuring cantilever displacement requires an 

elaborate optical setup, and it can only test one device at a time. Two new methods 

are developed here to overcome these limitations. The first one uses a transparent 

cantilever which is also an optical waveguide. Light is coupled from the cantilever to 

a fixed output waveguide and measured with a photodetector. The cantilever 

displacement is determined from the change in output power. The change is 

approximately 0.7% per nanometer displacement. The minimal detectable 

displacement and surface stress are 6nm and 1.3 mN/m respectively.  

 The second measurement method uses a transparent cantilever that is close to a 

reflective substrate. When the device is imaged with an optical microscope, an 

interference pattern forms. The cantilever displacement is calculated from the lateral 

shift of the interference fringes. This shift is determined from images of the device 

using custom software. The response of multiple cantilevers is captured by translating 

the microscope stage. The minimal detectable displacement and surface stress are 

1nm and 340 µN/m respectively. 
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1. Chapter 1: Introduction  

1.1 Background and Motivation  

 The field of BioMEMS (Bio-micro-electro-mechanical-systems) has attracted 

increasing attention in recent years [1-4]. It evolved from semiconductor technology 

to create miniaturized tools for biomedical applications. The terms Lab on a Chip [5-

7], Micro Total Analysis System [8-10], and microfluidics [11-13] are often used 

interchangeably with BioMEMS (although, strictly speaking, they have somewhat 

different connotations). Due to the use of batch fabrication methods, BioMEMS 

components typically have low cost, small size, high density, and excellent 

reproducibility. They offer unprecedented opportunities for conducting multiple 

parallel experiments with small sample volumes and for making ultraportable medical 

equipment. BioMEMS technology can be applied to variety of fields, including 

fundamental biological studies (genomics, proteomics, immunology, cytology, 

histology); clinical diagnostics (point of care testing, high throughput screening); 

therapeutics (smart implants, drug delivery); and environmental monitoring (food and 

water quality control, biohazard detection). The goal of this dissertation is to develop 

BioMEMS tools to aid in antimicrobial drug discovery.  

 Bacterial infections pose a major threat to human health. The resistance of 

bacteria to conventional antibiotics is increasing due to genetic mutations [14, 15]. 

The process of discovering new antibiotics is slow and expensive. On average, the 

development of a new drug costs approximately $400 million and takes 15 years [16]. 

First, genomic data and bioinformatics methods are used to identify possible drug 
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targets [17]. Then, large libraries of compounds are synthesized combinatorially and 

their effect on the target is tested in vitro prior to clinical trials [18, 19]. The 

experiments are currently performed with macroscale laboratory equipment using 

robotic dispensers and well plates; this approach requires relatively large sample 

volumes and operates in a serial fashion. Lab-on-a-chip technology could facilitate 

and significantly speed up the pre-clinical phase of drug discovery by performing 

multiple experiments in parallel with very small sample volumes [11, 20].  

 This dissertation develops a BioMEMS platform which consists of gold-coated 

microcantilever sensors embedded in microfluidic channels. It can be used to test the 

effect of a new type of drugs that suppress bacterial quorum sensing. Most bacteria 

communicate with each other and coordinate their behavior using signaling molecules 

[21]. They become pathogenic and form a drug-resistant biofilm only when they 

sense they have reached a sufficient population (quorum) to overrun the host’s 

immune system [22]. While traditional antibiotics target protein synthesis in bacteria, 

there are efforts to discover new drugs that target their communications instead [23, 

24]. This type of attack would degrade the bacteria’s pathogenicity and biofilm 

forming properties, making them much more susceptible to the immune system and to 

medical treatment. 

 Bacterial enzymes that synthesize signaling molecules have been isolated and 

used in vitro [25, 26]. In the present research, these enzymes are immobilized in the 

microfluidics, and one of their products, homocysteine, is detected with the cantilever 

sensor. The output of the sensor can be used to determine if the enzymatic activity is 

inhibited by a given compound. The presented BioMEMS platform can be readily 
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scaled up to test large numbers of candidate drugs in parallel. By selecting an 

appropriate sensor coating, the device can potentially be used for many other 

applications beyond drug screening, including immunoassays and DNA hybridization 

assays.    

1.2 Summary of Accomplishments  

The main contribution of this dissertation is the development of two readout 

methods for microcantilever sensors. These devices are miniature beams coated with 

a selective surface layer; when analyte molecules bind to the coating, stress is 

generated and the cantilever deflects. Although there have been numerous 

demonstrations of cantilever sensors [27-30], the measurement of beam deflection 

(i.e. readout) remains problematic. It typically requires an elaborate free-space optical 

setup, and it can only be performed on one device at a time. Therefore, although very 

large numbers of cantilever are fabricated on a single chip, they are not usable for 

high-throughput screening or portable detection due to the limitations of the 

displacement measurement setup. In this dissertation, two different methods for 

displacement measurement are developed that overcome the shortcoming of the 

traditional approach: the waveguide cantilever and the interferometric cantilever. The 

detection of homocysteine produced by bacterial enzymes is demonstrated with both 

methods.  

1.2.1 Design and Fabrication of Waveguide Cantilever for Liquid Samples 

The first readout method is based on a device with integrated optical waveguides. 

The cantilever is formed by releasing the tip of an input waveguide from the 

substrate. It is coupled to an output waveguide across a small gap. As the cantilever 
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moves up or down, the power of light transmitted from the input to the output 

waveguide changes and serves as an indication of the cantilever displacement. This 

measurement requires an external laser to launch light into the on-chip waveguides 

and an external photodiode to collect it. However, these components are much 

smaller in size and cost than the traditional free-space optical setup. As a result, the 

integrated waveguide readout can lead to low-cost, portable cantilever sensors with 

minimal off-chip complexity or large arrays of cantilever sensors for high-throughput 

detection.  

The idea of the waveguide cantilever has been demonstrated before for 

measurements in air [31-33] but not in liquid. The majority of chemical and 

biological samples are in the solution state; therefore, the capability of the sensor to 

operate in liquid is significant for biomedical applications. This dissertation reports 

for the first time a waveguide cantilever used for detection in liquid samples. A new 

device was designed that combines the cantilever senor with a microfluidic channel. 

The sensitivity of the cantilever was modeled theoretically and experimentally 

verified. A customized fabrication process was developed to realize devices with 

sufficiently high sensitivity. The bulk of the process development consisted of 

reducing the residual stress in the materials in order to control out-of-plane beam 

curvature.  

1.2.2 Device and Method for Interferometric Displacement Measurements 

The second cantilever readout method is based on using a device with a built-in 

interference cavity. The device consists of a sloped transparent beam over a reflective 

substrate. When it is imaged with an optical microscope, an interference pattern is 
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formed by light reflected off the cantilever and light reflected off the substrate. The 

number and position of interference fringes depends on the distance of the cantilever 

from the substrate. The cantilever vertical displacement is found by extracting the 

horizontal fringe shift from digital images and multiplying it by the cantilever slope. 

Multiple cantilevers are rapidly read out with a single microscope by translating the 

stage to image each device before and after sample injection. A software algorithm 

was developed to automate the fringe shift measurements. This readout method is not 

applicable to portable cantilever sensors due to the requirement for an optical 

microscope; however, it is well-suited for high-throughput measurements of large 

cantilever arrays. It is also fully compatible with liquid samples.  

The idea of the interferometric cantilever device and measurement method 

described here is new. It was conceived during the course of this dissertation 

research, and there were no demonstrations of it in prior literature. The device 

fabrication process and microfluidic packaging are similar to that of the waveguide 

cantilever described above.  

1.2.3 Detection of Enzymatically Produced Homocysteine  

One of the products of the bacterial quorum sensing enzymes, homocysteine, 

contains a thiol group. It has been shown that thiol compounds assemble on gold 

surfaces and create compressive stress. Both the waveguide and interferometric 

cantilevers have gold surfaces and are therefore capable of detecting the binding of 

homocysteine. The presence of this substance can be used as an indication of the 

enzymatic activity and by extension the effectiveness of candidate drugs that aim to 

inhibit the enzyme.  
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This dissertation demonstrates the detection of homocysteine from two different 

sources with both cantilever readout methods. First, samples prepared from 

commercially available homocysteine powder were tested. The cantilevers were 

shown to have a concentration-dependent response. Next, bacterial enzymes were 

assembled in microfluidics and used to synthesize homocysteine in situ. It was 

demonstrated that active enzymes led to significant cantilever bending, while 

denatured enzymes cause no measurable response.  

1.3 Literature Review  

This section reviews related work to establish the context of the dissertation. First, 

more background is provided on bacterial quorum sensing (QS) and the potential 

benefits of drugs that inhibit it. Next, examples of using BioMEMS for drug 

discovery applications other than QS inhibition are reviewed. Then, the different 

types of BioMEMS sensors are discussed, and the advantages of microcantilevers are 

highlighted. Finally, the traditional methods for cantilever displacement measurement 

are presented to emphasize the novelty of the two methods developed in this 

dissertation.  

1.3.1 Bacterial Quorum Sensing  

Most bacteria exist in the form of synergetic biofilms rather than isolated 

organisms [34]. The biofilm is a colony of cells embedded in a protective 

polysaccharide matrix secreted by the cells. It has been shown that the physiology of 

bacteria living in a biofilm is very different from that of isolated cells of the same 

species. The biofilm is much more resistant to antibiotics and bactericidal agents, 

probably due to the diffusion limitations imposed by the extracellular matrix on 
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incoming drug molecules [35, 36]. Also, bacterial colonies tend to produce more 

toxins that can rapidly kill the host organism [22]. 

The formation of biofilms is coordinated by a process known as quorum sensing 

[21, 37]. Each bacterium secretes small signaling molecules (known as autoinducers), 

which can be taken up by its neighbors. When the concentration of autoinducers in 

the environment exceeds some threshold, the genes encoding biofilm-like behavior 

start to be expressed. The threshold may vary considerably with conditions and is not 

well understood yet.  

Quorum sensing and biofilm formation have tremendous social implications. 

According to the National Institutes of Health, biofilms account for more than 80% of 

microbial infections in the body [38]. They are especially common on implanted 

device surfaces, such as catheters, stents, pacemakers, and artificial joints [39]. Due 

to the increased resistance to drugs, a fully formed biofilm typically cannot be 

removed by conventional antibiotics, and surgical intervention is required [38]. 

Interestingly, biofilms also impact industrial equipment such as heat exchangers, 

water tanks, and ship hulls by causing increased corrosion and viscous drag [40]. 

Therefore, the prevention of the biofilm formation is important for a wide range of 

applications. The idea of drugs that inhibit quorum sensing has emerged recently [23, 

24, 41]. This type of drugs should greatly reduce the severity of infections and make 

the bacteria more susceptible to immune clearance or treatment with conventional 

antibiotics.  

There are several kinds of quorum sensing pathways and signaling molecules in 

different bacteria. However, it has been shown that a molecule called AI-2 
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(autoinducer-2) is common to many clinically relevant bacterial species [21, 25, 37, 

42]. Drugs that inhibit the AI-2 signaling pathway are therefore particularly attractive 

since they can potentially be applied to a wide range of infectious diseases. A 

collaborative project was initiated at the University of Maryland to study this pathway 

using lab-on-a-chip technology1. Several parallel approaches are being investigated, 

targeting either the AI-2 synthesis or uptake mechanisms. The present dissertation 

research was conducted as part of that broader project, and it was focused on 

developing a sensor to monitor the activity of AI-2 producing enzymes.  

A simplified version of the AI-2 synthesis pathway is shown in Figure 1.1. It 

consists of two enzymes: Pfs and LuxS. The first enzyme converts the precursor SAH 

(S-adenosyl homocysteine) into SRH (S-ribosyl homocysteine) and adenine. The 

second enzyme converts SRH into AI-2 and homocysteine. Drugs that suppress 

quorum sensing may target either enzyme. The microcantilever sensor described in 

this dissertation is aimed at detecting the homocysteine by means of its high affinity 

for gold surfaces. There are no surface coatings currently available that can 

selectively bind SRH, adenine, or AI-2 molecules. Nevertheless, the presence of 

homocysteine is a sufficient indication of the activity of the AI-2 synthesis pathway 

as a whole.  

                                                 

1 The principal investigators in this project are the following University of Maryland professors: W. E. 

Bentley (BIOE), G. F. Payne (UMBI), R. Ghodssi (ECE), G. W. Rubloff (MSE), and A. Nan (School 

of Pharmacy).  
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Figure 1.1: Biosynthetic pathway of AI-2. Adapted from ref. [37].  

Modified Pfs and LuxS enzymes were isolated by my collaborators Lewandowski 

et al. [43, 44] and Fernandes et al. [26, 45] from genetically engineered E. Coli 

bacteria. The modifications included a tyrosine functional group, which allows the 

enzymes to be covalently bound to the polysaccharide chitosan. Lewandowski et al. 

immobilized the enzymes on microfabricated chips with deposited chitosan films and 

demonstrated that they retain catalytic activity after the binding. Fernandes et al. 

attached the enzymes to chitosan-coated magnetic nanoparticles and used them to 

synthesize AI-2 directly at cell surfaces. These results set the stage for reproducing 

the AI-2 synthesis pathway in a BioMEMS environment. Next, Luo et al. used the 

same immobilization approach to assemble Pfs on chitosan-coated electrodes within 

microfluidic channels and to synthesize SRH [46, 47]. The reaction kinetics was 

characterized, illustrating the effects of flow rate and nonspecific enzyme attachment 

on the conversion rate.   

The work of my collaborators described here shows that significant progress has 

been made towards studying the AI-2 pathway on chip. However, in all of these 

examples, the detection of the reaction products was performed externally. Samples 

were collected and analyzed by HPLC (high performance liquid chromatography) or 
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tested with cells-based assays2. Both of these approaches are very slow and labor 

intensive, and they are only feasible for a small number of samples. For the purposes 

of high-throughput screening of quorum sensing inhibitors, it is necessary to 

incorporate the detection mechanism on chip. This is precisely the role of the present 

dissertation research. The microcantilever sensors developed here are embedded 

within the fluidic channels, and they can be used to detect multiple samples in 

parallel. 

To the best of my knowledge, there is currently only one other research group 

applying BioMEMS technology to the problem of bacterial quorum sensing [48, 49]. 

Ehrlich et al. recognize that biofilms are responsible for chronic infections of many 

implants. They envision a smart implant, which detects the onset of biofilm formation 

and releases antibiotics to kill the bacteria before the film is fully formed. The device 

has not been demonstrated, but the proposed design consists of a BioMEMS sensor 

for detecting bacterial signaling molecules and gated reservoirs for drug delivery. The 

sensor is based on a cantilever viscometer. The bacterial autoinducers bind to an 

engineered receptor protein, and an enzymatic reaction is initiated that decreases the 

viscosity of the fluid inside the device. This viscosity change is sensed by the 

cantilever, and the drug release is triggered. It should be noted that the design of 

Ehrlich et al. is substantially different from the work described in this dissertation. 

First, a different quorum sensing pathway is explored that is based on a peptide 

signaling molecule instead of AI-2. Second, instead of inhibiting bacterial 

                                                 

2 The assay is a culture of V. Harveyi “reporter” cells that emit bioluminescence when they detect AI-2. 

The luminescence is measured with a spectrophotometer.  
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communication, the authors aim to use it as a timing signal for drug release. Third, 

the cantilever sensor is used to detect a different effect (viscosity change as opposed 

to surface binding) in a different sensing mode (dynamic and static mode operation 

are discussed in Section 1.3.3). 

1.3.2 BioMEMS for Drug Discovery 

A variety of BioMEMS tools are being developed for drug discovery application 

beyond quorum sensing inhibition. There are successful demonstrations of devices 

that synthesize chemical compounds combinatorially [50, 51], test compounds on 

living bacterial cells [52],  sort cells according to surface receptors [53], identify 

proteins[54], and assay enzyme activity [55]. 

BioMEMS have a number of advantages compared to conventional laboratory 

techniques based on well plates and robotic dispensers. First, they have much smaller 

sample volumes (nL compared to mL), which minimizes the use of valuable reagents 

and speeds up diffusion-limited reactions. Second, the samples are enclosed in 

channels, preventing them from evaporating. Third, the devices inherently have a 

small footprint, enabling massively parallel operation with low fabrication costs. 

Fourth, various sensors can potentially be integrated in close proximity to the sample, 

providing information with high spatial and temporal resolution. For these reasons, 

BioMEMS are being developed for all aspects of the drug discovery process: target 

identification, compound generation, lead identification, and lead optimization  [7, 

11, 13, 20, 56-59]. Most of this work has a different scope that the present 

dissertation, which is primarily aimed at developing an on-chip sensor for high-

throughput detection. The next section reviews the main types of BioMEMS sensors 
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commonly reported in literature. Although they were usually developed for other 

applications, they can readily be adapted to the needs of drug discovery. 

1.3.3 BioMEMS Sensors 

A myriad of miniaturized biochemical sensors with different detection principles 

and device structures have been demonstrated [3, 8, 59, 60]. In general, they contain a 

selective coating (either biomolecular or synthetic) with an affinity for a given 

analyte; the binding of the analyte to the coating is detected by optical, 

electrochemical, capacitive, acoustic, or mechanical means. Each of these 

transduction mechanisms has different advantages and limitations, and the optimal 

choice depends largely on the application. Some types of BioMEMS sensors are 

simply miniaturized versions of conventional laboratory instruments (e.g. optical, 

electrochemical, and capacitive measurement tools). Others are unique to the lab-on-

a-chip domain and have no macroscale counterparts (e.g. acoustic and mechanical 

sensors).  

Optical biosensors typically operate in the fluorescence detection mode. The 

target molecules are tagged with a fluorescent label (fluorophore). The sample is 

illuminated with an excitation signal and the scattered (or transmitted) light is 

captured and analyzed. Since the fluorophore causes a characteristic frequency shift 

in the collected light, its presence can be determined from the light’s spectral 

components. This technique is based on the well-established fields of fluorescent 

microscopy and DNA spotted arrays, and it has been implemented in BioMEMS 

devices by a number of authors [61-64]. Fluorescent detection has very high 

sensitivity, and even single molecule detection has been reported [65]. Its major 
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limitation, however, is the need to label the target molecules with a fluorophore. This 

greatly increases sample preparation times. Additionally, labeled target species are no 

longer in their intrinsic state and may have different properties from their unlabeled 

counterparts. This concern is especially valid for proteins with complex structures 

[66].  

Another optical detection technique exploited for BioMEMS sensors is surface 

plasmon resonance (SPR) [67, 68]. A plasmon wave is excited by coupling light 

along a metal surface at a specific angle with a prism. The binding of biomolecules to 

the metal surface is detected by the change in the critical coupling angle. The 

advantage of SPR detection is that it does not require the target molecules to be 

labeled. However, it requires a bulky optical coupling and measurement setup that 

poses significant challenges for miniaturization and parallel operation.  

Electrochemical (also called amperometric or voltammetric) sensors measure 

electrical currents to detect biochemical events [69, 70]. Their application is typically 

limited to detection of specific molecules that undergo reduction or oxidation 

reactions and result in net current flow. This method can be extended to other 

molecules if they are tagged with redox labels [71]. The labels then undergo the 

necessary electrochemical reactions for detection. However, as in the case of 

fluorescent labeling, redox labeling complicates sample preparation and affects the 

properties of the biomolecules being tagged.  

Capacitive sensors measure the changes in capacitance of an electrode to which 

target molecules bind [72, 73]. The capacitance variations are caused by the dielectric 

properties of the added molecules or by their net charge. This method can be readily 
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implemented on the microscale by field effect transistors (FET), which are simple and 

highly sensitive charge detectors. The resulting devices are called CHEMFETs [74]. 

Another advantage of these biosensors is that they enable label-free detection of the 

target molecule. However, capacitive biosensors require extensive calibration and are 

prone to drift noise. Since the capacitance changes with solution properties (e. g. pH, 

temperature, and ion concentration) care must be taken to separate these secondary 

effects from biomolecular binding events.  

Acoustic transduction is also utilized by some BioMEMS sensors for label-free 

detection. In surface acoustic wave (SAW) sensors [75, 76], a SAW wave is 

generated by a piezoelectric film, which is covered by a patterned metal layer. The 

propagation of the acoustic wave is influenced by the binding of biomolecules on the 

metal surface due to the change in acoustic impedance. This change is measured 

electrically, and the biomolecules are detected. This method, however, typically uses 

a large footprint (a few mm) to ensure that the acoustic wave is appreciably affected 

by the sample. Scaling the devices down in size negatively impacts their sensitivity. 

For this reason, SAW sensors may not be favorable for miniaturized sensor arrays on 

a chip. Another biosensing transduction technique which may be considered acoustic 

is the quartz crystal microbalance (QCM) [77, 78]. In these devices, the target 

molecules bind to the surface of a resonant piezoelectric crystal and reduce its 

resonant frequency due to the increased mass. Traditional QCMs are cut out of quartz 

crystals and are not compatible with MEMS batch fabrication. Therefore, their 

potential for arrayed operation is limited. Thin film piezoelectric resonators have also 
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been developed that are batch fabrication compatible [79], but they have lower 

sensitivity than their bulk crystal counterparts.  

Micromechanical biosensors use micromachined structures such as cantilever 

beams or membranes to which the analyte molecules bind. There are two detection 

mechanisms for this type of sensors: static (bending) and dynamic (resonant). In static 

mode [80-82], the microstructure is displaced due to the surface stress exerted by the 

binding molecules. In dynamic mode [83-85], the frequency response of the structure 

is changed due the added mass, the modified mechanical spring constant, or the 

damping characteristics of the analyte. To obtain the dynamic response, the structure 

is actuated, and its displacement as a function of time or frequency is measured. The 

key advantages of micromechanical biosensors are that they allow for label-free 

detection and are fully compatible with MEMS batch microfabrication. Although 

some of the other technologies reviewed earlier are also label-free (e. g. SAW, QCM, 

and SPR), they are not as suitable for miniaturization and arrayed operation. While 

other types of sensors usually are negatively impacted by being scaled down, 

micromechanical devices actually benefit in sensitivity due to the increase of surface 

to volume ratio. The next section reviews microcantilevers, which are the most 

common form of micromechanical sensors.   

1.3.4 Microcantilever Sensors 

1.3.4.1 Applications of Cantilever Sensors 

Microcantilever sensors have been adapted for a wide variety of biological and 

chemical applications by selecting an appropriate coating layer [27-30]. Dynamic 

mode detection is normally limited to gas-phase samples, while static mode can be 
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readily used for both gases and liquids. Although the dynamic mode has been 

demonstrated with liquid samples, it suffers from high viscous damping and reduced 

sensitivity [27, 86].  

Dynamic mode cantilevers have been employed for detecting humidity [87], 

alcohol vapor [88], mercury vapor [89, 90], DMMP (dimethyl 

methylphosphonate)[91], and airborne virus particles [83]. Static mode devices 

coated with DNA strands or proteins have been used to detect DNA hybridization 

[81, 82, 92-94], binding of antigens to antibodies [30, 95-97], and binding of 

substrates to enzymes [98, 99]. The static mode cantilever has been found more 

suitable for biological applications due to its ability to operate in liquid, which is the 

natural environment of biomolecules. For this reason, the sensors developed in this 

dissertation are of the static type.  

1.3.4.2 Common Readout Methods 

Despite the promise of microcantilever sensors for arrayed operation, most 

demonstrations to date have been performed with single devices. This is largely due 

to the limitations of available methods for measuring cantilever displacement in both 

static and dynamic modes. The measurement typically employs an external optical 

setup which requires precise alignment and can only be used for one device at a time. 

Therefore, the potential of cantilever sensors for high throughput detection is 

practically limited by the characteristics of the readout method.  

The most common method for displacement measurement is the “optical lever” 

approach, which was adapted from the field of Atomic Force Microscopy [29, 92, 93, 

100-102]. A focused laser beam is reflected off the cantilever surface, and captured 
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by a PSD (Position Sensitive Detector) as shown in Figure 1.2. The cantilever 

displacement causes movement of the laser spot on the PSD and a change in its 

output voltage.  

        

Figure 1.2: Schematic of the “optical lever” readout. Reproduced from ref. [27].  

This method is very sensitive, but it requires elaborate free-space optics with 

precise alignment of the laser beam to the device under test. Moreover, the ratio of 

PSD signal to cantilever displacement depends on the exact position of the laser spot 

on the cantilever. This ratio is unimportant for resonant frequency measurements, but 

it greatly impacts static mode operation. For example, a change in PSD output due to 

slight laser misalignment can be misinterpreted as cantilever bending. Since the 

alignment cannot be perfectly reproduced, the laser must be kept aligned to the 

cantilever throughout the static mode experiment. This precludes parallel 

measurements. If a cantilever array is exposed to a sample, the response of only one 

device can be captured. Custom-made arrays of lasers and PSD’s for measuring 

several cantilevers in parallel have been demonstrated [93, 101, 102]. However, this 

approach leads to greatly increased instrumentation complexity and difficulty of 
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alignment. It is not feasible to increase the number of lasers much further, while the 

number of cantilever on a chip can easily be in the hundreds or even thousands.  

Another common method for measuring cantilever response involves the 

integration of on-chip displacement sensors. This approach not only allows multiple 

devices to be measured in parallel, but also simplifies the external measurement 

setup. The built-in sensors can be piezoresistive [103, 104], piezoelectric [90, 105], 

capacitive [106, 107], or transistor-based [95]. Unfortunately, all of these 

technologies greatly increase the fabrication complexity and cost of the cantilevers, 

which should be simple, cheap and disposable. For cantilever arrays, multiple 

electrical connections must be made from the sensors to off-chip components, 

complicating the packaging. Moreover, the resolution of the integrated displacement 

sensors is considerably lower than that of the PSD-based method described above, 

and they suffer from increased signal drifts. The output from the sensors is an 

electrical signal; converting that into actual displacement requires calibration, which 

may change from device to device. Therefore, comparing the results from multiple 

cantilevers may be problematic. The integrated sensor readout may be appropriate for 

applications where portability is essential while the sensitivity, repeatability, and cost 

are not primary concerns.  

1.3.4.3 Waveguide Readout 

As explained in Section 1.2.1, a new readout approach based on integrated optical 

waveguides has been demonstrated by several groups [31-33]. It addresses many of 

the limitations of the traditional displacement measurement methods. It reduces the 

complexity of the external setup; at the same time, the waveguide cantilevers are 
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simpler to fabricate and potentially more sensitive than the devices with integrated 

displacement sensors discussed above. Each of the published demonstrations of this 

new readout method is briefly reviewed here. 

Zinoviev et al. report a waveguide cantilever operating in dynamic mode that is 

illustrated in Figure 1.3 [32]. The input and output waveguides consist of a Si3N4 core 

on top of a SiO2 cladding layer, while the cantilever is composed of a SiO2 core with 

air cladding.  

 

Figure 1.3: Schematic of cantilever with integrated waveguide readout reported by Zinoviev et 
al. Reproduced from ref. [32] 

The device was actuated with a piezoelectric shaker, and the resonant frequency 

was measured from the spectrum of the photodetector output signal. The authors 

claim that the sensitivity of this readout in the dynamic mode is close to that of the 

PSD-based approach. Static mode operation was not reported, and the device was not 

tested in liquid. Also, the cantilever did not include a surface coating for detecting 

particular analytes. The authors point out the use of multiple layers could lead to 

excessive beam bending due to residual stress effects. They fabricate the cantilever 

from a single SiO2 layer without a coating in order to keep it flat.  
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Pruessner et al. demonstrated another waveguide cantilever in dynamic mode 

[31]. The device was realized in the InP material system, making it theoretically 

possible to fabricate the light source on chip. In this work, the cantilever was an in-

plane structure instead of the more typical out-of-plane design (Figure 1.4). It was 

electrostatically actuated by lateral electrodes in order to measure its resonant 

frequency from the optical output signal. The same design was further developed by 

Siwak et al. [88]. It was coated with the organic semiconductor pentacene on the top 

surface and used for detecting alcohol vapor. This device is ineligible for static mode 

detection due to its in-plane design (there is no available method for applying a 

coating to the sidewall of the beam, where it is needed to cause bending). Operation 

in liquid was not attempted. 

 

Figure 1.4: SEM of cantilever with integrated waveguide readout reported by Pruessner et al. 
Reproduced from ref. [31].  

Nordstrom et al. reported the first waveguide cantilever for static mode detection 

[33, 108]. The waveguides consist of an SU-8 core and a modified SU-8 cladding, 

and the cantilever is an air-clad SU-8 core. Figure 1.5 shows a schematic of the 

design. It did not include any surface coating layer for detecting analytes, possibly 

due to concerns of excessive residual stress (as in the work of Zinoviev et al. 
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discussed above). The device was tested only in air by deflecting the cantilever tip 

with a microprobe while measuring the output optical power. The authors calculate 

the theoretical performance in liquid but do not test it experimentally. The minimal 

detectable displacement in air was found to be 45 nm, which corresponds to a surface 

stress of 0.2 N/m. It was concluded that this level of sensitivity is not sufficient for 

typical biochemical detection experiments, and that further improvement is necessary.  

 

Figure 1.5: Schematic of cantilever with integrated waveguide readout reported by Nordstrom et 
al. Reproduced from ref. [33].  

In summary, none of the previous demonstration of the waveguide cantilever was 

performed in liquid. Two of them were used in the dynamic mode, and one in the 

static mode. The static mode device did not have a coating layer for detecting 

particular analytes, and its sensitivity was too low for typical applications. In contrast, 

the waveguide cantilever developed in this dissertation was demonstrated to be fully 

compatible with liquids. It has much higher sensitivity than the device reported by 

Nordstrom et al., and it includes a gold coating made possible by improved residual 

stress control during fabrication. Although the gold layer here serves only for 

detection of homocysteine, it can be functionalized with thiol-labeled probe 

biomolecules and used for many other applications [27, 29, 30]. 
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1.3.4.4 Interferometric Readout 

The interferometric readout method described in Section 1.2.2 is new to this 

dissertation and has not been previously demonstrated. Although it still requires an 

external measurement setup (a microscope with a digital camera), the alignment 

tolerance is greatly relaxed compared to the PSD-based method. This allows the 

microscope to be moved between cantilevers to image an entire array before and after 

introducing a sample. Therefore, the response of the whole array to the sample can be 

captured with a single reader. The interferometric cantilever is much simpler to 

fabricate than the devices with integrated displacement sensors, and it has no 

electrical connections. It is also more sensitive and does not require any sensor 

calibration. This section reviews several other interferometric techniques used to 

measure beam displacement and explains their differences from the method 

developed in this dissertation.  

Stievater et al. reported microbridge resonators with on-chip interference cavities 

as shown in Figure 1.6 [91]. The doubly clamped beam is illuminated normally with 

light from an optical fiber, and the reflected light is collected with the same fiber. 

Vertical displacement of the beam changes the cavity length and therefore the 

reflected light power. The authors used this effect to measure the resonant frequency 

of the beams from the modulated reflection signal. A similar approach was 

demonstrated by Svitelskiy et al. for nanoscale bridges [109]. However, this method 

is not eligible for static mode detection due to light intensity drifts. Any small change 

in laser output power or fiber placement, for example, can be misinterpreted as beam 

displacement. Moreover, the method requires a bridge instead of a cantilever in order 
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to form a uniform interference cavity (bridges are much stiffer and less sensitive than 

cantilevers). The approach reported in this dissertation is based on analyzing the 

interference pattern of the cavity instead of taking power measurements. Therefore, it 

is immune to intensity drifts and uses a non-uniform cavity formed by a cantilever.  

 

Figure 1.6: Schematic (a) and micrographs (b, c) of microbridge resonators with on chip 
interference cavity. Reproduced from ref. [91].  

Another interferometric technique has been used previously for measuring static 

cantilever displacement. It is based on optical profilers, which are specialized 

microscopes with interferometric objectives [94, 110, 111]. However, the cost of 

these tools is normally 10 times higher than that of a conventional optical microscope. 

The profiler approach also has some technical limitations. First, it requires custom 

modifications to enable measurements through liquid [111]. Second, the interference 

cavity is external to the chip since it is formed between the cantilever surface and a 

reference mirror in the objective. This means that the measurement is greatly affected 

by stage vibrations and changes in the refractive index of the medium. In contrast, the 

interference cavity in this dissertation is formed between the cantilever and the 
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substrate. Due to its short length and mechanical stability, it is much more immune to 

refractive index fluctuations and stage vibrations.    

1.4 Structure of Dissertation  

Chapter 1 has introduced the background and motivation of this research. Chapter 

2 describes in detail the theory of operation and design considerations for both the 

waveguide cantilever and interferometric cantilever. The optical and mechanical 

sensitivity are discussed, and the procedure for analyzing the interference images is 

explained. Chapter 3 describes the fabrication and packaging processes for both 

devices. Chapters 4 and 5 present the testing procedures and results for the waveguide 

and interferometric cantilever, respectively. The devices are used to detect 

homocysteine samples obtained from commercially available powder or synthesized 

by the bacterial quorum sensing enzymes. Finally, Chapter 6 summarizes this 

dissertation and suggests possible further work. 
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2. Chapter 2: Theory of Operation and Design 

2.1 Introduction 

As discussed in Chapter 1, this dissertation develops two different types of 

microcantilever sensors suitable for high-throughput studies of bacterial quorum 

sensing. The first type contains integrated optical waveguides, and the second type 

makes use of an on on-chip interference cavity that is imaged with an external 

microscope. Both kinds of sensors are embedded in microfluidic channels for sample 

delivery. This chapter presents in detail the theory of operation and design 

considerations for each device.  

2.2 Waveguide Cantilever 

2.2.1 Device Structure  

The waveguide cantilever sensor consists of SU-8 polymer optical waveguides 

with a SiO2 bottom cladding layer on a Si substrate. A schematic of the device with 

the relevant layer thickness labels is shown in Figure 2.1. The cantilever is a section 

of the input waveguide (IWG) that is released from the SiO2 surface and is coated 

with a thin gold layer. It faces the output waveguide (OWG) across a small gap, and it 

is slightly curled up due to residual stress gradient in the SU-8. The effect of this 

curvature on the optical coupling and sensitivity is discussed in Section 2.2.3, and the 

fabrication process used to tune the residual stress is described in Chapter 3. The 

attachment of analytes to the gold surface causes the cantilever to bend further up or 

down from its initial position. To detect this bending, light is coupled to and from the 
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on-chip waveguides via optical fibers mounted on XYZ positioning stages (the testing 

setup is described in Chapter 4). The cantilever’s displacement changes the power of 

light coupled to the output waveguide, which is measured with an external 

photodetector.   

Si
SiO2 (1µm)

SU-8 (2.2µm)

Au (15nm)

Input 
waveguide Cantilever

Output 
waveguide

 

Figure 2.1: Schematic (3D) of a waveguide cantilever before the addition of the microfluidic 
channel.  

The SU-8/SiO2 waveguide system has been demonstrated previously for 

fabrication of various BioMEMS optical sensors [64, 112]. It was chosen here due to 

its low propagation loss, low residual stress (which minimizes the cantilever 

curvature), and the availability of equipment for SU-8 fabrication. Most authors use a 

Pyrex substrate to form the SU-8 waveguides. Here, a single-crystal silicon substrate 

was chosen to allow for cleaving. This results in smooth waveguide facets that 

facilitate the optical coupling to external fibers.  

The cantilever is embedded in a microfluidic channel to enable detection of liquid 

samples with small volumes. The channel is formed by a molded PDMS polymer 

layer placed on top of the cantilever chip as shown in Figure 2.2a. The channel is 

perpendicular to the waveguides. The PDMS layer is secured in place by an external 

compression package, and the channel is connected to external tubing via steel 

capillaries (the packaging is described in Chapter 3). Figure 2.2b shows a top-down 
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view of the SU-8 layer to illustrate how a fluidic seal is formed. Tether structures are 

used to block the fluidic leakage paths parallel to the waveguide.  

The use of molded PDMS for creating microfluidic channels is very common 

[113, 114], but it has not been demonstrated before with cantilever sensors. Most 

cantilever studies in liquid have been performed in macroscale flow cells or Petri 

dishes rather than microfluidic environments. The reason for choosing the PDMS 

channel approach here is its compatibility with more complicated microfluidic 

networks that incorporate pneumatic valves and pumps [113]. Therefore, the device 

developed in this dissertation can be readily integrated within a larger lab-on-a-chip 

system.  

Molded PDMS layer
Channel

Substrate
IWG Cantilever OWG

Tether

IWG Cantilever OWG

Tether

    

                                    

Fluid 
input

Fluid 
output

Waveguides

 

Figure 2.2: a) Cross section along waveguide cantilever embedded in microfluidic channel. b) 
Top down view of SU-8 layout. c) Top down view of fluid channel layout. Тhe XYZ coordinate 
systems used for the mechanical and optical analysis later are shown.  

The optical waveguide has cladding materials with different refractive indices 

along its length: SiO2 (n = 1.5), PDMS (n = 1.4), and water (n = 1.33). In all cases, 

the refractive index of the SU-8 core (n = 1.6) is higher than that of the cladding, and 

z
y
x z

x
y

(a) (b)

z
x
y
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the waveguiding condition is satisfied. There is an increased propagation loss in the 

tethers due to lateral light leakage from the waveguide and in the gold layer due to its 

imaginary refractive index. Due to the short length of these lossy regions, the total 

optical loss through them is acceptable. The propagation loss in the waveguides is 

discussed in Section 2.2.3.6, and the final dimensions of the device are given in 

Section 2.2.4. 

2.2.2 Mechanical Sensitivity 

The mechanical sensitivity of the cantilever is defined here as the vertical tip 

displacement ∆t per unit surface stress ∆σs. This quantity is given by the Stoney 

formula (Equation 2.1) [115]. The relevant variables are defined in Table 2.1. The 

cantilever in this work is composed of two layers, SU-8 and gold, with different 

Young’s moduli (E). It has been shown that Equation 2.1 can be used for a composite 

cantilever by replacing E with the effective Young’s modulus [116]. Eeff is given by 

Equation 2.2, where Ei and Ii are the Young’s modulus and the moment of inertia of 

each layer for N layers. However, using the material properties and thicknesses given 

in Table 2.2, it can be shown that Eeff ≈ ESU-8  in this work, i.e. the effect of the gold is 

negligible.   

Equation 2.1   
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Table 2.1: Definitions of variables 

Symbol Definition 

L Cantilever length 

H Cantilever thickness 

W Cantilever width 

I Moment of inertia about cantilever’s 
neutral axis (I = WH3/12) 

E Young’s modulus 

ν Poisson’s ratio 

t Height of cantilever tip above substrate 

d(z) Height of cantilever at point z along 
cantilever axis 

σs 
Surface stress caused by binding of 
analytes 

y
r

∂
∂σ  Residual stress gradient in cantilever 

material 

 k  Cantilever curvature 

 

Table 2.2: Young’s modulus and thicknesses of cantilever materials in this work (other materials 
commonly used for cantilevers are given for comparison). These are representative values 
obtained from literature.  

Material E (GPa) ν Thickness  in device (nm) 
SU-8 2 0.22 2000 
Au 78 0.44 15 

Si3N4 270 0.27 -  
SiO2 70 0.17 -  

Si 150 0.17 -  
 

Equation 2.1 shows that the mechanical sensitivity depends on the material 

stiffness, the beam thickness, and the beam length. The stiffness of SU-8 is quite low. 

Its Young’s modulus is 2 orders of magnitude lower than other materials commonly 

used for cantilever fabrication (Table 2.2), and it is therefore favorable for high 
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mechanical sensitivity. The sensitivity is maximized by choosing the minimal 

thickness of SU-8 that could be fabricated in house (approximately 2.2 µm). The 

length of the cantilever is limited by the upward curvature and optical coupling 

considerations to approximately 150 µm as discussed next.  

 Cantilevers with a residual stress gradient assume a parabolic bending profile 

shown by Equation 2.3 [117, 118]. The resulting cantilever tip height is given by 

Equation 2.4, where k is the curvature.  

Equation 2.3 2
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Since the output waveguide is fixed to the substrate, the tip height t represents the 

vertical misalignment between the input and output waveguides. To allow for 

adequate optical coupling (Section 2.2.3.4), the value of t should be less than the 

waveguide thickness (2.2 µm). Due to the fabrication constraints described in Chapter 

3, the minimal curvature of the cantilever is about 0.23 mm-1; therefore, the cantilever 

length is limited to approximately 140 µm (even though longer devices would have 

higher mechanical sensitivity). The final cantilever dimensions are given in Section 

2.2.4 after the discussion of optical sensitivity.  

It should be noted that the Stoney formula (Equation 2.1) is based on idealized 

beam theory and is only an approximation. More accurate equations have been 

derived to predict cantilever displacement due to surface stress [115, 119], but that 

level of accuracy is not needed in the present case. Sader et al. showed that the error 

resulting from the Stoney equation is less than 10% if the ratio of cantilever length to 
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width is larger than 2.5 [119] (this condition is fulfilled here). Since there is 

potentially larger error due to deviations in material property values, Equation 2.1 

was deemed acceptable for this design.  

2.2.3 Optical Sensitivity 

The optical sensitivity of the device is defined here as the change in optical 

transmission per unit cantilever displacement. To determine this quantity, it is 

necessary to express the power of light received at the output as a function of 

cantilever displacement. This requires knowledge of the waveguide mode shapes. 

First, an analytical model is used here to show the functional form of the modes and 

the transmission coefficient. Next, finite element simulations are performed to find 

the exact mode shapes and also to calculate the waveguide propagation loss. Using 

these mode shapes and considering the effects of free-space divergence, the 

transmission coefficient and the optical sensitivity of the device are determined. 

Finally, the sources of noise and the maximization of signal to noise ratio are 

discussed.   

2.2.3.1 Analytical Model 

This section describes the optical modes using an approximate analytical model of 

rectangular waveguides [120]. Although the model is less accurate than the finite 

element simulations performed later, it gives insight into the functional form of the 

waveguide modes. Following the coordinate system in Figure 2.2, the rectangular 

waveguide supports two types of modes: mn
xE (the primary component of the E field is 

in the x direction) and mn
yE (the primary component of the E field is in the y 

direction). These modes are also called TE (transverse electric) and TM (transverse 
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magnetic) respectively; m and n are mode orders in the x and y directions. The electric 

field is approximated by Equation 2.5 for mn
xE modes and by Equation 2.6 for 

mn
yE modes, where β is the propagation constant.  

Equation 2.5    )exp()()(),,( 0 zjyGxFEzyxE mn
x

n
x

m
xx

mn
x β−=  

Equation 2.6    )exp()()(),,( 0 zjyGxFEzyxE mn
y

n
y

m
yy

mn
y β−=  

The functions Fm(x) and Gn(y) are the horizontal and vertical mode profiles, 

respectively, and can be obtained by solving a set of equations subject to the 

waveguide’s boundary conditions [120]. Importantly, according to the functional 

forms above, the horizontal mode profiles are independent of y and the vertical mode 

profiles are independent of x.  

 The modal shapes in the cantilever and output waveguide are closely matched if 

the cantilever is straight. When it bends due to residual stress gradient or surface 

stress, its modes shift by t in the y direction3 but not in the x direction. Therefore, only 

the vertical mode profiles become significantly mismatched; the horizontal mode 

profiles remain matched and do not affect the change in coupling. Based on this 

simplification, the coupling coefficient (or transmission coefficient) from the 

cantilever to the output waveguide is given by Equation 2.7 [120] and illustrated in 

Figure 2.3.  

Equation 2.7  
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3 Strictly speaking, the cantilever displacement causes both shifting and tilting of the mode. Here we 

assume that the tilt is negligible. The effect of tilt is shown in Section 2.2.3.5.  
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Figure 2.3: Schematic of light coupling from cantilever into output waveguide across gap 

Here, C(t) is the ratio of power captured by output waveguide to power leaving 

the cantilever with tip height t. G1(y) is the mode shape exiting the cantilever, G2(y) is 

the broadened mode shape that arrives at output waveguide, and G3(y) is the mode 

shape of the output waveguide. G1 is different from G2 due to the mode divergence 

upon propagation through free space. The beam actually diverges in both the x and y 

directions, and F(x) also broadens. However, this horizontal divergence is small 

because the waveguide’s width-to-thickness ratio is large; as a result, the horizontal 

mode profiles remain closely matched and do not appreciably affect the optical 

coupling. 

Since only the vertical mode shapes are of interest here, a planar waveguide 

model can be used instead of the rectangular waveguide model to further simplify the 

analysis [120]. The planar model assumes that the waveguide width is infinite and 

there is no lateral confinement of the light. The vertical mode shapes have the form 

given by Equation 2.8, where H is the waveguide thickness and the parameters a1-4 

and b1-3 can be found by matching the electromagnetic boundary conditions 

Equation 2.8 
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Matching the boundary conditions requires the solution of a transcendental 

equation, which takes into account the waveguide geometry and material refractive 

indices. It is solved graphically as shown in Figure 2.4 for a planar waveguide with a 

2.2 µm thick SU-8 core (n = 1.6), SiO2 cladding on the bottom (n = 1.5), and water 

cladding on the top (n = 1.33). The optical wavelength is 635 nm. The x-coordinates 

of the crossings of the blue and red lines in the plots are the effective mode indices 

(neff). The corresponding propagation constants are given by 0/2 λπβ effn= . The 

effective mode indices can be used to find the unknown parameters in Equation 2.8 

[120]; however, this step is omitted since G(y) will be found by the more precise 

FEM method later in Section 2.2.3.2. The graphical solution is used here only to find 

the number of modes.  

    

Figure 2.4: Graphical solutions of the transcendental equation for a planar waveguide for (a) TE 
and (b) TM modes.  

There are 4 solutions in each plot in Figure 2.4. Therefore the waveguide supports 

4 TE and 4 TM vertical mode shapes. Each mode has a different shape (Equation 2.8) 

and transmission coefficient (Equation 2.7). The distribution of power among the 

modes is random since it depends on scattering from waveguide defects. We assume 

that most of the power is in the fundamental TE and TM modes, and the contributions 

(a) (b)
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of the other modes to the transmission coefficient are negligible. This assumption is 

partly justified by the fact that higher order modes are less confined to the core and 

have higher propagation and coupling losses [121]. It can be shown that if the SU-8 

thickness is reduced below 570 nm, the waveguide would support only one vertical 

mode. The use of a single mode waveguide would result in a more accurate prediction 

of the transmission coefficient. However, the minimal achievable SU-8 thickness is 

approximately 2 µm due to fabrication constraints, and multimode operation cannot 

be avoided.  

2.2.3.2 Finite Element Model 

A finite element simulation of the waveguide was performed in COMSOL 

Multiphysics software to obtain the vertical mode shapes. The RF perpendicular 

hybrid-mode waves module was used with the wavelength set to 635nm. The mode 

profiles were later exported from COMSOL into MATLAB and integrated 

numerically to obtain the transmission coefficient (Equation 2.7). As discussed 

previously, only the fundamental TE and TM modes are considered since they are 

expected to carry most of the power. 

Figure 2.2 shows that the layer structure changes at different positions along the 

waveguide. It consists of one or more of the following layers: Si, SiO2, SU-8, gold, 

water, and PDMS. The mode shape depends on the local waveguide cross section. 

The transmission coefficient is determined by the mode shapes at the tip of the 

cantilever and at the adjacent end of the output waveguide. Although the entire length 

of the cantilever is shown to be covered by gold in the schematic, the tip of the 

fabricated device is actually free of gold. A region of length ≈ 5 µm at the tip is left 
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without gold coating to make sure that facet is not obstructed (this is discussed further 

in Chapter 3). Therefore, the simulation of the cantilever mode does not include the 

gold coating.  

Figure 2.5 shows the simulated electric field distribution of the fundamental TE 

mode ( 00
xE ) in the output waveguide and the cantilever. The waveguide geometry and 

material properties used for the simulation are also indicated in the plots. Note that 

this geometry is slightly different from the structure of the actual device in order to 

reduce the amount of computer memory needed for the simulation. For example, the 

waveguide width in Figure 2.5 is 10 µm, while the width of the fabricated waveguide 

is 20 µm. Since the cantilever width is much larger than the thickness (by a factor of 

10), the lateral dimensions should not affect the vertical mode profile significantly. 

Also, the thickness of the Si here is limited to 4 µm, while the fabricated device has a 

500 µm thick substrate. Since the light does not penetrate appreciably into the Si, the 

exact thickness of the substrate is insignificant.  

The refractive indices of each material used in the simulation are values 

commonly reported in literature. The Si layer also has conductivity in addition to the 

refractive index. This is not the electrical conductivity; rather, it is an equivalent 

conductivity that accounts for the optical loss in the material. According to [122], the 

absorption coefficient of Si at 635 nm is 0.3 µm-1. It can be shown that this leads to a 

complex refractive index of n = 3.42 – 0.015j and an equivalent conductivity of 2.7 
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kS/m. As a result of the Si absorbance4, the effective index of the waveguide modes is 

also complex and they have some propagation loss. This will be calculated in Section 

2.2.3.6. 

                                

                          

Figure 2.5: Contour plot of the electric field x-component of the fundamental TE mode in a) the 
output waveguide and b) the cantilever tip. Red corresponds to high values and blue to low 
values. 

 
                                                 

4 Water also has some optical absorbance. However, the section of waveguide covered by water is very 

short (only the length inside the microfluidic channel) and the total loss caused by water was found to 

be negligible even by a worst-case estimate.    
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The real parts of the mode indices found by the simulation (Figure 2.5a) are very 

close to those found by the planar waveguide model (Figure 2.4). The simulation 

yields neff =1.5946-1.5×10-9j and neff =1.5944-3.6×10-9j for the fundamental TE and 

TM modes respectively; the planar waveguide model yields neff = 1.5947and neff = 

1.5946 (the analytical model cannot account for loss mechanisms and gives only the 

real part of the index). This close agreement suggests that the lateral structure of the 

waveguide has little effect on the vertical mode profile.  

The sections of the waveguide covered by PDMS (n = 1.4) and by gold were also 

simulated. The PDMS-covered part has essentially the same mode shapes and 

effective mode indices as the water-covered part (Figure 2.5a), and the results are not 

shown here. The gold covered-part also has similar mode shapes and real part of the 

effective index. However, the imaginary part of the index is considerably increased 

due to the attenuation of light in the metal. This leads to increased propagation loss, 

which will be discussed later in Section 2.2.3.6. Figure 2.6 shows the simulated 

electric field distribution of the fundamental TE mode in the gold-covered part of the 

cantilever. The complex refractive index of gold given in the figure was obtained 

from [123]. The simulation yields an effective mode index of 1.5939 - 4.2×10-6j. 

Note that the gold layer thickness in the simulated geometry is increased to 100 nm in 

order to increase the element size and reduce the amount of computer memory 

required (the gold thickness in the fabricated device is only 10 nm). As a result, the 

simulation probably overestimates the complex part of the mode index.  
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Figure 2.6: Contour plot of the electric field x-component of the fundamental TE mode in the 
gold-covered part of the cantilever. Red corresponds to high values and blue to low values. 

The vertical modes shapes of the cantilever tip and output waveguide were 

exported from COMSOL and plotted in Figure 2.7. The figure shows the fundamental 

TE ( 00
xE ) and TM ( 00

yE ) modes are almost identical; therefore the transmission 

coefficient is the same for both polarizations. Furthermore, the figure shows that the 

modes can be approximated with a Gaussian given by )/)(exp( 2
0

2 ωµ−−= yE . Here, 

µ = 1.1 µm is position of the waveguide’s core center, and ωo = 0.9 µm is the beam 

waist. The Gaussian approximation allows the beam divergence and transmission 

coefficient (Equation 2.7) to be found analytically. Both the approximate analytical 

and exact numerical solutions are performed in the following sections, and the results 

are compared.   

Although only the 00E mode are shown in Figure 2.7, the other 0mE modes were 

found to have almost the same vertical shape (as predicted by Equation 2.5 and 

Equation 2.6). Therefore, they have the same transmission coefficient. For the sake of 

simplicity, we refer to all the 0mE modes as fundamental. As discussed previously in 

x (m) 

y 
(m

) 

Water (n = 1.33) 

SU-8 (n = 1.6) 

Gold (n = 0.1378 – 3.5661j) 
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Section 2.2.3.1, the higher order modes (i.e. mnE where n > 0) and their transmission 

coefficients are not analyzed here since 0mE  carry most of the power. 

 

Figure 2.7: Vertical electric field distribution in a) cantilever tip and b) output waveguide. 

2.2.3.3 Divergence in Gap 

 As the mode exits the cantilever tip and propagates to the output waveguide in 

unguided medium, it diverges (Figure 2.3). To find the transmission coefficient, it is 

necessary to solve for the broadened mode shape G2(y). Here, this is performed both 

by an analytical and a numerical method.  

The analytical approach assumes that the mode shapes are approximately 

Gaussian (Figure 2.7). The propagation of a Gaussian beam is described by the 

following well-known equation [124]:   
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The beam waist ω(z) is given by Equation 2.10, where 0ω is the initial beam 

waist, i.e. the waist of the guided mode.  

(a) (b)
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Equation 2.10  
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The numerical approach is based on Fourier optics and is implemented in a 

MATLAB program.  It takes the exact mode shapes exported from COMSOL (Figure 

2.7) rather than the Gaussian approximation. The method is described by Equation 

2.11 and Equation 2.12, which were formulated by Chen et al. [125]. First, the 

Fourier transform of the mode profile is obtained. This essentially decomposes the 

beam into a set of uniform plane waves. To obtain a plane wave propagated by some 

distance z, it is multiplied by the phase factor exp(jkmz) where k = 2π/λ and 

2/122 )1( qpm −−= . Then, the inverse Fourier transform is performed to obtain the 

propagated beam from its plane wave components (Equation 2.12).  
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2.2.3.4 Coupling Coefficient 

The coupling coefficient as a function of cantilever displacement is found by 

performing the overlap integral in Equation 2.7 either analytically (Gaussian 

approximation) or numerically (exact mode shapes). The analytical solution is 

expanded in the next section to account for cantilever tilt in addition to vertical 

displacement.  

The Gaussian approximations of the cantilever mode (G1(y)) and the output 

waveguide mode (G3(y)) have a beam waist ω0. The propagated cantilever mode 
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(G2(y)) has a waist Bω0  where B is a broadening factor found by Equation 2.10. 

Using these expressions, Equation 2.7 simplifies to: 

Equation 2.13 ( )
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Therefore, the coupling function is a Gaussian with waist 2/)1( 2
0 B+ω . The 

divergence of the cantilever mode in the gap leads to broadening of the coupling 

function and therefore reducing the sensitivity to cantilever displacement. Therefore, 

it is desirable to use the shortest possible gap between the cantilever and the output 

waveguide. Due to the resolution of the lithography process, the minimal gap was 

found to be ~ 2 µm. Device with gaps of 2 µm or 4 µm were included on the mask 

(the latter leads to a higher fabrication yield at the expense of slightly reduced 

sensitivity). The theoretical waist of the coupling function is 0.9 µm, 0.93 µm, and 

1.02 µm for gaps of 0 µm, 2 µm, and 4 µm respectively. Therefore, the effect of even 

the longer gaps is small.  

The numerical solution uses the exact mode shapes G1(y) and G3(y) exported form 

COMSOL instead of the Gaussian approximations. The propagated mode G2(y) is 

obtained from the Fourier method described previously, and the coupling coefficient 

as a function of cantilever displacement (Equation 2.7) is calculated by numerical 

integration in MATLAB. Figure 2.8 and Figure 2.9 show the results for propagation 

gaps of 2 µm and 4 µm respectively. The results from the analytical method 

(Equation 2.13) are also included for comparison. The “a” plots show that the 

coupling function maxima found by the two methods differ somewhat. However, the 

“b” plots (normalized values) show that the shapes of the analytical and numerical 
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coupling functions are very close. The cantilever’s sensitivity to displacement 

depends on the coupling profile rather than the peak value. Therefore, the Gaussian 

approximation can be legitimately used to model the cantilever’s optical sensitivity.  

 

Figure 2.8: Theoretical coupling coefficient as a function of cantilever displacement for a gap of 2 
µm. a) Raw values b) Normalized.  

 

Figure 2.9: Theoretical coupling coefficient as a function of cantilever displacement for a gap of 4 
µm. a) Raw values b) Normalized.  

 Note that the coupling coefficient is an even function of t. Therefore, the position 

of the cantilever cannot be uniquely determined from the output optical power. The 

same power change could result from either a positive or negative offset. For this 

reason, the cantilever in this design is constrained to be above the output waveguide 

(Figure 2.1), making t always positive. This eliminates the sign ambiguity; an 

increase in output power can be interpreted as downward cantilever displacement 

(decrease in t) and vice versa.  

(a) (b)

(a) (b)
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2.2.3.5 Effect of Tilt on Coupling Coefficient 

 The foregoing analysis assumes that the cantilever deflection causes only a 

vertical shift in the position of the mode. In reality, there is also an angular shift as 

illustrated in Figure 2.10 due to the cantilever bending. The tilt angle can be found 

from the profile of the cantilever (Equation 2.3) to be θ =tan-1(2t/L). This section 

analyzes the effect of tilt on the coupling coefficient. For the sake of simplicity, only 

the Gaussian (analytical) model is used here. The previous section showed that it 

gives essentially the same results as the numerical model for the no-tilt case.  

∆t

Output WG
z

y
x

G1(y)
G2(y) G3(y)

R
θ

G2`(y)

 

Figure 2.10: Schematic of light coupling from tilted cantilever into output waveguide. 

 The introduction of tilt has two main consequences. First, there is an additional 

vertical displacement of the mode G2(y). Inspection of Figure 2.10 reveals that this 

displacement is ∆t = Rtan(θ), where R is the gap between the cantilever and the 

output waveguide. The total vertical displacement of the mode becomes ttt ∆+=' . 

The second consequence of the tilt is that it adds a phase shift that depends on the y 

position. The mode becomes ( )θβ sinexp)()( 22 yjyGyG −=′  where β is the 

propagation constant in the unguided medium. The resulting coupling coefficient is 

given by Equation 2.14. Here ω0 and B are the mode waist and broadening factor as 

defined previously, and C0 is a constant. If we make the 
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substitution )sin(22
0 θβω Bg = and normalize the coupling coefficient to its peak 

value, it simplifies to Equation 2.15.  
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Equation 2.11 was evaluated in MATLAB and plotted in Figure 2.11 for the two 

different values of the propagation gap and a cantilever length of 100 µm. The results 

of the no-tilt calculation are included for comparison. The effect of the tilt is more 

apparent in the case of the larger gap. However, it can be concluded that in both cases 

the tilt does not change the coupling coefficient appreciably. For this reason, it will 

not be considered in subsequent optical sensitivity calculations.  

 

Figure 2.11: Theoretical coupling coefficient for a cantilever length of 100 µm and propagation 
gap of a) 2µm b) 4µm.  

(a) (b)
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2.2.3.6 Propagation Loss 

 The total power arriving at the device output must be above the noise threshold of 

the photodetector, which is on the order of several pW. The laser power is 

approximately 1mW. Therefore, a total loss of 90 dB can be tolerated, including on-

chip propagation loss and fiber-to-chip coupling loss.  

 The propagation loss is estimated here using the results of the finite element 

modal analysis described earlier. This model only accounts for one loss mechanism: 

absorbance of the light in the silicon or the gold layer. The actual propagation loss 

may be dominated by surface roughness and waveguide defects. However the model 

cannot take these effects into account and assumes that the waveguides are perfectly 

smooth. Nevertheless, the results give insight into the required thickness of the SiO2 

bottom cladding layer used to isolate the SU-8 core from the lossy Si substrate. 

 The COMSOL finite element simulation of the waveguide yields a complex mode 

index. The attenuation coefficient is given by Equation 2.16 where k is the imaginary 

part of the index and λ0 is the free space wavelength (635 nm). The propagation loss 

in dB/cm can be found from Equation 2.17.  

 

Equation 2.16   
0
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=  

Equation 2.17   
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 For a SiO2 layer thickness of 200 nm, the simulation gives k = 4.2×10-5 and 

propagation loss of 36 dB/cm for the fundamental TE mode. This value is clearly too 

high, considering that the total waveguide length (input and output) is 2 cm and that 
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there are many other loss mechanisms. Increasing the SiO2 thickness to 1µm gives k 

= 1.5×10-9 and propagation loss of only 0.0013 dB/cm (the mode was shown in 

Figure 2.5a). In this case, the waveguide is completely isolated from the Si substrate 

and there is no need to increase the cladding thickness further. As discussed 

previously, the actual propagation loss may be much higher due to waveguide 

roughness but that should not depend on cladding thickness. The gold-coated section 

of the waveguide (Figure 2.5b) has k = 4.2×10-6 and corresponding theoretical 

propagation loss of 3.6 dB/cm. However, this region is quite short compared to the 

waveguide length (200 µm compared to 1 cm) and should have a small contribution 

to the total loss.  

 The other sources of optical loss in the device such as fiber-to-chip coupling and 

modal mismatch between different parts of the waveguide are not modeled here.  The 

reason for this is that there are no parameters in the device design that can be readily 

adjusted to reduce such losses. The total optical loss is measured experimentally and 

reported in Chapter 4. 

 

2.2.3.7 Sensitivity and Signal to Noise Ratio  

The optical sensitivity of the cantilever is the change in coupling coefficient per 

unit tip displacement. For small displacements, this quantity is equal to the derivative 

of C(t). The actual measured change in output power depends on the optical loss 

through the device, which can vary considerably (as discussed in the previous 

section). However, the shape of the sensitivity helps determine the optimal initial tip 
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height of the cantilever without knowing the loss. The beam curvature and length can 

be controlled during fabrication to obtain that height.  

Figure 2.12 shows the normalized coupling coefficient and the absolute value of 

its derivative. The sensitivity has a maximum near t = 700 nm. Intuition suggests that 

the cantilever’s initial position should be at the sensitivity peak. However, the 

measurement noise also increases with output power. Therefore, the optimal initial 

position is not necessarily the sensitivity maximum and depends on the sources of 

noise.  

 

Figure 2.12: Theoretical coupling coefficient and sensitivity for a cantilever with 2 µm 
propagation gap (based on the Gaussian model without tilt).  

In the work by Zinoviev et al., the main source of noise is considered to be shot 

noise in the photodetector [32]. In the present dissertation, the optical cantilever 

operates in the static mode and the detector has low bandwidth (1 Hz); consequently, 

the detector noise is very low. Instead, the main source of noise is the mechanical 

drift of the XYZ positioning stages that hold the fibers facing the input and output 

waveguides. The power at the detector can be expressed by Equation 2.18, where T is 

a fiber-to-waveguide coupling coefficient combined for both input and output, and the 

coefficient α accounts for the on-chip propagation loss. Changes in output power are 
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caused either by the cantilever motion or by fiber-to-waveguide drift since Pin and α 

are fixed (Equation 2.19). This shows that decreasing the coupling coefficient C(t) 

also decreases the drift noise. The signal to noise ratio (SNR) is approximated by 

Equation 2.20, assuming that the fiber drift is the dominant source of noise. In that 

case, SNR is proportional to C′/C.  
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 The ratio C′/C is plotted in Figure 2.13 for a cantilever with 2 µm propagation 

gap. The same model is used here to calculate the coupling coefficient as in Figure 

2.13, but only values for t > 0 are shown. The plotted ratio C′/C increases 

monotonically with cantilever tip height, while C (and the output power) decreases. 

 Therefore, SNR can be improved by increasing the height until drift noise becomes 

comparable to detector noise. The optimal offset depends on the contributions of each 

noise source and has not been determined exactly. I chose a target cantilever offset of 

2.2 µm. Experimentally, I found that increasing the offset beyond 2.5 µm decreases 

the displacement signal too much, and the effects of stray light coupling and detector 

noise become significant. As explained in Section 2.2, the offset of 2.2 µm 

corresponds to a cantilever length of 140 µm (assuming curvature of 0.23 mm-1).  
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Figure 2.13: Theoretical coupling coefficient, sensitivity, and ratio of the two for a cantilever 
with 2 µm propagation gap (based on the Gaussian model without tilt).  

2.2.4 Choice of Dimensions and Mask Layout  

The final device dimensions are shown in Table 2.3. Critical parameters chosen 

by modeling or by fabrication of test structures are bolded, and their respective design 

considerations are listed. The rest of the parameters are not critical to the device 

performance. They did not require optimization and were chosen by intuition.  

The device is fabricated with 4 lithography masks. These are the SU-8 mask, the 

release mask (defines the cantilever length), the Au mask (defines the gold pattern on 

top of the waveguide), and the PDMS molding masks (define the channel patterns). 

Representative layouts are shown in Chapter 3.  

Note that the fabrication process developed here (Chapter 3) allows for 

adjustment of the cantilever length while using the same mask set. This is 

accomplished by performing a double exposure with the release mask and shifting the 

mask between exposures. The ability to change length is essential. It was shown 

before that the initial position of the cantilever greatly impacts sensitivity (Figure 

2.13), and that it depends on the beam length and curvature (Equation 2.4). Since the 

curvature is difficult to control, the cantilever position can be fine-tuned by changing 
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the length. During the course of this research, beams with length ranging from 70 µm 

to 140 µm were fabricated.  

Table 2.3: Dimensions of waveguide cantilever device. Parameters critical to the performance 
are listed in bold.  

Parameter Value Value set by Considerations
Cantilever length 70 - 140 µm Release mask shifting Optical/mechanical sensitivity modeling
Cantilever/waveguide width 20 µm SU-8 mask
Cantilever-to-waveguide gap 2 or 4 µm SU-8 mask Optical sensitivity modeling
Length of gold coating 200 µm Gold mask
Layer thickness Fabrication process
   - SU-8 2.2 µm Optical/mechanical sensitivity modeling
   - Au 15 nm Beam curvature experiments (Chapter 3)
   - SiO2 1 µm Propagation loss modeling
   - PDMS 2 - 5 mm
Fluidic channel PDMS molding mask
   - length 1 - 2 cm
   - widht 500 µm
   - depth 100 µm
Spacing between waveguides 1 mm SU-8 mask
Length of waveguides 1 cm All masks, cleaving
Dimensions of die 2 cm x 2 cm All masks, cleaving
Number of die per wafer 6 All masks
Number of cantielvers per die 8 All masks
Waveguide tether width 2 SU-8 mask  

2.3 Interferometric Cantilever 

2.3.1 Device Structure  

The structure of the interferometric cantilever is very similar to that of the 

waveguide device described above. It also consists of a curved gold-coated SU-8 

beam on a Si substrate as shown in Figure 2.14. The same fabrication process is used 

to control the residual stress gradient and curvature as in the case of the waveguide 

cantilever. Due to the small gold thickness, the cantilever is transparent to visible 

light. This allows the formation of an interference pattern as explained later. 
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Si
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Au (15nm)

Cantilever

 

Figure 2.14: Schematic (3D) of an interferometric cantilever before the addition of the 
microfluidic channel. The layer thicknesses are labeled. 

There are only two differences between the structure of the interferometric 

cantilever and that of the device described in Section 2.2. First, the interferometric 

cantilever does not have waveguides. For this reason, the bottom SiO2 cladding layer 

is eliminated (Figure 2.15a), and the SU-8 layout is modified (Figure 2.15b). Second, 

each interferometric cantilever on the chip is embedded inside an individual fluidic 

channel that runs parallel to the cantilever (Figure 2.15c). This allows each device to 

be exposed to a different liquid sample simultaneously.   

Molded PDMS layer
Channel

Substrate
Cantilever

   
Cantilever
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Figure 2.15: a) Cross section of interferometric cantilever inside microfluidic channel. b) Top 
down view of SU-8 layout. c) Top down view of fluid channels layout. Тhe same XYZ coordinate 
system is used as for the waveguide cantilever.  
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 Due to the similarities between the two devices, most of the lithographic masks 

for the waveguide cantilever are also used for fabrication of the interferometric 

cantilever. An additional SU-8 mask is introduced to modify the SU-8 layout, and the 

PDMS molding mask used to define the fluidic channels is replaced.  

2.3.2 Theory of Operation 

As in the case of the waveguide-based device discussed previously, the 

interferometric cantilever deflects from its initial position due to the attachment of 

analytes. Its mechanical sensitivity, i.e. the displacement per unit surface stress, is the 

same as that of the waveguide cantilever and can be found using the equations in 

Section 2.2.2. However, the method of measuring the displacement is quite different, 

and it is explained next.  

Figure 2.16 illustrates the formation of the interference pattern when the 

cantilever is imaged with an optical microscope. An incident light beam from the 

microscope illuminator is partly reflected by the cantilever top and bottom surfaces, 

producing a beam with intensity I1. The incident beam also passes through the 

cantilever and reflects off the substrate, producing a beam with intensity I2.  

Substrate

Cantilever

I0 I2I1

d

 

Figure 2.16: Interference cavity formed between transparent cantilever and reflective substrate.  

The phase difference between beams 1 and 2 is given by φ = 4πdn/λ + φo, where 

d is the distance between the cantilever and the substrate, λ is the optical wavelength, 

z
y
x
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n is the refractive index, and φo is a constant. The combined intensity of the reflected 

beams is given by Equation 2.21.     

Equation 2.21 )4cos(2)cos(2 21212121 orefl
dnIIIIIIIII φ

λ
πφ +++=++=  

 Since the cantilever has an upward slope, the distance d increases continuously at 

points along the cantilever. Therefore, Irefl goes through consecutive interference 

maxima and minima, producing an interference pattern along the cantilever as shown 

in Figure 2.17. Here, each dark band is an interference minum, and each bright band 

is an interference maximum. The width of the bands changes along the cantilever due 

to its increasing slope. The cantilever slope is largest near the tip; hence, the the 

bands are most closely spaced there.   

 

Figure 2.17: Microscope image of an interferometric cantilever immersed in water.  

In order to obtain high interference contrast, the microscope light source must 

have a narrow spectral linewidth. White light sources would create a continuum of 

interference patterns, flattening the image intensity. In this work, we use a solid state 

laser with nominal wavelength of 660nm as the microscope light source. The laser 

beam is spatially decohered as described in Chapter 5 to avoid producing a speckle 

pattern on the image. Sources with somewhat broader spectra, such as LEDs and 

filtered incandescent lightbulbs, also produce visible interference patterns. However, 

their interference contrast is lower that the one obtained with the laser.  

z
x
y
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Changes in the interference pattern can be used to find the cantilever vertical 

displacement upon detection of a sample. Counting the number of fringes (either 

minima or maxima) gives a rough estimate of the cantilever tip height. Equation 2.21 

suggests that each fringe corresponds to an elevation of λ/2n = 248 nm, assuming that 

n = 1.33 (water) and λ = 660 nm. The tip height is approximately equal to the 

number of fringes multiplied by 248 nm; similarly, large displacements can be 

estimated by multiplying the change in number of fringes by 248 nm. The maximum 

measurement error corresponds to ±1 fringe. 

A more precise determination of the displacement requires a model of the 

expected cantilever height profile. Cantilevers bent due to residual stress gradient or 

surface stress should have a parabolic profile of the form d(z) = a(z-zo)2 [118], where 

zo is the position of the cantilever base. Combining this expression with Equation 2.21 

suggests that the intensity along the cantilever has the form given by Equation 2.22.  

Equation 2.22  ( ) ( )EDzCzBAzI refl +++= 2cos  

Figure 2.18 shows the measured image intensity along a cantilever and a least squares 

curve fit based on Equation 2.22. Overall, the fit agrees well with the measured data 

(R2 = 0.94), suggesting that the cantilever indeed has a parabolic profile. The intensity 

envelope of the measured data is affected by the nonuniformity of the microscope 

illumination, and it deviates considerably from the fit (which assumes uniform 

illumination). However, the spacing between the interference fringes is determined 

mainly by the cantilever height profile and is consistent with the fit.  
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Figure 2.18: Measured intensity profile from a cantilever image (solid line) and curve fit (dashed 
line). The fit has R2 = 0.94.   

Theoretically, curve fitting can be used for extracting cantilever displacement 

with much better resolution than the simple fringe counting. However, in practice it 

has two drawbacks. First, it is difficult to automate because it requires an initial 

guess. Second, it can introduce appreciable error due to changes in the intensity 

envelopes of image taken before and after sample detection. I developed another 

method for measuring small displacements which is more suitable for automation and 

less sensitive to nonuniform illumination. It is based on measuring the horizontal 

fringe shift that occurs when the cantilever is vertically displaced. 

Figure 2.19 illustrates a cantilever with an initial height profile C1(z) that 

undergoes displacement into final profile C2 (z). The horizontal dashed lines represent 

heights that fulfill the phase conditions for interference fringes. The schematic shows 

that the downward displacement of the cantilever causes the fringes on the 

microscope image to move to the right. For example, the fringe of order m moves 

horizontally by ∆z. The vertical displacement labeled ∆d1 is equal to ∆z·tan(θ). This 

expression is obtained by considering the right triangle formed by the three red lines 
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in Figure 2.19. Assuming the cantilever has a parabolic height profile and the height 

is much smaller than its length (L), the displacement at the tip is given by Equation 

2.23.  
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Figure 2.19: Geometry used for calculating cantilever displacement from horizontal fringe shift 
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The fringe shift (∆z) and the distance of the fringe from the cantilever tip (l) are 

measured from the initial and final images of the cantilever by an automated 

algorithm as described later. The local slope tan(θ) cannot be measured directly, but it 

is approximated by the ratio of the vertical spacing to the horizontal spacing between 

the fringes on the initial cantilever image, i.e. tan(θ) ≈ fy/fz . The error resulting from 

this approximation will be addressed in Section 2.3.4. Therefore, the cantilever 

vertical displacement can be determined based on parameters measured from the 

microscope images.  
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2.3.3 Image Processing Algorithm 

To enable rapid measurement of cantilever displacement from the interference 

images, an automated procedure is necessary for extracting the fringe shift. This is 

performed by a custom MATLAB program with a graphical user interface. The user 

selects two regions of interest (ROI) with the mouse on each image as shown in 

Figure 2.20. ROI 1 and 2 contain the fringe whose shift is to be found. An 

interference minimum is selected here (dark band), but a maximum can also be used. 

We know that the fringe in ROI 2 is the shifted version of that in ROI 1 because they 

are both fifth order (they are fifth to the right from the cantilever base). ROI 3 

contains an adjacent fringe, which serves for finding the fringe spacing and cantilever 

slope in the initial image. Note that the fringe is ROI 3 is no longer present in the 

final image since it has moved too far to the right. One can think of it as “falling off” 

the cantilever. ROI 4 is an alignment feature which enables registration of the images. 

Although the ROIs are defined manually by the user, the procedure does not require 

precise selection and takes only a few seconds. The high-precision measurement is 

achieved by the algorithm described next.  

First, the final image is registered to the initial image since the cantilever may be 

in a different position within each image due to microscope stage translation. The 

registration is performed by a well-known method based on the normalized cross-

correlation function [126]. Briefly, the coordinates of maximum cross-correlation of 

ROI 4 (alignment feature) with the initial image are found. This gives the offset that 

must be applied to the final image to align it with the initial image. The image 

registration approach is also used for measuring the distance between fringes. The 
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peak cross-correlation between ROI 1 and ROI 2 is found, yielding the fringe shift 

from initial to final image (∆z). Similarly, the peak cross-correlation between ROI 1 

and ROI 3 gives the fringe spacing in the initial image (fz). Finally, the position of the 

fringe in ROI 2 is found by a peak-detection function and is used to determine the 

distance of the fringe from the cantilever tip (l). The described algorithm provides all 

the parameters needed in Equation 2.23 to calculate cantilever displacement. 

 

Figure 2.20: Initial and final images of a cantilever displaced downward due to change in 
solution pH (imaged in liquid). The interference fringes move to the right. The regions of interest 
1-4 are selected by the user with the mouse. 

2.3.4 Measurement Error 

The error in the interferometric measurements of cantilever displacement can be 

divided into random and systematic components. The random error is due to 

uncontrollable variations in the measurement setup, such as small changes in 

microscope focusing and sample positioning, camera noise, and wavelength 

fluctuations. The systematic error is mainly due to the slope approximation used in 

Equation 2.23. The random error affects the precision of measurements, and the 

systematic error affects the accuracy. 
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2.3.4.1 Random Error (Precision) 

We assume that the random error caused by laser wavelength fluctuations is 

negligible (this assumption is justified later in Section 5.4). This effectively means 

that the vertical fringe spacing fy is fixed. By taking the partial derivatives of the 

expression in Equation 2.23 with respect to ∆z, fz, and l, it can be shown that that the 

error in ∆z contributes most to the displacement error. The measurement error for 

these 3 variables is similar, by the partial derivative with respect to ∆z is much larger 

than the other two. Therefore, the random error in cantilever displacement is mainly 

caused by fringe shift measurement error.  

One source of ∆z error is the quantization of the image. Fringe shifts are detected 

in increments of 1 pixel. Therefore, there is a measurement uncertainty of ± 0.5 

pixels. Another source of ∆z error is the change in microscope focus, which can 

slightly stretch the image and create an apparent fringe shift. Finally, translation of 

the microscope stage also causes error in ∆z. Although the final image is registered to 

the initial image in software, the illumination of the sample is not perfectly uniform. 

This means that motion of the stage changes the intensity envelope of the interference 

pattern and somewhat affects the fringe shift measurement. The effects of this error 

will be investigated in Section 5.4. 

2.3.4.2 Systematic Error (Accuracy) 

 The largest source of systematic error in the interferometric displacement 

measurements is the slope approximation in Equation 2.23. The amount of error 

depends on the cantilever profile, the position of the fringe being tracked, and the 

final displacement. There is no convenient closed form expression for this error, so I 
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calculated it for a representative cantilever geometry. Figure 2.21 shows the results 

for three different types of slope approximations. The dashed line is obtained by using 

the spacing between the fringe being tracked and its lower order neighbor to find the 

slope (i.e. fringes m-1 and m in Figure 2.19). This leads to a considerable 

underestimate of the displacement. The solid line is obtained by taking the spacing 

between the fringe being tracked and its higher order neighbor (m and m+1). This 

slope approximation is a significant improvement over the previous case, and it was 

the one used for all the measurements reported here. It leads to an overestimate for 

small displacements and an underestimate for larger displacements; the error is less 

than 6% of the displacement throughout the range shown.  

 The dotted line in Figure 2.21 represents a further improvement in slope 

approximation, which reduces the error to less than 1.6% of displacement. Here, the 

initial cantilever curvature is estimated by counting the number of interference fringes 

(i.e. estimating the tip height). This curvature and the spacing between fringe m and 

its closest neighbors can be used to calculate the slope anywhere on the cantilever. 

The measured fringe shift is divided into small increments; the displacement is then 

calculated as a sum of the products of these increments with the local slope. Using 

this method, the measurement accuracy is greatly increased even for a poor curvature 

estimate. The result in Figure 2.21 is based on a worst-case error of 248 nm in the 

fringe counting estimate of tip height. This result can be improved further by a better 

curvature estimate, which is possible with curve fitting as discussed in Section 2.3.2.  

 Although the third slope approximation method is the most accurate, it requires 

more user input than the others: measuring one more fringe spacing and counting the 
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number of fringes. This somewhat slows down the image processing. For this reason, 

I chose the second method for all of the experiments reported in Chapter 5.  

The accuracy of displacement measurements is slightly affected by other factors 

in addition to the slope approximation, such as the accuracy of the laser wavelength 

and the refractive index of the liquid. In our calculations, we assume that the free 

space wavelength is 660nm (datasheet value) and the refractive index is 1.33 

(textbook value for water). To minimize the systematic error, these values can be 

measured independently with relatively common laboratory instruments. This is 

particularly important if the refractive index difference between the sample and the 

reference liquid is large. 

 

Figure 2.21: Estimated measurement error resulting from three different types of slope 
approximation.  

2.3.5 Choice of Dimensions 

The choice of dimensions of the interferometric cantilever is guided by many of 

the same considerations as the waveguide cantilever device described in Section 

2.2.4. The main difference is that it does not have a coupling coefficient as a function 

of displacement and an optical sensitivity. Instead, the preferred initial position of the 
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cantilever is determined by the density of the interference pattern, which depends on 

the tip slope. If the cantilever is too flat, the interference fringes are broad and 

difficult to locate. If it is too steep, the interference fringes are closely spaced and the 

resolution of displacement measurements is reduced (in addition, the cantilever may 

extend beyond the depth of focus of the microscope). Initial experiments suggested 

that slopes between 0.02 and 0.04 are optimal. The tip slope is can be expressed from 

Equation 2.4 as kL, where k is the curvature and L is the cantilever length. The typical 

value of k is on the order of 0.3 mm-1 (Chapter 3); therefore lengths ranging from 70 

to 140 µm can be used.  

Due to the design similarities between the two types of devices, most of the 

waveguide cantilever lithographic masks were re-used for the interferometric 

cantilever. Therefore, the dimensions listed in Table 2.3 are common to both devices. 

As explained previously in Section 2.2.4, the cantilever length is set by the alignment 

of one of the masks and can be varied between fabrication runs.  

2.4 Summary 

This chapter has presented the theory behind the optical cantilever and the 

interferometric cantilever sensors. The principle of operation was explained, and the 

governing equations were given. The mechanical sensitivity, the coupling coefficient 

as a function of displacement, the optical sensitivity, the signal-to-noise ratio, and the 

expected measurement error for the devices were discussed. Based on this analysis, 

the final choices of device dimensions were explained.   
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3. Chapter 3: Fabrication  

3.1 Introduction 

This chapter presents the fabrication and packaging procedures for both the 

interferometric cantilever and the waveguide cantilever. As discussed in the previous 

chapter, the structures of the two devices share many similarities. For this reason, 

their fabrication processes are almost the same and are described concurrently here. 

The bulk of the fabrication development consisted of minimizing the residual stress 

gradient in order to reduce the cantilever curvature. The curvature plays a significant 

role in the operation of both types of devices. An acceptable stress gradient was 

obtained after trying two different materials and tuning the processing conditions 

empirically.  

3.2 Choice of Materials 

The material used for fabricating the cantilevers must meet several requirements. 

First, it must be transparent to in order to enable low optical losses. Second, its 

refractive index must be higher that that of the cladding to enable waveguiding by 

total internal reflection (this requirement applies to the waveguide-based device 

only). Third, it must have a low residual stress gradient to allow for small beam 

curvature as discussed in Chapter 2. There are very few materials compatible with 

MEMS fabrication that satisfy these requirements. Considering the available 

fabrication facilities at UMD at the time of this research, there were only two 

possibilities: Si3N4 and the polymer SU-8.  
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My original choice of material was Si3N4. It is used commonly for the fabrication 

of both cantilevers [85] and waveguides [127]. After fabrication of test devices, 

however, I found out that the Si3N4 properties vary considerably depending on its 

composition. There are essentially two types of nitride: stoichiometric and Si rich. 

The former has a ratio of Si to N as given by the chemical formula (3 to 4); the latter 

has a slightly higher content of Si. The stoichiometric nitride is typically used for 

waveguides, while the Si-rich composition is preferred for mechanical structures.  

Stoichiometric Si3N4 has very low optical loss, and I successfully fabricated test 

waveguides from it. Unfortunately, its residual stress gradient is high and leads to 

large upward cantilever curvature. Figure 3.1 shows a side view of a beam of 

stoichiometric Si3N4. This image was obtained by breaking off a test cantilever with a 

micropositioning probe and turning it on its side. The radius of curvature was 

determined to be 470 µm by drawing a circle concentric with the cantilever. This 

corresponds to a curvature of 2.1 mm-1 and stress gradient of 760 TPa/m (from 

Equation 2.3), which agrees with values reported in literature [128]. This excessive 

curvature would cause a 100 µm long cantilever to be offset by approximately 11 µm 

from the output waveguide, preventing any light from coupling to the output. 
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Figure 3.1: Side view micrograph of a stoichiometric Si3N4 test beam. The dashed curve parallel 
to the cantilever is part of a circle with radius 470 µm. 

I attempted to reduce the curvature of the stoichiometric Si3N4 by depositing a 

layer of SiO2 on top (using e-beam evaporation). This material has compressive 

surface stress; it should, in principle, cancel the stress gradient in the Si3N4 if the 

correct thickness is chosen. However, in practice, the required thickness could not be 

found exactly due to large variations of the stress between fabrication runs. As a 

result, the curvature was reduced only slightly and remained an order of magnitude 

above the acceptable value.  

Si-rich nitride has very low residual stress and stress gradient. While the typical 

residual stress value for the stoichiometric material is on the order of 1.2 GPa [127, 

128], it can be reduced to only 30 MPa for the Si-rich composition [129]. Figure 3.2 

shows a side view of a beam made from Si-rich nitride (this image was obtained 

using the same method as in Figure 3.1). The dashed line indicates that the beam is 

almost perfectly straight and this material meets the requirement for low curvature. 

However, the test waveguides fabricated from Si-rich nitride could not propagate any 

measurable light. This result is consistent with reports of the high optical extinction 
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coefficient of the material in the visible range [130]. Therefore, the Si-rich 

composition fails to meet the requirement for low optical loss. 

 

Figure 3.2: Side view micrograph of a Si-rich SiN test beam. A straight dashed line is drawn 
parallel to the cantilever.  

It may be possible to fine tune the composition of the Si3N4 to achieve an 

acceptable balance between optical and mechanical properties. However, that requires 

a CVD tool (chemical vapor deposition) in order to perform multiple trial-and-error 

nitride depositions. At the time of this research, such a tool was not available at 

UMD. The Si3N4 films were deposited by external vendors; therefore, it would be 

prohibitively slow and expensive to obtain multiple different nitride compositions.  

The polymer SU-8 was found to be a much better choice for fabricating both 

types of devices. It is reported to have a very low stress gradient on the order of 14 

MPa/m [131] compared to 760 TPa/m measured for stoichiometric Si3N4 above. In 

addition, it is highly transparent and appropriate for low-loss waveguides [64, 112]. 

Importantly, adjusting the process parameters in order to change the mechanical 

properties does not significantly affect the optical loss. Since SU-8 is deposited by 

common fabrication equipment, the processing conditions can be optimized in-house 

without the need for external vendors.  
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Another advantage of SU-8 is that it has a low Young’s modulus. According to 

the equations in Section 2.2.2 and material properties in Table 2.2, SU-8 cantilevers 

can be made much thicker than Si3N4 cantilevers while preserving the same 

mechanical sensitivity. The increased thickness leads to increased misalignment 

tolerance between the cantilever and the output waveguide because the beam waist 

and coupling function are broadened (Equation 2.13). This in turn relaxes the 

requirement for low residual stress gradient.  

3.3 Fabrication Process Flow 

The fabrication process of the waveguide cantilever is described in Table 3.1, and 

that of the interferometric cantilever in Table 3.2. The description is qualitative and 

does not include process parameters. These values will be listed in Section 3.5 after a 

discussion of fabrication optimization in Section 3.4. The PDMS layer molding and 

the packaging procedures will be addressed in Section 3.7.  

The two tables show the mask layouts at each lithography step and specify the 

corresponding photoresist polarity. Both masks used for the waveguide cantilever are 

chrome due to the requirement for small gap between input and output waveguides 

and optical-quality sidewalls. Although there are three mask patterns total in Table 

3.1, steps 4 and 9 are performed with the same mask aligned differently. Therefore, 

only two masks were needed. For the fabrication of the interference cantilever, the 

same two chrome masks are used, and a low-cost low-resolution transparency mask is 

added to modify the SU-8 layout. The SU-8 is exposed consecutively with a chrome 

mask and a transparency mask; the equivalent mask pattern is shown in step 9 in 

Table 3.2. 
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In addition to the SU-8 layout, there are two other distinctions between the 

fabrication processes of the devices. First, the interferometric cantilever does not 

include a SiO2 layer. Second, the alignment of the gold definition mask is biased 

differently as described next.   

The alignment error of the contact lithography system used is on the order of 2 

µm. If the gold mask is aligned to the edge of the cantilever, it is possible to 

“overshoot” due to alignment error and cover the cantilever facet with gold, causing 

excessive optical loss. For this reason, the alignment in the case of the waveguide 

device is biased to the left by approximately 5 µm as shown in Table 3.1, step 10. 

This leaves the facet of the cantilever free of gold even if there is alignment error to 

the right. In the case of the interferometric device, the cantilever tip should be 

covered by gold to facilitate interference fringe tracking. This device is not used as a 

waveguide, and covering its facet with gold is permissible. For this reason, the 

alignment is biased by several µm to the right as shown in Table 3.2, step 10.  

Note that the cantilever length in both fabrication processes is defined by the 

masks shift between steps 4 and 5. This allows the length to be varied between 

fabrication runs while using the same mask set. As discussed in Chapter 2, the 

cantilever length is one of the most significant design parameters since it impacts 

both mechanical and optical sensitivity.   
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Table 3.1: Fabrication process flow of waveguide cantilever. The device cross sections are given 
along the dashed line in the mask layout.  

Material legend:   SU-8SiO2 Au PhotoresistSi Cr  
Step Mask layout Device cross section  
1) Start with 4” Si wafer with 
1µm thick thermal oxide.  
 

 

2) Deposit Cr release layer (30 
nm thick).  

3) Deposit Shipley 1813 
photoresist.  

4) Expose with “release mask” 
(positive photoresist).  

5) Shift mask to the right and 
expose again. Overlap 
between exposures defines 
cantilever length. 

6) Develop photoresist.  
  

7) Etch Cr layer. Strip 
photoresist. Piranha clean 
(15sec).  

 

8) Deposit 2.2 µm thick SU-8 
layer.   

9) Expose SU-8 (negative 
photoresist). During 
alignment, make sure the 
cantilever tip is over Cr 
release layer. Develop and 
hard bake.   

10) Deposit Shipley 1813 
(positive photoresist). Pattern 
with “gold mask”. Bias 
alignment to the left to make 
sure cantilever tip is covered. 
Etch exposed Cr.  
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11) Deposit gold layer (15 nm 
thick).  
 

 

12) Perform lift off in acetone 
to pattern gold layer.  

13) Release cantilever by 
soaking in Cr etchant.   

 

Table 3.2: Fabrication process flow of interferometric cantilever. The device cross sections are 
given along the dashed line in the mask layout. 

Material legend:   SU-8SiO2 Au PhotoresistSi Cr  
Step Mask outline Device cross section  
1) Start with 4” Si wafer.  
  

2) Deposit Cr release layer (30 
nm thick).  

3) Deposit Shipley 1813 
photoresist.  

4) Expose with “release mask” 
(positive photoresist).  

5) Shift mask to the right and 
expose again. Overlap 
between exposures defines 
cantilever length. 

6) Develop photoresist.  
  

7) Etch Cr layer. Strip 
photoresist. Piranha clean 
(15sec).  

 

8) Deposit 2.2 µm thick SU-8 
layer.   
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9) Expose SU-8 (negative 
photoresist) consecutively 
with chrome and transparency 
masks. During alignment, 
make sure the cantilever tip is 
over Cr release layer. Develop 
and hard bake.  

Chrome mask (1st exposure) 

Transparency mask (2nd exp.) 

Equivalent layout 

10) Deposit Shipley 1813 
(positive photoresist). Pattern 
with “gold mask”. Bias 
alignment to the right to make 
sure cantilever tip is not 
covered. Etch exposed Cr.  

11) Deposit gold layer (15 nm 
thick).  
 

 

12) Perform lift off in acetone 
to pattern gold layer.  

13) Release cantilever by 
soaking in Cr etchant.   

 

After release, the Si wafer is cleaved into 6 individual chips, each containing 8 

cantilevers. The cleaving was chosen over saw dicing since it produces smoother 

waveguide facets. The chips are kept wet during the cleaving and are stored in DI 

water afterwards until packaging. Allowing them to dry causes stiction to the 
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substrate. The preparation of the PDMS fluidic layer and the package assembly are 

described in Section 3.7.   

3.4 Optimization of Fabrication Process 

The process development was guided by two main considerations: resolution of 

the SU-8 pattern and reduction of the cantilever curvature. First, a test mask was used 

to explore the minimal achievable feature size in SU-8. These results were used for 

the choosing the gap between the cantilever and the output waveguide in the final 

mask design.  

Figure 3.3 shows the SU-8 test pattern. It consists of 5 rectangles with varying 

gaps between them. The gaps defined on the mask range from 1 µm to 6 µm. It can be 

seen that the 1 µm and 2 µm gaps are not resolved in the fabricated pattern. The 4 µm 

and 6 µm gaps are resolved, but their sizes are reduced to 2 µm and 4 µm 

respectively. This narrowing is probably due to diffraction during lithography and 

lateral diffusion of the photoactivated SU-8 crosslinkers. Accordingly, the 

propagation gap between the cantilever and the output waveguide on the final mask 

was chosen to be either 4 µm (high-sensitivity design) or 6 µm (high-yield design). 

The actual dimensions used in the optical sensitivity calculations in Section 2.2.3 are 

2 µm and 4 µm due to the narrowing effect.  
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Figure 3.3: Microscope image of SU-8 pattern fabricated with test mask.  

The results shown in Figure 3.3 are for an exposure dose of 200 mJ/cm2 

(measured at the 365nm wavelength). It was observed that increasing the dose further 

narrows the gap. For example, at a dose of 300 mJ/cm2, even the 4 µm gap was not 

resolved. Also, the sidewall roughness of the SU-8 was significantly increased, which 

would result in higher propagation losses due to scattering.  For these reasons, the 

dose in subsequent fabrication runs was limited to 200 mJ/cm2. 

Once the resolution constraints were understood, the process was optimized to 

reduce the cantilever curvature. Here, the curvature measurements could not be 

performed by breaking the beam and turning it on its side as in Figure 3.1. The SU-8 

beams tend to deform plastically before breaking, leading to unreliable curvature 

readings. Instead, the cantilever tip height was determined by depth measuring 

microscopy or by counting the interference fringes in the image as described in 

Section 2.3.2 (the waveguide cantilever also has an interference pattern). The 

curvature and residual stress gradient were calculated from the tip height using 

Equation 2.4.  
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The residual stress in SU-8 is caused mainly by thermal coefficient of expansion 

(CTE) mismatch between the substrate and the film [132]. The CTE of SU-8 is 

approximately 2×10-6 oC-1, and that of Si is on the order of 50×10-6 oC-1. The SU-8 is 

crosslinked during the post-exposure bake at 95oC and is then cooled to room 

temperature. Since the SU-8 shrinks more that the substrate, it experiences tensile 

residual stress.  

The residual stress gradient results from a cross-linking gradient [133]. Highly 

crosslinked regions of the SU-8 have a lower CTE and therefore lower residual stress 

than weakly crosslinked SU-8. The crosslinking gradient in the film is caused by a 

combination of exposure dose gradient and temperature gradient during processing. 

The exposure light intensity is higher near the top surface of the film, promoting 

higher crosslink density there. In contrast, the baking temperature tends to be higher 

at the bottom surface of the film contacting the substrate and accelerates the 

crosslinking there. As a result, the dose gradient and the temperature gradient create 

downward and upward cantilever bending, respectively. The former can be reduced 

by increasing the exposure dose sufficiently to saturate the concentration of 

photoinitiated crosslinkers throughout the thickness of the film; the latter can be 

minimized by baking in an oven instead of on a hotplate to create a more uniform 

temperature profile.  

SU-8 beams with very small curvature on the order of 1×10-2 mm-1 [133] or even 

4×10-6 mm-1 [131] have been achieved by minimizing the dose and temperature 

variations. However these demonstrations did not include a metal layer on top and 

were measured in air. In the present dissertation, the beam is coated with a gold layer 
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for binding of analytes and is immersed in liquid. As a result, the stress gradient is 

greatly increased due to several effects discussed next.  

Initially, the SU-8 layer was patterned by RIE (reactive ion etching) instead of 

direct exposure in order to reuse the lithography mask designed for the Si3N4 

fabrication. Since SU-8 is a negative photoresist, a mask of opposite polarity would 

be required for the direct exposure. A 200 nm thick gold layer was patterned on top of 

a blanket-exposed and cured SU-8 using positive photoresist, and it was used as an 

etch mask for RIE. The resulting cantilevers had excellent resolution, but they 

experienced large downward curvature. This curvature was not caused by the 

presence of the gold layer since the devices did not straighten after etching it off. The 

SiO2 layer under the cantilevers was removed in an attempt to accommodate the 

curvature and prevent the cantilever tips from touching the substrate. However, the 

SiO2 thickness (1µm) was not sufficient to achieve that. Figure 3.4 shows a cantilever 

fabricated in this manner with the gold purposely removed after RIE. The interference 

fringes indicate that the beam has a convex shape, i.e. it goes up and then down. This 

is due to the cantilever tip touching the substrate.  

 

Figure 3.4: Microscope image of cantilever fabricated by RIE (imaged in water).  The SiO2 layer 
under the cantilever is removed by BOE (buffered oxide etchant). The surrounding structures 
are slightly undercut. 
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Multiple fabrication runs with varied SU-8 exposure and bake parameters gave 

similar results. The curvature direction was still downward, and the cantilever tips 

were touching the substrate. At this point, the fabrication process was modified to 

accommodate downward curvature rather than trying to reverse its direction. 

Increasing the SiO2 layer thickness was not a viable option due to its high residual 

stress, which can cause wafer bow. Instead, the substrate under the cantilever was 

completely removed by DRIE (deep reactive ion etching) from the back side of the 

wafer. For this procedure, a photoresist pattern was defined on the back side and 

aligned with the front using an infrared microscope.  

The DRIE approach resulted in severe deformation or breaking of the cantilevers. 

The removal of the substrate allows the beams to be bent down by almost a 90o due to 

fluidic and stiction forces during fabrication. Figure 3.5 illustrates the problem. In (a), 

the cantilever has severe downward curvature resulting from plastic deformation; its 

tip appears black in the image due to its large slope. In (b), the cantilever is 

completely broken off. The DRIE approach also has several other limitations in 

addition to the beam deformation. It cannot be used for the interferometric cantilever, 

which requires a reflective surface under the beam. Furthermore, it greatly increases 

the fabrication cost and complicates the packaging. Consequently, this approach was 

abandoned and the attempts to make cantilevers with reduced curvature were 

resumed.  
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Figure 3.5: Microscope images of cantilevers released with DRIE from the back side (imaged in 
water). a) Cantilever severely deformed downward b) Cantilever broken off.  

  There is a possibility that the SU-8 etching process may heat up the film and 

contribute to the residual stress gradient. For this reason, a new lithographic mask 

with negative polarity was designed, and direct exposure was used to pattern the SU-8 

instead of RIE. The gold layer was deposited after SU-8 development and hard bake.  

Cantilevers fabricated with this method still had a downward curvature (even after the 

gold was etched off). Figure 3.6a shows such a device; the interference fringes 

suggest that the tip of the cantilever is touching the substrate. Interestingly, devices 

fabricated by direct SU-8 exposure without gold deposition step were very straight as 

shown in Figure 3.6b. Here, there is only one visible interference fringe, suggesting 

that the beam bending is less than 250 nm (the fringe counting measurements were 

explained in Section 2.3.2).  

(a) (b)

Deformed 
cantilever

Missing 
(broken) 
cantilever
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Figure 3.6: Microscope images of cantilevers fabricated by direct SU-8 exposure with the SiO2 
layer removed under the beam (imaged in water). a) Cantilever was originally coated with gold, 
which was removed after release. b) Cantilever was never coated with gold.  

The differences between the two devices in Figure 3.6 are evidence that the gold 

deposition process somehow increases the residual stress gradient in the SU-8. This 

could be caused by X-rays or high temperatures in the e-beam evaporation chamber.  

The fabrication process was modified to place the gold layer on the bottom of the 

cantilever. The gold was deposited and patterned on the Cr release layer, and the SU-

8 was deposited on top of the gold. Using this approach, the SU-8 is never exposed to 

the e-beam evaporation tool. Figure 3.7 shows a device with a 15 nm thick 

(transparent) gold layer on the bottom. The interference fringes indicate that it has 

downward curvature again and the tip is touching the substrate. When the gold layer 

was etched off, the cantilever straightened and became similar to that in Figure 3.6b. 

This suggests that the curvature is caused by the presence of the gold, and not by a 

stress gradient in the SU-8. Therefore, the direction of the curvature can be reversed if 

the gold is deposited on top by a method that does not affect the SU-8.   

(a) (b)
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Figure 3.7: Microscope image of cantilever with gold layer on the bottom (imaged in water). The 
SiO2 layer is removed under the beam.  

The gold deposition up to this point was performed with e-beam evaporation due 

to the high quality of films produced by this method. Several experiments were 

carried out with thermal evaporation, which is typically considered an inferior method 

and results in less pure films. Interestingly, the gold-coated cantilevers produced with 

this approach had upward bending, as shown in Figure 3.8. This curvature is still too 

large (1.4 mm-1), but it has the correct direction. Also, when the gold layer was etched 

off, the cantilever straightened and became similar to that in Figure 3.6b. This 

suggests that the thermal evaporation chamber does not significantly affect the SU-8 

residual stress gradient, and that the curvature is caused by the presence of the metal 

film. For this reason, thermal evaporation was used for all subsequent fabrication 

runs.  
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Figure 3.8: Monochromatic microscope image of 120 µm long cantilevers coated with 15 nm Au 
by thermal evaporation using a 15nm Cr adhesion layer (imaged in water). Both the input and 
output waveguides are released in this device. The cantilever tip height is estimated to be 10 µm 
by counting the number of interference fringes.  

All gold films deposited on top of the SU-8 up to this point (both by thermal and 

e-beam evaporation) had a thin Cr adhesion layer. This is a standard practice since 

gold has poor adhesion to most materials and tends to delaminate. In attempting to 

reduce the residual stress of the metal layer, several experiments were performed 

without the use of Cr. This resulted in much lower curvature, as shown in Figure 3.9. 

The high stress caused by the Cr film is probably a consequence of its excellent 

adhesion to the surface. Although the gold film without Cr typically has poor 

adhesion, no delamination from the SU-8 was observed in this work even after 

prolonged use of the device. This may be due to the small thickness of the gold layer 

here (15 nm). Interestingly, the gold delaminates completely from the SiO2 surface 

after the liftoff step. This is actually beneficial to the operation of the cantilever since 

it reduces the “parasitic” area that binds analytes without contributing to sensor 

response. Consequently, the final fabrication process does not include a Cr adhesion 

layer.  
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Figure 3.9: Monochromatic microscope image of 80 µm long cantilever coated with 15 nm Au by 
thermal evaporation without Cr adhesion layer (imaged in water). The tip height estimated by 
fringe counting is 1.5 µm. 

The curvature of the device in Figure 3.9 is on the order of 0.4 mm-1. This value is 

equivalent to a tip height of 2 µm for a 100 µm long beam, which is acceptable for 

both the waveguide and interferometric cantilever designs. If the gold is etched off, 

the curvature is further reduced and the beam becomes almost flat as in Figure 3.6b. 

Therefore, the presence of the gold still has some effect. This could be caused by two 

different mechanisms: residual stress of the gold and swelling of the SU-8 in water. 

The contribution of the former is likely minor since cantilevers that were dried were 

found to be very straight; the swelling effect is probably responsible for most of the 

curvature.  

It has been observed that SU-8 swells in water [134]. In our device, the swelling 

is not uniform and creates a stress gradient. The top cantilever surface is blocked by 

metal and does not swell much, while the bottom surface is permeable to water and 

swells more. This results in a swelling gradient and beam bending. The swelling can 

be somewhat reduced by prolonged hard baking of the SU-8 but not completely 

eliminated. The minimal curvature achieved for Au-coated cantilevers in water was 

SiO2 surface (no gold) 

Released waveguide  

Gold coated  
waveguide section 

Cr release 
layer leftovers 
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approximately 0.23 mm-1. Table 3.3 summarizes the different contributions to 

curvature that were discussed here.  

Table 3.3: Contributions to curvature in metal coated SU-8 cantilevers. 

Cause of curvature Direction Curvature (mm-1) Method to reduce curavture
Cross-linking gradient  up | k | < 0.1
    - exposure dose gradient down Increase exposure dose
    - temperature gradient up Bake in oven
E-beam evaporation down | k | > 2 Use thermal evaporation or sputtering
Cr layer residual stress up | k | > 1.2 Deposit Au without Cr layer
Swelling due to water up 0.23 < | k | < 0.37 Increase hard bake time  

  

The SU-8 swelling is greatly enhanced in solvents such as IPA, methanol, and 

acetone (it increases in that order). If the gold-coated cantilever is soaked for several 

minutes in one of these solvents, it becomes permanently deformed due to the large 

bending moment. This effect can be used for increasing the beam curvature if it is too 

small. As explained in Chapter 2, both the interferometric and waveguide cantilevers 

require some minimal curvature for proper operation. The solvents can also be used to 

release beams that have been stuck to the substrate (if the devices are allowed to dry, 

they experience stiction). When such a cantilever is exposed to the solvent, it bends 

up and breaks away from the substrate. However, the solvents should be used for 

short times since they can cause excessive deformation of the beam.   

3.5 Final Fabrication Parameters 

Many different fabrication conditions were tried during the process optimization 

described above. Table 3.4 lists the parameters that were found to satisfy both the 

resolution and beam curvature requirements. The fabrication results in Section 3.6 

and testing results in the next two chapters are from devices fabricated using these 

final parameters.  
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Table 3.4: Summary of final fabrication parameters. The corresponding process steps from 
Table 3.1 and Table 3.2 are specified. All bakes are performed on a hotplate.  

Release layer (steps 2, 7, 13) 
  Deposition  Equipment: E-beam evaporation system (CHA Mark-40) 

Thickness: 30 nm  
  Etching Chemical: Chrome etchant TFD (Transene Inc, USA)  

Nominal etch rate: 300 nm/min 
Etch time used: 1 min 

  Sacrificial release Chemical: same as above 
Etch time used: 2 hrs on rocking platform 

Lithography with Shipley 1813 photoresist (steps 3-6, 10) 
  Vendor MicroChem Corp, USA 
  Spinning Cycle 1: 100 rpm for 1 s 

Cycle 2: 100 rpm for 1 s 
Cycle 3: 3000 rpm for 30 s (resulting thickness ~1.6 µm) 

  Soft bake 100oC for 60 s 
  Exposure 150 mJ/cm2 (measured at 405 nm wavelength) 
  Development Developer: Microposit 352 

Time: 30 s with manual agitation  
Lithography with SU-8 (steps 8, 9) 
  Vendor MicroChem Corp, USA 
  Formulation used SU-8 5 (5 µm nominal thickness) 
  Spinning Cycle 1: 100 rpm for 2 s  

Cycle 2: 500 rpm for 5 s 
Ramp: 500 rpm to 5200 rpm in 10 s 
Cycle 3: 5200 rpm for 30 s (resulting thickness ~ 2.2 µm) 

  Soft bake Ramp up: 50oC to 95oC at 300oC/hr 
Bake: 95oC for 16 min 
Cool: natural cooldown to 50oC before removing from hotplate 

  Exposure 200 mJ/cm2 (measured at 365 nm wavelength) 
  Post-exposure 
  bake 

Same as soft bake 

  Development 2 min in SU-8 developer (MicroChem) with manual agitation 
  Hard bake Ramp up: 50oC to 190oC at 500oC/hr  

Bake:190oC for 45 min 
Cool: natural cooldown to 50oC before removing from hotplate 

Gold layer (steps 11, 12) 
  Deposition Equipment: Thermal evaporation system (Metra TEBC-22-26) 

Thickness: 15 nm (no adhesion layer) 
  Liftoff 2 min in acetone with manual agitation 
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3.6 Fabrication Results  

 As explained in Section 3.4, the main considerations in the process development 

were good resolution of the SU-8 pattern and low cantilever curvature. Here, we 

show that the fabricated devices meet both of these requirements. Figure 3.10 consists 

of top-down SEM images of an unreleased cantilever covered by 15 nm of Au. The 

propagation gap is clearly resolved; it is measured to be 3.5 µm, and it is quite 

uniform across the waveguide width (a). Furthermore, the edge roughness is 

relatively small and only visible at high magnification (b). These results are 

satisfactory, considering that they were obtained with contact lithography.   

  

Figure 3.10: a) SEM (Scanning Electron Microscope) image of propagation gap between 
cantilever and output waveguide. b)  SEM image zoomed in on cantilever tip.  

 Figure 3.11 shows two representative devices that are fully fabricated devices and 

ready for packaging5. Both cantilevers are approximately 110 µm long. Note that the 

waveguide cantilever in (a) has an area free of gold at the tip. As discussed previously 

(Section 3.3), this feature guarantees that there is no metal covering the waveguide 

                                                 

5 The brightness and contrast of the images in the figure are slightly different since they are obtained 

with different microscopes.  

(a) (b)5 µm 400 nm 
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facet and blocking the light propagation. In contrast, the interferometric cantilever in 

(b) is completely covered with gold (including the tip) to facilitate tracking of the 

topmost fringe. The tip height of the device in (a) is estimated to be 1.7 µm by the 

fringe counting method. This value is appropriate for operation with high signal-to-

noise ratio as discussed in Section 2.2.3. The corresponding beam curvature is 0.28 

mm-1. The estimated tip height of the device in (b) is 1.5 µm, which translates to a 

curvature of 0.25 mm-1 and tip slope of 0.027. This slope value is within the desirable 

range for the interferometric cantilever discussed in Section 2.3.5.   

  

Figure 3.11: Monochromatic optical microscope images of fabricated devices (imaged in water). 
a) Waveguide cantilever b) Interferometric cantilever.  

 As expected, the curvature varies slightly between wafers and between cantilevers 

on the same wafer due to subtle differences in SU-8 thickness and processing 

conditions. This has negligible effect on the interferometric displacement 

measurements since each interferometric cantilever is referenced to its own initial 

position. However, it significantly affects the waveguide-based displacement 

measurements. In this case, the sensitivity varies from device to device due to the 

different tip heights, and the optical responses cannot be directly compared. This 

20 µm 20 µm 

(a) (b)

Gold-coated area 

Cantilever 

Gold-coated area 

Cantilever 

Cantilever tip 
(no gold) 
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issue will be addressed in Chapter 4 by using the theoretical model for optical 

transmission as a function of cantilever displacement.  

3.7 Packaging  

The microfluidic package enables the devices to measure liquid samples with very 

small sample volumes. As discussed in Chapter 1, the previous demonstration of 

waveguide cantilever sensors in literature were incapable of operating in liquids and 

did not include fluidic channels. The packaging process here consists of fabricating a 

molded PDMS layer and fixing it on top of the Si chip. As a result, the cantilevers are 

embedded inside sealed microfluidic channels. The PDMS fabrication procedures are 

the same for the waveguide-based and interferometric devices, but the channel 

layouts are different (these were shown in Figure 2.2 and Figure 2.15 respectively). 

Also, the two types of devices use different fixtures for securing the PDMS layer in 

place.  

3.7.1 PDMS Layer Fabrication 

First, a Si wafer is patterned with thick SU-8 to serve as a mold for forming 

channels in the PDMS. The lithography here is performed with a low-cost, low-

resolution transparency mask since the fluidic channel dimensions are sufficiently 

large (Table 2.3). Two molds are prepared with the same SU-8 but different patterns: 

one of for the waveguide cantilever and one for the interferometric cantilever. The 

recipe for SU-8 fabrication is summarized in Table 3.5 
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Table 3.5: SU-8 process parameters for mold wafer fabrication.  

  Vendor MicroChem Corp, USA 
  Formulation used SU-8 50 (50 µm nominal thickness) 
  Spinning Cycle 1: 240 rpm for 3 s  

Cycle 2: 500 rpm for 7 s 
Cycle 3: 1200 rpm for 20 s (resulting thickness ~ 100 µm) 

  Soft bake Ramp up: RT (room temperature) to 95oC at 300oC/hr 
Bake: 95oC for 30 min 
Cool: natural cooldown to RT before removing from hotplate 

  Exposure 2250 mJ/cm2 (measured at 405 nm wavelength) 
  Post-exposure 
  bake 

Same as soft bake 

  Development 25 min in SU-8 developer (MicroChem) with manual agitation 
  Hard bake None 

 

Next, a PDMS mixture is prepared with 10:1 ratio of resin to curing agent 

(Sylgard 184, Dow Corning, USA). The mixture is degassed in a vacuum dessicator 

until it contains no visible air bubbles. The SU-8 mold is placed in a 5 mm deep dish, 

which is then filled with the PDMS mixture. The dish is placed in a box furnace at 

80oC for 1 hr to cure the mixture. Finally, the PDMS layer is peeled off the mold and 

cut to a size somewhat smaller than that of the cantilever chips. The depth of the 

resulting fluidic channels equals the thickness of the SU-8 on the mold. The thickness 

of the PDMS is roughly equal to the depth of the dish minus the combined thickness 

of the mold wafer and any spacer wafers placed under it. The target PDMS thickness 

was 4 mm and 2 mm for the waveguide-based and interferometric devices 

respectively (the latter benefits from lower thickness due to the need for microscope 

imaging).  
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3.7.2 Package Assembly  

PDMS can be reversibly bonded to the SU-8 surface by wetting it, bringing it in 

contact, and allowing it to dry. This approach is commonly used in the fabrication of 

PDMS microfluidics [135]. However, as discussed previously, the drying of the 

cantilevers leads to stiction problems. For this reason, external fixtures were designed 

to hold the PDMS in place without drying the chip. The package is assembled while 

the cantilever is still wet, and the fluidic channel is filled with water to keep it wet 

after packaging. The fixtures for the two types of devices are different due to their 

specific testing requirements. In the case of the waveguide cantilever, the package 

must be compact enough to be placed on the XYZ optical stage, and it must allow 

access to the waveguide facets with external optical fibers. In the case of the 

interferometric cantilever, the packaging material on top must be transparent and thin 

enough to allow for high-resolution microscope imaging; also, individual connections 

must be made to the 8 parallel fluidic channels.  

3.7.2.1 Waveguide Cantilever 

The PDMS layer for the waveguide cantilever contains a single channel common 

to all 8 cantilevers on the Si chip. Since the optical testing setup allows for coupling 

light to only one device at a time, there is no need for a multiple parallel 

configuration. The channel is oriented perpendicular to the waveguides. The complete 

package is shown schematically in Figure 3.12, and the assembly procedure is 

described below.  
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Figure 3.12: a) Cross section schematic of packaged cantilever chip along waveguide. b) Cross 
section schematic of packaged cantilever chip along fluidic channel. c) Top-down schematic of 
PDMS layer. 

First, vertical holes are made in the PDMS at the ends of the channel with a 2 mm 

diameter hole punch. Then, steel capillaries (ID 200 µm, OD 400 µm) are inserted 

into the PDMS horizontally to meet these holes (Figure 3.12b). Next, the PDMS layer 

with the capillaries is aligned on top of the cantilever chip while still wet, observing 

the alignment under a microscope. The chip and the PDMS are placed between two 

vertically stacked glass slides, which are compressed with screw clamps. The 

resulting spacing between the glass slides is approximately 5 mm; this allows external 

optical fibers to be inserted near the waveguide facets on the edge of the cantilever 

chip. The capillaries are connected to Tygon flexible tubing (ID 380 µm, OD 2.3 

mm), which is connected to a syringe pump for sample injection. Figure 3.13 shows a 

Fluid 
input

Fluid 
output

Waveguides
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photograph of a fully assembled fluidic package and a micrograph of a packaged 

cantilever.  

 

Figure 3.13: a) Photograph of fully packaged waveguide cantilever chip (top down view). b) 
Monochromatic microscope image of cantilever inside micro fluidic channel filled with water 
(top down view). The image was taken through the packaging materials.  

3.7.2.2 Interferometric Cantilever 

The interferometric readout can be used for monitoring the response of multiple 

devices to different samples concurrently. To take advantage of this, the PDMS layer 

here contains 8 channels (Figure 3.14a), one for each cantilever on the chip. The 

channels are oriented parallel to the cantilevers. Instead of fixing the PDMS layer in 

place with glass slides and mechanical clamps, magnetic force is used as illustrated in 

Figure 3.14b,c and further described below.  

 

(a) (b)
100 µm 
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Figure 3.14: a) Layout of fluidic channels. b) Cross section schematic of packaged device along a 
channel. c) Top down photograph of fully packaged chip (width is 2.5 cm). 

The silicon chip is set on top of a flat permanent magnet. The PDMS slab is 

aligned on the chip while observing it with an optical microscope. The PDMS is then 

fixed in place with a piece of ferromagnetic material on top (Figure 3.14b). A rigid 

plexiglass cover (3 mm thick) is inserted between the PDMS and the ferromagnet in 

order to distribute the compression force over the soft PDMS. The bottom PDMS 

surface makes conformal contact with the chip, creating 8 leak-tight fluidic channels. 

Throughout the packaging procedure, the surface of the chip is kept wet. This 

prevents stiction of the cantilevers to the substrate and also facilitates the alignment. 

All channels are 100 µm deep and 500 µm wide. The channel pitch at the center 

of the chip is 1 mm, which is equal to the cantilever pitch. The channel pitch on both 

the input and output sides increases to 3 mm. The input of each channel consists of a 

2 mm diameter well that serves as a sample container (Figure 3.14b,c). The volume of 

the well is ~ 15µL. The output of each channel consists of a steel capillary (ID 200 

µm, OD 400 µm) connected to Tygon flexible tubing (ID 380 µm, OD 2.3 mm). The 

sample is sucked from the input well into the channel by applying vacuum on the 

Tygon tubing with a syringe. The plexiglass cover has holes allowing access to the 
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inputs and outputs and a window for observation of the cantilevers with the 

microscope. The window is necessary because the plexiglass blurs the image at high 

magnification. Figure 3.15 shows micrographs of fully packaged cantilevers taken 

through the window. In (a), several of the parallel fluidic channels are visible.   

  

Figure 3.15: Microscope images of cantilevers inside fluidic channels taken at a) low and b) high 
magnification.  

Before package assembly, holes with diameter 2 mm are punched through the 

PDMS to form the input wells. Smaller holes with diameter 300 µm are made on the 

output sides of the channels for the steel capillaries. The capillaries are inserted in the 

holes after the PDMS is aligned to the chip and secured in place with the plexiglass 

and ferromagnet.  

The package for interferometric cantilever is easier to align and assemble than the 

one for the waveguide-based device described previously. The use of the magnet 

results in a more distributed compression force than the clamping approach, and it 

allows the I/O connections to be made directly on the top instead of the sides. 

Furthermore, the use of input wells and suction reduces the number of required 

connections to one per channel and facilitates the sample injection. However, this 

packaging approach could not be used for the waveguide cantilever because the 

(a) (b)
100 µm 500 µm 

Fluidic channel 

Fluidic channel 

Fluidic channel 
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magnet spontaneously snaps to the steel components in the optical table setup. If 

optomechanics made of non-ferromagnetic materials are available, this problem can 

be resolved.   

3.8 Summary  

This chapter described the fabrication of both the waveguide and interferometric 

cantilevers. The differences and similarities between the two types of devices were 

highlighted throughout the text. In addition to presenting the detailed process flow 

and the final recipes, the choice of materials and the optimization of fabrication 

parameters were discussed. The main goals during process development were to 

resolve the gap between cantilever and output waveguide and to maintain a small 

upward cantilever curvature. These goals were successfully met after a number of 

improvements. Finally, the packaging procedures for the two devices were presented 

in detail.  
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4. Chapter 4: Waveguide Cantilever Testing 

4.1 Introduction  

This chapter presents the characterization of the waveguide cantilever sensor and 

its use for detection of homocysteine. First, the experimental setup is described, and 

the testing procedures are explained. Next, several optical characteristics of the 

device are measured, including the propagation loss of the waveguides, the power 

change due to optical stage drift, and the power change as a function of cantilever 

displacement. Then, two different types of homocysteine detection experiments are 

performed. The first type uses a sample obtained from dissolving commercially 

available homocysteine powder. For the second type of experiments, the 

homocysteine sample is synthesized by the bacterial quorum sensing enzymes 

immobilized in the microfluidics. In some of the tests, interferometric measurements 

are used to measure the cantilever displacement independently and verify the 

theoretical coupling function. Finally, the detection results from the different 

experiments are compared and discussed.  

4.2 Experimental Setup 

The packaged device is mounted on a fixed stage under an optical microscope 

(Leica MZ 12.5) with a digital camera. A lensed 9 µm core fiber (Corning OptiFocus) 

is used to couple light from a 635 nm pigtailed laser diode (Newport LD-635-21B) to 

the input waveguide. Light from the output waveguide is collected by a 62.5 µm core 

fiber and guided to a computer-controlled optical power meter (Newport 818-SL). 
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The signal from the power meter is acquired and logged by a PC at a sampling rate of 

1Hz. Both the input and output fibers are mounted on XYZ precision positioning 

stages (Newport Ultralign 561D). The fluidic input is connected to a syringe pump 

via Tygon flexible tubing, and the fluidic output is routed to a waste beaker. Figure 

4.2 and Figure 4.2 illustrate the setup with a block diagram and photographs.  

635nm Laser

XYZ
stage

Device 
under test

XYZ
stage

Power meter

Microscope
with camera

PC with 
Labview

Syringe 
pump

Waste 
container  

 

   

Figure 4.1: a) Block diagram of testing setup. b) Side view photograph of XYZ stages (without a 
device under test). 

Input XYZ stage Output XYZ stage 
Fixed stage 

Input fiber Output fiber 

(a)

(b)

z
y
x
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Figure 4.2: a) Perspective view photograph of XYZ stages with device under test (DUT). b) 
Microscope image of laser light coupled from input fiber into on-chip waveguide.   

4.3 Optical Characterization 

4.3.1 Loss Measurements  

 The optical power arriving at the output of the device is essential to its operation. 

The received signal must be much larger than the photodetector noise, which is on the 

order of 1 pW. If this condition is fulfilled, the signal to noise ratio is limited only by 

the drift of the XYZ stages discussed in Section 4.3.2 and not by the photodetector. 

The maximum input laser power available is approximately 300 µW (measured at the 

end of the lensed fiber). The main losses along the device are labeled in Figure 4.3. 

The insertion loss is caused by the modal mismatch between the optical fibers and the 

on-chip waveguides (1). There is also slight modal mismatch between the waveguide 

and the cantilever (3), but that should be negligible compared to the insertion loss.   

 The propagation loss results from scattering by waveguide defects and material 

absorbance (2). The gold-coated section of the waveguide has an additional loss 

component due to the metal absorbance (4). The cantilever coupling loss is caused by 

the divergence of the cantilever mode in the unguided medium and by the variable 

vertical offset of the cantilever from the output waveguide (5).  

100 µm 

DUT Input XYZ Output 

Fixed stage  (a) (b)
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Figure 4.3: Optical loss mechanisms in waveguide cantilever sensor.  

 The total loss for a cantilever with 0 offset (stuck to the substrate) was measured 

to be approximately 25 dB. This value was obtained by dividing the output power 

(300 nW) by the input power (90 µW). Finding the contributions of each mechanism 

shown in Figure 4.3 is difficult and not necessary in this case. For example, one could 

compare the total loss of devices with and without gold in an attempt to isolate loss 

component 4. However, the insertion loss varies considerably between devices and 

even between measurements of the same device. This variability prevents the 

extraction of individual loss components from the total loss values.   

Only the propagation loss (2) was measured independently from the other losses. 

For this, the scattered light intensity method was used [136]. The scattered light 

intensity along the waveguide was acquired from a digital image and plotted on a 

logarithmic scale as shown in Figure 4.4. The image is similar to that in Figure 4.2d 

but taken at lower magnification over a larger area. It is assumed that the local 

intensity of the scattered light is proportional to the local power carried by the 

waveguide; therefore, the decay in intensity represents the propagation loss. The 

slope of the fitted line in the figure is 0.14 dB/pixel. Using the scaling factor of 50 

pixels/cm, this corresponds to a propagation loss of 7 dB/cm. The theoretical loss 
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found in Chapter 2 was only 0.0013 dB/cm, taking into account the substrate 

absorbance but ignoring waveguide imperfections. This discrepancy suggests that the 

bulk of the loss is caused by scattering defects such as sidewall roughness.   

  

Figure 4.4: Scattered light intensity along a waveguide measured from a camera image of the 
waveguide.  

SU-8 waveguides with much lower propagation losses have been previously 

reported, such as 2.5 dB/cm [112] or even 1.75 dB/cm [64]. The reason for the higher 

loss in the present work is the smaller waveguide thickness (2.2 µm compared to 10 

µm and 130 µm respectively). Since the energy in a thin waveguide is on average 

closer to the surface, the roughness has a more detrimental effect than in thick 

structures. The propagation loss can potentially be reduced by improving the sidewall 

quality of the SU-8. This can be accomplished, for example, by using projection 

instead of contact lithography. In spite of the high loss, the output power was found 

sufficient for the purposes of this work and further fabrication improvements were not 

pursued.  
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As explained previously, the total loss for a device with 0 vertical cantilever offset 

is approximately 25 dB. Roughly 11 dB of that is due to propagation loss (using a 

cumulative waveguide length of 1.5 cm), and the rest is dominated by insertion loss. 

Offsetting the cantilever from the output waveguide considerably increases the loss, 

but it improves the signal-to-noise ratio as discussed in Section 2.2.3.7. This offset is 

set by cantilever curvature and length. The devices that were fabricated and tested had 

a wide range of offsets and resulting output powers; however, in all cases the output 

power was at least 10 pW to ensure that it is well above the noise floor of the 

photodetector. The loss for increasing cantilever offsets is measured in Section 4.3.3 

and compared to theoretical values.  

4.3.2 Power Drift 

As discussed in Section 2.2.3.7, the main source of noise in the output signal is 

due to the mechanical drift of the XYZ positioning stages. The input and output fibers 

move relative to the chip slightly (on the order of nm), causing a gradual power 

change over time. Since this power change can be misinterpreted as cantilever 

response, it limits the minimal detectable cantilever displacement. The drift was 

measured over a period of 1000 s for several different conditions described below. 

This length of time was chosen since it is expected to be sufficient for a homocysteine 

detection event. To isolate the stage drift effect from possible cantilever motion, a 

device with unreleased cantilevers was used for these experiments.  

In the initial tests, the set screws on the XYZ stages were not tightened (for 

convenience), and the optical fibers were brought very close the waveguide facets in 

order to achieve maximal power coupling. Figure 4.5 shows that the measured power 
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drift over 1000s in this case is almost 70%, which is unacceptably high. The drift is 

not always upward; it changes direction, depending on the initial position of the XYZ 

stage. However, it was found that the percentage power change in several different 

experiments was on the order of the value shown here.  

 

Figure 4.5: Optical power drift of XYZ stages with set screws left untightened and fibers 
positioned at a minimal distance (~5 µm) from the waveguide facets. Regression trendline and 
equation included. 

Tightening the set screws on the XYZ stages reduced the drift to approximately 

20%. A further, more significant improvement was gained by increasing the distance 

between the input optical fiber and the waveguide facet in the z-direction. The 

coupling coefficient between the fiber and on-chip waveguide has a similar functional 

form as the cantilever coupling coefficient (Equation 2.7 and Equation 2.13). The 

output power is most sensitive to stage drift in the y-direction (vertical). This 

sensitivity can be reduced by broadening the input beam waist and thereby 

broadening the coupling function. When the fiber-to-waveguide distance is increased, 

the input beam is broadened due to divergence and the optical drift is reduced 
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(although the mechanical drift remains the same). Figure 4.6 shows that the resulting 

drift is less than 3%.  

 

Figure 4.6: Optical power drift of XYZ stages with set screws tightened and input fiber 
positioned far (~30 µm) from the waveguide facet. Regression trendline and equation included.  

This approach was not used for the output fiber because it has a much larger core 

diameter (62.5 µm) and is less susceptible to the drift effect. The penalty for 

increasing the fiber-to-waveguide distance at the input is the reduced optical power 

coupled to the device and ultimately to the detector. However, this tradeoff is 

acceptable considering that the detector can measure very low power (Section 4.3.1). 

In the control experiments, the input fiber was directly routed to the detector 

without passing through a device under test. The measured power drifted by only 

0.3% over 1000s. This verifies that the laser and the detector are quite stable, and the 

observed power variations in the previous experiments are indeed due to stage drift.  

4.3.3 Optical Power vs. Tip Deflection  

The next step in the optical characterization of the waveguide cantilever was to 

measure the change in output power as a function of displacement and to compare it 
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to the theoretical model. This was performed by drying an unpackaged cantilever and 

moving its tip vertically with a microprobe needle while recording the optical output 

power. The resulting cantilever offset was estimated by counting the number of 

interference fringes in the microscope image as described in Section 2.3.2. Figure 4.7 

shows the measured power at each offset for a 140 µm long device with cantilever-to 

waveguide-gap of 4 µm. The theoretical power based on the coupling function in 

Equation 2.13 is plotted for comparison (the coupling function is scaled, making its 

peak equal to the maximum measured output power).  

 

Figure 4.7: Measured and theoretical output power as a function of cantilever vertical offset 
from output waveguide. The cantilever is 140 µm long and it is measured in air after drying. 

Overall, the measured data points agree reasonably well with the theoretical curve 

in the figure. The discrepancies are most likely due to cantilever torsion. The 

microprobe needle used to move the cantilever vertically also twists it slightly; this 

makes the measured output power lower than the theoretical value. It should be noted 

that these results are coarse and are aimed at showing the output power variations for 

large cantilever displacements. In the experiments described next, the cantilever is 

moved more precisely over short ranges by means of chemical samples.  
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4.4 Detection of Homocysteine from Powder 

As explained previously, homocysteine is a byproduct of the bacterial signaling 

pathway of AI-2, and the capability to detect it in a microfluidic device will be useful 

for antibacterial drug discovery. The waveguide cantilever sensor developed in this 

dissertation is aimed at detection of homocysteine produced by the bacterial enzymes. 

For the initial testing, however, homocysteine from commercially available powder 

was used to verify the sensor response rather than enzymatic homocysteine. This 

eliminated the need for immobilizing the enzymes and significantly simplified the 

experimental procedures.  

4.4.1 Procedures 

Unless otherwise mentioned, a fully packaged microfluidic device (Section 

3.7.2.1) was used for each detection experiment presented below. Liquids were 

injected in the device by the external syringe pump at rates ranging from 2 µL/min to 

10 µL/min. Before each experiment, the device was cleaned by flowing dilute HCl 

(1% w/w) for 5 min, followed by a DI water rinse for 5 min. Homocysteine samples 

were introduced in the device after flowing pure DI water to establish a baseline 

signal. The samples were prepared by dissolving homocysteine powder (Sigma 

Aldrich, USA) in DI water to the specified concentrations. Since the homocysteine 

solution is unstable, a fresh sample was prepared for each experiment. The optical 

fibers were initially aligned to the input and output waveguides by adjusting the XYZ 

stages and were left in the same position for the entire duration of the measurement. 

The output of the optical power meter was continuously logged by a computer.  
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The tested cantilevers had varying dimensions and curvatures. For this reason, the 

following parameters are listed for each presented experiment: cantilever length, 

propagation gap between cantilever and output waveguide, and initial tip height of 

cantilever (estimated by the fringe counting method).  

4.4.2 Detection Results 

The first experiment was performed with a device that was packaged differently 

than described in Section 3.7.2.1. Instead of using the molded microfluidic layer, a 

simplified PDMS layer was fabricated to form a well over the cantilever. The well 

had lateral dimensions of approximately 1 cm by 1 cm, and depth equal to the PDMS 

thickness (~5 mm). The well was created by cutting out a piece of the PDMS. In this 

experiment, there were no fluidic connections; instead, the liquids were introduced 

into and removed from the well with a pipette. The sample concentration was 10 mM. 

Figure 4.8 shows the measured response of the waveguide cantilever. The coupled 

power increases by a factor of 12 over a period of 2000 s after sample introduction 

due to gradual binding of homocysteine to the gold surface via its thiol group. The 

shape of the coupling function (Figure 2.13) suggests that the increase in output 

power in Figure 4.8 was caused by downward cantilever displacement. This was 

confirmed by counting the number of interference fringes in the microscope image of 

the cantilever before and after sample introduction. Downward displacement means 

that the homocysteine creates compressive stress on the gold surface. This conclusion 

is consistent with reports of the stress generated by other thiol compounds [86, 137]. 
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Figure 4.8: Response of a waveguide cantilever to 10 mM homocysteine sample.  The cantilever 
length, initial tip height, and propagation gap are 140 µm, 2.2 µm, and 4 µm respectively. 

Although this result clearly shows detection of homocysteine, the PDMS-well 

packaging approach was found to be unsatisfactory. The sample concentration could 

not be accurately controlled; when injecting a new liquid in the well, the old liquid 

could not be completely removed with the pipette. Also, the variations in liquid level 

in the well somewhat influence the optical output power (as evidenced by the drop in 

power in Figure 4.8 just before sample injection). For these reasons, the microfluidic 

packaging approach described in Section 3.7.2.1 was developed and used for all 

subsequent experiments. It resulted in more stable and repeatable sensor response.  

Figure 4.9 shows the response of a cantilever using the improved packaging 

method. Note that in this case the optical power remains stable before the sample 

injection point. The 5 mM homocysteine solution causes the power to increase by a 

factor of 9. The sample is followed by DI water, which does not appreciably change 

the output power. Ideally, no change in power is expected here since the thiol group 

of homocysteine should be covalently bound to the gold surface and should not be 

removed by water rinsing. The small decrease in power may be the result of some 
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physically adsorbed homocysteine molecules being removed. Importantly, the DI 

water flowing before and after the homocysteine sample introduction has exactly the 

same optical properties. This verifies that the large change in output power is caused 

by cantilever bending and not by a change in the optical properties of the medium. 

 

Figure 4.9: Response of a waveguide cantilever to 5mM homocysteine sample followed by DI 
water and hydrochloric acid. The cantilever length, initial tip height, and propagation gap are  
110 µm, 2.2 µm, and 2 µm respectively. 

The DI water is followed by dilute hydrochloric acid (0.1% and then 1% w/w) in 

an attempt to clean the cantilever. It has been shown that thiol compounds can be 

removed with acidic solutions [138]. The HCl causes the cantilever to bend further 

down (power goes up) while it is present; when it is rinsed with DI, the cantilever 

returns close to its initial position, indicating that the majority of homocysteine 

molecules have been removed from the gold.  

The cleaning with HCl was investigated further. Figure 4.10 shows the results 

from repeated cleaning and reuse attempts. After each clean step, the cantilever 

returns close to its initial position. However, the response to subsequent 

homocysteine samples decreases. This may be due to increasing contamination of the 

gold surface, leaving less area available for homocysteine binding. The dilute 



 

 108

hydrochloric acid wash is not enough to remove the contaminants. The preferred 

methods for cleaning gold surfaces for assembly of thiol compounds (oxygen plasma 

or piranha solution) are not compatible with the sealed fluidic device. The oxygen 

plasma requires top-down access to the surface being cleaned, and piranha etches 

polymers, including SU-8 and PDMS. Therefore, no method was found to clean the 

device thoroughly and reuse it multiple times. Nevertheless, it should be noted that 

the cantilever is compatible with MEMS batch microfabrication and is extremely 

low-cost. For this reason, even a single-use, disposable sensor would be acceptable. 

 

Figure 4.10: Response of a waveguide cantilever to homocysteine samples followed by cleaning 
with 1% w/w hydrochloric acid. The cantilever length, initial tip height, and propagation gap are  
110 µm, 2.2 µm, and 4 µm respectively. 

Figure 4.11 shows the response of an optical cantilever to increasing 

concentrations of homocysteine. Solutions with concentration from 1 µM to 10 mM 

were introduced sequentially. The lowest concentration does not produce a 

measurable change in optical power, but the second lowest (10 µM) causes a clear 

response. The optical power changes further by introducing 100 µM and 1 mM 
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solutions, although the relative changes become smaller. Finally, the transition to 10 

mM does not produce any measurable response.  

 

Figure 4.11: Response of a waveguide cantilever to increasing concentrations of homocysteine. 
The cantilever length, initial tip height, and propagation gap are 70 µm, 0.75 µm, and 2 µm 
respectively. 

 These results are consistent with the first order kinetics model of thiol assembly to 

gold surfaces [139]. According to the model, the final surface density of thiols is 

independent of the solution concentration, and the binding rate is proportional to the 

solution concentration and the vacant surface area. In the 1 µM region in Figure 4.11, 

the solution concentration is the limiting factor to binding rate. In the 10 mM region, 

the surface is already covered with thiols by the previous samples, and the vacant 

surface area becomes the limiting factor. This explains why the binding rate in both 

of these regions is low and the change of optical power is unmeasurable. However, 

the first order thiol assembly model is a crude approximation. After the initial 

binding, the thiol layers undergo several phase transitions that are not completely 

understood [140]. For this reason, more quantitative analysis of the cantilever 

response as a function of homocysteine concentration could not be performed here.  
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As discussed previously (Section 2.3.2), the cantilever displacement during 

homocysteine binding can be estimated by counting the number of interference 

fringes in the microscope image. Figure 4.12 shows three estimated displacements 

versus the measured relative power increase (increase in power divided by initial 

power) for a 140 µm long cantilever in response to 5 mM homocysteine. The three 

data points were obtained at different times after sample introduction. The vertical 

error bars are due to the resolution limit of the fringe counting measurement (~120 

nm in this case).  

The figure also shows the theoretical relative power increase based on the 

coupling function given by Equation 2.13. The curve was obtained by dividing the 

theoretical increase in coupling coefficient at varying displacements by the coupling 

coefficient at the initial offset. The initial cantilever tip height used in this calculation 

was estimated by the fringe counting method. The measured data agrees reasonably 

well with the coupling model. This suggests that the model can be used to translate 

changes of output power into cantilever displacement. For small displacement, the 

change in power is approximately linear with displacement. The slope near the origin 

of the plot is 1.52; therefore, each nanometer of displacement corresponds to 0.66% 

change in power (reciprocal of the slope). The coupling model can readily be 

extended to cantilevers with different initial offsets.  
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Figure 4.12: Measured (dots) and theoretical (line) displacement of a cantilever vs. relative 
increase in optical power. The cantilever length, initial tip height, and propagation gap are 140 
µm, 2.2 µm, and 2 µm respectively. It is tested in 5 mM homocysteine solution. 

4.4.3 Interferometric Measurements   

The waveguide cantilever also forms an interference pattern very similar to that of 

the interferometric cantilever. The pattern was used in the previous section to roughly 

estimate the tip height and differential displacement by counting the number of 

fringes. However, this method has poor resolution limited by the user’s ability to 

recognize changes of less than one fringe. As discussed in Section 2.3, the 

interferometric cantilever relies on image processing software to determine the fringe 

shift and displacement more precisely. The same software was used here to analyze 

the waveguide cantilever while measuring its output power. This allows the 

theoretical coupling model to be verified with more precise displacement values than 

the ones in Figure 4.12.  

The microscope images of the waveguide cantilever have lower quality than those 

of the interferometric cantilever, and the resulting measurement error is larger. The 

interferometric device was tested with a high-magnification microscope (Chapter 5). 
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This tool could not be used for the waveguide device due to the constraints of the 

optical testing setup, which includes XYZ positioning stages. Instead, a low-

magnification, long-working distance microscope was selected, and the quality of the 

images was lower. Nevertheless, the image processing software greatly improved the 

precision of the displacement measurements compared to the simple fringe counting 

approach. The procedure for interferometric image analysis is not described here to 

avoid repetition; it is discussed in detail in Chapter 5.  

Figure 4.13 shows the output power from a waveguide cantilever along with the 

displacement measured by analyzing the interferometric images. The image 

acquisition was synchronized with the recording of optical power. The vertical dashed 

lines represent the times at which each image was acquired. Overall, the optical 

power and displacement seem well correlated. The shapes of the curves differ, but 

that is because the theoretical output power is not a linear function of displacement; 

rather, it is a Gaussian as described in Chapter 2.  

 

Figure 4.13: Optical output power of a waveguide cantilever and displacement measured by 
interferometry in response to homocysteine samples. The cantilever length, initial tip height, and 
propagation gap are 120 µm, 2.48 µm, and 2 µm respectively. 
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It was shown in Figure 4.10 that hydrochloric acid solutions cause the cantilever 

to bend down, possibly due to shrinking of the SU-8 in low pH. This effect was used 

to move the cantilever reversibly over a larger range of displacements than what was 

demonstrated with homocysteine samples. The displacement was again measured by 

interferometry while the output power was being recorded. Figure 4.14 shows the 

results of one such experiment. Here, HCl solutions with concentration ranging from   

from 70 mM to 1.37 M were introduced sequentially into the device following a DI 

water baseline measurement. The HCl concentration as a function of time is also 

plotted in the figure. Again, the displacement and optical power have different shapes 

but are correlated well.  

 

Figure 4.14: Optical output power of a waveguide cantilever and displacement measured by 
interferometry in response to dilute hydrochloric acid samples. The cantilever length, initial tip 
height, and propagation gap are 120 µm, 2.48 µm, and 2 µm respectively.  

The measured power at the time of each image acquisition (i.e. the dashed line 

crossings) was extracted from Figure 4.13 and Figure 4.14. The percentage power 

increase was calculated from these data by dividing each power value by the initial 
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power. The resulting power increase was plotted versus the corresponding 

displacement measured by interferometry as shown in Figure 4.15. The theoretical 

curve in the figure is obtained from coupling function given by Equation 2.13.  

 

Figure 4.15: Measured and theoretical displacement versus relative power increase of a 
waveguide cantilever. The measured values are obtained from the homocysteine (HC) and pH 
experiment data shown in Figure 4.13 and Figure 4.14.  

The measured data agree very well with the model for small displacements of < 

200 nm. For larger displacements, there is an increased discrepancy. This is likely due 

to effects which the model fails to take into account (e.g. higher order modes, 

sidewall angle and roughness of the waveguide facet). Some error in the 

interferometric displacement measurements and drift in the power coupling may also 

contribute to the discrepancy. Nevertheless, the agreement throughout the 

displacement range is reasonably close. In particular, note that the measured data for 

the pH and HC experiments almost overlap over their common displacement range. 

These results further support the claim made with Figure 4.12 that the power changes 

can be translated into displacement.  
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4.5 Detection of Enzymatically Produced Homocysteine 

The biosynthetic pathway of the bacterial quorum signaling molecule AI-2 was 

described in detail in Section 1.3.1. It consists of the enzymes Pfs and LuxS. The 

former converts the precursor SAH into SRH and adenine; the latter converts SRH 

into AI-2 and homocysteine. The sensors developed in this dissertation are aimed at 

detecting homocysteine, thereby indirectly assaying the activity of the AI-2 synthesis 

pathway. The previous section described the detection of homocysteine samples 

obtained by dissolving commercially available powder. In the present section, it is 

demonstrated that the waveguide cantilever sensor can detect homocysteine produced 

by the bacterial enzymes as well.  

4.5.1 External Enzymatic Synthesis 

For the first enzymatic experiment, the homocysteine/AI-2 sample was 

synthesized externally by my collaborator Dr. Rohan Fernandes as described in detail 

in elsewhere [45]. Briefly, the enzymes Pfs and LuxS were isolated from genetically 

modified E. Coli bacteria. The enzymes are actually combined in one large module, 

including a Histidine tag, LuxS, Pfs, and a Tyrosine tag (hence the name HLPT). The 

enzymatic module is assembled on chitosan-coated magnetic nanoparticles (also 

called chitosan-mag or CM). The resulting enzymatic nanoparticles (HLPT-CM) were 

then added to a 1 mM solution of the precursor SAH in 10 mM phosphate buffer (PB) 

with pH 6, and the mixture was allowed to react. Next, the nanoparticles were 

precipitated out of the solution using a permanent magnet. The supernatant was 

extracted and used as the sample for cantilever detection. Therefore, the sample 

contains a mixture of SAH, adenine, SRH, AI-2, and homocysteine dissolved in PB. 
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The resulting homocysteine concentration is unknown, but it is certainly less than 1 

mM (the starting concentration of SAH).  

The response of the waveguide cantilever sensor to the sample described above is 

shown in Figure 4.16. The SAH solution in PB may have a slightly different 

refractive index than water. Therefore, this solution was introduced into the device as 

a control liquid rather than DI water to obtain the baseline reading. The sample causes 

a power increase of approximately 150%. It is followed by the control solution, which 

does not cause any appreciable change in power output. This confirms that the 

measured response is due to permanent cantilever bending, and it is not the result of a 

refractive index change.  

 

Figure 4.16: Response of a waveguide cantilever to a homocysteine sample synthesized by the 
bacterial quorum sensing enzymes. The sample was prepared externally to the device. The 
cantilever length, initial tip height, and propagation gap are  110 µm, 2.2 µm, and 4 µm 
respectively.  

4.5.2 Enzymatic Synthesis in Microfluidics 

For the second enzymatic experiment, Pfs and LuxS were immobilized in the 

Tygon microfluidic tubing at the input of the packaged device. SAH solutions 
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entering the device are converted into homocysteine, which is detected downstream 

by the cantilever. The same enzymatic magnetic nanoparticles (HLPT-CM) were used 

as before, but the experimental procedure was different.  

HLPT and CM solutions were prepared by Dr. Rohan Fernandes as described in 

detail elsewhere [45] with concentration of 4.84 mg/mL and 3.86 mg/mL 

respectively. The solutions were mixed in a ratio of 1:23.5 and diluted with 10 mM 

phosphate buffer (pH 6). The resulting concentrations of HLPT and CM were 0.053 

mg/mL and 1 mg/mL respectively. The mixture was incubated at room temperature 

for 1 hr; this step allows the HLPT enzyme module to attach to the chitosan-coated 

magnetic nanoparticles.  

 The HLPT-CM solution was injected into a 10 cm long piece of the Tygon tubing 

used for fluidic input to the device. A magnetic field was applied perpendicular to the 

tube with a permanent magnet for ~5 min. The field causes some HLPT-CM to 

migrate to the wall of the tubing and adsorb there physically, forming a visible film of 

nanoparticles (Figure 4.17). The magnet is removed and the HLPT-CM solution is 

flushed from the tubing with clean buffer solution and DI water to remove any 

loosely bound particles from the walls. A visible film of adsorbed particles remained 

even after extensive rinsing. The functionalized tube was attached to the input 

capillary of the waveguide cantilever package. This method enables assembly of the 

enzyme in the microfluidic path while preventing the HLPT-CM solution from 

contacting the sensitive cantilever surface and possibly contaminating it.  
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Figure 4.17: Photograph showing HLPT-CM enzymatic nanoparticles adsorbed on Tygon tubing 
inner wall. The tubing has inner diameter of 380 µm and outer diameter of 2.31 mm. 

An SAH solution was prepared by dissolving SAH powder (Sigma Aldrich, USA) 

in 10 mM sodium phosphate buffer (PB) with pH 6. The solution was introduced into 

the device after flowing PB for 10 min to establish a baseline signal. Figure 4.18 

shows the optical response of the cantilever to the SAH for two different 

concentration and flow rate conditions. The concentration of homocysteine near the 

cantilever depends on the SAH concentration and the residence time of SAH at the 

enzymes, which is inversely proportional to flow rate. In Figure 4.18, the cantilever 

response to 100 µM SAH flowing at 10 µL/min is undetectable. However, increasing 

the concentration to 1 mM and reducing the flow rate to 2 µL/min causes a 

measurable change in power by approximately 360%. The SAH sample is followed 

by phosphate buffer, which does not appreciably change the output power. This 

verifies that the response is caused by permanent cantilever bending and not by a 

temporary refractive index change.  

HLPT-CM 
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Figure 4.18: Response of a waveguide cantilever to SAH introduction; the input tubing is 
functionalized with Pfs and LuxS enzymes. The cantilever length, initial tip height, and 
propagation gap are  110 µm, 2.2 µm, and 2 µm respectively. 

 The curve in Figure 4.18 generally looks noisier than the responses measured 

before for homocysteine obtained from powder. It also has a different shape (ramp 

instead of exponential rise to max). One possible reason for this is that the enzymatic 

capacity and resulting homocysteine concentration may be changing over time. On 

one hand, the enzymes may become less active due to denaturation; on the other 

hand, more enzyme area may become exposed to the solution due to continuous 

washing. These factors may cause fluctuations in the homocysteine concentration 

over time even though the incoming SAH concentration is kept constant. In addition, 

some of the nanoparticles adsorbed on in the tubing may gradually detach and flow 

into the chip, contaminating the cantilever surface and interfering with the 

propagating light.    

 A control SAH experiment was performed using a device whose microfluidic 

input tubing was not functionalized with enzymatic particles. Figure 4.19 shows the 

optical response of this cantilever to 1 mM SAH flowing at 2 µL/min. There is a 

slight downward trend in the power, probably caused by XYZ stage drift; however, 
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there are no major changes upon the injection of SAH. Therefore, the cantilever 

bending shown previously in Figure 4.18 was not caused by the SAH itself, and it 

must have been caused by an enzymatic product. This result is expected since SAH 

does not have free thiol groups that could bind to the cantilever surface. 

 

Figure 4.19: Response of an optical cantilever to SAH introduction; there are no enzymes in the 
tubing. The cantilever length, initial tip height, and propagation gap are 110 µm, 2.2 µm, and 2 
µm respectively. 

4.6 Discussion  

 The cantilever displacement in each experiment can be estimated from the 

measured power change using the theoretical coupling function. The results shown in 

Figure 4.12 and Figure 4.15 earlier confirmed that the displacement obtained by this 

method is in good agreement with the displacement measured by fringe counting. 

Table 4.1 summarizes the results from the previously described homocysteine 

detection experiments. Each row lists the figure in which the result was presented, the 

sample concentration, the characteristics of the cantilever, the maximum measured 

power increase, the calculated displacement, and the calculated surface stress. The 

homocysteine concentration in the case of the enzymatically produced samples is not 

known, and its upper bound is given instead (bottom two rows). The gap value listed 
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in column 3 refers to the gap between the cantilever and the output waveguide. The 

initial offset is the height of the cantilever above the substrate estimated by the fringe 

counting method. The displacement in column 8 is calculated from the optical power 

increase using the theoretical coupling function (Equation 2.13) and the measured 

initial offset. The stress value in column 9 follows from the mechanical sensitivity of 

each cantilever (Equation 2.1).  

Table 4.1: Summary of results from homocysteine detection experiments and estimated surface 
stress.  

Figure HC conc. 
(mM)

Gap 
(µm) 

Length 
(µm)

Offset 
(µm)

Curvature 
(mm-1)

Power 
increase (%)

Displacement 
(nm)

Surface stress 
(N/m)

4.7 10 4 140 2.2 0.22 1150 698 0.15
4.8 5 2 110 2.2 0.36 800 480 0.16
4.9 1 4 110 2.2 0.36 400 413 0.14

4.10 10 2 70 0.75 0.31 30 170 0.14
4.11 5 2 140 2.2 0.22 2400 750 0.16
4.12 10 2 120 2.48 0.34 230 178 0.05
4.15 < 1 4 110 2.2 0.36 150 225 0.08
4.16 < 1 2 110 2.2 0.36 360 318 0.11  

As discussed in Section 4.4.2, the final surface stress caused by homocysteine 

assembly should not depend on the solution concentration (only the rate of assembly 

depends on it).  The surface stress values in Table 4.1 are in reasonable agreement. 

Some variation between devices is to be expected since the thiol layer density 

depends on gold surface properties [140]. Interestingly, stresses in the range of 0.08 

N/m to 0.25 N/m have been reported for several thiol compounds with varying chain 

lengths [137]. The measured values for homocysteine here are on the same order of 

magnitude. The only value that is considerably lower than the rest is that for Figure 

4.13 in row 6 in the table. This may be due to contamination of the gold layer.  

 The theoretical mechanical and optical sensitivity of the cantilevers may be 

inexact due to deviations of the actual device dimensions and material properties from 
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the assumed values. As a result, the calculated cantilever displacements and surface 

stresses are only approximate. For typical detection applications, however, finding the 

exact cantilever displacement or surface stress is not needed. It is only necessary to 

compare the results of different experiments; these results can be given in terms of 

relative power change. All cantilevers can be fabricated to have the same mechanical 

and optical sensitivities. Therefore, comparisons in terms of optical power change can 

be made, although the exact conversion to surface stress is not known. Note that the 

conventional cantilever readout method based on position sensitive detectors [86, 

137] also gives the results in terms of another parameter (detector voltage). In that 

case, the conversion to cantilever displacements is also not exact.  

 The concentration-dependent response in Figure 4.11 suggests that the device can 

be calibrated to measure concentrations of homocysteine quantitatively. However, it 

was found that the concentration dependence is not repeatable and cannot be reliably 

used to determine concentration. Although the rate of binding depends on the 

concentration, the final thiol surface density is almost independent of concentration 

[139]. The rate of binding is influenced by random phase transitions [140] that occur 

after the initial binding, and its concentration dependence varies considerably 

between experiments. Importantly, the study of bacterial quorum sensing that this 

device is developed for does not require concentration measurements. For this 

application, it is sufficient to detect only the presence of homocysteine. 

 The minimal detectable displacement of the cantilever depends on the noise 

power. As explained previously (Section 2.2.3), the main source of noise here is the 

drift of the XYZ positioning stages, and it causes power variations on the order of 3% 
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over a period of 1000 s. Therefore, the minimal measurable power change is 

approximately 3% for an experiment of that duration. This translates to a minimal 

detectable displacement of 6 nm by using the theoretical coupling model plotted in 

Figure 4.12 for a cantilever with initial offset of 2.2 µm.  The corresponding minimal 

surface stress is 1.3 mN/m. In comparison, the minimal detectable stress for the 

waveguide cantilever reported by Nordstorm et al. is 200 mN/m [33, 108]. 

 Clearly, the homocysteine detection results show more power variations in 

addition to the slow stage drift. This could be caused by fluctuations in the liquid 

flow, particles passing through the fluidic channel, or detachment of homocysteine 

molecules from the cantilever surface. However, these variations occur over a 

timescale of several seconds and can be filtered out by averaging. The stage drift 

occurs on a timescale similar to that of the cantilever response, and therefore it is the 

determining factor of the detection limit.  

4.7 Summary 

 This chapter described the testing procedures and results for the waveguide 

cantilever senor. The device was first characterized optically and then used to detect 

homocysteine samples. The total measured optical loss was 25 dB, while the 

propagation loss in the waveguide was 7 dB/cm. The typical power variation due to 

the XYZ stage drift was found to be on the order of 3% over a period of 1000 s. The 

cantilever coupling function was tested over a large displacement range by pushing 

the device with a microprobe. The result was in reasonable agreement with the 

theoretical coupling model. The device was used for detection of homocysteine 

prepared from commercially available powder and also for enzymatically produced 
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homocysteine. The estimated surface stress in all experiments was similar, and it was 

close to values reported in literature for other types of thiol compounds. A minimal 

homocysteine concentration of 10 µM was detected. Interferometric displacement 

measurements were also performed in conjunction with recording of the output 

power. These results verified the theoretical coupling model over small displacement 

ranges. It was shown that for the representative cantilever geometry, 1 nm of 

displacement causes 0.66% change in optical power. The minimum detectable 

displacement and surface stress were estimated to be 6 nm and 1.3 mN/m, 

respectively.  
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5. Chapter 5: Interferometric Cantilever Testing  

5.1 Introduction 

This chapter presents the characterization of the interferometric cantilever sensor 

and its use for detection of homocysteine. The testing setup and image acquisition 

procedures are explained first. In particular, the effect of different light sources on the 

interference pattern contrast is studied. The random error in the measurements is 

tested under different experimental conditions. Next, solutions with varying pH are 

used to induce reversible cantilever displacement. The responses of multiple devices 

to pH are measured in parallel. Next, two types of homocysteine detection 

experiments are performed: using samples from commercially available powder or 

using enzymatically produced samples. These experiments are similar to the ones 

described in Chapter 4 for the waveguide cantilever but are performed with several 

devices in parallel. In addition, it is demonstrated that enzyme denaturation 

significantly alters the sensor response.  

5.2 Experimental Setup  

 Unless otherwise noted, the measurements were performed with fully packaged 

devices as described in Section 3.7.2.2. The testing setup is illustrated in Figure 5.1. 

First, DI water is pipetted in the input wells and sucked into the microfluidic channels 

with a manually operated syringe connected to the output tubing. Initial images of 

each cantilever are taken with the microscope by translating the stage. Then, the 

samples are pipetted in each input well and sucked into the respective channel. Care 

is taken to avoid overfilling the wells and cross-contaminating the samples. Next, 
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images of the displaced cantilevers are taken and saved. The initial and final images 

are analyzed by the method described in Section 2.3.2 to extract the displacement.  

Pipette Device 
under test

Syringe

Microscope
with camera

Laser

Microscope stage

Spinning 
diffuser PC 

 

Figure 5.1: Block diagram of testing setup used to characterize interferometric cantilever sensor.  

 All images are acquired at either 20X or 40X optical magnification using a 

microscope with a manual X-Y stage (Mitutoyo FS70). The camera has 3840 by 3072 

pixels (Nikon DXM1200). The resulting image resolution is either 9 or 18 pixels/µm. 

The microscope’s incandescent light source was replaced with a 660 nm diode laser. 

The laser beam is fed through a spinning diffuser to reduce its spatial coherence and 

guided into the microscope port with a fiber optic bundle. The advantages of this 

custom-made light source are explained in the next section.  

5.3 Microscope Light Source 

The spectral width of the microscope light source significantly affects the 

characteristics of the interference pattern. The expression given by Equation 2.21 

assumes a light source with a single wavelength (i.e. perfectly monochromatic).     

However, practical light sources have a range of wavelengths. The intensity of the 

interference pattern resulting from light with arbitrary spectral width is given by 

Equation 5.1. Here,τ is the time difference between the beams reflecting off the 
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cantilever and off the substrate as illustrated in Figure 2.16; where g(τ) is the 

autocorrelation function. For spectrally narrow sources bandwidth much smaller than 

the central frequency (∆ν  << ν0), the interference pattern can be approximated with 

Equation 5.2 [121]. 

Equation 5.1 { })(Re2 2121 τgIIIII refl ++=    

Equation 5.2 )2cos()(2 02121 τπντgIIIII refl ++≈    

 In the case of monochromatic light, the autocorrelation function is g(τ) = 

exp(i2πντ) and the intensity reduces to the expression in Equation 2.21. However, in 

the general case, g(τ) is a decreasing function with maximal value at τ = 0 and 

negligible value for τ  > τc  [121]. Here, τc is the coherence time, which is related to 

the bandwidth of the light source by τc ≈ 1/∆ν ; the corresponding coherence length is 

lc = cτc. If the optical path difference (OPD) between the interfering beams increases 

beyond the coherence length, the third term in Equation 5.2 goes to 0 and the 

interference pattern vanishes. To obtain a high-contrast interference pattern, the 

coherence length must be much larger than the OPD.  

 As shown in Figure 2.16, the optical path difference between the interfering 

beams is twice the cantilever-to-substrate distance. Table 5.1 lists estimated 

coherence lengths for several different light sources along with the maximum 

cantilever tip height that results in visible interference fringes. The first entry is for an 

incandescent light bulb, which is the standard light source for most microscopes. 

Cantilever tip heights of approximately 500 nm are sufficient to wash out the 

interference pattern in this case. The second entry in the table is for a red light 

emitting diode (LED) that was used to replace the original source. This resulted in 



 

 128

visible fringes for large cantilever offsets, but the interference contrast was low. 

Therefore, a source with even higher coherence length is needed. The third entry in 

Table 5.1 is an example of a typical laser source. The given linewidth of 1 pm is 

achievable even by low-cost semiconductor lasers [141]. This should result in 

sufficiently coherent illumination for any practical cantilever offset.  

Table 5.1: Coherence characteristics of different light sources that can be used for microscope 
illumination. The coherence lengths are adjusted for the refractive index of water (1.33).  

Light source Linewidth 
(m)

Bandwidth 
(Hz)

Coherence 
time (s)

Coherence 
length (m)

Cantielver max 
tip height (m)

Incandescent 300E-9 2.07E+14 4.84E-15 1.09E-06 5.46E-07
LED 40E-9 2.75E+13 3.63E-14 8.19E-06 4.09E-06

Laser diode (typical) 1E-12 6.89E+08 1.45E-09 3.28E-01 1.64E-01  

Lasers have the unique capability of outputting high intensities over very narrow 

linewidths. However, laser beams are both spatially and temporally coherent. The 

spatial coherence is highly undesirable for this application because it results in a 

speckled image. As a coherent wavefront scatters off the sample surface, secondary 

wavefronts are generated that have a constant phase relationship with each other. 

They interfere and create a random-looking interference pattern known as speckle. 

This pattern severely degrades the sample image and prevents any interferometric 

measurements of heights.  

 Several methods have been demonstrated to reduce the speckle. Some authors 

have used optical feedback to trigger laser mode-hopping and average out the 

interference pattern[112]. Unfortunately, this approach greatly reduces the temporal 

coherence of the light and would be counterproductive for our application. Others 

have demonstrated the use of mechanical motion to randomize the laser beam 

wavefront over space and time [142, 143]. For example, the light is passed through a 
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multimode optical fiber vibrated by a piezoelectric transducer or through a rotating 

ground disk. Since the frequency of mechanical motion is low, the temporal 

coherence of the light is not affected. Although these methods for speckle reduction 

have been reported in literature, there are no commercially available instruments that 

implement them. For this reason, I developed a custom device. I chose the rotating 

disk approach due to its simplicity. 

Figure 5.2 shows the assembled light source. The laser is a 130 mW single-mode 

laser diode with wavelength 660 nm (Mitsubishi Electric, Cypress, CA). It is mounted 

on a heat sink and cooled by a fan. The laser output is collimated by a lens and passed 

through a diffusive plastic disk mounted on a 2000 rpm electric motor. The light is 

then collected by a fiber bundle and guided to an illumination port of the Mitutoyo 

FS70 microscope. Approximately 90% of the laser light is lost in this setup due to 

scattering by the rotating disk. However, the coupled light is still sufficient for 

imaging at any magnification, and the laser diode is run well below its peak power.  

 

Figure 5.2: Custom-made laser illumination source with rotating diffusive disk.  

 The frequency of random modulation of the light by the disk depends on the 

roughness profile of the disk and the rotation speed. We estimate that this frequency 
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is less than 1 MHz, which would limit coherence time to 1 µs and coherence length to 

300 m. Since our application requires coherence length only on the order of several 

µm, any limitation of temporal coherence by the spinning disk is insignificant. At the 

same time, the 1 µs period of the random modulation is much shorter than the 

exposure time of the camera (several seconds). Therefore, the speckle pattern appears 

averaged out in the acquired image. Figure 5.3 shows images of a sample illuminated 

by the laser with the disk rotation off or on. In the first case, the speckle degrades the 

image severely; in the second case, the speckle is eliminated, allowing the sample 

features to be clearly resolved. These images were acquired with an interferometric 

optical profiler (Veeco NT1100) rather than the microscope described previously; 

they are used here only to illustrate the speckle problem and its solution.     

 

Figure 5.3: Image of a MEMS sample taken with laser illumination. a) The light is temporally 
and spatially coherent. b) The light is decohered spatially by passing it through the rotating disk.  

The spatially decohered laser source resulted in much better contrast in images of 

the interferometric cantilever than the LED described in Table 5.1. The improvement 

is evident from the intensity shown in Figure 5.4. The higher fringe modulation 

increases the precision of fringe shift measurement and the resulting cantilever 

displacement estimate. For this reason, the laser illumination was used for all 

subsequent interference cantilever testing.  
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Figure 5.4: Measured intensity profile from cantilever images obtained with laser or LED 
illumination at 40X optical magnification.   

The interference contrast is also affected by the aperture diaphragm setting of the 

microscope. This setting controls the range of angles over which the sample is 

illuminated. The simplified schematic in Figure 2.16  suggests that the incident beams 

are normal to the sample. In reality, they have a range of angles depending on the 

numerical aperture of the microscope. A slightly different interference pattern is 

formed for each angle; the resultant pattern is the sum of these contributions and 

therefore has reduced contrast. Since decreasing the aperture setting minimizes the 

range of illumination angles, it should enhance the interference contrast. This effect is 

confirmed by the data in Figure 5.5. The main disadvantage of a small aperture is that 

it considerably decreases the illumination intensity. However, the laser used in this 

work provides sufficient power and allowed me to use very small aperture settings.  
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Figure 5.5: Measured intensity profiles from cantilever images obtained with different settings of 
the microscope’s aperture diaphragm at 40X optical magnification.  

The results in Figure 5.5 also show that changing the aperture shifts the 

interference fringes laterally. This shift could be misinterpreted as being caused by 

cantilever displacement. Therefore, it is important to use exactly the same aperture 

setting for the initial and final images of the cantilever. 

5.4 Measurement Precision 

 It was explained in Section 2.3.4 that the main source of random displacement 

error is the fringe shift measurement error. The latter is caused by quantization of the 

image, changes in microscope focus, and translation of the microscope stage 

combined with nonuniform illumination. The quantization error was theoretically 

estimated to be ± 0.5 pixels (Section 2.3.4). The other two contributions are 

characterized below.   

Table 5.2 shows the typical random error caused by microscope refocusing and 

stage translation. Three types of measurements were performed: no motion, 

refocusing, and refocusing with stage translation. In each case, 10 images of the same 
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cantilever in DI are taken at 40x magnification, and the fringe shift ∆z is extracted by 

the algorithm described previously (Section 2.3.3). The first column in the table is the 

average of the measurements, and the second is the standard deviation. The third 

column is the standard deviation of vertical displacement ∆d calculated from the 

fringe shift (Equation 2.23) using a cantilever slope of 0.02 and image resolution of 

18 pixels/µm. The fourth and fifth columns show the average values of normalized 

cross-correlation maxima, which are calculated to register the image and find fringe 

shift as discussed in Section 2.3.3. These values serve as figures of merit, indicating 

the quality of the image alignment (cross-correlation of 1 would mean perfect 

alignment).  

Table 5.2: Average and standard deviation of 10 fringe shift measurements performed with and 
without microscope refocusing and stage motion.  

Mean ∆ z 
(pixels)

Std. Dev. ∆ z 
(pixels)

Std. Dev. ∆ d 
(nm)

Max cross-corr. 
alignment

Max cross-corr. 
fringe

No motion 0 0 0 0.9795 0.9895
Refocusing of microscope -0.4 0.52 0.58 0.9791 0.9877
Stage translation and refocusing 0.2 0.79 0.89 0.9562 0.9828  

In the no-motion case, all 10 images are taken without touching the microscope or 

the chip. The measured fringe shift for every image is 0. This means that the random 

error is below the camera resolution. Therefore, the errors due to laser wavelength 

fluctuation and camera noise are negligible compared to the quantization error. For 

the refocusing measurements, the microscope focus is adjusted before every image 

acquisition without translating the stage. Some error is observed, as indicated by both 

the average fringe shift and the standard deviation. For the third type of 

measurements, the microscope is refocused and the stage is moved so that the 

cantilever position in the image changes. This procedure emulates actual detection 
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experiments, in which the stage is translated in order to image multiple cantilevers. 

Here, the fringe shift error increases further, and the standard deviation becomes ~ 0.8 

pixels. Based on this, it can be concluded that the minimal detectable fringe shift is 

0.8 pixels. This corresponds to approximately 1nm detectable cantilever displacement 

and ± 1nm random displacement error. Table 5.2 also shows that the cross-correlation 

quality slightly decreases as more variability is introduced to the measurements by 

refocusing and stage translation. This trend is expected and agrees with the increased 

error. 

As discussed in detail in Section 2.3.4, the other source of measurement error is 

the systematic error caused by approximating the curved cantilever with a straight 

line. That error is less than ± 6% of cantilever displacement for the slope 

approximation method used in all experiments here (the more accurate slope 

approximation method can reduce the error further at the expense of slower image 

analysis). Therefore, the total error is dominated by the systematic error for large 

displacements and by the random error described above (± 1nm) for small 

displacements. Accordingly, error bars of ± 6% are added to all displacement plots in 

this chapter.  

5.5 Response to pH Variation  

 It was shown previously in Figure 4.10 and Figure 4.14 that the gold coated SU-8 

cantilever bends down in response to acidic solutions. This effect is probably due to 

deswelling of the polymer in low pH. The bottom of the cantilever is directly exposed 

to the solution and deswells more than the top, which is protected by the metal layer. 

This pH dependent behavior is used here to emulate the cantilever displacement that 
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would occur upon detection of a chemical or biological sample. Hydrochloric acid 

was dissolved in DI water to make solutions with a range of pH values from 0.86 to 

4.16. Conveniently, the pH-induced bending is reversible, and the same device can be 

used for multiple samples without significant changes in response. In contrast, it was 

shown previously (Section  4.4.2) that the response of the cantilever to homocysteine 

samples is affected by contamination and decays considerably after several each use.  

 Three neighboring cantilevers were imaged in DI and then in samples with 

decreasing pH. There was period of 5 min between injecting the sample and acquiring 

the image in order to allow the cantilevers to reach equilibrium. For this experiment, a 

modified version of the PDMS layer was used such that all cantilevers are in the same 

fluidic channel. This reduced the number of sample injections needed by a factor of 3. 

The measured displacements are shown in Figure 5.6 (labeled as single-channel 

experiments). The error bars are based on the worst-case systematic error, which is 

6% of the displacement as discussed in the previous section. The responses of the 3 

devices are quite similar. The observed variations in pH sensitivity are probably due 

to slight differences in cantilever dimensions and material properties.  
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Figure 5.6: Measured displacements of cantilevers exposed to samples with different pH. All 
devices have a nominal length of 120 µm.   

 Next, a chip with 8 cantilevers was tested over the same range of pH values. In 

this case, each device was in a separate fluidic channel and was exposed to a single 

sample. In other words, the pH sweep was performed spatially instead of temporally. 

The measured displacements are also shown in Figure 5.6 (labeled as multi-channel 

experiment), and they agree reasonably well with the results from the single-channel 

test.  

The refractive index of HCl is slightly higher than that of DI water, and it may 

introduce some error in the measurements. The highest refractive index here is that of 

the highest HCl concentration, which is 0.137M (pH 0.86). I found a reported value 

of 1.33502 for 0.239M HCl [144] and 1.33302 for water [144, 145]. This difference 

would cause an error of -3 nm in the displacement measurement (in our convention, 

downward displacement is positive). Therefore, the error due to the refractive index 

change is negligible in this case. However, it should be taken into account when 

measuring small cantilever displacements in highly concentrated samples. 
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 To demonstrate the ability of the interferometric readout to measure larger 

numbers of cantilevers, I tested the response of 30 devices to a 2.74 mM HCl sample 

(pH 2.56). In this case, the chip was a large piece of wafer containing multiple dies, 

and it was used without PDMS packaging. The chip was placed in a Petri dish with 

DI to acquire the initial images; then it was transferred to a similar dish containing the 

sample to acquire the final images (after waiting at least 5 min for equilibration). 

Figure 5.7 shows the measured displacements. As in the case of Figure 5.6, the 

variation between devices is probably caused by differences in dimensions and 

material properties. The total measurement time for this experiment was 

approximately 20 min: 10 min for acquiring initial and final images and 10 min for 

image processing.  

 

Figure 5.7: Measured displacements of 30 cantilevers exposed to a pH of 2.56 (unpackaged 
device). All devices have a nominal length of 110 µm.  

5.6 Detection of Homocysteine from Powder 

The interferometric cantilever was tested with solutions of varying pH in order to 

demonstrate the feasibility of measuring multiple devices in parallel in a reversible 
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manner. However, the actual application of the sensor is to detect homocysteine from 

the bacterial synthetic pathway of AI-2. As in the case of the waveguide based device 

described in Chapter 4, the interferometric cantilever was tested first with 

homocysteine samples prepared from commercially available powder. These results 

are presented in the current section. The next section will describe the testing with 

enzymatically produced homocysteine. All cantilevers used here have a nominal 

length of 110 µm.  

5.6.1 Procedures 

The samples were prepared as described in Section 4.4 for the waveguide 

cantilever. Briefly, homocysteine powder (Sigma Aldrich, USA) was dissolved in DI 

water to the desired concentration. Beyond the principle of displacement 

measurement, there are two notable differences in the testing of the interferometric 

and waveguide cantilevers. First, they have different packages. As discussed in 

Chapter 2, the waveguide device has one fluidic channel common to 8 cantilevers; the 

standard interferometric device has 8 channels in parallel, and each cantilever is in its 

own channel. Second, the sample flow conditions are different. The waveguide device 

is tested with continuous flow driven by a syringe pump. The interferometric device 

is tested with a stagnant sample; the liquid is sucked from the input well into the 

channel with a syringe and then left there for the duration of the experiment. This 

method greatly facilitates the injection of multiple samples in parallel compared to the 

continuous flow scenario.  
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5.6.2 Detection Results 

 A single cantilever was tested first to estimate the characteristic timescale of the 

detection. Figure 5.8 shows the measured response to 1 mM solution (the 

displacement is downward). It has the form of exponential rise to max, which is 

consistent with the first order kinetics model of the thiol assembly [139]. This 

response has a similar shape to the ones measured with the waveguide cantilever in 

Chapter 4. Approximately 32 min after the sample injection, the sample was flushed 

and replaced with DI water. Note that there is no abrupt change in displacement at 

that point, verifying that the difference in refractive index between DI and 

homocysteine solution is negligible. The displacement decreases gradually after that, 

probably due to some detachment of homocysteine from the gold surface.  

 

Figure 5.8: Response of an interferometric cantilever to 1mM homocysteine sample.  

 The measured max displacement is 370 nm. Using Equation 2.1 with our 

cantilever dimensions and the mechanical properties of SU-8 (Table 2.2), we estimate 

a surface stress of 0.13 N/m due to homocysteine assembly. This value is within the 
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range 0.08-0.25 N/m, which has been reported in literature for thiol compounds with 

varying chain lengths [137]. 

Next, 5 cantilevers on a single chip were tested with the same sample 

concentration (1mM) as shown in Figure 5.9. The responses are overall very similar, 

and the variations can be attributed to small differences in cantilever stiffness and 

gold surface properties. It has been shown that the density of thiol monolayers is 

greatly affected by defects and contamination of the gold layer [140]. Even larger 

variations in response were observed when using cantilevers with different cleaning 

histories (not shown here).  

 

Figure 5.9: Responses of 5 identical interferometric cantilevers to 1mM homocysteine solutions. 
The samples are introduced at time 0.  

 The responses of multiple cantilevers on a single chip to different homocysteine 

concentrations were also tested. There is a clear trend of increasing displacement with 

concentration (Figure 5.10). This kind of behavior is expected based on the first order 

kinetics model of thiol assembly [139], which predicts that the rate of surface binding 

increases with concentration. Therefore, the cantilever response can potentially be 

used to roughly estimate homocysteine concentration if the measurement time is kept 
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constant. The variability between devices evident in Figure 5.9 ultimately limits the 

resolution of concentration measurements. As mentioned previously in Section 4.4.2, 

the study of bacterial quorum sensing does not require concentration measurement. 

For this application, it is sufficient to detect the presence of homocysteine. 

 

Figure 5.10: Responses of 5 identical interferometric cantilevers to homocysteine solutions with 
varying concentrations. The samples are introduced at time 0.  

Chapter 4 described attempts of cleaning and reusing the waveguide cantilever 

sensors with dilute hydrochloric acid. The conclusion there was that the homocysteine 

is partially removed by cleaning, but the device becomes contaminated and its 

response decays after each use. A similar behavior was observed in the case of the 

interferometric device. Figure 5.11 shows responses of an interferometric cantilever 

to a 1 mM homocysteine sample after repeated cleaning with 1% w/w HCl for at least 

5 min. The displacement becomes significantly lower with each use. Therefore, the 

sensor is not reusable. As in the case of the waveguide cantilever, this limitation is 

acceptable since the device is compatible with MEMS batch microfabrication and can 

be made at extremely low cost.  
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Figure 5.11: Responses of an interferometric cantilever to 1 mM homocysteine solution after 
repeated cleaning. The sample is introduced at time 0.  

5.7 Detection of Enzymatically Produced Homocysteine 

 Finally, the interferometric cantilever was demonstrated for its intended 

application (detecting homocysteine from the bacterial synthetic pathway of AI-2). 

This pathway was described in detail in Section 1.3.1, and its output was detected 

with the waveguide cantilever in Section 4.5. Here, samples produced by the pathway 

are tested with the interferometric cantilever. The samples were prepared by two 

different approaches: a batch reactor and a continuous flow reactor.  In each case, 

the same enzymatic nanoparticles were used as described in Section 4.5.2. Briefly, 

solutions of the enzyme module (HLPT) and chitosan magnetic nanoparticles (CM) 

were obtained from Dr. Rohan Fernandes. The  solutions were mixed and diluted 

with 10 mM phosphate buffer (pH 6) to obtain a final concentration of 0.053 mg/mL 

and 1 mg/mL for HLPT and CM respectively. The resulting mixture was incubated at 

room temperature for 1 hr and used to synthesize AI-2 in each of the two reactors 

described below.  
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5.7.1 Batch Reactor Samples 

 The first enzymatic reactor was of the batch type, and it was prepared as follows. 

A 1.5 mL test tube was filled with the HLPT-CM mixture, and the nanoparticles were 

precipitated with a permanent magnet. The supernatant was removed and discarded. 

Then, 500 µL of 1 mM SAH solution in phosphate buffer was added to the same tube, 

and the nanoparticles were stirred in order to dissolve again. After allowing the 

solution to react for 1 hr at room temperature, the particles were precipitated with a 

magnet. The supernatant was extracted and used as a sample for the cantilever sensor.  

Another batch reactor tube was prepared in the same manner, but it was immersed in 

a 95oC water bath before introducing the SAH solution in order to denature the 

enzymes. The reacted SAH sample from this tube was also used as a sample for the 

cantilever sensor.  

5.7.2 Flow Reactor Samples 

 The second enzymatic reactor was of the continuous flow type, and it consisted of 

a piece of Tygon fluidic tubing (ID 380 µm) with enzymatic nanoparticles adsorbed 

on the inner walls. The tubing was prepared by the same procedures described in 

Section 4.5.2. Briefly, the HLPT-CM mixture was injected, and a magnetic field was 

applied for 5 min; then, the mixture was flushed with clean buffer solution to remove 

unbound particles.  

 As discussed previously, the interferometric cantilever makes use of input wells 

that are filled with a pipette in order to facilitate injection of multiple samples. For 

this reason, the functionalized tubing cannot be connected directly to the input as in 
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the case of the waveguide cantilever. Instead, samples are collected from the output 

of the tubing in containers and then pipetted into the wells of the cantilever sensor.  

 To synthesize the samples, SAH solutions (1 mM concentration in phosphate 

buffer) were injected into the functionalized tubing with a syringe pump at a flow rate 

of 1 µL/min or 10 µL/min. After samples were obtained with the functioning enzyme, 

the enzyme was purposely denatured. For this, a 5% w/v NaOH solution was flowed 

in the tubing for 5 min followed by rinsing with PB (phosphate buffer). Then, another 

1mM SAH sample was processed with the denatured reactor at a flow rate of 1 

µL/min, and the output was collected for testing with the cantilever sensor.   

5.7.3 Detection Results 

In addition to the 5 samples obtained with the two types of reactors, several 

control samples were prepared: 1 mM and 100 µM homocysteine solutions from 

powder and an unreacted 1 mM SAH solution. In all cases, the solvent was PB.  

 The 8 samples were introduced into the 8 input wells of an interferometric 

cantilever chip after taking initial (baseline) images in PB. The liquids were sucked 

into the parallel channels consecutively with a syringe connected to the output tubing. 

Then, each cantilever was imaged again 5 min and 10 min after the sample injection, 

and the displacement was extracted from the images. The results are shown in Figure 

5.12. The values from the flow reactor are labeled with the respective flow rate, and 

those from the control samples are labeled with their content and concentration.   
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Figure 5.12: Interferometric cantilever displacement measured in response to different samples 
either 5 or 10 min after sample injection. Large displacement signifies high homocysteine 
concentration. 

These results confirm that the enzymatically produced homocysteine is 

successfully detected. In the case of the flow reactor at 1 µL/min, the signal is close 

to that of the 1mM homocysteine control sample; this suggests that full enzymatic 

conversion occurred. The signal from the batch reactor is much lower, indicating 

incomplete conversion. This may be due to insufficient enzyme residence time in this 

case. The same explanation can be applied to the 10 µL/min flow reactor, where the 

conversion is even lower (essentially 0). The samples from the denatured reactors, 

both batch and flow at 1 µL/min, do not elicit any significant response. The slight 

negative displacement in these cases can be attributed to thermal drift of the 

cantilever or nonspecific interaction with the sample. The slight response to unreacted 

SAH is presumably due to the same causes.  

Figure 5.12 essentially shows that the sensor can distinguish between active and 

inactive enzymes. The inhibition of the bacterial enzymes with drugs would have the 

same effect as denaturation: stopping the production of homocysteine. Therefore, the 
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cantilever sensor can be used for screening candidate drugs aimed at suppressing 

bacterial quorum sensing.  

5.8 Discussion  

Table 5.3 compares the results from the homocysteine detection experiments 

described in this chapter. Each row lists the figure in which the result was presented, 

the maximum measured displacement of the cantilever, and the surface stress 

calculated from the mechanical sensitivity (Equation 2.1). The stress values are 

consistent with each other and with the results from the waveguide cantilever 

presented in Table 4.1. As discussed previously, some variation between devices is 

normal since the density of thiol monolayers greatly depends on gold surface 

properties [140]. Note that the variation in stress here is smaller than in the case of the 

waveguide cantilever. This may be due to the fact that the waveguide devices also 

have another source of variability: the conversion of optical power into displacement 

(i.e. the optical sensitivity). In comparison, the interferometric measurements are 

more repeatable from device to device since they do not depend on the optical 

sensitivity.  

Table 5.3: Summary of results from homocysteine detection experiments performed with 
interferometric cantilever.  

Figure HC conc. 
(mM)

Length 
(µm)

Displacement 
(nm)

Surface stress 
(N/m)

5.8 1 110 371 0.13
5.9 1 110 450 0.15

5.10 1 110 380 0.13
5.11 1 110 356 0.12

5.12 (from powder) 1 110 419 0.14
5.12 (enzymatic) < 1 110 411 0.14  

The detection results from both the homocysteine and pH experiments 

demonstrate the ability of the interferometric readout method to measure multiple 
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cantilevers in parallel. For example, if the experiment in Figure 5.10 was performed 

with the conventional PSD method (Section 1.3.4.2), the reader would have to capture 

the entire response of one cantilever (~1 hour) before moving to another due to the 

tight alignment tolerances. Therefore, the total experimental time would be 5 hours. 

Using our interferometric method, the responses of all 5 cantilevers are captured in 

one hour because the alignment is not critical and the reader can be moved between 

devices that are simultaneously exposed to samples. Clearly, the ability for parallel 

measurements would be even more beneficial for larger numbers of cantilevers or 

longer sample exposure times. The results in Figure 5.7 demonstrate that relatively 

large numbers of devices can be measured if their displacement does not need to be 

tracked continuously.   

The main limitation of the interferometric method is its limited temporal 

resolution due to the slow acquisition of digital images. It is only eligible for static 

mode detection. In addition, it is better suited for measuring the final cantilever 

displacement rather than the evolution of displacement over time. However, the 

results in Figure 5.12 show that only one displacement value is sufficient for 

detection. The continuous tracking of displacement in the rest of the experiments 

(Figure 5.8 through Figure 5.11) was performed here for characterization purposes 

but would not be needed in a drug screening application.  

5.9 Summary 

 This chapter described the testing procedures and results for the interferometric 

cantilever sensor. The experimental setup and methodology were presented first, 

followed by a characterization of the effect of the microscope light source on the 
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interference pattern contrast. The random measurement error was found to be on the 

order of ±1 nm, leading to a minimal detectable displacement of 1 nm and 

corresponding minimal surface stress of 340 µN/m for a 110 µm long cantilever. The 

systematic measurement error with the image analysis procedure in use is less than 

6% of displacement; it can be reduced further by a more detailed analysis at the 

expense of increased measurement time. The capability of the interferometric method 

to measure multiple devices in parallel was demonstrated by detecting both samples 

with varying pH and homocysteine samples. The homocysteine was obtained by 

dissolving commercially available powder or synthesized by the quorum sensing 

enzymes. The minimal detected homocysteine concentration was 1 µM. In addition, 

enzyme denaturation events were successfully observed due to the reduced sensor 

response.  



149 

 

6. Chapter 6: Conclusion 

6.1 Summary  

 This dissertation has presented the design, fabrication, and testing of two types of 

microcantilever sensors for monitoring bacterial quorum sensing. Bacterial infections 

are a major healthcare problem, and the resistance of bacteria to conventional 

antibiotics is increasing. For this reason, new approaches to drug discovery are badly 

needed.  One such approach is the inhibition of bacterial communications (also called 

quorum sensing) in order to suppress the formation of biofilms and reduce their 

pathogenicity. The sensors developed in this dissertation indirectly monitor the 

activity of the bacterial enzymes that synthesize signaling molecules. This is 

accomplished by detecting the compound homocysteine, which is a byproduct in the 

enzymatic pathway. Since the sensors are based on MEMS technology, they use small 

sample volumes and can be fabricated with large density at low cost. Therefore, these 

devices are a significant step toward high-throughput screening of candidate drugs 

that inhibit bacterial quorum sensing.  

 The main advantages of the microcantilever over competing sensor technologies 

are its small footprint and its label-free principle of operation. However its readout, 

i.e. the measurement of beam displacement, remains challenging. The traditional 

readout methods involve elaborate free-space optics, and can normally acquire the 

response of only one device at a time due to the strict alignment tolerances. This 

limitation prevents the use of cantilever sensors in array format for high-throughput 

screening. The two types of cantilevers developed in this dissertation employ new 
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readout schemes that overcome the deficiencies of the traditional displacement 

measurement methods.   

6.1.1 Waveguide Cantilever 

 This device operates on the principle of variable optical coupling. The cantilever 

is a section of an on-chip waveguide that is released from the substrate. It couples 

light to an output waveguide across a short gap. As the cantilever moves up or down, 

the power of light measured at the output is varied, and it severs as an indication of 

beam displacement. This design considerably simplifies the off-chip measurement 

setup. Although several demonstrations of the waveguide cantilever approach were 

previously reported in literature, none of them were performed in liquid. The device 

in this work was embedded in a microfluidic channel and used for detecting liquid 

samples of homocysteine from the bacterial quorum sensing pathway. Since the 

majority of chemical and biological samples occur in solution state, the capability of 

the sensor to operate in liquid is a significant benefit. Also, the customized fabrication 

process developed here allowed us to control beam curvature and improve the 

sensitivity of the presented device over previous demonstrations. The curvature 

control was achieved though stress engineering of the SU-8 material.  

6.1.2 Interferometric Cantilever 

 The second type of cantilever forms an interference pattern when imaged with an 

optical microscope with sufficiently narrow illumination spectral width. This pattern 

is the result of mixing light beams reflected off the cantilever and off the substrate 

underneath. As the cantilever moves up or down, the interference fringes move 

laterally; accordingly, the vertical displacement is calculated from the cantilever slope 
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and the lateral fringe shift. Although this measurement method uses external 

instrumentation, the microscope is a standard laboratory tool and the experimental 

setup is relatively simple. The alignment of the chip to the microscope is not critical, 

and it was shown that multiple cantilever experiments can be tracked in parallel by 

translating the stage. To speed up the measurements, an automated software 

algorithm was developed for analyzing the cantilever images and extracting the 

lateral fringe shift.  

 The fabrication process of the interferometric device is very similar to that of the 

waveguide cantilever, and the same curvature control strategies were used to obtain a 

favorable beam slope. The device was also embedded in a microfluidics channel and 

used for detecting multiple liquid homocysteine samples from the bacterial synthetic 

pathway simultaneously. Importantly, the interferometric readout method presented 

here is a new invention that has not been previously reported in literature.  

6.1.3 Comparison of Devices 

 The two types of microcantilever sensors developed in this dissertation are 

complementary to one another, and each of them has unique advantages. The 

waveguide cantilever allows for faster displacement measurements than the 

interferometric device and enables continuous data acquisition. This capability may 

be needed in applications where the transient displacement must be captured rather 

than the final value. The waveguide cantilever also requires less external 

instrumentation and can be adapted for portable operation.  Although a benchtop laser 

and photodetector were used to test the device here, these components can be 

miniaturized and integrated with the chip as discussed in Section 6.2. Portability is 
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not required for the screening of bacterial quorum sensing inhibitors, but it may be 

needed for some of the other applications envisioned in Section 6.2.3.  

 The interferometric readout is inherently a benchtop method. It is not eligible for 

portable use due to the requirement of a microscope. Also, the interferometric 

measurements are relatively slow due to the limited imaging speed. Therefore, this 

method is better suited to situations where a single cantilever displacement value is 

needed rather than the transient response. There are many such applications, 

including the screening of bacterial quorum sensing inhibitors. The main advantage of 

the interferometric approach is that it is capable of multiple measurements in parallel. 

Each cantilever is interrogated by simply imaging it, and there is no need to interface 

the chip with lasers or photodetectors. Since no waveguides are required, the 

cantilever density can be made much higher than in the case of the waveguide-based 

approach. In addition, the interferometric device is more accurate and sensitive. It has 

a minimal detectable displacement of 1 nm compared to 6 nm for the waveguide 

cantilever. Finally, the interferometric device has better long-term stability since it is 

immune to light intensity fluctuations.  

6.2 Future Work 

6.2.1 Microfluidic System 

 As explained in Chapter 1, the cantilever sensors presented in this dissertation are 

part of a larger project at the University of Maryland aimed at studying bacterial 

quorum sensing. Other members of the project team are focused on developing 

optimized microfluidic devices which perform the enzymatic conversion in a more 

controlled manner [46, 47]. In that work, the bacterial enzymes are immobilized on 
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chitosan-coated electrodes with well-defined area, and the dead volume in the channel 

is minimized. These optimized microfluidic reactors can be combined with the 

sensors developed in this dissertation in order to perform synthesis and analysis on 

the same chip. The cantilevers presented here were already embedded in microfluidic 

channels; therefore, it would only be necessary to change the geometry of the 

channels and add gold electrodes for chitosan electro-deposition. Furthermore, the 

microfluidic design can be readily enhanced to include on-chip valves and pumps 

[113, 114]. This would allow for a large degree of automation of liquid handling and 

would facilitate the high-throughput screening of quorum sensing inhibitors.  

6.2.2 Applications beyond Quorum Sensing 

Although the devices in this dissertation are developed for detecting the output of 

bacterial quorum sensing enzymes, they can be used for other purposes. It has already 

been shown that cantilevers in the static mode are excellent tools for many 

biochemical applications. For example, they can detect DNA hybridization [81, 82, 

92-94], binding of antigens to antibodies [30, 95-97], and binding of substrates to 

enzymes [98, 99]. The only modification required for these studies is to coat the 

cantilever with a particular selective layer of probe biomolecules. The displacements 

observed in these experiments (10s of nm) are well above the detection limit of the 

methods presented here (6 nm or 1 nm) and occur over relatively slow timescales (10s 

of min). The cantilever position is usually measured continuously, but the initial and 

final displacement values are sufficient to indicate a binding event. Therefore, both 

the waveguide and interferometric cantilevers can be used to perform a variety of 

biochemical detection experiments. 
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6.2.3 Integration of Optoelectronics 

The waveguide cantilever sensor developed in this dissertation is a passive device, 

i.e. it uses an external light sources and a photodetector. These components can be 

implemented at the chip level in order to eliminate the need for an external optical 

setup and test multiple sensors in parallel. A technology for bonding lasers or 

photodiodes to silicon substrates (known as hybrid integration) has been developed 

previously for optical communications applications [146, 147]. The same approach 

can be used here to couple light to and from the on-chip waveguides permanently 

without the need for XYZ stages. This would also decrease the power drift and 

improve the minimal detectable displacement.  

A possible hybrid integration scheme is shown in Figure 6.1. Here, the output is 

detected by a p-n photodiode formed directly on the Si substrate by doping. As the 

light reaches the end of the output waveguide, it diverges, and part of it is captured by 

the photodiode. Since light generation is incompatible with the Si material system, a 

laser diode chip can be purchased separately and bonded to the substrate near the 

input waveguide facet. Unpackaged laser chips are commercially available at a 

relatively low cost (~$0.30 each)6. Their typical size is approximately 300 µm × 300 

µm, and their thickness is 100 µm. The emitting aperture is approximately 1 µm high 

by 3 µm wide. Therefore, light can be efficiently coupled into the on-chip waveguide, 

whose cross sectional dimensions are much larger (2.2 µm by 20 µm). The laser die 

                                                 

6 One of the companies that sells unpackaged laser dies is Roithner Lasertechnik (www.roithner-

laser.com) 
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can be placed with a precision positioning arm and soldered as described by 

Hashimoto et al. [146].  
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Figure 6.1: Possible scheme for integration of optical source and detector with the waveguide 
cantilever sensor at the chip level.  

The optoelectronic components can also be added at the package level instead of 

the chip level. This concept is illustrated in Figure 6.2. Here, a reusable handheld 

package contains laser diodes and photodiodes; the waveguide cantilever chip is 

placed into the package and aligned to achieve sufficient optical coupling. A 

precision alignment mechanism will likely be required for this purpose. The coupling 

is particularly sensitive to misalignment at the input due to the small cross-section of 

the waveguides. Note that splitters can be built into the input waveguides, allowing a 

single laser to be shared between multiple cantilevers. After the chip is used for 

detection, it is discarded, and a fresh chip is inserted into the same package. This type 

of chips can have much lower cost than the proposed hybrid-integrated devices 

(Figure 6.1) since they are passive.  
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Figure 6.2: Possible scheme for providing optical sources and detectors for the waveguide 
cantilever sensor at the package level.  

6.2.4 Interferometric Cantilever Arrays 

The interferometric cantilever does not require any optoelectronic components at 

either the chip level or package level; therefore, it can be scaled to large arrays. When 

discussing the potential for sensor arrays, it is instructive to consider the fluorescent 

DNA microarray [148], which is the workhorse of modern molecular biology. This 

device is based on a simple, disposable chip with thousands of sites and an external 

scanner that sequentially images all the sites. One scan is sufficient to detect the 

binding events at each site. Hence, the scan time is not critical and the array can be 

made very large, leading to massively parallel experiments. The interferometric 

readout method developed here can be used to measure cantilever arrays in a similar 

manner. Although the fluorescent microarray is an extremely successful technology, 

it has one major flaw: the target molecules must be fluorescently labeled. This 

complicates sample preparation. Moreover, in the case of protein microarrays, the 

label can modify the properties of the target protein and reduce detection specificity 
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[66]. Cantilever arrays would overcome that problem since they do not require 

labeling.  

Figure 6.3 illustrates the potential transition from fluorescent arrays to 

interferometric cantilever arrays. Each site in (a) and each cantilever in (b) are 

functionalized with particular probe biomolecules. The sample detection in (a) is 

performed by measuring the fluorescent image intensity at each site. In (b), the 

sample detection would be performed by measuring the fringe shift for each 

cantilever. Clearly, the image analysis in (b) would be more challenging, but the 

sample in that case does not need to be fluorescently labeled. The added complexity 

in interferometric image analysis would likely be insignificant, considering the 

capabilities of modern digital image processing techniques.  

 

   

Figure 6.3: a) Fluorescent micrograph of a conventional protein microarray (source: 
www.arrayit.com). b) Hypothetical bright-field micrograph of a future interferometric cantilever 
array.  

 

 The maximum number of interferometric cantilevers scanned in this dissertation 

was 30 (Figure 5.7) and the total scan time (including image processing) was 20 min. 

Although this is a modest demonstration, there is considerable room for 

(a) (b)
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improvement. The image acquisition can be made much faster by using a microscope 

with a motorized stage and automatic focus adjustment. It can also be accelerated by 

placing the cantilevers close to each other on the chip so that multiple devices fit in 

the same image. Moreover, the need for taking initial images of each device would be 

eliminated if the cantilevers are made more similar to each other by improved 

fabrication process control. Finally, the image processing algorithm can also be 

automated further to reduce the amount of user input required. 

6.2.5 Sensitivity Enhancement 

 As discussed previously in Section 6.2.2, both the interferometric cantilever and 

the waveguide cantilever demonstrated here have sufficient sensitivity for a variety of 

biochemical detection applications. However, if necessary, their sensitivity can be 

improved even further through several modifications of the design and experimental 

setup.    

6.2.5.1 Waveguide Cantilever  

 Reducing the thickness of the waveguide cantilever can improve both its 

mechanical and optical sensitivity. This can be achieved though exploring other 

formulations of SU-8 with higher solvent content. The reduced thickness will likely 

require decreasing the gap between the cantilever and output waveguide. The reason 

for this is that the divergence in the gap will become more significant as the mode 

waist is reduced.  

 The minimal detectable cantilever displacement can be lowered by improving the 

stability of input light power. The hybrid integration of a laser diode proposed in 

Section 6.2.3 should significantly reduce the power drift. Another method for 
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stabilizing the power could be the use of a reference waveguide without a cantilever 

adjacent to the waveguide being tested. Part of the input power can be diverted to this 

reference waveguide through a coupler and collected at its output with a second 

photodetector. The output from the cantilever can be divided by the output from the 

reference to account for any fluctuations in input power.  

6.2.5.2 Interferometric Cantilever  

 The interferometric cantilever would also benefit from a reduction in thickness 

due the increase of its mechanical sensitivity. Although this would not affect the 

minimal detectable displacement appreciably, it would reduce the minimal detectable 

surface stress. Further gains can be accomplished by improving the instrumentation 

and image analysis procedures. More uniform microscope illumination and automatic 

focus adjustment would reduce the variability due to sample repositioning and 

refocusing. Higher optical magnification and higher resolution cameras would reduce 

the quantization error. Alternatively, more advanced image processing algorithms can 

be employed to detect sub-pixel fringe shifts [149]. The use of compensated 

microscope objectives would reduce aberration effects caused by packaging materials 

and improve the image quality.   

6.3 Conclusion 

This dissertation is the first demonstration of MEMS sensors used for the study of 

bacterial quorum sensing. The devices described here will serve as building blocks in 

future systems for high-throughput screening of drugs that inhibit quorum sensing. 

This could accelerate the discovery of new antimicrobials. In addition, the two 

displacement measurement methods developed here are significant contributions to 



 

 160

the field of cantilever sensors in general. They reduce the complexity of the 

measurement setups and enable parallel operation of multiple sensors. I hope that 

these improvements will be utilized for a variety of applications such as 

environmental monitoring, biohazard detection, and clinical diagnostics.  
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7. Appendix A: MATLAB Script for Fringe Shift Measurement 

Section 2.3.2 describes in detail the principle of operation of the interferometric 

cantilever. Briefly, the displacement of the beam is found by multiplying the lateral 

shift of an interference fringe by the cantilever slope and a scaling factor (Equation 

2.23). The algorithm for extracting the fringe shift from microscope images of the 

cantilever is described conceptually in Section 2.3.3. The MATLAB source code used 

to implement this algorithm is included below.   

 
%-------------------------------------------------------------------------- 
% Filename: Fringe_shift.m 
% Author: Stephan Koev 
% Date of last revision: 12/1/2008 
% Description:  
% This program inputs two images of a cantilever interferometer. One image 
% is "before" a biological or chemical sample is introduced. The other 
% image is "after" the sample is introduced. First, the program aligns the 
% two images using features away from the interference pattern. Next, the 
% program finds the distance of an interference fringe in the "after" image 
% from the corresponding fringe in the "before" image. This fringe shift can 
% be used to calculate the cantilever displacement due to the sample. The 
% current image alignment algorithm can handle translation but not 
% rotation. In other words, the cantilever may be vertically or 
% horizontally moved relative to the camera between taking "before" and 
% "after" images; however, it must not be rotated.  
%-------------------------------------------------------------------------- 
    
close all  
clear all  
before = imread('before.jpg'); % read in initial image of cantilever 
after = imread('after.jpg'); % read in image of displaced cantilever 
 
% By cropping the images interactively, select features away  from the 
% inteference pattern to be used for alignment.  
[large_im, rect_large] = imcrop(before); % crop "before" interactively 
[small_im, rect_small] = imcrop(after); % crop "after" interactively 
% Note: during cropping, make sure that cropped "before" image is larger 
% than cropped "after" image. This is required by the cross-correlation 
% function later.  
close all 
% calculate cross-correlation of sub-images used for alignment 
c = normxcorr2(small_im(:,:,1), large_im(:,:,1));   
% find maximum of cross-correlation. This corresponds to optimal alignment. 
[max_c, imax] = max(abs(c(:)));  
% find the coordinates of the cross-correlation maximum.  
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[ypeak, xpeak] = ind2sub(size(c),imax(1));  
% find the horizontal and vertical misalignment between the sub-images 
corr_offset = [(xpeak-size(small_im,2))  
            (ypeak-size(small_im,1))];          
% find the misalignment between the uncropped "before" and "after" images, 
% taking into account the cropping coordinates. This is the misalignment 
% caused by movement of the cantilever relative to the camera.  
rect_offset = [(rect_large(1)-rect_small(1))  
               (rect_large(2)-rect_small(2))]; 
fov_offset = - corr_offset - rect_offset; 
% print to screen the horizontal misalignment, vertical misalignment, and 
% peak cross-correlation   
fov_offset_x = fov_offset(1);       
fov_offset_y = fov_offset(2);       
max_c1 = max_c;        
% By cropping the "before" and "after" images interactively, select an 
% interference fringe whose shift needs to be found 
% Note: during cropping, make sure that cropped "before" image is larger 
% than cropped "after" image. This is required by the cross-correlation 
% function later.  
[large_im, rect_large] = imcrop(before); % select fringe on "before" image 
imshow(large_im)  % display fringe sub-image 
figure, imshow(after) 
[small_im, rect_small] = imcrop(after); % select fringe on "after" image 
imshow(small_im) % display fringe sub-image 
clear before after % discard uncropped images 
% calculate cross-correlation of fringe sub-images  
c = normxcorr2(small_im(:,:,1), large_im(:,:,1)); 
% find maximum of cross-correlation. This corresponds to optimal alignment.   
[max_c, imax] = max(abs(c(:)));  
% find the coordinates of the cross-correlation maximum 
[ypeak, xpeak] = ind2sub(size(c),imax(1));  
figure, surf(c), shading flat % plot the cross-correlation  
% find the horizontal and vertical misalignment between the fringe sub-images 
corr_offset = [(xpeak-size(small_im,2)) 
            (ypeak-size(small_im,1))];  
% find the misalignemnt due to cropping  
rect_offset = [(rect_large(1)-rect_small(1))  
               (rect_large(2)-rect_small(2))];        
% find the shift of the fringe, taking into account the misalignment due to 
% cropping and the movement of the cantilever relative to the camera.  
fringe_offset = -corr_offset - rect_offset + (-1*fov_offset); 
% print to screen the horizontal fringe shift, the vertical fringe shift, 
% and the peak cross-correlation  
 
[xoffset yoffset fov_offset_x fov_offset_y max_c max_c1]' 
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