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Taiwan is a geologically complex region due to the continuous collision of the Eurasian 

Plate and the Philippine Sea Plate. This study aimed to quantify the interseismic crustal 

deformation of Taiwan and detail the island’s seismic hazard potential using space geodesy. Data 

were collected between 2016 and 2021 through C-band Copernicus Sentinel-1 synthetic aperture 

radar imagery and continuous GNSS data from Academia Sinica, Taiwan. I excluded major 

earthquake events within this time period and generated a dataset conssisting of interferometric 

synthetic aperture radar ground motion velocities with GNSS corrections and interpolated GNSS 

ground motion velocities. Then, utilizing this dataset, I performed a deformation rate analysis 

and error analysis. Next, I explored block modeling and used a total variation regularization 

approach to determine the reference block model that best reduced velocity residuals and 

minimized the number of independently rotating blocks. Results suggested that the Taipei Basin, 

Ilan Basin, Western Foothills, and Longitudinal Valley were experiencing increased total strain 

rate accumulation and, therefore, posed increased seismic hazard. 
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Chapter 1: Introduction 

 

1.1 Components of the Earthquake Cycle 

There are three components to the earthquake cycle: interseismic period, 

coseismic period, and postseismic period. During the interseismic period, strain varies 

over time and space. Spanning from years to centuries, strain accumulates on portions 

of the fault that are locked. This strain will continue to accumulate until a critical value 

is reached and the frictional strength along the fault plane fails.  The seconds to minutes 

when there is movement along the fault plane is known as the coseismic period. The 

rupture zones containing the motion located within the Earth’s crust and/or mantle 

generate seismic waves in all directions. This rupture event enables the stress along the 

fault plane to readjust to a stable distribution. Following an earthquake event, there is 

postseismic activity where additional deformation resulting from relaxation can occur 

(Figure 1) (Kanamori, 1994). For example, the Mw 6.4 Hualien earthquake located in 

northeast Taiwan, which will be of interest to this study, ruptured on February 6th, 2018. 

A maximum slip of 1.6 m occurred during the coseismic period. Within approximately 

seven months of the mainshock, an additional 0.4 m – 0.6 m of postseismic afterslip 

occurred as the fault relaxed (Zhao et al., 2020). 

 

 

 

 



 

 

2 

 

Figure 1. Plot displaying generalized strain accumulation on a fault as a function of 

time. 

 

1.2 Geologic Overview of Taiwan 

Taiwan is geologically complicated as it is located at the intersection of two 

collision regimes (Figure 2). (i) There is the subduction of the Eurasian Plate beneath 

the Philippine Sea Plate due to part of the South China Sea lithosphere being attached 

to the Eurasian Plate, and (ii) there is the northward subduction of the Philippine Sea 

Plate beneath the Eurasian Plate. It is the latter subduction event (~5 Ma) that initiated 

the Taiwan Orogeny as the Luzon Arc, associated with the Philippine Sea Plate, 

introduced oblique collision with the Chinese Collision Margin, an accretionary prism, 

associated with the Eurasian Plate (Huang et al., 2017; Hsu et al., 2016). 

As the collision progresses, the subduction of the Eurasian Plate beneath the 

Philippine Sea Plate is captured between the Manila Trench and Luzon Arc, and the 

subduction of the Philippine Sea Plate beneath the Eurasian Plate is captured by the 
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Ryukyu Trench and Ryukyu Arc (Figure 2). As a result, in respect to the Penghu Islands 

off the west coast of Taiwan, the overall pattern of motion in Taiwan is fan-shaped with 

decreasing velocity from east to west.  

 

 

Figure 2. Schematic block-diagram illustrating the collisional kinematics of Taiwan. 

The asterisk represents the Longitudinal Valley Fault that acts as a boundary between 

the Eurasian Plate and the Philippine Sea Plate (from Angelier et al., 2000, after 

Angelier et al., 1986). 

 

As a result of the complex tectonic environment and fast plate convergence rate, 

Taiwan experiences increased seismic activity. The Gutenberg-Richter Relationship 

for all of Taiwan, which describes the relationship between time interval occurrence 

and earthquake magnitude, has a slope (i.e., b-value) lower than the global average of 
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1.0 (Wang et al., 2015). Subsequently, higher magnitude earthquakes are more 

common (Figure 3) in Taiwan compared to locations with an average b-value. 

 

Figure 3. U.S. Geologic Survey Earthquake Catalog detailing earthquakes Mw 4.5+ 

from July 1st, 2020 to 2021 in the east coast of the United States and Taiwan. Red lines 

indicate plate boundaries (USGS, 2021). 

 

Furthermore, the collisional tectonics of Taiwan have given rise to different 

geologic provinces: the Coastal Plain, the Western Foothills, the Hsuehshan Range, the 

Central Range, the Longitudinal Valley, and the Coastal Range (Ho, 1986) (Figure 4). 

The Coastal Plain is composed of alluvial deposits, and the Western Foothills and 

Hsuehshan Range are composed of marine sediments. The Central Range is composed 

of Tertiary metamorphism that increases in grade from west to east due to the collision 

orientation of the Luzon Arc, and the Coastal Range is composed of andesitic volcanic 

rock from the Luzon Arc. Stitching the Eurasian Plate and Philippine Sea Plate 

together, the Longitudinal Valley consists of Quaternary clastic fluvial sediments (Hsu 
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et al., 2009). An additional area of interest includes the Pingtung Plain in southwest 

Taiwan which is made of weak muds from the South China Sea rift (Hu et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Tectonic and Geologic Layout of Taiwan. The red lines indicate locations 

of subduction, and the dashed red lines indicate potential locations of subduction. The 

white lines indicate geologic province boundaries: CP – Coastal Plain, WF – Western 

Foothills, HR – Hsuehshan Range, CR – Central Range, LV – Longitudinal Valley, 

CoR – Coastal Range. Additional regions of interest include: PP – Pingtung Plain, TB 

– Taipei Basin, IB – Ilan Basin. 
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1.3 Purpose of Study 

Various geodetic techniques have been used to study the evolving crustal 

deformation of Taiwan. Using Global Navigation Satellite Systems (GNSS) 

measurements, Yu et al. (1997) and Lin et al. (2010) observe more than 80 mm/yr of 

collision between east Taiwan and the Penghu Islands ~30 km west of Taiwan. The 

GNSS data shows a clockwise rotation in northeast Taiwan that indicates post-rift 

opening of the Okinawa Trough as well as lateral extrusion (i.e., tectonic escape) in 

southwest Taiwan (Lacombe et al., 2001). However, the GNSS measurements from 

those studies only reveals first order surface deformation as they cannot provide high 

spatial sampling. In particular, they are unable to show creeping/locked fault traces that 

are on a smaller spatial scale, and it is difficult to determine interseismic fault locking 

depth without high spatial resolution crustal deformation data (Elliott et al., 2016). 

Alternatively, interferometric synthetic aperture radar (InSAR) provides high spatial 

resolution measurements of surface deformation (e.g., fault creeping/locking in west 

Taiwan) at a lower accuracy with cm-scale precision (Bürgmann et al., 2000; Elliott et 

al., 2016). Recent work (e.g., Huang and Evans, 2019; Tong et al., 2013; Weiss et al., 

2020) attempts to combine both GNSS and InSAR to achieve a high spatial resolution 

with relatively high accuracy. This method is done by utilizing GNSS for the long-

wavelength spatial deformation and InSAR for short-wavelength features.  

Huang and Evans (2019) estimate crustal deformation in southwest Taiwan 

using six years of InSAR and GNSS data. They characterize fault slip and locking depth 
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for the major fault system in southwest Taiwan. Weiss et al. (2020) uses this technique 

to estimate surface strain rate for the North Anatolian Fault, Turkey. 

In this study, I employ GNSS and InSAR to characterize interseismic crustal 

deformation from 2016 to 2021 and to utilize block modeling to quantify slip budget 

along faults to forecast seismic hazard potential in Taiwan. 

1.4 Hypotheses & Significance of Study 

Along an active plate boundary, continuous plate convergence will cause 

energy stored in locked faults to eventually rupture and initiate seismic events. The 

quantification of interseismic fault slip budget can help evaluate seismic risks. For 

example, geodetic techniques can be used to estimate crustal strain accumulation in the 

deforming brittle crust to evaluate seismic potential along faults. Evaluating the trends 

and behaviors of interseismic slip budget will enable proper seismic hazard forecasts 

models to be developed. 
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Chapter 2: Data and Methods 
 

 

2.1 Synthetic Aperture Radar and GNSS Data Collection 

Data were obtained from the European Space Agency’s (ESA) Sentinel-1 

mission for the Copernicus initiative. This mission collects synthetic aperture radar 

(SAR) acquisitions with a wavelength of 56.7 mm (C-band) in the form of single-look 

complex (SLC) data (i.e., no image compression). The SLC products containing the 

SAR images were downloaded from the Alaska Satellite Facility (ASF), University of 

Alaska database through the National Aeronautics and Space Administration (NASA) 

Earth Data service. In this study, I used Sentinel-1 SAR acquisitions from ascending 

track 69 and descending track 105 from November 2016 to July 2021. 

The precise orbital data, which details the trajectories of the Sentinel-1 

satellites' flight paths, were downloaded from ESA Science Hub. The digital elevation 

models (DEM) were downloaded from the NASA Jet Propulsion Lab’s (JPL) Shuttle 

Radar Topography Mission (SRTM) with 30 m resolution and 3-arc second (Farr et 

al., 2007). The SRTM data are currently stored in the United States Geologic Survey 

(USGS) Measures project. The DEM data were used to remove elevation contributions 

to phase in the InSAR images. Combining the orbital and DEM data enabled 

geocoding. That is, the differing Sentinel-1 satellites’ flight paths were aligned to the 

DEM that utilized coordinates from spatial reference system World Geodetic System 

1984 (WGS 84). The weather model used in the troposphere noise correction was 
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downloaded from European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA5 weather model products. 

The continuous GNSS time-series data were processed and maintained by the 

Central Geologic Survey (CGS), the Central Weather Bureau, the Ministry of Interior, 

Taiwan, the Global Positioning System (GPS) Laboratory at the Institute of Earth 

Science, and Academia Sinica, Taiwan. These data were downloaded from Academia 

Sinica, Taiwan. 

2.2 Geodetic Technique: Interferometric Synthetic Aperture Radar 

Radar is a detection instrument used to map an objects distance or speed. SAR, 

which utilizes radar technology, collects the backscatter of electromagnetic waves to 

produce high resolution radar images. To perform a single acquisition, a radar 

positioned on the side of an object in orbit emits a sequence of radar pulses in the 

microwave-range at a specific look angle, the pulses are backscattered by the ground 

surface, and the amplitude and phase of the backscatter is recorded (Bürgmann et al., 

2000) (Figure 5). Acquiring a stretch or scan of backscattered energy acts as a synthetic 

antenna of considerable size, which enables the image to be of greater resolution. 

Acquisitions can be gathered in either the ascending direction (south to north) or the 

descending direction (north to south) (Figure 6). This is known as the heading direction. 

Multiple acquisitions of the surface are acquired by repeated flybys over a period of 

time. If the ground experiences movement during this time, the backscattered signals 

comprised of phase and amplitude values can be used to quantify the surface 

displacement. The Wave Equation can be represented as (Equation 1): 
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𝑌(𝑥, 𝑡) = 𝐴sin(𝑘𝑥 − 𝜔𝑡 +  𝜙)                [1] 

 

where Y is vertical velocity of the wave, A is amplitude, k is wave number, x is 

horizontal position, 𝜔 is angular frequency, t is time, and  is phase. 

 

 

Figure 5. Phase and amplitude of Environmental Satellite (ENVISAT) SAR 

acquisition dated 01-04-2007 (month-day-year) for southwest Taiwan. This acquisition 

is SLC where pixel resolution is 5 m east-west and 20 m north-south. As a result of the 

pixel resolution, there is distortion.   



 

 

11 

 

 

 

Figure 6. Ascending and descending flight paths detailing look angle and heading 

direction. 

 

InSAR uses SAR images to produce interferograms that reveal ground elevation 

information. The amplitude data from the SAR images are used to align the series of 

images taken over a period. The phases of these images are used to determine ground 

movement. By subtracting 2 - 1 for each pixel, the ground displacement moving 

towards or away from the satellite in the line-of-sight (LOS) direction can be calculated 

(Figure 7) (Bürgmann et al., 2000). If the whole area moves by the same amount, there 

will be no phase shift; therefore, InSAR only measures relative deformation. 
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Figure 7. Concept of phase difference produced from ground motion captured by SAR 

acquisitions (based on Funning, 2021). 

 

2.2.1 Limitations 

The reliability of InSAR is limited by atmospheric structure (i.e., troposphere 

and ionosphere) and decorrelation between an image pair. Water vapor in the 

troposphere can refract radar waves which distorts the returned phase and subsequently 

skews the suggested amount of deformation. Longer wavelengths have a lower 

refraction index and are less susceptible to weather (Massonnet and Feigl, 1998). Due 

to the ionization properties of the ionosphere, this layer of the atmosphere is also able 

to distort radio waves (Massonnet et al., 1993).  Decorrelation refers to the change in 

ground surface features (i.e., snow, vegetation, flooding) between image acquisitions. 
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This ground surface feature change is not related to movement but can cause a phase 

change or signal loss (Bürgmann et al., 2000). Additionally, InSAR only measures 

ground deformation in LOS, and it is not sensitive to north-south motions. 

2.3 Data Analysis Process for InSAR 

2.3.1 GNSS Time-Series Adjustment and Mean Velocity Estimation 

 The GNSS time-series were manually adjusted using a constant offset to 

remove transient events (i.e., GNSS station malfunctions) at each GNSS station that 

were not associated with a known earthquake (Figure 8). 
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Figure 8. Example of GNSS time-series manual adjustment showing the original 

time-series of GNSS station C001 in Taiwan and the adjusted time-series of GNSS 

station C001. The adjustment is located at 2018.4 in the east-west motion time-series.  

 

I then used the following mathematical model to model the adjusted GNSS 

time-series for the east, west, and vertical component of each station (Equation 2). The 

model was solved as an inverse problem (see Section 2.3.4). 
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𝐺𝑁𝑆𝑆(𝐸, 𝑁, 𝑍, 𝑡𝑖) = 𝑚1(𝐸, 𝑁, 𝑍) + 𝑚2(𝐸, 𝑁, 𝑍)𝑡𝑖 + 𝑚3(𝐸, 𝑁, 𝑍) sin(2𝜋𝑡𝑖) +

𝑚4(𝐸, 𝑁, 𝑍) cos(2𝜋𝑡𝑖) + 𝑚5(𝐸,𝑁, 𝑍) sin(4𝜋𝑡𝑖) + 𝑚6(𝐸, 𝑁, 𝑍) cos(4𝜋𝑡𝑖)          [2] 

 

where m1 is a constant representing an adjustment in distance for the time-series, m2 is 

the linear trend of the station throughout time, m3 and m4 are the annual seasonality of 

the station throughout time, and m5 and m6 are the semi-annual seasonality of the station 

throughout time. 

2.3.2 InSAR Scientific Computing Environment Stack Processor Module 

The InSAR products were processed and produced using InSAR Scientific 

Computing Environment (ISCE) software developed at NASA JPL Caltech (Rosen et 

al., 2012). Stack Processor is a module of the ISCE software package that enables SAR 

images to be combined to generate InSAR images (Figure 9) (Fattahi et al., 2017; 

Rosen et al., 2012) while automatically applying phase unwrapping using Snaphu 

(Chen and Zebker, 2002).  

First, I used the Stack Processor module to define various details of interest: 

SAR acquisitions, orbital data, DEM data, bounding box, auxiliary data (i.e., Sentinel-

1 instrument parameters), the number of adjacent SAR images to be processed (network 

of 3), and the start and end dates. Then, the SAR reference and target image pairs were 

coregistered pixel-to-pixel by amplitude to align the pixel locations in each image and 

determine the phase difference. Next, the images were downsampled as they were taken 

from SLC to a multi-look complex (MLC) (i.e., coarser pixel resolution) by 

compression, a phase filter was applied to enhance the phase signal, and phase 
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associated with the Earth’s curvature was taken into consideration as a simulated phase 

signal known as “Earth flatten” was applied to remove additional fringes.  

After the module processed the SAR images, it unwrapped the resulting 

interferograms. Phase unwrapping unbound the phase values between -π and π to 

determine the true surface deformation values. 

 

 

Figure 9. By differencing the phase values from different SAR acquisitions, a wrapped 

interferogram is produced that details ground motion using “fringes.” Each fringe 

represents a phase change of 2π which is equivalent to 3 cm (C-band). Note: The SAR 

acquisitions are dated 01-04-2007 (month-date-year) and 03-13-2007 and were 

collected by ENVISAT. 

 

The phase values from t1 and t2 were in the form of SLC where pixel resolution 

was 5 m east-west and 20 m north-south as resolution is a function antenna size and 
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wavelength. When the phase values were differenced, they produced an image of 

ground motion in Taiwan. The interferogram must then be geocoded to properly 

organize the pixels that were previously aligned in capture order (i.e., descending 

captures easterly pixels first). At this point, the data were not yet fully geocoded and 

remained in radar coordinates. Furthermore, the Stack Processor module processed the 

ascending track data and the descending track data separately.  

2.3.3 Miami InSAR Time-Series Software in Python (MintPy) 

I used MintPy (Yunjun et al., 2019) to generate InSAR time-series. MintPy 

applied tropospheric and ionospheric noise corrections, generated time-series, and 

determined LOS InSAR mean velocities for both the ascending and descending tracks. 

This software used a small baseline subsets approach to find the best-fitting time-series 

for the given interferograms while minimizing the implied velocities (Bernardino et 

al., 2002). 

To generate a displacement time-series and mean velocities from the phase-

unwrapped interferograms for both the ascending and descending LOS InSAR data, the 

following steps were taken: (i) The network of interferograms was modified to exclude 

interferograms with average spatial coherences (i.e., pixel's phase similarity to 

surrounding pixels) less than predefined threshold value of 0.3. This was called a 

coherence-based modification and was optional. (ii) A reference pixel among the pixels 

with the highest average spatial coherences was randomly selected. This reference pixel 

was assumed to have minimal deformation and impact from phase delays. If specified, 

a reference region could also be defined. (iii) The stack of interferograms was examined 

and underwent a correction for unwrapping errors by enabling bridging (uses spatial 
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resolution of phase to detect and correct unwrapping error) and phase closure (uses 

pixel phase relationship of same pixel over time used to adjust phase cycle), and a water 

mask was applied to remove decorrelated bodies of water. This step was optional. (iv) 

The time-series was solved for by minimizing the interferometric phase residual 

between each pixel throughout time. During this step, a temporal coherence (i.e., 

stability of pixel throughout time) mask and a spatial coherence mask can be applied 

to remove pixels below the predefined threshold value. After masking, each pixel may 

have a different number of interferograms. To address this potential problem, a 

minimum number of interferograms required for inclusion in the final product was set. 

(v) A tropospheric delay correction was applied using Global Atmospheric Models 

(GAMs) data. I did not de-ramp the phase data as the deformation was of larger scale 

and the appearance of a ramp would likely be a true phase signal. (vi) A topographic 

phase residual correction caused by DEM error was applied. (vii) The remaining phase 

component that could neither be corrected nor determined as ground deformation was 

removed as noise. (viii) The linear slope that best fit the displacement time-series for 

each pixel was determined. (ix) For a post-processing step, the data were geocoded 

from radar coordinates. As a result, the displacement time-series of each pixel was 

determined, and the mean velocity of each pixel throughout time was estimated. 

MintPy was processed separately for the ascending track data and the descending track 

data. Furthermore, to avoid phase unwrapping errors due to steep mountain ranges and 

dense vegetation between west and east Taiwan that lacked stable persistent scatterers, 

MintPy processing was completed separately for both west and east Taiwan. This 

enabled west and east Taiwan to be examined relative to one another. The reference 
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point was set to both respective sides when processing MintPy to best capture pixel 

data. 

2.3.4 Time-Series Re-Model & Mean Velocity with GNSS Correction 

For a more in-depth data analysis, a module developed by Huang and Evans 

(2019) was used to (i) re-model the time-series for the ascending and descending LOS 

InSAR velocities using a polynomial and (ii) re-estimate the ascending and descending 

LOS InSAR mean velocities to include a GNSS correction. 

To exclude low-quality pixels from the ascending track and descending track 

LOS InSAR data, the temporal and spatial coherence thresholds of the mean ascending 

and descending LOS InSAR velocities were determined through a trial-and-error 

method of pixel visibility. Temporal coherence refers to the stability of a pixel 

throughout time – how similar the pixel phase is between acquisitions. The more stable 

a pixel, the higher the temporal coherence. Deformation reduces the temporal 

coherence within reason. Spatial coherence refers to the consistency of a pixel’s phase 

to surrounding pixels. Sharp phase changes between neighboring pixels may indicate 

an error. I used a temporal coherence threshold of 0.3 for west and east Taiwan, and a 

spatial coherence threshold of 0.4 for west Taiwan and east Taiwan. The average of the 

temporal and spatial coherence values above the defined thresholds was determined to 

be the final coherence value. This final value must be above the final predefined mask 

value of 0.35. Applying this mask excluded all pixels with values lower than the final 

coherence value. 

After the ascending and descending LOS InSAR velocities were masked, (i) the 

elevation of each pixel for each interferogram was defined using the DEM, (ii) the look 
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angles and heading directions for each interferogram were defined, (iii) the reference 

image was set to the first acquisition date for both the ascending and descending track 

interferograms, and (iv) the latitude and longitude data for the bounding box were 

linked to the module to geolocate each pixel in each interferogram. 

The west Taiwan ascending and descending LOS InSAR velocities were 

assigned a local reference region in the west, and the east Taiwan ascending and 

descending LOS InSAR velocities were assigned a local reference region in the east. 

The designated reference regions were at an area without known faults and minimal 

seasonal surface movement due to hydrologic cycles and human induced land 

subsidence. Subsequently, the reference regions were considered as stable regions with 

zero movement. Once the reference region was defined, the mean velocity of each pixel 

location throughout time was determined. 

To fit the time-series of each pixel for ascending and descending LOS InSAR 

velocities for both west and east Taiwan, I generated a mathematical model with a 

linear velocity term, annual periodic terms, and semi-annual periodic terms (Equation 

3). The terms utilized match the general pattern of interseismic deformation 

anticipated in Taiwan. For example, the linear velocity term accounted for the overall 

mean velocity of the pixel, the annual periodic terms took into consideration the wet 

and dry seasons’ influence on motion, and the semi-annual periodic terms considered 

sub-tropical precipitation events (e.g., monsoon vs. typhoon events). These terms for 

a pixel at location (x,y) were represented as: 
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𝐿𝑂𝑆(𝑥, 𝑦, 𝑡𝑖) = 𝑚1(𝑥, 𝑦) + 𝑚2(𝑥, 𝑦)𝑡𝑖 + 𝑚3(𝑥, 𝑦)sin(2𝜋𝑡𝑖) + 𝑚4(𝑥, 𝑦) cos(2𝜋𝑡𝑖) + 𝑚5(𝑥, 𝑦) sin(4𝜋𝑡𝑖) +

𝑚6(𝑥, 𝑦) cos(4𝜋𝑡𝑖) + 𝑚7(𝑥, 𝑦)𝐻(𝑡EQ) + 𝑚8(𝑥, 𝑦) 𝐻(𝑡EQ) ln [1+ (
𝑡𝑖−𝑡EQ

𝜏
)]                                 [3] 

 

where m1 is a constant representing a constant adjustment for the time-series, m2 is the 

linear trend of the pixel throughout time, m3 and m4 are the annual seasonality of the 

pixel throughout time, m5 and m6 are the semiannual seasonality of the pixel throughout 

time, m7 is the Hualien earthquake (i.e., a notable earthquake within the timeframe of 

interest) displacement coefficient, H(tEQ) is the step function to remove the 2018 

Hualien Earthquake coseismic event, m8 represents the postseismic period with a 

relaxation time of  = 121 days (See Section 2.5.1 for more details). 

 

Now, I assume G matrix represents the mathematical model described in 

Equation 3, 

 

𝑑 = 𝑮𝑚⃗⃗⃗     [4] 

 

where 𝑑 is the data vector (LOS (x, y, t)), G is the mathematical model that relates the 

model parameters to the data (right hand side of Equation 3), and 𝑚⃗⃗⃗ is the model vector 

(m1, m2, m3, m4, m5, m6, m7, m8). This mathematical model enables the fitting of a time-

series at each pixel location throughout time for both the ascending and descending 

track data for both west and east Taiwan. 
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I used a least squares inversion to solve for the mathematical model and 

estimate the coefficient of each term. This solving approach minimizes the sum of 

squares of the residuals (Equation 5). 

 

𝑚⃗⃗⃗ = (𝑮𝑻𝑮)−𝟏𝑮𝑻𝑑      [5] 

 

where 𝑚⃗⃗⃗ is the model vector, G is the mathematical model, GT is the transpose of the 

mathematical model, and 𝑑 is the data vector. 

 

Then, using the pre-processed time-series of each GNSS station, I applied a 

GNSS-correction to the mean velocities of each pixel derived from the calculated time-

series. This correction applied the accuracy of GNSS to the high spatial resolution of 

InSAR. The GNSS-correction only considered the same time period as the InSAR data 

and was comparable to the LOS InSAR data as the displacements were projected onto 

the satellite look angle and heading direction.  

To apply the GNSS correction to the ascending and descending LOS InSAR 

velocities, a ramp model that best fit the InSAR and GNSS data velocity differences 

was constructed. The coefficients of the ramp model were solved for by inversion 

(Equation 5) with the velocity residuals as data. Removing the ramp from the 

uncorrected ascending and descending LOS InSAR velocities produced the GNSS-

corrected ascending and descending LOS InSAR velocities. Additionally, the 

ascending and descending ramps for west and east Taiwan could be applied to the time-

series for GNSS correction inclusion. 
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2.3.5 Merge Ascending and Descending from East and West Taiwan 

To begin merging the ascending and descending LOS InSAR velocities from 

west and east Taiwan, the low coherence (or low quality) pixels (e.g., pixels capturing 

water) from each dataset were masked out and set to 0. High coherence pixels were set 

to 1, and pixels that were high coherence in both datasets were set to 2. During the 

GNSS correction, west and east Taiwan were assigned the same reference location; 

therefore, here, they were merged without searching for a common reference region. 

For accuracy purposes, if there were overlapping real valued pixels from both datasets, 

the pixels from the east Taiwan dataset were kept while the pixels from the west Taiwan 

dataset were set to 0. This merged masking process was done for both the ascending 

and descending LOS InSAR velocities. Once the masks were created, the values of the 

real-valued pixels were utilized and datasets with ascending LOS InSAR velocities and 

descending LOS InSAR velocities for all of Taiwan were created. 

2.3.6 Convert GNSS-Corrected LOS InSAR & GNSS Velocities 

GNSS-corrected LOS InSAR velocities and GNSS velocities were utilized to 

estimate 3-D deformation: east-west, north-south, and vertical motion. First, the GNSS 

velocities were interpolated to InSAR pixels using 2-D cubic interpolation in Matlab. 

The mesh size matched the pixel location and size of that from InSAR geocoded to the 

DEM. The inclusion of these velocities enabled a more accurate 3-D velocity field of 

Taiwan to be constructed as, for example, InSAR has poor sensitivity to north-south 

velocities and GNSS velocities are less sensitive to atmospheric phase delays. 

The GNSS-corrected LOS InSAR velocities and interpolated GNSS velocities 

were converted to 3-D deformation by relating the heading direction and look angle of 
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the satellites to the velocity data through an inverse problem in the form of Equation 4. 

The final velocity product was as follows (Equation 6): 

 

[
 
 
 
 

𝐿𝑂𝑆𝐴

𝐿𝑂𝑆𝐷

𝐺𝑁𝑆𝑆𝐸

𝐺𝑁𝑆𝑆𝑁

𝐺𝑁𝑆𝑆𝑍 ]
 
 
 
 

=  

[
 
 
 
 
cos𝜙𝐴sin𝜃𝐴 sin𝜙𝐴sin𝜃𝐴 −cos𝜃𝐴

cos𝜙𝐷sin𝜃𝐷 sin𝜙𝐷sin𝜃𝐷 −cos𝜃𝐷

1 0 0
0 1 0
0 0 1 ]

 
 
 
 

[
𝑈𝐸

𝑈𝑁

𝑈𝑍

  ]              [6] 

 

where data vector 𝑑 contains: LOSA,D the LOS velocity for the ascending and 

descending tracks and GNSSE,N,Z  the interpolated GNSS velocities in east, north, and 

vertical, respectively. Matrix G contains: A and D the satellite heading direction for 

the ascending and descending tracks and A and D the satellite look angle of the 

ascending and descending tracks, respectively. This matrix relates the InSAR and 

GNSS velocities to their 3-D components. Model vector 𝑚⃗⃗⃗ contains the 3-D velocity 

outputs UE,N,Z. 

The linear inverse problem was solved for using a least squares inversion to 

minimize the sum of squares of residuals and to determine the best fit model (Equation 

5). Additionally, in order to weigh each component of the output 3-D velocity dataset 

based on misfit, I incorporated a weighting matrix W into the least squares inversion 

(Equation 7). 

 

𝑚⃗⃗⃗ = (𝑮𝑻𝑾𝑮)−𝟏𝑮𝑻𝑾𝑻𝑑      [7] 
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where matrix W (Equation 8) is used to weigh the data and is solved for during Section 

2.5.1. 

 

𝑾 = 

[
 
 
 
 
 
𝜀𝐴

−2 0 0 0 0

0 𝜀𝐷
−2 0 0 0

0 0 𝜀𝐺𝑁𝑆𝑆𝐸

−2 0 0

0 0 0 𝜀𝐺𝑁𝑆𝑆𝑁
−2 0

0 0 0 0 𝜀𝐺𝑁𝑆𝑆𝑍
−2]

 
 
 
 
 

   [8] 

 

where matrix W is the weighting matrix and   for ascending, descending, and GNSS 

represents the misfit values produced from the inversion of Equation 3. 

 

Using the resulting 3-D velocity outputs, the Final InSAR and GNSS (FIG) 

dataset was created. This dataset includes: the weighted mean GNSS-corrected InSAR 

/ interpolated GNSS velocity values with the associated uncertainties and the GNSS 

velocity values with the associated uncertainties. The GNSS velocity values were 

appended to the dataset for additional data point inclusion. Uncertainties are solved 

during Section 2.5.2. Additionally, a Reduced FIG dataset was created, which 

contained the values within the FIG dataset downsampled to every 10 pixels in both 

the x- and y-direction. The FIG and Reduced FIG datasets contain pixels that are 50 m 

x 50 m and 500 m x 500 m, respectively. 

2.3.7 Mean Velocity Gradient 

To better visualize locations of increased strain accumulation with source 

unspecified resulting in a sharp change in velocity, I calculated the east-west, north-
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south, and vertical mean velocity gradients of the FIG dataset in a raster image in the 

WGS 84 system. Additionally, prior to mean velocity gradient calculation, the velocity 

data were smoothed to distinguish noise signal from tectonic signal (see Section 2.5.3). 

 

𝜁𝐸,𝑁,𝑈(𝑥, 𝑦) = √[
𝜕

𝜕𝑥
𝑽𝐸,𝑁,𝑈(𝑥, 𝑦)]

2
+ [

𝜕

𝜕𝑦
𝑽𝐸,𝑁,𝑈(𝑥, 𝑦)]

2
              [9] 

 

Where 𝜁𝐸,𝑁,𝑈(𝑥, 𝑦) is east-west, north-south, or vertical mean velocity gradient, 

𝜕

𝜕𝑥
𝑽𝐸,𝑁,𝑈(𝑥, 𝑦) is the velocity difference (mm/yr) between neighboring pixels in the x-

direction for east-west velocity, north-south velocity, and vertical velocity, and 

𝜕

𝜕𝑦
𝑽𝐸,𝑁,𝑈(𝑥, 𝑦) is the velocity difference (mm/yr) between neighboring pixels in the y-

direction for east-west velocity, north-south velocity, and vertical velocity. Each pixel 

is 50 m x 50m, which is equivalent to 5000 cm x 5000 cm.  

2.4 Deformation Rate Analysis 

2.4.1 Dilatation, Maximum Shear, and 2nd Invariant 

The deformation tensor defines position change within a body due to external 

forces (Figure 10). Using the Reduced FIG dataset, I determined the deformation rate 

tensor every 1 km where the InSAR samples were located every 500 m. The calculated 

deformation rate tensors considered the nearest 30, 144, and 420 pixels (to be continued 

in Section 2.5.3). From this, I calculated dilatation (unit: yr-1), maximum shear (unit: 

yr-1), and 2nd invariant (unit: yr-1). Note: Dilatation, maximum shear, and 2nd invariant 

refer to their rate per year. The purpose of the deformation rate analysis was to quantify 
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2-D deformation fields across Taiwan. This analysis assumed that deformation fields 

were subject to variations in stress rather than strength (Fagereng and Biggs, 2019).  

The deformation rate tensor is defined as: 

 

𝑫̇  =  [
𝐷̇𝑥𝑥 𝐷̇𝑥𝑦

𝐷̇𝑦𝑥 𝐷̇𝑦𝑦

]  

= [
𝐷̇𝑥𝑥

1

2
 ( 𝐷̇𝑥𝑦  +  𝐷̇𝑦𝑥  ) 

1

2
 ( 𝐷̇𝑥𝑦  +  𝐷̇𝑦𝑥) 𝐷̇𝑦𝑦

]  +  [
0

1

2
 ( 𝐷̇𝑥𝑦  − 𝐷̇𝑦𝑥  ) 

−
1

2
 ( 𝐷̇𝑥𝑦  −  𝐷̇𝑦𝑥) 0

]     

= [

𝜕𝑉𝐸

𝜕𝑥

1

2
 ( 

𝜕𝑉𝐸

𝜕𝑦
 +  

𝜕𝑉𝑁

𝜕𝑥
 ) 

1

2
 ( 

𝜕𝑉𝐸

𝜕𝑦
 +  

𝜕𝑉𝑁

𝜕𝑥
 )

𝜕𝑉𝑁

𝜕𝑦

] + [
0

1

2
 ( 

𝜕𝑉𝐸

𝜕𝑦
− 

𝜕𝑉𝑁

𝜕𝑥
 )

−
1

2
 ( 

𝜕𝑉𝐸

𝜕𝑦
− 

𝜕𝑉𝑁

𝜕𝑥
 ) 0

] [10] 

 

where the deformation rate tensor, 𝑫̇, is the sum of the strain rate (irrotational) matrix 

and rotational rate matrix. 
𝜕𝑉𝐸

𝜕𝑥
 = 𝐷̇𝑥𝑥 , 

𝜕𝑉𝑁

𝜕𝑦
 = 𝐷̇𝑦𝑦 , and 

1

2
 ( 

𝜕𝑉𝐸

𝜕𝑦
 +  

𝜕𝑉𝑁

𝜕𝑥
 ) = 

1

2
 ( 𝐷̇𝑥𝑦  +

 𝐷̇𝑦𝑥  ). The off-diagonal terms in the rotational matrix are equal in quantity but change 

in sign. 
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Figure 10. Schematic of maximum (1) and minimum (2) principal strains and the 

corresponding strain tensor components (Dxx, Dyy, Dxy) influencing a square. This 

schematic does not consider rotation. 

 

Using components of the deformation rate tensor, I solved for dilatation, the 

overall change in volume due to deformation. Dilatation is the sum of principal strains, 

which are the eigenvalues of a strain rate tensor (Equation 11, 12). 

 

| A - λ ∙ I | = 0             [11] 

 

where A is the strain tensor,  are the eigenvalues, and I is the identity matrix. The | | 

sign represents the determinant operation. 

 

𝛿 =  𝜀1 + 𝜀2                              [12] 
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where 𝛿 is dilatation and 𝜀1 and 𝜀2 are the maximum and minimum principal strains 

(i.e., eigenvalues). 

 

Then, maximum shear was solved to determine the factor in which deformation 

occurred in a specific direction (Equation 13). In this case, maximum shear (i.e., change 

in shape/angle) corresponds to the greatest shear at 45 to the principal strains. 

 

𝛾𝑚𝑎𝑥 =  
𝜀1− 𝜀2

2
                 [13] 

 

where 𝛾𝑚𝑎𝑥  is maximum shear and 1 and 2 represent the maximum and minimum 

principal strains (i.e., eigenvalues). 

 

Invariants of the deformation rate tensor are properties that do not change under 

coordinate rotation. The 2nd invariant of strain rate determines the total strain rate 

accumulation of the area of interest, which highlights localities with increased seismic 

risk (Equation 14) (Pagani et al., 2021). It acts as a combination of both the dilatation 

(contraction and extension) and maximum shear stress. 

 

𝐼2 =  √𝐷𝑥𝑥
2 + 𝐷𝑦𝑦

2 + 2 [
1

2
(𝐷𝑥𝑦 + 𝐷𝑦𝑥)]

2
               [14] 
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where 𝐼2 is 2nd invariant of strain rate and Dxx, Dyy, Dxy, Dyx are components of the 

symmetric strain rate tensor. 𝐷𝑥𝑦 and 𝐷𝑦𝑥 cannot be assumed to be of the same value 

as rotation, which does not address shape change and is not taken into consideration. 

2.5 Error Analysis 

I incorporated an error analysis into the InSAR and GNSS velocity solutions by 

determining root mean square (RMS) misfit. As previously mentioned, the calculated 

misfit was used to define the weighting matrix, W (Equation 8), to properly weigh 

between the GNSS-corrected InSAR and the interpolated GNSS velocities. The 

uncertainties, inferred from misfit, produced by taking the LOS and GNSS velocities 

to east-west, north-south, and vertical were utilized to confirm consistent 

transformation and were appended to the FIG dataset for later usage. Furthermore, to 

distinguish tectonic signal from noise in the deformation rate analysis, I quantified 

distance-correlated noise structure using a semi-variogram and covariogram model for 

a region without known surface deformation. 

2.5.1 Solving for RMS Misfit &  

When constructing the mathematical model (Equation 3) that best fits the 

velocity data, I calculated the RMS misfit to detail the misfit between the model and 

the observed velocity values (Equation 15). Specifically, the RMS misfit was calculated 

for the ascending and descending LOS InSAR data (every pixel at all times) and the 

east-west, north-south, and vertical GNSS data (every station at all times). Since west 

and east Taiwan were processed separately, the west and east Taiwan InSAR misfits 

were calculated separately and then merged. 
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𝐸(𝑥, 𝑦) =  √
1

𝑁
∑ (𝑑𝑖(𝑥, 𝑦) − 𝑚⃗⃗⃗𝑖(𝑥, 𝑦))

2
𝑁
𝑖=1  𝑓𝑜𝑟 𝑖 = 1,…𝑁;    [15] 

 

where 𝐸(x,y) is the RMS misfit of pixel (x,y), 𝑑i is observed velocity data, and 𝑚⃗⃗⃗𝑖 is 

best fit model velocity data, i is the index of an acquisition, and N is the total number 

of acquisitions. 

 

Additionally, to determine the relaxation time () for removing the 

postseismic contribution from the 2018 Hualien Earthquake in the mathematical 

model (Equation 3), I calculated the RMS misfit of all the pixels with a given  value 

between 1 and 600 days in a 20-day step size:  

 

𝐸(𝑗) =  √
1

𝑁
∑ (𝑑𝑖(𝑗) − 𝑚⃗⃗⃗𝑖(𝑗))2𝑁

𝑖=1  𝑓𝑜𝑟 𝑖 = 1,…𝑁; j = 1,…600 (days);   [16] 

 

where 𝐸(𝑗)is the RMS misfit of relaxation time () in j days, 𝑑i is observed velocity 

data, and 𝑚⃗⃗⃗𝑖 is best fit model velocity data, i is the index of an acquisition, and N is the 

total number of acquisitions. The relaxation time that produced the least amount of 

misfit was used in Equation 3. 

2.5.2 Solving for Uncertainty 

The uncertainty of every pixel was solved by evaluating the misfit of the 

inversion that transformed the LOS InSAR and GNSS velocities to 3-D velocities. The 
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uncertainty values at each time were inferred from the velocity misfit values using a 

linear inverse problem in the 𝑑 = 𝑮𝑚⃗⃗⃗ form (Equation 17): 

 

[
 
 
 
 

𝜀𝐴(𝑥, 𝑦)
𝜀𝐷(𝑥, 𝑦)

𝜀 𝐺𝑁𝑆𝑆𝐸(𝑥, 𝑦)

 𝜀 𝐺𝑁𝑆𝑆𝑁(𝑥, 𝑦)
𝜀 𝐺𝑁𝑆𝑆𝑍(𝑥, 𝑦) ]

 
 
 
 

=  

[
 
 
 
 
cos𝜙𝐴(𝑥, 𝑦)sin𝜃𝐴(𝑥, 𝑦) sin𝜙𝐴(𝑥, 𝑦)sin𝜃𝐴(𝑥, 𝑦) −cos𝜃𝐴(𝑥, 𝑦)
cos𝜙𝐷(𝑥, 𝑦)sin𝜃𝐷(𝑥, 𝑦) sin𝜙𝐷(𝑥, 𝑦)sin𝜃𝐷(𝑥, 𝑦) −cos𝜃𝐷(𝑥, 𝑦)

1 0 0
0 1 0
0 0 1 ]

 
 
 
 

[

𝑈𝑛𝑐𝐸(𝑥, 𝑦)
𝑈𝑛𝑐𝑁(𝑥, 𝑦)

𝑈𝑛𝑐𝑍(𝑥, 𝑦)
][17] 

 

where data vector 𝑑 contains: A,D (x,y) the misfit for the ascending and descending 

track pixels and  GNSSE,N,Z (x,y) the interpolated GNSS misfit for east, north, and 

vertical, respectively. Matrix G contains: A and D the satellite heading direction for 

the ascending and descending tracks and A and D the satellite look-angle of the 

ascending and descending tracks, respectively. This matrix relates the GNSS-corrected 

InSAR / interpolated GNSS velocities to their 3-D components. Model vector 𝑚⃗⃗⃗ 

contains the 3-D velocity uncertainty estimates, UncE,N,Z, for east, north, and vertical 

components, respectively. The identity matrix is used to bring the GNSS misfit values 

through the inverse problem with no transformation as they are already in 3-D form. 

2.5.3 Noise Structure Contributions in the Deformation Rate Analysis 

When calculating the deformation rate tensor in Section 2.4, various sizes of 

smoothing windows were utilized. To determine which level of smoothing best 

eliminated the noise structure contribution, I calculated a semi-variogram model and 

covariogram model of a non-deforming region for error estimation (Sudhaus and 

Jonsson, 2011). The semi-variogram was modeled from pixel variance with distance in 

the x- and y-direction (Equation 18) and suggested the use of an exponential equation 
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to model the covariogram (Equation 19). The covariogram estimated pixel spatial 

correlation with distance (i.e., covariance) (Sudhaus and Jonsson, 2009). 

The semi-variogram was defined as (Equation 18): 

 

𝑆(𝑟) =  𝜎2(1 − 𝑒−
𝑟

𝜆)       [18] 

 

where S(r) is the modeled semi-variogram between two pixels, 𝜎2 is the variance, r is 

the distance between the two pixels, and  is the characteristic wavelength of the 

transect. 

 

The modeled covariogram, produced from an exponential mathematical model, 

was defined as (Equation 19): 

 

𝐶(𝑟) =  𝜎2𝑒−
𝑟

𝜆       [19] 

 

where C(r) is the covariance between two pixels, 𝜎2 is the variance, r is the distance 

between the two pixels, and  is the characteristic wavelength of the transect. 

 

The modeled semi-variogram was solved for with an exponential, spherical, and 

gaussian mathematical model. The exponential model fit best and was subsequently 

utilized to model the covariogram. The unknown 𝜎2 and  in the covariogram model 

(Equation 19) were solved using an inverse problem with the FIG dataset velocities for 

a non-deforming region as data constraints. The covariogram model acted to estimate 
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the characteristic wavelength of correlation to quantify the assumption that variables 

closer in distance tend to be more similar (Watson et al., 2022; Hussain et al., 2016). 

Therefore, a smoothing window size that is smaller than the characteristic distance   

at which pixels were spatially correlated may display noise signals and not accurately 

capture the tectonic deformation influencing the region. Given that the deformation 

tensor was calculated every 1 km and each pixel is 500 m x 500 m in the Reduced FIG 

dataset, utilizing the nearest 30, 144, and 420 pixels resulted in a 1.5, 3.4, and 5.8 km 

radius of values being incorporated into the tensor, respectively (Table 1). 

 

Table 1. Conversion of pixel count to physical distance.   

Number of Nearest Pixels (area) Radius of Pixels  

(A = r2) 

Radius in km 

30 3.09 1.5 

144 6.77 3.4 

420 11.56 5.8 

 

2.6 Geodetic Technique: Block Modeling 

Block modeling enables a region of interest to be divided into blocks that are 

completely bound by segments (i.e., faults). This allows a plate-boundary scale area to 

be examined at the regional-scale, microplate level. In this study, block construction 

was based upon many lines of evidence: mean velocity gradients, active fault traces, 

geologic maps, and block geometries from published work (e.g., Ching et al., 2011; 

Chang et al., 2016).  

Block modeling uses inverse theory to apply observed velocities to a given 

construction to determine block rotation and translation and the difference of motion 
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between blocks to be interpreted as fault slip (Meade and Loveless, 2009). These blocks 

are subject to a variety of behaviors. Rigid translation and rotation occur when the block 

moves or rotates without causing internal deformation, whereas elastic behavior occurs 

when part of a fault segment slips and then causes internal elastic deformation within 

the block. The rigid translation and rotation between blocks can be considered as the 

long-term crustal motions between plates, where slip above or below the locking depth 

can be considered as coseismic or interseismic deformation, respectively (Figure 11). 

To estimate contributions from both rigid and elastic behaviors, block modeling takes 

into consideration a dislocation model (back-slip) that details the coseismic period 

defined by various degrees of elastic behavior (Figure 11). The dislocation model can 

constrain fault parameters given surface deformation (observation) and fault geometry. 

The outcome of subtracting a dislocation model (i.e., back-slip) from a completely rigid 

block motion produces a more realistic representation of interseismic slip and surface 

crustal deformation during this period. 
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Figure 11. Removing coseismic rupture represented by a dislocation model from a 

block model (i.e., long-term slip) that assumes complete rigidity at depth enables 

interseismic creep to be estimated. Blue represents a transect cutting across the fault. 

Red indicates creep. 

 

I used “Blocks” (Meade and Loveless, 2009) with a Total Variation 

Regularization (TVR) algorithm developed by Evans et al. (2015), to determine the 

reference block solution to the observed velocities. The latter algorithm is unique in 

that it allows microplates to be grouped with neighboring microplates to identify the 

most influential faults and produce the simplest block model configuration that can 

sufficiently explain observations with given data uncertainty (Figure 12). 

 

Figure 12. Conceptualization of block reduction where the black lines represent faults, 

and the colored stars represent Euler pole locations for each block. The left-side panel 

is separated into Blocks 1, 2, and 3 with slip along the faults bounding them. The right-

side panel combines Blocks 1 and 2 and assigns them the same Euler pole and rotation 

rate. There is no longer slip between them and they are considered to be one larger 

block (from Evans et al., 2015). 
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2.6.1 Limitations 

There are four main limitations to block modeling. First, the model assumes 

interseismic deformation is a combination of rigid block movements and the 

subtraction of (mostly shallower) elastic dislocations. However, the crust is neither 

rigid nor elastic. Second, it only takes into consideration horizontal velocities due to 

program constraints and conceptual limitations. This may not be ideal for a convergent 

plate boundary because in Taiwan the vertical component of motion is also significant. 

Third, block modeling does not consider faults that are not incorporated into the model 

construction. That is, block segments can be removed under regularization, but they 

cannot be added. Fourth, it does not consider the contribution from postseismic 

deformation, which is often ~10% of coseismic deformation (e.g., Zhao et al., 2017). 

2.7 Data Analysis Process for Block Model 

2.7.1 Map Faults on QGIS 

To define known and potential faults in Taiwan, the following sources were 

utilized: active fault maps from the CGS of Taiwan (CGS, 2012), geologic maps from 

the Chinese Petroleum Corporation (CPC, 1989a-d), Chen (2016), Chang et al. (2016), 

Ching et al. (2011), SRTM DEM of Taiwan, the FIG dataset, and the mean velocity 

gradients. 

 

2.7.2 Block Model Construction and Evaluation 

The active and potential faults were traced on QGIS and could be uploaded into 

either the Blocks (Meade and Loveless, 2009) or Blocks TVR (Evans et al., 2015) 
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program in Matlab. Using the faults determined on QGIS as a guide, the block segments 

and blocks were delineated in the Segment Manager module. Each block segment must 

be a part of a bounded block and each block must be fully bound by block segments. 

Utilizing fault trace and information provided by Chan et al. (2020), Shyu et al. (2020), 

Shyu et al. (2016), and the CGS of Taiwan (CGS, 2012), each block segment was 

assigned a locking depth and dip angle. 

Following the delineation of (i) block segments and blocks and (ii) block 

segment locking depth and dip, either program could be used to apply linear block 

theory, which uses linear algebraic functions to decompose the given surface velocities 

into plate rotation and intrablock strain accumulation. The observed, input surface 

velocities were those from the FIG dataset. 

During linear block theory application, Blocks minimizes the L2 norm (least 

squares: minimize the sum of squares of differences) of the data residuals in order to 

find the calculated velocities that best fit the observed velocities (Meade and Loveless, 

2009). Alternatively, Blocks TVR optimization algorithm minimizes the L2 norm (least 

squares: minimize the sum of squares of differences) of data residuals and the L1 norm 

(least absolute error: minimize the sum of absolute values of residuals) of block motion 

variations (Evans et al., 2015). The latter approach enables the grouping of blocks to 

reduce the number of microplates fitting the data. 

To produce a collection of potential models, Blocks TVR was used as it 

minimized both the residual velocities (L2 norm) and the variation in block rotation 

vectors (L1 norm) to various extents. To process the L1 norm, a Matlab toolbox called 

CVX: Disciplined Convex Programming was required. This is a modeling program that 
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solves convex optimization problems. The following equation was used to minimize 

and balance both the L2 and L1 norms (Equation 20): 

 

min‖𝑾
1

2(𝑮Ω⃗⃗⃗ − 𝑑)‖
2
+ 𝜆‖𝑫Ω⃗⃗⃗‖

1
                 [20] 

 

where 𝜆 controls the strength of regularization (similar to a smoothing parameter), W 

is the diagonal weighting matrix that takes into consideration velocity uncertainties, G 

is the mathematical model, 𝑑 is the data vector describing the interseismic east-west 

and north-south velocities, D is the linear differential operator that applies smoothing 

to the block model, and 𝛺⃗⃗ is the vector of block rotation. 

 

The L2 component (Equation 20) produced calculated velocities that best fit the 

block construction with minimized data residuals. The calculated velocities were 

influenced by the diagonal weighting matrix W that was built from velocity misfit 

values (see Section 2.3.6). The L1 component (Equation 20) utilized the parameter  

to control the amount of regularization (i.e., control block motion variation). For 

example, increasing  would add weight to the smoothing operator D and decrease the 

number of distinct microplates utilized to fit the given surface velocity data. 

However, both the L2 norm and L1 norm cannot be fully minimized 

simultaneously. For example, if the L2 norm was minimized to contain no data 

residuals, then the L1 norm would be maximized with maximum blocks. Alternatively, 

if the L1 norm were to be minimized to a singular block, then the L2 norm would be 

maximized with high data residuals due to the low number of degrees of freedom. 
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Therefore, Blocks TVR serves to display a range of balances between the L2 and L1 

norm by processing multiple iterations of varying  values (Evans et al., 2015). 

The collection of outputs was evaluated by examining the mean residual 

velocities (MRV) to the number of blocks and by applying a reduced chi-squared test. 

Both evaluations followed the same pattern but supplied different information.  MRV 

quantified how the output block model velocity residuals compared to the input 

geodetic velocity uncertainties given block regularization. MRV did not scale for data 

uncertainty in the models. The reduced chi-squared test determined how the residual 

velocities of the observed and modeled velocities statistically compared to the FIG 

dataset uncertainty (Equation 21). This was done for both east-west and north-south 

velocities. The closeness was highest at a value of one. 

 

𝜒2 =
𝜀𝐵

2

𝜎𝐵
2      [21] 

 

where 𝜒2 is the reduced chi-squared value representing if there is a statistically 

significant difference between the observed and calculated values, 𝜀𝐵 is the residual 

between observed (i.e., FIG dataset) and block modeled calculated velocities, and 𝜎𝐵 

is the FIG dataset uncertainty (inferred from the misfit in the polynomial equation 

fitting, Equation 3). 𝜒2 > 1 indicates under-fitting, 𝜒2 < 1 indicates over-fitting, and 𝜒2 

= 1 indicates best fit. 
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Chapter 3: Results 
 

This chapter shows results from the InSAR and GNSS data processing, 

deformation rate analysis, error analysis, and application of block modeling.  

 

3.1 InSAR Results 

The SAR image acquisitions utilized to create the interferograms and the 

subsequent interferogram network collected by Sentinel-1 suggested a relatively 

moderate and uniform spatial coherence of 0.3. Each image acquisition was used in 

three interferogram pairs (Figure 13). As expected with improved satellite technology, 

the variation in perpendicular baseline was minimal with a maximum of 150 m for both 

the ascending and descending LOS InSAR tracks (Figure 13). Perpendicular baseline 

refers to the orbital tracks of repeated flybys with respect to the original flight track.  
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Figure 13. Perpendicular baseline with the average spatial coherence between an 

image acquisition and the selected three image acquisitions to produce pairs for the 

interferogram network. (A) Ascending interferogram network. (B) Descending 

interferogram network. 
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Both ascending and descending LOS InSAR mean velocities and time-series 

produced from MintPy showed negative motions in the central west coast of Taiwan, 

which suggested surface subsidence (Figure 14). However, from southwest to 

northeast, there was a gradual transition from positive to negative motion in the 

ascending track but negative to positive motion in the descending track. This opposite 

sign of motion between the ascending and descending tracks suggested a dominating 

horizontal motion. These results were encouraging of more critical analysis to 

determine specific horizontal and vertical directions of motion. The time-series re-

model and mean velocity re-estimation with GNSS correction results suggested 

consistency between the InSAR and GNSS velocities that were further improved upon 

with the GNSS correction (Figure 15, 16, 17). With respect to the GNSS velocities, the 

ascending LOS InSAR velocities were underestimated by ~20 mm/yr, and the 

descending LOS InSAR velocities were overestimated by ~20 mm/yr. The error within 

the ascending and descending LOS InSAR velocities, likely due to the difference in 

reference region from GNSS, were corrected to produce the GNSS-corrected LOS 

InSAR velocities, and east and west Taiwan were merged (Figure 18).  

The ascending and descending GNSS-corrected LOS InSAR velocities were 

converted to east-west, north-south, and vertical velocities and combined with the 

interpolated GNSS velocities while taking into consideration proper weighting based 

on misfit (Figure 19). The final product suggested (i) westerly motion of up to 60 

mm/yr in east Taiwan due to the northwestward collision of the Philippine Sea Plate 

into the Eurasian Plate, (ii) northly motion of up to 40 mm/yr along the Longitudinal 

Valley fault due to collision and southerly motion of up to 25 mm/yr in southwest 
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Taiwan due to tectonic escape, and (iii) subsidence of up to 40 mm/yr in west Taiwan 

due to water pumping and uplift of up to 20 mm/yr in central Taiwan due to collisional 

mountain-building events. Determining the east-west, north-south, and vertical mean 

velocity gradients from the FIG dataset revealed areas of increased strain rate 

accumulation focused along the Longitudinal Valley fault, the Western Foothills, and 

the central west coast of Taiwan (Figure 20). However, the increased strain rate 

accumulation located on the central west coast of Taiwan is likely not tectonic as this 

area is subject to groundwater pumping. 

 

 

 

 

 

 

 

Figure 14. Mean velocities from (A) ascending and (B) descending LOS InSAR tracks 

produced by MintPy with coordinates in pixels (Yunjun et al., 2019). (A) Negative 

ascending LOS InSAR velocities indicate easterly motion and/or subsidence. (B) 

Negative descending LOS InSAR velocities indicate westerly motion and/or 

subsidence. The black squares indicate reference locations. One pixel is ~50 m x 50 m. 

West and east Taiwan were calculated separately but are merged above. The region 

impacted by the 2018 Hualien earthquake was removed (see white rectangle).  
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Figure 15. Uncorrected ascending LOS InSAR velocities overlain with GNSS 

velocities for (A) west and (B) east Taiwan. Negative ascending LOS InSAR velocities 

indicate easterly motion and/or subsidence. Uncorrected descending LOS InSAR 

velocities overlain with GNSS velocities for (C) west and (D) east Taiwan. Negative 

descending LOS InSAR velocities indicate westerly motion and/or subsidence. 
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Figure 16. GNSS-corrected ascending LOS InSAR velocities overlain with GNSS 

velocities for (A) west and (C) east Taiwan. Negative ascending LOS InSAR velocities 

indicate easterly motion and/or subsidence. Comparison of ascending LOS InSAR 

velocities to GNSS velocities for (B) west and (D) east Taiwan before and after the 

GNSS correction. 
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Figure 17. GNSS-corrected descending LOS InSAR velocities overlain with GNSS 

velocities for (A) west and (C) east Taiwan. Negative descending LOS InSAR 

velocities indicate westerly motion and/or subsidence. Comparison of descending LOS 

InSAR velocities to GNSS velocities for (B) west and (D) east Taiwan before and after 

the GNSS correction. 
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Figure 18. (A) Ascending and (B) descending GNSS-corrected LOS InSAR velocities 

of merged west and east Taiwan. (A) Negative ascending LOS InSAR velocities 

indicate easterly motion and/or subsidence. (B) Negative descending LOS InSAR 

velocities indicate westerly motion and/or subsidence. 
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Figure 19. The FIG dataset with (A) eastward, (B) northward, and (C) upward components of motion in mm/yr. Positive values 

correspond to (A) easterly motion, (B) northerly motion, and (C) uplift. The black lines indicate CGS of Taiwan’s active faults (CGS, 

2012). Gray indicates regions of no data. 
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Figure 20. (A) East-west, (B) north-south, and (C) vertical mean velocity gradients 

derived from the FIG dataset. Increased mean velocity gradient indicates increase in 

strain rate accumulation. The black lines indicate CGS of Taiwan’s active faults (CGS, 

2012). Gray indicates regions of no data. 

 

3.2 Deformation Rate Analysis Results 

Suggested by the error analysis results (see Section 3.3), incorporating the 

nearest 144 pixels (smoothing window size) into the deformation rate tensor produced 

the highest resolution results that distinguished tectonic signal from noise (Figure 21, 

22). Tectonic signals were of a minimum resolution of ~3.4 km. Deformation rate 

analysis results suggested the highest deformation rate characterized by both dilation 

and maximum shear along the Longitudinal Valley fault in east Taiwan. To a lesser 

extent, increased deformation was also observed in west Taiwan where the main fold-

and-thrust belts (i.e., Western Foothills) are located (Figure 22). The 2nd invariant of 

strain rate (Figure 22) highlighted regions with greater total strain rate accumulation 
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and implied locked faults. In addition to the Longitudinal Valley fault, several faults in 

southwest Taiwan appeared to be locked as well. When calculating the deformation 

rate tensor used in dilation, maximum shear, and 2nd invariant, increasing the number 

of nearest pixels reduced the noise but subsequently reduced the ability to apply 

estimated values to specific faults and structures. 
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Figure 21. Deformation rate analysis with (A, B, C) dilatation rate, (D, E, F) 

maximum shear rate, and (G, H, I) 2nd invariant rate in (A, D, G) 30-pixel resolution, 

(B, E, H)144-pixel resolution, and (C, F, I) 420-pixel resolution. Positive dilatation 

values indicate contraction and negative values indicate expansion. High maximum 

shear values indicate increased shearing. 2nd invariant values describe both dilatation 

and maximum shear as total strain rate accumulation. Gray indicates regions of no 

data.
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Figure 22. (A) Dilatation rate, (B) maximum shear rate, and (C) 2nd invariant rate of Taiwan with a smoothing window of 144 pixels. 

The black lines indicate active faults categorized by the CGS of Taiwan (CGS, 2012). Gray indicates regions of no data. 
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3.3 Error Analysis Results 

The RMS misfit estimates from the inverse problem (Section 2.3.4) for mean 

velocity models of each InSAR pixel and interpolated GNSS throughout time are 

shown in Figure 23. Misfit was generally < ~3 mm/yr for ascending LOS InSAR, 

descending LOS InSAR, east-west GNSS, and north-south GNSS. Misfit increased to 

~5 mm/yr –10 mm/yr for vertical GNSS. This increased misfit is likely due to that 

GNSS receives higher noise levels in vertical components and is more susceptible to 

atmospheric delay-related errors (Serpelloni et al., 2013). RMS misfits produced from 

varying 𝜏 values related to days of postseismic relaxation from the 2018 Hualien 

earthquake displayed minimal change in error estimation between the data and model. 

𝜏 = 121 resulted in a minimized RMS misfit of 2.9245 mm/yr (Figure 24). 

I further estimated the uncertainty values (i.e., error) produced during the 

transformation of GNSS-corrected ascending and descending LOS InSAR velocities 

and interpolated east-west, north-south, and vertical GNSS velocities to the 3-D FIG 

dataset (see Section 2.3.6) (Figure 25). The east-west and north-south FIG dataset 

velocities produced the least amount of misfit of < ~2 mm/yr and < ~3 mm/yr, 

respectively. The vertical FIG dataset velocities displayed a larger range of 

uncertainties between ~3 mm/yr – 10 mm/yr. This was likely due to the reliance on the 

inherently noisier InSAR data in the calculation as GNSS poorly resolves vertical 

motions and was to be weighted less. 
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Figure 23. RMS misfits produced from the transformation of observed (A) ascending and (B) descending LOS InSAR velocities and 

interpolated (C) east-west, (D) north-south, and (E) vertical GNSS velocities to modeled velocity values.
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Figure 24. RMS misfits produced from utilizing various 𝜏 values (0 to 600 days in 20-day step sizes) in the transformation of observed 

velocities to modeled velocities. The yellow star indicates 𝜏 = 121, which is associated with the lowest RMS misfit estimation. 
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Figure 25. Uncertainty values produced from transforming GNSS-corrected ascending and descending LOS InSAR velocities and 

interpolated GNSS velocities to the FIG dataset with (A) east-west, (B) north-south, and (C) vertical velocities.   
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To best interpret the deformation rate analysis (see Section 2.4), the noise 

structure of a non-deforming region was examined using a semi-variogram model and 

covariogram model (Figure 26, 27). On the semi-variogram each point signified the 

variance between each and all pixels at distance. The points were particularly dense 

between a low variance of 0 to 10 as similarity was displayed. Binning (i.e., where the 

mean value at intervals is determined) of the points produced a downsampled semi-

variogram that displayed the best-fitting, exponential model of variance among pixels. 

The downsampled semi-variogram was inverted to an exponential covariogram model 

that reached a critical wavelength at ~2.8 km. This was the maximum wavelength that 

pixels were spatially correlated due to noise. Therefore, utilizing the nearest 144 pixels 

(i.e., 3.4 km) in each deformation rate tensor calculation enabled tectonic signal to be 

distinguished from noise signal (Table 1). 
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Figure 26. Semi-variogram displaying variance as a function of separation distance 

for each and all pixels. The open red circles represent the relative locations along the 

x-axis used for binning the data. 
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Figure 27. Downsampled semi-variogram displaying variance between each and all 

pixels as a function of distance. Overlain is the best fit exponential model. Inverted 

from the semi-variogram is the exponential covariogram model. 

 

3.4 Block Model Results 

The original block model construction consisted of 50 blocks with each block 

segment having an assigned locking depth and dip angle (Table 2; Figure 28, 29). Block 

segments were better constrained in west Taiwan due to the focus of previous research 

and study efforts. Utilizing Blocks TVR, I examined an output suite of block model 

constructions with λ from 1 to 2000 in step sizes of 5. The reference model was located 

at the first notable drop in independent blocks where the MRV was similar to the FIG 

dataset uncertainty of ~ 3 mm/yr, and the reduced chi-squared result suggested slight 
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under-fitting. The reference block model was produced with a λ value of 200 and 42 

blocks (Figure 30). The subsequent MRV was 2.95 mm/yr. The removed block 

segments, from regularization, were in northern Taiwan (Figure 31). 

The modeled total slip rates produced by the reference block model highlighted 

faults in both west and east Taiwan (Figure 31). In Western Foothills, the 

Chiuchiungkeng fault (#19 in Table 2), Chushiang structure (39), and Gukeng structure 

(40) had an increased total slip rate between 40 mm/yr – 55 mm/yr. South of these 

faults and structures, there was an increased slip of up to 60 mm/yr on various, sporadic 

faults. Within the Longitudinal Valley, the Longitudinal Valley fault (33) experienced 

a total slip rate between 40 mm/yr – 50 mm/yr. 

Left-lateral strike-slip rates of up to 40 mm/yr were found within the Western 

Foothills on the Kaoping River structure (28) and Longchuan structure (42) and within 

the Longitudinal Valley on the Longitudinal Valley fault (33). Opposing strike-slip 

motions were located on the Northern Ilan structure (37) (i.e., left-lateral) and the 

Southern Ilan structure (38) (i.e., right-lateral), which indicated rotation of the Ilan 

basin due to the opening of the Okinawa Trough. This type of behavior is different than 

that observed on faults and structures bounding the Pingtung Plain, which is undergoing 

southwest tectonic escape. Additionally, right-lateral motion of up to 30 mm/yr was 

observed along an east-west trending transect through the Hsuehshan Range and 

Coastal Range. This may be linked to the placement of a broad shear zone. 

Convergent motion was most prominent along the Longitudinal Valley fault 

(33), up to 30 mm/yr, where the Philippine Sea Plate collides with the Eurasian Plate. 
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Divergent motion of up to 20 mm/yr was focused along the Northern Ilan structure (37) 

and Southern Ilan structure (38). 

The highest east-west velocity residuals (up to 10 mm/yr) produced from the 

reference block model construction were focused in the mountainous region of 

Taiwan and the Longitudinal Valley (Figure 32). These locations contain faults and 

structures that are less constrained and due for improved mapping. Chang et al. 

(2016) suggest residual velocities of up to 20 mm/yr in these regions. 

The highest north-south velocity residuals were in the Ilan Basin and the 

southern portion of the Coastal Range. The Ilan Basin displays an opening and 

rotating motion that is likely under the influence of more complicated fault and 

structure dynamics than what is currently understood. The southern portion of the 

Coastal Range is likely experiencing loosely defined fault branching. 

 

Table 2. Faults of Taiwan (CGS, 2012; Shyu et al., 2020) with associated locking 

depths and dip angles (Chan et al., 2020). 

Fault Name Number Locking Depth Dip Angle 

Shanchiao fault 1 14.0 48.2 

Shuanglienpo structure 2 5.0 33.0 

Yangmei structure 3 3.0 60.0 

Hukou fault 4 10.0 30.0 

Fengshan River strike-slip structure 5 13.8 85.0 

Hsinchu fault 6 10.0 45.0 

Hsincheng fault 7 12.9 30.0 

Hsinchu frontal structure 8 10.0 30.0 

Touhuanping structure 9 12.0 85.0 

Miaoli frontal structure 10 10.0 30.0 

Tunglo structure 11 3.5 30.0 

East Miaoli structure 12 4.0 30.0 

Shihtan fault 13 10.8 75.0 

Sanyi fault 14 9.0 15.0 
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Tuntzuchiao fault 15 14.8 85.0 

Changhua fault 16 12.0 22.1 

Chelungpu fault 17 12.0 15.0 

Tamaopu - Shuangtung fault 18 6.0 30.0 

Chiuchiungkeng fault 19 12.0 30.0 

Meishan fault 20 14.7 85.0 

Chiayi frontal structure 21 12.0 15.0 

Muchiliao - Liuchia fault 22 12.0 30.0 

Chungchou fault 23 12.0 30.0 

Hsinhua fault 24 15.0 85.0 

Houchiali fault 25 5.0 45.0 

Chishan fault 26 10.8 75.0 

Hsiaokangshan fault 27 7.0 30.0 

Kaoping River structure 28 12.3 75.0 

Chaochou fault 29 11.1 75.0 

Hengchun fault 30 15.0 75.0 

Hengchun offshore structure 31 4.0 30.0 

Milun fault 32 10.0 75.0 

Longitudinal Valley fault 33 20.0 55.0 

Central Range structure 34 20.0 45.0 

Luyeh fault 35 4.0 37.5 

Taimali coastline structure 36 10.6 75.0 

Northern Ilan structure 37 9.4 60.0 

Southern Ilan structure 38 11.3 60.0 

Chushiang structure 39 3.0 55.0 

Gukeng structure 40 12.0 85.0 

Tainan frontal structure 41 12.0 18.8 

Longchuan structure 42 12.0 60.0 

Youchang structure 43 12.0 75.0 

Fengshan Hills frontal structure 44 15.0 30.0 

Fengshan structure 45 N/A N/A 
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Figure 28. Faults of Taiwan used in the block model construction (CGS, 2012; Shyu 

et al., 2020). 
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Figure 29. Original block model construction and associated (A) locking depths and 

(B) dip angles (Chan et al., 2020). 
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Figure 30. Evaluation of block model suite produced from TVR. Displayed are the 

MRVs, chi-squared values, and the number of blocks in the output models. The star 

indicates the reference block model. 
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Figure 31. (A) Total slip rates produced from reference block model construction with (B) positive strike-slip rates indicating right-

lateral motion and (C) positive convergence rates indicating convergent motion. The removed block segments appear in black. 



 

 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. (A) East-west, (B) north-south and (C) total residual velocity values produced from the reference block model 

construction. The preserved block segments are in black, and the removed block segments are in gray.  
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Chapter 4: Discussion 

The main goals of this chapter are to characterize interseismic crustal 

deformation and quantify the slip budget to highlight seismic hazard potential in 

Taiwan. The deformation rate analysis produced from the Reduced FIG dataset 

suggested complementary, more detailed findings compared to previous research based 

on GNSS-only datasets (e.g., Chang et al., 2016; Ching et al., 2015). The results 

indicated that the highest velocity values and total strain rate accumulation suggested 

by the 2nd invariant of strain rate were focused in the Longitudinal Valley, the Western 

Foothills (including the Pingtung Plain), the Ilan Basin, and the Taipei Basin. The block 

model further examined these areas of interest and determined that faults located in the 

Longitudinal Valley and Western Foothills had the greatest total slip rate. 

4.1 Combining Geodetic Techniques 

GNSS has provided high accuracy observations of crustal deformation in 

Taiwan since the first deployment in the early 1990s (Yu et al., 1997; Ching et al., 

2007; Hsu et al., 2009; Lin et al., 2010). Stations are located roughly every tens of 

kilometers and can readily detect uplift, subsidence, and horizontal motions (Ching et 

al., 2011). Although Taiwan has one of the highest GNSS deployment densities in the 

world, GNSS measurements alone do not allow us to relate detected ground motions to 

specific faults and structures. Therefore, combining the high resolution of InSAR and 

the high accuracy of GNSS is worthwhile as it enables accurate ground motion 

velocities at high spatial resolutions to be estimated and potential locked faults to be 

detected (Bürgmann et al., 2000; Elliott et al., 2016). Potential locked faults can be 
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verified with additional lines of evidence (i.e., mean velocity gradient, 2nd invariant of 

strain rate, geologic observations, etc.). Identifying and confirming potentially active 

faults is important for quantifying fault slip budget and partitioning throughout the 

island and forecasting seismic hazard with increased accuracy. 

 

4.2 Evaluating Data and Hazard 

4.2.1 Data Comparison 

Huang et al. (2016) estimate crustal velocities using InSAR and CGNSS for 

west Taiwan. Broadly, I shared similar overall findings for tectonic escape in southwest 

Taiwan and land subsidence in west Taiwan (Figure 33). Southwest Taiwan displayed 

a uniform descending LOS InSAR velocity of ~-25 mm/yr which indicated either 

subsidence or westerly motion from 1995 to 1999 using European Remote-Sensing 

(ERS) satellite data and 2005-2008 using Envisat satellite data (Huang et al., 2016). 

My 2016-2021 findings suggested a sporadic increase and decrease in descending LOS 

InSAR velocity throughout southwest Taiwan by ~10 to 20 mm/yr (Figure 33). These 

changes in velocity may be due to stress field alterations from the Mw 6.3 and 6.4 

earthquakes in 2010 and 2016, respectively. Similar findings were documented by Hsu 

et al. (2018). Alternatively, they could also be due to the presence of phase unwrapping 

errors of InSAR data during 1995-1999 (Huang et al., 2016), which may be due to the 

fewer number of SAR acquisitions (< 10 images per year) during that time period. That 

is, fewer SAR acquisitions could cause increased phase unwrapping errors in vegetated 

terrains such as in Taiwan. Additionally, the spatial and temporal baseline between 

pairs using ERS and Envisat (35 days minimum) was generally greater than those using 
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Sentinel-1 data (6 days minimum). A greater spatial baseline would cause lower 

coherence and could hinder the production of high phase-quality interferograms. 

Ultimately, InSAR during this time period may underestimate LOS InSAR velocities.  

Comparing descending LOS InSAR velocities along the central west coast of 

Taiwan between 1995-1999 (Huang et al., 2016) and 2016-2021, maximum subsidence 

was detected in Yunlin County and increased over time (Figure 32). This may be 

indicative of either increased groundwater pumping or exponentially growing 

groundwater pumping consequences in relation to soil compaction (Holzer, 1984). 
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Figure 33. The (C) difference between the (A) descending LOS InSAR velocities from 2016-2021 using InSAR- and GNSS-derived 

data and (B) descending LOS InSAR velocities from 1995-1999 using InSAR-derived data (Huang et al., 2016). Negative LOS 

InSAR velocities (brown) indicate either subsidence and/or westerly motion. (C) Negative LOS InSAR velocity change (red) indicates 

increase in either subsidence and/or westerly motion. The descending LOS InSAR velocities from Huang et al. (2016) have been 

adjusted to accommodate for the difference in reference point
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4.2.2 Hazard Comparison 

Utilizing the interpolated GNSS velocity data from Lin et al. (2010), I 

calculated 2nd invariant rates over Taiwan both before (1990-1995) and after (2003-

2005) the 1999 MW 7.6 Chi-Chi earthquake (Figure 34). In comparison to the 2016-

2021 2nd invariant rates estimated from the Reduced FIG dataset, I observed similar 

patterns to that of the post-Chi-Chi earthquake with observations being limited due to 

noise associated with InSAR data collection (i.e., topography correlation, atmospheric 

noise, etc.). Similarly, I discerned contraction along the Longitudinal Valley Fault and 

within a band encompassing a section of the Western Foothills. This band may be 

influenced by the Pingtung Plain, which is experiencing tectonic escape. Compared to 

the 2005-2009 InSAR and CGNSS derived 2nd invariant rates from Huang and Evans 

(2019), the 2nd invariant rates during 2016-2021 show minimal variation (Figure 34C 

and 34D). The north-south trending region of increased total strain rate accumulation 

in the Western Foothills persists throughout time. 

Lin et al. (2010) suggest that large earthquakes and their postseismic 

deformation may influence island-wide patterns of strain accumulation. For example, 

there was a minimal similarity to the dilation pattern observed before and after the 1999 

Chi-Chi earthquake. Moreover, differencing the 2nd invariant of strain rate from 2016-

2021 (InSAR- and GNSS-derived) and 2003-2005 (GNSS-derived) (Lin et al., 2010) 

suggested an increase in total strain rate accumulation of up to 20 mm/yr propagating 

northward in the Longitudinal Valley (Figure 35). Regions in the Western Foothills and 

along the southern boundary of the Taipei Basin displayed an increase in total strain 
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rate accumulation as well. However, the GNSS-derived 2nd invariant of strain rate 

values has decreased spatial sampling which may introduce inconsistencies when 

calculating the change in total strain rate accumulation.
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Figure 34. 2nd invariant of strain rate throughout time highlighting before (A) 1990-1995 (Yu et al., 1997) and after (B) 2003-2005 

(Lin et al., 2010), (C) 2005-2009 (Huang et al., 2016), (D) 2016-2021 the 1999 Chi-Chi earthquake. (A, B) 2nd invariant of strain rate 

from GNSS-derived data. (C) 2nd invariant of strain rate from InSAR- and CGNSS-derived data. (D) 2nd invariant of strain rate from 

InSAR- and GNSS-derived data. The black dots indicate GNSS station locations. 
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Figure 35. The difference between the (A) 2nd invariant of strain rate from 2016-2021 using InSAR- and GNSS-derived data and the 

(B) 2nd invariant of strain rate from 2003-2005 using GNSS-derived data (Lin et al., 2010). The black dots indicate GNSS station 

locations. (C) Blue indicates an increase in total strain rate accumulation given an increase in 2nd invariant of strain rate.
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Chan et al. (2020) provide the 2020 Taiwan Earthquake Model (TEM) of 

Probabilistic Seismic Hazard Analysis (PSHA). The PSHA model was calculated based 

on three parts: seismic-hazard source model, ground motion model, and probabilistic 

calculation (Field, 2001). The seismic-hazard source model is a list defining earthquake 

scenarios using previous event details (i.e., magnitude, location, depth, seismicity rate). 

The ground motion model, or the basic attenuation relationship, specifies the ground 

motion levels given distance from a certain magnitude event. More complex models 

allow for the inclusion of rock type and source faulting style. They can also compute 

scenarios with combined fault-segments ruptures. The probabilistic calculation 

determines the distribution of possible ground-motion levels given an earthquake 

scenario to estimating the probability of exceedance of ground-motion levels over a 

certain span of time. 

The previous and original TEM PSHA was produced in 2015 (Wang et al., 

2016) based on a seismogenic structure source database proposed by Shyu et al. (2016). 

Different from its predecessor, the TEM PSHA2020 improved upon the seismogenic 

structure database, incorporated the probability of rupture along multiple structures, 

included the effect of fault memory given the time-lapse from the previous rupture, 

updated the earthquake catalog used in defining area sources, smoothed the utilized 

seismicity rates, utilized more accurate ground motion prediction equations, and 

incorporated site effect (i.e., shear wave amplification given subsurface 

characteristics). The final analysis with site effect inclusion specifically suggested 

increased seismic hazard potential in the Taipei Basin, Ilan Basin, and Chianan Basin 

(Figure 36). Additionally, observations suggested increased hazard potential along the 
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Longitudinal Valley Fault and within the Western Foothills as well. Chan et al. (2020) 

suggest a 10% probability of 0.4 g, 1.4 g, and 0.75 g peak ground motion in 50 years 

for Taipei Basin, Ilan Basin, and Chianan Basin, respectively. 

Given the high-resolution results of this study, I was better able to define the 

specific faults, whether they were identified by CGS of Taiwan (CGS, 2012) or inferred 

by Shyu et al. (2020), for which the increased seismic hazard potential was associated. 

In the Taipei Basin, the 2nd invariant of strain rate did not observe clear total strain rate 

accumulation along the Shanchiao fault (1) (CGS, 2012). However, the findings 

revealed a potential locked fault extending along the basin’s southern boundary which 

has been inferred as the Hsindian fault (e.g., Chen, 2016). This inferred fault, when 

compared to DEM and relief data, does not appear to be an artifact of topography. In 

the Ilan Basin, both probabilistic seismic hazard for 10% in 50 years and 2nd invariant 

of strain rate highlighted increased seismic hazard potential along the Northern Ilan 

structure and the Southern Ilan structure. Within the Chianan Basin, the 2nd invariant 

of strain rate did not suggest increased total strain rate accumulation along the inferred 

Chiayi frontal structure (21) (Shyu et al., 2020). This structure showed a more 

prominent increase in seismic hazard potential when examining probabilistic seismic 

hazard for 2% in 50 years, rather than 10%. East of the Chiayi frontal structure, I 

observed increased total strain accumulation along mapped faults trending north-south 

in the Western Foothills (i.e, Chushiang structure, 39; Gukeng structure, 40; 

Chiuchiungkeng fault, 19). 
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Figure 36. Comparison of regions with increased seismic hazard suggested by Chan et al. (2020) and 2016-2021 2nd invariant of 

strain rate. From North to South: Taipei Basin, Ilan Basin, Chianan Basin. The black lines indicate active faults identified by the 

Central Geologic Survey of Taiwan (CGS, 2012). The blue lines indicate potential faults.
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4.2.3 Block Model Comparisons 

 When comparing the modeled total slip rates from the reference block model 

(Figures 31 and 37) to the total slip rates estimated by Chan et al. (2020), I observed 

encouraging similarities in relative velocities. The increased total slip rates 

corresponded with greater (i.e., above average) recorded total slip rates estimated by 

Chan et al. (2020). The Ilan Basin, the Northern Ilan structure (37) and the Southern 

Ilan structure (38) had recorded total slip rates of 3.29 mm/yr and 5.48 mm/yr (Chan 

et al., 2020), respectively. The modeled total slip rate for these structures was ~30 

mm/yr. In the Longitudinal Valley and east Central Range, the Longitudinal Valley 

fault (33) and Central Range structure (34) had recorded total slip rates of 11.35 

mm/yr and 7.28 mm/yr, respectively. The modeled total slip rates for this fault and 

structure were ~45 mm/yr.  

In contrast to the modeled total slip rates (Figure 31 and 37), the Chushiang 

structure (39) Gukeng structure (40), and Chiuchiungkeng fault (19) in the Western 

Foothills did not collectively have an above-average recorded total slip rate. 

Respectively, they had recorded total slip rates of 2.90 mm/yr, 0.94 mm/yr, and 4.66 

mm/yr. Only the Chiuchiungkeng fault (19) had above-average slip rate. The modeled 

values suggested between 40 mm/yr – 50 mm/yr of total slip rate. This indicates the 

Gukeng structure (40) experiences notably more motion than previously observed. 

Unexpectedly, the block segment trending east-west across the Hsuehshan 

Range and Central Range displayed increased total slip rate of up to 30 mm/yr 



 

 

81 

 

(Figures 31 and 37). This block segment was included due to necessary block division 

as recommended from previous block models (Ching et al., 2011, Chang et al., 

2016), and did not correspond to any known faults. That is, a change in velocity 

vector direction required subdivision of north Taiwan (Ching et al., 2011). 

Potentially, this increased total slip rate is linked to a broad shear zone. 

While the total slip rate trends (i.e., both modeled and recorded rates) on the 

major faults and structures of interests did correspond in trend, there is overall 

discrepancy. This discrepancy may be a result of examining convergence on different 

timescales (Shyu et al., 2006; Shyu et al., 2016). The modeled total slip rates only 

account for convergence between 2016 and 2021. The recorded total slip rates (Chan 

et al., 2020) are the result of a combination of field investigations and geodetic 

studies. That is, the recorded total slip rates detail millennial rates of convergence 

rather than just a 5-year period. 
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Figure 37. Faults of Taiwan used in the block model construction (CGS, 2012; Shyu 

et al., 2020), and the total slip rates produced from the reference block model. 

 

The reference block model construction of Taiwan with 42 blocks shared 

similarities to that of Huang and Evans (2019). Concerning block model extent and 

evaluation, our reference block model included the entire island, rather than only the 

southwest section, and suggested a decrease in MRV from 3.6 mm/yr (Huang and 

Evans, 2019) to 2.95 mm/yr. The reduction in MRV is likely due to increased data 

points resulting in an updated block model construction and better quality datapoints 

due to a longer observational time period. Both block models expressed similar 
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maximum velocity residuals of up to 10 mm/yr (Huang and Evans, 2019) and 12 

mm/yr. 

Both block models suggested up to 40 mm/yr of general strike-slip motion in 

Western Foothills and increased left-lateral strike-slip motion in the Pingtung Plain. 

The left-lateral motion related to the Pingtung Plain appears to be focused on 

different fault segments for Huang and Evans (2019) and the reference model. 

However, they both suggest a maximum left-lateral motion of ~40 mm/yr linked to 

the tectonic escape.  

 When comparing the reference block model to the TEM PSHA2020, I found 

additional evidence for increased seismic hazard in the Ilan Basin. However, I did not 

find a total slip rate increase in the northern Taipei Basin and the Chianan Basin (see 

Figure 36 for locations). 

In the Ilan Basin, the reference block model suggested an increased total slip 

rate along the Northern Ilan structure and Southern Ilan structure with 20 mm/yr of 

left-lateral and right-lateral motion, respectively. This duality of motion suggests 

rotation and opening of the Ilan Basin. Hu et al. (2001) suggest that the motion is 

likely aligned with divergence given the basin’s proximity to the opening of the 

Okinawa Trough. The reference block model suggested that faults in the Western 

Foothills (i.e, Chushiang structure, 39; Gukeng structure, 40; Chiuchiungkeng fault, 

19) are experiencing an increased total slip rate that is dominantly convergent. 

4.3 Implications: Detected Potential Locked Faults 

Based on the FIG dataset, mean velocity gradients, and 2nd invariant of strain 

rate, I identified three potential active, locked faults in the north and southwest Taiwan 



 

 

84 

 

(Figure 38, 39, 40. Some of these potential faults have been previously identified, but 

they are considered inactive or unconfirmed active (Teng et al., 2001; Huang et al., 

2007). These potential faults each maintain at least three lines of evidence. However, 

to fully confirm the activity of these faults, the following avenues should be explored 

as well: paleoseismological data, further field geology investigations (e.g., outcrops 

displaying faulting behaviors/features), and building structure damage due to fault 

creep. 

 

Figure 38. Evidence for the potential Taipei fault (i.e., Hsindian fault) along the 

southern boundary of the Taipei Basin. The black lines indicate active faults identified 

by the Central Geologic Survey of Taiwan (CGS, 2012). The red lines (solid and 

dashed) represent the potential fault. 
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Figure 39. Evidence for potential Liuchia Fault or extension of the Muchiliao – 

Liuchia Fault (22) between Tainan City and Kaohsiung City in the Western Foothills. 

The black lines indicate active faults identified by the Central Geologic Survey of 

Taiwan (CGS, 2012). The red lines (solid and dashed) represent the potential fault. 
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Figure 40. Evidence for a potential fault between Tainan City and Kaohsiung City in 

the Western Foothills. The southern portion of the potential fault may be a part of the 

Fengshan structure (45). The black lines indicate active faults identified by the 

Central Geologic Survey of Taiwan (CGS, 2012). The red lines (solid and dashed) 

represent the potential fault. 

 

 

Along the southern boundary of the Taipei Basin, I identified the Taipei fault 

as a locked fault because of observed vertical velocity change and increased total strain 

rate accumulation. The Taipei fault has been identified as an inactive reverse fault in 

the southern portion of the basin (Teng et al., 2001; Huang et al., 2007), and poses risk 

to Taipei City: the capital of Taiwan and a populated urban center. Previous studies 

suggest the observed ground motion behavior is a result of groundwater pumping 

inducing soil compaction, aquifer deformation, and general subsidence (Chen et al., 

2007).  Although surface creep along the Taipei fault is observed, I cannot discern 
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whether it is surface subsidence due to groundwater pumping or fault creep. Future 

studies on seasonal variation of surface movement and how it relates to precipitation 

and groundwater discharge data may provide further insight into identifying the cause 

of surface creep. 

The potential locked Liuchia Fault or extension of the Muchiliao – Liuchia 

Fault (22) (Shyu et al. 2020; Chan et al., 2020) and the potential locked fault between 

Tainan City and Kaohsiung City located in the Western Foothills were identified due 

to a sudden east-west velocity change (i.e., change in east-west velocity rate and mean 

velocity gradient) and an increase in total strain rate accumulation. Collectively, they 

pose risk to Tainan City and Kaohsiung City, the 4th and 2nd largest cities in Taiwan. 

The potential Liuchia Fault may be an extension of the Muchiliao – Liuchia Fault (22), 

and, if so, then the Muchiliao – Liuchia Fault with increased horizontal length and 

displacement area would be able to achieve events of different magnitudes and 

frequencies. The potential fault between Tainan City and Kaohsiung City, which is of 

unusual geometry, may be multiple faults, extensions or branches of previously mapped 

faults (e.g., Fengshan structure (45)), and/or reactivations of historic faults. 
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Chapter 5:  Conclusion 
 

Taiwan is at the dynamic center of two rapidly converging plates. As a result, 

the island hosts a complex system of faults with increased earthquake activity that 

provides scientists with a unique natural laboratory to study active tectonics. In the 

past few decades, alongside routine lower magnitude earthquake events, Taiwan has 

experienced notable inland earthquakes including the 1999 Mw 7.6 Chi-Chi 

earthquake and 2016 Mw 6.4 MeiNong earthquake. Both events left an immense trail 

of destruction. Therefore, it is important to understand the fault and structure systems 

of the island, past and present crustal deformation velocities, and the consequences of 

slip budget deficits on individual faults.  

 Combining the capabilities of GNSS and InSAR, I can more clearly define 

interseismic crustal deformation of Taiwan. Together, these geodetic techniques 

produce high accuracy velocities with high spatial resolution (i.e., mm-scale). The 

final InSAR and GNSS dataset (i.e., FIG dataset) reveals up to 60 mm/yr of westerly 

motion in east Taiwan due to the northwestward collision of the Philippine Sea Plate 

into the Eurasian Plate, (ii) up to 40 mm/yr of northly motion along the Longitudinal 

Valley fault due to collision and up to 25 mm/yr of southerly motion in southwest 

Taiwan due to tectonic escape, and (iii) up to 40 mm/yr of subsidence in west Taiwan 

due to water pumping and up to 20 mm/yr of uplift in central Taiwan due to 

collisional mountain-building events.  

Using these interseismic velocity estimates, I perform a deformation rate 

analysis that suggests increased deformation from both dilatation and maximum shear 

along the Longitudinal Valley fault and within the Western Foothills. The 2nd 
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invariant of strain rate highlights regions of greatest total stain rate accumulation and 

potential locked faults. 

The error analysis improves confidence in the study and its progressions. 

Misfit values from the inverse problem used to determine the best-fitting model of 

each InSAR pixel and interpolated GNSS throughout time produce average values of 

3 mm/yr and maximum values of 10 mm/yr. Uncertainty values estimated during the 

transformation from LOS to 3-D deformation produce average values of 3 mm/yr and 

maximum values of 10 mm/yr. To improve data interpretation, I used an exponential 

model to simulate atmospheric noise structure in Taiwan from a region without 

known active faulting. I found that surface deformation features with a wavelength of 

~2.8 km could be interpreted as a tectonic signal. 

By applying the calculated interseismic crustal deformation velocities and 

deformation rate analysis observations to block model construction and analysis, I 

determine a reference block model identifying 42 unique blocks with an MRV of 2.95 

mm/yr. The reference model suggests total slip rates along faults and structures 

throughout all of Taiwan. I can interpret these total slip rates to forecast localities, 

faults, and structures with increased seismic hazard. However, this type of model 

does not consider fault slip deeper than the main detachment of Taiwan. As a result, 

this earthquake hazard model cannot account for deep events such as the 2010 Jia-

Shian earthquake and the 2016 MeiNong earthquake. 

Future work involves combining the geodetic data (i.e., slip deficit 

accumulation rate) of this study with the Gutenberg-Richter Relationship of Taiwan 

(i.e., interseismic seismicity rate) to determine the maximum anticipated earthquake 
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for Taiwan. Additionally, extending block modeling capabilities to include vertical 

velocity observations will be of interest as Taiwan experiences both substantial 

horizontal and vertical motions.  
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