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Abstract

The Householder transformation is considered to be desirable among various unitary transfor-
mations due to its superior computational efficiency and robust numerical stability. Specifically,
the Householder transformation outperforms the (Givens rotation and the modified Gram-Schmidt
methods in numerical stability under finite-precision implementations, as well as requiring fewer
arithmetical operations. Consequently, the QR decomposition based on the Householder transforma-
tion is promising for VLST implementation and real-time high throughput modern signal processing.
In this paper, a recursive complex Householder transformation with a fast initialization algorithm
is proposed andv its associated parallel/pipelined architecture is also considered. Then, a complex
Householder transformation based recursive least-squares algorithm with a fast initialization is pre-

sented. Its associated systolic array processing architecture is also considered.
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1 Introduction

In recent years, there has been considerable interests in mapping QR decomposition (QRD)
algorithms onto systolic arrays. One motivation is that recent developments in VLSI tech-
nology make it possible to build a multiprocessor system on a chip. Another reason is that
many real-time signal processing applications require both a high throughput rate as well as
superior numerical accuracy. Therefore, the need of finite precision computations in VLSI
systems has involved the use of numerical analysis techniques in modern signal processing.

The QRD approaches for recursive least-squares (RLS) problem have played an impor-
tant role in adaptive signal processing, such as adaptive beamforming, adaptive equalization,
adaptive spectrum estimation, etc. One of the reasons is the robust numerical stability in
these implementations since the rounding errors caused by finite word length effects will
not be accumulated in using the QR-RLS approaches. Another reason is that QR-RLS al-
gorithms can be mapped efficiently onto systolic arrays which are promising candidates for
high speed real-time signal processing applications and VLSI implementations. Basically,
there are three approaches to the QR-RLS problem: namely, Householder transformation,
Giivens rotation method, and the modified Gram-Schmidt method. The Givens rotation
method can also be considered to be a special case of the Householder transformation [1].

Systolic array implementations for QR-RLS algorithms have been explored by numerous
researchers. Gentleman and Kung [2] first introduced the linear least-squares (LS) problem
based on the Givens rotation method with systolic array implementation to derive the
optimal weights. Their method for the LS computation consists of two steps based on the
orthogonal triangularization and the backward substitution. Step one was carried out on
a triangular systolic array for the QR decomposition and step two was implemented on
a systolic linear array for the back substitution. However, the triangular systolic array
runs from the upper-left corner to the lower-right corner of the array, while the back solve

systolic array runs in precisely the opposite direction. Although Gentleman-Kung’s systolic



architecture is not fully pipelined between the two modules, it was the pioneering work on
the systolic array implementation for the LS problem. McWhirter [3] then showed that the
Givens rotations based RLS algorithm can be implemented efficiently on a single systolic
array for directly computing the residual without the need of the backward substitution
array. The resulting Givens based-RLS array is both fully parallel and pipelined. Other
results on systolic Givens rotation [4, 5, 6] and systolic Cholesky decomposition [4, 7] are
known. Independently, Ling et al. [8] and Kalson and Yao [9, 10] proposed recursive
modified Gram-Schmidt (RMGS) algorithms for LS estimations as well as fully pipelined
architectures for computing the residuals. Qther systolic array implementations for QR-RLS
algorithms have also been explored [11, 12, 13, 14, 15].

Until recently, most of the systolic array implementations for the QR-RLS algorithms
have been based on the Givens rotation and the modified Gram-Schmidt methods. Recently,
the general problem of designing algorithms based on the Householder transformation (HT)
and its associated systolic architectures has been considered [17, 18, 19, 20, 21, 22]. In
[17], Johnsson proposed a computational array for the complex householder transforma-
tion. Unfortunately, his computational array involves the globe communication instead of
the neighbor communication as systolic array does. In [18, 19], the applications of House-
holder transformation to signal processing are introduced. Rader and Steinhardt pointed out
in [18] that by applying the QR methods to sidelobe canceller, the complex HT not only has
the lowest SNR loss under the finite wordlength effects but also is the least expensive com-
putationally. It has been shown that the H'T generally outperforms the Givens rotation and
the modified Gram-Schmidt methods under finite precision computations [17, 18, 21, 22, 23].
It is also known that the Householder method requires less computation than the Givens
and modified Gram-Schmidt methods. In [20], Cioffi introduced the fast Householder-RLS
adaptive filter but it seems difficult to implement this algorithm in parallel form. Most re-
cently, algorithms and architectures for the systolic block HT based RLS (SBHT-RLS) have

been presented in [21, 22]. However, in many practical signal processing applications, we



need to deal with complex-valued signals. Therefore, in this paper, we develop complex HT
versions of the above HT systolic algorithms and architectures for real-time high through-
put modern signal processing applications. Furthermore, as compared to the SBHT-RLS
method, the systolic architecture for the complex HT based RLS (CHT-RLS) algorithm
developed in this paper saves (N — 1)M units in computation time for obtaining the first
residual vector, where N is the number of sensors and M is the block size. More precisely,
the residuals can be obtained immediately from our CHT-RLS systolic architecture when
an N x N data block is received by the sensors, while an NM x N data block is needed
in [21, 22]. In this proposed systolic architecture, the number of data snapshots needed for
the initialization and the block size M for the recursive updating are controlled by simply
sending the control code into the boundary cells and it can be changed readily by sending
another control code into the cells.

This paper 1s organized as follows. Section 2 consists of a complex Householder trans-
formation algorithm and its associated systolic array processor [15, 16]. We begin with
the development of a systolic complex Householder algorithm which is programraable to
handle both the initialization and recursive computations. Then we introduce the sys-
tolic architectures for the parallel complex Householder algorithms. A two-level pipelined
implementation of the complex Householder transformation is also considered. Section 3
consists of a CHT-RLS systolic algorithm and its systolic array implementation [16]. First,
a systolic algorithm for CHT-RLS with fast initialization is described. Then, the systolic
array processor of the CHT-RLS systolic algorithm is proposed. Section 4 consists of some
discussions on the application of the CHT-RLS array for sidelobe cancellation. Finally, the

Conclusion is given in Section 5.



2 Systolic Algorithms and Arrays for Complex Householder

Transformation

In many signal processing applications, a numerically stable and efficient approach for per-
forming the QRD is needed. There are many schemes to perform such a decomposition,
e.g., Givens/modified Givens, Householder, and Gram-Schmidt/modified Gram-Schmidt.
Of particular interest in this paper is a sample-by-sample form of the Householder orthog-
onalization technique. Since in many applications of signal processing, the observed data
matrix is complex, it is necessary to consider the complex case of the Householder trans-
formation. We assume X is a observed complex data matrix and let £ be the number of
snapshots and N be the number of sensors. The initialization is needed for k less than
or equal to N since the upper triangular matrix is still not available and the recursive

computation can be started only when there are more than N data snapshots.

2.1 Systolic Complex Householder Algorithm

The following Lemma shows how a Householder transformation can be applied to a column
vector 2 to zero out all elements except the first one. First a column vector u i1s defined
from a given column vector z, then the complex Householder transformation B is computed
from the defined column vector u, and finally the elements below the first element of the
given column vector z are zeroed out by applying the computed complex Householder

transformation to it.

Lemma [1]

Suppose z = [z1,...,2x]L € CF and that z; = lz1]e?? with 6§ € R. Assume z # 0
and define u = 2 + e/%||2||2e1 where 17 = [ 1 0 - 0 ] Then the k£ x k complex

Householder transformation B defined as

[\



is unitary and Bz = —839||§|I26_1 where H is the complex conjugate transpose.

2.1.1 Initialization

CN*N can be achieved by a sequence of Householder

The factorization of a data matrix X &
transformations [21, 22] which produces a unitary N x N matrix @) and an upper triangular
matrix R such that

X =Q"R,

with X = | »

2y 2y zx |- The algorithm for applying successive Householder trans-

formations to triangularize a given N x N complex observed data matrix X can be described

as follows. Let
Q@ =QnN_1 Q2 (1)

be a sequence of Householder transformations applied to .X where @; is an N x N complex

Householder Transformation matrix of the form

Licixi-n = 0
Q; = B N for i=1,--- N — 1, (2)

0 B;

where B; € CIN=iH+1x(N=i+1) {5 unitary matrix given by

2
B =1- ul? 3
i H{-jﬁiﬂzﬁz ) ( )
and u; is defined as
T : ]

i [ zilti) + "Wl lly wi(tip) - wltn) (4)

for LT = [ ety - m(ty) ] and the phase 6;(t;) is given by

. z; (1)
8;(1;) = —jlo - .



As a result, applying a sequence of Householder transformations @; to the data matrix X
can be described in two parts. First, for each 1 = 1,.-., N — 1, we apply a Householder

transformation to 2; and obtain

(BIQz)T: rii 0 - 0],

for i=1,2,-.- N -1, (5)

where r;; = —6'70‘(t‘)l|£il|2~

Define a scalar parameter A as

2
ull
-1

L

A= = (il (lz:ll2 + 2 )T (6)

When, the same Householder algorithm B; is applied to the remaining N —1 column vectors
_@{ = | zp(t;) -+ zi(ty) | € CN=1 for k =i+1, -, N, the new set of column vectors
can be obtained as

By = — duul’ zp = 2, — o, (7)

where o is a scalar parameter given by
H H —70:(t
o = Auflzy = Mafle, + 2i(ti)e 7O lzy),

and

zr(ti) — aay(t;) 4+ ary

z1.(¢; — ox;(t;
By, = k(tit1) ' (tit1) | for k=it1- N (8)

zp(tn) — axi(tn)

According to the above procedure, after applying Q; to X, the first column of Q;X is
zeroed except for the first element. The second column of @2@1.X is zeroed from the third
component to the Af —th when a chosen (N —1) x (N —1) unitary matrix By is applied to the
(N —1)x (N —1) lower right submatrix of @1.X. It is obvious that 2@ X has zeros below

the diagonal in both the first two columns. Continuing in this way, the data matrix X can

=1



be transformed into an upper triangular form by applying N — 1 unitary transformations
to it. It is well known that the number of arithmetical operations gradually decreases in
each of the subsequent Householder transformations.

2.1.2 Recursive Complex Houscholder Algorithm

The triangular matrix R can be updated by employing unitary Householder transformations

P, so that
BR _ R | )
X 0
i 1y T2r ¢ TN1 ]
where R = 0 7?2 7)]?72 C N =2 oz, zy |, P represents a sequence
0 0 <+ NN |

of complex Householder transformations used to zero out the new complex M x N data
matrix X, and § is the forgetting factor. The sequence of Householder transformations to

update the triangular matrix R is given by
P=PNPy_1- PPy, (10)
where an (M 4+ N) x (M + N) complex Householder transformation P; has the form
Liaxicn 0 0
P = N for i=1,2,--- N, (11)
0 . B;

where B; € CWMHAN =i+ )X (MAN~i+1) g 5 unitary matrix given by

¥

2
B, =1- UHU.EM{{' (12)

. !
When given a column vector z; of the form

"

z; = | Brii 0 o 0 z(t;) - xiltar) | (13)



u; can be defined by

T ; '
u = | Brotei®allzills 0 - 0 wi(t) oo @i(ty) ] (14)
where 6, is a real parameter given by 6, = —j loge]%[. Therefore, the Householder

transformation B; is readily available as

Hlxl 0 HlxM
Bj = 0 © o INcixN—i 0 ! (15)
i Huare1 0 © o Huxm ]

where Hyxy = 1 — X(B%rfry; + ||1:H% + 2ﬁ|7’ii|||£;”‘2),
Hyxar = —=A(Brii + /% | |2 |2)2!,

Hyxi = =A(Bry; + e 70 |agll2)a;,

1l

Hyison = T = Axgzll

and

2 , ,
A= ;HT- = (Hl“.z”l(”i.zllz + /3'7““'[))“1‘ (16)

. ! . . . . .
Given a column vector z; described in equation (13), a Householder transformation applied

to this matrix gives

13

Jor i=12,... N, (17)

’ N 1 . . .
where r;; = —ed®ni||2;||;. When the same Householder transformation is applied to the rest

of the column vector 1; with

1T

Zp =1\ Bry, -+ Bry 0 .o 0 Sﬂk(ti) :Ek(t]VI) ’

<o



the new set of column vectors can by obtained by

1
Brik — ary; + ary

Brizik

Brik
, 0

Bjz), = . , for k=i41... N, (18)
0

xp(ti) — azi(t;)

zp(tar) — axi(ty) |

. . / tH 4 1%
where « 1s given by o = ’\EiHﬁk = Mz, =z, — Brivie).

It is apparent that the upper triangular matrix can be updated by applying a sequence
of N Householder transformations. It is also known that the number of data to be zeroed
1s the same for each of the N Householder transformations at updating procedure while the

number of data to be zeroed is reduced at initialization.

2.2  VLSI Array Processors Implementation

The parallel complex Householder algorithms with initialization have been presented so far.
We now consider the issue of VLSI systolic implementation. Figure 1 shows the boundary
cell and internal cell of the systolic recursive Householder transformations. The operation
of the boundary cell is given in Table 1 and that of the internal cell is described in Table 2.
Based on the initialization procedure described before, the block size is decreasing such that
only N data rows are needed to obtain the first upper triangular matrix K. For the systolic
array implementation, a control code to change the block size is sent down to the boundary

cells as illustrated in Figure 3.
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Figure 2 illustrates the operation carried out by a given pair of boundary and internal
cells. The data flow from the boundary cell to internal cell is pipelined sample-by-sample.
The boundary and internal cells operate as follows. In the boundary cell, the previous data r
stored in the processor element is sent to the internal cell first, then the input data z received
is accumulated and added, and also sent to the internal cell. According to Table 1, the newly
updated data r which replaces the previous » is also sent to the internal cell. The data flow
and computations in both processor elements are fully pipelined down to the word level to
update the previous data and to produce the output data y to the next cell. A similar two-
level pipelined architecture for the modified HT algorithm [24] is given in [22]. The two-level
pipelined architectures for the conventional and modified Householder transformation have
some similarities as well as differences. Compared to the two-level pipelined architecture
shown in [22], the architecture based on conventional Householder transformation described
in Figure 2 requires one more multiplication and addition computation than that of the
modified Householder transformation. The similarity between the two architectures is that
both are fully pipelinable at the vector and word levels. The triangular systolic architecture
for the parallel complex Householder algorithm is shown in Figure 3.

In adaptive antenna and radar applications, the period of updating the optimum weights
is significantly larger than the actual computation time [26], and the two-dimensional sys-
tolic array processors can be reduced into one-dimensional systolic array processors by
employing a simple feedback configuration as illustrated in Figure 4. The one-dimensional
linear architecture using the feedback configuration and the two-dimensional triangular
architecture require their own local memory and some minimal control circuitry and pro-

grammable capabilities.

11



Initialization :  Recursive :
ro— z(t) el = ]

eIt — ﬁ-[ s+ 0

s— 0 for i =0,M;,

for i =1, M,
w(t;) —r

s — § 4 r¥r
r—a(tiy1)
end

v — 5
——
A—o(o+|r])
w(lar, 1) — 7

Mot — Min — 1

w(t;) —r

§— s+ 1r*r
r—2(tiy1)
end

o5

r— —ellrg

A —o(o+ Blr])
w(tar, +1) — T

Moy — My

12

Table 1: The Algorithm for the Boundary Cell of Complex Householder Transformation




Inttialization : Recursive :

(M +1) — —2(t1) (I, +1) — =T

s 0 s—0

for i=1, My, +1 For i=0,My+1

s — s+ w*(t;)z(t;) s — s+ w(t)r

end re—x(tit1)

@ — 3 end

re— —e(tm,,41) — aw(ty) + aw(iag,+1) o — %

for i=2 M r e —Br(ty, +1) — aw(to) + cw(tar,, +1)

y(ti) — z(t) — cw(ts) for i=1,M

end y(ti) — x(t:) — aw(ti)
end

Table 2: The Algorithm for the Internal Cell of Complex Householder Transformation
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3 Systolic CHT-RLS Algorithm and Architecture

In this section we consider the solution of the RLS problem based on the systolic CHT-LS

derived above. Assume the observed data and the desired data are received by N + 1 sensors

of an adaptive array system for time period of m snapshots. Then, the k x N observed data

matrix and the k x 1 desired data vector are given by

z7(t1)

T
X1k =|F (2)

2T (ty)

and

y(t1)

y(t2)

L y(lx)

The LS residual vector is given by
e(l:k)=X(1:kw(k)—y(l:k),

where the weights for each of N sensors are

| wi (i) ]
wiiy= | ]
| wn(tk) |
and the residual vector is
(k) = efty) eta) - elts)

The optimal weight vector w,,,(k) minimizes the quantity

FE(l:k)=

14

N1 k)e(k) — y(L: k)lla.

(19)

(20)

(21)

(22)

(23)



The solution to this minimization problem is

Wope (k) = (XL R)X (1 k)X (1 k)y(L: k). (24)

3.1 Systolic CHT-RLS Algorithm

The approach described in (24) is generally known as direct sample matrix inversion (SMI)
method. It is well known that the classical SMI method, may sometimes lead to undesirable
numerical characteristics due to ill-conditioned matrices. This means that an extremely
high arithmetical precision is required when employing the SMI method. To alleviate such
roundoft sensitivity caused by the SMI method, the QR decomposition deserves serious
consideration. In this section, we introduce the CHT-LS algorithm to compute the residuals.
In this algorithm, as before, the initialization is performed when k, the number of data
snapshots, is less than or equal to N, and the recursive computation is started when there

are more than N data snapshots.

3.1.1 Initialization

The initialization procedure for the complex Householder transformation to form the upper
triangular matrix requires only N data snapshots. The factorization of a data matrix

Vo

X(1: N) e CNXN described in the last section can be achieved by a sequence of Householder
transformations [21, 22] and produces a unitary N by N matrix @Q(N) and an N x N upper

triangular matrix R(N) such that

X(1:N)=QH(NYR(N), (25)
where X(1: N) = ﬁT(tl) 2T (ty) - ET(f'N) . The LS residual vector for the initial-
ization procedure is

e(l:N)y=XN(1: N)w(N)—y(l:N). (26)

15



Therefore,

E(:N)

IQN)X(1: Naw(N) = Q(N)y(1 : N2

= JJR(N)w(N) = u(N)|f- (27)
Since Q(N) is unitary, according to (27), the optimal weight vector is given by

R(N)ﬂopt(N) — L‘(N) =0 (28)

3.1.2 Recursive Updating

Given a k x N matrix X(1: k), where k > N, a k x k unitary matrix @(k) can be generated

such that

X(1: k)= QM (k) Rk) , (29)

0

where R(k) is an N x N upper triangular matrix. The LS residual vector is
e(1: k) = X(L:k)w(k) —y(1:k). (30)

The CHT-RLS algorithm is formulated to derive the optimal weight vector by minimizing

the following quantity

E(l:k)y = [|QMR)X(1:kw(k)—Qk)y(l : k)2
R(k) u(k
= |l | w(k) - *) Iz, (31)
0 v(k)

where Q(k) can be partitioned into Qq(k), a N x k matrix, and Q2(k), a (k— N) x k matrix,

as

k.
Qk) = @t : (32)
Q2(k)

and u(k), a N x 1 vector, and v(k), a (k — N) x 1, vector are defined by
Qu(kyy(1: k) = u(k), (33)
Q2(k)y(1 : k) = w(k). (34)

16



To minimize the quantity E(1 : k), the optimal weight vector obtained from (31) has the

form as
R(k).l_u.opt(k) - i‘.(k)a (35)

Then, substituting (29) and (35) into (30), the residual vector is given by

(1 k) = ’ . (36)
—Q2u(k)

Therefore, the residual vector for the LS problem is
PN + 1) k) = —QF u(k). (37)

When a new M x N data block is received by an adaptive array system, the observed

data matrix becomes

X(1:k
X(1:(k+ M) = L) , (38)

X((k+1):(k+ M))

and the desired data vector is given by

1:k
u(L: (k+ M) = y(1:k) , (39)

(k1) 2 (k4 M)

The new (k 4+ M) x (k 4+ M) complex Householder transformation Q(k 4+ M) is defined as

QUk + M) = P(k + M)Q(k) (40)
where Q(k) is given by
_ & 0
k) = Qk)
0 Iamxm

The desired HT P(k + M) described in [21, 22] for updating the upper triangular matrix

has the form

Hyi(k+ M) 0 Hyo(k + M)
Pk + M) = 0 L= N)x (k=) 0 , (41)
f[gl('lc—l—f\f) 0 Hzg(k—l—M)



where Hyy(k + M) is an N x N matrix, Hyo(k + M) is an N x M matrix, Ho(k+ M) is
an M x N matrix, and Ha(k + M) is an M x M matrix.
Applying Q(k) € CIN+MIX(N+M) 44 the (k+ M) x N data matrix X (1 : (k+ M)), gives
BR(k)
Qk)X(1: (k+M)) = 0 . (42)
X((k+1):(k+ M))
Therefore, the N x N upper triangular matrix R(k + M) can be updated by employing the
new unitary HT Q(k 4 M) which has the form
BR(k)
Q(k + MYX(L:(k+ M) = Plk+ M) 0
X((k+1):(k+ M)
R(k + M)
0 ; (43)
0

where R(k + M) = Hy(k+ M)BR(k) + Hia(k + M)X((k+ 1) : (k+ M)).

The procedure for applying the updated CHT to the desired data vector y(1 : (k+ M))
is the same as that described for the observed data matrix. First, applying Q(k) to the
desired data vector y(1: (k + M)), we have

Bu(k)
QURYy(1: (k+ M) = Buk) . (44)
y((k+1): (k+ M))
Then, by employing the new unitary HT Q(k+ M) to the desired data vector y(1: (k+M)),

we have

Bu(k)
QUk+ M)y(1: (k+ M)) = P(k+ M) Bu(k)

y((k+1): (k+ M))



u(k + M)

= : (43)
v(k + M)
where u(k + M) = Hyi(k + M)Bu(k) + Hia(k + M)y((k + 1) : (k + M)),
Bu(k
a(k + M)
and  a(k + M) = Hay(k + M)Bu(k) + Hop(k + M)y((k+ 1) : (k+ M)).
The residual vector for the RLS problem is
e(l:(k+M))=X(1:(k+M)wk+M)—-y(:(k+ M)), (46)
and by the definition
E(1:(k+ M) = [|X(1:(k+M)wk+ M) —y(1:k+ M)
Rk + M) u(k + M)
= | wlk + M) — |l2- (47)
0 v(k + M)
To minimize the quantity E(1: (k + M)), the optimal weight vector is given by
Rk + M)w,,,(k + M) = u(k + A). (48)
Then, substituting (48) into (46), the optimal residual vector becomes
R 0
e(1:(k+ M) = : (49)
—QF (k + M)u(k+ M)
Therefore, the optimal residual vector for the time period from ¢ty to tgps is
AN+ (k+ M) = —QM(k+ Mvk+ M)
Pu(k)
= —QF(k+ M) : (50)
a(k + M)

19



The new CHT Q(k + M) has the form

| Qu(k + M)
| Qulk+ M)

Qk+M) =

Hy(k + M)YQu(k) Hiz(k+ M)
= Q2(k) 0 : (51)
i Hay(k + M)YQu(k) Haa(k+ M)

Accordingly, Q2(k + M) has the form

Q2(k) 0
Qalk + M) = _ (52)
Hay(k + M)Qq(k) Ha(k+ M)
Substituting (52) into (50), we have
e((N +1): k)

e((k+1): (k+ M)

I

(N +1): (k+ M)) (53)
QY (k) Buk) + Qf () HI (k + M)k + M)
HI(k + M)a(k + M)

where the most current optimal residual vector €((k + 1) : (k 4+ M)) during the time period

from tg4; to tyyar is given by
e((k+ 1) : (k+ M)y = —HE(E 4+ M)a(k + M), (54)

with

N .
1l =TT 1 (59
i=1
and HJ(\’?xM is given in (15), 7 denotes the it Householder transformation, and

e(thpr/(thgr : tegenr))

{1y, t A
ek 1): (k4 M) = e(trga/( kJ'r1 kM) | (56)

| e(tepar/(egr s trpnr)) |

20



Compared to the SBHT-RLS algorithm in [22], our CHT-RLS algorithm saves (N —1)M
computation time in the initialization. Compared to McWhirter’s GR-RLS algorithm, our
algorithm has better estimation of the residuals since the CHT-RLS algorithm uses the
entire data block to compute the residuals [22]. Thus, more data information is used for
CHT-RLS than GR-RLS to compute the residuals. Specifically, from (56), it is seen that

the data block at time from t441 to tg1ar is used to derive the residual at each time instant.

3.2 Systolic Array Implementation

The parallel CHT-RLS algorithm with fast initialization has been presented so far. We now"
constder the issue of VLSI systolic implementation. The systolic architecture for the parallel
CHT-RLS algorithm is shown in Figure 5 which is able to obtain the residual immediately.
However, it needs matrix-matrix multiplications in the boundary cells for which a large
transmission bandwidth is required. Therefore, in Figure 7 a backward propagation array is
added mto the Figure 5 to avoid the matrix-matrix multiplication and be replaced by vector-
vector multiplication as pointed out in [22]. In Figure 7, the delayed buffers are needed for
each row to temporarily store parameters for vector multiplication. The boundary cell,
internal cell, and the final cell are illustrated in Figure 6. The systolic algorithm for the
boundary cell of the CHT-RLS system is shown in Table 3, the algorithm for the internal
cell is shown in Table 4, and the algorithm for the final cell is described in Table 5. For the
boundary cell described in Figure 5, it requires 2A4? 4 M multiplications, M?* 4+ M addition,
and one square root, while for the boundary cell described in Figure 7, it only requires 2M
multiplications, M additions, and one square root where M is the block size. The internal
cell shown in both figures requires 2M + 5 multiplications and 2M + 1 additions. The
total counts of the whole systolic array has no meaning for parallel processing, since all
the processor elements are computing at same time. It is useful to compute the maximum
number of operations needed [or each snapshot. For each snapshot, including boundary and

internal cells, it requires 2AM + 5 multiplications and 2M 4 1 additions.
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Initialization :  Recursive :
ro—x(ty) elfr :|~:—|

et = ﬁ—[ s —0

s« 0 for ¢ =0, M,

o5

ro— —ellrg
A—o(o+]|r])
W(tad, 1) —

Moyt — My — 1

wty) —r
s—s+r'r

P — 2{ti)

end

o— s

e —elbrg

A —o(o+Blr])
w(tar,,+1) — T
Mo — M,

Hypenr = Inxnr — Azizl!

Yout = 7i71H1\/1XM

Table 3: The Algorithm for the Boundary Cell of Systolic CHT-RLS
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Initialization :

Recursive :

(tMyp+1) — —2(t1)
s—0
for i=1, My, +1

s — s+ w*(t;)e(t;)

end

o3

re— —z(la,,+1) — aw(ty) + aw(tag, +1)
for i =2 M

y(t:) — 2(t;) — cw(t;)

end

2(tMpt1) — =7

s —10

for i=0,MHym+1
5 — s+ w*(t;)r
re—2(tiy1)

end

o}

r— —Ba(tar,,+1) — cw(to) + aw(ta,,+1)

for i=1M
y(t:) — 2(t;) — aw(ti)
end

Cable 4: The Algorithm for the Internal Cell of Systolic CHT-RLS

Lout = YLout

Table 5: The Algorithm for the Final Cell of Systolic CHT-RLS
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4 Application to Array Processing

Adaptive arrays are currently the subject of extensive investigations for suppressions of
the sidelobe interferences or jamming signals in many military radar, communications, and
navigation systems [5, 6, 15, 25, 26, 27]. A modern adaptive array system is required
to have rapid convergence, high cancellation performance, operational flexibility, and also
be capable of achieving high throughput rate for real-time signal processing. For those
applications it is suitable to build an open-loop recursive QRD-based systolic array system.
Compared to the conventional adaptive array system, the QRD-based systolic array system
not only improves the numerical accuracy but also increases the computational speed for
updating the input signals. There has been much recent research work in designing QRD-
based systolic arrays for sidelobe cancellation and adaptive antennas. However, most of the
work have been based on Givens and modified Gram-Schmidt methods. Only until recently,
systolic Householder-based RLS algorithm has been considered [21, 22]. In Figure 8, we
propose a block diagram for sidelobe canceller. The sidelobe cancellation technique is
employed to suppress the sidelobe interference and noise by subtracting the estimate from
the radar main channel output. It is easy to see from Figure 8 that the output at the ith
snapshot can be expressed as

e(iy = 3 miiywr — yli), (57)

=1

and the matrix form expression which is the same as (21) is given by
e(n) = X(njw(n) — y(n). (58)

Therefore, the CHT-RLS systolic algorithm and architecture described in Section 3 can be
directly applied to sidelobe cancellation and adaptive antennas to achieve high throughput

rate and high speed requirements of real-time signal processing.
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5 Conclusions

In this paper, a recursive complex Householder algorithm with a fast initialization which can
be programmed for both initialization and recursive computation is presented. Then a CHT-
RLS algorithm with a systolic array processor is also proposed. Compared to the recursive
block Householder algorithm described in [21, 22], the complex Householder algorithm saves
(M —1)N units of computational time for the initialization of the upper triangular matrix. In
our proposed systolic architecture, the number of data snapshots needed for the initialization
and the recursive updating is controlled by control codes that can be changed readily. Our
CHT-RLS systolic architecture can be considered to be a generalization of McWhirter’s
QRD-RLS systolic array since it is well-known that Givens rotations is a special case of the
Householder transformation [1]. The two-level pipelined implementation of the conventional
HT has been developed. Similar to the two-level pipelined implementation based on the
modified HT [22], the proposed scheme is also fully pipelinable. However, it does require
one more multiply-and-add operation. The algorithm and architecture described in this
paper appear promising for real-time array processing applications and VLSI hardware

implementations.
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