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The incoming speech stream contains a rich amount of temporal information.  In 

particular, information on slow time scales, the delta and theta band (125 – 1000 ms, 1 – 

8 Hz), corresponds to prosodic and syllabic information while information on faster time 

scales (20-40 ms, 25 – 50 Hz) corresponds to feature/phonemic information.  In order for 

speech perception to occur, this signal must be segregated into meaningful units of 

analysis and then processed in a distributed network of brain regions.  Recent evidence 

suggests that low frequency phase information in the delta and theta bands of the 

Magnetoencephalography (MEG) signal plays an important role for tracking and 

segmenting the incoming signal into units of analysis. This thesis utilized a novel method 

of analysis, Mutual Information (MI) to characterize the relative information 

contributions of these low frequency phases.  Reliable information pertaining to the 



stimulus was present in both delta and theta bands (3 – 5 Hz, 5 – 7 Hz) and information 

within each of these three sub-bands was independent of each other.  A second 

experiment demonstrated that the information present in these bands differed 

significantly for speech and a non-speech control condition, suggesting that contrary to 

previous results, a purely acoustic hypothesis of this segmentation is not supported.  A 

third experiment found that both low (delta and theta) and high (gamma) frequency 

information is utilized to facilitate communication between brain areas thought to 

underlie speech perception.  Distinct auditory/speech networks that operated exclusively 

using these frequencies were revealed, suggesting a privileged role for these timescales 

for neural communication between brain regions.  Taken together these results suggest 

that timescales that correspond linguistically to important aspects of the speech stream 

also facilitate segmentation of the incoming signal and communication between brain 

areas that perform neural computation. 
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General Introduction 

Speech perception requires the transformation of a continuous acoustic waveform 

into segmented units of analysis that can be processed throughout the cortex.  This is a 

particularly difficult problem as the input speech stream does not come pre-segmented 

(VanRullen & Koch 2003), nor is it obvious once segmented how the coordination of 

computations in different brain areas occurs. 

Work from the animal literature can offer insight into plausible mechanistic 

explanations for both the parsing and the temporal dynamics of the network that underlie 

speech perception specifically and sensory perception/cognition more generally.  

Neuronal oscillations is a strong candidate for processing of this type of information 

because of its emphasis on the temporal aspect of operation and its ubiquity in the 

mammalian nervous system (Buzsáki & Draguhn 2004).  Neuronal oscillatory 

phenomena offer an energy-efficient mode of processing that can both temporally 

segment an incoming continuous signal as well as dynamically coordinate neuronal 

operations throughout the brain.   

Models of both sensory-input processing and network coordination come from 

computational work (Shamir et al. 2009, Wang 2010) as well as the animal literature 

(Laurent 2002, Lakatos et al. 2005).  Incoming signals are processed in preferred phases 

of the underlying neuronal ensemble dynamics.  This coordination offers a mechanistic 

explanation that links the incoming sensory input to both the underlying processing and 

the coordination of network dynamics that sub serve these computations.  It is therefore 

reasonable to assume that there is a strong relationship between how the temporal 
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dynamics of the parsing of the incoming sensory signal and the subsequent coordination 

of network dynamics that underlie the processing and computation of these signals.  

One candidate macroscopic mechanism for the parsing of the input signal is that 

low frequency portions of the neural signal track the slow amplitude fluctuations of the 

speech stream (Luo & Poeppel 2007, Abrams et al. 2008).  These fluctuations (the 

envelope) correspond acoustically the peak of the modulation transfer function of the 

speech signal and linguistically to the average length of the syllable, making it an ideal 

candidate for linking purely acoustic features of the input signal with higher-order 

cognitive representations (Greenberg 2006, Greenberg et al. 1996). 

The nature of the low frequency components of the neural signal that are 

purported to be responsible for the segmentation of the input acoustic signal is unclear.  

Previous work using magnetoencephalography (MEG) initially proposed an envelope 

tracking mechanism (Luo & Poeppel 2007).  Mechanistically, the hypothesis was that 

endogenous oscillations within the theta band (4 – 8 Hz) reset to the acoustic transitions 

of the onsets of the envelope.  This is in keeping with both EEG work (Abrams et al. 

2008) and evasive single-unit recordings in macaque (Lakatos et al. 2005).  A later 

hypothesis suggested that this response was simply the convolution of the evoked N1-P2 

complex, an auditory onset response that is responsive to sounds onsets in general rather 

than slow amplitude fluctuations specifically (Howard & Poeppel 2010).  The genesis of 

this response was therefore not the phase reset of endogenous oscillations but rather 

canonical onset responses responding to acoustic transients in the input signal.  The 

response peaked within the theta band because of the duration of the onset response itself, 

rather than the temporal aspects of the salient components in the signal.  It is important to 
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note however, that these two aspects could work in tandem: if the acoustic landmarks of 

the input are in tune with the duration of the onset response, this would presumably lead 

to an ‘ideal’ relationship between the input and the neural response. 

More recent work using audio-visual stimuli (Luo et al. 2010) has demonstrated 

that this response extends into the delta band (1 – 3 Hz).  Linguistically, information on 

this timescale corresponds to supra-segmental features and prosodic information.  It is not 

clear however, how this finding would relate to the second hypothesis about the genesis 

of this response, as the N1-P2 complex is more transient that the timescale that low end 

of the delta response (1 Hz) would account for. 

Work in the animal literature may shed some light on the low-level mechanistic 

features of this signal. Elhilali and colleagues (2004) have proposed that the preference 

for tracking low frequency envelope features (< 20 Hz) in the cortex is due to synaptic 

depression between monosynaptic connections between the Medial Geniculate Body 

(MGB) of the thalamus and primary auditory cortex that enables the cortex (exclusively) 

to track slower, more salient features of the input – the envelope.  In this way, they 

propose that the envelope acts as a gating mechanism for the analysis of the fine 

structure, which is analyzed in short phasic bursts that last for approximately 100 ms 

(Elhalali et al. 2004).  This allows for both a segmentation of the input signal as well as a 

mechanistic component that ensures that tracking of the fine structure does not exceed its 

adaptation duration. 

What remains unclear is how this low-level mechanism relates to macroscopic 

signals (i.e. EEG, MEG) and how signals that contain the envelope (gating mechanism) 

but not the ‘content’ (fine structure) are processed.  It could be for instance, that low 
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frequency amplitude modulated signals in the absence of fine structure (e.g. noise) 

engage sub-cortical responses to the input but are fundamentally altered in ways that 

affect this cortical gating process, or it could be that these are in fact distinct processes 

that interact, but do not rely on each other mechanistically to operate. 

A unique methodological approach to these questions is Mutual Information 

analysis (MI).  MI is a useful analysis technique that has been applied successfully to 

low-level recordings in non-humans (Kayser et al. 2009, Montemurro et al. 2008), but its 

usage in non-invasive human recordings has been limited (Magri et al. 2009).  Kayser et 

al. (2009) demonstrated that in the macaque auditory cortex, the combination of local 

field potential (LFP) components of the signal and spike trains combined to offer more 

information that either constituent part did, displaying a synergistic relationship between 

these two components.  This relationship has also been demonstrated in the visual domain 

(Montemurro et al. 2008), suggesting a more general cortical mechanism is responsible, 

rather than a specific auditory one. 

While previous work in MEG has used inter-trial phase coherence and a phase 

dissimilarity function to quantity the consistency of the phase response across trials and 

the specific nature of this response, it is unable to shed light on the relationship between 

the signals themselves.  For instance, it cannot assess whether or not the response within 

the theta band is tracking the same aspects of the signal as the delta band.  Characterizing 

the nature of these interactions is an important component for elucidating both the nature 

of these response as well as the components of the signal that they are tracking.  

Furthermore, while previous work (Howard & Poeppel 2010) has demonstrated similar 

phase dissimilarity results for speech and reversed speech, it is not clear if responses 
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generated in each of these conditions in qualitatively the same.  It could be for instance, 

that while quantitatively, the response is similar but it is in fact tracking an entirely 

different component of the input signal. 

Once segmented, the resultant units of analysis then must be distributed among a 

network of different brain areas that are responsible for specific computations performed 

on the segments themselves.  While the speech/language system was one of the first 

cognitive networks to be outlined (Lichtheim 1886), there has been surprisingly little 

attention paid to the network dynamics of this system in general, and the temporal 

components and their relation to the segmentation of the speech signal in particular. 

Recent work using fMRI has shown that specific brain regions demonstrate high 

levels of correlation in the low frequency range of the BOLD response (0.01 to 0.1 Hz) 

during rest (Fox et al. 2005, Buckner et al. 2008).  These networks are thought to 

represent coupling between disparate brain areas that underlie specific cognitive 

functions (Bressler & Menon 2010).  Electrophysiological work examining these 

networks has implicated the involvement of a broad range of frequencies (Mantini et al. 

2007). 

A recent model of speech perception (Hickok & Poeppel 2000, 2004,2007) posits 

that the incoming speech stream is processed in disparate brain areas that are responsible 

for different computations performed on the signal.  The organization of this model is 

split into a left-lateralized dorsal stream that maps the signal onto articulatory 

representations and a bilateral ventral stream that performs more meaning-centric 

computations.   There is also a temporal component to this model, with the left 

hemisphere preferring to analyze incoming information on a fast time scale (gamma 25 – 



 6 

50 Hz) and the right hemisphere preferring a slower window of analysis (theta 4 – 8 Hz).  

What remains unclear, is how the coordination between different brain areas, and 

consequently, different computations takes place. 

This thesis therefore aimed to investigate these two components of speech 

perception: the initial parsing of the input signal and the temporal dynamics of the 

coordinate of computations within the speech perception network.  Results of the first 

experiment demonstrate that the input signal is first parsed by low frequency phase 

information that does not map neatly onto canonical frequency bands (e.g. delta, theta), 

but rather tracks independent components of the input signal.  Results of the second 

experiment show that these responses exhibit a degree of speech specificity as well as a 

qualitatively different tracking component in speech and non speech.  Lastly, results of 

the third experiment suggest that timescales that are salient for speech perception itself 

(delta, theta, gamma) are also privileged timescales of network communication: both 

lateralized and bilateral networks were shown that operate exclusively using these 

frequencies.  Together, this suggests that the incoming speech signal is first parsed into 

salient units of analysis via independent low frequency neural responses that display a 

degree of speech specificity and once parsed, the coordination of neural computations 

takes place using the same salient timescales that are prevalent in the speech stream itself. 
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Fig 1: Parsing and network coordination model.   The incoming speech stream is first 

parsed by the low frequency phase port ion of the neural signal.   Once parsed, the 

coordination of spatially distinct computations i s carried out via phase locking in on 

three distinc t time scales: 333-1000 ms (delta),  125-250 ms (theta),  and 25-40 ms 

(gamma).  Both the segmentation and the network dynamics of the system reflect the 

salient timescales of analysi s of the speech stream itsel f.  
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Chapter 1:  Mutual Information analysis of neural coding of speech by low 

frequency MEG phase information  

 

 

1.1 INTRODUCTION 

 

Recent evidence has suggested that low frequency phase information plays an 

important role in auditory perception (Kayser et al. 2009, Lakatos et al. 2005). 

Noninvasive studies using MEG have shown that for speech perception, the peak of this 

response occurs within the high delta and theta bands (~3-8 Hz), which corresponds 

(acoustically) to the peak of the modulation spectrum and (linguistically) to the average 

length of a syllable (Luo & Poeppel 2007, Howard & Poeppel 2010, Greenberg 2006, 

Greenberg et al. 1996). A response component that has received less attention in the 

electrophysiological speech perception literature is the delta band (1-3 Hz).  

 In terms of processing spoken language, information on these time scales 

corresponds to different aspects of the speech signal.  The average length of the syllable 

is approximately 150-300 ms which corresponds to ~3-7 Hz, the heart of the theta band 

(Greenberg et al. 1996, Poeppel 2003).  Longer time scales (i. e. lower frequencies), 

correspond to other aspects of the linguistic structure of the signal, such as phrasal 

boundaries and suprasegmental prosodic information (Gandour et al. 2003, Rosen 1992).  

What remains unclear is whether or not, during speech perception, these aspects of the 

linguistic signal are processed separately, as reflected in the activity of the frequency 
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bands that correspond to the relevant time scales (i.e. delta for phrasal 

boundaries/prosodic information and theta for syllabic information).   

 While speech information on these timescales is important for comprehension, it 

is unclear if (and how) these low frequency electrophysiological responses are tuned to 

different aspects of the incoming speech signal and if so, if they are processed 

independently as linguistic information, separately as acoustic information, or if low 

frequency information of the neural signal is simply tracking broadband sharp acoustic 

transitions in the speech stream (Howard & Poeppel 2010). Different interpretations are 

clearly possible. 

 It is also not well characterized how these elements interact early in the acoustic 

processing of the input. While much of modern linguistic theory would suggest that each 

of these components are processed separately, most of the models that posit distinct tiers 

for suprasegmental information and smaller phonological unit (e.g. syllabic) encoding are 

based on models of production (Levelt 1989, Dell 1986) and consequently, the nature of 

the early perceptual encoding of these elements is not clear. 

 In order to answer these questions, a measure that can assess the amount of 

information in a particular signal and determine whether or not there is overlap between 

two different signals is needed. While recent work using a cross-trial phase coherence 

and phase dissimilarity analysis has been successful for the former, it cannot be applied 

to the latter (Luo and Poeppel 2007).   

 Here we apply an information-theoretic approach to this problem. Mutual 

Information (MI) analysis is based on Shannon's pivotal work on information theory 

(Shannon 1948), and it allows for both the assessment of information quantity within a 
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signal and the characterization of the relationship between different neural signals.  It has 

been applied successfully predominantly to multi-unit recordings (MUA) and local field 

potentials (LFP) with non-human primates (Kayser et al. 2009, Strong et al. 1998, 

Montemurro et al. 2008), but its use in noninvasive electrophysiological recordings has 

so far been limited (but see Magri et al. 2009).  Adapting MI methods to noninvasive 

techniques on human subjects would therefore (i) allow for a strong linkage between 

human and more low-level invasive analysis techniques on animals using a common 

assessment unit (the bit), and (ii) facilitate the study of the information capacity of the 

macroscopic electrophysiological signals that constitute MEG (and EEG and ECog) 

recording. 

 In the current study, participants listened to auditory sentences while undergoing 

neuromagnetic recording.  The phase attributes of the low frequency MEG signal were 

analyzed. The hypotheses under consideration were as follows: (i) The peak MI value 

should be within the theta band (thetalow/3-5 Hz, and thetahigh 5-7 Hz).  If there is 

information within the delta band, then there should also be high MI values for 1-3 Hz. 

(ii) If this low frequency information is parsed in a way that is reflective of the linguistic 

structure of the input, then information in the delta band (corresponding to phrasal 

boundaries/ suprasegmental prosodic information) should be independent of information 

in the theta band, which by hypothesis aligns most closely with syllabic information.  

Conversely, information in each of the two theta bands (thetalow and thetahigh) should be 

heavily redundant, as they are processing the same aspect of the input signal.  (iii) If, 

however, activity in the low frequency spectrum of the MEG signal corresponds to a 

purely acoustic processing stage of the input, then each of the three sub-bands examined 
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should be independent, as they are simply tracking different temporal elements of the 

acoustic input signal independent of linguistic structure.  (iv) Lastly, if the phase of the 

low frequency portion of the MEG signal is simply the convolution of evoked responses 

to sharp acoustic transitions, then there should be high redundancy between all three 

bands, as each frequency sub-band is in fact part of the same multi-frequency process – 

the evoked response. 

 

 

1.2 METHODS 

Subjects 

 

Eleven native English-speaking subjects (5 male, mean age 26.7) with normal 

hearing and no history of neurological disorders provided informed consent according to 

the New York University University Committee on Activities Involving Human Subjects 

(NYU UCA/HS) and the University of Maryland institutional review board.  All subjects 

were right-handed as assessed by the Edinburgh Inventory of Handedness (Oldfield 

1971). Two subjects’ data were not included in the analysis due to poor SNR as assessed 

by an independent auditory localizer in one case and a script malfunction in the other, 

leaving nine subjects for further analysis. 
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Stimuli 

 

Three different English sentences were obtained from a public domain internet 

audio book website (http://librivox.org).  Each of the sentences was between 11 and 12 

seconds (sampling rate of 44.1 kHz) and each was spoken by a different speaker 

(American English pronunciation, 1 female).  The sentences were delivered to the 

subjects' ears with a tubephone (E-A-RTONE 3A 50 ohm, Etymotic Research) attached 

to E-A-RLINK foam plugs inserted into the ear canal and presented at normal 

conversational sounds levels (~72 dB SPL).  Four other tokens of each sentence were 

created in which a 1000 Hz tone was inserted at a random time point in the second half of 

each sentence.  The tone was 500 ms in length with 100 ms cosine on and off ramps and 

an amplitude equal to the average amplitude of the sentences.  Each sentence was 

presented 32 times and each 'tone sentence' was presented once for a total of 108 trials 

(32 trials x 3 sentences + 4 tone sentences x 3 sentences = 108 trials) within 4 separate 

blocks.  The order of sentences was randomized within each block, with a randomized  

inter-stimulus interval (ISI) between 800 and 1200 ms. 

 

Task 

 

   Participants were instructed to listen to the sentences with their eyes closed.  This 

was done to limit artifacts due to overt eye movements and blinks.  The task was to press 

a response key as soon as they heard a tone (in the target tone sentences).  This was a 
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distracter task designed to keep subjects attentive and alert, and as such, tone sentence 

trials were not analyzed.   

 After the sentence experiment, each participant’s auditory response was 

characterized by a functional localizer: subjects listened to 100 repetitions each of a 1 

kHz and a 250 Hz 400 ms sinusoidal tone, with a 10 ms cosine on and off ramp and an 

ISI that was randomized between 900 ms and 1000 ms. This was done to assess the 

strength and characteristics of the auditory response for each subject, to facilitate 

identification of auditory-sensitive channels, and to confirm that subjects' heads were 

properly positioned. 

 

MEG Recordings 

 

MEG data were collected on a 157-channel whole-head MEG system (5 cm 

baseline axial gradiometer SQUID-based sensors, KIT, Kanazawa, Japan) in an actively 

magnetically shielded room.  Data were acquired with a sampling rate of 1000 Hz, a 

notch filter at 60 Hz (to remove line noise), a 500 Hz on-line analog low pass filter, and 

no high-pass filter.  Each subject's head position was assessed via five coils attached to 

anatomical landmarks both before and after the experiment to ensure that head movement 

was minimal.  Headshape data were digitized using a three-dimensional digitizer 

(Polhemus).  The data were noise reduced offline using the Continuously Adjusted Least-

Squares Method (CALM -Adachi et al. 2002). 
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Data Analysis 

 

Signal Processing 

All data processing was done using MATLAB (MathWorks, Natick, MA). Figure 

2 provides a flowchart illustrating various steps in the analysis. For each subject, data 

were split into sentences, trials and channels. The data were band-passed in frequency 

ranges of interest (delta: 1-3 Hz, thetalow: 3-5 Hz, and thetahigh: 5-7 Hz) using a 814 point 

two-way least squares linear FIR filter, shifted backwards to compensate for phase delays 

due to the original filtering.  The filters were designed to minimize spectral leakage and 

overlap in frequency, which in the current study is particularly important. 

 After filtering, the signal was then decimated by a factor of 4 (1000 Hz to 250 

Hz).  This had no effect on the overall results and was done strictly for computational 

speed purposes.  The first 11 seconds of each sentence were analyzed so that after down-

sampling there were 2750 data points for each trial within a given subject, channel, and 

sentence (Figure 2B). 

The instantaneous phase information was then extracted from the Hilbert transform of the 

decimated signal: 

 

H(t) = 

! 

1

"

x(#)

t $ #$%

%

& d#         (1) 

             

! 

"(t) = arctan
(H(t))

(x(t))
        (2) 
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Figure 2.  Outline of preprocessing and mutual information analysis (MI).  A. Subjects listened to 

sentences, here shown as acoustic waveforms. ‘Early’ (acoustic, pre-semantic) processing of this 

information occurs in the auditory cortex, which can be measured effectively using MEG. B. Each 

signal from each trial, sentence and channel is band-passed into the frequency of interest, decimated 

and the phase is extracted from the Hilbert Transform. C. For each frequency sub-band, across 

trials, each phase response for each time bin is grouped into a 4 equally spaced bins. These values are 

then used to compute the MI values.  D. For the combination frequency bands, the 4 bins from each 

single frequency band response space are combined to 
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form a 16 bin histogram, across trials for each time point which is then used to assess the amount of 

information present in the combined frequency cases. 

 

         

Mutual Information 

 All further analyses were done using the Information Breakdown Toolbox in 

Matlab (Magri et al. 2009). Mutual information (MI) between the response and stimulus 

was calculated using the following equation: 

 

I(S;R) =

! 

P(s)P(r | s)
P(r | s)

P(r)
r,s

"       (3) 

!

 

where P(s) is the probability of observing a stimulus, P(r|s) is the probability of observing 

a response given a stimulus, and P(r) is the probability of observing a response across all 

stimuli and trials.  The mutual information quantity I(S;R) between the stimulus and 

response can be thought of as the average amount of information that a single response 

provides about the stimulus.  It can also be thought of as the reduction in entropy of the 

response space that the conditional probability of the response on the stimulus provides: 

 

I(S;R) = H(R) - H(R|S)       (4) 

 

H(R) = !"rP(r) log2 P(r)        (5) 
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H(R|S) = -"sP(s) "rP(r|s) log2 P(r|s)      (6) 

 

  In the present study, the stimulus, s, is simply the value at each time point of the 

presented stimulus (i.e. the stimulus value at each down-sampled time point of each 

sentence so that the probability of each stimulus is always 1/2750).  The MI analysis 

therefore makes no assumptions about the content of the signal itself, merely that it 

potentially changes as a function of time.   

 For the single frequency case (Figure 2C), the response distribution was 

composed of phase responses that fit into 4 equally spaced bins: -! to -!/2, -!/2 to 0, 0 to 

!/2, and !/2 to !.  For the case of the frequency combinations (Figure 1D), the response 

distributions for each frequency were multiplied together to create a 16 bin distribution. 

Four bins were chosen for two reasons.  The first is that it is the minimum number of bins 

that adequately reflects the overall phase response and the second is due to pragmatic 

constraints: since the frequency combination case produces a number of bins that is equal 

to the square of the initial number of bins, an increase in the number of initial bins would 

lead to an exponential increase in the number of bins in the frequency combination case.  

Since there can only be a finite amount of trials, a greater number of initial bins would 

lead a large number of instances in which there were zero values in a particular bin, 

which would skew the results. 

The MI value was calculated for each subject, for each sentence and for each 

channel across trials for each frequency band individually (delta, thetalow, and thetahigh) 

and also for each combination (delta + thetalow, delta + thetahigh, and thetalow + thetahigh).  
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In this latter case, the combination values were computed using the 10 channels for each 

individual frequency band that showed the highest MI values.   

 

Bias Correction 

Since the estimation of mutual information is dependent on the sampling of the 

probability distributions with results approaching their true value as more data are 

sampled, a multi-step bias correction method was utilized (Kayser et al. 2009, 

Montemurro et al. 2007, 2008, Panzeri et al. 2007).  The first step involved shuffling the 

values within each probability distribution within each stimulus (i. e. time point) across 

trials but holding the marginal probabilities equivalent to the unshuffled data values. This 

was done to rule out incorrect conclusions about the amount of MI due to within-trial 

noise correlations. 

 The second step utilized was introduced by Strong et al. (1998). Mutual 

information is computed on the total data set, a randomization of half the trials, and a 

randomization of a quarter of the trials.  As is illustrated in Figure 3, a quadratic function 

is then fit to the data points and the actual mutual information is taken to be the zero-

crossing value.  This new value reflects the estimated mutual information for an infinite 

number of trials and greatly reduces the finite sampling bias (Panzeri et al. 2007, 

Montemurro et al. 2007). 
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Figure 3.  Bias correc tion: Quadratic extrapolation.  Since the calculation of MI 

values depends on the sampling of the probabi li ty distribution, a larger number of 

trials will  lead to a more accurate assessment of  the information content.   This 

method of bias reduction computes the MI values for the entire set of trial s,  a 

random set of hal f the trial s and a random se t of a quarter of a trial.   A quadratic 

function i s fit to the data and the zero-crossing is taken to be both the ' true' MI 

value and what the MI value would be for an inf inite number of trial s.  

 

Finally, a bootstrapping procedure was utilized to remove any residual bias.  Twenty 

time-shuffled trials were created and the MI was assessed for each of the iterations.  The 

mean of these iterations was then subtracted from the MI value obtained.  These three 

methods of bias correction – shuffling in time, quadratic extrapolation, and bootstrapping 

– have previously been found to reduce bias significantly (Kayser et al. 2009, 

Montemurro et al. 2007, 2008,  Panzeri et al. 2007). 
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Synergy and Redundancy 

For the frequency combinations, redundancy was defined as: 

 

Iredundancy = Ilin – Itot        (7) 

 

Where Ilin is the linear sum of the MI values for each frequency band and Itot  is the MI 

value for the frequency combination.  Conversely, negative redundancy can be termed 

synergy and is present if the combination of two signals provides more information than 

the sum of its parts (Schneidman et al. 2003).  The synergistic term was further broken 

down into its constituent parts as per the formalism of the information breakdown method 

(Magri et al. 2009):  

 

Isyn = Isigsim + Iindcorr + Idepcorr       (8) 

 

Isigsim is the amount of information lost due to correlations in the signal and is calculated 

by subtracting the linear entropy from the independent entropy: 

 

Isigsim = Hind(R) – Hlin(R)        (9) 

 

Where Hind(R) replaces the summation of the marginal probabilities in equation (5) with 

the product of the marginal probabilities, and Hlin(R) sums the probabilities from the 

single response cases (for the individual frequency responses in the present study). Iindcorr 

represents the amount of noise correlation present that is independent of the stimuli.  This 
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term can be thought of a measure of how similar two different neural responses are (in 

this case two different frequency bands) independent of which stimulus is presented: 

 

Iindcorr = #(R) – Hind(R)        (10) 

 

Where #(R) is the same as Hind(R) except that the normalization term (i.e. P(r) ) is kept 

non-independent.  Lastly, Idepcorr represents the amount of information gained due to 

changes in noise correlations that are stimulus dependent.  This term is therefore the most 

important for synergy as both previous terms cannot contribute positively to synergy.  

This term was first introduced by Nirenberg et al. (2001) as $I: the amount of 

information lost to a downstream decoder if noise correlations are ignored. 

 

Idepcorr = [(H(R) – H(R|S)] – [#(R) - Hind(R|S)]    (11) 

 

Where Hind(R|S) is calculated similarly to Hind(R), except that the product of the marginal 

probabilities is applied to equation (6) instead of (5). 

 

 

 

Classifier 

Classifier results were computed by comparing a random selected trial of each 

sentence (the template) with a random trial from the same sentence and a random trial 

from each of the other sentences.  As in the case of the MI analysis, each trial was band-
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passed in the frequency region of interest, decimated, and the phase was extracted from 

the Hilbert transform.  The phase value for each time point within each trial was binned 

using the same binning process as the MI analysis.  Similarity between the template and 

the 3 comparison trials (one from each sentence) was assessed by taking the inner dot 

product of the template and each comparison trial after the binning process.  This created 

values for each time bin that were either 1 for a match between the template and the 

comparison trial or a 0 for a non-match.    

The average value across time points varied between 0 and 1 and was taken as the 

similarity between the template and the comparison.  The highest value of the three 

comparisons was taken to be the closest match.  This was done 1000 times for each 

sentence, for each frequency and frequency combination (3 sentences x [3 individual 

frequency bands + 3 combination bands] = 18 classifier results per subject).  In cases in 

which the template trial number matched the within sentence comparison trial, another 

trial for the comparison sentence was chosen at random from the same sentence as the 

template. The process for the frequency combinations was the same as for the single 

frequency version, except that instead of 4 phase bins, 16 bins were utilized (as per the 

MI analysis).  The classifier analysis was assessed using the same channels as in the MI 

analysis. 

 To assess the significance of the classifier results, a chi square analysis was done 

for each sentence and for each single frequency and each combination, for a total 18 chi 

square values for each subject: 
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  Since however, Chi square values are heavily dependent on the n value, significance via 

this measure of the effectiveness of the classifier is somewhat misleading.  In other 

words, results could be made significant simply by choosing a large enough number of 

iterations of the classifier.  Furthermore, Chi square results are not a linear measure of the 

magnitude between variables and can therefore not be summed or averaged. 

  With these issues in mind, to assess whether or not the combination frequencies 

performed better in the classification than the single frequencies, the effect size of each of 

the 18 values for each subject was computed as a phi value: 

 

% = 

! 

" 2

N
         (13) 

 

Since this converts the chi square values into effect sizes, the performance of single 

frequency band versus the combination bands can be assessed.  The single frequency 

band and combination frequency band values were then averaged for each sentence for 

each subject and then assessed for statistical significance via a paired two sample t-test. 

 

1.3 RESULTS 

Mutual Information 

 

The binning procedure produced phase values that occurred in one of four bins and were 

grouped across trials according to input sentence, channel, and frequency. An example of 

a portion of these values are shown in Figure 4 for a single sentence, channel and subject 
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within the delta band.  The structure of the data is quite apparent: time-locked phase 

responses are easily visible, although the noise inherent in non-invasive recordings 

 

 

Figure 4.  Binned phase response for a representative subjec t.  Phase response taken 

from one subject,  one channel,  and a portion of one sentence.   Note that the time 

points on the X-axis have been decimated by a factor of 4 and therefore reflect uni ts 

of 4 ms each. 

 

is manifest in the non-perfect temporal alignment of these responses.  This 

demonstrates that the ensuing MI calculations are in fact measuring a structured auditory 

response across trials as opposed to non-relational noise. 
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Figure 5.  Topographic head-plots for a representative subject.   MI i s plotted for 

each frequency sub-band.  Red denotes higher MI values and green lower values.   As 

can been seen, the origin of the highest MI values compares favorably to the overall  

ampli tude of the M100 response,  consistent with an audi tory origin for the channels 

yielding the MI values.  

 

The MI values within each frequency band when displayed by channel 

recapitulate the spatial distribution of a characteristic auditory response, as can be seen 
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from a representative subject in Figure 5.  These responses were quite similar 

topographically to the responses known as the M100 or N1m, a response believed to 

originate from auditory regions on the superior temporal gyrus, near the transverse 

temporal gyrus (Pantev et al. 1990, Liégeois-Chauvel et al. 1994).  This establishes that 

the response as assessed by MI for each of the three frequency bands analyzed originates 

from auditory regions in superior temporal cortex.  Conversely, responses in higher 

frequency bands did not elicit a reliable auditory response (data not shown). 

MI values for each frequency band are plotted in Figure 6.  Each value on the x-

axis represents the center frequency of the filter utilized (see methods) and each 

bandwidth is 3 Hz.  Results indicate that MI values are highest for delta, followed by 

thetalow and then thetahigh. These results build upon and extend those of Luo and Poeppel 

(2007) (especially regarding the relevance of theta), Luo et al. (2010) which highlight the 

role (for audiovisual speech) of theta and delta, as well as Kayser et al. (2009).  Luo and 

colleagues, using MEG, demonstrated a ‘privileged’ role for the phase of theta band 

activity (4-6 Hz) during speech perception and delta and theta for the analysis of 

naturalistic movies, whereas the Kayser et al. (2009) showed, in neurophysiological 

recordings, that the entire low frequency range (<10 Hz) within auditory areas of 

macaque was particularly salient during the presentation of naturalistic movie scenes.  

 The results are robust for single subjects, with only minor variation present in the 

overall pattern.  There is a small ‘bump’ present in high Beta/ low Gamma 

(approximately 22-28 Hz) for some subjects which is also present in the overall between 

subject plot.  Unfortunately, no meaningful conclusions can be draw from these results as 
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the topography did not show an auditory response or for that matter, any coherent pattern 

at all (results not shown). 

 

 

Figure 6.  MI values for each Frequency band.  The MI values are plotted here for 

each subject as a function of frequency.  Each bar represents the average MI value 

across sentences for the top 10 channels.   The plot on the right is the average across 

subjec ts (red).   The MI values peaked in the low frequency range (< 8 Hz).  

 

Figure 7 summarizes the comparison between the overall MI values predicted from the 

linear combination of the two composite individual frequency bands and the actual 
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measured values obtained from the multiple frequency band procedure (see methods).  In 

all three combinations – delta + thetalow, delta + thetahigh, and thetalow + thetahigh – the 

combined MI values were higher than any of the individual frequency bands.  

Furthermore, each combination provided only slightly more than the linear sum of its 

individual subcomponents. This suggests that all three analyzed bands are processing 

independent aspects of the input signal as the information present in the combined 

frequency band cases was not only equal to the amount of information present in the 

individual band analyses, it surpassed it, albeit by a small amount. 

 

Figure 7.  Average MI values for linear summations and combinations.   The average 

MI values for the linear summation of each frequency sub-band (blue) and the 

combinat ion of these sub-bands (red) i s plotted.  The combination values are qui te 
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similar to the linear summation values,  suggesting that each sub-band is in fact 

processing independent information. 

 

Using the information breakdown method (Magri et al. 2009), the amount of total 

information provided by the frequency combinations was further examined.  The total 

amount of information can be broken down into its constituent parts: 

 

Itot = Ilin + Isigsim + Iindcorr + Idepcorr      (14) 

 

This technique can be utilized to determine if the linear combinations are in fact linear, as 

opposed to a combination of canceling opposing contributions from stimulus independent 

and dependent noise correlations (Magri et al. 2009).  In other words, it could be the case 

that while the total amount of information present in the combination frequency bands is 

close to the value obtained from the linear summation of the two individual bands, this 

could be due to a large increase in information due to stimulus dependent noise 

correlations and an equally large reduction in information due to a response bias as 

reflective in the stimulus independent noise correlations.  This would therefore 

undermine any interpretation of ‘true’ independence.  

 Results show that the amount of information lost due to stimulus independent 

noise correlations was extremely small, accounting for a loss of less than 1% of the total 

amount of information predicted by the linear summation of the individual frequency 

bands.  In fact, for two of the three combinations, delta + thetalow and delta + thetahigh, this 

value was effectively zero with only 1.7 x 10-6 and 4.2 x 10-6 bits lost for each 

combination respectively. 
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 Conversely, stimulus dependent noise correlations led to an increase in 

information compared to the amount predicted by a linear summation, but again this 

value was quite low with all three combinations, presenting values that were less than a 5 

% gain referenced to the predicted linear values. These values are within the range of a 

previous study that suggested that retinal ganglion cells provide independent information 

(Nirenberg et al. 2001). 

In all three combinations, the amount of information lost due to signal similarity 

was also extremely small (1.3 x 10-6 to 5 x 10-5 bits) suggesting that the role of the 

similarity of the input signal played a negligible role for the combined MI values. 

Together, this suggests that information in the low frequency phase response of MEG 

contains independent information about the input speech signal.  Not only did the 

information present in the combined frequency band analyses contain slightly more than 

the information values predicted by the linear summation of the individual frequency 

bands – a near perfect independent information content from each constituent frequency 

band, the amount of information present due to both stimulus independent noise 

correlations and stimulus dependent noise correlations was quite small relative to the total 

amount of information present.  These latter results suggest that the measured 

information values do not reflect opposite canceling sources of noise correlation but 

rather ‘true’ information independence. 
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Classifier Results 

 

 The classifier results, shown for a representative subject in Figure 8, demonstrate 

for the individual frequency bands that all three bands produced robust single trial based 

template classifications. This is consistent with Luo and Poeppel (2007) who found that 

inter-trial coherence for phase within the theta band was sufficient for this type of 

classification.  The present study expands on these results by demonstrating both (i) that 

this result is obtainable with a different measure of information (MI vs. a phase 

dissimilarity function) and (ii) that information in the delta band also provides robust 

information that can lead to single trial based template classification (cf. Luo et al. 2010). 
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Figure 8.   Classif ier performance for a representative subject.   Classifier data are 

shown for each frequency band and combination band for each sentence for a 

representative subjec t.   The green dashed line represents chance performance.  As i s 

shown, each frequency band and combination successfully classi fied the template 

corresponding to a s ingle trial o f a given sentence with other tokens of that sentence.   

The effec t size (red) for the combination bands was signi ficantly higher than that for 

the individual bands,  suggesting that more information is available to the classi fier 

in the combination cases.  

 

The combination band classifier results were also robust indicating that the information 

from the combination of two different frequency bands can also be used to classify 

categorical membership of individual sentence tokens based on a single trial template.  

Furthermore, the average Phi value (effect size) was larger for the combination frequency 

bands than it was for the individual frequency bands: 0.15 and 0.12 respectively (see 

Figure 6).  This difference was found to be significant using a paired t-test: t(26) = -4.64, 

p < 5 x 10-5. 

 It is worth noting that the information utilized for the classification analysis is not 

entirely homologous to the information assessed in the MI analysis.  Since MI is based 

upon the distribution of responses for a given stimulus across trials, it is impossible to 

utilize this distribution for single-trial classification.  Nonetheless, this result is 

significant given that it validates the discrete binning process as an appropriate division 

of phase information and it also supports the notion that each frequency band investigated 

does in fact contain some independent information as the classifier performance for the 

combination frequency bands was significantly higher than the single frequency band 

cases. 
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1.4 DISCUSSION 

 

 The results of this study demonstrate novel insights into the relationship between 

different low frequency sub-bands of the phase of the macroscopic neural signal and offer 

a new approach to analyzing MEG data – mutual information analysis.  The results also 

replicate and extend the findings of Luo and Poeppel (2007) and Luo et al. 2010 (see also 

Howard & Poeppel, 2010).  The MI results demonstrate that phase information in the 

theta band (here: 3-7 Hz) contains strong relational information between the neural 

response and the input signal.  The classifier results demonstrate that the theta response is 

not only consistent across time but that it is discriminant in that it can be used on a single 

trial basis to distinguish between different sentences.  The MI results also demonstrate a 

particularly strong role for phase information in the delta band (here: 1 – 3 Hz).  This 

delta band phase information was also able to discriminate between different sentences 

based on a single trial template classifier analysis, suggesting that the elevated mutual 

information between the response and the stimulus within this band is not simply due to 

longer periods, but rather that the information is meaningful.  While earlier work (Luo & 

Poeppel 2007, Howard & Poeppel 2010) failed to show this effect within the delta band, 

this could be due to limitations based on their choice of frequency decomposition and the 

length of the stimuli utilized.  In both previous studies, sliding windows of 500 ms were 

used while performing a moving window Fourier transform of the neural signal.  This 

choice of window length would make it difficult to assess information within the low end 

of the delta range (< 2 Hz) as the frequency resolution would not be sufficiently accurate.  

Both previous studies also utilized stimuli that were approximately 4 seconds in length, 
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which would produce at most only 12 cycles (contrast with 33 cycles for the present 

study) of the delta response.  Results from Luo et al. (2010), using a cross-trial phase 

coherence analysis and stimuli that were approximately 30 seconds in length found robust 

values within the delta band (2 Hz).  While this result validates the latter concern, it 

unfortunately cannot address the first concern, as information below 2 Hz is still not 

present.  

The small peak in the high beta/low gamma region (~ 22-27 Hz) that appears in 

some subjects and slightly in the overall average (see figure 6) was unfortunately not 

sufficiently above noise to produce a characteristic topographic pattern.  It is therefore 

unclear what this peak reflects.  Future work using source-reconstruction methods (e.g. 

MNE - Hämäläinen & Ilmoniemi 1994, LCMV Beamformers – Van Veen et al. 1997) 

will perhaps be able to elucidate both the spatial distribution and the nature of this minor 

peak.   

The overall goal of this study was to determine if and how information in the low 

frequency range is able to be dis-associated into separate frequency bands.  The three 

relevant hypotheses were (i) that the information could correspond to different linguistic 

aspects of the speech signal (delta – prosody/suprasegmental information and theta – 

syllabic information) and show independent information for delta and theta, but not 

between the two theta bands (thetalow and thetahigh); (ii) that the low frequency range was 

simply tracking sharp broadband acoustic transients in the signal holistically, and 

therefore all three bands would be redundant (Howard & Poeppel 2010); or (iii) that each 

band was in fact tracking different elements of the acoustic signal and therefore each 

band would demonstrate independent tracking of information.   
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 The present results are most consistent with the third hypothesis: All three bands 

(delta, thetalow, and thetahigh) showed a linear summation of information.  This 

information independence was not due to a cancellation of opposing sources of noise 

correlation (as both signal independent and signal dependent noise correlations 

contributed less than 5% of the linear summated information).  This suggests that any 

shared noise source common to all three responses is at best minimal, further supporting 

the notion of independence.  Furthermore, the information present in the frequency band 

combinations outperformed the single frequency bands in a single trial template based 

classifier.  This adds further support to the notion that the information within each of 

these bands is independent.   

We reemphasize that the classifier utilized in the present study used aspects of the 

data that, while similar, were not in fact homologous to the information in the MI 

analysis. MI involves computations based on the entire response space, whereas the 

classifier compares single trials to other single trial templates and therefore relies on 

single data points to produce a classification result.  An MI classifier could be computed 

using the entire sentence as a probability distribution (similar to how MI is generally 

computed, relating one signal to another as opposed to a response to a signal – e. g. Jeong 

et al. 2001); however, this would remove the key component of the entire analysis: the 

specific relationship between the response to the stimulus.  In this case, the information 

gained by examining the data at each time point would be lost.  Nonetheless, the 

classifier results do lend credence to both the binning process as an appropriate division 

of the phase responses as well as demonstrating that each frequency band being 

investigated does in fact contain complementary information. 
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Relationship to decoders 

 

A common theme to early work using MI in single and multi-unit recording has 

been the notion of an ideal decoder (Schneidman et al. 2003, Strong et al. 1998).  In this 

framework, correlations between single units are seen as a source of ambiguity on a 

downstream decoder as it would be unclear what portion of the signal was due to 

independent information computed from different single units in a population and what 

portion was due to signal correlations between different neurons.  The quantity &I, 

proposed by Nirenberg et al. (2001), characterized the amount of information lost due to 

these noise correlations from the perspective of a downstream decoder. 

In the present study, this quantity is computed as stimulus-dependent noise 

correlations.  It is worth pointing to two aspects of the results of this quantity: one, that 

this value was only a very small fraction of the overall linear summation of information 

between responses (less than 5 %) and two, that this quantity was positive, denoting the 

fact that noise correlations that were dependent on the signal actually added information 

to the response. This type of result has led some to suggest that these correlations could 

act as a third channel of information (Nirenberg & Latham 2003, Dan et al. 1998).  While 

an intriguing possibility, the results of this study do not support this hypothesis at the 

macroscopic level: while stimulus dependent noise correlations did add to the 

information present, the amount relative to the linear summation of information was 

negligible.  Furthermore, while the classifier results demonstrated an increase in effect 
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size for the combination frequency results compared to the single band cases, this 

increase was modest. 

 It is important to note that non-invasive techniques, while offering the advantages 

of have resolution that extends to the whole-head and being applicable to general human 

populations, are also inherently noisier than more invasive methodologies such as MUA 

and LFP.  This would explain the overall low values of information relative to previous 

work using this technique (Kayser et al. 2009, Strong et al. 1998, Montemurro et al. 

2007, Nirenberg et al. 2001) that obtained values that were at least double those obtained 

in this study. While previous work using MI has predominantly been applied to single 

unit, multi-unit or LFP data, the current investigation examined MEG data.   

 Another possible concern regards the filtering processes: in all three frequency 

bands examined, there was overlap between the frequency ranges being analyzed.  

Unfortunately, obtaining reliable results using narrower frequency ranges or with sharper 

edges would have involved filter orders larger than the data sets being analyzed.  Also, 

using different FIR filters with different (slightly larger) filter orders did not result in 

qualitatively different results (data not shown).  Furthermore, any shared spectral 

information due to the overlap in the frequencies being filtered would result in a shift 

towards redundancy, as shared portions of the MEG signal would now be present in two 

separate frequency bands. Given that the results obtained here demonstrate that each band 

is in fact independent, it is unlikely that this overlap contributed to the results. 

The larger implication of these results are twofold.  The first is that the low 

frequency content of the MEG signal contains independent information about the 

acoustic signal.  This division cannot be attributed directly to linguistic units of 
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representation per se, as information within the two theta bands (thetalow and thetahigh) 

demonstrated a linear summation of information, as opposed to redundancy.  This 

suggests that each theta sub-band analyzed here is in fact tracking different elements of 

the input speech signal.  The results do not support a model in which each band is in fact 

responding to sharp broadband acoustic transitions, as this would lead to redundancy 

between all three bands.  This does not mean however, that any of the three sub-bands are 

not responding in this manner, merely that all three cannot be tracking this type of 

information (Howard & Poeppel 2010). 

 Secondly, the current study validates a unique methodological approach to non-

invasive electrophysiological recordings. While previous work using MI has focused 

predominately on lower-level invasive animal recordings (Kayser et al. 2009, 

Montemurro et al. 2008), the results of this study suggest that it can also be applied to 

non-invasive electrophysiological human data and lead to meaningful results.  The 

strength of this approach is that it characterizes the non-linear relationship between a 

response and a stimulus, and it can also be used to qualify and quantify the relationship 

between different neural responses.  Further work will be needed to produce an 

appropriate model of the MEG signal(s) being analyzed that leads to these types of 

results.  It is a particularly challenging endeavor as it requires accurately modeling both 

the specific characterizations of the various noise sources (e. g. external, internal noise 

sources) and the non-stationary elements of the overall MEG signal. 

Determining the specific correspondence between the acoustic signal and the 

neural signal as reflected in the phase responses of the individual frequency bands is 

important for future research.  It is not clear, for instance, whether temporal periods of 
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high MI values reflect portions of the input signal that preferentially drive the response or 

simply portions of the MEG signal that are less contaminated by noise.  Put differently, it 

is not clear whether or not the neural phase response measured in this study is stationary.  

This clarification would shed light on whether or not there are specific portions of the 

input auditory signal that are particularly salient for this particular response or whether 

the neural phase response as measured by MEG is only tracking a portion of the ‘true’ 

signal. 

It is also unclear whether the relevant frequency bands being investigated reflect 

tracking of components of the input signal that occur at that time scale (Luo & Poeppel 

2007), time constants associated with the neural response itself, or some combination of 

the two (Howard & Poeppel 2010).  While it is intuitive to think that a neural response at 

a particular frequency band reflects tracking of an input component at the same 

corresponding frequency (e.g. auditory Steady State Response (aSSR) – Picton et al. 

2003), evoked responses for instance, occur on characteristic time scales that are thought 

to reflect time constants of the neural processing (Howard & Poeppel 2010) associated 

with the input rather than the specific temporal qualities of the input itself.   

The present study employed three bands of frequency decomposition, but this 

does not necessarily mean that these reflect specific ‘privileged’ divisions of the neural 

signal.  Rather they were chosen as a compromise between the hypothesis-driven 

investigation and frequency decomposition limitations.  It could be that there are in fact 

no privileged frequency bands within the low frequency range of the neural signal.  This 

would suggest that rather than tracking specific events that occur on particular time scales 

(e.g. syllables, prosodic information), neural mechanisms track all aspects of the input 
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signal below approximately 10 Hz.  This hypothesis would be more in line with low -

level studies that find a broad peak of activation within the low frequency range rather 

than specific peaks corresponding to components of the input signal (Kayser et al. 2009).  
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Chapter 2: Phase tracking of speech and non-speech: A mutual information analysis 

 

2.1 INTRODUCTION 

 

 One of the most significant challenges of speech perception is determining 

how the brain turns a continuous stream of sounds into segments of meaningful units of 

analysis, roughly corresponding to first parsing the input stream into units used for 

decoding.  Recent work using magnetoencephalography (MEG) and 

electroencephalography (EEG) has implicated low frequency phase information of the 

neural signal as a possible mechanism for this segmentation (Luo and Poeppel 2007, Luo 

et al. 2010, Howard & Poeppel 2010, Abrams et al. 2008).  The initial hypothesis (Luo & 

Poeppel 2007) was that ongoing oscillations in the theta band (4 – 8 Hz) reset at the onset 

of syllables, tracking the acoustic correlates of the linguistic features of the input (but see 

Luo et al. 2010 for evidence that activity in delta , 1 – 3 Hz, also occurs).   

Briefly, a neuronal phase pattern that corresponded to a particular sentence was 

compared to the phase pattern that corresponded to different sentences, and it was found 

that reliable phase information that occurred at set time points across trials of a single 

sentence within the theta band was not only consistent within a token sentence, but the 

patterns were unique to individual tokens and could be used to discriminate between 

different sentences – the phase dissimilarity function.  A lowering of intelligibility led to 

a decrease in this response, leading to the hypothesis that it was specific both to speech 

content and the successful segmentation of the incoming signal.  
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 This low frequency information corresponds to the peak of the modulation 

spectrum of the speech signal (Greenberg et al. 1996, Greenberg 2006).  A speech signal 

can be divided into two corresponding components: the slow amplitude fluctuations that 

reflect the envelope of the signal and correspond mechanistically most closely to the 

opening and closing of the jaw (and, as such, vocalic information), and faster fine 

structure that contains more fine-grained frequency modulations that correspond to the 

movement of the articulators (Poeppel 2001, 2003).  This first component, the slow, low 

frequency fluctuations of the envelope, is thought to be the acoustic component being 

tracked by the phase dissimilarity function (Luo & Poeppel 2007). 

A recent model (Howard & Poeppel 2010), however, suggested that rather than 

reflect a reset of ongoing oscillations to linguistic features (i.e. syllables), the theta band 

phase response is simply the convolution of canonical evoked responses, the N1-P2 

complex: a reliable onset response that responds to the onset of all sounds, including 

tones and brief clicks (Roberts et al. 2000, Howard & Poeppel 2009).  This neural 

response would be sensitive to sharp acoustic transitions within the speech input.  

Evidence for this comes from contrasting speech with time-reversed speech (Howard & 

Poeppel 2010).  Reversed speech is completely unintelligible but maintains many of the 

gross features of normal speech.  If the phase of the neuronal response and consequently, 

the phase dissimilarity function, is dependent on intelligibility, then it should have been 

present in the normal speech condition and not the reversed condition as only in the 

former is the signal intelligible.  The results demonstrated that phase dissimilarity was 

present and robust in both conditions, suggesting that this particular response was in fact 

largely driven by acoustics and not intelligibility (Howard & Poeppel 2010).   
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A model was presented that argued against the reset of ongoing oscillations 

hypothesis and in favor of a hypothesis that posited the underlying mechanism 

responsible for phase tracking as the evoked N1-P2 complex.  Furthermore, this model 

suggested that the evoked response responsible for this phase dissimilarity was tracking 

acoustic transitions in the input rather than the ongoing changes in the envelope of the 

incoming speech signal, contrasting with previous work that found correlations in the 

right hemisphere between the electroencephalographic (EEG) signal and the envelope of 

the speech signal (Abrams et al. 2008). 

A recent study by Deng and Srinivasan (2010) however, using both speech and 

reversed speech as stimuli, found correlations between the low passed envelope of the 

speech signal (< 30 Hz) and the frequency decomposed EEG signal for speech but not 

reversed speech, suggesting that the component measured (correlation of the power 

fluctuations of the neural signal with the speech envelope) is in fact sensitive to the 

intelligibility of speech, in contrast to the results of Howard and Poeppel (2010) using 

phase. 

Taken together, there are two separate hypotheses related to the phase tracking of 

the incoming speech signal.  The first is that ongoing oscillations reset themselves at the 

syllable boundaries and are consequently crucial for the meaningful segmentation of 

speech (Luo & Poeppel 2007).  The response centers in the theta band because of the 

corresponding time scale of average length of the syllable (125 – 250 ms), which 

corresponds to the peak of the modulation spectrum of the speech envelope (Greenberg et 

al. 1996, Greenberg 2006).  The second hypothesis is that the measured phase response is 

purely acoustic in nature and represents the evoked potential elicited by the onset of 
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sounds in general (Howard & Poeppel 2010).  This hypothesis also states that it is these 

onsets that drive the low frequency phase response and not the envelope. 

What remains unclear is whether or not the phase response in all studies examined 

is in fact the same response throughout.  It is possible that while reversed speech elicits a 

robust evoked response and consequently high phase dissimilarity and inter-trial phase 

coherence, it is not in fact the same component that is causing the phase dissimilarity/ 

phase coherence in the speech condition.  This would explain the results of Deng and 

Srinivasan (2010) who found envelope tracking in only the speech condition and not the 

reverse speech condition: top-down control over tracking of the input signal would be 

activated in the speech, but not the non-speech condition. 

In order to further elucidate the acoustic contributions to the low frequency phase 

response as well as the nature of this response in speech and non-speech, a metric that 

can assess both the content of neural response as well as their relationship with one 

another, is required.  Mutual information (MI) analysis was used to characterize not only 

the different phase responses, but also their interactions with each other (Cogan & 

Poeppel, in prep., Kayser et al. 2009, Strong et al. 1998, Magri et al. 2009, Montemurro 

et al. 2008). 

 

2.2 METHODS 
 

Subjects 

 

Eight native English speaking subjects (5 male, mean age 28.9) with normal hearing and 

no history of neurological disorders provided informed consent according to the New 
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York University University Committee on Activities Involving Human Subjects (NYU 

UCA/HS) and the University of Maryland Institutional Review Board.  Subjects were 

right-handed as assessed by the Edinburgh Inventory of Handedness (Oldfield 1971). One 

subjects’ data were not included in the analysis due to saturation of channels by external 

noise. 

 

Stimuli 

 

Three different English sentences were obtained from a public domain internet audio 

book website (http://librivox.org).  Each of the sentences was between 6 and 6.5 seconds 

(sampling rate of 44.1 kHz) and each was spoken by a different speaker (American 

English pronunciation, 1 female).  The sentences were delivered to the subjects' ears with 

a tubephone (E-A-RTONE 3A 50 ohm, Etymotic Research) attached to E-A-RLINK 

foam plugs inserted into the ear canal and presented at normal conversational sounds 

levels (~72 dB SPL trials) within 4 separate blocks. 

       A second condition used stimuli that contained the envelope from the original 

sentences and a random Gaussian noise band carrier.  These sentences were constructed 

by first band-passing the broadband speech signal into two separate frequency bands 

using a 500 point two-way least squares linear FIR filter, shifted backwards to 

compensate for phase delays due to the original filtering.  The frequency bands were 

from 80 to 1240 Hz and 1240 Hz to 8820 Hz.  The values were taken from a previous 

paper (Smith et al. 2002) that created speech chimeras, and are thought to reflect the 

spacing of the cochlear frequency map (Greenwood 1990).  The envelope in each 
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frequency band was then extracted via the Hilbert Transform: 
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A Gaussian white noise carrier was added to each of the two frequency-band envelopes. 

 Each constructed speech envelope and noise carrier was then normalized against the 

maximum of the power of the corresponding frequency band of the original sentence and 

then summed together.  The combined signal was then normalized again against the 

overall power of the original sentence.   

These stimuli contained information corresponding to the original envelope of the 

signal but were entirely unintelligible.  These stimuli therefore preserve a key feature of 

the original signal believed to be important for speech perception (the envelope – Smith 

et al. 2002, Luo & Poeppel 2007), but remove the intelligible content.  A third condition 

was silence ‘presented’ for 6.5 seconds.  This condition was not analyzed for the present 

study. Each condition contained 32 trials for a total of 192 trials analyzed.  The order of 

conditions was randomized within each block, with a randomized inter-stimulus interval 

(ISI) between 800 and 1200 ms. 

 

 

Task 

 

             Participants were instructed to listen to the sentences with their eyes closed.  This 

was done to limit ocular artifacts.   After the sentence experiment, each participant’s 
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auditory response was characterized by a functional localizer: subjects listened to 100 

repetitions each of a 1 kHz and a 250 Hz 400 ms sinusoidal tone, with a 10 ms cosine on- 

and off-ramp and an ISI that was randomized between 900 ms and 1000 ms. This was 

done to assess the strength and characteristics of the auditory response for each subject, 

to facilitate identification of auditory-sensitive channels, and to confirm that subjects' 

heads were properly positioned. 

        

MEG Recordings 

 

MEG data were collected on a 157-channel whole-head MEG system (5 cm baseline 

axial gradiometer SQUID-based sensors, KIT, Kanazawa, Japan) in an actively 

magnetically shielded room.  Data were acquired with a sampling rate of 1000 Hz, a 

notch filter at 60 Hz (to remove line noise), a 500 Hz on-line analog low pass filter, and 

no high-pass filter.  Each subject's head position was assessed via five coils attached to 

anatomical landmarks both before and after the experiment to ensure that head movement 

was minimal.  Headshape data were digitized using a three-dimensional digitizer 

(Polhemus). 

 

Signal Processing 

 

 The general flow of signal processing has been described in detail previously 

(Cogan & Poeppel in prep.).  Briefly, firstly, for each trial, subject, condition, and sensor, 

the time series of the neuronal signal was decimated by a factor of four to reduce 
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computational overhead.  Each signal was then band passed in frequencies of interest: 

delta: 1-3 Hz, thetalow: 3-5 Hz, and thetahigh: 5-7 Hz.  This was done using a 814 point 

two-way least squares linear FIR filter (rounded to 204 points after decimation) that was 

shifted backwards in time to compensate for delays caused by the filter.  Only the first 6 

seconds of data were analyzed for each trial, creating 1500 data points for each trial, 

condition, frequency, subject and sensor. 

 The phase information was then extracted using the Hilbert transform (equation 

15):  
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Mutual Information 

All further mutual information analysis was computed using the Information 

Breakdown Toolbox in Matlab (Magri et al. 2009).  Mutual information in this context 

assesses the amount of information between an input signal and the neural response (in 

this case low frequency phase information).  Formally it is expressed as:  
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Where P(s) is the probability of the stimulus, P(r) is the probability of the response and 

P(r | s) is conditional of the response given the stimulus.  The average amount of mutual 

information ( I(S;R) ) between the set of stimuli (S) and responses (R) can be thought of 

as either the average amount of information that a response conveys about a stimulus, or 

the reduction of entropy of the response space that the stimulus provides (Kayser et al. 

2009, Montemurro et al. 2008, Magri et al. 2009). 

 In the present study, each stimulus was a decimated time point (corresponding to 

4 ms of the original speech signal) and each response was the phase of the neuromagnetic 

filtered signal in the three frequency bands of interest: for each subject, trial, condition, 

frequency band, and channel, the overall phase distribution was divided into four equally 

space bins: -! to -!/2, -!/2 to 0, 0 to !/2, and !/2 to !.  The MI was based on the 

probability distributions formed by the binned MEG responses for each stimulus (time 

point) across trials. 

 To assess the interactions between each frequency sub-bands, 16-bin histograms 

were utilized in which each bin reflected the co-occurrence of phase responses between 

the different frequency sub-bands, compared two at a time, for a total of three 

combination conditions: delta + thetalow, delta + thetahigh and thetalow + thetahigh.  Both the 

individual frequency and the combination MI values were computed for all tokens of 

both the speech and envelope condition.  The MI value was taken to be the average of the 

top ten channels for the individual bands and the combination frequency band analysis 

was performed on these ten channels for each condition and subject. 
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Synergy and Redundancy 

The concept of synergy and redundancy has been outlined previously (Cogan & 

Poeppel in prep., Kayser et al. 2009, Montemurro et al. 2008).  Briefly, for the frequency 

combinations, redundancy was defined as: 

 

Iredundancy = Ilin – Itot        (18) 

 

Where Ilin is the linear sum of the MI values for each frequency band and Itot  is the MI 

value for the frequency combination.  Negative redundancy is denoted as synergy and is 

present if the combination of two signals provides more information than the sum of its 

parts (Schneidman et al. 2003).  The synergistic term can be broken down into its 

constituent parts as per the formalism of the information breakdown method (Magri et al. 

2009):  

 

Isyn = Isigsim + Iindcorr + Idepcorr       (19) 

 

Isigsim is the amount of information lost due to correlations in the signal itself.  Iindcorr 

represents the amount of noise correlations present that is independent of the stimuli.  

This term can be thought of a measure of how similar two different neural responses are, 

independent of which stimulus is presented.  Idepcorr represents the amount of information 

gained due to changes in noise correlations that are stimulus dependent.  This term is 

therefore the most important for synergy as both previous terms cannot contribute 
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positively to synergy.  This term was first introduced by Nirenberg et al. (2001) as $I: the 

amount of information lost to a downstream decoder if noise correlations are ignored. 

 

Bias Correction 

Since the core of the estimation of MI is based on a sampling of the probability 

distribution of the responses, a finite number of responses can bias the amount of MI 

calculated.  A multi-step bias correction method was utilized (Kayser et al. 2009, 

Montemurro et al. 2007, 2008, Panzeri et al. 2007) in which for both the single frequency 

cases and the comparison cases, the MI values were calculated for a random shuffling of 

trials that equaled half the total number of trials and then for a random shuffling of trials 

that equaled a quarter of the total number of trials.  A quadratic function was fit to the 

resulting three data points (all trials, half trials, and quarter trials) and the ‘true’ MI value 

was taken to be the zero crossing of this function (Strong et al. 1998). 

 A bootstrapping procedure was also utilized in which for each of the individual 

frequency and combination conditions, 20 time-shuffled versions of the stimulus were 

created and the mean of the resulting MI values produced was subtracted from the MI 

value obtained (Kayser et al. 2009, Montemurro et al. 2007, 2008, Panzeri et al. 2007).  

Lastly, for the frequency combination cases, to remove any within trial noise correlations, 

the MI value was calculated on a version of the data in which the values within each 

probability distribution within each stimulus (i. e. time point) were shuffled across trials 

but the marginal probabilities were held equivalent to the un-shuffled data values.  

Together, these three methods have been shown to significantly reduce bias associated 

with MI values (Kayser et al. 2009, Montemurro et al. 2007, 2008, Panzeri et al. 2007). 
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Classifier 

Since MI only characterizes the specific relationship between a response and the 

stimulus presented, a classifier was used to determine if the information present as 

revealed by the MI analysis could be used to discriminate between tokens of the same 

stimulus category (i.e. speech and envelope).  This was done by binning the individual 

frequency-specific phase responses of each token as in the MI analysis, and then 

computing the inner dot product between a trial of one sentence and a random trial from 

the same sentence as well as a random trial from each of the other two sentences within 

the stimulus category (i.e. speech and envelope).  The highest sum of the inner dot 

products was taken to be the comparison that was most similar.  This was repeated 1000 

times for each individual frequency band, token, combination of bands, condition 

(envelope/ speech), and subject.  As for the MI analysis, the top 10 channels for the 

individual frequency band for each subject, frequency band, and condition was utilized. 

To assess statistical significance, a chi square was first performed for each 

comparison (2 conditions x 3 sentences x [3 individual frequency bands + 3 combination 

bands] = 36 classifier results per subject): 
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and then converted to phi values to group across subjects: 
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 Finally, paired 2 sample t-tests were performed using the phi values to test significance 

between the conditions, and individual frequency bands/ combinations within conditions. 
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2.3 RESULTS 

 
 
Mutual Information 

 

Figure 9.   Topographic head-plots for a representative subjec t.  a-c represents the 

topographic pattern for the speech condi tion for  delta,  thetalow and thetahigh 
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respectively,  while d-f represents the same frequency bands for the envelope 

condition, wi th red indicative of higher MI values.   The RMS of the m100 response i s 

also plotted for the same subjec t for reference purposes (g).   A clear auditory 

response i s present in a ll  frequencies and condi t ions.  

  

The topographic maps for a typical subject compared to the m100 response (g) can be 

seen in Figure 9, with a-c representing delta, thetalow, and thetahigh for the speech 

condition and d-f representing the envelope condition the same frequency bands.  The 

m100 response is thought to originate in auditory regions on the superior temporal gyrus, 

near the transverse temporal gyrus (Pantev et al. 1990, Liégeois-Chauvel et al. 1994).  

This demonstrates that a prototypical auditory response is produced in both conditions for 

all frequency bands. 

MI was assessed for each individual frequency band (delta, thetalow, and thetahigh) 

and each frequency combination (delta + thetalow , delta + thetahigh , and thetalow + 

thetahigh), and for each subject and condition (speech and envelope). Results within the 

speech condition were similar to previous findings (Cogan & Poeppel in prep.), in that 

MI values were highest for delta.  They differed slightly in that thetahigh provided slightly 

higher MI values than thetalow (see Figure 10).    
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Figure 10.  MI values for each individual band for the speech condi tion.  Each bar 

represents the average MI value for the top 10 channels across subjects for each 

frequency sub-band of interest.   Delta provides the highest MI values,  followed by 

thetahigh and thetalow.  

 

The amount of information present in the combination bands was also similar to 

previous results, with MI values being slightly higher than the predicted linear values (see 

Figure 11).  These results reproduce previous work using similar stimuli and methods and 

establish a baseline for comparison (Cogan & Poeppel in prep.). 
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Figure 11. Combination MI values for the speech condi tion.  The overall  information 

present in the combination MI analysis (red) is plotted against the sum of the 

information present in the individual bands (blue).   MI values were only slightly 

higher for the combination bands.  

  

For the envelope condition, MI values showed a slightly different pattern with the highest 

value occurring in thetalow, followed by delta and then thetahigh (see Figure 12).  Similar to 

the speech condition, the amount of information in the combination bands was slightly higher 

than the predicted linear combination value (Figure 13).     
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Figure 12. MI values for each indiv idual band for the envelope condi tion.  The 

overall  convention for this plot i s the same as for Figure 9,  except it represents the 

individual MI values for the envelope condi tion instead of the speech condi tion.  

Unlike the speech condit ion, the peak response is in the thetalow band ( instead of the 

delta).  

  

Overall, the amount of mutual information present between the signal and the response 

was much larger in all three bands examined for the speech condition as compared to the 

envelope condition (Figure 14).  This contrasts with previous work that demonstrated that 

a phase dissimilarity function was similar for both speech and non-speech (reversed 

speech – Howard & Poeppel 2010).  It is important to keep in mind however, that due to 

the differences between the metric utilized in the current study versus previous work, 

differences could also be due to non-linear aspects of the signal.   
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Figure 13.  Combination MI values for envelope  condition.  Simi lar to the speech 

condition, the combination MI values (red) are only slightly higher than the sum of 

the individual bands (blue).  

  

Furthermore, the amount of total information present in the combination bands was 

significantly higher for the speech condition as compared to the envelope condition.   The 

amount of added information present (synergy) did not differ between speech and non-

speech (data not shown), indicating that each condition displayed a near linear sum of 

information from the constituent frequency sub-bands.  

 In order to assess whether or not the information within each frequency band was 

in fact tracking the same aspects of the signal in the speech and envelope condition, MI 

values for each band were first compared to each other to establish a baseline of 

redundancy, and then compared between conditions to determine whether or not the 
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information contained within the envelope condition was simply a weaker version of the 

speech condition, or whether the response was fundamentally different. 

 For the within condition case, results show that the information is, as expected, 

quite redundant. It is important to remember that due to the trial shifting aspect of the 

bias correction, response are not compared directly with each other, but with a response 

at the same time point but in a different trial.  Results can been seen in Figure 16a.  

Redundancy values for both the speech and the envelope conditions ranged from 54.12 – 

61.07 %, which is close to the 50 % value expected for perfectly redundant, yet equally 

informative signals.  Also as expected, the stimulus-independent noise correlations were 

also quite high, accounting for 109 to 112.98 % of the redundancy.  These results 

establish that the information contained within each frequency band within each 

condition is heavily redundant, as is to be expected for responses that are consistent 

across trials. 

 Next, the MI values for each frequency band were compared across conditions.  If 

the frequency phase information within each band is tracking the same elements of the 

signal, then these results should mimic the within condition results: MI combination 

value should be redundant.  If however, in the envelope only condition, the low 

frequency phase portion of the MEG signal is tracking a different element of the signal, 

then the MI values should be independent.  Results support the latter hypothesis.  MI 

values across conditions but within each frequency bands were independent as can be 

seen in Figure 16b.  While the Itot values (amount of information obtained) were slightly 

less than the Ilin values, this difference was extremely small, accounting for less than 10 
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% of the predicted linear information values, in line with values that were previously 

found for independent retinal ganglion cells (Nirenberg et al. 2001). 

 

 

Figure 14. Comparison of individual frequency MI results be tween the speech and 

the envelope condi tion.  The MI results for the speech condition (blue) were higher 

than the envelope condit ion (red).  
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Figure 15. Comparison of combination frequency MI results be tween the speech and 

the envelope condi tion.  The MI results for the speech condition (blue) outperformed 

the envelope condi tion (red). .  

 

Fig 16.  Average MI values for single frequency bands between and within 

conditions.   The average MI values for all  three sub-bands for the between 

conditions (a) and within conditions (b) demonstrate that information is redundant 

for within condi tions and independent for between condit ions.   This suggests that 
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the phase tracking in the envelope condition i s qualitatively dif ferent from the phase 

tracking in the speech condition.  

 

Classifier Results 

 

Classification results for a typical subject can be seen in Figure 17.  17a shows results for 

the speech condition.  Each sentence token is presented in groups of six, with delta, 

thetalow and thetahigh, then delta + thetalow ,delta + thetahigh and finally thetalow + thetahigh, 

moving clockwise.  Results for the envelope condition are plotted in 17b.  As can be 

seen, results for the frequency combinations performed better than the individual bands, 

suggesting that the independence of the information revealed by the MI analysis is also 

present in the classifier results and can be used to discriminate between tokens within 

conditions.  

These Classifier results for the speech condition replicated the results of Cogan 

and Poeppel (in prep.).  The mean phi score for the combination frequency classifier was 

0.1153 compared to 0.1018 for the individual frequency based classifier (see figure 18a).  

This difference was found to be significant, t(62) = 2.82, p = 0.007.  Results for the 

envelope condition also demonstrated higher phi values for the combination classifier as 

compared to the individual frequency classifier, with phi values of 0.0959 and 0.0769 

respectively (see Figure 18b).  This difference was also significant: t(62) = 4.52, p = 

0.0003.  While previous work using a phase dissimilarity function found robust and 

comparable phase tracking and phase classification using speech and non-speech 

(Howard & Poeppel 2010), the present study found a significant difference between 

speech and non-speech (envelope) conditions. 
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Figure 17.  Classi fier results for a representat ive subject.   Classifier results are 

shown for a single representative subject.   The top fir st three panels in the top row 
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represents the classi fier results for sentence 1 for delta,  the talow and theta high for the 

speech condi tion (a. ),  while the top 3 lef t panels  represent the same frequency 

responses for the envelope condi tion (b.).   The second row represents the 

combinat ion classif ier results for speech (le ft) and the envelope (right) condi tion.  

This convention is continues for sentences 2 (middle panels) and 3 (bottom panels).   

As can be seen, the classi fier results for the speech condit ion outperformed the 

envelope condi tion in both the individual and the frequency combination results.  

 

The higher MI values for speech versus the envelope condition could simply 

reflect the within token phase coherence across trials as opposed to the ability for the 

phase response to distinguish between different tokens both within the speech and 

envelope conditions.  The comparison classifier results suggest that this is not the case.  

As can be seen in Figure 18b, both the single band and the combination band speech 

classifier outperformed the envelope classifiers.  These results were significant, with 

t(62) = 3.53, p = 0.004 for the single band classifier comparison and t(62) = 2.58, p = 

0.012 for the combination band classifier.  While the average was higher (0.1018 versus 

0.0959), the difference between the speech single band classifier and the envelope 

combination band classifier did not reach significance. 

 Taken together, both the MI and classifier results suggest that low frequency 

phase information occurs in at least three distinct independent bands: 1-3 Hz, 3-5 Hz, and 

5 -7 Hz.  While this separation is present for both speech and non-speech, the amount of 

information is far higher for speech versus non-speech (envelope).  These results contrast 

with previous work (Howard & Poeppel 2010) that found no difference in a phase 

dissimilarity function for speech versus non-speech (reversed speech).  Furthermore, 

phase tracking of the input signal for speech and non-speech differs qualitatively as the 
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MI values for within-frequency but across conditions were independent.  This suggests 

that different elements of the signal are being tracked as opposed to the same elements 

being tracked less successfully. 

 

 

Figure 18. Phi values for classifier resul ts.   17a.  plots the overall  mean of the 

classifier resul ts for the speech versus the envelope condi tion and plot 17b plots the 

mean classifier resul ts for the individual band speech condition (SpeechSing),  the 

individual band envelope condition (EnvelopeSing),  the speech combination resul ts 
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(SpeechComb), and the envelope combination resul ts (EnvelopeComb).  Both the 

individual and the combination speech classifier  outperformed the envelope 

classifiers.   

 

2.4 DISCUSSION 

 

The present study investigated, using MEG, the nature of low frequency phase 

tracking of the acoustic input signal.  Subjects listened to stimuli in two different 

conditions: speech and non-speech, specifically a manipulation in which the fine structure 

of the signal was replaced with Gaussian white noise and the envelope was left intact.  

Two bands of decomposition were chosen as this has been found to be below the level of 

intelligibility (Smith et al. 2002) so as to better separate the contributions from acoustics 

and intelligibility.   

 The neural signal was separated into three bands of interest: delta (1 – 3 Hz), 

thetalow (3 – 5 Hz), and thetahigh (5 – 7 Hz) and analyzed using Mutual Information (MI), 

which has previously been shown to be robust at both identifying the low frequency 

phase contributions to speech perception, but also the relative contributions of sub-

components within this low frequency range (Cogan & Poeppel in prep.).   

Results for the speech condition were consistent with previous MI MEG results: 

Robust MI values were found in all three bands, with delta demonstrating the highest MI 

values.  The amount of information present in the combination frequency cases (delta + 

thetalow, delta + thetahigh, and thetalow + thetahigh) was only slightly higher than the amount 

of information present in the individual frequency bands, suggesting that the information 
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present in these sub-bands are largely independent.  This was again consistent with 

previous results (Cogan & Poeppel in prep.).    

Classifier results also showed that the signal measured was in fact able to 

discriminate between tokens, providing further evidence that the components being 

measured are specific to the token present and not simply noise-related.  Furthermore, 

classifier results for the combination frequency bands were better than those of the 

individual frequency band classifiers, further supporting the claim of independence of 

these signals. 

Results within the envelope condition were similar to the speech condition.  Each 

sub-band examined contained reliable information, although the relative contributions of 

each band were different.  The amount of MI present in the combination analysis was 

only slightly higher than the amount present in the individual bands, which was similar to 

the speech condition.  Classifier results were able to distinguish between tokens, with 

combination band results outperforming the single band results. 

The comparison between speech and the envelope only condition demonstrated 

higher MI results for each frequency band examined and higher combination results.  

These higher levels of information were also manifest in the classifier results, where both 

the speech single band classifiers and the speech combination band classifiers 

outperformed the envelope only ones. 

Lastly, and crucially, comparisons of within frequency MI values both within and 

across conditions demonstrated that while combination MI values within a condition 

were redundant, values between conditions were independent.   This suggests that the 

portion of the signal being tracked in each condition is qualitatively different with the 
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phase tracking in the envelope only condition tracking a different portion of the signal as 

compared to the speech condition. 

 Previous theories about the nature of this low frequency phase response posited 

that it was related to either intelligibility (Luo & Poeppel 2007) or purely acoustically 

driven (Howard & Poeppel 2010).  The former study utilized two manipulations to reduce 

intelligibility based on a study by Smith et al. (2002).  In one condition, the fine structure 

of the signal was maintained but the envelope removed, and in the other, the envelope 

maintained but the fine structure was removed, in both cases signals with reduced 

intelligibility.  Their results demonstrated a reduced phase dissimilarity function response 

for the manipulated conditions as compared to the speech condition.  They argued that 

the phase tracking response was therefore driven, at least in part, by intelligibility and the 

phase response reflected resetting of endogenous oscillations to syllabic boundaries.  The 

second manipulation utilized was similar to the one used in the present study, however, in 

the present case, the signal was entirely unintelligible, which better separating the 

acoustic component from the intelligibility aspect of the input signal. 

A later study (Howard & Poeppel 2010) using the same phase dissimilarity 

function, found no difference between speech and reversed speech.  A model was 

proposed that suggested that that low frequency phase response was a concatenation of 

evoked responses.  Furthermore, the response could be elicited by any sound that 

contained an onset, arguing for a purely acoustic interpretation of the phenomenon. 

 The present study supports the former interpretation over the latter, although with 

some caveats.  Both MI and classifier results were higher for speech versus the envelope 

only condition, suggesting, contrary to previous results (Howard & Poeppel 2010), that 
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this response has a preference for speech compared to non-speech.  The independence of 

the MI values within frequency but across conditions, also argue against a simple additive 

model in which both tracking of the envelope and sharp acoustic transitions in the fine 

structure occur and sum linearly to produce the measured response.  If this were the case, 

the MI values across conditions would be heavily redundant instead of independent.  

Instead, the present study supports the hypothesis that either this phase response is driven 

at least in part by the intelligibility of the response itself, or that the fine structure 

component of the signal fundamentally alters the manner in which the low frequency-

portion of the brain signal tracks the input.   

The latter is unlikely for two reasons: firstly, this would be inconsistent with 

previous EEG results that found robust tracking of the speech envelope itself (Abrams et 

al. 2008) and with results that demonstrated a preferential tracking of the speech envelope 

over the envelope of reversed speech (Deng & Srinivasan 2010).  Secondly, a purely 

acoustic interpretation of the cause of the phase tracking would posit that the fine 

structure imposes additional sharp acoustic transitions into the input as opposed to 

fundamentally altering the nature of the tracking itself. 

 Instead, it is argued that the intelligibility of the speech signal fundamentally 

alters the manner in which the signal is being tracked.  It is important to note however, 

that phase tracking does occur with only bottom-up (i.e. acoustic) information as seen in 

previous results and the present study (Howard & Poeppel 2010), but that this phase 

tracking is fundamentally different in the non-speech case.  What remains unclear is the 

relative contribution of the envelope tracking (Abrams et al. 2008, Deng & Srinivasan 

2010) and the evoked response (Howard & Poeppel 2010).  While it is tempting to 
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suggest that in the current results, envelope tracking is occurring in both conditions and 

the additional information reflects addition acoustic transition from the fine structure (i.e. 

evoked responses), the qualitative differences in tracking argue against this interpretation.  

Further work will have to be done to clarify the nature and the origin of the low 

frequency electrophysiological phase response, and it’s relation both to envelope 

tracking/ evoked responses and which portion of the input signal is being tracked. 
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Chapter 3: The temporal dynamics of network communication during auditory and 

speech perception using MEG  

 

3.1 INTRODUCTION 

  

Cognition, broadly construed, is carried out via the interplay between localized 

computations that take place in discrete brain areas and the integration of these 

computations between areas (Varela et al. 01, Buzsáki & Draguhn 2004).  While there 

has historically been a debate regarding the exact nature and scope of these localized 

computations (Fodor 1983), the existence of specific brain areas for specific functions is 

hardly controversial (Van Essen & Maunsell 1983, Hickok & Poeppel 2000, 2004, 2007).  

What is unclear however, is the manner in which these discrete computations are 

integrated both in time and space.  

Studies of brain networks have been carried out on various spatial scales and in 

various models – both human and non-human, from collections of single neurons to large 

cortical areas (Pesaran 2008, Palva et al. 2010).  Recent work using fMRI has provided 

evidence for networks that demonstrate correlation between areas even during inactivity 

(Biswal et al. 1997,Raichle et al. 2001, Raichle & Mintun 2006, Fox et al.  2005).  The 

presence of these correlations suggests that specific brain regions form networks that 

carry out stereotypical tasks by acting in tandem, and that these correlations exist 

independently of whether or not an active task is being carried out.   

 These so-called ‘resting networks’ are characterized by correlations in the ultra-

low frequency (0.001 to 0.1 Hz) of the BOLD response between brain areas; this 
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approach has revealed at least two characteristic networks (Fox et al. 2005) The first, a 

task positive network, is most active during specific cognitive tasks and contains the 

intraparietal sulcus, the inferior parietal lobule, the ventral orbital gyrus, the frontal eye 

fields (FEF), the interior precentral sulcus, the supplementary motor area (SMA)/ pre-

SMA, the dorsal lateral prefrontal cortex (DLPFC), the medial temporal lobe, portions of 

the insula and the frontal operculum.   The second, the default network, is most active 

during periods in which no task is being performed and may be responsible for self-

referential activity (Fox et al. 2005).  This network contains more medial areas: the 

posterior cingulate cortex, lateral parietal areas, the superior frontal cortex, the inferior 

temporal cortex, the parahippocampal gyurs, and the portions of the cerebellum (Fox et 

al., 2005, Buckner et al. 2008). 

 Hemodynamic (e.g. fMRI and PET) methods have excellent spatial localization 

ability but are lacking in temporal acuity.  This poses a problem when attempting to 

assess temporal dynamics that underlie communication between nodes within a network.  

Electrophysiological measures such as electroencephalography (EEG) and 

magnetoencaphalography (MEG) provide much better temporal resolution and can 

therefore aid in the study of the temporal aspect of network dynamics.  Evidence for these 

networks using electrophysiological techniques is somewhat scarce, but two recent 

studies (Mantini et al. 2007, de Pasquale et al. 2010, Morillon et al. 2010) found evidence 

for network connectivity using combinations of EEG, MEG and fMRI.   

The first ( Mantini et al. 2007) examined specific frequency-band EEG power and 

correlated the power waveforms within these bands with BOLD activity while subjects 

were at rest.  They delineated six separate resting state networks.  The first network 
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corresponded largely to the default-state network and the second corresponded to the 

dorsal attention network, a network believed to be important for top-down modulation of 

attention (Corbetta & Shulman 2002).  The third was an occipital-based network that 

contained visual specific areas as well as areas at the occipital-temporal boundary.  The 

fourth was an auditory-based network that included bilateral superior temporal regions, as 

well as the postcentral gyrus, and right inferior frontal gyrus. The fifth network was 

predominately motor-related (premotor, motor, SMA, and medial frontal regions), while 

the last network contained the medial-ventral prefrontal cortex, the anterior cingulate, the 

hypothalamus and the cerebellum and corresponded to a network responsible for self-

referential mental activity.  

It is also worth pointing out that in this study, each network had a characteristic 

frequency composition with each frequency band examined (delta, theta, alpha, beta, and 

gamma) being correlated with the BOLD signal in each network but at different levels of 

correlation.  While no single network was associated with one band exclusively, there 

were differences among the different networks in relation to the relative strength of 

frequency contribution, with networks one and two receiving heavy contributions from 

alpha and beta, networks three and four (the auditory network) more associated with all 

frequency bands examined (except for gamma), and networks five and six more 

associated with gamma and beta (with a contribution to network five from alpha as well).  

Taken together, there is evidence that cognition, broadly construed, at least in 

part, is carried out via the interplay between distinct brain regions that form specialized 

cognitive networks (Bressler & Menon 2010).  These networks display a relatively high 

degree of encapsulation and occur at characteristic timescales that are different for each 
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network.  This suggests that there are distributed neural networks that underlie specific 

cognitive tasks. 

One system that has yet to receive full consideration in the study of network 

dynamics is the auditory/speech perception system.  It was one of the first systems to be 

mapped out as a network of connected discrete brain areas.  The Wernicke/ Lichtheim 

model (Lichtheim 1885) posited three separate modules (production, perception, and 

conceptual) linked together, that composed speech perception and production.  Damage 

to anyone of the modules or the connections between them led to distinct characteristic 

deficits.  For instance, damage to the connection between the motor output area (Broca’s 

area) and the perception area (Wernicke’s area) was hypothesized to lead to conduction 

aphasia in which, while both speech production and perception would be carried out 

without difficulty, repetition of words could not be performed.   

 More recent models (Hickok and Poeppel 2000, 2004, 2007, Scott and Johnsrude 

2003) are laid out in a similar manner, in that the cognitive act in question, in this case 

language and speech perception, is carried out by the interplay between discrete brain 

areas that perform specific computations and the composite network formed by these 

discrete areas.  Together, these two elements, discrete computations and network 

composition, contribute to the general act of speech comprehension/ language 

understanding.   

The Hickok/Poeppel model (2000, 2004, 2007) posits a dual stream architecture 

of processing in which speech is first processed bilaterally by core auditory areas (dorsal 

superior temporal gyrus – dSTG) and a phonological network (mid and post superior 

temporal sulcus –STS) before splitting into a bilateral ventral network for lexical 
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interfacing in the middle temporal gyrus (MTG bilateral) and a left lateralized dorsal 

stream that maps speech input onto articulatory representations via the left posterior 

Sylvian region of the parietal/temporal boundary (area SPT) , premotor cortex, anterior 

insula and the prefrontal inferior frontal gyrus (pIFG).  These two streams also interface 

with a conceptual network that is believed to be widely distributed across the brain.  

Furthermore, this model of speech perception contains a temporal component as 

well as a spatial one.  Incoming speech information is believed to be processed on two 

distinct ‘privileged’ time scales of analysis: a fast time scale of analysis that corresponds 

to the gamma frequency (~25-50 Hz, 20-40 ms) and a slow time scale in the range of the 

theta frequency (3-8 Hz, 125-333 ms - Poeppel 2001, 2003).  The preference for each 

time scale of analysis differs hemispherically with the right hemisphere preferring to 

operate on the longer time scale while the left hemisphere prefers the shorter time scale.  

This hemispheric asymmetry helps explain results that demonstrate hemispheric 

differences for fast and slow signal modulations (Boemio et al. 2005). 

Taken together, this suggests that speech is processed in a spatially specific 

network of brain regions that process the incoming auditory speech stream on specific 

time scales.  What is unclear however, is twofold: Firstly, do these ‘privileged’ time 

scales correspond simply to the preferred scale of analysis of processing (the 

computations) or does the network itself communicate inter-areally at the same 

timescales (the network)?  While electrophysiological work on network analysis has 

provided evidence for contributions from specific frequency bands (Mantini et al. 2007), 

the relationship between these bands and the speech/auditory system is unclear as these 

studies have been applied at rest.    
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Secondly, the majority of evidence for the specific computational roles and spatial 

locations of the areas involved in speech perception come from fine-grained localization 

(hemodynamic) methods, or aphasic/lesion data (e.g. Price 2009, Caramazza & Zurif 

1976).  While these methods can isolate specific computational roles for brain regions, 

they do not speak to communication between these areas (but see Giraud et al. 2007, 

Morillon et al. 2010).  To date, the network aspect of the speech perception network has 

not been explored. 

The present study seeks to characterize cognitive neuronal network activity during 

auditory and speech perception and determine whether or not the times scales that are 

salient for speech perception are also important for neuronal communication between 

brain areas.  While previous work has implicated delta, theta, and gamma (Luo & 

Poeppel 2007, Luo et al. 2010, Howard & Poeppel 2010, Boemio et al. 2005) as being 

particularly important for speech perception, work on electrophysiological dynamics of 

brain networks at rest has implicated a much broader range of frequencies (Mantini et al. 

2007).  It is also unclear if areas associated with models of speech perception are isolated 

from other canonical networks such as the default network and dorsal attention network 

(Fox et al. 2005, Corbetta & Shulman 2002). 

 

3.2 METHODS 

Subjects 

 

Eight native English speaking subjects (5 male, mean age 28.8) with normal hearing and 

no history of neurological disorders provided informed consent according to the New 
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York University University Committee on Activities Involving Human Subjects (NYU 

UCA/HS) and the University of Maryland institutional review board.  All subjects were 

right-handed as assessed by the Edinburgh Inventory of 

Handedness (Oldfield 1971). One subjects’ data were not included in the analysis due to 

saturation of channels by external noise. 

 

Stimuli 

 

Three different English sentences were obtained from a public domain internet audio 

book website (http://librivox.org).  Each of the sentences was between 6 and 6.5 seconds 

(sampling rate of 44.1 kHz) and each was spoken by a different speaker (American 

English pronunciation, 1 female).  The sentences were delivered to the subjects' ears with 

a tubephone (E-A-RTONE 3A 50 ohm, Etymotic Research) attached to E-A-RLINK 

foam plugs inserted into the ear canal and presented at normal conversational sounds 

levels (~72 dB SPL trials) within 4 separate blocks. 

       Two other conditions were included in the study.  The first involved presenting 

stimuli that contained the envelope from the original sentences and a random Gaussian 

noise band carrier.  These sentences were constructed by first band-passing the 

broadband speech signal into two separate frequency bands using a 500 point two-way 

least squares linear FIR filter, shifted backwards to compensate for phase delays due to 

the original filtering.  The frequency bands were from 80 to 1240 Hz and 1240 Hz to 

8820 Hz.  The values were taken from a previous paper (Smith et al. 2002) and are 

thought to reflect the spacing of the cochlear frequency map (Greenwood 1990).  The 
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envelope in each frequency band was extracted via the Hilbert Transform: 
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and a Gaussian white noise carrier was added to each of the frequency-band envelopes. 

 Each constructed speech envelope and noise carrier was then normalized against the 

maximum of the power of the corresponding frequency band of the original sentence and 

then summed together.  The combined signal was then normalized again against the 

overall power of the original sentence.  These stimuli contained information 

corresponding to the original envelope of the signal but were entirely unintelligible. 

       A third condition was simply silence presented for 6.5 seconds.  Each condition 

contained 32 trials for a total of 224 trials (32 x 3 Sentences + 32 x 3 envelope/noise 

carriers + 32 x silent trials). The order of conditions was randomized within each block, 

with a randomized inter-stimulus interval (ISI) between 800 and 1200 ms. 

 

Task 

      

        Participants were instructed to listen to the sentences with their eyes closed.  This 

was done to limit artifacts due to overt eye movements and blinks.  There was also no 

overt task.  This was done to restrict the interpretation of results to speech perception in 

its purest form and to remove any results due to either motor responses (button press) or 

anticipation of a motor response. 
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       After the sentence experiment, each participant’s auditory response was 

characterized by a functional localizer: subjects listened to 100 repetitions each of a 1 

kHz and a 250 Hz 400 ms sinusoidal tone, with a 10 ms cosine on and off ramp and an 

ISI that was randomized between 900 ms and 1000 ms. This was done to assess the 

strength and characteristics of the auditory response for each subject, to facilitate 

identification of auditory-sensitive channels, and to confirm that subjects' heads were 

properly positioned.  After the competition of the subject recording, approximately 200 

seconds of empty room data was recorded.  This data was used to compute the noise 

covariance matrix for the Minimum Norm Estimation (MNE) Source localization 

(Hämäläinen et al. 1994). 

 

MEG Recordings 

 

Magnetoencephalography (MEG) data were collected on a 157-channel whole-head 

MEG system (5 cm baseline axial gradiometer SQUID-based sensors, KIT, Kanazawa, 

Japan) in an actively magnetically shielded room.  Data were acquired with a sampling 

rate of 1000 Hz, a notch filter at 60 Hz (to remove line noise), a 500 Hz on-line analog 

low pass filter, and no high-pass filter.  Each subject's head position was assessed via five 

coils attached to anatomical landmarks both before and after the experiment to ensure 

that head movement was minimal.  Headshape data were digitized using a three-

dimensional digitizer (Polhemus). 
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Data Analysis 

 

Signal Processing 

 

       Both the active data set and the empty room data were first de-noised using a time-

shift Principled Component Analysis (tsPCA - de Cheveigné & Simon 2007).  Ocular and 

cardiac artifacts were then removed using an Independent Component Analysis (ICA) 

algorithm (FastICA).  Each of these data sets were high passed at 0.5 Hz and low passed 

at 100 Hz and converted to Native Neuromag format along with the fiducial marker 

measurement data via a conversion script. 

Source reconstruction of neural sources was performed using the Minimum Norm 

Estimation (MNE – Hämäläinen et al. 1994).  Briefly, the underlying neural current 

strengths and the measured MEG signals can be related via a linear transformation: 

 

Y=AX+N         (23) 

 

Where Y is a m by t matrix (sensors x time points) denoting the sensor space 

measurements, X is a 3n by t matrix (3 directions of underlying current x time points), A 

is a gain matrix (i. e. forward solution), and N is a noise term.   

The solution is computed as follows: 

 

XMNE = RAT (ARAT+ "2C) -1Y      (24) 
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Where R is the covariance matrix of the sensor data, C is the covariance matrix of 

the noise data, and "2 is a regularization parameter.  The computational version of the 

equation is as follows: 

 

XMNE = RÃT (ÃRÃT + "2I)-1

! 

Y

~

      (25) 

 

Where R is equal to the covariance matrix of the sensor data, "2 is a regularization 

parameter and 

! 

Y

~

and Ã are spatially whitened versions of the data and gain matrices: 
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Y
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 = C-1/2Y         (26) 

 

Ã = C-1/2A         (27) 

 

With C representing the noise covariance matrix.  Whereas in the formal equation 

for calculation, the regularization parameter is applied to the noise covariance matrix, in 

the pre-whitened version, C is replaced by I, an identity matrix as in this case, C-1/2C = I.  

Each subject’s structural MRI was reconstructed using the FreeSurfer suite to 

produce a 3D image of their MRI.  This was used to localize neural activity onto the 

brain.  The source space was setup such that each subjects’ brain surface contained 

approximately 20480 ‘triangles’ of localized dipoles.  Due to computational constraints, 

this value was down-sampled using a triangulation procedure that recursively subdivides 

the inflated spherical surface into icosahedrons and then subdivides the number of 

triangles (sides) of these icosahedrons by a factor of four.  This produces a source space 
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with 2562 sources per hemisphere, with an average source spacing of approximately 6.2 

mm and a surface area of 39 mm2. 

  The forward solution was then computed using this information as well as the 

boundary element model (BEM) information for the computed for a single compartment 

(homogenous) model for MEG data only.  This reduced model has been shown to be 

effective for MEG (Huang et al. 1999). 

The inverse operator was then computed using the forward solution as well as the 

noise covariance matrix computed for the empty room data.  A depth weighting of 0.8 

and a regularization parameter, "2, of 0.1 were used.  The depth weighting function 

compensates for the superficial bias inherent in the MNE approach to source localization 

by adjusting the source covariance matrix to favor deeper sources.  Values between 0.7 

and 1 have been shown to minimize localization errors both in terms of depth and 

location (Lin et al. 2006).  The regularization parameter weights the contribution of the 

covariance of the noise matrix and therefore is inversely related to the squared estimated 

SNR (Hämäläinen & Ilmoniemi 1994). 

The values for each time point within trial in each condition was then transformed using 

the inverse solution into source space values for each of the 5124 vertices produced by 

the forward solution.  The orientation of the sources were fixed to be normal to cortical 

surface as the primary source of the MEG signal is thought to originate from postsynaptic 

potentials of the apical dendrites of large pyramidal cells orientated perpendicular to the 

cortical surface (Hämäläinen et al. 1993). 

 

 



 84 

Phase Locking Values 

 

 For each subject and condition, the raw source localized signal was first 

decimate by a factor of four to reduce computational overhead and then band passed into 

five frequencies of interest: Delta 1 – 3 Hz, Theta 4 -8 Hz, Alpha 9 – 13 Hz, Beta 14 – 24 

Hz, and Gamma 25 – 50 Hz.  For each band, subject, and condition, a two-ways least-

squares linear FIR, shifted backwards in time to compensate for phase delays due to 

filtering was utilized.  A 125 point filter was used for each band except for delta in which 

an 204 point filter was used to produce adequate frequency isolation due to narrow 

bandwidth.     

 Once band-passed, the phase was extracted from the Hilbert transform 

(equation 20):   

 

!

! 
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Phase locking values were computed for each trial, vertex pair, condition and subject 

(Lachaux et al. 1999) using the following formula:   
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Where #1(t) is the phase for signal 1 at time point t and #2(t) is the phase for signal 2 at 

time point t.  Computationally, this was calculated as:   

 

 PLV = 
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Where #(f((t))) represents angle of the filtered signal for each vertex.  The PLV for each 

vertex combination for each frequency band, condition and subject was then averaged 

across trials. 

 

Volume Conductance   

 

 A common problem when computing phase synchrony or any coherence 

measure using electrophysiological measures is the issue of volume conductance 

(Schoffelen & Gross 2009).  Because both multiple sensors and localized source vertices 

can pick up portions of a single underlying neural source, a higher phase locking or 

coherence value can reflect either two separate underlying sources that are phase locked 

or coherent with one another or simply a single underlying source that is trivially 

coherent/phase locked with itself.   

 PLVs have the benefit that by computing the angle of the phase difference 

instead of the absolute value of the index, a preferred phase of synchrony between two 

separate sources can be revealed.  Therefore, with this issue in mind, PLVs that had a 

preferred phase lag of either 0, +/- ' were discarded.  Since values are seldom at the exact 

point of these values, an error term was added to compensate for inaccuracies due to 
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rounding/noise such that values that were within 1 degree of the applicable band-passed 

signal above/below 0 or away from +/- ' were also discarded.     The rational behind 

this approach stems from the quasistatic approximation that underlies the generation of 

the MEG signal itself (Hämäläinen et al. 1993): Since a single source will take equal time 

to reach any given sensor/ reconstructed vertex, then a 'false-positive' produced by a high 

PLV that is in fact indicative of a single underlying neuronal source will have a preferred 

phase lag of 0 or +'/'.     

 This approach is similar to the Phase lag Index (PLI – Stam et al. 2007) in that 

it omits values centered around 0 and +/- ' however the present approach maintains the 

actual index values themselves from the remaining 'true' values whereas PLI computes a 

sign function of the asymmetry of difference between signals.  In this latter case, the 

index reflects not the strength of phase locking but rather the characterization of the peak 

of the distribution of phase lags.  Put another way, a weakly coupled pair of signals will 

have the same PLI value as a strongly coupled pair if the distribution of the asymmetry is 

the same.  The present study removes spurious values while maintaining a measure of the 

strength of phase locking.   

 

Spurious effects due to the forward and inverse solution  

  

 While spurious effects due to volume conductance can be minimized using the 

above mentioned procedure, there can still be errors due to residual bias in the noise 

correlation matrix (which normalizes the inverse solution) or in the forward solution 

itself.  These issues were accounted by construction a Gaussian white noise source 



 87 

measurement file and performing the inverse solution using the same noise covariance 

matrix and forward solution as for the real data.  For each subject, Gaussian white noise 

was simulated for each source vertex with a length equal to the total number of time 

points in a given condition (6 seconds x 1000 samples/ second  x 32 = 192 000 time 

points).  The amplitude of the noise was normalized to the standard deviation of the ‘rest’ 

condition data for the corresponding subject.  This noise file was then preprocessed in the 

same manner as the real data (see above), creating five filtered versions of the noise 

corresponding to the filtered ranges of interest for each subject.  Phase locking values and 

their corresponding matrices were computed as described above.  This approach is 

similar to previous work  (David et al. 2002, Palva et al. 2010) but differs in reference to 

the former in that the noise used was randomly generated as opposed to a shuffling in 

time and space of the original data as well as isolating the utilization of the noise 

specifically to rule out spurious connections as opposed to generating a generative 

distribution as an approximation of the statistical null hypothesis. 

 

 

Statistical Significance 

 

To test for statistical significance, a surrogate distribution of time-shifted PLVs 

was created.  This was done by splitting a time series of data corresponding to one trial 

into two halves that varied between +/- of a third of the duration of the trial and then 

reversing the halves and computing the PLV between the time shifted signal and a 

corresponding ‘normal’ signal.  This was performed for each condition and frequency in 
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each subject for a random sampling of 100 000 vertex pairs.  This number was found to 

be the lowest number of iterations that did not under or over-estimate the variability of 

the surrogate distribution.  The actual PLVs for each subject, frequency band, and 

condition were then statistically compared to this surrogate distribution of values.  This 

had the added effect of controlling for spurious changes in PLVs due to overall power 

increases (Schoffelen & Gross 2009) as each surrogate data’s mean and standard 

deviation would reflect the specific intrinsic noisiness of the data.  A Bonferonni 

correction was utilized with a corrected alpha of 0.05 so that the minimum normalized 

value (z-score) of the surrogate data to reach significance was 6.64.  Values below this 

threshold for each frequency band, condition, and subjects were removed. 

 

Brain Space Mapping 

 

Since each source reconstruction is unique to each individual brain, each subject’s 

brain reconstruction was converted to labeled brain regions using an automatic cortical 

parcellation algorithm based on sulci and gyri (Destrieux et al. 2010).  Labels that 

corresponded to non-cortical areas were removed and to correct for biases due to 

inhomogeneous label size, large labels were split and small labels were joined to produce 

164 labels per subject brain reconstruction (82 per hemisphere).  The table of labels can be 

seen in Table 1.The PLV for each label was computed from the average each of the 

vertices within that label that met the statistical criterion for significance (see above).  
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Brain Area  Abbreviation    

Fronto-Marginal Gyrus FM Heschl’s Gyrus HG 
Posterior Occipital Gyrus and Sulcus OGSp Posterior Superior Temporal 

Gyrus 
STGp 

Anterior Occipital Gyrus and Sulcus OGSa Anterior Superior Temporal 
Gyrus 

STGa 

Paracentral Lobule and Sulcus PLS Planum Polare PP 
Subcentral Gyrus and Sulcus gsSUB Posterior Planum Temporale PTp 

Anterior Cingulate Gyrus CINGa Anterior Planum Temporale PTa 
Mid Anterior Cingulate Gyrus CINGma Posterior Inferior Temporal 

Gyrus 
IFGp 

Posterior Mid-Post Cingulate Gyrus  CINGpmp Anterior Inferior Temporal 
Gyrus 

IFGa 

Anterior Mid-Post Cingulate Gyrus CINGamp Posterior Middle Temporal 
Gyrus 

MTGp 

Posterior dorsal Cingulate Gyrus CINGpd Anterior Middle Temporal 
Gyrus 

MTGa 

Cuneus CUN Occipital Pole OP 
Inferior Frontal Gyrus – Pars 
Operculum 

IFGo Temporal Pole TP 

Inferior Frontal Gyrus – Pars 
Triangularis 

IFGt Posterior Calcarine Fissure CALCp 

Posterior Middle Frontal Gyrus gFRONTmidp Anterior Calcarine Fissue CALCa 
Anterior Middle Frontal Gyrus gFRONTmida Posterior Central Sulcus sCENTp 
Posterior Superior Frontal Gyrus gFRONTsupa Anterior Central Sulcus sCENTa 
Mid-Posterior Superior Frontal Gyrus gFRONTsupmp Cingulate Marginalis sCINGM 
Mid-Anterior Superior Frontal Gyrus gFRONTsupma Inferior Circular Insula CINSi 
Anterior Superior Frontal Gyrus gFRONTsupa Middle Frontal Sulcus sFRONTmi

d 
Short Insular Gyri CINSinf Posterior Superior Circular 

Insula 
CINSsupp 

Posterior Middle Occipital Gyrus gMOp Anterior Superior Circular Insula CINSsupa 
Anterior Middle Occipital Gyrus gMOa Posterior Inferior Frontal Sulcus sFRONTinf

p 
Superior Occipital Gyrus gSO Anterior Inferior Frontal Sulcus sFRONTinf

p 
Lateral-Occipital-Temporal Gyrus gLOT Posterior Frontal Sulcus FSp 
Posterior Lingual Gyrus gLINGp Anterior Frontal Sulcus FSa 
Anterior Lingual Gyrus gLINGa Posterior Intraparietal Sulcus ISp 
Parahippocampal Gyrus gPARAH Anterior Intraparietal Sulcus ISa 
Posterior Orbital Gyrus gORBp Posterior Lingual Sulcus sLINGp 
Anterior Orbital Gyrus gORBa Anterior Lingual Sulcus sLINGa 
Posterior Angular Gyurs gANGp Orbital Sulcus sORBs 
Anterior Angular Gyrus gANGa Occipital-Parietal Sulcus OPSULC 
Posterior Supramarginal Gyrus gSUPRAp Posterior Postcentral Sulcus sPOSTCEN

Tp 
Anterior Supramarginal Gyrus gSUPRAa Anterior Postcentral Sulcus sPOSTCEN

Ta 
Posterior Parietal Lobule pPL Inferior Precentral Sulcus sPRECENTi

nf 
Anterior Parietal Lobule aPL Superior Precentral Sulcus sPRCENTsu

p 
Posterior Postcentral Gyrus gPOSTCENTp Suborbital Sulcus sSUBORBs 
Anterior Postcentral Gyrus gPOSTCENTa Subparietal Sulcus sSUBP 
Posterior Precentral Gyrus gPRECENTp Posterior Superior Temporal STSp 
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Sulcus 
Anterior Precentral Gyrus gPRECENT Posterior Mid Superior 

Temporal Sulcus 
STSmp 

Posterior Precuneus PRECUNp Anterior Mid Superior Temporal 
Sulcus 

STSma 

Anterior Precuneus PRECUNa Anterior Temporal Sulcus STSa 

 

Table 1: Brain Labels.   After the parcellation algorithm, small brain labels were 

joined and large ones split to create 82 labels per hemisphere.   Note that the labels 

l isted here occur in both hemispheres.   The abbreviations are the same as used in the 

figures.  

 

Remaining values that centered on 0 and +/- ' were removed (see above).  Residual bias 

due to the forward /inverse solution were removed by subtracting the random Gaussian  

white noise data set from the actual values.  This was done for each condition, subject, and 

frequency band. 

 

Graph Theoretic Analysis 

 

 In graph network analysis, a network is composed of a series of vertices linked by edges 

(Bullmore and Sporns 2009). Each vertex can be considered a node and each edge a 

connection between two nodes.  In this study, each vertex is a brain region (as broken 

down via the parcellation algorithm listed above) and each edge is a PLV between two 

edges.  The PLV acts as the weight between each vertex.  The graphs produced here are 

therefore said to be weighted as opposed to binary (in which an edge is considered present 

or not present rather than associated with a value).  It is important to note that these edges 

are unidirectional as causality cannot be inferred from phase (but see Nolte et al. 2008 for 

an interesting approach).  Unlike typical graphs, each graph produced here could have 
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connections with itself.  This is because each label is composed of a number of underlying 

vertices and it is possible that each of the vertices that compose a label is phase locked to 

each other, leading to significant PLVS within a label.  Within the speech and envelope 

condition, the PLV values within subjects were collapsed across tokens to facilitate 

appropriate statistical comparisons with the rest condition. 

In order to isolate subsystems of interest, each of the auditory (speech and 

envelope) connectivity matrices were averaged across subjects within each frequency band 

and a modularity algorithm was applied to the weighted networks (Blondel et al. 2008) to 

isolate modules of interest.  Briefly, in graph theoretical terms, a module is a group of 

vertices that contains a high amount of edges between vertices within the module but only 

a few between other modules (Newman 2006).  The modularity algorithm therefore 

produces groups of vertices that are highly interconnected with each other but have 

minimal connections with other vertices not within a given module.  The modularity index 

defines the strength of this modularity and it ranges from 0 to 1 with 1 being completely 

modular and 0 being essentially random (everything connected to everything).  

Density was calculated for each graph for each condition (collapsed across tokens 

in the case of the speech and envelope conditions), subject, and frequency band.  Density 

reflects the number of connections within a graph that exist as a fraction of total possible 

connections (Bullmore & Sporns 2010).  This was also calculated for each module of 

interest as produced by the modularity algorithm. 
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3.3 RESULTS 

 

 The modularity analysis revealed characteristic auditory/speech modules in three 

distinct frequency bands:  delta 1-3 Hz, theta 4-8 Hz, and gamma 25-50 Hz.  The two 

remaining bands (alpha 9-14 Hz and beta 15-24 Hz) did not show clear modular 

organization.  As can be seen in Figures 19-22, delta and theta composed networks of 

similar topology with large bilateral network and two smaller lateralized networks.  The 

overall modularity indices for delta and theta were 0.6309 and 0.4627 respectively.   

 

 

Figure 19: Del ta Lateralized Networks.   The Del ta ne twork lateralized networks are 

qui te sparse,  and are composed of only lateral areas.   They include temporal,  
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parietal,  motor and insular regions.   Each of the left and right networks i s qui te 

similar topologically.  

 

3.385, p = 0.009 for envelope versus rest in the bilateral delta network, and t(6) =8.52, p 

= 0.0001 for speech versus rest and t(6) = 4.18, p = 0.006 for envelope versus rest in the 

bilateral theta network.  

Within the two lateralized networks for both frequencies, there were no significant 

differences between PLVs in any of the three conditions (speech, envelope and rest).  

This contrasted with the more extensive bilateral network in which both auditory 

conditions differed from rest, t(6) =2.78, p = 0.0321 for speech versus rest and t(6) =  
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Figure 20: Theta Lateralized Networks.   The Theta lateralized networks are more 

extensive than the Del ta Lateralized networks,  but share similar topological 

features.   More Frontal areas are present in the  right network than in the lef t,  as 
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well as one medial region: A portion of the Cingulate.   The larger scale of the right 

network suggests a bias towards communication on the timescale of theta within the 

right hemisphere,  although PLVs were not signi ficantly different from rest.  

 

Density for each network was also larger than in the rest condition for both delta and 

theta (see figure 24a,b.).  Each lateralized network showed a larger overall density for 

each of the two auditory conditions versus rest: for the right delta network t(6) =3.98 p = 

0.0073  and envelope t(6) = 3.34, p = 0.016 , and for the left delta network t(6) =4.26 p = 

0.0053  and envelope t(6) = 4.44, p = 0.0044  For theta, the left lateralized network did 

not show a difference in density for either comparison while the right lateralized network 

for speech versus rest  t(6) =3.16 p = 0.02, and envelope versus rest, t(6) = 26.13 p = 

0.0008, showed an increase in density.  The bilateral networks for delta and theta also 

showed a significant increase in density for the speech versus rest contrast t(6) =2.52 p = 

0.045 and (t(6) = 2.78, p = 0.028 for delta and theta respectively, as well as the envelope 

versus rest contrast, t(6) =2.52 p = 0.045 and t(6) = 3.84, p = 0.009.  

The modularity of the gamma band was different from the lower two frequency 

bands. It had a modularity index of 0.3978 and as can be seen in figure 23, it was 

composed of two large lateralized networks that spanned from frontal regions to parietal 

cortex.  The left lateralized network demonstrated higher PLVs for auditory versus rest 

but not between auditory conditions with t(6) =5.49 p = 0.002 for speech and t(6) = 4.4, p 

= 0.005 for envelope versus rest.  The right lateralized network demonstrated similar 

results with t(6) =2.67 p = 0.037 for speech and t(6) = 2.8, p = 0.031 for envelope versus 

rest.  As can be seen in figure 23c, density for gamma was only significant in the left 
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lateralized network with speech versus rest at t(6) =2.51 p = 0.046 and envelope versus 

rest at t(6) = 3.26, p = 0.017. 

 

Figure 21: Del ta Bilateral Network.  The bilateral Delta network is quite sparse,  but 

includes a wider range of areas than either of the lateralized networks.   Far more 
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frontal regions are present,  as well  as medial areas.   The sparse and widespread 

distribution, combined with the slow scale of integration (delta),  suggests that this 

network integrates large ‘chunks’ of information over long distances.
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Figure 22: Theta Bilateral Network: Like the De lta bilateral network, the Theta 

bilateral ne twork i s biased towards frontal sources.   As in the lateralized networks,  

there i s a bias towards right frontal areas,  again suggesting a pre ference for 

operation on this timescale within this hemisphere.   Pars Triangularis ( IFGt) i s 

present bilaterally,  al though the significance of this is not clear (see text).      

   

The remaining two bands, alpha and beta, failed to demonstrate a clear auditory 

network both in terms of localization and modularity index.  The modularity index for 

these bands was 0.1149 and 0.2055 respectively.  Statistical tests comparing all three 

conditions in the modules that contained auditory areas that were produced did not reach 

statistical significance.  Mean density values for these networks can be seen in figure 23.
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Figure 23. Gamma Lateralized Networks.   Each of the Gamma lateralized networks 

is far more extensive than the ir low frequency counterparts.   Each network includes 

parietal,  temporal,  frontal,  and portion of the Insula.   The extension and densi ty of 

these networks suggest that operations in this timescale occur largely on smaller 

distances,  but more extensively.  

 

 In terms of structure, both the low frequency lateralized networks are quite 

similar.  They are composed of core auditory cortex, some motor regions, portions of the 

temporal cortex, portions of the parietal lobe, and the portions of the insular cortex.  The 

bilateral networks contain a larger number of areas and are composed mostly of anterior 

(frontal and prefrontal areas).  What is quite interesting, is that there are surprisingly few 

connections between each of the lateral and bilateral modules suggesting that they are in 

fact distinct networks (data not shown).  This is further supported by their extremely 

similar structure across frequencies and in each hemisphere (see figures 19-22).  

It is also worth mentioning that these modules did not adhere to the overall 

structure of the Hickok and Poeppel model (2000,2004,2007) which posits a dual stream, 

ventral/ dorsal split with the dorsal stream connecting core auditory areas parietal areas 

(area STP) with motor areas, prefrontal areas and the anterior insula while the ventral 

stream connects core auditory areas with posterior STS, posterior inferior temporal 

regions, and anterior and posterior middle temporal cortex.  The current results suggest 

that while the core of the dorsal network is maintained in the low frequency lateral 

netwoks, the prefrontal cortex portion was better represented in the bilateral module. 

 Bilateral prefrontal components were also seen in the theta bilateral network with 

left and right pars opercularis and pars triangularis being present in the bilateral theta 
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network (but not the delta – see figures 21 and 22).  The significance of this is unclear as 

the majority of studies have found that speech perception is lateralized in the prefrontal  

 

Figure 24. Mean Density Values.   A) Mean Density values for the lef t,  right and 

bilateral Del ta Networks.   ‘*’ indicates that the two auditory condi tions (speech and 
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envelope) dif fered significantly from rest.  B) Mean Density values for left,  right and 

bilateral Theta Networks.   Note that only the right and bilateral Theta networks 

were signif icantly different from rest.   C) Mean Density Values for the lef t and right 

Gamma Network.  Only the left network was significantly di fferent from rest.   D) 

Mean density values for an extensive ne twork for Alpha and Beta.   Note that the 

density did not change from rest for either frequency band network. 

 

regions, although a study by Binder et al. (2000) found bilateral activation in a number of 

conditions including tones, pseudowords, reversed words and speech. 

PLVs within each of the lateralized networks did not differ significantly from rest 

suggesting that these regions are intrinsically coupled.  Giraud et al. (2007) found 

correlations between power in the theta band (define there as 3-6 Hz) within bilateral 

Heschl's gyrus, the left and right anterior temporal lobe as well as right motor and 

premotor areas.  This suggests that there are intrinsic oscillations within these frequencies 

during rest.  While the lateralized networks posited here are more extensive, the 

difference in methodologies (phase locking with MEG vs. EEG and BOLD correlation) 

could at least in part explain the discrepancy. 

 The PLVs did differ however, between auditory and rest conditions in the 

bilateral network in both low frequencies.  This suggests that coupling within this 

network is stimulus dependent and may represent a task-specific network as opposed to a 

more 'intrinsically wired' network as in the lateralized modules. 

 The overall density changed for the bilateral network (see figure 24), suggesting 

that more areas within this module were being recruited during auditory/speech 

perception.  Both the right delta and theta networks demonstrated an increase in density 
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as well, while only the right theta module did not.  This might be related to the preference 

for the right hemisphere to process incoming signals on the time scale of theta (150-333 

ms Poeppel 2001,2003). 

 The gamma networks were composed of mostly the same areas as the low 

frequency networks, but were more extensive and completely bilateral (figure 23).  Once 

again, connections were found to the right prefrontal cortex as well as the left.  PLVs 

changed between auditory conditions and rest in both networks.  As can be seen in figure 

23c, density was larger only for the left network, which once again may relate to the 

preference for the left hemisphere to process information on that timescale (Poeppel 

2001, 2003). 

 The overall size of the network was much larger than either of the lateralized low 

frequency network and each averaged lateralized gamma module was approximately the 

size (in terms of nodes) of the averaged bilateral theta module (see figures 22 and 23).  It 

is also worth pointing out that each of the gamma networks was far more dense than 

either of the low frequency networks with a density of 0.3 (meaning that out of all 

possible connections within that module, 30 % existed) for the gamma networks and a 

mean of less than 0.01 for the low frequency networks indicating both that many more 

regions within each module communicate at the gamma frequency than at the theta or 

delta.  It is also worth pointing out that while density of gamma within each module is 

higher than the average density of the entire gamma network (i. e. the entire cortex – 

0.1428), the theta and delta networks are much more sparse than their overall density, 

with the overall density for delta and theta being 0.0169 and 0.0450 respectively.    
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  The results combined suggest that distinct networks within the temporal, frontal, 

prefrontal, and parietal cortex process auditory information.  These networks can be 

characterized both by their preferred timescale of communication and by their 

topographic extension.  Low frequency networks (delta and theta) each compose 3 

distinct networks, 2 smaller lateralized networks and 1 more extensive bilateral network 

that are quite sparse.  Gamma operates in two large lateralized networks that are 

extremely dense.  Together, these results suggest that incoming auditory information 

communicates between specific brain areas on two distinct time scale: a slow rate 

between 125 and 1000 ms and a much faster rate of between 25 and 40 ms. 

 

3.4 DISCUSSION 

 

The present study sought to characterize the network dynamics that underlie 

speech and auditory perception.  While the speech perception/production system was one 

of the first brain systems to be mapped out (Lichtheim 1886), the study of the actual 

network dynamics of the system has as of yet been largely neglected. 

 These early models of speech perception and production posited a ‘house’ model 

in which three areas were linked: an anterior prefrontal ‘output’ area (prefrontal inferior 

frontal gyrus - pIFG) linked to both an articulatory motor area (premotor/motor cortex) 

and a posterior receptive area (area spt).  A later model from Hickok and Poeppel 

(2000,2004,2007) split this system into two distinct subsystems: a lateralized dorsal 

stream that mapped input onto articulatory representations via the premotor, anterior 
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insular and prefrontal inferior frontal gyrus and a bilateral ventral stream that corresponds 

to a lexical interface composed of middle and inferior temporal regions.  

 Speech itself contains information spanning multiple timescales but a subset of 

these are thought to be ‘privileged’: activity in the delta/theta band corresponds to 

prosodic and syllabic information (respectively) and activity in the gamma band 

corresponds to the size of a phoneme (Greenberg 2006).  Recent work has demonstrated 

the importance of the former (Luo & Poeppel 2007, Luo et al. 2010, Howard & Poeppel 

2010) as well as the latter (Boemio et al. 2005) for auditory and speech perception.   

What is unclear however, is if communication between brain areas thought to underlie 

speech perception communicate on time scales that are believed to be particularly salient. 

 With these issues in mind, the present study used MEG to measure neuronal phase 

coupling between brain areas and had subjects listen to speech, sentences that were 

manipulated versions of the same sentences and also listen to nothing (no stimulus).  The 

manipulation utilized for the speech stimuli maintained the overall gross amplitude 

fluctuations (envelope) while removing the frequency transitions that occur at shorter 

time scales (fine structure).  This creates an auditory signal that is quite similar to speech 

in a way that is thought to be particularly salient for speech perception and yet makes 

them entirely unintelligible (Smith et al. 2002). 

 To examine communication between brain areas, the entire set of data collected 

was reconstructed in source space using MNE (Hämäläinen & Ilmoniemi 1994) and 

phase locking values (Lachaux et al. 1999) were computed between each reconstructed 

location.  These values were computed in five distinct frequency ranges: -  delta 1-3 Hz, 
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theta 4-8 Hz, alpha 8-14 Hz, beta 15-24 Hz and gamma 25-50 Hz for each condition: 

speech, envelope and rest. 

 To compare across subjects, each of the reconstructed vertices for each condition, 

frequency band and subject were converted to brain area labels using an automatic 

parcellation algorithm (Destrieux et al. 2010) and then small labels were combined and 

large labels separated leaving 164 areas per brain (82 per hemisphere, see table 1). 

 A modularity algorithm was applied (Blondel et al. 2008) to isolate different 

subsystems and extract those believed to be auditory/speech related.  This was done for 

each frequency band on the average between the speech and envelope conditions.  PLVs 

and overall density values were calculated for all subjects in each frequency band and 

conditions in each of the modules identified. 

 Results suggest that there are distinct subsystems that underline auditory/speech 

perception and that these modules can be characterized by topology and preferred time 

scale of inter-areal communication.  Low frequency (delta and theta) networks occurred 

in three distinct subsystems: two lateralized systems that were largely composed of 

temporal, parietal, insula, and pre/motor areas and a more extensive bilateral network that 

was mainly composed of pre/frontal, temporal and portions of the cingulate.  These 

networks were highly modularized, with a modularity score of 0.6309 for delta and 

0.4627 for theta suggesting that activity within each of these networks is heavily 

encapsulated. 

 PLVs differed between rest and auditory conditions only in the bilateral network, 

suggesting both that the lateralized networks reflect more intrinsic coupling (Giraud et al. 
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2007, Morillon et al. 2010) and that the bilateral network is functionally activation 

specifically for auditory/speech perception. 

 Density differed in all three networks for both frequency bands were significantly 

different in the speech and envelope condition as compared to rest, except for the left-

lateralized theta network.  This might be due to a preference for processing on the time 

scale of theta by the right hemisphere (Poeppel 2001, 2003).  All three of the low 

frequency networks were quite sparse both in absolute terms and in reference to the 

overall density of the entire brain network at these frequencies. 

 Coupling on the timescale of gamma demonstrated a different network structure.  

Two large lateralized networks were present that were composed of a wide range of 

speech/auditory areas including areas in the pre/frontal cortex, temporal lobes, pre/motor 

areas, insula, and portions of the parietal lobe.  Each of the lateralized networks was 

largely the same in terms of areas encapsulated.  PLVs for both lateralized gamma 

networks displayed higher PLVs than the rest condition while overall density within each 

module was only significantly different from rest for the left lateralized network.  This 

could be due to the hypothesized preference of the left hemisphere for processing data on 

the timescale that corresponds to gamma (Poeppel 2001, 2003).  The average density of 

each of the lateralized modules was quite high, both in absolute terms and relative to the 

overall gamma network density: 0.3 for the left lateralized network and 0.28 for the right 

lateralized network versus 0.1428 for the overall network. 

 Activity in both of the remaining bands – alpha and beta produced very low 

modularity indices and failed to reveal any clear auditory/speech networks.  Furthermore, 

both PLV and density values for the extremely broad networks did not differ between rest 
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and the auditory conditions.   This suggests that communication on these timescales 

between brain regions is not particularly salient for auditory/speech perception. 

 Together, these results suggest that auditory and speech perception is carried out 

in part through the communication and phase locking between different brain areas.  

These areas form distinct networks that can be characterized by both their spatial 

topology and their temporal dynamics.  This temporal component corresponds to the 

salient timescales of speech perception – delta/theta and gamma- suggesting that not only 

is incoming information preferentially processed on these timescales, but that this 

selectivity extends to communication between brain areas. 

While none of the networks demonstrated a clear one to one correspondence 

between the dual stream model (Hickok and Poeppel 2000, 2004, 2007), each of the areas 

contained in the model were present in the modules revealed in this study.  There is also 

no a priori reason to suspect that modules grouped based on their preferred timescales of 

communication reflect similarities in computational role.  It is likely that while 

processing and communication occurs on distinct and privileged time scales, the 

fundamental components of these computations are quite different. 

The differences in topologies and preferred frequencies of each of the networks 

combined with the density/PLV results suggest that the lateralized low frequency 

networks are intrinsic and ‘hard-wired’ (Giraud et al. 2007).  PLVs for the auditory 

conditions in each of these lateralized networks did not differ from the rest condition 

suggesting that phase locking occurs between brain regions that compose these modules 

regardless of external input. The more fronto-centered, bilateral network at the same 

frequencies displayed higher PLVs for auditory stimuli than for rest suggesting this 
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network integrates information between hemispheres during auditory/speech perception.   

The high density and more extensive nature of the bilateral gamma networks suggest that 

it is responsible for more widespread yet localized communication between different 

brain areas. 

 Taken together, these results demonstrate for the first time, active network 

dynamics of the auditory/speech perception system.  Communication between brain areas 

is carried out on the same privileged time scales as are thought to be important for speech 

perception itself (Poeppel 2001, 2003).  This suggests that the important of both low 

(delta/theta) and high (gamma) frequency information extends to the role of inter-areal 

communication. 
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