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Problem Description:  
 

To research, discover, and apply methods of system analysis and control for 
modeling the Panama Canal using the Labeled Transition System Analyzer Tool. 
 
Groundwork: 
 
 The groundwork consisted of gathering information about all parts of the overall 
project, in an effort to make sure that no time was wasted over the summer’s short three 
months.  
 The first step was getting to know the Panama Canal. The Panama Canal is a very 
complicated mechanical and biological system that provides not only the passage across 
the Americas for shipping, but a relatively large percentage of the Panamanian GDP. The 
fact is that the Panama Canal is as much dependent on good mechanical controlling as it 
is on the large ancient forests that surround it, in the Chigres National Park. After gaining 
ownership of the canal, the Panamanians have been making large strides in monitoring, 
maintaining, updating, and controlling the complex system. 
 Diving to the source of the activity at the Panama Canal revealed that the 
Panamanians are in a race against the shipping industry. The shipping industry is quickly 
heading towards using only its most mammoth ships, and the world’s shipping 
infrastructure has to accommodate. For this reason, the Panamanians have begun building 
a new larger channel, which they hope to complete by the hundredth anniversary of the 
Panama Canal, in 2014. 

 
 With the world’s shipping industry heading towards remodeling and renovation, it 
set the stage for our project: to use the LTSA tool to demonstrate its ability to create a 
fail-safe controlling and monitoring system structure. Since this groundwork was done 



before the program began, as part of an assignment in a technical writing course, it 
allowed the project to move ahead immediately with confidence at the beginning of the 
summer. However, to use LTSA to its fullest, over one hundred hours of training, and 
constant discovery throughout the project would be required. 
 
Learning LTSA: 
 
 Learning LTSA (Labeled Transition System Analyzer) was a combination of 
studying literature, examining example problems, and trial and error. Because it is a 
program for modeling systems, and systems themselves are very complex, and multi-
layered, the learning curve had many stages. Even in the last week of the program, more 
progress was made in understanding the true nature of the theory and techniques applied 
in the LTSA program.  
 During the first two weeks of the program over 50 pages of notes were taken 
resulting in the understanding that LTSA relied on two key elements: precedence and 
synchronization. However, in this method of system analysis and control, time is either 
quantized or eliminated all together. 
 LTSA creates what are known in the project management profession as arrow-
and-node diagrams. Arrow-and-node diagrams show how a project moves from state to 
state throughout a project and it shows what actions are required to be completed before 
others, like the counterpart diagrams ‘flow charts’ or box-and-arrow diagrams. However, 
there is one dramatic difference between these project management methods of analyzing 
projects, and the LTSA approach to system analysis; systems are more complex, and 
continuous. 

 
 Systems, like programs, are understood as being cyclical in nature. A common 
system is a car engine, which repeats its tasks over and over again, sometimes at higher 
speeds (higher rpms), and sometimes seemingly frozen (when the car is turned off), but 
the engine is meant to continue to turn and produce power to move the car forward. If a 
car engine were a project, it would complete one rotation and be finished, because the 
goal of rotating the engine had been completed, and projects by definition have a start 



and a finish. However, thankfully, the car is a system that completes and repeats its built-
in projects to continue to produce something of value.  
 The question then is why the LTSA program uses the arrow-and-node method of 
analysis, when the box-and-arrow method is so widely used and understood. The answer 
lays in the difference of the two techniques, and the importance of states to system 
analysis.  
 The difference between arrow-and-node diagrams and box-and-arrow diagrams is 
that the arrow-and-node diagrams show the states, and label the arrows with the actions 
that are required to move to the next state in a project; where as the box-and-arrow 
diagrams show the precedence of the actions with the arrows, and the actions within a 
project are contained within the boxes. States are not shown in box-and-arrow diagrams, 
and states are important with system analysis. 

 
 States are like snapshots of a system, or project, that can be categorized in what 
has occurred, and what has yet to occur. One can think about the simple system of a light 
that is either on or off. When the “on” action has occurred, and the “off” action has not 
occurred yet, then the light is in the “ON” state (LTSA uses capitals to differentiate 
between STATES and actions). But more importantly, states are the most succinct and 
efficient way to analyze a system. 
 Since systems are known to have concurrent behavior, there are many different 
paths to reaching a state, just as there are many different paths to getting to the top of a 
mountain. If one had two light switches and wanted them both to be turn on, there would 
be two paths consisting of two actions each, for turning both light switches, but only one 
state of both being turned on. If one had three lights, and desired them all to be on, there 
would be six different paths of three actions, not including paths where lights are turned 
off, to reach the “ALLON” state. Since computation has its limits, and wasting time is not 
desired either, a state-focused, arrow-and-node analyzing method makes the most sense 
in this approach to systems modeling.  
 Understanding just how LTSA works took the entire summer, but most of the 
discovery was made through the process of actually creating the canal model. Since 
progress had to be made, after two weeks of study and investigation, the process of 
creating a solid canal model began. 



  
Creating the Canal: 
  

 Starting off, an example was needed to give guidance on how to approach 
the creation of a lockset. Locksets amount to a temporary one-way path that raises or 
lowers ships from one altitude to another. Within the material that was used to prepare for 
creating the canal model, there is an example program of a one-way bridge, which 
seemed a promising launch pad. 

 
 The SingleLaneBridgeFair example, from Jeff Magee and Jeff Kramer’s book, 

Concurrency: State Models & Java Programming, came with the LTSA program, and was 
used as a guide of how the structure of control could be maintained for a small single-
lock system.  

The example program used simple explanations of how cars use a one-lane bridge 
when there are two opposite traveling convoys of cars on a two-lane road, both needing 
to use it. The conversion was simple, the bridge is renamed lock, and the action 
“enter(bridge)” becomes “enterlock” and so forth. There were, however, some 
differences when it came to the monitor (the overall controller of the use of the 
bridge/lock).  

The single lock monitor ended up needing fewer variables, or monitoring parts, 
than the single lane bridge monitor. With the bridge, fairness is based on allowing 
multiple cars to use the bridge in the same direction, when it’s efficient to do so. In the 
lock model the bridge was either in use or not, which allowed for a smaller monitor with 
one less variable to interpret. Also our model required fewer restrictions on the processes, 
since the ships could pass each other after using the lock (where as cars must remain in a 
single file—that’s one less line of code).  

 



 
Bringing the Locks to Life: 

 
Confident with a successful first model, the next steps would realize the brilliance 

and difficulties of a bottom-up programming process.  
 
The first model was successful, but incomplete. The next step was to add in 

pumps, and gates, with different procedural controls for moving east to west (moving to a 
higher level), and moving west to east (lowering a ship to ‘sea level’).  

 The pumps and gates were made from simple two-step processes. The 
process GATE (processes are also labeled in capitals) consisted of “opengate” and 
“closegate,” and PUMP contained “pumpup” and “pumpdown”. These building blocks 
allowed us to make multiple GATEs and PUMPs using “tags” like east:GATE and 
west:GATE for the single lock system, and then low:PUMP, high:PUMP and 
middle:GATE  for the double lock system (a double lock requires a third middle gate). 
Tags are part of the power of the LTSA program, and using them cut down on the time 
and the number of lines of code needed to complete a practical model, but later they 
would provide some hurdles to overcome.   

Now the single and double lock systems had life, with the gates and pumps 
putting the real-life elements into the systems; however these systems needed to be 
harnessed, and therefore a controller was needed.  

 



Controllers are used to make sure that each independent concurrent process works 
in synchronization with the others to perform the tasks of moving a ship up or down 
through the locks. The controller for each lock system was built with multiple starting 
conditions, on the basis that once one starting condition was met, a series of actions 
would be initiated to perform the EAST-WEST or WEST-EAST passing procedure.  

When describing a controller, one must choose which direction the ships are 
being elevated above sea level. In the following description, the ships traveling 
westbound ships are being elevated, and the eastbound ships are descending. This 
controller is used for the Atlantic-side lockset. 

The four starting conditions for a lock are east[ID].acquire, reseteast, 
west[ID].acquire, and resetwest. The conditions east[ID].acquire, and west[ID].acquire 
are attained when the water levels inside the locks are at the right levels for passage either 
from east-west (water level is low in both locks) or from west-east (water level is high in 
both locks). The reseteast, and the resetwest conditions are for passing east to west or 
west to east when the levels are not correct and the water levels have to be reset before 
passage procedures can commence. All procedures either feed into EAST-WEST passing 
procedures or WEST-EAST passing procedures, once the water level is correct. Through 
shared actions, which must be executed at the same time between the controller and 
either a gate or a pump, each action of pumping and opening/closing the gates occurs in 
the correct order.  
 
Composing at a System Level: 
  
 The System Level composition of connecting two locksets together to form a 
canal went through many completed stages, not all of which were reader friendly. Using 
the tagging system, like when creating multiple gates and pumps, the entire lockset 
system could be uniquely copied and slightly altered to create an accurate canal system; 
everything but the ships. 

 
 One could not simply tag two unique copies of the original lockset created. The 
double lock system with gates and pumps could be tagged, since the gates and pumps 
would still operate the same way, but the controllers and the schedulers needed to be 
copied and altered. 



 The new controller had to be redesigned to pass the eastbound ships down 
through the lockset and the westbound ships up through the lockset on the Atlantic side, 
which is the opposite, or mirror effect of the original controller. Thanks to the design of 
the original controller, this meant switching the two sets of controls for east and west 
passage, and switching the “pumpups” to “pumpdowns” and vice versa. Changing the 
controllers would later spawn the idea of truly modularizing the canal model, for easier 
conversion, since getting the conversion right was simple in practice, but became hard to 
debug due to nomenclature and a non-streamlined structure. 
 The Scheduler was very simple to convert, since its purpose is just to read the 
scenario and decide which ship to pass through. After using copy and paste, and changing 
the name of the scheduler, the only step to full conversion was switching the water level 
variables, which determine fairness, and whether reset procedures are required. In the 
new scheduler, when a west bound ship would say it had cleared the lock, the scheduler 
would switch its water level monitor to up, since west bound ships move up through the 
mirrored lock, as oppose to the original, which would lower westbound ships down to sea 
level. 

The ships also required special attention in building the canal model, since they 
not only needed to be able to get through the canal, but also needed to go through the 
locksets in the correct order. 
 The first hurdle was programming the ships to interact with both locks. Inserting a 
method called SHIP_PROG, standing for “ship program,” did this,  a middle step in 
creating the two convoys of ships (eastbound and westbound). SHIP_PROG had to be 
tagged as an intermediate step, otherwise there would be four total sets of convoys 
interacting with one lock each, as opposed to two sets that interact with both locks in 
series. However the “interacting in series” part of that definition was only attainable 
through processes called “physical properties.” 
 Physical properties are part of the modeling system, and are built in to enforce 
real life restrictions into the model. The physical properties for the east- and westbound 
ships were different, since they entered the canal system from different sides, but in both 
cases, physical properties (can’t use they as they refers to ships) kept the ships from 
conceptually jumping over a lockset into Lake Gatun and descending through a lockset 
before ascending through one. This sounds preposterous and it is; in real life such 
controlling systems are discarded as being unnecessary, but in a programmed model, the 
physical properties must be installed. 
  
Proofing the Canal: 
 
 Finished with the creation of the canal model, it was necessary to prove that the 
model worked. This meant proving not only that the model never locked up (reached a 
state from which it could not move on to any other states), but that the model never 
allowed any catastrophes to occur, and that when run, all ships that desired to pass 
through the canal could do so. 
 
 When the full canal model was compiled completely there were 148,274 different 
states. Normally, with small programs, one can check one’s program in LTSA by viewing 
the graphical form of LTSA and searching for deadlocks, or progress errors (progress 



errors amount to finding out whether a ship will actually make it through the lock every 
time). However, with an eighth of a million states, a different and more powerful method 
was needed to prove that the canal model would work every time, in all situations.  
 LTSA has the methods for combing large models for deadlocks, safety 
specifications, and progress processes, in LTSA’s checking feature. Because of the 
shared actions used in LTSA to make models with synchronization, single processes 
alone can have deadlocks, but when composed in a system with a monitor or controller, 
the deadlock is unattainable, and therefore eliminated. For this reason LTSA was built 
with a checking feature to see if a deadlock occurs within a large system. This becomes 
extremely useful when checking for realistic properties of a model, and ensuring that 
catastrophes do not occur. 
 

 
 After eliminating all deadlocks within a system, the system can then be checked 
for progress errors, or errors in achieving desirable states. LTSA does not allow you to 
check for progress errors unless deadlocks are eliminated, since a deadlock is a type of 
progress error in itself. In the most basic terms, if a system has deadlocks, it doesn’t 
function, but even if a system functions, it may not function properly, and that’s where 
progress checking picks up the slack. 
  
 A progress error occurs when a desirable state is unattainable, due to the 
composing of multiple systems together. When controlling a system, one wants to make 
sure that the system progresses from start to finish, and completes its mission every time 
the system is cycled, no matter what scenarios are influencing the system. The road 
system in a neighborhood is built so that every household can exit and enter the 
neighborhood using the road system. Although not all roads in a neighborhood will 
connect to one another, there is a path to/from every household.  



 
LTSA has a built-in checker that walks through all the transitions between states, 

in every combination possible, to make sure that all actions are performable if the system 
were run under every possible condition. This does not equate to every possible state, 
since states are eliminated through controlling processes, just that in some order every 
action will occur. The desirable states can be described with progress descriptions adding 
to the checking feature through specific progress checks. The only things not covered in a 
progress check are undesirable states, and for those one needs to use “properties.” 

Properties are constant monitors on the system, which ensure that actions do not 
occur in the wrong order under any circumstance. This means that undesirable states can 
be checked for, which for the canal model equated to ensuring that floods do not occur 
within the locksets. 

Properties are deterministic, and describe the exact sequence of events, which 
must always occur in an order. It is not a controlling mechanism, but a checking system, 
which ensures that the controlling system is working properly. As the last stage in 
proofing the canal model, and the most complicated due to its deterministic nature, in a 
system with fairness that can handle all non-determined scenarios, properties were the 
hardest step in the checking system to complete. However, after learning and discovering 
more techniques for writing in LTSA, the properties were defined, and the system was 
proven to be completely fail-safe. 
 
Modularizing Methods: 
  
 Modularizing the canal model was Dr. Austin’s idea, in order to make the model 
more acceptable and usable by others in the systems engineering field. This was the last 
alteration to the canal model, after proofing and testing other methods of control. The 
realization is that the controlling structure in the lockset could be made universal, easily 
manipulated, and viewable from multiple depths of system analysis. 
 Modularizing involved making the lockset simpler in description, and 
streamlining the controller. The gates were changed from “{east, middle, west}.GATE” 
into “{low, middle, high}.GATE,” making the process of creating a “mirror” second 
lockset quick and simple in description. Since the “high.GATE” will always be the gate 
on top, and “low.GATE” will always be the gate on bottom, the controller could be 
streamlined. 



 
 Streamlining the controller meant two things: making the controller have 
universal ascending and descending procedures, and making the controllers easier to edit. 
The universal ascending and descending procedures (ASCEND and DESCEND) were 
simple to make after the locksets’ nomenclature had been changed, using the LTSA 
techniques learned throughout the summer. The next part of streamlining was making the 
controller more easily edited for conversion, and it was done with the knowledge that the 
editing would only need to occur to the ship commands, since they are the only foreign 
objects in the system. Therefore, the SHIPCONTROL controller was created, to be 
separate from and interact with the PASSAGECONTROL, which handle the gates and 
pumps.  
 The final product of modularizing the canal, was a model and controlling system 
that could be used to create a three, four, or more lockset enabled canal system within one 
hour of starting with the original modularized lockset.  
 
Interpretation: 
 
 Once the model was completed, it was time to reflect and understand what had 
actually been accomplished, and how timing was not a part of it. 
 
 This model does not rely on timing to synchronize actions, and in that way it is 
elegantly straightforward from a controlling perspective. Interpreting what this model is 
actually doing can help clarify how such a simple idea can soundly trump methods with 
more complexity. 
 When describing the FSP (Finite State Processes language) programming in 
LTSA one refers to the different transitions from state to state as actions, therefore it is 
important to understand what is meant by the word “action.” Actions can in fact be 
communications, or signals, or traditional performing of tasks. Although it was never 
used in this model, actions can be no action whatsoever, also known as a “wait” action.  

In the context of this model, it is best to look at the SHIP process for 
understanding how one object in a system performs multiple different types of actions. 
SHIP is composed of the action set: “arrive->request->acquire->enterlock1->enterlock2-
>exitlock2->clear->(repeat).” The four actions “arrive,” “enterlock1,” “enterlock2,” and 
“exitlock2,” all perform the tasks of moving the ship. The three actions “request,” 



“acquire,” and “clear,” are communications, or parts of communication with the monitor 
and/or controller. The story is that the ship arrives at the lockset, requests passage, 
acquires passage permission, enters the first lock in front of it, enters the second lock in 
front of it, exits the double locks, and then sends the signal that it has cleared the lockset. 
The ships that pass through a double lock perform seven actions, but only four of those 
actions actually affect the ship itself. 

 
Understanding the definition of action used in LTSA is essential for 

comprehending how a system model works, but if one is going to create new system 
models and incorporate them into real life systems, one must understand how 
synchronization through shared actions can replace timing.  

To display how shared actions replace timing, one can look at a ship as it passes 
through the lockset within the canal model. The ship, the monitor, and the controller 
share the actions performed to pass a ship through a lockset. In this explanation the SHIP 
process is a ship, and the controller and monitor are computer, sensor, and 
communication network systems in the canal.  

When the SHIP process performs the action “request” it is shared by the monitor, 
and in fact is a communication to the monitor that then uses that information to create a 
queue for the ships on that side of the lock. The acquiring of the use of the lock, 
performed by the action “acquire,” must be able to be performed by the controller and the 
monitor; meaning the monitor must give the ship permission to pass through, and the 
controller must be ready to send the ship through as well. The SHIP process will want to 
then enter the first lock, but it will not be able to until the controller allows it to be 
sharing the action, which in reality is communication from the controller to the ship that 
the lockset is prepared for the ship to enter the first lock. The controller will make the 



ship wait by not sharing the action until the controller has told the pumps to pump the 
water down or up to the correct levels and has told the gates to open the gate in front of 
the ship. The controller is able to do this because the actions of “pumpup/pumpdown” 
and “opengate” precede the action “(ship).enterlock1” in the CONTROL process, and all 
preceding actions to a shared action must be performed within a process before the shared 
action may be performed. In JAVA this is called synchronized methods, and it is built 
into the JAVA-based program LTSA. 

This waiting and sharing of actions only after preceding actions have occurred is 
the timing within the system, and the timing is perfect. All actions that must be 
performed before another particular action should be performed are carried out, and 
immediately following the completion of the preceding actions, the shared action is 
performed. There is no fat to cut, no error bounds, just simple perform task set A before 
B, and perform each task when capable.  
 
Conclusion: 
  
 The Panama Canal program has proven how capable the LTSA program is at 
creating a truly fail-safe and fair controlling system in a larger dynamic concurrent 
behavioral system. The program’s ability to check for all possible types of errors, and its 
state-focused nature allow for it to be efficient and precise in helping to cultivate 
programs like the Panama Canal program made in this project. The most important part 
of using LTSA is to understand how it models and how it controls systems, but once 
clarity is reached, it is simple and quick to accomplish, which makes the program’s future 
possible applications in systems engineering as extremely promising.  
 The next step in the process in moving the LTSA program towards real-world 
applications is to use it to model even more complicated systems. Currently the program 
needs a lot of computing power to handle a maximum of three locksets in a program; 
therefore, future users of the program should expect to need a lot of memory to run larger 
programs.  

 
 It will be interesting to see how a state-based, not time-based, software controlling 
system will be received and implemented in the future. As the world continues to be more 



informed of the failures of bridges, and airports, the world wants to be certain that our 
technologies are fail-safe. LTSA should play a major part in ensuring that safety, 
especially since time is relative and states are certain. 


