
SPECTRAL FACTORIZATION OF THE KRYLOV MATRIX AND CONVERGENCEOF GMRES �ILYA ZAVORINyAbstrat. Is it possible to use eigenvalues and eigenvetors to establish aurate results on GMRES performane?Existing onvergene bounds, that are extensions of analysis of Hermitian solvers like CG and MINRES, provide no usefulinformation when the oeÆient matrix is almost defetive. In this paper we propose a new framework for using spetralinformation for onvergene analysis. It is based on what we all the spetral fatorization of the Krylov matrix. Usingthe new apparatus, we prove that two related matries are equivalent in terms of GMRES onvergene, and derive neessaryonditions for the worst-ase right-hand side vetor. We also show that for a spei� family of appliation problems, theworst-ase vetor has a ompat form. In addition, we present numerial data that shows that two matries that yield thesame worst-ase GMRES behavior may di�er signi�antly in their average behavior.Key words. GMRES , Krylov methods, onvergene, spetral fatorization, iterative methodsAMS subjet lassi�ations. 65F10, 65F15, 65N221. Introdution. The GMRES method has been used extensively during the last two deades forsolving non-Hermitian linear systems. Nevertheless, its onvergene properties are still poorly under-stood. In partiular, it is unlear what role eigenvalues and eigenvetors of the oeÆient matrix play inonvergene of the algorithm or if it is possible to use spetral information to derive aurate onvergeneresults.These issues has been investigated to some extent in the original work of Saad and Shultz [17℄.Suppose we apply GMRES to the linear systemAx = b; A 2 Cn�n; x; b 2 Cn;(1.1)where A has the spetral deompositionA = V �V �1; � = diag(�); � = [�1; : : : ; �n℄T ; �j 2 C n f0g:(1.2)We denote the GMRES iterate at step m by xm; 0 � m � n, with x0 being the initial guess. Theorresponding residual is de�ned by rm = b�Axm. The �rst GMRES onvergene result, whih appeared in[17℄, was an extension of onvergene analysis of methods like CG [9℄ and MINRES [15℄ applied to Hermitiansystems. It bounds the ratio of the norms of rm and r0 as follows,krmkkr0k � �2(V ) minpm(t)2�m maxi=1;:::;n jpm(�i)j;(1.3)where �m is the set of all polynomials of degree m that equal one at zero, �2(V ) = kV kkV �1k is theondition number of the eigenvetor matrix and k � k is the vetor or matrix Eulidean norm. When Ais normal then �2(V ) = 1 and the bound (1.3) is sharp [6℄, i.e. for every A and every m, there existsa right-hand side vetor b for whih (1.3) beomes an equality. When A is nonnormal, however, thisbound beomes muh less useful beause the right-hand side expression an be made arbitrarily large bytaking an almost-singular V . Also, exept for some speial ases [1, 13, 5℄, the above minimax expressionis hard to ompute or even estimate. Alternative bounds have been developed, that are based on other�This work was partially supported by the National Siene Foundation under Grants CCR 95-03126 and CCR-97-32022.y Applied Mathematis and Sienti� Computing Program, University of Maryland, College Park, MD 20742(iaz�s.umd.edu) 1



harateristis of the oeÆient matrix suh as the �eld of values [3℄ and pseudo-spetrum [20℄. However,none of these bounds is immune to the problems of inauray and omputational omplexity.More reently Greenbaum and her olleagues disovered that eigenvalues alone annot explain GMRESbehavior [8, 7℄. However, in this paper, as well as in an aompanying manusript [23℄, we demonstratethat if we ombine information about the eigenvalues and eigenvetors of A, as well as the right-handside b, via a Krylov matrix, we an derive expliit expressions for GMRES onvergene measures and obtainaurate results on performane of the algorithm.The paper onsists of two parts. In Setion 2, we express GMRES onvergene at eah iteration in termsof eigenvalues �, eigenvetors V and the right-hand side represented in the olumn basis of V . Then,in Setions 3 through 7, we apply the developed apparatus to analysis of GMRES onvergene. To someextent, the work presented in the seond part of the paper is a generalization of the results presented in[23℄, where we apply the new mahinery to a rather extreme ase of GMRES onvergene alled stagnation,when the method makes no progress during the �rst several iterations.Most of the existing literature on onvergene of GMRES is devoted to derivation of preise upperbounds of the quantity krmk=kr0k. In this paper, we, too, present onvergene bounds and disuss theirauray, but we also go beyond this. For instane, in Setion 5, where we present the main result ofthe paper, we demonstrate that two related matries yield the same worst-ase behavior at every stepof GMRES, and establish neessary onditions for the worst-ase vetor b. In Setion 6, we show that theworst-ase right-hand side an sometimes be expressed in a very ompat form in terms of some of thequantities derived in Setion 2. We also demonstrate that our framework may be applied indiretly tothe ase of a defetive A, provided this A an be expressed as a limit of a parametrized sequene ofdiagonalizable matries. Finally, in Setion 7, we present numerial data that suggest that when overallGMRES behavior is measured by its average onvergene, it may yield results di�erent from those produedby worst-ase analysis.When A is Hermitian, GMRES is equivalent to MINRES. Therefore all results presented in this paperthat apply to GMRES for Hermitian A hold for MINRES as well.2. GMRES Convergene Measures. The main purpose of this setion is to develop a new ap-proah for analysis of GMRES performane based on spetral information of the matrix A. First, we disussrelevant properties of the GMRES algorithm in Setion 2.1. Then, we devote Setion 2.2 to derivation ofan expliit expression for a GMRES onvergene measure based on what we all the spetral fatorizationof the Krylov matrix assoiated with appliation of GMRES to the problem (1.1).2.1. GMRES and Its Basi Properties. Given a linear system (1.1) and an initial guess x0 withthe residual r0 = b � Ax0, at iteration m, GMRES omputes an approximation xm 2 x0 + Km(A; r0) tothe true solution x̂ = A�1b, where Km(A; r0) = spanfr0; Ar0; : : : ; Am�1r0g is the Krylov subspae ofdimension m. Without loss of generality we an assume that x0 = 0 and so r0 = b. The iterate xm ishosen in suh a way as to minimize the Eulidean norm of the residual rm = b � Axm, i.e. the GMRESresidual rm(A; b) at step m satis�eskrm(A; b)k = minx2Km(A;b) kb�Axk:(2.1)When there is no ambiguity, we denote rm(A; b) by rm. We also denote by GMRES(A,b) appliationof GMRES to the linear system (1.1) with x0 = 0, or by GMRES(A) when the right-hand side vetor isunspei�ed. We assume in�nite preision, so our derivations do not depend on a spei� implementationof the method.Throughout this paper, various quantities assoiated with GMRES iteration m are denoted by letterssubsripted by m. The subsript is dropped for the same quantities at step m = n� 1.2



The norm of rm is a noninreasing funtion of m. Given a matrix A and a vetor b, we say thatGMRES(A,b) terminates in m steps if rm = 0 and rm�1 6= 0. A fundamental property of GMRES is thatrm(A; b) 6= 0 i� dim(Km+1(A; b)) = m+ 1. Thus, while analyzing GMRES performane at iteration m, itis suÆient to onsider those vetors b that yield the Krylov matries Km+1(A; b) = [b Ab : : : Amb℄ ofrank m+1. Another important property is that the matrix Kk(A; b) is rank-de�ient for any b 2 Cn if adiagonalizable matrix A has fewer than k distint eigenvalues. Therefore we assume that A has at leastm+ 1 distint eigenvalues.For a given A 2 Cn�n, we all b0 2 Cn the worst-ase right-hand side at step m (with respet to thematrix A) if, for any b 2 Cn, krm(A; b0)k=kb0k � krm(A; b)k=kbk.2.2. GMRES Convergene Measures in Terms of Spetral Deomposition of Km+1(A; b).In this setion, we demonstrate that, when A is diagonalizable, a GMRES(A,b) onvergene measure anbe expressed in terms of eigenomponents of A and the right-hand side vetor.Definition 2.1. The GMRES(A,b) performane measure hm at iteration m is de�ned by hm �krmk=kr0k = krmk=kbk 2 [0; 1℄.The funtion hm expresses a ommon way of measuring progress of an iterative method during the�rst m iterations with its small and large values orresponding to good and bad onvergene, respetively.We now state an important result due to Ipsen [11, Theorem 2.1℄ that represents one of the two mainbuilding bloks whih allow us to develop the apparatus presented in Setion 2 1. It is expressed in termsof the Moore-Penrose pseudoinverse of a full-rank matrix Km+1(A; b) whih is well-de�ned and unique,and an be alulated by [19, 12℄Kym+1 = (KHm+1Km+1)�1KHm+1 2 C(m+1)�n:Theorem 2.2. Let A be diagonalized by (1.2) and let b 2 Cn. Assume that at stepm, rank(Km+1(A; b)) =m+ 1. De�ne m = (Kym+1)He1 2 Cn;(2.2)whih, in ase m = n� 1, simpli�es to  = K�He1. Then the residual of GMRES(A,b) at step m satis�eskrmk = kmk�1.Thus we an rewrite the performane measures of GMRES(A,b) in terms of omponents of the Krylovmatrix and its pseudoinverse as hm = (kmkkbk)�1:(2.3)This implies that progress of GMRES during the �rst m iterations an be measured by the angle betweenm and b. More spei�ally,Corollary 2.3. For given A, b and m suh that the matrix rank(Km+1) = m + 1, the followingrelationships between b and m hold1. The two vetors an be omputed from eah other as follows,m = (Km+1(KHm+1Km+1)�2KHm+1)bb = (Km+1KHm+1)m2. Hmb = 1.3. hm = os 6 (m; b).1Ipsen's result is a speial ase of those presented by Stewart in [18, Setions 3 and 4℄.3



Proof: To prove Item 1 we �rst observe that b = Km+1e1:(2.4)Also, Kym+1Km+1 = I and so it follows that Kym+1b = (Kym+1Km+1)e1 = e1. We ombine this resultwith the de�nition (2.2) of m and obtainm = (Kym+1)He1 = (Kym+1)HKym+1b= (Km+1(KHm+1Km+1)�1)((KHm+1Km+1)�1)KHm+1)b= (Km+1(KHm+1Km+1)�2KHm+1)b:The formula for b in terms of m is derived similarly by observing that KHm+1(Kym+1)H equals identity.To establish Item 2 we ombine (2.2) with (2.4) and writeHmb = (eH1 (KHm+1Km+1)�1KHm+1)(Km+1e1) = eH1 e1 = 1:Finally, to obtain Item 3, we expand the Eulidean inner produt as follows,os 6 (m; b) = (Hmb)=(kmkkbk) = 1=(kmkkbk) = hm:We now show that the Krylov matrix assoiated with GMRES(A,b) at step m an be fatorizedusing eigenomponents of A and the right-hand side vetor b represented in the eigenvetor basis. Thisfatorization, whih we all the spetral fatorization of Km+1(A; b), is the seond major building blokwhih allows us to express onvergene of the method in terms of eigenvalues, eigenvetors and the right-hand side. Although this fatorization has appeared in literature before (e.g. [11, Proof of Theorem 4.1℄),to our knowledge, it has never been stated or proved as a separate result.Theorem 2.4. Let the nonsingular matrix A 2 Cn�n be diagonalized by (1.2) and let b 2 Cn. Lety = V �1b. Then, regardless of its olumn rank, the n � (m + 1) Krylov matrix Km+1 assoiated withGMRES(A,b) at step m an be fatored as Km+1 = V Y Zm+1;(2.5)where Zm+1 is the Vandermonde matrix omputed from eigenvalues of A as follows,Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �n : : : �mn 1CA = ( e �e : : : �me ) :Conversely, for a diagonalizable matrix A, take y 2 Cn and ompute Km+1 by (2.5). Then this matrix isthe Krylov matrix assoiated with GMRES(A,V y) at step m.Proof: See [23℄.We now ombine the spetral fatorization (2.5) with equations (2.3), (2.2), and (2.4) and obtain anexpliit expression for GMRES(A,b) onvergene at step m,hm(V; �; y) = �kV Y Zm+1(ZHm+1Y WY Zm+1)�1e1k kV yk��1 ;(2.6)whereW = V HV and e1 2 Cm+1. The ase m = n�1 deserves speial attention sine then the expression(2.6) signi�antly simpli�es. First, observe that rank(K) = n i� the eigenvalues of A are distint and allentries of y = V �1b are nonzero. Then Ky = K�1 and it follows from (2.2) thatn�1 =  = K�He1 = (V Y Z)�He1 = V �HY �1Z�He1:4



Denote the elements of the �rst olumn of Z�H by uj ; 1 � j � n. From [10, Setion 21.1℄ it follows thatthey an be expliitly omputed from the eigenvalues of A byuj = (�1)n+1onj0BB� nYk=1k 6=j �k�j � �k1CCA :(2.7)Sine the �rst olumn of Z is e, these elements also satisfy u1+ : : :+u1 = 1. Let us denote the mappingfrom Cn to Cn, de�ned elementwise by (2.7), by G(�). Also, let u = G(�), i.e. u represents the onjugatetranspose of the �rst row of Z�1. Then it follows that  = V �HY �1u andh(V; �; y) = (kV �HY �1uk kV yk)�1:(2.8)We note that hm(V; �; y) is invariant to the following salings.1. Saling of the vetor b. We may, therefore, assume that kbk = 1.2. Saling of eigenvalues �. Thus we may assume that �1 = 1.3. Column saling of V , i.e. hm(V; �; y) = hm(V D; �;D�1y) for any nonsingular diagonalD 2 Cn�n.Thus we may assume that olumns of V have unit length.4. Pre-multipliation of V by a unitary matrix, i.e. hm(V; �; y) = hm(PV; �; y) for any unitaryP 2 Cn�n. Thus it is suÆient to onsider only matries V with their SVD of the form V = SQH .We onlude this setion with a statement of a general property of the worst-ase right-hand sidevetor in terms of the onvergene measures.Lemma 2.5. The vetor b� 2 Cn is the worst-ase right-hand side for GMRES(A,b) at step m i� thevetor y� = V �1b� satis�es hm(V; �; y�) � hm(V; �; y) for any other y 2 Cn. In other words, y� is theglobal maximizer of hm(V; �; y).In the remaining setions, we apply the developed apparatus to analysis of GMRES.3. New GMRES Convergene Bounds. In this setion we assume that all vetors b have unitlength, whih implies that the vetors y = V �1b are restrited to the hyper-ellipsoid surfae EV = f y 2Cn j yHWy = bHb = kbk2 = 1g. Our goal is to establish aurate upper bounds on the performanemeasure h(V; �; y) = kk�1 = kV �HY �1uk�1; y 2 EV , of GMRES at step m = n� 1, as well as to extendthese bounds to arbitrary steps.Theorem 3.1. For y 2 EV , the following bounds hold,h(V; �; y) � ĥ(V; �; y) � kV k=kY �1uk(3.1) � ~h(V; �; y) � kV kkY k=kuk:(3.2)Proof: To obtain (3.1), we estimate kk from below as follows, = V �HY �1u () V H = Y �1u ) kV Hkkk � kY �1uk:(3.3)We now let t = Y �1u, apply a sequene of steps similar to (3.3), and get kY kktk � kuk, whih yields(3.2).When A is normal, V is unitary, whih yields kV Hk = kk, and so the bound (3.1) beomes anequality for every y 2 EV . Suppose A is non-normal. Let us assume that the eigenvetor matrix has5



the form V = SQH , where S = diag(s1; : : : ; sn) and s1 � : : : � sn. Then the right singular vetors ofV H = QS are e1; : : : ; en, and so kV Hk = kV Hkkk ()  = � e1;where � 2 C is a saling onstant that ensures that the b orresponding to the  is of unit norm. Forwhat right-hand side vetor does the equality hold? We expandV H(� e1) = �QSe1 = �s1q1 = Y �1u;where q1 = [q11; : : : ; qn1℄T is the right singular vetor of V orresponding to the largest singular value s1.Let u = [u1; : : : ; un℄T and y = [y1; : : : ; yn℄T . We onlude that the elements of the vetor y for whih thebound (3.1) oinides with h(V; �; y), have the formyj = onj � uj�s1qj1� ; j = 1; : : : ; n;where � is hosen appropriately. We ompared (3.1) and (3.2) with the bound (1.3) on a set of low-dimensional nonsymmetri real matries A with real positive eigenvalues (see [22, Setion 5.1℄). Testsshowed that both (3.1) and (3.2) gave smaller bounds then (1.3). In addition, they have ertain theoretialadvantages. The bound (3.1) depends on the right-hand side and not just on its norm, while bound (3.2)better separates omponents that orrespond to eigenvalues and eigenvetors of A and the right-handside b.Using the same general approah we an obtain a bound for the performane measure hm(V; �; y) form = 1; : : : ; n� 2. Sine m = V Y Zm+1(ZHm+1Y WY Zm+1)�1e1, we haveV Hm =WYZm+1(ZHm+1Y WY Zm+1)�1e1;and so hm(V; �; y) � ĥm(V; �; y) � kV k=kWYZm+1(ZHm+1Y WY Zm+1)�1e1k:(3.4)Although (3.4) still appears to be tighter than (1.3), it does not really o�er any theoretial advantagesover the exat expression (2.6). It is obviously less aurate than (2.6) and yet its omponents are notas well separated as they are in (3.2). Separation is diÆult sine in general, unlike the regular inverse,the Moore-Penrose pseudoinverse of a matrix produt is not a produt of pseudoinverses. Thus �nding abetter estimate for an arbitrary step of GMRES remains an open question.4. The Worst-Case Right-Hand Side at Step m = n � 1 for Real Symmetri A. In thissetion we assume that A is real symmetri. We prove that the worst-ase y at GMRES step m = n�1 anbe omputed from the vetor u = G(�), where � ontains eigenvalues of A. From Lemma 2.5 it followsthat this is equivalent to �nding a global minimizer of h(V; �; y)�2. Rather than looking at this problemas an unonstrained minimization problem, we restrit y to EV , whih, in the ase of symmetri A,beomes the unit sphere in Rn. This yields an optimization problem with a nonlinear objetive funtionand one nonlinear equality onstraint. The �rst-order neessary and seond-order suÆient onditionsfor y to be a (loal) minimizer are expressed in terms of the gradient and Hessian of h�2 (see, e.g. [14,Setion 14.5℄). We prove by onstrution that the neessary ondition is satis�ed and is atually suÆientfor the global minimizer. 6



Lemma 4.1. Let A 2 Rn�n be symmetri with distint eigenvalues. Let u = G(�). Consider realvetors b. Then the worst-ase vetors and the worst-ase performane of GMRES(A) at step m = n � 1are yworst =  [ �pju1j; : : : ; �pjunj ℄T ;(4.1) hworst(V; �; yworst) = 0� nXj=1 juj j1A�1 ;where  2 R is any nonzero saling onstant.Proof: Sine V is orthogonal, �nding the worst-ase behavior of GMRES(A) at stepm = n�1 is equivalentto solving the following onstrained minimization problemminy f(y);subjet to g(y) = 0where f(y) = �u1y1�2 + : : :+�unyn�2 and g(y) = y21 + : : :+ y2n � 1:Note that f(y) = h(V; �; y)�2 restrited to the domain EV by g(y). To establish the �rst-order ondition,we ompute the Lagrangian L(y; �) = f(y) + �g(y) and its gradient with respet to y,�L(y; �)�yj = �2 u2jy3j � �yj! ; 1 � j � n:We an assume that yj 6= 0; 1 � j � n, otherwise f(y) beomes in�nitely large. We �nd zeros of thegradient of the Lagrangian by solvingu2j � �y4j = 0 () (y�j )4 = u2j� () (y�j )2 = juj jp� () y�j = �s juj jp� :The next step is to determine the value of the Lagrange multiplier � that would ensure that thesolution y� = [y�1 ; : : : ; y�n℄T satis�es the onstraint. We solve0 = g(y�) = 0� 1p� nXj=1 juj j1A� 1for � and obtain p�� = Pnj=1 juj j and so �� = �Pnj=1 juj j�2. Therefore all the points y� where thegradient of the Lagrangian vanishes have the formy� = 1qPnj=1 juj j [ �pju1j; : : : ; �pjunj ℄T(4.2) 7



We evaluate the objetive funtion f(y) at y� and obtainf� = f(y�) = nXj=1 u2j(y�j )2 = nXj=1 u2jPnj=1 juj jjuj j= 0� nXj=1 juj j1A0� nXj=1 u2jjuj j1A = 0� nXj=1 juj j1A2 :Note that beause all variables appear squared in f(y), the value f(y�) is the same regardless of the signpattern of y�.Now let us onsider a ertain aspet of the behavior of h(V; �; y) over its respetive domain EV , whereV may or may not be unitary. Fix an arbitrary j = 1; : : : ; n and onsider the intersetion of EV with theoordinate plane yj = 0. It is a hyper-ellipsoid surfae of dimension n� 1 that splits EV in half. On oneside of this dividing surfae, all vetors y 2 EV have yj < 0, while on the other side yj > 0. Along thedividing surfae, h(V; �; y) = 0. Thus we an always think of EV as a union of 2n nonoverlapping pathes.Eah path is haraterized by the following two properties, (i) along its boundaries, h(V; �; y) = 0 and(ii) all points y 2 EV that belong to a given path have the same sign pattern, and no point outside of ithas that pattern. We onlude that along the path boundaries, h�2 is in�nitely large. Thus, unless it isidentially equal to in�nity over a given path, whih is impossible, it must have at least one minimizerinside that path. This implies that in the symmetri ase, when h(V; �; y)�2 = f(y), the points y�de�ned by (4.2) onstitute global minimum points of f(y), sine these are the only points with zerogradient and they all produe the same f(y�).Finally, we observe that sine GMRES is invariant to saling of the b and y, we an rewrite (4.2) as(4.1).5. Equivalene of A and AH . We start with a de�nition of equivalene of two matries.Definition 5.1. Let A; ~A 2 Cn�n and let b;~b 2 Cn. By rm(A; b) and rm( ~A;~b) we denote residualsof GMRES(A,b) and GMRES( ~A;~b) at step m, respetively. We say that A and ~A are equivalent at step min terms of GMRES onvergene if maxb 6=0 krm(A; b)kkbk = max~b 6=0 krm( ~A;~b)kk~bk :The two matries are equivalent if they are equivalent at every step m, 1 � m � n.Note that in general the worst-ase right-hand side vetor is di�erent for every m. The goal of thissetion is to show that if A is diagonalizable then it is equivalent to AH . First, let us de�ne some notation.Columns of V are (right) eigenvetors of A whereas the olumns of V �H are its left eigenvetors. Onthe other hand, sine AH = V �H�V H , the olumns of V �H are also right eigenvetors of AH . We alsoobserve that if Zm+1 is the n� (m+1) Vandermonde matrix omputed from eigenvalues of A, then �Zm+1is the matrix assoiated with AH .Let us denote the right-hand side b assoiated with A by bR, and the orresponding vetors m and yby R and yR. Similarly, the vetors assoiated with AH will be denoted by bL, L, and yL. Throughoutthe rest of the paper, we denote by Hm(V; �; yR) the reiproal of hm(V; �; yR). Also,HR(yR) = Hm(V; �; yR) = kRk kbRk;HL(yL) = Hm(V �H ; ��; yL) = kLk kbLk;where R = V YRZm+1(ZHm+1Y RWYRZm+1)�1e1; bR = V yR;L = V �HYLZm+1(ZTm+1Y LW�1YLZm+1)�1e1; bL = V �HyL:(5.1) 8



We denote matries Km+1(A; bR) and Km+1(AH ; bL) by KR and KL, respetively. Finally, if bR(bL) isa worst-ase right-hand side vetor for A (AH ) then this vetor, as well as the assoiated R (L) willbe denoted by bworstR (bworstL ) and worstR (worstL ), respetively. Before we state the general equivaleneresult, we state two auxiliary lemmas and prove one of them.Lemma 5.2. Let � = [�1; : : : ; �m+1; �m+2; : : : ; �n℄T 2 Cn ontain nonzero eigenvalues with �1; : : : ; �m+1being distint and let Zm+1 be the n�m+ 1 Vandermonde matrix omputed from �. Let t 2 Cn solveZHm+1t = e1:(5.2)Then t ontains at least m+ 1 nonzero entries orresponding to �1; : : : ; �m+1.Proof: In order to prove the result, it is suÆient to assume that the vetor t has the form t =[t1; : : : ; tm+1; 0; : : : ; 0℄T and to prove that tj 6= 0; 1 � j � m+1. We let p = n�m� 1. We observe thatequation (5.2) an be rewritten in the form~ZHm+1t1 + ~ZHp t2 = e1;where ~Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �m+1 : : : �mm+11CA 2 Cm+1�m+1;~Zp = 0B� 1 �m+2 : : : �mm+2... ... . . . ...1 �n : : : �mn 1CA 2 Cp�m+1;and t1 = [ t1; : : : ; tm+1 ℄T 2 Cm+1; t2 = 0 2 Cp:Sine eigenvalues �1; : : : ; �m+1 are distint, the square matrix ~Zm+1 is invertible and so t1 = ~Z�Hm+1e1 = ~u,where ~u = G([�1; : : : ; �m+1℄) 2 Cm+1. Sine all eigenvalues are nonzero, we onlude from (2.7) that t1ontains no zeros. This ompletes the proof.Lemma 5.3. Let M 2 Ck�n; k � n, ~ 2 Cn and d 2 Ck. Suppose that M~ = d. Finally, letrank(M) = k. Then ~ an always be written in the form~ = 0 + N ; 0 =Myd; N 2 N (M); N ? 0;(5.3)where N (M) is the kernel of M .Proof: See [22, Setion 2.3, Lemma 2℄.We are now ready to demonstrate that A and AH are equivalent in terms of the worst-ase GMRESbehavior.Theorem 5.4. Let A be diagonalizable by (1.2) and nonsingular. Let 1 � m � n� 1 be �xed. ThenGMRES(A) and GMRES(AH) ahieve the same worst-ase behavior at step m. Furthermore, let bR = bworstR ,the right-hand side vetor that yields the worst-ase behavior of GMRES(A) at step m. Compute theorresponding worstR and set bL = worstR . Then bL = bworstL , i.e. it is the worst-ase right-hand sidefor GMRES(AH). Moreover, the resulting worstL satis�es worstL = bworstR , i.e. the vetors bworstR , worstR ,bworstL , and worstL are ross-equal. 9



Remark: The onverse of the above statement is not true in general. In other words, take an arbitrarybR, ompute the orresponding R, set bL = R and ompute L. Cross-equality of the four vetors,i.e. the relationship L = bR, does not imply that bR or bL is the worst-ase right-hand side vetor forGMRES(A) or GMRES(AH), respetively.Proof of Theorem 5.4: Pik an arbitrary bR suh that the matrix KR has full rank. This yields a(unique) vetor R. De�ne aR � (ZHm+1Y RWYRZm+1)�1e1. Equations (5.1) imply thatV YRZm+1aR = R; ZHm+1Y R(WYRZm+1aR) = e1:We now set bL = R. Sine bL = V �HyL, we an rewrite the two equations above as follows,WYRZm+1aR = yL; ZHm+1Y R(WYRZm+1aR) = e1:We ombine the two equations and obtaine1 = ZHm+1Y RyL = ZTm+1Y LyR = ZTm+1Y LV �1V yR = KHL bR:From Lemma 5.2 is follows that rank(KL) = m + 1. We therefore apply Lemma 5.3 and write bR =(KHL )ye1 + tL = L + tL; where tL 2 N (KHL ) and tL ? L. By the Pythagorean equation,H2R = kbRk2kRk2 = (kLk2 + ktLk2)kbLk2= kLk2kbLk2 + ktLk2kbLk2 = H2L + ktLk2kbLk2� H2L;with equality holding i� tL = 0.We now repeat the proedure with A and AH swithed. In other words, we take the bL from above(whih, of ourse, yields the L and HL from above), and let ~bR = L. This, in turn, yields ~R suh thatbL = ~R + tR; tR ? ~R:We onlude that the orresponding ~HR satis�esH2R � H2L � ~H2R:(5.4)Now let bR = bworstR . Then for any ~bR, H2R � ~H2R:(5.5)We onlude that equations (5.4) and (5.5) both an be true i�tL = tR = 0 () bR = L = ~bR:This proves that HworstR � HworstL . Swithing A and AH and using the same argument, we an showthat HworstL � HworstR whih implies that the two quantities are equal.We do not know how to distinguish bworstR from other vetors bR that yield ross-equality. We doknow, however, how to alulate the latter vetors using a simple iterative tehnique. Let us againexamine the double inequality (5.4). It implies that if we start with an arbitrary bR and perform thefollowing sequene of steps, bR ) R = bL ) L = ~bR;(5.6) 10



The CE Algorithm:0. Take any b(1)R 2 Cn suh that rank(KR) = m+ 1. Set k = 1.1. Set y(k)R = V �1b(k)R .2. Set KR = V Y (k)R Zm+1 and (k)R = (KHR )ye1.3. Set b(k)L = (k)R and HR(k) = kb(k)R kk(k)R k.4. Set y(k)L = V Hb(k)L .5. Set KL = V �HY (k)L Zm+1, (k)L = (KHL )ye1, and HL(k) = kb(k)L kk(k)L k.6. If k(k)L � b(k)R k is suÆiently small, exit.7. Set k = k + 1. Set b(k)R = (k�1)L . Go to Step 1.Table 5.1The CE Algorithm: An Iterative Tehnique for Finding bR with Cross-Equalityand ompute HR and ~HR at bR and ~bR, respetively, then HR � ~HR with equality holding i� bR is aross-equality point. If we now omplete the loop by setting bR = ~bR and repeat (5.6) reursively, we willobtain a sequene of monotonially dereasing values HR. In other words, for k = 1; 2; : : :, onsider thesequenes fHR(k)g and fHL(k)g generated by the iterative algorithm shown in Table 5.1. We all it theCE (\Cross-Equality") algorithm. As k ! 1, HR(k) monotonially dereases. Sine it is also boundedbelow by HworstR , it onverges to a �nite limit. This implies thatlimk!1(HR(k)�HR(k + 1)) = 0:It follows that in the limit, the above algorithm onverges to a ross-equality point bR for any initialguess b(1)R . Clearly, the same applies to fHL(k)g and b(k)L .Note that the CE algorithm may be used when A is defetive. In this ase we skip steps 1 and 4 andompute matries KR and KL at steps 2 and 5 diretly from matries A and AH and vetors bR and bL,instead of using their spetral fatorizations. Theorem 5.4 was proved only for the diagonalizable aseand thus onvergene of the CE algorithm is not guaranteed when A is defetive. Nevertheless, when weapplied it to a few test matries, like the onvetion-di�usion matrix with � = 1 disussed in the nextsetion, the algorithm always onverged.Experiments suggest that, given a diagonalizable matrix A, at step m, the set of all vetors bR thatgive ross-equality is a manifold of dimension m+1. It remains an open question as to whether or not itis possible to devise a method similar to that desribed in Table 5.1, but whih is de�ned on the set ofbR with ross-equality, and whih would onverge to bworstR .When m = n�1, N (KHR ) = N (KHL ) = f0g. It follows that the CE algorithm always onverges in oneiteration and every bR 2 Cn yields ross-equality. In fat, in [22℄ we prove that in this ase the assoiatedvetors yR and yL satisfy YRyL = G(�).6. A Model Problem: The One-Dimensional Convetion-Di�usion Equation. The purposeof this setion is to study the worst-ase GMRES behavior at step m = n � 1, when applied to a familyof oeÆient matries that arise in disretizations of the one-dimension onvetion-di�usional equation.Just like in Setion 4, we are looking for the vetor y that satis�es the �rst-and seond-order onditionsin terms of the gradient and Hessian of h�2m [14, Setion 10.2℄.6.1. The Worst Case for the Convetion-Di�usion Matrix. We onsider the one-parameterfamily of matries A = A(�) that arises in the disretization of the one-dimensional onvetion-di�usionequation [4℄. Standard disretization shemes like entered di�erenes produe a oeÆient matrix of the11



form [4℄ ACD = A(�) = tridiag(�1� �; 2;�1 + �) 2 Rn�n;(6.1)where 0 � � � 1 for stability reasons [16℄. When � = 0, whih orresponds to the di�usion-dominatedase, the matrix is symmetri. In the onvetion-dominated ase � = 1, ACD is a single Jordan blok, i.e.it is a \maximally defetive" matrix with a single eigenvalue 2 repeated n times and a single eigenvetor.When 0 < � < 1, the matrix is nonsymmetri diagonalizable with distint eigenvalues.The eigenvalues �CD = [�1; : : : ; �n℄ and eigenvetors VCD of A(�) have the form�j = �j(�) = 2 (1�p1� �2 os ( �jn+ 1)); 1 � j � n;(6.2) VCD = V (�) = DCDQCD;(6.3)where DCD = diag(Æ; : : : ; Æn); Æ =p(1 + �)=(1� �) and QCD = [qjk℄ is a symmetri orthogonal matrixomputed as follows qjk =r 2n+ 1 sin ( �jkn+ 1); 1 � j; k � n:(6.4)Unlike Setion 4, here we study the worst ase as an unonstrained problem, i.e. we do not restritthe vetor y to the surfae EV . Thus, in order to establish neessary and suÆient onditions for aminimizer of h(V; �; y)�2 we have to ompute the gradient and Hessian of the objetive funtion. We dothis for the ase of arbitrary sets of distint nonzero eigenvalues � and eigenvetors V .Theorem 6.1. Let A 2 Rn�n be nonsingular and diagonalizable with distint real eigenvalues. De�nef(V; �; y) = h(V; �; y)�2. Also, for a given y 2 Rn, de�ne t = Y �1u, where u = G(�). This implies thattj = uj=yj ; 1 � j � n. In addition, de�ne the following salars and matries. Let F1(y) = (yTWy) 2 Rand F2(y) = (tTW�1t) 2 R. Let G1(y) = 2Wy and G2(y) = �2D1W�1t. LetD1 = diag([ t21u1 ; : : : ; t2nun ℄); D2 = diag([ t31u21 ; : : : ; t3nu2n ℄); D3 = diag(W�1t);where W = V TV . Then the gradient and Hessian of f(V; �; y) with respet to y an be written as follows,ryf(V; �; y) = F1(y) G2(y) + F2(y) G1(y)(6.5) r2yf(V; �; y) = 2F2(y) W + 2F1(y) (D1W�1D1 + 2D2D3) +(6.6) G2(y)G1(y)T +G1(y)G2(y)TProof: From (2.8) it follows that f(V; �; y) = F1(y)F2(y). We observe that vetors G1(y) and G2(y)are simply gradients of F1(y) and F2(y) with respet to y. Expressions (6.5) and (6.6) are obtained byapplying the rule of di�erentiation of a produt to the funtion f(V; �; y).It turns out that in the ase of the onvetion-di�usion matrix, the right-hand side vetors de�nedby (4.1) set the gradient of f(V; �; y) to zero even when � > 0. More preisely,Lemma 6.2. Let VCD and �CD be de�ned by (6.2) and (6.3), respetively. Let y be de�ned by (4.1).Then ryf(VCD; �CD; y) = 0. Also, regardless of the atual sign pattern of y, the orresponding vetors band  satisfy kk = Æ�(n+1)kbk;12



and therefore h(VCD ; �CD; y) = Æ(n+1)kbk�2 = Æ�(n+1)kk�2:(6.7)Proof: See [22℄.Although Lemma 6.2 implies that points y omputed by (4.1) satisfy the �rst-order neessary onditionfor a minimizer, it does not imply that the Hessian r2yf(V; �; y) is positive-semide�nite at y. In fat,numerial experiments indiate that most of the 2n points omputed by (4.1) are nothing more thansaddle points. There is one exeption, though. There appears to be one point at whih the seond-orderondition does appear to be satis�ed. More preisely, empirial data suggest that for every n and every0 � � < 1, the vetoryCD = y(�) =pjuCDj = [ p+u1; p�u2; p+u3; p�u4; : : : ℄T(6.8)is a minimizer of f(VCD; �CD ; y). Furthermore, the tests indiate that this is a global minimizer. Thethird important piee of numerial evidene we found was that h(VCD; �CD; y(�)) grows monotoniallyas � goes from zero to one. Sine �2(VCD) also grows monotonially with � [4℄, it appears that the one-dimensional onvetion-di�usion family of matries is an example of the negative e�et of onditioningof eigenvetors on onvergene of GMRES.6.2. The Worst-Case Vetor for � = 1, an n = 3 Example. It is often possible to representa defetive matrix as a limit of a ertain parametrized family of diagonalizable matries as the set ofparameters approahes a limit point. The one-dimensional onvetion-di�usion family of matries A(�)de�ned by (6.1) provides one suh example with a single parameter � and its limit value of one. Thereforeit is logial to expet that analysis of behavior of GMRES applied to the defetive matrix an be done byonsidering limits of related quantities orresponding to the diagonalizable matries. In this setion wedemonstrate this for the onvetion-di�usion matrix of size n = 3.The matrix VCD de�ned by (6.3) has the formVCD = V (�) = 1p2 0� Æ Æ ÆÆ2 0 �Æ2Æ3 �Æ3 Æ3 1A :The worst-ase right-hand side vetor b(�) equalsb(�) = 12p2(1� �)2 24 (1� �)(2p1 + �2 +p2 +p1)�p0(p2 �p1)(1 + �)(�2p1 + �2 +p2 +p1) 35 :(6.9)We now use (6.7) to ompute h(�) = h(V (�); �CD ; y(�)) and obtain 2h(�) = (1 + �2)23 + �4 + �2(2 +p2(1 + �2))� 2�p1 + �2(p2 +p1) :(6.10)In order to determine the worst-ase behavior of GMRES(A(1)) we ompute the limit of h(�) as �! 1�.We obtain lim�!1� h(�) = 6489 � 0:719101:2Computations were performed using Mathematia version 4 [21℄.13



The omponents of b(�) given by (6.9) grow in�nitely large as � approahes unity. Therefore in order to�nd the worst-ase right-hand side for the defetive ase, we �rst sale b(�) by its �rst omponent andthen ompute the limit of the resulting vetor ~b(�) as �! 1�. We obtainlim�!1� ~b(�) = [ 1; 12 ; 38 ℄T :(6.11)We now want to verify that the limit we just omputed indeed represents the worst-ase behavior forGMRES(A(1)). We assume b = [1 �2 �3℄T and obtainK = 0� 1 2 4�2 �2 + 2�2 �8 + 4�2�3 �2�2 + 2�3 4� 8�2 + 4�31A ;K�1 = 0� 1� (1� �2)�2 � �3 1� �2 1�22 � �2 + �3 � 12 + �2 �114 (�22 � �3) ��24 14 1A :We now ompute H(�2; �3)2 = kKe1k2 kK�T e1k2 = (1+�22 +�23)(1+(1��2)2+(1� (1��2)�2��3)2),�nd its gradient with respet to �2 and �3 and ompute its zeros. The only real root of the gradient ispreisely the point given in (6.11).What we have demonstrated is that the framework that we have developed for analysis of GMRESapplied to diagonalizable matries A may be applied to defetive matries A as well. If we an express agiven defetive Adef as Adef = limp!p0 A(p);where A(p) are diagonalizable, p 2 Ck is a vetor of parameters and p0 is a ertain limit value, and ifwe an derive onvergene results for GMRES(A(p)), we may be able to determine or estimate relatedquantities for GMRES(Adef) by taking limits.6.3. General Worst-Case Behavior for � = 1: Numerial Observations. In this setion wepresent numerial data regarding the worst-ase GMRES behavior for the defetive onvetion-di�usionmatrix Adef = A(1) (see Equation (6.1)) of an arbitrary size. This data suggests that it is possible to useinformation about the worst-ase behavior of the n� n problem to determine the worst-ase behavior ofthe problem of dimension n+1. Although here we do not use the spetral deomposition framework, wean think of the results presented in this setion as an extension of what was developed in Setion 6.2.Throughout this setion, we use the following notation. Let An denote the onvetion-di�usion matrixA(1) of size n, i.e. An = 0BB� 2�2 2. . . . . .�2 21CCA 2 Rn�n:Let bn = [1 �2 : : : �n℄T 2 Rn denote the right-hand side vetor of size n and let Kn = K(An; bn).Assuming Kn is nonsingular, let n = K�Tn e1. Let hn(bn) be the GMRES onvergene measure at stepn� 1 for the n�dimensional problem and let Hn(bn) be its reiproal. ThenHn(bn) = hn(bn)�1 = kbnkknk:14



Finally, let bworstn , worstn , hworstn , and Hworstn represent quantities assoiated with the worst-ase behaviorof GMRES(An). Thus in Setion 6.2, we have established thatbworst3 = [ 1; 12 ; 38 ℄T ; hworst3 = 6489 :We want to determine these quantities for an arbitrary n. To this end, we �rst look at the strutureof Kn. Let us write expliitly its seond and third olumns,Anbn = 22666664 1�1 + �2��2 + �3...��n�1 + �n
3777775 ; A2nbn = 42666664 1�2 + �21� 2�2 + �3...�n�2 � 2�n�1 + �n

3777775 :With a simple indution argument, one an show that the top n�1 rows of the matrix Kn do not dependon �n. This implies that if bn+1 = [bTn �n+1℄T 2 R(n+1) thenKn+1 = � Kn an~aTn �n � 2 R(n+1)�(n+1);where Kn 2 Rn�n, an; ~an 2 Rn and �n 2 R with Kn and an being independent of �n+1. We alsoobserved, although ould not prove analytially, that the orresponding vetor n+1 is an inrement ofn, i.e. n+1 = [n+1 Tn ℄T where n+1 2 R depends an all omponents of bn+1. If this is true in general,and we believe it is, thenH2n+1(bn+1) = kbn+1k2kn+1k2 = (kbnk2 + �2n+1)(knk2 + 2n+1)= H2n(bn) + �n;(6.12)where �n = kbnk22n+1 + knk2�2n+1 + 2n+1�2n+1. We make the following observations. First, Equation(6.12) implies that hworstn+1 � hworstn . Seond, it also suggests that bworstn and bworstn+1 are losely related andone may be omputed from the other. We now present experimental results that indiate that this is thease.For n varying between 4 and 50, we approximately omputed bworstn and hworstn by evaluating hn(bn)over a large mesh of points normally distributed over the unit sphere in Rn. One a oarse approximationhas been omputed, we re�ned it by fousing on the region where hn(bn) was the largest. Upon inspetionof the results, we onjeture the following. First, the vetor bworstn satis�es 1 > �worst2 > : : : > �worstn > 0,with �worstn usually being between about 80 and 90 perent of �worstn�1 . Seond, vetors bworstn and bworstnare related by bworstn+1 = � bworstn�worstn+1 � :(6.13)Figure 6.1 illustrates our �ndings. The left subplot shows individual entries of bworst50 . In addition, due tothe relationship (6.13) it essentially plots the worst-ase vetors for all n < 50 as well. The right subplotshows the value of hworstn for 4 � n � 50. As predited by (6.12), it monotonially dereases as n grows.We now ask the following question: How does performane of GMRES(An,bworstn ) ompare to that ofGMRES(An,b) for a random b 2 Cn at intermediate steps of the algorithm? We try to answer this questionpartially by onduting the following experiment. For various values of n, we generate the defetive matrix15



5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j

β
jw

o
rs

t

5 10 15 20 25 30 35 40 45 50
0.4329

0.4595

0.486

0.5126

0.5391

0.5657

0.5922

0.6188

0.6454

0.6719

n

h
nw

o
rs

t

Fig. 6.1. The vetors bworstn (left) and the measure hworstn (right) for the defetive onvetion-di�usion matrix of sizen = 4; : : : ; 50
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Fig. 6.2. Performane of GMRES(An ; b) for di�erent hoies of b, for n = 3; 10; 25; 50 and m = 0; : : : ; n� 1.An as well as right-hand side vetors of three types, namely (i) the worst-ase vetor bworstn ; (ii)M randomvetors b with positive entries; and (iii) M random vetors b with arbitrary entries. We then run GMRESwith eah matrix-vetor pair and look at the sequene of residual ratios hm, m = 0; : : : ; n� 1. Results ofthis test are shown in Figure 6.2.We tested problems of size n = 3; 10; 25, and 50 and used M = 5. We seleted suh a small16



value of M to make the plots more readable. We note that the empirial �ndings we present belowwere observed for larger values of M as well. On eah of the four subplots in Figure 6.2, the solid urverepresents the onvergene urve of GMRES(An,bworstn ). The dashed urves and those labeled with an'�' orrespond to positive and mix-sign vetors b, respetively. We make the following observations.First, as predited, at step m = n � 1, h(An; bworstn ) is larger than h(An; b) for any other b. Moreover,GMRES(An,bworstn ) exhibits relatively poor performane at intermediate steps as well, espeially at laterstages of the algorithms. Nevertheless, bworstn is not the worst-ase vetor for m < n� 1. Seond, overall,GMRES performs notieably better when applied to mix-sign vetors b than when positive vetors are used.Also, the performane gap, almost nonexistent for small problems, seems to grow with n.We obtained similar patterns when we applied the same test to a diagonalizable matrix A(�) for a�xed � < 1. We therefore onjeture that at later stages of the algorithm, hm(An; bworstn ) may be losethe worst-ase behavior, while at its early stages, the worst-ase b is some other vetor with positiveomponents.7. Can Worst-Case Analysis Be Misleading?. Throughout this doument, we have been fo-using on the worst-ase analysis of GMRES onvergene. If GMRES(A) and GMRES(A0) ahieve the sameworst-ase performane at step m for the matries A = V �V �1 and A0 = V 0�0(V 0)�1 then learly mea-sures hm(V; �; y) and hm(V 0; �0; y) have the same range of values. However, as we will see in this setion,this fat does not neessarily imply that the method has idential overall behavior when applied to thetwo matries.In this setion we fous on step m = n� 1 and present some experimental data that shows that analternative measure of overall performane, suh as the mean of h(V; �; y) over all right-hand side vetorsb = V y of unit length, may be a better indiator of average performane of GMRES.7.1. Approximate Computation of the Mean. In this setion we fous on real matries Aand vetors b and again assume that kbk = 1. This yields the onvergene measure h(V; �; y) =kV �HY �1uk�1. Let us de�ne the set R+n = fb = [�1; : : : ; �n℄T 2 Rn j kbk = 1; �n � 0 g thatonstitutes the upper half of the real unit hyper-sphere Without loss of generality we may assume thath(V; �; V �1b) is de�ned over R+n . Thus for given V and �, h(V; �; V �1b) : R+n ! [0; 1℄. Overall perfor-mane of GMRES(A) an be measured by its mean,�h = �h(V; �) = 1A(R+n ) ZR+n h(V; �; V �1b);(7.1)where A(R+n ) is the total surfae area of the half-sphere R+n . In other words, �h is just a saled surfaeintegral of the measure h(V; �; V �1b).The formula (7.1) yields a very ompliated expression whih we have not been able to evaluateexatly. Therefore in our experiments we seek to approximate it. The most straightforward way to do itis to evaluate h(V; �; b) on a disrete mesh over R+n and then to ompute the average of all the values atthe mesh nodes. Clearly, in order for the approximation to be good, the mesh has to be both �ne anduniform. As pointed out in [2℄, given an integer M , it is possible to obtain a uniform mesh of the sphereby generating M n�vetors of normally distributed random numbers with zero mean and unit variane.These vetors an then be saled to put them on the top half of the unit sphere.Unfortunately, even in the ases of small n, the mesh has to be rather �ne in order to get an auratepiture. For instane, when n = 3, the values of M between 105 and 106 are usually used, and thisvalue grows with n. This often makes omputational experiments even with small-dimensional problemsexpensive in terms of both time and memory. 17
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Fig. 7.1. Di�erent behavior of hR (left) and hL (right) in neighborhood of bstagn7.2. An Example of Di�erent Behavior of A and AT . Let us onsider the following matrixA = 0� 3:64347104554523 �1:30562625697964 2:122762337249473:81895186997748 �0:33626408416579 8:439523254168690:12754105943518 0:13002776444227 2:988205496100001Atogether with its transpose. This matrix has real spetrum. We ompute VR and VL = V �TR , whihare the eigenvetors of A and AT , respetively. We onsider vetors b 2 R+n and denote by hR and hLthe measures h(VR; �; V �1R b) and h(VL; �; V �1L b), respetively. Thus hR and hL are GMRES onvergenemeasures at step m = n� 1 for A and AT , respetively.By Theorem 5.4, hR and hL attain the same maximums over the unit sphere. In fat, GMRES(A) andGMRES(AT) stagnate [23℄ at the following two pointsbstagn1 = 24 �0:22385545043433�0:304719185834170:92576182418211 35 ; bstagn2 = 24 �0:46000942948917�0:324209708749850:82660715551465 35 ;We now generate a mesh of K = 106 normally distributed points and approximately ompute �hR and�hL. The values we obtain are quite di�erent, namely, �hR � 0:4512 and �hL � 0:1835. Closer examinationreveals that GMRES(A) and GMRES(AT) behave di�erently in the neighborhood of the stagnation points.Let us examine Figure 7.1. The left and right subplots orrespond to hR and hL, respetively. Theshaded areas orrespond to the regions where hR and hL are larger than 0:85. As expeted, the stagnatingpoints bstagn1;2 are inside both of these regions. However, the region orresponding to hR is signi�antlylarger whih explains why its mean is larger as well. In other words, hR in general hanges muh moreslowly in the neighborhood of bstagn1;2 than does hL.8. Open Questions. As often happens, the development of a new approah to GMRES onvergeneanalysis raised more questions than it answered. In addition to various onjetures arising from empirialevidene presented in Setions 6 and 7, there are questions that an be thought of as generalizations ofresults presented in this paper. Here we mention some of them. In Setion 3 we derived bounds for the18
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