SPECTRAL FACTORIZATION OF THE KRYLOV MATRIX AND CONVERGENCE
OF GMRES *
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Abstract. Is it possible to use eigenvalues and eigenvectors to establish accurate results on GMRES performance?
Existing convergence bounds, that are extensions of analysis of Hermitian solvers like CG and MINRES, provide no useful
information when the coefficient matrix is almost defective. In this paper we propose a new framework for using spectral
information for convergence analysis. It is based on what we call the spectral factorization of the Krylov matrix. Using
the new apparatus, we prove that two related matrices are equivalent in terms of GMRES convergence, and derive necessary
conditions for the worst-case right-hand side vector. We also show that for a specific family of application problems, the
worst-case vector has a compact form. In addition, we present numerical data that shows that two matrices that yield the
same worst-case GMRES behavior may differ significantly in their average behavior.
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1. Introduction. The GMRES method has been used extensively during the last two decades for
solving non-Hermitian linear systems. Nevertheless, its convergence properties are still poorly under-
stood. In particular, it is unclear what role eigenvalues and eigenvectors of the coefficient matrix play in
convergence of the algorithm or if it is possible to use spectral information to derive accurate convergence
results.

These issues has been investigated to some extent in the original work of Saad and Schultz [17].
Suppose we apply GMRES to the linear system

(1.1) Ar=b, AelC™" zbel",
where A has the spectral decomposition
(1.2) A=VAV~' A=diag\), A=\, ---, ], Aj€C\ {0}

We denote the GMRES iterate at step m by z,,, 0 < m < n, with xy being the initial guess. The
corresponding residual is defined by r,,, = b— Az,,. The first GMRES convergence result, which appeared in
[17], was an extension of convergence analysis of methods like CG [9] and MINRES [15] applied to Hermitian
systems. It bounds the ratio of the norms of r,, and ry as follows,

llrmll .
1.3 < Ko (V min max A,
3 ol <), 8, 225, om0
where II,, is the set of all polynomials of degree m that equal one at zero, k2 (V) = ||[V]|||[V Y| is the
condition number of the eigenvector matrix and || - || is the vector or matrix Euclidean norm. When A

is normal then x2(V) = 1 and the bound (1.3) is sharp [6], i.e. for every A and every m, there exists
a right-hand side vector b for which (1.3) becomes an equality. When A is nonnormal, however, this
bound becomes much less useful because the right-hand side expression can be made arbitrarily large by
taking an almost-singular V. Also, except for some special cases [1, 13, 5], the above minimax expression
is hard to compute or even estimate. Alternative bounds have been developed, that are based on other
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characteristics of the coefficient matrix such as the field of values [3] and pseudo-spectrum [20]. However,
none of these bounds is immune to the problems of inaccuracy and computational complexity.

More recently Greenbaum and her colleagues discovered that eigenvalues alone cannot explain GMRES
behavior [8, 7]. However, in this paper, as well as in an accompanying manuscript [23], we demonstrate
that if we combine information about the eigenvalues and eigenvectors of A, as well as the right-hand
side b, via a Krylov matrix, we can derive explicit expressions for GMRES convergence measures and obtain
accurate results on performance of the algorithm.

The paper consists of two parts. In Section 2, we express GMRES convergence at each iteration in terms
of eigenvalues )\, eigenvectors V and the right-hand side represented in the column basis of V. Then,
in Sections 3 through 7, we apply the developed apparatus to analysis of GMRES convergence. To some
extent, the work presented in the second part of the paper is a generalization of the results presented in
[23], where we apply the new machinery to a rather extreme case of GMRES convergence called stagnation,
when the method makes no progress during the first several iterations.

Most of the existing literature on convergence of GMRES is devoted to derivation of precise upper
bounds of the quantity ||r,.||/||7o]|. In this paper, we, too, present convergence bounds and discuss their
accuracy, but we also go beyond this. For instance, in Section 5, where we present the main result of
the paper, we demonstrate that two related matrices yield the same worst-case behavior at every step
of GMRES, and establish necessary conditions for the worst-case vector b. In Section 6, we show that the
worst-case right-hand side can sometimes be expressed in a very compact form in terms of some of the
quantities derived in Section 2. We also demonstrate that our framework may be applied indirectly to
the case of a defective A, provided this A can be expressed as a limit of a parametrized sequence of
diagonalizable matrices. Finally, in Section 7, we present numerical data that suggest that when overall
GMRES behavior is measured by its average convergence, it may yield results different from those produced
by worst-case analysis.

When A is Hermitian, GMRES is equivalent to MINRES. Therefore all results presented in this paper
that apply to GMRES for Hermitian A hold for MINRES as well.

2. GMRES Convergence Measures. The main purpose of this section is to develop a new ap-
proach for analysis of GMRES performance based on spectral information of the matrix A. First, we discuss
relevant properties of the GMRES algorithm in Section 2.1. Then, we devote Section 2.2 to derivation of
an explicit expression for a GMRES convergence measure based on what we call the spectral factorization
of the Krylov matrix associated with application of GMRES to the problem (1.1).

2.1. GMRES and Its Basic Properties. Given a linear system (1.1) and an initial guess xo with
the residual 7o = b — Ay, at iteration m, GMRES computes an approximation x,, € xo + K, (4,70) to
the true solution & = A~1b, where K,,,(4,r¢) = span{ry, Arg, ..., A™ 1ry} is the Krylov subspace of
dimension m. Without loss of generality we can assume that o = 0 and so ro = b. The iterate z,, is
chosen in such a way as to minimize the Euclidean norm of the residual r,,, = b — Ax,,, i.e. the GMRES
residual r,,, (A, b) at step m satisfies

2.1 (A D) = mi b— Azl|.
@) I (4Dl = _min b~ As|

When there is no ambiguity, we denote r,,(A,b) by r,,. We also denote by GMRES(A ,b) application
of GMRES to the linear system (1.1) with zyp = 0, or by GMRES(A) when the right-hand side vector is
unspecified. We assume infinite precision, so our derivations do not depend on a specific implementation
of the method.

Throughout this paper, various quantities associated with GMRES iteration m are denoted by letters
subscripted by m. The subscript is dropped for the same quantities at step m =n — 1.



The norm of r,, is a nonincreasing function of m. Given a matrix A and a vector b, we say that
GMRES (A,b) terminates in m steps if r,,, = 0 and r,,_; # 0. A fundamental property of GMRES is that
rm(A,b) # 0 iff dim(Kp,41(A,b)) = m + 1. Thus, while analyzing GMRES performance at iteration m, it
is sufficient to consider those vectors b that yield the Krylov matrices Kp4+1(A4,b) = [b Ab ... A™b| of
rank m + 1. Another important property is that the matrix Ky (A, b) is rank-deficient for any b € C™ if a
diagonalizable matrix A has fewer than k distinct eigenvalues. Therefore we assume that A has at least
m + 1 distinct eigenvalues.

For a given A € C"*™, we call b’ € C™ the worst-case right-hand side at step m (with respect to the
matrix A) if, for any b € C*, [[7 (A, O)|I/IVI] > 17 (A, b)]/ ]l

2.2. GMRES Convergence Measures in Terms of Spectral Decomposition of K, 1(A4,b).
In this section, we demonstrate that, when A is diagonalizable, a GMRES (A, b) convergence measure can
be expressed in terms of eigencomponents of A and the right-hand side vector.

DEFINITION 2.1. The GMRES(A,b) performance measure h,, at iteration m is defined by h,, =
ol lroll = lirll/61] € [0, 1]

The function h,, expresses a common way of measuring progress of an iterative method during the
first m iterations with its small and large values corresponding to good and bad convergence, respectively.

We now state an important result due to Ipsen [11, Theorem 2.1] that represents one of the two main
building blocks which allow us to develop the apparatus presented in Section 2 !. It is expressed in terms
of the Moore-Penrose pseudoinverse of a full-rank matrix K,,11(A4,b) which is well-defined and unique,
and can be calculated by [19, 12]

K= (B Ky TP K L € et
THEOREM 2.2. Let A be diagonalized by (1.2) and letb € C™. Assume that at step m, rank(Kp4+1(4,0)) =i
m + 1. Define

(2.2) em = (K] ) Per € Cm,

which, in case m = n — 1, simplifies to c = K~He,. Then the residual of GMRES (A,b) at step m satisfies
Il = llem|l ™t

Thus we can rewrite the performance measures of GMRES (A4,b) in terms of components of the Krylov
matrix and its pseudoinverse as

(2.3) h = (lem|llIBI) 1

This implies that progress of GMRES during the first m iterations can be measured by the angle between
cm and b. More specifically,
COROLLARY 2.3. For given A, b and m such that the matriz rank(K,,+1) = m + 1, the following
relationships between b and ¢y, hold
1. The two vectors can be computed from each other as follows,

cm = (Kt (an+1Km+1)72KnI{+1)b
b (K1 KfL1)em

2. clp=1.
3. hm = cos Z(¢m, b).

IIpsen’s result is a special case of those presented by Stewart in [18, Sections 3 and 4].



Proof: To prove Item 1 we first observe that
(24) b= Kerlel.

Also, Km+1Km+1 = [ and so it follows that Km+1b = (Km+1Km+1)el = e;. We combine this result
with the definition (2.2) of ¢, and obtain

Cm = (K:n+1)H€1 = (an )HKrTn+1b
= (Kmt1 (K K1) ™ )((Km+1Km+1) DE)b
= (Kp1 (K K1) KL )b,

The formula for b in terms of c,, is derived similarly by observing that K, (k! . ) equals identity.
To establish Item 2 we combine (2.2) with (2.4) and write

emb = (e (K1 Km1) K1) (Ksier) = ef'er = 1.
Finally, to obtain Item 3, we expand the Euclidean inner product as follows,

c0s £(¢m,b) = (cpub)/ (lemlIlIbl) = 1/lemll11bl) = han

We now show that the Krylov matrix associated with GMRES(A,b) at step m can be factorize%
using eigencomponents of A and the right-hand side vector b represented in the eigenvector basis. This
factorization, which we call the spectral factorization of K,,+1(A,b), is the second major building block
which allows us to express convergence of the method in terms of eigenvalues, eigenvectors and the right-
hand side. Although this factorization has appeared in literature before (e.g. [11, Proof of Theorem 4.1]),
to our knowledge, it has never been stated or proved as a separate result.

THEOREM 2.4. Let the nonsingular matriz A € C™*™ be diagonalized by (1.2) and let b € C™. Let
y = Vb, Then, regardless of its column rank, the n x (m + 1) Krylov matriz K,,,1 associated with
GMRES(A,b) at step m can be factored as

(2.5) Ky =VYZyta,
where Zy+1 is the Vandermonde matrixz computed from eigenvalues of A as follows,
| D VI U
Zmir= | =+ =(e Ae ... AMe).
1 A .0 AR

n

Conversely, for a diagonalizable matriz A, take y € C" and compute K41 by (2.5). Then this matriz is
the Krylov matrix associated with GMRES (A, Vy) at step m.

Proof: See [23]. O

We now combine the spectral factorization (2.5) with equations (2.3), (2.2), and (2.4) and obtain an
explicit expression for GMRES (A,b) convergence at step m,

= _ -1
(2.6) (V) = (VY Zin 1 (Z3 YWY Zina) " ea] [IVyl)

where W = VHV and e; € C"™*!. The case m = n—1 deserves special attention since then the expression
(2.6) significantly simplifies. First, observe that rank(K) = n iff the eigenvalues of A are distinct and all
entries of y = V~1b are nonzero. Then KT = K~! and it follows from (2.2) that

eno1=c=KHe, = (VYZ) He, = v-HY 'z-H



Denote the elements of the first column of Z~# by u;, 1 < j < n. From [10, Section 21.1] it follows that
they can be explicitly computed from the eigenvalues of A by

(2.7) u; = (—1)""conj H '/\k

Since the first column of Z is e, these elements also satisfy u; + ... 4+u; = 1. Let us denote the mapping
from C™ to C", defined elementwise by (2.7), by G(A). Also, let u = G()), i.e. u represents the conjugate

transpose of the first row of Z—!. Then it follows that ¢ = V-HY 'y and
—g1 -
(2.8) RV A y) = (IVHY “ull [Vyl) ™

We note that h,,,(V, A, y) is invariant to the following scalings.
1. Scaling of the vector b. We may, therefore, assume that [|b]| = 1.
2. Scaling of eigenvalues A\. Thus we may assume that A\; = 1.
3. Column scaling of V, i.e. hy(V, X, y) = hy(V D, X\, D~1y) for any nonsingular diagonal D € C™*".
Thus we may assume that columns of V' have unit length.
4. Pre-multiplication of V' by a unitary matrix, i.e. hy,(V, A y) = hy(PV, A, y) for any unitary
P € C™*", Thus it is sufficient to consider only matrices V with their SVD of the form V = SQ*H.

We conclude this section with a statement of a general property of the worst-case right-hand side
vector in terms of the convergence measures.

LEMMA 2.5. The vector b* € C™ is the worst-case right-hand side for GMRES (A,b) at step m iff the
vector y* = VLb* satisfies hy(V,\,y*) > hy(V,\,y) for any other y € C™. In other words, y* is the
global mazimizer of h,,(V,\,y).

In the remaining sections, we apply the developed apparatus to analysis of GMRES.

3. New GMRES Convergence Bounds. In this section we assume that all vectors b have unit
length, which implies that the vectors y = V ~1b are restricted to the hyper-ellipsoid surface Ey = { y €
C™ | yH Wy = bHb = ||b||*> = 1}. Our goal is to establish accurate upper bounds on the performance
measure h(V, \,y) = |||~ = ||[V=HY ‘“u||~', y € Ey, of GMRES at step 7 = n — 1, as well as to extend
these bounds to arbitrary steps.

THEOREM 3.1. For y € Ey, the following bounds hold,

- —1
h(V, A y) = IVI/IIY  ull
h(V A, y) = VY I/ Tl

(3.1) h(V,Ay) <
<

Proof: To obtain (3.1), we estimate ||¢|| from below as follows,
(3.3) c=VHY 'y = VHe=Y 'u = [VE|||l > 1Tyl

We now let t = Vilu, apply a sequence of steps similar to (3.3), and get ||Y|||¢]] > ||u||, which yields
(3.2). O

When A is normal, V is unitary, which yields ||V ¢|| = ||¢/|, and so the bound (3.1) becomes an
equality for every y € Ey. Suppose A is non-normal. Let us assume that the eigenvector matrix has



the form V = SQ¥, where S = diag(sy,...,s,) and s; > ... > s,. Then the right singular vectors of
VH = QS aree,...,e,, and so

Vel =V llllell = c=ae,

where o € C is a scaling constant that ensures that the b corresponding to the ¢ is of unit norm. For
what right-hand side vector does the equality hold? We expand

VH(a e)) = aQSe; = as q = ?ﬂu,
where q; = [q11,...,¢u1]? is the right singular vector of V corresponding to the largest singular value s;.

Let u = [u1,...,u,)" and y = [y1,...,yn]’. We conclude that the elements of the vector y for which the
bound (3.1) coincides with h(V, A, y), have the form

yj:con]< J ), j=1...,n,
as1qj1

where « is chosen appropriately. We compared (3.1) and (3.2) with the bound (1.3) on a set of low-
dimensional nonsymmetric real matrices A with real positive eigenvalues (see [22, Section 5.1]). Tests
showed that both (3.1) and (3.2) gave smaller bounds then (1.3). In addition, they have certain theoretical
advantages. The bound (3.1) depends on the right-hand side and not just on its norm, while bound (3.2)
better separates components that correspond to eigenvalues and eigenvectors of A and the right-hand
side b.

Using the same general approach we can obtain a bound for the performance measure h,,,(V, \,y) for
m=1,...,n—2. Since ¢, = VY Zps1(ZE, YWY Z,,11) Ler, we have

Ve, =WY Zy1 (ZE YWY Z10) ey,
and so
(3.4) R (Vi y) < hin(Vi A, y) = |VI/IWY Zir (ZE L YWY Zi1) Len ).

Although (3.4) still appears to be tighter than (1.3), it does not really offer any theoretical advantages
over the exact expression (2.6). It is obviously less accurate than (2.6) and yet its components are not
as well separated as they are in (3.2). Separation is difficult since in general, unlike the regular inverse,
the Moore-Penrose pseudoinverse of a matrix product is not a product of pseudoinverses. Thus finding a
better estimate for an arbitrary step of GMRES remains an open question.

4., The Worst-Case Right-Hand Side at Step m = n — 1 for Real Symmetric A. In this
section we assume that A is real symmetric. We prove that the worst-case y at GMRES step m = n —1 can
be computed from the vector u = G(A), where A contains eigenvalues of A. From Lemma 2.5 it follows
that this is equivalent to finding a global minimizer of h(V, \,y)~2. Rather than looking at this problem
as an unconstrained minimization problem, we restrict y to Ey, which, in the case of symmetric A,
becomes the unit sphere in R™. This yields an optimization problem with a nonlinear objective function
and one nonlinear equality constraint. The first-order necessary and second-order sufficient conditions
for y to be a (local) minimizer are expressed in terms of the gradient and Hessian of h=2 (see, e.g. [14,
Section 14.5]). We prove by construction that the necessary condition is satisfied and is actually sufficient
for the global minimizer.



LEMMA 4.1. Let A € R™*™ be symmetric with distinct eigenvalues. Let w = G(\). Consider real
vectors b. Then the worst-case vectors and the worst-case performance of GMRES(A) at step m =n — 1

are
coey 2V |unl 17,

(41) Yworst = 7Y [ + |U1|7
-1

n

hworst(va /\7 yworst) = Z |U]| )

j=1

where v € R is any nonzero scaling constant.
Proof: Since V is orthogonal, finding the worst-case behavior of GMRES (A4) at step m = n—1 is equivalent

to solving the following constrained minimization problem
min  f(y),
subject to g(y) =0

where

fly) = m

Note that f(y) = h(V, X, y)~2 restricted to the domain Ey by g(y). To establish the first-order condition,
we compute the Lagrangian L(y, u) = f(y) + ng(y) and its gradient with respect to y,

n

2 2
u u
( 1) +...+<—n> and g(y) =y +...+y2 — 1.

Oy;

oL u?
W) _ (—;—uyj> , 1<j<n
J

We can assume that y; # 0, 1 < j < n, otherwise f(y) becomes infinitely large. We find zeros of the

gradient of the Lagrangian by solving
2 4_0 — ( *)4 u? ( *)2 |U’]| *_ 4 |U’]|
uj = pyj = yj)'=— = ) ="F = yi=H| -
J J J 1 J \/ﬁ J \/ﬁ

The next step is to determine the value of the Lagrange multiplier u that would ensure that the

solution y* = [yf,...,y}]? satisfies the constraint. We solve

* 1 -
0=yg(y") = ﬁZIWI -1
Jj=1

for p and obtain /u* = 2?21 |uj| and so p* = (Z?:l |uj|) . Therefore all the points y* where the

gradient of the Lagrangian vanishes have the form

(4.2) = =l oo &l |7
\/Zj:l |uj]



We evaluate the objective function f(y) at y* and obtain

* *\ = u] _ - 22?:1 |U’]|
f_f(y)_Z(*)z_Zuj ]
=1 \Yj j=1 J
n n ’U/? n 2
= |uj] Z m = Z |uj]
j=1 Jj=1 j=1

Note that because all variables appear squared in f(y), the value f(y*) is the same regardless of the sign
pattern of y*.

Now let us consider a certain aspect of the behavior of h(V, \,y) over its respective domain Ey, where
V may or may not be unitary. Fix an arbitrary j = 1,...,n and consider the intersection of Ey with the
coordinate plane y; = 0. It is a hyper-ellipsoid surface of dimension n — 1 that splits Ey in half. On one
side of this dividing surface, all vectors y € Ey have y; < 0, while on the other side y; > 0. Along the
dividing surface, h(V, A, y) = 0. Thus we can always think of Ey as a union of 2" nonoverlapping patches.
Each patch is characterized by the following two properties, (i) along its boundaries, h(V, A, y) = 0 and
(ii) all points y € Ey that belong to a given patch have the same sign pattern, and no point outside of it
has that pattern. We conclude that along the patch boundaries, h~2 is infinitely large. Thus, unless it is
identically equal to infinity over a given patch, which is impossible, it must have at least one minimizer
inside that patch. This implies that in the symmetric case, when h(V,\,y)~2 = f(y), the points y*
defined by (4.2) coustitute global minimum points of f(y), since these are the only points with zero
gradient and they all produce the same f(y*).

Finally, we observe that since GMRES is invariant to scaling of the b and y, we can rewrite (4.2) as
(4.1). 0

5. Equivalence of A and Af. We start with a definition of equivalence of two matrices.

DEFINITION 5.1. Let A, A € C"*" and let b,b € C". By rm(A,b) and rm(fi,l;) we denote residuals
of GMRES (A,b) and GMRES (A,b) at step m, respectively. We say that A and A are equivalent at step m
in terms of GMRES convergence if

o Mrm (A, D)) lrm (A, )1

m = =
b0 [[bll b£0 [|b]]

The two matrices are equivalent if they are equivalent at every step m, 1 <m < n.

Note that in general the worst-case right-hand side vector is different for every m. The goal of this
section is to show that if A is diagonalizable then it is equivalent to A . First, let us define some notation.
Columns of V are (right) eigenvectors of A whereas the columns of V~# are its left eigenvectors. On
the other hand, since A# = V-HAVH  the columns of V4 are also right eigenvectors of A#. We also
observe that if Z,, 1, is the n x (m+ 1) Vandermonde matrix computed from eigenvalues of A, then Z,, 1,
is the matrix associated with A,

Let us denote the right-hand side b associated with A by bg, and the corresponding vectors ¢, and y
by cr and yg. Similarly, the vectors associated with AH will be denoted by by, cr, and yr. Throughout
the rest of the paper, we denote by H,,(V, A,yr) the reciprocal of h,,(V,A,yr). Also,

Hr(yr) = Hw(V,Ayr) = |lell llbrll,
Hi(yr) = Hn(V " XNy) = el Iocl],
where
(5.1) CR = VYRZmil(Zf,{HYREVYRZmH)__ICh br = Vuyr,
’ cr, = VﬁHYLZmd‘_l(Z£+1YLW71YLZm+1)7lel, b, = VﬁHyL.



We denote matrices K, 11(A,bg) and K,,11(A" by) by K and K, respectively. Finally, if br(by) is
a worst-case right-hand side vector for A (A#) then this vector, as well as the associated cg (cp) will
be denoted by b%o7st (b¥orst) and ¢%orst (¢¥orst), respectively. Before we state the general equivalence
result, we state two auxiliary lemmas and prove one of them.

LEMMA 5.2. Let A = [A1, - s A1, A2, - - -, An] L € C™ contain nonzero eigenvalues with Ay, - . ., Am+1ll
being distinct and let Z,,+1 be the n x m + 1 Vandermonde matriz computed from X. Let t € C™ solve

(5.2) zZH t=e.

Then t contains at least m + 1 nonzero entries corresponding to A1, ..., A\p41-

Proof: In order to prove the result, it is sufficient to assume that the vector ¢ has the form ¢t =
[t1,. . tm+1,0,...,0]7 and to prove that t; #0, 1 <j <m+1. We let p =n —m — 1. We observe that
equation (5.2) can be rewritten in the form

an-{—i-ltl + thz = €1,

where

| B VIR Y

Zerl — . € Cm+1><m+17
1 Ampr -0 AT
I A2 oo A
Zy=|: : : e cpxm+l

1 A o AR

and
21 Z[tl, R 1 ]T ECm“, to =0e€cCP.

Since eigenvalues A1, ..., Ajp41 are distinct, the square matrix Zm+1 is invertible and so t; = Z;Lflel =,
where @ = G([A1,-..,A\m+1]) € C™TL. Since all eigenvalues are nonzero, we conclude from (2.7) that ¢;
contains no zeros. This completes the proof. 0

LEMMA 5.3. Let M € C**", k < n, ¢ € C" and d € C*. Suppose that M¢é = d. Finally, let
rank(M) = k. Then ¢ can always be written in the form

(5.3) E=co+en, co=Md, ey € N(M), en L co,

where N'(M) is the kernel of M.
Proof: See [22, Section 2.3, Lemma 2]. 0

We are now ready to demonstrate that A and A¥ are equivalent in terms of the worst-case GMRES
behavior.

THEOREM 5.4. Let A be diagonalizable by (1.2) and nonsingular. Let 1 <m < n — 1 be fized. Then
GMRES(A) and GMRES (AH®) achieve the same worst-case behavior at step m. Furthermore, let by = berst,
the right-hand side vector that yields the worst-case behavior of GMRES(A) at step m. Compute the
corresponding c%°"" and set by, = ¢%°"'. Then by = b¥°"*', i.e. it is the worst-case right-hand side
for GMRES (AH). Moreover, the resulting c¥°"st satisfies c¥ost = b¥°Tst i.e. the vectors b%oTst, cworst,

worst worst
b7y, and cf are cross-equal.



Remark: The converse of the above statement is not true in general. In other words, take an arbitrary
br, compute the corresponding cg, set by, = cr and compute cp. Cross-equality of the four vectors,
i.e. the relationship ¢; = bgr, does not imply that bg or by, is the worst-case right-hand side vector for
GMRES (A) or GMRES (AH), respectively.

Proof of Theorem 5.4: Pick an arbitrary bg such that the matrix Kg has full rank. This yields a
(unique) vector cg. Define ag = (Z,I,{HYRWYRZmH)_lel. Equations (5.1) imply that

VYrZmi10r = cr, ZE Y rR(WYRZpi1ar) = €1.
We now set by, = cg. Since by, = V~Hy,, we can rewrite the two equations above as follows,
WYrZpy1ar = yr, ZHE Y rR(WYRZpi1ag) = €.
We combine the two equations and obtain
ev =28 Yry, =24 \Yiyr=ZL YLV 'Vyr = K bg.

From Lemma 5.2 is follows that rank(Kr) = m + 1. We therefore apply Lemma 5.3 and write b =
(KfI)Tel +t, =cp +t, where t;, € N(K#) and t;, L cj,. By the Pythagorean equation,

Hp = IIbRHjIICRIIj = (Ilf;L||2JrzlltLIIZ)‘IZIbLII2 -
= leclPlIozll® + eclFllocll® = HE +[ltc|[bel]
> Hi,

with equality holding iff ¢;, = 0.

We now repeat the procedure with A and A switched. In other words, we take the by, from above
(which, of course, yields the ¢;, and Hj, from above), and let bg = ¢,. This, in turn, yields ¢g such that
b, =¢ér+tr, tr L ég.

We conclude that the corresponding Hp, satisfies

(5.4) H% > H? > H?.

Now let bp = b%°"5t. Then for any bg,

(5.5) H} < HE.

We conclude that equations (5.4) and (5.5) both can be true iff
tp=tr=0 < bp=cL=bg.

This proves that Hg°™st > HPerst, Switching A and A¥ and using the same argument, we can show
that Hporst > HEerst which implies that the two quantities are equal. 0

We do not know how to distinguish b%°"%! from other vectors by that yield cross-equality. We do
know, however, how to calculate the latter vectors using a simple iterative technique. Let us again
examine the double inequality (5.4). It implies that if we start with an arbitrary by and perform the
following sequence of steps,

(5.6) br =>cr=0br = cp = ?)R,

10



The CE Algorithm:

. Take any bg) € C™ such that rank(Kg) =m + 1. Set k = 1.

- Set g\ = v-1pih),

 Set Kp=VYH Zyy and ¥ = (KH)te,.

- Set b = B and Hg (k) = [|68)])1c)).

Set g = vHpH)

Set K =V HY[VZ,,41, o) = (Kf)ler, and Hy (k) = [0 ][I
CIf ||c(Lk) - bg)H is sufficiently small, exit.

. Set k=k+1. Set b =¥ 1. Go to Step 1.
TABLE 5.1
The CE Algorithm: An Iterative Technique for Finding br with Cross-Equality

N O U A WO

and compute Hp and Hp at by and IN)R, respectively, then Hr > Hp with equality holding iff bg is a
cross-equality point. If we now complete the loop by setting bp = bg and repeat (5.6) recursively, we will
obtain a sequence of monotonically decreasing values Hg. In other words, for k = 1,2, ..., consider the
sequences {Hgr(k)} and {H(k)} generated by the iterative algorithm shown in Table 5.1. We call it the
CE (“Cross-Equality”) algorithm. As k — oo, Hr(k) monotonically decreases. Since it is also bounded
below by HE° st it converges to a finite limit. This implies that

lim (Hr(k) — Hr(k+ 1)) =0.

k—o0

It follows that in the limit, the above algorithm converges to a cross-equality point by for any initial
guess bg). Clearly, the same applies to {Hp(k)} and bgk).

Note that the CE algorithm may be used when A is defective. In this case we skip steps 1 and 4 and
compute matrices K and K, at steps 2 and 5 directly from matrices A and A¥ and vectors bg and by,
instead of using their spectral factorizations. Theorem 5.4 was proved only for the diagonalizable case
and thus convergence of the CE algorithm is not guaranteed when A is defective. Nevertheless, when we
applied it to a few test matrices, like the convection-diffusion matrix with a = 1 discussed in the next
section, the algorithm always converged.

Experiments suggest that, given a diagonalizable matrix A, at step m, the set of all vectors bg that
give cross-equality is a manifold of dimension m + 1. It remains an open question as to whether or not it
is possible to devise a method similar to that described in Table 5.1, but which is defined on the set of
br with cross-equality, and which would converge to b3°"s¢.

When m =n—1, N(KH) = N(KH) = {0}. It follows that the CE algorithm always converges in one
iteration and every bp € C™ yields cross-equality. In fact, in [22] we prove that in this case the associated
vectors yg and yy, satisfy Yryr = G(N).

6. A Model Problem: The One-Dimensional Convection-Diffusion Equation. The purpose
of this section is to study the worst-case GMRES behavior at step m = n — 1, when applied to a family
of coefficient matrices that arise in discretizations of the one-dimension convection-diffusional equation.
Just like in Section 4, we are looking for the vector y that satisfies the first-and second-order conditions
in terms of the gradient and Hessian of h.,? [14, Section 10.2].

6.1. The Worst Case for the Convection-Diffusion Matrix. We consider the one-parameter
family of matrices A = A(«) that arises in the discretization of the one-dimensional convection-diffusion
equation [4]. Standard discretization schemes like centered differences produce a coefficient matrix of the
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form [4]
(6.1) Acp = Ala) = tridiag(—1 — ,2, -1+ a) € R™*",

where 0 < a < 1 for stability reasons [16]. When a = 0, which corresponds to the diffusion-dominated
case, the matrix is symmetric. In the convection-dominated case @ = 1, A¢p is a single Jordan block, i.e.
it is a “maximally defective” matrix with a single eigenvalue 2 repeated n times and a single eigenvector.
When 0 < a < 1, the matrix is nonsymmetric diagonalizable with distinct eigenvalues.

The eigenvalues Acp = [A1,...,Ap] and eigenvectors Vop of A(«) have the form
(6.2) N =A@ =2 (1 VI-aTeos (), 1<i<n,
(6.3) Vep = V(a) = DepQep,

where Dep = diag(d,...,0"), §d = /(1 +a)/(1 —«a) and Qcp = [gjx] is a symmetric orthogonal matrix
computed as follows

2 wik .
6.4 =) —— si 1< 4.k <n.
(6.4) ik n+1sm(n+1), <jk<n

Unlike Section 4, here we study the worst case as an unconstrained problem, i.e. we do not restrict
the vector y to the surface Ey. Thus, in order to establish necessary and sufficient conditions for a
minimizer of A(V, \,y)~2 we have to compute the gradient and Hessian of the objective function. We do
this for the case of arbitrary sets of distinct nonzero eigenvalues A and eigenvectors V.

THEOREM 6.1. Let A € R™ "™ be nonsingular and diagonalizable with distinct real eigenvalues. Define
FV, N\ y) = h(V,\,y)"2. Also, for a given y € R"™, define t =Y u, where u = G()\). This implies that
ti = uj/y;, 1 <j <n. In addition, define the following scalars and matrices. Let Fy(y) = (y!Wy) € R
and Fy(y) = (tTW™t) € R. Let Gi(y) = 2Wy and Go(y) = —2D W~ ¢t. Let

R t2 P t3 ) O
D, = dwg([u—l, ey u—]), Dy = dzag([ﬁ, . u_z])’ D3 = diag(W ™ 't),
n 1 n

where W = VIV, Then the gradient and Hessian of f(V, \,y) with respect to y can be written as follows,

(6.5) Vyf(V,\y) = Fi(y) G2(y) + Fa(y) Gi(y)
V2F(V, A y) =2Fs(y) W+ 2F1(y) (DyW ™' Dy + 2Dy Ds) +

G (y)G1 ()T + G1(y)Ga(y)”

Proof: From (2.8) it follows that f(V,\,y) = Fi(y)F2(y). We observe that vectors G1(y) and G2(y)
are simply gradients of Fj(y) and F»(y) with respect to y. Expressions (6.5) and (6.6) are obtained by
applying the rule of differentiation of a product to the function f(V,\,y). 0

It turns out that in the case of the convection-diffusion matrix, the right-hand side vectors defined
by (4.1) set the gradient of f(V,\,y) to zero even when a > 0. More precisely,

LEMMA 6.2. Let Vop and Aop be defined by (6.2) and (6.3), respectively. Let y be defined by (4.1).
Then Vyf(Vep, Aep,y) = 0. Also, regardless of the actual sign pattern of y, the corresponding vectors b
and ¢ satisfy

llell = 6=+ e,
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and therefore

(6.7) h(Vep, Aep,y) = 6D |[b]| 72 = 6= F)|¢|| 72,

Proof: See [22]. 0

Although Lemma 6.2 implies that points y computed by (4.1) satisfy the first-order necessary condition
for a minimizer, it does not imply that the Hessian Vz f(V,A,y) is positive-semidefinite at y. In fact,
numerical experiments indicate that most of the 2" points computed by (4.1) are nothing more than
saddle points. There is one exception, though. There appears to be one point at which the second-order
condition does appear to be satisfied. More precisely, empirical data suggest that for every n and every
0 < a <1, the vector

(6.8) yop = y(a) = V]uep| = [ VFur, vV—uz, V+us, V—ug, ... "

is a minimizer of f(Vop, Aep,y). Furthermore, the tests indicate that this is a global minimizer. The
third important piece of numerical evidence we found was that h(Vop, Aep,y(a)) grows monotonically
as a goes from zero to one. Since k2 (Vep) also grows monotonically with « [4], it appears that the one-
dimensional convection-diffusion family of matrices is an example of the negative effect of conditioning
of eigenvectors on convergence of GMRES.

6.2. The Worst-Case Vector for a« = 1, an n = 3 Example. It is often possible to represent
a defective matrix as a limit of a certain parametrized family of diagonalizable matrices as the set of
parameters approaches a limit point. The one-dimensional convection-diffusion family of matrices A(«)
defined by (6.1) provides one such example with a single parameter « and its limit value of one. Therefore
it is logical to expect that analysis of behavior of GMRES applied to the defective matrix can be done by
considering limits of related quantities corresponding to the diagonalizable matrices. In this section we
demonstrate this for the convection-diffusion matrix of size n = 3.

The matrix Vop defined by (6.3) has the form

1 0 4 4]

Vep=V()=—=16 0 =6
op (a) \/i 53 _53 53

The worst-case right-hand side vector b(a) equals

L [ GeevIre s yme v )
ﬁ - 70(\/7__\/7_1) ’
2v/2(1 - a) L(1+a)(—2m+\/v—2+\/v_1)J

We now use (6.7) to compute h(a) = h(V (a), \cp,y(a)) and obtain 2
) = (1+0a%)?
3+ at+a2(2+ /2(1 +a?)) — 2av1+ a?(\ /72 + 1)

In order to determine the worst-case behavior of GMRES (A(1)) we compute the limit of h(a) as @ — 1.
We obtain

(6.9) b(a) =

(6.10) h(a

lim h(e) = % ~ 0.719101.

a—1—

2Computations were performed using Mathematica version 4 [21].

13



The components of b(a) given by (6.9) grow infinitely large as o approaches unity. Therefore in order to
find the worst-case right-hand side for the defective case, we first scale b(«) by its first component and
then compute the limit of the resulting vector b(«) as @ — 1~. We obtain

(6.11) lim b(a) = 1,

]T
a—1— )

’

3
8

N | =

We now want to verify that the limit we just computed indeed represents the worst-case behavior for
GMRES (A(1)). We assume b = [1 82 B3] and obtain

1 2 4
K=|p -2+25 —8+4p3, )
Bz —2B2+203 48B3+ 4083
1—(1—=p2)B2—P3 1= 1
K '= 2 — B+ s —3+ 0 1
1(85 — Bs) —2 i

We now compute H (8, Bs)? = |[Kerl|? [|K~Lex]| = (1+ 83 +B3)(L+ (1= B2)? + (1 = (1 = B2) B — Ba)?),
find its gradient with respect to 2 and f3 and compute its zeros. The only real root of the gradient is
precisely the point given in (6.11).

What we have demonstrated is that the framework that we have developed for analysis of GMRES
applied to diagonalizable matrices A may be applied to defective matrices A as well. If we can express a
given defective Agey as

Ager = plim A(p),

—Po

where A(p) are diagonalizable, p € CF is a vector of parameters and py is a certain limit value, and if
we can derive convergence results for GMRES(A(p)), we may be able to determine or estimate related
quantities for GMRES (Ag4e) by taking limits.

6.3. General Worst-Case Behavior for a = 1: Numerical Observations. In this section we
present numerical data regarding the worst-case GMRES behavior for the defective convection-diffusion
matrix Agey = A(1) (see Equation (6.1)) of an arbitrary size. This data suggests that it is possible to use
information about the worst-case behavior of the n x n problem to determine the worst-case behavior of
the problem of dimension n + 1. Although here we do not use the spectral decomposition framework, we
can think of the results presented in this section as an extension of what was developed in Section 6.2.

Throughout this section, we use the following notation. Let A,, denote the convection-diffusion matrix
A(1) of size n, i.e.

A, = A e R™*".
-2 2
Let b, = [1 B2 ... Bu]' € R™ denote the right-hand side vector of size n and let K,, = K(A,,b,).

Assuming K, is nonsingular, let ¢, = K;Tel. Let h,(b,) be the GMRES convergence measure at step
n — 1 for the n—dimensional problem and let H,,(b,,) be its reciprocal. Then

Hp(bn) = hi(b) ™" = [[bnlllleall-
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Finally, let bworst cwerst - pworst and HYrst represent quantities associated with the worst-case behavior
of GMRES(A,,). Thus in Section 6.2, we have established that

worst _ 64

R 89"

bworst: 1. = =2
? L3 s

We want to determine these quantities for an arbitrary n. To this end, we first look at the structure
of K,,. Let us write explicitly its second and third columns,

1 1
—14 5 -2+ (9
Apb,=2| —P2+PBs , A2b, =4 1—28s+ 33
_anl + Bn Bn72 - 2ﬁn71 + /Bn

With a simple induction argument, one can show that the top n — 1 rows of the matrix K,, do not depend
on fB,. This implies that if byy1 = [bL Bni1]? € RTY then

Kpyy = [ {;ﬁ an ] € R+ x(nt1).

n Ap

where K, € R™", a,, a4, € R"™ and a,, € R with K,, and a,, being independent of £,,1. We also
observed, although could not prove analytically, that the corresponding vector c¢,41 is an increment of
Cn, i-€. cpy1 = [Ynt1 cL]T where 7,41 € R depends an all components of b,1. If this is true in general,
and we believe it is, then

Hy 1 (bnt1) = baralPlleasall® = (1bal” + 7)) (leall® + vir1)
(6.12) = H} (bn) + vn,

where vy, = ||ba|[*7241 + llenll?Bas1 + V2165, 1. We make the following observations. First, Equation
(6.12) implies that RY975¢ < h2°T5, Second, it also suggests that b2°"*" and b9 are closely related and
one may be computed from the other. We now present experimental results that indicate that this is the
case.

For n varying between 4 and 50, we approximately computed b%°"s¢ and h*°"s¢ by evaluating h, (by,)
over a large mesh of points normally distributed over the unit sphere in R™. Once a coarse approximation
has been computed, we refined it by focusing on the region where h,,(b,,) was the largest. Upon inspection
of the results, we conjecture the following. First, the vector b¥°* satisfies 1 > gworst > .. > gworst > (),
with S¥orst ysually being between about 80 and 90 percent of 3Y5t. Second, vectors b¥°"st and bworst
are related by

(6 13) bworst — bgorst :|
. n+l worst
n+1
Figure 6.1 illustrates our findings. The left subplot shows individual entries of b%"*¢. In addition, due to

the relationship (6.13) it essentially plots the worst-case vectors for all n < 50 as well. The right subplot
shows the value of h%°"st for 4 < n < 50. As predicted by (6.12), it monotonically decreases as n grows.

We now ask the following question: How does performance of GMRES (A4,,,b%°"$!) compare to that of
GMRES (A, ,b) for a random b € C™ at intermediate steps of the algorithm? We try to answer this question
partially by conducting the following experiment. For various values of n, we generate the defective matrix
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F1G. 6.2. Performance of GMRES(Ay,b) for different choices of b, for n =3, 10, 25, 50 and m =0,...,n — 1.

A, as well as right-hand side vectors of three types, namely (i) the worst-case vector b¥°"s!; (ii) M random
vectors b with positive entries; and (iii) M random vectors b with arbitrary entries. We then run GMRES
with each matrix-vector pair and look at the sequence of residual ratios h,,, m = 0,...,n — 1. Results of
this test are shown in Figure 6.2.

We tested problems of size n = 3, 10, 25, and 50 and used M = 5. We selected such a small
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value of M to make the plots more readable. We note that the empirical findings we present below
were observed for larger values of M as well. On each of the four subplots in Figure 6.2, the solid curve
represents the convergence curve of GMRES (An,b}l""”t). The dashed curves and those labeled with an
"%’ correspond to positive and mix-sign vectors b, respectively. We make the following observations.
First, as predicted, at step m = n — 1, h(A,,bY° ) is larger than h(A,,b) for any other b. Moreover,
GMRES (A4,,,bw°"st) exhibits relatively poor performance at intermediate steps as well, especially at later
stages of the algorithms. Nevertheless, b¥°"*¢ is not the worst-case vector for m < n — 1. Second, overall,
GMRES performs noticeably better when applied to mix-sign vectors b than when positive vectors are used.
Also, the performance gap, almost nonexistent for small problems, seems to grow with n.

We obtained similar patterns when we applied the same test to a diagonalizable matrix A(«) for a
fixed @ < 1. We therefore conjecture that at later stages of the algorithm, h,,(A,,b%°"st) may be close
the worst-case behavior, while at its early stages, the worst-case b is some other vector with positive
components.

7. Can Worst-Case Analysis Be Misleading?. Throughout this document, we have been fo-
cusing on the worst-case analysis of GMRES convergence. If GMRES(A) and GMRES(A') achieve the same
worst-case performance at step m for the matrices A = VAV~ and A’ = V'A’(V')~! then clearly mea-
sures h,,,(V, A, y) and h,,,(V', X', y) have the same range of values. However, as we will see in this section,
this fact does not necessarily imply that the method has identical overall behavior when applied to the
two matrices.

In this section we focus on step m = n — 1 and present some experimental data that shows that an
alternative measure of overall performance, such as the mean of h(V, A, y) over all right-hand side vectors
b = Vy of unit length, may be a better indicator of average performance of GMRES.

7.1. Approximate Computation of the Mean. In this section we focus on real matrices A
and vectors b and again assume that |[b]] = 1. This yields the convergence measure h(V,\,y) =
[V=HY 'u||-!. Let us define the set Rt = {b = [B1, ..., Bu]T € Rn | bl = 1, B > 0 } that
constitutes the upper half of the real unit hyper-sphere Without loss of generality we may assume that
h(V,\,V~1b) is defined over R;\. Thus for given V and A, h(V,\,V~1b) : RY — [0,1]. Overall perfor-
mance of GMRES (A) can be measured by its mean,

(7.1) h=h(V,\) = ﬁ /R+ h(V,\, V1),

where A(R}) is the total surface area of the half-sphere R;. In other words, h is just a scaled surface
integral of the measure h(V, A,V ~1b).

The formula (7.1) yields a very complicated expression which we have not been able to evaluate
exactly. Therefore in our experiments we seek to approximate it. The most straightforward way to do it
is to evaluate h(V, \,b) on a discrete mesh over R} and then to compute the average of all the values at
the mesh nodes. Clearly, in order for the approximation to be good, the mesh has to be both fine and
uniform. As pointed out in [2], given an integer M, it is possible to obtain a uniform mesh of the sphere
by generating M n—vectors of normally distributed random numbers with zero mean and unit variance.
These vectors can then be scaled to put them on the top half of the unit sphere.

Unfortunately, even in the cases of small n, the mesh has to be rather fine in order to get an accurate
picture. For instance, when n = 3, the values of M between 10° and 10° are usually used, and this
value grows with n. This often makes computational experiments even with small-dimensional problems
expensive in terms of both time and memory.
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h, 2085 h =085

Fi1G. 7.1. Different behavior of hr (left) and hy (right) in neighborhood of bstagn

7.2. An Example of Different Behavior of A and A”. Let us consider the following matrix

3.64347104554523 —1.30562625697964 2.12276233724947
A= | 3.81895186997748 —0.33626408416579 8.43952325416869
0.12754105943518  0.13002776444227  2.98820549610000

together with its transpose. This matrix has real spectrum. We compute Vg and Vi = Vj T which
are the eigenvectors of A and A7 respectively. We consider vectors b € R} and denote by hr and hy,
the measures h(Vg, A\, V5 'p) and h(VL,)\,VL_lb), respectively. Thus hg and hp are GMRES convergence
measures at step m = n — 1 for A and A7, respectively.

By Theorem 5.4, hg and hy attain the same maximums over the unit sphere. In fact, GMRES(A) and
GMRES (AT) stagnate [23] at the following two points

—0.22385545043433 —0.46000942948917
bstagn, = | —0.30471918583417 |,  bstagn, = | —0.32420970874985 | ,
0.92576182418211 0.82660715551465

We now generate a mesh of K = 10 normally distributed points and approximately compute hr and
hy. The values we obtain are quite different, namely, hyr ~ 0.4512 and hj, ~ 0.1835. Closer examination
reveals that GMRES (4) and GMRES (A”") behave differently in the neighborhood of the stagnation points.

Let us examine Figure 7.1. The left and right subplots correspond to hr and hr, respectively. The
shaded areas correspond to the regions where hg and hy, are larger than 0.85. As expected, the stagnating
points bs¢agn, » are inside both of these regions. However, the region corresponding to hp is significantly
larger which explains why its mean is larger as well. In other words, hr in general changes much more
slowly in the neighborhood of bstagn, , than does hyp.

8. Open Questions. As often happens, the development of a new approach to GMRES convergence
analysis raised more questions than it answered. In addition to various conjectures arising from empirical
evidence presented in Sections 6 and 7, there are questions that can be thought of as generalizations of
results presented in this paper. Here we mention some of them. In Section 3 we derived bounds for the
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convergence measure at step m = n — 1. Is it possible to obtain an accurate bound for an arbitrary steps
using our framework? In Section 6, we studied the matrices arising from the one-dimensional convection-
diffusion equations and observed that the form of the worst-case right-hand side for step m = n — 1 does
not change with « and is computed directly from the vector v = G(\). What about intermediate steps?
Also, how does this result generalize to matrices for the two-dimensional convection-diffusion equation
like the ones discussed in [4]? Finally, in Section 7 we demonstrated that worst-case-based analysis of
GMRES performance may be misleading and proposed mean(h(V,A,b)) as an alternative overall measure.
However, due to the fact that the expression for the mean is extremely complicated we were not able to
develop any analytical results. So the question remains whether it is possible to come up with a different
means of measuring overall performance of the algorithm that would be simpler than the mean and at
the same time would capture the behavior of h(V, A, b) over regions better then does its maximum.
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