
SPECTRAL FACTORIZATION OF THE KRYLOV MATRIX AND CONVERGENCEOF GMRES �ILYA ZAVORINyAbstra
t. Is it possible to use eigenvalues and eigenve
tors to establish a

urate results on GMRES performan
e?Existing 
onvergen
e bounds, that are extensions of analysis of Hermitian solvers like CG and MINRES, provide no usefulinformation when the 
oeÆ
ient matrix is almost defe
tive. In this paper we propose a new framework for using spe
tralinformation for 
onvergen
e analysis. It is based on what we 
all the spe
tral fa
torization of the Krylov matrix. Usingthe new apparatus, we prove that two related matri
es are equivalent in terms of GMRES 
onvergen
e, and derive ne
essary
onditions for the worst-
ase right-hand side ve
tor. We also show that for a spe
i�
 family of appli
ation problems, theworst-
ase ve
tor has a 
ompa
t form. In addition, we present numeri
al data that shows that two matri
es that yield thesame worst-
ase GMRES behavior may di�er signi�
antly in their average behavior.Key words. GMRES , Krylov methods, 
onvergen
e, spe
tral fa
torization, iterative methodsAMS subje
t 
lassi�
ations. 65F10, 65F15, 65N221. Introdu
tion. The GMRES method has been used extensively during the last two de
ades forsolving non-Hermitian linear systems. Nevertheless, its 
onvergen
e properties are still poorly under-stood. In parti
ular, it is un
lear what role eigenvalues and eigenve
tors of the 
oeÆ
ient matrix play in
onvergen
e of the algorithm or if it is possible to use spe
tral information to derive a

urate 
onvergen
eresults.These issues has been investigated to some extent in the original work of Saad and S
hultz [17℄.Suppose we apply GMRES to the linear systemAx = b; A 2 Cn�n; x; b 2 Cn;(1.1)where A has the spe
tral de
ompositionA = V �V �1; � = diag(�); � = [�1; : : : ; �n℄T ; �j 2 C n f0g:(1.2)We denote the GMRES iterate at step m by xm; 0 � m � n, with x0 being the initial guess. The
orresponding residual is de�ned by rm = b�Axm. The �rst GMRES 
onvergen
e result, whi
h appeared in[17℄, was an extension of 
onvergen
e analysis of methods like CG [9℄ and MINRES [15℄ applied to Hermitiansystems. It bounds the ratio of the norms of rm and r0 as follows,krmkkr0k � �2(V ) minpm(t)2�m maxi=1;:::;n jpm(�i)j;(1.3)where �m is the set of all polynomials of degree m that equal one at zero, �2(V ) = kV kkV �1k is the
ondition number of the eigenve
tor matrix and k � k is the ve
tor or matrix Eu
lidean norm. When Ais normal then �2(V ) = 1 and the bound (1.3) is sharp [6℄, i.e. for every A and every m, there existsa right-hand side ve
tor b for whi
h (1.3) be
omes an equality. When A is nonnormal, however, thisbound be
omes mu
h less useful be
ause the right-hand side expression 
an be made arbitrarily large bytaking an almost-singular V . Also, ex
ept for some spe
ial 
ases [1, 13, 5℄, the above minimax expressionis hard to 
ompute or even estimate. Alternative bounds have been developed, that are based on other�This work was partially supported by the National S
ien
e Foundation under Grants CCR 95-03126 and CCR-97-32022.y Applied Mathemati
s and S
ienti�
 Computing Program, University of Maryland, College Park, MD 20742(iaz�
s.umd.edu) 1




hara
teristi
s of the 
oeÆ
ient matrix su
h as the �eld of values [3℄ and pseudo-spe
trum [20℄. However,none of these bounds is immune to the problems of ina

ura
y and 
omputational 
omplexity.More re
ently Greenbaum and her 
olleagues dis
overed that eigenvalues alone 
annot explain GMRESbehavior [8, 7℄. However, in this paper, as well as in an a

ompanying manus
ript [23℄, we demonstratethat if we 
ombine information about the eigenvalues and eigenve
tors of A, as well as the right-handside b, via a Krylov matrix, we 
an derive expli
it expressions for GMRES 
onvergen
e measures and obtaina

urate results on performan
e of the algorithm.The paper 
onsists of two parts. In Se
tion 2, we express GMRES 
onvergen
e at ea
h iteration in termsof eigenvalues �, eigenve
tors V and the right-hand side represented in the 
olumn basis of V . Then,in Se
tions 3 through 7, we apply the developed apparatus to analysis of GMRES 
onvergen
e. To someextent, the work presented in the se
ond part of the paper is a generalization of the results presented in[23℄, where we apply the new ma
hinery to a rather extreme 
ase of GMRES 
onvergen
e 
alled stagnation,when the method makes no progress during the �rst several iterations.Most of the existing literature on 
onvergen
e of GMRES is devoted to derivation of pre
ise upperbounds of the quantity krmk=kr0k. In this paper, we, too, present 
onvergen
e bounds and dis
uss theira

ura
y, but we also go beyond this. For instan
e, in Se
tion 5, where we present the main result ofthe paper, we demonstrate that two related matri
es yield the same worst-
ase behavior at every stepof GMRES, and establish ne
essary 
onditions for the worst-
ase ve
tor b. In Se
tion 6, we show that theworst-
ase right-hand side 
an sometimes be expressed in a very 
ompa
t form in terms of some of thequantities derived in Se
tion 2. We also demonstrate that our framework may be applied indire
tly tothe 
ase of a defe
tive A, provided this A 
an be expressed as a limit of a parametrized sequen
e ofdiagonalizable matri
es. Finally, in Se
tion 7, we present numeri
al data that suggest that when overallGMRES behavior is measured by its average 
onvergen
e, it may yield results di�erent from those produ
edby worst-
ase analysis.When A is Hermitian, GMRES is equivalent to MINRES. Therefore all results presented in this paperthat apply to GMRES for Hermitian A hold for MINRES as well.2. GMRES Convergen
e Measures. The main purpose of this se
tion is to develop a new ap-proa
h for analysis of GMRES performan
e based on spe
tral information of the matrix A. First, we dis
ussrelevant properties of the GMRES algorithm in Se
tion 2.1. Then, we devote Se
tion 2.2 to derivation ofan expli
it expression for a GMRES 
onvergen
e measure based on what we 
all the spe
tral fa
torizationof the Krylov matrix asso
iated with appli
ation of GMRES to the problem (1.1).2.1. GMRES and Its Basi
 Properties. Given a linear system (1.1) and an initial guess x0 withthe residual r0 = b � Ax0, at iteration m, GMRES 
omputes an approximation xm 2 x0 + Km(A; r0) tothe true solution x̂ = A�1b, where Km(A; r0) = spanfr0; Ar0; : : : ; Am�1r0g is the Krylov subspa
e ofdimension m. Without loss of generality we 
an assume that x0 = 0 and so r0 = b. The iterate xm is
hosen in su
h a way as to minimize the Eu
lidean norm of the residual rm = b � Axm, i.e. the GMRESresidual rm(A; b) at step m satis�eskrm(A; b)k = minx2Km(A;b) kb�Axk:(2.1)When there is no ambiguity, we denote rm(A; b) by rm. We also denote by GMRES(A,b) appli
ationof GMRES to the linear system (1.1) with x0 = 0, or by GMRES(A) when the right-hand side ve
tor isunspe
i�ed. We assume in�nite pre
ision, so our derivations do not depend on a spe
i�
 implementationof the method.Throughout this paper, various quantities asso
iated with GMRES iteration m are denoted by letterssubs
ripted by m. The subs
ript is dropped for the same quantities at step m = n� 1.2



The norm of rm is a nonin
reasing fun
tion of m. Given a matrix A and a ve
tor b, we say thatGMRES(A,b) terminates in m steps if rm = 0 and rm�1 6= 0. A fundamental property of GMRES is thatrm(A; b) 6= 0 i� dim(Km+1(A; b)) = m+ 1. Thus, while analyzing GMRES performan
e at iteration m, itis suÆ
ient to 
onsider those ve
tors b that yield the Krylov matri
es Km+1(A; b) = [b Ab : : : Amb℄ ofrank m+1. Another important property is that the matrix Kk(A; b) is rank-de�
ient for any b 2 Cn if adiagonalizable matrix A has fewer than k distin
t eigenvalues. Therefore we assume that A has at leastm+ 1 distin
t eigenvalues.For a given A 2 Cn�n, we 
all b0 2 Cn the worst-
ase right-hand side at step m (with respe
t to thematrix A) if, for any b 2 Cn, krm(A; b0)k=kb0k � krm(A; b)k=kbk.2.2. GMRES Convergen
e Measures in Terms of Spe
tral De
omposition of Km+1(A; b).In this se
tion, we demonstrate that, when A is diagonalizable, a GMRES(A,b) 
onvergen
e measure 
anbe expressed in terms of eigen
omponents of A and the right-hand side ve
tor.Definition 2.1. The GMRES(A,b) performan
e measure hm at iteration m is de�ned by hm �krmk=kr0k = krmk=kbk 2 [0; 1℄.The fun
tion hm expresses a 
ommon way of measuring progress of an iterative method during the�rst m iterations with its small and large values 
orresponding to good and bad 
onvergen
e, respe
tively.We now state an important result due to Ipsen [11, Theorem 2.1℄ that represents one of the two mainbuilding blo
ks whi
h allow us to develop the apparatus presented in Se
tion 2 1. It is expressed in termsof the Moore-Penrose pseudoinverse of a full-rank matrix Km+1(A; b) whi
h is well-de�ned and unique,and 
an be 
al
ulated by [19, 12℄Kym+1 = (KHm+1Km+1)�1KHm+1 2 C(m+1)�n:Theorem 2.2. Let A be diagonalized by (1.2) and let b 2 Cn. Assume that at stepm, rank(Km+1(A; b)) =m+ 1. De�ne 
m = (Kym+1)He1 2 Cn;(2.2)whi
h, in 
ase m = n� 1, simpli�es to 
 = K�He1. Then the residual of GMRES(A,b) at step m satis�eskrmk = k
mk�1.Thus we 
an rewrite the performan
e measures of GMRES(A,b) in terms of 
omponents of the Krylovmatrix and its pseudoinverse as hm = (k
mkkbk)�1:(2.3)This implies that progress of GMRES during the �rst m iterations 
an be measured by the angle between
m and b. More spe
i�
ally,Corollary 2.3. For given A, b and m su
h that the matrix rank(Km+1) = m + 1, the followingrelationships between b and 
m hold1. The two ve
tors 
an be 
omputed from ea
h other as follows,
m = (Km+1(KHm+1Km+1)�2KHm+1)bb = (Km+1KHm+1)
m2. 
Hmb = 1.3. hm = 
os 6 (
m; b).1Ipsen's result is a spe
ial 
ase of those presented by Stewart in [18, Se
tions 3 and 4℄.3



Proof: To prove Item 1 we �rst observe that b = Km+1e1:(2.4)Also, Kym+1Km+1 = I and so it follows that Kym+1b = (Kym+1Km+1)e1 = e1. We 
ombine this resultwith the de�nition (2.2) of 
m and obtain
m = (Kym+1)He1 = (Kym+1)HKym+1b= (Km+1(KHm+1Km+1)�1)((KHm+1Km+1)�1)KHm+1)b= (Km+1(KHm+1Km+1)�2KHm+1)b:The formula for b in terms of 
m is derived similarly by observing that KHm+1(Kym+1)H equals identity.To establish Item 2 we 
ombine (2.2) with (2.4) and write
Hmb = (eH1 (KHm+1Km+1)�1KHm+1)(Km+1e1) = eH1 e1 = 1:Finally, to obtain Item 3, we expand the Eu
lidean inner produ
t as follows,
os 6 (
m; b) = (
Hmb)=(k
mkkbk) = 1=(k
mkkbk) = hm:We now show that the Krylov matrix asso
iated with GMRES(A,b) at step m 
an be fa
torizedusing eigen
omponents of A and the right-hand side ve
tor b represented in the eigenve
tor basis. Thisfa
torization, whi
h we 
all the spe
tral fa
torization of Km+1(A; b), is the se
ond major building blo
kwhi
h allows us to express 
onvergen
e of the method in terms of eigenvalues, eigenve
tors and the right-hand side. Although this fa
torization has appeared in literature before (e.g. [11, Proof of Theorem 4.1℄),to our knowledge, it has never been stated or proved as a separate result.Theorem 2.4. Let the nonsingular matrix A 2 Cn�n be diagonalized by (1.2) and let b 2 Cn. Lety = V �1b. Then, regardless of its 
olumn rank, the n � (m + 1) Krylov matrix Km+1 asso
iated withGMRES(A,b) at step m 
an be fa
tored as Km+1 = V Y Zm+1;(2.5)where Zm+1 is the Vandermonde matrix 
omputed from eigenvalues of A as follows,Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �n : : : �mn 1CA = ( e �e : : : �me ) :Conversely, for a diagonalizable matrix A, take y 2 Cn and 
ompute Km+1 by (2.5). Then this matrix isthe Krylov matrix asso
iated with GMRES(A,V y) at step m.Proof: See [23℄.We now 
ombine the spe
tral fa
torization (2.5) with equations (2.3), (2.2), and (2.4) and obtain anexpli
it expression for GMRES(A,b) 
onvergen
e at step m,hm(V; �; y) = �kV Y Zm+1(ZHm+1Y WY Zm+1)�1e1k kV yk��1 ;(2.6)whereW = V HV and e1 2 Cm+1. The 
ase m = n�1 deserves spe
ial attention sin
e then the expression(2.6) signi�
antly simpli�es. First, observe that rank(K) = n i� the eigenvalues of A are distin
t and allentries of y = V �1b are nonzero. Then Ky = K�1 and it follows from (2.2) that
n�1 = 
 = K�He1 = (V Y Z)�He1 = V �HY �1Z�He1:4



Denote the elements of the �rst 
olumn of Z�H by uj ; 1 � j � n. From [10, Se
tion 21.1℄ it follows thatthey 
an be expli
itly 
omputed from the eigenvalues of A byuj = (�1)n+1
onj0BB� nYk=1k 6=j �k�j � �k1CCA :(2.7)Sin
e the �rst 
olumn of Z is e, these elements also satisfy u1+ : : :+u1 = 1. Let us denote the mappingfrom Cn to Cn, de�ned elementwise by (2.7), by G(�). Also, let u = G(�), i.e. u represents the 
onjugatetranspose of the �rst row of Z�1. Then it follows that 
 = V �HY �1u andh(V; �; y) = (kV �HY �1uk kV yk)�1:(2.8)We note that hm(V; �; y) is invariant to the following s
alings.1. S
aling of the ve
tor b. We may, therefore, assume that kbk = 1.2. S
aling of eigenvalues �. Thus we may assume that �1 = 1.3. Column s
aling of V , i.e. hm(V; �; y) = hm(V D; �;D�1y) for any nonsingular diagonalD 2 Cn�n.Thus we may assume that 
olumns of V have unit length.4. Pre-multipli
ation of V by a unitary matrix, i.e. hm(V; �; y) = hm(PV; �; y) for any unitaryP 2 Cn�n. Thus it is suÆ
ient to 
onsider only matri
es V with their SVD of the form V = SQH .We 
on
lude this se
tion with a statement of a general property of the worst-
ase right-hand sideve
tor in terms of the 
onvergen
e measures.Lemma 2.5. The ve
tor b� 2 Cn is the worst-
ase right-hand side for GMRES(A,b) at step m i� theve
tor y� = V �1b� satis�es hm(V; �; y�) � hm(V; �; y) for any other y 2 Cn. In other words, y� is theglobal maximizer of hm(V; �; y).In the remaining se
tions, we apply the developed apparatus to analysis of GMRES.3. New GMRES Convergen
e Bounds. In this se
tion we assume that all ve
tors b have unitlength, whi
h implies that the ve
tors y = V �1b are restri
ted to the hyper-ellipsoid surfa
e EV = f y 2Cn j yHWy = bHb = kbk2 = 1g. Our goal is to establish a

urate upper bounds on the performan
emeasure h(V; �; y) = k
k�1 = kV �HY �1uk�1; y 2 EV , of GMRES at step m = n� 1, as well as to extendthese bounds to arbitrary steps.Theorem 3.1. For y 2 EV , the following bounds hold,h(V; �; y) � ĥ(V; �; y) � kV k=kY �1uk(3.1) � ~h(V; �; y) � kV kkY k=kuk:(3.2)Proof: To obtain (3.1), we estimate k
k from below as follows,
 = V �HY �1u () V H
 = Y �1u ) kV Hkk
k � kY �1uk:(3.3)We now let t = Y �1u, apply a sequen
e of steps similar to (3.3), and get kY kktk � kuk, whi
h yields(3.2).When A is normal, V is unitary, whi
h yields kV H
k = k
k, and so the bound (3.1) be
omes anequality for every y 2 EV . Suppose A is non-normal. Let us assume that the eigenve
tor matrix has5



the form V = SQH , where S = diag(s1; : : : ; sn) and s1 � : : : � sn. Then the right singular ve
tors ofV H = QS are e1; : : : ; en, and so kV H
k = kV Hkk
k () 
 = � e1;where � 2 C is a s
aling 
onstant that ensures that the b 
orresponding to the 
 is of unit norm. Forwhat right-hand side ve
tor does the equality hold? We expandV H(� e1) = �QSe1 = �s1q1 = Y �1u;where q1 = [q11; : : : ; qn1℄T is the right singular ve
tor of V 
orresponding to the largest singular value s1.Let u = [u1; : : : ; un℄T and y = [y1; : : : ; yn℄T . We 
on
lude that the elements of the ve
tor y for whi
h thebound (3.1) 
oin
ides with h(V; �; y), have the formyj = 
onj � uj�s1qj1� ; j = 1; : : : ; n;where � is 
hosen appropriately. We 
ompared (3.1) and (3.2) with the bound (1.3) on a set of low-dimensional nonsymmetri
 real matri
es A with real positive eigenvalues (see [22, Se
tion 5.1℄). Testsshowed that both (3.1) and (3.2) gave smaller bounds then (1.3). In addition, they have 
ertain theoreti
aladvantages. The bound (3.1) depends on the right-hand side and not just on its norm, while bound (3.2)better separates 
omponents that 
orrespond to eigenvalues and eigenve
tors of A and the right-handside b.Using the same general approa
h we 
an obtain a bound for the performan
e measure hm(V; �; y) form = 1; : : : ; n� 2. Sin
e 
m = V Y Zm+1(ZHm+1Y WY Zm+1)�1e1, we haveV H
m =WYZm+1(ZHm+1Y WY Zm+1)�1e1;and so hm(V; �; y) � ĥm(V; �; y) � kV k=kWYZm+1(ZHm+1Y WY Zm+1)�1e1k:(3.4)Although (3.4) still appears to be tighter than (1.3), it does not really o�er any theoreti
al advantagesover the exa
t expression (2.6). It is obviously less a

urate than (2.6) and yet its 
omponents are notas well separated as they are in (3.2). Separation is diÆ
ult sin
e in general, unlike the regular inverse,the Moore-Penrose pseudoinverse of a matrix produ
t is not a produ
t of pseudoinverses. Thus �nding abetter estimate for an arbitrary step of GMRES remains an open question.4. The Worst-Case Right-Hand Side at Step m = n � 1 for Real Symmetri
 A. In thisse
tion we assume that A is real symmetri
. We prove that the worst-
ase y at GMRES step m = n�1 
anbe 
omputed from the ve
tor u = G(�), where � 
ontains eigenvalues of A. From Lemma 2.5 it followsthat this is equivalent to �nding a global minimizer of h(V; �; y)�2. Rather than looking at this problemas an un
onstrained minimization problem, we restri
t y to EV , whi
h, in the 
ase of symmetri
 A,be
omes the unit sphere in Rn. This yields an optimization problem with a nonlinear obje
tive fun
tionand one nonlinear equality 
onstraint. The �rst-order ne
essary and se
ond-order suÆ
ient 
onditionsfor y to be a (lo
al) minimizer are expressed in terms of the gradient and Hessian of h�2 (see, e.g. [14,Se
tion 14.5℄). We prove by 
onstru
tion that the ne
essary 
ondition is satis�ed and is a
tually suÆ
ientfor the global minimizer. 6



Lemma 4.1. Let A 2 Rn�n be symmetri
 with distin
t eigenvalues. Let u = G(�). Consider realve
tors b. Then the worst-
ase ve
tors and the worst-
ase performan
e of GMRES(A) at step m = n � 1are yworst = 
 [ �pju1j; : : : ; �pjunj ℄T ;(4.1) hworst(V; �; yworst) = 0� nXj=1 juj j1A�1 ;where 
 2 R is any nonzero s
aling 
onstant.Proof: Sin
e V is orthogonal, �nding the worst-
ase behavior of GMRES(A) at stepm = n�1 is equivalentto solving the following 
onstrained minimization problemminy f(y);subje
t to g(y) = 0where f(y) = �u1y1�2 + : : :+�unyn�2 and g(y) = y21 + : : :+ y2n � 1:Note that f(y) = h(V; �; y)�2 restri
ted to the domain EV by g(y). To establish the �rst-order 
ondition,we 
ompute the Lagrangian L(y; �) = f(y) + �g(y) and its gradient with respe
t to y,�L(y; �)�yj = �2 u2jy3j � �yj! ; 1 � j � n:We 
an assume that yj 6= 0; 1 � j � n, otherwise f(y) be
omes in�nitely large. We �nd zeros of thegradient of the Lagrangian by solvingu2j � �y4j = 0 () (y�j )4 = u2j� () (y�j )2 = juj jp� () y�j = �s juj jp� :The next step is to determine the value of the Lagrange multiplier � that would ensure that thesolution y� = [y�1 ; : : : ; y�n℄T satis�es the 
onstraint. We solve0 = g(y�) = 0� 1p� nXj=1 juj j1A� 1for � and obtain p�� = Pnj=1 juj j and so �� = �Pnj=1 juj j�2. Therefore all the points y� where thegradient of the Lagrangian vanishes have the formy� = 1qPnj=1 juj j [ �pju1j; : : : ; �pjunj ℄T(4.2) 7



We evaluate the obje
tive fun
tion f(y) at y� and obtainf� = f(y�) = nXj=1 u2j(y�j )2 = nXj=1 u2jPnj=1 juj jjuj j= 0� nXj=1 juj j1A0� nXj=1 u2jjuj j1A = 0� nXj=1 juj j1A2 :Note that be
ause all variables appear squared in f(y), the value f(y�) is the same regardless of the signpattern of y�.Now let us 
onsider a 
ertain aspe
t of the behavior of h(V; �; y) over its respe
tive domain EV , whereV may or may not be unitary. Fix an arbitrary j = 1; : : : ; n and 
onsider the interse
tion of EV with the
oordinate plane yj = 0. It is a hyper-ellipsoid surfa
e of dimension n� 1 that splits EV in half. On oneside of this dividing surfa
e, all ve
tors y 2 EV have yj < 0, while on the other side yj > 0. Along thedividing surfa
e, h(V; �; y) = 0. Thus we 
an always think of EV as a union of 2n nonoverlapping pat
hes.Ea
h pat
h is 
hara
terized by the following two properties, (i) along its boundaries, h(V; �; y) = 0 and(ii) all points y 2 EV that belong to a given pat
h have the same sign pattern, and no point outside of ithas that pattern. We 
on
lude that along the pat
h boundaries, h�2 is in�nitely large. Thus, unless it isidenti
ally equal to in�nity over a given pat
h, whi
h is impossible, it must have at least one minimizerinside that pat
h. This implies that in the symmetri
 
ase, when h(V; �; y)�2 = f(y), the points y�de�ned by (4.2) 
onstitute global minimum points of f(y), sin
e these are the only points with zerogradient and they all produ
e the same f(y�).Finally, we observe that sin
e GMRES is invariant to s
aling of the b and y, we 
an rewrite (4.2) as(4.1).5. Equivalen
e of A and AH . We start with a de�nition of equivalen
e of two matri
es.Definition 5.1. Let A; ~A 2 Cn�n and let b;~b 2 Cn. By rm(A; b) and rm( ~A;~b) we denote residualsof GMRES(A,b) and GMRES( ~A;~b) at step m, respe
tively. We say that A and ~A are equivalent at step min terms of GMRES 
onvergen
e if maxb 6=0 krm(A; b)kkbk = max~b 6=0 krm( ~A;~b)kk~bk :The two matri
es are equivalent if they are equivalent at every step m, 1 � m � n.Note that in general the worst-
ase right-hand side ve
tor is di�erent for every m. The goal of thisse
tion is to show that if A is diagonalizable then it is equivalent to AH . First, let us de�ne some notation.Columns of V are (right) eigenve
tors of A whereas the 
olumns of V �H are its left eigenve
tors. Onthe other hand, sin
e AH = V �H�V H , the 
olumns of V �H are also right eigenve
tors of AH . We alsoobserve that if Zm+1 is the n� (m+1) Vandermonde matrix 
omputed from eigenvalues of A, then �Zm+1is the matrix asso
iated with AH .Let us denote the right-hand side b asso
iated with A by bR, and the 
orresponding ve
tors 
m and yby 
R and yR. Similarly, the ve
tors asso
iated with AH will be denoted by bL, 
L, and yL. Throughoutthe rest of the paper, we denote by Hm(V; �; yR) the re
ipro
al of hm(V; �; yR). Also,HR(yR) = Hm(V; �; yR) = k
Rk kbRk;HL(yL) = Hm(V �H ; ��; yL) = k
Lk kbLk;where 
R = V YRZm+1(ZHm+1Y RWYRZm+1)�1e1; bR = V yR;
L = V �HYLZm+1(ZTm+1Y LW�1YLZm+1)�1e1; bL = V �HyL:(5.1) 8



We denote matri
es Km+1(A; bR) and Km+1(AH ; bL) by KR and KL, respe
tively. Finally, if bR(bL) isa worst-
ase right-hand side ve
tor for A (AH ) then this ve
tor, as well as the asso
iated 
R (
L) willbe denoted by bworstR (bworstL ) and 
worstR (
worstL ), respe
tively. Before we state the general equivalen
eresult, we state two auxiliary lemmas and prove one of them.Lemma 5.2. Let � = [�1; : : : ; �m+1; �m+2; : : : ; �n℄T 2 Cn 
ontain nonzero eigenvalues with �1; : : : ; �m+1being distin
t and let Zm+1 be the n�m+ 1 Vandermonde matrix 
omputed from �. Let t 2 Cn solveZHm+1t = e1:(5.2)Then t 
ontains at least m+ 1 nonzero entries 
orresponding to �1; : : : ; �m+1.Proof: In order to prove the result, it is suÆ
ient to assume that the ve
tor t has the form t =[t1; : : : ; tm+1; 0; : : : ; 0℄T and to prove that tj 6= 0; 1 � j � m+1. We let p = n�m� 1. We observe thatequation (5.2) 
an be rewritten in the form~ZHm+1t1 + ~ZHp t2 = e1;where ~Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �m+1 : : : �mm+11CA 2 Cm+1�m+1;~Zp = 0B� 1 �m+2 : : : �mm+2... ... . . . ...1 �n : : : �mn 1CA 2 Cp�m+1;and t1 = [ t1; : : : ; tm+1 ℄T 2 Cm+1; t2 = 0 2 Cp:Sin
e eigenvalues �1; : : : ; �m+1 are distin
t, the square matrix ~Zm+1 is invertible and so t1 = ~Z�Hm+1e1 = ~u,where ~u = G([�1; : : : ; �m+1℄) 2 Cm+1. Sin
e all eigenvalues are nonzero, we 
on
lude from (2.7) that t1
ontains no zeros. This 
ompletes the proof.Lemma 5.3. Let M 2 Ck�n; k � n, ~
 2 Cn and d 2 Ck. Suppose that M~
 = d. Finally, letrank(M) = k. Then ~
 
an always be written in the form~
 = 
0 + 
N ; 
0 =Myd; 
N 2 N (M); 
N ? 
0;(5.3)where N (M) is the kernel of M .Proof: See [22, Se
tion 2.3, Lemma 2℄.We are now ready to demonstrate that A and AH are equivalent in terms of the worst-
ase GMRESbehavior.Theorem 5.4. Let A be diagonalizable by (1.2) and nonsingular. Let 1 � m � n� 1 be �xed. ThenGMRES(A) and GMRES(AH) a
hieve the same worst-
ase behavior at step m. Furthermore, let bR = bworstR ,the right-hand side ve
tor that yields the worst-
ase behavior of GMRES(A) at step m. Compute the
orresponding 
worstR and set bL = 
worstR . Then bL = bworstL , i.e. it is the worst-
ase right-hand sidefor GMRES(AH). Moreover, the resulting 
worstL satis�es 
worstL = bworstR , i.e. the ve
tors bworstR , 
worstR ,bworstL , and 
worstL are 
ross-equal. 9



Remark: The 
onverse of the above statement is not true in general. In other words, take an arbitrarybR, 
ompute the 
orresponding 
R, set bL = 
R and 
ompute 
L. Cross-equality of the four ve
tors,i.e. the relationship 
L = bR, does not imply that bR or bL is the worst-
ase right-hand side ve
tor forGMRES(A) or GMRES(AH), respe
tively.Proof of Theorem 5.4: Pi
k an arbitrary bR su
h that the matrix KR has full rank. This yields a(unique) ve
tor 
R. De�ne aR � (ZHm+1Y RWYRZm+1)�1e1. Equations (5.1) imply thatV YRZm+1aR = 
R; ZHm+1Y R(WYRZm+1aR) = e1:We now set bL = 
R. Sin
e bL = V �HyL, we 
an rewrite the two equations above as follows,WYRZm+1aR = yL; ZHm+1Y R(WYRZm+1aR) = e1:We 
ombine the two equations and obtaine1 = ZHm+1Y RyL = ZTm+1Y LyR = ZTm+1Y LV �1V yR = KHL bR:From Lemma 5.2 is follows that rank(KL) = m + 1. We therefore apply Lemma 5.3 and write bR =(KHL )ye1 + tL = 
L + tL; where tL 2 N (KHL ) and tL ? 
L. By the Pythagorean equation,H2R = kbRk2k
Rk2 = (k
Lk2 + ktLk2)kbLk2= k
Lk2kbLk2 + ktLk2kbLk2 = H2L + ktLk2kbLk2� H2L;with equality holding i� tL = 0.We now repeat the pro
edure with A and AH swit
hed. In other words, we take the bL from above(whi
h, of 
ourse, yields the 
L and HL from above), and let ~bR = 
L. This, in turn, yields ~
R su
h thatbL = ~
R + tR; tR ? ~
R:We 
on
lude that the 
orresponding ~HR satis�esH2R � H2L � ~H2R:(5.4)Now let bR = bworstR . Then for any ~bR, H2R � ~H2R:(5.5)We 
on
lude that equations (5.4) and (5.5) both 
an be true i�tL = tR = 0 () bR = 
L = ~bR:This proves that HworstR � HworstL . Swit
hing A and AH and using the same argument, we 
an showthat HworstL � HworstR whi
h implies that the two quantities are equal.We do not know how to distinguish bworstR from other ve
tors bR that yield 
ross-equality. We doknow, however, how to 
al
ulate the latter ve
tors using a simple iterative te
hnique. Let us againexamine the double inequality (5.4). It implies that if we start with an arbitrary bR and perform thefollowing sequen
e of steps, bR ) 
R = bL ) 
L = ~bR;(5.6) 10



The CE Algorithm:0. Take any b(1)R 2 Cn su
h that rank(KR) = m+ 1. Set k = 1.1. Set y(k)R = V �1b(k)R .2. Set KR = V Y (k)R Zm+1 and 
(k)R = (KHR )ye1.3. Set b(k)L = 
(k)R and HR(k) = kb(k)R kk
(k)R k.4. Set y(k)L = V Hb(k)L .5. Set KL = V �HY (k)L Zm+1, 
(k)L = (KHL )ye1, and HL(k) = kb(k)L kk
(k)L k.6. If k
(k)L � b(k)R k is suÆ
iently small, exit.7. Set k = k + 1. Set b(k)R = 
(k�1)L . Go to Step 1.Table 5.1The CE Algorithm: An Iterative Te
hnique for Finding bR with Cross-Equalityand 
ompute HR and ~HR at bR and ~bR, respe
tively, then HR � ~HR with equality holding i� bR is a
ross-equality point. If we now 
omplete the loop by setting bR = ~bR and repeat (5.6) re
ursively, we willobtain a sequen
e of monotoni
ally de
reasing values HR. In other words, for k = 1; 2; : : :, 
onsider thesequen
es fHR(k)g and fHL(k)g generated by the iterative algorithm shown in Table 5.1. We 
all it theCE (\Cross-Equality") algorithm. As k ! 1, HR(k) monotoni
ally de
reases. Sin
e it is also boundedbelow by HworstR , it 
onverges to a �nite limit. This implies thatlimk!1(HR(k)�HR(k + 1)) = 0:It follows that in the limit, the above algorithm 
onverges to a 
ross-equality point bR for any initialguess b(1)R . Clearly, the same applies to fHL(k)g and b(k)L .Note that the CE algorithm may be used when A is defe
tive. In this 
ase we skip steps 1 and 4 and
ompute matri
es KR and KL at steps 2 and 5 dire
tly from matri
es A and AH and ve
tors bR and bL,instead of using their spe
tral fa
torizations. Theorem 5.4 was proved only for the diagonalizable 
aseand thus 
onvergen
e of the CE algorithm is not guaranteed when A is defe
tive. Nevertheless, when weapplied it to a few test matri
es, like the 
onve
tion-di�usion matrix with � = 1 dis
ussed in the nextse
tion, the algorithm always 
onverged.Experiments suggest that, given a diagonalizable matrix A, at step m, the set of all ve
tors bR thatgive 
ross-equality is a manifold of dimension m+1. It remains an open question as to whether or not itis possible to devise a method similar to that des
ribed in Table 5.1, but whi
h is de�ned on the set ofbR with 
ross-equality, and whi
h would 
onverge to bworstR .When m = n�1, N (KHR ) = N (KHL ) = f0g. It follows that the CE algorithm always 
onverges in oneiteration and every bR 2 Cn yields 
ross-equality. In fa
t, in [22℄ we prove that in this 
ase the asso
iatedve
tors yR and yL satisfy YRyL = G(�).6. A Model Problem: The One-Dimensional Conve
tion-Di�usion Equation. The purposeof this se
tion is to study the worst-
ase GMRES behavior at step m = n � 1, when applied to a familyof 
oeÆ
ient matri
es that arise in dis
retizations of the one-dimension 
onve
tion-di�usional equation.Just like in Se
tion 4, we are looking for the ve
tor y that satis�es the �rst-and se
ond-order 
onditionsin terms of the gradient and Hessian of h�2m [14, Se
tion 10.2℄.6.1. The Worst Case for the Conve
tion-Di�usion Matrix. We 
onsider the one-parameterfamily of matri
es A = A(�) that arises in the dis
retization of the one-dimensional 
onve
tion-di�usionequation [4℄. Standard dis
retization s
hemes like 
entered di�eren
es produ
e a 
oeÆ
ient matrix of the11



form [4℄ ACD = A(�) = tridiag(�1� �; 2;�1 + �) 2 Rn�n;(6.1)where 0 � � � 1 for stability reasons [16℄. When � = 0, whi
h 
orresponds to the di�usion-dominated
ase, the matrix is symmetri
. In the 
onve
tion-dominated 
ase � = 1, ACD is a single Jordan blo
k, i.e.it is a \maximally defe
tive" matrix with a single eigenvalue 2 repeated n times and a single eigenve
tor.When 0 < � < 1, the matrix is nonsymmetri
 diagonalizable with distin
t eigenvalues.The eigenvalues �CD = [�1; : : : ; �n℄ and eigenve
tors VCD of A(�) have the form�j = �j(�) = 2 (1�p1� �2 
os ( �jn+ 1)); 1 � j � n;(6.2) VCD = V (�) = DCDQCD;(6.3)where DCD = diag(Æ; : : : ; Æn); Æ =p(1 + �)=(1� �) and QCD = [qjk℄ is a symmetri
 orthogonal matrix
omputed as follows qjk =r 2n+ 1 sin ( �jkn+ 1); 1 � j; k � n:(6.4)Unlike Se
tion 4, here we study the worst 
ase as an un
onstrained problem, i.e. we do not restri
tthe ve
tor y to the surfa
e EV . Thus, in order to establish ne
essary and suÆ
ient 
onditions for aminimizer of h(V; �; y)�2 we have to 
ompute the gradient and Hessian of the obje
tive fun
tion. We dothis for the 
ase of arbitrary sets of distin
t nonzero eigenvalues � and eigenve
tors V .Theorem 6.1. Let A 2 Rn�n be nonsingular and diagonalizable with distin
t real eigenvalues. De�nef(V; �; y) = h(V; �; y)�2. Also, for a given y 2 Rn, de�ne t = Y �1u, where u = G(�). This implies thattj = uj=yj ; 1 � j � n. In addition, de�ne the following s
alars and matri
es. Let F1(y) = (yTWy) 2 Rand F2(y) = (tTW�1t) 2 R. Let G1(y) = 2Wy and G2(y) = �2D1W�1t. LetD1 = diag([ t21u1 ; : : : ; t2nun ℄); D2 = diag([ t31u21 ; : : : ; t3nu2n ℄); D3 = diag(W�1t);where W = V TV . Then the gradient and Hessian of f(V; �; y) with respe
t to y 
an be written as follows,ryf(V; �; y) = F1(y) G2(y) + F2(y) G1(y)(6.5) r2yf(V; �; y) = 2F2(y) W + 2F1(y) (D1W�1D1 + 2D2D3) +(6.6) G2(y)G1(y)T +G1(y)G2(y)TProof: From (2.8) it follows that f(V; �; y) = F1(y)F2(y). We observe that ve
tors G1(y) and G2(y)are simply gradients of F1(y) and F2(y) with respe
t to y. Expressions (6.5) and (6.6) are obtained byapplying the rule of di�erentiation of a produ
t to the fun
tion f(V; �; y).It turns out that in the 
ase of the 
onve
tion-di�usion matrix, the right-hand side ve
tors de�nedby (4.1) set the gradient of f(V; �; y) to zero even when � > 0. More pre
isely,Lemma 6.2. Let VCD and �CD be de�ned by (6.2) and (6.3), respe
tively. Let y be de�ned by (4.1).Then ryf(VCD; �CD; y) = 0. Also, regardless of the a
tual sign pattern of y, the 
orresponding ve
tors band 
 satisfy k
k = Æ�(n+1)kbk;12



and therefore h(VCD ; �CD; y) = Æ(n+1)kbk�2 = Æ�(n+1)k
k�2:(6.7)Proof: See [22℄.Although Lemma 6.2 implies that points y 
omputed by (4.1) satisfy the �rst-order ne
essary 
onditionfor a minimizer, it does not imply that the Hessian r2yf(V; �; y) is positive-semide�nite at y. In fa
t,numeri
al experiments indi
ate that most of the 2n points 
omputed by (4.1) are nothing more thansaddle points. There is one ex
eption, though. There appears to be one point at whi
h the se
ond-order
ondition does appear to be satis�ed. More pre
isely, empiri
al data suggest that for every n and every0 � � < 1, the ve
toryCD = y(�) =pjuCDj = [ p+u1; p�u2; p+u3; p�u4; : : : ℄T(6.8)is a minimizer of f(VCD; �CD ; y). Furthermore, the tests indi
ate that this is a global minimizer. Thethird important pie
e of numeri
al eviden
e we found was that h(VCD; �CD; y(�)) grows monotoni
allyas � goes from zero to one. Sin
e �2(VCD) also grows monotoni
ally with � [4℄, it appears that the one-dimensional 
onve
tion-di�usion family of matri
es is an example of the negative e�e
t of 
onditioningof eigenve
tors on 
onvergen
e of GMRES.6.2. The Worst-Case Ve
tor for � = 1, an n = 3 Example. It is often possible to representa defe
tive matrix as a limit of a 
ertain parametrized family of diagonalizable matri
es as the set ofparameters approa
hes a limit point. The one-dimensional 
onve
tion-di�usion family of matri
es A(�)de�ned by (6.1) provides one su
h example with a single parameter � and its limit value of one. Thereforeit is logi
al to expe
t that analysis of behavior of GMRES applied to the defe
tive matrix 
an be done by
onsidering limits of related quantities 
orresponding to the diagonalizable matri
es. In this se
tion wedemonstrate this for the 
onve
tion-di�usion matrix of size n = 3.The matrix VCD de�ned by (6.3) has the formVCD = V (�) = 1p2 0� Æ Æ ÆÆ2 0 �Æ2Æ3 �Æ3 Æ3 1A :The worst-
ase right-hand side ve
tor b(�) equalsb(�) = 12p2(1� �)2 24 (1� �)(2p1 + �2 +p
2 +p
1)�p
0(p
2 �p
1)(1 + �)(�2p1 + �2 +p
2 +p
1) 35 :(6.9)We now use (6.7) to 
ompute h(�) = h(V (�); �CD ; y(�)) and obtain 2h(�) = (1 + �2)23 + �4 + �2(2 +p2(1 + �2))� 2�p1 + �2(p
2 +p
1) :(6.10)In order to determine the worst-
ase behavior of GMRES(A(1)) we 
ompute the limit of h(�) as �! 1�.We obtain lim�!1� h(�) = 6489 � 0:719101:2Computations were performed using Mathemati
a version 4 [21℄.13



The 
omponents of b(�) given by (6.9) grow in�nitely large as � approa
hes unity. Therefore in order to�nd the worst-
ase right-hand side for the defe
tive 
ase, we �rst s
ale b(�) by its �rst 
omponent andthen 
ompute the limit of the resulting ve
tor ~b(�) as �! 1�. We obtainlim�!1� ~b(�) = [ 1; 12 ; 38 ℄T :(6.11)We now want to verify that the limit we just 
omputed indeed represents the worst-
ase behavior forGMRES(A(1)). We assume b = [1 �2 �3℄T and obtainK = 0� 1 2 4�2 �2 + 2�2 �8 + 4�2�3 �2�2 + 2�3 4� 8�2 + 4�31A ;K�1 = 0� 1� (1� �2)�2 � �3 1� �2 1�22 � �2 + �3 � 12 + �2 �114 (�22 � �3) ��24 14 1A :We now 
ompute H(�2; �3)2 = kKe1k2 kK�T e1k2 = (1+�22 +�23)(1+(1��2)2+(1� (1��2)�2��3)2),�nd its gradient with respe
t to �2 and �3 and 
ompute its zeros. The only real root of the gradient ispre
isely the point given in (6.11).What we have demonstrated is that the framework that we have developed for analysis of GMRESapplied to diagonalizable matri
es A may be applied to defe
tive matri
es A as well. If we 
an express agiven defe
tive Adef as Adef = limp!p0 A(p);where A(p) are diagonalizable, p 2 Ck is a ve
tor of parameters and p0 is a 
ertain limit value, and ifwe 
an derive 
onvergen
e results for GMRES(A(p)), we may be able to determine or estimate relatedquantities for GMRES(Adef) by taking limits.6.3. General Worst-Case Behavior for � = 1: Numeri
al Observations. In this se
tion wepresent numeri
al data regarding the worst-
ase GMRES behavior for the defe
tive 
onve
tion-di�usionmatrix Adef = A(1) (see Equation (6.1)) of an arbitrary size. This data suggests that it is possible to useinformation about the worst-
ase behavior of the n� n problem to determine the worst-
ase behavior ofthe problem of dimension n+1. Although here we do not use the spe
tral de
omposition framework, we
an think of the results presented in this se
tion as an extension of what was developed in Se
tion 6.2.Throughout this se
tion, we use the following notation. Let An denote the 
onve
tion-di�usion matrixA(1) of size n, i.e. An = 0BB� 2�2 2. . . . . .�2 21CCA 2 Rn�n:Let bn = [1 �2 : : : �n℄T 2 Rn denote the right-hand side ve
tor of size n and let Kn = K(An; bn).Assuming Kn is nonsingular, let 
n = K�Tn e1. Let hn(bn) be the GMRES 
onvergen
e measure at stepn� 1 for the n�dimensional problem and let Hn(bn) be its re
ipro
al. ThenHn(bn) = hn(bn)�1 = kbnkk
nk:14



Finally, let bworstn , 
worstn , hworstn , and Hworstn represent quantities asso
iated with the worst-
ase behaviorof GMRES(An). Thus in Se
tion 6.2, we have established thatbworst3 = [ 1; 12 ; 38 ℄T ; hworst3 = 6489 :We want to determine these quantities for an arbitrary n. To this end, we �rst look at the stru
tureof Kn. Let us write expli
itly its se
ond and third 
olumns,Anbn = 22666664 1�1 + �2��2 + �3...��n�1 + �n
3777775 ; A2nbn = 42666664 1�2 + �21� 2�2 + �3...�n�2 � 2�n�1 + �n

3777775 :With a simple indu
tion argument, one 
an show that the top n�1 rows of the matrix Kn do not dependon �n. This implies that if bn+1 = [bTn �n+1℄T 2 R(n+1) thenKn+1 = � Kn an~aTn �n � 2 R(n+1)�(n+1);where Kn 2 Rn�n, an; ~an 2 Rn and �n 2 R with Kn and an being independent of �n+1. We alsoobserved, although 
ould not prove analyti
ally, that the 
orresponding ve
tor 
n+1 is an in
rement of
n, i.e. 
n+1 = [
n+1 
Tn ℄T where 
n+1 2 R depends an all 
omponents of bn+1. If this is true in general,and we believe it is, thenH2n+1(bn+1) = kbn+1k2k
n+1k2 = (kbnk2 + �2n+1)(k
nk2 + 
2n+1)= H2n(bn) + �n;(6.12)where �n = kbnk2
2n+1 + k
nk2�2n+1 + 
2n+1�2n+1. We make the following observations. First, Equation(6.12) implies that hworstn+1 � hworstn . Se
ond, it also suggests that bworstn and bworstn+1 are 
losely related andone may be 
omputed from the other. We now present experimental results that indi
ate that this is the
ase.For n varying between 4 and 50, we approximately 
omputed bworstn and hworstn by evaluating hn(bn)over a large mesh of points normally distributed over the unit sphere in Rn. On
e a 
oarse approximationhas been 
omputed, we re�ned it by fo
using on the region where hn(bn) was the largest. Upon inspe
tionof the results, we 
onje
ture the following. First, the ve
tor bworstn satis�es 1 > �worst2 > : : : > �worstn > 0,with �worstn usually being between about 80 and 90 per
ent of �worstn�1 . Se
ond, ve
tors bworstn and bworstnare related by bworstn+1 = � bworstn�worstn+1 � :(6.13)Figure 6.1 illustrates our �ndings. The left subplot shows individual entries of bworst50 . In addition, due tothe relationship (6.13) it essentially plots the worst-
ase ve
tors for all n < 50 as well. The right subplotshows the value of hworstn for 4 � n � 50. As predi
ted by (6.12), it monotoni
ally de
reases as n grows.We now ask the following question: How does performan
e of GMRES(An,bworstn ) 
ompare to that ofGMRES(An,b) for a random b 2 Cn at intermediate steps of the algorithm? We try to answer this questionpartially by 
ondu
ting the following experiment. For various values of n, we generate the defe
tive matrix15
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Fig. 6.1. The ve
tors bworstn (left) and the measure hworstn (right) for the defe
tive 
onve
tion-di�usion matrix of sizen = 4; : : : ; 50
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Fig. 6.2. Performan
e of GMRES(An ; b) for di�erent 
hoi
es of b, for n = 3; 10; 25; 50 and m = 0; : : : ; n� 1.An as well as right-hand side ve
tors of three types, namely (i) the worst-
ase ve
tor bworstn ; (ii)M randomve
tors b with positive entries; and (iii) M random ve
tors b with arbitrary entries. We then run GMRESwith ea
h matrix-ve
tor pair and look at the sequen
e of residual ratios hm, m = 0; : : : ; n� 1. Results ofthis test are shown in Figure 6.2.We tested problems of size n = 3; 10; 25, and 50 and used M = 5. We sele
ted su
h a small16



value of M to make the plots more readable. We note that the empiri
al �ndings we present belowwere observed for larger values of M as well. On ea
h of the four subplots in Figure 6.2, the solid 
urverepresents the 
onvergen
e 
urve of GMRES(An,bworstn ). The dashed 
urves and those labeled with an'�' 
orrespond to positive and mix-sign ve
tors b, respe
tively. We make the following observations.First, as predi
ted, at step m = n � 1, h(An; bworstn ) is larger than h(An; b) for any other b. Moreover,GMRES(An,bworstn ) exhibits relatively poor performan
e at intermediate steps as well, espe
ially at laterstages of the algorithms. Nevertheless, bworstn is not the worst-
ase ve
tor for m < n� 1. Se
ond, overall,GMRES performs noti
eably better when applied to mix-sign ve
tors b than when positive ve
tors are used.Also, the performan
e gap, almost nonexistent for small problems, seems to grow with n.We obtained similar patterns when we applied the same test to a diagonalizable matrix A(�) for a�xed � < 1. We therefore 
onje
ture that at later stages of the algorithm, hm(An; bworstn ) may be 
losethe worst-
ase behavior, while at its early stages, the worst-
ase b is some other ve
tor with positive
omponents.7. Can Worst-Case Analysis Be Misleading?. Throughout this do
ument, we have been fo-
using on the worst-
ase analysis of GMRES 
onvergen
e. If GMRES(A) and GMRES(A0) a
hieve the sameworst-
ase performan
e at step m for the matri
es A = V �V �1 and A0 = V 0�0(V 0)�1 then 
learly mea-sures hm(V; �; y) and hm(V 0; �0; y) have the same range of values. However, as we will see in this se
tion,this fa
t does not ne
essarily imply that the method has identi
al overall behavior when applied to thetwo matri
es.In this se
tion we fo
us on step m = n� 1 and present some experimental data that shows that analternative measure of overall performan
e, su
h as the mean of h(V; �; y) over all right-hand side ve
torsb = V y of unit length, may be a better indi
ator of average performan
e of GMRES.7.1. Approximate Computation of the Mean. In this se
tion we fo
us on real matri
es Aand ve
tors b and again assume that kbk = 1. This yields the 
onvergen
e measure h(V; �; y) =kV �HY �1uk�1. Let us de�ne the set R+n = fb = [�1; : : : ; �n℄T 2 Rn j kbk = 1; �n � 0 g that
onstitutes the upper half of the real unit hyper-sphere Without loss of generality we may assume thath(V; �; V �1b) is de�ned over R+n . Thus for given V and �, h(V; �; V �1b) : R+n ! [0; 1℄. Overall perfor-man
e of GMRES(A) 
an be measured by its mean,�h = �h(V; �) = 1A(R+n ) ZR+n h(V; �; V �1b);(7.1)where A(R+n ) is the total surfa
e area of the half-sphere R+n . In other words, �h is just a s
aled surfa
eintegral of the measure h(V; �; V �1b).The formula (7.1) yields a very 
ompli
ated expression whi
h we have not been able to evaluateexa
tly. Therefore in our experiments we seek to approximate it. The most straightforward way to do itis to evaluate h(V; �; b) on a dis
rete mesh over R+n and then to 
ompute the average of all the values atthe mesh nodes. Clearly, in order for the approximation to be good, the mesh has to be both �ne anduniform. As pointed out in [2℄, given an integer M , it is possible to obtain a uniform mesh of the sphereby generating M n�ve
tors of normally distributed random numbers with zero mean and unit varian
e.These ve
tors 
an then be s
aled to put them on the top half of the unit sphere.Unfortunately, even in the 
ases of small n, the mesh has to be rather �ne in order to get an a

uratepi
ture. For instan
e, when n = 3, the values of M between 105 and 106 are usually used, and thisvalue grows with n. This often makes 
omputational experiments even with small-dimensional problemsexpensive in terms of both time and memory. 17
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Fig. 7.1. Di�erent behavior of hR (left) and hL (right) in neighborhood of bstagn7.2. An Example of Di�erent Behavior of A and AT . Let us 
onsider the following matrixA = 0� 3:64347104554523 �1:30562625697964 2:122762337249473:81895186997748 �0:33626408416579 8:439523254168690:12754105943518 0:13002776444227 2:988205496100001Atogether with its transpose. This matrix has real spe
trum. We 
ompute VR and VL = V �TR , whi
hare the eigenve
tors of A and AT , respe
tively. We 
onsider ve
tors b 2 R+n and denote by hR and hLthe measures h(VR; �; V �1R b) and h(VL; �; V �1L b), respe
tively. Thus hR and hL are GMRES 
onvergen
emeasures at step m = n� 1 for A and AT , respe
tively.By Theorem 5.4, hR and hL attain the same maximums over the unit sphere. In fa
t, GMRES(A) andGMRES(AT) stagnate [23℄ at the following two pointsbstagn1 = 24 �0:22385545043433�0:304719185834170:92576182418211 35 ; bstagn2 = 24 �0:46000942948917�0:324209708749850:82660715551465 35 ;We now generate a mesh of K = 106 normally distributed points and approximately 
ompute �hR and�hL. The values we obtain are quite di�erent, namely, �hR � 0:4512 and �hL � 0:1835. Closer examinationreveals that GMRES(A) and GMRES(AT) behave di�erently in the neighborhood of the stagnation points.Let us examine Figure 7.1. The left and right subplots 
orrespond to hR and hL, respe
tively. Theshaded areas 
orrespond to the regions where hR and hL are larger than 0:85. As expe
ted, the stagnatingpoints bstagn1;2 are inside both of these regions. However, the region 
orresponding to hR is signi�
antlylarger whi
h explains why its mean is larger as well. In other words, hR in general 
hanges mu
h moreslowly in the neighborhood of bstagn1;2 than does hL.8. Open Questions. As often happens, the development of a new approa
h to GMRES 
onvergen
eanalysis raised more questions than it answered. In addition to various 
onje
tures arising from empiri
aleviden
e presented in Se
tions 6 and 7, there are questions that 
an be thought of as generalizations ofresults presented in this paper. Here we mention some of them. In Se
tion 3 we derived bounds for the18




onvergen
e measure at step m = n� 1. Is it possible to obtain an a

urate bound for an arbitrary stepsusing our framework? In Se
tion 6, we studied the matri
es arising from the one-dimensional 
onve
tion-di�usion equations and observed that the form of the worst-
ase right-hand side for step m = n� 1 doesnot 
hange with � and is 
omputed dire
tly from the ve
tor u = G(�). What about intermediate steps?Also, how does this result generalize to matri
es for the two-dimensional 
onve
tion-di�usion equationlike the ones dis
ussed in [4℄? Finally, in Se
tion 7 we demonstrated that worst-
ase-based analysis ofGMRES performan
e may be misleading and proposed mean(h(V; �; b)) as an alternative overall measure.However, due to the fa
t that the expression for the mean is extremely 
ompli
ated we were not able todevelop any analyti
al results. So the question remains whether it is possible to 
ome up with a di�erentmeans of measuring overall performan
e of the algorithm that would be simpler than the mean and atthe same time would 
apture the behavior of h(V; �; b) over regions better then does its maximum.9. A
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