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Abstract

A significant number of Model Predictive Control algorithms solve on-line an appro-
priate optimization problem and do so at every sampling point. The major attraction
of such algorithms, like the Quadratic Dynamic Matrix Control, lies in the fact that
they can handle hard constraints on the inputs (manipulated variables) and outputs of
a process. The presence of such constraints results in an on-line optimization problem
that produces a nonlinear controller, even when the plant and model dynamics are as-
sumed linear. This paper provides a theoretical framework within which the stability
and performance properties of such algorithms can be studied. Necessary and/or suffi-
cient conditions for nominal and robust stability are derived and two simple examples
are used to demonstrate their effectiveness in capturing the nonlinear characteristics
of the system. These conditions are also used to analyze simulation results of a 2 x 2
subsystem of the Shell Standard Control Problem.

1 Introduction

The problem of input saturation is present in almost every chemical system, even when the
process dynamics can be assumed linear. In addition to the input constraints, safety and cer-
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tain performance specifications also require the presence of hard constraints on some output
and state variables. The urgency of rigorous theoretical work in this area has been pointed
out by the industry (Garcia and Prett, 1986). An approach that has been tried industrially
during the past few years is to on-line solve an appropriate optimization problem and to do
so at every sampling point. The repeated application of such methods on industrial problems
with considerable success (Garcia and Morshedi, 1986; Ricker et al, 1989) indicates that suf-
ficient degrees of freedom exist in these formulations and has resulted in their incorporation
in academic curricula (see, e.g., Arkun et al, 1988). A drawback that has prohibited their
widespread use is the fact that no exact tuning procedure for the optimization parameters
exist and such tuning often has to be carried out on-line by experienced designers.

The presence of hard constraints in the on-line optimization problem produces a nonlin-
ear controller even when the plant and model dynamics are assumed linear. The fact that
the overall control system (plant + controller) is nonlinear makes the study of its properties
quite involved, especially since no analytic expression is available for the controller. The
problems are compounded when robustness with respect to model-plant mismatch is also
considered, because no straighforward extension of the results of the Robust Linear Control
Theory to this particular problem exists, even though the plant and model dynamics are
assumed linear. Some efforts have been made (Campo and Morari, 1987; Garcia and Prett,
1986) to achieve robustness by modifying the “min” optimization problem that is solved on-
line to a “min max” problem that minimizes the objective function over all possible plants.
One of the problems of this approach is that either the computations for solving the opti-
mization problem are too time consuming to be carried out on-line at every sample point or
to simplify the computations one has to use simplistic model uncertainty descriptions that
are unrealistic. Another, quite serious problem is the fact that these methods inherently
assume that by solving the “min max” problem to obtain a sequence of future inputs (ma-
nipulated variables) and then implementing the first one and repeating the computation at
the next sample point, one is guaranteed robust stability and performance, provided that
a sufficiently long horizon is used in the objective function. However, feedback from an
uncertain plant exists in reality and it is not taken into account in the formulation of the
optimization problem, which is an open-loop minimization of the objective function over all
possible plants. This fact can lead to performance deterioration and instability. Note that
the situation is quite different from studying (and guaranteeing) a stabilizing control algo-
rithm when no model error is present, in which case the assumption is reasonable, although
not proven for the general case.

The problems discussed just above, cannot possibly be satisfactorily addressed without
considering the problem in its proper nonlinear framework. It is the author’s opinion that
instead of augmenting the objective functions to add robustness, an action that dramatically
increases the computational load and at the same time produces no rigorous robustness
guarantees, one should study the problem in its nonlinear nature, obtain conditions that
guarantee nominal and robust stability and performance and tune the parameters of the
original optimization problems (e.g., Quadratic Dynamic Matrix Control (QDMC)) to satisfy
them.



2 Preliminaries

Although Model Predictive Control (MPC) algorithms have been applied to systems with
nonlinear dynamic models (Garcia, 1984; Eaton et al, 1989), it is usually assumed that the
dynamics are linear, the nonlinearity of the problem arising from the hard constraints. The
properties of the controller are independent of the type of model description used for the
plant (see, e.g., Morari et al, 1989). The impulse response description is a convenient one:

y(k+1) = Hyu(k) + Hyu(k — 1) + ... + Hyu(k — N + 1) (1)

where y is the output vector, u is the input vector and N is an integer sufficiently large for
the effect of inputs more than N sample points in the past on y to be negligible. The plant
is assumed to be open-loop stable, but it may be non-square.

The QDMC-type algorithms (Garcia and Morshedi, 1986; Garcia and Morari, 1985) use
a quadratic objective function that includes the square of the weighted norm of the predicted
error (setpoint minus predicted output) over a finite horizon in the future (sample points
k+1,...,k+ P, where k is the current sample point) as well as penalty terms on u or Au:

P
u(k),...,u(l_c+M—1)l§=:1[ ( ) ( )+ u( ) ( )

+ Au(k +1 = 1T D?*Au(k +1 - 1)] ' 2)

The minimization of the objective function is carried out over the values of Au(k), Au(k +
1),..., Au(k + M — 1), where M is a specified parameter. The minimization is subject to
possible hard constraints on the inputs u, their rate of change Au, the outputs y and other
process variables usually referred to as associated variables. The details on the formulation
of the optimization problem can be found in Prett and Garcia (1988). After the problem is
solved on-line at k, only the optimal value for the first input vector Au(k) is implemented and
the problem is solved again at k + 1. The optimal u(k) depends on the tuning parameters
of the optimization problem, the current output measurement y(k) and the past inputs
u(k — 1),..., u(k — N) that are involved in the model output prediction. Let f describe the
result of the optimization:

u(k) = f(y(k),u(k = 1),...,u(k — N),rp(k)) (3)

where rp(k) includes all the values of the reference signal (setpoint) during the prediction

horizon from & +1 to k + P.
The optimization problem of the QDMC algorithm can be written as a standard Quadratic

Programming problem:

min g(v) = -;—vTGv +gTv 4)
subject to
ATv > b (5)
where ) B
v=[Au(k) ... Au(k+M -1 (6)
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and the matrices G, A, and vectors g, b are functions of the tuning parameters (weights,
horizon P, M, some of the hard constraints). The vectors ¢, b are also linear functions of
y(k), u(k — 1),..., u(k — N). For the optimal solution v* we have (Fletcher, 1981):

BNl

where flT, b consist of the rows of AT, b that correspond to the constraints that are active
at the optimum and A* is the vector of the Lagrange multipliers corresponding to these
constraints. The optimal Au(k) corresponds to the first m elements of the v* that solves
(7), where m is the dimension of u.

The special form of the LHS matrix in (7) allows the numerically efficient computation

of its inverse in a'partitioned form (Fletcher, 1981):

¢ -A]l" H ~T
I I o
Then X
v* = —Hg+Th (9)
N =TTg-Ub (10)
and
u(k)=u(k-1)+l1 0 ... olv~dé‘ (y(k),u(k = 1),...,u(k = N),rp(k))  (11)
Y,

3 Formulation of the Problem as a Contraction Map-
ping

The framework selected for the study of the properties of the overall nonlinear system is

that of the Operator Control Theory (Economou, 1985). In this approach, the stability and

performance of the nonlinear system can be studied by applying the contraction mapping

principle on the operator F that maps the “state” of the system (plant + controller) at

sample point k to that at sample point k+ 1. The fact that the plant dynamics are assumed

linear allows us to obtain results and carry out computations that are not yet feasible in the
general case. We can define as the “state” of the system at sample point & the following

vector xl(k)
z(h)=| (12)
zn(k)



where

]

zi(k+1) F u(k) fy(k),u(k =1),...,u(k = N))
f(Hiu(k = 1) + ...+ Hyu(k — N) + d(k),

w(k = 1),...,u(k - N),rp(k))

I

© W(u(k - 1),...,ulk — N);rp(k),d(k))
= W(a(k);re(k), () (13)
= z1(k)

2k +1) Fuk-1)

zn(k+1) ;irifu(k—N+1) = zn-1(k)

and d(k) represents the disturbance effect at k& on the plant output. The “state” vector. .

z(k) is defined so that knowledge of it and of the external inputs rp(k) and d(k) allows the
computation of z(k + 1) by applying the plant and controller equations on it. Indeed the
operator F that maps z(k) to z(k + 1) is given by

U(z(k);rp(k), d(k))
(El(k)

z(k + 1) = F(z(k);rp(k),d(k)) = : (14)
zn-1(k)

Note, however, that although f(.) can be computed, since it describes the on-line optimizing
control algorithm and it involves only the process model, ¥ is not exactly known, because
it involves the “true” plant impulse response coefficients Hy,..., Hy.

Convergence of the successive substitution z(k + 1) = F(z(k)) implies stability of the
overall nonlinear system; fast convergence implies good performance. The use of the con-
traction mapping principle allows the development of conditions for robust stability and
performance in terms of some consistent matrix norm ! of the derivative F' of the above
operator F. :

4 Stability Conditions

We shall now proceed to obtain stability conditions for the overall nonlinear system by
obtaining conditions under which the mapping described by F' is a contraction. The terms
stability and instability of the control system are used in the global asymptotical sense over
the domain of F' under consideration.

Let us first examine the differentiability of F. From (14) it follows that this is equivalent
to differentiability of ¥(z) and from (13) to differentiability of f. Let us assume that for
some point z in the domain of F, an infinitesimal change in  (which results in a change of
g, b in (4), (5)) does not change A, i.e., the set of active constraints at the optimum does
not change (note that A is independent of z). Then from (7) it follows that the derivative
of ¥ exists and it has a constant value in a neighbourhood of that z.

1A consistent matrix norm ||.}| is a norm for which there exists a vector norm |.| such that |Az| < || A][|«].
Such a norm has the property [JAB|| < l|Alll|B|].



Let J; be a set of indices for the active constraints of (1) and Jy,..., J, correspond to all
possible active scts of constraints when all zs in the domain of I are considered. Every such
J; corresponds to an A; and a b;. Then from the above discussion, it is evident that for all
s that correspond to the same J; and for which an infinitesimal change in their value does
not change the set of active constraints, the derivative of ¥ and therefore of F exist and it
has the same value that depends on the particular set J;:

[ (an})l.‘ (sz\ll)-/.‘ e (va-l\D)J.‘ (er\II)J.' ]
I 0 .o 0 0
Fj = 0 I e 0 0 (15)
0 o .. I 0o |

where from (13) it follows that
(Ve U)s = (Vo £l + (Vo f) H; (16)
The derivatives of f can be computed easily from (11):
(Ve )i =[1 0 ... 0](=HsVeig+T5Vs0) (17)

where the derivatives of g, b; are constant since g, b are linear functions of y(k), u(% — 1),...,
u(k — N). The same expression as in (17) is also true for the derivative with respect to y(k),
the current measurement. Also note that in the case of z;, the identity matrix I should be
added to the RHS of (17).

It is clear from the above discussion that F(z) is piecewise linear and that it is differ-
entiable everywhere except the points where an infinitesimal change will change the set of
active constraints at the optimum of (4). It follows then that for F to be a contraction, it is

necessary that
|Fpll<8<1, i=1,...,n (18)

where ||.|| is some induced .matrix norm?, the same for all i. Since an induced norm is a
consistent norm as well, it is necessary that there exists some consistent matrix norm for
which (18) is satisfied. Such a condition, however, can be shown to be sufficient as well.
Consider two points z%, zb and let the straight path connecting them in the domain of F
be broken into the succesive segments z¢ — z*, z! — z%,..., 2! — 2°, the points of each of
which correspond to the same Ji: Jiyy Jky s+, Jiyy T€spectively. Then, if |.| is the vector norm

that is consistent with ||.]|, we have
[F(z®) — F()|
= |[(F(s*) = F(a))) + (F(z') = F(z") + ...+ (F(z) = F(z"))|
= |F}k° (2 —z') + F*;k: (2 =z +... + F}k‘(m‘ ~z%)]
= l(cz()F",ko + a;F}k1 +...+ azF}k‘ )z® — z%)|

2An induced matrix norm is a norm for which there exists a vector norm |.| such that ||A|| =
SuP, 4o |42|/|z]. An induced norm is also a consistent norm.
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< wlF, (@~ )|+l (2 = ) ot il (2" - )

< (@ollFy 1+ all By 14+ .+ a5, DI = 28]

< (ao+ar+...+a)0)z" — 2| '

= 0)z® — 2| (19)

where a; is the relative length of the respective segment as compared to z® — z°. From (19)
it follows that F is a contraction. The fact that there is only a finite number of J;s allows
us to drop the 6 from (18) to obtain:

Theorem 1 F is a contraction if and only if there exists a consistent matriz norm ||.||, for
which
|1Fill<1, i=1,...,n (20)

The practical use of (20) is limited by the fact that finding an appropriate consistent norm is
not a trivial task. The following two subsections provide conditions which are more readily
computable. The third subsection formulates the respective robustness conditions.

4.1 Sufficient Condition

By selecting one particular consistent matrix norm and stating (20) for that norm, one can
get a sufficient only condition. )

Let us select the following norm, which can be shown to be a consistent one on R™V*xmN
(Stewart, 1973), where m is the plant dimension:

141l = IDAD™ | 1)
where
N
“B”oo =m?'XZ|bij| ‘ (22)
j=1
D = diag(I,91,7°I,...,7" 1) (23)
0<n<l1 (24)
Then
DF}iD_l = -
(v-’vl \I’)J.' (V:cg\I’)J,»"']"1 e (va_l \II)J'J]"(N‘2) (Vxn‘I’)J;ﬂ"(N'l)
nl 0 ces 0 0
0 nd cee 0 0
A 0 0 e 17[ 0 ]
(25)



From (21)-(25) we get

IDF}, D" }o < 1 |
(Ve ¥)se (Va,¥)on™ ... (VZN\I’)JW—(N_I) [loo < 1
- H (leq")-/.' (V“\II)J'. cen (vxn‘p)J; ”oo < 77N—1 (26)

Since any 5 in (0, 1) will do and there is only a finite number of J;s, from (26) we can obtain:
Theorem 2 The control system is asymptotically stable if

N (Ve ®)g (Ve U)sy oo (VoW o <1, 1=1,...,n (27)
Note that for single-input single-output plants (27) becomes

an,

t=1,...,m (28)

which for the unconstrained case is simply a sufficient condition for the closed-loop poles to
lie inside the Unit Circle.

4.2 Instability Conditions -

For every consistent matrix norm we have
p(A) < 1Al (29)

where p(A) is the spectral radius of A, defined as p(A) = max; |A;(A4)], A;(A), being the
eigenvalues of A. Then from (20) and (29) we get

Theorem 3 F can be a contraction only if
p(F3) <1, i=1,...,n (30)

Note that if the optimization (4) is not subject to (5), then n = 1 and (30) becomes sufficient
as well, because, given a matrix one can always find a consistent norm arbitrarily close to its
spectral radius (Stewart, 1973). The reason that (30) is not sufficient in general is that such
a consistent norm is in general a different one for two different matrices (different J;s), while
(20) requires the same norm for all ¢. In the case of n = 1, (30) translates to the requirement
that the closed-loop poles of the system are located inside the Unit Circle.

If (30) is not true, then F is not a contraction. This however does not necessarily imply
that the control system is unstable. The following theorem provides a condition that is
sufficient for instability.

Theorem 4 The control system is unstable if

p(F)>1, i=1,...,n (31)



The proof follows the argument that if a stable local equilibrium point existed, then for the
Ji corresponding to that point we would have p(1) < 1.

Theorem 4 can be used to predict instability of the overall nonlinear system. Theorem 3
on the other hand does not seem at a first glance to be of much use, since violation of (30)
does not necessarily imply instability. From a practical point of view, however, violation of
that condition for some i, should be taken as a very serious warning that the control system
parameters should be modified. The reason is that when in the region of the domain of F
that corresponds to that ¢, the system will behave as a virtually unstable system, the only
hope for stability being to move to a region with p(F}) < 1. It might be the case that for a
particular system in question this will always happen, making this system a stable one. But
even in this case, a temporary unstable-like behavior might occur, thus making the control
algorithm practically unacceptable. The examples in Section 8 demonstrate situations where
violation of (30) is enough to produce an unstable system although (31) is not satisfied.

4.3 Robustness Conditions

From (16) we see that F; depends on the impulse response coefficient matrices Hy,..., Hy
of the actual plant. These matrices are never known exactly and so in order to guarantee
stability for the actual plant, one has to compute the conditions of Sections 4.2, 4.1, not just
for the model, but for all possible plants. To do so, one needs to have some information on
the possible modeling error associated with the H;s. Let H be the set of possible values for
these coefficients. Then we can write the following conditions:

Theorem 5 The control system is asymptotically stable for all plants with coefficients in H -

if
supll (Ve ¥)s (Vea ¥ oo (Vo Vi lleo <1, i=1yeim (32)

Theorem 6 F can be a contraction for all plants with coefficients in H only if

s;x{pp(F",..) <l, i=1,...,n _ (33)

5 A Robust Linear Control Stabilization Interpreta-
tion of the Necessary Conditions

The following re-formulation of the necessary conditions of the previous section, allows us
to bypass the problem of dealing with uncertainty in the Hs directly, and use the tools that
were developed for Robust Linear Control (e.g., the structured singular value (Doyle, 1982))
to treat any of the types of model error that can be handled by that theory. Consider a
standard feedback controller C(z). Then

u(z) = C(z)(r(z) = ¥(2)) (34)
where r is the setpoint vector. Define
Co() & = [ = (Ve sz = o= (Ve Na™] 7 (Vuf ) (35)
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Since the plant is assumed to be open-loop stable, for stability of this lincar control system
we need that the closed-loop transfer function between u and r or d (disturbance at the plant

output) be stable. From (34), (35) we get by using (1)

u(z) = = [ = (Ve )27 oo = (Vo 0) 527 7 (9, ) 10(2) (36)

where (V,, W)y, is given by (16). Hence, stability of the linear unconstrained system under
feedback control C,(z) is equivalent to stability of the transfer matrix in (36), which, assum-
ing that (V, f)s is full rank, is itself equivalent to (30) since F, is the companion matrix of
the denominator of (36). For the case where (V,f)y, is not full rank, stabilty under Cj,(2)
is still necessary for satisfaction of (30). For Jis, however, for which (V,f)s = 0, (30) is
equivalent to requiring that the transfer matrix

Qi E [ = (Val)az™ = = (Ve Doz (37)

be stable. Note that @ j,(z) is independent of the “uncertain” plant coeflicients Hy, ..., Hy.
Hence, from the above discussion we have

Theorem 7 F can be a contraction only if all feedback controllers Cy,(z), 1 3 (Vyf)s # 0,
produce a stable system when applied to the unconstrained process and all transfer matrices
Qu(2), 23 (Vyf)y, =0, are stable.

Theorem 8 F can be a contraction for all plants in a set II, only if all feedback controllers
CJ,(z), i 3 (Vyf)s # 0, stabilize all plants in the set Il and all transfer matnces Qu;(2),
13 (Vyf)s =0, are stable.

The advantage of Thm. 8 over Thm. 6 lies in the fact that through Thm. 8 we can handle
any set II that Robust Linear Control theory can (for a discussion of the possible IIs see
Morari and Zafiriou, 1989). This new interpretation of the conditions also indicates that
robust performance conditions can be formulated for the same set of feedback controllers.
For the sufficient conditions a similar formulation may be possible but it would probably
involve some conservativeness. .

6 Practical Relevance of a Condition Violation

Conditions (30), (27) can be used to examine the nominal stability of the system for a
particular set of tuning parameters. An important question is what are the implications
if for a particular A; the conditions are not satisfied. This would only be relevant if the
particular combination of active constraints at the optimum can actually occur during the
operation of the control system. The following is a procedure that can decide if a certain set
of active constraints at the optimum is relevant,

Let AT, b consist of the rows of AT, b that correspond to the inactive constraints at the
optimum. Then by using (9), (10) we see that in order for such a combination to be possible
at the optimum we need to have

AT(-Hg+Th) > b (38)
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T7g - Ub>0 (39)

Since g, b are linear combinations of the past manipulated variables and the current mea-
surement, (38), (39) can be combined with the hard constraints on the past us, the past
Aus and the output y(k) to constitute a system of linear inequalities that have to have a
feasible solution over the values of the past inputs and the current measurement. Note that
depending on the estimate of expected disturbances, one may wish to modify the bounds
on y(k) that are used in the above problem. If the problem has no feasible solution, then
the fact that for that particular A the stability conditions are not satisfied, is of no practical
importance.

Note that the above procedure can also serve to construct a sequence of possible past
inputs that can lead to a situation during the operation of the control system where the
stability conditions are not satisfied.

7 Analysis of Simulation Results

The computation of the stability conditions at all possible combinations of active constraints
at the optimum of the on-line optimization problem can be extremely time-consuming and
therefore a systematic method that does not have to check all possibilities is needed. Since
no such method for checking the conditions is currently available, the following procedure
for providing the designer with insights on tuning the controller parameters can be used.

For a given set of values for the tuning parameters, the designer can simulate the overall
system for certain disturbances and/or setpoints that he considers of practical relevance.
Such simulations can show instability or simply bad behavior at certain points during the
simulation. This behavior which stops short of instability might be captured as a violation of
condition (30) which is necessary for F' to be a contraction. By computing these conditions
at every sampling point during the simulation and by studying the robustness properties of
the Cy;s that correspond to the points where the conditions were violated, the designer may
be able to improve the tuning parameters. The above procedure is used in the study of a
realistic process in section 8.3. '

8 Illustrations

The first two examples demonstrate the effectiveness of the nominal and robust stability
conditions in capturing the nonlinear behavior of the control system. These two examples
are simple so that the effect of incuding hard constraints in the on-line optimization problem
is clear. They are not meant as difficult to control systems.

The third example is based on a system described by industrial practitioners. It is
intended to demonstrate that even at this early stage in the development of the theoretical
framework, the available conditions can be useful in analyzing the behavior of a rather
complex process.

11



8.1 Nominal Stability of a 2 x 2 process

Let us consider a system with the following transfer function:

L 0
P(s) = [ ~52L~15' —54+2 (40)
s+1 (s+2)(s+1)

A sampling time T' = 0.5 is used and the following objective function is minimized on-line:

min i [e(/—c + 0 ek + D) +uk+1-1)TBWu(k+1- 1)} (41)

u(k),u(k+M~1) 127

where k is the current sample point, e is the predicted difference between the setpoints and
the plant outputs.and T, B, are weights.

F=[(1) 0(.)5] (42)

is selected signifying that the first output is more important than the second.

Let us first consider the unconstrained problem. First we select P = M = 2, which is a
selection that is expected (Garcia and Morari, 1982, 1985) to produce an unstable control
system if B = 0. The reason is the right-half plane (RHP) zero of P(s). Indeed, one can
easily check that for these values of the tuning parameters, we have p(F} ) > 1, where J;
corresponds to the case where no constraints are active at the optimum. Hence the necessary
condition (30) predicts the instability. From theory (Garcia and Morari, 1985) we know that
by making B sufficiently large, we can stabilize the system. Indeed by making

B"[g 0(.]1] (43)

the system is stabilized (p(F},) < 1, which is sufficient for n = 1). The fact that the RHP
zero is pinned to the second plant output, made it unnecessary to increase the 1,1 element
. of B. The response to a unit step change in setpoint 1 is shown in Fig. 1. -The steady-state
offset in output 2 is expected from theory and can be avoided by modifying the control
algorithm, but we will not do so to avoid the unnecessary complication of the example.

Let us now assume that after looking at the response, the designer decides that a slight
tightening of the specifications is in order, namely the addition in the optimization problem
of a lower bound on output 2 at the value -0.9. Since output 2 only slightly violated this
bound when the unconstrained algorithm was used, one might think that the response for the
constrained algorithm should be almost the same as that in Fig. 1. This is not so, however.
The response for the same setpoint change is shown in Fig. 2. The system is unstable! An
instability warning was issued by the necessary condition for F' to be a contraction (30),
since p(F3,) > 1, where J; corresponds to the case where the low constraint on output 2
is active at the optimum. Indeed by looking at a close-up of Fig. 2 in Fig. 3, we see that
the system went unstable as soon as output 2 reached the low bound to which the on-line
minimization was subject. The constraint remained active at the subsequent sample points
and the system never stabilized.

12
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Figure 1: Example 1: Unconstrained minimization.
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Figure 2: Example 1: Minimization subject to lower bound constraint on output 2.
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Figure 3: Close-up of Fig. 2.

A question that one may ask at this point is whether the use of a

(3]

with a g larger than the previously used value of 0.1, will stabilize the system. We know that
this would indeed be the case for the unconstrained problem; however, for the constrained
case that does not happen. By examining the analytic expression for F, one sees that 8
does not even appear in it and can therefore in no way influence the stability of the system
when the constraint becomes active. When the constraint is reached, the algorithm puts as
its higher priority keeping output 2 above the lower bound and to do so it inverts the 2,2
element of P(s) and causes instability.

Finally, one should note that this is a very sunple example, used to demonstrate the
nonlinear behavior of the constrained controller. It is not a difficult system to control.
Putting a weight on the first element of B will stabilize the system. This, however is not
needed for the unconstrained controller, since the RHP zero is pinned in the 2,2 element of
P(s).

8.2 Robust Stability of a SISO process

Consider the process model .

Mﬂ=s+1

A sampling time T' = 0.1 will be used and the control algorithm will minimize on-line the
objective function

(45)

o mn 1)2[ (k+ D T2e(k + 1) + Au(k +1 - 1)"D*Au(k+1-1)] (46
UKD et I=1
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To allow the analytic study of the propertics of the control system we shall choose the
parameters to be P = M =T = 1. A choice of D = 0, when there are no hard constraints,
will result in an IMC controller that inverts the model (Garcia and Morari, 1982).
Let us now consider a model-plant mismatch caused by a delay term in the plant:
e

p@%=3+1

For this plant, robust linear control theory can easily show that the control system will be
unstable for D = 0. D has to be increased to over D = 0.2 to stabilize it. The choice
D = 0.4 results in reasonable performance.

Our interest in this example has to do with the effect of hard constraints on its output.
Let us specify a lower bound of —1 and an upper bound of +1 for y and include these
constraints in the on-line optimization problem. Since the horizon P = 1, it is not possible
for both to be active at the optimum. In this case n = 3, corresponding to (i) no active
constraints, (ii) upper constraint active, (iii) lower constraint active. Analytic computaion
of ¢j(z), 1 = 1,2,3, results in the expressions

cn(2) = Hi/[ (D?+ H}) + (HiHp — Hf — D*)z7?
+H1(H3 - H2)2_2 +...+ Hl(HN - HN-l)Z_N+1 - H]HNZ—N]

en(z) = ca(z) = /[ Hy+(Hy = Hy)z™
+(H3 - H2)2_2 +...+ (HN - HN_1)2N+1 b HNZ-N]

One can easily see from these exressions that cj, and ¢, correspond to an IMC controller
that inverts the process model, the same as ¢y, for D = 0. The difference is that D does not
appear in (49) and therefore this controller will be unstable when the model-plant mismatch
is present. The question that arises now, is the one discussed in Section 6. For the case
of the upper constraint and for a setpoint equal to zero, (39) predicts that if the system
is at equilibrium, a disturbance of magnitude greater than 1.06 will result in an on-line
optimization where the upper constraint is active. The system could however manage to
return to the contraction region of no active constraints. Indeed for a disturbance of 1.70,
as Fig. 4 shows, the system is still stable, although at the edge of instability. An increase
of the disturbance to 1.75 however results in an unstable system as Fig. 5 shows. Note that
D = 0.4 is being used; although D does not appear in (49), it does play a role on whether
the constraints are active at the optimum. Both simulations use the plant of (47).

Let us now remove the constraints from the optimization problem and repeat the simu-
lation for the same d = 1.75 and D = 0.4. The result is shown in Fig. 6. The response is
reasonable and the constraints are virtually satisfied, although they were removed from the
optimization problem. This example is not meant to suggest that output constraints should
never be included in the optimization, but merely to point out that their effect should be
studied carefully before their inclusion and to demonstrate that the stability conditions that
were provided in this paper can predict this effect successfuly.

~0.15s

(47)

(48)

(49)

8.3 Robust Stability of a Heavy Oil Fractionator

In this section we will use the conditions of section 5 to analyze simulation results for the
Shell Standard Control Problem (SSCP) (Prett and Garcia, 1988). Let us consider the top
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Figure 6: Example 2: Unconstrained; D=0.4 and d=1.75

2 x 2 part of the Heavy Oil Fractionator of the SSCP. This system has as outputs 1 and 2,
the Top End Point and the Side End Point correspondingly. The inputs are the Top Draw
and the Side Draw. The transfer function of this subsystem is

(4.0542.11¢9)e™27%  (1.7740.39¢;)e™284
| _ 50841 60s+1 Uy (50)
yg | | (5:3948.206)e71%  (5.7240.57cp)e” 40 us
50s+1 60841

where ¢€;, €; represent the model uncertainty and they can take any value between —1 and
+1, 0 corresponding to the nominal model. A sampling time of T’ = 6 min is selected which
results in lower and upper constraints of -0.3 and 0.3 for the changes in the inputs from one
sampling point to the next. Lower and upper constraints of -0.5 and 0.5 exist for all the
inputs and outputs.

Our goal is to see how the stability conditions can be used to analyze simulation results.
In the objective function of (2) we select P = 6, M = 2, B = D = 0. The minimization is
carried out subject to the above described hard constraints. The Constraint Window for the
outputs includes future points 5-6 for the Top End Point and 3-4 for the Side End Point.
Beginning the windows at earlier times may result in infeasibilities because of the longer
time delays. It should be noted that this selection of parameters is meant as a simple one
rather than an “optimal” one.

The simulation for no model-plant mismatch is shown in Fig. 7, where a disturbance
in the form of simultaneous step changes of 0.5 in the Upper and the Intermediate Reflux
Duties is used. The same disturbance is used in all simulations in this section. Use of the
disturbance transfer function models yields the following output disturbance vector:

1.20e™378  1,44e~272

0.5/s

d(s) = [ 1.2321“36- 1.§g:t}5’ } [ 0.553 ] (861)
253+1 20s+1

Note that the plot of p is the value of the necessary condition for the particular J; occuring
at the sample points during the simulation. When a model-plant mismatch is present, as in
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the following simulations, it is computed for the coellicients of the actual plant used in the
simulation.

Next, a mismatch between the model and the plant is assumed, corresponding to ¢; = ~1

and €; = 1. The simulation is shown in Fig. 8. By looking just at the outputs and inputs
there is no indication of a potential problem. However by looking at the plot of p we see that
the necessary condition is close to being violated during part of the simulation. It is simple
to check that this part of the simulation corresponds to the case where at the optimum of the
on-line optimization no constraint is active. The problem is not significant in this simulation
because eventually, the lower constraint for the Top Draw becomes active at the optimum
and we move to a well-behaved region. Let us now repeat the simulation of Fig. 8 but with
the lower constraints for the inputs at -1 rather than -0.5. The simulation is shown in Fig.
9 and this time the system sufers from persistent oscillations because the constraint does
not become active early on. Figure 10 repeats the simulation of Fig. 9 but with a larger
mismatch. We are using ¢; = —1.2 and e; = 1.2. This time we are in the instability region
as the plots show. The question of interest at this point is how to use the plot of p in Fig. 10
to make a parameter change so that the system is stabilized. From the previous simulations
it is clear that one way would be to simply increase the value of the lower input constraint,
i.e., use this constraint as a tuning parameter. What is important to note however is the
following:
Tuning Observation. The values of the hard constraints do not appear in the expressions
of the Cy;s; hence they can influence stability only by keeping a destabilizing J; from occuring.
They cannot change a Cj, into a stabilizing controller; this can be accomplished only by the
parameters of the objective function.

Hence it seems that is safer to actually try to find values for the parameters of the .
objective function that make Cj, stabilizing (where J; is defined to correspond to the case of
no active constraints at the optimum), without changing the values of the hard constraints.
But this is a problem that can be addressed through Robust Linear Control Theory. Use of
the Structured Singular Value shows that a B = 0.2 stabilizes the system. The simulation is
given in Fig. 11. Note that if the problematic Cj; corresponded to some active constraints,
the situation would still be treated through the same tools.

9 Conclusions

This paper has provided a theoretical framework for the study of the properties of control
algorithms that are based on the on-line minimization of some objective function, subject to
certain hard constraints. The selected framework seems to be very promising since it allowed
the derivation of necessary and/or sufficient conditions for nominal and robust stability of
the overall nonlinear system. These conditions can be formulated in a way that allows the
treatment of the kinds of model-plant mismatch that robust linear control theory can handle.

Simple examples were used to demonstrate in a clear way that one cannot afford to neglect
the nonlinear phenomena caused by the hard constraints to which the on-line optimization
is subject. These examples also indicate that inclusion of hard constraints on the plant
outputs in the specifications can cause serious problems and that their effect should be
carefully studied before they are used. The stability conditions of this paper can be used in
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this study.

The practical uscfulness of the theory that was developed in this paper was demonstrated
by the application of the stability conditions on the realistic model of the Shell Heavy Oil
Fractionator. The conditions were able to capture characteristics not clearly visible in the
plant outputs and inputs. In order to increase the applicability of the method on complex
industrial systems, further work is needed on developing a computationally feasible scarch
procedure for finding and testing all the J;s that can occur during the operation of the control
system.
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