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Abstract: Multi-task learning (MTL) is a paradigm to learn multiple tasks simultaneously by utilizing
a shared network, in which a distinct header network is further tailored for fine-tuning for each
distinct task. Personalized federated learning (PFL) can be achieved through MTL in the context
of federated learning (FL) where tasks are distributed across clients, referred to as personalized
federated MTL (PF-MTL). Statistical heterogeneity caused by differences in the task complexities
across clients and the non-identically independently distributed (non-i.i.d.) characteristics of local
datasets degrades the system performance. To overcome this degradation, we propose FedGradNorm,
a distributed dynamic weighting algorithm that balances learning speeds across tasks by normalizing
the corresponding gradient norms in PF-MTL. We prove an exponential convergence rate for Fed-
GradNorm. Further, we propose HOTA-FedGradNorm by utilizing over-the-air aggregation (OTA) with
FedGradNorm in a hierarchical FL (HFL) setting. HOTA-FedGradNorm is designed to have efficient
communication between the parameter server (PS) and clients in the power- and bandwidth-limited
regime. We conduct experiments with both FedGradNorm and HOTA-FedGradNorm using MT facial
landmark (MTFL) and wireless communication system (RadComDynamic) datasets. The results
indicate that both frameworks are capable of achieving a faster training performance compared
to equal-weighting strategies. In addition, FedGradNorm and HOTA-FedGradNorm compensate for
imbalanced datasets across clients and adverse channel effects.

Keywords: multi-task learning; dynamic weighting; federated learning; personalized federated
learning; hierarchical federated learning; over-the-air aggregation

1. Introduction

Multi-tasking (MTL) is a powerful technique for learning several related tasks si-
multaneously [1,2]. MTL improves the overall system performance, the training speed,
and data efficiency, by leveraging the synergy among multiple related tasks. Each task
in MTL setting has a single common encoder network to map the raw data into a lower
dimensional shared representation space, in addition to a unique client-specific header
network to infer task related prediction values from the shared representation. MTL is
particularly suitable for distributed learning settings where no single entity has all the data
and labels for all of the multiple different tasks.

Federated learning (FL) [3] is a distributed learning paradigm in which many clients
train a shared model with the assistance of a central unit called parameter server (PS) by
keeping their data private and decentralized. Statistical heterogeneity becomes a major
challenge for FL as the size of the distributed setting, namely the number of clients or the
number of tasks in a FL setting, increases. This is caused by different task complexities and
non-i.i.d. data distribution among clients. Statistical heterogeneity due to non-i.i.d. data
distribution degrades the system performance [4,5]. Further, synergy between the tasks
may not always be positive, referred to as a negative transference, again degrading the
performance [6].
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Personalized federated learning (PFL) is introduced to deal with statistical heterogene-
ity, where the centralized server and clients learn a shared representation together, while
each client trains its own client-specific header network further, referred to as personaliza-
tion. PFL has the capability of learning user-specific models better while also capturing the
distilled common knowledge from other clients [7–9]. As a result, PFL reduces the statistical
heterogeneity among clients. Several PFL approaches have been proposed, where different
local models are used to fit user-specific data, but also capture the common knowledge
distilled from data of other devices for this purpose [7–15]. Hanzely et al. [16] provides a
unified model framework to prove multiple kinds of PFL methods. In this paper, we con-
sider MTL in a FL setting, enhanced with personalization, namely, personalized federated
multi-task learning (PF-MTL).

PFL works that are closely related to our work are federated representation learning
FedRep [7] and federated learning with personalization layers FedPer [8]. These works use
a shared encoder with a unique task-specific header to enhance personalization in a FL
setup. FedRep and FedPer aggregate the common encoder parameters by equal weighting.
Our goal in this paper is to perform weighted gradient aggregation at the PS dynamically
according to gradient updates coming from clients to overcome statistical heterogeneity.

Several approaches involve setting the weights of tasks manually at the beginning
of training [17,18]. Task weights can also be set in an adaptive manner for each iteration.
GradNorm is a dynamic weighting approach in MTL that normalizes gradient norms by
scaling the task loss functions to regulate learning speeds and fairness across tasks [19].
GradNorm is proposed for a centralized learning setting. In our work, we introduce Fed-
GradNorm framework [20], where dynamic weighting is incorporated in PFL setting by
considering some aspects of [7,8,19] together. We provide a theoretical convergence proof
for FedGradNorm, while FedPer [8] and GradNorm [19] do not provide a convergence proof,
and FedRep [7] provides a convergence proof only for the linear learning model setting.

We investigate how the FedGradNorm framework is affected by the characteristics of
the wireless fading communication channel between clients and the PS. There are different
channel conditions since clients are geographically spread out. In addition to the wireless
channel effects, the communication is performed over bandwidth- and power-limited
regime, which brings concerns about communication costs. We utilize over-the-air (OTA)
aggregation to perform efficient aggregation over a shared wireless channel to support the
clients on the same bandwidth by utilizing the additive nature of wireless multiple access
channel (MAC) [21,22]. In practice, when the OTA mechanism is utilized, the gradients
are superposed, and it is not possible for the PS to receive individual gradients of the
clients. However, the PS needs individual gradients from the clients to perform dynamic
weighting. To address this issue, we modify FedGradNorm with OTA in a hierarchical
structure, which is called hierarchical over-the-air FedGradNorm, HOTA-FedGradNorm [23].
Hierarchical federated learning (HFL) establishes clusters of clients around intermediate
servers (IS). ISs communicate with the PS instead of clients directly communicating with
the PS. Some aspects of HFL have been studied in the literature, such as, latency and power
analysis [24,25], and resource allocation [26,27]. These works demonstrate the advantage of
the proximity of ISs to the clients in terms of resource consumption of clients. In addition
to these advantages, we utilize hierarchical structure since it provides an efficient way of
combining FedGradNorm with OTA over the wireless fading channel.

The main contributions of our paper can be summarized as:

• We propose the FedGradNorm algorithm. The proposed algorithm takes advantage of
the GradNorm [19] dynamic weighting strategy in a PFL setup for achieving a more
effective and fair learning performance when the clients have a diverse set of tasks
to perform.

• We propose HOTA-FedGradNorm. The proposed algorithm takes into account the
characteristics of the communication channel by defining a hierarchical structure for
the PFL setting.
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• We provide the convergence analysis for adaptive weighting strategy for MTL in PFL
setting. Existing works either do not provide convergence analysis or do it in special
cases. We demonstrate that FedGradNorm has an exponential convergence rate.

• We conduct several experiments on our framework using Multi-Task Facial Landmark
(MTFL) dataset [28], and RadComDynamic dataset on the wireless communication
domain [29]. We investigate the changes in task loss during training to compare the
learning speed and fairness of FedGradNorm with a similar PFL setting which uses
equal weighting technique, namely FedRep. Experimental results exhibit a better and
faster learning performance for FedGradNorm than FedRep. In addition, we demonstrate
that HOTA-FedGradNorm results in faster training over the wireless fading channel
compared to algorithms with naive static equal weighting strategies since dynamic
weight selection process takes the channel conditions into account.

2. System Model and Problem Formulation
2.1. Federated Learning (FL)

FL [3] is a distributed machine learning approach that enables training on decentral-
ized data in devices such as smart phones, IoT devices, and so on. FL can be described
as an approach that brings the training model to the data, instead of bringing data to the
training model [30]. In FL, edge devices collaboratively learn a shared model under the
orchestration of a PS without sharing their training data.

The generic form of FL with N clients is

min
ω

{
F(ω) ,

1
N

N

∑
i=1

p(i)F(i)(ω)

}
(1)

where p(i) is the loss weight for client i such that ∑N
i=1 p(i) = N, and F(i) is the local loss

function for client i.

2.2. Personalized Federated Multi-Task Learning (PF-MTL)

We consider a PFL setting with N clients, in which client i has its own local dataset
Di = {(x

(i)
j , y(i)j )}ni

j=1 where ni is the size of the local dataset, and Ti is the task of client i,

i ∈ [N]. The system model consists of a global representation network qω : Rd → Rd′ which
is a function parameterized by ω ∈ W and maps data points to a lower space of size d′. All
clients share the same global representation network which is synchronized across clients
with global aggregation. Client-specific heads qh(i) : Rd′ → Y are functions parameterized
by h(i) ∈ H for all clients i ∈ [N] and map from the low dimensional representation space
to the label space Y . The system model is shown in Figure 1. Then, the local model for
the ith client is the composition of the ith client’s global representation model qω and the
personalized model qh(i) ,

qi(·) = (qh(i) ◦ qω)(·) (2)

The local loss for the ith client is represented as

F(i)(h(i), ω) = F(i)(qi(·)) = F(i)((qh(i) ◦ qω)(·)) (3)

Through alternating minimization, the clients and the centralized server aim to learn
a set of global parameters ω together, while each client i learns its own set of client-specific
parameters h(i) locally. Specifically, client i performs τh local gradient based updates
to optimize h(i), i ∈ [N], while the global network parameters at client i, i.e., ω(i), are
frozen. Thereafter, client i performs τω local updates to optimize the global shared network
parameters, while the parameters corresponding to the client-specific head are frozen.
Then, the global shared network parameters {ω(i)}N

i=1 are aggregated at the PS to obtain a
common ω. Thus, the problem is
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min
ω∈W

1
N

N

∑
i=1

p(i) min
h(i)∈H

F(i)(h(i), ω) (4)

FedRep [7] investigates this framework with p(i) = 1, i ∈ [N].

1 2 N

parameter server

private data of each client common network personalized network

...

Figure 1. Personalized federated learning (PFL) framework with a common network (shown in blue)
and small personalized headers (shown in red, green, black).

2.3. PF-MTL as Bilevel Optimization Problem

The optimization problem in (4) can be rewritten as (5) because F(i)(h(i), ω) relies on
only h(i) and ω for all i ∈ [N], and h(i) are independent of each other

min
ω∈W

min
{h(i)∈H}N

i=1

1
N

N

∑
i=1

p(i)F(i)(h(i), ω) (5)

Equivalently, we have

min
ω∈W ,{h(i)∈H}N

i=1

1
N

N

∑
i=1

p(i)F(i)(h(i), ω) (6)

Note that p(i) values in (6) are obtained from our proposed FedGradNorm algorithm
which will be derived later as a consequence of another optimization problem. As a result,
the problem can be expressed as a bilevel optimization problem, which is an optimization
problem containing another optimization problem as a constraint

min
xu∈Xu ,xl∈Xl

F(xu, xl)

s.t. xl = arg min
xl∈Xl

{g(xu, xl), s.t. cj(xu, xl) ≤ 0, j = 1, . . . , J}

Cm(xu, xl) ≤ 0, m = 1, . . . , M (7)

where F(xu, xl) represents the upper-level objective function and g(xu, xl) represents the
lower-level objective function. {cj(xu, xl) ≤ 0, j = 1, . . . , J} are the constraints for the
lower-level optimization problem while {Cm(xu, xl) ≤ 0, m = 1, . . . , M} and the lower-level
optimization problem itself are the constraints for the upper-level optimization problem.
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Multiple algorithms have been developed to solve bilevel optimization problems in the
literature [31]. Different reformulations of the bilevel optimization problem have been made
by utilizing the optimality conditions of the lower-level optimization problem to formulate
the bilevel optimization problem as a single-level constraint problem [32–34]. In addition,
there are recently developed gradient-based bilevel optimization algorithms [35–40]. Our
algorithm is based on iterative differentiation (ITD), as explained in Algorithm 1.

Algorithm 1 Iterative differentiation (ITD) algorithm.

Input: K, D, step sizes α, β, initialization xu(0), xl(0).
for k = 0, 1, 2, . . . , K do

Set x0
l (k) = xD

l (k− 1) if k > 0 otherwise xl(0).
for t = 1, . . . , D do

Update xt
l (k) = xt−1

l (k)− α∇xl g(xu(k), xt−1
l (k))

Compute ∇̂xu F(xu(k), xD
l (k)) =

∂F(xu(k),xD
l (k))

∂xu

Update xu(k + 1) = xu(k)− β∇̂xu F(xu(k), xD
l (k))

Updates to the upper-level optimization take place in the outer loop, while updates to
the lower-level optimization are performed in the inner loop.

For our problem, xu and xl correspond to
(
{h(i)}N

i=1, ω
)

, {p(i)}N
i=1, respectively. Ad-

ditionally, xu(k) and xl(k) are denoted as
(
{h(i)}N

i=1, ωk

)
, {p(i)k }

N
i=1 to represent the outer

loop iteration index in Algorithm 1 for the rest of the paper. Furthermore, i in pi
k represents

the inner loop iteration index, while i in p(i)k represents the client index. Then, the bilevel
optimization problem in our case can be written as

min
ω,{h(i)}N

i=1,{p(i)}N
i=1

F({h(i)}N
i=1, ω, {p(i)}N

i=1)

s.t. {p(i)}N
i=1 ∈ arg min

{p(i)}N
i=1∈RN

Fgrad (8)

The objective function is a weighted sum of local loss functions, F = 1
N ∑N

i=1 p(i)F(i)(h(i), ω),
and Fgrad is the auxiliary loss function defined by the FedGradNorm algorithm in the next section.

2.4. Hierarchical Federated Learning (HFL) for Wireless Fading Channels

The characteristics of the communication channel should be considered in PF-MTL,
since clients can be distributed in a large geographic area in an FL framework [41,42].
The PS can be far away from the clients, and the communication between the PS and the
clients can be noisy and subject to channel effects. Then, PF-MTL can be constructed in
hierarchical setting by creating clusters of clients around IS to communicate with the PS
instead of the direct communication of clients with the PS. Further, the communication
can be performed over a shared wireless channel, where the transmission power and the
bandwidth are constrained. Thus, we employ over-the-air aggregation (OTA) to address
these issues [21,22].

The generic HFL problem shown in Figure 2, with C clusters each containing an IS
and N clients, can be formulated as

min
ω

{
F(ω) ,

1
CN

C

∑
l=1

N

∑
i=1

p(l,i)F(l,i)(ω)

}
(9)

where p(l,i) is the loss weight for client i in cluster l such that ∑N
i=1 p(l,i) = N, l ∈ [C],

and F(l,i)(·) is the local loss function for client i in cluster l.
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intermediate server (IS 1)

private data of each client common network personalized network

1 N

...

1 N

...

intermediate server (IS C)

...

parameter server

cluster 1 cluster C

Figure 2. Hierarchical personalized federated learning (HPFL) framework with a common network
(shown in blue) and small personalized headers (shown in red, green, black, orange).

We consider a PFL setting of N clients within each cluster, in which client i of cluster l
has its own local dataset Dl,i = {(x

(l,i)
j , y(l,i)j )}nl,i

j=1 where nl,i is the size of the local dataset.
Within cluster l, Tl,i denotes the task of client i, i ∈ [N], and l ∈ [C]. Tl,i is assigned from the
task set T = {T1, T2, . . . , TN} such that Tl,i 6= Tl,i′ , for i 6= i′ and for any l ∈ [C]. Real-life
scenarios might involve the same or very similar tasks for clients in a cluster. We assume
that tasks are different due to the lack of prior information about it.

We assume that clients in a cluster have error-free and high-speed connections to
corresponding IS over local area networks (LANs). In addition, the PS and ISs share a
bandwidth-limited wireless fading MAC. Using the wireless fading MAC, each IS sends
the corresponding local gradient aggregations within its cluster to the PS. The broadcast
from the PS to the ISs is considered error-free.

As in the case of the simple PF-MTL setting illustrated in Figure 1, the system model
in Figure 2 is composed of a global representation network qω : Rd → Rd′ , which is a
function parameterized by ω ∈ W , that maps data points into a lower space of size d′.
The same global representation network is shared by all clients in each cluster, which
is synchronized through global aggregation. A client-specific head qh(l,i) : Rd′ → Y is a
function parameterized by h(l,i) ∈ H for all clients i ∈ [N] of every cluster l ∈ [C], mapping
a low-dimensional representation space to a label space Y . The local model for client i of
cluster l is the composition of the client’s global representation model qω and personalized
model qh(l,i) , shown as ql,i(·) = (qh(l,i) ◦ qω)(·). In addition, the local loss for the ith client of
cluster l is shown as F(l,i)(h(l,i), ω) = F(l,i)(ql,i(·)) = F(l,i)((qh(l,i) ◦ qω)(·)).

Using alternating minimization, the PS and the clients learn the global representation
ω together, while only client i learns the the client-specific head h(l,i) in cluster l, i ∈ [N]
and l ∈ [C]. Specifically, τh local updates are performed by client i in cluster l to optimize
h(l,i) when global network parameters at client i of cluster l, i.e., ω(l,i), are frozen. Then,
τω local updates are performed to optimize ω(l,i) while the parameters corresponding to
the client-specific head are frozen. Thereafter, the lth IS aggregates {ω(l,i)}N

i=1 which are
sent via LAN, for any l ∈ [C]. The ISs send cluster aggregations to the PS to perform the
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global aggregation over the wireless fading MAC. The additive nature of the wireless MAC
enables global aggregation to occur over-the-air. The optimization problem is

min
ω∈W

1
CN

C

∑
l=1

N

∑
i=1

p(l,i) min
h(l,i)∈H

F(l,i)(h(l,i), ω) (10)

3. Algorithm Description

In this section, we present the FedGradNorm algorithm after introducing the defini-
tions and preliminaries. Then, we present the extension of FedGradNorm algorithm for
hierarchical structure with OTA.

3.1. Definitions and Preliminaries

In FedGradNorm, we aim to learn the dynamic loss weights {p(i)}N
i=1 given in the lower-

level optimization problem of (8). The main objective of the algorithm is to dynamically
adjust the gradient norms so that the different tasks across clients can be trained at similar
learning speeds. In the rest of the paper, clients and tasks will be used interchangeably as
we assume that each client has its own different task. Before describing the algorithm in
detail, we first introduce the notation:

• ω̃: A subset of the global shared network parameters ω̃ ⊂ ω. FedGradNorm is applied

on ω̃
(i)
k ⊂ ω

(i)
k , which is a subset of the global shared network parameters at client i at

iteration k. ω̃
(i)
k is generally chosen as the last layer of the global shared network at

client i at iteration k.
• G(i)

ω̃
(i)
k

(k) = ‖∇
ω̃
(i)
k

p(i)k F(i)
k ‖ = p(i)k ‖∇ω̃

(i)
k

F(i)
k ‖: The `2 norm of the gradient of the

weighted task loss at client i at iteration k with respect to the chosen weights ω̃
(i)
k .

• Ḡω̃(k) = Ej∼task[G
(j)

ω̃
(j)
k

(k)]: The average gradient norm across all clients (tasks) at

iteration k.

• F̃(i)
k = F(i)

k

F(i)
0

: Inverse training rate of task i (at client i) at iteration k, where F(i)
k is the loss

for client i at iteration k, and F(i)
0 is the initial loss for client i.

• r(i)k = F̃(i)
k

Ej∼task[F̃
(j)
k ]

: Relative inverse training rate of task i at iteration k.

Additional notation that is useful in algorithm description:

• g(i)k = 1
τω

∑τω
j=1 g(i)k,j is the average of gradient updates at client i at iteration k, where

g(i)k,j is the jth local update of the global shared representation at client i at iteration k.

Note that ‖∇
ω̃
(i)
k

F(i)
k ‖ is a subset of g(i)k since ω̃ ⊂ ω.

• h(i)k,j is the client-specific head parameters h(i) after the jth local update on the client-
specific network of client i at iteration k, j = 1, . . . , τh.

• ω
(i)
k,j is the global shared network parameters of client i after the jth local update at

iteration k, j = 1, . . . , τω. Additionally, ω
(i)
k denotes ω

(i)
k,τω

for brevity.

3.2. FedGradNorm Description

FedGradNorm adjusts gradient magnitudes to balance training rates between different
tasks across clients. FedGradNorm is distributed across the clients and the parameter server.
Ḡω̃ is used to have a common scale for the gradient sizes while the gradient norms are
adjusted according to the relative inverse training rates r(i)k . A higher value of r(i)k leads
to a larger gradient magnitude for task i, which encourages the task to train faster. Each
client i sends its inverse training rate F̃(i)

k at time k to the PS, so that the PS can construct

r(i)k , i ∈ [N]. Therefore, given the common scale of gradient magnitudes, and the relative
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inverse training rate, the desired gradient norm of task i at iteration k is calculated as

Ḡω̃(k)×
[
r(i)k

]γ
, where γ represents the strength of the restoring force which pulls tasks

back to a common training rate, which can also be considered as a metric of task asymmetry
across different tasks. In cases where tasks have different learning dynamics, a larger γ
would be a better choice for a stronger balancing.

In order to shift the gradient norms towards the desired norm, the loss weights p(i)k

are updated by minimizing an auxiliary loss function Fgrad

(
k; {p(i)k }

N
i=1

)
which is the sum

of `2 distances between the actual gradient norm and the desired gradient norm across all
tasks for each iteration k, i.e.,

Fgrad

(
k; {p(i)k }

N
i=1

)
=

N

∑
i=1

F(i)
grad

(
k; p(i)k

)
(11)

=
N

∑
i=1

∥∥∥∥p(i)k ‖∇ω̃
(i)
k

F(i)
k ‖ − Ḡω̃(k)× [r(i)k ]γ

∥∥∥∥ (12)

The auxiliary loss function Fgrad

(
k; {p(i)k }

N
i=1

)
is constructed by the parameter server

at each global iteration k by using ∇
ω̃
(i)
k

F(i)
k , which is a subset of the whole gradient of the

global shared network sent by client i at iteration k for the global aggregation.
Next, the parameter server performs the differentiation of Fgrad

(
k; {p(i)k }

N
i=1

)
with re-

spect to each element of {p(i)}N
i=1 so that∇p(i) Fgrad is applied via gradient descent to update

p(i). The desired gradient norm terms, Ḡω̃(k)×
[
r(i)k

]α
, are treated as constant to prevent

loss weights {p(i)}N
i=1 from drifting towards zero while differentiating Fgrad

(
k; {p(i)k }

N
i=1

)
with respect to each loss weight p(i)k . The weights are updated as,

p(i) ← p(i) − α∇p(i) Fgrad, i ∈ [N] (13)

The updated {p(i)}N
i=1 are normalized such that ∑N

i=1 p(i) = N. Finally, the parameter

server obtains the global aggregated gradient gk = 1
N ∑N

i=1 p(i)k g(i)k to update the global
shared network parameters ω via ωk+1 = ωk − βgk and broadcasts the updated parameters
to the clients for the next iteration. The overall FedGradNorm algorithm is summarized in
Algorithm 2. In FedGradNorm, Update( f , h) represents the generic notation for the update
of the variable h by using the gradient of f function with respect to the variable h.

3.3. Hierarchical Over-the-Air (HOTA) FedGradNorm

The HOTA-FedGradNorm algorithm is a two-stage version of the FedGradNorm algo-
rithm in HFL setting, which is shown in Figure 2. During the first stage of the algorithm,
the learning speeds of the clients are balanced using a dynamic weighting approach for
each cluster. FedGradNorm as a dynamic weighting strategy is used jointly with a power
allocation scheme to satisfy the total average transmit power constraint and to ensure that
the wireless fading MAC between the ISs and the PS is robust against negative channel con-
ditions.
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Algorithm 2 Training with FedGradNorm

Initialize ω0, {p(i)0 }N
i=1, {h(i)0 }N

i=1
for k=1 to K do

The parameter server sends the current global shared network parameters ωk to the
clients.

for Each client i ∈ [N] do
Initialize global shared network parameters for local updates by ω

(i)
k,0 ← ωk

for j = 1, . . . , τh do
h(i)k,j = Update(F(i)(h(i)k,j−1, ω

(i)
k,0), h(i)k,j−1)

F(i)
k = 0

for j = 1, . . . , τω do
ω
(i)
k,j ← ω

(i)
k,j−1 − βg(i)k,j

F(i)
k += F(i)(h(i)k,τh

, ω
(i)
k,j )

F(i)
k ←

1
τω

F(i)
k

Client i sends g(i)k = 1
τω

∑τω
j=1 g(i)k,j , and F̃(i)

k =
F(i)

k

F(i)
0

to the parameter server

After collecting g(i)k , and F̃(i)
k for active clients i ∈ [N], the parameter server performs

the following operations in the order:
• Constructs Fgrad

(
k; {p(i)k }

N
i=1

)
using {g(i)k }

N
i=1 and {F̃(i)

k }
N
i=1 as given in Equation (12).

• Updates p(i)k ← p(i)k−1 − α∇p(i) Fgrad, ∀i ∈ [N].

• Aggregates the gradient for the global shared network by gk =
1
N ∑N

i=1 p(i)k g(i)k .
• Updates the global shared network parameters with the aggregated gradient by

ωk+1 = ωk − βgk.
• Broadcasts ωk+1 to clients for the next global iteration.

Each client within a cluster sends its gradient for the global model qω to its corre-
sponding IS via the LAN, where the channels between each client and the IS are assumed
to be error-free inside a cluster. The corresponding IS performs a modified version of
FedGradNorm based on the client’s gradients by taking the power allocation scheme into
account. Specifically, the IS of cluster l computes the loss weight p(l,i)k for each client i ∈ [N]
in cluster l via FedGradNorm algorithm to eventually obtain the local weighted aggregation

∑N
i=1 p(l,i)k g(l,i)k at iteration k, where g(l,i)k is the local gradient update of client i in cluster l

for iteration k.
The power allocation vector β

(l,i)
k constructed by the IS of cluster l for each client i in

the cluster is designed as

β
(l,i)
k (j) =


p(l,i)k
Hl

k(j)
, if |H(l)

k (j)|2 ≥ Hth
k

0, otherwise
(14)

where β
(l,i)
k (j) is the jth entry of the power allocation vector β

(l,i)
k ∈ R|ω|, and H(l)

k (j) is

the jth entry of the channel gain vector H(l)
k ∈ R|ω|, which represents the fading effect

of the wireless channel between the IS and the PS of cluster l. H(l)
k (j) is assumed to be

i.i.d. according to N (0, σ2
l ). The threshold Hth

k is set to satisfy the total average transmit
power constraint given as follows,

1
K

K

∑
k=1

E[‖x(l)k ‖
2] ≤ P̄ (15)
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where x(l)k = ∑N
i=1 x(l,i)k and x(l,i)k = β

(l,i)
k ◦ g(l,i)k , i ∈ [N], l ∈ [C], ◦ represents the element-

wise multiplication. The expectation is taken over the randomness of the channel gains.
From the power allocation scheme in (14), each cluster transmits only the scaled

entries of its weighted gradient for which the channel conditions are sufficiently good.
Consequently, Fgrad is modified according to the power allocation scheme to have power
efficient system design as follows,

F(l)
grad

(
k; {p(l,i)k }N

i=1

)
=

N

∑
i=1

F(l,i)
grad

(
k; p(l,i)k

)
(16)

=
N

∑
i=1

∥∥∥∥p(l,i)k

∥∥∥∥M(l)
k ◦ ∇ω̃

(l,i)
k

F(l,i)
k

∥∥∥∥− Ḡ(l)
ω̃ (k)× [r(l,i)k ]γ

∥∥∥∥ (17)

where M(l) ∈ {0, 1}|ω| is a mask matrix designed for the sparsification of cluster l as follows:

M(l)
k (j) =

{
1, if |H(l)

k (j)|2 ≥ Hth
k

0, otherwise
(18)

Here, ω̃
(l,i)
k is the last layer of the shared network at client i of cluster l at iteration

k. Ḡ(l)
ω̃ (k) is the average sparsified gradient norm across all clients (tasks) in cluster l at

iteration k. r(l,i)k =
F̃(l,i)

k

Ej∼task[F̃
(l,j)
k ]

is the relative inverse training rate of task i in cluster l at

iteration k, and γ represents the strength of the restoring force, as defined in FedGradNorm
previously.

Gradient sparsification used during the calculation of Fgrad acts as an implicit con-
straint on Fgrad minimization problem by considering the channel conditions. Consequently,
it ensures that the learning speed of tasks is invariant to the dynamic channel conditions
with an appropriate selection process of loss weights. In other words, the implicit constraint
of the channel condition preserves the fairness of the learning speed among the clients,
as shown in the experimental results.

The second stage of the algorithm involves the process of global aggregation over the
wireless fading MAC. The PS obtains a noisy estimate of the aggregated gradient over the
wireless fading channel while updating the model parameters. Due to the additive nature
of the wireless MAC, the summation of the signals transmitted by clusters arrives at the PS.
The jth entry of the received signal at iteration k, yk ∈ R|ω| is

yk(j) = ∑
l∈Mk(j)

H(l)
k (j)x(l)k (j) + zk(j) (19)

where zk(j) is the jth entry of the Gaussian noise vector zk and is i.i.d. according to N (0, 1).
Mk(j) = {c ∈ [C] : |H(l)

k (j)|2 > Hth
k } represents the set of clusters contributing to the jth

entry of the received signal at the kth iteration. Mk(j) is known by the PS, for j ∈ [|ω|]
since the PS has the perfect channel state information (CSI).

By considering (14) and the definition of x(l)k in terms of the power allocation vector,
we have

yk(j) = ∑
l∈Mk(j)

N

∑
i=1

p(l,i)k g(l,i)k (j) + zk(j) (20)

where g(l,i)k (j) is the jth entry of g(l,i)k . The noisy aggregated gradient estimate is

ĝk(j) =
yk(j)

|Mk(j)|N , j ∈ [|ω|] (21)
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Then, the estimated gradient vector is used to update the model parameters as ωk+1 =
ωk − βĝk. The overall algorithm is shown in Algorithm 3.

Algorithm 3 HOTA-FedGradNorm

1: Initialize ω0, {p(1,i)
0 }C,N

l=1,i=1, {h(1,i)
0 }C,N

l=1,i=1
2: for k=0 to K do
3: The PS broadcasts the current global shared network parameters ωk to the ISs.
4: for Each cluster l ∈ [C] do
5: ω

(l)
k ← ωk .

6: The IS l broadcasts ω
(l)
k to clients within cluster.

7: for Each client i ∈ [N] do
8: Initialize global shared network parameters for local updates by ω

(l,i)
k,0 ← ω

(l)
k

9: Initialize F(l,i)
k = 0, and g(l,i)k = 0

10: for j = 1, . . . , τh do
11: h(l,i)k,j =Update(F(l,i)(h(l,i)k,j−1, ω

(l,i)
k,0 ), h(l,i)k,j−1)

12: for j = 1, . . . , τω do
13: ω

(l,i)
k,j ← ω

(l,i)
k,j−1 − βg(l,i)k,j

14: F(l,i)
k += 1

τω
F(l,i)(h(l,i)k,τh

, ω
(l,i)
k,j )

15: Client sends g(l,i)k = 1
τω

∑τω
j=1 g(l,i)k,j , and F̃(l,i)

k =
F(l,i)

k

F(l,i)
0

to IS l for dynamic weighting.

16: The IS l performs the followings:

• {p(l,i)k }N
i=1=FGN_server({g(l,i)k }N

i=1,{F̃(l,i)
k }N

i=1,p(l,i)k−1)

• The IS l constructs the power allocation vector β
(l,i)
k for each clients in cluster l as

given in Equation (14)
• aggregates the gradients of clients in cluster l for the global shared network by

combining with power allocation scheme as x(l)k = ∑N
i=1 β

(l,i)
k ◦ g(l,i)k .

17: The gradients are aggregated over the wireless fading channel as given in
Equation (19).

18: The estimated gradient aggregation ĝk is obtained by the PS as given in Equation (21).
19: The PS updates the global shared network by ωk+1 ← ωk − βĝk.

Update( f , h) in Algorithm 3 represents the generic notation for the update of the
variable h by using the gradient of f function with respect to the variable h. ω

(l,i)
k,j , h(l,i)k,j ,

and g(l,i)k,j denote the global shared network parameters, the client-specific network pa-
rameters and the gradient for the jth local iteration of the global iteration k on the client
i of cluster l, respectively. Further, F(l,i)

k is the loss for the client i of cluster l at the global

iteration k. ω
(l)
k is the global shared network parameters on the IS l at the beginning of

the global iteration k, and β is the learning rate for both the client local updates and the
PS global updates. FGN_Server(·) given in Algorithm 4 performs the auxiliary loss Fgrad
construction and minimization via gradient descent.

Algorithm 4 FGN_Server
(
{F̃(l,i)}N

i=1, {g(l,i)}N
i=1, {p′(l,i)}N

i=1

)
1: Construct the sparsified version of auxiliary loss function F(l)

grad

(
{p(l,i)}N

i=1

)
as given in

Equation (16) using {g(l,i)}N
i=1 and the loss ratios {F̃(l,i)}N

i=1.

2: Update the loss weights by gradient descent p(l,i) ← p′(l,i) − α∇p(l,i) F
(l)
grad, ∀i ∈ [N].
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4. Convergence Analysis

In this section, we provide the convergence analysis for FedGradNorm along with
necessary assumptions and lemmas.

Assumption 1. The following strong convexity assumptions hold for upper-level optimization
function F(·) and lower-level optimization function g(·) given in (7),

• g(x, p) is µ-strongly convex with respect to p ∈ RN

• F(i)(x, p(x)) is µ-strongly convex with respect to x ∈ HN ×W , ∀i ∈ [N], where x =(
{h(i)}N

i=1, ω
)

, and p∗(x) = arg min
p∈RN

g(x).

Assumption 2. ∇F(z) and ∇g(z) are L-Lipschitz, i.e., for any z, z′,∥∥∇F(z)−∇F(z′)
∥∥ ≤ L‖z− z′‖ (22)∥∥∇g(z)−∇g(z′)
∥∥ ≤ L‖z− z′‖ (23)

Assumption 3. The derivatives ∇x∇pg(z) and ∇2
pg(z) are τ- and ρ-Lipschitz, i.e., for any z, z′,

‖∇x∇pg(z)−∇x∇pg(z′)‖ ≤ τ||z− z′|| (24)

||∇2
pg(z)−∇2

pg(z′)|| ≤ ρ||z− z′|| (25)

Assumption 4. The expected value of the squared `2 norm of stochastic gradient of F(·) with
respect to p is bounded, i.e.,

Eξ

[∥∥∇pF(x, p; ξ)
∥∥2
]
≤ M2 (26)

The expectation is taken over the randomness of stochasticity of gradient descent, where ξ represents
the stochastic data samples.

Assumption 5. The stochastic gradient of F(·) with respect to x is an unbiased estimator of the
gradient, i.e.,

Eξ

[
∇pF(x, p; ξ)

]
= ∇pF(x, p) (27)

where ξ represents the stochastic data samples.

The following lemma characterizes the Lipschitz properties of the upper-level objective
function F(·). It is adapted from [36] (Lemma 2.2).

Lemma 1. Suppose Assumptions 1 to 5 hold. For any x, x′ ∈ W ×HN , we have∥∥∇F(x, p)−∇F(x′, p)
∥∥ ≤ LF

∥∥x− x′
∥∥ (28)

where the constant LF is given by

LF = L +
2L2 + τM2

µ
+

ρLM + L3 + τML
µ2 +

ρL2M
µ3 (29)
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Lemma 2. Suppose Assumptions 1 to 5 hold and let α ≤ 1
L . Define ∇̂xk F(xk, pk) =

∂F(xk ,pk
D)

∂xk

and ∇xk F(xk, pk) =
∂F(xk ,pk

∗)
∂xk

. Then,

||∇̂xk F(xk, pk)−∇xk F(xk, pk)|| ≤
(

L(L + µ)(1− αµ)
D
2

µ

+
2M(τµ + Lρ)

µ2 (1− αµ)
D−1

2

)
||p0

k − p∗(xk)||

+
LM(1− αµ)D

µ
. (30)

The proof of Lemma 2 is provided in Appendix A.

Lemma 3. Suppose Assumptions 1 to 5 hold. Then, the following holds,

F(xk+1, pk+1) ≤F(xk, pk)−
(

β

2
− β2LF

)
||∇F(xk, pk)||2

+

(
β

2
+ β2LF

)
||∇̂F(xk, pk)−∇F(xk, pk)||2 (31)

The proof of Lemma 3 is provided in Appendix A.

Theorem 1. Let Assumptions 1 to 5. Then, the algorithm satisfies

F(xk, pk)− F(x∗, p∗(x∗)) ≤
(

LF
2
− µ2β

2
+ µ2β2LF

)
(1− βµ)k−1‖x0 − x∗‖2

+

(
β

2
+ β2LF

)
B (32)

where

B =3∆
(

L2(L + µ)2(1− αµ)D

µ2 +
4M2(τµ + Lρ)2

µ4 (1− αµ)D−1
)

+ 3
L2M2(1− αµ)2D

µ2 (33)

Theorem 1 shows that FedGradNorm algorithm converges exponentially over the
iterations. The proof of Theorem 1 is provided in Appendix A.

5. Experiments
5.1. Dataset Specifications

The following two datasets are used for experiments:

• Multi-Task Facial Landmark (MTFL) [28]: This dataset contains 10,000 training and
3000 test images, which are human face images annotated by (1) five facial landmarks,
(2) gender, (3) smiling, (4) wearing glasses, and (5) head pose. The first task (five facial
landmarks) is a regression task, and other tasks are classification tasks.

• RadComDynamic [29]: This dataset is a multi-class wireless signal dataset which
contains 125,000 samples. Samples are radar and communication signals from GNU
Radio Companion derived for different SNR values. The dataset contains six mod-
ulation types and eight signal types. Dynamic parameters for samples are listed in
Table 1. We perform 3 different tasks over RadComDynamic dataset, (1) modulation
classification, (2) signal type classification, and (3) anomaly detection.

– Task 1. Modulation classification: The modulation classes are amdsb, amssb, ask,
bpsk, fmcw, and pulsed continous wave (PCW).
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– Task 2. Signal type classification: The signal classes are AM radio, short-range,
Radar-Altimeter, Air-Ground-MTI, Airborne-detection, Airborne-range, Ground-
mapping.

– Task 3. Anomaly behavior: Signal to noise ratio (SNR) can be considered as a proxy
for geo-location information. We define anomaly behavior as having SNR lower
than −4 dB.

Each data point in this dataset is a normalized signal vector of size 256 which is
obtained by vectorizing the real and complex parts of the signal, x = xI + jxQ where
xI , xQ ∈ R128, as follows,

x̂ =

[
xI
xQ

]
∈ R256 (34)

Table 1. RadComDynamic: Dynamic settings.

Dynamic Parameters Value

Carrier frequency offset std. dev/sample 0.05 Hz

Maximum carrier frequency offset 250 Hz

Sample rate offset std. dev/sample 0.05 Hz

Maximum sample rate offset 60 Hz

Num. of sinusoids in freq. selective fading 5

Maximum doppler frequency 2 Hz

Rician K-factor 3

Fractional sample delays comprising PDP [0.2, 0.3, 0.1]

Number of multipath taps 5

List of magnitudes corresponding to each delay in PDP [1, 0.5, 0.5]

5.2. Hyperparameters and Model Specifications

A detailed description of the hyperparameters of the system model for both Fed-
GradNorm and HOTA-FedGradNorm algorithms are given in Table 2. Note that γ is a
hyperparameter that should be determined with respect to the task asymmetry in the
system. We use Adam optimizer for both network training and Fgrad optimization. β is
a learning rate that optimizer uses to update the global shared network as well as the
personalized network on the client side, and α is a learning rate used for Fgrad optimization.
The shared network model is explained in Table 3. Each client also has a simple linear
layer that maps the shared network’s output to the corresponding prediction value for a
personalized network. Cross-entropy and mean squared error (MSE) are used as the loss
functions for classification and regression tasks, respectively.
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Table 2. System model hyperparemeters.

Hyperparameter Value

Optimizer Adam

FedGradNorm

γ 0.9

Learning rate (β) 0.0002

Learning rate (α) 0.004

HOTA-FedGradNorm

Number of clusters C 10

Number of clients in each cluster N 3

σ2
l for ∀l ∈ C 1

Hth 3.2× 10−2

γ 0.6

Learning rate (β) 0.0003

Learning rate (α) 0.008

Table 3. Shared network model.

Network 1 Network 2

Conv2d(1, 16, 5) FC(256, 512)
MaxPool2d(2, 2) FC(512, 1024)
Conv2d(16, 48, 3) FC(1024, 2048)
MaxPool2d(2, 2) FC(2048, 512)
Conv2d(48, 64, 3) FC(512, 256)
MaxPool2d(2, 2)
Conv2d(64, 64, 2)

5.3. Results and Analysis

In the experiments with MTFL dataset, we observe that task 1 (facial landmark regres-
sion task) has a higher gradient norm compared to all other tasks, which are classification
tasks. Figure 3 illustrates how FedGradNorm gradually decreases the loss weight of the first
task to balance the learning speed among tasks. At epoch 70, when tasks 2 and 3 finally
can reduce their loss with a higher rate, the weight of their corresponding tasks decreases
to help improve the two remaining tasks. Tasks 2 and 3 could not be improved without
dynamic-weighting since task 1 would mask the gradient updates for the remaining tasks.
As a result of reducing the weight of tasks 2 and 3, the weight of tasks 4 and 5 would then
be increased with a similar slope (the weight change of both is the same, since they are
stacked on top of each other in Figure 3f) in order to improve the training performance if
possible. Unlike other tasks, task 4 (detecting glasses on human faces) and task 5 (pose
estimation) reach the minimum very quickly on the first epochs as they are easy tasks.
Thus, as indicated by Figure 3, the performance does not improve much for tasks 4 and
5. Although the performance of tasks 1 and 5 are also quite the same in the long-run,
FedGradNorm helps to learn faster at the early stages. For Figure 3, the data allocation
is balanced.
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Figure 3. Comparison of task losses in FedGradNorm and FedRep; balanced data allocation among
tasks (a) task 1 (face landmark), (b) task 2 (gender), (c) task 3 (smile), (d) task 4 (glasses), (e) task 5
(pose), (f) task weights.

We also perform experiments with the imbalanced data distribution. Table 4 exhibits
the loss comparisons between FedGradNorm and FedRep when task 2 and task 4 have access
to 500 data points, whereas other tasks have 3000 data points. The FedGradNorm performs
better than FedRep.

Table 4. Comparison of task losses after 100 epochs in FedGradNorm and FedRep; imbalanced data
allocation among tasks.

Tasks Face Landmark Gender Smile Glass Pose

FedRep loss 33.28 0.66 0.60 0.44 1.1

FedGradNorm loss 33.25 0.56 0.57 0.43 1.1

Furthermore, we conduct experiments with the RadComDynamic dataset using Net-
work 2 given in Table 3. FedGradNorm outperforms FedRep on modulation detection and
signal detection tasks, as illustrated in Figure 4. The modulation detection task and the
signal detection task have slower training than the anomaly detection task with respect to
the change of the loss. By employing FedGradNorm, we demonstrate that the learning speed
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of signal and modulation detection tasks are balanced against the anomaly detection task.
Moreover, we observe that the loss weight for task 1 is increased to speed up its training at
the beginning of the training since the loss for task 2 and task 3 decreases faster compared
to the loss of task 1 initially. In epoch 55, the loss of task 1 decreases significantly. Therefore,
the loss weight of task 1 is decreased to prevent task 1 from dominating the training.
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Figure 4. Comparison between task accuracy achieved via FedGradNorm and FedRep in RadCom-
Dynamic dataset (a) task 1 (modulation classification), (b) task 2 (signal classification), (c) task 3
(anomaly behavior), (d) task weights.

Next, we conduct experiments for HOTA-FedGradNorm setting to investigate the
effects of the wireless fading channel. Figure 5 depicts the task losses in the first cluster. We
observe that the change in the loss for the first task (modulation classification) is less than
the change of the loss for the second and third tasks at the beginning of the training. Then,
the loss weight of the first task is increased. After epoch 65, it is decreased since the loss
decreases significantly. Comparing the result with the result in Figure 4, we observe that
considering the wireless MAC channel between the IS servers and the PS leads to slower
training. However, as shown in Figure 5, HOTA-FedGradNorm yields a higher training
speed compared to naive equal weighting update strategy.

To demonstrate the effectiveness of Fgrad in reducing negative channel effects, the first
cluster channel gain is changed from σ2

1 = 1 to σ2
1 = 0.5 while channel gains for the

remaining clusters are left unchanged. A decreased σl
1 value is equivalent to intensifying

the sparsification of the corresponding gradient according to the defined Hth. Figure 6
shows how even having a single bad channel can negatively impact the entire learning
process if we do not utilize FedGradNorm into our system model. With HOTA-FedGradNorm,
clients’ weights can be adapted based on the channel conditions, thereby reducing the
channel effects. Figure 6 illustrates that both the first and second tasks have improved after
epoch 85. Additionally, we compare the effects of channels for more diverse σ values in
Figure 7. From these result, we observe that HOTA-FedGradNorm is both robust and faster
to train, even under more challenging channel conditions.
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Figure 5. Comparison between task loss achieved via HOTA-FedGradNorm and naive equal weighting
case in RadComDynamic dataset for the first cluster (a) task 1 (modulation classification), (b) task 2
(signal classification), (c) task 3 (anomaly behavior), (d) task weights.
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Figure 6. Comparison between task loss achieved via HOTA-FedGradNorm and naive equal weight-
ing case in RadComDynamic dataset for the second cluster where σ2

1 = 0.5 and σ2
l = 1 ∀ ≥ 2

(a) task 1 (modulation classification), (b) task 2 (signal classification), (c) task 3 (anomaly behavior),
(d) task weights.
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Figure 7. Comparison between task loss achieved via HOTA-FedGradNorm and naive equal weighting
case in RadComDynamic dataset where σ2

2 = 0.75 and σ2
l = 1 for ∀l ≥ 3 (a) task 1 (modulation

classification) when σ2
1 = 2, (b) task 1 (modulation classification) when σ2

1 = 0.25, (c) task 2 (signal
classification) when σ2

1 = 2, (d) task 2 (signal classification) when σ2
1 = 0.25.

6. Conclusions and Discussion

We proposed FedGradNorm, a distributed version of the GradNorm dynamic weighting
algorithm for the personalized FL setting. We provided the convergence analysis for Fed-
GradNorm and showed that it has an exponential convergence rate. Moreover, we proposed
HOTAFedGradNorm, which is the modified version of FedGradNorm designed with the
utilization of over-the-air aggregation in a hierarchical FL setting. The characteristics of the
wireless communication channel were considered for the design of HOTA-FedGradNorm.
In the experiments with FedGradNorm, the learning speed and task performance of Fed-
GradNorm were compared with the naive equal weighting strategy. In contrast to naively
assigning equal weights to each task, we observed that FedGradNorm could ensure faster
training and more consistent performance. Additionally, FedGradNorm could compensate
for the effects of imbalanced allocation of data among the clients. Tasks with insufficient
data are also eligible for fair training since the weights of task losses are adjusted with
respect to training speeds to encourage the slow learning tasks. Furthermore, the ex-
perimental results with HOTA-FedGradNorm indicated that HOTA-FedGradNorm provides
robustness under negative channel effects while having faster training compared to naive
equal weighting strategy.
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Appendix A

Proof of Lemma 2. Since pk depends on xk, the following holds by the chain rule,

∂F(xk, pi
k)

∂xk
= ∇xF(xk, pi

k) +
∂pi

k
∂xk
∇pF(xk, pi

k)

Then,∥∥∥∥∥∂F(xk, pD
k )

∂xk
− ∂F(xk, p∗(xk))

∂xk

∥∥∥∥∥ =

∥∥∥∥∥∇xF(xk, pD
k ) +

∂pD
k

∂xk
∇pF(xk, pD

k )−∇xF(xk, p∗(xk))

− ∂p∗(xk)

∂xk
∇pF(xk, p∗(xk)) +

∂p∗(xk)

∂xk
∇pF(xk, pD

k )

−∂p∗(xk)

∂xk
∇pF(xk, pD

k )

∥∥∥∥ (A1)

≤
∥∥∥∇xF(xk, pD

k )−∇xF(xk, p∗(xk))
∥∥∥

+

∥∥∥∥∥∂pD
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥∥∥∥∇pF(xk, pD
k )
∥∥∥

+

∥∥∥∥∂p∗(xk)

∂xk

∥∥∥∥∥∥∥∇pF(xk, pD
k )−∇pF(xk, p∗(xk))

∥∥∥ (A2)

where the last inequality follows from the triangle inequality. The first term of (A2) is
bounded by Assumption 2 as follows,∥∥∥∇xF(xk, pD

k )−∇xF(xk, p∗(xk))
∥∥∥ ≤ L

∥∥∥pD
k − p∗(xk)

∥∥∥ (A3)

Similarly, the third term of (A2) is bounded by Assumption 1∥∥∥∥∂p∗(xk)

∂xk

∥∥∥∥∥∥∥∇pF(xk, pD
k )−∇pF(xk, p∗(xk))

∥∥∥ ≤ L
∥∥∥∥∂p∗(xk)

∂xk

∥∥∥∥∥∥∥pD
k − p∗(xk)

∥∥∥ (A4)

Furthermore, the second term of (A2) is bounded as∥∥∥∥∥∂pD
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥∥∥∥∇pF(xk, pD
k )
∥∥∥ ≤ M

∥∥∥∥∥∂pD
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥ (A5)

since we have
∥∥∇pF(x, p)

∥∥ ≤ M by Assumptions 4 and 5. Then, (A2) is upper bounded as∥∥∥∥∥∂F(xk, pD
k )

∂xk
− ∂F(xk, p∗(xk))

∂xk

∥∥∥∥∥ ≤L
∥∥∥pD

k − p∗(xk)
∥∥∥+ L

∥∥∥∥∂p∗(xk)

∂xk

∥∥∥∥∥∥∥pD
k − p∗(xk)

∥∥∥
+ M

∥∥∥∥∥∂pD
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥ (A6)

To upper bound (A6) further, we bound
∥∥∥∥ ∂pD

k
∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥.
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By the gradient descent update of p, i.e., pt
k = pt−1

k − α∇pg(xk, pt−1
k ) for t = 1, . . . , D,

and by the chain rule,

∂pt
k

∂xk
=

∂pt−1
k

∂xk
− α

(
∇x∇pg(xk, pt−1

k ) +
∂pt−1

k
∂xk
∇2

pg(xk, pt−1
k )

)
(A7)

Additionally, based on the optimality of p∗(xk), we have ∇pg(xk, p∗(xk)) = 0. Then,
by taking the partial derivative with respect to xk,

∇x∇pg(xk, p∗(xk)) +
∂p∗(xk)

∂xk
∇2

pg(xk, p∗(xk)) = 0 (A8)

By combining (A7) and (A8),

∂pt
k

∂xk
− ∂p∗(xk)

∂xk
=

∂pt−1
k

∂xk
− ∂p∗(xk)

∂xk

− α

(
∇x∇pg(xk, pt−1

k ) +
∂pt−1

k
∂xk
∇2

pg(xk, pt−1
k )

)

+ α

(
∇x∇pg(xk, p∗(xk)) +

∂p∗(xk)

∂xk
∇2

pg(xk, p∗(xk))

)
=

∂pt−1
k

∂xk
− ∂p∗(xk)

∂xk
− α
(
∇x∇pg(xk, pt−1

k )−∇x∇pg(xk, p∗(xk))
)

− α

(
∂pt−1

k
∂xk

− ∂p∗(xk)

∂xk

)
∇2

pg(xk, pt−1
k )

+ α
∂p∗(xk)

∂xk

(
∇2

pg(xk, p∗(xk))−∇2
pg(xk, pt−1

k )
)

(A9)

Moreover, by (A8) and Assumptions 1, 2,∥∥∥∥∂p∗(xk)

∂xk

∥∥∥∥ =
∥∥∥∇x∇pg(xk, p∗(xk))[∇2

pg(xk, p∗(xk))]
−1
∥∥∥ ≤ L

µ
(A10)

By (A9), (A10) and Assumption 2, we have∥∥∥∥∥∂pt
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥ ≤∥∥∥I − α∇2
pg(xk, pt−1

k )
∥∥∥× ∥∥∥∥∥∂pt−1

k
∂xk

− ∂p∗(xk)

∂xk

∥∥∥∥∥
+ α

(
τ +

Lρ

µ

)∥∥∥pt−1
k − p∗(xk)

∥∥∥ (A11)

Furthermore, based on µ-strong convexity of g(x, ·) with respect to p, we have
∇2

pg(x, ·) ≥ µ for any x ∈ HN ×W . Then, (A11) can be simplified as∥∥∥∥∥∂pt
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥ ≤ (1− αµ)

∥∥∥∥∥∂pt−1
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥+ α

(
τ +

Lρ

µ

)∥∥∥pt−1
k − p∗(xk)

∥∥∥ (A12)

In addition, the following equation is obtained from µ-strong convexity of g(x, ·) with
respect to p as well, ∥∥∥pt−1

k − p∗(xk)
∥∥∥ ≤ (1− αµ)

t−1
2

∥∥∥p0
k − p∗(xk)

∥∥∥ (A13)

Inserting (A13) into (A12) and telescoping results as
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∥∥∥∥∥∂pD
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥ ≤(1− αµ)D

∥∥∥∥∥∂p0
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥
+ α

(
τ +

Lρ

µ

) D−1

∑
t=0

(1− αµ)D−1−t(1− αµ)
t
2 ×

∥∥∥p0
k − p∗(xk)

∥∥∥ (A14)

=(1− αµ)D

∥∥∥∥∥∂p0
k

∂xk
− ∂p∗(xk)

∂xk

∥∥∥∥∥+ 2(τµ + Lρ)

µ2 (1− αµ)
D−1

2

∥∥∥p0
k − p∗(xk)

∥∥∥ (A15)

≤ L(1− αµ)D

µ
+

2(τµ + Lρ)

µ2 (1− αµ)
D−1

2

∥∥∥p0
k − p∗(xk)

∥∥∥ (A16)

where the last inequality comes from ∂p0
k

∂xk
= 0 and (A10). Then, the proof is completed by

using (A16) in (A6) in addition to upper bounding
∥∥∥ ∂p∗(xk)

∂xk

∥∥∥ and
∥∥pD

k − p∗(xk)
∥∥ in (A6)

with (A10) and (A13), respectively.

Proof of Lemma 3. Based on LF-smoothness of F(·),

F(xk+1, pk+1) ≤ F(xk, pk) + (xk+1 − xk)
T∇F(xk, pk) +

LF
2
||xk+1 − xk||2 (A17)

By the gradient descent update of x

xk+1 − xk = −β∇̂F(xk, pk) (A18)

By inserting (A18) into (A17), the following holds,

F(xk+1, pk+1) ≤F(xk, pk) + (−β∇̂F(xk, pk) + β∇F(xk, pk)− β∇F(xk, pk))
T∇F(xk, pk)

+
LF
2

∥∥−β∇̂F(xk, pk) + β∇F(xk, pk)− β∇F(xk, pk)
∥∥2

(A19)

=F(xk, pk)− β〈∇̂F(xk, pk)−∇F(xk, pk),∇F(xk, pk)〉 − β‖∇F(xk, pk)‖2

+ β2LF
∥∥∇̂F(xk, pk)−∇F(xk, pk)

∥∥2
+ β2LF‖∇F(xk, pk)‖2 (A20)

≤F(xk, pk)−
(

β

2
− β2LF

)
‖∇F(xk, pk)‖2

+

(
β

2
+ β2LF

)∥∥∇̂F(xk, pk)−∇F(xk, pk)
∥∥2

(A21)

where the last inequality comes from

||x− y||2 = ||x||2 + ||y||2 − 2〈x, y〉 ≥ −||x||2 − 2〈x, y− x〉 (A22)

by substituting x = ∇F(xk, pk) and y = ∇̂F(xk, pk).

Proof of Theorem 1. By Lemma 3, we have

F(xk+1, pk+1) ≤F(xk, pk)−
(

β

2
− β2LF

)
||∇F(xk, pk)||2︸ ︷︷ ︸

A1

+

(
β

2
+ β2LF

)
||∇̂F(xk, pk)−∇F(xk, pk)||2︸ ︷︷ ︸

A2

(A23)
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To upper bound A2, we use Lemma 2 and the fact that (a + b + c)2 ≤ 3a2 + 3b2 +

3c2, ∀a, b, c ∈ R, while also assuming ‖p0
k− p∗k (xk)‖2 ≤ ∆. By choosing a = L(L+µ)(1−αµ)

D
2

µ ∆
1
2 ,

b = 2M(τµ+Lρ)
µ2 (1− αµ)

D−1
2 ∆

1
2 , c = LM(1−αµ)D

µ , we have

||∇̂F(xk, pk)−∇F(xk, pk)||2 ≤3∆

(
L2(L + µ)2(1− αµ)D

µ2 +
4M2(τµ + Lρ)2

µ4 (1− αµ)D−1

)

+ 3
L2M2(1− αµ)2D

µ2 (A24)

where constant B is defined as

B ,3∆

(
L2(L + µ)2(1− αµ)D

µ2 +
4M2(τµ + Lρ)2

µ4 (1− αµ)D−1

)

+ 3
L2M2(1− αµ)2D

µ2 (A25)

To upper bound the A1, we use the µ-strong convexity of F(x, p) with respect to x by
Assumption 1. By µ-strong convexity of F(x, p), for any fixed p ∈ PN , we have,

∇F(xk, p) ≥ µ(xk − x∗) (A26)

Then,

‖∇F(xk)‖2 ≥ µ2‖(xk − x∗)‖2 (A27)

By substituting (A24) and (A27) in (A23), we have

F(xk+1, pk+1) ≤ F(xk, pk)− µ2(
β

2
− β2LF)‖xk − x∗‖2 + (

β

2
+ β2LF)B (A28)

By subtracting F(x∗, p∗(x∗)) from both sides, we have

F(xk+1, pk+1)− F(x∗, p∗(x∗)) ≤F(xk, pk)− F(x∗, p∗(x∗))− µ2
(

β

2
− β2LF

)
‖xk − x∗‖2

+

(
β

2
+ β2LF

)
B (A29)

By LF-smoothness of F(x, p) from Lemma 1, and the fact that∇xF(x, p)|{x=x∗ ,p=p∗} = 0

F(xk, pk)− F(x∗, p∗(x∗)) ≤ LF
2
‖xk − x∗‖2 (A30)

for any xk. By substituting (A30) in (A29), we have

F(xk+1, pk+1)− F(x∗, p∗(x∗)) ≤
(

LF
2
− µ2β

2
+ µ2β2LF

)
× ‖xk − x∗‖2 + (

β

2
+ β2LF)B (A31)

Additionally, by the µ-strong convexity of F(x, p) with respect to x, we have

‖xk+1 − x∗‖ ≤ (1− βµ)
1
2 ‖xk − x∗‖ (A32)

‖xk − x∗‖ ≤ (1− βµ)
k
2 ‖x0 − x∗‖ (A33)
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Then,

F(xk, pk)− F(x∗, p∗(x∗)) ≤
(

LF
2
− µ2β

2
+ µ2β2LF

)
× (1− βµ)k−1‖x0 − x∗‖2

+

(
β

2
+ β2LF

)
B (A34)

completing the proof.
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