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Wheat is a staple food for 35% of the world’s population, providing more calories and 

protein to the world’s diet than any other crop. Wheat rust diseases cause yield losses 

worth billions of dollars annually. Two rust resistance genes, Lr57 and Yr40, conferring 

leaf rust and stripe rust resistance, respectively, were previously identified in a wild 

wheat relative, Aegilops geniculata. Mapping these genes within a wheat background 

is typically impossible, due to the absence of genetic recombination between wheat and 

wild species chromatin. We devised a novel technique to overcome this barrier, 

developing a mapping population from a cross between a resistant Ae. geniculata-

wheat introgression line and a susceptible Ae. geniculata disomic addition line. 

Genotyping and phenotyping 162 individuals from this population, we found 11 

recombinants within a 6 Mb interval and fine mapped Lr57, demonstrating the high-

resolution power of this strategy for mapping genes from wild relatives of wheat.  
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Chapter 1: Introduction 

 

Background 

Over 10,000 years ago, with the transition of the earth’s climate from the 

Pleistocene (ice age) to the current Holocene era, so too were human societies then able 

to transition from nomadic to agrarian lifestyles- a shift fundamental for 

accommodating human population growth to over 7 billion today (Barker & Goucher, 

2015). Einkorn wheat (Triticum monococcum) and emmer wheat (Triticum turgidum 

subsp. dicoccum) were founder crops, two of the first crops domesticated by humans 

in the Fertile Crescent, in part due to their loss of a brittle rachis that would have 

allowed free seed dispersal and made harvesting difficult (Faris, 2014; Weiss & 

Zohary, 2011). In this same region some 8,500 years ago, allohexaploid bread wheat 

(Triticum aestivum L., 2n = 6x = 42, AABBDD) developed as the result of a 

hybridization event between T. turgidum L., (2n = 4x = 28, AABB) and Aegilops 

tauschii Coss. (2n = 2x = 14, DD) (Faris, 2014). Due to hexaploid wheat’s rare 

hybridization origin, the origin being confined to the Fertile Crescent, and a 

subsequently long history of breeding within wheat’s immediate gene pool, wheat is 

particularly influenced by the Founder effect and has a narrow genetic base for 

necessary future breeding improvements (Faris, 2014; Ladizinsky, 1985; Tiwari et al., 

2014).  

To stress the importance of breeding programs, according to data from 2017, 

bread wheat is the most cultivated crop, contributes nearly a fifth of human calorie 

https://www.zotero.org/google-docs/?RaFAwU
https://www.zotero.org/google-docs/?RaFAwU
https://www.zotero.org/google-docs/?Ig9bk8
https://www.zotero.org/google-docs/?Ig9bk8
https://www.zotero.org/google-docs/?HooeGd
https://www.zotero.org/google-docs/?HdV1yC
https://www.zotero.org/google-docs/?HdV1yC
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intake, and is the greatest protein provider (Consortium (IWGSC) et al., 2018; 

FAOSTAT. 2020, Jun 7. http://www.fao.org/faostat/en/#data/FBS; FAOSTAT. 2020, 

Jun 7. http://www.fao.org/faostat/en/#data/QC). Most of this consumption is within 

developing countries that consume 77% of the wheat produced (Enghiad et al., 2017; 

2020, Jun 7. https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery. 

These same countries are experiencing increased population growth, increased wheat 

consumption, and increasing wheat prices (Enghiad et al., 2017;  USDA ERS - Wheat 

Data. 2020, June 7. https://www.ers.usda.gov/data-products/wheat-data/). Failure to 

meet yield demands could have devastating consequences. In the modern day Fertile 

Crescent country Syria, a three year long drought induced by climate change caused 

the country’s “breadbasket” to collapse, contributing to the ongoing Syrian civil war 

(M. Ali, 2010; Kelley et al., 2015; Trigo et al., 2010). Following the drought, epidemics 

of stripe rust between 2010 and 2011 caused further major losses of Syrian wheat yield 

(Amil et al., 2020).  

Since 1960, the world’s population has become two and a half times larger, and 

cereal production has become three times greater- largely due to well-funded advances 

in crop genetics (Pingali, 2012; Wik et al., 2008). The Green Revolution between 1966 

and 1985, and the following decades of crop research until 2000, led to wheat yields in 

developing countries overall increasing 208%, but certain countries, like those in 

Africa, largely did not reap the same benefits (Pingali, 2012; University & 

Organization, 2004).  In addition to policy choices, a single gene that caused dwarfing, 

Reduced height (Rht), by suppressing gibberellin activity was crucial in developing 

wheat that could support higher grain yields (Hedden, 2003). Continued development 

https://www.zotero.org/google-docs/?fJ9bjf
https://www.zotero.org/google-docs/?fJ9bjf
https://www.zotero.org/google-docs/?fJ9bjf
https://www.zotero.org/google-docs/?fJ9bjf
https://www.zotero.org/google-docs/?fJ9bjf
https://www.zotero.org/google-docs/?uZGL5j
https://www.zotero.org/google-docs/?uZGL5j
https://www.zotero.org/google-docs/?fxphNP
https://www.zotero.org/google-docs/?fxphNP
https://www.zotero.org/google-docs/?fxphNP
https://www.zotero.org/google-docs/?QowGlY
https://www.zotero.org/google-docs/?TiwH7u
https://www.zotero.org/google-docs/?Y5MchN
https://www.zotero.org/google-docs/?A7k0vw
https://www.zotero.org/google-docs/?A7k0vw
https://www.zotero.org/google-docs/?HsbTIu
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of high-quality wheat cultivars with good yields and disease resistance is of vital 

importance. The world population is predicted to continue growing from today's 7.7 

billion to 9.7 billion in 2050, with rates highest in sub-Saharan Africa and then central 

and southern Asia (United Nations et al., 2019). In that time, demand for cereals could 

increase anywhere from 26% to 68%, while challenges to mitigate environmental 

issues such as agricultural greenhouse gas emissions and  nutrient pollution are likely 

to continue (Hunter et al., 2017).  

Due to wheat’s genetic bottleneck, efficiently developing new cultivars to meet 

current and future challenges in part becomes a question of how to expand the range of 

available genetic resources that can be used in wheat breeding programs (Tiwari et al., 

2014). Alien introgression of genetic traits from wild wheat relatives is a highly 

valuable answer to this question, with “wild” referring broadly to the wheat-related 

species that can be categorized into three different gene pools based on the constitution 

of their genomes (Jiang et al., 1993). 

 

The Three Gene Pools of Wheat 

Wheat landraces and wheat’s progenitors T. turgidum L. and Ae. tauschii 

constitute wheat’s primary gene pool, its closest relatives with one or more shared 

genomes. Various Triticeae species with homoeologous genomes related to the A, B, 

or D genomes of wheat make up wheat’s secondary gene pool. This includes the known 

parent of T. turgidum L., T. uratu Tuanian ex Gandilyan (2n = 2x = 14, AA); Ae. 

speltoides Tausch (2n = 2x = SS), the predicted closest relative of the unknown B-

genome donor; various A-genome species: T. monococcum L. subsp. monococcum, 

https://www.zotero.org/google-docs/?vvNlAb
https://www.zotero.org/google-docs/?ml1Ain
https://www.zotero.org/google-docs/?CuOY2B
https://www.zotero.org/google-docs/?CuOY2B
https://www.zotero.org/google-docs/?DD8pbZ
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aegilopoides, T. timopheevii Zhuk. (2n = 4x = 28, AAGG); and the D genome cluster 

present in polyploid Aegilops species (Qi et al., 2007; Tiwari et al., 2014). Transfer of 

genes from the primary and secondary gene pool can be done through traditional 

crosses based on homologous recombination (Qi et al., 2007). The tertiary gene pool 

members are Triticeae species with no A, B, or D genome, and are recalcitrant to 

recombination with wheat chromosomes.  

 Many agronomically important traits have been identified in wild wheat 

relatives. Resistance genes derived from wild wheat species constitute nearly half the 

catalogued resistance genes (Bansal et al., 2017). But incorporation of homoeologous 

breeding material, particularly that of the tertiary gene pool, has been underutilized for 

several reasons. First, breeding a gene from a wild relative of wheat into an elite cultivar 

carries greater risks of linkage drag if the exact gene of interest has not been 

characterized. Second, there are the restrictions imposed by the dominant Pairing 

homoeologous1 (Ph1) locus located on 5BL which developed during wheat’s 

polyploidization history (Okamoto, 1957; Riley & Chapman, 1958; Sears & Okamoto, 

1958). 

The Ph1 Locus 

Ph1 promotes homologous pairing within A, B, and D genome chromosomes 

and thus prevents non-homologous recombination among homoeologues (A-B, B-D. 

or A-D). Ph1 is responsible for causing polyploid wheat to undergo diploid-like 

chromosome pairing where 21 bivalents are formed during metaphase 1 (Riley & 

Chapman, 1958). To prevent nondisjunction, at least one chiasma needs to form per 

bivalent (Zickler & Kleckner, 1999). Absent the Ph1 locus, there are then induced 

https://www.zotero.org/google-docs/?KTzQbY
https://www.zotero.org/google-docs/?Kflsqa
https://www.zotero.org/google-docs/?aIzg50
https://www.zotero.org/google-docs/?aDMeST
https://www.zotero.org/google-docs/?aDMeST
https://www.zotero.org/google-docs/?CmWcky
https://www.zotero.org/google-docs/?CmWcky
https://www.zotero.org/google-docs/?hvZX4w
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chromosomal rearrangements that affect wheat fertility (Sánchez-Morán et al., 2001).  

Within the Ph1 locus, there are clusters of cyclin-dependent kinase (Cdk)-like genes, 

methyl transferase genes, and a duplicated chromosome 3B segment that contains a 

single copy of the gene TaZIP4-B2 (Al-Kaff et al., 2008; Griffiths et al., 2006; Martín 

et al., 2017; Rey et al., 2017). EMS mutants for TaZIP4-B2 in the wheat line Cadenza 

crossed with the wild relative Ae. variabilis indicated the gene’s involvement in 

promoting/restricting homologous/homeologous crossing over (Rey et al., 2017).   

But although it has previously been assumed the Ph1 locus restricts 

homoeologues pairing, in a study of wheat-rye hybrids (which only have 

homoeologues) by Martín, et. al, it was shown that Ph1 did not affect homoeologous 

synapsis prevalence (Martín et al., 2014, p. 1). However, it was also shown that Ph1 

promotes early homologous synapsis, which can reduce the likelihood of later 

homoeologous synapsis (Martín et al., 2017).  

Given the constraints of the Ph1 locus regarding alien introgression via 

homoeologous recombination, various methods have been used in the past to lessen its 

effects, such as ph1 mutants, nulli-5B, and crosses containing Ae. speltoides genes 

discovered to be epistatic to Ph1 (referred to as PhI genes) (Aghaee-Sarbarzeh et al., 

2002.; Riley et al., 1961). Notably Chen et. al, 1994, transferred Ph1 from Ae. speltoides 

to Chinese Spring (CS), and this showed homoeologous pairing in the F1 generation in 

a cross between  CS(Phi) stock and wild Haynaldia villosa chromosomes (Chen et al., 

1994).  

https://www.zotero.org/google-docs/?kipCPm
https://www.zotero.org/google-docs/?etdoZ5
https://www.zotero.org/google-docs/?etdoZ5
https://www.zotero.org/google-docs/?arxsCz
https://www.zotero.org/google-docs/?l9YJkP
https://www.zotero.org/google-docs/?zTQEs8
https://www.zotero.org/google-docs/?CCe5PR
https://www.zotero.org/google-docs/?CCe5PR
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Rust Disease of Wheat 

There are three wheat rusts: stem/black (Puccinia graminis f. Sp. tritici (Pgt)), 

leaf/brown (P. triticina (Ptr), and stripe/yellow rust (P striiformis f. Sp tritici (Pst)). 

Each is a type of obligate biotrophic fungi in the Basidiomycete family. Global annual 

losses to rust is estimated to be between 4.3 to 5 billion USD (P. Pardey, University of 

Minnesota, unpublished) (Figueroa et al., 2018).  

Currently some 88% of  wheat is susceptible to stripe rust and as the range of 

stripe-rust susceptible environments has increased to include warmer areas, there has 

been an estimated 90% chance that at least 4.7 million tons of wheat yield will be lost 

per year (Beddow et al., 2015). Leaf rust is the most common and widely distributed 

rust (Huerta-Espino et al., 2011).  Although leaf rust may affect yields less than stem 

or stripe rust, due to its spread it may still cause greater annual losses (Huerta-Espino 

et al., 2011). Both stripe and leaf rust cause yield decreases through lower kernel 

weight.  

Discovering disease-resistance genes for integration into elite cultivars is an 

important rust management strategy that does not carry the same environmental, cost, 

and resistance risks of using fungicides against rust (Ellis et al., 2014; Oliver, 2014). 

Furthermore, multiple genes should be incorporated in cultivars for disease resistance 

at once, to avoid single R gene breakdown and subsequent loss of disease defenses.  

https://www.zotero.org/google-docs/?K0OTl0
https://www.zotero.org/google-docs/?rjHOgX
https://www.zotero.org/google-docs/?2NzsgW
https://www.zotero.org/google-docs/?BodwSJ
https://www.zotero.org/google-docs/?BodwSJ
https://www.zotero.org/google-docs/?ToeslJ
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The Aegilops Species and Rust Resistance 

The Aegilops Species 

Overall the Aegilops taxa contains 11 diploid and 12 polyploid species (Kilian 

et al., 2011). Ae. geniculata (Figure 1.1) is an allotetraploid (2n = 4x = 28, 

UGUGMGMG) and one member of the tertiary gene pool that contains many genes that 

would be useful for wheat improvement, including greater protein, iron, and zinc 

content, drought and heat resistance, and other traits including disease resistance (Bs et 

al., 1985; B. Friebe et al., 1996; Rawat et al., 2008; Schneider et al., 2008; Zaharieva 

et al., 2001). There are reports of high Ae. geniculata resistance to stem and leaf rust 

going back at least as far as 1918 (Valkoun et al., 1985). It was shown in the early 

1990’s to 2000 that Aegilops chromosomes U and M are both sources of rust resistance, 

and in particular 5Mg could be a source of leaf and stripe rust resistance (Dhaliwal, 

unpublished)  (Aghaee-Sarbarzeh et al., 2002; Dhaliwal et al., 1993; Khem Singh Gill 

et al., 1995; Harjit & Dhaliwal, 2000).. By 2018, 75 leaf rust resistance genes had been 

identified and a similar number of stripe rust genes as well, with ~20% of the genes 

being derived from Aegilops species (Kishii, 2019; Ponce-Molina et al., 2018).  

 

https://www.zotero.org/google-docs/?U2B10B
https://www.zotero.org/google-docs/?U2B10B
https://www.zotero.org/google-docs/?Y41LtT
https://www.zotero.org/google-docs/?Y41LtT
https://www.zotero.org/google-docs/?Y41LtT
https://www.zotero.org/google-docs/?lWO2IU
https://www.zotero.org/google-docs/?bX11G0
https://www.zotero.org/google-docs/?bX11G0
https://www.zotero.org/google-docs/?W4VjM2
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Figure 1.1 Aegilops geniculata Roth. There are two subspecies: subsp. geniculata and 

subsp. gibberosa (Zhuk.) Hammer. This thesis refers to the former subspecies that 

originated in the eastern Mediterranean, while the other is localized to Spain and 

North Africa (Arrigo et al., 2010; Ohta, 2017). 

 

There have been several reports of hexaploid wheat hybridizing with Ae. 

geniculata despite the Ph1 locus, first by Requien in 1825 by Avignon in southern 

France and then by Fabre of Agde, France in 1838  (Dondlinger, 1919; Loureiro et al., 

2006). Between 2003 and 2004 in Madrid Spain, simulating field conditions, Loureiro, 

et. al showed more conclusively a hybridization rate of between .24% and .39% 

between hexaploid wheat and Ae. geniculata (Loureiro et al., 2007). Similarly, Koo et 

al., showed evidence of a 3.4% (n=114) homoeologous pairing rate between 5Mg and 

5D in F1 hybrids of Ae. geniculata and wheat and saw high chiasmatic associations 

between M genomes and wheat, suggesting the potential for some homoeologous 

promoting gene(s) on 5Mg (Koo et al., 2017). 

Given the low rate of normal hybridization between Ae. geniculata and wheat, 

CS Ph1 was an important tool in a study by Aghaee-Sarbarzeh et al., 2002 to transfer a 

small segment Ae. geniculata 5Mg chromatin into a hexaploid wheat background, along 

https://www.zotero.org/google-docs/?cQx4hu
https://www.zotero.org/google-docs/?J80v3g
https://www.zotero.org/google-docs/?J80v3g
https://www.zotero.org/google-docs/?L2mio4
https://www.zotero.org/google-docs/?wnfIWk
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with the leaf and stripe rust resistance the segment of 5Mg chromatin provided (Aghaee-

Sarbarzeh et al., 2002). Specifically, this involved first creating a disomic substitution 

line DS5Mg(5D) from a cross between the rust-resistant Ae. geniculata accession 

TA10437 and the highly rust-susceptible wheat variety WL711. Crossing DS5Mg(5D) 

with CS Ph1 and then crossing the F1 with WL711 led to homoeologous recombination 

and the creation of wheat-Ae. geniculata introgression lines.  

 

Lr57 and Yr40: The First Characterization 

Wheat-Ae. geniculata introgression lines had been originally developed using 

CS Ph1 stock and a disomic substitution line DS 5Mg(5D) that was backcrossed to 

WL711 by Aghaee-Sarbarzeh et al., (2002). The resulting BC1F1 plants were then 

crossed and backcrossed to the highly rust susceptible soft white spring wheat cultivar 

WL711 by Kuraparthy et al., (2007). These resulting stable introgression lines included 

TA5599 (BC2F5), TA5601 (BC2F5), and TA5602 (BC3F6) that, through genomic in situ 

hybridization (GISH) against Ae. comosa and Restriction Fragment Length 

Polymorphism (RFLP) probes for orthologous alleles in wheat 5A/5B/5D, showed 5Mg 

replacing either the majority of wheat chromosome 5D (TA5599 [T5MS·5ML-5DL]), 

approximately 25% of 5D (TA5601 [T5DL·5DS-5Mg S(0.75)]), to under 5% of wheat 

5DS (TA5602 [T5DL·5DS-5MgS(0.95)]). TA5602 was further described as a cryptic 

introgression, due to the 5Mg introgression size being cytologically “invisible” while 

still containing Lr57 and Yr40 (Kuraparthy, 2007).  

https://www.zotero.org/google-docs/?2uwNXW
https://www.zotero.org/google-docs/?2uwNXW
https://www.zotero.org/google-docs/?ACD1w5
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Project Outline 

 

Figure 1.2: A generalized overview of the process of creating 5Mg specific markers, creating a 

mapping population, and identifying a candidate region for our trait of interest.  
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This thesis project, in broad terms, had the following goals: 

● Characterizing the introgression size of TA5602 and TA5601 

● Determining if Lr57 and Yr40 are one gene or separate genes. 

● Fine mapping and identification of Lr57 candidate genes 

 

Through developing a feasible means of cloning genes from tertiary gene pool 

species, we aimed to take an important step toward expanding the available genetic 

resources available to wheat breeding programs.   

 

This project can be generally divided into stages of marker development, testing 

the markers on a phenotyped mapping population to find a candidate region, and 

validation of candidate genes (Figure 1.2). In and of itself, this will seem familiar 

compared to traditional approaches of positional cloning.  The real advantage of this 

project’s approach is that it shows how a unique mapping population developed from 

an introgression line (TA5602) crossed with a disomic addition line (TA7659) can 

show specific recombination limited only to a small region of interest containing 

candidate genes, due to the Ph1 locus. This cuts down candidate regions of interest 

from an entire chromosome level to simply the size of the alien chromatin translocated 

into a wheat background (figure 1.3).  Because both TA7659 and TA5601 are almost 

entirely leaf and stripe rust susceptible wheat backgrounds (Chinese Spring and 

WL711, respectively) in regard to our working rust isolates, we can be sure that any 

rust resistant phenotypes observed in the mapping population will be due to 5Mg and, 

in particular, Lr57 and Yr40.  
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A B 

  

Figure 1.3: Represented in panel A are, from left to right: wheat chromosome 5D, leaf 

and stripe rust resistant 5Mg chromosome of TA10437, leaf and stripe rust susceptible 

5Mg chromosome in the disomic addition line TA7659  [DS 5Mg (5D)], and the two 

introgression lines TA5601 and TA5602 that include a 5Mg translocation segment from 

TA10437 replacing the distal end of WL711 5D. Panel B is a representation of a cross 

between TA7659 and TA5601, where only the Ae. geniculata 5Mg segments with 

shared homology align and recombine, due to the Ph1 locus, forming a trivalent. Any 

rust resistance phenotypes within the progeny of this cross are directly tied to TA5601.  

Orange represents geniculata 5Mg chromatin while grey represents wheat 5D 

chromatin. 

 

Furthermore, we showed how we can compensate for the lack of genomic 

resources, such as reference sequences, in wild relatives of wheat, even in the tertiary 

gene pool, through comparative genomics to better developed sources, such as the 

wheat reference sequence. This allowed us to easily generate 5Mg specific markers that 

were crucial in mapping Lr57 and Yr40. The same approach was used to develop 

markers for both QPCR and creating VIGS constructs to test candidate genes.  
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Chapter 2:  Literature Review 

 

Rust Infection, The MAMP Response, and Disease Resistance 

Pucciniales are a monophyletic group and one of the most specious groups of 

plant pathogens with approximately 8000 species described  (Aime et al., 2017). The 

cereal rusts all follow macrocyclic life cycles consisting of five different stages and are 

heteroecious, requiring two unrelated hosts to complete the sexual life cycle and 

develop diversity quickly (figure 2.1). However, the alternative hosts for leaf rust are, 

with little exception, not crucial factors in epidemic spread of rust (J. Zhao et al., 2016).  

Stripe rust has been thought to spread clonally in Australia and Europe and epidemics 

seemed to be largely due to more divergent lines (S. Ali et al., 2017; Hovmøller & 

Justesen, 2007; Schwessinger et al., 2020; Steele et al., 2001). Still in a study 

comparing stripe rust isolates from 1960 to 2005 in the United States, genetically 

distinct, newly-appearing isolates of stripe rust appeared to rapidly become 

predominant in eastern states (Markell & Milus, 2008). The actual rust infection on 

wheat begins with either an asexual aeciospore or urediniospore, with the aeciospore 

infection marking the completion of the sexual lifecycle while the urediniospore can 

repeatedly infect more wheat as part of an asexual lifecycle. The urediniospore 

develops a germ tube, then appressorium, and then an infection peg that enters wheat 

cells, eventually forming the haustorium (Bakkeren & Szabo, 2019).  

 

https://www.zotero.org/google-docs/?vTdM60
https://www.zotero.org/google-docs/?lfUYyI
https://www.zotero.org/google-docs/?UaTkKH
https://www.zotero.org/google-docs/?UaTkKH
https://www.zotero.org/google-docs/?UWnsY0
https://www.zotero.org/google-docs/?ZcMskt
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Figure 2.1 An illustration that shows the life cycle of Puccinia graminis (Kolmer, 

2013). Leaf, stripe, and stem rust each have life cycles that are both heteroecious and 

macrocyclic.  
 

Drawing by Jacolyn A.Morrison, USDA-ARS Cereal Disease Laboratory, St Paul, 

MN, USA 

 

 

Genetic resistance to rust can be broadly divided into seedling and adult-plant 

resistance. Seedling resistance persists into adult plants and generally shows a 

hypersensitive response. So far it has been observed that most genes that confer 

seedling resistance against wheat rust are nucleotide binding and C-terminal leucine-

rich repeat (NLR-type) proteins (Schwessinger, 2017). NLR genes can be divided into 

two different types, based on the N-terminal domain. There are Toll-interleukin-like 

https://www.zotero.org/google-docs/?FcHZ96
https://www.zotero.org/google-docs/?FcHZ96
https://www.zotero.org/google-docs/?WEWSVC
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receptor (TIR) domains and coiled-coil (CC) domains, the latter type being the only 

kind known to be present in monocots (Tarr & Alexander, 2009) 

The main defense systems of plants are microbe-associated molecular patterns 

(MAMPs or) or damage-associated molecular patterns (DAMPs) that rely on pattern-

recognition receptors (PRRs) in the form of plasma membrane receptor kinases or  

receptor proteins that can recognize conserved pathogen MAMPs like chitin (Zipfel, 

2014). This recognition can lead to downstream defense responses like increased 

reactive oxygen species production, in what is referred to as PAMP-triggered immunity 

(PAMPs referring to the MAMPs of pathogens), or PTI. The second defense type of 

defense response acts mostly within the cell and with NLR genes, where pathogen-

produced effector proteins that suppress PTI are in turn suppressed by the plant in what 

is called effector-triggered immunity, or ETI, and is often associated with a 

hypersensitive response (Jones & Dangl, 2006). In other words, most of the seedling 

resistance described in wheat against rust has been a form of ETI. Often stepwise, 

asexual evolution of rust can then quickly cause virulence against a single NLR gene 

that had adapted to a specific effector in gene-for-gene fashion (Flor, 1971; 

Schwessinger, 2017). Additionally, rust genomes are highly complicated and difficult 

to study, being obligate biotrophs. Rust genomes are large, with stripe rust genomes 

predicted to be between 50 to 100 Mb, and containing over 1000 potential effectors 

https://www.zotero.org/google-docs/?KpJrbB
https://www.zotero.org/google-docs/?lFPDPB
https://www.zotero.org/google-docs/?lFPDPB
https://www.zotero.org/google-docs/?IowvJ8
https://www.zotero.org/google-docs/?PZOc7l
https://www.zotero.org/google-docs/?PZOc7l
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(Schwessinger, 2017). As a whole, the average Pucciniales genome size is estimated to 

be 305.5 Mb (Tavares et al., 2014).  

Disease Resistance Genes in Wheat and Cloning  

In 1992, Hm1 from Zea mays was the first R gene cloned (Johal & Briggs, 1992; 

Kourelis & Hoorn, 2018). Three years later, the first rust resistance gene was cloned 

from flax, L6, and then in 2003 the first leaf rust resistance gene in wheat was cloned, 

Lr21 (Huang et al., 2003). In a survey of 314 plant R genes cloned between 1992 and 

2018, most of the R genes were surface or intracellular receptors and could be divided 

into nine different categories, but 61% were NLRs (Kourelis & Hoorn, 2018).  

In one method of cloning R genes, homology-based cloning, where new R genes 

are identified based on homology, four different wheat R genes have been identified, 

all NLR-types (Hurni et al., 2013; Jordan et al., 2011; Mago et al., 2015; M. Wang & 

Chen, 2017; C. Z. Zhao et al., 2016). In a study analyzing 70 identified Lr genes, it was 

found that NLR genes tended to be positioned close to QTLs for race-specific resistance 

expressed at the seedling stage (Peng & Yang, 2017). But so far, only three seedling 

stage leaf rust genes have been cloned (each of the NLR type) and three adult-stage 

resistant Lr genes have been cloned (Prasad et al., 2020).  

 

 

https://www.zotero.org/google-docs/?kZKfCu
https://www.zotero.org/google-docs/?PeMPF7
https://www.zotero.org/google-docs/?LKsPFO
https://www.zotero.org/google-docs/?LKsPFO
https://www.zotero.org/google-docs/?dS3qbX
https://www.zotero.org/google-docs/?h8Z5ud
https://www.zotero.org/google-docs/?1Qkq9j
https://www.zotero.org/google-docs/?1Qkq9j
https://www.zotero.org/google-docs/?nrrgyF
https://www.zotero.org/google-docs/?IElhEu
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Aegilops geniculata 

Since the original development and characterization of Ae.geniculata-wheat 

introgression lines, multiple studies have made advances in our understanding of both  

Ae. geniculata and the 5Mg chromosome specifically. First, SNPs have been discovered 

to help track 5Mg introgressions in wheat backgrounds. The leaf and stripe rust 

susceptible 5MS chromosome derived from TA2899 was flow sorted and sequenced to 

45X coverage and used to discover SNPs between 5Mg and wheat group-5 

chromosomes (B. R. Friebe et al., 1999; Tiwari et al., 2014). Then a resistant 5Mg 

chromosome from the substitution line TA6675 (DS5Mg(5D)) was similarly sequenced 

with paired-end reads and shown to be highly similar to wheat 5D in terms of both 

synteny and collinearity (Tiwari et al., 2015). It has also now been shown that over 

75% of Aegilops spp. accessions are resistant to the stem rust races TTKSK, TRTTF, 

and TTTTF (Olivera et al., 2018). The stem rust gene derived from Ae. geniculata 

known is Sr53 that shows resistance against the UG99 race TTKSK (W. Liu et al., 

2011).  

Aegilops umbellulata 

The parental species of Aegilops geniculata (2n = 4x, MMUU) are Ae. comosa 

Sm. in Sibth & Sm. (2n = 2x = 14, MM) and Ae. umbellulata Zhuk. (2n = 2x = 14, UU)  

(B. R. Friebe et al., 1999). Previously, rust and stripe resistance genes were transferred 

from the Ae. umbellulata accession  PAU 3732 into a wheat background to generate 

the introgression line IL 393-4 (Chhuneja et al., 2008). IL 393-4 was used to create a 

recombinant inbred line population of 234 lines that appeared to show the Ae. 

https://www.zotero.org/google-docs/?vyBtJ3
https://www.zotero.org/google-docs/?zxGC8F
https://www.zotero.org/google-docs/?8DBBlB
https://www.zotero.org/google-docs/?IasqNx
https://www.zotero.org/google-docs/?IasqNx
https://www.zotero.org/google-docs/?qn9bgd
https://www.zotero.org/google-docs/?PVhm4R
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umbellulata rust resistance genes (Lr76 and Yr40) co-segregate (Bansal et al., 2017). It 

appeared that  Lr76 and Yr40 in IL 393-4 could be placed with a 9.47 Mb region of 

5DS telomeric region and showed complete linkage (Bansal et al., 2020). Lr76 and 

Yr40 also displayed an NLR-like hypersensitive response.  Furthermore, a cross 

between  IL 393-4 and TA5602 seemed to show repulsion linkage between Lr76 and 

Lr57 (Bansal et al., 2017). Thus, if Lr76 and Lr57 are alleles of each other, cloning 

either one could simultaneously clone the other.  

 

  

https://www.zotero.org/google-docs/?hEVNSS
https://www.zotero.org/google-docs/?crpCWg
https://www.zotero.org/google-docs/?thjRGT
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Chapter 3: An Efficient Approach to Precisely Map Genes of 

Non-Recombining Chromosomes from Distant Gene Pools 

 

 

A Novel Mapping Approach 

 

Wild relatives of wheat (“wild” being considered in terms of their 

homoeologous chromosomes in respect to a domesticated crop species of interest) are 

rich sources of genetic variability from iron and zinc content to abiotic stress and 

disease resistance (Neelam et al., 2011; S. Wang et al., 2011).  Kuraparthy et al. (2007) 

characterized a wild wheat relative Aegilops geniculata (2n=4x; UUMM) accession 

TA10437 that shows leaf and stripe rust resistance, due to the genes Lr57 and Yr40. 

Both of these genes were transferred into a wheat background by crossing CS(Ph1) and 

TA10437 and then repeatedly backcrossing to the rust-susceptible cultivar WL711 to 

create the 5Mg introgression lines TA5602 and TA5601 (BC2F5 and BC3F6 for 

TA5601 and TA5602, respectively) (Aghaee-Sarbarzeh et al., 2002; Chen et al., 1994; 

Kuraparthy et al., 2007). When the 5Mg introgression lines TA5602 and TA5601 were 

first characterized, genomic in situ hybridization tests against Aegilops comosa (M) 

seemed to show TA5602 had such a small 5Mg segment that the introgression was 

referred to as cytologically invisible or cryptic (Kuraparthy et al., 2007). Restriction 

fragment length polymorphism (RFLP) probes were used to further map the TA5602 

introgression relative to CS nullitetrasomic lines for group-5 chromosomes, showing 

the introgression was located on 5DS and constituted potentially less than 3.5% of 5DS 

(Kuraparthy et al., 2007). Compared to the other developed introgression lines derived 

https://www.zotero.org/google-docs/?Boz9Y0
https://www.zotero.org/google-docs/?mPq25L
https://www.zotero.org/google-docs/?mPq25L
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from the TA10437 and CS (Ph1) cross (including TA5601, which has an alien 

introgression replacing ~25% of 5DS), TA5602 was of particular interest due to its 

small introgression size. The smaller the introgression size conferring disease 

resistance, the less linkage drag of undesirable genes due to that introgression as well.  

Cereal crops, including wheat and rice, are known to have a high level of 

synteny and collinearity (Ahn et al., 1993; Devos & Gale, 2000; Keller & Feuillet, 

2000).  Of the Poaceae family, rice was of interest in early comparative genomics 

studies due to its relatively small genome size of 400 Mb and early available reference 

sequence. Using 16,000 physically bin-mapped expressed sequence tag (EST) to wheat 

deletion lines, Kuraparthy et al., (2009) showed the 5Mg segment introgressed into 5DS 

of TA5602 to be less than 3.3 centimorgans in length (Kuraparthy et al., 2009; L. L. Qi 

et al., 2004).  It was also suggested that there could be a high degree of collinearity 

between particularly 12L of rice and the Lr57 / Yr40 region (Kuraparthy et al., 2009).  

In wheat, recombination primarily occurs in the distal ends of chromosomes, 

increasing with distance from the centromere toward the telomeres (K. S. Gill et al., 

1993; Kulvinder S. Gill et al., 1996; Lukaszewski & Curtis, 1993). The Ph1 locus 

promotes homologous pairing and is responsible for polyploid wheat undergoing 

diploid-like chromosome pairing where 21 bivalents are formed between homologs 

during metaphase 1 (Martín et al., 2014, 2017; Riley & Chapman, 1958a). Gene 

mapping is based on recombination and interpreting recombination frequency as a 

reflection of the distance between genes and markers, with closer genes and markers 

being more likely to be linked and inherited together. This traditional approach for 

mapping is complicated when mapping genes within alien introgressions, because the 

https://www.zotero.org/google-docs/?iK6HnL
https://www.zotero.org/google-docs/?iK6HnL
https://www.zotero.org/google-docs/?1Zgv2g
https://www.zotero.org/google-docs/?1Zgv2g
https://www.zotero.org/google-docs/?tEWOgy
https://www.zotero.org/google-docs/?rsg92I
https://www.zotero.org/google-docs/?rsg92I
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Ph1 locus prevents homoeologue pairing and thus homoeologous recombination. 

Simply removing the Ph1 locus from wheat to allow homoeologous recombination 

within the alien introgression would lead to chromosomal rearrangements that affect 

the stability and fertility of wheat (Sánchez-Morán et al., 2001).  

Induced homoeologous recombination between wheat and alien chromosomes 

has been widely used in wheat germplasm programs. A recessive mutant allele of the 

Ph1 locus, ph1b, reduces the homoeologous recombination barrier and can be used to 

induce recombination between homeologs. However, elimination of Ph1 activity 

requires several rounds of crosses and selfing to create appropriate genetic backgrounds 

and then to clean up unwanted recombination between wheat chromosomes. These 

limitations prolong the generation time of gene transfers in wheat from alien 

germplasm. Nonetheless, this technique has been used successfully to enhance 

recombination. For example, suppression of Ph1 was used to introduce stripe rust 

resistance gene yr8 into wheat from Ae. comosa (Riley et al., 1968). It has been 

suggested that positive chiasma interference produced by an initial round of 

recombination would interfere with subsequent recombination events and reduce one’s 

ability to create subsequent smaller translocations (Lukaszewski, 1995). Yet there is an 

apparent genetic limit of the ability of chromosomes to pair even in the absence of a 

functional Ph1 allele. For example, barley and wheat chromosomes pair minimally in 

a ph1b background (Rey et al., 2015). Moreover, success of such events is further 

reduced if the alien chromosome with gene(s) of interest is evolutionarily rearranged 

and from that cannot pair with its wheat counterpart. 
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Another problem in mapping chromosomes of wild wheat relatives is the lack 

of genomic resources available compared to wheat. This can be solved primarily by 

developing the necessary resources or comparative genomics. With the advances in 

sequencing technologies and flow-sorting techniques, this limitation has begun to be 

addressed by wheat scientists. Tiwari et al. (2015) flow sorted and sequenced 

chromosome 5Mg with 50 x coverage using paired end reads from a wheat/Ae. 

geniculata disomic substitution line [DS 5Mg (5D)]. Single-gene fluorescence in situ 

hybridization with this assembly showed no major chromosomal rearrangements 

between 5Mg and wheat 5D (Tiwari et al., 2015). With this information, the well-

annotated wheat 5D sequence can be used to reflect the 5Mg sequence in mapping 

studies, both to facilitate 5Mg-specific marker development and in identifying genes of 

interest. 

The first approach to use wild and related germplasm for wheat improvement 

dates to the early 19th century, with wheat and rye hybrids (Wilson, 1873). Since then, 

thousands of wheat germplasm resources have been generated in the form of alien 

introgression lines, including addition, substitution, and translocation lines (Forsström 

& Merker, 2001; Friebe, Badaeva, et al., 1996; Friebe, Jiang, et al., 1996; Gill et al., 

2006; Schneider et al., 2008).  This large trove of germplasm provides a wonderful 

existing resource that could be used effectively in wheat breeding programs. However, 

since alien chromosomes do not pair with wheat chromosomes, they are inherited as a 

big linkage block, and bring many undesirable traits, making them unsuitable for elite 

cultivars. In this work we aimed to develop an approach to precisely map alien 

introgressions and genes from wheat’s distant gene pool. Initial screenings of 
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introgression germplasm have shown existing variation among the same chromosome 

arm of the same species. The wheat-Ae. geniculata disomic substitution line TA6675 

(donor Ae. geniculata accession TA10437) is resistant for leaf rust and stripe rust 

resistance genes (Kuraparthy et al., 2007), whereas the disomic addition line TA7659 

is highly susceptible for the same rust isolates. Decades of work on TA6675 produced 

the translocation lines TA5601 and TA5602, showing a small 5Mg fragment size of 

~25% and 3.5% on the short arm of chromosome 5D of wheat respectively. Both these 

translocation lines show presence of the leaf and stripe rust resistance genes Lr57 and 

Yr40.  

Because the 5Mg  tip of TA5602 and TA5601 will not pair with wheat 5DS, we 

normally would not be able to identify or precisely map the gene with linked marker 

information. This also limits our ability to positionally clone agronomically important 

genes from the secondary and tertiary gene pools of wheat. But by selecting resistant 

and susceptible introgression lines of the same chromosome, homologous pairing will 

be induced, and the subsequent recombination events can be used to precisely map 

targeted traits.  

To show the effectiveness of this approach, we used TA5602, which is a source 

of both the Lr57 and Yr40 genes and has less than 3.5% of the translocation from 

chromosome 5Mg, and crossed it with a leaf and stripe rust susceptible disomic addition 

line that contains a full 5Mg chromosome lacking Lr57 and Yr40  in a wheat 

background. Using this strategy, a wild type Ph1 locus will help ensure both the fertility 

of progeny and that pairing, and recombination, only occurs between segments of 

homologous alien chromatin and segments of homologous wheat chromatin, allowing 
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for the generation of an otherwise seemingly typical F2 mapping population. By 

combining this approach, with availability of genomic resources that we developed for 

chromosome 5Mg, we performed high-resolution mapping of the 5Mg segment 

containing agronomically important genes in wheat. This approach can be applied in 

any lab and will open new avenues to perform high-resolution mapping of genes from 

alien chromosomes in wheat. 

 

Genetic Mapping Lr57 Conferring Leaf Rust Resistance 

Positional cloning can broadly be divided into a fine mapping step and a 

candidate gene validation step. Traditional fine mapping by creating a mapping 

population is, however, complicated in undomesticated species that have been less well 

characterized, may lack genetic resources, and have no physical map. Here we describe 

the process of mapping the Lr57 gene in the introgression lines TA5602 and TA5601.  

 An F2 mapping population was previously created by crossing the rust resistant 

TA5602 line with the rust susceptible disomic addition line TA7659 [DS 5Mg (5D)]. 

Due to the wild type Ph1 promoting homologous pairing, the 5Mg segment of TA5602 

will only pair with the corresponding segment of TA7659 but still produce fertile 

progeny (Figure chapter 1.3). This similarly allows 5Mg recombination along the 

introgression, making it possible to map Lr57 and Yr40.  

 The F2:3 progeny of this cross were screened for leaf rust using the isolate 

PTRUS55 and stripe rust using the isolate AR90-1 while seedlings. Hypersensitive 

responses were occasionally seen in the parental lines, in agreement with past studies, 

indicating Lr57 and Yr40 could potentially be nucleotide binding leucine rich repeat 
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(NLR) type genes. The rust screenings also indicated that Lr57 and Yr40 are separate 

genes, as leaf and stripe rust resistance was not always inherited together. We noticed 

17 breaks points in recombinant lines for Lr57 and ~22 for Yr40.  

Marker data indicated that Lr57 is between 3.9 and 5.5 Mb on 5DS. In this 

region, between 4 and 4.3 Mb, there are three NLR genes annotated on the wheat 5D 

reference and one pseudo-NLR gene, making these genes strong candidates for Lr57. 

No recombination was indicated by our markers at 4, 4.2, or 4.3 Mb, preventing us 

from ruling out any of the NLR genes as candidates. However, through this study we 

have shown a way of feasibly mapping alien genes. This is a crucial step toward more 

easily incorporating the useful variation within wild relatives of wheat in breeding 

programs. Furthermore, a genetic linkage map of our mapping population as compared 

to the overall TA5602 introgression size shows the high resolution that can be achieved 

by this method. 

 

Materials and Methods 

Table 3.1. presents a detailed description of the plant materials used. The 

TA6675 line contains 20 pairs of wheat chromosomes and a chromosome pair 5Mg 

from Ae. geniculata replacing chromosome 5D of wheat. 

 

Genetic Mapping Population 

Resistant Ae. geniculata translocation line (containing Lr57 and Yr40 genes) TA5602 

was crossed with a susceptible wheat-Ae. geniculata disomic addition line for 
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Table 3.1: A list of wheat germplasm used in this study. 

Plant ID Plant species Type of 

germplasm 

Ploidy Description 

TA10437 Ae. geniculata Wild wheat (2n=4x; 

UUMM) 

Resistant to leaf, stripe, and 

stem rust diseases 

TA1800 Ae. geniculata Wild wheat (2n=4x; 

UUMM) 

Susceptible to leaf, stripe, and 

stem rust diseases 

WL711 T. aestivum Hexaploid wheat (2n=6x: 

AABBDD) 

A susceptible spring wheat 

cultivar 

TA6675 T. aestivum Hexaploid wheat (2n=6x: 

AABBDD) 

The TA6675 line contains 20 

pairs of wheat chromosomes 

and chromosome pair 5Mg from 

Ae. geniculata, substituting for 

chromosome 5D of wheat 

TA5601 T. aestivum Hexaploid wheat (2n=6x: 

AABBDD) 

A Wheat-Ae. geniculata 

translocation line with ~5% of 

5Mg short arm segment 

translocated on 5D 

TA5602 T. aestivum Hexaploid wheat (2n=6x: 

AABBDD) 

A Wheat-Ae. geniculata 

translocation line with ~20% of 

5Mg short arm segment 

translocated on 5D 

TA7659 T. aestivum Hexaploid wheat (2n=6x:44 

AABBDD+

5M) 

A disomic addition line where 

5Mg of a susceptible Ae. 

geniculata is added to Chinese 

Spring wheat  
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chromosome 5Mg (TA7659). From this cross, 15 F1 plants were grown.  F2 seeds from 

6 of the F1 plants were grown to develop an F2 population that was screened for leaf 

rust response. A further F2:3 population included 116 families screened again for leaf 

rust response and 112 lines screened for stripe rust response. These populations were 

used in this study for genetic mapping of Lr57.   

 

Previous Cytological Evaluations: Cytological Studies 

For meiotic analysis, spikes of interspecific F1 plants were fixed in Cornoy’s 

solution (6 ethanol: 3 chloroform: 1 acetic acid) for 24 hours and transferred to 70% 

ethanol. Anthers at various stages of meiotic division-I were squashed in 2% 

acetocarmine and the pollen mother cells (PMCs) were scored for chromosomal pairing 

in all the crosses. Photographs were taken with a digital camera (Canon PC1049, No. 

6934108049). Pollen stainability was measured by staining the pollen grains after 

squashing the anthers in Iodine-Potassium Iodide solution (I-KI). 

Generating 5Mg specific PCR Based Markers and Genotyping of a Mapping Panel 

The wheat 5D reference was used as the starting point for 5Mg-specific primer 

design, because Ae. geniculata chromosome 5Mg shares high synteny and collinearity 

with 5D, but 5Mg has no complete reference sequence itself (Tiwari et al., 2015). Our 

approach was to use 5Mg sequence with high 5DS homology as an approximation for 

identifying 5Mg sequences localized to our region of interest. Wheat 5DS gene 

sequences spanning 0 to 40 Mb were selected from the HighConfidenceGenesv1.1 

IWGSC JBrowse annotation track to serve as queries for command line BLAST against 
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a 5Mg scaffold derived from the rust-resistant Ae. geniculata accession TA10437 

(Camacho et al., 2009.; Consortium (IWGSC) et al., 2018; Tiwari et al., 2015). The 

wheat 5D and 5Mg assembly matches as well as high-scoring BLAST sequence 

matches from wheat 5A and 5B were aligned using GSP to design 5M-specific markers 

(Y. Wang et al., 2016).  One marker was found at approximately 4 Mb by using a 90K 

SNP array and identifying one SNP that showed a polymorphic allele between Ae. 

geniculata accessions TA10437 and TA2899 (S. Wang et al., 2014). To verify 5Mg-

specificity, primers were tested in duplicate on TA10437, the introgression lines 

TA5602 and TA5601, WL711, and TA7659. Primers that amplified WL711 or failed 

to amplify TA10437 were excluded from further testing. TA7659 contains a rust-

susceptible 5Mg chromosome, and so both amplification and failure to produce 

amplicons could be expected. Moving from the telomeric region to the centromeric 

region, it was predicted primers would change from amplifying both introgression lines 

and TA10437 to only amplifying TA10437 and TA5601, indicating the end of the 

TA5602 5Mg translocation. 

To distinguish PCR amplification failure from dominant marker polymorphism 

between the introgression lines and WL711, primers of interest were also multiplexed 

with internal control primers during PCR that could amplify uniformly across all lines 

and be distinguished by size on an agarose gel. 

If TA7659 and WL711 were not amplified by the 5Mg primers, those primers 

could serve as dominant markers for mapping Lr57 and Yr40 in the mapping population 

developed from the cross between TA7659 and TA5601. If a primer pair did amplify 
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TA7659, it was sequenced along with TA5602, TA5601 and TA10437, and the 

sequences were then aligned on Clustal Omega to identify any sequence 

polymorphism, including SNPs, deletions, etc., which were then verified by referring 

back to the ab1 sequences (Sievers & Higgins, 2014). Similarly, these sequence 

markers were then also used for mapping Lr57 and Yr40 in our mapping population. 

Screening Tests for Leaf Rust Resistance 

All the leaf and stripe rust phenotyping tests of the mapping population of 

TA5602 X TA7659 took place in Kansas, both at the F2 stage and F2:3 stage for reaction 

against leaf and stripe rust. The 172 F2 individuals along with parental lines TA7659, 

TA5601, TA5602, TA10437, and WL711 were first screened with leaf rust isolate 

MCDL at the two-leaf leaf seedling stage. In 2019, 116 of the F2:3 families, with 10 

plants grown per family, were phenotyped for leaf rust reactions with the isolate 

PRTUS55 at seedling stage following Kallia et al., 2015 (Kalia, 2015). All plant 

material tested for resistance to leaf rust was grown in a 1:1 vermiculite-soil mixture in 

pots. Ten seeds per parental accessions and control lines were planted between two pots 

and grown in a greenhouse with temperature maintained at 20±3°C. WL711 and 

translocation line TA5602 were used as controls. Urediniospores of leaf rust cultured 

stored at -80°C were heat shocked at 42°C for 6 minutes before inoculation. Ten-day 

old seedlings of the F2 population and controls were inoculated by spraying the 

seedlings with a suspension of urediniospores in Soltrol 170 isoparaffin light mineral 

oil (Chevron Phillips Chemical Company LLC, The Woodlands, TX). After the 

evaporation of the mineral oil, the inoculated seedlings were incubated in a dew 

chamber at 20±2°C for 24 hours. After 14 days of the inoculation the phenotypic data 

https://www.zotero.org/google-docs/?9WKtks
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on disease spread was recorded using the 0-4 Stakman scale as described in Roelfs 

(Table 3.2) (Roelfs, 1992) 

 

 

Table 3.2. Description of susceptible and resistant leaf rust scores as per Stakman 

scale. The disease severity can also be modified to one end or another by adding “+” 

or “-”. 

Stakman score Description Phenotype 

0 No uredinia or other macroscopic sign of infection immune response 

; Hypersensitive necrotic or chlorotic flecks without uredinia highly resistant 

1 Small uredinia surrounded by necrosis resistant 

2 Small to medium sized uredinia surrounded by necrosis moderately resistant 

3 Medium to large sized uredinia with or without chlorosis Susceptible 

4 Large sized uredinia without chlorosis highly susceptible 

 

 

 

Stripe Rust Phenotyping 

All stripe rust disease evaluation experiments were conducted in the greenhouse 

and growth chamber under controlled conditions. For seedling testing, all the entries 

i.e. TA5601, TA5602, TA7659, mutant 125-2, mutant 125-4, mutant 666-5 and WL711 

were grown in a 1:1 vermiculite: soil mixture in 4.5-cm-diameter pots. Five seeds per 

entry were planted in each of two pots and with the temperature maintained at 20±3°C. 

To evaluate for stripe rust, all the entries were inoculated with stripe rust race AR90-1 

in the greenhouse. Urediniospores of stripe rust race stored at -80°C were heat shocked 

at 42°C for 6 minutes before inoculation. Ten-day old seedlings of all the entries were 

https://www.zotero.org/google-docs/?wwzllM
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inoculated by spraying the seedlings with a suspension of urediniospores in Soltrol 170 

isoparaffin light mineral oil (Chevron Phillips Chemical Company LLC, The 

Woodlands, TX). The oil was allowed to evaporate, and the inoculated seedlings were 

incubated for 16-20 hours in a dew chamber at 12±2°C. After this, the seedlings were 

transferred to a growth chamber, with temperature settings of 12℃ at night and 15°C 

at day and a 16-hour photoperiod. Infection types (ITs) were recorded 18-21 days post 

inoculation, using a 0 - 9 scale (McNeal et al. 1971). Plants with infection types from 

0-2 were considered resistant. Plants scoring between 3-5 were considered moderately 

resistant while those scoring between 6 and 9 ranged from susceptible to highly 

susceptible. 

The same procedures were followed to phenotype the 112 F2:3 families derived 

from the cross of TA7659 X TA5602 for stripe rust response. Ten seeds of each F2:3 

family as well as parental lines were grown in pots and were inoculated with stripe rust 

race AR90-1 at the two-leaf stage. Data recording was done according to the method 

described above. 
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Table 3.3. Description of susceptible and resistant stripe rust scores as per the 

McNeal scale. The disease severity can also be modified to one end or another by 

adding “+” or “-”. Adapted from Roelfs  (Roelfs, 1992). 

 

McNeal scale Description Phenotype 

0 No uredinia or other macroscopic sign of infection immune 

1 No uredinia but necrotic flecks very resistant 

2 No uredinia but more necrotic flecks in stripes resistant 

3 Few uredinia with necrosis/chlorosis moderately Resistant 

4 Light uredinia stripes with necrosis/chlorosis stripes light moderate 

5 Some uredinia stripes with necrotic/chlorotic stripes moderate susceptible 

6 Moderate uredinia stripes with necrotic/chlorotic stripes high moderate 

7 Many uredinia stripes with necrotic/chlorotic stripes moderate susceptible 

8 Many uredinia stripes with chlorosis susceptible 

9 Many uredinia stripes without chlorosis very susceptible 

 

 

DNA Extractions, PCR, and Sequencing: 

Parental leaf tissue was collected on ice from plants at the seedling stage and 

then stored at -80℃ before extraction. DNA was extracted using the Kingfisher Flex 

DNA extraction robot with the Biosprint 96 DNA extraction kit (Qiagen, Valencia, CA, 

United States) and then quantified. DNA samples were diluted to 25 ng/µL. For the 

mapping population, a similar approach was used, except leaf tissue was collected in 

https://www.zotero.org/google-docs/?bzRw5p
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bulk from 10 individual F3 plants from the same family for each of the families in the 

segregating population.  

PCR was carried out using Bioline MyTaq PCR kits (Bioline, Taunton, MA, 

United States) in 10 µL reactions. Touchdown PCR profiles were set up in BioRad 100 

thermocyclers (BioRad, Hercules, CA, United States) with these conditions: 95℃- 5 

min for the first denaturation step, six cycles of 95℃- 1 min, 63℃- 1 min with a 

decrease of 1℃ per cycle, and 72℃- 2 min, followed by 25 cycles of 95℃- 1 min, 

52℃-56℃ for annealing depending on primer melting temperatures-1 min, and a final 

extension of 72℃- 7 min. 

Half of the PCR product volume would be visualized on 1% agarose gels, while 

the second half would be reserved for sequencing, to confirm amplification specificity 

to the predicted 5Mg region.  Sanger sequencing was done on the ABI3739xl (Applied 

Biosystems, Foster City, CA, United States). FASTA files were bulk extracted from 

the ab1 files using Biopython and then compared to the original 5Mg scaffold.  

 

Mapping of Lr57 and Yr40 Genes: 

From the 172 leaf rust phenotyped F2 families, 116 leaf phenotyped F2:3 

families, and 112 stripe rust phenotyped F2:3 families, each derived from the cross of 

TA5602 (resistant source for both Lr57 and Yr40) with the disomic addition line 

TA7659 (susceptible for both the genes), were used to phenotype for Lr57 and Yr40. 

The mapping population was genotyped using 5Mg specific markers using lab-based 

PCR assays. Genetic mapping for the Lr57 and Yr40 genes was performed by 

combining genotypic and phenotypic datasets. 
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Genotyping and Phenotyping of the F2 Mapping Population and Evaluation of the 

F2 Derived F2:3 Lines.  

 

Estimation of the Size of the 5Mg Segment in TA5601 and TA5602: 

To estimate the size of the 5Mg translocation in the translocation lines TA5601 

and TA5602, PCR based markers were developed using comparative genome mapping 

of highly collinear 5D sequences of wheat with chromosome 5Mg of Ae. geniculata. 

PCR based 5Mg gene specific markers were assayed at every Mega base up to 60 Mb 

to identify breakpoints on 5Mg.5D translocations 

 

Estimation of Mapping Resolution of the F2:3 Population with Respect to the 5Mg 

Region: 

Markers that were shown to be polymorphic between TA7659 and TA5602 

were then used to genotype the TA7659xTA5602 mapping population. Because DNA 

of the mapping population was composed of bulked tissue from individual plants from 

the same family, both the families showing resistance and those with heterozygous 

phenotypes would appear the same on a gel given a dominant 5Mg resistant marker. 

Heterozygous and homozygous resistant alleles could be differentiated accurately with 

sequence-based markers. Genotyping data was then used to create a genetic map using 

R/qtl/, which utilizes hidden Markov models to better account for the genotyping 

information of dominant markers, and centimorgans were calculated with the Kosambi 

function (Broman et al., 2003; Kosambi, 1943). Creation of a genetic linkage map 
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helped to verify the estimated 5Mg amplicon distributions across 5Mg and collinearity 

with 5D. 

 

RESULTS 

Evaluation of 5Mg Translocation Size in the Resistant Introgression Lines 

TA5601 and TA5602 

 

 

We developed 24 5Mg specific markers using the high-quality resources 

available to us. Previous results published from our group indicated that 5Mg and 5D 

have high synteny and collinearity regarding gene order. This finding means we can 

use the order of wheat 5D genes to calculate the size of 5Mg translocations in TA5601 

and TA5602. Our 24 5Mg specific markers only amplify in 5Mg but not in CS 

(reference wheat) or WL711 (parental line for the two introgression lines). These 

markers spanned 1.0 Mb to 100.0 Mb, as per the 5D chromosome of reference wheat.  

 

Confirmation of Accurate Marker Design 

 

 

Multiple markers were developed with 5Mg -specificity to characterize the 

TA5602 5Mg introgression size by looking for dominant marker polymorphism 

between TA5602, TA5601, TA10437 and WL711. To confirm that any lack of 

amplified product from TA5602 was not due to PCR failure, other primers were used 

as internal controls through multiplexing. These internal control primers amplified 

products of different sizes, chosen in order to be distinguishable from the PCR 
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product of interest (Figure 3.1). This confirmed that there were no issues with PCR 

failure amplifying TA5602 and true dominant markers could be found.  

 

 

Figure 3.1: 5Mg dominant markers specific to resistant Ae. geniculata. A marker 

amplifying a segment of leaf rust resistant Ae. geniculata at 4 Mb (upper band) 

multiplex with an internal control (lower bland) to screen for PCR failure. Only the 

introgression lines TA5602, TA5601, and the parental line TA10437 show 

amplification due to the 4-Mb 5Mg marker. The rust-susceptible Ae. geniculata line 

TA1800, TA7659, and Chinese Spring (CS) were also included to further show 

resistant 5Mg specificity. 5Mg-specific marker 4.3 Mb (lower band) multiplex with 

internal control (upper band). The rust susceptible wheat lines WL711, disomic 

addition line TA7659, CS, and TA1800 all fail to amplify the 5Mg resistant Ae. 

geniculata segment (upper band).  

 

The Introgression Size of TA5602 

Markers were developed spanning the length of 5Mg, first going up to 

approximately 17 Mb (Table 3.4). From our data, markers at a location greater than or 

equal to 9.548 Mb consistently amplified TA5601 5Mg, but not WL711 or TA5602. 

These markers also consistently amplify TA10437 and generally TA7659, which both 

have full length 5Mg chromosomes (Figure 3.2). Failure to amplify TA7659 is an 

indication that a marker is specific to rust resistant 5Mg. It was also consistently 

shown that any marker amplifying segments of 5Mg at locations less than or equal to 
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8.9 Mb could amplify both TA5602 and TA5601. In summary, TA5602 5Mg 

introgression constitutes somewhere between 8.9 and 9.548 Mb of 5DS.  

Table 3.4: List of primers designed to characterize the 5Mg introgression size of 

TA5602. The approximate amplification location is based on the 5Mg introgression 

target location in relation to wheat chromosome 5D. All primers that amplify TA5602 

and TA5601 also amplify TA10437. None of the primers amplify WL711, as 

confirmed by internal controls, suggesting 5Mg-specificity. ‘+’ and ‘-’indicate 

presence or absence of amplification. 

 

Position on 5D Amplifies WL711 Amplifies TA5601 Amplifies TA5602 

5Mg_17Mb - + - 

5Mg_9.9Mb - + - 

5Mg_9.7Mb - + - 

5Mg_9.548Mb - + - 

5Mg_8.9Mb - + + 

5Mg_8Mb - + + 

5Mg_7.8Mb - + + 

5Mg_7.4Mb - + + 

5Mg_6Mb - + + 

5Mg_5.6Mb - + + 

5Mg_5.5Mb - + + 

5Mg_4.3Mb - + + 

5Mg_4.2Mb - + + 

5Mg_4Mb - + + 

5Mg_3.9Mb - + + 

5Mg_3.6Mb - + + 

5Mg_1.79Mb - + + 

5Mg_1.5Mb - + + 
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Figure 3.2: Characterizing the 5Mg introgression size of TA5602 with 5Mg-specific primers. Markers 

before 8.9 Mb consistently produce amplicons in both TA5602, TA5601 and TA10437. Amplicons after 

9.548 Mb consistently fail to produce amplicons in TA5602 but do produce amplicons in TA5601 and 

TA10437. This indicates the introgression size of TA5602 is between 8.9 and 9.548 Mb on 5DS. The 

9.4 Mb showed potentially non-specific binding to wheat 5D. 

 

The Introgression size of TA5601 

 

Additional primers were also designed to characterize the introgression size of 

TA5601 using the same method of designing 5Mg -specific markers for TA5602. 

Primers were designed continuing from 17 Mb up to 100Mb and again tested on 

TA5601, TA10437, TA7659, and WL711 (Table 3.5). TA5602 was also included in 

these primer tests and failed to be amplified as expected given its smaller introgression 

size. From these results, we were able to show that TA5601 and TA10437 continuously 

both amplified up until 50 Mb. After Mb, only TA10437 and TA7659 can be amplified. 

This confirms the introgression size of TA5601 is between 50 and 60 Mb (Figure 3.3).  
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Table 3.5: List of primers designed to characterize the 5Mg introgression size of 

TA5601. The approximate amplification location is based on the 5Mg introgression 

target location in relation to wheat chromosome 5D. All primers that amplify TA5601 

also amplify TA10437. None of the primers amplify WL711, as confirmed by internal 

controls, suggesting 5Mg-specificity. ‘+’ and ‘-’indicate presence or absence of 

amplification. 

 

Position on 5D Amplifies WL711 Amplifies TA10437 Amplifies TA5601 

5Mg_60Mb - + - 

5Mg_50Mb - + + 

5Mg_45Mb - + + 

5Mg_35Mb - + + 

 

 

 
Figure 3.3 Characterizing the 5Mg introgression size of TA5601 with 5Mg-specific 

primers. Markers before 50 Mb consistently produce amplicons in both TA5601 and 

TA10437. Amplicons at 60 Mb can be produced by TA7659 and TA10437, but not 

TA5601, suggesting this is past the introgression site. This means the TA56015Mg 

introgression size is between 50 and 60 Mb. 

 

Unique Mapping Scheme for Alien Germplasm 
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Estimation of the actual fragment lengths of the translocation lines provided 

very useful information to perform experiments precisely mapping the Lr57 and Yr40 

genes, as they are now confirmed to be in a very small physical interval of 9.548 Mb. 

In similar work, Bansal et al. reported localization of two important genes Lr76 and 

Yr70 from the syntenic region of Ae.  umbellulata. Interestingly they also reported 

mapping of these two genes in the terminal region of 5D.5U translocation lines.  Bansal 

et al tried to reduce this interval by developing a large F5 population of 1404 

recombinant inbred lines, but the 9.47 interval was not reduced any further. 

To establish an efficient approach to reduce this interval, we developed a high-

resolution mapping population by crossing TA5602 (3.5% of 5Mg) with TA7659 (full 

chromosome 5Mg), so that pairing can be induced between 5Mg chromosomes from 

resistant and susceptible introgressions lines differing for the presence of absence of 

the Lr57 and Yr40 genes. To precisely map 5Mg specific genes, we crossed the Wheat-

Aegilops geniculata translocation line TA5602 (resistant for leaf and stripe rust 

diseases) with the leaf and stripe rust susceptible wheat-Aegilops geniculata disomic 

addition line for chromosome 5Mg TA7659. A description of the germplasm is 

provided in Table 3.1. The rationale behind these crosses were to allow 5Mg resistant 

and susceptible chromosomes to pair and for the subsequent recombination events 

between these chromosomal regions to enable us to map resistant genes by assaying 

them with polymorphic markers. Figure 3.4 explains the crossing scheme for this work.  
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Figure 3.4. Schematic presentation of the 5Mg genomic resources and approach used 

in this study to perform high-resolution genetic mapping of 5Mg fragments coming 

from two different accessions showing differential responses against leaf rust and stripe 

rust pathotypes. 

 

Cytological Analysis 

Since in this study a cross was made between two alien introgression lines, to 

confirm the pairing behavior, we performed cytological analysis of the F1 plants. 

Developing spikes were fixed at the meiosis and chromosome pairing data was 

recorded (Figure 3.5). 

 

 

Figure 3.5. Chromosome pairing data suggesting development of a trivalent between 

the tip of the 5Mg resistant chromosome and full 5Mg susceptible chromosome.  
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Normally, in bread wheat, cytological analysis at meiosis shows 21 bivalents 

(in a ring-like structure showing pairing of the chromosomes). In this cross, we were 

expecting chromosome pairing between the tips of the 5Mg fragment of TA5602 and 

the full chromosome of 5Mg from TA7659. Since the long arm of the 5D (TA5602) 

and 5Mg (TA7659) will not pair, we expected to see a trivalent in the F1 plants. Analysis 

of about 500 PMC clearly indicated the presence of a trivalent in all the PMCs scored 

with 1-2 expected univalent and 19-20 bivalents. Trivalent presence clearly indicated 

5Mg pairing between TA7659 and TA5602. In the F2 population derived from the plants 

showing a trivalent, recombination events are expected between 5Mg resistant and 

susceptible chromosomes. We used the F2 seeds from F1 plants (2013-91-11; trivalent 

were confirmed in cytological analysis). A population of 148 F2 individuals were grown 

and evaluated to test for applicability for mapping purposes.  

 

Phenotyping leaf and Stripe rust 

 

Figure 3.6 shows phenotyping results of WL711 TA5601, TA5602, TA7659 

for resistance against the leaf rust isolate PRTUS55. Interestingly, TA5601 showed 

consistent scores of  “;”, indicating hypersensitive flecks but no uredinia spores, as per 

the Stackman scale (Table 3.2) (Roelfs, 1992) while TA5602 received scores between 

1 and 1+. This suggested that TA5601 contained a second gene for resistance, which 

TA5602 lacks. TA5602 EMS mutants consistently showed scores of between 7-8. 

Susceptible Ae. geniculata 5Mg addition line TA7659 received consistent scores of “3” 

and WL711 received scores between 3+ and 4. 

https://www.zotero.org/google-docs/?ekBwVM
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One hundred and sixty-two plants of the F2 population were phenotyped, out of 

which 122 were found to be resistant and 40 were found to be susceptible, fitting the 

genetic ratio of 3:1. This indicates Lr57 is a single, dominant gene in TA5602.  

One hundred and sixteen F2:3 families were tested further for leaf rust response 

and 32 were found to be homozygous resistant, 55 were found to be heterozygous, and 

29 were found to be homozygous susceptible, fitting an expected 1:2:1 segregating 

ratio.  

Stripe rust inoculation at the seedling stage was done for the parental set and 

one hundred and twelve of the F2:3 families. The susceptible parental wheat line WL711 

showed consistent high susceptibility scores of between 7-8 on the stripe rust McNeal 

scale after inoculation with stripe rust isolate AR90-1 (McNeal et al., 1971). TA7659 

similarly showed consistent scores between 7 and 8. Interestingly, introgression line 

TA5602 consistently showed resistant scores between 1-2, while TA5601, which 

contains a larger amount of Ae. geniculata chromatin, showed a consistent score of 0 

(Figure 3.7), indicating the possibility of additional resistance gene in TA5601. 

 In the 112 F2:3 families, 22 families were found to be homozygous resistant, 58 

were found to be heterozygous, and 32 were found to be homozygous susceptible.  
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Figure 3.6: Leaf rust phenotyping. Leaf rust inoculations during the seedling stage 

with the isolate PRTUS55. Inoculations pictured include the disomic addition line 

TA7659 [DS5Mg (5D)]. The introgression wheat-Ae. geniculata introgression lines 

TA5602, and TA5601. TA5601 shows stronger resistance than TA5602. Also shown 

are examples of rust susceptible and rust resistant F2:3 individuals. 

 



 

 

45 

 

 

 
Figure 3.7: Stripe rust results. Stripe rust isolate AR90-1 inoculations during the 

seedling stage. Inoculations on the wheat line WL711 and the disomic addition line 

TA7659 [DS5Mg (5D)]. The introgression wheat-Ae. geniculata introgression lines 

TA5602, and TA5601. TA5601 and TA5602 both show high stripe rust resistance. 

 

Initial Lr57 and Yr40 Analysis: 

 

From the phenotyping data, multiple F2:3
 families were found that showed 

discrepancies between leaf and stripe rust responses (Table 3.6). If Lr57 and Yr40 were 
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one gene showing pleiotropic effects, we would expect both leaf and stripe rust 

resistance and susceptibility to be inherited together. From our data, we expect Lr57 

and Yr40 to be separate genes. Given we had access to an RNAseq data set comparing 

WL711 and TA5602 response to leaf rust, we decided to focus primarily on mapping 

Lr57.  

Table 3.6: A subsection of lines derived from a cross between TA5602 and TA7659 

that were phenotyped both with the leaf rust isolate PRTUS55 and the stripe rust 

isolate AR90-1. Given the differences in phenotype scores for leaf and stripe rust, 

there is evidence that Lr57 and Yr40 are separate genes. Leaf rust scores are between 

1 and 4, with “;” indicating hypersensitive fleck formation. The individual leaf and 

stripe rust scores are based on the Stackman scale and McNeal scale respectively. “A” 

represents resistant lines, “B” susceptible lines, and “H” are heterozygous lines.  

 

F2:3 Family Leaf Rust Stripe Rust 

25 H S 

30 R S 

31 H S 

35 H S 

36 H S 

154 H S 

57 H S 

69 H R 

84 R H 

128 R H 

129 S H 

139 R H 

148 S H 

153 H R 

 

The Lr57 Candidate Region 

Ten of the markers used to characterize the TA5602 introgression size were 

used as part of mapping Lr57 (Table 3.7 and Table 3.8).  
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Table 3.7: The primers used to map Lr57. +/- refers to dominant, gel-based 

markers (presence/absence on resistant/susceptible lines). 

Marker Name Polymorphism 

1.5Mb +/- 

1.79Mb +/- 

3.6Mb +/- 

3.9Mb +/- 

4Mb +/- 

4.2Mb +/- 

4.3Mb +/- 

5.5Mb C/T 

5.6Mb C/T 

6Mb G/T 

 

From our genotyping and phenotyping data, Lr57 was determined to be between 

approximately 3.6 and 5.5 Mb on 5Mg and closely linked to two markers in particular 

at 4.2 and 4.3 Mb. From the wheat 5D reference annotation, this region contains three 

NLR genes (TraesCS5D02G005300, TraesCS5D02G005400, and 

TraesCS5D02G005600) and a pseudo-NLR (TraesCS5D02G005416) gene between 

4.0 and 4.3 Mb, with the next closest NLR genes being located at roughly 10 and 1.8 

Mb. Because of this region of interest, observations of seedling-stage resistance, and 

Lr57 showing hypersensitive responses against certain rust isolates like PNMQ 

(Kuraparthy et al., 2007), these NLR genes became the main candidates of interest. 
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Two more markers were developed at 3.9 and 4 Mb, with the 4Mb marker being found 

by using BLAST of 
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Figure 3.8: An example of a SNP based marker (targeting 5Mg that has homology 

with the wheat gene TraesCS5D02G006800). T/C SNP.  
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the 5D TraesCS5D02G005300 gene sequence against a 90K SNP array and accessing 

the resulting alleles for differences between TA10437 and TA2899 (Shichen Wang et 

al., 2014). From these markers, we could see that any Lr57 candidate gene clearly 

would be between at least 3.9 and 5.5 Mb (Table 3.9). No differences were seen 

between the markers genotype data using the 4, 4.2 and 4.3 Mb markers, preventing us 

from ruling out any of the NLR candidate genes in this region. 

 

 

Table 3.8: A subsection of marker scores as tested on the mapping 

population derived from a cross between leaf rust susceptible disomic addition line 

TA7659 and leaf rust resistant introgression line TA5602, as phenotyped at the F2:3 stage by leaf 

rust isolate PRTUS55. Each marker before 5.5 Mb are based on gel-polymorphism. Scores of 

‘+” refer to the TA5602 resistant genotype and a score of “-“ refers to the TA7659 susceptible 

genotype.  Line 114 shows that the candidate region will be after 3.9 Mb while lines 49 and 156 

are both examples of the candidate region being before 5.5 Mb. 

 

 

These 10 polymorphic markers were used to genotype our mapping population 

with 172 F2 plants, 116 F2:3 plants phenotyped for leaf rust response, and 112 F2:3 plants 

phenotyped for stripe rust response. We were able to develop a tentative map of the 

9.548 Mb TA5602 introgression region. Genetic mapping of this region resulted in a 
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genetic map of the first 6 Mb of this region and yielded a total map length of 11.4 

centimorgans (Figure 3.10). The map order of our markers was in perfect collinearity 

with a reference chromosome of 5D of bread wheat.  

Interestingly, Bansal et al., (2020) recently published work on a similar project, 

attempting to map the Lr76 and Yr70 genes using 1404 F5 recombinant inbred lines 

derived from a wheat-Ae. umbellulata translocation line pau16057, where 5DS was 

replaced with 5U, was crossed with WL711. In their project, 27 5U-KASP markers 

identified a single 9.47 Mb non-recombinant 5U block on 5D, which is not surprising 

given the Ph1 loci will make homoeologous recombination between 5D and 5U 

unlikely. Due to the lack of recombination, further narrowing of their candidate region 

was not possible. This shows the power of our mapping approach, where fewer markers 

(n=10) on a smaller population (n=116) allowed us to narrow down the Lr57 candidate 

region to a small interval between 3.9 and 5.5 Mb.  

 

https://www.zotero.org/google-docs/?xMDiCE
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Figure 3.9: Left: the map of the 5U-5D short arm of the introgression line pau16057 as 

developed by Bansal et al. 2020. In red is the polymorphic region between pau16057 

and 5D as identified with 27 KASP markers on a 1404 F5 population. However, no 

recombination was identified in this region in the F5 population. Right: Genetic map 

of the tip of chromosome 5Mg based on the mapping population derived from TA5602 

x TA7659. A leaf rust mapping population of 172 F2 plants and 116 F2:3 plants were 

developed for genotyping and phenotyping. In red is the candidate Lr57 region with 

NLR genes highlighted in red. This map was developed from screening with 10 

polymorphic markers. This shows the relatively high recombination mapping power of 

our mapping technique. 

 

 

Mapping Resolution 

Availability of the 5Mg genetic map spanning a 6.0 Mb region provided us an 

opportunity to calculate mapping resolution of the novel mapping scheme we proposed. 
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Total physical length assayed in this study was 6 Mb and using 10 markers a genetic 

map length of 11.4 centimorgans was generated. So, map resolution of the small 

mapping population was estimated as 526 Kb per centimorgan (6.0 Mb/11.4 cM). This 

is a significant achievement considering limitations in recombination-based mapping 

of alien germplasm. 

Discussion 

It was previously hypothesized that TA5602 constituted less than 3.5% of 5DS 

and could be characterized as a cryptic introgression due to being “cytologically 

invisible” with GISH probes (Kuraparthy, 2007). To test this, we were able to first 

design markers confirmed to be Ae. geniculata 5Mg-specific and, in doing so, showed 

the value of comparative genomics in facilitating alien chromosome primer design.  

Well-characterized wheat reference sequence can be aligned against less-well-

characterized wild wheat relative sequences to facilitate easy primer design.  

From our marker data, we can clearly see that the TA5602 introgression size is 

somewhere between 8.9 and 9.548 Mb on 5DS. At 9.548 Mb or greater, markers 

consistently fail to amplify TA5602 but do amplify the larger 5Mg 

chromosome/segment of TA10437 and TA5601. We now know that wheat 

chromosome 5D is 566 Mb, making the TA5602 introgression constitute 

approximately 1.7% of 5D (Consortium (IWGSC) et al., 2018).  

Similarly, we used the same methodology to characterize the introgression size 

of TA5601, comparing TA5601 versus TA10437 amplification. This showed the 

introgression size of TA5601 is between 50 and 60 Mb. During the process of 

https://www.zotero.org/google-docs/?H71cEY
https://www.zotero.org/google-docs/?dMkn2U
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characterizing the introgression lines, multiple polymorphic markers were found 

between the leaf and stripe rust resistant introgression lines and TA10437 versus the 

leaf and stripe rust susceptible line TA7659. These markers were then used to facilitate 

mapping of Lr57 and Yr40.  

 In this work, we were able to develop an alternative approach to mapping alien 

introgressions that involves crossing a translocation line of interest with a disomic 

addition line, allowing only small regions of interest to recombine for a mapping 

population. Using this approach, a wild type Ph1 locus will help ensure both the fertility 

of progeny and that pairing and recombination only occurs between segments of 

homologous alien chromatin and segments of homologous wheat chromatin, allowing 

for the generation of an otherwise seemingly typical F2 mapping population. 

Through use of polymorphic dominant, gel-based markers as well as 

sequencing-based markers, we were able to determine the Lr57 candidate region would 

be between 3.9 and 5.5 Mb. In this region, there are four annotated genes, three of 

which are NLR type genes, as based on the Chinese Spring wheat reference. This is not 

uncommon, as resistance genes are known to appear in clusters (Michelmore & 

Meyers, 1998). An NLR gene as a candidate for Lr57 is what would be expected from 

the phenotyping data gathered from the parental lines, where seedlings showed 

resistance. We also saw TA5601 had stronger stripe rust resistance than TA5602, 

suggesting TA5601 had a second stripe rust resistance gene that TA5602 lacked. This 

https://www.zotero.org/google-docs/?gt9Tv4
https://www.zotero.org/google-docs/?gt9Tv4
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was later confirmed by a recently published paper that designated YrAg as a newly 

found Yr gene unique to TA5601 and absent in TA5602 (Kumar, 2020). 

Interestingly, our phenotyping data showed leaf rust and stripe rust resistance 

were not always inherited together, ruling out the possibility that Lr57 and Yr40 are 

one gene showing pleiotropic effects.  

There are two notable bottlenecks when it comes to fine mapping in tertiary 

gene pool members: the Ph1 locus causing unfavorable conditions for homoeologous 

recombination and a lack of genomic resources. This shows that it is possible to use 

introgression lines crossed with disomic addition lines to overcome the challenges of 

the Ph1 locus and map alien genes like Lr57. We have also shown we can use the better-

characterized wheat reference sequence as a proxy for 5Mg, allowing us to create 5Mg-

specific markers to fine map alien genes.  

 

 

  

https://www.zotero.org/google-docs/?odxtsx
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Chapter 4: Physical Mapping and Identification of a Lr57 

Candidate Gene 

Abstract 

Initial genetic mapping yielded a 2.0 cM flanking interval for the Lr57 locus. 

Since the genetic population still had mapping resolution to saturate this interval, we 

first tried to add more polymorphic markers to further narrow the Lr57 candidate 

region. The addition of one more marker at 5.1 Mb was not able to reduce the Lr57 

candidate region-other markers likely still could. Our group’s work on chromosome 

5Mg clearly established very high collinearity between 5Mg and 5D chromosomes, 

meaning the 5Mg contigs can be ordered by alignment to the reference 5D of wheat. 

Additionally, it suggested that by using flanking markers of the Lr57 region, we can 

perform chromosomal landing with the reference 5D and make comparison to the 5Mg 

assembly. Our eventual physical map of the Lr57 region spanned a 1.1 Mb interval 

(3.97 to 5.00 Mb). Annotation of the 5Mg region by comparison to the 5D reference 

map identified 7 candidate genes in the Lr57 physical interval. To narrow down the 

number of candidate genes for a final validation study, we used gene ontology studies 

as well as transcriptome data to rule out unrelated candidate genes. Our collaborators 

at PAU Ludhiana have generated RNAseq data of the 5Mg translocation line TA5602 

and control wheat line WL711 after leaf rust inoculation with the isolate 77-5 (Yadav 

et al., 2016). This study found a higher amount of nucleotide binding and leucine rich 

repeat (NLR) genes expressed in TA5602, with differential expression of genes being 

highest 12 hours after inoculation. Since we have already delineated the Lr57 region to 
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a very small physical interval, this expression data set provides a great resource to 

identify any Lr57 candidate gene.  Our goal was to reassemble the transcriptomes of 

TA5602 and WL711 while consulting the mapped Lr57 candidate region as a reference. 

Contigs of 5Mg resistant scaffold developed by Tiwari et al., (2015) were used to create 

a physical map of the majority of the Lr57 candidate region, spanning between 3.9 and 

5 Mb and served as the reference for aligning de novo WL711 and TA5602 transcripts. 

Any transcript that was differentially expressed but was outside of our Lr57 region was 

not included in the list of candidate genes.  Out of 7 candidate genes from the mapped 

Lr57 physical region, only AE5M2G005600 (TraesCS5D02G005600 on 5D) showed 

differential expression at 12-hours post-inoculation. Our results indicated that the 

candidate gene AE5M02G005300 (TraesCS5D02G005300 on 5D) at 4Mb was highly 

differentially expressed in our candidate region at 12 hours according to DESeq2 and 

EdgeR. However, this gene had higher expression in WL711 (susceptible wheat), not 

TA5602.  Only one candidate gene AE5M2G005600, an NLR gene, showed higher 

expression in the resistant translocation line and was within our Lr57 physical interval. 

A de novo transcriptome assembly of mock treated TA5602 did not appear to generate 

reads that could align to AE5M2G005600 at a significant level, suggesting this gene is 

induced in TA5602 after rust inoculation.   

Given Lr57 shows an NLR-type seedling resistance against leaf rust, this is a 

strong candidate gene and validation of this gene is underway.  
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Introduction 

Availability of unique germplasm, a genetic mapping population, and genomic 

resources put us in a unique position to perform positional cloning of the Lr57 gene. 

Tiwari et al, 2014, and Tiwari et al, 2015, developed pipelines and genomic resources 

to map and characterize 5Mg specific genes. Combining advances in NGS chemistries, 

availability of reference genomes of wheat, wheat’s diploid and tetraploid progenitor 

species, and pasta wheat provides us tools and resources to make swift advances in 

isolating agronomically important genes from distant gene pools of wheat.    

Physical Mapping and Candidate Gene Identification  

 Creating accurate physical maps of genetic sequences is usually a challenging 

task, particularly in highly repetitive and large polyploid genomes like those of the 

Triticeae family. The recently published Chinese Spring wheat reference, the 

assemblies for Ae. tauschii and emmer wheat, and the maize pangenome, all utilized 

DenovoMAGIC2 with high-coverage short Illumina reads to create their de novo 

genome assemblies (Consortium (IWGSC) et al., 2018; Lu et al., 2015; G. Zhao et al., 

2017). This data was generally integrated along with numerous other techniques, such 

as POPSEQ and Hi-C data, to generate final reference sequences. However, proprietary 

software such as DenovoMAGIC2 can be something of a black box in terms of function 

and can be both computationally and monetarily prohibitive to use. In published, open 

source de novo genome assemblers, variations of splitting DNA reads into K-mers 

(smaller substrings of the DNA reads of length “K”) for de Bruijn graph-based contig 

assembly and then scaffold assembly is common. Overlapping raw DNA reads 

https://www.zotero.org/google-docs/?tM4U1c
https://www.zotero.org/google-docs/?tM4U1c
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themselves should not typically be used for genome assembly, particularly of genomes 

like that of wheat. There are several reasons this is the case. First, this can quickly turn 

into an NP-complete problem, meaning the assembly cannot be solved efficiently- for 

example, trying to assemble a million reads would require computationally evaluating 

a trillion pairwise alignments (Compeau et al., 2011). Furthermore, simplified 

approximations of this approach, such as via the “greedy” algorithm, can fail to 

assemble repetitive sequences (Schatz et al., 2010). Paired-read sequencing, counting 

K-mer frequency, and de Bruijn graphs can help resolve such issues when assembling 

Triticeae from short reads, as can long read sequencing like that offered by PacBio  

(Compeau et al., 2011).  

Tiwari et al. (2015) previously assembled the NGS assembly of resistant 

chromosome 5Mg using SOAPdenovo, a de Bruijn graph-based assembler (Li et al., 

2010; Luo et al., 2012; Tiwari et al., 2015).  The 5Mg assembly resulted in ~246,000 

contigs with a length ≥500 bp and a mean coverage depth of 13 ×. Assembled repeat‐

free sequences were then used for chromosome structure analysis, gene detection and 

construction of a virtual gene order map. About 1000 5Mg contigs were larger than 10 

Kb. Overall this assembly provided a valuable resource for functional isolation of 

agronomically important genes from chromosome 5Mg. Due to the now available 5D 

reference sequence and its high level of synteny and collinearity with 5Mg, we could 

use comparative genomics to facilitate the construction of a 5Mg physical map in our 

narrow Lr57 candidate region from the 5Mg scaffold. We were able to order the 5Mg 

pre-assembled contigs and orient them within the candidate region based on 5D gene 

orientation supplemented with our own sequencing to generate a physical map.   

https://www.zotero.org/google-docs/?JC07ra
https://www.zotero.org/google-docs/?HOfUX5
https://www.zotero.org/google-docs/?ecnjj0
https://www.zotero.org/google-docs/?1SlNjP
https://www.zotero.org/google-docs/?1SlNjP
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Transcriptome assemblies combined with reference genomes provide a 

powerful resource to identify candidate genes underlying a trait of interest. Recently 

the transcriptome landscape of wheat has been developed using a vast set of RNAseq 

datasets, allowing us to quantify the expression of candidate genes during 

developmental processes and biotic and abiotic stresses. Normally genes related to 

NLR gene families show differential gene expression if challenged by pathogens. 

Yadav et al., 2016, conducted an RNAseq experiment on WL711 and the near 

isogenic line TA5602 (IL T756) (Yadav et al., 2016). In that study, the rust race P. 

triticina 77-5 was used to inoculate plants and RNA samples were collected at 0, 12, 

24, 48, and 72 hours post-inoculation. TruSeq RNA library Prep Kit was used to 

construct libraries that were then sequenced with an Illumina HiSeq2000 to generate 

paired end reads. After removing low quality sequences and adapters with FastQC and 

cutadapter, a de novo assembly from the data was created using Trinity (Anders & 

Huber, 2010; Haas et al., 2013; Martin, 2011).  At the time of the Yadav study, a 

complete wheat reference had not been created, necessitating the reliance on de novo 

assemblies. This study also showed 2,692 transcripts differentially expressed from 

TA5602, particularly nucleotide-binding and leucine-rich repeat genes (NLR genes), 

as classified by Blast2GO.  

Previously we had broadly mapped the TA5602 5Mg introgression to a region 

spanning ~9.5 Mb on 5D. By crossing TA5602 with the rust susceptible disomic 

addition line TA7659, a leaf rust mapping population of 172 F2 plants and 116 F2:3 

plants were developed and phenotyped. Combining this phenotyping data with 

genotyping data generated from 10 polymorphic markers, we could narrow Lr57 to a 

https://www.zotero.org/google-docs/?8gh3G6
https://www.zotero.org/google-docs/?LZiMKb
https://www.zotero.org/google-docs/?LZiMKb
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region between 3.9 and 5.5 Mb. We also generated a genetic map spanning 

approximately 6 Mb, as based on the 5D reference. Our genetic map covered an area 

of 11.4 cM, showing the high mapping resolution of our mapping population and utility 

for mapping alien introgressions. Markers created based on 5D NLR genes between ~4 

and ~4.3 Mb appeared to predict the F2:3 leaf rust response particularly well.  

Given the release of the high-quality annotated wheat reference (Consortium 

(IWGSC) et al., 2018), we sought to reexamine the differential gene analysis between 

WL711 and TA5602 using the same RNAseq data generated by Yadav et al., 2016, but 

relying on RNA reads alignment guided by 5D. This was then shown to be ineffective. 

Subsequently, a second round of analysis was done with RNA reads for the 12-hour 

transcriptome assembled again de novo. These were then aligned to a 5Mg physical 

map that was constructed from the 5Mg scaffold contigs ordered based on 5D. Although 

particular gene orthologs may show presence/absence variation among homoeologous 

chromosomes, we do broadly know 5D and 5Mg are highly collinear and our genetic 

map appeared to support this as well (Tiwari et al., 2015). 

Methods 

Chromosome 5Mg Assembly and Physical Mapping of the Lr57 Region: 

 

NGS contigs generated by Tiwari et al., 2015 were used as the starting point for 

the construction of a putative physical map Lr57 region. Additionally, the gap region 

between the markers were filled by unmapped 5Mg reads and sequences of genes from 

Lr57 region using PCR-based amplification and their subsequent Sanger sequencing. 

Initial genetic mapping yielded a 2.0 cM flanking interval for the Lr57 locus. Since the 

genetic population still had mapping resolution to saturate this interval, we tested 

https://www.zotero.org/google-docs/?zefYde
https://www.zotero.org/google-docs/?zefYde
https://www.zotero.org/google-docs/?KNbSCp
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another polymorphic marker at 5.1 Mb. With the addition of this marker, we were not 

able to reduce the Lr57 candidate region from 5.5 Mb, although it is likely still possible. 

Our group’s work on chromosome 5Mg clearly established very high collinearity 

between 5Mg and 5D chromosomes, which means our 5Mg contigs can be aligned to 

the reference 5D of wheat. Additionally, it suggested that by using flanking markers of 

the Lr57 region, we can perform chromosomal landing on the reference of 5D and 

comparatively, the 5Mg assembly. The physical map of the Lr57 region spanned 1.1 

Mb interval (3.97 to 5.00 Mb). Annotation of the 5Mg region and comparative analysis 

of the 5D reference map identified 7 candidate genes in the Lr57 physical interval. To 

narrow down the number of candidate genes for final validation studies, we used gene 

ontology studies as well as transcriptome data to rule out unrelated candidate genes. 

 

 

5D Guided Alignment of RNAseq Reads 

 

First the RNA paired end reads were uploaded to the Galaxy platform and 

confirmed as having all adapters and low quality sequences removed by using FastQC 

(Afgan et al., 2018; Blankenberg et al., 2010). Before alignment, because sequences 

were developed using Illumina HiSeq2000, the RNAseq sequences were first converted 

to fastqsanger format using FASTQ Groomer (Blankenberg et al., 2010).  

WL711 and TA5602 RNA reads were aligned against wheat chromosome 5D 

sequences downloaded from EnsemblPlants using HISAT2 (Hunt et al., 2018; Kim et 

al., 2015). Wheat chromosome 5D was used because Ae. geniculata chromosome 5Mg 

is highly similar to wheat chromosome 5D, with no major chromosomal 

rearrangements between the two chromosomes (Tiwari et al., 2015). Transcripts and 

https://www.zotero.org/google-docs/?ORFURI
https://www.zotero.org/google-docs/?bA3DRR
https://www.zotero.org/google-docs/?XZMWxr
https://www.zotero.org/google-docs/?XZMWxr
https://www.zotero.org/google-docs/?z4QeQy
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read counts were then reconstructed, normalized, and estimated by using StringTie both 

with and without the wheat 5D GFF3 file, also downloaded from EnsemblPlants 

(Kovaka et al., 2019; Pertea et al., 2015).  

Gene count files were then used for differential expression analysis using both 

DESeq2 and edgeR (R. Liu et al., 2015; Love et al., 2014; Robinson et al., 2010). The 

criteria for differentially expressed genes were changes in log2(FC) and P < 0.01. 

Genes that were differentially expressed by both DESeq2 and edgeR were considered 

of particular interest.  

 

De novo Assembly of TA5602 and WL711 Transcripts 

Trinity was used for de novo transcriptome assembly for both TA5602 and 

WL711 reads at 12 hours (Haas et al., 2013). The 12-hour time point was chosen 

because of Yadav et al., 2016 showing this is when differential gene expression would 

be the greatest. Trinity was run locally through a Docker container, to help ensure 

appropriate dependency configuration and Trinity execution (Merkel, 2014).   

A TA10437-derived 5Mg scaffold was previously developed with paired end 

reads and 50 x coverage, and it was shown that 5Mg has high synteny and collinearity 

with wheat 5D and no major chromosomal rearrangements exited between 5D and 5Mg 

(Tiwari et al., 2015). As such, while it is certainly possible that particular orthologous 

may not exist between 5D and 5Mg, especially given the Chinese Spring reference is 

highly variable even against other modern wheat varieties, the general ordering of a 

5Mg physical map can be inferred from 5D (Montenegro et al., 2017). High confidence 

5D gene sequences were taken from 5D between 3.9 and 5 Mb and aligned to 5Mg 

https://www.zotero.org/google-docs/?xUYBWI
https://www.zotero.org/google-docs/?Sh6kco
https://www.zotero.org/google-docs/?ofwPtc
https://www.zotero.org/google-docs/?YLnFa6
https://www.zotero.org/google-docs/?bgu77e
https://www.zotero.org/google-docs/?71Bc4M
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scaffold contigs via GMAP (Consortium (IWGSC) et al., 2018; Wu & Watanabe, 

2005). The 5D-gene aligned 5Mg contigs were then ordered according to 5D gene order 

to create the physical map.  

The de novo Trinity assemblies for 12-hour TA5602 and WL711 transcriptomes 

along with the 5Mg physical map before being aligned using HISAT2. Transcripts were 

then constructed based on the HISAT2 alignment using StringTrie. Transcripts found 

through this process were examined by BLAST on IWGSC against the wheat reference 

sequence HighConfidenceGenesV1.1.  

Results 

High-Resolution Genetic Mapping and Identification of the Lr57 Physical Region 

 

Addition of a 5.1 Mb marker failed to reduce the genetic distance (2 cM) 

between the flanking markers of the Lr57. Using comparative genomics datasets such 

as GenomeZipper‐based alignment across the sequenced cereal genomes a virtual gene 

map of chromosome 5Mg was generated earlier. Our group’s work on chromosome 

5Mg clearly established very high collinearity between 5Mg and 5D chromosomes, that 

means our 5Mg contigs can be aligned to the reference 5D of wheat. Additionally, it 

also suggested by using flanking markers of the Lr57 region we can perform 

chromosomal landing of reference 5D and comparatively the 5Mg assembly. We also 

amplified all the genes in the comparative Lr57 region and ordered them using our 5Mg 

genetic map. Our results again did not find any gene deletions or change in the order 

of any candidate genes in that interval. Since chromosomes 5Mg and 5D show such a 

close relationship, chromosome 5D‐specific high‐density SNP, POPSEQ and 5D 

physical map data (Wang et al. 2014, Chapman et al., 2015; Luo et al., 2013) were used 

https://www.zotero.org/google-docs/?qBaccs
https://www.zotero.org/google-docs/?qBaccs
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to anchor 5Mg genes and repeat‐free NGS contigs (Tiwari et al, 2015). Anchoring and 

ordering of 5Mg contigs, gap filling using unmapped 5Mg reads, and sanger sequencing 

of candidate genes from the Lr57 region enabled us to create a physical map of the 

Lr57 region. Comparison of this physical region with 5D of wheat showed several 

SNPs and indels but gene order was collinear, and we did not observe any deletions in 

this physical region. The physical map of the Lr57 region spanned a 1.1 Mb interval 

(3.97 to 5.00 Mb). Annotation of the 5Mg region and comparative analysis of the 5D 

reference map identified 7 candidate genes in the Lr57 physical interval. To narrow 

down the number of candidate genes for final validation studies, we used 

gene ontology studies as well as transcriptome data to rule out unrelated candidate 

genes. 

 

 

5D guided alignment of RNAseq reads 

 

Our candidate region as delimited by the markers was a region spanning under 

2 Mb, between what is assumed to be 3.9 and 5.5 Mb on 5Mg. Notably, only one NLR 

gene showed differential expression in this location, the wheat gene 

TraesCS5D02G005300, at 4 Mb. TraesCS5D02G005300 also showed the greatest gene 

expression change as reported by both edgeR and DESeq2 at all time points. These 

genes showed differential expression in the sense that log2(FC) was significantly large 

for WL711 at all time points (Table 4.1). This was because while reads were 

successfully aligning from WL711, no significant number of reads were aligning from 

TA5602 in our candidate region. Given WL711 is rust susceptible and we similarly 

saw no other notable TA5602 alignments in the 3.9 to 5.5 Mb region against wheat 5D, 
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we hypothesized that maybe 5Mg and and 5D were too divergent at this location for 

mapping software to properly align RNA reads against 5D. There was also the 

possibility that 5D and 5Mg simply would not share an R-gene ortholog.  

 

Table 4.1: DESeq2 Log2(FC) values after aligning RNA reads to the wheat 5D 

genome. Only the wheat gene TraesCS5D02G005300 consistently showed high 

differential gene expression between TA5602 and WL711 between 3.9 and 5.5 Mb, 

because only WL711 reads were successfully aligning. Some differences were seen 

also at TraesCS5D02G005600, but not to a significant degree 

 

 

The 5Mg Physical Map and De Novo Assembly 

A 5Mg physical map was created from a 5Mg scaffold with 50 x read coverage 

from Tiwari et al., 2015.  This 5Mg map is 41.6 Kb long is equivalent to the 3.9 to 5 

Mb 5D physical map. In this region, six high confidence 5D NLR genes and one 5D 

protein kinase could be aligned in close proximity (figure 4.1).  
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Figure 4.1: A representation of the mapped TA5602 introgression as it is represented by our genetic map 

and assembled physical map. Within the Lr57 candidate gene region, there are seven 5D collinear genes 

as represented by the arrows 1-7 and inferred by 5D reference annotation- 5 NLR genes and 1 protein 

kinase (arrow 6). Gene number 1 is outside the Lr57 region of interest. 

 

 

To minimize potential bias of the 5D genome, Trinity assemblies were mapped 

against only the 5Mg physical map. By doing this, zero of the 92 thousand WL711 

transcripts aligned against 5Mg. However, four transcripts of TA5602 aligned 5Mg. 

Two of the transcripts laid outside the Lr57 mapping region. The other two transcripts 

aligned with overlap into what could form a single 852 Bp transcript. BLAST of this 

transcript against wheat 5D, 5B, and 5A showed alignment against the wheat NLR gene 

TraesCS5D02G005600 with a high identity and BLAST score (627/670 and 1012, 

respectively, with 12 gaps). Aligning 5D NLR genes against the 5Mg map, there is 

overlap of candidate NLR genes.  

Attempting to align the de novo assemblies against the entire wheat 5D genome 

again showed only Wl711 reads mapping within our Lr57 region and only at 

TraesCS5D02G005300. Although leaf rust datasets are not available on the wheat 

expression browser, stripe rust study and PAMP studies are, and these also showed no 
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expression for any other gene than TraesCS5D02G005300 in response to being 

challenged with stripe rust or PAMPs.  

Direct comparisons of 5D and 5Mg gene expression is somewhat complicated, 

given they are ultimately different and benefit the most from different types of 

alignment. At best we can compare the expression of the genes given their most 

favorable alignment conditions (Table 4.2). This does show that TA5602 generates 

uniquely mapping transcripts to TraesCS5D02G005600, and nothing else in the Lr57 

region from 3.9 to 5 Mb. Reads from 12-hour WL711, no matter if the reads are aligned 

to 5D or the 5M physical map, show no alignment to TraesCS5D02G005600.   

For a more informative approach regarding TraesCS5D02G005600 expression 

in TA5602, we can also compare the expression of TA5602 after a mock treatment to 

the 12-hour treatment. This gives the most accurate view of TraesCS5D02G005600 

potential as a candidate gene. To do this, Illumina adapter sequences were removed 

from the mock TA5602 RNA reads using Cutadapter and a Trinity de novo assembly 

was created as described above.  

Comparing the mock TA5602 de novo assembly versus the 12 hour de novo 

assembly aligned against the 5Mg physical map with the same procedure as described 

above, we found that TraesCS5D02G005600 did not appear to be expressed in TA5602 

after a mock treatment. If this is accurate, it shows TraesCS5D02G005600 has a 

log2(TPM) = 18.9-fold increased expression change 12 hours after inoculation with 

leaf rust and this is unique compared to WL711.  
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Table 4.2: Comparing favorable mapping conditions for WL711 and TA5602. 

WL711 reads were aligned against the 5D reference and no expression was seen in 

TraesCS5D02G005600. WL711 reads were also not seen when aligning against the 

5Mg physical map. Aligning TA5602 reads against the 5Mg physical map shows 

expression in a transcript with a high-percentage identity to TraesCS5D02G005600. 

This expression is absent in the mock treated TA5602.   

   Log2(TPM) Log2(TPM) 

5D location 5D Gene Name Annotation WL711- 5D TA5602- 5M 

4 Mb TraesCS5D02G005300 NB-ARC 4.9 0 

4.2 Mb TraesCS5D02G005400 NLR 0 0 

4.2 Mb TraesCS5D02G005416 pseudo- NLR 0 0 

4.3 Mb TraesCS5D02G005500 Protein kinase domain 0 0 

4.3 Mb TraesCS5D02G005600 NLR 0 18.9 

5.1 Mb TraesCS5D02G005700 PDZ domain 0 0 

 

As of now this leaves us with one candidate gene between 3.9 and 5 Mb- 

TraesCS5D02G005600, an NLR gene that we now refer to as AE5M02G005600, given 

its presence in 5Mg. This is a reasonable candidate, both because of this transcription 

data, but also because it matches our earlier phenotyping and marker data well.  

 

Discussion 

From our genetic mapping, we had narrowed Lr57 to a 2 cM region. From our 

phenotyping studies, it did appear that Lr57 was likely to be an NLR-type gene. And 

in this region, there were 4 NLR genes and a protein kinase clustered together that we 
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had previously designed markers for that were polymorphic between resistant and 

susceptible Ae. geniculata. These markers also appeared to be linked to Lr57, but it was 

difficult to differentiate which of the genes should be our main candidate. To help solve 

this, we ultimately created a physical map of 5Mg by using our 5Mg scaffold contigs 

oriented and anchored against wheat 5D high confidence genes. This then allowed us 

to use previously generated RNAseq to identify a candidate gene for Lr57. 

We wanted to revisit the RNAseq material generated in a study by our 

collaborators (Yadav et al., 2016), where WL711 versus TA5602 leaf rust response 

was analyzed before the release of the wheat 5D reference sequence. We were 

interested in how the 5D reference could extend our understanding of potential 

candidate genes in the mapped Lr57 region. The original study by Yadev et al., (2016) 

implied NLR genes would likely be some of our candidates, and in our originally 

mapped small Lr57 interval, we did see the typical phenomena of NLR genes 

clustering together- which can make choosing the correct NLR gene of interest more 

challenging (Michelmore & Meyers, 1998). We would naturally expect that TA5602 

would show increased expression of a candidate gene over WL711 after being 

challenged with a leaf rust pathogen. The difficulty would be in properly assigning the 

transcripts to genes. Reliable physical maps can be difficult to create for repetitive and 

large genomes, like those of the Triticeae and its relatives. We had access both to a 

scaffold of the 5Mg chromosome and now the high-quality wheat reference sequence 

of 5D as well. This gave us options for how we should try to align the RNAseq reads 

of TA5602. Either we could rely on the more complete 5D sequence with the hope 

that a wheat ortholog would be similar enough to our short RNA reads to allow proper 

https://www.zotero.org/google-docs/?8M9s64
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alignment, or we would need to first revisit the 5Mg scaffold to create a physical map 

in our region of interest and then align RNA reads. The latter option of creating a 

physical map had a clear benefit and necessity, because despite 5Mg and 5D being 

highly similar, it would be hard to confirm if we had missed 5Mg-unique genes that 

are absent in 5D if we only mapped RNA reads to 5D. Furthermore, TA5602 reads 

clearly would align more specifically to a 5Mg reference. But first attempting to map 

TA5602 RNA reads to the 5D reference had the advantage of 5D simply being readily 

available, complete, and already confirmed as being high quality. While perhaps 

mapping 5Mg to 5D would give less precise quantification of expression, there was 

still the possibility that this heuristic RNAseq approach would give us a workable 

candidate that could then be further verified by direct measurements, such as qPCR.  

We found the method of aligning TA5602 RNA reads against 5D to be 

unreliable for mapping 5Mg transcripts, likely due to low shared sequence identity of 

short TA5602 5Mg RNA sequence reads against 5D. Or in a more difficult scenario, 

there was also the possibility the Lr57 gene was only present uniquely in 5Mg
, and that 

would prevent TA5602 RNA reads from aligning to our candidate region. As is, 

aligning the RNA reads against 5D showed only TraesCS5D02G005300, located 

approximately at 4 Mb, consistently had the highest differential gene expression as 

reported by both DESeq2 and EdgeR. But this expression was purely due to WL711 

reads successfully aligning to this gene while no 5Mg could not be aligned, making 

the finding less informative and not explanatory of the Lr57 phenotype. This showed 
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us that over-reliance on 5D homology to 5Mg would not be a workable option and 

aligning directly to 5D sequence was biasing our results too much.  

We decided to create a de novo Trinity-based assembly for WL711 and 

TA5602, to remove 5D influence on our TA5602 RNA reads as much as possible. We 

also needed a 5Mg physical map. A 5Mg physical map would help find any genes that 

may be present in 5Mg but absent in Wl711. However, we did not see it as necessary 

or practical to completely abandon the wealth of information the 5D reference 

provides- 5D and 5Mg still are highly similar, especially from the broader perspective 

of chromosome and gene arrangement, even if there’s specific sequence differences 

in more localized regions. Because of this, we decided we would base 5Mg contig 

assembly into a physical map off of wheat 5D, due to the high collinearity between 

the genomes. High confidence 5D genes that have been shown to be within our 

mapped region of interest served as the basis for aligning 5Mg scaffold contigs via 

GMAP.  

With the 5Mg physical map, aligning the de novo Trinity assemblies of WL711 

and TA5602 with HISAT2 revealed only TA5602 transcripts that were aligning to the 

5Mg physical map. Of these transcripts, only two overlapping transcripts were within 

the candidate region, and these two transcripts together formed one 800 Bp sequence. 

BLAST of this sequence against wheat showed high similarity to the wheat NLR gene, 

TraesCS5D02G005600 (4.3 Mb on 5D). But here is where comparing wheat versus 

Ae. geniculata RNA reads may come into question. 5Mg alignment clearly benefits 

accurately mapping 5Mg RNA reads, while 5D alignment clearly benefits WL711 
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reads. In our case, we are most interested first in understanding the function of our 

system of interest, 5Mg, so we necessarily prefer the method that accurately maps 5Mg 

RNA reads. Second, regardless if we attempt to map our 12-hour WL711 reads to 5D 

or 5Mg, it did not appear that WL711 significantly mapped to TraesCS5D02G005600, 

if at all. Even when comparing 5Mg aligned to 5D versus WL711 aligned to 5D, 

DESeq2 reported a small increased expression change in 5Mg, just not to any 

significant level. In either mapping scenario, with 5D or 5Mg, TraesCS5D02G005600 

did not seem notably expressed from WL711. And none of the other genes between 

3.9 and 5 Mb appeared to be notably expressed in either WL711 or TA5602. So instead 

our question became about how our candidate gene TraesCS5D02G005600, or 

AE5M02G005600 from its presence in 5Mg, might change in TA5602 from before 

versus after rust inoculation. This would give us a more accurate view of induced 

candidate genes. To do this, another de novo assembly of a mock TA5602 inoculation 

was created and aligned to the 5Mg physical map. The assembly of the mock treated 

TA5602 behaved similarly to WL711, and no transcripts aligned to our candidate gene 

AE5M2G005600 at a significant level. With this information, it appeared that 12 hours 

after inoculation with leaf rust, AE5M02G005600 in 5Mg has a Log2(TPM) = 18.9-

fold increased expression change.  

This differential expression along with the hypersensitive rust responses that 

have been observed in TA5602 and TA5601 AE5M02G005600 is a good candidate 

for Lr57. Further verification methods of this gene will be done in future studies, 

including viral induced genome silencing (VIGS) and targeting induced local lesions 

IN genomes (TILLING) along with qPCR, overexpression, and CRISPR 
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transformation. As Lr57 resistance has also been shown to persist at the adult plant 

stage, giving high levels of resistance, this is an exciting finding and shows the power 

of our unique mapping population that was used to originally map the Lr57 candidate 

region. VIGS and qPCR validation of AE5M02G005600 are currently underway. We 

have also begun development of a TA5602 TILLING population.  

From this thesis’ work, we were able to show how a unique mapping 

population derived from an introgression line crossed with a disomic addition line 

allowed for efficient mapping of Lr57 from wheat’s tertiary gene pool. We were able 

to characterize the TA5602 5Mg introgression size and then further narrow down our 

region of interest due to the high mapping resolution of our population. Because of the 

wild type Ph1 locus, recombination could be ensured to occur only within the small 

TA5602 introgression resistant for leaf rust and the homologous region of rust 

susceptible 5Mg chromatin in TA7659. The same techniques could be applied to any 

number of other genes from wheats tertiary or secondary gene pools, given the relative 

ease and speed of creating introgression lines. Accurate mapping and cloning of wild 

genes will hopefully be of great use in future breeding programs, both because of the 

huge degree of useful variation in wheat wild relatives, but also because accurate 

mapping will ensure reduced linkage drag that is typically associated with traits from 

wild relatives.   
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List of Primer Sequences used in the work 

 

Position on 5D Forward Primer (5' -> 3') Reverse Primer (5' -> 3') 

5Mg_60Mb GTTCTTCTCATTGCCGTTTTCCT ACTTGGTACCTTCATTCATTGGC 

5Mg_50Mb AGAGGAAGAGGTTGAGGAGGGT TATGGAACACGTTGGGGG 

5Mg_45Mb GATCGTACAAACAGGAGACGAG TGACTTCTCTCGAGTCTGCAC 

5Mg_35Mb TGGCTTGACTTTTGACCCTAC AAGGAATCGTTGACTCCTCTCTG 

5Mg_17Mb CCAGGTTTCTTCTTCTTCTTTCT GCGGCCTCTTCCAACATT 

5Mg_9.9Mb GCTGGAGATGCCCTTAGTACTCT GCGAAATGATGGAGTCCTTG 

5Mg_9.7Mb TGACTCCAATAGGTTAGCCGAG ATGGCTGCATGTGCGTGTA 

5Mg_9.548Mb AAATTGGGGGATGGGATAGG GATTTCATCCCCATAAACGCTAC 

5Mg_8.9Mb ATAGTCCCGTAGCATTTCCG CGTCGATCGATGATAACCA 

5Mg_8Mb GTAAGTTATTGTGAGCGTCTGCG AGAGAGCGTGTGATGAGTAGGAG 

5Mg_7.8Mb AACGCATGTATGGGTCACGA GGTGGAAAGGTCAGTATGGCT 

5Mg_7.4Mb CGTTTACGAATTTCATGACCTCT TATCTGCTCAGGTGATGTTCTTG 

5Mg_6Mb CATTCACATTTGCAACGTGTACC GCCACCAGTATACCATCTACATT 

5Mg_5.6Mb TGTTGAGCTTCTTTCTTTGTTTG ATGTCGAGAAGCATGTGGC 

5Mg_5.5Mb GCATTCTCCAATCAGTAGGCAAC TGCCTGGCCAATGCATAA 

5Mg_4.3Mb GTCTCATTGAAGGCTCTCCTAAC CATGACTTGTCTGCAATGAGG 

5Mg_4.2Mb GGCAGTTGGAAGGGCAAT AAAATGTGAAGTCTGCAGAAGAG 

5Mg_4Mb CCGCAATGTTCATTGGCTCC ACTCGTCAACACAACAGTGCT 

5Mg_3.9Mb AATAAACAAGTGGGACCACAGA AAGCAATCTTTGGTGGAACTCAA 

5Mg_3.6Mb AAACTGAGCGCCATTGC TCAATAATCCCAACCTGCAC 

5Mg_1.79Mb GGGTCAATCGACGGACTAAAA AGGAGAAGAGAAGCTGCCG 

5Mg_1.5Mb AGTTAGGCTTTCAAAATTAGGGA ATATATATACAACCGCGGCCTGA 
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