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Abstract

JavaScript, being a single-threaded language, makes extensive use
of event-driven programming to enable responsive web applica-
tions. However, standard approaches to sequencing events are
messy, and often lead to code that is difficult to understand and
maintain. We have found that arrows, a generalization of monads,
are an elegant solution to this problem. Arrows allow us to eas-
ily write asynchronous programs in small, modular units of code,
and flexibly compose them in many different ways, while nicely
abstracting the details of asynchronous program composition. In
particular, we show how to use arrows to construct a variety of
state machines, such as autoscrollers and drag-and-drop handlers.

1. Introduction

JavaScript is the lingua franca of Web 2.0. Web applications
such as Google Maps and Flickr rely on it, and JavaScript li-
braries power the features of popular websites such as web portals
(yahoo.com), retail sites (target.com), social networking ap-
plications (1inkedin.com), and public forums (slashdot.org).
Because JavaScript code runs in a client-side browser, applications
can present a rich, responsive interface without unnecessary delays
due to server communication.

Most JavaScript programs are written in an event-driven style,
in which programs register callback functions that are triggered on
events such as timeouts or mouse clicks. A single-threaded event
loop dispatches the appropriate callback when an event occurs, and
control returns back to the loop when the callback completes.

To keep web applications responsive, it is crucial that callbacks
execute quickly so that new events are handled soon after they oc-
cur. Thus to implement non-trivial features like long-running loops
(e.g., for animations) or state machines (e.g., to implement drag-
and-drop), programmers must chain callbacks together—each call-
back ends by registering one or more additional callbacks. For ex-
ample, each iteration of a loop would end by registering the current
callback with a (short) timeout. Unfortunately, this style of event-
driven programming is tedious, error-prone, and hampers reuse.
The callback sequencing code is strewn throughout the program,
and very often each callback must hard-code the names of the next
events and callbacks in the chain.

This paper presents what we believe to be a very flexible
and elegant solution to composing callbacks: a new JavaScript li-
brary which we call Arrowlets, which is based on arrows. Arrows
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(Hughes 2000) are a programming pattern closely related to mon-
ads, used extensively in Haskell. An arrow abstraction resembles
a normal function, with the key feature that an arrow can be com-
posed in various ways to create new arrows. The core composition
operator is sequencing: if f and g are arrows then f >> g is an
arrow that first runs f and then runs g.

In Arrowlets, arrows are based on functions written in continua-
tion passing style (CPS). A CPS function takes a normal argument
x and a continuation k, and completes by calling k with the result
produced by the function. We provide event arrows, built around
a CPS function that registers its continuation argument with a par-
ticular event. Users write handler functions that process particular
events and lift them to arrows. An event arrow can then be com-
posed with a handler arrow to create a single arrow that registers
an event and handles it when the event occurs. We also provide
looping and either-or composition operators, and include support
for cancellation.

With our library, the code for handling events is clearly sepa-
rated from the “plumbing” code required to chain event handlers
together. This makes code easier to understand, change, and reuse:
the flow of control is clearly evident in the composition of handlers,
and the same handlers can be chained in different ways and set to
respond to different events.

We begin by illustrating the standard approach for event-based
programming in JavaScript, along with its difficulties. Then we
introduce our basic approach to allaying these difficulties using
JavaScript arrows. We next scale up to include richer combinators
and present several examples. We conclude by comparing our work
to related approaches, including other JavaScript frameworks that
also improve event handling. We believe that our library provides
JavaScript programmers a flexible, modular, and elegant way to
structure their programs. The Arrowlets library, as well as several
live examples, is freely available at http://www.cs.umd.edu/
projects/PL/arrowlets.

2. Event Programming in JavaScript

In modern web browsers, JavaScript is implemented as a single-
threaded programming language.' This is a real problem for web
developers, because the browser’s JavaScript interpreter typically
runs in the main Ul thread. Thus a long-running script could stall a
web page (and browser), making it appear unresponsive.

To solve this problem, JavaScript programs make heavy use
of event-driven programming, in which programs register asyn-
chronous callbacks to handle UI interactions and break up long-
running tasks. A common idiom is to register a callback that han-
dle events on a particular document element indefinitely. For ex-
ample, after running the following program, clickTarget will be

! For brevity, the code described in this paper do not run in Internet Explorer
due to minor API differences. The examples have been verified to work in
Safari and Firefox.



called each time the HTML element named target is clicked with
the mouse’:

function clickTarget (evt) {
evt. currentTarget . textContent = "You clicked me!";
¥

document.getElementByld("target")
.addEventListener(" click ", clickTarget, false);

Events are also used to slice long-running loops into small tasks
that quickly return control to the UIL. For example, the following
program scrolls a document one pixel at a time until the document
can be scrolled no further. The call to setTimeout schedules a call
to scrollDown( el ) to occur Oms in the future:

function scrollDown(el) {
var last = el. scrollTop ++;
if (last != el.scrollTop)
setTimeout(scrollDown, 0, el);

scrollDown(document.body);

‘We can think of scrollDown as a state machine. In the initial state,
it tries to scroll one pixel, and then either transitions to the same
state (if the scroll succeeded) or to an accepting state (if scrolling
is complete).

2.1 Chaining Callbacks is Ugly

The scrollDown function implements a very simple state machine
with only one handler, and as such is easy to write. Chaining
handlers together to implement more complicated state machines
can be more difficult. For example, suppose we want to scroll a
web page down and then up. We can accomplish this as follows:

1 function scrollUp (el) {

2 var last = el. scrollTop ——;

3 if (last != el.scrollTop)

4 setTimeout(scrollUp, 0, el);
5y

6 function scrollDown(el, callback) {
7 var last = el. scrollTop++;

8 if (last != el.scrollTop)

9 setTimeout(scrollDown, 0, el, callback );
10 else if (callback)

11 callback (el );

12

13 scrollDown(document.body, scrollUp);

Line 13 calls scrollDown to begin scrolling the web page downward.
We pass in scrollUp as a callback, which is invoked after the
downward scroll is finished (line 11). Then scrollUp runs until
completion, and exits.

That was not too hard, but notice we had to specialize scrollDown
to take a callback that itself takes el as an argument. This is rather
inflexible—if we wanted to chain a third callback into the sequence,
we would need to change scrollDown and scrollUp, and extend their
parameter lists with more callbacks.

The challenging issue with functions using callbacks is that
they “return” by invoking the callback, rather than returning to
their caller. Functional programmers will recognize this style of
programming as continuation-passing style (CPS) (Appel 1992).
We can indeed overcome the limitations of the approach above by
carefully converting the entire program into CPS:

1 function scrollUp (callback) {
2 return function scrollUpClosure (el) {
3 var last = el. scrollTop ——;

2 The last parameter to addEventListener, required by Firefox, selects the
order of event handling, and can be ignored for this and all other examples
in the paper.

4 if (last != el. scrollTop)

5 setTimeout(scrollUpClosure, 0, el);
6 else if (callback)

7 callback (el );

s}

9 3

10 function scrollDown( callback ) {

11 return function scrollDownClosure(el) {

12 var last = el. scrollTop++;

13 if (last != el.scrollTop)

14 setTimeout(scrollDownClosure, 0, el);
15 else if (callback)

16 callback (el );

17

18

19 scrollDown( scrollUp (scrollDown( scrollUp ())))( document.body);

Now scrollUp (callback ) returns a closure that either calls itself
or callback, and similarly for scrollDown( callback). This is very
promising—we can now drive our web visitors crazy by forming
long compositions of these functions, like the down/up/down/up
scrolling example on line 19.

However, while CPS is a good approach, manually CPS-
converting JavaScript code is not fun, especially considering that
callback “chains” can be more complex than simple linear arrange-
ments. A prototypical example is support for drag-and-drop.

2.2 Drag-and-Drop: A Pointed Problem

Consider the problem of supporting drag-and-drop in a web
browser. Figure 1(a) gives a state machine showing the sequenc-
ing of event handlers we need for this feature. We begin with a
mousedown event on an item of interest and transition to the setup
state. From there, we cancel drag-and-drop if the user releases the
mouse (mouseup), or start the drag for real on a mousemove. The
user can keep dragging as much as they like, and we drop when
the mouse button is released. In each of these states, we need to do
various things, e.g., when we (re-)enter the drag state, we animate
the motion of the selected object.

The standard approach to implementing this state machine is
shown in Figure 1(b). Each function corresponds to one state, and
mixes together “plumbing” code to install and uninstall the appro-
priate event handlers and “action” code to implement the state’s
behavior. For example, we install the setup function to handle
the mousedown event on line 27. When called, setup uninstalls it-
self and adds handlers to transition to the drag and cancel states
(lines 3-5), and then carries out appropriate actions (line 6).

This code is not that easy to understand—the flow of control is
particularly convoluted, because each event handler ends by return-
ing, and control “continues” with the next event handler indirectly.
Code reuse is also hard, because each event handler needs to know
exactly where it is in the state machine, to adjust the set of reg-
istered events appropriately. For example, if we wanted to initiate
drag-and-drop with a mouseover event, we would need to make a
new copy of setup.

There are existing JavaScript libraries that make standard wid-
gets like drag-and-drop quite easy to use. However, they are quite
inflexible in our experience, and even small customizations would
require modifying complex library internals. In contrast, arrows
give us a much more flexible approach to building these kinds of
interface elements. More discussion appears in Section 5.

3. Arrows Point the Way

While event-based compositions in JavaScript seem messy and
awkward, there is no need to despair—we have found that by bring-
ing arrows (Hughes 2000) into JavaScript, we can start writing
event-based code that is clean, understandable, and reusable.
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1 function setup(event) {

2 var target = event.currentTarget;

3 target .removeEventListener("mousedown", setup, false);
4 target . addEventListener("mousemove", drag, false);

5 target .addEventListener("mouseup", cancel, false );

6 /* setup drag—and—drop */

7

8 function drag(event) {

9 var target = event.currentTarget;

10 target .removeEventListener("mouseup", cancel, false );
11 target . addEventListener("mouseup", drop, false);

12 /* perform dragging */

13

14 function drop(event) {

15 var target = event.currentTarget;

16 target .removeEventListener("mousemove", drag, false);
17 target .removeEventListener("mouseup", drop, false);
18 /* perform dropping */

19
20 function cancel(event) {

21 var target = event.currentTarget;
22 target .removeEventListener("mousemove", drag, false);
23 target . removeEventListener("mouseup", cancel, false );
24 /* cancel drag—and—drop */
25}

26  document.getElementByld("dragtarget")
27 .addEventListener("mousedown", setup, false);

Function. prototype.A = function() { /* arr x/
return this;
}

Function. prototype.next = function(g) { /* =>> */
var f = this; g = g.A(); /* ensure g is a function x/
return function(x) { return g(f(x)); }

(b) Standard JavaScript implementation

Figure 1: Drag-and-drop in JavaScript

Arrows are generalizations of monads, and like them, they help
improve modularity, by separating composition strategies from the
actual computations; they are flexible, because operations can be
composed in many different ways; and they help isolate different
program concerns from one another (Wadler 1992).

3.1 Function Arrows

Figure 2(a) gives a (very) simplified definition of the Arrow type
class in Haskell. A type a is an instance of Arrow (written Arrow a)
if it supports at least two operations®: arr f, which lifts function £
into a, and f >> g, which produces a new arrow in which g is
applied to the output of f. The simplest arrow instance, Arrow (—),
represent standard functions where arr is the identity function,
and >>> is function composition. With these operations, we can
compose functions using arrow operations:

addl x =x + 1
add2= addl >>> addl

result = add2 1 {— returns 3 —}

3 Arrows in Haskell also support a third primitive operation, first ; we will
defer the JavaScript implementation of first to future work.

(b) Function arrows in JavaScript

Figure 2: Two definitions of arrows

Figure 2(b) shows function arrows in JavaScript. In JavaScript,
every object has a prototype object (analogous to a class). Proper-
ties (e.g., methods) of an object are first looked up in the object
itself, and if not found, are looked up in the object’s prototype.
JavaScript functions are themselves objects, and hence they have a
prototype, named Function. prototype.

In Figure 2(b), we add two methods to every function object.
The A method, corresponding to arr, lifts a function into an arrow.
As before, the A method is just the identity. The next method, corre-
sponding to >>>, composes two arrows by returning a new (anony-
mous) function invoking the composition. In this code, binding f to
this sets f to refer to the object (i.e., function) whose next method
is invoked. We also lift argument g to an arrow with the call g.A().
This check helps ensure that g is a function (all of which have the A
method).

With these simple definitions, we can now compose functions
as arrows in JavaScript in the same way as Haskell:

function add1(x) { return x + 1; }
var add2 = addl.next(addl);

var result = add2(1); /* returns 3 */

Notice that we did not need to apply the A method to add1, because
we have added the next method to all functions, thus implicitly
making them arrows.

JavaScript lacks Haskell’s sophisticated type system, so we
unfortunately cannot statically ensure arrows are used correctly.
For example, the definition in Figure 2(b) only works for single
argument functions. Moreover, we may have different kinds of
arrows that cannot be simply mixed together. Thus in practice
(and in the examples below), we will introduce new prototypes to
distinguish different kinds of arrows from each other.

3.2 CPS Function Arrows

Regular function composition will not work for event handling ar-
rows because event handlers are invoked asynchronously. Follow-
ing the observation made at the end of Section 2.1, we can solve
this problem using CPS functions. In particular, an event arrow can
be viewed as a kind of CPS function that registers its continuation
to handle some event. This arrow can then be composed with a
handler arrow that actually processes the event (and then invokes
its own continuation).




1 function CpsA(cps) {

2 this.cps = cps; /* cps = (x, k) — () */
3

4 CpsA.prototype.CpsA = function() { /* identity x/
5 return this;

6

7 CpsA.prototype.next = function(g) {

8 var f = this; g = g.CpsA();

9 /* CPS function composition x/

10 return new CpsA(function(x, k) {

11 f.cps(x, function(y) {

12 g-cps(y, k);

13 b

14 i

15

16~ CpsA.prototype.run = function(x) {

17 this .cps(x, function(y) { });

18

19 Function.prototype.CpsA = function() { /* lifting */
20 var f = this;

21 /* wrap f in CPS function */

22 return new CpsA(function(x, k) {
23 k(f(x));

24 135

25}

1 function SimpleEventA(eventname) {

2 if (!( this instanceof SimpleEventA))

3 return new SimpleEventA(eventname);

4 this .eventname = eventname;

5

6 SimpleEventA.prototype = new CpsA(function(target, k) {
7 var f = this;

8 function handler(event) {

9 target .removeEventListener(

10 f.eventname, handler, false );

11 k(event);

12

13 target . addEventListener(f.eventname, handler, false );
4 3});

Figure 3: CPS function arrows in JavaScript

The core building block of this approach is a definition of
arrows for CPS functions, shown in Figure 3. A CPS function
takes two arguments: the “normal” argument x and a continuation k,
called with the function’s final result. In the figure, CpsA (lines 1-
3) constructs a CPS arrow from a cps function. In JavaScript,
constructors are simply regular functions, and when we invoke
new CpsA(cps), JavaScript creates a new object and then initializes
it by calling CpsA(cps) with this bound to the new object.

On line 4 we introduce our convention of giving CpsA objects
an identity CpsA method, which we use like the A method from
Figure 2(b): if we successfully invoke = = x.CpsA(), we know
z is a CPS arrow. The next method to compose CPS functions
behaves as expected*, invoking f, and passing in a continuation
that invokes g, which itself continues with k (lines 7—15). We call
a CPS arrow by invoking its run method (lines 16-18), which
simply calls the function in the cps field. We pass cps the actual
argument and an empty continuation that does nothing. Note we
did not need a run method in Figure 2(b) because regular function
arrows can be executed simply by invoking the function itself.
Finally, we extend Function’s prototype with a CpsA method to lift a
normal one-argument function into a CPS arrow. With this method,
programmers using the library can write regular functions, and the
details of CPS are effectively hidden.

With these definitions, we can convert our add1 and add2 func-
tions to CPS and compose them:

function add1(x) { return x + 1; }
var add2 = add1.CpsA().next(add1.CpsA());
var result = add2.run(1); /* returns 3 */
/* where: add1.CpsA().cps = function(x,k) { k(add1(x)); }
add1.CpsA().next(add1.CpsA()).cps
= function(x, k) { k(add1(addi(x)));} =/

Figure 4: SimpleEventA for handling JavaScript listeners

3.3 Simple Asynchronous Event Arrows

Building on CPS arrows we can now define simple event arrows,
which are CPS functions that register their continuations to handle
particular events. Ultimately we will want several forms of com-
position, but for now, we define an event arrow SimpleEventA that
supports linear sequencing, shown in Figure 4.

In this code, the function SimpleEventA acts as a constructor,
where line 3 implements a convenient JavaScript idiom. If the
constructor is called as a regular function (i.e., without new), it calls
itself again as a constructor to create a new SimpleEventA object.
This allows us to omit new when using SimpleEventA. Line 4 stores
the name of the event this arrow handles.

Lines 6-14 define the SimpleEventA prototype object to be a
CpsA arrow constructed from an anonymous function. By making
the prototype a CpsA object, SimpleEventA inherits all the proper-
ties of CpsA. The anonymous function installs the local function
handler to be triggered on eventname (line 13). When this event
fires, handler deregisters itself from handling that event, and then
invokes the continuation k with the received event. We chose to im-
mediately deregister event handlers that have fired since this corre-
sponds to transitions in a state machine, according to our motivating
use case.

Although JavaScript lacks types, we can view SimpleEventA as
having arrow type CpsA target event (analogous to function type
target — event). To use such an arrow, we typically compose it
with a handler arrow of type CpsA event target (analogous to type
event — target ), where the output is the target for the next event.

Examples Let us rewrite the very first example in Section 2 to
use our simple event arrows. First we write a handler arrow for the
event:

var count = 0;

function clickTargetA (event) {
var target = event.currentTarget;
target .textContent = "You clicked me! " 4+ ++-count;
return target;

¥

This function extracts the target of the event, updates its text, and
then returns it (for the next event handler). To register this code to
handle a single click, we write the following plumbing code:

SimpleEventA("click" ). next( click TargetA)
.run(document.getElementByld("target"));

This code creates an event arrow for a click event (on the target
element) and composes it with our handler arrow. When the event

4 JavaScript is not tail-recursive, so this simple definition of next can cause
the call stack to overflow. Our library implements CPS using trampolines to
avoid this issue.




fires, clickTargetA is called with the event’s target, and the event
handler is removed. Also, in this code, the structure of event han-
dling is quite apparent. And, because we have separated the plumb-
ing from the actions, we can reuse the latter easily. For exam-
ple, to count button clicks on another target, we just create an-
other SimpleEventA, reusing the code for clickTargetA (the effect
on count is shared by the two handlers):

SimpleEventA("click" ). next( clickTargetA)
.run(document.getElementByld("anotherTarget"));

If we want to track a sequence of events on the same target, we
simply compose the handlers:

SimpleEventA("click" ). next( click TargetA)
.next( SimpleEventA("click").next(clickTargetA) )
.run(document.getElementByld("target"));

This code waits for one click, increments the count, and then waits
again for a click, and increments the count once more. Sequential
composition of asynchronous event arrows using next is associa-
tive, as expected, so we could equivalently write the above as

SimpleEventA("click" ). next( click TargetA)
.next(SimpleEventA("click"))
.next( clickTargetA)
.run(document.getElementByld("target"));

Event arrows have another useful property in addition to easy
composition: The details of different browser event handling li-
braries can be hidden inside of the arrow library, rather than being
exposed to the programmer. For example, Internet Explorer uses
attachEvent instead of addEventListener, and we could modify the
code in Figure 4 to call the appropriate function depending on the
browser.

4. Full Asynchronous Arrows

Now that we have developed simple event arrows, we can extend
them with features for implementing more sophisticated examples,
like drag-and-drop. First, we introduce progress arrows to track
and/or abort the evaluation of an asynchronous event arrow. Sec-
ond, we add a looping constructor, useful for a building a possibly-
unbounded sequence of events. Third, we add “either-or” compo-
sitions of asynchronous arrows, in which a pair of handlers is in-
stalled, and once one fires, the other is cancelled. Put together, these
features allow us to elegantly implement the drag-and-drop exam-
ple from Section 2.2.

4.1 Tracking Progress with Asynchronous Arrows

The first step in adding progress arrows is to extend CpsA so
that continuations take both the normal function argument x and
a progress arrow argument p. A progress arrow (defined with the
ProgressA constructor) can be used by other bits of code to observe
or cancel the progress of asynchronous arrow, which is useful for
arrows whose operation is long-running; we explain its operation in
detail shortly. Our CpsA definition extended with progress arrows
is called AsyncA, for asynchronous arrow, and is shown in lines 1—
19 of Figure 5. The constructor (line 1) and lifting function (line 2)
work analogously to CpsA, and next (lines 3—10) simply passes the
extra parameter through the CPS composition. The run method now
optionally takes a progress arrow argument p, or sets p to an empty
progress arrow on line 12 if no argument is passed.” Then run
passes the arguments to this.cps, as before, and finally returns p
back to the caller. This last step allows the caller of run to make
use of the progress arrow later, in the case that it was created on

SIf the argument p is not given, then it is set to undefined, in which case
p || eevaluatestoe.

1 function AsyncA(cps) { this.cps = cps; }

2 AsyncA.prototype.AsyncA = function() { return this; }
3 AsyncA.prototype.next = function(g) {

4 var f = this; g = g.AsyncA();

5 return new AsyncA(function(x, p, k) {

6 f.cps(x, p, function(y, q) {

7 g-cps(y, a, k);

8 ;

9 Ik

10 3}

11 AsyncA.prototype.run = function(x, p) {

12 p = p || new ProgressA();

13 this.cps(x, p, function(y) {});

14 return p;

5}

16 Function. prototype . AsyncA = function() {

17 var f = this;

18 return new AsyncA(function(x, p, k) { k(f(x), p); });
9 }

20

21 function ConstA(x) {

22 return (function() { return x; }).AsyncA();
23}

Figure 5: Full asynchronous arrows

line 12 rather than passed in. Finally, the code to lift functions to
AsyncA (lines 16-19) is the same as before. For convenience, we
also introduce a function ConstA(x), which produces an arrow that
ignores its inputs and returns x (lines 21-23).

Next, we use AsyncA to implement an arrow constructor EventA,
just as we used CpsA to implement SimpleEventA. The code is
shown in Figure 6(a). The arrow constructor (lines 1-5) is as before.
EventA inherits from AsyncA (line 6), also as before. When an event
arrow is run, it registers (line 17) the cancel function (lines 8-11)
with the progress arrow, and installs an event handler (line 18).
This allows us to later abort the arrow (i.e., remove the event
handler) if we wish. When an event is triggered, we inform the
progress arrow by invoking its advance method (line 13). Upon
receiving this method call, a progress arrow p will in turn alert any
other objects that are listening for progress messages from p. For
example, a progress bar object might ask to be informed each time
an arrow composition advances, to update the image of the bar. The
remainder of the code is as with SimpleEventA: we cancel the event
handler (line 14) and call the continuation k, this time with both the
event to process and the progress arrow (line 15).

To actually implement progress arrows, we could most likely
extend regular function arrows (from Figure 2(b)), but since
AsyncA is somewhat more flexible, we choose that as our start-
ing place. Figure 6(b) defines ProgressA, our progress arrow type.
Each progress arrow has two sets of listeners: cancellers (line 4),
which are invoked when the arrow’s cancel method is called, and
observers (line 5), invoked via the arrow’s advance method.

Users can add to the set of observers by invoking the next
method inherited from AsyncA. On lines 7-9, we set the underlying
CPS function of the arrow to push its argument onto the observer
list. Thus, invoking p.next(f).run() for progress arrow p adds f
to observers. Making ProgressA an asynchronous arrow gives it
all the flexible compositional properties of arrows, e.g., it allows
adding multiple, complex observers. For example, we could write
p.next(f).next(g) for a progress arrow that invokes g(f()) when
progress occurs, or call p.next(f).run(); p.next(g).run() to add
both observers f and g.

Cancellers are registered explicitly via the addCanceller method
(lines 10-13). If cancel is invoked, the progress arrow calls all

cancellers (lines 23-24). If advance(c) is invoked, the progress ar-




1 function EventA(eventname) {
2 if (!( this instanceof EventA))
3 return new EventA(eventname);
4 this .eventname = eventname;
5
6 EventA.prototype = new AsyncA(function(target, p, k) {
7 var f = this;
8 function cancel () {
9 target .removeEventListener(f.eventname,
10 handler, false);
11
12 function handler(event) {
13 p.advance(cancel );
14 cancel ();
15 k(event, p);
16
17 p.addCanceller(cancel );
18 target . addEventListener(f.eventname, handler, false );
9 1)
(a) Event arrows
1 function ProgressA() {
2 if (!(this instanceof ProgressA))
3 return new ProgressA();
4 this. cancellers = []; /* empty arrays */
5 this . observers = [];
6
7 ProgressA.prototype = new AsyncA(function(x, p, k) {
8 this . observers . push(function(y) { k(y, p); });
9 1)
10 ProgressA.prototype.addCanceller = function(canceller) {
11 /* add canceller function */
2 this . cancellers . push( canceller );
3}
14 ProgressA.prototype.advance = function(canceller) {
15 /* remove canceller function x/
16 var index = this. cancellers .indexOf( canceller );
17 if (index >= 0) this. cancellers . splice (index, 1);
18 /* signal observers */
19 while (this. observers.length > 0)
20 this . observers . pop ()();
21}
22 ProgressA.prototype.cancel = function() {
23 while (this. cancellers .length > 0)
24 this . cancellers .pop()();
25}

(b) Progress arrows

Figure 6: Full asynchronous arrows for simple events (cont’d)

row first removes c from cancellers (lines 16—17) and then calls
any observers (lines 19-20). A call to advance implies that a unit of
progress was made (e.g., an event triggered), and so the correspond-
ing cancellation handler c for the unit of progress is removed as it
is no longer needed. The corresponding observers are also removed
as they are invoked. This behavior is analogous to the removal of
event listeners after an event triggers.

Examples Even with the addition of progress arrows, we can still
implement the two-click example from the prior section just as
before:

var target = document.getElementByld("target");
var p = EventA("click").next(clickTargetA)

.next(EventA("click" ). next(clickTargetA))
.run(target );

However, we can now use the returned progress arrow p to affect
the arrow in flight, e.g., to stop waiting for clicks after 10 seconds:

setTimeout(function() {

p.cancel ();

target .textContent = "Can't click this";
}, 10000);

We can also use it to track when an event begins:

var status = document.getElementByld("status");
p.next(function() {
status .textContent = "l've been clicked I";

})-run();

We can use progress arrows in combination with looping, described
next, to build widgets like progress bars for long operations.

4.2 Looping with repeat ()

To support examples like autoscrolling (and others that are more
useful!) we need a composition operator for looping. Our first
thought was to look to the Haskell implementation of arrows, which
contains the loop fixpoint operator:

class Arrow arr = ArrowLoop arr where
loop :: arr (a,c) (b,c) — arr ab

instance ArrowLoop (—) where
loop fa=b
where (b,c) = f (a,c)

However, translating this declarative specification into JavaScript
is a bit awkward, and the result could be hard to use, especially for
programmers unfamiliar with fixpoint computation.

Instead, we introduce a more imperative style of looping with
the repeat( interval ) method in Figure 7(a). When run, the re-
sulting arrow executes repeatedly, yielding to the Ul thread via
setTimeout recursion. Then we return a new asynchronous arrow
containing the function rep (line 3). When invoked, rep calls f (the
arrow from which the repeating arrow was created) and passes it a
new, nested continuation with argument y and progress arrow q.

The argument y is a record created with either Repeat or Done
(lines 20-21). These methods store their argument x in a JavaScript
approximation of a tagged union—a record with the value field set
to x and either the Repeat or Done field set to true.

Given argument y, there are two cases. If y is tagged with Done
(lines 12-13), then we extract the value from y and pass it to the
continuation k for the entire arrow. If y is tagged with Repeat
(lines 5-11), we use the looping idiom from Section 2 to exe-
cute rep again after interval has elapsed. To allow the loop to
be cancelled during this timeout period, we extend the list of can-
cellers to kill the timeout (lines 6 and 7), and since we progressed
by one iteration, we advance the progress arrow (line 9).

We also provide repeat () on functions (lines 23-25).

Example repeat’s implementation is a bit tricky, but using it is
easy. For example, we can now re-implement our auto-scroller ex-
ample so that it scrolls up and down repeatedly until the docu-
ment is clicked. Figure 7(b) shows the necessary JavaScript code.
We bind scrollUpA and scrollDownA to arrows that scroll appropri-
ately, using repeat so they scroll in one direction until done (lines 5
and 10). Notice that the bodies of scrollUpA and scrollDownA re-
turn Repeat(el) when the loop should continue (lines 3 and 8) and
Done(el) when the loop should exit (lines 4 and 9).

We then build and run three asynchronous arrows. The first
(lines 13—-18) composes scrollDownA with scrollUpA (lines 15-16)
and puts the composition into an infinite loop (line 17); notice
that inserting next(Repeat) into the sequence wraps the output
of scrollUpA in a Repeat record, ensuring we begin the down/up
sequence again. We then initiate the down/up scrolling on the doc-
ument (line 13), storing the returned progress arrow in scrollingP .



1 AsyncA.prototype.repeat = function() {

2 var f = this;

3 return new AsyncA(function rep(x, p, k) {

4 f.cps(x, p, function(y, q) {

5 if (y.Repeat) {

6 function cancel () { clearTimeout(tid); }
7 q.addCanceller(cancel );

8 var tid = setTimeout(function() {

9 q.advance(cancel );

10 rep(y.value, q, k);

11 }. 0);

12 } else if (y.Done)

13 k(y.value, q);

4 else

15 throw new TypeError("Repeat or Done?");
16 ok

17 I3k

18}

19

20 function Repeat(x) { return { Repeat:true, value:x }; }
21 function Done(x) { return { Done:true, value:x }; }

1 AsyncA.prototype.or = function(g) {

2 var f = this; g = g.AsyncA();

3 return new AsyncA(function(x, p, k) {

4 /* one progress for each branch x/

5 var pl = new ProgressA();

6 var p2 = new ProgressA();

7 /* if one advances, cancel the other x/
8 pl.next(function() { p2.cancel ();

9 p2 = null; }).run();
10 p2.next(function() { pl.cancel ();

11 pl = null; }).run();
12 function cancel () {

13 if (pl) pl.cancel ();

14 if (p2) p2.cancel ();

15

16 /* prepare callback x/

17 function join (y, q) {

18 p.advance(cancel );

19 k(y, a);

20

21 /* and run both x/

22 p.addCanceller(cancel );

23 f.cps(x, pl, join);

24 g.cps(x, p2, join);

25 3R

26}

22
23 Function. prototype.repeat = function(interval ) {
24 return this . AsyncA().repeat( interval );
25}
(a) Loopy arrows
1 var scrollUpA = function(el) {
2 var last = el. scrollTop ——;
3 if (last != el.scrollTop) return Repeat(el);
4 else return Done(el);
5 }.repeat();
6 var scrollDownA = function(el) {
7 var last = el. scrollTop ++;
8 if (last != el.scrollTop) return Repeat(el);
9 else return Done(el);
10 }.repeat();
11

12 /* Arrow 1: start scrolling down, up, down, up... */
13 var targetA = ConstA(document.body);
14 var scrollingP = (targetA

15 .next(scrollDownA

16 .next(scrollUpA)

17 .next(Repeat)).repeat()) /* infinitely */
18 .run();

19

20 /% Arrow 2: stop when clicked x/

21  targetA

22 .next(EventA("click"))

23 .next(function() { scrollingP .cancel (); })
24 .run();

25

26  /* Arrow 3: indicate scroll % x/
27 wvar status = document.getElementByld("status");
28 ( scrollingP

29 .next(function() {

30 status .textContent =

31 document.body.scrollTop

32 / document.body.scrollHeight + "%";
33 }). next(Repeat)).repeat ()

34 .run()

(a) A tale of two arrows

function WriteA(str) {
return function(event) {
var target = event.currentTarget;
target .textContent = str;
return target;

3

9 var heads = ConstA(document.getElementByld("heads"));
10 var tails = ConstA(document.getElementByld("tails"));
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12 (heads.next(EventA("click")). next(WriteA("l win!")))
13 .or( tails .next(EventA("click")). next(WriteA("You lose!")))
4 .run();

(b) Scrolling is helpful, unless it is annoying

Figure 7: Looping with AsyncA

The second arrow (lines 21-24) waits for a click event on
the document, and then cancels the scrolling operation using the

(b) You’d never win

Figure 8: Branching with AsyncA

progress arrow. The third arrow (lines 27-34) updates a status box
with the current scroll location as the document is being scrolled.
We could have also implemented this scroll indicator as part of the
first arrow; however, composing these as two arrows separates the
concerns of performing and tracking the scrolling operation.

4.3 Either-or()

Our last addition to AsyncA is an “or”’ combinator that combines
two asynchronous arrows and allows only one, whichever is trig-
gered first, to execute. For example, this allows us to wait for a
keystroke or a mouse movement, and respond to only one. An “or”
combinator is necessary for supporting any branching state ma-
chine, as with drag-and-drop.

Looking again into Haskell’s quiver, ArrowZero and ArrowPlus
seem relevant:

class Arrow a = ArrowZero a where
zeroArrow . a b c

class ArrowZero a = ArrowPlus a where
(<) mabc—abc—abc




Semantically, ArrowZero arrows designate a special failing
value that causes all remaining computation to be aborted, and
zeroArrow is defined as an arrow that always fails. ArrowPlus com-
plements ArrowZero by providing failure handling: f <> g returns
the output of f if it succeeds, or the output of g if f fails.

The combinator <> is almost what we want, but there is one
slight issue—events handlers in JavaScript never actually fail; they
just wait indefinitely to be triggered. Thus, we introduce an or
combinator that explicitly forces one of two asynchronous arrows
to fail by canceling whichever one does not fire first.

Figure 8(a) gives the code for the or method, which com-
bines the current arrow f with the argument g (line 2). Calling
f.or(g).run() executes whichever of f or g is triggered first, and
cancels the other. To keep the presentation simpler, we assume
both f and g are asynchronous event arrows. When invoked, the new
arrow first creates progress arrows pl and p2, which when advanced
calls cancel on the other arrow (lines 8-11). We also register
(line 22) the cancel function (lines 12—15), which will remove
any handlers that are still installed. Then, we invoke the component
arrows, f with pl (line 23) and g with p2 (line 24). When either
arrow completes, they call join (lines 17-20), which first advances
the progress arrow p for the composition itself (line 18) and then
invokes the regular continuation.

Example In Figure 8(b), we demonstrate a simple coin-toss game
implemented with or. We first define WriteA to create an arrow that
writes into an event’s target element. Then, we compose two arrows
(lines 12-13) that respond to clicks in heads and tails , respectively.
Finally, we combine the arrows with or, ensuring that the player can
only click once, on either heads or tails .

4.4 Arrow-based Drag-and-Drop

Now that we have done the hard work of building up a library of
arrow combinators, we can implement the drag-and-drop example
from Section 2.2 in a much cleaner, more modular way. Figure 9(a)
graphically illustrates the composition of arrows for the code given
in part (b) of the figure. We introduce four regular functions setupA,
dragA, dropA, and cancelA to implement the actions in each possible
drag-and-drop state. In contrast to Figure 1(b), these functions do
not contain any of the plumbing of the state machine—all they do
is carry out the appropriate actions based on the event, and then
return the event target. Lines 18-32 compose these arrows with
event handlers to build the state machine. For example, the arrow
dragOrDropA on lines 18-20 (shown in a dashed box in the part (a))
connects the drag state to itself (upon a mousemove) or to the drop
state (upon mouseup).

Notice that the arrow composition diagram in Figure 9(a) corre-
sponds almost directly to the state machine we drew in Figure 1(a).
Furthermore, the composition on lines 18-32 is simply a translit-
eration of the arrow diagram. We think this is a much clearer way
to structure this event handling code than the standard approach we
saw earlier.

Perhaps more importantly, setupA, dragA, dropA, and cancelA
are independent of each other and their event triggers. Thus, we
can reuse them in different compositions of arrows. For example,
Figure 9(c) shows an alternative drag-and-drop implementation that
is initiated by a mouseover event, rather than a mousedown event.

We can even re-use the elementary arrows of drag-and-drop in
a different application. Figure 9(d) shows the basic control-flow
of a jigsaw puzzle game. One piece of the jigsaw puzzle is first
displayed (line 1), picked up with a click event (line 2), and then
moved with the cursor until being dropped by the mouseup event
inside dragOrDropA (line 4). However, the piece may be automati-
cally picked up again if it was dropped in the wrong place (line 5).
And the whole composition repeats with the next jigsaw piece. Re-
using the code in Figure 1(b) to build this new structure would be

dragDropOrCancelA .

. mousemove — dragA — Repeat

mousedown - ° mouseup — dropA — Done '
/: mousemove — dragA " _]
setupA—C T
. mouseup —scancelA

(a) Arrow diagram

1 function setupA(event) {

2 /* setup drag—and—drop */
3 return event. currentTarget ;
4

5 function dragA(event) {

6 /* perform dragging */

7 return event. currentTarget ;
8

9 function dropA(event) {

10 /* perform dropping */

11 return event. currentTarget;
12

13 function cancelA(event) {

4 /* cancel drag—and—drop x/
15 return event. currentTarget;
16}

17

18 var dragOrDropA =

19 ( (EventA("mousemove").next(dragA).next(Repeat))
20 .or(EventA("mouseup").next(dropA).next(Done))
21 ). repeat ();
22
23 var dragDropOrCancelA =
24 (EventA("mousemove").next(dragA).next(dragOrDropA))
25 .or(EventA("mouseup").next(cancelA));
26
27 var dragAndDropA = /* drag—and—drop */
28 EventA("mousedown")
29 .next(setupA).next(dragDropOrCancelA);
30
31 ConstA(document.getElementByld("dragtarget"))
32 .next(dragAndDropA).run();
(b) JavaScript implementation

1 ConstA(document.getElementByld("dragtarget"))

2 .next(EventA("mouseover"))

3 .next(setupA).next(dragDropCancelA)

4 .run()

(c) Alternative—trigger on mouseover

(nextPieceA
.next(EventA("click"))
.next(setupA)
.next((dragOrDropA
.next(repeatlfWrongPlaceA)).repeat ()
)

). repeat()

.run()
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(d) Jigsaw game re-using drag-and-drop elementary arrows

Figure 9: Drag-and-drop with arrows

non-trivial, while with asynchronous event arrows, building such
compositions is straightforward.




Figure 9(b) also illustrates how programmers gain the benefits
of asynchronous event arrows without having to know much about
our library’s implementation. setupA, dragA, dropA, and cancelA
are all regular JavaScript functions, and EventA, next, and run all
have intuitive semantics.

4.5 Discussion

We believe our asynchronous arrow library is potentially useful
for a variety of applications beyond those presented. In essence,
our library can be used to construct arrows corresponding to arbi-
trary state machines, where transitions between states are via syn-
chronous or asynchronous calls. The combinators next and or can
construct machines that are DAGs (where each machine state cor-
responds to a single handler), and with looping we can create ar-
bitrary graphs. It is easy to imagine other applications that could
be built from such state machines, such as games (where related
actions in the game, e.g., matching two cards, could be composed
into a state machine) or productivity applications (where various
elements of the Ul have state).

In addition to timeouts and UI events, our library can also
support other kinds of events, e.g., completion of a network or file
I/O call. Indeed, our original motivation for developing arrows was
to make it easier to write a web-based code visualization tool® that
starts by loading XML files over the network. To do this we create
a composite asynchronous arrow that first loads an index file, and
then iteratively loads each file present in the index, where one load
commences when the previous one completes.

There are also many possible extensions to our library. For ex-
ample, right now EventA has arrow type CpsA target event, and
these events are interleaved with arrows of type CpsA event target .
It would be easy, and probably useful, to allow state to be threaded
through an arrow composition, e.g., EventA could have type
CpsA (target ,a) (event,b), and we could compose these with
arrows of type CpsA (event,b) (target ,a), so that state can be
carried through the computation. We may also want to add new
variations on EventA combinators. For example, we may want a
version of next that does not uninstall the previous handler, to im-
prove efficiency in the case we have a handler that remains live
over many events. We leave exploring these and other interesting
directions to future work.

5. Related Work

There are three main areas to consider: libraries based on func-
tional programming techniques; JavaScript libraries that provide
high-level, event-driven widgets; and other work on event-driven
programming.

Libraries based on functional programming Our inspiration to
develop an arrow-based library comes from a number of related
libraries in Haskell such as Fudgets (Carlsson and Hallgren 1993)
and Yampa (Hudak et al. 2003). Fudgets is a library for building
graphical user interfaces (GUI), and uses arrows to implement GUI
elements such as buttons, menus, and scroll bars, as well as event
handlers. A complete GUI application is composed of Fudgets
using various combinators.

Yampa is another arrow-based library for Haskell, but is de-
signed for functional reactive programming (FRP). FRP is a pro-
gramming pattern that introduces the concept of time-varying val-
ues and automates the propagation of changes in such values. In
Yampa, time-varying values are modeled as signals, and are pro-
cessed by signal functions. Signal functions are in turn imple-
mented as arrows, and can thus be composed using arrow combina-
tors. While the authors demonstrated Yampa in a robotics simulator

Shttp://www.cs.umd.edu/projects/PL/PP/

(Hudak et al. 2003), a GUI library named Fruit has also been built
with Yampa (Courtney and Elliott 2001), where events are mod-
eled as signals that change on user input, and event handlers are
analogous to signal functions.

Our library is intended for building interactive web applications.
Unlike standard GUI applications such as those written in Fudgets
or Fruit, web applications are typically developed in a combina-
tion of HTML and CSS to define the graphical layout of interface
elements, and JavaScript for the interface behavior (i.e., event han-
dling). Our library is designed with this distinction in mind and
focuses on composing event handlers in JavaScript.

We are aware of another JavaScript library, Flapjax (Meyerovich
2007), that is inspired by research in functional programming.
Flapjax is an implementation of FRP in JavaScript, in which data
sources, e.g., user input or events, can be created and connected to
data sinks, e.g., a text box. Flapjax maintains these connections in a
data-flow graph, and changes in input data are automatically prop-
agated through the data-flow graph to the data sinks. Although it is
not based on arrows, Flapjax supports many of the same complex
combinators such as loops and branches.

In contrast to Flapjax, our library was originally designed with
the simpler goal of composing event handlers. Our lightweight
CPS-based arrows are more suited to smaller sequences of events
since we need not build a data-flow graph; whereas for complex
applications, such as spreadsheets, Flapjax can optimize data prop-
agation through the data-flow graph, e.g., to propagate events only
when the data-sink is ready.

JavaScript libraries Many JavaScript libraries have been devel-
oped to ease the construction of rich and highly interactive web
applications that are now associated with Web 2.0. Example li-
braries include jQuery (jquery.com), Prototype (prototypejs.
org), YUI (developer.yahoo.com/yui), MochiKit (mochikit.
com), and Dojo (dojotoolkit.org). These libraries generally
provide high-level APIs for common features, e.g., drag-and-drop,
animation, and network resource loading, as well as to handle API
differences between browsers. For example, in jQuery, one can
make a document widget box “draggable” within its surrounding
text area with the syntax $(box).draggable(). The main drawback
of these libraries is that high-level features can be used in relatively
few (but hopefully common) scenarios; even slight variations may
be impossible without modifying the library internals (which may
be difficult to understand, for reasons discussed in Section 2.2). In
contrast, with arrows as the foundational element, high-level fea-
tures can be both understandable and more customizable. For ex-
ample, we believe our arrow-based approach makes it much eas-
ier for programmers to reason about drag-and-drop, by separating
plumbing code from action code.

One form of customizability often exposed in library interfaces
is the notion of an animation queue. The queue contains one or
more effects, each of which represents a particular type of anima-
tion, e.g., fading a HTML element. Effect playback is implemented
using a loop where each iteration is triggered by a timer event (as
the last example in Section 2). Programmers can thus sequence an-
imations, even dynamically, by adding them to the queue. Such
queues are easily implemented in our framework (by constructing
loops as shown in Section 4.2), and indeed are more customizable.
Based on the examples we have shown, it is easy to imagine cus-
tomizing the queue timeout duration, creating a queue of queues,
or cancelling a series of queued events.

To allow operations to be composed, some libraries provide an
idiom called method-chaining (e.g., jQuery is built on this idiom).
In this idiom, all methods of an object returns the object itself, such
that further methods can be invoked on it. In the following jQuery
snippet, the document body is first wrapped in a proxy object using



the $ function. The first call to animate returns the proxy object,
which we can then call animate on again:

var body = document.body;

$(body)
.animate({scrollTop: body. scrollHeight }, 2000)
.animate({scrollTop: 0}, 2000);

This code is quite readable, as it is easy to see that a sequence of
operations is performed on the same object. Composed arrows have
a similar lightweight syntax (particularly for sequencing, though
less so for other combinators), but are more flexible as they also
support asynchronous invocations.

Event-driven programming It is well-known that threads and
events are computationally equivalent (Lauer and Needham 1978).
Recently there has been a flurry of research that explores this rela-
tionship more closely. The basic observation is that single-threaded
event-driven programming is analogous to multi-threading with co-
operative scheduling, in which one thread runs at a time and yields
the CPU either voluntarily or when it would block on an I/O oper-
ation (Adya et al. 2002; von Behren et al. 2003; Li and Zdancewic
2007). One can view a thread as a sequence of event handlers,
where each handler’s final action is to register an event that trig-
gers the next handler in the sequence (e.g., after a timeout or /O
event completion).

Li and Zdancewic (2007) have built a thread monad for Haskell
that follows this observation. In particular, users write a thread as a
monad that concludes with a potentially blocking operation, and
monad composition weaves these atomic handlers into a thread
with several potential blocking points. The do syntactic shorthand
for monads in Haskell makes these blocking points more trans-
parent to the user by making composition lightweight. Our sim-
ple event arrow provides a similar API: the user writes a “thread”
as a sequence of handlers separated by various (blocking) events,
composed together by next. Each simple event arrow on which we
invoke the run method can be viewed as a separate thread. On the
other hand, full asynchronous arrows provide more than sequential
composition, which allow us to build more general state machines,
and not just sequentially-composed threads.” It would be interest-
ing to explore whether our additional composition operators would
be useful in their setting.

6. Conclusion

We presented the Arrowlets library for using arrows in JavaScript.
The key feature of our library is support for asynchronous event ar-
rows, which are triggered by events in a web browser such as mouse
or key clicks. By providing sequencing, looping, and branching
combinators, programmers can easily express how their event han-
dlers are composed and also separate event handling from event
composition. Our library supports sophisticated interface idioms,
such as drag-and-drop. The library also includes progress arrows,
which can be used to monitor the execution of an asynchronous ar-
row or abort it. In translating arrows into JavaScript, our library pro-
vides programmers the means to elegantly structure event-driven
web components that are easy to understand, modify, and reuse.
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