
ABSTRACT

Title of dissertation: A PUBLIC HEALTH MODELING
BASED APPROACH TO INFORMATION
SECURITY QUANTIFICATION

Edward M. Condon, Doctor of Philosophy, 2015

Dissertation directed by: Professor Michel Cukier
Reliability Engineering Program

Modeling the occurrence of computer security incidents within a defined popula-

tion of computers can be used to help understand some of factors contributing to risk

and transmission of these incidents among the population. A better understanding

of these factors can be used to determine appropriate intervention actions that can

be applied to the population, which may also be evaluated through the application

of models. Explanatory models attempt to include and account for various primary

factors that affect the occurrence of computer security incidents.

Models based on observed security incidents may also be used to evaluate

interventions even when explanatory models may not exist or may be difficult to

formulate or express for a particular incident type. Forecasting models can be used

to project the occurrence of incidents in the future and these projections can be

compared to actual observations before and after interventions are applied.

The following aspects of modeling computer security incidents are explored: (1)

the presentation and discussion of adapting some commonly used infectious disease

models for modeling the spread of some types of computer security incidents along

with applicable intervention actions; (2) an illustration of how these types of models

could be applied to making resource allocation decisions regarding intervention

efforts; (3) the presentation and comparison of models that can be used for track-

ing/forecasting security incidents and monitoring the impact of interventions; (4) the

presentation of a method for estimating model features and parameter distributions

from observed data; and (5) the exploration of some population characteristics and

models for evaluating where to focus or target intervention actions.

When resources for responding to or preventing computer security incidents

are limited or constrained, the ability to accurately model and evaluate intervention

actions can be a useful tool for making the most of these resources.

A PUBLIC HEALTH MODELING BASED APPROACH TO
INFORMATION SECURITY QUANTIFICATION

by

Edward M. Condon

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Michel Cukier, Chair/Advisor
Professor Rance Cleaveland, Dean’s Representative
Professor Jennifer Golbeck
Professor Jeffrey Herrmann
Professor Ali Mosleh
Mr. Gerry Sneeringer, Special Member

c© Copyright by
Edward M. Condon

2015

Dedication

To the memory of Joseph Daly Katsouros, a colleague and friend.

ii

Acknowledgments

I am grateful to all the people who have made this dissertation possible and

who have contributed and been a part in shaping the many facets of my graduate

experience.

First and foremost I’d like to thank my advisor, Professor Michel Cukier for

providing me an invaluable opportunity to work on challenging and interesting

projects over the past several years. His strong mentorship has been a key element

in this effort.

I would also like to thank my doctoral committee: Dr. Rance Cleaveland, Dr.

Jennifer Golbeck, Dr. Jeffrey Herrmann, Dr. Ali Mosleh, and Mr. Gerry Sneeringer,

for sparing their invaluable time and providing valuable feedback.

Other former and current graduate students who have provided support and

guidance, including Robin Berthier, Danielle Chrun, and Bertrand Sobesto. I would

also like to thank Matthew Virgo for his insight and moral support throughout the

process and to especially acknowledge the help and support from Dorothea Brosius

with the document preparation in LATEX.

I owe my deepest thanks to my family - my parents who have always inspired

and supported me through many endeavors (including this one), and to my partner,

Sveta, and my children, Ian and Michael, whose patience and tolerance have been a

crucial component.

There are many others who have helped and assisted in many ways over the

years and I thank you.

iii

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction and Background 1
1.1 Overview . 1
1.2 Statement of Problem . 4
1.3 Outline of Dissertation . 5
1.4 Background . 6

1.4.1 Taxonomy/definition/description of computer security and
incidents . 6

1.4.2 Purposes of modeling . 8
1.4.3 Types of models . 10

1.4.3.1 Underlying dynamics models 11
1.4.3.2 Quality control models 12

1.4.4 Selecting and targeting interventions 14
1.5 Purpose . 16
1.6 Significance . 16
1.7 Scope and Limitations . 17

2 Literature Review 18
2.1 Overview . 18
2.2 Computer Security Incidents . 19
2.3 Infectious Disease Modeling . 20

2.3.1 Standard Susceptible-Infected-Recovered (SIR) model 21
2.3.2 Model for email propagation 22
2.3.3 Types of interventions for controlling infectious diseases 23

2.4 Surveillance–quality control and monitoring 25
2.4.1 Software reliability growth models 27
2.4.2 Time series models . 28

2.5 Targeting Interventions and Identifying Risk Factors 29
2.6 Existing Limitations . 31

iv

3 Infectious Disease Models 33
3.1 Overview . 33
3.2 Deterministic SIR Models . 34
3.3 Stochastic SIR Models . 35
3.4 Isolating a Smaller Subset from a Larger Population 40
3.5 Model Application Illustration . 50

3.5.1 Baseline scenario . 51
3.5.2 Interventions . 51
3.5.3 Costs related to outcomes and interventions 54

4 Email Propagation Models 60
4.1 Overview . 60
4.2 Stochastic Email Propagation Model 61
4.3 Network Topology . 63
4.4 Human Factors . 66

4.4.1 Email checking interval rate 66
4.4.2 Likelihood to open infected message 70

4.5 Interventions (Blocking and Patching) 75
4.6 Model Application Illustration . 79

4.6.1 Baseline scenario . 79
4.6.2 Interventions . 81
4.6.3 Costs related to outcomes and interventions 83

5 Software Reliability Growth and Time Series Models 89
5.1 Overview . 89
5.2 Software Reliability Growth Models 90

5.2.1 Trend analysis . 91
5.2.2 Software reliability growth models 93

5.3 Time Series Models . 95
5.3.1 Data transformations . 97
5.3.2 Model selection criteria . 100

6 Illustrations using Campus Data 102
6.1 Description of data . 102
6.2 Approximate Bayesian Computation 105
6.3 SIR Models . 108

6.3.1 Test cases . 109
6.3.2 Test parameter sets . 110
6.3.3 Test results and observations 111
6.3.4 Application using incident data 112

6.3.4.1 Incident data . 113
6.3.4.2 Applied parameter ranges 113
6.3.4.3 Applied results and observations 114

6.4 Email Propagation Models . 115
6.4.1 Test cases . 116

v

6.4.2 Test parameter sets . 117
6.4.3 Test results and observations 118
6.4.4 Application using email incident data 120

6.4.4.1 Email incident data 121
6.4.4.2 Parameter ranges . 122
6.4.4.3 Results and observations 123

6.5 Software Reliability Growth and Time Series Models 126
6.5.1 Trend analysis and software reliability growth models 126
6.5.2 Time series models . 135

6.5.2.1 Fitting and forecasting observed data with time series
models . 136

6.5.3 Comparing software reliability growth and time series models . 141
6.5.4 Update regarding “spamrelay” incident type 143

7 Exploring Population Risk Factors 148
7.1 Description of data . 148
7.2 Population Characteristics . 151

7.2.1 Network affiliation of host (Housing/Other) 151
7.2.2 Age . 152
7.2.3 Calendar month . 155
7.2.4 Academic semester . 156
7.2.5 Vendor ID from MAC address 158
7.2.6 Network time . 160
7.2.7 On at beginning of month . 162

7.3 Modeling and Evaluation Methodology 164
7.4 Modeling and Evaluation Results . 166

8 Conclusions and Future Work 171
8.1 Observations and Conclusions . 171
8.2 Future Work . 176

A Incident Data 178
A.1 Description . 178
A.2 Worm msblast data . 178
A.3 Worm nachi data . 181
A.4 Bagle worm data . 182
A.5 Virus klez data . 183
A.6 Virus agobot data . 184
A.7 Spamrelay data . 185

A.7.1 Original time interval . 185
A.7.2 Additional time interval . 186

B R code for SIR models 187
B.1 Description . 187
B.2 R code example for SIR models . 187

vi

C R code for Email models 191
C.1 Description . 191
C.2 R code example for Email models . 191

D R code for Time series models 196
D.1 Description . 196
D.2 R code example for Time series models 196

E R code for Logistic regression models 199
E.1 Description . 199
E.2 R code example for Logistic regression models 199

Bibliography 201

vii

List of Tables

2.1 Purposes for monitoring health events and computer security incidents. 26

3.1 Comparisons using different parameters and population sizes. 44
3.2 Time to first infection (TTFI) in internal population. 47
3.3 Summary of different outcomes based on vaccinations or blocking values. 49
3.4 Comparison of fixed and proportional rate patching efforts. 50
3.5 Properties of baseline case for comparisons of interventions. 52
3.6 Intervention properties. 54
3.7 Outcome related costs. 55

4.1 Parameters and outputs for topology examples shown in Figures 4.2
and 4.3 . 65

4.2 Examples of different email checking intervals on number of infections
(nodes = 1,000) . 70

4.3 Properties of baseline case for comparisons of interventions. 80
4.4 Intervention properties. 83
4.5 Outcome related costs. 84

6.1 Summary of incident data. 105
6.2 Chi-square fit values for incident models over full time intervals. . . . 130
6.3 Splitting incident data for hold-out validation. 133
6.4 Chi-square fit values for split incident data. 134
6.5 ARIMA models and forecasts (AICc based selection). 138
6.6 ARIMA models and forecasts (BIC based selection). 139
6.7 Comparison of best model forecast RMS values for time series and

SRG models. 142

7.1 Incidence rates for Housing and Other networks. 152
7.2 Incidence rates for Low and High aged machines. 153
7.3 Incomplete timestamp data. 161
7.4 Data and sizes of samples used for evaluations of models and forecasts.165
7.5 Comparison of best forecasts. 170

viii

List of Figures

3.1 Deterministic examples of (a) an SIR model and (b) an SIR model
with vaccination. 35

3.2 Examples of adjacency matrices for (a) fully connected graph and (b)
partially connected graph. 37

3.3 Stochastic examples (with ∆t = 0.1) of (a) SIR model and (b) SIR
model with vaccination, (c) breakdown recovered hosts as originating
from infected hosts [Ri(t)] or vaccinated hosts [Rs(t)]. 40

3.4 Example of decomposing (a) fully connected graph and adjacency
matrix [A] into parts (b) representing connections to/from outside
[Aext] a defined subset (nodes 4 and 5 in example) and (c) representing
only internal connection [Aint] of the subset where A = Aext + Aint. . 42

3.5 Contribution of subpopulation to overall number of infected hosts. . . 44
3.6 Number of infection attempts from external to internal hosts. 45
3.7 Time to first infection in sub-population. [Population = 1,000; sub-

population = 100; β = 1.8; γ = 0.75]. 46
3.8 Example of vaccination only within a subpopulation. 48
3.9 Example of blocking some externally infection connections. 49
3.10 Example of proportional vaccination rate in population subset. 50
3.11 Intervention cost components. 57
3.12 Intervention options outcome costs combined. 58
3.13 Intervention options total combined costs (implementation and out-

comes). 58

4.1 Network connection topology examples and node-degrees. 64
4.2 Scale-free network topology example (≈20% connected, β = 1.0, γ =

0.3). 65
4.3 Random network topology example (≈20% connected, β = 1.0, γ =

0.3). 65
4.4 Random topology, less frequent email checking. 68
4.5 Random topology, medium frequent email checking. 69
4.6 Random topology, more frequent email checking. 69
4.7 Random topology, maximum email checking. 69

ix

4.8 User likelihood distribution examples with similar expected values.
[Red line shows the population expected value.] 71

4.9 Random topology (≈20% connected), expected user likelihood for
opening infected messages ≈12.5%, exponential distribution of likeli-
hoods. 72

4.10 Random Topology (≈20% connected), expected user likelihood for
opening infected messages ≈8.33%, exponential distribution of likeli-
hoods. 73

4.11 Scale-free topology (≈20% connected), expected user likelihood for
opening infected messages ≈12.5%, exponential distribution of likeli-
hoods. 73

4.12 Scale-free topology (≈20% connected), expected user likelihood for
opening infected messages ≈8.33%, exponential distribution of likeli-
hoods. 73

4.13 Uniform random likelihood to open infected messages; randomly
connected network with different link levels. 74

4.14 Uniform random likelihood to open infected messages; scale-free con-
nected network with different link levels. 74

4.15 Exponential based likelihood to open infected messages; randomly
connected network with different link levels. 75

4.16 Exponential based likelihood to open infected messages; scale-free
connected network with different link levels. 75

4.17 Effect of patching vulnerable computers; random topology, unif. ran-
dom likelihood for opening infected emails. [Red line is mean value
for number of patched nodes for reference, green line is mean value
for nodes that become infected before being recovered.] 77

4.18 Effect of patching vulnerable computers; scale-free topology, exp.
based likelihood for opening infected emails. [Red line is mean value
for number of patched nodes for reference, green line is mean value
for nodes that become infected before being recovered.] 77

4.19 Effect of blocking most infected emails; random topology, unif. ran-
dom likelihood for opening infected emails. [Red line is mean value
for unblocked simulations for reference, green line is mean value for
simulations with blocking.] . 77

4.20 Effect of blocking most infected emails; scale-free topology; exp. based
likelihood for opening infected emails. [Red line is mean value for
unblocked simulations for reference, green line is mean value for simu-
lations with blocking.] . 78

4.21 Effect of blocking and patching; random topology, unif. random
likelihood for opening infected emails. [Red line is mean value for
unblocked and unpatched simulations for reference, green line is mean
value for simulations with blocking and patching.] 78

x

4.22 Effect of blocking and patching; scale-free toplogy; exp. based likeli-
hood for opening infected emails. [Red line is mean value for unblocked
and unpatched simulations for reference, green line is mean value for
simulations with blocking and patching.] 78

4.23 Intervention cost components. 86
4.24 Intervention options outcome costs combined. 87
4.25 Intervention options total combined costs (implementation and out-

comes). 87

6.1 Timeline of incident data. 106
6.2 Cumulative number of incidents. 106
6.3 Test Case A and histograms of model fit values for Model A for

different parameter sets. 112
6.4 Distribution of model types for the 50 best fitting model outputs for

Test Case A for different parameter sets. 112
6.5 Incident Type A and histograms of model fit values for model types

A and B. 113
6.6 Frequency of model types generating best 20 fitting model outputs

and histograms of best 20 fit values. 115
6.7 Test Case D and histograms of model fit values for Model D for

different parameter sets. 120
6.8 Distribution of model types for the 100 best fitting model outputs for

Test Case D for different parameter sets. 121
6.9 User likelihood parameter distributions (prior in red, posterior in

grey) for Model Type D of the 100 best fitting model outputs for Test
Case D across parameter sets. [Actual User Likelihood Parameter
value = 0.10.] . 121

6.10 Type C and histograms of model fit values for different model types. . 123
6.11 Frequency of model types generating best 50 fitting model outputs

and histograms of best 50 fit values. 123
6.12 Incident Type C, Model Type B–parameter distributions (prior density

in red, posterior density in black, posterior density histogram in grey). 124
6.13 Laplace trend values for all incident data. 129
6.14 Laplace trend values for “ms blast” incident data. 129
6.15 Laplace trend values for “spamrelay” incident data. 129
6.16 Laplace trend values for “virus agobot” incident data. 129
6.17 G-O model fit and data for “irc bot”. 131
6.18 Chi-square residuals for G-O model fit of “irc bot” data. 131
6.19 K-Stage model fit and data for “irc bot”. 132
6.20 Chi-square residuals for K-Stage model fit of “irc bot” data. 132
6.21 K-Shaped model fit and data with hold-out data included for “All

data”. 134
6.22 G-O model fit and data with hold-out data included for “worm msblast”.134
6.23 S-Shaped model fit and data with hold-out data included “irc bot”. . 134
6.24 Duane model fit and data with hold-out data included for “spamrelay”.134

xi

6.25 Difference transformations and ACF values for “spamrelay”. 136
6.26 Duane model fit and incident data for “spamrelay” with additional

time interval. 145

7.1 Median ages by months. 154
7.2 Boxplots of yearly scaled incidence rates by Calendar Month. 156
7.3 Scaled incidence rates per semester by Academic Year. 157
7.4 Scaled incidence rate per semester by Academic Year (Housing). . . . 157
7.5 Scaled incidence rate per semester by Academic Year (Other). 157
7.6 Scaled incidence rate per MAC vendor by Academic Year. 159
7.7 Scaled incidence rate per MAC vendor by Academic Year (Housing). 159
7.8 Scaled incidence rate per MAC vendor by Academic Year (Other). . . 159
7.9 Boxplots of scaled incidence rates for network time categories. 162
7.10 Scaled incidence rate per On/Off groups by Academic Year. 163
7.11 Scaled incidence rate per On/Off groups by Academic Year (Housing).163
7.12 Scaled incidence rate per On/Off groups by Academic Year (Other). . 163
7.13 Summary of AUC values and number of true positives in samples for

single-year models and testing data. 169
7.14 Summary of AUC vaues and number of true positives in samples for

three-year models and testing data. 169

xii

Chapter 1: Introduction and Background

1.1 Overview

Computer and network security incidents have financial consequences both for

individuals and for organizations. Compromised computer resources often end up

being used as part of financially motivated attacks against others [1]. Examples

include large-scale botnets [2, 3] used for organized criminal activities [4] such as

extortion and phishing/pharming [5] attacks, as well as distribution of pop-up

advertisements, spam [1] and “scareware” [6]. However, other attacks may not be

motivated by financial gains for the attackers but do result in financial losses for the

victim. Examples from recent years of such attacks include those against HBGary

Federal [7] and Sony Playstation Network [8]. Laws and regulations may also require

companies to publicly disclose data breaches. This can negatively affect stock prices

and other valuations of the organization [9, 10].

In addition to the risks posed by security incidents (financial fraud, data

breaches, reputational damage), there are direct costs to organizations for responding

to such incidents. Organizations spend time and money developing and enforcing

policies designed to reduce the number or severity of incidents. For example, corpo-

rations may purchase intrusion detection systems (IDS) and intrusion prevention

1

systems (IPS) to assist with monitoring and detecting incidents. Also, staff and

user resources are needed to fix and recover from incidents. Most importantly,

critical information technology infrastructure resources may be unavailable for use

during the recovery process. Identifying and responding to incidents quickly can

help minimize the impact within an organization, as well as to external entities that

may be targeted by the use of an organization’s resources (such as with reflector

based denial-of-service attacks).

Undetected and/or unaddressed security incidents can have more severe conse-

quences over time:

• Providing entry points to more critical systems or protected information;

• Being used as launching points for other attacks against the same or other

organizations;

• Being used to gather and collect information about an organization that can

be leveraged in the future (in the form of more targeted attacks or business

competition);

• Causing reputational damage if regulatory requirements mandate the disclosure

of applicable incidents or resulting breaches.

A recent example of a large scale breach illustrates some of the costs involved.

The South Carolina Department of Revenue was involved in a breach where data

involving 6.4 million consumers and businesses were stolen. One source [11] reports

the cost as $700,000 for the hiring of a security firm to review what occurred and

2

make security suggestions. The same source reports that a similar security assessment

before the breach would have cost about $200,000, which shows some of the additional

costs resulting from the breach. In addition to the security assessment, the source

reports there is a $12 million contract with Experian to provide a year of free credit-

report monitoring to taxpayers; additional likely costs include hiring a PR firm and

outside lawyers.

In many cases this kind of breach is the result of several security failings that

have been combined or have cascaded into the detected and publicized or reported

breach. Smaller computer security incidents can often form the building blocks of

larger scale security breaches. Verizon reports that in 2011, 98% of breaches stemmed

from external agents and that 97% of breaches were avoidable through simple or

intermediate controls [12].

Sometimes the root causes of incidents may be well known and/or understood.

However, sometimes the root causes will never be determined due to time, technical,

and financial constraints. Even in cases where the root causes of incidents may

be well known or understood, determining mitigation strategies and measuring

the effectiveness of their implementation can be difficult. In the same way that

understanding the mechanics behind a disease’s effects on an organism does not

always directly lead to a prevention or cure (generating an effective immune system

response can still be a problem), determining effective responses to computer security

threats is not always straightforward. Also, even when effective intervention actions

are known, their timely implementation and deployment can still present additional

challenges.

3

As concerns increase about the impact of such breaches, calls for changes in laws

and policies to improve cyber security have also increased. Some laws and policies

(such as the Computer Fraud and Abuse Act of 1986) outline activities subject to

penalties and fines to discourage certain types of activity. Other laws and policies

(such as the Health Information Technology for Economic and Clinical Health Act of

2009) impose penalties against organizations or otherwise provide incentives for these

organizations to implement steps that may improve their resilience against some

of the attacks and scenarios that have led to large breaches in the past. However,

legislative measures can become outdated as technology and its use continue to

evolve. Threats and attacks will often evolve in response to new uses of technology

and to new defensive measures, similar to the way in which last year’s flu vaccine

may not be effective against this year’s influenza [13].

1.2 Statement of Problem

Computer security personnel need to be able both to prepare and to react to

incoming data from multiple sources in order to make assessments of changes in

the state of “health” of their organization’s information infrastructure, resources,

and assets, and to decide upon actions or interventions. These personnel also need

to have information regarding the types of appropriate interventions available, the

likely effectiveness of such interventions, and the means to measure the impact–even

when the root causes of a growing issue are not well known or understood. The

identification and quantification of risk factors can assist with the development and

4

targeting of effective intervention and prevention strategies and models can play an

important role both in identifying potential risk factors and in evaluating intervention

and prevention implementations.

This dissertation addresses these key questions:

1. What are some of the available models that can be applied to computer security

incident data, and how are they applicable?

2. Are some models better suited to some incident types based on features or

properties of the incident type?

3. Can current models be adapted to better include relevant characteristics and

dynamics for some incident types?

4. Can some models be used to explore the use of different interventions relevant

to some incident types for planning purposes?

5. Are there properties or features of a computer population that may be useful

for guiding and targeting interventions to reduce the occurrence of computer

security incidents?

1.3 Outline of Dissertation

This dissertation is organized into eight chapters. Chapter 1 introduces the

problem and relevant background. Chapter 2 provides a review of current literature

which covers current techniques in the area of modeling relevant to computer security

incidents. Chapters 3, 4, and 5 review and present the types of models applied to

5

computer security incidents in this study, along with some illustrative examples and

simulations. Chapter 3 introduces models originally developed for modeling the

spread of infectious diseases in animals and humans. Chapter 4 discusses adaptation

of the infectious disease models to apply to incidents that spread via email. Chapter

5 examine two different types of quality control based models. Chapter 6 describes a

real world computer security data set and illustrates the application of models using

this data set. Chapter 7 discusses and illustrates how including additional factors to

the data could be applied to intervention efforts. Chapter 8 summarizes the findings

and provides recommendations for additional areas of study.

1.4 Background

1.4.1 Taxonomy/definition/description of computer security and inci-

dents

Some definitions of computer security include:

• Information security is defined as the preservation of confidentiality, integrity

and availability of information; in addition, other properties such as authenticity,

accountability, non-repudiation and reliability can be involved [14].

• Information system security is a system characteristic and a set of mechanisms

that span the system both logically and physically. The five security goals are

integrity, availability, confidentiality, accountability, and assurance [15].

• A computer is secure if you can depend on it and its software to behave as you

6

expect [16].

It is easier to define and track instances of computer security failures than it is

to comprehensively define and assess the overall computer security “health” of an

organization. Conducting internal security audits is one method organizations can

use to verify that security measures are in place [17]. However, security audits do

not necessarily provide guidance or direct information regarding the effectiveness

of security measures. Additional information is needed for organizations to make

informed decisions regarding security measures.

Within organizations, computer security failings can often be simplified to a

failing of a component or several components of a simple system involving a computer

and its connections (network), human users, and often an external attacker.

• Computer/network–“hosts” and the communications/contacts between them.

Physical computer networks may have a variety of topologies overlaid onto

them–communications infrastructure (servers/clients), social contacts (email,

instant messaging, social media apps). The computer itself usually has several

subcomponents that can be part of a security failure–such as the operating

system, software applications, and some network services.

• External (attackers)–source of attempts to gain unauthorized access to resources.

Attacks can be active or passive (e.g., requiring some type of user action to occur

before executing), remote or local (which may result in privilege escalation),

and can target computers/networks as well as users.

• Human user(s)–interact(s) with local and remote computers, evaluates informa-

7

tion, can be responsible for generating some of the observable computer/network

activity related to a computer.

The definition of what constitutes a computer or network security incident can

be very context dependent. Howard and Longstaff [18] distinguish an “event” as

the discrete change in state or status of a system as the result of a directed action

towards a target, where a target can be a specific computer, account, process, or other

logical or physical entity. An event may be part of normal operating and authorized

activities, or it may be part of an attack, which is defined by Howard and Longstaff

as “a series of steps taken by an attacker to achieve an unauthorized result” [18].

An incident is later defined as “a group of attacks that can be distinguished from

other attacks because of the distinctiveness of the attackers, attacks, objectives, sites,

and timing.” Hansman and Hunt [19] give a similar but simpler definition of an

incident as “an attempt at violating security policy, such as attacking a computer or

attempting to gain unauthorised access to some data.” A common key distinction

made by various definitions is that an incident involves an aspect of unauthorized

action or access to some resource (network, data, other).

1.4.2 Purposes of modeling

Models are conceptual tools to explain how an object or system of objects

will behave. They range from simple to complex and usually involve trade-offs

among accuracy, transparency, and flexibility [20]. Models can have two distinct

roles–prediction and understanding. These roles are not necessarily independent nor

8

in opposition to each other, but models may be employed to serve one role more than

the other. Models can also provide a means to isolate factors in a system and examine

their role in situations where they could be difficult to examine independently.

Organizations need to be able to recognize and quantify potential problems

quickly so that decisions can be made regarding preventative or corrective actions.

Organizations want to know if a particular problem is expected to get worse or

if any previous measures have affected the expected trajectory of an issue. Using

models to fit existing computer security incident data allows organizations to better

assess expected levels of incident occurrence as well as to compare expected levels

of incident occurrence with the number of actual occurrences following the use of

corrective measures.

Applicable models enable researchers to identify characteristics of incident

occurrence over time and quantify current trends to provide insight into expected

future trends. Predictive models developed from the analysis of security incident

data can be used by organizations to decide if corrective or preventative actions are

needed and to gauge or measure the impact of any changes made due to security

policies and practices. This can be accomplished by comparing model forecasts

to observed activity. If the observed number of incidents begins to deviate as an

increasing trend away from the forecast values, an external factor may have changed

(such as the development of a new variant of an attack), and an organization should

reevaluate its control measures to make necessary adjustments.

A similar strategy can be used for evaluating the impact of changes made to

the internal security environment (such as policy changes, IDS/IPS deployment,

9

system updates, user-awareness campaigns, etc.). Model forecasts of future incident

levels can be compared to actual observed levels before and after implementing a

new control measure. The effectiveness of the change to the security environment

can be judged by comparing how well the observed number of incident occurrences

tracks the forecast values for the time period after the new control measure has been

implemented. Model forecasts for the use of different intervention types can also

be compared to determine which available option is most appropriate based on an

organization’s goals.

Most of the models presented involve the number of computer security incident

occurrences detected and confirmed. While each type of incident may have a different

impact on an organization’s overall security, counting the number of incidents provides

an accessible and quantifiable measure related to overall security. This is similar

to how counting the number of detected flaws in software code is used as a way

to measure the quality of the software development process, even though simple

counts may not differentiate between the types or severity of the detected flaws.

An essential question is how to quantify security (or software quality) and some

answers are implicit in the decisions made regarding the definition/selection of types

of security incidents or software flaws to track or count.

1.4.3 Types of models

As previously mentioned, models are often used for two purposes–prediction and

understanding. These roles may overlap and are not mutually exclusive. Models used

10

mostly for forecasting or prediction may be part of a quality control or monitoring type

process. The models themselves may not shed much light on underlying dynamics nor

explicitly suggest applicable interventions, but can be used to compare the impact

of an applied corrective measure. Models used for understanding typically include

aspects meant to capture some of the underlying dynamics and can also be used to

explore potential outcomes based on implementing certain actions incorporated as

part of the model.

1.4.3.1 Underlying dynamics models

Since many computer security incidents may be the result of a computer virus

or worm and spread amongst computers, techniques used in the field of epidemiology

and infectious disease surveillance can provide a useful framework. One approach

to modeling infectious diseases in human and animal populations considers the

state transitions involved with infectious disease transmission and recovery. The

Susceptible-Infected-Recovered (SIR) model and its variants are an example of this

approach. These models involve sets of differential equations to relate transitions

between states and can include parameters for transmission and recovery rates.

More complex models may also factor in birth and death rates of a population

as well as the proportion of the population vaccinated against a particular disease.

Birth and death rates would be analogous to the rate at which new machines are

added and the rate at which old machines are decommissioned from a population

of computers. Vaccination would be similar to the installing a software update or

11

“patch” that fixes a particular vulnerability. Examples of using epidemic models to

model computer worms and viruses include [21] and [22].

1.4.3.2 Quality control models

Two other types of models presented use historical data of incident occurrence

to provide forecasts of future incident levels in time. These two types of models focus

more on forecasting future levels than on accurately capturing underlying dynamics

or causes. We will apply two types of these models to different types of computer

security incidents to see which type of model may work best for different types of

incidents and to see if there are some general observations that can be made about

modeling the frequency of occurrence of computer security incidents.

When the symptoms or signs of a new type or strain of disease begin to

affect human populations at noticeable and recorded levels, the underlying cause(s)

may take time to determine. At this stage, often the frequency of symptom or

disease occurrence is the only information available to make projections regarding

future trends. The same is true with regard to computer security incidents. While

the causes of some types of computer security incidents may be known, such as

when a particular computer worm is known to exploit a specific operating system

vulnerability, the number of computers containing this specific vulnerability and

exploitable is often unknown. (The presence of the vulnerability may not be sufficient,

host-based antivirus software may provide protection or additional user action may

be required.) The causes of other types of incidents may never be determined and

12

could be attributable to several different possible security failings. In some cases,

these incident types are only detected based on how the computers are being used

following an attack (such as for relaying spam), and thus the cause of the initial

exploit may remain unknown. However, occurrences of these incident types may

still follow a pattern related to other factors behind attacks rather than only the

distribution of vulnerabilities present in a population of computers.

One family of models comes from the field of software reliability. In the context

of software reliability, software reliability growth models have been used to describe

the software defect detection process. In general, two assumptions driving software

reliability models are that software failures are caused by unpredictable events that do

not have a corresponding remedy within the software and that the failures that occur

are independent of each other. These two assumptions led to Goel and Okumoto’s

(G-O) model [23]. Many similar models have been proposed [24–26].

If the exploitation of vulnerable computers is viewed as being similar to the

detection of faults in software, then software reliability growth models may have

some advantages over other types of models for forecasting the level of future incident

occurrence. In this view, attackers take the role of being testers of the software and

identifying software faults present in a system. We apply some software reliability

growth modeling concepts to computer security incidents to see if this view is useful.

Public health surveillance involves similar quality control and monitoring

models and processes related to disease outbreaks in human populations. Time series

analysis and models have been used as surrogates for the use of epidemic models

for monitoring and control purposes. Similar to software reliability growth models,

13

time series models rely mostly on the time dependent structure present in a set

of observations. While time series models are often encountered in economics and

finance, they have also been described in [28] as a method to potentially identify

developing outbreaks.

1.4.4 Selecting and targeting interventions

There are many interacting factors that affect when and where a computer

security incident occurs. Understanding the underlying mechanisms of a computer

worm or virus is only part of the puzzle. Characteristics of the population being

attacked or affected are also important. This includes the distribution and prevalence

of vulnerable operating systems and applications, differences in user behavior [29]

in the type and frequency of use of the computer systems, and differences in local

management of network and computing resources.

In the study of human diseases, the number of cases of a disease is often divided

by some measure of population to obtain a rate of incidence. This incidence rate can

then be used to compare the frequency of disease cases among different populations

of varying size. Differences in incidence rates can sometimes be attributed to known

differences of properties of the populations, such as genetics, environment, habits,

etc.

For many diseases in humans, biological age is a known risk factor. It is

common to calculate incidence rates for several age stratifications or groupings when

making comparisons between two populations. This can help account for differences

14

in the total incidence rate of two populations with different age demographics. For

example, if the total incidence rate for a type of cancer is higher for one population

than another, the population with the higher rate of incidence may also consist of a

higher percentage of older people (who may be more at risk for the type of cancer)

and yet the age-specific incidence rates for the two populations may be similar.

In addition, some environmental factors can change over time or in cycles (such

as seasonal weather patterns in some geographical climates). The social interaction

among segments of the population can fluctuate as well (e.g. school related social

interaction decreases during seasonal vacation breaks). These temporal factors can

be observed in patterns of human disease such as the common flu. Note that for

seasonal variations, time itself is not a risk factor but simply serves as a proxy

indicator for other risk factors that track the seasonal changes.

There is a need for empirical examinations of risk factors relevant to computer

security incidents using real-world data. This information can be useful for focusing

intervention efforts where they may be most effective. Verifying or quantifying risk

factors in actual environments can be challenging. Exploring the influence of some of

these factors using field collected data can be an important step to build upon both for

future simulations and for exploring other factors. Anbalagan and Vouk [30] present

a security model based on vulnerability states and rates of disclosure, exploitation

and correction tested with data.

15

1.5 Purpose

This research applies concepts and models from Epidemiology and Public Health

frameworks to computer security. This includes the exploration and adaptation

of compartmental SIR models often applied to modeling the spread and control

of infectious diseases in human and animal populations. Additional methods for

analyzing incident data for the purposes of monitoring and forecasting expected

future incidence rates from the software reliability field are also covered. Comparing

actual incidence rates to expected rates can indicate if additional intervention actions

are needed and/or if existing intervention actions and preventative measures or

policies are being effectively deployed. This research also includes examples of

epidemiological type analysis for examining potential risk factors and risk markers

for incident occurrence which may be useful for intervention targeting.

1.6 Significance

The significance of this research is in showing how existing models can be

applied and adapted to cover computer security incidents. Some of these models

can be used as tools to identify, evaluate and compare potential interventions.

Modifications to some current models help to provide a more representative picture

of underlying dynamics and may also indicate additional intervention opportunities

for some incident types. This is useful to organizations deciding how to allocate

resources towards intervention efforts. Other models can be used to monitor and

16

gauge the impact of enacted intervention efforts or policies. In turn, this can provide

organizations with feedback regarding their intervention actions.

1.7 Scope and Limitations

This research is scoped to study computer security incidents that have occurred

within one organization during a specified time period. The modeling of the incidents

includes aspects of the targeted computers and makes some limited assumptions

regarding user characteristics for some incident types. Aspects regarding attacker

incentives or motivations are not included for these models. The application of

models covers a range of incident types, as well as a range of potential targets, but

they are not applicable to modeling incidents that result from a directed or targeted

attack by a single or group of attackers.

17

Chapter 2: Literature Review

2.1 Overview

This chapter provides an overview of some relevant definitions and aspects

of current research pertaining to computer security incidents. These aspects are

important for modeling the occurrence of computer security incidents. One family

of models explored is compartmental (Susceptible-Infected-Recovered [SIR] and

variants) models based on modeling the spread of infectious diseases in human and

animal populations. Some general types of interventions applicable to the control and

containment of infectious diseases in human and animal populations are described

along with equivalent type interventions applicable to some types of computer security

incidents. Surveillance type models (software reliability growth and time series) often

used for quality control and process monitoring are also covered. These types of

models may be applicable to a broader range of incident types which may not be

easily modeled as an infectious process; thus the impact of interventions may be

more difficult to predict, but important to measure. Some weaknesses or gaps in

current research knowledge are also discussed.

18

2.2 Computer Security Incidents

Although not required, many computer and network security incidents involve

the exploitation of software related errors, either in the form of exploitable vulnerabil-

ities or improper use and configuration. Howard and Longstaff define a vulnerability

as “a weakness in a system allowing unauthorized action.” This can include design,

implementation or configuration of the software. Arbaugh [31] describes a vulnera-

bility life-cycle model as one in which vulnerabilities are discovered and disclosed,

patches are created and distributed, and unpatched systems are at risk of being

exploited until patched. This model is further explored by Frei [32] and includes

examination of the risk of time windows where a vulnerability has been discovered

but remains undisclosed, and a patch or fix has not yet been made available.

While vulnerabilities in software may contribute to the prevalence of many

types of computer or network security incidents, in some cases human users of these

systems are exploited by an attacker to gain unauthorized access or to initiate an

unauthorized action. Downs [33] describes some cognitive models to examine what

contributes to a successful phishing attack. Jagatic et al [34] also identify some

tactics used to trick users via email and mention some potential defenses. Brown et

al [35] warn that publicly available information regarding both social connections

and personal information can be used to craft more personalized and potentially

more successful email attacks against a large percentage of users. Fette et al [36]

propose a machine learning approach for filtering out phishing type attacks, while

Herley [37] suggests that users should not bother to determine if every email message

19

is legitimate or not due to the time costs outweighing the potential benefits.

Weaver et al [38] list several ways incidents and attacks may be triggered. Some

attack types and incidents may be independently initiated, while others may involve

a form of self-replication where compromised systems autonomously initiate attacks

against other users or systems. The method of propagation can be important in

determining the best types of models and interventions applied towards an incident

type.

2.3 Infectious Disease Modeling

Modeling the propagation of network worms as analogous to an infectious

disease process has been applied to events such as the Code Red worm, as in the

work of Zou et al [39] and Chen et al [40]. Tailored defense strategies for this class of

malware have also been explored. Zou et al [22] propose the short-term quarantining

of suspected infected hosts to slow the spread of infected hosts, while Sidiroglou and

Keromytis [41] describe automated patch development based on deployed sensors

and heuristics identifying exploited vulnerabilities.

While several previous works have focused on modeling incident types that

spread over traditional wired computer networks, additional research has examined

some of the ways propagation over wireless connections affects the network topology

and therefore the spread of malware. Yoneki et al [42] examine the spread of an

infection in a time-dependent dynamic human network. Nodes would be in contact

with other nodes for changing periods of time throughout the day based on changing

20

physical proximity. This differs from the standard assumption of nodes having the

potential for constant contact with each other in a wired environment. Milliken, et

al [43] model the spread of a virus that infects wireless access points in its vicinity

through firmware modification. One reported finding is that in urban environments,

the density of wireless access points impacted the spread of the virus more than

susceptibility of a particular access point. They also describe two algorithms for

detecting such attacks in a laboratory environment.

2.3.1 Standard Susceptible-Infected-Recovered (SIR) model

Most of the classic compartmental infectious disease models, such as the

Susceptible-Infected-Susceptible (SIS) model and the Susceptible-Infected-Recovered

(SIR) model, are based on the assumption of a fully connected network topology

(each infected host has the ability to contact and infect any other susceptible host in

the population). This is different from some ecological models (such as the forest-fire

model, which limits contact to adjacent neighbors on a two-dimensional grid). The

impact and effect of different network topologies has also been explored in the

context of the spread of infectious diseases by Pastor-Satorras and Vespignani [44],

Keeling [45], and Danon et al [46], as has computer worm propagation by Kim et

al [21].

A property of infectious disease models that differentiates them from chronic

disease and other models is that the chances of a host becoming infected (transitioning

from the “Susceptible” compartment to the “Infected” compartment in an SIS or SIR

21

compartmental model) depends on the number or proportion of other infected hosts

in the population. In most cases, these models assume that other than the initial

infection(s), any additional infected hosts result from contact with other infected

hosts within the population and are referred to as secondary infections.

However, a population may not be completely isolated from other sources of

infection, and additional hosts may become infected by exposure to external sources

(referred to as reservoir) and not by exposure to other infected hosts within the

population. An example of this is when a disease can spread from animals to humans

and also from humans to humans. Ongoing contact with animals can provide a

source of additional primary infections to the human population, as is explored by

Singh et al [47]. Differentiating the proportion of primary and secondary infections

based on the distribution in time of identified infected cases may not be feasible, as

is demonstrated by Singh et al [47]. In these cases, mitigation strategies need to

address both the primary causes (contact between susceptible hosts and an infected

reservoir) and the secondary causes (contact between susceptible and infected hosts

within the population).

2.3.2 Model for email propagation

While some of the assumptions included in the standard epidemic models may

be applicable to malware and security incidents that spread directly from device to

device, these assumptions may not be as applicable to computer viruses that spread

through email. The timing delays between when an infected message is received and

22

when it is accessed or read may alter the overall pattern of spreading, as is illustrated

by Vazquez et al [48].

Other factors related to how users interact with email may also influence the

spreading behavior of an email virus. A common strategy used by email viruses is to

send out infected messages to any stored contacts in an infected user’s address book.

The number and interconnectedness of address book contacts largely creates the

topology of the network such a virus will use for spreading. This type of contacts

based topology has also been explored in the context of worms that may spread by

gathering targets from SSH “known hosts” files, as demonstrated by Schechter, et

al [49]. Also relevant to email virus propagation is the likelihood that a user will

open an infected message on a vulnerable computer. Gao et al [50] describe a model

that incorporates these factors and explores the impact of interventions which target

nodes in the contacts network based on their level of connectedness.

2.3.3 Types of interventions for controlling infectious diseases

Options for controlling the spread of infectious diseases in humans and/or

animals typically work by limiting the transmission between infectious and susceptible

hosts. Interventions include: (a) vaccination; (b) quarantining; and (c) culling.

Vaccination attempts to transition susceptible hosts directly to the recovered state

without becoming infected. This reduces the number of susceptible hosts that can

become infected. Quarantining isolates known or likely infected hosts from other

susceptible hosts. This reduces the number (or proportion) of infected hosts in

23

contact with susceptible hosts, which also reduces the likelihood of transmission to a

susceptible host. Culling is a strategy sometimes used with rapidly spreading animal

or plant diseases. It involves reducing the overall size of a population by removing

(or killing) both infected and susceptible hosts, but mostly in limited or targeted

areas. Culling reduces both the number of infected, as well as susceptible, hosts.

Keeling and Rohani [20] include a more detailed description of these interventions

and their applications to human and animal infectious diseases.

There are similar or analogous options for controlling the spread of network

worms in a computer population. Vulnerable systems can be patched or updated

so they are no longer susceptible (analogous to being vaccinated), and network

connectivity can be disabled for systems identified as being infected (analogous

to being quarantined). Perhaps not as drastic as culling, an equivalent measure

could involve preemptively isolating critical hosts or subnets until other corrective

actions can be taken (such as either patching systems or migrating functionality to

non-vulnerable systems). This also reduces the size of the susceptible population.

Other options for controlling the spread of network worms in a computer

population include the use of anti-virus software to detect and block exploit actions

on vulnerable hosts as well as the use of a network based IPS to detect and block

potential exploit traffic on its way to systems (which may be susceptible, already

infected, or already recovered).

24

2.4 Surveillance–quality control and monitoring

Public health surveillance is often defined as “the ongoing systematic collection,

analysis, and interpretation of data, closely integrated with the timely dissemination

of these data to those responsible for preventing and controlling disease and injury”

as stated in Klaucke et al [51]. A World Bank publication (Nsubuga et al [52]) states:

Because surveillance can directly measure what is going on in the popula-

tion, it is useful both for measuring the need for interventions and for

directly measuring the effects of interventions. The purpose of surveillance

is to empower decision makers to lead and manage more effectively by

providing timely, useful evidence.

According to a Center for Disease Control (CDC) publication [53], originally

public health surveillance involved the monitoring and tracking of communicable

and infectious diseases; however, it is not limited to this and can also include

the monitoring and tracking of injuries, birth defects, chronic diseases, and health

behaviors (such as diet, amount of sleep, and frequency of exercise).

Table 2.1 shows a list of purposes for monitoring health events from a CDC

publication [53] in the left column. The right column shows how each can be easily

adapted to apply to monitoring computer security incidents. Just as public health

surveillance is applied to help monitor, control, and understand the spread and

growth of diseases in human populations, a similar approach can be applied by

organizations to help monitor, control, and understand the occurrence and growth

25

Table 2.1: Purposes for monitoring health events and computer security incidents.

Purposes for monitoring health
events:

Purposes for monitoring computer security
incidents:

• To detect sudden changes in
disease occurrence and
distribution

• To detect sudden changes in incident
occurrence and distribution

• To follow long-term trends and
patterns of disease

• To follow long-term trends and patterns
of incident occurrence

• To identify changes in agents
(such as the flu virus) and host
factors (such as smoking,
alcohol use, and seat-belt use).

• To identify changes in agents (such
computer viruses) and host factors
(such as use of host-based firewalls,
host-based AV, peer-to-peer usage).

• To detect changes in health care
practices

• To detect changes in IT practices

of computer security incidents within their organization.

Based on the nature of an incident, epidemic models may not be suitable for

some computer security incident types. Applying other types of models developed

based on the analysis of security incident data can be used by organizations to assist

with the efficient allocation of resources and to provide feedback regarding the impact

of prevention and control measures or changes to security policies. One way this

can be accomplished is by comparing model forecasts to observed activity. If the

observed number of incidents begins to deviate as an increasing trend away from

the forecast values, an external factor may have changed (such as the development

of a new variant of an attack), and an organization should reevaluate its control

measures and make necessary adjustments.

A similar strategy can be used for evaluating the impact of changes to the

internal security environment (such as policy changes, IDS/IPS deployment, system

updates, etc.). Model forecasts can be compared to actual observations before and

after implementing a new control measure. The effectiveness of the change to the

26

security environment can be gauged if the observations trend away from the forecast

values after the new control measure has been implemented. Although these types

of models do not provide as much insight into the underlying dynamics leading to

incident occurrence as epidemic models, they can be more easily applied to a wider

range of incident types and interventions and require less information to develop.

2.4.1 Software reliability growth models

In the context of computer security, two phenomena have been commonly

modeled using software reliability growth models: the trend of exploitations by

Browne et al [54] and Rescorla [55] and the vulnerability discovery process by

Alhazmi and Malaiya [56,57]. Regarding exploitations, Browne et al [54] used simple

mathematical models to fit computer security exploits. They used exploit data from

the reports repository of the Computer Emergency Response Team (CERT). Some

delays may have occurred between the time the exploit was initiated and the time

the exploit was reported to CERT. Exploits were also reported by a wide range of

users; thus there is limited control over the data collection method.

Regarding modeling the security vulnerability discovery process, Anderson [58]

proposed an equation to estimate the probability of system failure as a result of

the vulnerabilities. Alhazmi and Malaiya [56] examined the vulnerability discovery

process in operating systems and treated vulnerabilities as equivalent to software

defects. A few models were used to fit the vulnerability detection data, including

the software reliability growth Goel-Okumoto (G-O) model. The authors indicated

27

that if a model can accurately fit the observed data, then it could predict the

future vulnerability detection trend. Alhazmi and Malaiya [57] also examined the

vulnerabilities in the Apache and IIS HTTP servers. The Linear Vulnerability

Discovery model (LVD) and the Alhazmi-Malaiya Logistic model (AML) were used

to fit the vulnerability detection data and predict the future vulnerability discovery.

2.4.2 Time series models

Although epidemic models have been used in the past to model the spread

of incidents, there may be other factors not included in such models (such as the

academic calendar in a university setting) that can cause fluctuations in populations

and affect incident occurrence. Different interconnection topologies can result in

varying epidemic patterns even when other factors are the same, as shown by Watts

et al [59], and new strains (or variants) of viruses can emerge, thereby rendering

existing vaccinations less effective. Models that attempt to incorporate or account

for the influence of these factors become increasingly computationally complex. Also,

when it comes to modeling computer security incidents, some incident types may

not be aptly described as or result from a contagious process.

Another approach is to use time series analysis and modeling as a surrogate

for epidemic models for control purposes or to include the influence of factors not

easily incorporated into or applicable to epidemic models. Time series models are not

explanatory models and do not rely on knowing the underlying dynamics producing

the observed behavior. Instead, time series models attempt to make use of the

28

time dependent structure present in a set of observations. This method is often

encountered in the fields of economics and finance, and it has been described by

Allard [28] as a general technique for the early identification of outbreaks of infectious

diseases with applications for intervention strategies. The use of time series modeling

is also illustrated by Trottier et al [60] when applied to childhood infectious disease

(pertussis, mumps, measles and rubella) data from Canada to gauge the impact of

mass vaccination. Lai [61] describes monitoring the SARS epidemic in China using

time series models, and Han and Leong [62] describe similar methods to evaluate

intervention measures taken in Singapore in response to SARS. Helfenstein [27]

suggests that classification of infectious diseases may be possible based on their time

series structure.

2.5 Targeting Interventions and Identifying Risk Factors

Often in human and animal populations, the risks of a particular individual

being affected by a disease (infectious or not) are not uniform throughout the

population. Factors such as age (with which susceptibility may vary) or geography

(which may affect exposure to contributing elements) can influence the risk of being

infected or becoming sick. In the case of an infectious disease, interventions may be

targeted to include groups more at risk or more likely to spread the disease to other

groups. This is an effort to minimize the spread of a disease while also efficiently

using available resources (such as available doses of a vaccine as well as deployment

of qualified administrators of the vaccine). In the case of a non-infectious disease,

29

identifying risk factors can help direct intervention efforts towards groups with higher

risks even if underlying root causes are not well understood.

Michael et al [63] demonstrate the use of mathematical models to compare the

use of different drug combinations for controlling lymphatic filariasis (a parasitic

tropical disease carried by mosquitoes). Models were used to compare the potential

effectiveness of different control strategies, and it was determined that an optimal

strategy would need to include aspects for controlling the parasite itself as well as

controlling the transmission vector (mosquito population). Models were used to

support decisions regarding different intervention strategies to reduce the number of

disease cases within a desired time frame.

Hay and Ward [64] provide another example of applying disease models in

the context of decision support. They compare costs and effectiveness for applying

pertussis vaccinations to different age groups in the United States. Their cost-benefit

analysis concludes that there is an overall benefit to immunizing adolescents (ages 10-

19) with a pertussis booster vaccine. The analysis includes costs related to vaccination,

as well as costs resulting from pertussis and pertussis-related complications.

Hoggart et al [65] have developed a risk model for lung cancer. One of the

proposed applications of such a model is to identify high risk individuals who could

be encouraged to take steps to lower their risks. High risk individuals could also be

identified to undergo increased monitoring by clinicians or be selected for participation

in clinical trials or treatment programs. The model includes lifetime exposure to

cigarette smoke, age effects (including ages of initiation and cessation of smoking)

and duration of smoking. Similarly, identifying risk factors and developing a risk

30

model for computer security incidents could provide guidance for the targeting of

intervention actions.

2.6 Existing Limitations

While the current research provides a good description of some of the problems

related to modeling and preventing computer security incidents, there are also

some weaknesses or gaps to be addressed. One potential intervention of dynamic

quarantine described by Zou et al [22] assumes such an intervention could be applied

or implemented to an entire population. If so, this type of intervention could slow

the propagation of an Internet worm. However, implementing such an intervention

on such a large-scale is unlikely, as it would involve the coordinated action of many

separate entities and organizations. It is unknown at what scale such an intervention

would need to be applied in order to see effects beyond the subpopulation to which

it has been applied.

The intervention explored by Gao et al [50] in response to a virus that propagates

using email examines the impact of targeting highly connected nodes (individuals

with large email address books). However, this assumes more complete knowledge

of interpersonal email network connection topology information than is typically

available. Also, their modeling efforts often relied on the assumption of a standard

normal distribution for human related factors (such as email checking frequency

and likelihood of opening infected messages). It is unknown if the assumption of

other distributions for some of these factors would lead to different observations or

31

conclusions.

In several cases where epidemic models were used to explore observed behavior

and novel interventions, the utility or impact of existing or commonly available

interventions were not included for comparison. This leaves open whether or not

some of the proposed interventions are feasible or practical from a cost perspective, or

if they provide additional improvement to some more commonly available strategies.

Cost may not be an easy aspect to definitively measure, but outcomes of strategies

can be compared to provide to some guidance.

In terms of targeting intervention efforts, little research seems to be available

regarding population type risk factors for incident occurrence. While each incident

type likely disproportionately affects a certain subpopulation, information for gener-

ally identifying higher risk individuals is lacking. It is possible that due the changing

and dynamic nature of attacks and defenses, stable risk factors may not be easy to

identify or may not provide much utility for predicting future risk.

32

Chapter 3: Infectious Disease Models

3.1 Overview

In this chapter, we describe some infectious disease models and illustrate

some aspects and modifications relevant to modeling some types of computer and

network security incidents in an interconnected population of computers or devices.

Infectious diseases are typically modeled using both deterministic and stochastic

models. Deterministic models are more appropriate when modeling large populations

and the law of mass action applies. Stochastic models may be more applicable

for modeling smaller populations and for capturing variability due to randomness

of interactions or other factors. Stochastic models can also be more flexible for

incorporating features that may not adhere to assumptions made by deterministic

models (such as assuming a fully connected network topology). We review a standard

deterministic model and describe modifications we make to a particular stochastic

model in order to apply it to modeling the spread of some types of computer security

incidents and to include features linked to intervention actions.

33

3.2 Deterministic SIR Models

The Kermack-McKendrick model [66] is a deterministic model that allows hosts

to be designated as part of three compartments or states: Susceptible (S), Infected

(I), or Removed/Recovered (R). The model specifies the transition of hosts between

states (from S → I and from I → R) where the recovered state is terminal (hosts do

not transition to another state after being recovered), and some hosts may always be

in the susceptible state. It is often referred to as the classic SIR model and specified

as:

dS(t)

dt
= −βS(t)I(t)

N

dI(t)

dt
= β

S(t)I(t)

N
− γI(t) (3.1)

dR(t)

dt
= γI(t)

N = S(t) + I(t) +R(t)

where β is the infection rate (S → I) and γ is the recovery rate (I → R) and N is

the total size of the population being considered. The infection and recovery rate

parameters are assumed to remain relatively constant or fixed in time for the interval

being modeled.

An extension of the classic SIR model allows for a direct transition from

Susceptible to Recovered (S → R) without becoming infected. This accounts for the

34

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SIR Model

Time

S
us

ce
pt

ib
le

 &
 R

em
ov

ed
(a

s
fra

ct
io

n
of

 to
ta

l p
op

ul
at

io
n)

(a)

S(t)

I(t)

R(t)
β = 1.0
γ = 0.5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SIR Model (with vaccination)

Time

S
us

ce
pt

ib
le

 &
 R

em
ov

ed
(a

s
fra

ct
io

n
of

 to
ta

l p
op

ul
at

io
n)

(b)

S(t)

I(t)

R(t)
β = 1.0
γ = 0.5
ν = 0.025

Figure 3.1: Deterministic examples of (a) an SIR model and (b) an SIR model with
vaccination.

possibility of being vaccinated. This model is specified as:

dS(t)

dt
= −βS(t)I(t)

N
− νS(t)

dI(t)

dt
= β

S(t)I(t)

N
− γI(t) (3.2)

dR(t)

dt
= γI(t) + νS(t)

N = S(t) + I(t) +R(t)

where β is the infection rate (S → I) and γ is the recovery rate (I → R) and N is

the total size of the population being considered, and with ν as the vaccination rate

(S → R). Figure 3.1 shows examples of (a) an SIR model and (b) an SIR model

with vaccination.

3.3 Stochastic SIR Models

While a deterministic SIR model summarizes the overall behavior of the

population, a stochastic SIR model allows for modeling the state of each member

35

of the population and allows for variations in the outcomes of repetitions using

the same parameter values. This can be useful for constructing a distribution of

outcomes and evaluating a “worst-case” scenario rather than limiting forecasts to

average expected behavior. Stochastic models can also be more flexible for exploring

different connection (or mixing) topologies. Since the state of individuals is being

modeled, it is also possible to specify non-uniform connection topologies without

knowing beforehand the effects on the aggregate behavior [44], [45], [46].

A stochastic algorithm for calculating a compartmental SIS model [where

infected nodes can return a Susceptible (S) state rather than to a terminal Recovered

(R) state] with network topology specified in the form of an adjacency matrix is

presented in [67]. We adapt this algorithm to simulate an SIR model, the assumption

being once an infected host has been identified and removed, it will only be replaced

if it is no longer susceptible to the original source of infection. First we review

the described SIS model and the presented algorithm, and then we explain the

changes made to simulate an SIR model using stochastic modeling code we created

(implemented in the R [68] programming language).

The standard SIS model involves two states: Susceptible (S) or Infected (I)

and there can be transitions from S → I as well as from I → S. The deterministic

model can be specified similar to the classic SIR model, except there is no terminal

Recovered (R) state:

36

1 2

35
4

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

A

 =

0 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

A

 =

(a) (b)

1 2

35
4

1 2

35
4

1 2

35
4

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

A

 =

0 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

A

 =

(a) (b)

Figure 3.2: Examples of adjacency matrices for (a) fully connected graph and (b)
partially connected graph.

dS(t)

dt
= γI(t)− βS(t)I(t)

N

dI(t)

dt
= β

S(t)I(t)

N
− γI(t) (3.3)

N = S(t) + I(t)

where β is the infection rate (S → I) and γ is the recovery rate (I → S) and

N is the total size of the population being considered.

Instead of allowing for complete mixing of the population as is done in the

deterministic model, the presented stochastic algorithm uses a defined adjacency

matrix A to represent how members or nodes of the network are connected to each

other and can interact. Figure 3.2 shows simple examples of two networks and their

corresponding adjacency matrices. (Note that each adjacency matrix is symmetrical

across its diagonal; this is because we are assuming bidirectional links. However,

this is not required and there may be instances where breaking such symmetry is

applicable.)

If v is a state vector at time t where vi is 1 if node i is infected and 0 if node

37

i is not infected (and therefore susceptible), then the product components of Av

contain the number of infected neighbors of each node at time t. For example, if

nodes 1 and 4 from Figure 3.2(a) are infected, then:

Av =

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

1

0

0

1

0

=

1

2

2

1

2

(3.4)

indicating nodes 2, 3 and 5 each have two infected neighbors, while nodes 1 and

4 each have one infected neighbor (although they are infected themselves, they do

not count as their own neighbor). However, if nodes 1 and 4 from Figure 3.2(b) are

infected, then:

Av =

0 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

1

0

0

1

0

=

0

1

2

0

1

(3.5)

so only node 3 has two infected neighbors, while nodes 2 and 5 each have one infected

neighbor.

An infection (the transition of a node from S → I) is modeled as a Poisson

process with rate β, where the probability a susceptible node becomes infected in the

time interval (t+ ∆t) is approximated by (β ∗K/m) ∗∆t, where K is the number

38

of infected neighbors for the node and m is the average degree of the network (or

average number of neighbors for each node). At each time step, the algorithm does

the following:

• For each susceptible node, generate a uniform random number “RAND” in the

interval [0,1];

• If: RAND < (β ∗K/m) ∗∆t, then change state of susceptible node to infected;

• Repeat for all susceptible nodes.

For the stochastic SIR model with vaccination, our algorithm does the following:

• Add the terminal Recovered (R) state;

• Keep the same susceptible-to-infected (S → I) transition used in the stochastic

SIS model;

• Change the SIS infected-to-susceptible (I → S) transition to be the SIR

infected-to-recovered (I → R) transition;

• Add a vaccination or susceptible-to-recovered transition (S → R);

• At each time step, state transitions are checked in the following order for

all nodes: S → I, then I → R, then S → R. (Only one change of state is

permitted for nodes at each time step.)

Figure 3.3 shows examples of (a) a stochastic SIR model and (b) a stochastic

SIR model with vaccination. For the SIR model with vaccination, Figure 3.3(c)

shows the total number of nodes in the recovered state [Rt(t)] as well as separately

39

0
20

0
40

0
60

0
80

0
10

00

SIR model

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 10 13 16 19 22 25 28

(a)

S(t)

I(t)

R(t)

β = 1.0

γ = 0.5

0
20

0
40

0
60

0
80

0
10

00

SIR model (with vaccination)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 10 13 16 19 22 25 28

(b)

S(t)

I(t)

R(t)β = 1.0

γ = 0.5

ν =0.025

0
20

0
40

0
60

0
80

0

SIR model (with vaccination)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 10 13 16 19 22 25 28

(c)

Rt(t)

Ri(t)

Rs(t)

β = 1.0

γ = 0.5

ν =0.025

Figure 3.3: Stochastic examples (with ∆t = 0.1) of (a) SIR model and (b) SIR model
with vaccination, (c) breakdown recovered hosts as originating from infected hosts
[Ri(t)] or vaccinated hosts [Rs(t)].

identifying the number of recovered nodes that transitioned from originally susceptible

[Rs(t)] or originally infected [Ri(t)] states. Although a vaccination rate (ν) may be

lower than the recovery rate (γ), since the number of susceptible nodes is often larger

than the number of infected nodes, there are often more recovered nodes originating

from the susceptible state than the infected state. Our stochastic models have been

implemented using the R [68] programming language. An example of the R code

used for the SIR models is provided in Appendix B.

3.4 Isolating a Smaller Subset from a Larger Population

Often when epidemic models are used to examine the propagation and miti-

gation of network worms, there is an assumption that intervention actions can be

implemented on a scale affecting the whole population being modeled. However,

in many cases, individual organizations or businesses, while inter-connected with

a larger population, can only take steps to control malware that is spreading on

40

the subset of the population that is under their direct authority or control. For

example, a university may be allocated a Class B IPv4 network range (≈65,000

IPv4 addresses) and can take steps to remediate and control the spread of network

worms in this range of IP addresses, but it would be difficult to apply such measures

to the rest (≈4 billion) of IPv4 connected devices elsewhere in the world. Even

within an organization, it is possible for IT resources to be managed and controlled

separately by different departments or divisions. So while a network worm may be

spreading globally, efforts to contain it are likely to be uncoordinated and focused

on smaller subsets of a larger population. For incidents observed within the smaller

subset of the population, it may not be easy to determine how many resulted from

connections with externally infected hosts and how many resulted as secondary

infections from other internally infected hosts within the subset. This could be

important information to have when assessing mitigation options and strategies.

In this following scenario, we explore some of the properties that might be

observed from the perspective of a smaller population subset within a larger inter-

connected population. To accomplish this, we make some additional changes to our

adjacency matrix and to our algorithm for the stochastic SIR model described earlier.

Instead of using a single fully connected adjacency matrix A, we split it into two

component adjacency matrices. One component adjacency matrix Aext allows for

full interconnections between nodes not in the smaller population subset, as well as

between nodes in the smaller population subset and the rest of the larger population.

However, it does not include any interconnections between nodes only contained

within the smaller subset. The other component adjacency matrix Aint only allows

41

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

A

 =

(a)

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

1 1 1 0 0

extA

 =

(b)

1 2

35
4

int

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

A

 =

(c)

1 2

35
4

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

A

 =

(a)

1 2

35
4

1 2

35
4

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

1 1 1 0 0

extA

 =

(b)

1 2

35
4

1 2

35
4

int

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

A

 =

(c)

Figure 3.4: Example of decomposing (a) fully connected graph and adjacency matrix
[A] into parts (b) representing connections to/from outside [Aext] a defined subset
(nodes 4 and 5 in example) and (c) representing only internal connection [Aint] of
the subset where A = Aext + Aint.

for full interconnections between nodes within the smaller population subset and

does not allow for any connections between nodes in the subset and the rest of larger

population. Figure 3.4 shows (a) a fully connected network and its adjacency matrix

A along with the graphs and adjacency matrices for its components Aext and Aint

based on an example population subset (defined as containing nodes 4 and 5 as

shown in Figures 3.4(b) and 3.4(c)).

With two adjacency matrices, we can now calculateK as having two components

as well where K = Kext +Kint and values for Kext and Kint are obtained from Aextv

and Aintv, respectively. For a given node, Kint is the number of infected neighbors

that belong to the smaller subset of the population, while Kext is the number of

infected neighbors that are not part of the smaller subset of the population. Since K

has now been split into two components, our algorithm step for checking transitions

42

from S → I must also be changed to reflect this and it becomes:

• If: RAND < (β∗(Kext +Kint)/m)∗∆t, then change state of susceptible node to

infected.

The result of this transition check can be compared to the result of an additional

check made at the same time (such that it uses the same “RAND” value):

• If: RAND < (β∗(Kext)/m)∗∆t, then change state of susceptible node to

infected.

If both of the above transition checks have the same result, then any infected

neighbors that are part of the smaller population subset had no impact on the result.

However, if there is a difference between these transition checks, then contact with

an infected node in the smaller population subset is responsible for the infection

and it can be considered a secondary infection. Making this distinction allows us to

determine which of the infections within the subset were caused by sources outside

the subset and which infections were secondary infections caused by sources within

the subset.

Figure 3.5 shows (a) an example of a stochastic SIR model behavior in a subset

(10%) of the total population, (b) the total number of infected hosts in the subset

population as well as how many infected hosts were due to contact with only external

or internal infected hosts (c) a comparison of number of unique infected hosts in the

subpopulation with causes internal and external to the subpopulation. Table 3.1

summarizes some comparisons for stochastic models using different parameter values

and population sizes. For a fully connected population, the ratio of internally caused

43

0
50

10
0

15
0

SIR model (10% subset behavior)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(a)

S(t)

I(t)

R(t)

0
5

10
15

20
25

30
35

[Subset] I(t): Total, External, Internal

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(b)

0
50

10
0

15
0

[Subset] Unique Infected Hosts: Total, External, Inte

Time

N
um

be
r

of
 u

ni
qu

e
ho

st
s

0 2 4 6 8 11 14 17 20 23 26 29

(c)

Total

External

Internal

Figure 3.5: Contribution of subpopulation to overall number of infected hosts.

Table 3.1: Comparisons using different parameters and population sizes.

Total
Population

Subpop

β

γ

Total
Inf.

Subpop
Inf.

Subpop
External
Inf.

Subpop
Internal
Inf.

(Infected)
Subpop/
Population

(Infected)
Subpop
Int/Subpop

1,000 100 1.8 0.75 857.4 86.5 78.3 8.2 0.101 0.095
10,000 100 1.8 0.75 8537 85.2 84.2 1.0 0.010 0.012
10,000 1,000 1.8 0.75 8528 854.6 770.9 83.7 0.100 0.098
1,000 100 1.2 0.90 341.8 33.4 30.1 3.3 0.098 0.099
10,000 100 1.2 0.90 2070 20.7 20.5 0.17 0.010 0.008
10,000 1,000 1.2 0.90 1643 162.2 146.6 15.4 0.099 0.095

infections within a subset of the population to the size of the population subset

typically reflects the same ratio as the size of the population subset to the full

population. However, this ratio and its variability could change for other than fully

connected network topologies.

Splitting the adjacency matrix into components (Aext and Aint) as described

above allows for another observation to be made. In some cases, the value of K could

be viewed as analogous to or an indicator of a network attack where an infected

computer attempted to contact and compromise another computer or device. In

these cases, the sum of the values of Kext across all nodes within the subset represents

the number of attacks or attack activity as seen from the perspective of the smaller

population subset. This is similar to activity that might be observed by an IDS/IPS

that watches network traffic on the border between an organization’s network and

44

0
10

00
30

00
50

00

External to internal "attack" activity

Time

C
on

ne
ct

io
ns

 fr
om

 e
xt

er
na

l i
nf

ec
te

d
ho

st
s

0 2 4 6 8 11 14 17 20 23 26 29

Figure 3.6: Number of infection attempts from external to internal hosts.

the rest of the Internet. Figure 3.6 shows an example of Kext over time. Again,

with the simple example using fully connected populations, the results may only be

illustrative. However, other examples with different connection topologies may show

different patterns of attack activity and it may be possible to use these observations

to help infer properties of a network worm and the impact of external intervention

efforts.

Before examining impact of different interventions, there is one more property

to explore. Assuming that cases of initial infections originate outside of the smaller

population subset, how long will it take for the first case(s) of infection to occur

within a particular subset? The answer is likely to be dependent on the relevant rate

parameters for a particular worm or virus as well as the ratio of population sizes

(between the size of subset and the size of the overall population) and we can illustrate

this using our models. Time can be an important factor when evaluating intervention

options. IDS/IPS and anti-virus vendors usually need some time to develop effective

45

 Time to first subpopulation infection

Time (days)

F
re

qu
en

cy
0 1 2 3 4

0
50

10
0

15
0

20
0

25
0

Figure 3.7: Time to first infection in sub-population. [Population = 1,000; sub-
population = 100; β = 1.8; γ = 0.75].

signatures for identifying exploit activity while efforts to patch vulnerable systems

may also require time for preparation and testing before implementation. In some

cases, vendors of IDS/IPS products may release signatures earlier for premium

or paying customers, while non-paying customers could be relying on community

released signatures, which may take longer to become available. Being able to model

the expected results of such intervention delays and expected activity may help

determine if paying for early access to signatures is cost-effective for a particular

organization.

Figure 3.7 shows the distribution of times when an infection first occurred

within the subset of the smaller population for several runs of the stochastic model

with fixed parameters. Table 3.2 summarizes the expected time to first infection

(TTFI) in the smaller population subset for models using different parameters and

population sizes. The results show an increase in time to first infection for smaller

population subset sizes and a decrease in time to first infection with higher ratios of

β/γ (which indicates an infection may spread faster than infections are removed).

46

Table 3.2: Time to first infection (TTFI) in internal population.

Population Subpop. β γ R0(β/γ) TTFI

1,000 100 1.8 0.75 2.4 1.6± 0.8

10,000 100 1.8 0.75 2.4 3.6± 1.9

10,000 1,000 1.8 0.75 2.4 1.6± 0.9

1,000 100 1.2 0.8 1.5 2.2± 1.2

10,000 100 1.2 0.8 1.5 5.7± 4.4

10,000 1,000 1.2 0.8 1.5 2.1± 1.2

Next we will examine the impact of some of the different interventions available.

The two types of interventions we will be modeling are patching of vulnerable

systems (modeled as vaccination) and IPS blocking at the border between the subset

population and the rest of the population. The blocking activity at the border is

modeled by specifying some permeability factor in the range [0, 1] where 0 means all

worm attack traffic is blocked, 1 means no worm attack traffic is blocked and values

in between mean some worm attack traffic is blocked between the population subset

and nodes outside of the subset. Effectively, this parameter scales or reduces the

value of β for externally infected neighbors of the internal (subset) population, but

β remains unchanged for infected neighbors of external nodes to each other or for

internally infected nodes with other internal nodes.

When gauging the impact outcomes of different intervention strategies, we

consider two aspects. The first is the number of infections and the second is the

total time of infection across all nodes in the population subset. The second aspect

reflects the area under the infection curve. The reason for this inclusion is that,

47

0
50

10
0

15
0

SIR+Vac model (10% subset behavior)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(a)

S(t)

I(t)

R(t)

0
50

10
0

15
0

[Subset] Unique Infected Hosts: Total, Ext, Int

Time

N
um

be
r

of
 u

ni
qu

e
ho

st
s

0 2 4 6 8 11 14 17 20 23 26 29

(b)

Total Infected & From External Causes

From Internal Causes

0
50

10
0

15
0

[Subset] Prior State to Recovered (S or I)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(c)

Rt(t)

Ri(t)

Rs(t)

Figure 3.8: Example of vaccination only within a subpopulation.

while there may be somewhat uniform costs for recovering or remediating infected

computers, there may also be additional risks the longer computers remain infected.

Compromised computers may become joined to a botnet and engage in additional

attacks against both internal and external information resources.

Figure 3.8 shows an example of patching vulnerable systems (of the population

subset only) at a certain rate while Figure 3.9 shows an example of blocking infectious

traffic between internal and external nodes of the population subset. Table 3.3

summarizes some of the outcomes of different patching or blocking rates. The

results shown in Table 3.3 illustrate that intervention actions applied only to the

smaller population subset can reduce the number of infections within the subset.

Depending on the relative size of the subset, these actions may also reduce the

number of infections outside the subset. Combining interventions also shows a

positive interaction effect on reducing the number of infections in the subset.

We also make and explore a modification to the typically modeled vaccination

or patching transition. Just as the infection rate depends on number of infected

systems, we explore changing the vaccination rate so that it depends on the number

48

0
50

10
0

15
0

SIR+Blocking model (10% subset behavior)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(a)

S(t)

I(t)

R(t)

0
5

10
15

[Subset] I(t): Total, External, Internal

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(b)

0
50

10
0

15
0

[Subset] Unique Infected Hosts: Total, Ext, Int

Time

N
um

be
r

of
 u

ni
qu

e
ho

st
s

0 2 4 6 8 11 14 17 20 23 26 29

(c)

Total Infected

From External

From Internal

Figure 3.9: Example of blocking some externally infection connections.

Table 3.3: Summary of different outcomes based on vaccinations or blocking values.

Population Subpop β γ Vac. Rate Blocking Total Inf. Sub Inf. Sub Inf. Time
1,000 100 1.8 0.75 0.0 1.0 853 85.6 104±16.2
1,000 100 1.8 0.75 0.1 1.0 803 46.9 56.6±12.5
1,000 100 1.8 0.75 0.0 0.2 784 34.6 43.6±9.7
1,000 100 1.8 0.75 0.1 0.2 752 14.4 16.7±7.1

10,000 1,000 1.8 0.75 0.0 1.0 8,524 852 1,057±46
10,000 1,000 1.8 0.75 0.1 1.0 7,761 345 423±66
10,000 1,000 1.8 0.75 0.0 0.2 7,732 328 410±38
10,000 1,000 1.8 0.75 0.1 0.2 7,390 105 130±29

of susceptible systems. The rationale behind this is that the effort to patch vulnerable

systems is not uniform and that some systems will be patched earlier and at a quicker

rate which will then decline as there are fewer susceptible systems to patch and the

ones remaining may require more effort to patch and will therefore be patched at a

slower rate. This is implemented by changing the susceptible-to-recovered transition

(S → R) to:

• If: RAND < (SS/NS) ∗ ν ∗ ∆t, then change state of susceptible node to

recovered.

However, this change is only applied to nodes within the smaller population subset

(nodes outside the subset are not being patched) where SS is the number of susceptible

nodes in the population subset at the time step and NS is the size of the population

49

0
50

10
0

15
0

SIR+Prop.Vac model (10% subset behavior)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(a)

S(t)

I(t)

R(t)

0
50

10
0

15
0

[Subset] Unique Infected Hosts: Total, Ext, Int

Time

N
um

be
r

of
 u

ni
qu

e
ho

st
s

0 2 4 6 8 11 14 17 20 23 26 29

(b)

Total Infected

From External

From Internal

0
50

10
0

15
0

[Subset] Prior State to Recovered (S or I)

Time

N
um

be
r

of
 h

os
ts

0 2 4 6 8 11 14 17 20 23 26 29

(c)

Rt(t)

Ri(t)

Rs(t)

Figure 3.10: Example of proportional vaccination rate in population subset.

Table 3.4: Comparison of fixed and proportional rate patching efforts.

Population Subpop β γ Vac. Rate Total Inf. Sub Inf. Sub Inf. Time
1,000 100 1.8 0.75 0.0 853 85.6 104±16.2
1,000 100 1.8 0.75 0.1 (fixed) 803 46.9 56.6±12.5
1,000 100 1.8 0.75 0.1 (proportional) 813 56.2 72.0±14.8
10,000 1,000 1.8 0.75 0.0 8,524 852 1,057±46
10,000 1,000 1.8 0.75 0.1 (fixed) 7,761 345 423±66
10,000 1,000 1.8 0.75 0.1 (proportional) 7,949 465 572±63

subset.

Figure 3.10 shows an example of patching vulnerable systems (of the population

subset only) at a rate proportional to the number of susceptible systems. Table 3.4

compares some of the outcomes of proportional and fixed rate patching efforts. For

the same parameter value, the proportional patching efforts result in somewhat

higher infection rates. This is because the effective patching rate declines as more

systems are patched rather than remaining constant until all susceptible systems are

patched.

3.5 Model Application Illustration

Using models to better capture and understand the underlying dynamics affect-

ing the proliferation of computer security incidents provides a means for identifying,

50

testing, and evaluating interventions designed to reduce the number of incidents. The

effect of different interventions can be factored into model simulations by adjusting

relevant model parameters and results for different interventions can be compared.

Cost information can also be combined with model results and intervention choices

to provide additional context for decision making.

3.5.1 Baseline scenario

First we define a baseline scenario that will be used as a starting point for

simulation comparisons. We examine the number of infected hosts in a population

of 10,000 initially susceptible hosts for a period of 60 days for 1,000 simulation runs

with parameter values for infection, vaccination, and recovery rates sampled from

uniform random distributions within specified ranges. For some interventions, a fixed

parameter value for a blocking rate is also used. Table 3.5 provides a summary of

the parameter descriptions, designations, and values used for the baseline. The next

section describes the different interventions and the impact each intervention may

have on the baseline parameter values.

3.5.2 Interventions

Next we describe several different types of interventions that could be employed

to control types of computer security incidents for which SIR models apply. These

interventions include the installation of IDS/IPS, implementation of large-scale patch

management, addition of human security analyst, or some combination of these

51

Table 3.5: Properties of baseline case for comparisons of interventions.

Description Designation Value

of nodes/computers P (for population) 10,000

Time range T 60 (days)

Infection rate β unif. random [0.9, 2.4]

Recovery rate γ unif. random [0.4, 0.8]

Patch/vaccination rate ν unif. random [0.015, 0.035]

Blocking rate ρ 0 (no blocking)

of simulations N 1,000

options.

• IDS/IPS–this intervention works by monitoring network traffic between hosts

and then blocking identified suspected malicious traffic. Typically identification

of malicious traffic is based on some kind of pattern or signature matching.

Although it will vary depending on the specific exploit being used, this type

of pattern matching usually means there will be some trade-off between the

number of false positives and false negatives. A very specific signature is more

likely to reduce the number of false positives (i.e. the blocking of traffic that

is not malicious), while also increasing the number of false negatives (i.e. the

permitting of traffic that is malicious). There are both free, open-source and

commercial IDS/IPS options available. Typically, one of the differences between

free and commercial offerings is the time for signatures to become available

for detecting new threats as well as the quality of new initial signatures. For

this illustration, we assume a commercial IDS/IPS releases signatures for new

52

threats one day after discovery and signatures block 80% of associated malicious

traffic without false positives. For comparison purposes, we assume a free

IDS/IPS releases signatures for new threats three days after discovery and

signatures block 70% of associated malicious traffic without false positives.

• Patch management–this intervention works by automating and/or simplifying

the process of installing updates and patches to fix known vulnerabilities. This

can increase the rate at which susceptible hosts are removed and directly

transition to the recovered state without first becoming infected. Patches may

be for vulnerabilities found in operating systems and/or installed applications.

The complexity of a patch management solution may be very dependent on the

homogeneity or heterogeneity of installed operating systems and applications

in a large population.

• Security analyst–this intervention works by adding human analyst to monitor,

review, evaluate reports of events and potential malicious activity. The analyst

has the ability to isolate or block hosts which are deemed to be threats to

other hosts. An analyst will also review attack trends and will actively look for

early signs of malicious activity. Because of this, we assume a decrease from

two days to one day for the time gap between infection and discovery of initial

incidents. We also assume an analyst will increase the general rate infected

hosts are detected and removed/recovered.

Table 3.6 summarizes the intervention options and identifies some of the

combinations of interventions explored. When applicable, differences from the

53

Table 3.6: Intervention properties.

Delay Block Block Patch Recov.
Index Description Cost ($) (S → I) delay rate rate rate

1 Baseline 0 2 - 0 - -

2 Free IDS (fIDS) 10k 2 3 0.7 - -

3 Pay IDS (pIDS) 55k 2 1 0.8 - -

4 Patch mgt (PM) 30k 2 - 0 +0.025 -

5 Analyst 75k 1 - 0 - +0.15

6 fIDS & PM 40k 2 3 0.7 +0.025 -

7 pIDS & PM 85k 2 1 0.8 +0.025 -

8 fIDS & Analyst 85k 1 3 0.7 - +0.15

baseline scenario parameters are indicated. Also included in the table is an estimated

cost value for an intervention or combination of interventions. The options shown

satisfy a cost constraint that intervention implementations must not exceed $100,000

($100k). This constraint was imposed as an example of a constraint due to finite

resources. Cost aspects are further discussed in the next section.

3.5.3 Costs related to outcomes and interventions

Two cost aspects considered when comparing interventions are the cost of the

intervention itself as well as the costs related to the outcomes. The outcome costs

include estimated costs for recovering or restoring infected hosts (per host), estimated

costs for patching susceptible hosts (per host), and an estimated value related to

increased risk of other types of malicious activity from infected hosts during the

time they are infected. Table 3.6 shows values for each intervention option explored

54

Table 3.7: Outcome related costs.

Description Cost ($)

Patched node (includes risk of bad patch) 1

Infected → Recovered node 5

Max. exposure (total time infected) risk cost 10,000

and Table 3.7 shows recovery and patching costs (per host) as well as the maximum

value attributable to the risk of infected hosts being used for other types of malicious

activity.

The associated risk cost is calculated using a logistic (or sigmoid) function

based on the simulation results of the baseline case. The total time infected across

hosts in a simulation is divided by the maximum total time infected across all

hosts using the baseline scenario (which was 21,673.8 “host-days”; the theoretical

maximum is 10,000 nodes * 60 days = 600,000 “host-days”), then an associated

risk cost value is determined. The curve centered around 12,500, which means if a

simulation results in 12,500 total time hosts are infected, the associated risk cost

value is $5,000 (or 1/2 of the maximum $10,000 cost). The cost value for patching

hosts is intended to include both the time and effort to test and apply patches, but

also additional costs that may be incurred if a patch does not work as intended and

causes downtime. The cost value for recovering nodes is intended to include the

time and effort to restore original functionality to a host while also ensuring it is no

longer susceptible. These cost values are likely to be organization dependent and

the values shown are for illustrative purposes only.

55

Figure 3.11 shows the implementation costs for each intervention (labeled as

“Base costs”) as well as box plots for range of patching, recovery, and risk costs for

1,000 simulations for each intervention option. Figure 3.12 shows box plots for all of

the outcome related costs (patching, recovery, and risk) combined while Figure 3.13

also adds in the implementation costs for each option to show the range of total costs.

While total costs may be one of the factors considered when comparing intervention

options, reduction of uncertainty may be another factor used during evaluation of

choices.

Looking at the total costs shown in Figure 3.13, intervention option 2 (free IDS)

has the lowest median cost based on simulations. Intervention option 3 (commercial

IDS) has the fourth highest median cost based on simulations, but the least variability

among the five lowest median cost interventions.

In this chapter, we described and illustrated a method for modeling the spread

of computer security incidents based on the SIR compartmental type of model

originally applied to the spread of some types of diseases in human and animal

populations. We demonstrated how different types of typical intervention actions

(blocking and patching) could also be represented using the model. We illustrated

how the model could be modified to examine behavior within a particular subset

of the population and explained why this would be a desirable property. Using

the models, we illustrated how the time-to-first-infection in the population subset

decreased as the size of the population subset increased relative to the size of the

full population. We also explored and illustrated how a proportional rather than

fixed rate of patching allows for an increased number of infections to occur because

56

Patching costs

C
os

t (
$)

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

2k

4k

6k

8k

10k

Recovery costs

C
os

t (
$)

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

0k

10k

20k

30k

40k

50k

Risk costs

C
os

t (
$)

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

0k

2k

4k

6k

8k

10k

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

Base costs

C
os

t (
$)

0
10000

55000

30000

75000

40000

85000 85000

Intervention type

0k

20k

40k

60k

80k

100k

Figure 3.11: Intervention cost components.

57

Patch, Recover, and Risk combined costs

C
os

t (
$)

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

0k

10k

20k

30k

40k

50k

60k

70k

Intervention type

Figure 3.12: Intervention options outcome costs combined.

Total costs (includes Base costs)

C
os

t (
$)

Baseline
 (1)

FreeIDS
 (2)

PayIDS
 (3)

Patch
 (4)

Analyst
 (5)

FIDS&Patch
 (6)

PIDS&Patch
 (7)

FIDS&Analyst
 (8)

0k

20k

40k

60k

80k

100k

120k

Intervention type

Figure 3.13: Intervention options total combined costs (implementation and out-
comes).

58

of a decreased rate of patching over time as the number of remaining unpatched

computers also decreased. We provided an example illustrating the use of the models

(in combination with cost information) to evaluate and compare outcomes resulting

from different intervention decisions. This demonstrated a method for using the

models as a resource planning tool. The example showed how the different types of

cost information could be combined with the model outcomes to provide final costs

estimates which take into account intervention and outcomes costs. Several types of

intervention implementations were modeled and compared. For the values used in

the illustration, we saw that while total costs for some interventions were higher than

others, these intervention actions may also result in less variable outcomes which

could be a desirable aspect.

59

Chapter 4: Email Propagation Models

4.1 Overview

In this chapter, we describe a stochastic model for a worm or virus that spreads

using email, and we illustrate some aspects of the model in an interconnected popula-

tion of computers and users. This model is similar to the stochastic compartmental

SIR model covered previously, but there are some important differences. For some

transitions to occur in the email propagation model, several conditions may be re-

quired. While the previous SIR model assumes direct contact between computers and

does not include aspects of a user, the email propagation model includes two aspects

related to user interaction. These are the frequency at which email messages are

checked and the user likelihood for opening an infected email message. An overview

of the basic stochastic email propagation model is followed by more discussion and

illustration of some aspects of modeling and the use of interventions for controlling

the spread of computer security incidents that transfer via email.

60

4.2 Stochastic Email Propagation Model

Like the previously described SIR models, the email propagation model desig-

nates hosts to be in one of three compartments or states: Susceptible (S), Infected

(I), or Removed/Recovered (R). However, the transition from S → I is defined

differently and requires more than one condition to be met before a transition will

occur. A summary of the steps taken to determine if a susceptible node transitions

to an infected node is as follows:

• For each susceptible node, identify already infected neighbors. Neighbors

are other nodes with a direct connection to the susceptible node. Different

connection topologies can be used, such as fully-connected, randomly connected,

or scale-free (power law).

• For each susceptible node, determine the number of new infected messages

received. A binomial distribution, based on the number of infected neighbors,

is used for determining the number of new infected messages sent.

• For each susceptible node, add the number of new infected messages received

to the number of previously unchecked infected messages.

• For each susceptible node, determine if the associated user (assuming a one-

to-one correspondence between number of nodes and number of users) checks

messages. At each time step, a uniform random probability distribution is used

to determine if a user has checked messages. For a large number of users, this

results in a approximation of a normal distribution.

61

• If a user checks messages, then for each infected message present, determine

if the user has opened the infected message. Each user is assigned a value

representing the likelihood of opening an infected message. The assigned values

are based on an exponential distribution where most users have a low likelihood

of opening an infected message, but a very small number of users have a higher

likelihood of opening an infected message. If one or more infected messages

are opened, then that node changes from susceptible to infected.

The transition from I → R is the same as in the SIR models described previously

and depends on the recovery rate parameter γ. The transition from S → R is also

the same as in the previous models with ν as the vaccination rate; however, it should

be noted that the node becomes vaccinated, not the associated user. This means a

recovered node may still receive infected messages and the associated user may still

open the infected messages, but the node itself will no longer become infected and will

not send out infected messages to its neighbors. The recovery and vaccination rate

parameters are assumed to remain relatively constant or fixed in time for the interval

being modeled. Some of the previously described steps are similar to steps described

in [70]. However, our models are an entirely independent implementation using the

R [68] programming language and include variations not previously examined. An

example of the R code used for the email models is provided in Appendix C.

62

4.3 Network Topology

The SIR models covered in Chapter 3 assume fully-connected networks. This

may be a reasonable assumption for worms that propagate directly from computer-to-

computer; however, malware that spreads via email may not fit with this assumption.

Email propagation involves a user component which is not present in the previously

described SIR models. While the computers themselves may be fully connected

through the same network links used by worms that spread directly from computer-

to-computer, the spread of malware through the exchange of email messages is more

likely to follow or be influenced by connections or contacts between users instead of

the network links between computers.

Scale-free (or power law) networks [69] are one type of connection topology

that have been used to model social connections and may be suitable for representing

email exchanges. Propagation in scale-free networks can be compared to propagation

in randomly connected networks that use approximately the same number of links but

have a different node-degree distribution. Figure 4.1 shows some example network

connection topologies and their associated frequency distribution of node-degrees.

While the fully-connected example with 10 nodes has a total of 45 connection links,

both the scale-free and randomly-connected examples have a total of 24 connection

links each. Although these examples only include 10 nodes, the node degree histogram

for the scale-free network is consistent with a power law distribution while the node

degree histogram for the randomly connected network is consistent with a normal

distribution.

63

Full

1

2

34

5

6

7

8 9

10

Histogram of node degree

(a)
node degree

F
re

qu
en

cy

0 2 4 6 8 10

0
2

4
6

8
10

Scale-free

1

2

34

5

6

7

8 9

10

Histogram of node degree

(b)
node degree

F
re

qu
en

cy

0 2 4 6 8 10

0
2

4
6

8
10

Random

1

2

34

5

6

7

8 9

10

Histogram of node degree

(c)
node degree

F
re

qu
en

cy

0 2 4 6 8 10

0
2

4
6

8
10

Figure 4.1: Network connection topology examples and node-degrees.

The arrangement of links in the network may influence the spread of an email

virus, but the overall level of connectedness may also have an impact. There is more

potential for an email virus to spread in a more fully connected network than in a

sparsely connected one. This aspect is explored and illustrated later.

Figure 4.2 shows an example of number of nodes in each state over time for a

scale-free network topology example. Also shown is the number of infected messages

sent at each time step along with a histogram of the node-degree distribution of

the network. Figure 4.3 shows the same information, but for a randomly connected

network topology example for the same number of nodes and approximately the

same number of links used in the scale-free example. Although a similar number of

nodes become infected in each example, the time at which they become infected, as

64

0
20

0
40

0
60

0
80

0
10

00

SIR Email Model
 (scale-free topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of Inf. Messages
 (scale-free topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Histogram of node degree
 (scale-free topology)

(c)
node degree

F
re

qu
en

cy

100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Figure 4.2: Scale-free network topology example (≈20% connected, β = 1.0, γ =
0.3).

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random link topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
10

0
20

0
30

0
40

0
50

0
60

0
Number of Inf. Messages
 (random link topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Histogram of node degree
 (random link topology)

(c)
node degree

F
re

qu
en

cy

160 180 200 220

0
50

10
0

15
0

20
0

25
0

30
0

Figure 4.3: Random network topology example (≈20% connected, β = 1.0, γ = 0.3).

well as when many of the infected messages are sent, is different in each case. In

these examples, the infection appears to take longer before it begins to spread in

the randomly connected network than in the scale-free connected network. Table 4.1

shows some of the values used and obtained for the examples illustrated in Figures 4.2

and 4.3.

Table 4.1: Parameters and outputs for topology examples shown in Figures 4.2
and 4.3

Topology

Number
of nodes

Number
of links

Mean node
degree

Total nodes
infected

Total time
infected

Scale-free 1,000 94,950 190 181 580
Random 1,000 94,758 190 191 624

65

4.4 Human Factors

The previously covered SIR models do not include aspects of human user

activity on the infectious process. Those models assume that human action is not

necessary for a worm or virus to spread as an infection is passed directly from

computer-to-computer though a network connection. However, a model for how an

infection may spread through email does incorporate elements of human users. We

describe two primary aspects included in our models below.

4.4.1 Email checking interval rate

A network worm or virus that spreads directly from computer-to-computer

without requiring any user interaction can be approximated as a continuous process.

However, in the case of a worm or virus that spreads through email and requires

some kind of user interaction (such as opening an infected message), the spreading

process may be more discrete or event-driven in nature.

Because user interaction is required for an email worm or virus to spread, each

node in the model or simulation has an associated human user. One aspect of the

user included in the model is how often a user checks or reads new messages. For

each time step, the base model selects a value from a uniform random distribution

(between 0 and 1) for each user; if the value exceeds a threshold value (presented

simulations use a threshold value of 0.5), the user is defined as having checked

for messages at that time step. This results in an overall normal distribution for

frequency of message checking across all users.

66

The above technique for modeling user email checking behavior treats all users

the same and samples from a uniform random distribution. However, other variations

could also be used. One modification could be to adjust the threshold value in

relation to the size of the time step so that the mean value is centered around a

desired target value. For example, to represent users having a 70% daily rate for

email checking, a threshold value of 0.70 could be used when one time step is equal

to one day, or a threshold value of 0.07 could be used when one time step is equal to

1/10 of a day. This would allow for the same mean value of email checks during the

same time interval (one day).

Another modification could be to sample from a different type of distribution,

such as a normal or an exponential distribution. An example of this is presented

in [70]. Another approach could be to model each user independently by assigning

each user a parameter value used for defining individual user-specific distributions

to sample from. This would capture the possibility that some users may consistently

check messages more frequently than others, and this behavior, when coupled with a

higher number of contacts, could change the spreading behavior of a worm or virus.

These variations are not explored in this document.

Figures 4.4 through 4.7 show examples of changing the threshold value used

for simulating the email checking frequency of the model. Figure 4.4 corresponds

to a user having a 25% chance of checking for new email messages at each time

step. Figures 4.5, 4.6, and 4.7 correspond to 50%, 75%, and 100% chances of a user

checking for new email messages at each time step respectively.

Figure 4.4 shows an example where the user population averages 7.5 total

67

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random link topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
20

0
40

0
60

0
80

0
12

00

Number of Inf. Messages
 (random link topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Low frequency email checking
 (random link topology)

(c)
Times email checked in interval

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

30
0

Figure 4.4: Random topology, less frequent email checking.

times checking for emails during the 30-day simulation run (as seen in Figure 4.4(c)).

Figure 4.4(a) shows the lowest number of infected nodes during the time span

compared to Figures 4.5(a), 4.6(a), and 4.7(a). Figure 4.4(b) shows the lowest

number of infected messages being sent overall and at peak value compared to

Figures 4.5(b), 4.6(b), and 4.7(b). Since emails are checked less frequently, there are

fewer opportunities for the worm or virus to spread. Since the detection and removal

rate parameter is unchanged, infections that do occur are still removed at the same

rate. A slower infection rate combined with an unchanged removal rate results in

fewer overall infections during the same time window and likely for an extended

window as well. Increased email checking by the associated user population appears

to push the timing of peak infection occurrence and the timing of peak infected

messages sent earlier in the time interval; the magnitude of these peaks appear be

larger as well. Table 4.2 indicates that similar observations likely apply to scale-free

connected topologies, as the total number of infected nodes and the total time of

nodes in the infected state increase as the rate of email checking increases.

68

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random link topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
20

0
40

0
60

0
80

0
12

00

Number of Inf. Messages
 (random link topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Medium frequency email checking
 (random link topology)

(c)
Times email checked in interval

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

Figure 4.5: Random topology, medium frequent email checking.

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random link topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
20

0
40

0
60

0
80

0
12

00

Number of Inf. Messages
 (random link topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

High frequency email checking
 (random link topology)

(c)
Times email checked in interval

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

10
0

15
0

Figure 4.6: Random topology, more frequent email checking.

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random link topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
50

0
10

00
15

00

Number of Inf. Messages
 (random link topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Maximum frequency email checking
 (random link topology)

(c)
Times email checked in interval

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

Figure 4.7: Random topology, maximum email checking.

69

Table 4.2: Examples of different email checking intervals on number of infections
(nodes = 1,000)

Topology

Number of
links

Number
reps > 10

Frequency
of checking

Total nodes
infected

Total time
infected

Random 95,067±262 30 Low 54±38 180±141
Random 94,940±307 70 Medium 212±34 690±140
Random 94,957±302 83 High 293±16 969±79
Scale-free 94,950 50 Low 62±33 193±113
Scale-free 94,950 85 Medium 207±51 677±186
Scale-free 94,950 95 High 285±14 949±84

4.4.2 Likelihood to open infected message

Another user aspect included in the model is the likelihood that a user will open

an infected message. For modeling purposes, each user has an assigned likelihood

threshold value for opening an infected message. This value is compared to sampled

values to determine if a particular user opens a particular infected message. The

base model samples from a uniform random distribution (between 0 and 1). Then

for each infected email message, the sampled value is compared to the predefined

threshold value (also between 0 and 1)to determine if the infected message is opened.

If the sampled value is less than the threshold value for a particular user, the model

assumes the infected message was opened and an infection may occur. The assigned

threshold values remain unchanged for each user throughout a simulation.

The overall distribution of assigned likelihood (or threshold) values for all

users is based on an exponential distribution where the majority of users have low

likelihood values (i.e. these users are less likely to open an infected message), but a

few users have higher likelihood values. We explore the use of exponentially based

distributions for assigning likelihood values because it has previously been observed

70

5,000 users (decreasing sorted values)

Uniform random user likelihood value
 distribution (expected value = 0.10)

(a)

lik
el

ih
oo

d
to

 o
pe

n
in

fe
ct

ed
 m

es
sa

ge

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5,000 users (decreasing sorted values)

Exponential based user likelihood value
 distribution (expected value = 0.10)

(b)

lik
el

ih
oo

d
to

 o
pe

n
in

fe
ct

ed
 m

es
sa

ge

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.8: User likelihood distribution examples with similar expected values. [Red
line shows the population expected value.]

that in many types of tasks, the distribution of the number of accidents among people

is better described by a Poisson distribution than a Gaussian distribution [71]. The

opening of infected email messages may follow a similar distribution to these accidents.

Other distributions for assigning user likelihood values for opening infected messages

are possible and we make comparisons between models using the uniform random

distribution for assigning user likelihood threshold values. The work presented in

[70] only illustrates using a Gaussian distribution for modeling this factor.

When making comparisons between models using different types of distributions

for assigning user likelihood threshold values, we attempt to keep the expected

values that an infected message would be opened the same for the populations (see

Figure 4.8). This means, if other factors are equal, about the same number of

infected messages would be opened, but the distribution of opened messages among

users (i.e. 10 different users opening one infected message each versus 1 user opening

10 infected messages alone) of opened infected messages would be different when

assigning user likelihood values using different types of distributions.

71

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
20

0
40

0
60

0
80

0
10

00

Number of Inf. Messages
 (random topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Distribution of likelihood values
 to open infected messages

(c)
user likelihood to open infected message

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 4.9: Random topology (≈20% connected), expected user likelihood for opening
infected messages ≈12.5%, exponential distribution of likelihoods.

The user likelihood values for opening infected messages are assigned indepen-

dently of the associated node connection topology. There is likely an interaction

effect between these two factors. For example, a highly connected node with an

associated user that is assigned a high likelihood for opening infected messages may

extend the spread of a worm or virus that spreads through email. Because the node

is highly connected, it has a higher chance of receiving infected messages due to

having a higher number of neighbors. Since the associated user is also more likely to

open an infected message (thus infecting the node), the node also has the potential

to send out a larger number of infected messages due to being highly connected.

The comparison of Figure 4.9 to Figure 4.10 and Figure 4.11 to Figure 4.12

shows an increase in the overall number of infections when a higher number of users is

more likely to open an infected message (regardless of the specific network topology)

for an exponentially based distribution of likelihood values. The magnitude of the

change appears to be larger for the random network topology, but Figures 4.9-4.12

are single simulation examples, and there may be other sources of variability.

72

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (random topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

50
10

0
15

0
20

0
25

0

Number of Inf. Messages
 (random topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Distribution of likelihood values
 to open infected messages

(c)
user likelihood to open infected message

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 4.10: Random Topology (≈20% connected), expected user likelihood for
opening infected messages ≈8.33%, exponential distribution of likelihoods.

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (scale-free topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
20

0
40

0
60

0
80

0
10

00

Number of Inf. Messages
 (scale-free topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Distribution of likelihood values
 to open infected messages

(c)
user likelihood to open infected message

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 4.11: Scale-free topology (≈20% connected), expected user likelihood for
opening infected messages ≈12.5%, exponential distribution of likelihoods.

0
20

0
40

0
60

0
80

0
10

00

SIR Email model
 (scale-free topology)

(a)
Time

N
um

be
r

of
 h

os
ts

0 3 6 9 12 16 20 24 28

0
10

0
20

0
30

0
40

0
50

0

Number of Inf. Messages
 (scale-free topology)

(b)
Time

N
um

be
r

of
 m

es
sa

ge
s

0 3 6 9 12 16 20 24 28

Distribution of likelihood values
 to open infected messages

(c)
user likelihood to open infected message

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 4.12: Scale-free topology (≈20% connected), expected user likelihood for
opening infected messages ≈8.33%, exponential distribution of likelihoods.

73

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.13: Uniform random likelihood to open infected messages; randomly con-
nected network with different link levels.

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00
Number in Recovered State
 (scale-free, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.14: Uniform random likelihood to open infected messages; scale-free con-
nected network with different link levels.

Figures 4.13-4.16 show boxplots summarizing the number of recovered nodes

for 2,500 simulations using 5,000 nodes for both random and scale-free network

topologies at several different connectivity levels. Figures 4.13 and 4.14 show the

results of using a uniform random distribution of values for user likelihoods for

opening infected messages. Figures 4.15 and 4.16 show the results of using an

exponentially based distribution of values with the same overall expected value as

the uniform random distribution used in Figures 4.13 and 4.14. More variability

in the results is seen in the randomly connected topology examples Figures 4.13

and 4.15) compared to the scale-free examples (Figures 4.14 and 4.16). In particular,

instances of non-spreading infections appear in some of the 25% connectivity level

examples (Figures 4.13(c) and 4.15(c)), while non-spreading infections first appear

in the 12.5% connectivity level scale-free examples (Figures 4.14(d) and 4.16(d)).

Variability also increases as the level of connectivity decreases. For both types

74

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.15: Exponential based likelihood to open infected messages; randomly
connected network with different link levels.

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00
Number in Recovered State
 (scale-free, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.16: Exponential based likelihood to open infected messages; scale-free
connected network with different link levels.

of network connection topologies, the exponentially based distribution of values for

user likelihoods for opening infected messages results in fewer overall infected (or

recovered) nodes for the same overall expected value of infected messages opened.

4.5 Interventions (Blocking and Patching)

The two interventions discussed in regard to the SIR model in Chapter 3 can

also be applied to the email propagation model–blocking and patching. However,

instead of blocking at a network “border” as discussed for the previous SIR models,

blocking could occur at a mail server that receives/delivers messages for the set or

subset of users associated with the nodes or hosts. Messages being sent from one

node to another node will traverse a mail server which can be set to detect and

block transmission of infected messages. The implementation for the blocking (or

filtering) of messages may not happen right away. In cases of a delay, it is possible

75

for unopened infected messages to exist (and potentially cause new infections) even

after blocking is implemented; however, further spreading beyond the newly infected

node(s) would be blocked.

Patching underlying vulnerabilities is applied in the same way as in the previous

SIR models in Chapter 3. Patching is applied to nodes or hosts. It does not prevent

infected messages from being received or opened by a user, but it would prevent a

node or host from becoming infected if a user were to open an infected message.

By including human user aspects in the email propagation model, an additional

intervention can be explored. Because a user needs to open an infected message

(on a susceptible host) in order for an infection to occur, user education or user-

awareness training can try to reduce the likelihood users will open infected messages.

As previously mentioned, the impact of changing a user’s likelihood for opening

an infected message will partially depend on the number of contacts for the user

(reflected in the connectedness of the associated node).

Figures 4.17-4.18 show examples of the results of applying patching, blocking,

and a combination of both interventions for randomly and scale-free connected

network topologies at different connectivity levels. The randomly connected topol-

ogy examples use a uniform random distribution for the user likelihood values for

opening infected messages, while the scale-free examples use an exponentially based

distribution (with the same overall expected value) for these values. Shown are

boxplots of the number of recovered nodes for 2,500 simulations using 5,000 nodes.

For examples where the patching intervention is used, the boxplots show only the

number of recovered nodes that transitioned from the infected state and do not

76

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.17: Effect of patching vulnerable computers; random topology, unif. random
likelihood for opening infected emails. [Red line is mean value for number of patched
nodes for reference, green line is mean value for nodes that become infected before
being recovered.]

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.18: Effect of patching vulnerable computers; scale-free topology, exp. based
likelihood for opening infected emails. [Red line is mean value for number of patched
nodes for reference, green line is mean value for nodes that become infected before
being recovered.]

include nodes that were patched (and transitioned directed from the susceptible state

to the recovered state). The red lines in Figures 4.17 and 4.18 provide a reference

for the mean value of the number of nodes that become recovered by being patched.

The red lines in Figures 4.19-4.22 show the mean value of the number of nodes in

the recovered state when no interventions have been applied.

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (random, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.19: Effect of blocking most infected emails; random topology, unif. ran-
dom likelihood for opening infected emails. [Red line is mean value for unblocked
simulations for reference, green line is mean value for simulations with blocking.]

77

0
10

00
30

00
50

00

Number in Recovered State
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (scale-free, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.20: Effect of blocking most infected emails; scale-free topology; exp. based
likelihood for opening infected emails. [Red line is mean value for unblocked simula-
tions for reference, green line is mean value for simulations with blocking.]

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (random, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.21: Effect of blocking and patching; random topology, unif. random
likelihood for opening infected emails. [Red line is mean value for unblocked and
unpatched simulations for reference, green line is mean value for simulations with
blocking and patching.]

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (fully connected)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 50% connected)

(b)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 25% connected)

(c)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 12.5% connected)

(d)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Infected to Recovered Transitions
 (scale-free, 5% connected)

(e)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

0 10 20 30 40 50 60

Figure 4.22: Effect of blocking and patching; scale-free toplogy; exp. based likelihood
for opening infected emails. [Red line is mean value for unblocked and unpatched
simulations for reference, green line is mean value for simulations with blocking and
patching.]

78

The following observations regarding the simulation examples shown in Fig-

ures 4.17-4.22 can be made:

• Blocking (Figures 4.19 and 4.20) seems to slow the spread of the infection, but

does not seem to reduce the total number of infections as much as patching

(although this does depend on the specific parameter values used for these

simulations);

• More notably, Figures 4.19(e) and 4.20(e) indicate that the effectiveness of

blocking declines as the network becomes more sparsely connected;

• Comparing Figures 4.17(e) and 4.18(e) with Figures 4.19(e) and 4.20(e) respec-

tively, indicates that patching retains its effectiveness in reducing the spread

of infections better than blocking across declining levels of connection links

(for the specific parameter values used for these simulations).

4.6 Model Application Illustration

This section provides illustration of using the previously described models to

compare different interventions and including cost information to provide additional

context for decision making.

4.6.1 Baseline scenario

First we define a baseline scenario that will be used as a starting point for

simulation comparisons. We examine the number of infected hosts in a population of

79

Table 4.3: Properties of baseline case for comparisons of interventions.

Description Designation Value

of nodes/computers P (for population) 10,000

Connection topology Topo scale-free

Fraction connected nodes FC unif. random [0.1, 0.2]

Time range T 90 (days)

Infection rate β unif. random [0.2, 1.2]

Recovery rate γ unif. random [0.2, 1.0]

Patch/vaccination rate ν unif. random [0.015, 0.035]

Blocking/filtering rate ρ 0 (no blocking/filtering)

User likelihood for opening UL unif. random [0.05, 0.15]

of simulations N 1,000

10,000 initially susceptible hosts for a period of 90 days for 1,000 simulation runs each

with parameter values for infection, vaccination, and recovery rates sampled from

uniform random distributions within specified ranges. All of the simulations included

in this section use a scale-free network connection topology and an exponential

based distribution for user likelihood values for opening infected messages. For some

interventions, a fixed parameter value for a blocking rate is also used, but no messages

are blocked or filtered in the baseline scenario. Table 4.3 provides a summary of

the parameter descriptions, designations, and values used for the baseline. The next

section describes the different interventions and the impact each intervention may

have on the baseline parameter values.

80

4.6.2 Interventions

Next we describe several different types of interventions that could be em-

ployed to control types of computer security incidents for which the described email

propagation model applies. These interventions include the installation of mail

blocking/filtering, implementation of large-scale patch management, implementation

of user awareness training, or some combination of these options.

• Mail blocking/filtering–this intervention works by scanning email traffic content

arriving at a mail server then blocking identified suspected malicious messages.

Typically identification of malicious email content is based on some kind of

pattern or signature matching of several of the email message and email header

components. Although it will vary depending on the attack vector being

used, this type of pattern matching usually means there will be some trade-

off between the number of false positives and false negatives. A very specific

signature is more likely to reduce the number of false positives (i.e. the blocking

of messages that are not malicious), while also increasing the number of false

negatives (i.e. the permitting of messages that are malicious). There are both

free, open-source and commercial mail filtering options available. Typically,

one of the differences between free and commercial offerings is the time for

signatures to become available for detecting new threats as well as the quality

of new initial signatures. For this illustration, we assume a commercial mail

filtering product releases signatures for new threats one day after discovery and

signatures block 99% of associated malicious messages without false positives.

81

For comparison purposes, we assume a free mail filtering product releases

signatures for new threats three days after discovery and signatures block 95%

of associated malicious traffic without false positives.

• Patch management–this intervention works by automating and/or simplifying

the process of installing updates and patches to fix known vulnerabilities. This

can increase the rate at which susceptible hosts are removed and directly

transition to the recovered state without first becoming infected. Patches may

be for vulnerabilities found in operating systems and/or installed applications.

The complexity of a patch management solution may be very dependent on the

homogeneity or heterogeneity of installed operating systems and applications in

a large population. As previously noted, the computers or nodes are patched,

not the associated users.

• User awareness training–this intervention aims to work by increasing user

awareness to the possibility and signs of malicious messages to reduce the

overall likelihood of users to open infected or malicious email messages. For

illustration purposes, we assume an awareness training campaign decreases the

overall user population expected likelihood value for opening infected messages

by 4%.

Table 4.4 summarizes the intervention options and identifies some of the

combinations of interventions explored. When applicable, differences from the

baseline scenario parameters are indicated. Also included in the table is an estimated

cost value for an intervention or combination of interventions. The options shown

82

Table 4.4: Intervention properties.

Block Block Patch User
Index Description Cost ($) delay rate rate likelihood

1 Baseline 0 - 0 - -

2 Free filter (FF) 10k 3 0.95 - -

3 Pay filter (PF) 55k 1 0.99 - -

4 Patch mgt (PM) 30k - 0 +0.025 -

5 User training (UT) 25k - 0 - –0.04

6 FF & PM 40k 3 0.95 +0.025 -

7 FF & UT 35k 3 0.95 - –0.04

8 PM & UT 55k - 0 +0.025 –0.04

satisfy a cost constraint that intervention implementations must not exceed $60,000

($60k). This constraint was imposed as an example of a constraint due to finite

resources. Cost aspects are further discussed in the next section.

4.6.3 Costs related to outcomes and interventions

Two cost aspects considered when comparing interventions are the cost of the

intervention itself as well as the costs related to the outcomes. The outcome costs

include estimated costs for recovering or restoring infected hosts (per host), estimated

costs for patching susceptible hosts (per host), and an estimated value related to

increased risk of other types of malicious activity from infected hosts during the

time they are infected. Table 4.4 shows values for each intervention option explored

and Table 4.5 shows recovery and patching costs (per host) as well as the maximum

value attributable to the risk of infected hosts being used for other types of malicious

83

Table 4.5: Outcome related costs.

Description Cost ($)

Patched node (includes risk of bad patch) 1

Infected → Recovered node 5

Max. exposure (total time infected) risk cost 10,000

activity.

The associated risk cost is calculated using a logistic (or sigmoid) function

based on the simulation results of the baseline case. The total time infected across

hosts in a simulation is divided by the maximum total time infected across all hosts

using the baseline scenario (which was 34,159 “host-days”; the theoretical maximum

is 10,000 nodes * 90 days = 900,000 “host-days”), then an associated risk cost value

is determined. The curve is centered around 17,500, which means if a simulation

results in 17,500 total time hosts are infected, the associated risk cost value is $5,000

(or 1/2 of the maximum $10,000 cost). The cost value for patching hosts is intended

to include both the time and effort to test and apply patches, but also additional

costs that may be incurred if a patch does not work as intended and causes downtime.

The cost value for recovering nodes is intended to include the time and effort to

restore original functionality to a host while also ensuring it is no longer susceptible.

These cost values are likely to be organization dependent and the values shown are

for illustrative purposes only.

Figure 4.23 shows the implementation costs for each intervention (labeled as

“Base costs”) as well as box plots for range of patching, recovery, and risk costs for

84

1,000 simulations for each intervention option. Figure 4.24 shows box plots for all of

the outcome related costs (patching, recovery, and risk) combined while Figure 4.25

also adds in the implementation costs for each option to show the range of total costs.

While total costs may be one of the factors considered when comparing intervention

options, reduction of uncertainty may be another factor used during evaluation of

choices.

Looking at the total costs shown in Figure 4.25, intervention option 2 (free

filtering) has the lowest median cost based on simulations (except for the baseline

scenario which involves no interventions). Intervention option 7 (free filtering

combined with user awareness training) is in the middle in terms of median cost

of interventions based on the simulations, but has least variability among the

interventions explored.

In this chapter, we presented a model for email virus propagation and discussed

some potential influencing factors such as different network connection topologies and

aspects of user behavior–most notably, the distribution of user likelihoods to open

an infected email message. We show how decreasing connectivity levels decreases the

total number of infected nodes and that this decrease is more variable for randomly

connected networks than for scale-free networks with the same number of total

connection links (for both uniform and exponential based user likelihoods for opening

infected messages). We also covered how two available types of interventions (patching

and blocking) can be explored with the model. This included an illustration of how

intervention outcomes could be affected by network topology, level of connection links

present, and different distributions of user likelihood values. The blocking intervention

85

Patching costs

C
os

t (
$)

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

4k

6k

8k

10k

Recovery costs

C
os

t (
$)

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

0k

10k

20k

30k

40k

50k

Risk costs

C
os

t (
$)

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

0k

2k

4k

6k

8k

10k

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

Base costs

C
os

t (
$)

0
10000

55000

30000
25000

40000
35000

55000

Intervention type

0k
10k
20k
30k
40k
50k

Figure 4.23: Intervention cost components.

86

Patch, Recover, and Risk combined costs

C
os

t (
$)

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

0k

10k

20k

30k

40k

50k

Intervention type

Figure 4.24: Intervention options outcome costs combined.

Total costs (includes Base costs)

C
os

t (
$)

Baseline
 (1)

FreeFilter
 (2)

PayFilter
 (3)

Patch
 (4)

UserTrain
 (5)

FF&Patch
 (6)

FF&UT
 (7)

Patch&UT
 (8)

0k

20k

40k

60k

80k

100k

Intervention type

Figure 4.25: Intervention options total combined costs (implementation and out-
comes).

87

appeared to become less effective for both connection topologies as the level of

connection links decreases while the patching intervention appeared to retain its

effectiveness better in the same circumstances. We provided an example illustrating

the use of the models (in combination with cost information) to evaluate and

compare outcomes resulting from different intervention implementations (including

an intervention targeting user-awareness). This example demonstrated a method

for using the models as a resource planning tool. The example showed how the

different types of cost information could be combined with the model outcomes to

provide final costs estimates which take into account intervention and outcomes costs.

Several types of intervention implementations were modeled and compared. For the

values used in the illustration, we saw that intervention implementations employing

an aspect of user-awareness training were more cost effective than implementation

involving patching.

88

Chapter 5: Software Reliability Growth and Time Series Models

5.1 Overview

When the symptoms or signs of a new type or strain of disease begins to affect

human populations at noticeable and recorded levels, the underlying cause(s) may

take time to determine. At this stage, often the frequency of symptom or disease

occurrence is the only information available to make projections regarding future

trends. The same can be true with regards to computer security incidents. The

models presented in this chapter differ from the previously covered SIR and email

propagation models. Two types of models described in this chapter can be used

with historical data of incident occurrence over time to provide forecasts of future

incident levels in time. These two types of models depend on different assumptions

regarding the data being modeled. In Chapter 6, both types of models are applied

to forecasting different types of computer security incidents to see which type of

model may work best for certain types of incidents and to see if there are some

general observations that can be made about forecasting the frequency of occurrence

of computer security incidents.

The models presented in this chapter are less explanatory in nature and do not

try to mimic or replicate the underlying dynamics and instead only try to describe

89

and forecast the observed data based on certain assumptions and simplifications

regarding the underlying dynamics. While the causes of some types of computer

security incidents may be known, such as when a particular computer worm is known

to exploit a specific operating system vulnerability, the number of computers that

contain this specific vulnerability and are exploitable is often unknown (the presence

of the vulnerability itself may not be a sufficient condition for an event to occur; or

some form of host-based antivirus software may provide additional protection). The

causes of other types of incidents may never be determined and could be attributable

to several different possible security failings. In some cases, these incident types are

only detected based on how the computers are being used following an attack (such

as acting as a relay for spam) and not by how the initial exploit occurred or was

created. However, occurrences of these incident types may follow a pattern related

to motivations behind an attack rather than with the distribution of vulnerabilities

present in a population of computers.

5.2 Software Reliability Growth Models

In the context of software reliability, software reliability growth models have

been used to describe the software defect detection process. In general, the as-

sumptions driving software reliability include that software failures are caused by

unpredictable events that do not have a corresponding remedy within the software

and the failures that occur are independent. If the exploitation of vulnerable com-

puters is viewed as being similar to the detection of faults in software, then software

90

reliability growth models may be suitable for forecasting the level of future incident

occurrence. In this view, attackers take the role of being testers of the software and

identifying software faults present in a system. As illustrated in the previous discus-

sion regarding SIR models, if only a part of a larger population is being examined,

the assumption that failures or incidents are independent may still be valid even

for incidents that can spread from computer to computer. Some software reliability

growth modeling concepts are applied to computer security incidents to see if this

view is useful. Computers may be vulnerable due to flaws in software coding, but

may also be vulnerable due to other factors such as improper or weak configurations.

5.2.1 Trend analysis

Trend analysis is a useful tool for gauging the applicability of using software

reliability growth models. One test of reliability growth for a given time interval is

to compare the expected number of failures in a given subinterval of time to the

expected number of failures in a same size subinterval of time occurring earlier in the

overall set. If, on average, the expected number of failures during the later subinterval

of time is less than the expected number of failures for the earlier subinterval, the

data indicate reliability growth [72]. The Laplace test is an analytical trend test that

can be used to gauge reliability growth.

The time interval for a category of incidents is defined as being from the first

day an incident of that type was observed through the last day such an incident

was observed. Alternate starting points for time intervals were also considered,

91

such as vulnerability discovery dates published by CERT or software vendors (such

as Microsoft). Release dates for various operating systems are another possibility.

However, since some incidents are not easily connected to a single vulnerability and

others work across multiple operating system versions and types, these methods were

not used. It is also unknown precisely when detection capabilities for a particular

incident type were added to the IDS or how much time occurred between watching for

and observation of the first detected incident for a category of incidents. Therefore,

the first day an incident was observed was selected to be the start of the time interval

used.

Usually failure data is reported either as the time between failures (interfailure

times) or as the number of failures for equally sized intervals of time. Because

there are days in which a high number of incidents are detected and little specific

information regarding the time of day the incidents occurred, the equation used for

the calculating the Laplace factor is given by [73]:

u(k) =

∑k
i=1(i− 1)n(i)− (k−1)

2

∑k
i=1 n(i)√

k2−1
12

∑k
i=1 n(i)

, (5.1)

where a time interval [0, T] is divided into k equal units of time (days are used as

the unit of time for our data) and n(i) is the number of failures (incidents) observed

during the ith unit of time. According to reference [72], the practical interpretation

of the Laplace test regarding reliability growth can be summarized as:

1. Negative values of the Laplace factor indicate a decreasing failure intensity

92

(reliability growth);

2. Positive values suggest an increasing failure intensity (reliability decay);

3. Values varying between -2 and +2 indicate stable reliability.

Plotting the Laplace factor over the time period of collected data is useful for

viewing the trend evolution. Such a plot may indicate problems to be examined

more closely by someone familiar with the context of the data. Changes in the slope

of the plotted values may indicate a local shift in the reliability growth or decay of

the data. This may merit closer examination to look for causal factors for the shift.

The information shown in a plot of the Laplace factor values can be used to aid

the selection of reliability growth models that will provide better estimates. Models

can be selected whose assumptions are more consistent with the data as indicated

by the trends [74].

5.2.2 Software reliability growth models

Software Reliability Growth Models (SRGMs) are often used to describe and

predict failures and faults in software systems. In many systems, reliability is assumed

to increase over time as faults are found and fixed and as users become more familiar

with the features of a system and can avoid or adjust to different failure states.

Most Non-Homogeneous Poisson Process (NHPP) models assume the cumula-

tive number of failures that occur over a time interval can be described by a Poisson

process with a mean value function µ(t) and the number of detected failures is

proportional to the total number of faults in a system. The mean value functions

93

for NHPP models examined are nonlinear and defined by two parameters. Detected

failures or observed computer security incidents may correspond to the R(t) output

of an SIR model, which may be represented using NHPP models. There are widely

accepted and well-defined methods for estimating NHPP model parameters from

observed data.

The results provided in Chapter 6 are based on four different NHPP models:

the Goel-Okumoto (G-O) model [23], the S-Shaped model [24], the K-Stage Curve

model [25], and the Duane model [26]. These models were selected because they

represent some of the common NHPP models in use today. Three of them belong

to the finite failures model class, except for the Duane model, which is an infinite

failures model. In the NHPP models, the mean value function equals zero at time

zero (zero failures found at the very beginning). The parameters of the model are

estimated using the maximum likelihood estimation (MLE) technique. The likelihood

function, L(θ)|ti), for the NHPP models is [75]:

L(θ|ti) = e−µ(T)
∏

1≤i≤N
λ(ti), (5.2)

where θ is a set of model parameters, T is the observation duration, and ti are the

observed failure times, i = 1, 2 . . . N . The estimated model parameters are those

which maximize the likelihood function. The natural logarithm of this likelihood, or

the log-likelihood `, is more convenient to work with when computing each estimate.

94

The mean value function for the G-O model is given by

µ(t) = α(1− e−βt). (5.3)

The mean value function for the S-Shaped model is given by

µ(t)− α
[
1− (1 + βt)e−βt

]
. (5.4)

The mean value function for the K-Stage model when k = 3 is given by

µ(t) = α

[
1− e−βt

(
1 + βt+

(βt)2

2

)]
. (5.5)

The mean value function for the Duane model is given by

µ(t) = αtβ. (5.6)

For three of the models (G-O, S-Shaped, K-Stage) the parameter α can be interpreted

as the total number of errors in the system as t→∞, and β can be interpreted as

the error detection rate. These interpretations do not apply to the Duane model.

5.3 Time Series Models

In the previous sections, the use of software reliability growth models was

described for fitting and forecasting the number of computer security incidents

occurring in some time interval. These types of models were chosen based on the

95

idea that computer security incidents could be viewed as analogous to faults in a

system where external attackers are functioning as testers of the system.

However, other types of models with fewer assumptions than either SIR or SRG

models can be applied. Since many computer security incidents may be the result of

a computer virus or worm, techniques used in the field of epidemiology and infectious

disease surveillance can also provide a useful framework. Chapters 3 and 4 examined

aspects of the standard SIR model and an adaptation to include propagation by

email. Previous discussion of the email propagation model illustrated how different

interconnection topologies can produce varying epidemic patterns even when other

factors are the same [59], and new strains (or variants) of viruses can emerge rendering

existing vaccinations less effective. Models attempting to incorporate or account for

the influence of these factors can increase in computational complexity. When it

comes to modeling computer security incidents, the dynamics behind some incident

types may not be well understood or simply may not be aptly described by or result

from a contagious or infectious process model.

Another approach is to use time series analysis and modeling. Just as epidemic

models based on the spread of diseases in human populations have been applied to

modeling computer security incidents, techniques for applying time series models to

diseases in human populations can also be applied to modeling computer security

incidents.

96

5.3.1 Data transformations

Univariate time series models can be used to predict future values of a variable

based only on its past measurements. These models do not rely on being able

to measure or explain the causal factors underlying the behavior of the observed

variable. Instead, the time series models are constructed to account for patterns

in past movements in a manner useful for forecasting future behavior [76]. This is

different from many other types of models.

While there are many types of time series models, we focus on a widely used

and commonly applied class of linear models presented by Box and Jenkins [77]

for univariate time series. These models combine autoregressive (AR) and moving

average (MA) models into the combined autoregressive moving average (ARMA)

models. In particular, we explore using autoregressive integrated moving average

(ARIMA) models, which are one of the most commonly used models for univariate

time series. The ARIMA model is a generalization of the ARMA model but includes

a parameter for a differencing transformation of the data.

An AR model of order p denoted AR(p) expresses the observed value at time t

as:

Xt = εt + c+
p∑
i=1

φiXt−p, (5.7)

where X is a weighted average of the previous p values in time with weights φi, εt an

additional random error term and c a constant. The error term is generally assumed

to be sampled from a white noise process of a mean of zero and constant variance.

97

Similarly, an MA model of order q denoted MA(q) expresses the observed value

at time t as:

Xt = εt + c+
q∑
i=1

θiεt−q, (5.8)

where Xt is a weighted average of the previous q random error terms with weights

θi, εt an additional random error term and c a constant.

The AR(p) and MA(q) models can be combined to form an ARMA(p, q) model

expressed as:

Xt = εt + c+
p∑
i=1

φ1Xt−p +
q∑
i=1

θiεt−q. (5.9)

These models assume the underlying stochastic process being observed is time

invariant or stationary. It is common to apply transformations to nonstationary data

to obtain a stationary series before modeling.

Differencing is one technique for stabilizing the mean and it refers to successive

applications of the following transformation:

∇Xt = Xt −Xt−1. (5.10)

A backshift operator is commonly defined as:

BXt = Xt−1, (5.11)

98

which allows differencing to be expressed as:

∇dXt = (1−B)dXt (5.12)

with d as the number of repeated applications of the differencing transformation. An

ARIMA(p, d, q) model is an ARMA(p, q) model but with the differencing transfor-

mation applied d times. For data that exhibits cycles or seasonality, a form of the

backshift operator can also be applied to remove these effects and can be incorporated

into a multiplicative seasonal ARIMA model (SARIMA), see [78] for more details.

The use of different transformations can be explored if the variance changes

over time. Common transforms include logarithm, square root, and reciprocal.

Mean-range plots may indicate if a particular transformation is appropriate.

It is also common to plot and examine the sample autocorrelation function

(ACF) to check for seasonality in the data and to assist with selection of model

parameters. The sample ACF provides an estimate of the interdependency between

data points Xt and Xt+k usually expressed as a function of k where k is referred as

the lag value. Stationary data will have ACF values that decay towards zero quickly

as k increases.

Another related function is the partial autocorrelation function (PACF). Pat-

terns in the ACF and PACF plots can sometimes indicate order values to try for the

MA and AR parts of the models, respectively. For a discussion of ACF and PACF

properties for different MA(q) and AR(p) ordered processes, see [79].

99

5.3.2 Model selection criteria

Because time series models involve fewer assumptions and the model order

(p, q) is usually not known in advance, it is common to generate many different time

series models and then select certain ones to retain and apply. This is different

from the maximum likelihood approach to parameter estimation used by software

reliability growth models. Two information-based selection criteria are typically used

for choosing model order (p, q) when applying to actual incident data. Examining

the residuals (also referred to as innovations) of one-step-ahead model predictions

can provide an indication of model fit. However, to ensure the best forecasts, it

is important to avoid selecting model orders (p,q) which may overfit the data and

forecast poorly.

Akaike [80] described an approach to selecting models that attempts to minimize

a measure consisting of two parts. The first part is a term to measure model fit

and the second part is a penalty term for adding parameters (since including more

parameters might result in overfitting). The form presented in [81] is used and

identified as AICc. An equation for calculating AICc is given by:

AICc = ln
(
RSS

n

)
+

(n+ k)

(n− k − 2)
, (5.13)

where RSS is the sum of squared residuals, n is the number of observations, and k

is number of parameters (k = p+ q).

A second information criterion examined uses a different penalty term based

100

on Bayes factors [82] and is known as Bayesian information criterion (BIC), but

can also be referred to as Schwarz information criterion (SIC). The equation for

calculating BIC is given by:

BIC = ln
(
RSS

n

)
+

(
k · ln(n)

n

)
, (5.14)

where RSS is the sum of squared residuals, n is the number of observations, and k

is number of parameters (k = p+ q). Chapter 6 provides examples of using AIC and

BIC for selecting model order for time series models applied to computer security

incident data.

This chapter reviews two types of models that can be applied to computer

security incident data for forecasting purposes. These include several software

reliability growth models applicable for modeling non-homogeneous Poisson processes.

As described in Chapters 3 and 4, observed computer security incident data may

correspond to the R(t) output of an SIR based model for some incident types

and modeled as an NHPP. Software reliability engineering practices provide widely

used and accepted methods for estimating NHPP based SRGM parameters from

observed data. ARIMA time series models are also presented as an additional type

of model (requiring fewer assumptions) with forecasting applications. The process

for estimating model parameters from data and the available criteria for selecting

models are also discussed. Examples of applying these models to computer security

incident data are presented in Chapter 6.

101

Chapter 6: Illustrations using Campus Data

Previous chapters described and illustrated several different types of models

and aspects applicable to computer security incident data. This chapter shows some

of the ways these models can be applied using actual incident data. Some aspects

of each type of model previously described will be applied to and illustrated with

collected incident data from a university network.

6.1 Description of data

The Division of Information Technology (DIT) at the University of Maryland

provided the data set used in this analysis. This data set consists of almost 12,000

security incidents recorded over a period of about 9 years (from June 2001 through

July 2010). This data set includes 51 different incident types. The number of

incidents detected in a single day varies from 0 to 580.

The incidents recorded were based on three sources:

1. an intrusion detection system (IDS) (Snort [83] using a combination of regular

rules and in-house rules),

2. reports from users, and

102

3. reports from other system administrators.

Since recorded incidents led to the blocking of the suspected computer’s IP address,

DIT verified the authenticity of each incident. Therefore, all incidents obtained

from these three sources were manually reviewed. DIT launched port scans and

packet captures to validate the suspicious behavior of identified hosts. Based on

the IDS rule that raised an alert, about 60% of the alerts were inconclusive (e.g.,

when a detection rule was too broad). Among the remaining 40%, about half led to

the direct action of DIT blocking the IP address and half required a confirmation.

Among the incident alerts, very few were reports from users. The reports from other

system administrators were defined as incidents in roughly 75% of the cases based

on the source trustworthiness.

Because of the method used by DIT to validate the incidents, all incidents were

real. Thus, there are no false positives among the incidents reported. However, the

number of undetected attacks and intrusions that did not lead to a security incident

is not quantified.

In this chapter, we mostly focus on the ten incident types that occurred

most frequently in the data set between June 2001 and March 2007 (many of the

incidents occurred between 2002 and 2005). The ten types of incidents out of 51 total

represented only ≈20% of the incident types classified. However, these ten incident

types accounted for ≈76% of the number of incidents in the full dataset. Details

on the ten incident types examined for this time period are provided in Table 6.1.

Table 6.1 contains the number of incidents recorded and the incident type. Most

103

incident type names are self-explanatory. Note, however, that “nethicsreq” usually

represents the identification of an illegal use of copyrighted material (such as music

and movies). The “Start Date” indicates the date when the first incident associated

with that incident type was recorded. The “End Date” represents the date when

the last incident associated with the incident type was recorded or the end data

of the data collection, whichever is earlier. “# of Days” is the inclusive number

of days in the interval bounded by “Start Date” and “End Date”. The “Transfer”

column indicates if a particular incident type is likely to be transmissible. A value of

“Direct” means it is possible for that incident type to spread directly from computer

to computer without user interaction. A value of “Email” means it is likely for that

incident type to spread through infected emails messages. A value of “Other” means

an incident either is not likely to be transmissible or the method is unknown. The

value of “Multiple” is used when considering all incident types. It is possible for

incident types to actually include variants and the method of transmission may not

be the same for all variants. The raw data for some incident types is provided in

Appendix A.

Figure 6.1 shows a timeline of the intervals for all of the data and for the top

ten most frequent incident types. Figure 6.2 shows the cumulative number of all the

incident types for the full time interval. There is a noticeable sharp increase around

day 790. This increase is attributable to the start of the “worm blaster” incident

detections. Similarly, around days 244 and 994 are two other examples of a rapid

increase in the number of incidents in a short period of time. Day 244 coincides

with the start of detections for “virus klez” incidents, and there were a large number

104

Incidents # of Incidents Start Date End Date # of Days Transfer
All data 11966 6/14/2001 3/14/2007 2100 Multiple
worm_msblast 2133 8/12/2003 9/12/2003 32 Direct
virus_generic_bot 1940 6/8/2004 3/12/2007 1008 Other
virus_klez 1118 2/12/2002 12/2/2003 659 Email
bagle_worm 849 1/20/2004 11/28/2005 679 Email
irc_bot 690 4/8/2002 3/14/2007 1802 Other
virus_agobot 589 10/13/2003 9/13/2005 702 Email
rogue_ftp 500 4/19/2002 2/7/2007 1756 Other
nethicsreq 509 11/12/2001 3/14/2007 1949 Other
spamrelay 429 6/11/2002 3/9/2007 1733 Other
worm_nachi 317 9/16/2003 4/1/2004 199 Direct

Table 6.1: Summary of incident data.

of “bagle worm” incidents detected around day 994, which were likely due to a new

variant of this worm being released at the time. Not all incident types included in

the data set are easily linked with a particular cause and in some cases the incident

type name represents a detected symptom or behavior (such as “spamrelay”) instead

of identifying an underlying cause.

6.2 Approximate Bayesian Computation

It is usually desirable to estimate or infer parameter settings for these models

to closely approximate a particular setting or environment. Models can be used to

evaluate interventions for a particular environment, however, measuring or identifying

the model parameter values to use for a particular environment may not be simple.

For example, the full set of email contacts and links within an organization may not

be well known, or the distribution of user likelihoods to open a infected messages

may also be difficult to measure. Approximate Bayesian Computation (ABC) [84]

is one method for model parameter inference in cases where a model is complex or

105

Figure 6.1: Timeline of incident data.

0 500 1000 1500 2000
Time HdaysL

0

2000

4000

6000

8000

10000

12000

evitalu
mu

C
#

fo
stnedicnI

@all dataD Cumulative # of Incidents vs. Time HdaysL

Figure 6.2: Cumulative number of incidents.

106

not well suited to other parameter inference methods (such as maximum likelihood

estimation). ABC can also be used for selecting between several types of models.

We use ABC for both purposes when exploring stochastic email propagation models

using real incident data. We use MLE for software reliability growth model parameter

inference because it is less computationally expensive, and AICc/BIC for time series

model selection because they include a penalty term based on the number of model

parameters to reduce the chances of overfitting the data.

Essentially, ABC involves generating model outcomes for a range of parameter

values and comparing these outcomes with a set of observations. A distance value or

some measure of fit between the generated outcomes and the set of observations is

calculated. Then a threshold is used to retain a smaller subset of the specific models

that generated the outcomes. Several best fitting models are retained to help avoid

overfitting. The threshold could be in the form of some maximum allowable distance

value between model outcomes and observations or it could be simply a number

or percentage of model outcomes with the smallest distance values from the set of

observations. The parameters settings of the specific models retained in the selected

subset can then form an estimate of a posterior distribution of the parameter values.

In [85], ABC is compared with MCMC for the standard SIR model and similar

posterior parameter distributions are obtained. An ABC based method for selecting

between different SIR based models is presented in [86].

Although ABC can be used parameter value inference, we will first explore

using it for identifying or classifying which model types may fit better with the

underlying processes that produced a set of observations. In this case, we generate

107

model outcomes over a range of parameters for several model types. Then we combine

the model outcomes and retain a certain number of the models generating outcomes

with the closest fit values to the set of observations. We use the sum of the Euclidean

distances of between model outcome data points and test case data points as our

measure of fit value. From this set of closest fitting models, we then count how

many resulted from each type of model and use this as an indicator of the relative

likelihood the set of observations resulted from a specific model type for the range of

parameters used.

6.3 SIR Models

For this section, we explore two types of SIR models and generate a test case of

observations for each. Model outcomes are then computed over a range of parameter

values to compare outcomes of both model types to both test cases. We do this for

different ranges of parameter values to explore how the range of parameter values

used may affect model identification. We then compare the two model types to

two sets of incident observations to identify which models or model features are

most applicable to the incident observations. This is done by selecting a range of

parameter values and generating model outcomes for comparison to the incident

observations.

108

6.3.1 Test cases

Previously, we presented examples of how patching and the rate of patching in

a network of hosts or nodes could affect the spread of a worm or virus that propagates

through direct (node-to-node) communication between computers. We presented

two model types to illustrate two ways patching may occur (either at a constant rate

or at a rate proportional the number of remaining unpatched nodes). In this section,

we generate a set of test case observations for each model type. We define the two

model types as follows:

• Model A–uses a constant patching rate parameter where the chances of partic-

ular susceptible node being patched are the same at each time step.

• Model B–uses a variable or proportional patching rate parameter where the

chances of particular susceptible node being patched are proportional to the

number of unpatched or susceptible nodes at each time step (so as the number

of susceptible nodes decreases in time, their chances of being patched also

decreases in time).

When applicable, the same parameter values are used for generating the set of

observations for the test cases. All test cases and model outcomes are based on a

fully connected network topology.

109

6.3.2 Test parameter sets

We explore how using different parameter value ranges for generating model

outcomes are to see how this may affect identification of the original model type

used to generate at test case. It is expected the distribution of distance values for

the generated model outcomes will flatten or diffuse as the range of parameter values

broadens to include values farther away from the original parameter values used

to generate the test cases. However, it is unknown if or how much effect this may

have on the closest fitting model outcomes that will be retained for identifying or

classifying the model type originally used to generate the test case. Four parameter

sets are used and are described as follows:

• Parameter Set 1–this set is same as the parameters used for generating the test

cases. There are 5,000 nodes which are fully connected; β = 1.0; γ = 0.5; ν =

0.025.

• Parameter Set 2–same as Parameter Set 1, except allow value for β to range

uniformly between [0.9, 1.1]; the value for γ to range uniformly between [0.4,

0.6]; the value for ν to range uniformly between [0.015, 0.035].

• Parameter Set 3–same as Parameter Set 2, except expand the range for β

to [0.7, 1.3]; value for γ in the range [0.2, 0.8]; and the value for ν to range

uniformly between [0.005, 0.045].

• Parameter Set 4–same as Parameter Set 3, except for the addition of allowing

the total number of nodes to vary uniformly within the range [4750, 5250].

110

6.3.3 Test results and observations

For each model type (A and B) 2,500 simulations are run for each of the four

parameter sets described above. All resulting model outputs are compared with each

test case to obtain a distance or fit value. For a particular test case, outputs for both

model types (using the same set of parameter values) are combined (so there are

5,000 total model outputs being compared for each test case for each parameter set).

The models that produced the 50 closest set of outputs to the test case are retained

and then the number of each model type in this set of 50 is counted and used as

an indicator of how likely it is that the test case data was originally generated by a

model of this type.

Figure 6.3(a) shows a time curve of outcomes that make up Test Case A (origi-

nally generated by Model Type A and parameter values stated earlier). Figure 6.3(b)

shows a histogram of all of the model fit values produced by Model Type A using

Parameter Set 1 when compared with Test Case A. Similarly, Figures 6.3(c)-6.3(e)

show the same but using Parameter Sets 2-4 respectively. The figures show that the

overall distribution of model fit values flattens out as the set of parameter values

expands (except for the spike around 5,000 which corresponds to cases where the

infection does not spread and the final total number of infected cases is very low).

However, in the range of parameter values used for these simulations, there are

several model output results which are close in distance to the test case.

Figure 6.4 shows the number of each model type that created the closest 50

model outputs to the original test case for each of the parameter ranges explored.

111

0 5 10 15 20 25 30

0
10

00
30

00
50

00

Number in Recovered State
 (Test Case A)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

Model Fit Values with Test Data
 (Test Case A, parameter set 1)

(b)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 20000

0
20

0
40

0
60

0
80

0

Model Fit Values with Test Data
 (Test Case A, parameter set 2)

(c)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 20000

0
20

0
40

0
60

0
80

0

Model Fit Values with Test Data
 (Test Case A, parameter set 3)

(d)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 20000

0
20

0
40

0
60

0
80

0

Model Fit Values with Test Data
 (Test Case A, parameter set 4)

(e)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 20000

0
20

0
40

0
60

0
80

0

Figure 6.3: Test Case A and histograms of model fit values for Model A for different
parameter sets.

A B

Top Fitting Models
 (Case A, parameter set 1)

(a)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

A B

Top Fitting Models
 (Case A, parameter set 2)

(b)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

A B

Top Fitting Models
 (Case A, parameter set 3)

(c)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

A B

Top Fitting Models
 (Case A, parameter set 4)

(d)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

Figure 6.4: Distribution of model types for the 50 best fitting model outputs for Test
Case A for different parameter sets.

Figure 6.4(a) shows all of the closest 50 model outputs to Test Case A were generated

by Model Type A. Figures 6.4(b)-6.4(d) show that about 30 of the closest 50 model

outputs to Test Case A were generated by Model Type A, while about 20 were

generated by Model Type B (for Parameter Sets 2-4). Based on these results, one

could infer that there is a 60% chance that Test Case A resulted from Model Type

A and a 40% chance Test Case A resulted from Model Type B (when considering

the parameter ranges in Parameter Sets 2-4).

6.3.4 Application using incident data

In this section, ABC is used to compare actual incident data to the two types

of models described in the previous section. The goal is to see if the method can

provide some indication of which model type that would better describe the dynamics

112

0 5 10 15 20 25 30

0
50

0
15

00
25

00

Number in Recovered State
 (Incident Type A)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

Fit Values with Incident Data
 (Incident A, Model A)

(b)
Model Fit Value

F
re

qu
en

cy

0 10000 20000 30000 40000 50000

0
50

0
15

00
25

00

Fit Values with Incident Data
 (Incident A, Model B)

(c)
Model Fit Value

F
re

qu
en

cy

0 10000 20000 30000 40000 50000

0
50

0
15

00
25

00

Figure 6.5: Incident Type A and histograms of model fit values for model types A
and B.

of an environment from a set of models and a range of parameter values.

6.3.4.1 Incident data

From the original incident data set, occurrences of two different types of inci-

dents that could potentially spread directly from computer to computer were selected.

Although referred to in this section as Incident Types A and B, they correspond to

the “worm msblast” and “worm nachi” incidents, respectively, presented earlier in

Table 6.1. The full time period for “worm msblast” is used, but the time interval for

“worm nachi” is limited to the first 120 days (when the bulk of the incidents occur).

Figure 6.5(a) shows the plot of values for Incident Type A.

6.3.4.2 Applied parameter ranges

For each of the two types of models described in the previous section, 5,000

model outcomes are computed using a range of model parameter values, for a total

of 10,000 model outcomes each for Incident Types A and B. Each of the model

outcomes is compared with each type of the selected incident data and a distance or

fit value is calculated. The following parameters and value ranges are used:

113

• β (infection rate) using a uniform random distribution with the range of [0.1,

5.0].

• γ (removal rate) using a uniform random distribution with the range of [0.1,

5.0].

• ν (patching rate) using a uniform random distribution with the range of [0,

0.1].

• The total number of nodes was kept fixed with a value of 10,000.

6.3.4.3 Applied results and observations

Figure 6.5(a) shows a plot of the data for Incident Type A. Figures 6.5(b)

and 6.5(c) show histograms of the model fit values for Incident Type A to model

outcomes generated by model types A and B, respectively, over the parameter value

ranges described above. While the histograms of model fit values appear to be very

similar, the important visible difference is that the frequency of Model B outcomes at

the lowest model fit values is slightly higher than the frequency of Model A outcomes

for the same model fit values. This is the region of fit values for the retained models.

After all model outcomes and fit values were calculated, the distribution of

model types that produced the 20 best fitting model outcomes for each email incident

type were examined. These results are shown in Figures 6.6(a) and 6.6(b) for incident

types A and B respectively. Figures 6.6(c) and 6.6(d) show histograms of the model

fit values for the 20 retained best fits for each incident type (from both Model A

and Model B types).

114

A B

Top 20 Fitting Models
 (Incident Type A)

(a)
Model Type

F
re

qu
en

cy

0

5

10

15

20

6

14

A B

Top 20 Fitting Models
 (Incident Type B)

(b)
Model Type

F
re

qu
en

cy

0

5

10

15

20

8

12

Top 20 Fit Values
 (Incident Type A)

(c)
Fit Values

F
re

qu
en

cy

1250 1350 1450 1550

0

1

2

3

4

5

Top 20 Fit Values
 (Incident Type B)

(d)
Fit Values

F
re

qu
en

cy

300 350 400 450 500 550 600

0

2

4

6

8

Figure 6.6: Frequency of model types generating best 20 fitting model outputs and
histograms of best 20 fit values.

We make the following observations:

• From Figure 6.6(a), we could conclude that there is a 30% chance (6/20)

the observations for Incident Type A resulted from Model Type A (constant

vaccination rate) and a 70% chance (14/20) the observations resulted from

Model Type B (variable vaccination rate).

• From Figure 6.6(b), we could conclude that there is a 40% chance (8/20)

the observations for Incident Type A resulted from Model Type A (constant

vaccination rate) and a 60% chance (12/20) the observations resulted from

Model Type B (variable vaccination rate).

• For both incident types, Model Type B (variable vaccination rate) is the most

likely model type (of the two tested) to have generated the observed data.

6.4 Email Propagation Models

For this section, four types of models are explored and test cases for each are

generated. The four types of models vary in terms of network connection topologies

and distributions of user likelihood values. Model outcomes are generated to compare

115

all model types to all test cases. This is done for several ranges of parameter values

to explore how the range of parameter values used may affect model classification. A

range of parameter values is selected for generating model outcomes for comparing

the four model types to three sets of incident observations to determine which models

or model features are most applicable to the incident observations.

6.4.1 Test cases

Chapter 4 presents illustrations of how network connection topology and the

distribution of user actions in the network can affect the spread of an email virus.

Four model types which cover the ways these properties can be combined are explored

further and a set of test case observations for each model type is generated. The

four model types used are described as follows:

• Model A–uses a randomly connected network topology and a uniform random

distribution for assigning user likelihood values for opening infected messages.

• Model B–uses a randomly connected network topology and an exponential

based distribution for assigning user likelihood values for opening infected

messages.

• Model C–uses a scale-free network topology and a uniform random distribution

for user likelihood values for opening infected messages.

• Model D–uses a scale-free network topology and an exponential based distribu-

tion for assigning user likelihood values for opening infected messages.

116

When applicable, the same parameter values were used for generating the

set of observations for the test cases. Approximately the same total number of

edges or links are used for the randomly connected and scale-free connected network

topologies. The uniform random and exponential based distributions for assigning

user likelihood values for opening infected messages have similar expected values for

the population.

6.4.2 Test parameter sets

Different parameter ranges for generating model outcomes are used to explore

how this may affect model classification. Four parameter sets are used and are

described below:

• Parameter Set 1–this set is same as the parameters used for generating the

test cases. There are 5,000 nodes with about 2,500,000 edges or links (20%

connected); β = 1.0; γ = 0.3; an expected value of 10% for user likelihood for

opening an infected message.

• Parameter Set 2–same as Parameter Set 1, except allow value for β to range

uniformly between [0.9, 1.1]; the value for γ to range uniformly between [0.2, 0.4];

the number of links to range from 17% to 23% of a fully connected graph; and

the expected user likelihood value in the interval [0.07, 0.13].

• Parameter Set 3–same as Parameter Set 2, except expand the range for β to

[0.8, 1.2]; value for γ in the range [0.1, 0.5]; number of links from 15% to 25%

of a fully connected graph; and expected user likelihood values in the interval

117

[0.05, 0.15].

• Parameter Set 4–same as Parameter Set 3, except for the addition of allowing

the total number of nodes to vary uniformly within the range [4750, 5250].

It was expected the distribution of distance values for generated model outcomes

would flatten or diffuse as the range of parameter values broadened farther away from

the parameter values used to generate the test cases. However, what was unknown

was if or how much affect this might have on the closest fitting model outcomes used

for identifying or classifying the model type originally used to generate a test case.

6.4.3 Test results and observations

For each model type (A, B, C, and D) we run 2,500 simulations for each set of

parameter values described above. All resulting model outputs are compared with

each test case to obtain a distance or fit value. For a particular test case, outputs for

each model type (using the same set of parameter values) are combined (so there are

10,000 total model outputs being compared for each test case for each parameter set).

The models that produced the 100 closest set of outputs to the test case are retained

and then the number of each model type in this set of 100 is counted and used as

an indicator of how likely it is that the test case data was originally generated by a

model of this type.

Figure 6.7(a) shows the time curve for Test Case D (originally generated by

Model Type D and parameter values stated earlier). Figure 6.7(b) shows a histogram

of all of the model fit (or distance) values produced by Model Type D using Parameter

118

Set 1 when compared with Test Case D. Similarly, Figures 6.7(c)-6.7(e) show the

same but for Parameter Sets 2-4 respectively. We observe that the overall distribution

of model fit values flattens out as the set of parameter values expands. However, for

the range of parameter values used in these simulations, we see there are still several

model output results which are close in distance to the test case (i.e. have low model

distance values).

Figure 6.8 shows the frequency of each model type making up the closest 100

model outputs to the original test case. We see in Figure 6.8(a) that 98 of the closest

100 model outputs to Test Case D were generated by Model Type D while 2 were

generated by Model Type B. Based on these results, we would infer that there is a

98% chance that Test Case D resulted from Model Type D and a 2% chance Test

Case D resulted from Model Type B (when restricting parameter values to those in

Parameter Set 1).

In Figures 6.8(b)-6.8(d), we see that as the range of parameters used increases,

it becomes more difficult to discriminate between Model Type D and Model Type

B as the most likely model type responsible for creating the test data. However,

we see that for the broadest range of parameter values used (Parameter Set 4),

discriminating between models using uniform random user likelihood distributions

(Models A and C) and models using exponential user likelihood distributions (Models

B and D) is still possible in this example.

When comparing Model Types B and D, we can see from Figure 4.15(c) and

Figure 4.16(c) that at similar network connectivity levels, the difference between

the time curves of nodes in the recovered state is slight for the randomly connected

119

0 10 20 30 40 50 60

0
10

00
30

00
50

00

Number in Recovered State
 (Test Case D)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

Model Fit Values with Test Data
 (Test Case D, parameter set 1)

(b)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 15000 20000

0
50

0
10

00
20

00

Model Fit Values with Test Data
 (Test Case D, parameter set 2)

(c)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 15000 20000

0
50

0
10

00
20

00

Model Fit Values with Test Data
 (Test Case D, parameter set 3)

(d)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 15000 20000

0
50

0
10

00
20

00

Model Fit Values with Test Data
 (Test Case D, parameter set 4)

(e)
Model Fit Value

F
re

qu
en

cy

0 5000 10000 15000 20000

0
50

0
10

00
20

00

Figure 6.7: Test Case D and histograms of model fit values for Model D for
different parameter sets.

and scale-free connected examples shown. This test case result is consistent with

these previously shown examples. For the range of parameters used in the test

cases, results show more differentiation due to the different types of user likelihood

distributions than due to the different types of network topology.

Figure 6.9 shows the prior and posterior distributions for the user likelihood pa-

rameter for Model D with Test Case D for each parameter set. The prior distribution

density (shown as a dashed red line) shows all of the initial 2,500 sampled parameter

values used for each parameter set. The posterior distribution density (shown as a

density histogram in grey) is obtained from the user likelihood values used by the

Model D simulations present in the top 100 models retained. The number of each

model type retained is indicated in Figure 6.8. We see that the posterior distribution

is a closer reflection of the actual parameter value (0.10, shown as a vertical dotted

line) used to generate Test Case D compared to the prior (or sampling) distribution.

This is true even as the range of sampled parameter values increases.

6.4.4 Application using email incident data

In this section, we use ABC to compare actual email virus incident data to

the four types of models described in the previous section. Our goal is to see if the

120

A B C D

Top 100 Fitting Models
 (Case D, parameter set 1)

(a)
Model Type

F
re

qu
en

cy

0
20

40
60

80
10

0
0 2 0

98

A B C D

Top 100 Fitting Models
 (Case D, parameter set 2)

(b)
Model Type

F
re

qu
en

cy

0
20

40
60

80
10

0

0

33

0

67

A B C D

Top 100 Fitting Models
 (Case D, parameter set 3)

(c)
Model Type

F
re

qu
en

cy

0
20

40
60

80
10

0

0

46

0

54

A B C D

Top 100 Fitting Models
 (Case D, parameter set 4)

(d)
Model Type

F
re

qu
en

cy

0
20

40
60

80
10

0

0

49

0

51

Figure 6.8: Distribution of model types for the 100 best fitting model outputs
for Test Case D for different parameter sets.

User Likelihood Parameter Histogram
 (Case D, parameter set 1)

(a)
parameter value

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

User Likelihood Parameter Density
 (Case D, parameter set 2)

(b)
parameter value

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
12

0

User Likelihood Parameter Density
 (Case D, parameter set 3)

(c)
parameter value

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
12

0

User Likelihood Parameter Density
 (Case D, parameter set 4)

(d)
parameter value

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
12

0

Figure 6.9: User likelihood parameter distributions (prior in red, posterior in
grey) for Model Type D of the 100 best fitting model outputs for Test Case D

across parameter sets. [Actual User Likelihood Parameter value = 0.10.]

method can provide some indication of the model type and parameter values that

would better describe the setting from a set of models and a range of parameter

values.

6.4.4.1 Email incident data

From the original UMD incident data set, we extracted occurrences of three

different types of viruses that could potentially spread through email, we refer to them

as Incident Types A, B, and C. Since some of the incident types potentially involved

multiple variants which may also exploit different vulnerabilities, we selected a 120-

day time window for each incident type to use for the analysis. The collected data

reflects number of nodes removed/recovered over time (i.e. the I → R transition);

no information is available regarding when an infection actually occurred (i.e. the

121

S → I transition). Although referred to in this section as Incident Types A, B, and

C, they correspond to the “bagle worm”, “virus klez”, and “virus agobot” incidents,

respectively, presented earlier in Table 6.1. Figure 6.10(a) shows the plot of values

for Incident Type C.

6.4.4.2 Parameter ranges

For each of the four types of models described in the previous section, we

compute 6,250 model outcomes using a range of model parameter values, for a total

of 25,000 model outcomes. Each of the model outcomes is compared with each type

of the extracted email incident data and a distance or fit value is calculated. The

following parameters and value ranges were used:

• β using a uniform random distribution with the range of [0.1, 2.0].

• γ (removal rate) using a uniform random distribution with the range of

[0.01, 2.0].

• ν (patching rate) using a uniform random distribution with the range of [0, 0.5].

• Number of links or edges as a percentage of a fully connected graph using a

uniform random distribution with the range of [2%, 25%].

• Expected value of user likelihood to open an infected message with the range

of [0.01, 0.4]

• The total number of nodes was kept fixed with a value of 10,000.

122

0 20 40 60 80 100 120

0
20

0
40

0
60

0

Number in Recovered State
 (Incident Type C)

(a)
Time

C
um

ul
at

iv
e

R
ec

ov
er

ed

Fit Values with Incident Data
 (Incident C, Model A)

(b)
Model Fit Value

F
re

qu
en

cy

0 500 1000 1500

0
5

10
20

30

Fit Values with Incident Data
 (Incident C, Model B)

(c)
Model Fit Value

F
re

qu
en

cy

0 500 1000 1500

0
5

10
20

30

Fit Values with Incident Data
 (Incident C, Model C)

(d)
Model Fit Value

F
re

qu
en

cy

0 500 1000 1500

0
5

10
20

30

Fit Values with Incident Data
 (Incident C, Model D)

(e)
Model Fit Value

F
re

qu
en

cy

0 500 1000 1500

0
5

10
20

30

Figure 6.10: Type C and histograms of model fit values for different model
types.

A B C D

Top 50 Fitting Models
 (Incident Type A)

(a)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

9
14

8

19

A B C D

Top 50 Fitting Models
 (Incident Type B)

(b)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

10
15

8

17

A B C D

Top 50 Fitting Models
 (Incident Type C)

(c)
Model Type

F
re

qu
en

cy

0
10

20
30

40
50

8

21

8
13

Top 50 Fit Values
 (Incident Type A)

(d)
Fit Values

F
re

qu
en

cy

1500 2000 2500

0
5

10
15

Top 50 Fit Values
 (Incident Type B)

(e)
Fit Values

F
re

qu
en

cy

700 900 1100

0
5

10
15

Top 50 Fit Values
 (Incident Type C)

(f)
Fit Values

F
re

qu
en

cy

600 1000 1400

0
2

4
6

8
10

12

Figure 6.11: Frequency of model types generating best 50 fitting model
outputs and histograms of best 50 fit values.

6.4.4.3 Results and observations

Figures 6.10(b)-(e) shows histograms of the model fit values for Incident Type

C to model outcomes generated by model types A, B, C, and D, respectively, over

the parameter value ranges stated above. The full range of model fit values is not

shown, but includes all of the 50 best fitting models. After all model outcomes and

fit values were calculated, we looked at the distribution of model types producing

the 50 best fitting model outcomes for each email incident type. The distributions

of retained models are shown in Figures 6.11(a)-(c) for incident types A, B, and C

respectively. Figures 6.11(d)-(f) show histograms of the model fit values for the 50

best fits for each incident type.

Figure 6.12 shows prior and posterior distributions of parameters for the Model

Type B simulations when compared to the Incident Type C data. The comparison

123

Prior and Posterior
 Beta Parameter Density

(a)
Beta

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior and Posterior
 Gamma Parameter Density

(b)
Gamma

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

Prior and Posterior
 Nu Parameter Density

(c)
Nu

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

12
14

Prior and Posterior
 Connectivity Parameter Density

(d)
Fraction Connected

D
en

si
ty

0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

Prior and Posterior
 User Likelihood Parameter Density

(e)
User Likelihood

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10

12

Figure 6.12: Incident Type C, Model Type B–parameter distributions (prior
density in red, posterior density in black, posterior density histogram in grey).

of the prior and posterior distributions can be used to help gauge if an appropriate

prior (sampled) range was used and/or if the number or percent of retained samples

should be changed (which may also mean changing the overall number of simulations

used). The obtained posterior distributions can be used to help guide future selection

of prior distributions to sample from.

We make the following observations:

• From Figure 6.11(a), we could conclude that of the models tested, there is a

18% chance (9/50) the Incident Type A observations resulted from Model Type

A, a 28% chance (14/50) from Model Type B, a 16% chance (8/50) from Model

Type C, and a 38% chance (19/50) from Model Type D for the tested range of

parameter values. Also, we could interpret the results to indicate there is 66%

chance (33/50) the observations involved an exponential based distribution of

user likelihoods to open infected email messages compared to a 34% chance

(17/50) of a uniform random distribution of likelihoods. However, it is possible

that a different distribution (other than uniform random or exponential) is

actually responsible. The ABC method only provides estimates of aspects

included in the testing process. Similar inferences can be stated based on

124

Figures 6.11(b) and 6.11(c).

• For two of the three incident types, Model Type B (randomly connected

network topology and exponential based distribution of user likelihood values

to open infected messages) is the most likely model type (of those tested)

to have generated the observed data. The remaining incident type (C) was

best matched to Model Type D (scale-free network topology and exponential

distribution of user likelihood values to open infected messages).

• For the three incident types, the retained models are more likely (66%, 64%,

and 68% for Incident Types A, B, and C, respectively) to have used an

exponential distribution than a uniform random distribution for the user

likelihood parameter.

• Figure 6.12(e) indicates better fitting model B simulations to Incident Type C

data are more likely to have user distributions based on smaller (5% or less)

average expected values of user likelihoods to open infected messages. This

may indicate there are a small number of users who are more likely to open

infected messages and implementing interventions that account for this could

be beneficial (e.g. targeted blocking or patching of computers used by these

users).

This section presented and tested a method for using Approximate Bayesian

Computation to evaluate model types for a set of test case data. This method was

applied to three email virus incident types. For the model types tested and for

the range of parameter values explored, model types using an exponential based

125

distribution of user likelihood of opening infected messages produced the best fit

values as well as models based on a scale-free network topology.

6.5 Software Reliability Growth and Time Series Models

The previous applications of SIR and Email Propagation models focused on

using the models to compare which features of the models best describe or account

for the observed incident data for the applicable incident types. However, not all

computer security incident data involves processes which are transmissible or fit with

an infectious disease model approach. In these cases, while it may be difficult to create

an explanatory model for the anticipated impact of a particular intervention (such as

implementing a policy change), it is still desirable to gauge the impact of intervention

actions. One way to do this is to use data collected before an intervention is applied

to project future levels and then compare these projections to actual incident levels

after one or more intervention actions has be taken. Software reliability growth

models and time series models are potential ways to make projections based on

collected data.

6.5.1 Trend analysis and software reliability growth models

While incident data is not the same as software failure data in systems, there

are some similarities. It is reasonable to assume for incidents that can be linked

to a direct cause such as a particular worm or virus variant that exploits a single

vulnerability, the frequency of detection will begin to decline at some point as infected

126

machines are removed and repaired. Vulnerabilities in remaining machines will also

be patched against the exploit to prevent future incidents of the same type as user

awareness increases and antivirus software is updated. User awareness of particular

issues and incident types may also improve over time and lead to a decrease in

observed incidents. These possibilities may result in observed incident data which

show a variable and declining rate of incident occurrence for which software reliability

growth models may provide a good fit and may be useful for making projections.

Figure 6.13 shows the Laplace trend values for the all incidents. The plot shows

there are a few brief periods of rapidly increasing Laplace trend values followed by

a slower decline in values. The first rapid increase is attributable to detections of

“virus klez” incidents. The largest increase in Laplace trend values occurs around

day 790 and coincides with the start of “worm msblaster” incidents. The smaller

increase but noticeable peak in Laplace factor values results from a sudden spike in

the number of “bagle worm” incidents recorded (likely due to the release of a new

variant of the worm). While these changes can be seen when viewing the cumulative

number of incidents as shown in Figure 6.2, they are more noticeable in the Laplace

trend values as shown in Figure 6.13.

Although the cumulative total number of incidents may not fit well to a

reliability growth model (indicated by the Laplace trend plot shown in Figure 6.13)

in part due to the dynamic nature of the observed system (the number of networked

devices fluctuates over time; the relative proportion and versions of operating systems

in the system evolves as new operating systems and devices come to market) and

the data not being fully consistent with some of the assumptions made by such

127

models, it seems reasonable to expect that some of the different types of incidents

can be described with reliability growth models. Incident types with narrow and

well-defined causes or vulnerabilities (such as “worm msblast”) are more easily fixed

and patched against. These types of incidents are more likely to show characteristics

in common with reliability growth models. Other types of incidents may not be

attributable to a single cause or vulnerability (such as “spamrelay”). Reliability

may improve as systems are identified and fixed, but reliability may also decrease or

remain stable if new sources of vulnerabilities are found to cause incidents of the

same type. This suggests that relating incident types to their causes instead of their

symptoms may be useful for modeling purposes, however, obtaining the necessary

information for this is not always practical for some incident types.

We now take a closer look at some of the individual incident data. The trend

values for individual incident types are calculated using different time windows for

each incident type. The time windows are based on when incidents of a particular

type where first and last observed. This information is provided in Table 6.1 under

the columns labeled “Start Date” and “End Date.” Figure 6.14 shows the evolution

of the daily Laplace trend values for the “worm msblast” data. The negative values

indicate reliability growth throughout the interval. Most reliability growth models

can be applied to this data. The beginning part of Figure 6.15 indicates a decrease in

reliability as illustrated by the positive Laplace factor values. Since applied models

would need to allow for increasing failure intensity, the G-O [23] model would not

be expected to work well for the “spamrelay” data. Figure 6.16 indicates an initial

decrease in reliability followed by reliability growth as illustrated by the change in

128

0 500 1000 1500 2000
Time HdaysL

-10

0

10

20

30

40

50

60

ecalpa
L

dner
T

eula
V

@all dataD Laplace Trend Values @uHkLD vs. Time HdaysL

Figure 6.13: Laplace trend values for
all incident data.

5 10 15 20 25 30
Time HdaysL

-50

-40

-30

-20

-10

0

ecalpa
L

dner
T

eula
V

@worm_msblastD Laplace Trend Values @uHkLD vs. Time HdaysL

Figure 6.14: Laplace trend values for
“ms blast” incident data.

0 250 500 750 1000 1250 1500 1750
Time HdaysL

-2

0

2

4

6

8

10

ecalpa
L

dner
T

eula
V

@spamrelayD Laplace Trend Values @uHkLD vs. Time HdaysL

Figure 6.15: Laplace trend values for
“spamrelay” incident data.

0 100 200 300 400 500 600 700
Time HdaysL

-20

-10

0

10

20

ecalpa
L

dner
T

eula
V

@virus_agobotD Laplace Trend Values @uHkLD vs. Time HdaysL

Figure 6.16: Laplace trend values for
“virus agobot” incident data.

Laplace factor values from positive to negative. An S-Shaped [24] or K-Stage [25]

model might work best for the “virus agobot” data. Laplace trend values were

plotted each of the incident types considered in the paper, but not all are shown.

Figures 6.14, 6.15 and 6.16 were included to illustrate examples of features to look

for when considering models to apply. Some of the other incident types had more

complex trend features. For example, “bagle worm” has many small peaks across

the considered time interval that likely coincide with the release of new variants of

the worm.

Table 6.2 summarizes the chi-square model fit values for each model type for

129

Incidents

G-O Model
Chi-squared

S-Shaped Model
Chi-squared

K-Stage Model
Chi-squared

Duane Model
Chi-squared

All data 797,069 333,191 213,386 774,200
worm_msblast 496 3,049 10,804 3,807
virus_generic_bot 21,721 38,239 177,952 43,025
virus_klez 15,452 125,272 647,881 8,914
bagle_worm 10,975 15,115 25,594 52,068
irc_bot 25,486 251,787 7,966,766 17,292
virus_agobot 30,996 24,568 109,530 59,942
rogue_ftp 37,277 38,573 1,104,622 41,978
Nethicsreq 21,852 12,561 689,714 24,848
Spamrelay 57,250 13,724 2,997,065 10,662
worm_nachi 826 9,174 71,563 2,630

Table 6.2: Chi-square fit values for incident models over full time intervals.

the different incident classes. The chi-square goodness of fit is defined as:

χ2 =
T∑
i=1

(oi − ei)2

ei
(6.1)

where oi is the observed cumulative number of incidents at day i and ei is the

estimated cumulative number of incidents at day i.

From Table 6.2, the G-O model (α = 2, 141.1, β = 0.17428) appears to have the

best chi-square fit for the “worm msblast” incident data and this is consistent with

the Laplace trend evolution shown in Figure 6.14. The S-Shaped model (α = 591.34,

β = 0.010963) appears to fit the “virus agobot” incident data better than the other

models (also consistent with Laplace trend evolution shown in Figure 6.16), but

the K-Stage model (α = 589.41, β = 0.016632) provides the poorest chi-square fit.

This is not expected as the initial increase in Laplace trend values indicates the G-O

model will not be a good fit and could be expected to have a higher chi-square fit

value than the S-Shaped and K-Stage models. Figure 6.15 shows mostly positive

130

0 250 500 750 1000 1250 1500 1750
Time HdaysL

0

100

200

300

400

500

600

700

evitalu
mu

C
#

fo
stnedicnI

@irc_botD@G-O ModelD@ c2
= 25,486D # of Incidents vs. Time

fit

data

Figure 6.17: G-O model fit and data
for “irc bot”.

0 250 500 750 1000 1250 1500 1750
Time HdaysL

0

20

40

60

80

100

120

140

c

2
seulav

@irc_botD@G-O ModelD@ c2 values vs. Time HdaysL

Figure 6.18: Chi-square residuals for
G-O model fit of “irc bot” data.

trend values and the Duane model (α = 2.8061 × 10−4, β = 1.9095) provides the

best chi-square fit for the “spamrelay” incident data.

For the “irc bot” incident type, Figure 6.17 shows a G-O model fit to the

data while Figure 6.19 shows the K-Stage model fit to the same data. Visually the

models appear similar (except for the first few days). However, as shown in the

Table 6.2, the calculated chi-square value for the K-Stage model is extremely high

when compared to the calculated chi-square value for the G-O model. Comparing

the plot of chi-square residual values (Figures 6.18 and 6.20) shows the influence of

the first few predicted values on the overall chi-square total for the K-Stage model.

The large values early in the interval result from division by the very small expected

number of incidents for these days. Using the chi-square values to evaluate model

fits is useful, but should be interpreted with caution for this data. Unlike typical

software reliability data, the incident data includes some uncertainty regarding the

start of the measurement interval and contains days where very large increases in

the number of incidents are observed. The chi-square results for the incident data

need to be reviewed in this context.

131

0 250 500 750 1000 1250 1500 1750
Time HdaysL

0

100

200

300

400

500

600

700

evitalu
mu

C
#

fo
stnedicnI

@irc_botD@K-Stage, K = 3D@ c2
= 7.97 x 106

D # of Incidents vs. Time HdaysL

fit

data

Figure 6.19: K-Stage model fit and
data for “irc bot”.

0 250 500 750 1000 1250 1500 1750
Time HdaysL

0

500000

1 ¥106

1.5¥106

2 ¥106

2.5¥106

3 ¥106

3.5¥106

c

2
seulav

@irc_botD@K-Stage, K = 3D@ c2 values vs. Time HdaysL

Figure 6.20: Chi-square residuals for
K-Stage model fit of “irc bot” data.

Since the interest is in developing models to be used for forecasting, model

selection can be based on the accuracy of model predictions for unseen data. This is

evaluated by splitting the data and using the hold-out cross-validation technique [87]

for comparing models. Using this method, some of the data is withheld and not

used for estimating parameters and then models are used to forecast values which

are compared to the withheld data. An advantage of using this method for model

selection is that it reduces the risk of selecting models which may “overfit” the data

(i.e. a model that only provides a good fit to the data in the range used for estimating

parameters and provides a poor fit for data outside this range). This is an important

selection consideration for models that will be used to forecast beyond the range of

the currently available data.

Table 6.3 shows how the data was split for each incident type. Table 6.4 shows

the chi-square fit values for both the data used for model parameter estimations

and for the hold-out data. Figures 6.21-6.24 show some examples of model fits to

parameter estimation data and hold-out data. Table 6.4 shows the G-O model created

using the training data for parameter estimation best fits the held-out “worm msblast”

132

 [Full Set] [Full Set] [Training] [Testing] [Training] [Testing] [Training] [Testing]

Incidents
Days

included
of

incidents
Days

included
Days

included
of

incidents
of

incidents
days w/
incidents

days w/
incidents

All data 2100 11966 1400 700 9692 2274 901 412

worm_msblast 32 2133 21 11 2033 100 15 8

virus_generic_bot 1008 1940 672 336 1550 390 225 106

virus_klez 659 1118 439 220 1083 35 168 19

bagle_worm 679 849 452 227 828 21 69 10

irc_bot 1802 690 1201 601 565 125 220 30

virus_agobot 702 589 468 234 588 1 66 1

rogue_ftp 1756 500 1170 586 467 33 204 25

nethicsreq 1949 509 1299 650 374 135 157 56

spamrelay 1733 429 1155 578 191 238 110 128

worm_nachi 199 317 132 67 308 9 24 6

Table 6.3: Splitting incident data for hold-out validation.

incident data when compared to other models. The K-Stage model created using the

training data provides the best fit to the held-out “virus agobot” incident data. This

is more consistent with the Laplace trend analysis for this data than the chi-square fit

values shown in Table 6.2 for models with parameters estimated using the full data

interval. Table 6.4 also shows that although the K-Stage model does not provide the

best predictions for the “irc bot” incident data, it is not the worst predictor as one

might conclude from the chi-square fit values in Table 6.2. The Duane model predicts

the “spamrelay” incident values better than the other models. Trend analysis showed

a decreasing to stable reliability growth trend which typically means the G-O model

would perform poorly (as indicated in Tables 6.2 and 6.4). The Duane model is

unique from the other reliability growth models examined in this paper as it was

derived from the hardware reliability area where the other models were developed

from software reliability observations.

Laplace trend information and plots of data and model fits are not shown for

the “worm nachi” incident data, but is similar to what is shown for “worm msblast.”

133

 [G-O] [S-shaped] [K-stage] [Duane] [G-O] [S-shaped] [K-stage] [Duane]

Incidents
[Training]
Χ

2 values
[Training]
Χ

2 values
[Training]
Χ

2 values
[Training]
Χ

2 values
[Testing]
Χ

2 values
[Testing]
Χ

2 values
[Testing]
Χ

2 values
[Testing]
Χ

2 values

All data 820,773 151,563 187,151 162,992 90,866 234,888 49,126 590,994

worm_msblast 466 1,876 5,875 2,146 8 15 16 377

virus_generic_bot 21,841 23,123 83,239 33,908 145 4,406 8,332 5,475

virus_klez 17,487 114,529 542,605 4,084 45 84 148 2,215

bagle_worm 9,783 10,122 14,689 32,504 20 26 26 6,573

irc_bot 30,761 289,602 7,329,742 16,483 4,376 1,778 4,323 1,963

virus_agobot 27,456 23,812 116,668 25,047 1,206 159 29 34,363

rogue_ftp 27,834 44,220 1,705,429 17,823 11,280 11,925 4,200 21,468

nethicsreq 19,370 10,305 366,672 12,807 4,283 730 806 12,691

spamrelay 19,092 13,487 2,022,188 11,514 17,225 1,987 8,441 915

worm_nachi 547 5,634 37,744 903 1.4 1.6 1.6 1,094

Table 6.4: Chi-square fit values for split incident data.

0 500 1000 1500 2000
Time HdaysL

0

2000

4000

6000

8000

10000

12000

evitalu
mu

C
#

fo
stnedicnI

@all dataD@K-Stage, K =3D Cumulative # of Incidents vs. Time HdaysL

Figure 6.21: K-Shaped model fit and
data with hold-out data included for
“All data”.

5 10 15 20 25 30

500

1000

1500

2000

Figure 6.22: G-O model fit and
data with hold-out data included for
“worm msblast”.

250 500 750 1000 1250 1500 1750

100

200

300

400

500

600

700

Figure 6.23: S-Shaped model fit and
data with hold-out data included
“irc bot”.

250 500 750 1000 1250 1500 1750

100

200

300

400

Figure 6.24: Duane model fit and data
with hold-out data included for “spam-
relay”.

134

This is expected as the Blaster and Nachi worms exploited similar vulnerabilities

and occurred during a similar time frame.

6.5.2 Time series models

The use of time series modeling is explored for a range of computer security

incident data. As previously discussed, several incident types may spread due to

factors directly analogous to those affecting the spread of contagious diseases in

animals. The occurrences of other incident types are potentially more influenced by

factors not included in the infectious disease based models. Since time series models

do not attempt to directly account for or use information about causal factors, they

can be applied to a broader range of incident types.

Figure 6.25 shows the cumulative values for the “spamrelay” data and associated

sample ACF values for d = 0 and d = 2. Also shown is a once differenced series of

the log transformed weekly values and corresponding ACF plot. We see that there is

a high amount of autocorrelation present in the cumulative values indicating that

this data is nonstationary. Differencing the cumulative data (d = 2) appears to

stabilize the mean. Applying the log transformation appears to reduce some of the

variance. The actual transform was log[x+ 1] because there are weeks in which no

incidents occurred. We explored the use of this transformation for all of the top

incident types.

Models were calculated for combinations of p and q values each ranging from

0− 5 and the models with the lowest AICc and BIC values were identified. (There

135

[spamrelay] Cumulative # Incidents vs. Time (weeks)

Time(w eeks)

C
um

ul
at

iv
e

In

ci
de

nt
s

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0

[spamrelay] Differenced cumul.data with d = 2

Time(w eeks)

D
iff

er
en

ce

0 50 100 150 200 250

-1
5

-1
0

-5
0

5
10

15

[spamrelay] Differenced Log(weekly.data) with d = 1

Time(w eeks)

D
iff

er
en

ce

0 50 100 150 200 250

-3
-2

-1
0

1
2

3

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

[spamrelay] ACF of Cumulative data

0 10 20 30 40 50 60

-0
.5

0.
0

0.
5

1.
0

Lag
A

C
F

[spamrelay] ACF of Differenced cumul.data (d = 2)

0 10 20 30 40 50 60

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

[spamrelay] ACF of Differenced Log(weekly.data) (d = 1)

Figure 6.25: Difference transformations and ACF values for “spamrelay”.

are methods for evaluating models with AICc or BIC values within a certain range

of closeness to the lowest values, however, these methods can involve some subjective

judgments and were not explored.)

6.5.2.1 Fitting and forecasting observed data with time series models

A basic modeling process is followed. First, transformations (differencing,

log) are applied to the data to stabilize the mean and variance. Next, models are

generated for a range of parameters (p, q). From the generated models, models are

selected based on lowest AICc and BIC values.

The interest is in developing models for forecasting the number of computer

security incidents in a future time interval, so the accuracy of model predictions are

compared to unseen incident data. This is done by splitting the data and using the

hold-out cross-validation technique [87] for comparing model predictions. Using this

method, some of the data is withheld and not used for parameter estimations or

136

model selection. Then model forecast values are compared to the data that have been

withheld. Model parameters are estimated using maximum likelihood method with

the R statistical software package [68]. An example of the R code used is provided

in Appendix D.

A decision was made to split the data by time (instead of by number of

incidents). It is of more interest to examine the expected trends over time instead of

forecasting when a specific number of incidents will have occurred. Data from the

first two-thirds of the time interval was used for model order selection and model

parameter estimation. The remaining data was used for forecast validation. This is

the same method used when estimating software reliability growth model parameters

and selecting models.

In addition, some multiplicative seasonal ARIMA (SARIMA) models are

examined. A one year period was used when possible to explore possible influences

of the academic calendar schedule on occurrences of incidents. Since the length of

the data interval being modeled must be at least twice the length of the seasonal

period to allow for differencing, not all of the incident types could be modeled using

a 52 week period after being split into modeling and validation sets. A period of

26 weeks was used for incidents with shorter intervals of observation because it is

a factor of 52 and provides some overlapping of spring and fall semester activity.

While it seems reasonable to expect some incident types might be affected by the

academic calendar (observed occurrences increase during spring and fall semesters),

it is difficult to capture using a single lag offset value due to variations in the lengths

of semester breaks. In the case of the “nachi” incident type, a period of 5 weeks was

137

 Not Seasonal Seasonal
 Cumulative Log weekly Cumulative Log weekly
Incident Selection Forecast Data Forecast Data Forecast Data Forecast Data Seasonal Period
Type Criterion RMS RMS RMS RMS Weeks
all data AICc 1418.04 224.59 2104.02 869.32 52
msblast AICc 1333.48 53.31 n/a n/a n/a
genbot AICc 182.01 117.50 220.93 36.46 26
klez AICc 66.93 86.61 43.54 53.43 26
bagle AICc 72.62 6.35 220.03 17.86 26
ircbot AICc 80.58 58.20 153.43 93.26 52
agobot AICc 21.59 1.96 1.58 5.46 26
rogueftp AICc 124.22 52.67 767.64 34.60 52
nethicsreq AICc 27.96 41.09 137.11 63.47 52
spamrelay AICc 72.35 111.08 35.25 55.66 52
nachi AICc 4.14 4.03 27.43 7.61 5

Shaded cells indicate lower RMS values compared to BIC selected models

Table 6.5: ARIMA models and forecasts (AICc based selection).

chosen due to the shorter time interval of the data. A period of 5 weeks may capture

some monthly influences if present. Closer examination of the ACF plots for each

incident type may also indicate other seasonal periods to try.

Tables 6.5 and 6.6 show the models selected for each incident type based on

lowest AICc and BIC values. AICc and BIC are widely used information criteria

for model selection, but alternate selection criteria have been proposed such as the

Hannan-Quinn information criterion (HQC) [88]. Model selection was independent

of the data withheld for validation. The root-mean-squared (RMS) errors were

calculated to compare forecasts from the selected models to data withheld for

validation. Table 6.5 shows results of the AICc selected models using the cumulative

values and log transformed weekly values, while Table 6.6 shows the results for the

BIC selected models. The forecasts for the log transformed weekly value models were

converted to cumulative values for comparison purposes. The “msblast” incident

type did not have enough weeks of data to calculate seasonal models.

We can compare how the choice of model selection criteria affects forecasting.

138

 Not Seasonal Seasonal
 Cumulative Log weekly Cumulative Log weekly
Incident Selection Forecast Data Forecast Data Forecast Data Forecast Data Seasonal Period
Type Criterion RMS RMS RMS RMS Weeks
all data BIC ** 273.14 ** ** 52
msblast BIC 1222.72 ** n/a n/a n/a
genbot BIC ** 108.99 ** 65.37 26
klez BIC ** ** 430.62 ** 26
bagle BIC ** 8.90 ** ** 26
ircbot BIC 84.76 93.79 72.54 88.14 52
agobot BIC 0.17 0.17 ** ** 26
rogueftp BIC * 48.48 ** ** 52
nethicsreq BIC 26.15 41.23 ** 65.24 52
spamrelay BIC ** 120.74 35.44 54.27 52
nachi BIC 20.03 ** ** 6.86 5

** indicates same model selected using AICc, see Table 6 for RMS value
Shaded cells indicate lower RMS values compared to AICc selected models

Table 6.6: ARIMA models and forecasts (BIC based selection).

In half of the cases (21 out of 42), AICc and BIC select the same model. Of the

remaining 21 cases where AICc and BIC select different models, using AICc resulted

in picking a better predictive model 11 times, while using BIC resulted in better

predictive models in 10 instances. Simply using AICc to select models did slightly

better than using BIC. If overfitting is a concern, another strategy would be to

examine the models selected using AICc and BIC and then choose the one of lower

order. Although the model orders are not shown in Table 6.5 or Table 6.6, this

strategy would not have improved upon using only AICc for model selection.

Comparing the non-seasonal models constructed using the cumulative values to

the ones using the log transformed values shows improved forecasting performance

using the log values in eight out of eleven incident categories. Overall, it seems

using the log transform improves forecasts in more cases than it degrades forecasts.

The magnitude of forecasting improvements also appears to be larger than most

forecasting degradations that occur.

139

Including a seasonal element into the models improved forecasts using the

cumulative data for three incident types: “klez”, “spamrelay”, and “ircbot”, while

for the log transformed values it improved forecasts for four incident types: “genbot”,

“klez”, “rogueftp”, and “spamrelay”. Other than “klez”, the incident types benefiting

from including a seasonal factor are named after an observed function of a compro-

mised machine and these types are not easily associated with a particular piece of

malware or exploited vulnerability. Incidents in these categories could potentially

result from several different underlying causes yet exhibit the same outward behavior.

The frequency of these incident types are more likely to be influenced by the number

of active machines on the campus network than the exploitation of a particular

vulnerability.

Some forms of malware are modular in nature and have multiple variants.

These variants can incorporate exploits for new vulnerabilities as they are discovered.

Malware of this type often provides some desired functionality to an attacker (such

as relaying spam or becoming part of botnet to be rented out for distributed denial-

of-service attacks or phishing schemes). These incident types may persist even as

specific vulnerabilities are patched, as long as an economic incentive exists for the

desired functionality provided.

Besides academic calendar, another potential source of periodic behavior could

result from monthly patch cycles used by some vendors. To examine this, the data

could be grouped by months and scaled to account for differences in the number of

days per month. This could be applied to the complete set of incidents as well as

some individual incident types.

140

6.5.3 Comparing software reliability growth and time series models

Software reliability growth (SRG) models are often used to describe and predict

failures and faults in software systems. In many systems, reliability is assumed to

increase over time as faults are found and fixed and as users become more familiar

with the features of a system and can avoid or adjust to different failure states. This

often leads to an observed decreasing rate of failures.

While security incident data is not the same as software failure data in systems,

there are some similarities. A previous study explored the concept of viewing

computer security incidents on a network as analogous to software errors in a system

and tested the prediction ability of some common SRG models [89]. time series

models have also been applied to modeling SARS epidemic data [61]. Another

study (involving several small sets of data from different types of repairable systems)

compared forecasts from ARIMA time series models to forecasts from an SRG model

and found the time series models forecasts to be similar in most cases and slightly

better in a few instances [90].

The comparisons provided in this section are based on the four different SRG

models previously discussed: the Goel-Okumoto (G-O) model, the S-Shaped model,

the K-Stage Curve model, and the Duane model. These models were selected because

they represent some of the common NHPP models in use today.

Table 6.7 shows a comparison of the best time series model forecasts to the

best SRG model forecasts for each incident type. The best SRG model yields

better forecasts than the best selected time series model in seven of eleven cases.

141

Incident
Type TS SRG
all 224.59 937.44
msblast 53.31 6.14
genbot 36.46 26.89
klez 43.54 15.36
bagle 6.35 8.44
ircbot 58.20 43.00
agobot 0.17 8.90
rogueftp 34.60 64.67
nethicsreq 26.15 22.05
spamrelay 35.25 19.51
nachi 4.03 3.88

Shaded cells indicate lower RMS values

Table 6.7: Comparison of best model forecast RMS values for time series and SRG
models.

This result suggests viewing computer security incident data (when separated into

different types) as similar to a class of detected errors in a software system can

be a useful approach for monitoring and forecasting. However, when modeling the

total aggregate number of incidents over time (resulting from the combination of all

incident types) a time series model may be more appropriate. This is not surprising

as even if factors affecting the propagation and occurrence for each different incident

type were well understood, the intervals at which new incident types are found is

likely a less understood process and better captured by time series models.

Of the individual incident types modeled, the “spamrelay” incident type is

unique in that it displays a slight increasing trend over time and the best fit was

the Duane model. This continued increasing trend probably results from economic

incentives behind attacks to compromise machines to use for sending and relaying

spam. These incentives drive innovation to develop new techniques for compromising

142

machines for this purpose.

In some cases, applying a single SRG model across a whole interval may not be

appropriate. The observed “agobot” incidents mostly fall into two distinct groupings–

a small group at the beginning and much larger group about a third of the way

into the interval. Only a few occurrences are observed after week 40. Agobot is an

example of modular malware that can easily be modified to include new exploits.

The second grouping of incidents likely results from a different exploited vulnerability

than the first group. If so, it would be more appropriate to apply SRG models to

each group. The data does not identify different variants of the agobot malware.

The most frequently observed incident types were examined. These incident

types likely attracted enough attention for some form of intervention and control

measures to be taken to reduce the number of occurrences. As each measure has

some cost involved (labor, equipment, inconvenience to users, etc.), being able to

gauge the effectiveness of the measures is important. Comparing model forecasts to

actual observations before and after implementing a control measure can provide

valuable feedback regarding a control measure.

6.5.4 Update regarding “spamrelay” incident type

While many of the incident types examined have a “closed” time interval of

occurrence (a date after which no more incidents of the type are observed), the

“spamrelay” incident type continued to be observed after the original SRG and TS

model analysis was performed. This provides an opportunity to follow-up with

143

additional observations and provide additional insight regarding this incident type

relative to the campus environment.

The “spamrelay” incident type classification reflects only the observed behavior

of a compromised computer and is not related to a particular type of vulnerability or

exploit. This means there are many possible ways an affected computer could have

been compromised and there is unlikely to be a single patch or update that can be

applied that would effectively address this incident type. The growth of this incident

type displayed during the original time interval analyzed (June 2002 to March 2007)

is likely due to the increase of economic incentives as a driving motivation behind

more types of computer security incidents [91]. In particular, resources (such as

verified email address lists and open mail relays) related to the practice of spamming

have been observed on underground markets dealing in “illicit digital goods and

services in the support of criminal activities” [92].

One of the purposes of control type models (such as SRG models) is to provide

feedback regarding a process and whether or not a particular action or intervention

has a measurable impact. This can be useful for examining if a particular policy

change or intervention has an effect on an incident type which may not have easily

identifiable vulnerabilities or exploits to address (such as “spamrelay”).

Figure 6.26 shows the Duane model projection and actual incident data for an

additional time interval (April 2007 to April 2010). The Duane model projection

is still based on the same original training data time interval. As can be seen in

Figure 6.26, the numbers of observed incidents are noticeably fewer than the model’s

projected values in the additional time interval. A possible explanation for this

144

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

Days

C
um

ul
at

iv
e

nu
m

be
r

of
 "

sp
am

re
la

y"
 in

ci
de

nt
s

Training data Testing data New data
(after March 2007)

Model projection
Incident data

Figure 6.26: Duane model fit and incident data for “spamrelay” with additional time
interval.

145

difference is that during the spring and summer of 2007, the campus consolidated

many disparate email systems and accounts to a centrally managed system. Email

servers on the campus borders could then be configured to be more selective regarding

which internal campus IP addresses outgoing mail would be accepted from rather

than being configured to accept outgoing mail from any internal campus IP address.

This change reduced the value of a compromised internal campus computer for the

purposes of relaying spam through the campus mail servers to external destinations.

However, while these changes in the campus email environment may have

reduced the value and therefore the incentive to compromise computers for the

purposes of relaying spam, the changes also likely increased the value of compromised

campus email accounts for purposes of sending spam through the campus mail servers

(since the validation of outgoing mail shifted more to a valid campus email account

away from a valid campus IP address). An analysis of successful campus email

account phishing attacks in 2008 is presented in [93] and an increase in these types

of attacks could partly be in response to changes to the campus mail environment.

This section illustrates the use of an SRG model to potentially identify the

impact of a change in an email environment on the occurrence of the “spamrelay”

incident type. Since the occurrence to this particular incident type is most likely

a reflection of the economic incentives attackers have for this resource, an effective

intervention is likely to be one that either reduces the value of this resource and/or

increases the cost to attackers for obtaining this resource.

This chapter illustrates the application of several different types of models to a

set of computer security incident data. Some types of models are used for gaining a

146

better understanding of the factors and dynamics relevant to incident occurrence. A

better understanding of these factors and dynamics can lead to better interventions

and focusing of intervention efforts. Other types of models are used for developing

forecasts of future levels of incident occurrence. These models can be used to evaluate

the impact of interventions or policies on incident occurrence, even when the relevant

underlying factors or dynamics are unknown or not easily modeled.

147

Chapter 7: Exploring Population Risk Factors

Previous chapters cover some models which incorporate factors that could

potentially influence the spread of worms or viruses. These factors include the

distribution of individual likelihoods to open infected email messages, the number

and structure of social contacts that connect the nodes in a network, and assumptions

regarding the prevalence of software vulnerabilities and the rate at which vulnerabil-

ities are patched. Although these may all be important and influential factors, they

can also be difficult to directly measure or quantify. However, other features may be

more easily measured or estimated and some of these features may either correlate

or in some way function as a proxy measure (or indicator) for factors included in

previously covered models. If some of the observable factors are associated with an

increased risk of incidents, then they may provide an opportunity for targeting or

focusing intervention efforts (such as patching, blocking, or user-awareness training).

7.1 Description of data

In this chapter, we use the full range of incident data as we are not using it

to model individual incident types. Instead, we are exploring relationships between

population characteristics and computer security incidents of all types. In addition to

148

the incident data described in the previous chapter, the following data was also made

available. Log files from some of the network routing equipment on campus provided

monthly address resolution protocol (ARP) cache information. As collected, the ARP

cache information indicates when a particular IP address and MAC address pairing

was first and last seen in use during the month (the amount of actual time connected

between the first and last seen timestamps cannot be determined conclusively from

this information). A recorded IP address and MAC address pairing may have been

in use continuously or intermittently between the first and last seen timestamps.

An initial intention was to examine differences between several campus sub-

populations and grouped the campus subnets by colleges and administrative units.

However, because the dominant observable difference in incidence rates was between

hosts on the housing networks (dorms, on-campus apartments, residence halls) and

hosts on any other part of the campus network (academic departments, research

labs, and administrative units), the categorization of subpopulations was simplified

to “Housing” and “Other.” Dial-up, wireless, VPN and other dynamically addressed

networks are excluded from either category.

To calculate incidence rates that could be compared across groups of different

size, the number of incidents was divided by the number of “host-months” where a

“host-month” is defined as the presence of one unique IP/MAC address pair on the

campus network at any time during a particular month. The number of “host-months”

for any given month is used as the population count of hosts on the campus network

for that month. A unit of “host-month” does not differentiate between a computer

connected to the campus network for the entire month vs. a computer connected to

149

the campus network for only a few days that month.

The time interval between the first and last seen timestamps for each IP/MAC

address pairing was calculated. Only pairings with time intervals of 24 hours or

greater were retained. This was done because in some cases the router caches retained

IP/MAC address pairings for a few hours even if the actual usage was only for a few

minutes. Pairings with intervals of less than 24 hours were discarded to increase the

likelihood that an IP/MAC address pairing was actively being used on the network

instead of appearing in the ARP cache data as the result of configuration errors.

It is possible for more than one MAC address to be associated with the same

IP address within a month. In some cases, this may be caused by misconfigurations

where two (or more) machines attempt to use the same IP address at the same

time. In other cases, the same IP address may be used by several machines but

only at different times such that no more than one device with that IP address

is actually connected to the network at any time. From the recorded timestamp

information alone, it is not possible to determine when each different device was

used on the network in a given month if there are overlapping timestamps. In these

cases, the MAC address with the longest time interval between the first and last seen

timestamp was retained as being associated with the IP address while other MAC

addresses associated with the same IP address were discarded for that month. MAC

addresses were also checked and limited to being associated with a single IP address

per month. There is a one-to-one correspondence between the MAC addresses and

IP addresses retained for each month.

The monthly data are grouped by academic calendar year. The starting month

150

is defined as August and the ending month as the following July. There were 11,979

incidents in the original data. After removing IP/MAC address pairs from the ARP

cache data, there were 9,334 incidents with IP/MAC address pairs remaining in the

data for the month the incident was recorded. The percentage of original incidents

retained per academic year ranges from 67% to 87% with an overall average of 78%.

7.2 Population Characteristics

The data includes information about the following population characteristics.

Each characteristic is examined to look for associations with the observed computer

security incidents. These associations may not be causal in nature, yet may be useful

for identifying machines more at risk of being involved with an incident.

7.2.1 Network affiliation of host (Housing/Other)

This population characteristic identifies if a particular IP/MAC address pair

is part of the housing subnets on-campus (“Housing”) or part of other subnets

(“Other”). Table 7.1 shows the total number of host-months per academic year for

each group as well as the number of incidents and the incidence rate (IR) per 1,000

host-months. The last column in Table 7.1 shows the ratio of [Housing IR]/[Other

IR]. Except for 2001/02, the incidence rate on the “Housing” networks has been

from 2 to almost 10 times higher than the incidence rate on the “Other” networks

for the same academic year.

Potential reasons for the difference in incidence rates between the two groups

151

Table 7.1: Incidence rates for Housing and Other networks.

Academic
Year

Housing
Host-months

Housing
Incidents

Housing
IR per 1,000
host-months

Other
Host-months

Other
Incidents

Other
IR per 1,000
host-months

Ratio of
[Housing IR]/
[Other IR]

2001/02 110,123 133 1.21 190,910 242 1.27 0.95
2002/03 113,013 569 5.03 202,291 162 0.80 6.29
2003/04 117,214 2,345 20.01 201,598 2,003 9.94 2.01
2004/05 124,720 1,337 10.72 204,491 357 1.75 6.14
2005/06 124,631 799 6.41 212,456 212 1.00 6.42
2006/07 133,110 481 3.61 209,851 188 0.90 4.03
2007/08 96,112 230 2.39 213,373 52 0.24 9.82
2008/09 53,638 80 1.49 215,304 42 0.20 7.65
2009/10 46,973 53 1.13 199,169 49 0.25 4.59

could be due to differences related to user behavior or how the computers are used.

Or, there could be differences related to characteristics of the computers, such as how

current the operating system is or whether the machine is always on and connected to

the network. Other available information is used to examine if there are identifiable

and measurable factors that may account for some of the differences in the incidence

rates of these two groups.

7.2.2 Age

For our analysis, we define the “age” of a host as the time in months (plus

one) between when a particular MAC address was first seen on the campus network

and any particular month in the data that the same MAC address was present

(independent of its IP address). Since identification of individual machines was based

on MAC addresses and not IP addresses, the “age” of a host was always calculated

based on the month its MAC address was first seen on the campus network, regardless

if its IP address has changed.

This variable was included as it may be associated with the age and/or patch

152

Table 7.2: Incidence rates for Low and High aged machines.

Academic
Year

Low-aged
Host-months

Low-aged
Incidents

Low-aged
IR per 1,000
host-months

High-aged
Host-months

High-aged
Incidents

High-aged
IR per 1,000
host-months

Ratio of
[Low-aged IR]/
[High-aged IR]

2001/02 158,981 233 1.47 142,052 142 1.00 1.47
2002/03 165,755 507 3.06 149,549 224 1.50 2.04
2003/04 162,173 2,720 16.77 156,639 1,628 10.39 1.61
2004/05 167,980 1,261 7.51 161,231 433 2.69 2.80
2005/06 177,374 698 3.94 159,713 313 1.96 2.01
2006/07 179,398 370 2.06 163,563 299 1.83 1.13
2007/08 157,269 206 1.31 152,216 76 0.50 2.62
2008/09 137,280 92 0.67 131,662 30 0.23 2.94
2009/10 124,547 56 0.45 121,595 46 0.38 1.19

level of a computer’s operating system (and/or other installed software). Older

machines may be running older operating systems (or software) which contain more

identified vulnerabilities and increase their risk of being involved in an incident

(for incident types that target vulnerable software). It is also possible that older

machines still connected to the network have been hardened in some way or run less

vulnerable operating systems so they may have a decreased risk of being involved

in an incident. On the “Housing” networks, older machines may also be associated

with older students who may have different usage behaviors.

Table 7.2 shows the incidence rates per academic year for machines grouped

into two age categories–“Low” and “High.” For each month within an academic year,

the median age of the machines was identified and machines with ages less than or

equal to the median age were categorized as “Low”; machines with ages greater than

the median age were categorized as “High.” The number of incidents for machines in

each category was also counted for each month. The counts were done on a monthly

basis to minimize the effect of threats and risks that may change over the time

period of the academic calendar year. For example, if a particular incident type

exploits several machines in October of a particular academic year, it may appear

153

Median Ages by Months

0

5

10

15

20

25

30

35

40

20
01

-0
8

20
02

-0
8

20
03

-0
8

20
04

-0
8

20
05

-0
8

20
06

-0
8

20
07

-0
8

20
08

-0
8

20
09

-0
8

Month

M
ed

ia
n

 A
g

e
(i

n
 m

o
n

th
s)

Other

All

Housing

Figure 7.1: Median ages by months.

that machines that are three months old are more at risk of incidents. However, there

may just be more three-month-old machines in October because many new machines

are connected to the campus network sometime in late August (or the typical start

of the academic year). Of more interest is examining the following: of the machines

on the campus network in October, is there a difference in risk of incidents related

to the ages of the machines present? Table 7.2 indicates that for each academic year,

the incidence rate of “Low” machines ranged between 1.2–2.8 times higher compared

to the incidence rate for “High” machines in the same academic year.

One possible reason for difference in incidence rates between “Low” and “High”

machines is that there may simply be different distributions of “Low” and “High”

machines on the “Housing” and “Other” networks. Figure 7.1 shows the monthly

median ages for the entire population as well as for the housing and other groups. It

can be seen there is often a 15-20 month “age” difference between the median ages

154

of the two populations. It should also be noted that since the ARP cache data used

to calculate ages only goes back to January 2000, the ages are underestimated for

some of the population. The effect of this underestimation is mostly seen in the first

few years and is visible as the steady increase in median age for “Other” between

2001 and 2004.

7.2.3 Calendar month

Next the data are grouped by calendar month to see if there is any seasonal

variation present. For this analysis, a scaled or proportional incidence rate is used

that is calculated by dividing the proportion of incidents per calendar month per

academic year by the proportion of hosts per calendar month per academic calendar

year. This was done to allow each year to have equal weight and avoid cases where

calendar months in years with more incidents are weighted more that those in years

with fewer incidents. For example, if for a particular academic year, the month of

January had 10% of all the incidents for that academic year and January also had

10% of all the host-months for that year, then it would have scaled IR value of 1.0.

A scaled incidence rate value was calculated for each month of each academic year

and Figure 7.2 shows boxplots of the scaled values for each calendar month. The

figure on the left shows the boxplots for values calculated using all of the data, while

the other two boxplots are for “Housing” network hosts only (the middle plot) and

“Other” network hosts only (the plot on the right).

The pattern of the boxplots is similar for the different populations (all, housing,

155

Aug Oct Dec Feb Apr Jun

0
1

2
3

4
5

Boxplot of scaled IR (All)

Calendar Month

sc
al

ed
 IR

Aug Oct Dec Feb Apr Jun

0
1

2
3

4
5

Boxplot of scaled IR (Housing)

Calendar Month

sc
al

ed
 IR

Aug Oct Dec Feb Apr Jun

0
1

2
3

4
5

Boxplot of scaled IR (Other)

Calendar Month

sc
al

ed
 IR

Figure 7.2: Boxplots of yearly scaled incidence rates by Calendar Month.

other) where proportionally there are more incidents that occur in September and

October and the fewest in June.

7.2.4 Academic semester

In addition to looking at the separate calendar months, the data are also

grouped into designations that align with parts of the academic calendar. Three

designations are used: Fall (August-December), Spring (January-May), and Summer

(June-July). We use the same approach for calculating a scaled incidence rate for

each semester designation of each academic year as described in the previous section

for Calendar Month.

Figure 7.3 shows the scaled incidence rates of each designation for each academic

year of data. While for many years in the middle, the Fall semester had proportionally

more incidents and the Summer season had proportionally less, in more recent years

the proportionally scaled incident rates have become more similar for the different

semester categories. Figures 7.4 and 7.5 show similar patterns for the “Housing” and

“Other” networks, but there is a little more separation between the Fall and Summer

rates for “Other” compared to “Housing.”

156

Scaled incidence rate per semester by Academic Year

0

0.5

1

1.5

2

2.5

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R Fall

Spring

Summer

Figure 7.3: Scaled incidence rates per semester by Academic Year.

Scaled incidence rate per semester by Academic Year (Housing)

0

0.5

1

1.5

2

2.5

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R Fall

Spring

Summer

Figure 7.4: Scaled incidence rate per
semester by Academic Year (Housing).

Scaled incidence rate per semester by Academic Year (Other)

0

0.5

1

1.5

2

2.5

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R Fall

Spring

Summer

Figure 7.5: Scaled incidence rate per
semester by Academic Year (Other).

157

7.2.5 Vendor ID from MAC address

From the ARP cache data, the MAC addresses of machines on the network can

be obtained. The first part of the MAC address identifies the vendor or manufacturer

of the network interface. Three groups (Apple, Dell, Other) are designated based on

the available vendor ID part of the MAC (or Ethernet) addresses of hosts present on

the campus network. Although the relative number of hosts with Apple Ethernet

addresses was comparatively low (from 5.5% in 2003/04 to 10% in 2009/10) there is

likely a strong correlation between hosts with Apple Ethernet addresses and hosts

running an Apple operating system (such as OS X). If a host’s operating system

affects its risk of being involved with a security incident, this designation may capture

some of this association. The most prevalent MAC address vendor ID was Dell which

is why it was used as a separate category. Although only 15% of hosts in 2001/02

had Dell Ethernet addresses, in 2009/10 this number was over 52%. Remaining

Ethernet address vendor IDs were grouped into Other (as opposed to “Other” which

is used for the Housing/Other subnet groupings).

Figure 7.6 shows the scaled incidence rate (calculated similarly as described

for Calendar Month) for the three different MAC address vendor ID categories. The

most notable feature in Figure 7.6 is the increasing trend seen in the Apple category.

This increase means the proportion of incidents involving hosts with Apple Ethernet

addresses has been increasing faster than the proportion of hosts with Apple Ethernet

addresses connected to the campus network in general. This same trend is seen in

Figure 7.7 and Figure 7.8 which show the scaled incidence rates for the “Housing”

158

Scaled incidence rate per MAC vendor by Academic Year

0
0.2

0.4
0.6
0.8

1

1.2
1.4
1.6

1.8
2

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R Other

Dell

Apple

Figure 7.6: Scaled incidence rate per MAC vendor by Academic Year.

Scaled incidence rate per MAC vendor by Academic Year
(Housing)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R

Other

Dell

Apple

Figure 7.7: Scaled incidence rate per
MAC vendor by Academic Year (Hous-
ing).

Scaled incidence rate per MAC vendor by Academic Year (Other)

0
0.2

0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Academic Year

S
ca

le
d

 I
R Other

Dell

Apple

Figure 7.8: Scaled incidence rate
per MAC vendor by Academic Year
(Other).

and “Other” network populations. One difference between Figures 7.7 and 7.8 is

there is a larger separation between the Dell and Other categories in the “Other”

network population than in the “Housing” network population. One potential reason

for this could be that many of the Dell hosts in the “Other” network population

group may be part of large institutional purchases and therefore more likely to

be centrally managed and maintained (and therefore having a lower risk of being

involved in an incident), while most Dell hosts present in the “Housing” network

population group may be individually owned and managed and have more similar

risk as “Other” machines.

159

7.2.6 Network time

When calculating incidence rates, the number of “host-months” has been used

as the denominator which gives equal weight to each host seen on the campus

network each month. However, other denominators could be used. One possible

denominator could be expressed as host-network time, where network time would

reflect the amount of time a host was connected to the campus network. This would

reflect a difference between a host that was present and connected for a few days

compared to a host that was present and connected everyday. Using the ARP cache

data, the difference in time is calculated between when an IP/MAC address pair was

first and last seen for a given month. However, there is some uncertainty involved

with this measure as the status of the machine in between these two timestamps is

unknown–two hosts that were connected for the same number of days would have

the same value of network time even if one was left on all the time and one was

turned off each night. The reason for including network time is that some incident

types (such as worms that spread directly from machine to machine without user

action) may affect hosts that are connected for longer periods of time than hosts

that are connected for shorter periods of time. The counter-argument to this is that

some incident types require a user action to occur and what really matters may be

the amount of time a user uses a particular host instead of just how long a particular

host is on and connected to the network.

To examine the effect of network time, four equal-sized time categories (Q1,

Q2, Q3, Q4) are defined with boundaries determined by splitting a 30-day month

160

Table 7.3: Incomplete timestamp data.

Academic Year Months with incomplete data

2001/02 2001-Sep

2002/03 2002-Sep, 2002-Nov, 2003-Mar, 2003-Apr

2003/04 2004-Mar

2004/05 -

2005/06 -

2006/07 2006-Aug, 2006-Sep

2007/08 -

2008/09 -

2009/10 2009-Sep, 2010-Feb, 2010-Apr, 2010-May

into four equally spaced intervals by time. Then for each academic year, the number

of hosts for each time category and the number of hosts with incidents for each time

category are counted. Then the proportion of incidents per category is divided by

the proportion of hosts per category for each academic year to obtain the scaled

incidence rates. Scaled incidence rates are calculated so that each academic year has

equal weight. For some months, the ARP cache data was incomplete and network

times could not be calculated for all categories. The months affected are shown in

Table 7.3 and data from those months were not included in the plots shown in this

section. However, when creating regression models in a later section, the maximum

network time was substituted for the missing values.

Figure 7.9 shows boxplots of the scaled incidence rates for each time category

for all hosts (left), “Housing” network hosts (middle), and “Other” network hosts

(right). Hosts in the Q2 category appear in some cases to have a higher proportional

incidence rate, but Q2 also shows a broader range in values than the other categories.

161

Q1 Q2 Q3 Q4

0
1

2
3

4

Boxplot of scaled IR (All)

Netw ork Time

sc
al

ed
 IR

Q1 Q2 Q3 Q4

0
1

2
3

4

Boxplot of scaled IR (Housing)

Netw ork Time

sc
al

ed
 IR

Q1 Q2 Q3 Q4

0
1

2
3

4

Boxplot of scaled IR (Other)

Netw ork Time

sc
al

ed
 IR

Figure 7.9: Boxplots of scaled incidence rates for network time categories.

7.2.7 On at beginning of month

Since the calculated time values do not differentiate between hosts that are

always on and hosts that are on intermittently, an attempt to gauge if a machine

is likely to be on all the time is made by looking at the time value of its first seen

timestamp. A host was classified as “On” if its first seen timestamp is within 4 hours

of the beginning of the month (between 00:00 and 04:00 of the first day), otherwise

it was classified as “Off.” The reason for the 4-hour window is due to how the ARP

cache data is collected. The rationale is that hosts that are on at midnight at the

beginning of the month are more likely to be on all the time when compared to

hosts not on at midnight at the beginning of the month. Similar to network time,

there is uncertainty that this value actually captures the information it is intended

to measure.

Since this measurement also depends on the ARP cache timestamp information,

the same months listed in Table 7.3 were removed from the analysis in this section.

For creating regression models in a later section, the missing values were substituted

with the value indicating the hosts were “On.”

Figure 7.10 shows the scaled incidence rates for each group (On/Off) by

162

Scaled incidence rate per On/Off groups by Academic Year

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Scaled IR

A
ca

d
em

ic
 Y

ea
r

On

Off

Figure 7.10: Scaled incidence rate per On/Off groups by Academic Year.

Scaled incidence rate per On/Off groups by Academic Year
(Housing)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Scaled IR

A
ca

d
em

ic
 Y

ea
r

On

Off

Figure 7.11: Scaled incidence rate
per On/Off groups by Academic Year
(Housing).

Scaled incidence rate per On/Off groups by Academic Year
(Other)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20
01

/0
2

20
02

/0
3

20
03

/0
4

20
04

/0
5

20
05

/0
6

20
06

/0
7

20
07

/0
8

20
08

/0
9

20
09

/1
0

Scaled IR

A
ca

d
em

ic
 Y

ea
r

On

Off

Figure 7.12: Scaled incidence rate
per On/Off groups by Academic Year
(Other).

academic year for the full population while Figure 7.11 shows the same information

for the “Housing” network population and Figure 7.12 for the “Other” network

population. For the last few academic years (2007/08, 2008/09, 2009/10), the

relationship appears to be fairly consistent for the population as a whole with

machines indicated as being “On” at the beginning of the month have a slightly

higher proportional rate of incidents compared to machines indicated as being “Off”

at the beginning of the month. For the same academic years, the difference between

these two groups seems to be increasing for the “Housing” network population, while

it has flipped back and forth for the “Other” network population.

163

7.3 Modeling and Evaluation Methodology

Logistic regression models were created using full sets of data from either one

academic calendar year or from three consecutive academic calendar years. Logistic

regression is appropriate for modeling events with binary dependent variables [94].

Univariate models were created as well as models containing the full set of variables.

The area under the ROC curve (AUC) was calculated for each model to evaluate

its classification ability. Due to the unknown number of false negatives (undetected

incidents) in the data, some measures may be biased. This biasing situation also

occurs with medical screening tests [95] where follow-up evaluations are not performed

if an initial screening test is negative.

Models were also evaluated by using the logistic regression model outputs for

each entry as a set of probability weights in combination with unequal probability

sampling. Sample sizes were set based on the total number of host-months and

incidents within a data set so there would be 10 expected incidents (true positives)

within selected samples if all entries had an equal probability (the population

incidence rate) of being involved in a computer security incident. The number of

true positives was recorded for each sample and the sampling was repeated 100 times

using the model data. The results were then averaged to obtain a measurement value.

The expected number of incidents was kept constant to allow for comparisons across

years even though the number of host-months and incidents varies for each time

period. A value of 10 should be large enough to obtain a nontruncated distribution

of results from working with nonnegative values. Table 7.4 summarizes the data

164

Table 7.4: Data and sizes of samples used for evaluations of models and forecasts.

Data used
for models
and/or
forecasts

Total
of
 host-
months

Total
of

incidents

Incidence
rate (per

1,000)
Size of

samples
Single-year
2001/02 301,033 375 1.25 8,028
2002/03 315,304 731 2.32 4,314
2003/04 318,812 4,348 13.64 734
2004/05 329,211 1,694 5.15 1,944
2005/06 337,087 1,011 3.00 3,335
2006/07 342,961 669 1.95 5,127
2007/08 309,485 282 0.91 10,975
2008/09 268,942 122 0.45 22,045
2009/10 246,142 102 0.41 24,132
Three-year
2001/04 935,149 5,454 5.83 1,715
2002/05 963,327 6,773 7.03 1,423
2003/06 985,110 7,053 7.16 1,397
2004/07 1,009,259 3,374 3.34 2,992
2005/08 989,533 1,962 1.98 5,044
2006/09 921,388 1,073 1.16 8,587

sets and sample sizes used. Calculations were performed using the R statistical

software [68]. An example of the R code used for the logistic regression models is

provided in Appendix E.

The performance of the models on testing data (data not used for creation

of the models) was evaluated using a similar process. Logistic regression outputs

were calculated for the single academic year that follows the data set used for model

construction. Model outputs from the testing data were used with unequal probability

sampling to select hosts which may be involved in an incident. The sample sizes were

selected so that there would be an expected number of 10 incidents in the sample if

all entries had an equal probability (the population incidence rate) of being involved

in an incident. Sampling was repeated 1,000 times and the results (number of true

positives in the sample) were averaged to obtain a value that could be compared

165

across models.

Models were created using from one or three consecutive years of data to

determine if including more historical data added any benefit to the forecasts. On

one hand, since threats and defenses evolve over time, what occurred in the past

may not be very relevant to identifying current or predicting future incidents. On

the other hand, although technical aspects (such as the particular vulnerabilities

exploited and the prevalence of defensive measures such as host-based firewalls

and antivirus software) may change over time, some underlying aspects (such as

user-related behaviors and motivations) may be more stable and remain relevant

over time.

7.4 Modeling and Evaluation Results

Figure 7.13 shows the “area under the ROC curve” (AUC) values and the

number of true positives in the sampling results for models created using a single

year of data applied to both the model data and the testing data (the academic year

immediately following the model data). A higher AUC value is often interpreted as

indicating better discriminating ability of the model [96] and higher AUC values

appear to be associated with higher numbers of true positives in the samples from

the model data. Overall, models using all of the variables have higher AUC values

than the univariate models and higher numbers of true positives for both the model

and testing data samples. The “Housing/Other” variable seems to provide better

performance than most other individual variables, especially for more recent years

166

(such as 2008/09), although the “Calendar.Month” variable also has higher AUC

values compared to other individual variables for some of the years in the middle

(such as 2003/04 and 2005/06).

For five out of the eight years of testing data shown in Figure 7.13, models using

all of the variables had the highest number of true positives in samples, and were very

close to the best for a sixth year. The model based on the “Housing/Other” variable

had the highest number of true positives for the 2003/04 testing data compared to

other models, and typically was the second best performer for other years. While

the model based on “Age” had the highest number of true positives for the 2002/03

testing data, the improvement over assuming an equal probability of incidents (based

on the population incident rate) is negligible.

Figure 7.14 shows the AUC values for models and the number true positives of

sampling results for models created using three consecutive years of data applied

to both the model data and the testing data (the single academic year immediately

following the model data). Same as for the single-year models, models using all of the

variables have higher AUC values than the univariate models and more true positives

in the model data samples. However, the number of true positives in the model

data samples for the three-year models tends to be lower than the number of true

positives in the model data samples for the one-year models. The “Housing/Other”

variable models have higher AUC values than most other individual variables for

later years, while “Calendar.Month” models have higher AUC values for some of the

earlier years compared to other univariate models. Similar to the single-year models,

three-year models using all of the variables had the highest number of true positives

167

in the testing data samples. The models based on the “Housing/Other” variable

had the next highest number of true positives for all years of testing data samples.

Table 7.5 summarizes the highest average number of true positives from the testing

data samples for both the one-year and three-year models. For years with testing

data samples available using both models, the one-year models perform better in all

cases except one (2007/08), but the difference between the one-year and three-year

models for 2009/10 is minimal. In general, it appears the performance (measured by

the number of true positives in the testing data samples) of single-year models using

all of the variables is often the best or near-best. Among the univariate models, the

“Housing/Other” variable performs better for more recent years for both the one- and

three-year models.

168

Figure 7.13: Summary of AUC values
and number of true positives in samples
for single-year models and testing data.

Figure 7.14: Summary of AUC vaues
and number of true positives in samples
for three-year models and testing data.

169

Table 7.5: Comparison of best forecasts.

Single-year model Three-year model
Year of forecast data Variables mean std. Variables mean std.
2002/03 Age 10.6 3.2 - - -
2003/04 Housing/Other 13.3 3.7 - - -
2004/05 All 13.6 3.5 All 13.5 3.7
2005/06 All 23.4 4.8 All 16.1 3.9
2006/07 All 23.4 4.7 All 14.6 3.8
2007/08 All 21.5 4.4 All 25.6 4.8
2008/09 All 26.3 4.2 All 22.2 4.1
2009/10 Housing/Other 18.8 3.6 All 18.3 3.6

This chapter explored the association between different computer population

characteristics and incident occurrence. The strongest association was seen based on

whether a computer or device was part of the on-campus housing network or part of

the remaining academic and research networks. Additional modeling could indicate

if the effects of other factors would be observable for different individual incident

types, or if targeted interventions based on population characteristic information

would be beneficial.

170

Chapter 8: Conclusions and Future Work

This document explores the use of many types of models that can be applied

to computer security incident data. Examples of how some of these models can

be used with actual computer security incident data are also shown. Some of the

observations and conclusions that can be made from the model illustrations and

examples are enumerated and described below.

8.1 Observations and Conclusions

Although SIR and other types of infectious disease models have been applied

to computer security incidents in the past, these applications typically have focused

on the population as a whole and have proposed interventions that were dependent

on this assumption. By using a stochastic SIR model, the effects on a subpopulation

can be examined in more detail and intervention actions limited in scope to the

subpopulation can be evaluated. In this scenario, the larger population acts as a

reservoir of potential infection sources in addition to any infection sources already

present in the subpopulation. Connections that cross the boundary between the larger

population and the subpopulation can provide information regarding external threats

and attack activity. If the larger population is sufficiently greater in size than the

171

subpopulation, observed incidents within the subpopulation are likely to be caused

by external sources rather than other internal sources. This indicates that blocking

attack activity at the border of a subpopulation could be an effective measure to

reduce the number of internal infections. This kind of blocking intervention would

be more effective than another type of intervention that depends on being applied to

the overall population in its entirety.

Another assumption commonly included in deterministic SIR models that

include a vaccination (or patching) parameter, is that the rate parameter for vacci-

nation remains relatively constant over the time period of interest. As previously

discussed, this assumption may not fit with the way patching activity actually takes

place. Easier to patch and centrally managed computers are more likely to be patched

first (which would more quickly reduce the number of susceptible computers), but

then other computers may be more difficult to locate or undesirable to patch and

may remain in a susceptible or vulnerable state. One type of stochastic SIR model

that associates the rate of patching with the number or proportion of susceptible

computers is presented and simulations indicate this type of model is more likely

consistent with a set of incident data observed on a university network.

While the SIR models used for incident types that can spread directly from

computer to computer without the need for specific user action usually assume a

fully connected network topology (every node is directly connected to every other

node), incident types that propagate through email usually involve less connected

network topologies. Even when the same number of connection links is present

and the average node degree is similar, different spreading behavior can result from

172

different arrangements or topologies. A scale-free or power-law network is a common

topology used to describe social networks and simulations indicate this topology

affects the number of observed incidents and is more likely consistent with email

related incident data observed on a university network than a randomly connected

topology.

Besides connection topology, email propagation can depend on user factors,

such as the likelihoods of users to open infected messages. Some models have included

this factor, but have treated all users as having the same likelihoods to open infected

messages. A stochastic model has been presented where individual users are assigned

a threshold value based on an exponential distribution and this threshold value is

used to determine if a user opens infected messages. Simulations indicate this type

of model (where most users are unlikely open infected messages, but a few are very

likely to do so) is more likely consistent with observed email related incident data

on a university network than a model that uses a uniform random distribution to

assign threshold values. This indicates that accounting for and including user related

factors in models can be important for matching observations and improving model

performance. This can be important when considering types of interventions to use

and evaluating their potential impact.

For example, if blocking or filtering of infected messages is applied, its impact

may not be directly related to the overall number of infected messages blocked,

but rather by the number of infected messages blocked which are being sent to a

subset of nodes which are highly connected and have associated users more likely to

open infected messages. Some form of targeted intervention (such as patching or

173

user awareness training) for this subset could produce better results in reducing the

spread of infections than a more uniform application of intervention measures.

Targeted interventions may also be more effective for reducing the number

of other computer security incident types even when infectious disease models are

not applicable. Identifying and exploring a risk factor with a model (such as the

likelihood a user will open an infected message) can be a simpler task than isolating

and measuring such a risk factor in an actual setting. However, other observable or

quantifiable factors may correlate or be associated with a risk factor and provide an

opportunity for guiding intervention efforts. Observed incidents can be compared

with observable characteristics of a population to try to identify potential factors

that correlate or contribute to the risk of incident occurrence.

Modeling can be used to get a better understanding of factors that affect the

occurrence and spread of computer security incidents. Examples of some compart-

mental infectious disease models have been presented and compared with incident

data. These comparisons show that models using a variable patching rate may be

a better reflection of actual patching behavior. Also, for incidents propagating by

email, a scale-free network topology provides a better match to observed incident

data compared to when a random network topology is used. Incidents requiring

some type of user action for propagation (such as in the presented email propagation

models) are more appropriately modeled using an exponential based distribution

rather than a uniform random based distribution for representing the likelihood

particular users will perform an action.

To the extent that these types of models aptly describe the observed data, they

174

can be used to test and explore some common intervention options applicable to

infectious diseases. However, some incident types are not adequately modeled or

described as an infectious process and other interventions may be more applicable.

Regardless of the type of intervention actions taken, it is useful to have a way to

gauge or measure the impact of such actions. One way to do so is to compare

forecasts of the number of expected incidents before and after an intervention was

started. If the observed number of incidents is less than the number forecast, then

this difference may be attributable to the intervention actions taken.

Software reliability growth models and time series models are two types of

forecasting models than can be applied to a range of incident types. Obtaining

estimates for model parameters from observed or collected data can be simpler and

faster for these models than for some of the compartmental models described for

modeling infectious diseases. The models themselves do not account for or include

any intervention actions and therefore are not as useful for simulating interventions,

however, they can be used for forecasting and then tracking and monitoring the

impact of applied interventions. As illustrated with the “spamrelay” example in

Chapter 6 using the Duane model with additional data, this process can also be used

in reverse. Observed differences between model forecasts and actual observations

can indicate when something influential has changed (either increasing or decreasing

the number of expected observed incidents) and whether the selected forecasting

model is still applicable or if it should be adjusted or replaced. Software reliability

growth models appear better for forecasting incidents types attributable to known

causes or vulnerabilities compared to time series models.

175

8.2 Future Work

The connection activity crossing or blocked at the border of subpopulation

using an SIR model is in some ways analogous to the observed attack activity blocked

or logged by an IDS/IPS that examines border traffic on a network. The modeled

border activity in an SIR model could be compared with observed IDS/IPS detection

alerts to see if external attack activity is consistent with expected activity from an

infectious process, or if the attack activity is either more targeted or random in

nature.

Similarly, the email propagation model includes information regarding the levels

of infected messages filtered or blocked over time that could be compared to mail

filter logs. This could provide additional information regarding aspects of the model

(such as connection topology and distribution of user likelihoods for opening infected

messages). The origins of infected or blocked messages could also be examined to

determine if internal or external sources pose more of a risk.

Although the email propagation model includes some aspects related to the

human users of the computers, none of the models include aspects related to human

attackers who may be responsible for some of the observed attack activity. For

example, is there any evidence of feedback from intervention efforts on relevant attack

activity? If a certain type of attack becomes less effective because of intervention

efforts, does attack decline as attack resources are applied elsewhere, or do occurrences

of the attack activity increase to make up for the decline in successful attacks?

It is becoming more common for computer security incidents to be motivated in

176

part by financial incentives. A successful compromise or attack may financially benefit

the attacker in some way. Identifying or classifying apparent motivations behind

attacks could lead to better modeling and intervention planning as interventions

that reduce attacker motivations for targeting resources could be more effective than

interventions that simply thwart a particular attack venue and do not reduce attacker

motivations.

Modeling can be a useful tool for gaining a better understanding of factors that

can affect the occurrence of computer security incidents. A better understanding

of these factors can lead to more effective use of limited resources available for

intervention efforts. Modeling can also be a useful tool for evaluating the effectiveness

of applied interventions and identifying if changes are needed to obtain the desired

results.

177

Appendix A: Incident Data

A.1 Description

• Included below are the incident data for the “worm msblast”, “worm nachi”,

“bagle worm”, “virus klez”, “virus agobot”, and “spamrelay” incident types.

• Each number represents an observed incident and the number itself represents

the day the incident observation was recorded. Day 0 corresponds to June 13,

2001.

A.2 Worm msblast data

790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,

178

790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790, 790,
790, 790, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791,
791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 791, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792, 792,
792, 792, 792, 792, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793, 793,
793, 793, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794, 794,
794, 794, 794, 794, 794, 794, 794, 795, 795, 795, 795, 795, 795, 795, 795, 795, 795,

179

795, 795, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796, 796,
796, 796, 796, 796, 796, 796, 796, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797, 797,
797, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,

180

798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798, 798,
798, 798, 798, 798, 798, 798, 798, 799, 799, 799, 799, 799, 799, 799, 799, 799, 799,
799, 799, 799, 799, 799, 799, 800, 800, 800, 800, 800, 800, 800, 800, 800, 800, 800,
801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801, 801,
801, 801, 801, 801, 804, 804, 804, 804, 804, 804, 804, 804, 804, 804, 804, 804, 804,
804, 804, 804, 804, 804, 804, 806, 806, 806, 806, 810, 811, 811, 811, 811, 811, 812,
812, 812, 812, 812, 812, 812, 812, 812, 813, 813, 813, 813, 813, 813, 813, 817, 817,
817, 817, 817, 817, 817, 817, 817, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818,
818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818, 818,
818, 818, 818, 818, 818, 818, 819, 819, 819, 819, 819, 819, 819, 819, 819, 819, 819,
819, 819, 819, 819, 819, 819, 819, 819, 820, 820, 820, 820, 820, 820, 820, 820, 820,
820, 821, 821, 821, 821, 821, 821, 821, 821

A.3 Worm nachi data

825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825,
825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825,
825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825,
825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825, 825,
825, 825, 825, 825, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826,
826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826, 826,
826, 831, 831, 838, 838, 838, 838, 838, 838, 838, 838, 838, 838, 838, 838, 838, 838,
838, 838, 838, 838, 838, 838, 838, 838, 838, 838, 839, 839, 839, 839, 839, 839, 839,
839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839, 839,
839, 839, 839, 839, 839, 839, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840,
840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840, 840,
840, 840, 840, 840, 840, 840, 840, 840, 841, 841, 841, 841, 841, 841, 841, 841, 841,
841, 841, 841, 841, 841, 841, 841, 841, 841, 841, 848, 848, 848, 848, 848, 848, 848,
848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848, 848,
849, 849, 849, 849, 849, 849, 849, 849, 849, 849, 849, 849, 852, 852, 852, 852, 853,
853, 853, 853, 853, 853, 853, 853, 853, 853, 854, 854, 854, 854, 854, 862, 863, 869,
869, 869, 869, 869, 881, 881, 881, 881, 881, 888, 889, 889, 889, 889, 889, 889, 889,
889, 889, 889, 889, 889, 889, 889, 889, 889, 889, 889, 889, 890, 902, 903, 916, 916,
916, 917, 919, 971, 999, 1001, 1017, 1020, 1020, 1020, 1020, 1023

181

A.4 Bagle worm data

951, 951, 951, 953, 953, 956, 956, 956, 956, 956, 956, 956, 956, 957, 957, 957,
957, 957, 957, 957, 957, 979, 979, 979, 979, 979, 979, 979, 979, 979, 979, 979, 979,
979, 979, 979, 979, 979, 979, 979, 980, 980, 981, 981, 993, 993, 993, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994,
994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 994, 995, 995,
995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995,
995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995,
995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995, 995,
995, 995, 995, 995, 995, 996, 996, 996, 996, 996, 996, 996, 996, 996, 996, 996, 996,
996, 996, 997, 997, 997, 997, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001,
1001, 1001, 1001, 1002, 1002, 1003, 1003, 1006, 1006, 1006, 1006, 1006, 1006, 1006,
1006, 1006, 1006, 1006, 1006, 1006, 1006, 1006, 1006, 1007, 1007, 1007, 1007, 1007,
1015, 1015, 1016, 1019, 1020, 1020, 1020, 1020, 1020, 1020, 1021, 1021, 1021, 1022,
1022, 1023, 1028, 1036, 1036, 1037, 1041, 1048, 1048, 1048, 1048, 1049, 1049, 1049,
1049, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050, 1050,
1050, 1050, 1050, 1051, 1051, 1051, 1051, 1051, 1052, 1055, 1055, 1059, 1063, 1077,
1077, 1129, 1129, 1129, 1129, 1132, 1132, 1132, 1132, 1132, 1132, 1132, 1132, 1132,

182

1132, 1132, 1132, 1132, 1132, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133,
1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133, 1133,
1133, 1133, 1133, 1133, 1133, 1134, 1135, 1135, 1139, 1139, 1141, 1154, 1154, 1169,
1171, 1172, 1172, 1173, 1174, 1177, 1188, 1197, 1203, 1204, 1204, 1204, 1204, 1204,
1204, 1204, 1204, 1204, 1204, 1205, 1205, 1209, 1210, 1227, 1227, 1234, 1234, 1234,
1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234,
1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1234, 1237,
1237, 1237, 1237, 1237, 1237, 1237, 1237, 1237, 1237, 1237, 1238, 1238, 1238, 1238,
1238, 1241, 1244, 1246, 1247, 1273, 1325, 1325, 1344, 1560, 1560, 1562, 1562, 1562,
1562, 1562, 1562, 1563, 1563, 1566, 1566, 1567, 1568, 1568, 1568, 1570, 1575, 1616,
1616, 1629

A.5 Virus klez data

244, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247, 247, 248, 248, 248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 249, 249, 249, 249, 249, 249, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 257, 257, 257, 257, 257, 257, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 259, 259, 259, 259, 259, 259, 259, 259, 259, 259, 259,
259, 259, 260, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
261, 261, 262, 262, 262, 262, 262, 262, 262, 262, 262, 262, 262, 263, 263, 264, 264,
264, 265, 265, 265, 265, 265, 265, 265, 265, 265, 265, 265, 265, 265, 267, 268, 268,
268, 271, 271, 271, 271, 271, 272, 272, 273, 273, 277, 277, 277, 277, 277, 277, 278,
279, 279, 279, 279, 279, 281, 281, 281, 281, 281, 281, 282, 287, 292, 292, 292, 292,
292, 292, 293, 293, 293, 294, 294, 295, 295, 295, 295, 296, 296, 299, 299, 299, 299,
299, 299, 299, 300, 300, 300, 300, 300, 300, 301, 301, 301, 302, 302, 302, 302, 302,
303, 303, 303, 303, 305, 305, 305, 305, 305, 305, 305, 305, 305, 306, 306, 306, 306,
308, 308, 308, 308, 309, 309, 309, 309, 309, 309, 309, 309, 309, 309, 310, 311, 311,

183

311, 313, 313, 313, 313, 313, 313, 313, 313, 314, 314, 314, 314, 314, 314, 316, 316,
316, 316, 316, 317, 317, 317, 317, 317, 317, 317, 317, 320, 320, 320, 320, 320, 320,
320, 320, 320, 320, 320, 320, 320, 320, 320, 320, 321, 321, 321, 321, 322, 322, 322,
322, 322, 323, 323, 323, 323, 323, 323, 323, 323, 323, 323, 323, 324, 324, 324, 325,
325, 325, 325, 325, 326, 326, 326, 326, 327, 327, 327, 327, 328, 328, 328, 328, 328,
328, 328, 328, 328, 328, 328, 328, 328, 328, 328, 329, 329, 329, 329, 329, 329, 329,
329, 329, 329, 329, 329, 329, 329, 329, 329, 329, 329, 330, 331, 331, 331, 331, 331,
334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 334, 335,
335, 337, 337, 337, 337, 337, 337, 337, 337, 337, 337, 338, 338, 338, 338, 338, 338,
338, 341, 341, 341, 341, 341, 341, 341, 341, 342, 342, 342, 342, 342, 342, 342, 343,
343, 349, 349, 350, 352, 358, 426, 439, 440, 443, 443, 443, 447, 447, 447, 447, 447,
447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 447,
447, 447, 447, 447, 447, 447, 447, 447, 447, 447, 448, 448, 448, 448, 449, 449, 449,
450, 453, 453, 453, 453, 453, 453, 453, 454, 455, 455, 455, 456, 456, 456, 457, 457,
457, 457, 461, 461, 461, 461, 461, 461, 463, 463, 463, 463, 463, 463, 463, 463, 463,
463, 463, 463, 463, 463, 464, 464, 464, 468, 468, 468, 468, 468, 473, 473, 474, 474,
474, 475, 475, 477, 477, 477, 477, 477, 481, 481, 481, 481, 481, 481, 481, 481, 483,
483, 483, 483, 483, 485, 485, 488, 488, 488, 488, 488, 488, 490, 490, 490, 490, 490,
492, 492, 495, 495, 495, 497, 497, 497, 497, 497, 497, 497, 499, 499, 499, 499, 502,
502, 502, 502, 502, 502, 502, 506, 506, 506, 506, 506, 506, 506, 509, 509, 509, 509,
509, 512, 512, 512, 512, 512, 512, 512, 512, 516, 516, 516, 516, 516, 517, 517, 517,
517, 517, 517, 518, 518, 518, 518, 519, 519, 520, 520, 520, 520, 523, 523, 523, 523,
523, 527, 527, 527, 527, 527, 527, 527, 527, 531, 531, 531, 531, 531, 531, 540, 540,
544, 544, 544, 544, 544, 545, 545, 545, 546, 546, 546, 547, 547, 547, 547, 548, 548,
548, 548, 548, 548, 551, 551, 551, 551, 551, 551, 573, 573, 579, 579, 581, 582, 594,
594, 594, 594, 594, 594, 595, 596, 596, 596, 596, 596, 597, 597, 597, 597, 597, 597,
600, 600, 600, 600, 600, 600, 601, 601, 601, 601, 601, 602, 602, 602, 602, 602, 608,
608, 608, 608, 608, 610, 611, 611, 611, 611, 611, 611, 611, 611, 617, 617, 617, 617,
617, 617, 617, 617, 617, 618, 618, 618, 618, 621, 621, 621, 621, 621, 621, 621, 621,
621, 621, 621, 621, 621, 622, 622, 622, 622, 622, 623, 623, 623, 623, 624, 628, 628,
628, 628, 628, 629, 631, 631, 631, 631, 631, 632, 636, 636, 636, 636, 636, 636, 636,
637, 638, 638, 638, 638, 639, 642, 642, 642, 644, 645, 646, 656, 656, 656, 656, 656,
656, 658, 658, 659, 659, 659, 660, 660, 660, 663, 665, 670, 670, 670, 670, 671, 671,
674, 674, 677, 677, 677, 677, 677, 677, 677, 678, 678, 679, 681, 685, 686, 686, 686,
687, 687, 688, 692, 692, 693, 693, 694, 694, 694, 694, 698, 698, 698, 699, 700, 700,
705, 705, 705, 705, 705, 706, 706, 708, 756, 826, 848, 852, 859, 902

A.6 Virus agobot data

852, 852, 852, 852, 853, 853, 853, 854, 854, 854, 854, 854, 854, 855, 855, 855,
861, 861, 861, 861, 861, 862, 862, 862, 866, 866, 866, 867, 867, 867, 867, 985, 1008,
1008, 1008, 1008, 1008, 1008, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009,
1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009, 1009,
1009, 1009, 1009, 1009, 1009, 1009, 1010, 1013, 1013, 1015, 1015, 1016, 1017, 1021,

184

1021, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1022, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027,
1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027,
1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1027, 1028, 1028, 1028, 1028,
1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028, 1028,
1028, 1028, 1028, 1028, 1028, 1028, 1028, 1029, 1029, 1029, 1029, 1029, 1029, 1029,
1029, 1029, 1029, 1029, 1030, 1031, 1031, 1031, 1031, 1031, 1031, 1031, 1031, 1031,
1031, 1031, 1031, 1033, 1033, 1033, 1033, 1033, 1033, 1033, 1034, 1034, 1034, 1034,
1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034,
1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1034, 1035,
1035, 1035, 1035, 1035, 1035, 1035, 1035, 1035, 1035, 1035, 1036, 1036, 1036, 1036,
1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036, 1036,
1036, 1037, 1037, 1037, 1037, 1037, 1038, 1038, 1038, 1039, 1039, 1040, 1040, 1040,
1040, 1040, 1041, 1041, 1042, 1042, 1042, 1042, 1042, 1042, 1042, 1042, 1042, 1042,
1043, 1043, 1043, 1043, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044,
1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045, 1045,
1045, 1045, 1046, 1047, 1048, 1048, 1048, 1048, 1048, 1048, 1048, 1048, 1048, 1048,
1048, 1048, 1048, 1048, 1049, 1049, 1049, 1050, 1050, 1050, 1050, 1051, 1051, 1051,
1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051,
1051, 1051, 1051, 1051, 1051, 1051, 1051, 1052, 1052, 1052, 1052, 1052, 1052, 1052,
1054, 1054, 1054, 1054, 1054, 1054, 1054, 1054, 1054, 1054, 1055, 1056, 1056, 1056,
1056, 1056, 1056, 1056, 1056, 1056, 1056, 1056, 1057, 1057, 1059, 1062, 1062, 1062,
1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062,
1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062,
1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062, 1062,
1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063,
1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063, 1063,
1063, 1063, 1063, 1063, 1063, 1063, 1064, 1064, 1064, 1064, 1064, 1064, 1076, 1077,
1080, 1080, 1080, 1084, 1084, 1086, 1087, 1088, 1090, 1090, 1091, 1094, 1097, 1121,
1121, 1121, 1121, 1121, 1121, 1121, 1121, 1203, 1231, 1553

A.7 Spamrelay data

A.7.1 Original time interval

363, 552, 703, 728, 740, 755, 764, 768, 768, 775, 778, 791, 799, 800, 802, 803,
803, 806, 807, 807, 817, 818, 820, 822, 824, 824, 824, 824, 831, 831, 831, 831, 831,
831, 831, 838, 838, 838, 838, 838, 838, 839, 839, 839, 839, 839, 840, 840, 840, 840,

185

840, 840, 841, 841, 842, 842, 842, 847, 853, 853, 859, 911, 928, 966, 966, 971, 975,
978, 1000, 1020, 1021, 1023, 1023, 1027, 1028, 1030, 1034, 1034, 1034, 1040, 1042,
1044, 1047, 1048, 1049, 1054, 1055, 1057, 1057, 1057, 1059, 1059, 1063, 1064, 1066,
1076, 1090, 1093, 1103, 1121, 1127, 1153, 1171, 1172, 1172, 1172, 1174, 1174, 1175,
1175, 1175, 1175, 1175, 1175, 1181, 1184, 1199, 1203, 1208, 1216, 1275, 1280, 1312,
1312, 1312, 1313, 1313, 1321, 1323, 1325, 1328, 1337, 1339, 1339, 1353, 1359, 1366,
1366, 1366, 1366, 1366, 1366, 1385, 1385, 1385, 1409, 1409, 1414, 1415, 1419, 1420,
1420, 1420, 1421, 1421, 1421, 1422, 1423, 1423, 1434, 1434, 1434, 1434, 1434, 1434,
1434, 1434, 1434, 1434, 1434, 1435, 1435, 1435, 1435, 1435, 1436, 1436, 1448, 1450,
1450, 1454, 1462, 1476, 1476, 1478, 1479, 1489, 1496, 1496, 1496, 1514, 1531, 1532,
1536, 1546, 1556, 1556, 1556, 1556, 1556, 1556, 1556, 1556, 1556, 1557, 1557, 1558,
1558, 1558, 1562, 1565, 1566, 1567, 1567, 1567, 1567, 1568, 1568, 1570, 1570, 1570,
1573, 1573, 1573, 1575, 1575, 1580, 1582, 1582, 1587, 1589, 1590, 1590, 1590, 1591,
1596, 1596, 1602, 1602, 1602, 1609, 1611, 1611, 1611, 1612, 1616, 1617, 1618, 1619,
1622, 1628, 1629, 1629, 1629, 1629, 1631, 1636, 1636, 1637, 1638, 1639, 1640, 1640,
1646, 1648, 1649, 1653, 1655, 1671, 1672, 1673, 1685, 1685, 1686, 1686, 1686, 1687,
1687, 1688, 1689, 1692, 1692, 1692, 1700, 1702, 1705, 1708, 1710, 1710, 1713, 1714,
1714, 1714, 1714, 1715, 1720, 1720, 1721, 1721, 1721, 1723, 1735, 1735, 1735, 1735,
1735, 1736, 1748, 1762, 1762, 1769, 1769, 1769, 1786, 1786, 1786, 1786, 1786, 1786,
1786, 1786, 1819, 1829, 1834, 1836, 1855, 1867, 1883, 1889, 1894, 1896, 1902, 1904,
1904, 1904, 1904, 1904, 1904, 1904, 1904, 1904, 1906, 1916, 1916, 1916, 1916, 1916,
1916, 1918, 1918, 1918, 1918, 1918, 1924, 1924, 1924, 1924, 1924, 1924, 1924, 1926,
1926, 1926, 1926, 1927, 1927, 1937, 1938, 1944, 1944, 1947, 1948, 1951, 1951, 1951,
1951, 1951, 1952, 1953, 1954, 1955, 1958, 1959, 1960, 1960, 1968, 1972, 1972, 1982,
1982, 1983, 1983, 1983, 1983, 1983, 1993, 1993, 1995, 1995, 1997, 2000, 2000, 2004,
2007, 2007, 2010, 2017, 2037, 2038, 2039, 2045, 2051, 2052, 2059, 2059, 2063, 2065,
2066, 2070, 2071, 2071, 2073, 2073, 2092, 2092, 2092, 2092, 2092, 2095

A.7.2 Additional time interval

2101, 2113, 2115, 2115, 2115, 2137, 2148, 2154, 2154, 2161, 2205, 2205, 2206,
2248, 2284, 2284, 2302, 2302, 2302, 2302, 2311, 2323, 2324, 2360, 2378, 2390, 2430,
2430, 2430, 2430, 2430, 2430, 2430, 2431, 2431, 2435, 2438, 2541, 2554, 2651, 2658,
2658, 2660, 2670, 2711, 2721, 2721, 2738, 2826, 2830, 2830, 2830, 2917, 2940, 2941,
2973, 3000, 3010, 3030, 3033, 3050, 3050, 3050, 3106, 3106, 3106, 3106, 3232

186

Appendix B: R code for SIR models

B.1 Description

Example of R code used for SIR models.

B.2 R code example for SIR models

1 # R Script to do simulate stochastic SIR models

2 ###

3
4 ### PARAMETER LIST ###

5 modelType <- c("A") # STANDARD VACCINATION

6 seedVal <- 2014062611

7 Npop <- 1000 # Total population size

8 betaVal <- 1.0

9 gammaVal <- 0.5

10 alphaVal <- 0.025

11 TotalTVal <- 30

12 nReps <- 5

13
14 # Create fully connected adjacency matrix

15 Nvec <- rep(1,(Npop*Npop))

16 NmatA <- matrix(Nvec , nrow = Npop , ncol = Npop)

17 NmatID <- diag(Npop)

18 NmatB <- (NmatA - NmatID)

19
20 # Specify a random seed value

21 set.seed(seedVal)

22 seedList <- runif(Npop , 0, 999999)

23
24 ###

25 ####### BELOW TO GENERATE SIR EXAMPLE WITH VACCINATION ##############

26 ###

27
28 ####### START SIMULATION REPETITIONS #######

29
30 for (i in 1:nReps) {

31
32 seedVal2 <- seedList[i]

33 set.seed(seedVal2)

34
35 # Specify a starting vector of susceptibles (1 = susc., 0 = not susc.)

36 Svec <- rep(1, Npop)

37
38 # Specify a starting vector of infected nodes (1 = infected , 0 = not infected)

39 Ivec <- rep(0, Npop)

40
41 # Specify a starting vector of recovered nodes (1 = recovered , 0 = not recov.)

42 Rvec <- rep(0, Npop)

43
44 # Add a state vector for vaccinated nodes (S -> R transitions)

187

45 VacRvec <- Rvec

46
47 # Specify state vectors --initial infected node and remove from it from susceptible

list (and subpop list)

48 Ivec [1] <- 1

49 Svec [1] <- 0

50
51
52 # Specify recovery rate --gamma

53 gamma <- gammaVal

54
55 # Specify infection rate --beta (can vary for external by setting a "ro" value)

56 beta <- betaVal

57
58 # Specify vaccination rate --alpha (alpha2) for internal network

59 alpha <- alphaVal

60
61 # Average degree of node; needed for S -> I transition check

62 # mvalue <- (Npop - 1)

63 mList <- rep(1, Npop)

64 mvalue <- mean(NmatB %*% mList)

65
66
67
68 # Specify total time and time steps and calculate number of iteration

69 ##

70 ## Specify duration and storage for simulation

71 TotalT <- 30

72 # Specify time step --deltaT

73 deltaT <- 0.1

74 niter <- (TotalT/deltaT)

75 Starray <- matrix(,Npop ,(niter +1))

76 Itarray <- matrix(,Npop ,(niter +1))

77 Rtarray <- matrix(,Npop ,(niter +1))

78 Ktarray <- matrix(,Npop ,(niter +1))

79 VacRtarray <- matrix(,Npop , (niter +1))

80
81 Starray [,1] <- Svec

82 Itarray [,1] <- Ivec

83 Rtarray [,1] <- Rvec

84 Ktarray [,1] <- (NmatB %*% Ivec)

85 VacRtarray [,1] <- VacRvec

86
87 ### Adding interator to check for transitions at each time step

88 #

89 #

90 ###

91
92 for (j in 1:niter) {

93
94 ###

95 ## Branch "B" code files reverse the order of transition checks ##

96 ## S -> I; then I -> R; then S -> R when vaccination added ##

97 ###

98
99 ###

100 ## Check for transitions from Susceptible to Infected

101 # Somewhere calculate an "mvalue" (average degree of network), but just specify for

102 # now (or "Npop - 1" for fully connected)

103
104 # Calculate the number of infected neighbors (K) for each node

105 Kvec <- NmatB %*% Ivec

106
107 # Loop through and look for transitions

108 for (i in 1:Npop) {

109 if (Svec[i] == 1) {

110 randvalue <- runif (1,0,1)

111 if (randvalue < ((beta/mvalue)*(Kvec[i])*deltaT)) {

188

112 Ivec[i] <- 1

113 Svec[i] <- 0

114 }

115 }

116 }

117
118 ###

119 ## Check for transitions from Infected to Recovered

120
121 # Add a delay for first recovered

122
123 if (j < (2.0/deltaT)) {

124 gamComp <- 0

125 } else {

126 gamComp <- gamma

127 }

128
129
130 # Loop through and look for transitions

131 for (i in 1:(Npop)) {

132 if (Ivec[i] == 1) {

133 if (runif (1,0,1) < (gamComp*deltaT)) {

134 Ivec[i] <- 0

135 Rvec[i] <- 1

136 }

137 }

138 }

139
140 ##

141 ## Check for transitions from Susceptible to Recovered (vaccination)

142
143 # Loop through and look for transitions

144 for (i in 1:(Npop)) {

145 if(Svec[i] == 1) {

146 if (runif (1,0,1) < (alpha*deltaT)) {

147 Svec[i] <- 0

148 Rvec[i] <- 1

149 VacRvec[i] <- 1

150 }

151 }

152 }

153
154 ###

155 ## After iteration , add Svec , Ivec , Rvec , Kvec to storage array

156
157 Starray[,(j+1)] <- Svec

158 Itarray[,(j+1)] <- Ivec

159 Rtarray[,(j+1)] <- Rvec

160 Ktarray[,(j+1)] <- Kvec

161 VacRtarray [,(j+1)] <- VacRvec

162
163 ### First need to add an iteration loop to the transition checks ,

164 # use "j" as iterator

165
166 ### Closing iterator for transition checks based on total time

167 #

168 #

169 ###

170 }

171
172 ### SAVE SOME VALUES AND OUTPUTS TO A FILE ###

173
174 recoveredIValues <- (colSums(Rtarray) - colSums(VacRtarray))

175 recIValues <- recoveredIValues[seq(1, length(recoveredIValues), (1/deltaT))]

176 finalInfected <- tail(recoveredIValues , 1)

177 totalTimeInf <- sum(colSums(Itarray)*deltaT)

178 paramValues <- c(modelType , Npop , TotalTVal , niter , gammaVal , betaVal , alphaVal ,

seedVal2 , finalInfected , totalTimeInf)

189

179
180 write(paramValues , ncolumns = 10, file = "poutputA.txt", append = TRUE)

181 write(recIValues , ncolumns = c(niter +1), file = "recIValuesA.txt", append = TRUE)

182
183
184 ###### END SIMULATION REPETITIONS #######

185 }

Codes/Standard–Vaccination–Example–03D.R

190

Appendix C: R code for Email models

C.1 Description

Example of R code used for Email models.

C.2 R code example for Email models

1 # R script to simulate stochastic SIR model for Email virus/worm propagation

2 ###

3
4 # Load "igraph" package

5 library(igraph)

6
7 ### PARAMETER LIST ###

8 modelType <- c("D")

9 seedVal <- 21406051

10 NpopMax <- 10000 # Total population size

11 ePowerVal <- 1 # Scale -free topology parameter

12 avgContactsVal <- 513 # Scale -free topology parameter [513 -> 0.1]

13 openVecDefault <- 0.10

14 expLH <- 0.10 # expected value exponential for user -likelihood for opening

messages

15 gammaVal <- 0.3

16 betaVal <- 1.0

17 alphaVal <- 0.0

18 blockRate <- 0.0

19 blockDelay <- 0 # number of iterations to delay blocking

20 roVal <- (1 - blockRate) # 1 - (block rate)

21 TotalTVal <- 90

22 nReps <- 1 # Number of simulation repetitions to run

23
24
25 ## Specify a random seed value

26 set.seed(seedVal)

27 seedList <- runif(NpopMax ,0 ,999999)

28
29 ####### START SIMULATION REPETITIONS #######

30
31 for (i in 1:nReps) {

32
33 iterCount <- i

34
35 seedVal2 <- seedList[i]

36 set.seed(seedVal2)

37
38 #### SET DYNAMIC PARAMETER VALUES ####

39 gammaVal <- runif(1, min=0.2, max =1.0)

40 betaVal <- runif(1, min=0.2, max =1.2)

41 alphaVal <- runif(1, min =0.005 , max =0.2)

42 avgContactsVal <- runif(1, min=513, max =1056)

43 expLH <- runif(1, min =0.05, max =0.15)

191

44 Npop <- 10000

45
46 ### SCALE -FREE GRAPH using "igraph" package functions

47 ePower <- ePowerVal

48 avgContacts <- avgContactsVal

49 NmatA <- barabasi.game(Npop , power=ePower , m=avgContacts , out.pref=TRUE ,directed=

FALSE)

50 NmatB <- get.adjacency(NmatA , sparse=FALSE)

51
52 ## Specify initial starting states of MACHINES (S, I, R)

53
54 # Susceptibles (1 = susc., 0 = not susc.)

55 Svec <- rep(1, Npop)

56
57 # Infecteds (1 = infected , 0 = not infected)

58 Ivec <- rep(0, Npop) # Infected nodes

59
60 # Recovereds (1 = recovered , 0 = not recovered)

61 Rvec <- rep(0, Npop)

62
63
64 ## Specify number of infected messages (per node)

65 KNvec <- rep(0, Npop) # New infected messages

66 KOvec <- rep(0, Npop) # Previously unopened infected messages

67 KTvec <- rep(0, Npop) # Total infected messages

68
69 ## Storage vector for infection transition value check

70 iValueVec <- rep(0, Npop) # Store value that is compared to random number for

transition check

71
72 ## Specify a node (associated user) likelihood to open infected emails

73 #### Set low value default (except when testing "always" open scenario)

74 #OpenVec <- rep (0.001 , Npop)

75
76 OpenVec <- rep(openVecDefault , Npop)

77
78 #### For user LH based on a uniform random distribution

79 #for (i in 1:Npop) {

80 # OpenVec[i] <- (runif (1,0,(2*openVecDefault)))

81 #}

82
83 #### For user LH based on an exponential distribution

84 for (i in 1:Npop) {

85 OpenVec[i] <- (1-pexp(runif (1,0,1) ,(1/expLH)))

86 }

87
88 ## Specify initial infection start --first node transitions from Susceptible to

Infected

89 Ivec [1] <- 1

90 Svec [1] <- 0

91
92
93 ## Specify some generic worm/virus parameters

94
95 # Recovery rate --gamma

96 gamma <- gammaVal

97
98 # Infection rate --beta

99 beta <- betaVal

100
101 # Patching rate --alpha

102 alpha <- alphaVal

103
104 # Mail server passing rate (1 means all pass , no blocking; 0 means all blocked/

deleted)

105 ro <- roVal

106
107

192

108 ## Specify total time and time steps and calculate number of iterations

109 TotalT <- TotalTVal

110 numTSteps <- 1

111 deltaT <- (1/numTSteps)

112 niter <- (TotalT/deltaT)

113
114 # Define some parameter rates , distributions , etc.

115 infMessRate <- 0.1*deltaT

116
117 #### Create Counter for I -> R transitions ####

118 countIR <- 0

119 counterIR <- rep(0, (niter +1))

120
121 ## Create storage Arrays

122 Starray <- matrix(,Npop ,(niter +1))

123 Itarray <- matrix(,Npop ,(niter +1))

124 Rtarray <- matrix(,Npop ,(niter +1))

125 KNtarray <- matrix(,Npop ,(niter +1))

126 KOtarray <- matrix(,Npop ,(niter +1))

127 KTtarray <- matrix(,Npop ,(niter +1))

128 CVtarray <- matrix(,Npop ,(niter +1))

129 iValueArray <- matrix(,Npop ,(niter +1))

130
131 ## Initialize storage Arrays for t=0

132 Starray [,1] <- Svec

133 Itarray [,1] <- Ivec

134 Rtarray [,1] <- Rvec

135 KNtarray [,1] <- (NmatB %*% Ivec)

136 KOtarray [,1] <- KOvec

137 KTtarray [,1] <- KNtarray [,1] + KOtarray [,1]

138 iValueArray [,1] <- iValueVec

139
140 ## Go ahead and create full array for email checking

141 # For Uniform Random Checking

142 for (i in 1:Npop) {

143 for (j in 1:(niter +1)) {

144 CVtarray[i,j] <- round(runif (1,0,1))

145 }

146 }

147
148 ## TESTING ALTERNATE TIMINGS FOR EMAIL CHECKING

149 ## binomial distribution where each node has different binomial probability

150 ## that is exponentially distributed

151 #CVXtarray <- matrix (,100 ,100)

152 #binProb <- rep(0.5, 100)

153 #for (i in 1:100) {

154 # binProb[i] <- pexp(runif (1,0,1) ,2)

155 #}

156 #

157 #for (i in 1:100) {

158 # for (j in 1:100) {

159 # CVXtarray[i,j] <- rbinom (1,1,(1- binProb[i]))

160 # }

161 #}

162 #hist(rowSums(CVXtarray)

163
164 ###

165 #

166 # Adding iterator to check and perform transitions at each time step

167 #

168 ###

169
170 for (j in 1:niter) {

171
172 ##

173 ## Proposed order of transition checks ##

174 ## I -> R; then S -> I; then S -> R when applicable ##

175 ##

193

176
177 ## Delay I -> R transitions for first few iterations

178
179 if (j < (2.0)) {

180 gamComp <- 0

181 } else {

182 gamComp <- gamma

183 }

184
185 #####

186 ## Check I -> R transitions

187 for (i in 1:Npop) {

188 if (Ivec[i] == 1) {

189 if (runif (1,0,1) < (gamComp*deltaT)) {

190 Ivec[i] <- 0

191 Rvec[i] <- 1

192 countIR <- countIR +1

193 }

194 }

195 }

196
197
198 #####

199 ## Check S -> I transitions

200
201 # Calculate number of infected neighbors for susceptibles

202 nIvec <- (NmatB %*% Ivec)

203
204 # Calculate number of newly received infected messages for susceptibles

205 for (i in 1:Npop) {

206 KNvec[i] <- rbinom(1, nIvec[i], infMessRate)

207 }

208
209 ## If mail server not blocking (i.e. if "ro" = 1), add new infected messages

210 ## to existing infected messages

211
212 # Add a delay for when blocking is implemented

213
214 if (j < ((blockDelay +1)/deltaT)) {

215 roComp <- 1.0

216 } else {

217 roComp <- ro

218 }

219
220
221 for (i in 1:Npop) {

222 KTvec[i] <- KOvec[i] + (ro * KNvec[i])

223 }

224
225 # If node is susceptible and user checked messages , did user open any

226 # infected messages?

227
228 for (i in 1:Npop) {

229 if ((Svec[i] == 1) & (CVtarray[i,j] == 1) & (KTvec[i] > 0)) {

230 KOvec[i] <- 0

231 for (k in 1:(KTvec[i])) {

232 randvalue <- runif (1,0,1)

233 iValue <- (beta*OpenVec[i])

234 iValueVec[i] <- iValue

235 if (randvalue < iValue) {

236 Ivec[i] <- 1

237 Svec[i] <- 0

238 }

239 }

240 }

241 }

242
243 #####

194

244 ## Check S -> R transitions

245 for (i in 1:Npop) {

246 if (Svec[i] == 1) {

247 if (runif (1,0,1) < (alpha*deltaT)) {

248 Svec[i] <- 0

249 Rvec[i] <- 1

250 }

251 }

252 }

253
254
255
256 ##

257 ## After iteration , add KNvec , KTvec , KOvec , Svec , Ivec , Rvec to storage array

258 Starray[,(j+1)] <- Svec

259 Itarray[,(j+1)] <- Ivec

260 Rtarray[,(j+1)] <- Rvec

261 KNtarray[,(j+1)] <- KNvec

262 KOtarray[,(j+1)] <- KOvec

263 KTtarray[,(j+1)] <- KTvec

264 iValueArray [,(j+1)] <- iValueVec

265
266 counterIR [(j+1)] <- countIR

267
268 ###

269 #

270 # Closing iterator to check and perform transitions at each time step

271 #

272 ###

273
274 }

275
276 ### SAVE SOME VALUES AND OUTPUTS TO A FILE ###

277 linkCount <- ecount(NmatA)

278 finalRecovered <- tail(colSums(Rtarray) ,1)

279 totalTimeInf <- sum(colSums(Itarray)*deltaT)

280 recoveredValues <- colSums(Rtarray)

281 finalIR <- tail(counterIR , 1)

282
283 paramValues <- c(iterCount , modelType , Npop , TotalTVal , ePowerVal , avgContactsVal ,

linkCount , gammaVal , betaVal , alphaVal , expLH , seedVal2 , finalIR ,

finalRecovered , totalTimeInf)

284
285 write(paramValues , ncolumns =15, file="poutputEX4_S1.txt", append=TRUE)

286 write(recoveredValues , ncolumns=c(TotalT +1), file="recValuesEX4_S1.txt", append=

TRUE)

287 write(counterIR , ncolumns=c(TotalT +1), file="IRtransValues_EX4_S1.txt", append=TRUE

)

288
289 ###### END SIMULATION REPETITIONS #######

290 }

Codes/4EX–BaselineD.R

195

Appendix D: R code for Time series models

D.1 Description

Example of R code used for Time series models.

D.2 R code example for Time series models

1 # ARMA/ARIMA models for UMD Incident Data

2
3 # Read in original (weekly) data from text file , difference it, subtract

4 # mean , and convert to time -series object. Also , create cumulative values

5
6 orig.data=scan("data.txt")

7 orig.data <- c(0, orig.data)

8 data0 <- ts(cumsum(orig.data), start =1)

9 nobs <- length(data0)

10 plim <- 3

11 qlim <- 3

12 season <- 52

13 sdiff <- 0

14
15 # ADDED FOR SQUARE -ROOT TRANSFORMATION

16 # ip = inverse power , 2 means sqrt , 3 means cube root , etc.

17 ip = 2

18
19 data <- (data0)^(1/ip)

20
21 # data <- diff(orig.data)

22 # data.mean <- mean(data)

23 # data <- data - data.mean

24 # data=ts(data , start =1)

25 # data

26 # cumul.orig.data <- cumsum(orig.data)

27
28 # Create matrices for desired output values

29 # aics.r = AIC values reported by R function "arima"

30 # aics.m = AIC values calculated according to equation in Shumway (2000) and defined

by his "sarima.R" function

31 # aicc.m = AICc values calculated according to Shumway ’s "sarima.R" function

32 # bics.m = BIC values calculated according to Shumway ’s "sarima.R" function

33
34 aics.r <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

35 aics.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

36 aicc.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

37 bics.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

38 rmsc.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

39
40 # "for" loop for calculating models and stats

41 # Double structure needed to avoid case where "p = q = 0"

42
43 n = length(data)

196

44
45 for(q in 1:qlim) {

46 tmp.arima <- arima(data , c(0,2,q),optim.control = list(maxit = 1000),

47 include.mean=FALSE , method=c("ML"),seasonal=list(order=c(1,sdiff ,0),period=

season))

48 k = length(tmp.arima$coef)

49 aics.r[1, 1+q] <- tmp.arima$aic

50 aics.m[1, 1+q] <- log(tmp.arima$sigma2)+((n+2*k)/n)

51 aicc.m[1, 1+q] <- log(tmp.arima$sigma2)+((n+k)/(n-k-2))

52 bics.m[1, 1+q] <- log(tmp.arima$sigma2)+(k*log(n)/n)

53 tmp.fit <- data - tmp.arima$resid

54 tmp.fit0 <- (tmp.fit)^ip

55 rmsc.m[1, 1+q] <- sqrt(sum((data0 - tmp.fit0)^2)/(n-1))

56 }

57 for(p in 1:plim) {

58 for(q in 0:qlim) {

59 tmp.arima <- arima(data , c(p,2,q),optim.control = list(maxit = 1000) ,

60 include.mean=FALSE , method=c("ML"),seasonal=list(order=c(1,sdiff ,0),period=

season))

61 k = length(tmp.arima$coef)

62 aics.r[1+p, 1+q] <- tmp.arima$aic

63 aics.m[1+p, 1+q] <- log(tmp.arima$sigma2)+((n+2*k)/n)

64 aicc.m[1+p, 1+q] <- log(tmp.arima$sigma2)+((n+k)/(n-k-2))

65 bics.m[1+p, 1+q] <- log(tmp.arima$sigma2)+(k*log(n)/n)

66 tmp.fit <- data - tmp.arima$resid

67 tmp.fit0 <- (tmp.fit)^ip

68 rmsc.m[1, 1+q] <- sqrt(sum((data0 - tmp.fit0)^2)/(n-1)) }

69 }

70
71 # Look at matrices where the min value has been subtracted (makes it easier to

72 # to see which model(s) to select based on AIC , AICc , or BIC values

73 #

74 # PUT THE OUTPUT DOWN WITH OUTPUT FOR 2/3, 1/3 and FORECASTS

75 #

76 # round(aics.r - min(aics.r, na.rm=TRUE), 3)

77 # round(aics.m - min(aics.m, na.rm=TRUE), 3)

78 # round(aicc.m - min(aicc.m, na.rm=TRUE), 3)

79 # round(bics.m - min(bics.m, na.rm=TRUE), 3)

80 # round(rmsd.m - min(rmsd.m, na.rm=TRUE), 3)

81 # round(rmsc.m - min(rmsc.m, na.rm=TRUE), 3)

82
83
84 # Now repeat above , but do with 2/3 of original data and compare forecast to

85 # remaining 1/3 (using RMS values for comparison)

86
87 split <- floor((nobs -1)*2/3)+1

88 num.forecast <- (nobs) - split

89 data.train <- ts(data [1: split], start =1)

90 data.test <- data[(split +1):nobs]

91
92 data.train0 <- data0 [1: split]

93 data.test0 <- data0[(split +1):nobs]

94
95
96 aics.train.r <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

97 aics.train.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

98 aicc.train.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

99 bics.train.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

100 rmsc.train.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

101 rmsc.test.m <- matrix(, 1+plim , 1+qlim , dimnames=list(p=0:plim , q=0: qlim))

102
103 # "for" loop for calculating models and stats

104 # Double structure needed to avoid case where "p = q = 0"

105
106 n.train = length(data.train)

107
108 for(q in 1:qlim) {

109 tmp.arima <- arima(data.train , c(0,2,q),optim.control = list(maxit = 1000),

197

110 include.mean=FALSE , method=c("ML"),seasonal=list(order=c(1,sdiff ,0),period=

season))

111 k = length(tmp.arima$coef)

112 aics.train.r[1, 1+q] <- tmp.arima$aic

113 aics.train.m[1, 1+q] <- log(tmp.arima$sigma2)+((n.train+2*k)/n.train)

114 aicc.train.m[1, 1+q] <- log(tmp.arima$sigma2)+((n.train+k)/(n.train -k-2))

115 bics.train.m[1, 1+q] <- log(tmp.arima$sigma2)+(k*log(n.train)/n.train)

116 tmp.fit <- data.train - tmp.arima$resid

117 tmp.fit0 <- (tmp.fit)^ip

118 rmsc.train.m[1, 1+q] <- sqrt(sum((data.train0 - tmp.fit0)^2)/(n.train -1))

119 tmp.fore <- predict(tmp.arima , n.ahead = num.forecast , se.fit = FALSE)

120 tmp.fore0 <- (tmp.fore)^ip

121 rmsc.test.m[1, 1+q] <- sqrt(sum((data.test0 - tmp.fore0)^2)/num.forecast)

122 }

123 for(p in 1:plim) {

124 for(q in 0:qlim) {

125 tmp.arima <- arima(data.train , c(p,2,q),optim.control = list(maxit = 1000),

126 include.mean=FALSE , method=c("ML"),seasonal=list(order=c(1,sdiff ,0),period=

season))

127 k = length(tmp.arima$coef)

128 aics.train.r[1+p, 1+q] <- tmp.arima$aic

129 aics.train.m[1+p, 1+q] <- log(tmp.arima$sigma2)+((n.train+2*k)/n.train)

130 aicc.train.m[1+p, 1+q] <- log(tmp.arima$sigma2)+((n.train+k)/(n.train -k-2))

131 bics.train.m[1+p, 1+q] <- log(tmp.arima$sigma2)+(k*log(n.train)/n.train)

132 tmp.fit <- data.train - tmp.arima$resid

133 tmp.fit0 <- (tmp.fit)^ip

134 rmsc.train.m[1+p, 1+q] <- sqrt(sum((data.train0 - tmp.fit0)^2)/(n.train -1))

135 tmp.fore <- predict(tmp.arima , n.ahead = num.forecast , se.fit = FALSE)

136 tmp.fore0 <- (tmp.fore)^ip

137 rmsc.test.m[1+p, 1+q] <- sqrt(sum((data.test0 - tmp.fore0)^2)/num.forecast)

138 }

139 }

140
141
142 # Look at matrices where the min value has been subtracted (makes it easier to

143 # to see which model(s) to select based on AICc or BIC values

144
145 # round(aicc.m - min(aicc.m, na.rm=TRUE), 3)

146 # round(bics.m - min(bics.m, na.rm=TRUE), 3)

147
148
149 # Look at matrices where the min value has been subtracted (makes it easier to

150 # to see which model(s) to select based on AIC , AICc , or BIC values

151
152 round(aics.train.r - min(aics.train.r, na.rm=TRUE), 3)

153 round(bics.train.m - min(bics.train.m, na.rm=TRUE), 3)

154
155 # Show actual AICc , BIC , and RMS values for models and forecasts

156
157 #aicc.m

158 #bics.m

159 aics.train.r

160 bics.train.m

161 rmsc.test.m

Codes/ARIMA–Models–D.R

198

Appendix E: R code for Logistic regression models

E.1 Description

Example of R code used for Logistic regression models.

E.2 R code example for Logistic regression models

1 # R script to create logistic regression models and test them using simulation

2 # *** FOR MODELS BUILT FROM SINGLE YEAR ’S DATA ***

3 # *** INDIVIDUAL MODELS -- MODEL 1

4 #

5 ## LOAD NEEDED PACKAGES

6 library("epicalc")

7 library("simFrame")

8 ## SET A RANDOM SEED VALUE SO TESTS ARE REPEATABLE?

9 set.seed (20081)

10 ## READ IN DATA TO BUILD MODELS WITH

11 data <- read.table("data1.txt", header=TRUE , as.is=TRUE)

12 use(data)

13 ## EXTRACT ROW INDEX NUMBERS FOR INCIDENTS IN DATA

14 inclist.fit <- which(data [,6]==1)

15 #### BUILD LOGISTIC REGRESSION MODELS

16 ### (1) DURATION

17 system.time(glm0.single <- glm(Incident~

18 Duration ,

19 family=binomial , data=.data))

20 #####

21 ## THIS SECTION STARTS THE VALIDATION OF FORECASTS PART

22 #####

23 ## READ IN DATA TO FORECAST

24 f.data <- read.table("data2.txt", header=TRUE , as.is=TRUE)

25 ## CREATE LIST OF ROWS IN FORECAST DATA WITH INCIDENTS

26 f.inclist <- which(f.data [,6]==1)

27 ## CREATE FORECASTS USING EACH OF THE MODELS

28 f0.single <- predict.glm(glm0.single , f.data , type="response")

29 ## CREATE ARRAYS TO STORE NUMBER OF MATCHES BETWEEN FORECAST & ACTUAL

30 forematch0.single <- rep(NA ,1000)

31 ## DO SAMPLES AND MATCHING

32 system.time(for (i in 1:1000) forematch0.single[i] <- length(intersect(f.inclist ,

ups (246142 , 24132 , prob=f0.single))))

33 ## SHOW SUMMARY (MEAN , STD) OF FORECAST & ACTUAL MATCHES

34 summ(forematch0.single)

35 ## SAVE LIST OF FORECAST & ACTUAL MATCH COUNTS TO TEXT FILE

36 write(forematch0.single ,file="output1.txt")

37 ## CREATE LIST OF CUMULATIVE AVERAGES OF FORECAST & INCIDENT MATCH COUNTS

38 avg.forematch0.single <- cumsum(forematch0.single)/seq_along(forematch0.single)

39 ## SAVE LIST OF CUMULATIVE AVERAGES TO TEXT FILE

40 write(avg.forematch0.single ,file="output2.txt")

41 ## SAVE PLOTS OF CUMULATIVE AVERAGES AS PNG FILES

42 png("plot.png")

43 plot(avg.forematch0.single)

199

44 dev.off()

45 ### END OF COMPUTATIONS ###

46 q()

Codes/2008–09–single–1D.R

200

Bibliography

[1] M Braverman, J Williams, and Z Mador. Microsoft security intelligence report
january-june 2006, 2006.

[2] Paul Bacher, Thorsten Holz, Markus Kotter, and Georg Wicherski. Know your
enemy: Tracking botnets, 2005.

[3] US-CERT. Quarterly trends and analysis report, March” 2007.

[4] Reuters. Cybercrime is getting organized, September 2006.

[5] Anti-Phishing Working Group, April 2007.

[6] BBC News. Millions tricked by ’scareware’, October 2009.

[7] BBC News. Anonymous hackers attack us security firm hbgary, February 2011.

[8] BBC News. Playstation outage caused by hacking attack, April 2011.

[9] Katherine Campbell, Lawrence A Gordon, Martin P Loeb, and Lei Zhou. The
economic cost of publicly announced information security breaches: empirical
evidence from the stock market. Journal of Computer Security, 11(3):431–448,
2003.

[10] Alessandro Acquisti, Allan Friedman, and Rahul Telang. Is there a cost to
privacy breaches? an event study. In ICIS, page 94. Association for Information
Systems, 2006.

[11] A. Shain. $25,000 password system could have halted sc hacking, November
2012.

[12] Hutton A. Hylender C. D. Pamula J. Porter C. Baker, W. and M. Spitler. Data
breach: Investigations report, a study conducted by the verizon risk team with
co-operation from the us secret service and the dutch high-tech crime unit, 2012.

201

[13] Center for Disease Control and Prevention (CDC). Key facts about seasonal flu
vaccine.

[14] ISO. Information technologysecurity techniquesinformation security manage-
ment systemsrequirements. ISO 27001:2005, International Organization for
Standardization, Geneva, Switzerland, 2005.

[15] Gary Stoneburner, Alice Y. Goguen, and Alexis Feringa. Sp 800-30. risk manage-
ment guide for information technology systems. Technical report, Gaithersburg,
MD, United States, 2002.

[16] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical UNIX and
Internet security. ” O’Reilly Media, Inc.”, 2003.

[17] Robert Richardson and CSI Director. Csi computer crime and security survey.
Computer Security Institute, 1:1–30, 2008.

[18] J. D. Howard and T. A. Longstaff. A common language for computer security
incidents. Computer, 1998.

[19] S. Hansman and R. Hunt. A taxonomy of network and computer attacks.
Computers and Security, 24(1):31–43, 2005.

[20] M. J. Keeling and P. Rahoni. Modeling Infectious Diseases in Humans and
Animals. Princeton University Press, 2008. ISBN: 9781400941035.

[21] J. Kim, S. Radhakrishnan, and S. K. Dhall. Measurement and analysis of worm
propagation on internet network topology. In Computer Communications and
Networks, 2004. ICCCN 2004. Proceedings 13th International Conference, pages
495–500. IEEE, October 2004.

[22] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Worm propagation
modeling and analysis under dynamic quarantine defense. In Proceedings of the
2003 ACM Workshop on Rapid Malcode, WORM ’03, pages 51–60, New York,
NY, USA, 2003. ACM.

[23] AL. Goel and K. Okumoto. Time-dependent error-detection rate model for soft-
ware reliability and other performance measures. Reliability, IEEE Transactions
on, R-28(3):206–211, Aug 1979.

[24] Shigeru Yamada, Mitsuru Ohba, and S. Osaki. s-shaped software reliability
growth models and their applications. Reliability, IEEE Transactions on, R-
33(4):289–292, Oct 1984.

[25] TM Khoshgoftaar. Nonhomogeneous poisson processes for software reliability
growth. In Proc. 8th symposium in computational statistics, pages 11–12,
Copenhagen, Denmark, August 1988.

202

[26] J. T. Duane. Learning curve approach to reliability monitoring. Aerospace,
IEEE Transactions on, 2(2):563–566, April 1964.

[27] Ulrich Helfenstein. Box-jenkins modelling of some viral infectious diseases.
Statistics in Medicine, 5(1):37–47, 1986.

[28] R. Allard. Use of time-series analysis in infectious disease surveillance. Bulletin
of the World Health Organization, 76(4):327–333, 1998.

[29] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. Youve been warned:
An empirical study of the effectiveness of web browser phishing warnings. In
In Proceedings of the CHI 2008 Conference on Human Factors in Computing
Systems, pages 1065–1074, Florence, Italy, 2008.

[30] P. Anbalagan and M. Vouk. Towards a unifying approach in understanding
security problems. In Software Reliability Engineering, 2009. ISSRE ’09. 20th
International Symposium on, pages 136–145, Nov 2009.

[31] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerability: A
case study analysis. Computer, 33(12):52–59, 2000. ISBN Number: 0018-9162.

[32] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale
vulnerability analysis. In Proceedings of the 2006 SIGCOMM Workshop on
Large-scale Attack Defense, LSAD ’06, pages 131–138, New York, NY, USA,
2006. ACM.

[33] Julie S. Downs, Mandy B. Holbrook, and Lorrie Faith Cranor. Decision strategies
and susceptibility to phishing. In Proceedings of the Second Symposium on
Usable Privacy and Security, SOUPS ’06, pages 79–90, New York, NY, USA,
2006. ACM.

[34] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social phishings.
Communications of the ACM, 50(10):94–100, 2007.

[35] Garrett Brown, Travis Howe, Micheal Ihbe, Atul Prakash, and Kevin Borders.
Social networks and context-aware spam. In In CSCW, 2008.

[36] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to detect phishing
emails. In Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, pages 649–656, New York, NY, USA, 2007. ACM.

[37] Cormac Herley. So long, and no thanks for the externalities: The rational
rejection of security advice by users. In Proceedings of the 2009 Workshop on
New Security Paradigms Workshop, NSPW ’09, pages 133–144, New York, NY,
USA, 2009. ACM.

[38] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A
taxonomy of computer worms. In Proceedings of the 2003 ACM Workshop on
Rapid Malcode, WORM ’03, pages 11–18, New York, NY, USA, 2003. ACM.

203

[39] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code red worm propa-
gation modeling and analysis. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS ’02, pages 138–147, New York,
NY, USA, 2002. ACM.

[40] Z. Chen, L. Gao, and K. Kwiaty. Modeling the spread of active worms. In IN-
FOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, pages 1890–1900. IEEE, March
2003.

[41] Stelios Sidiroglou and Angelos D. Keromytis. A network worm vaccine architec-
ture. In IN PROCEEDINGS OF THE IEEE WORKSHOP ON ENTERPRISE
TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTER-
PRISES (WETICE), WORKSHOP ON ENTERPRISE SECURITY, pages
220–225, 2003.

[42] Eiko Yoneki, Pan Hui, and Jon Crowcroft. Bio-inspired computing and com-
munication. chapter Wireless Epidemic Spread in Dynamic Human Networks,
pages 116–132. Springer-Verlag, Berlin, Heidelberg, 2008.

[43] J. Milliken, V. Selis, and A. Marshall. Detection and analysis of the chameleon
wifi access point virus. EURASIP J. Information Security, 2:1–14, 2013.

[44] R. Pastor-Satorras and A Vespignani. Epidemic spreading in scale-free networks.
Phys. Rev Lett., 86:3200, 2001. http://dx.doi.org/10.1103/PhysRevLett.86.3200.

[45] M. Keeling. The implications of network structure for epidemic dynamics.
Theoretical Population Biology, 67(1):1–8, February 2005.

[46] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O.
Roberts, ..., and M C. Vernon. Networks and the epidemiology of infec-
tious disease. Interdisciplinary Perspectives on Infectious Diseases, *, 2011.
http://dx.doi.org/10.1155/2011/284909.

[47] S. Singh, D. J. Schneider, and C. R. Myers. The structure of infectious disease
outbreaks across the animal-human interface. *, *(*):*, 2013. arXiv preprint
arXiv:1307.4628.

[48] A. Vazquez, B. Racz, and A. L. Barabasi. Impact of non-poissonian activity
patterns on spreading processes. Phys. Rev. Lett., 98(15):158702, 2007. *.

[49] S E. Schechter, J. Jung, W. Stockwell, and C. D. McLain. Inoculating ssh
against address harvesting. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2006 2006, 2006. San Diego, California,
USA.

[50] C. Gao, J. Liu, and N. Zhong. Network immunization and virus propagation
in email networks: Experimental evaluation and analysis. Knowledge and
Information Systems, 27:253–279, 2011. DOI 10.1007/s10115-010-0321-0.

204

[51] D. N. Klaucke, J. W. Buehler, S. B. Thacker, R. G. Parrish, F. L. Trowbridge,
and R. L. Berkelman. Guidelines for evaluating surveillance systems. MMWR,
37(s5):1–18, May 1988.

[52] P. Nsubuga, M. E. White, S. B. Thacker, M. A. Anderson, S. B. Blount, C. V.
Broome, ..., and M. Trostle. Disease Control Priorities in Developing Countries,
chapter 53. Public Health Surveillance: A Tool for Targeting and Monitoring
Interventions. World Bank, Washington (DC), 2nd edition, 2006. Jamison D. T.
and Breman, J. G. and Measham A. R. and et al., editors.

[53] Centers for Disease Control et al. Principles of epidemiology. An introduction
to applied epidemiology and biostatistics, 1992.

[54] Hilary K. Browne, William A. Arbaugh, John McHugh, and William L. Fithen.
A trend analysis of exploitations. In Proceedings of the 2001 IEEE Symposium
on Security and Privacy, SP ’01, pages 214–, Washington, DC, USA, 2001. IEEE
Computer Society.

[55] Eric Rescorla. Is finding security holes a good idea? IEEE Security and Privacy,
3(1):14–19, Jan 2005.

[56] O. H. Alhazmi and Y. K. Malaiya. Modeling the vulnerability discovery process.
In Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, ISSRE ’05, pages 129–138, Washington, DC, USA, 2005. IEEE
Computer Society.

[57] Omar H. Alhazmi and Yashwant K. Malaiya. Measuring and enhancing predic-
tion capabilities of vulnerability discovery models for apache and iis http servers.
In Proceedings of the 17th International Symposium on Software Reliability
Engineering, ISSRE ’06, pages 343–352, Washington, DC, USA, 2006. IEEE
Computer Society.

[58] R. Anderson. Security in open versus closed systems - the dance of boltzmann,
coase and moore. In Open source software: Economics, Law and Policy, June
20-21 2002. Toulouse, France.

[59] D. J. Watts, R. Muhamad, D. C. Medina, and P. S. Dodds. Multiscale, resurgent
epidemics in a hierarchical metapopulation model. In Proceedings of the National
Academy of Sciences of the United States of America, volume 102, pages 11157–
11162, 2005. doi: 10.1073/pnas.0501226102.

[60] H. Trottier, P. Philippe, and R. Roy. Stochastic modeling of empirical time
series of childhood infectious diseases data before and after mass vaccination.
Emerging Themes in Epidemiology, 3(1):9, 2006.

[61] Dejian Lai. Monitoring the sars epidemic in china: a time series analysis. Journal
of Data Science, 3(3):279–293, 2005.

205

[62] B. Han and T. Y. Leong. We did the right thing: An intervention analysis
approach to modeling intervened sars propagation in singapore. Studies in
Health Technology and Informatics, 107(Part 2):1246–1250, 2004.

[63] E. Michael, M. N. Malecela-Lazaro, P. E. Simonsen, E. M. Pedersen, G. Barker,
A. Kumar, and J. W. Kazura. Mathematical modelling and the control of
lymphatic filariasis. The Lancet Infectious Diseases, 4(4):223–234, 2004.

[64] J. W. Hay and J. I. Ward. Economic considerations for pertussis booster
vaccination in adolescents. Pediatr. Infect. Dis. J., 24(6):S127–S133, June 2005.

[65] C. Hoggart, P. Brennan, A. Tjonneland, U. Vogel, K. Overvad, J. N. Ostergaard,
..., and P. Vineis. A risk model for lung cancer incidence. Cancer Prev. Res.
(Phila), 5(6):834–846, June 2012.

[66] James C Frauenthal. Mathematical modeling in epidemiology. Universitext.
Springer, Berlin, 1980.

[67] Bruce Rogers. Epidemic models on networks: Space, the final frontier, 2010.

[68] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014.

[69] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[70] Cliff C Zou, Don Towsley, and Weibo Gong. Email virus propagation model-
ing and analysis. Department of Electrical and Computer Engineering, Univ.
Massachusetts, Amherst, Technical Report: TR-CSE-03-04, 2003.

[71] Alexander Mintz and Milton L Blum. A re-examination of the accident proneness
concept. Journal of Applied Psychology, 33(3):195–211, 1949.

[72] J.C. Laprie and K. Kanoun. Trend analysis. In Michael R. Lyu, editor, Handbook
of Software Reliability Engineering, pages 401–438. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996.

[73] Karama Kanoun, Marta Rettelbusch de Bastos Martini, and Jorge Moreira
de Souza. A method for software reliability analysis and prediction application
to the tropico-r switching system. Software Engineering, IEEE Transactions on,
17(4):334–344, 1991.

[74] Karama Kanoun, Mohamed Kaâniche, and J-C Laprie. Qualitative and quanti-
tative reliability assessment. Software, IEEE, 14(2):77–87, 1997.

[75] G.J. Knafl. Solving maximum likelihood equations for two-parameter software
reliability models using grouped data. In Software Reliability Engineering, 1992.
Proceedings., Third International Symposium on, pages 205–213, Oct 1992.

206

[76] Robert S Pindyck and Daniel L Rubinfeld. Econometric models and economic
forecasts. McGraw-Hill Book Company, New York, 1981.

[77] G. Box and G. Jenkins. Time series analysis: forecasting and control. Holden
Day, San Francisco, CA, 1970.

[78] Peter J Brockwell and Richard A Davis. Time series: theory and methods.
Springer-Verlag, New York, 1991.

[79] Robert H Shumway and David S Stoffer. Time series analysis and its applications.
Springer-Verlag, New York, 2000.

[80] H Akaike. Information theory and an extension of the maximum likelihood
principle. In BN Petran and F Csáki, editors, International symposium on
information theory, Second edition, pages 267–281, Akadeemiai Kiadi, Budapest,
Hungary, 1973.

[81] Clifford M Hurvich and Chih-Ling Tsai. Regression and time series model
selection in small samples. Biometrika, 76(2):297–307, 1989.

[82] Gideon Schwarz. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[83] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In
LISA, volume 99, pages 229–238, 1999.

[84] Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate
bayesian computation in population genetics. Genetics, 162(4):2025–2035, 2002.

[85] Michael GB Blum and Viet Chi Tran. Hiv with contact tracing: a case study in
approximate bayesian computation. Biostatistics, 11(4):644–660, 2010.

[86] Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael P.H
Stumpf. Approximate bayesian computation scheme for parameter inference and
model selection in dynamical systems. Journal of The Royal Society Interface,
6(31):187–202, 2009.

[87] Richard R Picard and R Dennis Cook. Cross-validation of regression models.
Journal of the American Statistical Association, 79(387):575–583, 1984.

[88] Edward J Hannan and Barry G Quinn. The determination of the order of an au-
toregression. Journal of the Royal Statistical Society. Series B (Methodological),
pages 190–195, 1979.

[89] Edward Condon, Michel Cukier, and Tao He. Applying software reliability
models on security incidents. In Proceedings of the The 18th IEEE International
Symposium on Software Reliability, pages 159–168. IEEE Computer Society,
2007.

207

[90] M Xie and SL Ho. Analysis of repairable system failure data using time series
models. Journal of Quality in Maintenance Engineering, 5(1):50–61, 1999.

[91] Tyler Moore, Richard Clayton, and Ross Anderson. The economics of online
crime. The Journal of Economic Perspectives, 23(3):3–20, 2009-08-01T00:00:00.

[92] Jason Franklin, Adrian Perrig, Vern Paxson, and Stefan Savage. An inquiry into
the nature and causes of the wealth of internet miscreants. In ACM conference
on Computer and communications security, pages 375–388, 2007.

[93] Danielle Chrun. Model-Based Support for Information Technology Security
Decision Making. PhD thesis, University of Maryland, College Park, 2011.

[94] Virasakdi Chongsuvivatwong. Analysis of epidemiological data using R and
Epicalc. Chanmuang Press, Songkhla, Thailand, 2008.

[95] Margaret Sullivan Pepe and Todd A Alonzo. Comparing disease screening tests
when true disease status is ascertained only for screen positives. Biostatistics,
2(3):249–260, 2001.

[96] James A Hanley and Barbara J McNeil. A method of comparing the areas under
receiver operating characteristic curves derived from the same cases. Radiology,
148(3):839–843, 1983.

208

	List of Tables
	List of Figures
	Introduction and Background
	Overview
	Statement of Problem
	Outline of Dissertation
	Background
	Taxonomy/definition/description of computer security and incidents
	Purposes of modeling
	Types of models
	Selecting and targeting interventions

	Purpose
	Significance
	Scope and Limitations

	Literature Review
	Overview
	Computer Security Incidents
	Infectious Disease Modeling
	Standard Susceptible-Infected-Recovered (SIR) model
	Model for email propagation
	Types of interventions for controlling infectious diseases

	Surveillance–quality control and monitoring
	Software reliability growth models
	[EC]Time-seriesTime series models

	Targeting Interventions and Identifying Risk Factors
	Existing Limitations

	Infectious Disease Models
	Overview
	Deterministic SIR Models
	Stochastic SIR Models
	Isolating a Smaller Subset from a Larger Population
	Model Application Illustration
	Baseline scenario
	Interventions
	Costs related to outcomes and interventions

	Email Propagation Models
	Overview
	Stochastic Email Propagation Model
	Network Topology
	Human Factors
	Email checking interval rate
	Likelihood to open infected message

	Interventions (Blocking and Patching)
	Model Application Illustration
	Baseline scenario
	Interventions
	Costs related to outcomes and interventions

	Software Reliability Growth and [EC]Time-SeriesTime Series Models
	Overview
	Software Reliability Growth Models
	Trend analysis
	Software reliability growth models

	[EC]Time-Series mTime Series Models
	Data transformations
	Model selection criteria

	Illustrations using Campus Data
	Description of data
	Approximate Bayesian Computation
	SIR Models
	Test cases
	Test parameter sets
	Test results and observations
	Application using incident data

	Email Propagation Models
	Test cases
	Test parameter sets
	Test results and observations
	Application using email incident data

	Software Reliability Growth and Time Series Models
	Trend analysis and software reliability growth models
	Time series models
	Comparing software reliability growth and time series models
	Update regarding ``spamrelay" incident type

	Exploring Population Risk Factors
	Description of data
	Population Characteristics
	Network affiliation of host (Housing/Other)
	Age
	Calendar month
	Academic semester
	Vendor ID from MAC address
	Network time
	On at beginning of month

	Modeling and Evaluation Methodology
	Modeling and Evaluation Results

	Conclusions and Future Work
	Observations and Conclusions
	Future Work

	Incident Data
	Description
	Worm_msblast data
	Worm_nachi data
	Bagle_worm data
	Virus_klez data
	Virus_agobot data
	Spamrelay data
	Original time interval
	Additional time interval

	R code for SIR models
	Description
	R code example for SIR models

	R code for Email models
	Description
	R code example for Email models

	R code for Time series models
	Description
	R code example for Time series models

	R code for Logistic regression models
	Description
	R code example for Logistic regression models

	Bibliography

