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In this thesis I describe three independent projects that advance the develop-

ment of broadband quantum cryptography. While each project pertains to a differ-

ent part of the QKD chain, together they provide key developments in implementing

QKD at bit rates that are practical for use in the modern telecommunications in-

frastructure.

The first project comprises the bulk of the thesis and involves developing a

novel source of correlated photon pairs for use in free-space QKD. This source is

based on a birefringent semiconductor optical waveguide as a Kerr medium. We

demonstrate the feasibility of using birefringent phase-matched four-wave mixing to



generate correlated photon pairs. We further propose that, by reversing the process

and pumping with conjugate wavelengths, one can use the same effect to produce

entangled photon pairs with the same device. These pairs can then be used for QKD

to realize the most secure and efficient quantum cryptographic data links.

The second project examines the implications of operating a BB84 QKD proto-

col at clock rates that are faster than the recovery time of the constituent detectors.

We show that operating such systems under conventional protocols results in a se-

curity violation that allows an eavesdropper to learn significant information about

the key and present a modification to the BB84 protocol that maintains key security

at fast transmission rates. This modification to the protocol will become vital to

QKD viability as links become faster and clock rates go into the tens of gigahertz.

We also demonstrate, rather counterintuitively, that there exists an optimal trans-

mission rate for a QKD system that exceeds the inverse of an individual detector’s

dead time.

The final project describes a new design for a free-space QKD link that centers

around faster silicon detectors. These detectors have a peak quantum efficiency in

the visible range, requiring that the system operate at a wavelength that is more

susceptible to solar interference. To mitigate this effect, the link is designed around

a Fraunhofer line in the solar spectrum where the background solar light levels are

reduced by up to 90%. By implementing this system, we expect at least a two-fold

increase in the secret key rate, coming ever closer to the goal of a 10 Mb/s QKD

system compatible with first-generation ethernet technology.
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Chapter 1

Introduction to Broadband Quantum Key Distribution

”The speed of communications is wondrous to behold. It is also true that speed can

multiply the distribution of information that we know to be untrue.” -Edward R.

Murrow

1.1 QKD - Why?

The year is 47 BC. Four Roman Legions sit poised atop a hill overlooking

the Turkish town of Zile. The generals await word from their brilliant commander,

Julius Caesar, to end the coup led by Pharnaces, the well-known enemy of Rome.

Suddenly, a messenger appears carrying a small parchment. At first glance, Caesar’s

orders look to be gibberish, but the generals quickly rewrite the note, replacing each

letter with the one that occurs three before it in the alphabet. Suddenly the message

becomes clear: begin the attack. They shout orders to their lieutenants and begin a

five-day siege that lays waste to Pharnces’ 20,000 warriors. Caesar, satisfied that he

has crushed the coup, writes to Amantius in Rome, ”I came, I saw, I conquered.”[36]

Caesar’s simple shift cipher that he used to communicate with his generals

was surprisingly secure. Even in Caesar’s time, people had yet to develop the art of
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codebreaking, and most of Caesar’s enemies were not even able to read Latin writing.

Records indicate that it wasn’t until the 9th century that Arab mathematicians

developed the kind of cryptanalysis that could have compromised Caesar’s messages

[59]. However, once they did, the cat-and-mouse game between the codemakers and

the codebreakers began.

In today’s information-centric world, data encryption is ubiquitous. Anyone

who buys a book online using their credit card understands the importance of data

security. But we often take for granted that little padlock icon in the corner of our

browser window. What does it mean, and will it always remain secure?

Most of today’s encryption depends primarily on two steps: public key encryp-

tion to exchange a key between two parties, and a symmetric cipher that uses this

key to encrypt the data. Both of these steps must be secure in order to maintain

data integrity. Assuming the key is secret, we can say that the symmetric cipher step

is relatively safe given modern technology. While it is by no means unbreakable, it

does well against most publicly known computer hardware. The vulnerability comes

when the key is stolen, allowing an eavesdropper to steal the symmetric ciphertext

and decrypt it. Public-key encryption is based on the assumption that computers

cannot efficiently factor a large prime number (or perform a logarithm modulo-n,

which is an equivalent algorithmic problem). However, no one has yet proven that

this is true. It is possible that we can wake up tomorrow morning and find that a

clever mathematician or computer scientist somewhere has thought of an efficient

way to do so, compromising all of our online financial transactions, not to mention

various other sensitive government, military, and health care data. In fact, comput-
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ers based on quantum mechanical bits are already being developed that have been

shown to be able break public-key encryption [58].

So what can we do? Can we end this cat-and-mouse game that has been going

on since the time of Caesar and keep our data secure beyond the first quantum

computer? In some ways, we already have, and have done so since World War I.

In 1917, a telephone engineer by the name of Gilbert Vernam devised a scheme to

encrypt data using a string of random digits [68]. The fundamental idea is this:

Consider your message to be a sequence of binary digits (as all messages can be

thought of). Now write down a string of random digits (1’s and 0’s) that is exactly as

long as the message itself; this will be the key. Now, bit by bit, perform an addition

modulo-2 (also known as an exclusive OR, or XOR). The subsequent ciphertext

now looks like a string of random digits, and without knowledge of the key, the

encrypted message seems to contain no information. In fact, Claude Shannon later

showed that this text does indeed contain zero information without the key and

cannot be broken [54]. Of course, if you do know the key, you can simply subtract

it (another bitwise XOR operation) and retrieve the original message. It is a truly

unbreakable encryption scheme now known as the Vernam cipher or one-time pad.

So it seems that, by 1949, we had ended this cat-and-mouse game. But there

remained a problem that has plagued the Vernam cipher since its invention. How

does one transmit the key from the sender to the receiver without it being stolen? It

turns out that this is just as difficult as sending the message itself; it is, after all, a

string of digits exactly as long as original message. This problem essentially rendered

the Vernam cipher useless until 1984, when Bennett and Brassard realized that one
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can exploit the quirky principles of quantum mechanics to transmit a random key

and guarantee that it remains secret for the duration of its trip1 [6].

1.2 The Fundamentals of QKD

The fundamental procedure for what is commonly called BB84 (after Bennett

and Brassard’s 1984 paper) QKD goes as follows [6]: Suppose our sender (we’ll

call her Alice) wants to send a secret, binary message to her friend, whom we

will call Bob. To do so, she would like to use a Vernam cipher, so before she

encrypts her message, she will perform a joint quantum optics experiment with Bob

in order to agree on a secret, random key. She begins by setting up a channel that

can send single photons to Bob. These single photons will be sent in one of four

quantum states, organized into two pairs of non-orthogonal bases, each containing

two orthogonal states that represent the values 1 and 0, respectively. The simplest

implementation uses polarization state encoding on the single photon. For example,

the states |H〉, |V 〉, |+45〉, and |−45〉 are commonly used, where |H〉 and |+45〉

represent a bit value of 0, while |V 〉 and |−45〉 represent a bit value of 1. Alice then

makes two random choices: First, she chooses a basis to use (either H-V or ± 45).

She then chooses a random bit value and sends a single photon encoded in one of

the four states corresponding to her random choice.

Bob now prepares to measure the incoming photon. Since we are using po-

larization state encoding, this involves choosing a basis in which to measure the

1The original inspiration for quantum key distribution came out of ideas on quantum coding

expressed by Stephen Wiesner and published at the behest of Charles Bennett in [72]
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photon’s polarization (Bob and Alice agree beforehand which basis options they

will choose between). Bob makes a completely random choice here. He will ei-

ther measure the photon’s polarization in the same basis in which Alice sent it and

presumably obtain the same bit value that Alice sent, or he will measure it in the

wrong basis and have a 50% probability of measuring the opposite bit value. Bob

makes his measurement, and then, over an open, classical communication channel,

he announces to Alice what basis he used in his measurement. If Alice responds

(again over the open classical channel) that she used that same basis to transmit

the photon, then Bob keeps his measured bit value and they repeat the process

again. If they disagree on the bases used in transmission and measurement, Bob

simply discards his measurement result and they repeat the process. This process

is referred to as sifting and results in what is termed the sifted key.

Note that, even though they communicate basis choices on an open, classical

channel, no information about the actual key bits is revealed thus far. Now suppose

a nefarious eavesdropper (we will, of course, call her Eve), tries to intercept the

photons on their way from Alice to Bob. The first line of defense against such an

ignoble action is the simple fact that Alice only sent one photon. By definition, one

photon cannot be split in half, so Eve would have to intercept the photon, measure

it the same way Bob does, and send a new photon to Bob to replace the one she

stole. In doing so, she must make the same random measurement choice that Bob

does. This means that 50% of the time, she will make an incorrect basis choice and

send Bob a photon in a different basis than Alice originally transmitted. 50% of that

time, Bob will choose the correct basis, and finally, 50% of the final measurements
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will have incorrect bit values. The final result is that there will be up to a 12.5%

error rate per basis, resulting in an overall 25% maximum error rate in the sifted

key in the presence of an eavesdropper.

The final step in the quantum key exchange occurs when Alice and Bob have

an open conversation over the classical channel comparing their sifted key values.

Under the most stringent assumption that all errors introduced in the sifted key are

the result of an eavesdropper, Alice and Bob perform forward error correction to

eliminate the discrepancies in their respective keys. While the details of FEC are

irrelevant to this thesis (for a more in-depth discussion of error-correction codes, see

[14], [45], or [28]), the important feature is that Alice and Bob can eliminate the

portions of the sifted key that are in error without revealing any bits from the por-

tions of the key that they keep. This process, known collectively as error correction

and privacy amplification or reconciliation, results in a key that is guaranteed to

be secure from eavesdroppers, also known as the secret key. This entire process is

performed until the secret key is as long as the message itself. At that point, it can

safely be used as the key for a one time pad encryption and secure transmission of

the message over the open, classical channel.

It is apparent that this QKD concept seems to achieve the ultimate goal in data

security - to end the cat-and-mouse game that has dogged cryptography for over two

thousand years. However, there are a number of details that must be clarified when

discussing the security of QKD. First of all, along with the postulate that a single

quanta cannot be split by definition, the security proof depends on the no-cloning

theorem of Wooters and Zurek[73]. This theorem states that an unknown quantum
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state cannot be cloned without first measuring (and hence destroying) the original

state. This result is critical to the security of QKD, as an unknown quantum state

is precisely what Eve encounters in her attack on the QKD link. It also must be

noted that QKD links are still susceptible to the so-called denial of service attacks.

In fact, if the error rate increases beyond a certain point, the error-correcting codes

can break down and reconciliation cannot occur [9]. Furthermore, when this system

is implemented using real sources and detectors, further security threats come into

play that must be dealt with if quantum cryptography is to be practical. These

extensions will be discussed in Chapter 3.

It should also be noted that there are other schemes for implementing QKD.

One is a variation on BB84, called B92 (after Bennett’s 1992 paper describing it)

that involves only two non-orthogonal quantum states [7]. While this protocol is

simpler to implement in hardware, it does sacrifice efficiency. There is also a protocol

devised by Artur Ekert in 1991 that uses the exotic properties of nonclassical light

[17]. This protocol will be discussed further in Chapter 2.

1.3 Broadband QKD and its Limitations

While the underlying protocol behind quantum key distribution seems straight-

forward, actually implementing the process in a practical way proves to be a chal-

lenge that the community is still striving to achieve. Concerning practicality, I

refer generally to creating an ultra-secure data link over out-of-earshot distances

at speeds compatible with the modern telecommunications infrastructure. A good
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speed benchmark for a typical QKD link might be a secret key rate in excess of 10

Mb/s in order to be compatible with first-generation ethernet hardware. A number

of links, including ones at NIST, have begun to approach this secret key rate [9],

[75], [63].

The commonly accepted distance benchmark is the range from the ground to a

low-earth orbit (LEO) satellite. This metric derives from the concept of operations

involving secure quantum key transfer between a ground station, a LEO satellite,

and another ground station somewhere else on the globe. Assuming the satellite

can store the key securely, this arrangement, along with its cousin involving multiple

GEO satellites, is viewed as the most promising model for a global, secure, quantum

communications network [48].

A number of advances have begun to demonstrate the feasibility of perform-

ing such quantum data transfers [69]. Most of these efforts have focused on link

distance as the most obvious metric, including a recent demonstration of quantum

key exchange over the distance of 144 km between two of the Canary Islands [53].

While the link range is rather impressive, the experiment in [53] only operated at

a secret key rate of about 13 bits per second. Considering the limited time window

in which a LEO satellite is overhead, this is not yet a practical demonstration. Fast

key rates on the order of 10 Mb/s are required for any meaningful key exchange

between a ground station and a LEO satellite [10], [50].

Hence our focus in the NIST QKD effort has been to achieve truly broadband

quantum key distribution. We demonstrated in 2004 a system that exchanged secret

key at > 1 Mb/s, fast enough to transmit quantum-encrypted streaming video
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over a distance of 700 m. To achieve this, we incorporated a number techniques

from classical telecommunications engineering to more efficiently perform the steps

involved in the BB84 protocol. For example, we clocked the transmitter at 1.25 GHz,

using as our source high-speed, gain-switched VCSELs to create very short, weak

laser pulses. We implemented all of the control and sifting processes on a dedicated

FPGA and custom PCI card, and we optimized and multithreaded the FEC and

reconciliation procedures to make them more efficient [9]. However, in building this

link around these cutting-edge technologies, we encountered a fundamental speed

limit in the system: Timing jitter in the single photon APDs.

Avalanche photodiodes biased to operate in Geiger mode, transmit an electri-

cal pulse for each photon absorbed in the active semiconductor region (with some

efficiency, of course). Where in the absorption region of the device the photon is

absorbed creates fundamental uncertainty between the clocked photon transmission

and the time at which the SPAD sends its TTL pulse. This uncertainty, known

as timing jitter is about 550 ps at 3 dB for the most common commercial SPADs

2. Because one cannot transmit photons faster than the inverse of the jitter, the

transmission speed is limited. More detail on techniques to overcome this limitation

will be discussed in Chapter 4.

This thesis addresses a number of hurdles associated with making faster QKD

links. As mentioned above, Chapter 2 addresses sources of entanglement for QKD

2Because error rates can significantly increase when pulses are miscounted in adjacent clock bins,

a better measure of the timing jitter for this application is the 1/100 point. For the commercial

SPAD units, this can be as long as 2.5 ns [9].
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schemes that exploit the often-counterintuitive properties of quantum states of light.

QKD systems of this nature are fundamentally more secure than their counterparts

that use attenuated lasers. Chapter 2 will delve into the reasoning behind this asser-

tion and describe a project that examines a semiconductor source of correlated and

ultimately entangled photons. This effort also provides insight into some fundamen-

tal questions in nonlinear optics that still remained open. Chapter 3 then examines

what happens to the security of broadband QKD when implemented using real de-

tectors. In addition to an intrinsic timing jitter as described above, SPADs also

exhibit a recovery time that is often much longer than the transmission period. We

discuss the security implications of operating in this regime, propose a modification

to the BB84 protocol to mitigate these effects and provide results that show the

existence of an optimal transmission rate in excess of the inverse of the detector’s

recovery time. Finally, in Chapter 4 we put forth a design for a new free-space QKD

system at a wavelength that overlaps with a Fraunhofer line in the solar spectrum.

Based on newly available SPADs with reduced timing jitter, this system promises to

have an increased secret key rate of at least twice the previous demonstration, ap-

proaching the milestone of compatibility with first-generation ethernet connections.
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Chapter 2

Birefringent phase-matched four wave mixing in a semiconductor

waveguide for correlated photon generation

”God does not play dice with the universe; He plays an ineffable game of his own

devising, which might be compared, from the perspective of any of the other players,

to being involved in an obscure and complex version of poker in a pitch dark room,

with blank cards, for infinite stakes, with a dealer who won’t tell you the rules, and

who smiles all the time.” -Terry Pratchett

2.1 Sources of correlated and entangled photons

The BB84 QKD protocol described in Chapter 1 is only a semi-classical ap-

proximation of the absolute security that truly quantum communication can pro-

vide. Often called a prepare and send method for obvious reasons, it requires that

Alice makes two initial random choices before even introducing any quanta into the

scheme. Thus the cryptosystem, like nearly all others, is limited by the quality

of Alice’s random number generator. The NIST system, for example, relies on a

Mersenne Twister [40] pseudo-random number generator to create Alice’s random

bits. The Mersenne Twister is computationally fast and is often used for Monte-
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Carlo simulations, but from a security perspective it is considered unsuitable for

cryptography because it only requires observation of 624 iterates to determine all

of the parameters needed to predict its next output bit [40]. While the EC/PA

process mitigates the problem to some degree, the PRNG is certainly the weakest

link in the NIST QKD system. One obvious solution would be to use a more secure

PRNG. However, the current standard in cryptographically secure random bits is

the Blum Blum Shub algorithm [11]. Like all modern classical cryptography, BBS

relies on the product of two large prime numbers to produce random bits. Because

QKD is meant to protect against attackers equipped with potential fast factoring

capabilities, it would be quite counterproductive to base the random bit choices on

a PRNG susceptible to a factoring attack.

As mentioned briefly in Chapter 1, there is an alternative to the prepare and

send QKD protocols. A protocol based on entanglement, first proposed by Artur

Ekert in 1991[17] and called the E91 protocol, involves creating a pair of polarization-

entangled photons in a Bell state and sending one photon of the pair to Alice and

one to Bob. Alice and Bob then simultaneously measure their respective photons

using the same procedure that Bob uses in the BB84 protocol. Since the photons are

polarization entangled, the measurement outcomes are correlated and can be used

to generate random keys in two different places. This method (and others based on

entanglement of properties other than polarization, like time or frequency) has two

distinct advantages over prepare and send methods. First, the randomness between

the ones and zeros no longer depends on a quality PRNG. Instead, it is intrinsic to

the physical state of the photon pair and is as truly random as possible in nature.
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Second, the security of the information, as far as the laws of quantum mechanics are

understood, is unequivocally guaranteed. That is, in prepare and send schemes, one

must always worry about side channels of information. For example, information

about which photon state Alice sent might be gleaned by analyzing the timing

information, looking at RF leakage from the drive electronics, or monitoring some

other overlooked detail of the system. However, because of the nature of quantum

entanglement, one can guarantee that, if the photons violate the Bell inequality,

there can be no information leaked through any side channel, even ones that are

unknown to Alice and Bob (or anyone else, for that matter). For more details about

this concept, see [3], [5], and [4].

While entangled photons offer the path to truly unbreakable encryption, they

still present challenges, namely in ways to generate them quickly and efficiently.

Currently the most ubiquitous method for generating entanglement involves type II

parametric downconversion in a BBO crystal [32]. This method has been demon-

strated as a source for E91 QKD up to the kb/s range [39]. However, this source

is limited to these slow speeds and requires bulk optical crystals pumped with free-

space beams. Thus there is a strong interest in a source of entanglement that is

compact, integrated, and able to operate at GHz pair generation rates.

There are a number of approaches to integrated sources of entangled pairs.

For example, many groups are investigating third order nonlinearities in silicon

nanowires [22], [55]. In these devices, the sub-wavelength dimensions of the waveg-

uide allow the modal dispersion to be tailored to achieve phase matching [65]. How-

ever, because they are so small, they can potentially have high linear loss and be
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very difficult to couple to efficiently. Another approach uses four wave mixing in a

microstructure optical fiber to generate correlated and entangled pairs [19], [46], [70].

In this scheme, the small mode confinement and long propagation length compen-

sates for the relatively small third-order susceptibility of glass. Unlike Si nanowires,

this source has an additional advantage of having very low linear loss. Other exotic

schemes involve second order processes in highly birefringent III-V semiconductor

waveguides [20], as well as a host of other approaches.

Each approach has its respective advantages and disadvantages. For example,

in certain materials, the second order nonlinearity is quite strong, promising good

pair generation efficiency. However, in second order processes, the signal-idler de-

tuning is on the order of the pump wavelength, so creating integrated devices that

guide well across such a broad spectral range is rather difficult. Hence third order

processes are preferred for integrated devices. However, correlated pair generation

from four photon mixing is often masked by strong, uncorrelated Raman scattering,

and groups working with these devices have gone to great lengths to eliminate this

source of noise [34].

It should be noted that compact, integrated sources of entangled photon pairs

have utility beyond quantum communications. For example, these devices can en-

able compact two photon interferometers for better optical sensing applications [57],

comprise sources for linear optical quantum computing, or be used in correlated pho-

ton metrology [42]. Of course, as with many quantum information technologies, the

most likely ’killer’ applications are the ones that have not yet been imagined.
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2.2 Birefringent phase-matched four wave mixing

As mentioned above, one of the main drawbacks to third-order processes for

entanglement generation is noise generated by Raman scattering. As Lin, et al.,

point out in their 2006 paper, one way to mitigate this effect is to generate signal

and idler pairs at the opposite polarization to the pump [35]. They show that the

Raman gain is insignificant at the orthogonal polarization. This polarization diver-

sity scheme has the added benefit of making it simpler to separate the signal-idler

pair from the pump with only a polarizer on the output. Per the proposal of Lin, et

al., we examine and demonstrate third-order nonlinearity in a semiconductor waveg-

uide using birefringent phase matching in order to generate correlated photon pairs

without the Raman noise. Furthermore, because the material that we investigate

is a crystalline semiconductor, the Raman noise generated is narrow band, as op-

posed to the broadband Raman noise produced in glass devices, further reducing

the interference from uncorrelated processes.

2.2.1 Linear and nonlinear optics

Before we present the details of the device, it behooves us to briefly review

the theory of nonlinear optics in general and four wave mixing in particular1. We

begin by considering a simple atom, comprised of a nucleus and an electron cloud,

in the presence of a time-dependent electric field. This system can be approximated

1This treatment is very cursory. For a much more detailed treatment of the nonlinear suscep-

tibility tensors, coupled wave equations, etc., see [13].
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by a mass on a spring, where the restoring force of the spring is analogous to the

Coulomb force that the electron experiences in the presence of the field. At first,

we will assume that this force is linear in the displacement. Like any good physics

derivation, we begin with Newton’s second law [43],

F = ma = mẍ(t) = −eE(t)− kx(t)− 2mγẋ(t) (2.1)

where the first term is the driving force, the second term is the restoring force, the

third term represents a damping loss term. Rearranging terms, we obtain the linear

differential equation

ẍ(t) + 2γẋ(t) + Ω2x(t) = − e

m
E(t) (2.2)

where Ω =
√

k
m

is defined as the natural oscillation frequency. If we assume that the

incident electric field is a monochromatic plane wave of the form E(t) = E0 cos(ωt) =

1
2
E0e

−iωt + c.c., then the AC steady state response of the atom is

x(t) =
eE0

2m (Ω2 − 2iγω − ω2)
e−iωt + c.c. (2.3)

Now that we know the response, consider a medium consisting of a large number

of these atoms in an isotropic, uniform distribution (for example, an atomic vapor),

with number density N . In such a medium, the macroscopic polarization of the

material in one dimension is defined as

P (t) = −Nex(t) (2.4)

where the factor of ex(t) represents the dipole moment of each individual atom.

Substituting the solution in 2.3 into 2.4, we obtain

P (t) =
Ne2E0

2m (Ω2 − 2iγω − ω2)
e−iωt + c.c. (2.5)
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=
1

2
P0e

−iωt + c.c.

where P0 = Ne2E0

m(Ω2−2iγω−ω2)
. In the frequency domain, we can write this as

P̂ (ω) = ε0χ
(1)(ω)Ê(ω) (2.6)

where P̂ (ω) and Ê(ω) are the Fourier transforms of P (t) and E(t) respectively, and

χ(1) is defined as the linear susceptibility of the material. Since E(t) is monochro-

matic, we know from 2.6 that

P0 = ε0χ
(1)(ω)E0 (2.7)

Comparing 2.7 to 2.5, we see that the linear susceptibility of the material is given

by

χ(1) =
Ne2

m (Ω2 − 2iγω − ω2)
(2.8)

Now consider the case where the restoring force is no longer linear in the

displacement (as we know to be the case), but instead some arbitrary function. We

can expand this function into a Taylor series and incorporate it into the differential

equation in 2.2, giving, again in one dimension,

mẍ(t) = −eE(t)−
[
k1x(t) + k2x

2(t) + k3x
3(t) + . . .

]
− 2mγẋ(t) (2.9)

Solving this nonlinear differential equation, we can write down the total polarization

of the material as P0 = P
(1)
0 + P

(2)
0 + P

(3)
0 + . . ., a sum of polarizations from each

term in the expansion, giving us

P
(1)
0 = ε0χ

(1)E0 (2.10)
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P
(2)
0 = ε0χ

(2)E2
0

P
(3)
0 = ε0χ

(3)E3
0

...

Until now our analysis has been entirely one-dimensional. Consider now the

case where the electric field and the polarization are full three-dimensional vectors.

In the linear case, 2.6 becomes

~P = ε0χ
(1) ~E (2.11)

where χ(1) is now a rank 2 tensor with nine elements. In full matrix notation, we

can write this as 

Px

Py

Pz


= ε0



χ(1)
xx χ(1)

xy χ(1)
xz

χ(1)
yx χ(1)

yy χ(1)
yz

χ(1)
zx χ(1)

zy χ(1)
zz





Ex

Ey

Ez


Using the Einstein notation, where sums over repeating subscripts are implied, we

can abbreviate this expression by

Pj = ε0χ
(1)
jk Ek (2.12)

Similarly, the nonlinear susceptibilities now become

P
(1)
j = ε0χ

(1)
jk Ek (2.13)

P
(2)
j = ε0χ

(2)
jklEkEl

P
(3)
j = ε0χ

(3)
jklmEkElEm

...
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where χ(2) and χ(3) are third and fourth rank tensors with 27 and 81 elements,

respectively. Also note that, for the purposes of this derivation, all waves were

assumed to be at one frequency, ω. When this is not valid (which is most of the

time), the susceptibilities would be functions of the various frequencies involved.

2.2.2 Third-order processes and four wave mixing

The second-order susceptibility is responsible for processes such as second

harmonic generation, parametric downconversion, and sum frequency generation,

among others. Because it involves three different wavelengths (hence the name three-

photon processes), and because conservation of energy dictates that the total photon

energy incident on the medium must equal the photon energy transmitted out of

the medium, the detuning between input and output wavelengths are often very

large, on the order of the wavelength itself. Additionally, because the second-order

susceptibility is related to the symmetric part of the restoring force (proportional to

x2), only materials that are non-centrosymmetric will exhibit second-order nonlinear

optical phenomena. Of the 32 crystal classes, only 21 fall into this category and will

have non-zero χ(2) elements. All others do not exhibit second-order or, in fact, any

even order behavior.

In this experiment we choose to focus on third-order processes for two reasons.

First, because of the nature of these four photon processes, the detuning between

input and output wavelengths can be much smaller. This helps in designing opti-

cal devices both because they do not have to operate over such a large spectrum
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and because achieving phase matching is significantly easier (this will be discussed

in more detail in the next section). In addition, all materials exhibit third-order

characteristics, opening up a larger field of possible materials with which to work.

One drawback to χ(3) processes, however, is that they are typically weaker than

second-order effects. Still, because phase matching is easier, it is possible to achieve

adequate interaction strength with simpler designs.

We will focus on the specific process of partially-degenerate four wave mixing,

where two photons at a pump wavelength are converted via the third-order nonlinear

susceptibility of the medium into two photons, generally called signal and idler pho-

tons, at frequencies slightly detuned longer and shorter than the pump wavelength.

To understand how this process occurs, consider again a centro-symmetric material

with an anharmonic response. Suppose, for simplicity, that a monochromatic plane

wave is incident on this material. Equation 2.9 still applies, albeit with k2 = 0. If

we take the perturbation approach, expanding x(t) = x(1)(t) + x(3)(t) + . . ., with

x(1) � x(3), then 2.9 becomes

d2

dt2

[
x(1)(t) + x(3)(t)

]
+ 2γ d

dt

[
x(1)(t) + x(3)(t)

]
+ Ω2

[
x(1)(t) + x(3)(t)

]
(2.14)

= − e
m
E(t)− k3

m

[
x(1)(t) + x(3)(t)

]3
Because x(3) is small, we can approximate the last term on the right hand side by

−k3
m

[
x(1)(t)

]3
. Subtracting 2.2 from 2.14, we obtain

ẍ(3)(t) + 2γẋ(3)(t) + Ω2x(3)(t) = −k3

m

[
x(1)(t)

]3
(2.15)

We can expand the right hand side, using the linear solution from 2.3, into

[
x(1)(t)

]3
=

[
1
8
x

(1)
0 x

(1)
0 x

(1)
0 e−i3ωt + c.c.

]
+
[

1
8
x

(1)
0

∗
x

(1)
0 x

(1)
0 e−iωt + c.c.

]
(2.16)
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+
[

1
4
x

(1)
0 x

(1)
0 x

(1)
0

∗
e−iωt + c.c.

]

The first term oscillates at three times the input frequency and is responsible for the

effect of third harmonic generation, while the second and third term oscillate at the

original input frequency. We can treat these two frequency components separately,

splitting the total polarization of the material into two parts, ~P (3)(3ω) and ~P (3)(ω).

Using the abbreviated Einstein notation, we can write these in terms of the third-

order nonlinear susceptibilities,

P
(3)
j (3ω) =

3

2
ε0χ

(3)
jklm(−3ω;ω, ω, ω)Ek(ω)El(ω)Em(ω) (2.17)

P
(3)
j (ω) =

3

4
ε0χ

(3)
jklm(−ω;ω, ω,−ω)Ek(ω)El(ω)E∗m(ω) (2.18)

where the factors of 3
2

and 3
4

are related to the degeneracies and symmetries of the

susceptibility tensor [13]. The second expression represents the third-order contri-

bution to the material polarization at the input frequency ω. As there is also a

contribution from the linear polarization, this perturbation results in an effective

index of refraction that is proportional to the input field intensity, resulting in the

optical Kerr effect [13].

So far we have only examined the simple case where the input field is monochro-

matic. However, consider the case where the input field is composed of two closely

spaced frequencies, a pump at ωp and a signal at ωs = ωp + δ, with the component

at the pump frequency significantly stronger than the component at the signal fre-

quency. It is not difficult to see that the resulting third-order polarization will have

components oscillating at a number of different frequencies, including the pump fre-

quency, the signal frequency, the third harmonics of both frequencies, and a new
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frequency, called the idler frequency, at ωi = ωp − δ. This polarization component

can be written as

P
(3)
j (ωi) =

3

2
ε0χ

(3)
jklm(−ωi;ωp, ωp,−ωs)Ek(ωp)El(ωp)E∗m(ωs) (2.19)

It should be noted that, nominally, the fourth-rank tensor χ(3) has 81 elements.

However, under certain reasonable assumptions about the material properties, as

well as the symmetry properties of nonlinear susceptibility tensors, we can describe

the third-order susceptibility by only two numbers, χ(3)
xxxx and χ(3)

xxyy, where the

first number represents the strength of processes where the pump and signal are

co-polarized, and the second number represents the case where the two are cross-

polarized. Note that these assumptions are only valid for semiconductor materials

with cubic symmetry in spectral regions where they are essentially lossless. In fact,

in isotropic materials such as glass, we can reduce the tensor even further with

the relation χ(3)
xxyy = 1

3
χ(3)
xxxx. However, for the cubic semiconductors in which we

are interested for this experiment, there is no analytical relationship between the

two and we must rely on experimental measurements to determine the interaction

strength of cross-polarized processes.

In order to examine the behavior of the idler with respect to the other signals,

we must derive a set of coupled wave equations describing the joint evolution of the

electromagnetic fields as they propagate through the medium[70]. We begin with

Maxwell’s equations for a non-conducting, non-magnetic material,

5× ~E = −∂
~B

∂t
(2.20)

5× ~H =
∂ ~D

∂t
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5 · ~D = 0

5 · ~B = 0

Combining the first two, we obtain

5×5× ~E = −µ0
∂

∂t

(
5× ~H

)
(2.21)

= −µ0
∂2 ~D

∂t2

We know that, by definition, ~D = ε0 ~E + ~P . Substituting, we obtain

5×5× ~E + µ0ε0
∂2 ~E

∂t2
= −µ0

∂2 ~P

∂t2
(2.22)

The polarization, ~P = ~P (linear) + ~P (NL), can be written as separate linear and

nonlinear parts. If we consider only the nonlinear part of the polarization, then 2.22

simplifies to

52 ~E − n2

c2

∂2 ~E

∂t2
= µ0

∂2 ~P (NL)

∂t2
(2.23)

With the nonlinear polarization described above, we can use this wave equation

to examine the evolution of the electromagnetic wave as it propagates through the

material. Consider that the wave has the form

Ej(~r, t) =
1

2
Aj(z)U(x, y)eikjz−ωjt + c.c. (2.24)

where j = p, s, i is the index of each component (pump, signal, and idler). Note

that the wave is factored into a slowly-varying envelope Aj(z), a transverse mode

U(x, y), and complex phasor. We make the following assumptions: First, that all

of the waves are co-polarized, allowing us to treat the field in one dimension; we

will revisit this assumption later. Second, we will assume that all U(x, y) are the
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same for each component of the field, which is a valid assumption for closely spaced

frequencies in a single-mode waveguide. Finally, we will assume that As, Ai � Ap,

that is, the pump field is much stronger than the signal and idler fields. This allow

for two simplifications - first, we can assume that the pump is undepleted by the

parametric process. Second, when considering the nonlinear polarization, we can

ignore any terms that result from the product of the signal and/or idler fields, only

keeping terms that involve products with the pump field. This results in three

expressions for the nonlinear polarization.

P (ωp) = ξp(t) |Ap|2Ap (2.25)

P (ωs) = σs
[
2 |Ap|2As + A2

pA
∗
i ξs(t)

]
P (ωi) = σi

[
2 |Ap|2Ai + A2

pA
∗
sξs(t)

]

where we have simplified the notation2 by incorporating all of the constants such

as the susceptibility, c, ε0, etc., into the respective σp,s,i and rewriting all of the

time-dependent phasors as the various ξp,s,i(t). Since we assume that the pump

remains undepleted throughout the process, the only term that remains is the one

responsible for self-phase modulation. In the polarizations of the signal and idler,

two terms remain significant - the cross-phase modulation from the pump signal,

represented by the first term, and the four-wave mixing term that is the subject of

this analysis.

We can now substitute 2.24 and 2.25 into 2.23 to obtain three differential equa-

tions describing the coupled evolution of the electromagnetic field as it propagates

2This notation is similar to that used in [70].
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through the medium. Under the assumption that the envelopes Ap,s,i are slowly

varying compared to the frequencies ωp,s,i, we can say that

∣∣∣∣∣ ∂2

∂z2
Ap,s,i

∣∣∣∣∣�
∣∣∣∣∣kp,s,i ∂∂zAp,s,i

∣∣∣∣∣ (2.26)

This allows us to ignore all of the second-order derivatives. If we further assume

that the medium is lossless and that the phase-matching conditions are met (2kp −

ks − ki = 2ωp − ωs − ωi = 0), this gives us

dAp
dz

=
3iω2

pχ
(3)
xxxx

2kpc2
|Ap|2Ap (2.27)

dAs
dz

=
3iω2

sχ
(3)
xxxx

2ksc2

(
2 |Ap|2As + A2

pA
∗
i

)
dAi
dz

=
3iω2

i χ
(3)
xxxx

2kic2

(
2 |Ap|2Ai + A2

pA
∗
s

)

We can readily solve the first equation in 2.27, giving

Ap(z) = Ap(0)eiφ(z) (2.28)

φ(z) =
3iω2

pχ
(3)
xxxx

2kpc2
|Ap|2 z

With the proper substitutions for the nonlinear index n2 = 3χ
(3)
xxxx

4n2
0ε0c

and the various

factors relating Ap to the pump power P0, we can show that the phase function φ(z)

in 2.28 can be written as

φ(z) = γP0z (2.29)

where γ = 2πn2

λAeff
is the nonlinear parameter indicating the strength of the nonlinear

interaction and Aeff is the effective mode area. This expression γP0z appears often

in parametric nonlinear processes. The parametric gain in four-wave mixing, as we

will show, is given by G = |γP0z|2. Since we are keen to deal in the regime where
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both the signal and idler signals are composed of single photons, we can make the

valid assumption that |γP0z|2 � 1 and that both the self-phase and cross-phase

modulation are small.

Using this solution in 2.28 and 2.29, we can reduce the number of coupled

equations from three to two, allowing us to write, to first-order approximation, the

following coupled equations describing the evolution of the signal and idler beams:

dAs
dz

= iγP0 (As + A∗i ) (2.30)

dA∗i
dz

= −iγP0 (A∗s + Ai)

Collecting terms, we can show that

d

dz
(As + A∗i ) = 0 (2.31)

d

dz
(As − A∗i ) = 2iγP0 (As + A∗i )

We can solve these differential equations to obtain

As(z) + A∗i (z) = As(0) + A∗i (0) (2.32)

As(z)− A∗i (z) = (As(0)− A∗i (0)) + 2iγP0z (As(0) + A∗i (0))

Solving for the signal and idler envelopes under the intitial conditions of As(0) = A0

and A∗i (0) = 0 gives us

As(z) = (1 + γP0z)A0 (2.33)

A∗i (z) = γP0zA0

Note that these expressions assume perfect phase matching, as well as co-polarization

of all of the beams. These assumptions will be revisited in later sections, but suffice

to say they are valid in understanding what is meant by correlated photons.
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2.2.3 Parametric gain, photon correlation, and spontaneous pair gen-

eration

From the coupled equations in 2.33, we can see, as indicated above, that the

parametric gain at the signal and idler wavelengths is the same. That is, for a

device of length L with an initial signal input of As(0) and a pump power of P0, the

parametric gain is given by

G =
|A∗i (L)|2

|As(0)|2
= |γP0L|2 (2.34)

The fact that these intensities increase by the same amount is a first indication of

what is meant by correlated photons. More deeply, however, we can consider what

happens to the coupled wave equations when we quantize the signal and idler fields

and consider them on the single-photon level. We define the signal and idler field

operators in the usual way [37]:

Ês(z, t) =

√
h̄ωs
2ε0V

(
âs(t)e

i(ksz−ωst) + â†s(t)e
−i(ksz−ωst)

)
(2.35)

Êi(z, t) =

√
h̄ωi

2ε0V

(
âi(t)e

i(kiz−ωit) + â†i (t)e
−i(kiz−ωit)

)

where V is the mode volume. Note that the creation and annihilation operators

satisfy the commutation relations

[
âi(t), â

†
j(t)

]
= δij (2.36)

[âi(t), âj(t)] = 0

for i, j = s, i. Since all of the waves are close together, we can make the assumption

that ωs ≈ ωi ≈ ωp = ω. Using this assumption, we can write the interaction
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Hamiltonian for the parametric four-wave mixing process as

Ĥint =
h̄ωγP0c

n

(
â†sâs + â†i âi + â†sâ

†
i + âsâi

)
(2.37)

Since we want to find the time-evolution of the field operators, we can use the

Heisenberg equation of motion to show that

ih̄
d

dt
âs =

[
âs, Ĥint

]
(2.38)

=
h̄ωγP0c

n

([
âs, â

†
s

]
âs +

[
âs, â

†
s

]
â†i
)

ih̄
d

dt
â†i =

[
â†i , Ĥint

]
=

h̄ωγP0c

n

([
â†i , âi

]
âs +

[
â†i , âi

]
â†i
)

These expressions give us the coupled equations for time evolution of the signal and

idler field operators:

d

dt
âs =

−iγP0c

n

(
âs + â†i

)
(2.39)

d

dt
â†i =

iγP0c

n

(
âs + â†i

)

Solving these in a similar manner to the classical case above, we obtain

âs(t) = µâs(0) + νâ†i (0) (2.40)

â†i (t) = ν∗âs(0) + µ∗â†i (0)

where µ = 1− iγP0ct
n

and ν = −iγP0ct
n

. From 2.39 and 2.36, we find that

∂

∂t
(n̂s(t)− n̂i(t)) =

∂

∂t

(
â†s(t)âs(t)− a

†
i (t)âi(t)

)
(2.41)

= a†s(t)
∂

∂t
âs(t) +

(
∂

∂t
â†s(t)

)
âs(t)

−a†i (t)
∂

∂t
âi(t)−

(
∂

∂t
â†i (t)

)
âi(t) = 0
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This implies that the difference in the number operators (defined as n̂j = â†j âj for

j = s, i) of the signal and idler fields n̂s(k, t)− n̂i(k, t) is a constant of motion. More

plainly, it indicates that whenever a signal photon is created, an idler photon will

be created as well. This is the fundamental meaning of correlated photon pairs.

In addition to their correlation, we must examine how these pairs can be

generated spontaneously. Using the solutions in 2.40, let us examine the case when

there is nothing but vacuum fluctuations present at signal and idler modes at z = 0.

Noting that âj â
†
j = 1̂, the vacuum matrix element of the signal number operator at

time t = nL
c

becomes (after some algebra)

〈
0s, 0i

∣∣∣∣ n̂s (nLc
) ∣∣∣∣ 0s, 0i〉 =

〈
0s, 0i

∣∣∣∣ â†s (nLc
)
âs

(
nL

c

) ∣∣∣∣ 0s, 0i〉 (2.42)

= |ν|2 = |γP0L|2

Thus we can see that, even in the presence of nothing but vacuum fluctuations on

the signal input, signal photons are generated spontaneously. Additionally, since

we have shown that signal and idler photons are always generated in pairs, we

have established a mathematical basis for the spontaneous generation of correlated

photon pairs.3

3Classically, we can show from the Manley-Rowe relations [38] that the photon flux in each beam

is correlated, i.e., d
dz

(
Is

ωs

)
= d

dz

(
Ii

ωi

)
= −2 d

dz

(
Ip

ωp

)
, where Ip,s,i are the intensities of the pump,

signal, and idler beams respectively. However, by treating the beams quantum mechanically, we

can quantify a measure of the correlation, as we will do in later sections.
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2.2.4 Birefringent phase matching and the cross-polarized suscepti-

bility tensor element

In the derivation above, we have established that, under certain assumed con-

ditions, spontaneous pairs of correlated photons are generated via four-wave mixing.

However, a number of the assumptions made above are non-trivial. First, we as-

sumed that all of the waves are co-polarized. While violating this assumption does

not necessarily void the above result, it does change some of the interaction coef-

ficients. Specifically, the definitions of n2 and γ are based on the real part of the

tensor element χ(3)
xxxx. If, for example, we used a process that involved pump photons

at one polarization interacting with signal and idler photons at another wavelength,

these parameters would have to be defined in terms of the χ(3)
xxyy tensor element. In

an isotropic medium, such as a glass optical fiber, the relationship is well-known

to be χ(3)
xxyy = 1

3
χ(3)
xxxx. However, for cubic semiconductors such as Si, GaAs, and

AlGaAs, there is no analytical relationship. There are some experimental results

that provide estimates of the ratio
χ

(3)
xxyy

χ
(3)
xxxx

, but they range from 0.25 to over 0.9 and

are inconclusive [16], [21]. An estimate of this ratio is one of the immediate goals of

this project. For comparison, Table 2.1 compares the published n2 values for various

common optical materials.

While using interacting fields at orthogonal polarizations leads to uncertainty

in the strength of the interaction, it does offer a number of advantages in a practical

nonlinear device. From an experimental point of view, generating the signal and

idler orthogonal to the pump allows for easier elimination of the pump beam, starting
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Table 2.1: A comparison of the nonlinear refractive indices of different materials

[13], [19], [33]. Co-polarized processes are strongest in AlGaAs, but the strength of

cross-polarized processes is unknown.

Material n2 in m2/W

Silica 2.8× 10−20

Silicon 5× 10−18

AlGaAs 3.4× 10−17

with a simple polarizer on the output of the device. More importantly, however,

generating the signal and idler orthogonally polarized to the pump allows for better

elimination of Raman noise. As Lin, et al., point out in [35], the limiting factor in

most fiber-based entanglement generation systems is noise from broadband Raman

scattering in the medium. The Raman gain is mainly polarized in the direction of the

pump beam, with negligible Raman noise generated at the orthogonal polarization.

Hence they propose using birefringent phase matched four wave mixing as a way

to eliminate Raman noise in entanglement generation systems. For this reason,

we choose to focus our experiment on using birefringent phase-matched four-wave

mixing in a semiconductor waveguide as a method to generate entanglement without

interference from Raman noise.

Birefringent phase matching is certainly not a new idea [61]. However, it

has yet to be examined as a method to generate correlated pairs, especially in a
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semiconductor waveguide. It is not well established that birefringence is something

that is easily designed into a waveguide, as the typical goal of integrated photonics

design is to eliminate birefringence altogether. In addition, it is not obvious how to

use linearly co-polarized correlated photon pairs to generate entanglement. Though

ways do exist, whether they are practical and efficient has yet to be determined.

How does the approach of birefringent phase matching relate to the analysis

above? Recall that we assumed that the phase mismatch, ∆k = 2kp − ks − ki, was

zero, giving us a parametric gain of G = |γP0L|2. If ∆k 6= 0, then one can show

that the expression for parametric gain becomes

G = |γP0L|2 ·
sin2

(
1
2
∆kL

)
(

1
2
∆kL

)2 (2.43)

Because this additional factor approaches zero very rapidly for any ∆k 6= 0, it

becomes imperative that the system be designed such that the phase mismatch

is truly zero. This becomes the challenge in most nonlinear optics experiments

involving dispersive media, and many diverse approaches exist4. In the case of

birefringent phase matching, we can write the phase mismatch as

∆k = 2π

[
2

λp
nx(λp)−

1

λs
ny(λs)−

1

λi
ny(λi)

]
(2.44)

The phase matching condition is tantamount to setting ∆k = 0 in this expression.

Note that the index of refraction at the x and y polarization are different and

wavelength-dependent.

4For a discussion of the various phase-matching techniques, including angle tuning, quasi-phase

matching, and dispersion tailoring, see [13] and [65].
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2.2.5 Figure of merit and the effects of linear and nonlinear loss

The above analysis assumes negligible linear loss and two-photon absorption.

The presence of significant absorption can strongly affect the correlated pair gen-

eration efficiency. To understand how these effects enter into the analysis, we can

introduce a measure of the correlation of changes in the signal and idler fields [24],

defined as

C =
〈n̂sn̂i〉 − 〈n̂s〉 〈n̂i〉
〈n̂2

s〉 − 〈n̂2
i 〉

(2.45)

In the absence of loss, this expression becomes C = |µ|2

|ν|2+1
= 1. We can also compute

the value of C in the presence of linear loss. First, we redefine the creation and

annihilation operators to include linear loss:

b̂s,i =
√
ηâs,i + ξ̂ (2.46)

where η is a parameter representing linear loss (close to unity) and ξ̂ is the noise

operator required to maintain the commutation relation
[
b̂i, b̂

†
j

]
= δi,j for i, j = s, i.

ξ itself satisfies the commutator
[
ξ̂, ξ̂†

]
= 1− η. Using these new operators, we can

show that C becomes

C =
η2 |µ|2

η2 |ν|2 + 1
=
η2
(
|ν|2 + 1

)
η2 |ν|2 + 1

≈ η2 (2.47)

since we assume |ν|2 << 1. We see that the correlation scales with η2, and η is

close to but less than unity, so the photons become decorrelated quite quickly as

the linear loss increases.

For a material with appreciable two-photon absorption, we can show that the
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correlation function becomes

C =
|ν|2 + e−2βP0z

|ν|2 + 1
(2.48)

where β is the 2PA coefficient. In this case, as the mean photon number increases

with the presence of significant 2PA, the correlation rapidly decreases.

To estimate the impact of 2PA on correlated photon generation, we can define

a figure of merit to compare the relative strengths of 4WM and 2PA:

f =

(
2πn2

λβ

)2

(2.49)

If f is greater than unity, then we can assume that 4WM will dominate 2PA and

the device will potentially be useful as a source of correlated photon pairs.

2.3 Device design and fabrication

2.3.1 Wavelength and material selection

In order to fabricate an actual device to perform 4WM, we must first select

a wavelength at which to operate. We determine the operating wavelength based

on the following criteria: First, that the system be compatible with Si SPADs. We

demand this simply because single-photon measurements are much more straightfor-

ward using Si SPADs than measurements made, for example, at C-band wavelengths

with cooled InGaAs detectors. Second, the operating wavelength must be compati-

ble with free-space quantum key distribution; that is, it must not fall within a water

absorption band in the atmosphere. Finally, we must select a wavelength for which

optics are available. Of the possibilities, the wavelength that best satisfies these
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criteria is 780 nm. It lies well within the efficient absorption spectrum of Si SPADs,

it propagates readily through the atmosphere (as shown in Figure 2.1), and it also

happens to be a rubidium absorption line, so optics are readily available at that

wavelength.

Having chosen 780 nm as the center wavelength for the device, we must choose

a semiconductor material that is transparent in that region. The obvious candidate

is aluminum gallium arsenide, the preferred photonic material for that wavelength.

The empirical relationship of the bandgap energy in eV to the aluminum content

for AlxGa1−xAs is given by[1]

Eg = 1.424 + 1.266x+ 0.26x2 (2.50)

Using this expression, we can choose a material composition that is transparent at

780 nm, or a photon energy of 1.59 eV. We want this photon energy to be roughly

20% lower than the bandgap energy of the material. Solving backwards indicates

that a waveguide with roughly 30% aluminum should suffice, with a bandgap energy

of 1.798 eV. This choice of material serves as our starting point for designing the

device.
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Figure 2.1: A MODTRAN plot of the atmospheric transmission around 780 nm.

Note that the wavelength range of interest does not contain any water absorption

lines. For more details on MODTRAN, see chapter 4.
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2.3.2 Birefringence and detuning estimation

The next step in the design process involves choosing a range in which we

want to generate photon pairs, and determining the birefringence required to achieve

such pump-signal detuning. In order to make this determination, we can use the

temperature-dependent Sellmeier equations of Gehrsitz, et al.[23], for AlGaAs with

arbitrary aluminum content. The full calculation of the index of refraction as a

function of the wavelength, aluminum content, and temperature is not trivial. An

implementation of the calculation in MATLAB compatible C code is included in

Appendix A. We can use this code, along with the expression for the phase mismatch

in 2.44, to estimate the birefringence required to achieve phase matching. Setting

∆k = 0 in 2.44 and solving for the birefringence, δn = nx − ny gives us

δn =
λsλi
λs + λi

(
2n(λp)

λp
− n(λs)

λs
− n(λi)

λi

)
(2.51)

where n(λ) is the Sellemeir equation for bulk AlGaAs from [23], assuming 30% alu-

minum at a temperature of 300 K. A plot of this curve is shown in Figure 2.2. Of

course, this calculation makes a number of assumptions, the most cavalier (though

not unreasonable) assumes that the birefringence is constant with wavelength. Still,

the plot in Figure 2.2 provides us with at least an estimate of the range of birefrin-

gence to which we must design the device.

When choosing the pair generation wavelengths, we must consider both ex-

perimental practicalities and proper operation device. As the detuning decreases,

we are limited by the ability to experimentally separate the pump, signal, and idler

photons in the spectral domain. This ostensibly limits the detuning to at least 3
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nm, implying the device should have a birefringence of at least δn = 10−4. In the

other direction, we wish to avoid noise due to Raman interference, one of the moti-

vations behind pursuing a birefringent process. One advantage of using a crystalline

semiconductor over an amorphous glass is the strong localization of the Raman

spectrum. Data outlined in Holtz, et al.[27], suggests that AlGaAs has LO phonon

peaks at approximately 300 cm−1, which corresponds to peaks between 10 and 20

nm detuned from a 780 nm pump. Hence when designing our device, we should limit

the pump-signal detuning to less than the detuning of the Raman peaks5. From the

plot in Figure 2.2, we see that the upper bound on our detuning implies that the

device birefringence should remain less than δn = 10−3.

5It is preferable, at least for optical fibers, to operate at detunings smaller than the Raman

scattering peaks, as outside the Raman band the nonlinear gain for four photon mixing is lower

[35]. It is also desirable to have smaller detunings since designing a waveguide for closely-spaced

wavelengths is much more straightforward.
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Figure 2.2: A plot of the required birefringence to achieve perfect phase matching

as a function of the desired pump-signal detuning. The calculations show that

the phasematching is sensitive primarily to the birefringence - the precise pump

wavelength has little effect on the curve.
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2.3.3 Form birefringence, layer structure, and feature size determi-

nation

The design requirements dictate that the detuning fall within the range of

10−4 < δn < 10−3. This range of values is rather small in the context of integrated

photonics and is on the order of the birefringence observed in AlGaAs waveguides

due simply to strain in the material[66]. It is not trivial to design a waveguide with

such a small but precisely defined birefringence. In fact, often the goal of integrated

photonic designs is to eliminate birefringence altogether. Hence one of the primary

goals of this project is to demonstrate the ability to design a waveguide with a

small but predictable and controllable birefringence. To do this, the most obvious

approach is to use the property of form birefringence. This phenomenon occurs

when a material consists of layers of alternating index of refraction. Consider a

structure consisting of alternating layers of different bulk isotropic materials A and

B, where material A has layer thickness tA and index nA, and material B has layer

thickness tB and index nB. The structure is depicted in Figure 2.3. Given this

composite material, the induced birefringence from the alternating layers is given

by

n2
e − n2

o = −fAfB (n2
A − n2

B)
2

fAn2
B + fBn2

A

(2.52)

where no and ne are the ordinary and extraordinary indices of refraction of the

composite material, and fA = tA
tA+tB

and fB = tB
tA+tB

are the fractional thicknesses

of the A and B layers[12].

Using this concept, we can create a device with a core region that consists
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of alternating layers with slightly different aluminum content, creating an artificial

birefringence that is controllable by the material properties. In addition, if we use a

rib waveguide (which is the simplest waveguide design and the one that we will use),

we can have further control over the birefringence by varying the width of the rib

and thus controlling the aspect ratio of the guided mode. However, this results in a

tradeoff between higher birefringence and less efficient input and output coupling;

the efficiency is controlled by the overlap integral of the mode with a presumably

gaussian beam, and a high aspect ratio mode results in a smaller coupling efficiency.

Hence the goal is to create a birefringent mode with an aspect ratio as close to unity

as possible.

There is another limitation on the feature size in addition to the mode prop-

erties. Because of the sensitivity of correlated pair generation to linear loss, the

device must be designed to have as low a linear loss as possible while still remaining

single mode. The lower limit on feature size is a product of limitations in the etch-

ing process during fabrication; exposure of the mask and the chemical etch process

create features with roughness on the sidewalls. Hence it is good practice to limit

the waveguide to a 2 µm rib width in order to maintain good guiding properties.

In addition, we choose to design the device so that the mode is guided beneath the

device surface in order to further mitigate losses due to surface roughness.

The last design consideration when laying out the waveguides is the very prac-

tical one of cost. As mentioned above, rib waveguides are the simplest designs to

fabricate. Thus we choose to pursue designs based on this waveguide structure. The

more important consideration, however, is the cost of the mask. Masks are one of
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the most expensive components in semiconductor fabrication, so the ability to use

an existing mask significantly reduces the cost and time of fabrication. Because of

the risky nature of this project, we chose to base our design upon an existing mask,

shown in Figure 2.4. This mask consists of ribs that vary from 2.0 to 7.0 µm in

0.5 µm steps, allowing us to test a range of devices until we find one that has the

proper birefringence.

All of these considerations were taken into account and put into the design

model. We simulated a myriad of various layer structures and finally settled on

the device design shown in Figure 2.5. The structure is relatively simple to grow

via molecular beam epitaxy, involving only various alloys of AlGaAs. The layer

thicknesses are controllable in MBE to within monolayers, providing much finer

precision than necessary. The aluminum concentrations can vary during the process

and must be calibrated but are nominally controllable to within a few percent. More

important, the relative aluminum concentrations that are critical to determining the

form birefringence can be controlled to greater accuracy than the absolute aluminum

concentrations.

This layer structure was verified by computional modeling to have the proper

birefringence for devices ranging from 2 to 7 µm. A solution for the lowest order

mode, from the OWMS commercial mode solving software, is shown in Figure 2.6.

Plots of the birefringence versus rib width are shown in Figure 2.7. The plots show

that the devices should have a birefringence within the desired range, while guiding

only a single mode with a reasonably small aspect ratio.
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Figure 2.3: A cartoon of a material with form birefringence, consisting of alternating

layers of isotropic materials with different indices and thicknesses. It is assumed that

λ
nA,B

>> tA,B
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Figure 2.4: A partial schematic of the mask used to fabricate the chip. The chip

consists of a series of waveguides of different rib widths (indicated by the numbers,

in microns).
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Figure 2.5: The layer structure settled on during modeling, showing a multi-layer

birefringent core buried 100 nm beneath the surface. The lateral confinement is

achieved by a rib above the core. Varying this rib width changes the overall bire-

fringence of the mode.
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Figure 2.6: An image of the computed lowest order mode generated by OWMS.
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Figure 2.7: A plot of a sample of OWMS modeling results, showing the computed

birefringence for various rib widths and core thicknesses. The modeling indicates

that we can expect a birefringence in the target range using this structure.
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2.3.4 Device fabrication and X-ray analysis

Given the design outlined above, the first step in the fabrication process in-

volved growing the material on a GaAs wafer using MBE6. Two superlattice layers

were first grown on the GaAs substrate and were used for calibrating the aluminum

content and growth rate using Reflection High Energy Electron Diffraction. RHEED

is a technique that uses electron diffraction from surfaces to calibrate the number

of monolayers present during growth; diffraction energy peaks when the surface is

covered with 50% of one monolayer and is at a minimum when the monolayer is

completely filled. By monitoring the oscillations in the RHEED energy, one can de-

termine the growth time required for one monolayer of material growth. The defect

count in the final growth was approximately 100 per sq. cm.

The material composition was verified using X-ray diffraction. As indicated

above, there is some uncertainty in the actual aluminum content achieved during

growth, but the relative percentages are very precisely controlled. Thus by verifying

the aluminum percentage of one layer, one can be reasonably sure that the aluminum

content of the other layers is shifted by the same amount. The X-ray data are shown

in Figure 2.8. They indicate (as explained in the caption) that the final aluminum

content is only 3% higher than intended in the recipe.

The device patterning was performed using a photoresist pattern and a chlorine-

6The fabrication of the device was perform by the very adept Dr. Chris Richardson in the

state-of-the-art III-V semiconductor fabrication facilities located at the Laboratory for Physical

Sciences in College Park, MD. The information in this section is adapted from his report, located

at http://www.quantumcollective.org.
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based etch in an inductively coupled plasma etch tool. The final devices have widths

of 2.15, 2.62, 3.11, 4.7, 5.1, 5.7, and 6.2 µm, as measured by scanning electron mi-

croscopy. An SEM image of the 2.5 µm device is shown in Figure 2.9.
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Figure 2.8: X-ray diffraction data from measurements of the final growth. The

technique involves measuring the diffracted X-ray power as a function of the angle of

incidence on the wafer and essentially determines the lattice constant. The data are

interpreted by computing an expected curve based on the intended growth recipe,

then modifying the layer contents in the model until it fits reasonably well with

the experimental data. The peak on the left is from the cladding layers, which

dominate the diffraction due to their relatively large thickness. The location of this

peak corresponds to an aluminum content of 49%, 3% higher than was intended.

From this we can infer that the core layers are at 33% and 43%.

50



Figure 2.9: An SEM cross-section of one of the devices, showing the measured

dimensions of each feature. The core layers and GaAs substrate are visible below

the surface. The halo is due to the non-conducting properties of the uncoated

material and the dirt on the device can safely be ignored.
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2.4 Tests of birefringence, loss, and nonlinearity

2.4.1 Birefringence measurements and further modeling

The first experiment required to validate the operation of the device is a mea-

surement of its birefringence. There are a number of ways to measure birefringence.

One involves measuring the Fabry-Perot fringes of the waveguide with reflective

facets at both polarizations, measuring the difference in fringe spacing between the

two to determine the birefringence [62]. However, because the devices are at most

8 mm long, the fringe spacing is beyond the resolution of most optical spectrum

analyzers. Alternatively, one can use a setup similar to a Lyot filter, where the

device under test is placed between two crossed polarizers oriented 45o with respect

to the birefringent axes of the device and pumped with a broadband light source. In

this configuration, the birefringent waveguide rotates the 45o polarized light by an

amount that depends on the wavelength, allowing more or less light to pass through

an analyzer oriented at −45o. The result is a series of spectral fringes whose spacing

depends on the birefringence of the device. If the analyzer is rotated by 90o, the

fringes invert, allowing us to accurately determine the spacing using the crossing

points of the two spectra. There is one problem with this method; for such a small

birefringence, we only expect to see part of one fringe, making it very difficult to

measure the fringe spacing. In order to compensate, we insert a birefringent potas-

sium diphosphide, or KDP, crystal with the same orientation as the waveguide. By

measuring the crystal’s birefringence independently first, we can then add the waveg-

uide and measure the change. Because the two axes are aligned, the birefringence
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is purely additive, and the magnitude of the change in fringe spacing corresponds

directly to the birefringence. To understand how this occurs, consider the intensity

as a function of the wavelength, determined from the product of the Jones matrices

for the setup as shown in Figure 2.10:

I(λ) =

∣∣∣∣∣∣∣∣∣∣
1

2

 1

−1


T  e

iπδn0L0
λ 0

0 e
−iπδn0L0

λ
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λ 0

0 e
−iπδnL

λ
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1


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2

= 2 sin2
(
π

λ
(δn0L0 + δnL)

)
= 2 sin2

(
k

2
(δn0L0 + δnL)

)
(2.53)

where δn0 and L0 are the birefringence and length of the KDP crystal, δn and

L are the birefringence and length of the waveguide, and k is the wavenumber

corresponding to the wavelength λ. The resulting spectrum should show fringes that

are spaced linearly in the wavenumber, whose period is a sum of the birefringence

of the crystal and the waveguide. If we measure the birefringence of the crystal

independently, we can subtract it out to determine the birefringence only due to the

waveguide using the following expressions:

δn0 =
π

L0∆K0

(2.54)

δn =
∣∣∣∣ π

L∆K
− L0

L
δn0

∣∣∣∣
where ∆k0 is the fringe spacing without the waveguide and ∆k is the fringe spacing

with waveguide added.

A sample scan of one device is shown in Figure 2.11. Also shown is a scan of

the KDP alone. Determining the birefringence from these data is nontrivial. First,
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one must replot the data in terms of wavenumber, then read off the position of each

point where the crossed- and co-polarized spectra coincide. This gives an accurate

determination of the position of each fringe. Plotting that position as a function

of fringe number gives a nominally straight line whose slope is equal to the fringe

spacing. We can then plot the lines of the various devices, measuring the difference

in slope between the the line for the device and the line for the KDP only. The

birefringence measurement of the KDP alone agreed to within 10% of the published

value in [44]. This is a good validation of the measurement technique. The plots

for the various devices under test are shown in Figure 2.12, along with a plot of the

determined birefringence of each device. Note that all of the devices 3 µm and wider

appear to be multimode, and the measured birefringence matches reasonably well

with simulations of higher order modes. The fact that the devices are multimode

was confirmed with microscope images of the output facets taken while the devices

were illuminated. However, the 2.5 µm device appears to be single mode and has

a birefringence of 4.4 × 10−4, well within the target range of the design. Thus this

device appears to be a good candidate with which to proceed.

In order to determine precisely where this device should be phase matched

and how well we can control the birefringence, we ran more accurate models of the

2.5 µm device. Instead of using the previous commercial modesolving software, we

employed the MATLAB waveguide modesolver of Professor Tom Murphy[18]. In

addition to being open source, this code provides scripting ability, enabling us to

automate its execution for a series of wavelegnths to generate full dispersion curves.

We can also incorporate the temperature-dependent Sellmeier equations discussed
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above into the model to obtain a more accurate description of the material. We

implemented this code, compiled into an executable, and ran it on a Dell PowerEdge

workstation with 12 GB of RAM in order to determine the full dispersion curves

shown in Figure 2.15. We modeled two separate devices: The first, as we originally

designed it, with the target aluminum contents and feature sizes. The second model

was run using the measured aluminum content and feature size from the final 2.5 µm

device. As the data shows, the change in aluminum content results in a significant

shift in the overall index of the device. However, taking the difference of the two

curves shows that the birefringence of the device is not significantly different. In

fact, if we extrapolate the red curve to the wavelength where the birefringence

measurement was made, we see that it matches to within 10%. This indicates that

the modeling is a very accurate way to predict device birefringence and shows that

one can design a waveguide to a specific birefringence without uncertainties due to

growth effects such as strain. This is a very promising result for future work on

similar devices and for the modeling capabilities as well.

We can further use these dispersion curves to calculate the phase-matched

detuning that we expect. The results of this calculation are shown in Figure 2.16.

The two curves correspond to the device as designed and as fabricated and show only

a shift of less than 0.5 nm in the phase matched wavelength. This is also a promising

result, as it shows that the phase matching wavelength is not terribly sensitive to

fabrication tolerances. Judging from this data, we expect to see correlated pairs

detuned between 9 and 9.5 nm from the pump wavelength with a bandwidth of 0.4

nm.
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Figure 2.10: The setup used to measure birefringence. The birefringence of the

device is determined by observing the change in the fringe spacing between scans

with only the KDP crystal and with both the crystal and the waveguide.
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Figure 2.11: A sample of the spectrum of a 3 µm device, showing the fringes with

the output analyzer both cross- and co-polarized to the input polarizer.
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Figure 2.12: Plots of the fringe spacing for a series of devices. Verifying that these

results are statistically significant, the slope of the line for the KDP only was mea-

sured to be 154.3 ± 1.2, while the 2.5µm device has a slope of 151.38 ± 0.67, or

approximately six standard deviations lower.
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Figure 2.13: The final results of the birefringence measurement, showing that most of

the devices are actually multimode with an order of magnitude greater birefringence

than the design goal. The 2.5 µm device, however, exhibited a birefringence in the

design target range.
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Figure 2.14: Microscope images of the mode outputs of various devices, showing

that the devices wider than 2.5 µm are indeed multimode.
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Figure 2.15: A more in-depth look at the modeling of the 2.5 µm device using Pro-

fessor Tom Murphy’s MATLAB modesolver [18] with material dispersion modeling

included (see Appendix A). While the variation in aluminum content during growth

shifted the dispersion curve, the actual birefringence seemed to be unaffected
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Figure 2.16: A plot of the predicted phase-matching peaks for both the device as

designed and as fabricated. We expect to see 4WM phase matched at between 9

and 9.5 nm detuned from the pump, with little effect from fabrication tolerances.
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2.4.2 The PPLN pump source

In order to probe the nonlinear properties of this device, we need a high

power pump source at 780 nm. While a number of choices exist, we chose a bulk,

periodically poled lithium niobate crystal to frequency double a 1560 nm fiber laser7.

This offers some practical advantages over a titanium sapphire laser mainly in cost

and compactness. We obtained a 35 mm long MgO:PPLN bulk crystal with 5 poling

periods ranging from 18.0 to 19.0 µm. We chose 19 µm as the poling period primarily

because it is the largest and most easily identified track on the crystal. To achieve

phase matching at 780 nm and to avoid photorefractive damage of the crystal, we

determined using the SNLO software[60] that the crystal must be heated to 176o C.

The first version of the PPLN pump source is shown in Figure 2.17. Data showing

measurements of the output are shown in Figure 2.18. The data shows that, when

pumped at the optimal wavelength of 1557.03 nm, it is possible to achieve almost

20% conversion efficiency. We further verified that the acceptance bandwidth of the

PPLN is 0.345 nm, closely matching our prediction for a 35 mm crystal.

7The details of quasi-phase-matched second harmonic generation in PPLN are well known and

need not be reproduced here. For details, see [31] or [13]
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Figure 2.17: A schematic of the first version of the PPLN pump source.
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Figure 2.18: A scan of the SHG power vs. the input wavelength, showing secondary

phase matching peaks characteristic of nonlinear processes. The peak output power

of the PPLN is in the tens of watts, approaching the theoretical limit of approxi-

mately 20% conversion efficiency. The measured bandwidth matches to within 1.5%

of the calculated bandwidth for a 35 mm long crystal.
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2.4.3 Detector calibration procedure

The detector in each measurement, whether a low-noise PIN diode, an ampli-

fied APD, or a PMT, was calibrated using the following procedure. Pump light was

launched into the device and maximum coupling was achieved. The monochromator

was set to the center wavelength of the pump, where nominally the detector and

lock-in amplifier were saturated. Four stages of neutral density filters were added

to achieve up to 60 dB of attenuation, until the lock-in was no longer saturated.

This signal voltage was then compared to a power measurement made directly after

the output coupling objective by a calibrated power meter. Comparing the average

power (and the calculated peak power using the duty cycle) to the lock-in voltage

reading resulted in a calibration curve used to estimate the photon number detected

at each wavelength.

2.4.4 Preliminary four wave mixing measurements

Using this high power pump source, we were able to make initial measurements

of spontaneous sideband generation. This involved launching the pump beam using

free-space optics, as shown in the schematic in Figure 2.19. One of the key com-

ponents of the coupling system is the free-space coupling stage. Based on a design

courtesy of Dr. Richard Mirin at NIST in Boulder, CO, and of staff members at

JILA, this configuration allows a free-space beam to be coupled to the device via

a moveable objective lens; each mirror is translated along the beam axis indepen-

dently, letting the input beam alignment to stay fixed to the rest of the setup while
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still allowing the objective lens to translate.

Using this setup, we were able to take the spectral scan shown in Figure 2.20.

This scan indicates spontaneous sideband generation 8.5 nm detuned from the pump,

within about 10% of the expected detuning. However, before we could perform any

further tests to validate these results, we caused irreparable damage to the input

facet of the device due to too much input average power. Microscope images of this

damage are shown in Figure 2.21.

It was initially uncertain whether the damage was being caused by thermal

heating of the device, an effect that is sensitive to average power, or by extremely

high field strengths due to high peak power. Further tests later confirmed that the

damage was indeed due to thermal effects resulting from excessive average pump

power.
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Figure 2.19: A schematic of the setup used to look for spontaneous 4WM. The free-

space coupling stage is not shown, but allows for a free-space beam to stay aligned

to the source while the coupling objective is moved to align to the waveguide.
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Figure 2.20: A preliminary scan of the waveguide output, showing spontaneous

sideband generation at 8.5 nm detuned from the pump. Before we could further

investigate these peaks, the input coupling face of the waveguide was destroyed by

the high-power pump pulses.

69



Figure 2.21: Microscope images of the damaged device. High average power caused

thermal heating in the chip, resulting in damage to both the input facet and the

rib.
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2.4.5 Modified source and subsequent four wave mixing measure-

ments

In order to avoid damaging the device, we were forced to modify the pump

source in order to achieve nominally the same peak pulse power while reducing the

overall average power. One attempt to do this involved using a mode-locked laser

in place of the CW tunable laser and modulator to reduce the duty cycle by an or-

der of magnitude. While this did manage to decrease the average power and avoid

damaging the chip, it did have two undesirable side effects. First, the mode-locked

laser produced 200 fs pulses, resulting in a bandwidth that was significantly wider

than the 0.345 nm acceptance bandwidth of the PPLN. This caused a significant

loss in conversion efficiency but, more importantly, resulted in an extremely noisy

pump signal. A plot of the output spectrum of the pump is shown in Figure 2.22.

Even after using a grating to filter the output, there was still significant noise on

the single-photon level where our detector is sensitive. The mode locked laser was

also significantly more unstable than the pulse-carved CW source, At low conver-

sion efficiency, the PPLN output is sensitive to the square of the input power (the

efficiency is dependent on the pump power itself), so the SHG process magnified the

instabilities in the mode-locked laser, resulting in a source that was not stable even

long enough to make a single spectral scan.

The final configuration of the source involved returning the the CW pulse-

carved scheme, but driven with an external oscillator at a lower duty cycle, as

shown in Figure 2.23. Because the duty cycle was significantly lower, we required
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a more sensitive detection system. After trying a fast, amplfied APD from Menlo

Systems that allowed us to lock in at the fast pulse frequency rather than the slow

chopper frequency, we settled on a photo-multiplier tube that is sensitive down to

the single-photon level. Because the detector still had a bandwidth of 12 kHz, it still

required that we chop the beam at low frequency. However, this was compensated

by the high sensitivity of the detector; upon calibrating the detector, we found it

to be sensitive on the single photon level with integration times on the order of 100

ms, as shown in Figure 2.24.

The spectral scans shown in Figure 2.27 depict data acquired with this mod-

ified pump source and a second 2.5 µm device. They show that there are features

of interest at exactly 9.5 nm detuned from the pump, the shift predicted by the

simulation data. While there are other spectral features of unknown origin, the plot

in Figure 2.27 shows that only the features detuned 9.5 nm from the pump exhibit

nonlinear power dependence. Furthermore, the features exhibit the expected polar-

ization behavior - namely when a scan is taken with an extra polarizer oriented at

the pump polarization, the features are less prominent. When the extra polarizer is

rotated by 90o, the features become stronger in power.

One feature to note in the nonlinear spectral scan data is that the red-shifted

peak appears to be weaker than the blue-shifted peak. One possible explanation for

this is the wavelength dependence of the 2PA coefficient (discussed in more detail

in a later section). Because of the thermal distribution of the density of states in

the conduction band, the 2PA coefficient actually peaks when the photon energy is

equal to approximately 60% of the gap energy [56] (the 2PA coefficient is necessarily
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zero when the photon energy is less than half of the gap energy). Because we are

pumping the device at roughly 80% of the gap energy of the core material, we expect

that the 2PA coefficient should be smaller when detuned blue from the pump and

larger when detuned red from the pump. This is consistent with our observations

in Figure 2.27.

2.4.6 Expected 4WM efficiency and corresponding observations

Using the nonlinear index from [33], we are able to make a zeroth order pre-

diction regarding the efficiency of the nonlinear process. Figure 2.31 shows a plot

of the expected parametric gain versus the input power for a 2.5 µm, 8 mm long

device. This prediction is based on the co-polarized value of the nonlinear suscep-

tibility tensor. We can use this plot to calculate the expected pair generation rate

using the following expression [70]:

dN

dt
= η |γP0L|2 ∆ντR (2.55)

where η is the detection efficiency, ∆ν is the phase-matched bandwidth, τ is the pulse

duration, and R is the pulse repetition rate. The calibration procedure accounts for

the detector efficiency, so we can safely ignore the factor of η. We can then divide

by R to obtain the predicted number of photons generated per pulse:

ρ = |γP0L|2 ∆ντ (2.56)

Figure 2.28 shows a calibrated scan with what seems to be spontaneously generated

sidebands with 400 mW of input pump power. At this pump power, we expect from
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Figure 2.31 that the parametric gain is greater than 0.1. Since the pulse bandwidth is

approximately one tenth of the phase-matched bandwidth of the device, the product

∆ντ is approximately 10. Hence we would expect to see on the order of ρ = 1

photon/pulse in the spontaneous sidebands. However, we observe less than 0.1,

indicating that the observed gain is reduced by an order of magnitude. Since the

gain is proportional to the square of the susceptibility, we can conclude that the

ratio
χ

(3)
xxyy

χ
(3)
xxxx

<
√

0.1 ≈ 0.3. This poses a significant problem, as it implies that

the power required for efficient correlated photon generation could be too great for

practical operation. It is, however, consistent with observations for other zincblende

semiconductors, as outlined in [21].

2.4.7 Linear and nonlinear loss measurements

For the sake of thoroughness, it is important that we characterize both the

linear and nonlinear loss of the device. Because we are operating at greater than

half of the bandgap energy, we expect to see significant two-photon absorption. In

addition, the correlation of the generated photon pairs is very sensitive to linear loss

in the device, so it is important to verify that the linear loss is relatively low.

In order to estimate the linear loss, we chose to perform a simple yet rather

crude experiment. We pumped the device with rather high power and measured the

change in the out-of-plane scattered light levels using digitized microscope images.

A sample of the data is shown in Figure 2.29. By measuring the rate of decay, and

assuming the impurities from which the light is scattered are uniformly distributed,
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we estimate the device to have a linear loss of between 3 and 6 dB/cm. The overall

insertion loss, including coupling efficiency, was measured to be 13 dB.

In order to measure nonlinear loss, we performed another simple experiment

where we measured the output power versus the input power. The plot in Figure 2.30

shows that the transmission is dependent on the input power, indicating measurable

nonlinear absorption. We can use these data to calculate the 2PA coefficient in the

following way: Consider the differential equation governing the intensity of the pump

as it propagates through the medium,

dI

dx
= −αI −

√
2βI2 (2.57)

where the first term represents the linear loss and the second term represents the

intensity-dependent nonlinear loss resulting from 2PA given a gaussian pulse. Di-

rectly integrating both sides from z = 0 · · ·L gives us

I(L) =
I(0)

eαL +
√

2βI(0) e
αL−1
α

(2.58)

If we define an effective length as Leff = eαL

α
, where limα→0 Leff = L, then we can

rewrite the expression in 2.58 as

T−1 =
I(0)

I(L)
= eαL +

√
2βLeffI(0) (2.59)

Assuming an effective mode area of 2.5 µm2, we can replot the data in Figure 2.30

in terms of the inverse of the transmission versus the input intensity. This gives us

a line, as shown in Figure 2.30, where the y-intercept represents the exponential of

the linear loss times the device length and the slope represents the nonlinear loss

times the effective length. Since we do not have an accurate determination of the
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effective length of the device, we can only estimate the range of values of the 2PA

coefficient. Given the results of both loss experiments, we can estimate that the

2PA coefficient of the device is between 3 and 25 cm/GW. This range of values is

of the same order as measured for similar materials [67].

Figure 2.22: A plot of the output spectrum of the PPLN before and after a grat-

ing. The broadband nature of the mode-locked laser caused significant light to be

generated even outside the quasi-phasematched bandwidth. Even after the grating,

significant structure was observed at the single-photon level.
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Figure 2.23: A schematic of the final waveguide pump source. The seed is still a CW

tunable laser with an external Mach-Zender modulator. The duty cycle is reduced

to 0.8% using an external oscillator.
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Figure 2.24: A spectral scan of the waveguide output showing features at 9.5 nm

detuning. Note the near-single-photon sensitivity.
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Figure 2.25: Spectral scans of the pump light without the waveguide and of the

waveguide output overlaid. Most of the structure is on the pump beam itself, but

note that there are significant differences in the spectra around 9.5 nm detuned from

the center.
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Figure 2.26: Two spectral scans taken with an extra sheet polarizer on the output,

showing the proper behavior for birefringent phase matching. The sidebands are

more visible when the sheet polarizer is aligned to the fast axis of the device, while

the pump remains polarized on the slow axis. Note that the pump beam is so

broadened that its wings overlap with the expected sidebands.
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Figure 2.27: A plot of data indicating phase-matched nonlinearity at the expected

detuning. Two scans were taken, one at high pump power and one at lower pump

power (reduced by one third via a wire mesh placed before the input facet). The

ratio between the two shows nonlinear power dependence at 9.5 nm detuned from

the pump beam
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Figure 2.28: A spectral scan taken at higher pump power. There are still features

at 9.5 nm detuning but their strengths are much smaller than expected. Using

the published value for n2 and the fact that the pulse bandwidth is one tenth of

the phase-matched bandwidth, we would expect to observe approximately 1 pho-

ton/pulse on average. The plot shows an order of magnitude less.
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Figure 2.29: To estmate the linear loss, we fit an approximate exponential curve

(left) to a digitized image of the out-of-plane scattering from the waveguide (right).

While crude, this technique is minimally invasive and provides some indication of

the order of magnitude of the device loss.
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Figure 2.30: Plots of output power vs. input power, showing appreciable 2PA. By

replotting the data in terms of the inverse of the transmission, we can estimate the

2PA coefficient.
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2.4.8 Practical implications of observed inefficiency

As stated above, the observed nonlinear gain appears to be an order of mag-

nitude smaller than expected. While the origin of the inefficiency is unknown, we

can estimate its implications. For example, consider the figure of merit outlined

above. If we assume for the moment the best case scenario, where the nonlinear

index is equal to the expected value of 3 × 10−17 m2/W (rather than 70% less,

as was observed), and make a reasonable assumption that the 2PA coefficient is

β = 20 cm/GW, the figure of merit defined above comes out to be 1.1, only slightly

greater than unity. If the 4WM gain is less than expected, especially by an order of

magnitude, then the figure of merit will be reduced significantly below 1 and 2PA

will dominate.

In addition, the reduced 4WM gain indicates that pumping the device hard

enough to generate appreciable pairs will require operating the device in the regime

where damage previously occurred. Previously, damage was observed when the duty

cycle was 1% and the peak power was around 10 W at 780 nm. Assuming the gain is

an order of magnitude lower, one would need approximately three times the pump

power to achieve the pair generation rate initially expected. Even assuming one

shortens the pulse length by 90% to match (but not exceed) the acceptance band-

width of the device, the duty cycle constraints would limit the pulse repetition rate

to less than 300 MHz. While this is not necessarily slow, it offers no improvement

over any of the other pair generation schemes and does not approach the GHz rate

that broadband QKD applications demand.
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2.4.9 Pump probe measurements and thermal effects

A conclusive test to measure the parametric gain of the nonlinear interaction

would be to introduce a probe beam at the signal wavelength, cross-polarized to

and simultaneous with the pump beam. This would allow one to determine the

gain, given the power of both the pump and the probe. We implemented such an

experiment using a CW DFB laser at 770 nm that was tunable via temperature

control of the diode. This experiment yielded inconclusive results pertaining to

4WM, but did indicate that there are thermal effects that may be interfering with

the nonlinear process of interest.

The data in Figure 2.32 shows both the magnitude and phase of the lock-

in signal used to create the spectral scan. As is evident from the phase data in

the spectral region of the probe beam, the probe is demodulated by the pump.

That is, the presence of a burst of pulses from the pump causes a decrease in the

strength of the probe beam. The cause of this is unknown, but there are at least

two possibilities. First, it may be a slow, thermal effect, where heating in the

waveguide due to the strong pump causes the guiding properties of the waveguide

to change and the subsequent leakage of the mode carrying the CW probe signal.

Alternatively, it could be a result of two photon absorption between the pump and

probe. There is some indication that the cause is the former; a decrease in the

strength of this interaction was noted when using the fast APD with an RF lock-

in amplifier oscillating at the PRF of 20 MHz when compared to the scans with

the slower detector and the 200 Hz mechanical chopper. Hence it seems that there
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is some unknown thermal effect causing a change in the guiding properties of the

waveguide in the presence of strong pump pulses. This is disconcerting, as it could

easily imply that the phase-matching condition or even the nonlinearity itself is

modified in the presence of a strong pump beam.

Figure 2.31: A plot of the expected parametric gain using published values of n2.

The actual gain curve depends on the other nonlinear susceptibility tensor element,

the relative strength of which is unknown. The arrows indicate the expected gain

if the cross-polarized susceptibility were as strong as the co-polarized one. Since

the observed gain was barely above the detection threshold of 0.01 photons/mode,

we can conclude that the cross-polarized susceptibility tensor element is reduced by

70% of the expected value.
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Figure 2.32: A spectral scan of the pump probe, showing both the magnitude and

phase of the lock-in signal. The 180o phase-shift at the lock-in detected signal

indicates that the pump is causing the signal to decrease rather than increase. The

origin of this effect requires further investigation.
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2.5 Results and further work

2.5.1 Current results and open questions

The goal of this project is ultimately to demonstrate the feasibility of using

four-wave mixing in a birefringent waveguide as a source of entanglement for appli-

cations such as QKD. In order to do so, a number of questions must be answered.

First and foremost, it must be demonstrated that one can fabricate a waveguide

with a controllable and predictable birefringence. We have shown the ability to

accurately predict the waveguide birefringence, and we have demonstrated that one

can fabricate a waveguide with a specific birefringence, even in the presence of un-

certainties due to strain during material growth. We have fabricated the first set of

devices and used them to measure such basic waveguide properties such as insertion

loss, device loss, and nonlinear loss. We have also devised a straightforward way to

accurately measure small birefringence. Finally, we have shown that there is indeed

birefringent phase matched nonlinearity occurring at the detuning predicted by the

model. However, we have shown that the strength of the cross-polarized nonlinear

interaction is significantly weaker than we had originally expected, requiring poten-

tially unreasonable pump power levels for efficient correlated photon generation.

These preliminary results beg some very fundamental questions. First, it is

still unclear what role the group velocity dispersion plays in the phase matching.

We know that the GVD plays a key role in the birefringent phase matching and

that is is dominated by the material dispersion in devices whose feature size is

larger than the wavelength[65]. However, we have no clear measurement of the
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GVD of the device, forcing us to make an educated guess at the phase matched

wavelength. Our measurements only predict the average birefringence of the device

over a small spectral range. For a more thorough characterization of the ability to

control phase matching, it is important to come up with a way to measure the GVD.

One possibility is to use a phase shift technique similar to that used in Costa, et

al., outlined in [15]. In this setup, a vector voltmeter is used to measure the phase

shift of slowly-modulated, broadband optical signal at different wavelengths. The

only uncertainty in the application of this technique is whether the device is long

enough to introduce a phase shift larger than the vector voltmeter’s phase precision.

However, the technique is simple enough that it warrents further investigation and

is compatible with the same setup used to measure the birefringence of the device.

Another issue related to the birefringence is a lack of understanding of the

uniformity of the birefringence of the waveguide. While the measurement described

above measured the overall birefringence, there was no information about the varia-

tion in the birefringence over the length of the device. Local strain or defects in the

material may contribute to a variation in the birefringence that may be masked in

the measurement but result in very poor phase matching for the nonlinear process.

Currently we cannot determine the uniformity of the birefringence along the length

of the device. One possible way to measure this would be to employ a technique

similar to one used to measure the linear loss. That is, we can fabricate a chip

with devices of the same dimensions as the one currently used, but with a series of

different lengths, as shown in Figure 2.33. A chip with this layout would be useful

for both measuring the uniformity of the birefringence and for directly measuring
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the linear loss.

Figure 2.33: A concept of a chip with devices of various lengths. Because the U

bends contribute constant loss, this chip is useful in measuring the linear loss of the

device more precisely. In addition, by measuring the birefringence of the various

length devices, we can glean some idea of the uniformity of the birefringence over

the length of the device.
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2.5.2 Further nonlinearity and correlation measurements

The next task is to quantify the strength of the nonlinear interaction. While

the current pump setup is rather limited, with some modification we can create

a pump-probe setup that can directly probe the strength and time dependence of

the parametric gain and nonlinear loss. We propose using a second PPLN crystal

phase-matched at a wavelength 9.5 nm shifted from the current pump, as shown in

Figure 2.34. We can use a broadband pulsed 1550 nm source and split it into two

parallel amplification paths - one at the pump frequency and one at the new, shifted

frequency. If we rotate the SHG output of one crystal and launch them along the

same beam path with a controllable delay, we can create two simultaneous, orthog-

onally polarized pulses of different strengths that we can use in a true pump-probe

experiment. Because they have a controllable delay between them, it is feasible to

use this source to probe the exact mechanism of the thermal decoupling as well.
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Figure 2.34: A schematic of the proposed source for a more detailed pump probe

setup. Both the pump and probe beams are generated from the same broadband

source, creating synchronized pulses that can be adjusted in time, wavelength, and

power, allowing for maximum flexibility in measuring the nonlinearity.
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Once we have thoroughly quantified the parametric gain, we can perform cor-

relation measurements using a simple coincidence counting technique. The simplest

approach would be to separate the signal and idler photons with only a long pass

filter at 45o incidence, reflecting one half of the pair to one SPAD and transmitting

the other half to a second SPAD. If better filtering and precision are required, a grat-

ing can be used to separate the wavelengths. This presents a greater experimental

challenge.

2.5.3 From correlation to entanglement

The final question that remains in this project is the exact method to create

entangled photon pairs from the copolarized, correlated pairs that result from the

four wave mixing process in the device. A number of possibilities exist, including

using a two-photon interferometer or doing a double pass in opposite directions,

using two counterpropagating pump beams to create two pairs in different direc-

tions. These possibilities are shown in Figure 2.35 and certainly warrant further

investigation.
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Figure 2.35: One concept for possibly generating polarization entanglement from

this device. Note that a source of conjugate pump beams is required.

95



Another more straightforward way to glean entanglement from the 4WM pro-

cess is simply to use the generated photons as a frequency entangled pair for a single

sideband encoded QKD system. In this QKD implementation, described in [41], the

qubit is encoded in the frequency of photon rather than the polarization. The basis

choices are then made using Mach-Zender interferometers and acousto-optic modula-

tors rather than polarization optics. This implementation is much more compatible

with optical fiber channels than polarization, as the frequency stability of the fiber is

orders of magnitude better than the polarization stability. In addition, unlike phase

encoding approaches, this encoding scheme does not require that one balance two

interferometers on either side of the link, an experimentally challenging task. Hence

this technique holds a lot of promise for fiber-based QKD, and the 4WM source

directly provides a source of frequency entanglement for such an encoding scheme.

2.6 Conclusions

This project is only a first step toward a more thorough effort to develop an

entanglement source based on birefringent four wave mixing in a waveguide. How-

ever, it has laid the foundations for further efforts by providing a starting design

and fundamental set of data about the device operation. The current set of prelimi-

nary results suggest the strength of the nonlinear interaction is significantly smaller

than expected, but there are still a number of fundamental questions that remain.

However, we have created a framework and test setup for testing other devices and

materials. Should such further experiments succeed, they have the potential to
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create a compact, convenient, fast source of entanglement for QKD and beyond.
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Chapter 3

Detector Dead-Time Effects and Paralyzability in Broadband QKD

”I don’t want to achieve immortality through my work; I want to achieve immortal-

ity through not dying.” -Woody Allen

3.1 Problems encountered in the high-speed regime

We previously discussed (and will expound upon in Chapter 4) the speed

limitation resulting from the detector’s timing jitter. However, there are other

properties of real single-photon detectors that become significant when transmitting

quantum channel bits at high speeds. One of the most important parameters is

recovery time. Silicon SPADs have a finite recovery time, τ , that is typically of the

order of 100 ns. This interval, known as the dead time, is initiated when a detection

event triggers an avalanche in the SPAD, after which the detector is unresponsive.

The amplified avalanche current must be quenched and free charge carriers must

be removed from the SPAD before it can be reset to its active state. This process

limits the maximum count rate of such devices to less than τ−1. It is worthwhile

to note other types of detectors, such as superconducting single-photon detectors

can support significantly higher count rates, but they still exhibit finite reset times
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due to kinetic inductance. For most QKD systems, dead-time effects are reasonably

assumed to have a negligible impact on overall performance; typical transmission

rates, ρTX , and link losses, L, are such that most systems operate in a regime where

the detection rate is low with respect to the maximum count rate, i.e. ρRX � τ−1.

However, in broadband QKD links that transmit with GHz clock rates, effects due to

transmitting significantly faster than the dead time become critical to both efficient

operation and fundamental security [51].

The most common detector configuration for QKD in the BB84 protocol [6]

is one in which the receiver, Bob, has a separate single-photon detector for each

bit value in each basis. We restrict our discussion to this configuration and further

assume that the detectors are free-running SPADs whose low noise allows them to

be used without active gating. This is often the case in free-space QKD systems

and fiber QKD systems with up-conversion detectors [75].

In this configuration, when the quantum-channel transmission rate satisfies

ρTX > τ−1 photons can arrive and be detected at the receiver at a time when one or

more of the SPADs is recovering from a prior detection event. If two such detection

events occur in the same basis they necessarily correspond to opposite bit values in

the key and are completely correlated [74]. This is an obvious security violation;

Eve, having full access to the measurement basis, only needs to guess which detector

started the alternating sequence in each basis. Thus any key sequence that is sifted

while one detector in a basis is dead only contains, at most, one bit of secure

information.

To better illustrate this effect, let us examine correlations that occur in the
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sifted key as the transmission rate is increased. From a simple Monte-Carlo simu-

lation of standard, ideal BB84 QKD, we can measure a parameter of the sifted key

called the transition probability, or the probability that, given a bit valued 1, the

next bit will be 0, and vice versa. Mathematically, this is defined as

Ptrans =
1

N − 1

N−1∑
i=1

[(bit [i] + bit [i]) mod2] (3.1)

where bit [i] is the ith bit in the sifted key sequence, N is the number of bits in the

sifted key and the addition is performed modulo 2. Figure 3.1 shows the value of

Ptrans as the the transmission rate is increased beyond τ−1.
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Figure 3.1: Monte-Carlo results showing the transition probability in a 1MB sifted

key versus the normalized transmission rate for various link losses
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Note that we introduce the normalized transmission rate, k = τρTX , which is

unitless and more convenient for our calculations. Also, note that, for the regime

where ρTX < τ−1, Ptrans remains constant at the expected value of 50%. As the

clock rate is increased past the dead time (k > 1), Ptrans quickly deviates from

the deesired value of 50% for a random key, asymptotically approaching 62.2%.

This value is unique to BB84 QKD with four detectors and can be understood

from the following calculation [74]. At high photon-arrival rates, detection events

tend to occur in fixed sequences; the detectors recover and then fire again in order.

Without loss of generality, we arbitrarily choose one detector to produce the first

sifted bit. After this event there are six possible detection sequences, which are

listed in Table 3.1. Consider as an example the detection sequence 1-3-4-2, with

detectors 1 and 3 representing bit value ’1’ in their respective bases and detectors

2 and 4 representing ’0’ in their respective bases. For this ordering, the probability,

P3, that the next detection event on detector 3 will produce the next sifted bit is

P3 = (1/2)1. Similarly, P4 = (1/2)2, P2 = (1/2)3, P1 = (1/2)4 and so on, are the

probabilities that detectors 4, 2 and 1, respectively will produce the next sifted bit

after detector 1 produces the first sifted bit (i.e. all detection events in between

are not included in the sifted key). Given the sifted-bit value of ’1’ from the first

detection event and the subsequent infinite sequence of the 1-3-4-2 firing order, we

calculate the probability that next sifted bit is a ‘0’ to be:

P1342 =
∞∑
n=0

[(
1

2

)2

+
(

1

2

)3
] (

1

2

)4n

=
2

5
(3.2)

Repeating this calculation for all six possible detection sequences gives us the in-
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dividual transition probabilities for each of the six detection sequences, shown in

Table 3.1. Since each sequence is equally likely to occur within a long sifted key, we

average the resulting transition probabilities to obtain

P (0) =
1

6

(
2

3
+

4

5
+

2

5
+

2

5
+

4

5
+

2

3

)
≈ 62.2% (3.3)

Table 3.1: Individual transition probabilities for each detection sequence. Boldface

indicates a detection event that corresponds to a ‘0’ bit value.

Detection Sequence Transition Probability

1-2-3-4
∞∑
n=0

(
1

2
+

1

8

)(
1

2

)4n

=
2

3

1-2-4-3
∞∑
n=0

(
1

2
+

1

4

)(
1

2

)4n

=
4

5

1-3-2-4
∞∑
n=0

(
1

4
+

1

8

)(
1

2

)4n

=
2

5

1-3-4-2
∞∑
n=0

(
1

4
+

1

8

)(
1

2

)4n

=
2

5

1-4-2-3
∞∑
n=0

(
1

2
+

1

4

)(
1

2

)4n

=
4

5

1-4-3-2
∞∑
n=0

(
1

2
+

1

8

)(
1

2

)4n

=
2

3

3.2 Secure high-speed QKD

The security implications of transmitting faster than the inverse of the detector

dead time go well beyond issues with key correlations. Since Eve has access to the
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classical channel, she knows when bits are detected and in which basis they are

sifted. As discussed above, when sequences of two or more detection events occur in

a single basis with spacing less than the dead time, the detectors within a single basis

fire alternately. This phenomenon provides Eve with nearly all of the information

about the sifted bit string except for one bit representing which detector fired first

within a given basis. Therefore, such detection sequences, regardless of their length,

can produce at most a single sifted bit. In other words, production of a sifted bit

from a detection sequence of any length requires that the detection sequence begins

when both detectors in a given basis are active. This requirement is necessary for

the secure operation of a QKD system at transmission rates ρTX > τ−1 and must

be imposed on the receiver either by some means of gating the detectors or by the

sifting algorithm.

It is apparent that this security requirement has an effect on the sifted key

generation rate. In the low count rate regime, the sifted bit rate increases with

increasing transmission rate. However, as the count rate increases beyond the inverse

detector dead time, longer and longer detection sequences occur during which only

one detector is live. Each of these sequences can only produce one bit of sifted key,

resulting in a diminishing return on subsequent increases in the transmission rate.

This effect eventually outweighs any benefit of increased transmission rate, resulting

in a decrease of the sifted bit rate. Thus there should exist an optimum transmission

rate for obtaining the most sifted key from the system.

To compute where this optimum occurs, we start by calculating the probability

that both detectors in a given basis are active when a photon is detected using the
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state space model shown in Figure 3.2. In this two-dimensional model, the state

of one of the receiver’s bases, in this case the HV basis, is quantified by how many

clock periods need to pass before each detector in the basis is active, e.g. the state

(3, 7) would denote that the H detector is three clock cycles away from being alive

while the V detector is seven. Assuming that the two detectors have the same dead

time, the state space ranges from 0 to k, as shown. On each transmission period, or

clock cycle, a given detector either moves one period closer to recovery, or, if already

active, the detector remains so or undergoes a detection event and moves k periods

away from recovery. The probability that both detectors are active is given by the

probability P0,0 that the basis is in the state (0, 0).
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Figure 3.2: The state of Bob’s HV detection basis depicting a hypothetical detection

sequence and associated probabilities, as described in the text. The size of the space

is determined by the value of k, in this case chosen to be 8. Note that, although

they are depicted, the diagonal states are not accessible in the absence of noise,

since they can only result from the simultaneous detection of the same photon by

both detectors.
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To quantify the probability of having a detection event during a given clock

cycle, we find it useful to define a link loss parameter p = L/8, where L is the

probability that a transmission event at Alice is detected at Bob (the detectors are

assumed to be identical), commonly called the link loss. The factor of 8 accounts for

Bob’s basis choice (1/2), and Alice’s state choice (1/4). Therefore, ignoring noise,

p represents the probability that a particular detector produces a sifted bit on a

given clock cycle. It should be noted that this particular definition incorporates all

losses, including attenuation along the optical path, detector inefficiencies and even

empty pulses due to a mean photon number less than unity. This overarching loss

parameter then directly relates the transmission rate at Alice with the detection

rate at Bob. Note that this analysis is thus parameterized in the transmission

rate rather than the mean photon number. While the mean photon number is an

important design parameter, the transmission rate is in fact more relevant to the

analysis of dead-time effects. In fact, one can imagine a QKD system that transmits

at ρTX < τ 1 with link losses such that the photon arrival rate at Bob is equal to

that of another system operating at a transmission rate ρTX > τ 1 , but with higher

link losses. Only the latter of these two systems would exhibit the dead-time effects

addressed by this analysis.

Given this definition of p, the probability that a particular detector fires on

a given clock cycle is 2p. Using this value, we can calculate as an example the

likelihood of a hypothetical detection sequence, as depicted in Figure 3.2. The

sequence starts with a detection event on the ’V’ detector with probability 2p,

moving the basis from the origin to the state (0, k). For the next four clock cycles
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the ’H’ detector does not fire with probability (1−2p)4, followed by a detection event

on the ’H’ detector with probability 2p. The basis is now in the state (k, 3) and both

detectors are inactive. The state evolves with unity probability for three clock cycles

until the ’V’ detector recovers, and then returns to the origin as the ’V’ detector

does not fire for the next five clock cycles with likelihood (1− 2p)5. The probability

of this particular hypothetical detection sequence is therefore (2p)2(1− 2p)9.

In general, the goal of using the state space model is the determination of the

steady-state value of P(0,0), or the probability that both detectors will be alive at any

given time. Knowing this value will ultimately allow use to calculate the expected

sifted bit rate using this secure, high-speed BB84 scheme. To compute P(0,0), we

begin by writing down the recursive expression describing the probability that both

detectors are alive at the (n+ 1) clock cycle:

P
(n+1)
(0,0) = (1− 4p)P

(n)
(0,0) + (1− 2p)P

(n)
(0,1) + (1− 2p)P

(n)
(1,0) (3.4)

where the first term represents the probability of no detection events occurring and

the next two terms represent recovery from the (0, 1) and (1, 0) states, respectively.

We ignore recovery from the state (1, 1) because such diagonal states require simul-

taneous detection events that will not occur in the absence of noise. In steady state,

we drop the superscript and note that with random signals and identical detectors

the steady-state behaviors of the H and V detectors are the same, allowing us to

write P(0,1) = P(1,0) = P1. Thus, we find

P1 =

(
2p

1− 2p

)
P(0,0) (3.5)
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By the same argument one can write the probabilities P(0,k) = P(k,0) = Pk as

Pk = 2pP(0,0) + (2p)P1 (3.6)

which, with the substitution for P(0,0) from 3.5, reveals that Pk = P1. In fact,

similar calculations for P(1,0), P(2,0), etc., show that all 2k states lying upon the axes

have the same steady state probability P1. The states not lying on one of the axes

represent instances when both detectors are dead. Omitting the states along the

diagonal, the internal states are only accessible from on of the on-axis states. Since

the on-axis states are all of equal probability one can show that the internal states,

of which there are (k2 − k), are also of equal probability, in this case (2p)P1.

The expressions above represent the steady-state probabilities of the basis

being in each of the states in the entire state space. We normalize the sum of these

probabilities, giving

P(0,0) + (2k)P1 + (k2 − k)(2p)P1 = 1 (3.7)

Substituting for P1 from 3.5, we can solve for P(0,0), the steady state probability

that both detectors are alive for a given transmission event, as a function of the link

loss parameter, p, and the dead time parameter, k:

P(0,0)(p, k) =

[
1 + (2k)

(
2p

1− 2p

)
+ (k2 − k)

(
(2p)2

1− 2p

)]−1

(3.8)

As stated above, a detection sequence can only produce a sifted bit from events that

occur when both detectors are alive. Therefore, P(0,0)(p, k) should be used as an

additional factor in the calculation of a system’s sifted-bit rate. P(0,0)(p, k) is shown

in Figure 3.3 as a function of the normalized transmission rate k, for three values
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of the link loss L = 8p. It can be seen that as the transmission rate is increased

P(0,0)(p, k) begins to roll off, approaching zero as k2 at high count rates. The roll-

off of P(0,0)(p, k) marks the onset of dead-time effects and the departure from the

low-count-rate regime.
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Figure 3.3: The likelihood P(0,0) that both detectors in a given basis are active when

a photon arrives versus the number of transmission periods per dead time, k, for

three values of the link loss L. The fact that P(0,0) tends to zero at high transmission

rates demonstrates the paralyzability of the QKD receiver.

111



The behavior of P(0,0)(p, k) in the high-count-rate regime illuminates a charac-

teristic unique to operation of QKD systems at transmission rates ρTX > τ 1. From

the standpoint of producing sifted bits, when the pair of SPADs in a given basis is

considered as a whole, the QKD receiver becomes what is known as a paralyzable

counter [52] [2] [30]. Signals that arrive at a paralyzable counter during recovery,

though not counted, extend the necessary recovery time [30]. In contrast, non-

paralyzable counting systems recover from each counting event regardless of signals

that arrive during the dead time. Taken individually, SPADs are non-paralyzable

detectors; with the exception of counts that occur just as the detector comes alive

(referred to as ‘twilight counts’ in [71]), when the bias voltage is below the break-

down voltage, photons that arrive during the dead time have no significant effect

on the detector. It is worthwhile to note that the response of paralyzable and non-

paralyzable systems exhibit significant differences only in the regime of high count

rates [30], and paralyzability has become relevant to QKD systems as they continue

to increase in key-production rates.

Although each closely-spaced detection sequence can produce at most a single

sifted bit, it is also true that as the length of the detection sequence grows the

likelihood that a bit will be sifted from the sequence also grows. In the low-count-

rate regime the average length of a detection sequence is 1 and the likelihood of

sifting a bit from a sequence is 0.5. For a detection sequence of length 3, however,

the likelihood that at least one of the detection events occurred in the correct basis is

7/8. This fact offsets some of the deleterious dead-time effects and must be included

in the calculation of the sifted-bit rate.
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At any count rate, we can write the probability of sifting a bit from a detection

sequence that begins with both detectors active as

S(p, k) =
∞∑
N=1

(
1−

(
1

2

)N)
TN(p, k) (3.9)

where TN(p, k) is the probability that the detection sequence consists of N detection

events. To calculate TN(p, k), we can use the state space model from Figure 3.2. For

a detection sequence of length 1 (i.e., a single detection event) there is only one path

through the state space. For longer sequences, we must sum the possible paths for

a given number of detection events. For example, there are a total of (k − 1) ways

to arrange two detection events before the basis returns to the (0,0) state; only one

of these ways is depicted in Figure 3.2. The probabilities of a detection sequence

having lengths up to N = 4 are

T1(p, k) = (1− 2p)k (3.10)

T2(p, k) =
k−1∑
j=0

2p(1− 2p)2j+1 (3.11)

T3(p, k) =
k−1∑
j1=0

j1∑
j2=0

(2p)2(1− 2p)2j2+k (3.12)

T4(p, k) =
k−1∑
j1=0

j1∑
j2=0

k−(j1−j2)−1∑
j3=0

(2p)3(1− 2p)2(j2+j3)+1 (3.13)

The truncated geometric series in TN(p, k) can be evaluated with the standard tech-

niques to yield analytic expressions for all N . While the sum over N in 3.9 is

theoretically infinite, it is worthwhile to note that in practice, one needs to com-

pute TN(p, k) only up to N = 6, as the probability of sifting a bit from a detection

sequence longer than six events approaches unity. In addition, one interesting fea-

ture of TN(p, k) is the difference between even and odd values of N , as illustrated
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in Figure 3.4. While all N > 1 sequences have low probability in the low count-

rate regime, at high count rates the odd N sequences fall asymptotically to zero,

but the even N sequences have constant finite probabilities. This behavior can be

understood from the fact that an even N sequence minimizes the number of clock

cycles during which the detector is active but does not fire. For an odd N sequence,

the unlikely situation occurs where a live detector must not fire for at least k clock

cycles before the basis returns to the (0,0) state.

Noise sources such as background counts and detector dark counts can also be

included in the model in a straightforward manner. We define ε as the probability

that a detector experiences a noise event during one clock cycle. The probability

that a detector fires during a clock cycle, therefore changes from (2p) to (2p + ε),

which can be substituted into P(0,0)(p, k) and TN(p, k) accordingly. As mentioned

above, a noise event on one detector can occur on the same clock cycle as a signal (or

noise) event on the other detector. These simultaneous events put the basis in the

state (k, k), after which the basis recovers with unity probability along the diagonal

back to (0, 0). Thus, we find that when noise counts are included, the probability

that both detectors are alive on the (n + 1) clock cycle becomes

P
(n+1)
(0,0) = (1− 2(2p+ ε))P

(n)
(0,0) + 2(1− (2p+ ε))P

(n)
1 + (2pε+ ε2)P

(n−k)
(0,0) (3.14)

where the third term accounts for the simultaneous detection events. The steady

state calculation of P(0,0)(p, k) then proceeds in the same manner as described above.

It should be noted that while noise sources can cause simultaneous detection events,

no secure bits can be sifted from such occurrences.
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Figure 3.4: The probabilities TN(p, k) of a detection sequence having N detection

events versus the normalized transmission rate k, for link losses L = - 20 dB. There

is a characteristic difference in even and odd numbers of detection events in the

high-count rate regime.
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3.3 A Monte-Carlo simulation of QKD

In addition to the analytical model outlined above, we have also implemented

a Monte-Carlo simulation of BB84 QKD, both using the standard protocol (the

code used to examine the transition probability) and also a version incorporating

the modifications described above to maintain security in the high-speed regime.

The code for both implementations is listed in Appendix B.

The first version of the code, qkd trans prob.c, implements the traditional

BB84 protocol without considering the security implications of the detector dead

time. It operates in time units that are normalized to the detector’s dead time. It is

a Monte-Carlo simulation that uses the built-in ANSI C random number generator

seeded by the machine time. The code generates seven random variables it then uses

to choose the transmission basis, bit value, and detection basis. It also uses these

random variables to implement simulated link loss, detector inefficiency, and even

QBER (which was kept at 0 for these simulations). The code maintains flag variables

to determine which detectors are dead at what points throughout the key generation

process and uses an array of counters to keep track of the four detectors’ respective

dead times. Since it runs in ’unitless’ time, it is designed to continuously generate

sifted key bits until it has accumulated NBITS of key (set to NBITS=1048576 in

the version of the code in Appendix B). Once it accumulates this much sifted key,

it then analyzes the transition probability of the key, providing the data plotted in

Figure 3.1.

The second version of the code incorporates the modification to BB84 that is
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required to maintain security in the presence of long dead times. It does this by

defining a second flag variable that corresponds to the state of the opposite detector

in the given detection basis during a detection event. If one detector goes dead, all

events originating from its pair in the basis are not incorporated into the sifted key.

One major difference between this version of the code and the previous version is

that the new code, fc.c, operates in simulated ’real time.’ This means that there is

a fundamental clock unit of 100 ps around which everything else in the simulation

is designed. Thus the clock rate, dead times, etc., can all be defined in real time

units rather than in units of dead time. This is critical to properly simulating dead

time effects and accurately measuring the sifted bit rates that result.

Both versions of the code were run on the NIST RARITAN Linux-based com-

puting cluster. The cluster consists of over 400 nodes connected via ethernet. The

cluster is fully managed and includes all of the high-performance compilers and MPI

interfaces required to do parallel computing. However, instead of parallelizing the

code directly, it was simply run in a ’task farming’ way, where various parameters

were run on individual machines. As the code is not prohibitively intensive in com-

putation, this method was sufficient to obtain a full set of results within a few days

of computing time on a small number of machines.

3.4 The sifted bit rate in high-speed QKD

We have now described all of the necessary factors to incorporate dead time

effects into the sifted bit production rate. Returning to the noiseless picture, we
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write the sifted bit rate as

SBR = ρTX8pP(0,0)(p, k)S(p, k) (3.15)

The sifted-bit rate is shown in Figure 3.5 as a function of the transmission rate for

various detector dead times (a) and link losses (b). The lines indicate the results

from the analytic state-space model presented above. The symbols indicate results

from the BB84 Monte-Carlo simulation that incorporates the modified sifting algo-

rithm described above, sifting at most a single bit from sequences of closely-spaced

detection events. As illustrated in Figure 3.5, dead-time effects induce a maximum

value on the sifted-bit rate, above which further increases in transmission rate ac-

tually reduce the sifted-bit rate. The maximum value of the sifted-bit rate is a

complicated function of the link parameters. However, we find this maximum is not

strongly dependent on the link losses. As demonstrated in Figure 3.5(b), it may be

accurately approximated as a function of dead time alone by

SBRMax ≈
1.433

2τ
(3.16)

where the constant of proportionality was found by a least-squares fit. The factor

of (2τ)−1 represents the maximum sifted bit rate for the case of an actively gated

receiver in which all of the detectors are disabled when any of one of them fires [74].

Most significantly, the numerator is greater than 1, indicating that one can achieve

secure key production rates over 40% faster than previously thought.
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Figure 3.5: The sifted-bit rate including dead-time effects, showing excellent agree-

ment between the model (lines) and the simulation (symbols). The effect of varying

the dead time with fixed link loss is shown in (a). The effect of varying the link loss

with fixed dead time is shown in (b).
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The transmission rate at which the sifted-bit rate is maximized is also a com-

plicated function of the dead time and link losses. However, for typical link losses

and detector dead times we find that it may be approximated to an accuracy better

than 1% by

ρMax
TX ≈

5.92

8pτ
(3.17)

For most QKD links the loss and dead time are such that detector timing resolution

plays a dominant role in determining the optimum transmission rate [9] [25][63][64].

However, as the disparity between the detector timing resolution and recovery time

grows with improved timing resolution, transmission-rate limitations imposed by

dead-time effects will become more significant.

3.5 Hardware approaches to addressing dead time effects

There are a variety of methods that may be employed to address the security

issue that arises in the ρTX > τ 1 regime. The algorithmic solution modeled above

is, to our knowledge, the most efficient with respect to the production of sifted

bits. The communications overhead associated with implementing are comparable

to traditional implementations of QKD, which can be anywhere from 17 to 100 times

the quantum channel data load. However, in the event that some implementation

would preclude the software scheme implementation proposed above, a hardware

solution would be required. An active hold-off scheme has been previously proposed,

in which all the detectors are disabled when any one of them fires [74]. Actively

disabling the detectors by some electronic means can be technically challenging,
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particularly as transmission rates exceed 1 GHz. As an alternative, we propose the

self-disabling receiver shown in Figure 3.6. In this system, the states in each of

Bob’s bases are sent to the same detector, though with different propagation delays

depending on the state. The states of the photons incident on each detector are

distinguished by their arrival times, much in the same manner that time-division-

multiplexed communications links distinguish various channels. Detection schemes

similar to this have also been implemented for basis discrimination in QKD links

[47]. The receiver proposed in Figure 3.6, however, would go further than basis

discrimination and shut down a basis entirely after a detection event. With only

one detector in each basis, the entire basis is disabled for the duration of the dead

time and sequences of closely-spaced detection events are eliminated. This QKD

receiver is a non-paralyzable counter capable of producing sifted bits at rates up to

τ−1s in the high-count-rate regime.

As a consequence of operating the receiver bases in the self-disabling format

shown in Figure 3.6, each transmission event from Alice is analyzed in two time bins

at Bob’s receiver. If these time bins are limited by the SPAD’s ability to distinguish

photon-arrival times, i.e., by the SPAD timing resolution, then Alice’s transmission

period must be at least twice as long. Thus the maximum transmission rate as

determined by the detector timing resolution is reduced by one half. The reduction

in transmission rate makes this type of receiver useful only in cases in which the

algorithmic implementation described above is somehow impractical.
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Figure 3.6: BB84 receiver with self-disabling bases. In this configuration the indi-

vidual states in each measurement basis are distinguished by their arrival times at

the SPADs. (N)PBSC is a (non) polarizing beam-splitting cube.
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3.6 Conclusions

We have presented a model for the sifted-bit production rate of BB84-type

QKD systems operating at transmission rates that exceed the maximum count rate

of the component single-photon detectors. This model addresses critical security

concerns that must be considered when operating in this regime and quantifies the

onset of dead-time effects. We have established that, with free-running SPADs, high-

speed QKD systems are paralyzable counting systems. This phenomenon emerges

from the collective behavior of the pair of detectors in a given basis, as SPADs are

non-paralyzable counting systems when considered individually. We have shown

with both analytic modeling and Monte Carlo simulation that dead-time effects

cause there to be an optimum transmission rate that maximizes the sifted-bit pro-

duction rate. The functional dependence of the maximum sifted-bit rate on the link

parameters has been presented, and these relations will be useful in the design of

QKD systems and single-photon detection systems.

This chapter has focused on polarization-encoded BB84 QKD. A useful exten-

sion of the analysis presented here would be the application of the state-space model

to other protocols and encoding schemes. In particular, the differential-phase-shift

encoding scheme used in [63] readily lends itself to extremely high transmission rates.

Detector dead times are likely to have significant influence on the performance of

such systems and the analysis of such influence in the context of the current under-

standing would be useful.
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Chapter 4

High-speed QKD in the Hα Fraunhofer Window

”Far out in the uncharted backwaters of the unfashionable end of the Western Spiral

Arm of the Galaxy lies a small critically unregarded yellow sun. Orbiting this, at a

distance of roughly ninety-eight million miles is an utterly insignificant little blue-

green planet whose ape descended life forms are so amazingly primitive that they

still think digital watches are a pretty neat idea.” Douglas Adams

4.1 Speed limits in broadband QKD

In 2004, NIST demonstrated a free-space QKD system that achieved a secret

key rate in excess of 1 MB/s [9]. This and similar systems, such as those described

in [75] and [63], represent the fastest QKD links currently in existence and are even

fast enough to stream one-time-pad encrypted video. The NIST systems achieve

their high key rates by incorporating a number of techniques, many of which have

been adapted from high-speed telecommunications engineering. Examples of this

include performing clock synchronization between the transmitter and receiver over

the classical communications channel, as well as implementing all of the control

and sifting code on a dedicated FPGA, utilizing tailored forward error correcting
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algorithms to minimize the bidirectionality of the classical conversation, and mul-

tithreading the error correction and privacy amplification steps in order to speed

up key distillation. However, in all of these systems there remains a fundamental

technology hurdle to performing faster QKD: The timing resolution of the single

photon detectors.

Figure 4.1 shows a histogram of detection events from a clocked 1.25 GHz pulse.

As evidenced from the data, the ubiquitous Perkin-Elmer single photon counting

modules used in the system have a -3 dB timing jitter of 250 ps. Nominally this

would imply that the detector could differentiate between 4 GHz pulses. However,

because the QKD protocol is inherently sensitive to errors, we must transmit at a

period greater than the -20 dB timing jitter in order to avoid data being detected

in overlapping time bins. Because the Perkin-Elmer detectors have a -20 dB timing

jitter tail in excess of 1.6 ns, the NIST 2004 QKD system described in [9] must be

limited to a 625 MHz clock rate.
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Figure 4.1: A histogram of detection events from the Perkin-Elmer SPCM, showing

a -3 dB timing jitter of 250 ps and a -20 dB timing jitter of over 1.6 ns. This intrinsic

uncertainty in the detection event timing information is the current speed limitation

in the NIST QKD system.
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4.2 The origin of timing jitter in Geiger mode avalanche photodiodes

Avalanche photodiodes biased just below the breakdown voltage (the so-called

Geiger mode of operation) have been enormously successful photon counting devices

for a number of applications, ranging from the obvious quantum optical experiments

to biophysical applications such as single-molecule spectroscopy. However, all of

these applications demand precise timing information, and the intrinsic structural

properties of the devices themselves currently limit how well they can meet those

demands. A schematic of the device is shown in Figure 4.2. As the figure illustrates,

there is a finite volume, called the depletion region, in which the incident photon

is absorbed to create the electron-hole pair. This volume must be relatively large

in order to increase the probability of photoabsorption and improve the detector’s

overall efficiency. However, a side effect of such a large absorption volume is an

intrinsic, statistical uncertainty in the time between when the photon is incident on

the front of the detector and when it is absorbed, resulting in an avalanche and final

detection pulse. This uncertainty is the origin of the detector’s timing jitter.

Also shown in Figure 4.2 is a schematic of a new design from Micro Photon

Devices, a company that has formed out of the group of Sergio Cova at the Po-

litechnico di Milan [26]. In this design, the depletion region of the device has been

reduced in thickness from 30-40 µm down to between 1 and 4 µm. Thinning this

region has the desired effect of reducing the timing jitter to as low as 35 ps, as shown

in figure 4.3.

Better timing resolution immediately allows for faster single photon trans-
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mission rates in our QKD system. However, because silicon has a higher extinction

coefficient at shorter wavelengths [44], a thinner depletion region implies that device

will also have higher quantum efficiency at shorter wavelengths. In fact, the effi-

ciency curves shown in Figure 4.4 verify that, for the thinner devices, the quantum

efficiency is not only lower overall, but the wavelength of peak detection efficiency

has shifted from the near-infrared into the visible.

The implications of lower overall quantum efficiency are obvious - lower de-

tection efficiency means higher link loss. But more importantly, the shift from peak

efficiency in the NIR to peak efficiency in the visible implies that free-space QKD

links using these detectors will be more susceptible to solar background noise. The

solar spectrum has significantly higher light levels at visible wavelengths than at

NIR ones. This is likely the factor that drove humans, a very visually dominated

species, to evolve a strong sensitivity in this spectral region. But what makes us

able to see also introduces significant errors into free-space QKD links operating

at visible wavelengths. In fact, it is likely that, without mitigating this effect, any

gain in performance from faster transmission rates will be negated by the increased

noise from the solar background. Thus any free-space QKD system whose design

is centered around these new SPADs must incorporate some additional techniques

to mitigate the background noise. In the new design presented here, two additional

features are added. First, we design our system around a Fraunhofer line in the

solar spectrum where the solar background is reduced and second, we incorporate

a sub-clock gating circuit that forces the detector to ignore a significant number of

background counts within each clock bin.

128



Figure 4.2: A schematic of the structure of two different APDs [26]. On the left is

the APD in the Perkin-Elmer SPCM with a thicker depletion region and thus higher

timing jitter. On the right is a newer design from the Cova group, incorporating a

thinner depletion region and thus improved timing resolution.
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Figure 4.3: A histogram of counts from the thin MPD SPAD, showing a 35 ps timing

jitter [26].
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Figure 4.4: A comparison of the quantum efficiency curves of the Perkin-Elmer

SPCM versus the MPD device. By thinning the depletion region, the overall quan-

tum efficiency is lowered and the peak efficiency wavelength is shifted into the visible

region of the spectrum.
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4.3 Josef von Fraunhofer and the Hα line

Josef von Fraunhofer was born on March 6th, 1787, in the Bavarian town of

Straubing1. After becoming an orphan at the age of 11, he began work as an ap-

prentice in a Munich company making scientific instruments, where he learned to

make lenses and mirrors. Following a major accident that resulted in the collapse of

the building where he was working, Fraunhofer was rescued by Maximillian I Josef,

then the Prince Elector of Bavaria. This future ruler of Bavaria took Fraunhofer

under his wing, providing young Josef with books and encouraging his studies. After

eight months, Fraunhofer went to work at the Benediktbeuern Abbey’s Optical In-

stitute, which specialized in glassmaking. There he developed scientific instruments

of such quality that even Michael Faraday could not compete, shifting the center of

optical instrument manufacturing from England to Bavaria. By 1818, Fraunhofer

became the Institute’s director and eventually earned an honorary doctorate from

the University of Erlangen.

As part of his work, Fraunhofer often used sunlight and a homemade slit

spectrometer to look for impurities in his glass. He noticed that certain lines in the

transmission spectrum of his glass were always present, no matter the quality of

the material he was testing. As a result, Fraunhofer examined his source directly,

realizing that the dark lines in the spectrum were actually part of the sunlight

rather than the impurities in his glass. These lines had been missed by Newton

1This section is based on the High Altitude Observatory’s online biography of Josef von Fraun-

hofer
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in his prism work over a hundred years earlier, but William Wollaston had noticed

them previously. However, it was Fraunhofer who closely studied and cataloged the

hundreds of lines which would eventually bear his name.

Figure 4.5: Josef von Frauhofer, 1787-1826
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Figure 4.6: Fraunhofer’s original drawing of the lines in the solar specturm. He

noticed that certain lines were always present when he used sunlight to test the

glass that he made, no matter the quality of the specimen under test. He labeled

the most prominent of these lines with letters A, B, C, etc., and some of them, such

as the Sodium D line, still bear these labels.
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4.4 Free-space optical communication in the Fraunhofer window

Today these lines are known to be the result of atomic absorption in the sun’s

atmosphere and have been studied in much more depth. The visible spectrum of

the sun, as taken in false color and ’unwrapped’ by the National Optical Astronomy

Observatories in Figure 4.7, shows hundreds of such lines. One of these lines, though,

stands out as a particularly dark hole in the solar spectrum - the H-α, or Ballmer

α line, in the red region at 656.28 nm. This line is a result of the n = 2 to n = 3

absorption transition in the atomic hydrogen contained in the solar atmosphere

[49]. It is 0.12 nm wide and 7-8 dB deep. As there is some reemission by the

hydrogen atoms, the line is not completely dark. However, from a free-space optical

communication point of view, it is the equivalent of operating at perpetual twilight.

Exploiting the Fraunhofer lines to do free-space optical communication during

daylight hours is not a particularly new idea. For example, it has been considered

for links to submarines and in deep space [29]. However, in the context of QKD

this technique can be applied specifically to compensate for the extra background

counts caused by operating in the visible region. In fact, narrowband optical filters

are rather easy to come by, as they are vital for solar photography and are often

stocked as surplus items by manufacturers. Calibrations performed at the NIST

SIRCUS facility, the results of which are presented in Figure 4.8 show some of

these filters to be as narrow as 0.15 nm with a peak transmission of 70%. This

performance is achieved by using a rugate filter design. Standard dielectric stack

filters are fabricated by depositing alternating layers of materials with different
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indices of refraction. The resulting index structure has a transmission edge at the

fundamental period, but since the index alternates between two discreet values, the

edge is not ideally sharp and there are other transmission peaks at higher harmonics

of the index period. Rugate filters, on the other hand, consist of a continuous

sinusoidally varying index layer in lieu of the dielectric stack. By modulating the

index of refraction sinusoidally, the filter achieves a single transition edge that is

transform limited and is usually only about 0.1 nm wide, as shown in Figure 4.8.

Despite the difficulties in fabricating such filters, their utility in solar photography

results in mass production and their relative ubiquity.

In addition to calibrating the filter characteristics, we have directly measured

the reduction in solar background counts due to the filter’s presence. We constructed

a simple test consisting of a collimator collecting sunlight, going through the H-α

filter, then into a SPAD connected to a TTL counter. The output of the counter

was normalized to the output of another SPAD that was collecting sunlight without

a filter in order to mitigate any temporal variations in sunlight. The filter was

mounted on a computer-controlled, motorized rotation stage. The data shown in

Figure 4.9 shows that the background counts are reduced by the expected amount as

the filter is tuned across normal incidence. In fact, as the data show, the minimum

background count rate occurs just off of normal incidence, indicating that the filter

is not precisely centered at the H-α wavelength and will require some slight tuning

during operation.
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Figure 4.7: A false color, unwound depiction of the visible solar spectrum created

by the National Optical Astronomy Observatories. Fraunhofer noticed hundreds of

lines occurring in the spectrum, with a particularly dark region in the red. This

line, at 656.28 nm, is the result of the n=2 to 3 transition in atomic hydrogen in

the solar atmosphere and is particularly useful to performing free-space QKD in the

daytime with reduced background counts.
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Figure 4.8: Calibration data taken at NIST SIRCUS (many thanks to Dr. Steve

Brown) showing the performance of H-α Rugate filters, both specifically around

656.28 nm and across the broader optical spectrum.
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4.5 Single-photon sources at 656 nm

Despite the ease of obtaining filters at the H-α wavelength, there are very few

fast pulsed optical sources at that wavelength. The 2004 NIST system is based on

gain-switched VCSEL diodes that are designed for high-speed modulation. However,

for market reasons these devices are fabricated at 850 nm, and no comparable device

exists in the visible spectrum. One approach that we have taken to generating red

pulses has been to implement a pulse carving scheme using a CW tunable laser

and an external intensity modulator. The laser is a Sacher external cavity tunable

diode laser designed for Hydrogen spectroscopy and the modulator is a custom

Mach-Zender type Electro-optic intensity modulator designed by EOSpace, Inc., to

operate in the visible spectrum. While we have demonstrated the feasibility of this

approach, as demonstrated by the histogram in Figure 4.10, we have observed several

limitations. First, we have found that the external cavity diode laser is not stable

enough in frequency for the long operation required by a QKD system. This effect

is not unique to our laser and has been observed in other lasers and even in units

built by other manufacturers. Additionally, the modulator is highly sensitive to

wavelength, temperature and polarization effects, resulting in low on-off extinction

ratios over long periods of operation.

To work around both of these effects, we have identified a number of possible

solutions. The most obvious but most difficult approach would be to directly fabri-

cate 656 nm VCSELs. However, this approach is rather high risk, as little is known

about the issues associated with high-speed visible diodes. The second, more feasi-
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Figure 4.9: Data showing solar background counts versus tuning angle of the H-

α filter. Note that the minimum does not occur precisely at normal incidence,

indicating that the filter is not quite centered on the H-α line and will require some

tuning during operation.
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ble approach, is to use off-the-shelf visible diodes that are selected to match the H-α

wavelength and then to fabricate custom electro-absorption modulators to do pulse

carving. EA modulators can exploit intrinsic nonlinearities in the device to achieve

extinction ratios approaching -60 dB. This approach seems to be a better alternative

to both the scheme already implemented and the idea of fabricating visible VCSELs

from scratch.
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Figure 4.10: A count histogram showing a 60 ps pulse generated using an external

cavity laser diode and a custom visible EO modulator. While the extinction ratio is

nominally -20 dB, we have observed that the laser is not stable and the modulator

suffers from oversensitivity to environmental fluctuations.
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4.6 Sub-clock gating

In general, the engineering challenge in free-space quantum cryptography re-

duces to the problem of finding and measuring the single photon of interest among

the slew of solar background photons incident on Bob’s receiver aperture during any

given pulse. Thus any information you can provide Bob’s receiver about the single

photon’s wavelength, position, and time of arrival will aid in setting the signal apart

from the noise. In addition to good spectral filters, narrow receiver apertures, and

careful wavelength selection, another tool we can use is time gating. Even though we

are limited in transmission speed by the detector’s timing jitter and we synchronize

Alice and Bob’s clocks via the classical channel, we have much finer control over

where the pulse occurs within the timing bin than simply the clock speed. In fact,

as Figures 4.11 and 4.12 show, most of the detection counts fall within a very narrow

window within the clock bin. Employing a technique we call sub-clock gating, we can

essentially instruct the detector to ignore any detection events that occur outside of

this small window within the clock cycle. To do this, we implement a rather simple

AND gate circuit show in Figure 4.13, albeit one that must operate with very fast

rise times. To achieve this, we incorporate fast InP logic that can operate at clock

speeds up to 40 GHz. The histogram in Figure 4.14 shows the effects of such a

circuit, eliminating much of the background noise between pulses.
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Figure 4.11: A linear scale histogram showing 625 MHz pulses. On this scale it is

apparent that the pulses are very well localized in the transmission clock bin.
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Figure 4.12: A plot showing the percentage of counts within a sub-clock gate as

a function of the gate width. Note that for gate times greater than 150 ps, over

80% of the signal counts are retained while most of the background counts between

transmission events are eliminated.
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Figure 4.13: A schematic of the sub-clock gating circuit used to eliminate much of

the background noise. The AND gate is a 40 GHz InP logic device.

146



Figure 4.14: A histogram showing the receiver counts before and after the sub-clock

gating circuit. Most of the background counts between pulses are eliminated.
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4.7 Performance projections using MODTRAN

In considering a new free-space QKD system that incorporates all of these

improvements, we can now use the various system parameters to predict its overall

performance. However, one system parameter that we have not yet taken into ac-

count is the atmosphere. There are many subtleties in predicting the transmission

through the atmosphere and the scattering of solar background radiation. Cur-

rently the most common model for such prediction is MODTRAN, an atmospheric

modeling program created by the U.S. Air Force and used extensively to model elec-

tromagnetic wave propagation through the atmosphere. The details of the software

can be found in [8]. It suffices that the model takes into account the various link

parameters such as location, time of day, season, link geometry, and atmospheric

conditions and provides predictions of both the atmospheric transmission and the

scattered background spectrum over the wavelength range of interest. The wave-

length resolution of the model is considered to be moderate, as compared with the

LOWTRAN and HITRAN variants of the model. While the model does not con-

tain the actual H-α line, we can combine the background level with the measured

reduction in counts to determine the predicted value of scattered solar background

photons. Figure 4.15 shows the MODTRAN outputs for our current link geometry

at NIST. It assumes a mid-spring day with few clouds and good visibility.

148



Figure 4.15: Atmospheric transmission and scattered solar background spectra from

MODTRAN for the NIST free-space QKD link geometry. The model was run for

the day April 15th, with few clouds and 23 km of visibility. Note the large number

of water lines in the atmospheric transmission spectrum.
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Using these data along with the rest of the system parameters, we now have

all of the information we require to make a prediction of the link performance. The

most fundamental performance metric of any QKD link is the sifted bit rate. We

can determine the expected sifted bit rate for a BB84 system from the following

expression:

ρsift =
µTatmosη

2∆t
+ 2D +

RskyA∆t′λ∆λΩ

2hcδt
(4.1)

In this expression, the first term represents the actual single photon transmissions

from Alice, where µ is the mean photon number, assumed to be 0.1, Tatmos is the

atmospheric transmission taken from MODTRAN, η is the detector efficiency, and

∆t is the transmission period. The factor of two in the denominator accounts for the

sifting. The second term accounts for the detector dark counts that occur when no

photon is incident on the detector. D is the detector dark count rate as specified by

the manufacturer, and the factor of 2 accounts for the events from four detectors, half

of which are sifted. The final term accounts for solar background noise, where Rsky is

the scattered solar background photon rate taken from combining the MODTRAN

with the H-α filter data, A is the receiver aperture area, ∆t′ is the gate width, λ

is the wavelength, ∆λ is the spectral filter width, and Ω is the receiver aperture’s

solid angle.

From the sifted bit rate, we can then calculate the expected quantum bit error

rate, or QBER, using

QBER =
D +

RskyA∆t′λ∆λΩ

4hcδt

ρsift
(4.2)

As is evident from the numerator, errors come from both dark counts and scattered
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sunlight.

Finally, using the QBER, we can then calculate the expected secret key rate.

The secret key rate is determined directly from the QBER, as the EC/PA algorithm

is limited only by the error rate. This speaks to the security of QKD, where any

attempt to eavesdrop on the key will simply raise the error rate. Once the error

rate goes above a few percent, whether due to dark counts, solar background, or

even the presence of an eavesdropper, the EC/PA algorithm will no longer be able

to distill secret bits from the sifted key and the communications will stall2 . Below

this cutoff error rate, however, the secret key rate is given by

ρsecret = 2.8e(−28×QBER) (4.3)

This expression is determined purely from empirical tests of the current version of

the EC/PA software running on the current Linux-based Xeon workstations and will

undoubtedly change as the software is updated and ported to higher performance

machines. However, using this expression, we can estimate the final secret key rate of

a link built as described above. We assume the following parameters for the calcula-

tion: µ = 0.1 photons/pulse, η = 0.34,∆t = 400ps, D = 750 counts per second, A =

30 cm2, λ = 656.28 nm,∆λ = 0.12 nm, and the atmospheric visibility is 23 km. The

results of the calculations are outlined in Table 4.1. The calculation is performed

for various sub-clock gate times, showing the dramatic decrease in background noise

resulting from the gating circuit.

2Note that, in the QKD security proof, it is assumed that all errors are due to an eavesdropper.

Thus the system is not immune to a denial of service attack
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Table 4.1: Performance predictions at various gate times for the proposed H-alpha

QKD link

Gate Width (ps) Sifted Key

Rate (Mb/s)

QBER (%) Secret Key

Rate (Mb/s)

400 (ungated) 3.6635 4.10 0.8849

200 3.3040 2.28 1.4749

100 2.4586 1.55 1.8133

As the table shows, we expect to see up to a two-fold increase in the secret key

rate using these new detectors at the H-α wavelength. As we increase the key rate,

we will begin to approach the regime where a small number of multiplexed links can

be used together to achieve the goal of a 10 Mb/S, OTP-encrypted QKD link that

is compatible with first-generation ethernet.
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Chapter 5

Conclusions - The future of broadband QKD

”You sort of start thinking anything’s possible if you’ve got enough nerve.” - J. K.

Rowling

5.1 Advances in sources, detectors, and systems

In this thesis, I have outlined a number of advances relating to the various

components of broadband QKD. I have demonstrated progress on a new source of

entanglement for QKD. This source, based on birefringent phase matched four wave

mixing, provides a number of advantages over existing sources of generating entan-

glement, including reduced Raman noise, more compact size, and stronger nonlinear

interaction. However, as with any integrated photonic device, this approach poses

unique challenges. The simple task of coupling light in and out of micro- and nano-

scale photonics poses a particular challenge. In addition, the specific nonlinear

process of interest is not well characterized compared to other nonlinear interac-

tions. Overall, we have demonstrated that, at the very least, the ability to fabricate

a device with the proper characteristics to perform birefringent phase-matched four

wave mixing. We have also constructed a setup to investigate other materials that
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may have stronger nonlinearity for their suitability as correlation sources.

We have also demonstrated a very important result relating to high-speed

QKD using detectors with finite dead time. This result uncovers a key security

vulnerability in fast QKD systems and provides a straightforward modification to

the BB84 protocol that does not excessively limit the transmission rate. This mod-

ified protocol will become increasingly important as systems begin to operate at

multi-gigahertz transmission rates. The counterintuitive existence of an optimal

transmission rate is also an interesting result of this analysis.

Finally, I present a new concept of a QKD system based around faster detectors

that will hopefully push the key rate toward the goal of 10 Mb/s. This system, when

built, will represent the most advanced QKD link in the world.

5.2 Personal contributions to each project

I personally made significant contributions to each project. The nonlinear

photonics project, in fact, was an original idea inspired by the research of Dr. Alan

Migdall’s group at NIST in microstructure fiber sources. I initiated the project and

was the sole party responsible at each step, excluding the actual device fabrication,

but including refining the concept of the approach, designing the device, and char-

acterizing its properties and performance. I gained extensive experience in photonic

device design using various simulation tools and did all of the work setting up the

source and apparatus to perform the testing. In addition, I gained invaluable ex-

perience setting up a collaboration between NIST and LPS. Once the collaboration
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was established, the actual MBE and fabrication work was left in the able hands of

Dr. Chris Richardson.

On the project investigating detector dead-time issues, I was specifically re-

sponsible for the simulation work and the investigation of the key correlations. I

made contributions to the analytical investigation, though the original concept of

the state space was initiated by Dr. Anastase Nakassis and Dr. Joshua Bienfang. In

addition, some of the calculations relating to transition probabilities were developed

by Dr. Hai Xu.

My personal contributions to the Hα system design were extensive, though I

was not the original inspiration for the idea. That concept was initiated by Dr. Bill

Jeffrey, formerly the Director of NIST, upon hearing about the problems associated

with the new SPADs. Once we began looking into operating in one of the Fraunhofer

lines, I was responsible for all of the MODTRAN modeling and the calculations

relating to the Hα line. The experiemental measurements of the solar background

counts and the calculations predicting the system performance were an equal effort

between Dr. Joshua Bienfang and myself. The calibration of the Hα filter was

performed by Dr. Steve Brown of the NIST SIRCUS facility.

5.3 The future of free-space and fiber optic QKD

Recent demonstrations of free-space QKD have elicited strong interest in the

technology for practical applications. The final chapter of this thesis proposed a

new design for a free-space QKD system. While it may not end up that most fast
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free-space QKD systems rely on a Fraunhofer line to reduce the solar background

noise, the basic elements of the free-space system proposed will hopefully continue

to push the speed limits of quantum cryptography for a number of years. Already

there are plans to demonstrate this new system over a 16 km link provided by the

Naval Research Laboratory. If successful, this will certainly be the most advanced

demonstration of free-space QKD in terms of distance-bandwidth product. Such a

system will be vital to implementing the concept of a satellite-based, global quantum

encrypted network.

The other facet of QKD research focuses on short haul fiber based systems.

While not addressed here, there are a number of research avenues that have the po-

tential to make great advances in fiber-based QKD. One of the most promising ap-

proaches to fiber-based QKD is single-sideband encoding[41]. In this approach, the

bits are encoded on the frequency of the single quanta, a property that is much more

stable in a fiber than polarization or phase. While this approach has received little

attention in the research community, it promises to be one of the most practicable

implementations of QKD known to date. In fact, it even offers much more potential

as an entangled system than other approaches. Generating frequency entanglement

is significantly more straightforward than generating polarization entanglement and

often involves only a single nonlinear process rather than two. Hence there is much

potential to make advances in frequency-coding and develop frequency entanglement

sources for significantly improved fiber-based quantum key distribution systems.
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5.4 QKD in the marketplace

The final question that remains in the QKD community is whether there exists

a real-world need for such a technology. In the modern IT security infrastructure,

cryptography is certainly one of the strongest links in the chain. Often vulnerabili-

ties occur from faulty implementations of security procedures or social engineering

attacks on lapses in user vigilance. Thus it is almost always easier to attack another

point of entry rather than the encrypted data set itself.

That said, there still exists a vulnerability. Not only is there no proof that one

cannot break RSA encryption with a classical computer, but quantum computers

that are on the long-term technology horizon have already been shown to readily

break RSA. Even if a system implements perfect security with the most advanced

classical cryptography, it is still vulnerable to attacks that record the ciphertext in

order to break it in 50 years or so, when the technology required will very likely

be available. Thus any customer who has information that needs to be secret for a

long period of time, whether it be governments, financial institutions, or health care

providers, has a need for communications that are immune to eavesdropping from

any adversary, now or in the future.

Whether this market exists is still unknown. However, even it if did, there

is still a significant amount of technical work that remains until QKD can keep

pace with today’s, and especially tomorrow’s, IT infrastructure. Increases in speed

and transmission distance, robustness to real-world perturbations, and validations

of the security of the protocols all still need research attention if any market were
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to become interested in quantum encryption.

The future of QKD is at a crossroads. If it becomes of interest in the IT

marketplace, then we will look forward to many exciting advances as the technology

gains its place in the everyday world. If it remains only an exotic sideshow in the

IT security community, then it certainly has produced technology that will be of

use in other arenas. Either way, science is science, and we continue to trudge on.
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Appendix A

Index of refraction calculation for aluminum gallium arsenide

This C code implements the detailed calculation of the bulk index of refraction

for the ternary zincblende semiconductor Al(x)Ga(1-x)As, for any temperature and

aluminum fraction. The code is implemented as a MATLAB MEX file that can be

compiled into a MATLAB-compatible function. For a detailed description of this

code and its applications, see [23].

//file algaas_mex.c

/************************************

MATLAB MEX file version of...

Calculator for index of refraction

of bulk Al(x)Ga(1-x)As including

temperature dependence

MATLAB format: n = algaas_mex(lambda, x, T)

Based on Gehrsitz, et al., J. Appl. Phys.,
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Vol. 87, No. 11, June 2000

Created 29 Aug 2008

Modified 31 Aug 2008

by DR

************************************/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "mex.h"

#define kB 0.0861708 //in meV/K

double coth(double z)

{

return ((exp(2.0*z)+1)/(exp(2.0*z)-1));

}

double R(double lambda, double x) //lambda in microns

{
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double E_sq, r;

const double E2_sq = 0.724e-3;

const double C2 = 1.55e-3;

const double E3_sq = 1.331e-3;

const double C3 = 2.61e-3;

E_sq = pow(lambda, -2.0);

r = (((1-x)*C2)/(E2_sq-E_sq)) + (x*C3/(E3_sq-E_sq));

return r;

}

double A0(double T) //temp in K

{

return 5.9613 + (7.178e-4*T) - (0.953e-6*T*T);

}

double E10_sq(double T) //temp in K

{

return 4.7171 - (3.237e-4*T) - (1.358e-6*T*T);

}
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double E_Gamma(double T) //temp in K

{

double p,q,eg;

p = 1 - coth(15.9/(2.0*kB*T));

q = 1 - coth(33.6/(2.0*kB*T));

eg = 1.5192 + (1.8*15.9e-3*p) + (1.1*33.6e-3*q);

return eg/1.239865;

}

double A(double x, double T)

{

double c0;

const double c1 = -16.159;

const double c2 = 43.511;

const double c3 = -71.317;

const double c4 = 57.535;

const double c5 = -17.451;

c0 = A0(T);
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return c0 + c1*x + c2*x*x + c3*x*x*x + c4*x*x*x*x + c5*x*x*x*x*x;

}

double C1(double x)

{

const double c0 = 21.5647;

const double c1 = 113.74;

const double c2 = -122.5;

const double c3 = 108.401;

const double c4 = -47.318;

return c0 + c1*x + c2*x*x + c3*x*x*x + c4*x*x*x*x;

}

double E1_sq(double x, double T)

{

double c0;

const double c1 = 11.006;

const double c2 = -3.08;

c0 = E10_sq(T);
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return c0 + c1*x + c2*x*x;

}

double C0(double x)

{

double c;

const double c0 = 50.535;

const double c1 = -150.7;

const double c2 = -62.209;

const double c3 = 797.16;

const double c4 = -1125;

const double c5 = 503.79;

c = c0 + c1*x + c2*x*x + c3*x*x*x + c4*x*x*x*x + c5*x*x*x*x*x;

return (1.0/c);

}

double E0_sq(double x, double T)

{

double e0;

164



double c0;

const double c1 = 1.1308;

const double c2 = 0.1436;

c0 = E_Gamma(T);

e0 = c0 + c1*x + c2*x*x;

return (e0*e0);

}

double n(double lambda, double x, double T) //lambda in microns, x in %, T in K

{

double E_sq, n_sq;

E_sq = pow(lambda, -2.0);

n_sq = A(x,T) + (C0(x)/(E0_sq(x,T) - E_sq)) + (C1(x)/(E1_sq(x,T) - E_sq)) + R(lambda,x);

return sqrt(n_sq);

}

/**************************************
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MATLAB equivalent of main()

used in creating a C-based MATLAB compatible function...

For fomatting and documentation, see MATLAB mex helpfile or http://cnx.org/

**************************************/

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

double *xValues, *outArray;

int, i, j;

double lambda, x, T, index;

if (nrhs == 3){

xValues = mxGetPr(prhs[0]);

lambda = xValues[0];

xValues = mxGetPr(prhs[1]);

x = xValues[0];

xValues = mxGetPr(prhs[2]);

T = xValues[0];

index = n(lambda, x, T);

plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
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outArray = mxGetPr(plhs[0]);

outArray[0] = index;

}

}
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Appendix B

Monte-Carlo QKD Simulation Code

For a detailed description of this code and its applications, see Chapter 3.

B.1 Traditional BB84 protocol

The following code performs a simulation of traditional BB84 QKD using

unitless time. It runs continuously until it accumulates NBITS of sifted key.

//file: qkd_trans_prob.c

#include <stdlib.h>

#include <time.h>

#include <math.h>

//===== OPERATING PARAMETERS =======

#define NBITS 1048576

#define DEAD_START 101

#define DEAD_STOP 500
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#define DEAD_STEP 2

#define LINK_LOSS 0.99

#define QBER 0.0

#define H_EFF 0.6

#define V_EFF 0.6

#define L_EFF 0.6

#define R_EFF 0.6

//=================================

//Model Constants

#define HV_BASIS 0

#define LR_BASIS 1

//H=L=0, V=R=1

#define H 0

#define V 1

#define L 2
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#define R 3

//Global vars

int alice_key[NBITS];

int bob_key[NBITS];

double det_eff[4];

int dead_flags[4];

int dead_counts[4];

int a_basis, a_value, b_basis, b_value;

long int bit_count;

long double clk;

//=======Statistics to record============

int det_counts[4];

double transition_prob;
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//=======================================

double NextBitTransitionProb(int key[])

{

//calculates the probability that the next bit

//is different from the previous bit...

int i, count;

count=0;

for(i=0; i<NBITS-1; i++)

if(key[i] != key[i+1])

count++;

return (double)count/(double)(NBITS-1);

}//======================================

void doQKD(int dead_time)

{

int i, d, b;

double r1, r2, r3, r4, r5, r6, r7;

//initialize everything
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srand(time(NULL));

clk = 0.0;

bit_count = 0;

for(d=H; d<=R; d++){

det_counts[d] = 0;

dead_flags[d] = 0;

dead_counts[d] = 0;

}

det_eff[H] = H_EFF;

det_eff[V] = V_EFF;

det_eff[L] = L_EFF;

det_eff[R] = R_EFF;

while (bit_count < NBITS){

//roll seven dice...

r1 = (double)rand()/((double)RAND_MAX + 1); //Alice’s basis

r2 = (double)rand()/((double)RAND_MAX + 1); //Alice’s bit value

r3 = (double)rand()/((double)RAND_MAX + 1); //link loss
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r4 = (double)rand()/((double)RAND_MAX + 1); //Bob’s basis

r5 = (double)rand()/((double)RAND_MAX + 1); //Bob’s bit value (if req’d)

r6 = (double)rand()/((double)RAND_MAX + 1); //Error introduction/Background Counts

r7 = (double)rand()/((double)RAND_MAX + 1); //Detector Efficiency

//generate Alice’s random bits...

a_basis = (r1 < 0.5) ? HV_BASIS : LR_BASIS;

a_value = (r2 < 0.5) ? 0 : 1;

if (r3 > LINK_LOSS){

//select Bob’s basis

b_basis = (r4 < 0.5) ? HV_BASIS : LR_BASIS;

//sift

if (a_basis == b_basis){ //Bit goes through and is recorded...

b_value = a_value;

b_value = (r6<QBER) ? (!b_value) : b_value; //introduce errors...

d = (b_basis*2) + b_value; //selects H,V,L or R... I know, I’m pretty clever...

if ((r7 < det_eff[d]) && (!dead_flags[d])){

alice_key[bit_count] = a_value;

bob_key[bit_count] = b_value;

bit_count++;

dead_flags[d] = 1;
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det_counts[d]++;

}

}

else{ //basis is wrong, and detector fires, but bit is not recorded...

b_value = (r5 < 0.5) ? 1 : 0;

d = (b_basis*2) + b_value;

if ((r7 < det_eff[d]) && (!dead_flags[d])){

dead_flags[d] = 1;

det_counts[d]++;

}

}

}

//increment dead time counters with the clock...

for (d=H; d<=R; d++){

if (dead_flags[d]){

if(dead_counts[d] < dead_time)

dead_counts[d]++;

else{

dead_flags[d] = 0;

dead_counts[d] = 0;

}
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}

}

clk = clk + 1.0;

}

}

//====================================

int main(int argc, char* argv[])

{

int i, j, result, dt;

double avg, rate;

int dstart, dstop, dstep;

if (argc == 4){

dstart = atoi(argv[1]);

dstop = atoi(argv[2]);

dstep = atoi(argv[3]);

}

else{

dstart = DEAD_START;

dstop = DEAD_STOP;
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dstep = DEAD_STEP;

}

for(dt=dstart; dt<=dstop; dt+=dstep){

doQKD(dt);

transition_prob = NextBitTransitionProb(bob_key);

avg = (det_counts[H] + det_counts[V] + det_counts[L] + det_counts[R])/4.0;

rate = avg/clk;

printf("%d\t%f\t%f\n", dt, rate, transition_prob);

}

return 0;

}

B.2 Modified BB84 protocol

This version of the code incorporates the modification required to maintain

security in the presence of long dead times (see Chapter 3). Unlike the previous

version, this one runs the simulation in ’real time,’ meaning it includes a fundamental

time unit of 100 ps. All transmission events, dead times, etc., are scaled to this

fundamental simulation time unit.

//file: fc.c
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#include <stdlib.h>

#include <time.h>

#include <math.h>

//===== OPERATING PARAMETERS =======

#define RUN_TIME (100000000) //number of 0.1 nsec units to run simulation

#define TX_PER_START_EXP (0.0)

#define TX_PER_STOP_EXP (3.0) //tx_per = 10 ^ TX_Exp...

#define TX_PER_STEP_EXP (0.2)

//we want to scan from 10 MHz to 10 GHz TX rate

//so we set the fundamental time unit to 100 ps

//and run for TX rates from 1 clock cycle to

// 1,000 clock cycles

#define DEAD_TIME 1500 //in 0.1 nsec units

#define LINK_LOSS (0.99)

#define QBER (0.0)
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#define H_EFF (1.0)

#define V_EFF (1.0)

#define L_EFF (1.0)

#define R_EFF (1.0)

//=================================

//Model Constants

#define HV_BASIS 0

#define LR_BASIS 1

//H=L=0, V=R=1

#define H 0

#define V 1

#define L 2

#define R 3

//Global vars (I know... don’t say anything)

int dead_flags[4];
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int dead_counts[4];

int sift_flags[2];

int a_basis, a_value, b_basis, b_value;

long int bit_count;

long int tossed_bits;

int bob_key[RUN_TIME];

double det_eff[4];

double transition_prob;

//=============================================================================

void doQKD(long int tx_per, int dead_time) //both params in units of 100 ps

{

int i, d, d2;

double r1, r2, r3, r4, r5, r6, r7;

long int clk;

//initialize everything
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srand(time(NULL));

bit_count = 0;

tossed_bits = 0;

for(d=H; d<=R; d++){

dead_flags[d] = 0;

dead_counts[d] = 0;

}

sift_flags[HV_BASIS] = 0;

sift_flags[LR_BASIS] = 0;

det_eff[H] = H_EFF;

det_eff[V] = V_EFF;

det_eff[L] = L_EFF;

det_eff[R] = R_EFF;

for (clk = 0; clk <= RUN_TIME; clk++){

if((clk % tx_per) == 0){

//roll seven dice...
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r1 = (double)rand()/((double)RAND_MAX + 1); //Alice’s basis

r2 = (double)rand()/((double)RAND_MAX + 1); //Alice’s bit value

r3 = (double)rand()/((double)RAND_MAX + 1); //link loss

r4 = (double)rand()/((double)RAND_MAX + 1); //Bob’s basis

r5 = (double)rand()/((double)RAND_MAX + 1); //Bob’s bit value (if req’d)

r6 = (double)rand()/((double)RAND_MAX + 1); //Error introduction/Background Counts

r7 = (double)rand()/((double)RAND_MAX + 1); //Detector Efficiency

//generate Alice’s random bits...

a_basis = (r1 < 0.5) ? HV_BASIS : LR_BASIS;

a_value = (r2 < 0.5) ? 0 : 1;

if (r3 > LINK_LOSS){

//select Bob’s basis

b_basis = (r4 < 0.5) ? HV_BASIS : LR_BASIS;

//sift

if (a_basis == b_basis){ //Bit goes through and is recorded...

b_value = a_value;

b_value = (r6<QBER) ? (!b_value) : b_value; //introduce errors...

d = (b_basis*2) + b_value; //selects H,V,L or R...
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//d2 is assigned other detector in basis - this is the modification to BB84...

d2 = ((d%2) == 0) ? d+1 : d-1;

if ((r7 < det_eff[d]) && (!dead_flags[d])){

if (!dead_flags[d2]){

bob_key[bit_count] = b_value;

bit_count++;

sift_flags[b_basis] = 1; //a bit is recorded... set sift flag

}

else{

if (sift_flags[b_basis] == 0){

bob_key[bit_count] = b_value;

bit_count++;

sift_flags[b_basis] = 1; //a bit is recorded... set sift flag

}

}

dead_flags[d] = 1;

}

}

else{ //basis is wrong, and detector fires, but bit is not recorded...

b_value = (r5 < 0.5) ? 1 : 0;

d = (b_basis*2) + b_value;

if ((r7 < det_eff[d]) && (!dead_flags[d])){
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dead_flags[d] = 1;

}

} //Sifting

} //Link Loss

} //TX block

//increment dead time counters with the clock...

for (d=H; d<=R; d++){

if (dead_flags[d]){

if(dead_counts[d] < dead_time)

dead_counts[d]++;

else{

dead_flags[d] = 0;

dead_counts[d] = 0;

}

}

}

if ((!(dead_flags[H])) && (!(dead_flags[V])))

sift_flags[HV_BASIS] = 0;

if ((!(dead_flags[L])) && (!(dead_flags[R])))

sift_flags[LR_BASIS] = 0;

}
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}

//====================================

int main(int argc, char* argv[])

{

int tx_per;

double t_ex, trans_prob;

for(t_ex=TX_PER_START_EXP; t_ex <= TX_PER_STOP_EXP; t_ex += TX_PER_STEP_EXP){

tx_per = (int)ceil(pow(10.0, t_ex));

doQKD(tx_per, DEAD_TIME);

//trans_prob = TransitionProb(bob_key, bit_count);

printf("%d\t%d\n", tx_per, bit_count);

}

return 0;

}
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