ABSTRACT

Title of dissertation: LEFT-RIGHT SYMMETRIC MODEL
AND ITS TEV-SCALE PHENOMENOLOGY

Chang-Hun Lee, Doctor of Philosophy, 2017

Dissertation directed by: Professor Rabindra N. Mohapatra
Department of Physics

The Standard Model of particle physics is a chiral theory with a broken parity
symmetry, and the left-right symmetric model is an extension of the SM with the
parity symmetry restored at high energies. Its extended particle content allows us
not only to find the solution to the parity problem of the SM but also to solve the
problem of understanding the neutrino masses via the seesaw mechanism. If the scale
of parity restoration is in the few TeV range, we can expect new physics signals that
are not present in the Standard Model in planned future experiments. We investigate
the TeV-scale phenomenology of the various classes of left-right symmetric models,
focusing on the charged lepton flavour violation, neutrinoless double beta decay,

electric dipole moments of charged leptons, and leptogenesis.



LEFT-RIGHT SYMMETRIC MODEL
AND ITS TEV-SCALE PHENOMENOLOGY

by

Chang-Hun Lee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2017

Advisory Committee:

Professor Rabindra N. Mohapatra, Chair/Advisor
Professor Kaustubh Agashe

Professor Sarah Eno

Professor Niranjan Ramachandran

Professor Raman Sundum



(© Copyright by
Chang-Hun Lee
2017



Table of Contents

List of Abbreviations

1

2

Introduction

Minimal left-right symmetric model

2.1 Introduction . . . . . . ...
2.2 Review of the minimal left-right symmetric model . . . . . . . . . ..
2.3 Construction of lepton mass matrices . . . . . . . .. ... ... ...
2.4 Conditions for the TeV-scale minimal left-right symmetric model . . .
2.5 Numerical procedure . . . . . . . . ...
2.6 Numerical results . . . . . . . ... L
2.7 Conclusion . . . . . . . ..

Natural TeV-scale left-right symmetric model

3.1 Imtroduction . . . . . . . ...
3.2 Outline of the model . . . . . . . ... .. ... ... ... ......
3.3 Numerical procedure . . . . . . .. ... Lo
3.4 Numerical results . . . . . .. . ...
3.5 Conclusion . . . . . . . . ..

TeV-scale resonant leptogenesis

4.1 Introduction . . . . . . . ...
4.2 One-loop resummed effective Yukawa couplings and decay rates

4.3 Boltzmann equations and the lepton asymmetry . . . . . . . .. . ..
4.4 Numerical procedure . . . . . . . . . ..o
4.5 Numerical results . . . . . . . ..o
4.6 Conclusion . . . . . . . ...

Conclusion

i

v

13
16
18
21
27

37
37

45
49
49

52
52
o6
57
62
63
64

66



A Derivation of various expressions in the minimal left-right symmetric model 67

A.1 Gauge group and fields . . . . . ... ... L 67
A.2 Current and generators . . . . . . . . ... 68
A.3 Yukawa interaction Lagrangian . . . . . . .. ... .. .. ... ... 69
A.4 Spontaneous symmetry breaking and fermion masses . . . . .. . .. 69
A5 Gauge bosons . . ... 71
B Expressions of observables 85
C Parametrization of the Dirac neutrino mass matrix 105
D Boltzmann equation 108
E Lepton asymmetry 124

Bibliography 129

1ii



CLFV
EDM
LH

LHC
LRSM
MLRSM
PMNS
RH

SM

TeV

Ovpp

List of Abbreviations

Charged lepton flavour violation
Electric dipole moment
Left-handed

Large Hadron Collider

Left-right symmetric model
Minimal left-right symmetric model
Pontecorvo-Maki-Nakagawa-Sakata
Right-handed

Standard Model
Teraelectron-Volts

Neutrinoless double beta decay

v



Chapter 1: Introduction

The Standard Model (SM) of particle physics is the theoretical framework to ex-
plain the fundamental principles of nature. The gauge group of the SM before the

spontaneous symmetry breaking is

SU2), ® U(L)y. (1.1)

The representations of the leptons are

VL
LZ = ~ (27 _1>7 gRi ~ (17 _2)7 (1 2)
L
and for quarks, we have
ULi
Q; = ~ (2,1/3), up; ~ (1,4/3), dri ~ (1,-2/3) (1.3)
dr

where 7 is the generation index. In addition, the scalar doublet field is given by
ot
o = ~(2,1). (1.4)
¢0

The Yukawa interaction Lagrangian is written as

Ly = —f;L;®lr; — Z}@‘EURJ' — [1Q:0dp; (1.5)



where ® = ig,®*. After spontaneous symmetry breaking of the electroweak gauge

group SU(2);,® U(1)y to U(1)em via the vacuum expectation value (VEV) of Higgs

0
(@) = (1.6)

UEW/\/§

where vgw = 246 GeV, the Yukawa interaction Lagrangian can be written as

1 — 1 1 —
(Ly) = _Efévﬁzw&iﬁm - Ef;;‘UEWU_MURj - ﬁfg‘vEWdLide (1.7)

In other words, the charged leptons and quarks acquire masses, and neutrinos remain
massless in the SM.

The observation of nonzero neutrino masses and mixing has provided the first
experimental evidence for physics beyond the SM. Since the origin of mass for all
charged fermions in the SM appears to have been clarified by the discovery of the
Higgs boson with mass of 125 GeV at the LHC [1,2], an important question is
whether the same Higgs field is also responsible for neutrino masses. If we simply
add three right-handed (RH) neutrinos vg to the SM, Yukawa coupling terms of the

form

1,

can be written in the lepton sector. After spontaneous symmetry breaking, this
Yukawa term gives masses of the form f‘vgw/v/2 to the neutrinos. However, to get
sub-eV neutrino masses as observed, it requires f* < 107'? which is an unnaturally
small number. This provides sufficient reason to believe that there is new physics
behind neutrino masses beyond adding just three RH neutrinos to the SM, thereby
providing the first clue to the nature of physics beyond the SM.
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A simple paradigm for understanding the small neutrino masses is the type-I
seesaw mechanism [3—-6] where the RH neutrinos alluded to above have a Majorana
mass of the form myv}vg, in addition to having Dirac masses like all charged
fermions in the SM. Neutrinos being electrically neutral allow for this possibility,
distinguishing them from the charged fermions, and this feature might be at the
heart of such diverse mass and mixing patterns for leptons in contrast with the
quark sector. The seesaw mechanism leads to the generic 6 X 6 neutrino mass

matrix

0 Mp
M,y = (1.9)

MY Mg
where the 3x 3 Dirac mass matrix Mp mixes the v, and vg states and is generated by
the SM Higgs field, while My is the Majorana mass for vz which embodies the new

neutrino mass physics. In the usual seesaw approximation where |(MpMy');| < 1,

the light neutrino mass matrix is given by the seesaw formula
M, ~ —MpMy* M}, (1.10)

Seesaw mechanism provides a very simple way to understand the smallness of
neutrino mases. Two main ingredients of this mechanism are: (i) the introduction
of RH neutrinos vg to the SM, and (ii) endowing the vg’s with a Majorana mass
which breaks the accidental B — L symmetry of the SM. In the context of the SM
gauge group, these two features do not follow from any underlying principle, but
are rather put in by hand. There is, however, a class of theories where both these

ingredients of seesaw emerge in a natural manner: the left-right symmetric theories



of weak interactions [7-9] based on the gauge group SU(2),® SU(2)g® U(1)p_r.
The existence of the RH neutrinos is guaranteed by the gauge symmetry in both
cases and their Majorana masses are connected to the breaking scale of local B — L
symmetry, which is a subgroup of the above gauge groups. Furthermore they also
predict the number of vg’s to be three. Thus, the essential ingredients of seesaw are
no more adhoc but are rather connected to symmetries of the extended theory. It
is then important to explore how new features of these symmetries can be probed
in laboratory experiments. Our focus is on the low-scale left-right symmetric model
(LRSM) where the seesaw scale can be in the few TeV range and be accessible to
the LHC, while satisfying the observed charged lepton and neutrino mass spectra.
The first question for such models is how the small neutrino masses can be un-
derstood if the seesaw scale is indeed in the TeV range, since by naive expectations,
the Dirac masses are expected to be similar to the charged lepton masses, which
after seesaw would give rise to too large tau neutrino mass. In the context of the
minimal LRSM, this question becomes specially important since the Higgs sector
relates the neutrino Yukawa couplings with charged lepton ones. There are three
ways to fit both charged lepton and neutrino masses in such TeV scale LRSM: (i)
by choosing one set of the Yukawa couplings to be < 1075 for a particular VEV
assignment for the SM-doublet Higgs fields; (ii) by choosing larger Yukawa couplings
and invoking cancellations between Yukawa couplings in the Dirac neutrino mass
matrix to get smaller Dirac masses for neutrinos to get seesaw to work and (iii) by
choosing particular textures for the Yukawa couplings that guarantees the leading

order seesaw contribution to neutrino masses to vanish. We call these models Class



I, II, and III models respectively.



Chapter 2:  Minimal left-right symmetric model

2.1 Introduction

In the lepton sector of the minimal left-right symmetric model (MLRSM), we have
four mass matrices: the charged lepton mass matrix My, the Dirac neutrino mass
matrix Mp, and the left-handed and RH Majorana neutrino mass matrices M, and
Mp. The light neutrino mass matrix M, is determined by Mp, M, and Mg through
the seesaw mechanism M, ~ M —MpM 1MB. Since we have experimental data on
the masses of charged leptons and the squared-mass differences of neutrinos as well
as their mixing angles, M, is completely known in the charged lepton mass basis and
M, is also partially determined in its own mass basis and in the charged lepton mass
basis. The neutrino mass matrices Mp, My, and Mg are nonetheless completely
unknown, and constructing those matrices compatible with experimental data is a
nontrivial problem, not only because M, and Mp in the MLRSM are determined
from common Yukawa couplings and electroweak VEV’s, but also because those
Yukawa coupling matrices have a specific structure (i.e. Hermitian or symmetric)
in a specific basis (i.e. symmetry basis) due to the discrete symmetry (i.e. parity
or charge conjugation symmetry) of the model that realizes the manifest left-right

symmetry at high energies.



For simplicity, we may assume that the electroweak VEV’s are all real, in
which case M, and Mp have the same structure (i.e. Hermitian or symmetric) as
the Yukawa coupling matrices. Since M, in that case is diagonalized by a similarity
transformation (i.e. Vj = V{ for Hermitian M,, and V} = V/* for symmetric
M,), the mass matrices in the charged lepton mass basis maintain that structure.
Hence, we can work in that basis where M, is completely determined so that we
can practically forget about it while keeping the structure of mass matrices. Now
using that structure itself, we can find Mg from known Mp [10] or alternatively find
Mp from known Mp [11]. Without loss of generality, however, we can make only
one of two electroweak VEV’s real by gauge transformation. Furthermore, for the
TeV-scale MLRSM, Mp assumed or constructed in such ways usually requires fine-
tuning of Yukawa couplings and VEV’s, and it would be rather difficult to make
natural predictions for the TeV-scale phenomenology of the MLRSM using those
mass matrices.

Here, we develop a different approach appropriate for the case of type-I dom-
inance (i.e. My = 0) with complex electroweak VEV’s: (i) the Yukawa coupling
matrices with a desired structure are constructed from M, in the symmetry ba-
sis; (ii) Mp is determined from those Yukawa couplings as well as the electroweak
VEV’s, and Mp is calculated from Mp we have found. Since Yukawa couplings are
explicitly constructed and Mp is calculated from them, fine-tuned Mp can only ap-
pear rarely. With this method, we collect a huge amount of data points that satisfy
all the major experimental constraints, and conduct a comprehensive study of the

TeV-scale phenomenology of the model, focusing on the CLFV, Ov33, and EDM’s
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of charged leptons.

There are several works which studied CLFV and OrvSg in the MLRSM: in
reference [12], those effects were discussed in the type-I or type-1I seesaw dominance,
and several processes of Ov3 were examined in detail; in reference [13], CLFV and
Ov (5 processes were investigated also in type-I or type-II dominance with emphasis
on the allowed masses of doubly charged scalar fields; in reference [14], the type-I-+I1
seesaw contributions were simultaneously considered as in references [10] and [11],
but with richer results on the phenomenology; in reference [15], the CLFV effects
were studied in detail also in the type-I+I1I seesaw cases by a slightly different method
from the one originally proposed by reference [10]. However, the common features
of those works are: (i) real electroweak VEV’s were explicitly or implicitly assumed,
and (ii) Mp or My was chosen for numerical analysis without considering the issue of
fine-tuning. Even though we can still obtain meaningful results focusing on specific
regions of parameter space with rich phenomenologies, it is important to investigate
the predictions of the model in a more natural situation. Furthermore, some works
assumed that the tree-level contribution to yu — eee is always dominant over the
type-I contribution in their analyses. We will also see that this is an inadequate

assumption.

2.2 Review of the minimal left-right symmetric model

In this section, we briefly review the MLRSM. The gauge group of the MLRSM is

SU2), ® SU2)r ® U(1)p_1, (2.1)



and the representations of the leptons are

, Vi , Vi
LLi = ~ (27 1a _1)a LRi = ~ (17 27 _1) (22)

/ /
ELi ERi

where ¢ is the flavour index. The bi-doublet scalar field is given by

¢ ¢
¢ = ~(2,2,0), (2.3)
o1 &
and the triplet scalar fields are
5+/\/§ 5++ 5+/ﬂ 5++
L = t g N(3>172)7 AR: f f ~ (17372>
YN TN

(2.4)

The Lagrangian terms of Yukawa interactions are written as
LY = —T,(fi® + fi;®) Ly — hiy L ioaAp Ly — higi Lioa ALy, + He. (2.5)

where

- ¢ —of
b = O'Q(b*O'Q = . (26)
—b; O
Here, ¢¢ = Cy*, and thus ¢¥¢ = —TC where C = i7?4° is the charge conjugation

operator in the Dirac-Pauli representation. Note that h; and hg are symmetric

matrices. Without loss of generality, we can write the VEV’s of scalar fields as

K1/V2 0 0 0 0 0
(I): ; AL: ] AR:

0 roe®/V2 vpet [\/2 0 vR/V2 0



After spontaneous symmetry breaking, the mass matrix of charged leptons is written

as

M, = %(f@em + fm), (2.8)

and the neutrino mass term is given by

1 — — My Mp v
L7 = —§(V/L vg) +H.c. (2.9)
Mg MR Vp
where
1 ~ . .
Mp = —=(fr1 + free™™), My, = V2hjvpe Mp = V2hgog.  (2.10)

V2

When v, < k1,ks < vg, the light neutrino mass matrix is given by the seesaw

mechanism
M, ~ My, — MpMgz' M}, (2.11)

In this paper, we only consider the case of type-I dominance by assuming v, = 0,

and the light neutrino mass matrix is given by the type-I seesaw formula
M, ~ —MpMz" M}, (2.12)

We denote the mass eigenstates of the light and heavy neutrinos as v; and N; (i =
1,2,3), respectively. The charged gauge bosons W, , W in the gauge basis can be

written in terms of the mass eigenstates W, , W, as

W, cos & sin e W,
- (2.13)

Wy —sinée™™  cosé 5
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where ¢ is the Wy -Wg mixing parameter given by

R1KR2
§~ ——5. (2.14)
VR
The masses of charged gauge bosons are
2 Ly 2 Ly,
My, ~ 19 VBW My, ~ 59 VR (2.15)

where vpw = /K3 + k3 = 246 GeV is the VEV of the SM. In addition, the masses

of neutral gauge bosons Z;, Zs, A are given by

2,2 2 2 2
2 . Y9 VEw 2 __ g cos Owvg 2 _
i, LNy SR 2 —g(216)
4 cos? Oy cos 20w

where 0y, is the Weinberg angle. We can identify W;, Z;, A as W, Z, the photon
of the SM, respectively. The neutral gauge bosons W3, W32, B in the gauge basis

are expressed in terms of the mass eigenstates as

Wg 1 0 0 cosCo 0 sinde cos(3 sin(s 0
W}% =1 0 cos¢y sin( 0 1 0 —sin(s cos(z O
B 0 —sin(; cos(y —sin(a 0 cos(y 0 0 1
(2.17)
where
(1 = sin™! (tan Oy), Co = Oy, (3~ —92 v €05 29WU%W. (2.18)

2 2
4 cos? Byymy,

For the MLRSM with a manifest left-right symmetry before spontaneous symmetry
breaking, we need a discrete symmetry which could be either the parity symmetry

or the charge conjugation symmetry. In case of the parity symmetry, we have the

11
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relationships of fields and Yukawa couplings given by

HLR@? AL<_>AF£7 CI)HCI)T7 f:fTa f:fT7 hL:hR7
(2.19)

and in case of the charge conjugation symmetry

/

e L, Ao AR, dedT,  f=fT f=fT hy=h}
(2.20)
We consider only the parity symmetry here. This symmetry is manifest in a specific

basis in the flavour space, which we call the symmetry basis. The scalar potential

invariant under the parity symmetry is written as

V = —piTe[070] - 3 (Tr[070] + Tr[00] ) — i (Tr[ALAL] + Tr[AkAR] )
N TE[@10]7 + 5 (Tr[018]” + Te[810)7) + AgTe[@18) Tr [310] + A, Tr[07] (Tx[07] + Te[B10) )
+p1 (T[AL ALY + Te[ARAR]") + oo (Tr[AL AL Tr[ALAL] + Tr[AR AL Tr[ARAR] )
4 paTr[ALAL T [ARAR] + s (Tr[AL AL Tr[ApA ] + T[ALA ] Tr[ARAL])
+arTr[0'] (Te[AfAL] + Tr[ahAg] ) + {aze™ (Te[@!B] Te[A]AL] + Tr[870] Tr[akAR] ) + He.}
+ay (Te[@0FALAL] + Tr[@f@aRAL] ) + 61 (Tr[ef Al 0AR] + Tr[0TA 04 )
+ B (Tr[@TALEAR] + Te[BTAL0AL]) + s (Tr[ST AL @A) + e[0T ALFAL]) .
(2.21)
In this paper, we study the TeV-scale MLRSM without fine-tuning, for which x; >
ko is one of the sufficient conditions, as we will see in section 2.4. The physical

scalar fields and their masses when vy, = 0 and vp > K1 > kg are summarized in

table 2.1 [16].
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2.3 Construction of lepton mass matrices

Now, we discuss the procedure to construct lepton mass matrices that satisfy the
experimental constraints in the light lepton sector (i.e. light neutrino masses and
mixing angles) in case of type-I dominance. The Yukawa coupling matrices f, fvin
the symmetry basis are Hermitian due to the parity symmetry before spontaneous
symmetry breaking. However, the mass matrices M, and Mp in the same basis
do not have such structures when the electroweak VEV’s are complex, and it is
therefore a non-trivial problem to construct mass matrices that would give Yukawa
couplings with the right structure in the symmetry basis and simultaneously satisfy
all the constraints in the light lepton sector.

The procedure to construct such lepton mass matrices is as follows: (i) first,
we find M, in the symmetry basis that gives the right masses of charged leptons,
and build up f, ]7, and VEV’s out of it. The solutions are not unique; (ii) Mp is
constructed in the straightforward way from the Yukawa couplings and VEV’s we
have obtained, and Mg can also be easily calculated from this Mp and the type-I
seesaw formula of equation 2.12.

Since the masses of charged leptons are already known, M, in the symmetry

basis can be easily constructed from
M, = VEMEVE (2.22)

where V/ and V} are arbitrary unitary matrices and Mg is the diagonal matrix which

has charged lepton masses as its entries. The superscript ¢ denotes mass matrices

13



in the charged lepton mass basis, and we always assume that matrices without any
superscript are in the symmetry basis. Note that V/ and V} are totally different
matrices in general even with a manifest discrete symmetry when the electroweak
VEV’s are complex. With the parity symmetry, we have M, = Ae!® + B (A =
fra/ V2, B = f%l / \/5) where A, B are Hermitian matrices. Therefore, for the rest
of step (i), we claim that, for an arbitrary matrix M, it is always possible to find
Hermitian matrices A, B such that M = Ae’® + B.

In order to prove it, we explicitly construct Hermitian matrices A, B that
satisfy M = Ae’™ + B. First, we write A;; = |A;;|e? and B;; = |Byjle’®7 where

0;; = —0; and ¢j; = —¢;;. Then, we have M;; = |A; e’ @t0%) 4+ |B;;le®s and

M;; = |A;j|e@=%) + |Ble™*®3. From these expressions, it is straightforward to
derive
2|Ayj|sin v = %4 /Re[Mj; — Mj)? + Im[Mj + M2 (2.23)
and
Re[M;; — M,)]
tan f;; = ] 2.24
YT (M, + M) (2.24)

Note that two different values of 8;; are allowed in the range —m < 6;; < 7 for each

pair of 7, j. In addition, since |sina| < 1, we must have

1
Al = 5\/Re[sz‘ — M;]? + Im[M;; + M;;]? (2.25)

which sets the lower bound of |A4;;| for given M. If |A;;] # 0, we can write

1

sino = =+
2| Ay

\/Re[Mﬂ — Mij]Q + Im[Mﬂ + Mij]2. (226)

14



Now we choose an arbitrary real number |A;;| that satisfies

|Aqp| >

(2.27)

and determine « from

‘Im[Mn]l
| A1

sina =+ (2.28)

Note that four different values of « are allowed in the range —7m < a < m. We can

find all the other |A;;| from

Ai] = 2|Sma|\/Re M, — Mij]? + Tm[M;; + My (2.29)
[Au \/R 12+ Tm[M;; + M;;]2. (2.30)
Q‘Im MH |

By equations 2.30 and 2.24, A is completely determined. Alternatively we can write

1

| A .
———— (Im|M;; + M;;| + iRe|M,;; — M;;|). 2.32

It is now trivial to find B from B = M — Ae'®, and explicitly

1
Re[Bij] = éRe[MJZ + Mm] - RG[A”] COos &,

Im[Bij]:—;Im[M — M;;] — Im[A;j] cos o, (2.33)
or

Bi; = = (Re[Mj; + M;;] — ilm[Mj; — M;;]) — Ajj cos av. (2.34)

l\')lr—t

Note that A and B are indeed Hermitian matrices. Since we have two choices of A;;
for each pair of 4,j as well as each choice of a and |A;|, there are 2° choices of A

15



for each av and |Aj;| as we have three diagonal and three off-diagonal independent
components in A. Moreover, since we have four choices of « for each |A;;|, there
are total 20 - 4 = 256 different choices of A, B, and « for each choice of |Ay;|. We

use this method to construct lepton mass matrices in the TeV-scale MLRSM.

2.4  Conditions for the TeV-scale minimal left-right symmetric model

In the MLRSM, M, and Mp are determined from common Yukawa couplings and
VEV’s: f, ]7, k1, and kee®. Hence, it would be natural if the largest component
of Mp is O(1) GeV, since the largest component of M, should be comparable to
m, ~ O(1) GeV. However, this implies that the smallest heavy neutrino mass should
be larger than O(10') GeV, since M, is determined from the seesaw formula of
equation 2.12 and the present upper bound of the light neutrino mass is m, < 0(0.1)
eV [17].

For the TeV-scale MLRSM, i.e. 0.1 TeV < my < 100 TeV, we need |Mp;;| S
1072 GeV. Since Mp = (fr1 + f/{ge*m)/\/ﬁ in the MLRSM, its largest component
could be as small as 1073 GeV when the corresponding components of fx; and
f@e‘io‘ almost cancel each other, which is however unnatural. One solution to avoid
such cancellation is that either frq or f/@l is dominant in M, while fng and fky are
both small and comparable to each other in Mp. Note that we need hierarchies in
both Yukawa couplings and VEV’s to satisfy this condition. Even though it is good

enough if only a few components of either fry or ]7/@1 that correspond to m, and

m,, are dominant in M, we assume that all the components of either frs or f~/<L1 are

16



dominant over the others for simplicity.

Now we write A = flig/\/i and B = f/ﬁ/\/ﬁ, and thus M, = Ae'® + B,
as before. When |4;;| < |B;;|, My, must be close to a Hermitian matrix, which is
equivalent to V; V4 ~ 1. When |A;;| > |By;|, we have M, ~ Ae™®, which implies
that Mye™* is approximately Hermitian, i.e. VLETV}% ~ €. Note that we need the
condition on mixing matrices in addition to the conditions on the Yukawa couplings
and VEV’s since constructing M, from mixing matrices is one of the first steps to
construct all the mass matrices.

In this paper, we only consider the first case, i.e. |4;;| < |B;;|. For simplicity,
we could assume A = 0, for which we need either f = 0 or ko = 0. In these cases,
the mass matrices are rather simple: M, = f/ﬁ/\/i Mp = f@e—m/\/ﬁ if f =0,
and M, = f/ﬁl/\/ﬁ, Mp = fri/V?2 if ky = 0. However, f = 0 is the limiting case
of an extreme hierarchy between two Yukawa coupling matrices f and f, which
is rather unnatural. Furthermore, we must have M, «x Mp ]7, and thus Mp is
diagonal in the mass basis of charged leptons, which means that we have to resort to
only restrictive structures of mass matrices. On the other hand, with the condition
ko = 0, the W, -Wg mixing parameter £ &~ —KKy/ 1112% vanishes, and we have to lose
the rich phenomenology dependent upon &, especially the EDM’s of charged leptons.
Therefore, we do not introduce these extreme conditions.

In summary, for the TeV-scale MLRSM without fine-tuning in Mp, we can
assume the conditions either that (i) fi; < ﬁj and k1 > kg, when M, is approxi-
mately Hermitian, i.e. V{ ~ V§, or that (ii) fij > ﬁj and K1 < Ko, when Mye ™ is
approximately Hermitian, i.e. V} ~ Vie™@. We study the first case here.

17



2.5 Numerical procedure

In this paper, we only consider the normal hierarchy in light neutrino masses. The
procedure to calculate all the model parameters that determine the phenomenology

of the MLRSM in type-I dominance is as follows:

1. Randomly generate the lightest light neutrino mass m,,, and calculate m,, =

/m2 2 — Im2 2
m2 + Amz; and m,, = /m2 + Amg,.

2. Calculate M¢ from M¢ = Upyns M 328U (g Where M¢ and M98 are the light
neutrino mass matrices in the charged lepton and light neutrino mass bases,
respectively. The mixing matrix Upyng is the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix whose CP phases are also randomly generated.

3. Randomly generate V/, V£, and calculate M, = VLZ]\LZCV}?r where M, and My;
are charged lepton mass matrices in the symmetry and charged lepton mass

bases, repectively.

4. Find A = fry/V2, B = f/ﬁ/\/ﬁ from M, = Ae'® + B using the method

discussed in section 2.3. Randomly generate k9, and calculate f, }vfrom A, B.

5. Calculate Mp = (fry + f@e*ia)/\/? from f, ]7, Q, Ko, K1 = \/Vaw — K3, and
find M7, = VfTM pVE where M§ is the Dirac neutrino mass matrix in the

charged lepton mass basis.

6. Calculate Mg from the type-I seesaw formula M¢ = —M§My5 'MgT where

MyF, is the RH neutrino mass matrix in the charged lepton mass basis.
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7. Construct the 6 x 6 neutrino mass matrix My from M7 and MF, and find

the 6 x 6 mixing matrix V,y that diagonalizes My, .

Here, the 6 x 6 neutrino mass matrix My, in the charged lepton mass basis is written

as
0 Mg
My = : (2.35)
MET Mg

and this matrix is diagonalized by the 6 x 6 unitary matrix V,y:

M&EE = VT M Vi (2.36)

v

where M2 is the diagonal matrix with positive entries. Following the convention

of reference [12], we write

u s
Viy = (2.37)

TV

where U, S, T, and V are 3 x 3 mixing matrices. Note that U = Upyng. The
straightforward numerical diagonalization might not work appropriately because of

the hierarchy in the components of My . Instead, V,y is calculated in two steps:

Vin = ViniVine (2.38)
where
1 —MsMg! us 0
Vont = : Vine = . (2.39)
— Mgt MET —1 0o -V

Here, V,n1 transforms M, into the block-diagonal matrix
M¢ 0
My = , (2.40)
0 Mg+ Mg METMg + METMeM!
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and V,no is the matrix that diagonalizes MEY. In addition, we use the standard

parametrization of the PMNS matrix:

1 0 0
UpMNs = | 0 cosfles  sinfas
0 —sinfy3 cosbog
1 0
X 0 e wm
0 0

cos 013 0 sin 9136_i6D
0 1 0
—sin (913€i5D 0 cos 013

COS 912 sin 912

—sinfiy cosbfiy
0 0
(2.41)

where d0p and d,;; are Dirac and Majorana CP phases, respectively. On the other

hand, we parametrize V} and V} as

where
1 0 0
Vi=| 0 e 0 )
0 0 e
1 0 0
Va=10 cos 023  sin b3
0 —sinflag cosfog
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V=WV
cos 613 0 sinfjge 1
0 1 0
—sinfy3e™ 0 cos 013

(2.42)

(2.43)

COS 4912 sin 912 0

—Sin@lg C08912 0

0 0 1

(2.44)

(2.45)

0

0



Note that it is always possible to absorb V3, into V/; since M, = Vf]\/[ﬂ/}gT where

My is a diagonal matrix. We can therefore write
Vf - VfleéQVLK?n Vzg - Vlglvng' (2.46)

In addition, the Hermitian matrix A (= fry/v/2) is parametrized as

An |App|e®a2 | Apsletfais
A= |Aple i Ago | Agg| 425 (2.47)
|Aygle s | Aggle" 042 Ass

where A;; are real numbers. The list of model parameters and the ranges where they
are randomly generated are summarized in table 2.2. Several appropriate constraints

are imposed on some model parameters, and they are presented in table 2.3.

2.6  Numerical results

The present and future experimental bounds on CLFV, Ov33, and EDM’s of charged
leptons are summarized in table 2.4. The upper bound of light neutrino masses
from the Planck observation is also considered. The experimental bounds on the
dimensionless parameters associated with the various processes of Ovg33 are given
in table 2.5. The numerical results are presented in figures 2.1—2.7. The plots
on the various branching ratios and conversion rates of CLFV in the MLRSM for
2 TeV < my, < 30 TeV are given in figure 2.1. The results on the dimensionless
parameters of Ov3f for the same range of myy, are presented in figure 2.2. The
plots on the EDM’s of charged leptons are presented in figure 2.3. The effect of
experimental constraints on the masses of the RH gauge boson, neutrinos, and
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scalar fields are shown in figures 2.4—2.7. The benchmark model parameters and
their predicitons are given in appendix B.

The most notable result is that the regions of parameter space that allow
small light neutrino masses are largely constrained by the experimental bounds
from CLFV as well as the constraints from the light neutrino mass and mixing an-
gles. Since the type-I seesaw formula implies det(M,) = det(Mp)?/det(Mpg), we
need a hierarchy in the eigenvalues of Mp or Mg when light neutrino masses have
a hierarchy. However, Mp is determined from Yukawa couplings and VEV’s, and
it generally does not have the appropriate hierarchy in its eigenvalues to give hier-
achical light neutrino masses for most of the available parameter space. In other
words, we generally need a hierarchy in the eigenvalues of Mg, i.e. in the heavy
neutrino masses as well, in order to obtain hierachical light neutrino masses. Since
we are considering a range of my, i.e. 0.1 TeV < my < 100 TeV, the cases of
large hierarchies in light neutrino masses are supposed to get constrained accord-
ingly. Furthermore, since the regions of parameter space with large my are largely
affected by the experimental constraints from CLFV, small light neutrino masses
are disfavored by all those experimental constraints. These results are all clearly
presented in several plots in figures 2.4, 2.6, and 2.7. For example, the 99 % contour
in figure 2.7a shows that m,, ~ 0.1 eV for my,, =5 TeV and m,, = 6-107% eV for
mw, = 10 TeV. Note that this does not necessarily mean that there exists a strict
lower bound of the light neutrino mass for given myy,, since the results of this paper
are based on the naturalness argument such as no fine-tuning in Mp. Note also that
we can observe similar patterns in neutrino mass correlations in any type-I seesaw
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Figure 2.1: CLFV in the MLRSM for 2 TeV < my, < 30 TeV. The green dots
are data points that satisfy only the experimental constraints from the light lepton
masses and PMNS matrix. The red dots are data points that also satisfy present
bounds from the CLFV, Ov33, EDM’s of charged leptons, and Planck observation.
The purple dots are those that satisfy the strongest bounds from future experiments.
The shaded regions are regions of parameter space excluded by present experimental
bounds. Figures 2.1a and 2.1b show that there exist only small chances that 7 — py
or 7 — ey could be detected in near-future experiments. In figure 2.1c, the tree-
level and 1-loop contributions to u — eee are compared, and it shows that we
should consider both when calculating BR,,cce. Figures 2.1d—2.1f show the linear
correlations among various CLFV effects2Note that the strongest future bounds on

CLFV come from PRISM/PRIME and PSI, as clearly shown in figure 2.1e. Figures



10 i 108 : 10%
i i
29 i 29 E 29
10 ! 102 i 10
N i GERDA II Eo E CUORE D
= GiRpnT S8 107 25 10% RERTARD 7 ™
® None 5
102, Present 107! 107
* Futre :’ E :‘ ;
107 CUORE. [KamLAND-Zen - 10'7 CUORE | Kaml AND-Zen 10'7 CUORE {KamLAND-Zen
10-" 100 1077 103 10" 1072 1077 10-3 10-1 1072 1077 10-3
Iyl nyl Iny]
Yol VS Il (b) T |pe Vs[4 () T |xe Vs Il
(a) TVslge Vs Inw b) V3| e VS- Iy ) TV)alxe VS- My
. ; v
108 | 1073 i 107 E
< , i
KamLAND-Zés ald - KamLAND: %
L aml e 10’7_1991:/3»10-@ _ .{: _______
— 1077 Giore — 1077 cuokE — ot
S = £ 10 i
3 i
; i
0= 100 10-15 i
i
i
1o-11 CUORE! KhmLAND~Zen 10-11 CUORE! IKamLAND-Zen 10719 CUORE KI};mLANszen
10720 10-16 10-12 10-8 107" 10-1% 10-1 1077 1073 10720 10-16 10-12 10-8
7| 75| 78|
Nl () | (f) N
(d) Inu| vs. [0, e) ] vs. |nsp| £) 1ns| vs. [0, |
1 CUORE |
10712 10 10-3 E
10-12 KamLAND-Zen |
1071 |
= — 101 - 1077 "ok
= 10-18 = = . E
10716 B ! . x
10-9 | one
-21 .
. | (M
10724 » m = CUORE! KPmls./\NU*ch 1072” E 107“ :Pli:mlk
10~* 10~ 10-1= 10~ 10-15 10-12 109 104 0.001 0.010 0.100 1
7] Im my, (V)
L R :
() x| vs. [y, | (h) [m| vs. [mal (i) [m| vs. mu,

Figure 2.2: Parameters of OvgBf3 in the MLRSM for 2 TeV < my,, < 30 TeV.
Figures 2.2a—2.2¢c show that only cases where 7, dominantly determines 7’ P;,Z‘max
are allowed with a few exceptions by the present and future experimental bounds.
Even though the contributions of nﬁR and 7, could be comparable to that of 7,
in principle, such cases have been actually almost excluded by the constraints from
CLFV, as shown in figures 2.2d—2.2f. The contributions from 7, or n, are too small
compared with experimental bounds, as shown in figure 2.2h. Figure 2.2i shows
that the present upper bound of the light Majorana neutrino mass from Planck
is already below the bounds from KamLAND-Zen and CUORE, which means that
Ov 3 processes are difficult to be detected in near-future experiments since the light

neutrino exchange diagrams are dominaat for most of the parameter space due to

the CLFV constraints.
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Figure 2.3: EDM’s of charged leptons in the MLRSM for 2 TeV < my,, < 30 TeV.
The predicted values are found to be too small compared with the present and future
bounds, since large EDM’s require small myy, whose regions of parameter space
have been largely constrained as shown in figure 2.4a. Even though the correlations
between EDM’s and CLFV are rather weak, as shown in figure 2.3c, the larger
EDM'’s generally require the larger CLFV effects since myy,, affects both CLFV and

EDM’s.

models, even in the simple extension of the SM only with gauge singlet neutrinos.
The difference in the MLRSM, or in a more general class of the left-right symmetric
model, is that we can have large CLFV effects and thus the experimental bounds
on CLFV are constraining the light neutrino masses. Moreover, since the largest
possible hierarchy in heavy neutrino masses is directly associated with my,, and
the regions of parameter space with smaller myy, are more constrained by CLFV
bounds, we can expect that the discovery of light Wg as well as any improved ex-
perimental bounds on CLFV would largely constrain the regions of parameter space
of the normal hierarchy.

Another interesting result is that the mass of the lightest heavy neutrino my,
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has been also notably constrained by the present experimental constraints, which is,
of course, associated with the result on light neutrino masses just mentioned. This
is shown in figures 2.5a, 2.5b, 2.6a, and 2.7b. For example, the 99 % density contour
of figure 2.7b shows that my, < 200 GeV for my, = 5 TeV and my, < 2 TeV for

~Y

mw

» = 10 TeV. Due to the mass insertion in the Dirac propagators of heavy neu-

trinos in some CLFV processes, large heavy neutrino masses generally induce large
CLFV effects. Figure 2.4b explicitly shows how the CLFV bound is constraining
my,. The heaviest heavy neutrino mass is also affected by the experimental bounds,
although its effect is rather small, as shown in figures 2.5¢, 2.6b, and 2.7c.

While the CLFV effects of muons could be large enough for the associated
processes to be detected in near-future experiments, the branching ratios of tau
decays are either too small or just around the sensitivities of future experiments,
as shown figure 2.1. The experimental bounds of CLFV are also constraining small
masses of charged scalar fields as well as the RH gauge boson, as shown in figure 2.7.
As a result, the Ovgf processes through the heavy neutrinos as well as RH gauge
boson (denoted by nﬁR) and also processes through d5% as well as the RH gauge
boson (denoted by 75, ) are both suppressed. Hence, for most data points that satisfy
the present experimental constraints, the dominant contribution to Ovf3S comes
from the process of the light neutrino exchange (denoted by 7,), as shown in figures
2.2a—2.2c. However, since the upper bound of the light neutrino mass by Planck is
already below the bounds of future experiments as shown in figure 2.2i, i.e. the light
neutrino exchange channel has been largely constrained by the Planck observation,

the possibility to detect Ov53 processes in near-future experiments is small. As for
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the EDM’s of electrons, there seems to be also only small chances that they could
be detected in near-future experiments as shown in figure 2.3, since the largest
possible EDM’s of electrons are well below the future sensitivities of the planned
experiement. In addition, the EDM’s of muons and taus are too small compared with
the present upper bounds. Note that the EDM’s of charged leptons has been also
constrained by the experimental bounds from CLFV, since large EDM’s generally
require small my,, and large my and such regions of parameter space are largely
affected by those experimental constraints. Note also that, even with the relatively
small values of the RH scale, i.e. vg < 65 TeV corresponding to my,, < 30 TeV,
the observables of CLFV, Ov33, and EDM’s cover very wide ranges, e.g. roughly
1072 < BR, ey S 1073 and 1072 e - em < |de| < 10727 € - em. Hence, neither a
success nor a failure in detecting one of these effects rules out even the TeV-scale

MLRSM, unless any other experimental results are simultaneously considered.

2.7 Conclusion

The procedure to construct lepton mass matrices has been presented in the MLRSM
of type-I dominance with the parity symmetry, and the conditions for the TeV-
scale MLRSM without fine-tuning have also been discussed, i.e. either (i) k1 > ko
and fi; < ﬁj, which implies V{ ~ V§, or (ii) k1 < kg and f;; > ﬁj, which
implies V} ~ Vie~@. Based on these results, the phenomenology of the TeV-scale
MLRSM has been numerically investigated when the masses of light neutrinos are

in the normal hierarchy, and the numerical results on how the present and future
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experimental bounds from the CLFV, Ov33, EDM’s of charged leptons, and Planck
observation constrain the parameter space of the MLRSM have been presented.

According to the numerical results, the regions of parameter space of small
light neutrino masses have been constrained by the experimental bounds on CLFV
effects, although it does not necessarily mean there exists a strict lower bound
of light neutrino masses. The lightest heavy neutrino mass is also found to have
been notably constrained by the present experimental bounds especially for small
mw,. In addition, it has been shown that all the Ov33 processes and the EDM’s of
charged leptons have been suppressed by the experimental constraints from CLFV,
and we have at best only small chances to detect any of these effects in near-future
experiments.

Note that the results here are based on several nontrivial assumptions such as
(i) type-I seesaw dominance, (ii) the parity symmetry, and (iii) the normal hierarchy
in light neutrino masses. Furthermore, it should be emphasized that this paper is
considering the TeV-scale phenomenology of the MLRSM without fine-tuning of
model parameters. If fine-tuning is allowed, significantly different predictions could

be made.
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Physical scalar fields Mass-squared

hY = V2Re[@)* + ese Y] (4N — ai/p)KE + Lasvges

HY = \/§Re[—egeia¢(1)* + ¢9] %agvﬁ

Hj = /2Re[67] 2p10%

HY = /2Re[0?] 5(ps = 2p1) v,

AY = V2Im[—epedd* + ¢9) Tasvy,

A} = v/2Im[4])] 1(ps — 2p1)v},

Hf =07 3(p3 = 2p1)vf, + jogki

H = ¢F + exe™ @] + %615}5 tas(vh + 3K3)

++ 2 1 2
0r 2020% + Q3R]

op " 3(P3 = 201V + zask?

Table 2.1: Physical scalar fields and their masses in the MLRSM when v, = 0 and
VR > K1 > Ky. Here, €; = k1/vg and €3 = Ky/k1. The SM Higgs field is identified
as h". Note that my+ ~ mgi+ for v > vpw. The mixing between 7" and o5 "
is assumed to be small, although it could be large in principle for relatively small
values of p3 —2p; and vg [15]. It is, however, a good assumption even for such cases

if we introduce an additional assumption 31, 33 < O(1071).
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Parameter Range

logyo (mu, /eV) -4 —log;y 2
mwg 2 —35TeV
log,o (k2/GeV) -4 -1

5D7 5M17 5M2)

9L127 9L137 9[/23, -m —m rad
5L17 5L27 5L3
Ors (-1 —1)-107* rad

log,, (|A11]/GeV) | logy, !Im[MgHH —logy, (5\/ 27TUEw)

logyg a3, logyg p2 logyo (1000 GeV? /v,) — logy, (5v/47)

logyg (p3 — 2p1) logyo (1000 GeV?/v) — logyo (15v/4)

Table 2.2: List of parameters and the ranges where those parameters are randomly
generated. It is also assumed that 075 = 0z = 0, Orij = 0O, and O, = I,
(i,7 = 1,2,3). Here, A is defined as A = fry/V/2, and M, = VLZMECVI?L is the
charged lepton mass matrix in the symmetry basis. The electroweak VEV is vgw =
VKD + K3 = 246 CGeV, and vg = mw,V2/g (g = 0.65) is the VEV of the SU(2)z
triplet. Since Yukawa coupling matrices f, fare constructed from given M, by the
method presented in section 2.3, we explicitly consider only the condition xy > kKo
for the TeV-scale MLRSM. Any Yukawa couplings that do not satisfy f;; < ﬁj can
be excluded by filtering Mz with large entries, which is one of the constraints given in
table 2.3. The ranges and values of 614, 015, 016, Orij, and dg; are chosen to guarantee
VE ~ Vf for TeV-scale my. In principle, we only need 074 ~ 0, d15 ~ 0, dr¢ = 0,
Ori; ~ 0L, and Op; ~ 0r; for Vi =~ Vf.BOHowever, for the parameters other than

dr4, it turned out that only extremely small deviations (< 107%) from the values



Present bound Future sensitivity
BR, e, || <4.2-107 (MEG) [19] < 5.0-10~" (Upgraded MEG) [20]
BR,,,, || <4.4-107® (BaBar) [21] < 1.0-107? (Super B factory) [22]
BR, ., || <3.3-107® (BaBar) [21] < 3.0-107? (Super B factory) [22]
BR,ece | < 1.0-107' (SINDRUM) [23] < 1.0-1071 (PSI) [24]
R4, < 3.0-107'7 (COMET) [25]
R, < 6.1-10713 (SINDRUM II) [26] < 1.0-107*® (PRISM/PRIME) [27]
RAY, < 6.0- 1071 (SINDRUM II) [25]
R, < 4.6-107" (SINDRUM II) [28]
Tlo/”2|Ge > 2.1-10% yrs. (GERDA) [29] > 1.35 - 10%® yrs. (GERDA TII) [29]
A > 2.1-10% yrs. (CUORE) [29]
Tlye | >1.9-10% yrs. (KamLAND-Zen) [29]
|d.| < 8.7-107% e-cm (ACME) [53] < 5.0-107% e-cm (PSU) [54]
|d,| <1.9-107" e-cm (Muon (g — 2)) [55]
|d | <5.0-10717 e-cm (Belle) [56]
S%m,, || <0.23 eV (Planck) [17]

Table 2.4: Experimental bounds on CLFV, Ov33, EDM’s of charged leptons, and

light neutrino masses.

The actual present bounds on d, reported by Belle Col-

laboration are —2.2 - 107'7e-cm < Reld,] < 4.5 107 e-cm and —2.5 - 107*7e-cm

< Im[d;] < 0.8-10"Ye-cm. For the normal hierarchy, the constraint from the

Planck observation corresponds to the upper bound of the lightest neutrino mass

m,, < 0.071 eV.
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Present bound (KamLAND-Zen) | Future sensitivity (CUORE)
| || <7.1-1077 <1.4-1077
Nyl || < 6.8-107° <1.4-107°
0l || < 6.8-107° <1.4-107°
%5s| || <6.8-107 <14-1079
| || <5.7-1077 <12-1077
ma| || <3.0-107° <82-10°10

Table 2.5: Experimental bounds on the dimensionless parameters associated with
the various processes of Ovf3[3. The present bounds come from KamLAND-Zen,
and the strongest future bounds are from CUORE [29]. To obtain each bound, the
associated decay channel is assumed to be dominant over the others. Even though
there exist regions of parameter space where contributions from 7,, 77]]\%/,27 and 75,
are comparable to each other, it does not invalidate the assumption at least for the
data points of interest around the present and future bounds, since larger values of

7N, | and |1, | are rarely allowed by the constraints from CLFV, as shown in figures

2.2d-2.2f.
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Figure 2.4: Figures 2.4a—2.4e show the effect of CLFV constraints on the masses

Ti

i—e 18 chosen since it most clearly

of neutrinos and the RH gauge boson. Here, R
divides the colors of data points through its experimental bounds. The smaller
values of the lightest light neutrino mass m,, produce the larger CLFV effects, as
in figures 2.4d and 2.4e, since they require the larger values of the heaviest heavy
neutrino mass my, in most of the parameter space, as shown in figure 2.6f. As a
result, the regions of parameter space of small light neutrino masses get constrained
by the experimental bounds on CLFV. In figure 2.4f, additional data points (yellow
dots) are also presented in order to show the effects of the perturvativity constraints,
and all the data points generated in the ranges of parameters given in table 2.2 are
shown in this plot. For those yellow points, at least one of the coupling constants
are larger than /47 while the experimental constraints in the light neutrino sector
are still satisfied. This figure shows that eo = ky/k1 < 0.01 is satisfied for all the
data points due to the perturvativity constraints as well as the condition ks < 10

GeV, and thus the Higgs mass constraigf can be easily satisfied, as mentioned in

table 2.3.
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Figure 2.5: Masses of heavy neutrinos in the TeV-scale MLRSM for 2 TeV < myy,, <
30 TeV. For figure 2.5a, the same data set as in the previous plots are used to show
the effect of the consraints from CLFV, Ov55, EDM’s, and Planck on the parameter
space. The non-perturbative regions are where at least one coupling constant is
larger than v/4w. Note that green dots in figure 2.5a do not completely fill the
available parameter space because of the constraints on masses and angles in the
light lepton sector. For figures 2.5b and 2.5¢, much more amount of data points was
used to show how the present and future bounds constrain the parameter space.
Figures 2.5a and 2.5b show that the lightest heavy neutrino mass my, has been
notably constrained by the experimental bounds, especially for smaller myy,,. Figure
2.5¢ is the plot on the heaviest heavy neutrino mass mpy,, and it shows that only
a small region of parameter space with small my, seems to have been excluded.
Even though these plots in the linear scale are better in presenting the effect of
experimental constraints on largest possible masses of heavy neutrinos, they do not
correctly show the density distributions since the matrix A (= fry/v/2) is generated
in the logarithmic scale. Plots of my in the logarithmic scale are presented in figure
2.7. For figures 2.5b and 2.5c, the data sets for figures 2.7b and 2.7c are used,

respectively.
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Figure 2.6: Figures 2.6a—2.6d show the effect of experimental bounds on the masses
of neutrinos and the RH gauge boson. Figures 2.6a and 2.6b show that the regions
with smaller my,, and larger my are more affected by the present bounds on CLFV,
OvBp, and EDM’s. Figures 2.6e and 2.6f show that, for smaller m,,, i.e. for the light
neutrino masses with a larger hierarchy, the heavy neutrino masses also generally
need to have a larger hierarchy accordingly since Mp itself does not have the struc-
ture that would give hierarchical light neutrino masses. Due to this effect, only

larger myy, is generally allowed for smaller m,,, as shown in figure 2.7a, since large

my, requires large vg.

50 100

Planck

my, (TeV)

my; (TeV)

(b) mw, vs. mp,

i3

M

4
001 0.010
my, (V)

0.100

(e) mp, vs. m,,

35

my, (TeV)

my, (TeV)

5 10
my, (TeV)

50 100

(c) mp, vs. mpy,

® None
® Present

® Future

0.100 1

10 0.001 0.010

my, (V)

(f) mn, vs. my,



myy (TeV)
myy (TeV)

® Present

® Fuure

Planck

0 | i Lo .
104 0.001 0.010 0.100 1 0.1 05 1 5 10 50 100
my, (eV) my, (TeV)

(a) my, vs. my,

myy (TeV)
my (TeV)
I

Non-perturbative

10
myg (TeV) myg (TeV) Mg (TeV)

(d) mw,, vs. M+ (~ m62+) (e) my,, vs. My (f) mw, vs. Mg+

Figure 2.7: Masses of neutrinos and charged scalar fields in the MLRSM for myy,, <
30 TeV. The contours of 90 % and 99 % densities are also presented for illustration
purposes. According to the 99 % contour in figure 2.7a, m,, ~ 0.1 eV for my, =5
TeV and m,, 2 61072 eV for my, = 10 TeV. In addition, the 99 % contour in
figure 2.7b shows that my, < 200 GeV for my, < 5 TeV and my, < 2 TeV for
mw, < 10 TeV. While the masses of H;", 6/, and 6% have been also constrained
by the experimental bounds, the mass of H,~ which appears only in the Z;-exchange
diagrams of CLFV processes has been barely constrained, as shown in figure 2.7e.
Hence, the constraint of m Y 2 10 TeV from the absence of flavour changing neutral
current in the quark sector is not considered in this paper. The total number of

data points is 51971 = 51561 (red) + 410 (purple).
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Chapter 3: Natural TeV-scale left-right symmetric model

3.1 Introduction

Our goal here is to explore whether the two key aspects of the seesaw physics, i.e. (i)
the Majorana character of heavy and light neutrino masses, and (ii) the heavy-light
neutrino mixing, can be tested at the LHC as well as in complementary experiments
at low energies, e.g. in planned high sensitivity searches for CLFV, Ovf33, etc. A
necessary requirement for this synergic exploration to have any chance of success is
that the seesaw scale be in the TeV range as well as the heavy-light mixing being
relatively large. With this in mind, we discuss a class of the LRSM where both the
above ingredients of type-I seesaw, i.e. TeV seesaw scale and observable heavy-light
neutrino mixing emerge in a natural manner.

A simple candidate seesaw model is based on the left-right symmetric theory
of weak interactions where the key ingredients of seesaw, i.e. the RH neutrino and its
Majorana mass, appear naturally. The RH neutrino field vy arises as the necessary
parity gauge partner of the left-handed (LH) neutrino field vy, and is also required by
anomaly cancellation, whereas the seesaw scale is identified as the one at which the
RH counterpart of the SM SU(2);, gauge symmetry, namely the SU(2)r symmetry,

is broken. The RH neutrinos are therefore a necessary part of the model and do not
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have to be added just to implement the seesaw mechanism. An important point is
that the RH neutrinos acquire a Majorana mass as soon as the SU(2)z symmetry
is broken at a scale vg. This is quite analogous to the way the charged fermions
get mass as soon as the SM gauge symmetry SU(2); is broken at the electroweak
scale v. The Higgs field that gives mass to the RH neutrinos becomes the analog
of the 125 GeV Higgs boson discovered at the LHC. Clearly, the seesaw scale is not
added in an adhoc manner but rather becomes intimately connected to the SU(2) z®
U(1)p_r symmetry breaking scale.

In generic TeV-scale seesaw models without any special structures for Mp and
My, in order to get small neutrino masses, we must fine-tune the magnitude of the
elements of Mp to be very small (of order MeV for My ~ TeV), as is evident from
the seesaw formula in equation 1.10. As a result, the heavy-light neutrino mixing
¢ ~ MpMy' ~ (M, My")"? < 107°. This suppresses all heavy-light mixing effects
to an unobservable level which keeps this key aspect of seesaw shielded from being
tested experimentally. To overcome this shortcoming, some special textures for Mp
and My have been studied in the literature [30-39] for which even with TeV-scale
seesaw, the mixing parameter £ can be significantly enhanced whereas the neutrino
masses still remain small, thereby enriching the seesaw phenomenology. Here, we
present an LRSM embedding of one such special texture using an appropriate family
symmetry. This is a highly non-trivial result since in the LRSM the charged lepton
mass matrix and the Dirac neutrino mass matrix are related, especially when there
are additional discrete symmetries to guarantee a specific form of the Dirac mass

matrix Mp.
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When we have the mass matrices of

my 00 0 M1 0
Mp=1| m, o 0|, Mr=| M 0 o | (3.1)
ms 00 0 0 M2

then the type-I seesaw formula gives
M, = —-MpMp' M}, = 0. (3.2)

By introducting small values in the zero entries, we can generate small light neutrino

masses. We want the mass matrices in the symmetry basis to be

da;r a1z aig mi1 dmiz dmas 0 M 0

Me=1 Sag; age ass |» MD=| ma dmay dmes |+ MrR=| My 0 0
daz1 azy ass mg3; Omgzz  Omgz3 0 0 M
(3.3)

where [0a;;| < |ag| and [0m;;| < |my| < |M,| (i,j,k, 1 =1,2,3 and n = 1,2). If
the symmetry basis is close to the charged lepton mass basis, then we can expect

the followings:

1. Explanation of the small mass of an electron.

2. Large CLFV and EDM of an electron.

As for the second point, note that both CLFV and EDM’s of charged leptons have

a contribution of the form 37 S, Vaimy,. Since S = (M§M&)*V, we can write

3 3

3
Z SaivaimNi ~ Z (MBM}C%_l)ZjV}iVOéimNi = Z(MBMIC%_l)ZjMIC%a = Mgkaa‘
i=1 )

t,j=1 J=1

(3.4)

39



Since M7, is large in this model, we can expect the large CLFV and EDM of an

electron.

3.2 Outline of the model

When we have multiple bi-doublet and RH triplet scalar fields, the Lagrangian terms

with Yukawa couplings are given by

Eé = —L_,M( c{ijq)a + ]?zija)(L)L/Rj — hLaijLT[C,iiUQALaL/Lj — hRaz’jLT}%iiU2ARaL/Rj + H.c..
(3.5)

Now we introduce a discrete symmetry 7, ® Z4, ® Z,, and define the transformation

rule of the fermions and scalar fields as in table 3.1. The Yukawa interaction terms

Field Z4 X Z4 X Z4

L, (1,1,1)

Lpy (-i,1,1)

Lpo (1,-4,1)

Lps (1,1,-i)

D, (—i,1,1)
) (1,4,1)
0N (1,1,1)
Api (4,1,1)

Apo (1,1,-1)

Table 3.1: Transformation property of leptons and scalar fields under 7, ® Z, ® Z,.
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under this symmetry are written as

Ly = —fa L@ Lpy — fio L7, 5Ly — fis L, @5 Ly
— hlgT}%lZ’O'QARlLIRQ — hlg@ingRlL}ﬂ — h33T§32’0'2AR2L;%3 -+ H.c..
(3.6)

The scalar potential is given by

V = 3, tx[®,0,] — 1,00 [Af, Ard]

+ Araptr [B]D, ] tr[BF D] + <>\2aei5atr [0 ®,]* + H.c.)

+ Agaptr [BF @y | tr [T D] + Nygptr [@F @, tr[ D] Dy ]

+ gt [BL 0, tr[AL, Agy] + asutr [0 @A R AL ]

+ azaptr[AL AgJtr[AL Agy] + ajtr[AL Ags ] tr[ AL, Ag]

+ auaptr[AL AL Tt [AraAgs) . (3.7)
Note that the potential terms tr[®]®;] are not allowed due to the discrete symmetry.
Without loss of generality, the VEV’s of scalar fields are written as

kg€l 0 0 0 0 0
(o) = , (AR1) = , (Ag) =
0 Kl el [\/2 vr1/V2 0 VRoeR /N2 0

(3.8)
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where we can choose a; = 0 by gauge transformation. Some of the minimazation

conditions of the scalar potential are written as

PYa% 3 2
8</£ ) = K1 [Z()\glmf + Aa1k2) + Z Qa1 Vs, + 205 | 4+ Mok Ko + Nk rgks = 0,
1 a=1 a=1
(3.9)
a<v> / : !/ 2 12 2 / 2 2 " / " !/
O, = R ;()‘aﬂfa + Aatkg) + ; 1Vkq T 2011 | + AfpR1k2ky + Ajgkikghy = 0

(3.10)

where the coefficients are appropriately defined from the coefficients of the potential
and the phases of VEV’s. We can write similar equations for ko, k), k3, and xj.
Now we assume that vg, are determined from the other minimization conditions.
Further assuming k, < k!, and there exists no large hierarchy among the same type

of coupling constants, we can obtain from the equations of type 3.10.

3 2
Z Aapki2 + Z oy, + 27 = 0 (3.11)
a=1 a=1

where b = 1,2,3. These are coupled linear equations, from which &/ is easily

determined. Now, equation 3.9 can be written as

3 2
112 2 2 noroa noroa —
K1 E A Ko + g Qa1 Vg, + 217 | + NgR Roka + Mgk kgks = 0, (3.12)
a=1 a=1

and we can write similar equations from the derivatives with respective to k9 and k3.
They are also coupled linear equations whose solution is clearly k1 = kg = k3 = 0.
Note that this derivation of VEV’s is possible due to the absence of the term tr [53@&
which is prohibited by the discrete symmetry, although its absence is not a sufficient
condition for k1 = ko = k3 = 0. Therefore, when there exists the potential terms
tr [215

2<I>b} with very small coefficients, we can have very small nonzero k.
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Now we introduce that potential as a soft symmetry-breaking term

3
Vsg = — Z N%Babtr [(AI;L(I)(,] + H.c. (313)

a,b=1

which would change the minimization conditions above into

1'%
) ot N2+ Mot v+ 208) + N s+ Nihis + 3 s
a

a

~ ro 12 2 2 "ol "ot 2 I
R K1 E (Ma1Ka + Qa1VRg + 207) + Mgk Koka + A3k K5K3 + E HSBa1 kg = 0,
a

a

(3.14)

oV
(,j = ST N Al + 2) + Mot + Xwamary + 3 o

a

~ K Z()\amf + al vk, + 2u3) + Mgk rarh + Nsr1k3rs = 0. (3.15)
a

The second equation and its companions from &/, and % would give (approximately)

!/
a’

the same expressions of k!, and the first equation and its companions from ko and
k3 are now coupled linear equations with solutions k, = dk,.

With those VEV’s, we can write the lepton mass matrices in the symmetry
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basis as

f110K1  frarhe™®e  fizrhei®s
1 , .,
M, = E fo10K1  faorbe™®2  fozkze'®s | (3.16)
f310K1  faakhe™™2  fazrbei®s
fn/ille_iall flgdfigei(m flgdligeia3
1 ., . .
MD = % f21/€/167w¢1 f2251€261a2 f235H3€Za3
fo1RL e fandraei®®  faadrzeios
2 gmil 0 0
= MyD where D= 0 9Kz o—i(ah—as) 0 . (3.17)
Ko
0 0 O3 o —ilag—as)
K3
0 h12UR1 0
Mp=vV2| hyop 0 0 (3.18)

0 0 h33vRo
where we have redefined the phase of Lgs to absorb g into a3 and of, i.e. ag —

0r/2 — a3 and o — Or/2 — af.

The motivation for the discrete symmetry is now clear:
1. No scalar potential terms of the form tr [&)acbzr)]
2. No fine-tuning in Mp for the TeV-scale phenomenology.
3. Explanation of the small mass of an electron.

4. Large branching ratios of various muon decay processes and a large EDM of
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an electron.

The mass term for charged weak gauge bosons is

1.2 3 2 2 1 3 1 il —ag) —
pmess _ ey | 19 a0 ) 9107 Xam Dhariye Wi,
’ 3 —i(a — 3 2 -
—39L9R Do Okakle (@ama)  Lg2 N5k + k2) + 2500 vh, Wg,

(3.19)

Their masses can still be written as

1 1
myy, ~ ZQ%U%W’ my, & 5912%1}]2% (3.20)

where vgw = \/2220(5/@2 + K2) = 246 GeV and vg = /0%, + v%,, and the W,-Wpg

mixing parameter is given by

3 (o) —
gLE:a:o5Ha”ge“aa oa)

2
JrRVUR

fem ~

(3.21)

where « is defined as the complex phase of the mixing parameter in this model, not

the phase of the electroweak VEV as in the MLRSM.

3.3 Numerical procedure

In the symmetry basis, we assume that Mg has the form

0 M; O
Mr=1 M, M; 0 , (3.22)
0 0 M

where Mj is not necessarily small yet. In the same basis, we have Mp = M,D,
and thus M, = —MpMz'M} = —M¢ME'MT = M? where M¢ = M, and
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Mg = D 'MgrD™'. Note that Mg has the same structure as Mg, since D is diagonal.
While Mg and M? (i.e. My and M,) can be easily constructed by Mg = VMV
and M2 = VIMCVET for arbitrary unitary matrices V/ and V¥, the matrix Mg
calculated from M% = —MT M2 Mg does not have the structure we want for
those arbitary mixing matrices in general.

In order to have M& with the desired structure, we generate arbitrary V/* and
V& (instead of V¥ and V%), and calculate M} = VMV, MY = VEMEVAT, and
Mp = —M}T(MP)™'Mp. Note that there always exists a unitary matrix Vz that
transforms MY into M%& = V3 M%Vp where M is in the form of 3.22. Defining
My = M}Vgz and M? = M?, we obtain M% = —MgT M Mg. Further defining
M, = Mg (= M}VR), Mp = DM&D (= DV M4 VD), Mp = MJD (= M{VgD),
and M, = M2 (= M?), we can finally obtain Mz = — M} M ' Mp where Mp = M,D

and Mp is in the form of 3.22. For M} and D given by

0 M 0 d, 0 0
Mg=1| me M¢ o |- D=]0 d 0 | (3.23)
0 0 Mg 0 0 d

we have
0 Midydy, 0O
Mg = DMpD = | Medyd, Mgd: 0 : (3.24)
0 0 Mg d3
Hence, by choosing small |ds| and large |d;|, we can have Mp with |M|, | M| >
| M| ~ 0, and also Mp = M,D with the first column large and the second column
small, as desired. If |Mj3] is small enough, we can set it to zero to have the structure

46



allowed by the exact discrete symmetry while all the experimental constraints are
still satisfied within their uncertainties.

In order for this model to explain the small electron mass, the mixing matrix
Vi = VIVE should not largely mix the first column of M, with the others. Note
that the stronger condition |V§Z-j| ~ 0;; is the general prediction of the model. By

construction, we have
My = Vg MpVi = =V Mg (M)~ MgV, (3.25)

i.e. V4 is the mixing matrix that transforms M¢T (M)~ M into the form of 3.22.
Since M = MgT(M¢)~' M has the structure of M3 > M;3 (i = 1,2) and Mag, Myp >
M1 due to the mass hierarchy in charged leptons as well as the large mixing in light

neutrinos, we always have |V}€ij| ~ 0y

In summary, the numerical procedure to generate the model parameters is as follows:

1. Randomly generate m,,, and calculate m,, = y/m2 + Am3, and m,, =
\/m2 + Am3,.

2. Calculate MY from MS = UpMNleﬁlUIIMNS where the CP phases of Upyng are

also randomly generated.

3. Randomly generate V%, V&, and calculate M} = VMV, MY = VEMVET,

and MY = MPT(ME)~1 M.

4. Find Vi which transforms M} into a matrix M% in the form of 3.22 by M% =
VA M5 Vg, In that basis, we have M = M}V and M2 = M.
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5. Randomly generate D, and calculate the lepton mass matrices in the symmetry

basis by M, = M}, Mp = M} D, and Mr = DMpD.

6. Randomly generate ko, k), K}, Ky, k4 which satisfies /2 + & + K2 + KZ + K§
vgw, and calculate 0ky = K /D11, dky = KyDag, 0k = K5D33. Calculate the
Yukawa coupling matrix f in the symmetry basis from M, and the electroweak

VEV’s.

7. Define V{ = V&, Vi = VIV, and calculate Mg = V;TMpV§ and Mg =

VETMRVE.

8. Construct the 6 x 6 neutrino mass matrix My from Mf and M5, and find

the 6 x 6 mixing matrix V, y that diagonalizes M.

The mixing matrices Upying, Vf , Vlg, and V,y are parametrized in the same way as

in the MLRSM.

The ranges of model parameters where they are randomly generated are pre-
sented in table 3.2. The constraints imposed on model parameters are given in table
3.3. We assume that the contribution of charged scalar fields to CLFV and 0vgp
are negligible. It is usually a good assumption for all the CLFV and Ov( processes
of our interest even when the masses of those charged scalar fileds are small, since
we have hi; = hiz3 = hoz = 0 and \Véiﬂ ~ 0;j. For example, the Feynman diagrams

of muon or tau decays in the symmetry basis always involve one of hyq, hy3, hos.
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3.4 Numerical results

The numerical results for my,, = 3 TeV are presented in figure 3.1. The most
notable result is that a large EDM of an electron is allowed in spite of the CLFV
constraints, as expected. The prediction |V1§ij| ~ 0;; has been also verified, as shown

in figure 3.1f.
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Figure 3.1: Predictions of the model for my, = 3 TeV. Figures 3.1b—3.1d show
that other processes such as 771%/3 can be dominant in this model. In addition, a

large EDM of e is allowed as shown in figure 3.1e. Figure 3.1f shows |V, | ~ d;;.

3.5 Conclusion

We have presented a new TeV-scale seesaw model based on the left-right symmetric
gauge group but without parity symmetry where a particular texture for the Dirac
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and Majorana masses guarantees that neutrino masses are naturally small while
keeping the heavy-light neutrino mixing in the LHC-observable range. A discrete
flavour symmetry has been shown to guarantee the stability of this texture, while
being consistent with the observed lepton masses and mixing. We then explored its

tests in the domain of the CLFV and EDM of an electron.
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Parameter Range
log,y (m,, /eV) -4 —log;, 2
logy, (ky/GeV) 1010 70 — logyg \/Vaw — 4 - 102
logy, (ko/GeV) -1-1
log,, (k] /GeV) 1 —logg \/viw — K¢ — K3 — 2 - 102
log, (k5/GeV) 1 —log \/viw — K¢ — K3 — K2 — 102
logg (k1/0k1) 2-5
logq (K5/0k2) 5-8
logy, (K5/0kKs3) 2-5
0p, Om1, Onra, Qg — Qg
-7 — 7 rad
OLijs Ovis ORijs ORi

Table 3.2: List of parameters and the ranges where those parameters are randomly

generated. We have set my, = 3 TeV and gr = g, = 0.65. Here, o), — a, is the

difference of the phases of &/, and 0k, and we have used viy = S20_, (062 + K2) ~

22:1 k2. The angles dp, dur1, Oz are the CP phases of the PMNS matrix, and

01ij, 0r; and Og;;, Or; are the parameters of Vf and Vé, respectively.

Parameter Constraint
| fis < V4r
|Mpi1|? + [Mpio]? || < 8o,

| M1 /M| < 0.1

Table 3.3: List of constraints imposed on the model parameters. Here, Mg and

Mfp, are the Majorana mass matrices in the symmetry and charged lepton mass

bases, respectively. Since |Mgi1|?/|v2h11]? + [Mpio?/|V2h1a|? = v%, + v, =

.

Vs

. 1 7 1 1 7 1

2
VR,
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Chapter 4: TeV-scale resonant leptogenesis

4.1 Introduction

An attractive feature of the seesaw mechanism is that the same Yukawa couplings
that give rise to light neutrino masses, can also resolve one of the outstanding
puzzles of cosmology, namely, the origin of matter-antimatter asymmetry, via lepto-
genesis [40]. The key driver of leptogenesis are the out-of-equilibrium decays of the
RH Majorana neutrinos via the modes N — L;¢ and N — L¢¢', where L; = (v, ;)7
(1 = 1,2,3) are the SU(2),, lepton doublets, and ¢ are the Higgs doublets. In the
presence of CP violation in the Yukawa sector, these decays can lead to a dynamical
lepton asymmetry in the early Universe. This asymmetry will undergo thermody-
namic evolution as the universe expands and different reactions present in the model
have their impact on washing out part of the asymmetry. The remaining final lepton
asymmetry is converted to the baryon asymmetry via sphaleron transitions before
the electroweak phase transition. There is also a weak connection between the CP
violation in neutrino oscillations and the amount of lepton asymmetry.

For TeV-scale seesaw models, the generation of adequate lepton asymmetry
requires one to invoke resonant leptogenesis [41-43], where at least two of the heavy

neutrinos have a small mass difference comparable to their decay widths. In this
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case, the heavy Majorana neutrino self-energy contributions [44] to the leptonic
CP asymmetry become dominant [?,45] and get resonantly enhanced, even up to
order one [41,42]. In the context of an embedding of seesaw into TeV-scale LRSM,
there are additional complications due to the presence of RH gauge interactions
that contribute to the dilution and washout of the primordial lepton asymmetry
generated via resonant leptogenesis. This was explored in detail in [46] where it was
pointed out that there is significant dilution of the primordial lepton asymmetry
due to AL = 1 scattering processes such as Nlr — ud® mediated by Wg. This
leads to an extra suppression of the final lepton symmetry, in addition to the usual
inverse decay Lo — N and AL = 0,2 scattering processes Lo <+ Lo (L¢¢T) present
in generic SM seesaw scenarios. This additional dilution factor s (also sometimes
called efficiency) in this case is of order %, which for my ~ TeV and my,, ~ 3—4
TeV can be easily < 1077 or so for Y ~ 1075°. Combined with entropy dilution
effect and the dilution from inverse decays, this implies that even for the maximal
CP asymmetry € ~ O(1), the observed baryon to photon ratio can be obtained only
if my,, > 18 TeV. This result is very important because, as argued in [46], this can
provide a way to falsify leptogenesis if a Wx with mass below this limit is observed
in colliders.

We investigate whether there are any allowed parameter space in the TeV-scale
LRSM where leptogenesis can work with a weakened lower bound on myy,,, without
conflicting with observed neutrino data and charged lepton masses. We work in a
version of the model that is parity asymmetric at the TeV scale, which is anyway

necessary if we want type-I seesaw to be the only contribution to neutrino masses.
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According to our classification above, the work of [46] falls into the class I models.
We explore whether the lower bound can be weakened in the other classes of models
discussed above. It could very well be that if other observations push the Yukawa
parameters to the range of class I models, the bound of [46] cannot be avoided,
thereby providing a way to disprove leptogenesis at the LHC. However, to see how
widely applicable the bound of [46] is, we consider in this paper an example of a
model which belongs to class II, i.e. neutrino fits are done by cancellation leading
to a specific texture for Dirac masses.

We implement the class II strategy for small neutrino masses in the minimal
LRSM with a single bi-doublet field in the lepton sector where all leptonic Yukawa
couplings are significantly larger than the canonical value of O(107°%) and the Wx
mass is in the few TeV range. As noted above, to get small neutrino masses via
type-I seesaw, we invoke cancellation between two Yukawa couplings to generate
extra suppression and a particular resulting texture for the Dirac masses. We find
that due to enhanced Yukawa couplings, the dilution of lepton asymmetry due to
the Wx mediated scatterings as well as due to 3-body decays of RH neutrinos such
as N — (rud® become considerably less than the CP-violating 2-body decay modes
N — Lo, L¢¢', and as a result, the lower limit on W5 mass can be brought within
the LHC reach for a range of Yukawa couplings for which the washout effect due to
inverse decay is in control. New aspects in our work that goes beyond that of [46] are
the following: (i) we give a realistic fit for all lepton masses and mixing with larger
Yukawa couplings (~ 1072 or so); (ii) reference [46] assumes that the CP asymmetry
¢ ~ 1 whereas we calculate the primordial CP asymmetry ¢ in our model using the
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Yukawa couplings demanded by our specific neutrino fit. As a result, our ¢ is still
of order 107! (see text for precise numbers); (iii) finally, we take the flavour effects
into account in our washout and lepton asymmetry calculation. It is a consequence
of (i) and (iii), which leads us to lower the Wg mass bound from leptogenesis.

When T, < T < Ty, we write the scalar bi-doublet as

¢ = (4,0 (4.1)

where ¢ and ¢ are SU(2),, doublets. Then, we can write
&) = O'QCI)*O'Q = (&, (g) (42)

where 5 = i09¢* and (E’ = —io9¢™. For simplicity, we assume that ¢’ acquires a
mass larger than my through vy while ¢ remains massless. Then, ¢ is identified
as the Higgs doublet of the SM. The Yukawa interaction Lagrangian of the lepton

sector in the RH neutrino mass basis when T, < T < Ty is written as

Eé = _L_Lz(fmq) —|— ﬁjé)LRj — hRijL_CRiiO—QARLRj + H.C. (43)
= —fi;Lri®6Ng; — fijL1i¢'lr; — ]};jL_Lia,NRj — ﬁ‘jL_Lingj
* NT * 7 ~*_~T Yyt
— [5iNri® L — f1lrid" Lii — fiNg;¢' L — f5:0r;j¢' Ly
1

— —hRZ’jURN_f%NRj — hRij(S%N_}%iNRj + ﬂhRijégﬁTRiNRj + hRij5§+£TRi€Rj

V2

1 __ __ __ _
- ﬁh}ﬂzﬁvRNRjNﬁzi - thié?%*NRlec%i + \/ﬁh}‘%ﬁ‘;ﬁNRjgch‘ + hpji0r CrilRi
(4.4)

from which we can identify interactions that contribute to the lepton asymmetry.
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4.2 One-loop resummed effective Yukawa couplings and decay rates

For simplicity, we write
L; = LLi7 Ez = gRi? Q = QL7 U = UR, d= dR (45)

where 7 is the lepton flavour index, and u, d can be any pair in the three flavours. We
also use Greek and Roman indices for RH neutrino and LH lepton doublet flavours,
respectively. The partial decay rates I'(N, — L;$) and ['(N, — L¢¢') at T = 0 are

given by
D(Ny = Li¢) = my, ALy (£),  D(Na — Leoh) = my, AL (F)  (4.6)

where Agﬁ is the absorptive transition amplitude defined by

o 1 ~ ~
A () = — 1 1. 4.
as(f) T iotis (4.7)

~

Here, f;, is the one-loop resummed effective Yukawa couplings given by [50]

fio = fio — 1Y leapy|fis
By

o Ma(Madag +maAga) — iRay [MaAys(Maday +myAva) + mpAgy (MaAya + myAay)]
m2 —m3 + 2im2 Agp + 2iIm[ R, ] (m2|Agy|? + mgvae[A%W])

(4.8)
where €,4, is the Levi-Civita anti-symmetric tensor and
3. 2
Mo = my,,  Aag = ZA;B(f), Ros = Ep— +a2l_ma . (4.9)
i=1

The CP-conjugate effective Yukawa couplings /f\l‘; are obtained by replacing h;, with

h},. The total two-body decay rate at T' = 0 is written as

3
D)5 = 2 [D(Na = Lig) + T(Na = Ligh)] = == | (FBaa + (F7F),, | (4.20)

=1
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and the total three-body decay rate at T'= 0 as

L) e =T(No = loud®) + T(Ny — C5usd). (4.11)

Here,

T'(N, — Lyud®) =

3q2 my, 6 _3m2 24923
= T(No — (ufd) = o5t /0 ds (mNa TN

2 2 2 12
Na S mWR) +mWRFWR

(4.12)
where Ty, ~ (g%/47)my, is the total decay rate of Wx at T = 0 when my, < Whp,

and all three quark flavours and colors have been considered. Note that we can have

only one lepton flavour ¢, for each N,.

4.3 Boltzmann equations and the lepton asymmetry

The generic Boltzmann equation is written as [48]

dn,

NaNx ny
di —|—3Hna:— E [W’Y(CLX—)Y)——G(]’Y(Y—)CLX)
aXY @ X

- (4.13)

where 7 is the thermally averaged collision term. We define the CP-conserving

collision terms for various decay and scattering processes by

yg,X =X —=-Y)+ W(EY — 7)

(4.14)
where X — Y is the CP-conjugate process of aX — Y. Note that the CPT

invariance implies

W= Yax (4.15)
We introduce the dimensionless time variable defined by
le
= . 4.16
o= (416)
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Then, the thermally averaged decay rates of N, are wirtten as

m3

o K1(2) o
N, 1 N1 N,
a — K F «
7Lz¢ TL KQ(Z) 7T 1( ) L;¢>

o q K1(2) L, m‘?’v .
Vequde ™~ anK (z)F 2 ;Kl( )Fé\iudc

where Ki(z)/Ks(z) is the thermally averaged time dilation factor.

leptonic CP-asymmetry by

['(Ny — Li¢) — T'(Ny — L5oT)
ZJ 1 [F(N — Lj¢) + I'(Ny — LCQST)}

(A

No =

we can write the CP-violating decay term as
0772 = V(N = Li¢) = 7(No = Li¢") = 5, 71s

where

3
No — @
Toe = ZVL@'
=1

(4.17)

(4.18)

Defining the

(4.19)

(4.20)

(4.21)

For 2 — 2 scattering processes, the thermally averaged collision term can be written

as
T > NG
f)/ifg = @ /Smin ds \/g 0'1)4(5(8) Kl (?)
", ERCHEYEHE
~6dntz J, b
where 6%} is CP-conserving reduced cross section defined by

64y =06(XY = AB) 4+ 6(AB — XY).

o8

(4.22)

(4.23)



The CP-conserving reduced cross sections for the dominant scattering processes are

derived in appendix D, and they are given by

N 9g}§/0 (s+t)(s+t—m3) (4.24)
et ATs Joz s (t —miy,)? '
&Nau 9g§1{ 0 (s+t)(s+t—m3) (4.25)
fadc 47TS m?v . t _ mIQ/VR)Q .
9 _
Gpol(s) = I (mhy —5)° (4.26)

A miy (s +miy, —m3%)
Following the steps in appendix D, we can write the Boltzmann equations for the

RH neutrino density and the LH lepton doublet density as

dn n ’ NAL;
—No | 3Hny, = (1 - nﬁ) (Vs + Vi +957) = Y ooed 07y, (4.27)

dt 2n5d

Ne j=1 j
3
dTLAL nn, nAL
MLy gy, = (niv Z% (4.28)
a=1 a b a=1
where
VAR = yliefe 4l el (4.29)

We can simplify the Boltzmann equations using the dimensionless time variable
z introduced above and also using normalized densities of RH neutrinos and lepton

asymmetry. First, we write the Hubble parameter at z = 1 as

2
87T g* le

90 Mp

=2*H (4.30)

where g, is the SM degree of freedom. The photon number density is given by

2, C(3)

— (4.31)

TL,Y:
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where ((z) = >, n~" is the Riemann zeta function. Now we introduce the nor-

malized densities of RH neutrinos and lepton asymmetry defined by

n n .
N, = Na’ nNap, = ALZ? (432)
n,y v n,y

eq n?\(f]a n?\?l ]' 2
= ~ = K _ 4.33
77Na n, n, 2<(3)Z 2(2) ( )

As shown in appendix D, we can simplify the left-hand sides of the Boltzmann

equations 4.27 and 4.28 using the normalized densities, and they are written as

3
HNn d’f]Na NN, 2 ;
1T — ( = 1) (008 + e +27) = 3 D mar, 0k, g, (4.34)

z dz No, o=
HNn’y dT/ALz 7 nNa Na 2 & No
e 25 g =) s~ gmen 2000 (4.35)

where we have used n;! = 3/4. When the lepton asymmetry satisfies |0} | < 1, we

can safely neglect the second term in equation 4.34 to obtain

Hymn. dnn, "IN

e e — 1) (708 + e +2") (4.36)
z dz N,

Hyny dnar, ; TINa No 2 - Na

From equation 4.36, we can find the expression

H d 1
UiSA z dz oy 4y e +Ya
which we can substitute into equation 4.37 to obtain
3 -
dTIAL dnn,  Da 2
= & — —naLW; 4.39
Z dz Do+ S, 3k (439)
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where

-~ _ z Na _ z Noc Na o y4 S o z
Do = HNnvaqﬁ’ Do = Hyn, (Ve T Vesuae)s  Sa = HNM%R’ W= Hyn, Z%‘ '
a=1
(4.40)

The differential equation 4.39 can be solved by the integrating factor method, as
shown in appendix E. Assuming the initial lepton asymmetry is negligible, we obtain

the expression

nar(2) = =) O, miv, (2) (4.41)

where /ﬁﬁva is the efficiency factor defined by

; ¢ dny,  Da 2 [F
Ry, (Z) E/ dZ/d—gm [—g// dZ”Wi(Z”):| . (442)

0

Due to the strong washout of RH neutrino densities in the TeV-scale leptogenesis,

we have |9y, /ny. — 1| < 1. We may therefore approximately assume 7y, = 3,

and thus
dny,  dny,  dny, I
o o L — K 4.4
dz  dr | dz RO (443)

where zj is the initial time with the initial lepton asymmetry. If the lepton washout
term satisfies W;(z.) < 1, the lepton asymmetry freezes out at zp < z. where zp can
be found by the steepest descent method [51]. On the other hand, if W;(z.) > 1
as in the TeV-scale leptogenesis, we can find an approximate expression of the
lepton asymmetry from equations 4.41 and 4.42, as shown in appendix D [52]. The

approximate form of the asymmetry in the LH lepton doublet is now given by

Q

Nar;(?) (4.44)



and the total asymmetry is

nan(z) = 3 nan2). (4.45)

4.4 Numerical procedure

For the successful leptogenesis, we should be able to find the model parameters that
would give |nar(z.)| = (2.47 £ 0.03) - 1078 which is the value consistent with the

observed baryon asymmetry. The following is the numerical procedure:

1. Randomly generate the lightest light neutrino mass m,,, and calculate m,, =

2 2 — 2 2
m2 + Amz; and m,, = /m2 + Amg,.

2. Calculate M¢ from M¢ = Upyns M2UB\ng Where M¢ and M¢ are the light
neutrino mass matrices in the charged lepton and light neutrino mass bases,
respectively. The mixing matrix Upyns is the PMNS matrix whose CP phases

are also randomly generated.

3. Randomly generate my,, my, —my,, and my, —my, which determine Mp in

the RH neutrino mass basis.

4. Randomly generate a complex orthogonal matrix O, and calculate Mp =
—iUpnins/ MEON/ME [47) where Mp is the Dirac mass matrix in the RH

neutrino mass basis.

5. Randomly generate V%, and calculate M, = Mﬂ/}gT where M, is the charged

lepton mass basis in the RH neutrino mass basis.
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10.

Randomly generate ko, o, and calculate k1 = y/viy — x3. Find the Yukawa

coupling matrices in RH neutrino mass basis from

o \/ililMD — Kkoe M, ]7: \/§I€1Mg — ke Mp

2 2 ) 2 2 )
K1 — K3 K1 — Rj

(4.46)

where f is the Yukawa couplings associated with the decay and scattering

processes of our interest under the assumption we have introduced.

Calculate one-loop resummed effective Yukawa couplings ?, ¢ from f, mn,,

and calculate the CP asymmetry and collision terms.

Calculate nar,(z.), the normalized asymmetry in the LH lepton doublet at z,

from the CP asymmetry and collision terms we have obtained.

Calculate M§ = MpVj and M§ = VAT MRV where M§ and M§ are the Dirac

and RH neutrino mass matrices in the charged lepton mass basis, respectively.

Construct the 6 x 6 neutrino mass matrix MJy from M7 and MFg, and find

the 6 x 6 mixing matrix V,y that diagonalizes M.

The mixing matrices Upyns, V7, Vi, and V,x are parametrized in the same way as

in the MLRSM. The complex orthogonal matrix can be parametrized as O = e°
where S is a skew-symmetric complex matrix, i.e. ST = —S.
4.5 Numerical results

The lower bound of myy, compatible with leptogenesis is found to be 6.9 TeV,

which is beyond the upper limit observable at the LHC. The numerical results are

63



presented in figure 4.1. If we discover Wx much lighter than this value, the idea of

leptogenesis can be falsified.

4.6 Conclusion

We have analyzed the leptogenesis constraints on the mass of the right-handed
gauge boson in TeV scale Left-Right Symmetric Models. While the existing bound
of my, > 18 TeV applies for generic LRSM scenarios with small Yukawa couplings,
we have found a significantly weaker bound of my, > 6.9 TeV in a new class of
LRSM scenarios with relatively larger Yukawa couplings, which is consistent with
charged lepton and neutrino mass data. The key factors responsible for our result
is the inclusion of flavour effects in the lepton asymmetry calculation. This lower
bound, my,, > 6.9 TeV is for the case g, = gr and will be proportionately weaker

for the case gr < gr.
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Figure 4.1: Values of parameters and mass matrices that give the lower bound of
myw,, = 6.9 TeV. The lepton asymmetry is slightly larger than 2.47 - 1078, and thus

slightly smaller value of myy, is allowed.
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Chapter 5: Conclusion

We have investigated the TeV-scale phenomenology of the LRSM. We have provided
a new method to construct lepton mass matrices in the MLRSM of type-I dominance
with the parity symmetry. Using this method, we have investigated the TeV-scale
phenomenology of the MLRSM in the normal hierarchy of light neutrino masses,
and explored the model predictions for the CLFV, Ov35, EDM’s of charged leptons.
We have also presented a natual TeV-scale seesaw model which does not require fine-
tuning of model parameters for the TeV-scale phenomenology. A discrete flavour
symmetry is shown to guarantee a specific texture of lepton mass matrices. In ad-
dition, we have studied the leptogenesis with TeV-scale W and my, and presented

a lower bound of myy, which allows leptogenesis.
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Appendix A: Derivation of various expressions in the minimal left-

right symmetric model

A.1 Gauge group and fields

The gauge group of the left-right symmetric model (LRSM) is given by

SU2), ® SU2)r ® U(1)p_r. (A.1)

The representations of the leptons are

, Vi / Vhi
LLi = ~ (27 ]-7 _1)7 LRi = ~ (1’ 2’ _1)’ (AQ)

0 Cri
and for quarks, we have

/ ul . Up
QL'Z = ~ (2,1,1/3), QR’Z - ~ (17271/3) (A3)

! !
sz‘ dRi

where ¢ is the generation index. In addition, the scalar bi-doublet field is given by

& o
o = ~(2,2,0), (A4)

o1 B
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and the scalar triplet field is

§+/\/§ 5++ 5+/\/§ §++
A= " ’ ~(3,1,2), Ap=| " : ~(1,3,2).

DRI YN

(A.5)

A.2 Current and generators
The SU(2),® SU(2) g generators are

1
Too = [ @alep +uld), T =) Tia=g [ @aivy - e +ufu - didy)
1
Ty = / dalen +ufdy),  Tr-=(Try)',  Trs=g / dPr(vivy — e + ujluy — didy).
(A.6)

The electric charge generator is given by

2 1
Q= / AP (—e’Te’ + 5u’Tu’ - gd’*d’) : (A7)
Now we can find the U(1)g_1 generator given by

1 1
Q- Tia T = [ &'z [—2@’5 Vi + Vi €l + dhelp) + g (uiful, + il + dfd) + dijdy)

6
B-L
= — A.
. (A8)
Since we have Y = 2(Q — T3), the generators satisfy

Y B—-L
—=T —_— A9
5 = s+ — (A.9)
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A.3 Yukawa interaction Lagrangian

The Yukawa interaction Lagrangian is written as
LYy = ~T5(fi® + fi®) Ly, — hriyLioaAp Ly — hpiLgios AgLy, + Hee.
(A.10)
= —fi; 090 lr; — Fiy@Wpiviy — fiiér Coivey — Fiy®s Vil
— [ Ol — Fi0S Vv, + Fijb3 Oy + fisdi Vil
hLijéz_El_Lcil/le +

07 1c + c ot ++pic p!
- hLijcSLyLiuLj + hLZ‘j(S VngLj + hL”(S engLj

V2 V2
1 —_ 1
- hRiJ(S%I/}%I/;%] -+ EhRm(SE@%V}U + EhRij(s-i_l/sz;%] + thJ(S—H_EEzg/Rj

+ H.c. (A.11)

where

- ¢y —¢f
b = O'Q(I)*O'Q = . <A12)
—b; O
We have also defined ¢¢ = C¢* and ¢ = —1)TC where C = 7270 is the charge

conjugation operator in the Dirac-Pauli representation.

A.4 Spontaneous symmetry breaking and fermion masses

Without loss of generality, the scalar fields after the spontaneous symmetry breaking

are written as

K1/V2 0 0 0 0
= o (A = . (Ag)=
0 /igeia/ﬁ vLeieL/ﬁ 0 vR/\/§ 0
(A.13)
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After spontaneous symmetry breaking, the Yukawa coupling terms are written as

1 — 1 — 1 ~
(L5) = ——= fishiae Ol — —=fiskaVi iy — —=Fijtinlpiln; — —= Fijrne " ViVh
V2 V2 \F V2
1 1 —
— —hpijuLe U ViV — —=hrijurVEVR; + Hee.. (A.14)

V2 V2

The mass terms for leptons are written as

mass 1
E = ﬂ(fijlize + fwfﬁ)émé .+ H.c.. <A15)

We therefore have

%(f@em + fr1). (A.16)

The neutrino mass terms are given by

M, =

1 ~ p— 1 1 S
Lmass — —ﬁ(fij/ﬁ + fijhoe )WV — \/ihL”vLe’eLszy}d \/ihRiijV}%V}%j +H.e.
(A.17)
We have the identity
vivp = Wpvp)T = —vg v = —vg CCy v = (Cu) ' Cuf = vigr (A.18)
where we have used C'7,C = —v]. Similarly,
Tl?z‘yle = @V/Liv T]%;V/Rj = %Vﬁﬂ- (A.19)
Hence, we can write
1 — My Mp v
L = —5(1/L Vi) + H.c. (A.20)
MB MR V;%
where
MD = —(flﬂ',l + f/€2€ ia)’ ML = \/ﬁhvaeiioL, MR = \/§hR'UR. <A21)

S
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A.5 Gauge bosons

The covariant derivative is given by

. ) ., B—1L
DM = 6# — 14y, TL . WLM — 1JdR TR . WRM — Zg/ 9 BH' (A22)
Now we define
W= L Wl —iw?), W, = ! Wl 4+iw? A.23
y:ﬁ( p ,u)? H:E( u+l ,u)' ( )

Kinetic terms

The kinetic terms for SU(2) gauge bosons are

1 1
— P, = —Z(aﬂwg — W — gf " WEW(OWS — O,Wi — gf ™ WIWY)

1 v v a a 1 abc v a a
= _Z<8MWa -0 W(f)(aﬂwu - aVWp,) + §gf b Wlﬁch (a,UWl/ - 8VW;L)

1 aoc raae v e
- Zg2f b FIEWEW W AW (A.24)

Lepton sector

For the LH leptons and neutrinos, we have

. o v\ 1 wWh—gB. VoW, Vi
L/LiVY#DHLILi = (Vp; 01,)iv" 0 + i(V/Lz e

0 V29r:Wp,  —9LW3, — g B, O

— — 1
= ViV Oy + O i Ol + §V/L¢7MV/L¢(9LW2# —9'By)

1—— 1 —_ 1 _
- iglLi’leLi(gLWg# +9'By) + 79LVILi’yM€/LiWZr,u + "W,

ﬂ ﬁgL
(A.25)
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Similarly, the kinetic terms for the RH leptons and neutrinos are written as

- —. —_ 1—
Llp;iv" Dy Lip; = Vi Ouvip; + Uiy 0ul; + 5”1’121'7”1/321‘(9}%“/1%# - 4¢'By)
1/7 wol 3 / 1 Ny + 1 VN —
B igRﬂ Cri(9rW iy + 9'By) + EQRVRN CriWg, + EQR@%{Y VriWg,-

(A.26)

Quark sector

For quarks, we have

— . —_— 1_ 1
Qriiv"DuQri = uriiy"Opur; + dpiiv"0udr; + §UL¢’Y“ULZ‘ <9LWEH + 39/Bu>

1

1
— §dLm’“ dr (gLWgu 3

1 1 — _
QIBM> + EQL@’Y“duWL + EngLi"}”uuLiWL“
(A.27)

and

S . _— 1 1
Qrit" D, Qri = Uriiy" Ouupi + driin" Oudr; + §URW“UM (gLWgﬂ + 39'Bu>

1

1
- idRi'Y'LLdRi <9LW}%H —3

1 1 — _
9lBu> + EQRTI%’Y”dRiWEH + ﬁngRi'VﬂuRiWRﬂ-
(A.28)

Scalar field sector

For scalar fields, we have
L, = tr[(D"®) (D, ®)] + tr[(D"AL) (D,AL)] + tr[(DFAR)(D,AR)].  (A.29)

Now we explicitly calculate the masses of gauge bosons.
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Contribution from (®)

We have

Lo = t[(D"®)!(D, )]

a a b b
. g . g . g . ag
(aﬂqﬂ + szqﬂ—; Wit — zgR—; W;;“@T) (a“@ —igr —2L W2,® -+ zgR<I>—2R Wguﬂ

1 1 1 @ i o rra
o109, — §gL3“<DTG%W£u<I) + igRal‘fl)T(I)a%W}%u + §QL<I>TU%WL”8H<I> - 5gRaRWR#qﬁaucp

X
o

(g7 @totol @WHWY, — gLgr® ol PalWiH WY,

|

+

—g9Lgro @Gy QW W], + ghok @ 0ol Wi )] . (A.30)
After ® acquires the VEV, we can write

tr [<<1>T >0EU%<¢>WS“W£H} = %(Ii% + m)WHWE, + (57 + 53)W WL, (A.31)

tr [(@)of (@) kWi Wh,| - %(H% + RWIWE, + mikae W Wi, + mikge W Wi
(A.32)

(@)@l wirwh,] = [(@h)of @ohwiwh, ]|

1 . ) _
— 5(/@% + K’Q)WENW%N + mmgeWW;“Wgu + kkoe W, “W;{M,

(A.33)
a " . i
tr [(@)ohoh (@YW WE, | = tr (@) ook (@)W W,
1
- 5(,% + k) WRHWE, + (K1 + B3 WE W, (A.34)
We therefore have
1
<‘C<I>> = g("i% + Hg) (Q%WSMWEM - QQLQRWSMWI%M + gIQ{WI?::{uWI?%u)
1 — 1 Qo —
+ 19%(“% +R)WHW, — SILYRK1k2€ W W,
1 N 1 _
- éngR/ﬁ:‘iz@_mWL "W, + ZQ?{(H% + ﬁ%)WEuWRM +-0 (A35)
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Contribution from (A)

We can write the scalar triplet A as

A= ——g%" (A.36)

Sl

where

1

50
V2

(5 +i6%), 6t =6% T =——(6"—is?). (A.37)

Sl

The gauge invariant kinetic term for A is given by

La =tr[(D"A)(D,A)] = %tr[{D“(UW)}T{Du(0b5b)}]
= %tr[aaab](ﬁ“(sa* +igd™ T - W' +ig' B*6™)(9,8" — ig T - W,6¢ —ig' B,.0")
= O16°°0,6" — igd" 5™ (T') 6 W}, — ig'0*6**6°B,,
+igs™ (T 0,6 W™ + g*6 (T (T7) 16 WH W] + gg' 6= (T")“*6*W* B,
+ig' 68,0 B* + gg'6** (T7)*16'W] B* + ¢”*6“*5“ B" B,
_ auéa*auéa _ igauéa* (Ti)adédWli + Z'g(x)‘c* (Ti)caaué‘awiu + 925(3* (Ti)ca(Tj)ad(;dWiqu
+2g9'6 (T") 0" W™ By, — ig' 866 B, + ig'6**0,0" B* + ¢"*0**6“ B* B,
(A.38)
1ebe

where T is the generator of the SU(2) adjoint representation. Since (7¢)% = —

?

we have

§e* (Ti)ca(Tj)adé‘d — 5c*€aci6adj6d — 5c*(5cd5ij o 5cj5id)6d — 5c*505ij o 5]‘*51’7

60* (Ti)ca(sa — _iéc*ecai(ga' (A39)
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Therefore, the kinetic terms can be written as

L:A — a,u(;a*au(sa . geabcap(sa*ébwﬁ + geabcaa*gu(sbwc,u + 925a*5awb,uw/l; o 925a*5bwaywﬁ
— 2igg €5 SPWH B, — ig'0"6* 6 B, + ig'6°*0,6“B* + ¢*§** " B"B,,.
(A.40)

We also have

6760 = 5060 4 56T 56T,
SUWE =0 Wi+ 6% W, + 6 W,
W = 5TW, 4+ W, + 6w,
eabc(sa*(sbwﬁ — (5152 — 52*51)W3 4 (576 — 53*52)Wl} + (%60 - 51*63)W3
= i(6TF6 W) — 8P 0OWE + %W — 5T a W+ st W, — 5T Te W),
(A.41)
After A acquires the VEV, the Lagrangian terms relevant to the masses of gauge

bosons can be written as

1 1 1
(LA) = §g2v2(2W+“WJ + W?’“Wi) — 592v2W+“WM’ — ggv*W** B, + Eg’%QB“BH 4o
1 1 1
= égQUQWWW; + 592v2W?’“W3 — ggv*W B, + églzsz“BM +e
(A.42)
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Total contributions
Hence, we have

(Ls) = (Lo) +(LA,)+ (Lry)
1
= g(’%% + ’%%) (g%WSMWg/L - 2ngRW§uWI§)’,u + gIQ%WgMWI%M>

1 _ 1 ; _
+ Eg%(/ﬁ;% + ﬁ%)Wf“WLM - §9L9R“1“2GWWZFNWRH

1 ioer— 1 _
— SYLIRR1KE W, ”WEN + 1912%(/@% + Kg)W;MWRM

1 1 1
+ QQ%U%W;MWL_M + ig%U%WEMWgu - nglv%WguBu + 59/27)%3“3#

1 1 1
+ SIRRW R Wiy, + 59RO EWH Wiy, = 9rg VW' Bu+ 59"k B By + -
1 1 1
= SOL(s] + K3+ D)WW, — Sgrgr(st + )WL Wi, + 2o (st + 5 + 40R) W' Wi,

1
— ng’v%WE"BM — gRg’v%W}?%“BM + iglz(v% + vlz%)B“Bu

1 _ 1 . _ 1 s _
+ 19%(5% + K5+ 207 )W W — 59L9R51ﬁ2emWL+#WRM — 59LgRKIR2E W W,
1
- 5g%(ﬁ% + K5+ R WA W 4 (A.43)

We therefore can write the mass terms for gauge bosons as

191 (87 + 3 +40])  —jgrgr(ki +K3)  —grg'vi Wi,
e = SOV WY B | 1o 0n( 4 d) A4 kit dd)  —grg'vh Wi,
—gr9'v} —9ry'vE 9% (v} +v}) By,
+ (W W) WL ) st RC
—39LgrR1R2e " 1gR(KT + K3+ 20%) Wr,
(A.44)

(i) Charged gauge bosons
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Without loss of generality, the general form of the change of basis for charged gauge
bosons can be written as

W, cos & sin e W,
— (A.45)
Wy —sinée™™  cos& Wy

where W~ and W, are mass eigenstates. We can find

b—a++/(b—a)?+4c? _ 2¢

cos§ = , siné =
\/[b—a+v(b—a)2+4c2]2+402 \/[b—a—l— V(b —a)? + 4c?)? + 4¢?
(A.46)
where
1 1 1
a= Zgi(’f% + K5+ 207), b= ZQ%(KJ% + K2+ 20%), C = S9Lgrkike. (A.47)
Note that we have
2 4
tan 2 = — R JLIRF 2 . (A.48)

b—a (9% — 97)(K3 + K3) + 2(g3v} — g3v7)

The masses of charged gauge bosons are found to be

1 T g
m%/vl:§[b+a_ (b_a)2+462], mW2 b+a+ b_a +402
(A.49)

With the phenomenological assumption v, < k1, ke <K vg, we have a,c < b. Then,

we can approximately write v/(b — a)? + 4c2 &~ b — a + 2¢* /b, which gives

c? 297 K2K2 g% K2 K2
mNl-—=1- L_12 ol 22 A.50
oMl o = R TR 2l N
e C(149) 291 K1k g2 (K3 + K3 + 20%) . gLR1ka
Smf”\'_l‘) +E - 2 21 9.2 5 2 1 92V T 2
gr(K? + K3 + 20R) gR(KT + K3 + 20R) 9rRUR
(A.51)
(A.52)
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and

2
tan 26 ~s — “IEME2. (A.53)
QRU%

Note that we have 0 < —¢ < 1. The charged gauge boson masses can also be

written as

2.9 2
297 K1k3

2
2 1y 2 2
My, ~a— 3 - Z_lgL(l{l + Ro + 2UL) - KJ% T K% T 21}}2%7 (A54)
c2 1 292 12 k2
m12xv2 ~ b+ 5= Zg%(lﬁ%—i‘li%—FQ’U%)—Fw’ (A.55)
1 2 R
or simply as
1 1
miy, ~ 0L (5 + K3), miy, & SghvR (A.56)

These approximate expressions are obtained by systematically expanding the trigono-
metric functions and gauge boson masses in terms of the small parameters a/b and

¢/b up to the second order.

(ii) Neutral gauge bosons

Without loss of generality, the general form of the change of basis for neutral gauge

bosons can be written as

Wg 1 0 0 cosCa 0 sin(sy cos(s sinCs O A

Wi | =| 0 cos¢i sinG 0 1 0 —sin(3 cosz 0 7y

B 0 —sin¢; cos(y —sin¢a 0 cos(a 0 0 1 A
(A.57)

cos (5 cos (3 cos (5 sin (3 sin (o

= | —sin(ysin(acos(3 —cos(1sins cos(ycosCs —sin(ysin(esin(s  sin( cos (o
—cos(ysin(acos(s+sin(ysins —sinjcos(s —cos(ysin(osin(s cos(qcos (s

(A.58)
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where 7, Z,, and A are the mass eigenstates, and the mixing angles are given by

!
cosC = —IB S — (A.59)

, sin¢y = ,
Vi + 97 Vi + 97

cos (s = gL\/W sin Cp = gRg/ (A 60)
VIL9% + 929" + 9%9" V919% + 919”7 + 9%9"
tan2C; = 2V910% + 9797 + 979”149 v] — gR(kT + r3)] |
(0 — 20% — 297 — 29™) (2 + K2) + 49" — §2.0% — 929" — Gog 2 + 4(g% + g2) 202,
(A.61)
Note that we have the identity
/
— ngfg,Q — = g cos (q cos (o = grsin (o (A.62)
VILIR T 9197 + grg
or
I gr tan<2 (A 63)
cos(y '

The gauge field A corresponds to the photon with zero mass, and the masses of the

other neutral gauge bosons are

my, = é(g% + g7) (K] + K3) + %(g% +g”)f + %(912% + 97k
— W{(gig% +919” + grg™)4g™v] — gR (kT + K3)]
+ B(g}‘a — 919k — 919" — 989 (K} + K3)
#21 ghah— o ghoh + 20k R |
(A.64)
my, = é(gi + g7) (K] + K3) + %(gi +g”)f + %(91212 + 97k
+ W{(ﬁgﬁ +919” + 9rgP)Ag™v] — gh(ki + K3)]
+ B(g}é — 919k — 9197 — 989”) (K] + K3)

24 1/2
+2(g"™* — gig% — 919” — gRhg*)v: + 2(g% + 9’2)20%] } :
(A.65)
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The neutral gauge bosons that couple to the LH fermions can be written as

gLW3, — ' By = gr(cos (g cos (321 + cos (o sin (3 Z + sin (2 A)
— ¢'[(— cos ¢y sin (3 cos (3 + sin (g sin (3) Zy
+ (—sin ¢y cos (3 — cos (q sin (o sin (3) Zy + cos (4 cos CQA}
= [gL €os (a cos (3 — ¢'(— cos (q sin (3 cos (3 + sin g sin Qg)] 71
+ [gr cos 1 sin G — g (—sin (1 cos (5 — cos (1 sin (2 sin (3)| Zo
+ (g sin¢y — g’ cos ¢y cos () A
= (gr, cos (2 cos (3 + ¢’ cos (q sin (2 cos (3 — ¢ sin (3 sin (3) 73

+ (g cos (o sin (3 + ¢’ sin (7 cos (3 + ¢’ cos (1 sin (o sin (3)Zo

9L [(cos ¢3 — tan (q sin (o sin (3)Z; + (tan ¢; sin (o cos (3 + sin (g)Zg] (A.66)

~ cos (o
and
gLWgM + ¢'B, = gr(cos (2 cos (371 + cos (2 8in (375 + sin (. A)
+ ¢’ [(— cos (1 sin (3 cos (3 + sin ¢y sin (3) Z3
+ (—sin ¢y cos (3 — cos (g sin (a3 8in (3) Z2 + cos (7 cos CQA]
= [gL cos (2 cos (3 + g’ (— cos ¢ sin (s cos (3 + sin (7 sin Cg)} 7
+ [gL cos (a 8in (3 + g’ (—sin 3 cos (3 — cos (i sin (o sin Cg)] Zs
+ (g sin (s + g’ cos ¢y cos (2) A
= (g1, cos (a cos (3 — g’ cos (1 sin (3 cos (3 + ¢’ sin ¢y sin (3)Z;
+ (g1 cos (2 8in (3 — ¢’ sin (5 cos (3 — ¢ cos (1 sin (o 8in (3) Zo

4+ 2gr, sin (o A

=9 [(cos 2(o cos (3 + tan (q sin (2 sin (3)Z;
cos (s

+ (— tan 1 sin ¢ cos (3 + cos 2(, sin Cg)ZQ] + 2gr, sin (3 A.

For the RH sector, we have
QRWJ?-%M — g’BH =gr [(— sin (7 sin (o cos (3 — cos (1 sin (3) 21
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+ (cos (1 cos (3 — sin (g sin (2 sin (3) Z2 + sin (3 cos CQA]
— ¢'[(— cos (1 sin (o cos G5 + sin ( sin (3) 2y
+ (—sin ¢y cos (3 — cos (7 sin (2 sin {3) Zs + cos (7 cos CQA]
= [gR(— sin (7 sin (3 cos (3 — cos (1 sin (3) — ¢’ (— cos (1 sin (3 cos (3 + sin (1 sin (3)} 7
+ [gR(cos (1 cos (3 — sin (g sin (o sin (3) — ¢’ (—sin ¢; cos (3 — cos (1 sin (3 sin (3)] Zs
+ (grsin(y cos (o — g’ cos ¢y cos (2)A
= (—ggrsin(y sin (s cos (3 — gr cos (1 sin (3 + ¢’ cos (1 sin (3 cos 3 — ¢ sin ¢y sin (3)Z;
+ (gr cos (1 cos (3 — gr sin (1 sin (2 sin (3 + ¢’ sin ¢y cos (3 + ¢’ cos (1 sin (3 sin (3) Z

= IR (7 sin Qng —+ cos CBZQ) (A68)

cos (1

and

gRWI?%M +¢'B, =gr [(f sin ¢ sin (3 cos (3 — cos (1 sin (3) 74
+ (cos (1 cos (3 — sin (q sin (o 8in (3) Zs + (sin (5 cos CQ)A]
+ g'[(— cos (1 sin (3 cos (5 + sin (1 sin (3) Z;
+ (—sin ¢y cos (3 — cos (1 sin (o sin (3) Za + cos (1 cos (2 A]
= [gr(—sin ¢y sin ¢z cos (3 — cos (1 sin(3) + g'(— cos (1 sin ¢z cos (3 + sin ¢ sin (3)| 21
+ [gr(cos (1 cos (3 — sin (; sin (o sin (3) + ¢’ (— sin ¢ cos (3 — cos ¢y sin (o sin (3)] Z;
+ (grsin ¢y cos (o + ¢’ cos ; cos (2) A
= (—ggrsin(y sin (s cos (3 — g cos (1 sin 3 — ¢’ cos (1 sin (2 cos (3 + ¢’ sin (1 sin (3)Z;
+ (gr cos (1 cos (3 — gr sin (1 sin (2 sin (3 — ¢’ sin (3 cos (3 — g’ cos (1 sin (3 sin (3) Z
+ 2grsin (g cos (o A
=gr [ — 2sin ¢y sin ¢ cos (3 — cos (1 (1 — tan? (1) sin (g] 7
+gr [cos ¢ (1 — tan? (1) cos (3 — 2sin ¢ sin ¢o sin Cg] Zs
+ 2gRrsin(y cos (o A
9r

= [ — (8in 2¢; sin ¢a cos (3 + cos 2(; sin (3)Z;
cos (1
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+ (cos2(7 cos (3 — sin 2(; sin (3 sin (3)22] + 2gR sin ; cos (o A. (A.69)

With the phenomenological assumption v, < ki1, ke < vg, We can approximately

write

999+ 9397 + 9R9P (KD + K3)

tan 2(3 ~ 20+ 970 (A.70)
where 0 < —(3 < 1. The neutral gauge boson masses can be written as
o 9i9rt919° +9R9% 5> o oy P9+ 9197+ 9R9% 5
7 5 (K] + k3 + 4v7) =~ 5 5 (k" 4 K"),
' 4(g% + 9”) 4(g% + 9”)
(A.71)
2 Ik 2 2 9" 2 2 2y, .2 2 24, .2
/ /
my, =~ 4(g% + ¢7) (K] + K3) + 2+ g_/QUL +(9r + 97 )vgr ~ (gr + 97 )vg.  (A.T2)
R R

The first approximate approximate expressions are obtained by expanding the gauge
boson masses in terms of the small parameters (k% + k3)/v% and v? /v up to the
first order. From the second approximate expressions, we can identify the Weinberg

angle #y from its experimental definition

W1 cos G2 (A.73)

le

cos by =
and also the electric charge from

e = grsin Gy = grsin Gy cos G

~ g1, sin by = gr sin (; cos Oy, (A.74)

where we have chosen e, gr, gr, 0w > 0. Now we can rewrite

2 9%(’{% + "5%) 2

2,2
2 ~ IRR (A.75)

4cos? Oy 7271 — (g2 /g%) tan? Oy’
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and

 9r\/ 9% — g7 tan® Oy (k7 + K3)

Cl = Sin_l (g_L tan 9W)7 C2 ~ 9W7 C3 ~

Jr 4 cos Oyym3,
(A.76)
Since 0 < sin(; < 1, we must have
0< 2 tangy <1 (A7)
gr
where tan 0y, =~ 0.548. In addition,
2 2 m2 m2
tan 2¢3 & ——=—= g2R : 221 :—2c059w\/g2R/g%—tan29W 221.
V919 + 9197 + 929% M7, mz,
(A.78)
Now we simply write ( = (3. Then, we have
gLWi}u —¢'B, = COQSLCQ [(cos (3 — tan (1 sin (o sin (3) Z1 + (tan ¢ sin (o cos (3 + sin (3) Z2]
~ gg 1— C gL sin2 9W Z1 n gL sin2 9W n C Z2
costw \/9123 sin® Oy — g2 cos? Oy \/912{ sin® Oy — g2 cos? Oy
(A.79)

and

gLWg# +4¢B, = [(cos 2(2 cos (3 + tan (1 sin (2 sin (3)Z1 + (— tan (3 sin (2 cos (3 + cos 2(a sin C3)ZQ]

cos (s

+ 2gr sin (o A

.2
0
9L9 cos 20w + ¢ gLsin Yw Al
costw \/gf% sin? Oy — g7 cos? Oy

Q

. 2

0

+ | - gL ow + (cos20w | Zo| + 2gr sin by A.
\/9123 sin Oy — g2 cos? Oy

(A.80)

For the RH sector,

2
COSRC (—sin(3Z; + cos(373) =~ I -
1 g% — g% tan® Oy

9rW iy, — 9' By = (—CZ1+2Z,)  (A81)
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and

_9r_
cos (

9t + 9B, [ — (sin 2¢y sin Ga cos (3 + cos 2(1 sin ¢3) Z1 + (cos 2G1 cos G5 — sin 2y sin (2 sin () Zs

+ 2gR sin ¢y cos (2 A

Q

Ir [— (2 sin Oy tan GW\/gé/g% —tan® 0w + ([gh /g7 — 2tan’ 9W]> Z1
g% — g% tan’ @
R L w

+ (9%/9% — 2tan? Ow — 2( sin Oy tan Oy, \/912?/9% — tan? GW) Z2:| 429, sin Oy A

2 /g% — 2tan? Oy ] cos 6
= 2sin29W+g[gR/gL n? Oy | cos fw

o \/ 9%/9% — tan® Oy
[9%/9% — 2tan? Oy | cos Oy

\/ 9%/9% — tan? Oy

Z1

+ —2¢sin® Oy | Zo | + 29z sin Oy A.

(A.82)
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Appendix B: Expressions of observables

For the observables discussed here, the expressions presented in reference [12] are
mostly used. The exceptions are the form factors F5' and B’ for ', a mixed
expression from references [12] and [57] is used; for Bls°, the suppression factor

2 is multiplied to the whole expression. The normalized Yukawa cou-

(mWL / mWR)
plings h 1, and h r are explicitly distinguished in this paper, since they are generally

different even with the manifest left-right symmetry.

Charged lepton flavour violation

The normalized Yukawa couplings h L h r in the charged lepton mass basis are given

by [58]

~ 2 2 r Mjer

hy = =VITh VE=2VviT Lyt B.1
0= VeV =TV — Ve (B.1)

~ 2 2 M M

hip = =VEThgVe = Vi L vi = viT —Eyt B.2
R q R ""RVR g R \/§'UR R R M, R ( )

Note that hy, # ER in general since V/ # V& for nonzero «, although h = hy, = hp

with the parity symmetry. The loop functions of CLFV are given in appendix B.
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fa — gb’y

For on-shell decay ¢, — {7, the branching ratio is given by

3 5

OéWsz 2
BR. ——— (|G} G’ B.3
Lo—Lyy — 2567_(_ mWL Fg (| | + | | ) ( )

where ay = ¢%/(47), sw = sinfy, and Ty, is the decay rates of ¢,: T'), = 2.996-10~ "

GeV and I'; = 2.267 - 107'2 GeV [59]. The form factors G}, G} are given by

3 2
* * —ia i m 5 * 2m
GZ = § : |:VH7JVvez§2GY(xz) S,uz‘/;zfe G’y(xl) mN wiVeq m;/VL GY (yl) + thhRelg

i=1 la Wgr

(B.4)

+ hgih ( —L+— L)}
e Lei 3m5ﬁ 12m§{1+

a

3
Gy, = Z{S* SuGY (x) — VmSeife”GJ(xz)m
i=1

(B.5)

where z; = (my,/mw,)? and y; = (my,/mw,)*

The initial and final charged
leptons have opposite chiralities, and L or R in GZ’ r denotes the chirality of the

initial charged lepton. The Feynman diagrams of on-shell © — ey are given in figure

B.1.

[ — eee

The tree-level contribution to u — eee is

4 5 2 4 4
tree _ an (47T) T T 12w T T 12w
BR‘u—)eee - 2457671'3 F 2OCW }hLuehLe@ m4 L + hRﬂehRee‘ mTL . (B6)

++ ++
o o

The Feynman diagrams of the tree-level processes are given in figure B.2. The
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one-loop type-I seesaw contribution is given by [60, 61]

2 2

Brove = W | g pa o (p5 )
—reee 24576773m§1/[/LF/L 2 LL L WA+ L L

1 eee 1
L~ 23, (F - )

|
J

i

2 2

+

+ |25 (F" = Ff) = BiR*| + |25 (F' — FR) = (F§' + BRL)

+ SS%V{Re [(2FL21 + By + Bg;fe)G}*] + Re {(Fgl + B+ B}’ge;e)G}*] }
- 483?‘4/{Re {(Ffl — F})G}{“} + Re [(Fgl — F%)Gz*} }

m? 11
+32sy, (IG7” + |G]%\2){ln (#) — ZH’ (B.7)

and the interference terms are

BRtreethype—I — Oé%lest 2(47T)
—reee
’ 245767?3m%VL I, aw
mi, -~ o~
{mQ L Re [hj{uehLee{Qs%,Fg +48%, G + B + FA(1 — 23'@)}]
ot
m? -~ o~
+ mQW L Re [h}uehRee{Qs%,Fg + 453, G + B — 283 FF }” :
L
(B.8)
The form factors for the off-shell photon exchange are
3 T 2 2 2
~ o~ 2 my m 1 my,
F] = S*SeiF (1) — hpuhl | =—=1 £ ——L 1, B.9

-
I
—

m2 ~ ~ 2 m?
VMV;;- <§2Fw(%) + mTWLFv(yZ)) - hRm‘h* In _u] . (B.lO)

Reiq
Wg 3 m61+{+ m5§+

2

=3
I

s
I
—
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For the Z;-exchange diagrams, the form factors are given by

3
F{t =) S {%{Fﬂ%) +2G2(0,2)}

+ (STS*)U{G2<IZ',$]'> — Gz(o,.fz) — Gz<0, l’])} + (STS)inz(LL’i, l’]):| s

(B.11)

3 2
8(3c? Yi K1K2
Fo = ViVe’;[—W{F i) +2G72(0,y:) — 5 ¢ +2 Dz (yi, x;
R 121 Iz /—1—23%,[, 7(Yi) z(0, 1) 9 I z(Yi, i)

where z; = (my. /m,+)%, cw = cos By, and (s is the Z-Z, mixing parameter given
7 H2 Y w Y 3

by equation 2.18. The Feynman diagrams that contribute to Fg r and F& I r are

presented in reference [58]. The form factors of the box diagrams are written as
Bgzee — —22 ez FXbox 0 .Z'Z) FXbox(O,O)}

+ Z S:isej |i - 2S:jsei{FXbox(xi7 :Uj) - FXbOX(O7 :Uj) - FXbOX(O7 xz) + FXbOX(O7 O)}

i,j=1
+ S;;Seijox(l'ia xja 1):| 3 <B13)
B]'Lg;;e e WL Z FXbOX 0 yZ) FXbox(07 0):|
WR i,7=1

WL Z V z‘/;; |: 2V V {FXbOX Yi, y]) FXbox(Oa y]) - FXbox(07 yz) + FXbox(O7 0)}

WR 3,7=1
+ Vei Ve Grox (Yis Yj 1)] ; (B.14)
1 m m2
Brg® =5 e Z S8 Vei Vi Gloos (xxj mTW) (B.15)
WR i,7=1 Wr
preee _ 17§ Z ViV 5580 Goox | @1, 2; iy, (B.16)
RL - 2 2 ej~er 6] box xlaxja 2 . .
My My,
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Here, the masses of light neutrinos and the momenta of external fields are assumed

to be zero. The Feynman diagrams of the box diagrams are presented in figure B.3.

= e

The p — e conversion rate is given by [58,61-63]

m W, 2 2 2 >
RO — e B n o) (0 + ORF). ()

Here, A, N, and Z are the mass, neutron, and atomic numbers of a nucleus, respec-
tively, and Z.g is the effective atomic number. The parameter F), is the nuclear form
factor, Deapt is the capture rate, and aey = €?/(4m). The values of F, and Teapy of

various nuclei are summarized in table B.1 [63]. The form factors in equation B.17

Nucleus 4N || Zog \Fp(_mi” Teapt (106 s71)
2TAl 11.5 | 0.64 0.7054
»Ti 17.6 | 0.54 2.59
197 Au 33.5 | 0.16 13.07
205Ph 34.0 | 0.15 13.45

Table B.1: Form factors and capture rates of various nuclei associated with u — e

conversion.

are given by

2 1
QE‘fR =(2Z+N)|Wp— gs%,G]%’L} +(Z +2N) {WE{R + gsﬁveyu (B.18)
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and
u 2 2 Y 1 2 2 A 1 peuw peuu
Wrr= gSWFL,R +{ - 1 + 35w Fi'p + 1 Bi ke + Brr g (B.19)
Wi, = —t2 (L Lo Npa 1 pueat | pueda (B.20)
LR — 33W L,R 1 3SW LR T 4\ PLLRR LR,RL |- .
The box diagram form factors are
ueuu Z ez Fbox 0 xz) Fbox<07 O>]7 <B21)
uedd Z €’L FXbox O xz) FXb0X<Oa O)

+ VAP Fxbox (@, 1) — Fxpox(0,23) — Fxbox(0, 2) + Fxpox(0,0)}],

(B.22)

lefzezgu Z V/,LZV Fbox 0 xz) Fbox<07 O)]7 <B23)
B]léedd ZVMV* FXbox 0 LEl) FXb0X<070>

+ VR al {Fxbox (¢, i) — Fxbox(0, ;) — Fxpox(0, 2¢) + Fxbox(0,0)}],

(B.24)

and Bi? = Bi" = 0 due to their chiral structures. Here, z; = mj/mj, and
yr = mi/mjy where my is the mass of a top quark, and the masses of all the
other quarks as well as light neutrinos are assumed to be zero. The matrix V/ is
the Cabibbo-Kobayashi-Maskawa matrix, and V2 is its RH counterpart. Note that
Vi1 # Vi for nonzero a, although V/,, = V3, is assumed for the numerical analysis
in this paper. The momenta of external fields are also assumed to be zero. The

Feynman diagrams of the box diagrams are given in figure B.4.
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Loop functions

The loop functions of CLFV are

Ted — 2?2 — 120zt — 1022 + 1222

B@) ===~ T ea—ap o
Gi(z) = _ing ix;)g - - 2(13f3x)4 Iz,
G =Tl
Falx) = _2(15f z) 2(15f2x)2 Iz,
Hy(z,y) = 4(\/@3/) {x(lx__;) Inz — y(lyf_;)lny} ,

r(—8+9z —2%) —2?(8 —z)Inz

(B.25)
(B.26)
(B.27)
(B.28)
(B.29)

(B.30)

ry(l —y+ylny)

x R
Dy(z,y) == 2—lng> +
’ T (1—x)2
20y(4 —z)lnx  2x(x —4y)InZ

00—y A9y

T
Fbox<x7y) = (4 + Zy> [2(1',y, 1) - 233'y[1($,y, 1):

X
FXbox(x7y) = - (1 + Zy> IZ(xaya 1) - 215?41.1(337 Y, 1)7

Grox(7,y,m) = —/ay [(4 + 2yn) L2(2, y,m) — (1 + 1)L (2, y,7)]
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(B.31)

(B.32)
(B.33)
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where

B rlnx . _ nlnn
hie ) = [(1 - me—y y)} (1 =n)(1 —nz)(1 —ny)
(B.35)
B 2?Inz . _ Inn
) = | T+ 9] - T =
(B.36)
i,y 1) = lim Li(w. y.1) (B.37)

Neutrinoless double beta decay

The dimensionless parameter associated with the Wp- and light neutrino exchange
1s

3 2
m = iz (Ue) s, (B.38)
me

For the Wp- and heavy neutrino exchange, we have

My =M Y (Sci)" (B.39)

i=1 N
where m,, is the mass of a proton. For the Wx- and heavy neutrino exchange, the

parameter is given by

4 3 *\2
mw Vi)
NN, = mp( L) > ( : (B.40)
For the §}*-exchange, we have

3 2
7 Zi:1<vei) MmN, My
J 2 2 2
me myy, G
R

(B.41)
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For the A-diagram with final state electrons of different helicities, the parameter is

written as
m = <mWL)2 23: U.Ty; (B.42)
mwg —1
For the n-diagram with W -Wg mixing,
3
ny = —Ee Y UuTy (B.43)
i=1

The Feynman diagrams corresponding to those parameters are given in figure B.5.

The phase space factors G5y and matrix elements M for various processes that

lead to Ovff are summarized in table B.2 [12,64-71]. The inverse half-life is written

as

(T3] = Gof (IMY Pl [* + M Pl 2+ M PN, + nsel* + MR P laf* + M7, )

+ interference terms. (B.44)
Isotope || G%¥ (1071 yrs.71) | MY MY MY MY
Ge 0.686 258 —6.64 | 233 —412 | 1.75 — 3.76 | 235 — 637
82Se 2.95 242 —5.92 | 226 — 408 | 2.54 — 3.69 | 209 — 234
130T 4.13 243 —5.04 | 234 — 385 | 2.85 — 3.67 | 414 — 540
136X e 4.24 1.57—3.85 | 164 — 172 | 1.96 — 2.49 | 370 — 419

Table B.2: Phase space factors and matrix elements associated with Ovj3(.
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Electric dipole moments of charged leptons

The EDM of the charged lepton ¢, (a = e, u,7) is given by [11,72]

[£0%7,74
da

3
= Sy, Im[z SaiVail € G (Ti)ma, |- (B.45)
=1
The Feynman diagrams that generate the EDM of an electron are given in figure

B.6.

Benchmark model parameters and their predictions

The benchmark model parameters and their predictions are summarized in tables
B.3 and B.4. These parameters are chosen to obtain BR, ey, BR,cce; Ruse, and

T1% large enough to be observable in near-future experiments.
The Yukawa coupling matrices f, J? in the symmetry basis calculated from

these parameters are

—0.117629 —0.0954074 — 0.303042i —0.287722 — 0.316317i
f=1 —0.0954074 + 0.303042i 0.858098 —0.581546 — 0.997804¢ | - 107°,
—0.287722 + 0.316317i  —0.581546 + 0.997804i 1.55438
(B.46)
9.02581 0.362808 — 3.152214 —0.217594 + 0.423914i
f= 0.362808 4 3.152214 1.53907 3.98014 - 10~ — 0.328771; | - 107
—0.217594 — 0.4239147  3.98014 - 10~ + 0.3287714 0.260124
(B.47)
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Parameter Value Parameter Value

logyg (my,/eV) | —10.2 logo (k2/GeV) —1.12

MWy 3.60 TeV o) 0.78430936821209777 rad
dp —0.7007 rad logio (JA11]/GeV) | —8.20

O —0.06407 rad A11/| A1 1

Opro 0.8507 rad Aga /| Aga -1

0112 0.2877 rad Ass/|Ass| -1

013 0.3877 rad 04y, —0.59708704604124857 rad
0123 0.5467 rad 04,4 0.265057751392156877 rad
or1 —0.4887 rad 045, —0.66797070594384317 rad
012 —0.9537 rad logp a3 0.520

013 —0.7697 rad logg (p3 — 2p1) 0.328

514 —5.30 - 10757 rad || logyq p2 0.450

Table B.3: Benchmark parameters for large CLF'V and Ov35. The predictions from

these parameters are given in table B.4.
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Parameter || Value
My, 3.60 TeV
My, 0.0631 eV
My, 0.0637 eV
My 0.0807 eV
mn, 0.139 TeV
mn, 0.280 TeV
M N, 4.13 TeV
My 8.08 TeV
Myt 10.1 TeV
Mg+ 8.09 TeV
Mg+ 18.6 TeV
K1 246 GeV
K€ 0.0759¢™0-7847 GeV
Qs 3.31

p3 — 2p1 2.13

P2 2.82

The charged lepton and Dirac neutrino mass matrices in the symmetry basis are

M, =

(fligeia + f/ﬂ)

Sl

1.57002 — 3.95569 - 10793 0.0631099 — 0.548321:
0.0631098 + 0.5483213 0.267718 + 2.88565 - 10~%;

—0.0378501 — 0.07373915  6.92247 - 1075 + 0.0571891i
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—0.0378502 + 0.07373914
6.92918 - 10~° — 0.05718914
0.0452481 + 5.22714 - 10~%;

(B.48)
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Mp = \20%1 + froe™™®)

—3.97641 — 3.03524¢ —1.37761 + 0.668135¢ 0.733973 + 0.446252¢
= | 0.742466 — 0.912148; 0.849485 — 0.517565¢ —1.12232 — 1.59841% | - 107 GeV.

0.448861 — 0.299905¢ —0.901194 + 1.598147 2.59511 — 0.0874759¢

(B.49)
The mixing matrices that diagonalize M, are
0.215620 + 3.59016 - 1075 0.272630 0.0353401 + 0.936980:
fo = —0.174794 — 0.555520¢  0.00850025 — 0.736518; —0.340224 + 0.0506041¢ | »

—0.527503 + 0.579736i  0.526439 — 0.325580i  0.0374439 — 0.0332209;
(B.50)
0.215620 0.272630 0.0353401 + 0.936980i

V}% = | —0.174886 — 0.555491: 0.00850025 — 0.7365187 —0.340224 + 0.05060413

—0.527407 + 0.579824i  0.526439 — 0.325580i  0.0374439 — 0.0332209i
(B.51)

The neutrino mass matrices in the charged lepton mass basis are written as

di T
My = Upnns My, 8 Upyns

6.14141 + 0.604007i  —0.641188 + 1.37500i —0.414134 — 0.161926i
= | _—0.641188+1.37500i  5.21993 + 3.90978;  —0.721679 + 2.37952; | - 107" GeV,
—0.414134 — 0.161926i —0.721679 + 2.37952i  5.35910 + 4.32684i

(B.52)
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Mf, = Vi MpVi,

—0.887458 — 0.00113569: —0.596983 — 1.80367¢ —0.364728 — 0.967911:
= —0.596682 + 1.80377: 2.44772 — 0.204264:  0.650485 — 0.676299¢ 107" GeV,

—0.364567 + 0.967972i  0.650486 + 0.676299i  —3.86700 — 3.43503i
(B.53)
Mf, = =My (M)~ ' Mp,
327.179 — 124.513i  —141.421 — 201.931i  36.0396 + 816.162i

= | —141.421 —201.931¢ 56.2978 4+-60.4971:  517.744 — 74.6682¢ GeV.

36.0396 + 816.162¢  517.744 — 74.66827  —2486.91 — 2973.377

(B.54)
The neutrino mixing matrices are given by
0.824240 0.535780 + 0.1092001 0.131084 — 0.0667906%
U=UpMNs = | —0.365548 4+ 0.0658493i  0.632967 + 0.173591i  —0.585126 — 0.2981367 | -

0.420911 + 0.0741679;  —0.516908 + 0.0551401i —0.659043 — 0.335799i
(B.55)
—0.492113 — 0.340868i  0.999284 + 0.0561499;  0.239615 + 0.02815064
S=| —0.0475962 + 0.503081i —0.231028 — 1.26661i —0.00795814 — 0.320325i | - 107,
0.232020 — 0.00648341i  —0.401571 + 0.125068;  —0.175188 + 0.136668i

(B.56)

—6.53107 — 6.47350i  —8.46370 + 5.72968; —1.16360 — 8.206344
T= 2.04202 — 6.05309i  —4.69170 — 5.307745  3.49735 — 2.06263i 1077,
—1.83711 — 0.641098; 0.0608069 + 1.46932i 0.103607 — 0.502026

(B.57)
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—0.183724 + 0.3759724¢ 0.879386 + 0.0740900:  0.195953 — 0.0876577%
V= —0.881006 + 0.2100577  —0.242230 — 0.320460: —0.0720947 — 0.114618:

—0.0677616 4- 0.00212502:  0.177470 — 0.168300¢  —0.408123 + 0.876937%

(B.58)
The Yukawa coupling matrix A in the symmetry basis is
h=——VEMGVE
Vovg B VRVE
0.206578 + 0.223735¢ 0.120506 — 0.02412307 —0.0469350 — 0.0641918:

= 0.120506 — 0.0241230:  0.00351664 — 0.0376782¢  —0.0257606 + 0.00173595% | »

—0.046935 — 0.06419187 —0.0257606 + 0.001735957 —0.00335158 + 0.0385022¢
(B.59)
and the normalized Yukawa couplings h L, h r in the charged lepton mass basis are
hr = gVfTth
g
0.0908945 — 0.0345568:  —0.0392741 — 0.05609867 0.00997325 + 0.226713:
=1 —0.0392741 — 0.0560986¢: 0.0156383 + 0.0168047:  0.143818 — 0.02074123 )
0.00997325 + 0.2267133 0.143818 — 0.02074123 —0.690808 — 0.825936¢

(B.60)

~ 2
he =" KTV

0.0908830 — 0.0345871:  —0.0392835 — 0.0560921¢ 0.0100110 4 0.226712:
= | —0.0392835 — 0.05609217 0.0156383 4 0.0168047:  0.143818 — 0.0207412¢
0.0100110 4 0.226712¢ 0.143818 — 0.02074127  —0.690808 — 0.825936%

(B.61)

Note that hy, & hyg since we are considering the cases of Vf & V§ for the TeV-scale

phenomenology.
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Figure B.1: Feynman diagrams of on-shell u — evy. Here, W, ~ W +&e "W, and
Wi ~ —&e W+ W, . Figures B.1a—B.le contribute to G}, and figures B.1f—B.1j

to G%. The arrows in neutrino propagators denote the directions of the propagation

of N; = Ng; + N&,.
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Figure B.2: Feynman diagrams of the tree-level processes of y — eee.
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Figure B.3: Feynman diagrams of B#**“. Note that the arrows in neutrino propaga-

tors indicate the directions of the propagation of v; = vp; + v§, or N; = Ng; + Ng,.
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Figure B.4: Feynman diagrams of B*%9.
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(d) N5r

my, m,

(e) nx (£) my

Figure B.5: Feynman diagrams of OvS3. Here, W, ~ Wi + (e7 W, and W, =~

—&eWiF + W, The coupling h$, = VEThVE = M§/(v/2vg) is the Yukawa coupling

matrix in the charged lepton mass basis. The typical momentum transfer of the

processes is ¢ ~ 100 MeV.
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‘L

Figure B.6: Feynman diagrams contributing to the EDM of e.
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Prediction Near-future sensitivity

BR, e, || 5.98-10714 <5.0-10" (Upgraded MEG)

BR, ., || 1.94-10713

BR, .., || 4.85-10713

BR,sece || 8.12-1071 < 1.0- 10715 (PSI) [24]
RAL,, 2.17-10713 <3.0-10~'7 (COMET)
R, 4.13-10713 < 1.0-10~'® (PRISM/PRIME)
RA™, 3.98-10713

RFY, 3.83-10713

7, 1.21-1077 <1.4-1077 (CUORE)
Ik, | 4.97-1071°

K| 4.77-10710

M6 4.24-10711

N 4.61-10710

7| 2.81-10713

Tl e || 2:12-10%° — 1.31-10°7 yrs.

s 6.11-10%° — 3.43 - 10%6 yrs.

T || 5:91-10% —2.41-10% yrs. | > 2.1-10% yrs. (CUORE)

Tflxe || 1.05-10% —5.48 - 10% yrs.

|de| |-2.98 - 1073} e-cm
|d,.| 11.99 - 1073| e-cm
|d-| |-3.13- 1073} e-cm

Table B.4: Predictions from the benchmark model parameters of table B.3. Only
near-future experiments that would detect the corresponding processes are presented

here.
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Appendix C: Parametrization of the Dirac neutrino mass matrix

In this section, we show that the Casas-Ibarra parametrization [47] of the Dirac
neutrino mass matrix is the most general form of Mp for given heavy neutrino
masses.

Standard Model with right-handed Majorana neutrinos

For a diagonal matrix D with positive entries, i.e.

d 0 0
D=1 10 d 0 (C.1)
0 0 ds
with d; > 0, we define
Vdi 0 0
vVD=| o V& o (C2)
0 0 +ds

We write C' which satisfies CTC' = CCT = D as C = VDB where B = vVD-1C.

Then, BBT = (VD-1C)(vD-10)T = VD-1CCTVD-! = I, i.e. B is an orthog-
onal matrix. In other words, any matrix C' which satisfies CTC = CCT = D is
orthogonally equivalent to v D1
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Now we go to the basis in the flavour space where the light and heavy neutrino
mass matrices are diagonal with positive entries. In that basis, we denote the charged
lepton mass matrix as My, the Dirac neutrino mass matrix as Mp, the right-handed
Majorana neutrino mass matrix as Mg, and light neutrino mass matrix as M2. We
assume that the neutrino mass matrices are invertible, which is trivially satisfied as
long as the lightest neutrino mass is nonzero. Then, for a matrix Cz which satisfy
CrCE = Mg, we can write Cgr = \/MEOp for an orthogonal matrix Og. The
neutrino mass matrices satisfy the type-I seesaw formula, and thus

-

M = =M (a3 ME = ~1p (/1) 0x ) (/) 10r)

_ {z’MD (Mg)—lOR] {z’MD (Mg)—loRT. (©3)
We can therefore write
iMpy /(M) 105, = /A0, (C.4)
for an orthogonal matrix O,, and
Mp = —i/ MO/ M (C.5)

where O = 0,0}, is also an orthogonal matrix.

In the charged lepton mass basis, we have
Mg = UMV, M¢=UMUT, M§ = UMp, Mg = Mg (C.6)

where U and V} are the unitary matrices which transform M, into the diagonal

matrix M; with charged lepton masses as its entries. Note that U = Upyng is the
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PMNS matrix. We can write

M) = —iU\/M2O+/ M. (C.7)

Without loss of generality, the complex orthogonal matrix O can be parametrized
as O = ¢ where S is a skew-symmetric matrix, i.e. ST = —S, as the exponential

map is surjective.

Left-right symmetric model

We follow the same steps up to the proof of the generality of equations 7?7 and ?7?.

In the charged lepton mass basis, we have

M{=UMVE, —~— MS=UMUT,  M§=UMpVE — Mg =V MEVE.
(C.8)

Hence,

M§ = —iU+/MIO\/ MLV, (C.9)
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Appendix D: Boltzmann equation

In this section, we explicitly derive the Boltzmann equations for the RH neutrino
density and LH lepton doublet asymmetry. Here, we consider the extension of the
SM only with three RH neutrinos for simplicity. Note that the relations of collision
terms and the correct forms of Boltzmann equations in any other models should be
carefully derived in a similar way.

The generic form of the Boltzmann equation is

dna NgNx ny
dt + SHna, = — Z {W’Y(CLX — Y) — neq'Y(Y — GX) . (D]_)
aX+Y @ "X Y

Since ¢ is a massless scalar field, we have ng = ng'. In addition, nj} = njt =
eq eq _ _eq eq s . .
n,, where n,' = n, +n,  is the total lepton number density of each flavour in

equilibrium. The CP-conserving decay term is defined by
Voo = ¥(No = Li¢) + 7(Na — Lig), (D.2)
and the CP-violating decay term by
571, = ¥(No = Li) — 7(No — Lig'). (D.3)
By CPT invariance, we have
VL = No) = (N = L6) = (2, = 53, (D.4)
WL = No) = 1(Na = Lid) = £ (1% + 5. (D.5)
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The Boltzmann equation for the RH neutrino density is written as

ana > nn, c
ﬁ-mmm:—ZkghW¢HWH%M%%&}
j=1 L"Na
nr.Ne Nreng t
— L — Na - ﬁ L‘? — Na
n(;lc;nzqfY( J¢ ) nL(%nqngY( j¢ )

3
_ nNa Na nL] Na Na nL; Na Na
= ; ni\?& Voo — WZ;(’YLM - 5'YL]-¢) - 2n_§(_1 (’YL]-qs + 5%:]-45)

J

3 —
M, N, _ " T N, ML Iy

- = Z % ’YLJ-¢ - 9n,d 7Lj¢ + 9n,d 57L;¢
j=1 L' "Na ¢ ¢

3

~ nND‘ No nAL' Na
- (n—q - 1) U D D Lk (D-6)
N, j=1 4;

o

In addition, the RIS-subtracted CP-conserving scattering terms are defined by

Vb =/ (Lo = Li6h) + 7/ (Lio! > Lyo), (D.7)
Vg =7 (Lio = Ljo) + 7/ (Lig" — L5o"). (D.8)

The corresponding CP-violating terms can be written as [49]

3
a=1
3

/ I(TcC c 1 i j Y o
V(Li¢p = Lid) — v (Lig" — Lj¢T) =75 Z(BNQ(%V& - vaa(SNa)fyi\;) (D.10)

a=1

Y (Li¢p — L5oT) — ' (Lio" — Ljg) =

N | —

where

P(Na = Li¢) — T'(Na — Li¢")

DI D.
N = ST (Ve > L) + T(Na —» L] (4D
B?Va — - F(Noz — LZQS) + F(Na — LSQST) . (D12>
>oimy [T(Na = Ljd) + T(No — LsoH)]
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We therefore have

V(L = L581) = g7 + 4 ZBN S+ BLOY. (D13)
1 1o~
V(Lioh = Lio) = Svpii — ZZ@MJ + BN, O )70 (D.14)
a=1
1 T~
~'(L z¢%LJ¢>—§ ;’—ZZ@;VQM — B 0 )ms (D.15)
a=1
YV (Legt — LegT) = —W’LLer ZBZ . — Br.Ov)0e - (D.16)

The Boltzmann equations for the LH lepton doublet number density are written as

3 3
dnr, n,n ne,m .
+ 3HnL1 = - § eq eq’y( Z¢ — Noé) - § eq e(z;'y/( l¢ — Lj¢T)
dt = np,ng PO

3

nr.n
—Z :q g’in’ (Li¢ — Lj¢) + Z equ — Lig)

3

3
c L;
+Z = eqv (L5 — Li) + Z—neqnﬁ;v’( L;j¢ = Lig) +
=1"L;"¢
(D.17)

dTLL 3 nLcn¢ ¢ 3 nreng ¢
yr +3Han:fZﬂ (L§dT = No) = > —sq—eq (LidT — L;g)
a=1 Lcn¢ j=1 nL¢n¢

3
nLCnd) C C nNOé C
_Z eq eq L¢T L¢T +Zn Y(No — Lio)
a=1

Na

3
+Z o eq "(Lj¢ — Lio") +Z o ) Y (L5oT — LigT) +
j=1
(D.18)

where we have explicitly written only the terms that would contribute to (5722 % We

can thus write

3 3
dnar, nL, N nL,Ne
3H d Li¢p — N,) — i i — LSoT
dt + nNAL;, = Z nzq‘n«;qry( ¢ ) Jz: nan¢qry ( ¢ _7¢ )

3
nr,n
_Z eq eq;’y/ Z¢_>Lj¢ Z eqfYN _>Lz¢)

3
L ng ¢
+Z eq eq’y (L ¢T_>L'L¢ +Z eq eq’y( J¢_>LZ¢)3
Lj P L; U

j=1
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=1 e =
3 3
nL;ne nLeNg
=D e (Lié = Lig) = 3 —agaq (Ljo! — Ligh)
j=1 L;" J=1 Ly
3 nr, N., 3 ng, 1Li 1 3 ; ; i
== 3 el — ) — D ok ik + 5 S (B8, + B0k )0
a=1 £; =1 =
3 3
_ nL, | e 1 Bi s B s
Z 9ncd TL;¢ B Z( N ON,, N )'YL¢
Jj=1 nli a=1
3 3 3
o VL VLi¢ 9nd ’YL;.@)T 5 N, ON, N ONIVLS
a=1 Na j=1 ¢ ot
3 3
nr L; 1 . : . a
* Z 2ne]q 'YILN? + 2 Z(Bﬁ\faégva - B?Va 6?\105)7225] )
Jj=1 £; a=1

3 3 3
an N, N, an 1L 1 . . . . N,
+ Z ond (Vos +07L%) + Z 2nd [%;:qsf ) Z(B}Va N, + BN, ONIVLE

a=1

i=
3

7,Li¢+EZ(Bi 5] _Bj 61 ) Ng

Lip T 5 N. 9N, N ON)VLg

3
MNa (. Na Ne NL; | /Lib i 5 i si \aNa
=2 e O — L) — X oncd |Triet T3 Z (Bx, O, + B?VQ(S}VQ)’YL¢‘|
j=1 2" a=1

3
L5 | e L i s s A Na
-3 gl e - § Soomet, - st

=1 7y a=1
3
nL, —nre nr, +ﬂLc n
7_2 2154 51]:\?"‘2 2 5NQ+Z Na(wL
=1 i a=1
2 nL; —NLE 1,4 ng, +nre y j
=Y o e — 2 e D (BN Ok, + B, 0N )Lg
j=1 i j=1 £ a=1

S L =N ne, 4 j i

-2 Vg T A > (By, 0, N VLG
j=1 i j=1 4 a=1
3 TLLJ TLLJQ ILid ’rLLJ + 'I’LL‘? j y i

- oned Legpt — Z 4nd Z(BN 6 + By, 0 )’7L¢
Jj=1 j=1 £ a=1
> nL; — LS pie & nr; +nre > v J

D e VL D e D (B0, — B, v )+
j=1 45 j:l 2 a=1

3
NAL;
~=) Qn;q‘s Z‘WLWFZ 5%4)
a=1

3
NAL; 1L; i j j i N,
- Z 2neq Zc;ﬁf Y Z Z B;Va&]?\fa + B~I]Va5§\/'a )’Yqu
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3 3 3
— nAL’L Na Ne nN N
== ﬁ‘s’m +D 0t a0y

a=1 a=1""Na

NAL; /L, 1 ; N, N,
- Z Qneq 'waf ) > (B, 6715 +0715)

a=1

3
- Z o + % Z By, 0754 — 07L.)

2ny! L0

(Bi.0v0s +070%)

w\»—‘

NAL; /L i
- Z 2neq Tregt —
1
+ Z 2neq *3
n > n
N. ALi ¢ N,
<n _)67L¢ Zgn 0L

BN 67L¢ Mﬁ;’) +

>
2

3

=2

€q L;
a=1 NO a=1 £;
3 n 3
AL; /Li¢ /L¢ _' /L¢ 1L
- 2n;! (Vpcgr + Z T (Yiggt —Ynje) to (D-19)
j=1 i Jj=1

Now we simplify the left-hand side of the Boltzmann equation D.1. Since

T o a where a is the scale factor in the Friedmann-Robertson-Walker metric, we

have
1dT &
— =—-=-H D.20
e : (D.20)
and thus
dz z dT
iy 2 D.21
at - Tdt (D:21)
Hence,
dnx dzdny Han (D.22)

dat dt dz U az
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and for ny = nx/n,, we have

dnx 1 dnx nxdn, 1 (dnx 3 1 dnx
. _ XSy 2 (X2 — B Y
dz n, dz n% dz ny \ dz + an zHn, \ dt +ofnx
z dnx
= —= +3H ) D.23
HNn7 ( dt * TLX) ( )

Therefore, we can write

an ]?NTLPy d?]X
—2 4 3Hny = =
dt ToHnx z dz

(D.24)

Reduced scattering cross section
The thermally averaged scattering rate is given by

y(ab — 12) = niin; o (ab — 12)|v])

_ 64_7;4 /OO ds /5 6(s) Ko (g) . (D.25)

Here, Spin = max|(mg + my)?, (my + ms)?]. The Kéllén function is defined by
Ma,b,c) = a* + b* + ¢* — 2ab — 2bc — 2ca. (D.26)

The scattering cross section is given by

1 dgpc 4¢(4 2
olab—Y) = m/ <QW> @2m) 6D (P +pp — ) D [M(ab — V)2

spin

(D.27)

In reference [48], the phase space factors are defined as follows:

dgpb 1
(2m)3 2E(p,)

d?TX = H dﬂ'b, dﬂ'b = 0p (D28)

beX
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Note that equation A7 in that paper has a typo in the expression of dm,: (27)* —

(27)3. The reduced cross section is defined as

5(5) = 87Dy(s) / dry (276 (pe + py — py )| A(ab = V)P

= snu(s) | (HV o 2E§p0)> (275" (pu + s — py) Afad = V)P

(D.29)
Rewriting the multipicative degrees of freedom, ¢,, g», and g. as spin sums, we

obtain

ols) = 87@2(3>/ (H (271]'9)63 2Ezpc)) o) et - gag Z M(ab = V)P

spin

_ 8wq>2(s)‘;jg§a(ab Y (D.30)

The two-body phase space factor ®4(s) is given by

Dy(s) = /dﬂ'adﬂ'b(2ﬂ'>4(54(pa + py — py)

= oe/Is = (ma s = (my — my ]
g‘;_gsb\/_ (D.31)
Therefore, we can write
5(s) = g/\a(ab S Y) (D.32)

which is twice the expression below equation 2.8 in reference [48]. The differential

cross section is given by

do
— M(ab —Y D.33
- Y M@ VP (D.33)

spin
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In principle, the differential scattering cross section is given by

dt 4\/_/ ( 2765 fQE ) (27)'6M (pa + 1o = Y) Z (M(ab— Y)[?5(t — (pa — p1)?).

(D.34)

According to reference [48], the differential reduced scattering cross section is given

by
Ao Ga9v9c9d 2
R Y
dt 87rs [Alab = V)
Z IM(ab — Y)|?. (D.35)

spin

87rs

NagRa — u%dR

The Feynman amplitude for this process is given by

2 4
i = (128 ) o R0 o o TR )
— i ()R ()R ),
2 (pv + pe)? = miy, + imw Ty
(D.36)
and thus
—iM" = —i%vl(pu)thoud(pd) — ub (po) Ry v (pw)
2 (pn +pe)* — miy, — imw, Ty
TR ) e R ()
(D.37)
where we have used u{ = v_;. We therefore have
Z IM|? =2 i 55— tr[Y " RunUNY* Rugtig|tr[y, Rugtiqy, R, ).
o (v + pe)? — miy, J2 +mi, T,
(D.38)
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The trace part is calculated as follows:

tr[y"RunTN~y* Rugtig|tr[y, Rugtigy, Rv, Uy
= tr[y"R(p + mn)V'Rp, Jtr[vRp 1uRp, | = tr[v"p A" p LItc v p vup, L]
= tr[y" 71 LIt [ Yo Yu Vs LIP N pPeoPa” Pu”
— 1 VAPaMAO] VPt n O A5 _ 5 a, B
= 7 (trly"2?7"y7] = tr[y"y* "7 79]) (e ys] = bl varus7”]) Py ppeopa®pu
=4(g""g"" — g""g"" + g7 g"" + i€"""? ) (Guaup — Guudas + Gus9an + i€vans)PN pPeoPdPu’
= A[pN"pe" — g"" (P - Do) + PPN+ i€"P T P pPeo | PavPup — Gup(Pd * Pu) + PuvPap + i€vansPa®pu’]
= 4[(pn - pa) (e - Pu) — (Pa - Pu) (PN - Do) + (Pe - Pa) (PN - Pu) + i€ PN pDIo DA Pup

— (PN - Pe)(Pa - Pu) + 4PN - Pe)(Pa - Pu) — (P - PN)(Pd - Pu)

+ (PN - Pu)(Pe - Pa) — (Pu - Pa) (PN - i) + (P - pu) (PN - Pa) + i€”PH7 DN pPLoPur Py

+ i€0ausPN P Pa"Pu” + i€uanspe’ PN PA"PL” — €P17 €uapusDN pPeoPd " Pu” )
= 4{(pn - pa)(Pe - Pu) = (Pd - Pu) (PN - Pe) + (e - Pa) (PN - Pu) + 2(PN - Pe)(Pd - Pu)

+ (pv - Pu)(Pe - Pa) = (pa - Pu) (PN - Pe) + (D0 - pu) (PN - Pa) + 2(67667 5 — 6”367 0)PN pPeo P Pu”]
= 4[2(pn - pa) (Pe - Pu) + 2(pe - pa) (PN - Pu) + 2(Pn - Pa) (Pe - Pu) — 2(PN - Pu) (P2 - Pa)]

= 16(pn - pa)(pe - Pu)- (D.39)

Since we have

s = (pn +p4)2 = (pa +pu)2;
t=(py —pu)’ = (pa — p0)*,

u=(py —pa)’ = (pu — D)%, (D.40)
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we can write

2pn - pe) = —(mF —5), 2(pa-pu) = 5,

2(pn - pa) = ma —u, 2(py D) = —u. (D.41)
Hence, we have

tr[y” RunOny* Rugtig) tr [y, Rugtigy, Ro,on) = 4(miy — u)(—u) = 4(s +t)(s + t — m%)

= 4(s% + 2st + 17 — mis — mit) = 4[t* — (m3y — 28)t — s(m3, — s)], (D.42)

and thus

2 (2 _ 2
Z’M‘ng%t (m% — 2s)t — s(m%, s)‘ (D.43)

(s —mpy, )2 +mpy, T

spin

Now the differential reduced scattering cross section is written as

- Z M 99R t2 — (mA — 2s)t — s(m% — s) (D.44)
s

dt (s — m%VR)2 + m%VRF%,VR

spin

where the multiplicative factor 9 is from the numbers of quark flavours and color
factors. Note that this is the result for one flavour of RH neutrino. The Mandelstam

variable ¢ is written as

t=(py —pu)’ = EY = 2EnE, + E, — x> — [Pul? + 2Py - Py,

= m?v —2(ENE, — |py||Py| cosB). (D.45)

In the center-of-momentum (CM) frame, we have

s —mi Vs

1
— 2_9 2 4 _ = Y
|pN’ 2\/5\/5 mys + my 2\/5 s ‘pu’ 9’

(D.46)
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and

s+ ma NG
En =4/ 2 2 — N E, =Y". D.47

Hence, we have

1s+m2— s —m?3;) cos ], D.48
N N

t=m3 —
N9

and thus
tin = M — 8, tmax = 0. (D.49)

Therefore, the reduced cross section is

A 99 /O 2 2 2
= dt [t* — —28)t — —
o) 87s[(s — miy,)* +miy, Uiy ] iz 7= (my = 28)t = smiy =)
99?‘% Lo, 202
= —(my — m 2 D.50
8ms|(s — miy, )2 +miy, Ty, ] 6( N = 8) (miy +2s), ( )

which is the same as equation 2.15 in [46]. Hence, the CP-conserving reduced cross

section is

997 1

~ Not R 2 2/, 2

oo = — — + 2s). D.51
ucd (S) 47rs[(s — m2W ) + mWRl 2 ] G(mN S) (mN 8) ( )

Nau% — ERad%

The Feynman amplitude is written as

9% 1
M= igu_ﬁ(m)V“RUN(PN)

Uu(Pu)vuRU , D.52
on —pe)F i, (Pu)uRva(pa) (D.52)

and its Hermitian conjugate as

it — QR R 1 t RA¥1~0
iM 175 vh(Pa) Ry v (pu) ow — PP~y un (Pn)RY 1y ue(pe)
9% 1 .
= —1=—0y wRUy (pu "R . D.53
Yy a(pa)vuRuu(p >(pN —p)? — m%%% un (pn)7" Rue(pe) ( )
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We thus have

4
1
Z M|? = %TR I 5 ]2tr[v”Ruzu_w“RuNW]tr[vvauv_u%Rvdv_d],

2
— —-m
spin PN — D¢ ) Wr

(D.54)

where

tr[y”Rugty" Runun|tr]y, Rv, 0y, Ruatg]
= tr[y"Rp /*R(p, — mw)Itr[nRp vRp,| = tr[vp A" P Litrwp, vup L]

= 16(pn - pa)(pe - Pu)- (D.55)

Since we have

s = (pn +pu)2 = (pe +pd)27
t=(pn —p0)*> = (Pa — pu)?,

u= (px —pa)’ = (pe — pu)*, (D.56)

we can write

2(pn - pe) =miy —t, 2(pa-pu) = —t,
2(pN pu) = _(mN - S)? Z(pe 'pd) =5,

2(pN - pa) = m?v —u, 2(pe-py) = —u. (D.57)
Therefore, we have
tr[y"Rugigy" Runtun|tr]y, Ru, 0y, Ruatg) = 4(m?v —u)(—u)

=4(s+t)(s +t—m3). (D.58)
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Hence, we have

Z’MP s+t)(s—|—t—mN)7 (D.59)

2
spin (t My, )?

and the differential reduced scattering cross section is given by

8WSZ| 9gR (s+t)(s+t—m3%) (D.60)

dt (t = miy,)?

spin

where the multiplicative factor 9 is from the numbers of quark flavours and color

factors. We have

= (px —po)* = E% —2ENE. + E? — |py|* — |P.|* + 2PN - .

= m?\, — 2(EnE. — |py||P.| cos ). (D.61)

In the CM frame, we can write

1 s —m3 NG
|pN| = 2_\/5\/82 - Qm?\/‘g + m?\f = 2\/§N7 |pe| - 77 (D62)
and
s +m3 NG
Ey = 2 2 N E,=Y". D.63
N Ipyl? +miy 205 5 ( )
Hence, we obtain
o 1 2 2
t:mN—§[s+mN—(s—mN)COSQ], (D.64)
and thus
toin = MA — S, tmax = 0. (D.65)
Therefore, the reduced cross section is
9g% [ t t —m3
6(s) = 2R / g BHOETEmy) (D.66)
87s s (t —mi,,)?

120



which is the same as equation 2.16 in [46]. Hence, the CP-conserving reduced cross

section 1s

5V (5) 9g% /0 o (s+t)(s+t—m3) (D.67)
m2,—s (t - mIZ/V )2 . .
N R

Nodr — CRour

The Feynman amplitude is

2
. Jh__ 1
M = 1=y (pe) Y Run (pn
5 (pe) ( )(PN—PZ)Q—W%/R

Uy (Pu)VpRua(pa), (D.68)

and

1 5—un(pn)Y Rue(pe).  (D.69)

2
. 9r___
—ZMT = —1—Uq\Pd ’yuRuu Pu
5 dd(Pa) ( )(pN—pz)z—mWR

We thus have

4
1
Z IM|? = %TR T tr[y” Rugugy Runyuy |t [y, Ru, @y, Ruqtig),

2
spin PN — pz)Q - mWR]2

(D.70)

where
tr[y" Rugtey" Runtn|tr]y, Ru, Ty, Rugtig)
= tr[y"Rp V"R(py, — mn)]tr[vRp, 7 Rp,| = tr[y"p +"p  LItr[vp, vup L
= 16(pn - pa)(pe - pu)- (D.71)
Since we have
s = (pv +pa)® = (pe + pu)?,
t = (py —pe)* = (Pu — Pa)?,

u=(py —pu)® = (pe — pa)®, (D.72)
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we can write

2(pN : pﬁ) = m?\f - t? 2(pd : pu) = _ta
2(pN - pu) = m%v —u, 2(pe-pa) = —u,
2(pn - pa) = —(my — ), 2(pr-pu) =s

We therefore have

tr[y”Rugtigy" Ronon |tr[y, Rugtigy,Ru, vy ] = —4s(m3 — 8).

Hence, we have

2

—S

S IMP = —gh 2
spin Wr

and the differential reduced scattering cross section is given by

_ 9gR my — s
dt 87rsspg| 87 (t— My, )?

(D.73)

(D.74)

(D.75)

(D.76)

where the multiplicative factor 9 is from the numbers of quark flavours and color

factors. As in the previous case, we have
bmin = My — tmax =0
min — mN 87 max — Y-

Therefore, the reduced cross section is

4 10 2 4
— 1
o(s) = _ 9k /2 dt NS 9k (m3; — 5) [—2

87 (t —mi,)? 8«

99n 1 1
~ 8r (miv S)[ miy, m?v—s—m%,vj

997 1 1
:—R(m?\,—s)[ 2 2 T o ]
R

(D.77)

(D.78)



which is the same as equation 2.17 in equation [46]. Hence, the CP-conserving

reduced cross section is

oed(sy = n____(my — )" (D.79)
fou 4 miy (s +miy, —myy)’ '
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Appendix E: Lepton asymmetry

Exact solution

We can also derive the expression 4.41 by directly solving the differential equation

4.39. This equation is in the form

dy _

Y= Q) - Play (1)
where
5 ~
2 1 dn «a Da(m)
v=z y=na PR)=3Wi). Q@)= oy ot T
(E.2)
The differential equation E.1 can be rewritten as
0= [Q(z) — P(x)y|dx — dy. (E.3)

In order to solve this differential equation, we need an integrating factor f(z,y):

de = f(z,y)[Q(x) — P(x)y|dz — f(z,y)dy

Oy dp
= 6md:€+ 8ydy
=0. (E.4)
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Then,

Pp 0 _Of(z,y)
e — s tenlew - )} = LD 0w - Pl - fla P
o? B of(x,
(?x(;py " oz [ B f(m,y)} - f(ax y)’ (E.5)
Thus, we need
LD (910 - Plow] - S0 Pla) = - 2L (5:6)

to have an exact differential dp. Now we assume f(z,y) = f(z). Then, the condition

E.6 is written as

1P = T, (©.7)
thus we can write
P(2)dz = Ci{c(%) (E-8)
The solution of this equation is given by
/x P = In f(x) — In f(zy). (E.9)
thus
F(x) = f(x0) exp [ / P(x’)da:’} . (E.10)
The differential dy is given by
dp = F@)IQ() ~ P)ldz — f(a)dy = 0. (E11)
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We choose the integration path (zg,y0) —— (20,y¥) — (x,y). Then, we obtain
T=T0 Y=Yo

o(r,y) =

C
- [ 1@l - P ~ o) [ ay

Yo

_ / " )Q) — P@)ylde’ — f(xo)(y — wo)
- [ rahewir - [ [ sarpahas+ f<xo>} g+ fao  (E12)

where C' = ¢(x¢,yo) = 0. Hence, we can write
Flaovo + 2 F)QE)da' w0+ [oyexp [ P)da”| Q(a)da’
Foo) + L J@PEE ™ 1 o exp [ [ Pa)da?| Plat) o
Yot [ exp [f;ol P(x”)d:v”} Q(x")dx'
1+ {exp Ufo P(:v”)dx”] - 1}

— o exp [— / xP(x”)d:v”] + / :exp [— / xP(w”)d:c”]Q(x’)dx’. (E.13)

o !

y(z) =

At x = x., we have

y(2e) = yo exp [— / :CP(x”)dx”} + / exp [— / " P(x”)dx“}@(x’)dx’. (F.14)

/

Using the definitions of variables E.2, we can rewrite this as

2 * " "
an(e) = nawGa)exw | =3 [ @)

L R / i Da(zl) 2 [ 7
+ T(S)/ d222K1<Z)Za:5Na Da(?) + Sa(#) exp {—g/z dz"Wi(z )]

20 !

— nar, (7o) exp {-% / ’ dz”Wi(z”)} — 3 b i (2) (E.15)

20

where




is the efficiency factor. Assuming the first term in equation E.15 is much smaller
than the second, (i.e. the initial lepton asymmetry is not so large as to be completely

washed out at the critical temperature), we can write

3
Nar,(ze) = — Z O iy, (ze). (E.17)
a=1

Approximate solution

Now we derive the approximate solution 4.44 from equations E.16 and E.17. Note

that we do not follow mathematically rigorous steps in this derivation. We define

A(z) = =Wi(2), (E.18)

Wl N

D, (z)
Do(2) + Sa(z)

dnyt D 1
B(z) = — I a2 = 22K, (2)

&z Du(®) +5.0) _ 2%(3) (E-19)

Note that we have A(z) > 1 in the strong washout regime. We have

—kiy (2c) = / c dz'B(z") exp {— // c dz”A(Z”)] ~ / c dz'B(2') exp [— // c dZ"A(z”)]

(E.20)

for some z; which is very close to z. due to the large suppresion by the exponential

factors. Since z; is close to z., we can also approximately write

/ dz'B(%') exp [—/ dz”A(z")} %B(zc)/ dz’ exp [—A(zc)/ dz"}
21 2! zZ1 2!

=B [ e A - )

_ B(z)

= Ao {1 —exp|[—A(z:)(ze — 21)]}

_ B(z)

~ B (E.21)
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At the last step, we assumed

A(ze)(ze — 21) > 1, (E.22)

which can be satisfied when A(z.) > 1, i.e. W;(z.) > 1, with appropriate z;. Then,

we obtain

_’%Va (Zc) = (E23>

(E.24)

In other words, the expression 4.44 is approximately valid solution of the differential

equation E.1 when

dy
ps

< Q(wc) = P(xc)ye, (E.25)

which can be satisfied if P(z.) > 1, i.e. Wi(z.) > 1.
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