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Chapter 1: Introduction

The Standard Model (SM) of particle physics is the theoretical framework to ex-

plain the fundamental principles of nature. The gauge group of the SM before the

spontaneous symmetry breaking is

SU(2)L ⊗ U(1)Y . (1.1)

The representations of the leptons are

Li =

 νLi

`Li

 ∼ (2,−1), `Ri ∼ (1,−2), (1.2)

and for quarks, we have

Qi =

 uLi

dLi

 ∼ (2, 1/3), uRi ∼ (1, 4/3), dRi ∼ (1,−2/3) (1.3)

where i is the generation index. In addition, the scalar doublet field is given by

Φ =

 φ+

φ0

 ∼ (2, 1). (1.4)

The Yukawa interaction Lagrangian is written as

LY = −f `ijLiΦ`Rj − fuijQiΦ̃uRj − fdijQiΦdRj (1.5)
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where Φ̃ ≡ iσ2Φ∗. After spontaneous symmetry breaking of the electroweak gauge

group SU(2)L⊗ U(1)Y to U(1)em via the vacuum expectation value (VEV) of Higgs

〈Φ〉 =

 0

vEW/
√

2

 (1.6)

where vEW = 246 GeV, the Yukawa interaction Lagrangian can be written as

〈LY 〉 = − 1√
2
f `ijvEW`Li`Rj −

1√
2
fuijvEWuLiuRj −

1√
2
fdijvEWdLidRj. (1.7)

In other words, the charged leptons and quarks acquire masses, and neutrinos remain

massless in the SM.

The observation of nonzero neutrino masses and mixing has provided the first

experimental evidence for physics beyond the SM. Since the origin of mass for all

charged fermions in the SM appears to have been clarified by the discovery of the

Higgs boson with mass of 125 GeV at the LHC [1, 2], an important question is

whether the same Higgs field is also responsible for neutrino masses. If we simply

add three right-handed (RH) neutrinos νR to the SM, Yukawa coupling terms of the

form

L`Y = − 1√
2
f `ijLiΦνRj + H.c. (1.8)

can be written in the lepton sector. After spontaneous symmetry breaking, this

Yukawa term gives masses of the form f `vEW/
√

2 to the neutrinos. However, to get

sub-eV neutrino masses as observed, it requires f ` . 10−12 which is an unnaturally

small number. This provides sufficient reason to believe that there is new physics

behind neutrino masses beyond adding just three RH neutrinos to the SM, thereby

providing the first clue to the nature of physics beyond the SM.
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A simple paradigm for understanding the small neutrino masses is the type-I

seesaw mechanism [3–6] where the RH neutrinos alluded to above have a Majorana

mass of the form mNν
T
RνR, in addition to having Dirac masses like all charged

fermions in the SM. Neutrinos being electrically neutral allow for this possibility,

distinguishing them from the charged fermions, and this feature might be at the

heart of such diverse mass and mixing patterns for leptons in contrast with the

quark sector. The seesaw mechanism leads to the generic 6 × 6 neutrino mass

matrix

MνN =

 0 MD

MT
D MR

 (1.9)

where the 3×3 Dirac mass matrix MD mixes the νL and νR states and is generated by

the SM Higgs field, while MR is the Majorana mass for νR which embodies the new

neutrino mass physics. In the usual seesaw approximation where |(MDM
−1
N )ij| � 1,

the light neutrino mass matrix is given by the seesaw formula

Mν ≈ −MDM
−1
N MT

D. (1.10)

Seesaw mechanism provides a very simple way to understand the smallness of

neutrino mases. Two main ingredients of this mechanism are: (i) the introduction

of RH neutrinos νR to the SM, and (ii) endowing the νR’s with a Majorana mass

which breaks the accidental B − L symmetry of the SM. In the context of the SM

gauge group, these two features do not follow from any underlying principle, but

are rather put in by hand. There is, however, a class of theories where both these

ingredients of seesaw emerge in a natural manner: the left-right symmetric theories
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of weak interactions [7–9] based on the gauge group SU(2)L⊗ SU(2)R⊗ U(1)B−L.

The existence of the RH neutrinos is guaranteed by the gauge symmetry in both

cases and their Majorana masses are connected to the breaking scale of local B−L

symmetry, which is a subgroup of the above gauge groups. Furthermore they also

predict the number of νR’s to be three. Thus, the essential ingredients of seesaw are

no more adhoc but are rather connected to symmetries of the extended theory. It

is then important to explore how new features of these symmetries can be probed

in laboratory experiments. Our focus is on the low-scale left-right symmetric model

(LRSM) where the seesaw scale can be in the few TeV range and be accessible to

the LHC, while satisfying the observed charged lepton and neutrino mass spectra.

The first question for such models is how the small neutrino masses can be un-

derstood if the seesaw scale is indeed in the TeV range, since by naive expectations,

the Dirac masses are expected to be similar to the charged lepton masses, which

after seesaw would give rise to too large tau neutrino mass. In the context of the

minimal LRSM, this question becomes specially important since the Higgs sector

relates the neutrino Yukawa couplings with charged lepton ones. There are three

ways to fit both charged lepton and neutrino masses in such TeV scale LRSM: (i)

by choosing one set of the Yukawa couplings to be . 10−5.5 for a particular VEV

assignment for the SM-doublet Higgs fields; (ii) by choosing larger Yukawa couplings

and invoking cancellations between Yukawa couplings in the Dirac neutrino mass

matrix to get smaller Dirac masses for neutrinos to get seesaw to work and (iii) by

choosing particular textures for the Yukawa couplings that guarantees the leading

order seesaw contribution to neutrino masses to vanish. We call these models Class
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I, II, and III models respectively.
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Chapter 2: Minimal left-right symmetric model

2.1 Introduction

In the lepton sector of the minimal left-right symmetric model (MLRSM), we have

four mass matrices: the charged lepton mass matrix M`, the Dirac neutrino mass

matrix MD, and the left-handed and RH Majorana neutrino mass matrices ML and

MR. The light neutrino mass matrix Mν is determined by MD, ML, and MR through

the seesaw mechanism Mν ≈ML−MDM
−1
R MT

D. Since we have experimental data on

the masses of charged leptons and the squared-mass differences of neutrinos as well

as their mixing angles, M` is completely known in the charged lepton mass basis and

Mν is also partially determined in its own mass basis and in the charged lepton mass

basis. The neutrino mass matrices MD, ML, and MR are nonetheless completely

unknown, and constructing those matrices compatible with experimental data is a

nontrivial problem, not only because M` and MD in the MLRSM are determined

from common Yukawa couplings and electroweak VEV’s, but also because those

Yukawa coupling matrices have a specific structure (i.e. Hermitian or symmetric)

in a specific basis (i.e. symmetry basis) due to the discrete symmetry (i.e. parity

or charge conjugation symmetry) of the model that realizes the manifest left-right

symmetry at high energies.
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For simplicity, we may assume that the electroweak VEV’s are all real, in

which case M` and MD have the same structure (i.e. Hermitian or symmetric) as

the Yukawa coupling matrices. Since M` in that case is diagonalized by a similarity

transformation (i.e. V `
R = V `

L for Hermitian M`, and V `
R = V `∗

L for symmetric

M`), the mass matrices in the charged lepton mass basis maintain that structure.

Hence, we can work in that basis where M` is completely determined so that we

can practically forget about it while keeping the structure of mass matrices. Now

using that structure itself, we can find MR from known MD [10] or alternatively find

MD from known MR [11]. Without loss of generality, however, we can make only

one of two electroweak VEV’s real by gauge transformation. Furthermore, for the

TeV-scale MLRSM, MD assumed or constructed in such ways usually requires fine-

tuning of Yukawa couplings and VEV’s, and it would be rather difficult to make

natural predictions for the TeV-scale phenomenology of the MLRSM using those

mass matrices.

Here, we develop a different approach appropriate for the case of type-I dom-

inance (i.e. ML = 0) with complex electroweak VEV’s: (i) the Yukawa coupling

matrices with a desired structure are constructed from M` in the symmetry ba-

sis; (ii) MD is determined from those Yukawa couplings as well as the electroweak

VEV’s, and MR is calculated from MD we have found. Since Yukawa couplings are

explicitly constructed and MD is calculated from them, fine-tuned MD can only ap-

pear rarely. With this method, we collect a huge amount of data points that satisfy

all the major experimental constraints, and conduct a comprehensive study of the

TeV-scale phenomenology of the model, focusing on the CLFV, 0νββ, and EDM’s
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of charged leptons.

There are several works which studied CLFV and 0νββ in the MLRSM: in

reference [12], those effects were discussed in the type-I or type-II seesaw dominance,

and several processes of 0νββ were examined in detail; in reference [13], CLFV and

0νββ processes were investigated also in type-I or type-II dominance with emphasis

on the allowed masses of doubly charged scalar fields; in reference [14], the type-I+II

seesaw contributions were simultaneously considered as in references [10] and [11],

but with richer results on the phenomenology; in reference [15], the CLFV effects

were studied in detail also in the type-I+II seesaw cases by a slightly different method

from the one originally proposed by reference [10]. However, the common features

of those works are: (i) real electroweak VEV’s were explicitly or implicitly assumed,

and (ii) MD or MR was chosen for numerical analysis without considering the issue of

fine-tuning. Even though we can still obtain meaningful results focusing on specific

regions of parameter space with rich phenomenologies, it is important to investigate

the predictions of the model in a more natural situation. Furthermore, some works

assumed that the tree-level contribution to µ → eee is always dominant over the

type-I contribution in their analyses. We will also see that this is an inadequate

assumption.

2.2 Review of the minimal left-right symmetric model

In this section, we briefly review the MLRSM. The gauge group of the MLRSM is

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, (2.1)
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and the representations of the leptons are

L′Li =

 ν ′Li

`′Li

 ∼ (2,1,−1), L′Ri =

 ν ′Ri

`′Ri

 ∼ (1,2,−1) (2.2)

where i is the flavour index. The bi-doublet scalar field is given by

Φ =

 φ0
1 φ+

2

φ−1 φ0
2

 ∼ (2,2, 0), (2.3)

and the triplet scalar fields are

∆L =

 δ+
L /
√

2 δ++
L

δ0
L −δ+

L /
√

2

 ∼ (3,1, 2), ∆R =

 δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

 ∼ (1,3, 2).

(2.4)

The Lagrangian terms of Yukawa interactions are written as

L`Y = −L′Li(fijΦ + f̃ijΦ̃)L′Rj − hLijL′cLiiσ2∆LL
′
Lj − hRijL′cRiiσ2∆RL

′
Rj + H.c. (2.5)

where

Φ̃ ≡ σ2Φ∗σ2 =

 φ0∗
2 −φ+

1

−φ−2 φ0∗
1

 . (2.6)

Here, ψc ≡ Cψ∗, and thus ψc = −ψTC where C = iγ2γ0 is the charge conjugation

operator in the Dirac-Pauli representation. Note that hL and hR are symmetric

matrices. Without loss of generality, we can write the VEV’s of scalar fields as

Φ =

 κ1/
√

2 0

0 κ2e
iα/
√

2

 , ∆L =

 0 0

vLe
iθL/
√

2 0

 , ∆R =

 0 0

vR/
√

2 0

 .

(2.7)
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After spontaneous symmetry breaking, the mass matrix of charged leptons is written

as

M` =
1√
2

(fκ2e
iα + f̃κ1), (2.8)

and the neutrino mass term is given by

Lmass
ν = −1

2
(ν ′L ν

′c
R)

 ML MD

MT
D MR


 ν ′cL

ν ′R

+ H.c. (2.9)

where

MD =
1√
2

(fκ1 + f̃κ2e
−iα), ML =

√
2h∗LvLe

−iθL , MR =
√

2hRvR. (2.10)

When vL � κ1, κ2 � vR, the light neutrino mass matrix is given by the seesaw

mechanism

Mν ≈ML −MDM
−1
R MT

D. (2.11)

In this paper, we only consider the case of type-I dominance by assuming vL = 0,

and the light neutrino mass matrix is given by the type-I seesaw formula

Mν ≈ −MDM
−1
R MT

D. (2.12)

We denote the mass eigenstates of the light and heavy neutrinos as νi and Ni (i =

1, 2, 3), respectively. The charged gauge bosons W−
L , W−

R in the gauge basis can be

written in terms of the mass eigenstates W−
1 , W−

2 as W−
L

W−
R

 =

 cos ξ sin ξeiα

− sin ξe−iα cos ξ


 W−

1

W−
2

 (2.13)
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where ξ is the WL-WR mixing parameter given by

ξ ≈ −κ1κ2

v2
R

. (2.14)

The masses of charged gauge bosons are

m2
W1
≈ 1

4
g2v2

EW, m2
W2
≈ 1

2
g2v2

R (2.15)

where vEW =
√
κ2

1 + κ2
2 = 246 GeV is the VEV of the SM. In addition, the masses

of neutral gauge bosons Z1, Z2, A are given by

m2
Z1
≈ g2v2

EW

4 cos2 θW
, m2

Z2
≈ g2 cos2 θWv

2
R

cos 2θW
, m2

A = 0 (2.16)

where θW is the Weinberg angle. We can identify W1, Z1, A as W , Z, the photon

of the SM, respectively. The neutral gauge bosons W 3
L, W 3

R, B in the gauge basis

are expressed in terms of the mass eigenstates as
W 3
L

W 3
R

B

 =


1 0 0

0 cos ζ1 sin ζ1

0 − sin ζ1 cos ζ1




cos ζ2 0 sin ζ2

0 1 0

− sin ζ2 0 cos ζ2




cos ζ3 sin ζ3 0

− sin ζ3 cos ζ3 0

0 0 1




Z1

Z2

A


(2.17)

where

ζ1 = sin−1 (tan θW ), ζ2 ≈ θW , ζ3 ≈ −
g2
√

cos 2θWv
2
EW

4 cos2 θWm2
Z2

. (2.18)

For the MLRSM with a manifest left-right symmetry before spontaneous symmetry

breaking, we need a discrete symmetry which could be either the parity symmetry

or the charge conjugation symmetry. In case of the parity symmetry, we have the
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relationships of fields and Yukawa couplings given by

L′Li ↔ L′Ri, ∆L ↔ ∆R, Φ↔ Φ†, f = f †, f̃ = f̃ †, hL = hR,

(2.19)

and in case of the charge conjugation symmetry

L′Li ↔ L′cRi, ∆L ↔ ∆∗R, Φ↔ ΦT, f = fT, f̃ = f̃T, hL = h∗R.

(2.20)

We consider only the parity symmetry here. This symmetry is manifest in a specific

basis in the flavour space, which we call the symmetry basis. The scalar potential

invariant under the parity symmetry is written as

V = −µ2
1Tr
[
Φ†Φ

]
− µ2

2

(
Tr
[
Φ†Φ̃

]
+ Tr

[
Φ̃†Φ

])
− µ2

3

(
Tr
[
∆†L∆L

]
+ Tr

[
∆†R∆R

])
+ λ1Tr

[
Φ†Φ

]2
+ λ2

(
Tr
[
Φ†Φ̃

]2
+ Tr

[
Φ̃†Φ

]2)
+ λ3Tr

[
Φ†Φ̃

]
Tr
[
Φ̃†Φ

]
+ λ4Tr

[
Φ†Φ

] (
Tr
[
Φ†Φ̃

]
+ Tr

[
Φ̃†Φ

])
+ ρ1

(
Tr
[
∆†L∆L

]2
+ Tr

[
∆†R∆R

]2)
+ ρ2

(
Tr
[
∆†L∆†L

]
Tr
[
∆L∆L

]
+ Tr

[
∆†R∆†R

]
Tr
[
∆R∆R

])
+ ρ3Tr

[
∆†L∆L

]
Tr
[
∆†R∆R

]
+ ρ4

(
Tr
[
∆†L∆†L

]
Tr
[
∆R∆R

]
+ Tr

[
∆L∆L

]
Tr
[
∆†R∆†R

])
+ α1Tr

[
Φ†Φ

] (
Tr
[
∆†L∆L

]
+ Tr

[
∆†R∆R

])
+
{
α2e

iδ2
(

Tr
[
Φ†Φ̃

]
Tr
[
∆†L∆L

]
+ Tr

[
Φ̃†Φ

]
Tr
[
∆†R∆R

])
+ H.c.

}
+ α3

(
Tr
[
ΦΦ†∆L∆†L

]
+ Tr

[
Φ†Φ∆R∆†R

])
+ β1

(
Tr
[
Φ†∆†LΦ∆R

]
+ Tr

[
Φ†∆LΦ∆†R

])
+ β2

(
Tr
[
Φ†∆†LΦ̃∆R

]
+ Tr

[
Φ̃†∆LΦ∆†R

])
+ β3

(
Tr
[
Φ̃†∆†LΦ∆R

]
+ Tr

[
Φ†∆LΦ̃∆†R

])
.

(2.21)

In this paper, we study the TeV-scale MLRSM without fine-tuning, for which κ1 �

κ2 is one of the sufficient conditions, as we will see in section 2.4. The physical

scalar fields and their masses when vL = 0 and vR � κ1 � κ2 are summarized in

table 2.1 [16].
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2.3 Construction of lepton mass matrices

Now, we discuss the procedure to construct lepton mass matrices that satisfy the

experimental constraints in the light lepton sector (i.e. light neutrino masses and

mixing angles) in case of type-I dominance. The Yukawa coupling matrices f , f̃ in

the symmetry basis are Hermitian due to the parity symmetry before spontaneous

symmetry breaking. However, the mass matrices M` and MD in the same basis

do not have such structures when the electroweak VEV’s are complex, and it is

therefore a non-trivial problem to construct mass matrices that would give Yukawa

couplings with the right structure in the symmetry basis and simultaneously satisfy

all the constraints in the light lepton sector.

The procedure to construct such lepton mass matrices is as follows: (i) first,

we find M` in the symmetry basis that gives the right masses of charged leptons,

and build up f , f̃ , and VEV’s out of it. The solutions are not unique; (ii) MD is

constructed in the straightforward way from the Yukawa couplings and VEV’s we

have obtained, and MR can also be easily calculated from this MD and the type-I

seesaw formula of equation 2.12.

Since the masses of charged leptons are already known, M` in the symmetry

basis can be easily constructed from

M` = V `
LM

c
`V

`†
R (2.22)

where V `
L and V `

R are arbitrary unitary matrices and M c
` is the diagonal matrix which

has charged lepton masses as its entries. The superscript c denotes mass matrices
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in the charged lepton mass basis, and we always assume that matrices without any

superscript are in the symmetry basis. Note that V `
L and V `

R are totally different

matrices in general even with a manifest discrete symmetry when the electroweak

VEV’s are complex. With the parity symmetry, we have M` = Aeiα + B (A ≡

fκ2/
√

2, B ≡ f̃κ1/
√

2) where A, B are Hermitian matrices. Therefore, for the rest

of step (i), we claim that, for an arbitrary matrix M , it is always possible to find

Hermitian matrices A, B such that M = Aeiα +B.

In order to prove it, we explicitly construct Hermitian matrices A, B that

satisfy M = Aeiα + B. First, we write Aij = |Aij|eiθij and Bij = |Bij|eiφij where

θji = −θij and φji = −φij. Then, we have Mij = |Aij|ei(α+θij) + |Bij|eiφij and

Mji = |Aij|ei(α−θij) + |Bij|e−iφij . From these expressions, it is straightforward to

derive

2|Aij| sinα = ±
√

Re[Mji −Mij]2 + Im[Mji +Mij]2 (2.23)

and

tan θij =
Re[Mji −Mij]

Im[Mji +Mij]
. (2.24)

Note that two different values of θij are allowed in the range −π < θij < π for each

pair of i, j. In addition, since | sinα| ≤ 1, we must have

|Aij| ≥
1

2

√
Re[Mji −Mij]2 + Im[Mji +Mij]2 (2.25)

which sets the lower bound of |Aij| for given M . If |Aij| 6= 0, we can write

sinα = ± 1

2|Aij|
√

Re[Mji −Mij]2 + Im[Mji +Mij]2. (2.26)
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Now we choose an arbitrary real number |A11| that satisfies

|A11| >
∣∣Im[M11]

∣∣, (2.27)

and determine α from

sinα = ±
∣∣Im[M11]

∣∣
|A11|

. (2.28)

Note that four different values of α are allowed in the range −π < α < π. We can

find all the other |Aij| from

|Aij| =
1

2| sinα|
√

Re[Mji −Mij]2 + Im[Mji +Mij]2 (2.29)

=
|A11|

2
∣∣Im[M11]

∣∣√Re[Mji −Mij]2 + Im[Mji +Mij]2. (2.30)

By equations 2.30 and 2.24, A is completely determined. Alternatively we can write

Aij = ± 1

2| sinα|
(
Im[Mji +Mij] + iRe[Mji −Mij]

)
(2.31)

= ± |A11|
2
∣∣Im[M11]

∣∣(Im[Mji +Mij] + iRe[Mji −Mij]
)
. (2.32)

It is now trivial to find B from B = M − Aeiα, and explicitly

Re[Bij] =
1

2
Re[Mji +Mij]− Re[Aij] cosα,

Im[Bij] = −1

2
Im[Mji −Mij]− Im[Aij] cosα, (2.33)

or

Bij =
1

2

(
Re[Mji +Mij]− iIm[Mji −Mij]

)
− Aij cosα. (2.34)

Note that A and B are indeed Hermitian matrices. Since we have two choices of Aij

for each pair of i, j as well as each choice of α and |A11|, there are 26 choices of A
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for each α and |A11| as we have three diagonal and three off-diagonal independent

components in A. Moreover, since we have four choices of α for each |A11|, there

are total 26 · 4 = 256 different choices of A, B, and α for each choice of |A11|. We

use this method to construct lepton mass matrices in the TeV-scale MLRSM.

2.4 Conditions for the TeV-scale minimal left-right symmetric model

In the MLRSM, M` and MD are determined from common Yukawa couplings and

VEV’s: f , f̃ , κ1, and κ2e
iα. Hence, it would be natural if the largest component

of MD is O(1) GeV, since the largest component of M` should be comparable to

mτ ∼ O(1) GeV. However, this implies that the smallest heavy neutrino mass should

be larger than O(1010) GeV, since Mν is determined from the seesaw formula of

equation 2.12 and the present upper bound of the light neutrino mass is mν . O(0.1)

eV [17].

For the TeV-scale MLRSM, i.e. 0.1 TeV . mN . 100 TeV, we need |MDij| .

10−3 GeV. Since MD = (fκ1 + f̃κ2e
−iα)/

√
2 in the MLRSM, its largest component

could be as small as 10−3 GeV when the corresponding components of fκ1 and

f̃κ2e
−iα almost cancel each other, which is however unnatural. One solution to avoid

such cancellation is that either fκ2 or f̃κ1 is dominant in M` while f̃κ2 and fκ1 are

both small and comparable to each other in MD. Note that we need hierarchies in

both Yukawa couplings and VEV’s to satisfy this condition. Even though it is good

enough if only a few components of either fκ2 or f̃κ1 that correspond to mτ and

mµ are dominant in M`, we assume that all the components of either fκ2 or f̃κ1 are
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dominant over the others for simplicity.

Now we write A ≡ fκ2/
√

2 and B ≡ f̃κ1/
√

2, and thus M` = Aeiα + B,

as before. When |Aij| � |Bij|, M` must be close to a Hermitian matrix, which is

equivalent to V `†
L V

`
R ≈ 1. When |Aij| � |Bij|, we have M` ≈ Aeiα, which implies

that M`e
−iα is approximately Hermitian, i.e. V `†

L V
`
R ≈ eiα. Note that we need the

condition on mixing matrices in addition to the conditions on the Yukawa couplings

and VEV’s since constructing M` from mixing matrices is one of the first steps to

construct all the mass matrices.

In this paper, we only consider the first case, i.e. |Aij| � |Bij|. For simplicity,

we could assume A = 0, for which we need either f = 0 or κ2 = 0. In these cases,

the mass matrices are rather simple: M` = f̃κ1/
√

2, MD = f̃κ2e
−iα/
√

2 if f = 0,

and M` = f̃κ1/
√

2, MD = fκ1/
√

2 if κ2 = 0. However, f = 0 is the limiting case

of an extreme hierarchy between two Yukawa coupling matrices f and f̃ , which

is rather unnatural. Furthermore, we must have M` ∝ MD ∝ f̃ , and thus MD is

diagonal in the mass basis of charged leptons, which means that we have to resort to

only restrictive structures of mass matrices. On the other hand, with the condition

κ2 = 0, the WL-WR mixing parameter ξ ≈ −κ1κ2/v
2
R vanishes, and we have to lose

the rich phenomenology dependent upon ξ, especially the EDM’s of charged leptons.

Therefore, we do not introduce these extreme conditions.

In summary, for the TeV-scale MLRSM without fine-tuning in MD, we can

assume the conditions either that (i) fij � f̃ij and κ1 � κ2, when M` is approxi-

mately Hermitian, i.e. V `
L ≈ V `

R, or that (ii) fij � f̃ij and κ1 � κ2, when M`e
−iα is

approximately Hermitian, i.e. V `
L ≈ V `

Re
−iα. We study the first case here.
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2.5 Numerical procedure

In this paper, we only consider the normal hierarchy in light neutrino masses. The

procedure to calculate all the model parameters that determine the phenomenology

of the MLRSM in type-I dominance is as follows:

1. Randomly generate the lightest light neutrino mass mν1 , and calculate mν2 =√
m2
ν1

+ ∆m2
21 and mν3 =

√
m2
ν1

+ ∆m2
31.

2. Calculate M c
ν from M c

ν = UPMNSM
diag
ν UT

PMNS where M c
ν and Mdiag

ν are the light

neutrino mass matrices in the charged lepton and light neutrino mass bases,

respectively. The mixing matrix UPMNS is the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix whose CP phases are also randomly generated.

3. Randomly generate V `
L, V `

R, and calculate M` = V `
LM

c
`V

`†
R where M` and M c

`

are charged lepton mass matrices in the symmetry and charged lepton mass

bases, repectively.

4. Find A ≡ fκ2/
√

2, B ≡ f̃κ1/
√

2 from M` = Aeiα + B using the method

discussed in section 2.3. Randomly generate κ2, and calculate f , f̃ from A, B.

5. Calculate MD = (fκ1 + f̃κ2e
−iα)/

√
2 from f , f̃ , α, κ2, κ1 =

√
v2

EW − κ2
2, and

find M c
D = V `†

L MDV
`
R where M c

D is the Dirac neutrino mass matrix in the

charged lepton mass basis.

6. Calculate M c
R from the type-I seesaw formula M c

ν = −M c
DM

c−1
R M cT

D where

M c
R is the RH neutrino mass matrix in the charged lepton mass basis.
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7. Construct the 6 × 6 neutrino mass matrix M c
νN from M c

D and M c
R, and find

the 6× 6 mixing matrix VνN that diagonalizes M c
νN .

Here, the 6×6 neutrino mass matrix M c
νN in the charged lepton mass basis is written

as

M c
νN =

 0 M c
D

M cT
D M c

R

 , (2.35)

and this matrix is diagonalized by the 6× 6 unitary matrix VνN :

Mdiag
νN = V T

νNM
c
νNVνN (2.36)

where Mdiag
νN is the diagonal matrix with positive entries. Following the convention

of reference [12], we write

V ∗νN =

 U S

T V

 (2.37)

where U , S, T , and V are 3 × 3 mixing matrices. Note that U = UPMNS. The

straightforward numerical diagonalization might not work appropriately because of

the hierarchy in the components of M c
νN . Instead, VνN is calculated in two steps:

VνN = VνN1VνN2 (2.38)

where

VνN1 =

 1 −M c
DM

c−1
R

−M c−1
R M cT

D −1

 , VνN2 =

 U∗ 0

0 −V ∗

 . (2.39)

Here, VνN1 transforms MνN into the block-diagonal matrix

MBD
νN =

 M c
ν 0

0 M c
R +M c−1

R M cT
D M c

D +M cT
D M c

DM
c−1
R

 , (2.40)
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and VνN2 is the matrix that diagonalizes MBD
νN . In addition, we use the standard

parametrization of the PMNS matrix:

UPMNS =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e

−iδD

0 1 0

− sin θ13e
iδD 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1



×


1 0 0

0 e−iδM1 0

0 0 e−iδM2

 (2.41)

where δD and δMi are Dirac and Majorana CP phases, respectively. On the other

hand, we parametrize V `
L and V `

R as

V = V1V2V3 (2.42)

where

V1 =


1 0 0

0 e−iδ2 0

0 0 e−iδ3

 , (2.43)

V2 =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e

−iδ1

0 1 0

− sin θ13e
iδ1 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 ,

(2.44)

V3 =


e−iδ4 0 0

0 e−iδ5 0

0 0 e−iδ6

 . (2.45)
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Note that it is always possible to absorb V `
R3 into V `

L3 since M` = V `
LM

c
`V

`†
R where

M c
` is a diagonal matrix. We can therefore write

V `
L = V `

L1V
`
L2V

`
L3, V `

R = V `
R1V

`
R2. (2.46)

In addition, the Hermitian matrix A (≡ fκ2/
√

2) is parametrized as

A =


A11 |A12|eiθA12 |A13|eiθA13

|A12|e−iθA12 A22 |A23|eiθA23

|A13|e−iθA13 |A23|e−iθA23 A33

 (2.47)

where Aii are real numbers. The list of model parameters and the ranges where they

are randomly generated are summarized in table 2.2. Several appropriate constraints

are imposed on some model parameters, and they are presented in table 2.3.

2.6 Numerical results

The present and future experimental bounds on CLFV, 0νββ, and EDM’s of charged

leptons are summarized in table 2.4. The upper bound of light neutrino masses

from the Planck observation is also considered. The experimental bounds on the

dimensionless parameters associated with the various processes of 0νββ are given

in table 2.5. The numerical results are presented in figures 2.1−2.7. The plots

on the various branching ratios and conversion rates of CLFV in the MLRSM for

2 TeV < mWR
< 30 TeV are given in figure 2.1. The results on the dimensionless

parameters of 0νββ for the same range of mWR
are presented in figure 2.2. The

plots on the EDM’s of charged leptons are presented in figure 2.3. The effect of

experimental constraints on the masses of the RH gauge boson, neutrinos, and
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scalar fields are shown in figures 2.4−2.7. The benchmark model parameters and

their predicitons are given in appendix B.

The most notable result is that the regions of parameter space that allow

small light neutrino masses are largely constrained by the experimental bounds

from CLFV as well as the constraints from the light neutrino mass and mixing an-

gles. Since the type-I seesaw formula implies det(Mν) ≈ det(MD)2/det(MR), we

need a hierarchy in the eigenvalues of MD or MR when light neutrino masses have

a hierarchy. However, MD is determined from Yukawa couplings and VEV’s, and

it generally does not have the appropriate hierarchy in its eigenvalues to give hier-

achical light neutrino masses for most of the available parameter space. In other

words, we generally need a hierarchy in the eigenvalues of MR, i.e. in the heavy

neutrino masses as well, in order to obtain hierachical light neutrino masses. Since

we are considering a range of mN , i.e. 0.1 TeV . mN . 100 TeV, the cases of

large hierarchies in light neutrino masses are supposed to get constrained accord-

ingly. Furthermore, since the regions of parameter space with large mN are largely

affected by the experimental constraints from CLFV, small light neutrino masses

are disfavored by all those experimental constraints. These results are all clearly

presented in several plots in figures 2.4, 2.6, and 2.7. For example, the 99 % contour

in figure 2.7a shows that mν1 ∼ 0.1 eV for mWR
= 5 TeV and mν1 & 6 · 10−3 eV for

mWR
= 10 TeV. Note that this does not necessarily mean that there exists a strict

lower bound of the light neutrino mass for given mWR
, since the results of this paper

are based on the naturalness argument such as no fine-tuning in MD. Note also that

we can observe similar patterns in neutrino mass correlations in any type-I seesaw

22



(a) BRτ→µγ vs. BRµ→eγ (b) BRτ→eγ vs. BRµ→eγ (c) BRtype-I
µ→eee vs. BRtree

µ→eee

(d) BRµ→eee vs. BRµ→eγ (e) BRµ→eee vs. RTi
µ→e (f) RTi

µ→e vs. BRµ→eγ

(g) RAl
µ→e vs. RTi

µ→e (h) RAu
µ→e vs. RTi

µ→e (i) RPb
µ→e vs. RTi

µ→e

Figure 2.1: CLFV in the MLRSM for 2 TeV < mWR
< 30 TeV. The green dots

are data points that satisfy only the experimental constraints from the light lepton

masses and PMNS matrix. The red dots are data points that also satisfy present

bounds from the CLFV, 0νββ, EDM’s of charged leptons, and Planck observation.

The purple dots are those that satisfy the strongest bounds from future experiments.

The shaded regions are regions of parameter space excluded by present experimental

bounds. Figures 2.1a and 2.1b show that there exist only small chances that τ → µγ

or τ → eγ could be detected in near-future experiments. In figure 2.1c, the tree-

level and 1-loop contributions to µ → eee are compared, and it shows that we

should consider both when calculating BRµ→eee. Figures 2.1d−2.1f show the linear

correlations among various CLFV effects. Note that the strongest future bounds on

CLFV come from PRISM/PRIME and PSI, as clearly shown in figure 2.1e. Figures

2.1g−2.1i show that the µ→ e conversion rates for various nuclei have very strong

linear correlations with each other. The total number of data points is 83724 (total)

= 81132 (green) + 2573 (red) + 19 (purple).
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(a) T 0ν
1/2

∣∣max

Ge
vs. |ην | (b) T 0ν

1/2

∣∣max

Te
vs. |ην | (c) T 0ν

1/2

∣∣max

Xe
vs. |ην |

(d) |ην | vs. |ηRNR | (e) |ην | vs. |ηδR | (f) |ηδR | vs. |ηRNR |

(g) |ηLNR | vs. |ηRNR | (h) |ηη| vs. |ηλ| (i) |ην | vs. mν1

Figure 2.2: Parameters of 0νββ in the MLRSM for 2 TeV < mWR
< 30 TeV.

Figures 2.2a−2.2c show that only cases where ην dominantly determines T 0ν
1/2

∣∣max

are allowed with a few exceptions by the present and future experimental bounds.

Even though the contributions of ηRNR and ηδR could be comparable to that of ην

in principle, such cases have been actually almost excluded by the constraints from

CLFV, as shown in figures 2.2d−2.2f. The contributions from ηη or ηλ are too small

compared with experimental bounds, as shown in figure 2.2h. Figure 2.2i shows

that the present upper bound of the light Majorana neutrino mass from Planck

is already below the bounds from KamLAND-Zen and CUORE, which means that

0νββ processes are difficult to be detected in near-future experiments since the light

neutrino exchange diagrams are dominant for most of the parameter space due to

the CLFV constraints.
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(a) |dµ| vs. |de| (b) |dτ | vs. |de| (c) |de| vs. RTi
µ→e

Figure 2.3: EDM’s of charged leptons in the MLRSM for 2 TeV < mWR
< 30 TeV.

The predicted values are found to be too small compared with the present and future

bounds, since large EDM’s require small mWR
whose regions of parameter space

have been largely constrained as shown in figure 2.4a. Even though the correlations

between EDM’s and CLFV are rather weak, as shown in figure 2.3c, the larger

EDM’s generally require the larger CLFV effects since mWR
affects both CLFV and

EDM’s.

models, even in the simple extension of the SM only with gauge singlet neutrinos.

The difference in the MLRSM, or in a more general class of the left-right symmetric

model, is that we can have large CLFV effects and thus the experimental bounds

on CLFV are constraining the light neutrino masses. Moreover, since the largest

possible hierarchy in heavy neutrino masses is directly associated with mWR
and

the regions of parameter space with smaller mWR
are more constrained by CLFV

bounds, we can expect that the discovery of light WR as well as any improved ex-

perimental bounds on CLFV would largely constrain the regions of parameter space

of the normal hierarchy.

Another interesting result is that the mass of the lightest heavy neutrino mN1
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has been also notably constrained by the present experimental constraints, which is,

of course, associated with the result on light neutrino masses just mentioned. This

is shown in figures 2.5a, 2.5b, 2.6a, and 2.7b. For example, the 99 % density contour

of figure 2.7b shows that mN1 . 200 GeV for mWR
= 5 TeV and mN1 . 2 TeV for

mWR
= 10 TeV. Due to the mass insertion in the Dirac propagators of heavy neu-

trinos in some CLFV processes, large heavy neutrino masses generally induce large

CLFV effects. Figure 2.4b explicitly shows how the CLFV bound is constraining

mN1 . The heaviest heavy neutrino mass is also affected by the experimental bounds,

although its effect is rather small, as shown in figures 2.5c, 2.6b, and 2.7c.

While the CLFV effects of muons could be large enough for the associated

processes to be detected in near-future experiments, the branching ratios of tau

decays are either too small or just around the sensitivities of future experiments,

as shown figure 2.1. The experimental bounds of CLFV are also constraining small

masses of charged scalar fields as well as the RH gauge boson, as shown in figure 2.7.

As a result, the 0νββ processes through the heavy neutrinos as well as RH gauge

boson (denoted by ηRNR) and also processes through δ++
R as well as the RH gauge

boson (denoted by ηδR) are both suppressed. Hence, for most data points that satisfy

the present experimental constraints, the dominant contribution to 0νββ comes

from the process of the light neutrino exchange (denoted by ην), as shown in figures

2.2a−2.2c. However, since the upper bound of the light neutrino mass by Planck is

already below the bounds of future experiments as shown in figure 2.2i, i.e. the light

neutrino exchange channel has been largely constrained by the Planck observation,

the possibility to detect 0νββ processes in near-future experiments is small. As for
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the EDM’s of electrons, there seems to be also only small chances that they could

be detected in near-future experiments as shown in figure 2.3, since the largest

possible EDM’s of electrons are well below the future sensitivities of the planned

experiement. In addition, the EDM’s of muons and taus are too small compared with

the present upper bounds. Note that the EDM’s of charged leptons has been also

constrained by the experimental bounds from CLFV, since large EDM’s generally

require small mWR
and large mN and such regions of parameter space are largely

affected by those experimental constraints. Note also that, even with the relatively

small values of the RH scale, i.e. vR < 65 TeV corresponding to mWR
< 30 TeV,

the observables of CLFV, 0νββ, and EDM’s cover very wide ranges, e.g. roughly

10−20 . BRµ→eγ . 10−3 and 10−35 e · cm . |de| . 10−29 e · cm. Hence, neither a

success nor a failure in detecting one of these effects rules out even the TeV-scale

MLRSM, unless any other experimental results are simultaneously considered.

2.7 Conclusion

The procedure to construct lepton mass matrices has been presented in the MLRSM

of type-I dominance with the parity symmetry, and the conditions for the TeV-

scale MLRSM without fine-tuning have also been discussed, i.e. either (i) κ1 � κ2

and fij � f̃ij, which implies V `
L ≈ V `

R, or (ii) κ1 � κ2 and fij � f̃ij, which

implies V `
L ≈ V `

Re
−iα. Based on these results, the phenomenology of the TeV-scale

MLRSM has been numerically investigated when the masses of light neutrinos are

in the normal hierarchy, and the numerical results on how the present and future
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experimental bounds from the CLFV, 0νββ, EDM’s of charged leptons, and Planck

observation constrain the parameter space of the MLRSM have been presented.

According to the numerical results, the regions of parameter space of small

light neutrino masses have been constrained by the experimental bounds on CLFV

effects, although it does not necessarily mean there exists a strict lower bound

of light neutrino masses. The lightest heavy neutrino mass is also found to have

been notably constrained by the present experimental bounds especially for small

mWR
. In addition, it has been shown that all the 0νββ processes and the EDM’s of

charged leptons have been suppressed by the experimental constraints from CLFV,

and we have at best only small chances to detect any of these effects in near-future

experiments.

Note that the results here are based on several nontrivial assumptions such as

(i) type-I seesaw dominance, (ii) the parity symmetry, and (iii) the normal hierarchy

in light neutrino masses. Furthermore, it should be emphasized that this paper is

considering the TeV-scale phenomenology of the MLRSM without fine-tuning of

model parameters. If fine-tuning is allowed, significantly different predictions could

be made.
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H+
2 = φ+

2 + ε2e
iαφ+

1 + 1√
2
ε1δ

+
R

1
2
α3

(
v2
R + 1

2
κ2

1

)
δ++
R 2ρ2v

2
R + 1

2
α3κ

2
1

δ++
L

1
2
(ρ3 − 2ρ1)v2

R + 1
2
α3κ

2
1

Table 2.1: Physical scalar fields and their masses in the MLRSM when vL = 0 and

vR � κ1 � κ2. Here, ε1 ≡ κ1/vR and ε2 ≡ κ2/κ1. The SM Higgs field is identified

as h0. Note that mH+
1
≈ mδ++

L
for vR � vEW. The mixing between δ++

L and δ++
R

is assumed to be small, although it could be large in principle for relatively small

values of ρ3− 2ρ1 and vR [15]. It is, however, a good assumption even for such cases

if we introduce an additional assumption β1, β3 . O(10−1).
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Parameter Range

log10 (mν1/eV) −4− log10 2

mWR
2− 35 TeV

log10 (κ2/GeV) −4− 1

δD, δM1, δM2,

θL12, θL13, θL23,

δL1, δL2, δL3

−π − π rad

δL4 (−1− 1)·10−3 rad

log10 (|A11|/GeV) log10

∣∣Im[M`11]
∣∣− log10

(
5
√

2πvEW

)
log10 α3, log10 ρ2 log10 (1000 GeV2/v2

R)− log10 (5
√

4π)

log10 (ρ3 − 2ρ1) log10 (1000 GeV2/v2
R)− log10 (15

√
4π)

Table 2.2: List of parameters and the ranges where those parameters are randomly

generated. It is also assumed that δL5 = δL6 = 0, θRij = θLij, and δRi = δLi

(i, j = 1, 2, 3). Here, A is defined as A ≡ fκ2/
√

2, and M` = V `
LM

c
`V

`†
R is the

charged lepton mass matrix in the symmetry basis. The electroweak VEV is vEW =√
κ2

1 + κ2
2 = 246 GeV, and vR = mWR

√
2/g (g = 0.65) is the VEV of the SU(2)R

triplet. Since Yukawa coupling matrices f , f̃ are constructed from given M` by the

method presented in section 2.3, we explicitly consider only the condition κ1 � κ2

for the TeV-scale MLRSM. Any Yukawa couplings that do not satisfy fij � f̃ij can

be excluded by filteringMR with large entries, which is one of the constraints given in

table 2.3. The ranges and values of δL4, δL5, δL6, θRij, and δRi are chosen to guarantee

V `
R ≈ V `

L for TeV-scale mN . In principle, we only need δL4 ≈ 0, δL5 ≈ 0, δL6 ≈ 0,

θRij ≈ θLij, and δRi ≈ δLi for V `
R ≈ V `

L. However, for the parameters other than

δL4, it turned out that only extremely small deviations (. 10−6) from the values

assumed above are allowed to obtain TeV-scale mN . Therefore, for convenience,

only δL4 is varied around 0 while all the other parameters are set to the fixed values

mentioned above. The coupling constants α3, ρ2, ρ3−2ρ1 are assumed to be positive,

which is a sufficient condition to have real masses of charged scalar fields. Note that

slightly broader ranges than necessary are chosen for several parameters, in order

to generate contour plots less distorted around the borders.

Parameter Constraint

mH+
1

, mH+
2

, mδ++
L

, mδ++
R

> 500 GeV

|Eigenvalues of f , f̃ , h|, α3, ρ2 <
√

4π

ρ3 − 2ρ1 < 3
√

4π

|Eigenvalues of MD| > 1 keV

|Eigenvalues of MR| 100 GeV−
√

8πvR

Table 2.3: List of constraints imposed on several model parameters. The lower limits

of scalar field masses are set to 500 GeV to safely neglect many loop diagrams by

those charged scalar fields. Note that the upper limits of all the coupling constants

are set to
√

4π. The lower limit of the eigenvalues of MD is appropriately chosen to

avoid singularity in calculating M−1
D . The constraint from the absence of the flavour

changing neutral current in the quark sector requires mH0
1
,mH+

2
& 10 TeV [16, 18],

which is not considered in this paper because the contribution of H+
2 to CLFV is

almost negligible, as shown in figures 2.7e. The constraint from the SM Higgs mass

mh0 = 125 GeV is not explicitly considered as well, because we can always find λ1, α1

that would give the correct Higgs mass for given ρ1, α3 if ε2 . 0.01 and mWR
< 30

TeV. The condition ε2 . 0.01 is found to be satisfied for all the data points due to

the perturbativity constraint, as shown in figure 2.4f.
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Present bound Future sensitivity

BRµ→eγ < 4.2 · 10−13 (MEG) [19] < 5.0 · 10−14 (Upgraded MEG) [20]

BRτ→µγ < 4.4 · 10−8 (BaBar) [21] < 1.0 · 10−9 (Super B factory) [22]

BRτ→eγ < 3.3 · 10−8 (BaBar) [21] < 3.0 · 10−9 (Super B factory) [22]

BRµ→eee < 1.0 · 10−12 (SINDRUM) [23] < 1.0 · 10−16 (PSI) [24]

RAl
µ→e · < 3.0 · 10−17 (COMET) [25]

RTi
µ→e < 6.1 · 10−13 (SINDRUM II) [26] < 1.0 · 10−18 (PRISM/PRIME) [27]

RAu
µ→e < 6.0 · 10−13 (SINDRUM II) [25] ·

RPb
µ→e < 4.6 · 10−11 (SINDRUM II) [28] ·

T 0ν
1/2

∣∣
Ge

> 2.1 · 1025 yrs. (GERDA) [29] > 1.35 · 1026 yrs. (GERDA II) [29]

T 0ν
1/2

∣∣
Te · > 2.1 · 1026 yrs. (CUORE) [29]

T 0ν
1/2

∣∣
Xe

> 1.9 · 1025 yrs. (KamLAND-Zen) [29] ·

|de| < 8.7 · 10−29 e·cm (ACME) [53] < 5.0 · 10−30 e·cm (PSU) [54]

|dµ| < 1.9 · 10−19 e·cm (Muon (g − 2)) [55] ·

|dτ | . 5.0 · 10−17 e·cm (Belle) [56] ·∑3
i mνi < 0.23 eV (Planck) [17] ·

Table 2.4: Experimental bounds on CLFV, 0νββ, EDM’s of charged leptons, and

light neutrino masses. The actual present bounds on dτ reported by Belle Col-

laboration are −2.2 · 10−17e·cm < Re[dτ ] < 4.5 · 10−17e·cm and −2.5 · 10−17e·cm

< Im[dτ ] < 0.8 · 10−17e·cm. For the normal hierarchy, the constraint from the

Planck observation corresponds to the upper bound of the lightest neutrino mass

mν1 < 0.071 eV.
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Present bound (KamLAND-Zen) Future sensitivity (CUORE)

|ην | < 7.1 · 10−7 < 1.4 · 10−7

|ηLNR | < 6.8 · 10−9 < 1.4 · 10−9

|ηRNR | < 6.8 · 10−9 < 1.4 · 10−9

|ηδR | < 6.8 · 10−9 < 1.4 · 10−9

|ηλ| < 5.7 · 10−7 < 1.2 · 10−7

|ηη| < 3.0 · 10−9 < 8.2 · 10−10

Table 2.5: Experimental bounds on the dimensionless parameters associated with

the various processes of 0νββ. The present bounds come from KamLAND-Zen,

and the strongest future bounds are from CUORE [29]. To obtain each bound, the

associated decay channel is assumed to be dominant over the others. Even though

there exist regions of parameter space where contributions from ην , η
R
NR

, and ηδR

are comparable to each other, it does not invalidate the assumption at least for the

data points of interest around the present and future bounds, since larger values of

|ηRNR | and |ηδR | are rarely allowed by the constraints from CLFV, as shown in figures

2.2d−2.2f.
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(a) RTi
µ→e vs. mWR

(b) RTi
µ→e vs. mN1 (c) RTi

µ→e vs. mN3

(d) RTi
µ→e vs. mν1 (e) BRµ→eγ vs. mν1 (f) |ην | vs. ε2 (≡ κ2/κ1)

Figure 2.4: Figures 2.4a−2.4e show the effect of CLFV constraints on the masses

of neutrinos and the RH gauge boson. Here, RTi
µ→e is chosen since it most clearly

divides the colors of data points through its experimental bounds. The smaller

values of the lightest light neutrino mass mν1 produce the larger CLFV effects, as

in figures 2.4d and 2.4e, since they require the larger values of the heaviest heavy

neutrino mass mN3 in most of the parameter space, as shown in figure 2.6f. As a

result, the regions of parameter space of small light neutrino masses get constrained

by the experimental bounds on CLFV. In figure 2.4f, additional data points (yellow

dots) are also presented in order to show the effects of the perturvativity constraints,

and all the data points generated in the ranges of parameters given in table 2.2 are

shown in this plot. For those yellow points, at least one of the coupling constants

are larger than
√

4π while the experimental constraints in the light neutrino sector

are still satisfied. This figure shows that ε2 ≡ κ2/κ1 . 0.01 is satisfied for all the

data points due to the perturvativity constraints as well as the condition κ2 < 10

GeV, and thus the Higgs mass constraint can be easily satisfied, as mentioned in

table 2.3.
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(a) mWR
vs. mN1 (b) mWR

vs. mN1 (c) mWR
vs. mN3

Figure 2.5: Masses of heavy neutrinos in the TeV-scale MLRSM for 2 TeV < mWR
<

30 TeV. For figure 2.5a, the same data set as in the previous plots are used to show

the effect of the consraints from CLFV, 0νββ, EDM’s, and Planck on the parameter

space. The non-perturbative regions are where at least one coupling constant is

larger than
√

4π. Note that green dots in figure 2.5a do not completely fill the

available parameter space because of the constraints on masses and angles in the

light lepton sector. For figures 2.5b and 2.5c, much more amount of data points was

used to show how the present and future bounds constrain the parameter space.

Figures 2.5a and 2.5b show that the lightest heavy neutrino mass mN1 has been

notably constrained by the experimental bounds, especially for smaller mWR
. Figure

2.5c is the plot on the heaviest heavy neutrino mass mN3 , and it shows that only

a small region of parameter space with small mWR
seems to have been excluded.

Even though these plots in the linear scale are better in presenting the effect of

experimental constraints on largest possible masses of heavy neutrinos, they do not

correctly show the density distributions since the matrix A (≡ fκ2/
√

2) is generated

in the logarithmic scale. Plots of mN in the logarithmic scale are presented in figure

2.7. For figures 2.5b and 2.5c, the data sets for figures 2.7b and 2.7c are used,

respectively.
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(a) mWR
vs. mN1 (b) mWR

vs. mN3 (c) mN3 vs. mN1

(d) mWR
vs. mν1 (e) mN1

vs. mν1 (f) mN3
vs. mν1

Figure 2.6: Figures 2.6a−2.6d show the effect of experimental bounds on the masses

of neutrinos and the RH gauge boson. Figures 2.6a and 2.6b show that the regions

with smaller mWR
and larger mN are more affected by the present bounds on CLFV,

0νββ, and EDM’s. Figures 2.6e and 2.6f show that, for smaller mν1 , i.e. for the light

neutrino masses with a larger hierarchy, the heavy neutrino masses also generally

need to have a larger hierarchy accordingly since MD itself does not have the struc-

ture that would give hierarchical light neutrino masses. Due to this effect, only

larger mWR
is generally allowed for smaller mν1 , as shown in figure 2.7a, since large

mN3 requires large vR.
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(a) mWR
vs. mν1 (b) mWR

vs. mN1
(c) mWR

vs. mN3

(d) mWR
vs. mH+

1

(
≈ mδ++

L

)
(e) mWR

vs. mH+
2

(f) mWR
vs. mδ++

R

Figure 2.7: Masses of neutrinos and charged scalar fields in the MLRSM for mWR
<

30 TeV. The contours of 90 % and 99 % densities are also presented for illustration

purposes. According to the 99 % contour in figure 2.7a, mν1 ∼ 0.1 eV for mWR
= 5

TeV and mν1 & 6 · 10−3 eV for mWR
= 10 TeV. In addition, the 99 % contour in

figure 2.7b shows that mN1 . 200 GeV for mWR
< 5 TeV and mN1 . 2 TeV for

mWR
< 10 TeV. While the masses of H+

1 , δ++
L , and δ++

R have been also constrained

by the experimental bounds, the mass of H+
2 which appears only in the Z1-exchange

diagrams of CLFV processes has been barely constrained, as shown in figure 2.7e.

Hence, the constraint of mH+
2
& 10 TeV from the absence of flavour changing neutral

current in the quark sector is not considered in this paper. The total number of

data points is 51971 = 51561 (red) + 410 (purple).
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Chapter 3: Natural TeV-scale left-right symmetric model

3.1 Introduction

Our goal here is to explore whether the two key aspects of the seesaw physics, i.e. (i)

the Majorana character of heavy and light neutrino masses, and (ii) the heavy-light

neutrino mixing, can be tested at the LHC as well as in complementary experiments

at low energies, e.g. in planned high sensitivity searches for CLFV, 0νββ, etc. A

necessary requirement for this synergic exploration to have any chance of success is

that the seesaw scale be in the TeV range as well as the heavy-light mixing being

relatively large. With this in mind, we discuss a class of the LRSM where both the

above ingredients of type-I seesaw, i.e. TeV seesaw scale and observable heavy-light

neutrino mixing emerge in a natural manner.

A simple candidate seesaw model is based on the left-right symmetric theory

of weak interactions where the key ingredients of seesaw, i.e. the RH neutrino and its

Majorana mass, appear naturally. The RH neutrino field νR arises as the necessary

parity gauge partner of the left-handed (LH) neutrino field νL and is also required by

anomaly cancellation, whereas the seesaw scale is identified as the one at which the

RH counterpart of the SM SU(2)L gauge symmetry, namely the SU(2)R symmetry,

is broken. The RH neutrinos are therefore a necessary part of the model and do not
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have to be added just to implement the seesaw mechanism. An important point is

that the RH neutrinos acquire a Majorana mass as soon as the SU(2)R symmetry

is broken at a scale vR. This is quite analogous to the way the charged fermions

get mass as soon as the SM gauge symmetry SU(2)L is broken at the electroweak

scale v. The Higgs field that gives mass to the RH neutrinos becomes the analog

of the 125 GeV Higgs boson discovered at the LHC. Clearly, the seesaw scale is not

added in an adhoc manner but rather becomes intimately connected to the SU(2)R⊗

U(1)B−L symmetry breaking scale.

In generic TeV-scale seesaw models without any special structures for MD and

MN , in order to get small neutrino masses, we must fine-tune the magnitude of the

elements of MD to be very small (of order MeV for MN ∼ TeV), as is evident from

the seesaw formula in equation 1.10. As a result, the heavy-light neutrino mixing

ξ ∼ MDM
−1
N ' (MνM

−1
N )1/2 . 10−6. This suppresses all heavy-light mixing effects

to an unobservable level which keeps this key aspect of seesaw shielded from being

tested experimentally. To overcome this shortcoming, some special textures for MD

and MN have been studied in the literature [30–39] for which even with TeV-scale

seesaw, the mixing parameter ξ can be significantly enhanced whereas the neutrino

masses still remain small, thereby enriching the seesaw phenomenology. Here, we

present an LRSM embedding of one such special texture using an appropriate family

symmetry. This is a highly non-trivial result since in the LRSM the charged lepton

mass matrix and the Dirac neutrino mass matrix are related, especially when there

are additional discrete symmetries to guarantee a specific form of the Dirac mass

matrix MD.
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When we have the mass matrices of

MD =


m1 0 0

m2 0 0

m3 0 0

 , MR =


0 M1 0

M1 0 0

0 0 M2

 , (3.1)

then the type-I seesaw formula gives

Mν = −MDM
−1
R MT

D = 0. (3.2)

By introducting small values in the zero entries, we can generate small light neutrino

masses. We want the mass matrices in the symmetry basis to be

M` =


δa11 a12 a13

δa21 a22 a23

δa31 a32 a33

 , MD =


m11 δm12 δm13

m21 δm22 δm23

m31 δm32 δm33

 , MR =


0 M1 0

M1 0 0

0 0 M2


(3.3)

where |δaij| � |akl| and |δmij| � |mkl| � |Mn| (i, j, k, l = 1, 2, 3 and n = 1, 2). If

the symmetry basis is close to the charged lepton mass basis, then we can expect

the followings:

1. Explanation of the small mass of an electron.

2. Large CLFV and EDM of an electron.

As for the second point, note that both CLFV and EDM’s of charged leptons have

a contribution of the form
∑3

i=1 SαiVαimNi . Since S ≈ (M c
DM

c−1
R )∗V , we can write

3∑
i=1

SαiVαimNi ≈
3∑

i,j=1

(M c
DM

c−1
R )∗αjVjiVαimNi =

3∑
j=1

(M c
DM

c−1
R )∗αjM

c∗
Rjα = M c∗

Dαα.

(3.4)
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Since M c
D11 is large in this model, we can expect the large CLFV and EDM of an

electron.

3.2 Outline of the model

When we have multiple bi-doublet and RH triplet scalar fields, the Lagrangian terms

with Yukawa couplings are given by

L`Y = −L′Li(f `aijΦa + f̃ `aijΦ̃a)L
′
Rj − hLaijL′cLiiσ2∆LaL

′
Lj − hRaijL′cRiiσ2∆RaL

′
Rj + H.c..

(3.5)

Now we introduce a discrete symmetry Z4⊗Z4⊗Z4, and define the transformation

rule of the fermions and scalar fields as in table 3.1. The Yukawa interaction terms

Field Z4 ⊗ Z4 ⊗ Z4

LLa (1, 1, 1)

LR1 (−i, 1, 1)

LR2 (1,−i, 1)

LR3 (1, 1,−i)

Φ1 (−i, 1, 1)

Φ2 (1, i, 1)

Φ3 (1, 1, i)

∆R1 (i, i, 1)

∆R2 (1, 1,−1)

Table 3.1: Transformation property of leptons and scalar fields under Z4⊗Z4⊗Z4.
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under this symmetry are written as

L`Y = −fi1L′LiΦ̃1L
′
R1 − fi2L′LiΦ2L

′
R2 − fi3L′LiΦ3L

′
R3

− h12L′cR1iσ2∆R1L
′
R2 − h12L′cR2iσ2∆R1L

′
R1 − h33L′cR3iσ2∆R2L

′
R3 + H.c..

(3.6)

The scalar potential is given by

V = −µ2
1atr
[
Φ†aΦa

]
− µ2

2atr
[
∆†Ra∆Ra

]
+ λ1abtr

[
Φ†aΦa

]
tr
[
Φ†bΦb

]
+
(
λ2ae

iδatr
[
Φ̃†aΦa

]2
+ H.c.

)
+ λ3abtr

[
Φ̃†aΦb

]
tr
[
Φ†aΦ̃b

]
+ λ4abtr

[
Φ†aΦb

]
tr
[
Φ̃†aΦ̃b

]
+ α1abtr

[
Φ†aΦa

]
tr
[
∆†Rb∆Rb

]
+ α2abtr

[
Φ†aΦa∆Rb∆

†
Rb

]
+ α3abtr

[
∆†Ra∆Ra

]
tr
[
∆†Rb∆Rb

]
+ α′3tr

[
∆†R1∆R2

]
tr
[
∆†R2∆R1

]
+ α4abtr

[
∆†Ra∆

†
Rb

]
tr
[
∆Ra∆Rb

]
. (3.7)

Note that the potential terms tr
[
Φ̃†aΦb

]
are not allowed due to the discrete symmetry.

Without loss of generality, the VEV’s of scalar fields are written as

〈Φa〉 =

 κae
iαa 0

0 κ′ae
iα′
a/
√

2

 , 〈∆R1〉 =

 0 0

vR1/
√

2 0

 , 〈∆R〉 =

 0 0

vR2e
iθR/
√

2 0

 ,

(3.8)
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where we can choose α1 = 0 by gauge transformation. Some of the minimazation

conditions of the scalar potential are written as

∂〈V 〉
∂κ1

= κ1

[
3∑

a=1

(λ′a1κ
′2
a + λa1κ

2
a) +

2∑
a=1

αa1v
2
Ra + 2µ2

1

]
+ λ′′12κ

′
1κ
′
2κ2 + λ′′13κ

′
1κ
′
3κ3 = 0,

(3.9)

∂〈V 〉
∂κ′1

= κ′1

[
3∑

a=1

(λ′a1κ
2
a + λa1κ

′2
a ) +

2∑
a=1

α′a1v
2
Ra + 2µ2

1

]
+ λ′′12κ1κ2κ

′
2 + λ′′13κ1κ3κ

′
3 = 0

(3.10)

where the coefficients are appropriately defined from the coefficients of the potential

and the phases of VEV’s. We can write similar equations for κ2, κ′2, κ3, and κ′3.

Now we assume that vRa are determined from the other minimization conditions.

Further assuming κa � κ′a and there exists no large hierarchy among the same type

of coupling constants, we can obtain from the equations of type 3.10.

3∑
a=1

λabκ
′2
a +

2∑
a=1

α′abv
2
Ra + 2µ2

b ≈ 0 (3.11)

where b = 1, 2, 3. These are coupled linear equations, from which κ′a is easily

determined. Now, equation 3.9 can be written as

κ1

[
3∑

a=1

λ′a1κ
′2
a +

2∑
a=1

αa1v
2
Ra + 2µ2

1

]
+ λ′′12κ

′
1κ
′
2κ2 + λ′′13κ

′
1κ
′
3κ3 ≈ 0, (3.12)

and we can write similar equations from the derivatives with respective to κ2 and κ3.

They are also coupled linear equations whose solution is clearly κ1 = κ2 = κ3 = 0.

Note that this derivation of VEV’s is possible due to the absence of the term tr
[
Φ̃†aΦb

]
which is prohibited by the discrete symmetry, although its absence is not a sufficient

condition for κ1 = κ2 = κ3 = 0. Therefore, when there exists the potential terms

tr
[
Φ̃†aΦb

]
with very small coefficients, we can have very small nonzero κa.
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Now we introduce that potential as a soft symmetry-breaking term

VSB = −
3∑

a,b=1

µ2
SBabtr

[
Φ̃†aΦb

]
+ H.c. (3.13)

which would change the minimization conditions above into

∂〈V 〉
∂κ1

= κ1

∑
a

(λ′a1κ
′2
a + λa1κ

2
a + αa1v

2
Ra + 2µ2

1) + λ′′12κ
′
1κ
′
2κ2 + λ′′13κ

′
1κ
′
3κ3 +

∑
a

µ′2SBa1κ
′
a

≈ κ1

∑
a

(λ′a1κ
′2
a + αa1v

2
Ra + 2µ2

1) + λ′′12κ
′
1κ
′
2κ2 + λ′′13κ

′
1κ
′
3κ3 +

∑
a

µ′2SBa1κ
′
a ≈ 0,

(3.14)

∂〈V 〉
∂κ′1

= κ′1
∑
a

(λ′a1κ
2
a + λa1κ

′2
a + α′a1v

2
Ra + 2µ2

1) + λ′′12κ1κ2κ
′
2 + λ′′13κ1κ3κ

′
3 +

∑
a

µ′2SBa1κa

≈ κ′1
∑
a

(λa1κ
′2
a + α′a1v

2
Ra + 2µ2

1) + λ′′12κ1κ2κ
′
2 + λ′′13κ1κ3κ

′
3 ≈ 0. (3.15)

The second equation and its companions from κ′2 and κ′3 would give (approximately)

the same expressions of κ′a, and the first equation and its companions from κ2 and

κ3 are now coupled linear equations with solutions κa = δκa.

With those VEV’s, we can write the lepton mass matrices in the symmetry
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basis as

M` =
1√
2


f11δκ1 f12κ

′
2e
iα′

2 f13κ
′
3e
iα′

3

f21δκ1 f22κ
′
2e
iα′

2 f23κ
′
3e
iα′

3

f31δκ1 f32κ
′
2e
iα′

2 f33κ
′
3e
iα′

3

 , (3.16)

MD =
1√
2


f11κ

′
1e
−iα′

1 f12δκ2e
iα2 f13δκ3e

iα3

f21κ
′
1e
−iα′

1 f22δκ2e
iα2 f23δκ3e

iα3

f31κ
′
1e
−iα′

1 f32δκ2e
iα2 f33δκ3e

iα3



= M`D where D ≡


κ′1
δκ1
e−iα

′
1 0 0

0 δκ2
κ′2
e−i(α

′
2−α2) 0

0 0 δκ3
κ′3
e−i(α

′
3−α3)

 , (3.17)

MR =
√

2


0 h12vR1 0

h21vR1 0 0

0 0 h33vR2

 (3.18)

where we have redefined the phase of LR3 to absorb θR into α3 and α′3, i.e. α3 −

θR/2→ α3 and α′3 − θR/2→ α′3.

The motivation for the discrete symmetry is now clear:

1. No scalar potential terms of the form tr
[
Φ̃aΦ

†
b

]
.

2. No fine-tuning in MD for the TeV-scale phenomenology.

3. Explanation of the small mass of an electron.

4. Large branching ratios of various muon decay processes and a large EDM of
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an electron.

The mass term for charged weak gauge bosons is

Lmass
g = (W+µ

L W+µ
R )

 1
4g

2
L

∑3
a=0(δκ2

a + κ′2a ) − 1
2gLgR

∑3
a=0 δκaκ

′
ae
i(α′

a−αa)

− 1
2gLgR

∑3
a=0 δκaκ

′
ae
−i(α′

a−αa) 1
4g

2
R

∑3
a(δκ2

a + κ′2a ) + 2
∑2
a=1 v

2
Ra


 W−Lµ

W−Rµ

 .

(3.19)

Their masses can still be written as

m2
W1
≈ 1

4
g2
Lv

2
EW, m2

W2
≈ 1

2
g2
Rv

2
R (3.20)

where vEW =
√∑3

a=0(δκ2
a + κ′2a ) = 246 GeV and vR ≡

√
v2
R1 + v2

R2, and the WL-WR

mixing parameter is given by

ξeiα ≈ −gL
∑3

a=0 δκaκ
′
ae
i(α′

a−αa)

gRv2
R

(3.21)

where α is defined as the complex phase of the mixing parameter in this model, not

the phase of the electroweak VEV as in the MLRSM.

3.3 Numerical procedure

In the symmetry basis, we assume that MR has the form

MR =


0 M1 0

M1 M3 0

0 0 M2

 , (3.22)

where M3 is not necessarily small yet. In the same basis, we have MD = M`D,

and thus Mν = −MDM
−1
R MT

D = −Ma
`M

a−1
R MaT

` ≡ Ma
ν where Ma

` ≡ M` and
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Ma
R ≡ D−1MRD

−1. Note that Ma
R has the same structure as MR since D is diagonal.

While Ma
` and Ma

ν (i.e. M` and Mν) can be easily constructed by Ma
` = V `

LM
c
`V

`†
R

and Ma
ν = V `

LM
c
νV

`T
L for arbitrary unitary matrices V `

L and V `
R, the matrix Ma

R

calculated from Ma
R = −MaT

` Ma−1
ν Ma

` does not have the structure we want for

those arbitary mixing matrices in general.

In order to have Ma
R with the desired structure, we generate arbitrary V `b

L and

V `b
R (instead of V `

L and V `
R), and calculate M b

` ≡ V `b
L M

c
`V

`b†
R , M b

ν ≡ V `b
L M

c
νV

`bT
L , and

M b
R ≡ −M bT

` (M b
ν)
−1M b

` . Note that there always exists a unitary matrix VR that

transforms M b
R into Ma

R = V T
RM

b
RVR where Ma

R is in the form of 3.22. Defining

Ma
` ≡ M b

`VR and Ma
ν ≡ M b

ν , we obtain Ma
R = −MaT

` Ma−1
ν Ma

` . Further defining

M` ≡ Ma
` (= M b

`VR), MR ≡ DMa
RD (= DV T

RM
b
RVRD), MD ≡ Ma

`D (= M b
`VRD),

andMν ≡Ma
ν (= M b

ν), we can finally obtainMR = −MT
DM

−1
ν MD whereMD = M`D

and MR is in the form of 3.22. For Ma
R and D given by

Ma
R =


0 Ma

1 0

Ma
1 Ma

3 0

0 0 Ma
2

 , D =


d1 0 0

0 d2 0

0 0 d3

 , (3.23)

we have

MR = DMa
RD =


0 Ma

1 d1d2 0

Ma
1 d1d2 Ma

3 d
2
2 0

0 0 Ma
2 d

2
3

 . (3.24)

Hence, by choosing small |d2| and large |d1|, we can have MR with |M1|, |M2| �

|M3| ≈ 0, and also MD = M`D with the first column large and the second column

small, as desired. If |M3| is small enough, we can set it to zero to have the structure
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allowed by the exact discrete symmetry while all the experimental constraints are

still satisfied within their uncertainties.

In order for this model to explain the small electron mass, the mixing matrix

V `
R = V †RV

`b
R should not largely mix the first column of M` with the others. Note

that the stronger condition |V `
Rij| ≈ δij is the general prediction of the model. By

construction, we have

Ma
R = V T

RM
b
RVR = −V `∗

R M
cT
` (M c

ν)
−1M c

`V
`†
R , (3.25)

i.e. V `
R is the mixing matrix that transforms M cT

` (M c
ν)
−1M c

` into the form of 3.22.

SinceM ≡M cT
` (M c

ν)
−1M c

` has the structure ofM33 �Mi3 (i = 1, 2) andM22,M12 �

M11 due to the mass hierarchy in charged leptons as well as the large mixing in light

neutrinos, we always have |V `
Rij| ≈ δij.

In summary, the numerical procedure to generate the model parameters is as follows:

1. Randomly generate mν1 , and calculate mν2 =
√
m2
ν1

+ ∆m2
21 and mν3 =√

m2
ν1

+ ∆m2
31.

2. Calculate M c
ν from M c

ν = UPMNSM
d
νU

T
PMNS where the CP phases of UPMNS are

also randomly generated.

3. Randomly generate V `b
L , V `b

R , and calculateM b
` = V `b

L M
c
`V

`b†
R , M b

ν = V `b
L M

c
νV

`bT
L ,

and M b
R = M bT

` (M b
ν)
−1M b

` .

4. Find VR which transforms M b
R into a matrix Ma

R in the form of 3.22 by Ma
R =

V T
RM

b
RVR. In that basis, we have Ma

` = M b
`VR and Ma

ν = M b
ν .
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5. Randomly generate D, and calculate the lepton mass matrices in the symmetry

basis by M` = Ma
` , MD = Ma

`D, and MR = DMa
RD.

6. Randomly generate κ0, κ′0, κ′1, κ′2, κ′3 which satisfies
√
κ2

0 + κ′20 + κ′21 + κ′22 + κ′23 =

vEW, and calculate δκ1 = κ′1/D11, δκ2 = κ′2D22, δκ3 = κ′3D33. Calculate the

Yukawa coupling matrix f in the symmetry basis from M` and the electroweak

VEV’s.

7. Define V `
L ≡ V `b

L , V `
R ≡ V †RV

`b
R , and calculate M c

D = V `†
L MDV

`
R and M c

R =

V `T
R MRV

`
R.

8. Construct the 6 × 6 neutrino mass matrix M c
νN from M c

D and M c
R, and find

the 6× 6 mixing matrix VνN that diagonalizes M c
νN .

The mixing matrices UPMNS, V `
L, V `

R, and VνN are parametrized in the same way as

in the MLRSM.

The ranges of model parameters where they are randomly generated are pre-

sented in table 3.2. The constraints imposed on model parameters are given in table

3.3. We assume that the contribution of charged scalar fields to CLFV and 0νββ

are negligible. It is usually a good assumption for all the CLFV and 0νββ processes

of our interest even when the masses of those charged scalar fileds are small, since

we have h11 = h13 = h23 = 0 and |V `
Rij| ≈ δij. For example, the Feynman diagrams

of muon or tau decays in the symmetry basis always involve one of h11, h13, h23.
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3.4 Numerical results

The numerical results for mWR
= 3 TeV are presented in figure 3.1. The most

notable result is that a large EDM of an electron is allowed in spite of the CLFV

constraints, as expected. The prediction |V `
Rij| ≈ δij has been also verified, as shown

in figure 3.1f.

(a) RTi
µ→e vs. BRµ→eγ (b) TGe

1/2 vs. |ην | (c) |ην | vs. |ηRNR |

(d) |ηLNR | vs. |ηRNR | (e) |de| vs. RTi
µ→e (f) |V `R11V

`
R22V

`
R33| vs. mN3

Figure 3.1: Predictions of the model for mWR
= 3 TeV. Figures 3.1b−3.1d show

that other processes such as ηLNR can be dominant in this model. In addition, a

large EDM of e is allowed as shown in figure 3.1e. Figure 3.1f shows |V `
Rij| ≈ δij.

3.5 Conclusion

We have presented a new TeV-scale seesaw model based on the left-right symmetric

gauge group but without parity symmetry where a particular texture for the Dirac
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and Majorana masses guarantees that neutrino masses are naturally small while

keeping the heavy-light neutrino mixing in the LHC-observable range. A discrete

flavour symmetry has been shown to guarantee the stability of this texture, while

being consistent with the observed lepton masses and mixing. We then explored its

tests in the domain of the CLFV and EDM of an electron.
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Parameter Range

log10 (mν1/eV) −4− log10 2

log10 (κ′0/GeV) log10 70− log10

√
v2

EW − 4 · 102

log10 (κ0/GeV) −1− 1

log10 (κ′1/GeV) 1− log10

√
v2

EW − κ′20 − κ2
0 − 2 · 102

log10 (κ′2/GeV) 1− log10

√
v2

EW − κ′20 − κ2
0 − κ′21 − 102

log10 (κ′1/δκ1) 2− 5

log10 (κ′2/δκ2) 5− 8

log10 (κ′3/δκ3) 2− 5

δD, δM1, δM2, α′a − αa,

θLij, δLi, θRij, δRi

−π − π rad

Table 3.2: List of parameters and the ranges where those parameters are randomly

generated. We have set mWR
= 3 TeV and gR = gL = 0.65. Here, α′a − αa is the

difference of the phases of κ′a and δκa, and we have used v2
EW =

∑3
a=1(δκ2

i + κ′2a ) ≈∑3
a=1 κ

′2
a . The angles δD, δM1, δM2 are the CP phases of the PMNS matrix, and

θLij, δLi and θRij, δRi are the parameters of V `
L and V `

R, respectively.

Parameter Constraint

|fij| <
√

4π

|MR11|2 + |MR12|2 < 8πv2
R

|M c
R11/M

c
R12| < 0.1

Table 3.3: List of constraints imposed on the model parameters. Here, MR and

M c
R are the Majorana mass matrices in the symmetry and charged lepton mass

bases, respectively. Since |MR11|2/|
√

2h11|2 + |MR12|2/|
√

2h12|2 = v2
R1 + v2

R2 = v2
R,

we can always find vR1 and vR2 which satisfies |h12|, |h33| <
√

4π if and only if

|MR11|2+|MR12|2 < 8πv2
R. In addition, |M c

R11/M
c
R12| is supposed to be small because

MR is of the form 3.22 and |V `
Rij| ≈ δij. However, there can appear a small number

of data points with |M c
R11/M

c
R12| ≈ 1 due to numerical errors, since κ′1/δκ1 can be

very large. The last condition has been imposed to remove those evidently erroneous

data points.
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Chapter 4: TeV-scale resonant leptogenesis

4.1 Introduction

An attractive feature of the seesaw mechanism is that the same Yukawa couplings

that give rise to light neutrino masses, can also resolve one of the outstanding

puzzles of cosmology, namely, the origin of matter-antimatter asymmetry, via lepto-

genesis [40]. The key driver of leptogenesis are the out-of-equilibrium decays of the

RH Majorana neutrinos via the modes N → Liφ and N → Lciφ
†, where Li = (νi, `i)

T

(i = 1, 2, 3) are the SU(2)L lepton doublets, and φ are the Higgs doublets. In the

presence of CP violation in the Yukawa sector, these decays can lead to a dynamical

lepton asymmetry in the early Universe. This asymmetry will undergo thermody-

namic evolution as the universe expands and different reactions present in the model

have their impact on washing out part of the asymmetry. The remaining final lepton

asymmetry is converted to the baryon asymmetry via sphaleron transitions before

the electroweak phase transition. There is also a weak connection between the CP

violation in neutrino oscillations and the amount of lepton asymmetry.

For TeV-scale seesaw models, the generation of adequate lepton asymmetry

requires one to invoke resonant leptogenesis [41–43], where at least two of the heavy

neutrinos have a small mass difference comparable to their decay widths. In this
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case, the heavy Majorana neutrino self-energy contributions [44] to the leptonic

CP asymmetry become dominant [?, 45] and get resonantly enhanced, even up to

order one [41,42]. In the context of an embedding of seesaw into TeV-scale LRSM,

there are additional complications due to the presence of RH gauge interactions

that contribute to the dilution and washout of the primordial lepton asymmetry

generated via resonant leptogenesis. This was explored in detail in [46] where it was

pointed out that there is significant dilution of the primordial lepton asymmetry

due to ∆L = 1 scattering processes such as N`R → udc mediated by WR. This

leads to an extra suppression of the final lepton symmetry, in addition to the usual

inverse decay Lφ→ N and ∆L = 0, 2 scattering processes Lφ↔ Lφ (Lcφ†) present

in generic SM seesaw scenarios. This additional dilution factor κ (also sometimes

called efficiency) in this case is of order
Y 2
ν m

4
WR

g4Rm
4
N

, which formN ∼ TeV andmWR
∼ 3−4

TeV can be easily ≤ 10−7 or so for Y ' 10−5.5. Combined with entropy dilution

effect and the dilution from inverse decays, this implies that even for the maximal

CP asymmetry ε ∼ O(1), the observed baryon to photon ratio can be obtained only

if mWR
≥ 18 TeV. This result is very important because, as argued in [46], this can

provide a way to falsify leptogenesis if a WR with mass below this limit is observed

in colliders.

We investigate whether there are any allowed parameter space in the TeV-scale

LRSM where leptogenesis can work with a weakened lower bound on mWR
, without

conflicting with observed neutrino data and charged lepton masses. We work in a

version of the model that is parity asymmetric at the TeV scale, which is anyway

necessary if we want type-I seesaw to be the only contribution to neutrino masses.
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According to our classification above, the work of [46] falls into the class I models.

We explore whether the lower bound can be weakened in the other classes of models

discussed above. It could very well be that if other observations push the Yukawa

parameters to the range of class I models, the bound of [46] cannot be avoided,

thereby providing a way to disprove leptogenesis at the LHC. However, to see how

widely applicable the bound of [46] is, we consider in this paper an example of a

model which belongs to class II, i.e. neutrino fits are done by cancellation leading

to a specific texture for Dirac masses.

We implement the class II strategy for small neutrino masses in the minimal

LRSM with a single bi-doublet field in the lepton sector where all leptonic Yukawa

couplings are significantly larger than the canonical value of O(10−5.5) and the WR

mass is in the few TeV range. As noted above, to get small neutrino masses via

type-I seesaw, we invoke cancellation between two Yukawa couplings to generate

extra suppression and a particular resulting texture for the Dirac masses. We find

that due to enhanced Yukawa couplings, the dilution of lepton asymmetry due to

the WR mediated scatterings as well as due to 3-body decays of RH neutrinos such

as N → `Rud
c become considerably less than the CP-violating 2-body decay modes

N → Lφ,Lcφ†, and as a result, the lower limit on WR mass can be brought within

the LHC reach for a range of Yukawa couplings for which the washout effect due to

inverse decay is in control. New aspects in our work that goes beyond that of [46] are

the following: (i) we give a realistic fit for all lepton masses and mixing with larger

Yukawa couplings (∼ 10−2 or so); (ii) reference [46] assumes that the CP asymmetry

ε ∼ 1 whereas we calculate the primordial CP asymmetry ε in our model using the
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Yukawa couplings demanded by our specific neutrino fit. As a result, our ε is still

of order 10−1 (see text for precise numbers); (iii) finally, we take the flavour effects

into account in our washout and lepton asymmetry calculation. It is a consequence

of (i) and (iii), which leads us to lower the WR mass bound from leptogenesis.

When Tc < T < TR, we write the scalar bi-doublet as

Φ = (φ, φ′) (4.1)

where φ and φ′ are SU(2)L doublets. Then, we can write

Φ̃ ≡ σ2Φ∗σ2 =
(
φ̃′, φ̃

)
(4.2)

where φ̃ ≡ iσ2φ
∗ and φ̃′ ≡ −iσ2φ

′∗. For simplicity, we assume that φ′ acquires a

mass larger than mN through vR while φ remains massless. Then, φ is identified

as the Higgs doublet of the SM. The Yukawa interaction Lagrangian of the lepton

sector in the RH neutrino mass basis when Tc < T < TR is written as

L`Y = −LLi(fijΦ + f̃ijΦ̃)LRj − hRijLcRiiσ2∆RLRj + H.c. (4.3)

= −fijLLiφNRj − fijLLiφ′`Rj − f̃ijLLiφ̃′NRj − f̃ijLLiφ̃`Rj

− f ∗jiNRjφ
†LLi − f ∗ji`Rjφ′†LLi − f̃ ∗jiNRjφ̃′

†
LLi − f̃ ∗ji`Rjφ̃†LLi

− 1√
2
hRijvRN c

RiNRj − hRijδ0
RN

c
RiNRj +

√
2hRijδ

+
R`

c
RiNRj + hRijδ

++
R `cRi`Rj

− 1√
2
h∗RjivRNRjN

c
Ri − h∗Rjiδ0∗

R NRjN
c
Ri +

√
2h∗Rjiδ

−
RNRj`

c
Ri + h∗Rjiδ

−−
R `Rj`

c
Ri,

(4.4)

from which we can identify interactions that contribute to the lepton asymmetry.
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4.2 One-loop resummed effective Yukawa couplings and decay rates

For simplicity, we write

Li ≡ LLi, `i ≡ `Ri, Q ≡ QL, u ≡ uR, d ≡ dR (4.5)

where i is the lepton flavour index, and u, d can be any pair in the three flavours. We

also use Greek and Roman indices for RH neutrino and LH lepton doublet flavours,

respectively. The partial decay rates Γ(Nα → Liφ) and Γ(Nα → Lciφ
†) at T = 0 are

given by

Γ(Nα → Liφ) = mNαA
i
αα(f̂), Γ(Nα → Lciφ

†) = mNαA
i
αα(f̂ c) (4.6)

where Aiαβ is the absorptive transition amplitude defined by

Aiαβ(f̂) =
1

16π
f̂iαf̂

∗
iβ. (4.7)

Here, f̂iα is the one-loop resummed effective Yukawa couplings given by [50]

f̂iα = fiα − i
∑
β,γ

|εαβγ |fiβ

× mα(mαAαβ +mβAβα)− iRαγ
[
mαAγβ(mαAαγ +mγAγα) +mβAβγ(mαAγα +mγAαγ)

]
m2
α −m2

β + 2im2
αAββ + 2iIm[Rαγ ]

(
m2
α|Aβγ |2 +mβmγRe[A2

βγ ]
)
(4.8)

where εαβγ is the Levi-Civita anti-symmetric tensor and

mα ≡ mNα , Aαβ ≡
3∑
i=1

Aiαβ(f̂), Rαβ =
m2
α

m2
α −m2

β + 2im2
αAββ

. (4.9)

The CP-conjugate effective Yukawa couplings f̂ ciα are obtained by replacing hiα with

h∗iα. The total two-body decay rate at T = 0 is written as

ΓNαLφ =
3∑
i=1

[
Γ(Nα → Liφ) + Γ(Nα → Lciφ

†)
]

=
mNα

16π

[(
f̂ †f̂)αα +

(
f̂ c†f̂ c

)
αα

]
(4.10)
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and the total three-body decay rate at T = 0 as

ΓNα`αudc = Γ(Nα → `αud
c) + Γ(Nα → `cαu

cd). (4.11)

Here,

Γ(Nα → `αud
c) = Γ(Nα → `cαu

cd) =
3g4

R

29π3m3
Nα

∫ m2
Nα

0

ds
m6
Nα
− 3m2

Nα
s2 + 2s3

(s−m2
WR

)2 +m2
WR

Γ2
WR

(4.12)

where ΓWR
≈ (g2

R/4π)mWR
is the total decay rate of WR at T = 0 when mNα < WR,

and all three quark flavours and colors have been considered. Note that we can have

only one lepton flavour `α for each Nα.

4.3 Boltzmann equations and the lepton asymmetry

The generic Boltzmann equation is written as [48]

dna
dt

+ 3Hna = −
∑
aX↔Y

[
nanX
neq
a n

eq
X

γ(aX → Y )− nY
neq
Y

γ(Y → aX)

]
(4.13)

where γ is the thermally averaged collision term. We define the CP-conserving

collision terms for various decay and scattering processes by

γaXY ≡ γ(aX → Y ) + γ(aX → Y ) (4.14)

where aX → Y is the CP-conjugate process of aX → Y . Note that the CPT

invariance implies

γaXY = γYaX . (4.15)

We introduce the dimensionless time variable defined by

z ≡ mN1

T
. (4.16)
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Then, the thermally averaged decay rates of Nα are wirtten as

γNαLiφ ≈ neq
N1

K1(z)

K2(z)
ΓNαLiφ =

m3
N1

π2z
K1(z)ΓNαLiφ, (4.17)

γNα`αudc ≈ neq
N1

K1(z)

K2(z)
ΓNα`αudc =

m3
N1

π2z
K1(z)ΓNα`αudc (4.18)

where K1(z)/K2(z) is the thermally averaged time dilation factor. Defining the

leptonic CP-asymmetry by

δiNα =
Γ(Nα → Liφ)− Γ(Nα → Lciφ

†)∑3
j=1

[
Γ(Nα → Ljφ) + Γ(Nα → Lcjφ

†)
] , (4.19)

we can write the CP-violating decay term as

δγNαLiφ ≡ γ(Nα → Liφ)− γ(Nα → Lciφ
†) = δiNαγ

Nα
Lφ (4.20)

where

γNαLφ ≡
3∑
i=1

γNαLiφ. (4.21)

For 2→ 2 scattering processes, the thermally averaged collision term can be written

as

γXYAB =
T

64π4

∫ ∞
smin

ds
√
s σ̂XYAB (s) K1

(√
s

T

)
=

m4
N1

64π4z

∫ ∞
xmin

dx
√
xK1(z

√
x)σ̂XYAB (x) (4.22)

where σ̂XYAB is CP-conserving reduced cross section defined by

σ̂XYAB ≡ σ̂(XY → AB) + σ̂(AB → XY ). (4.23)
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The CP-conserving reduced cross sections for the dominant scattering processes are

derived in appendix D, and they are given by

σ̂Nαu
c

`αdc
(s) =

9g4
R

4πs

∫ 0

m2
N−s

dt
(s+ t)(s+ t−m2

N)

(t−m2
WR

)2
(4.24)

σ̂Nαu
c

`αdc
(s) =

9g4
R

4πs

∫ 0

m2
N−s

dt
(s+ t)(s+ t−m2

N)

(t−m2
WR

)2
(4.25)

σ̂Nαd`αu
(s) =

9g4
R

4π

(m2
N − s)2

m2
WR

(s+m2
WR
−m2

N)
. (4.26)

Following the steps in appendix D, we can write the Boltzmann equations for the

RH neutrino density and the LH lepton doublet density as

dnNα
dt

+ 3HnNα =

(
1− nNα

neq
Nα

)(
γNαLφ + γNα`αudc + γSRα

)
−

3∑
j=1

n∆Lj

2neq
`j

δγNαLjφ, (4.27)

dn∆Li

dt
+ 3Hn∆Li =

3∑
α=1

(
nNα
neq
Nα

− 1

)
δγNαLiφ −

n∆Li

2neq
`i

3∑
α=1

γNαLiφ (4.28)

where

γSRα ≡ γNα`αucd + γNαu
c

`αdc
+ γNαd`αu

. (4.29)

We can simplify the Boltzmann equations using the dimensionless time variable

z introduced above and also using normalized densities of RH neutrinos and lepton

asymmetry. First, we write the Hubble parameter at z = 1 as

HN ≡ H(z = 1) ≈
√

8π3g∗
90

m2
N1

MPl

= z2H (4.30)

where g∗ is the SM degree of freedom. The photon number density is given by

nγ =
2m3

N1
ζ(3)

π2z3
. (4.31)
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where ζ(x) =
∑∞

n=1 n
−x is the Riemann zeta function. Now we introduce the nor-

malized densities of RH neutrinos and lepton asymmetry defined by

ηNα ≡
nNα
nγ

, η∆Li
≡ n∆Li

nγ
, (4.32)

and the normalized RH neutrino density in equilibrium is

ηeq
Nα

=
neq
Nα

nγ
≈ neq

N1

nγ
=

1

2ζ(3)
z2K2(z). (4.33)

As shown in appendix D, we can simplify the left-hand sides of the Boltzmann

equations 4.27 and 4.28 using the normalized densities, and they are written as

HNnγ
z

dηNα
dz

= −
(
ηNα
ηeq
Nα

− 1

)(
γNαLφ + γNα`αudc + γSRα

)
− 2

3

3∑
j=1

η∆Ljδ
j
Nα
γNαLφ , (4.34)

HNnγ
z

dη∆Li

dz
=

3∑
α=1

δiNα

(
ηNα
ηeq
Nα

− 1

)
γNαLφ −

2

3
η∆Li

3∑
α=1

γNαLiφ (4.35)

where we have used neq
`i

= 3/4. When the lepton asymmetry satisfies |δiNα| � 1, we

can safely neglect the second term in equation 4.34 to obtain

HNnγ
z

dηNα
dz

= −
(
ηNα
ηeq
Nα

− 1

)(
γNαLφ + γNα`αudc + γSRα

)
, (4.36)

HNnγ
z

dη∆Li

dz
=

3∑
α=1

δiNα

(
ηNα
ηeq
Nα

− 1

)
γNαLφ −

2

3
η∆Li

3∑
α=1

γNαLiφ. (4.37)

From equation 4.36, we can find the expression

ηNα
ηeq
Nα

− 1 = −HNnγ
z

dηNα
dz

1

γNαLφ + γNα`αudc + γSRα
, (4.38)

which we can substitute into equation 4.37 to obtain

dη∆Li

dz
= −

3∑
α=1

δiNα
dηNα
dz

D̃α

Dα + Sα
− 2

3
η∆LiWi (4.39)
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where

D̃α ≡
z

HNnγ
γNαLφ , Dα ≡

z

HNnγ
(γNαLφ + γNα`αudc), Sα ≡

z

HNnγ
γSRα , Wi =

z

HNnγ

3∑
α=1

γNαLiφ.

(4.40)

The differential equation 4.39 can be solved by the integrating factor method, as

shown in appendix E. Assuming the initial lepton asymmetry is negligible, we obtain

the expression

η∆Li(z) = −
3∑

α=1

δiNακ
i
Nα(z) (4.41)

where κiNα is the efficiency factor defined by

κiNα(z) ≡
∫ z

z0

dz′
dηNα
dz′

D̃α

Dα + Sα

[
−2

3

∫ z

z′
dz′′Wi(z

′′)

]
. (4.42)

Due to the strong washout of RH neutrino densities in the TeV-scale leptogenesis,

we have |ηNα/ηeq
Nα
− 1| � 1. We may therefore approximately assume ηNα ≈ ηeq

Nα
,

and thus

dηNα
dz
≈ dηeq

Nα

dz
≈ dηeq

N1

dz
= − 1

2ζ(3)
z2K1(z) (4.43)

where z0 is the initial time with the initial lepton asymmetry. If the lepton washout

term satisfies Wi(zc) . 1, the lepton asymmetry freezes out at zB < zc where zB can

be found by the steepest descent method [51]. On the other hand, if Wi(zc) � 1

as in the TeV-scale leptogenesis, we can find an approximate expression of the

lepton asymmetry from equations 4.41 and 4.42, as shown in appendix D [52]. The

approximate form of the asymmetry in the LH lepton doublet is now given by

η∆Li(z) ≈ 3z2K1(z)

4Wi(z)

3∑
α=1

δiNα
D̃α

Dα + Sα
, (4.44)
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and the total asymmetry is

η∆L(z) ≡
3∑
i=1

η∆Li(z). (4.45)

4.4 Numerical procedure

For the successful leptogenesis, we should be able to find the model parameters that

would give |η∆L(zc)| = (2.47 ± 0.03) · 10−8 which is the value consistent with the

observed baryon asymmetry. The following is the numerical procedure:

1. Randomly generate the lightest light neutrino mass mν1 , and calculate mν2 =√
m2
ν1

+ ∆m2
21 and mν3 =

√
m2
ν1

+ ∆m2
31.

2. Calculate M c
ν from M c

ν = UPMNSM
d
νU

T
PMNS where M c

ν and Md
ν are the light

neutrino mass matrices in the charged lepton and light neutrino mass bases,

respectively. The mixing matrix UPMNS is the PMNS matrix whose CP phases

are also randomly generated.

3. Randomly generate mN2 , mN2 −mN1 , and mN3 −mN2 which determine MR in

the RH neutrino mass basis.

4. Randomly generate a complex orthogonal matrix O, and calculate MD =

−iUPMNS

√
Md

νO
√
Md

R [47] where MD is the Dirac mass matrix in the RH

neutrino mass basis.

5. Randomly generate V `
R, and calculate M` = M c

`V
`†
R where M` is the charged

lepton mass basis in the RH neutrino mass basis.
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6. Randomly generate κ2, α, and calculate κ1 =
√
v2

EW − κ2
2. Find the Yukawa

coupling matrices in RH neutrino mass basis from

f =
√

2
κ1MD − κ2e

−iαM`

κ2
1 − κ2

2

, f̃ =
√

2
κ1M` − κ2e

iαMD

κ2
1 − κ2

2

, (4.46)

where f is the Yukawa couplings associated with the decay and scattering

processes of our interest under the assumption we have introduced.

7. Calculate one-loop resummed effective Yukawa couplings f̂ , f̂ c from f , mNα ,

and calculate the CP asymmetry and collision terms.

8. Calculate η∆Li(zc), the normalized asymmetry in the LH lepton doublet at zc,

from the CP asymmetry and collision terms we have obtained.

9. Calculate M c
D = MDV

`
R and M c

R = V `T
R MRV

`
R where M c

D and M c
R are the Dirac

and RH neutrino mass matrices in the charged lepton mass basis, respectively.

10. Construct the 6 × 6 neutrino mass matrix M c
νN from M c

D and M c
R, and find

the 6× 6 mixing matrix VνN that diagonalizes M c
νN .

The mixing matrices UPMNS, V `
L, V `

R, and VνN are parametrized in the same way as

in the MLRSM. The complex orthogonal matrix can be parametrized as O = eS

where S is a skew-symmetric complex matrix, i.e. ST = −S.

4.5 Numerical results

The lower bound of mWR
compatible with leptogenesis is found to be 6.9 TeV,

which is beyond the upper limit observable at the LHC. The numerical results are
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presented in figure 4.1. If we discover WR much lighter than this value, the idea of

leptogenesis can be falsified.

4.6 Conclusion

We have analyzed the leptogenesis constraints on the mass of the right-handed

gauge boson in TeV scale Left-Right Symmetric Models. While the existing bound

of mWR
> 18 TeV applies for generic LRSM scenarios with small Yukawa couplings,

we have found a significantly weaker bound of mWR
> 6.9 TeV in a new class of

LRSM scenarios with relatively larger Yukawa couplings, which is consistent with

charged lepton and neutrino mass data. The key factors responsible for our result

is the inclusion of flavour effects in the lepton asymmetry calculation. This lower

bound, mWR
> 6.9 TeV is for the case gL = gR and will be proportionately weaker

for the case gR < gL.
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Figure 4.1: Values of parameters and mass matrices that give the lower bound of

mWR
= 6.9 TeV. The lepton asymmetry is slightly larger than 2.47 · 10−8, and thus

slightly smaller value of mWR
is allowed.
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Chapter 5: Conclusion

We have investigated the TeV-scale phenomenology of the LRSM. We have provided

a new method to construct lepton mass matrices in the MLRSM of type-I dominance

with the parity symmetry. Using this method, we have investigated the TeV-scale

phenomenology of the MLRSM in the normal hierarchy of light neutrino masses,

and explored the model predictions for the CLFV, 0νββ, EDM’s of charged leptons.

We have also presented a natual TeV-scale seesaw model which does not require fine-

tuning of model parameters for the TeV-scale phenomenology. A discrete flavour

symmetry is shown to guarantee a specific texture of lepton mass matrices. In ad-

dition, we have studied the leptogenesis with TeV-scale WR and mN , and presented

a lower bound of mWR
which allows leptogenesis.
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Appendix A: Derivation of various expressions in the minimal left-

right symmetric model

A.1 Gauge group and fields

The gauge group of the left-right symmetric model (LRSM) is given by

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. (A.1)

The representations of the leptons are

L′Li =

 ν ′Li

`′Li

 ∼ (2,1,−1), L′Ri =

 ν ′Ri

`′Ri

 ∼ (1,2,−1), (A.2)

and for quarks, we have

Q′Li =

 u′Li

d′Li

 ∼ (2,1, 1/3), Q′Ri =

 u′Ri

d′Ri

 ∼ (1,2, 1/3) (A.3)

where i is the generation index. In addition, the scalar bi-doublet field is given by

Φ =

 φ0
1 φ+

2

φ−1 φ0
2

 ∼ (2,2, 0), (A.4)
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and the scalar triplet field is

∆L =

 δ+
L /
√

2 δ++
L

δ0
L −δ+

L /
√

2

 ∼ (3,1, 2), ∆R =

 δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

 ∼ (1,3, 2).

(A.5)

A.2 Current and generators

The SU(2)L⊗ SU(2)R generators are

TL+ =

∫
d3x(ν′†L e

′
L + u′†Ld

′
L), TL− = (TL+)†, TL3 =

1

2

∫
d3x(ν′†L ν

′
L − e′†Le′L + u′†Lu

′
L − d′†Ld′L),

TR+ =

∫
d3x(ν′†Re

′
R + u′†Rd

′
R), TR− = (TR+)†, TR3 =

1

2

∫
d3x(ν′†Rν

′
R − e′†Re′R + u′†Ru

′
R − d′†Rd′R).

(A.6)

The electric charge generator is given by

Q =

∫
d3x

(
−e′†e′ + 2

3
u′†u′ − 1

3
d′†d′

)
. (A.7)

Now we can find the U(1)B−L generator given by

Q− TL3 − TR3 =

∫
d3x

[
−1

2
(ν ′†Lν

′
L + ν ′†Rν

′
R + e′†Le

′
L + e′†Re

′
R) +

1

6
(u′†Lu

′
L + u′†Ru

′
R + d′†Ld

′
L + d′†Rd

′
R)

]
=
B − L

2
. (A.8)

Since we have Y = 2(Q− TL3), the generators satisfy

Y

2
= TR3 +

B − L
2

. (A.9)
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A.3 Yukawa interaction Lagrangian

The Yukawa interaction Lagrangian is written as

L`Y = −L′Li(fijΦ + f̃ijΦ̃)L′Rj − hLijL′cLiiσ2∆LL
′
Lj − hRijL′cRiiσ2∆RL

′
Rj + H.c.

(A.10)

= −fijφ0
2`
′
Li`
′
Rj − fijφ0

1ν
′
Liν
′
Rj − fijφ−1 `′Liν ′Rj − fijφ+

2 ν
′
Li`
′
Rj

− f̃ijφ0∗
1 `
′
Li`
′
Rj − f̃ijφ0∗

2 ν
′
Liν
′
Rj + f̃ijφ

−
2 `
′
Liν
′
Rj + f̃ijφ

+
1 ν
′
Li`
′
Rj

− hLijδ0
Lν
′c
LiνLj +

1√
2
hLijδ

+
L `
′c
Liν
′
Lj +

1√
2
hLijδ

+
L ν
′c
Li`
′
Lj + hLijδ

++
L `′cLi`

′
Lj

− hRijδ0
Rν
′c
Riν
′
Rj +

1√
2
hRijδ

+
R`
′c
Riν
′
Rj +

1√
2
hRijδ

+
Rν
′c
Ri`
′
Rj + hRijδ

++
R `′cRi`

′
Rj

+ H.c. (A.11)

where

Φ̃ ≡ σ2Φ∗σ2 =

 φ0∗
2 −φ+

1

−φ−2 φ0∗
1

 . (A.12)

We have also defined ψc ≡ Cψ∗ and ψc = −ψTC where C = iγ2γ0 is the charge

conjugation operator in the Dirac-Pauli representation.

A.4 Spontaneous symmetry breaking and fermion masses

Without loss of generality, the scalar fields after the spontaneous symmetry breaking

are written as

〈Φ〉 =

 κ1/
√

2 0

0 κ2e
iα/
√

2

 , 〈∆L〉 =

 0 0

vLe
iθL/
√

2 0

 , 〈∆R〉 =

 0 0

vR/
√

2 0

 .

(A.13)
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After spontaneous symmetry breaking, the Yukawa coupling terms are written as

〈L`Y 〉 = − 1√
2
fijκ2e

iα`′Li`
′
Rj −

1√
2
fijκ1ν ′Liν

′
Rj −

1√
2
f̃ijκ1`′Li`

′
Rj −

1√
2
f̃ijκ2e

−iαν ′Liν
′
Rj

− 1√
2
hLijvLe

iθLν ′cLiν
′
Lj −

1√
2
hRijvRν ′cRiν

′
Rj + H.c.. (A.14)

The mass terms for leptons are written as

Lmass
` = − 1√

2
(fijκ2e

iα + f̃ijκ1)`′Li`
′
Rj + H.c.. (A.15)

We therefore have

M` =
1√
2

(fκ2e
iα + f̃κ1). (A.16)

The neutrino mass terms are given by

Lmass
ν = − 1√

2
(fijκ1 + f̃ijκ2e

−iα)ν ′Liν
′
Rj −

1√
2
hLijvLe

iθLν ′cLiν
′
Lj −

1√
2
hRijvRν ′cRiν

′
Rj + H.c..

(A.17)

We have the identity

ν ′Lν
′
R = (ν ′Lν

′
R)T = −ν ′TR γT0 ν ′∗L = −ν ′TR C†CγT0 ν

′∗
L = (Cν ′∗R )†γ0Cν

′∗
L = ν ′cRν

′c
L (A.18)

where we have used C−1γµC = −γTµ . Similarly,

ν ′cLiν
′
Lj = ν ′cLjν

′
Li, ν ′cRiν

′
Rj = ν ′cRjν

′
Ri. (A.19)

Hence, we can write

Lmass
ν = −1

2
(ν ′L ν

′c
R)

 ML MD

MT
D MR


 ν ′cL

ν ′R

+ H.c. (A.20)

where

MD =
1√
2

(fκ1 + f̃κ2e
−iα), ML =

√
2h∗LvLe

−iθL , MR =
√

2hRvR. (A.21)
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A.5 Gauge bosons

The covariant derivative is given by

Dµ = ∂µ − igLTL ·WLµ − igRTR ·WRµ − ig′
B − L

2
Bµ. (A.22)

Now we define

W+
µ ≡

1√
2

(W 1
µ − iW 2

µ), W−
µ ≡

1√
2

(W 1
µ + iW 2

µ). (A.23)

Kinetic terms

The kinetic terms for SU(2) gauge bosons are

−1

4
F µν
a F a

µν = −1

4
(∂µW ν

a − ∂νW µ
a − gfabcW µ

b W
ν
c )(∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν )

= −1

4
(∂µW ν

a − ∂νW µ
a )(∂µW

a
ν − ∂νW a

µ ) +
1

2
gfabcW µ

b W
ν
c (∂µW

a
ν − ∂νW a

µ )

− 1

4
g2fabcfadeW µ

b W
ν
cW

d
µW

e
ν . (A.24)

Lepton sector

For the LH leptons and neutrinos, we have

L′Liiγ
µDµL

′
Li = (ν′Li `

′
Li)iγ

µ∂µ

 ν′Li

`′Li

+
1

2
(ν′Li `

′
Li)γ

µ

 gLW
3
Lµ − g′Bµ

√
2gLW

+
Lµ

√
2gLW

−
Lµ −gLW 3

Lµ − g′Bµ


 ν′Li

`′Li


= ν′Liiγ

µ∂µν
′
Li + `′Liiγ

µ∂µ`
′
Li +

1

2
ν′Liγ

µν′Li(gLW
3
Lµ − g′Bµ)

− 1

2
`′Liγ

µ`′Li(gLW
3
Lµ + g′Bµ) +

1√
2
gLν′Liγ

µ`′LiW
+
Lµ +

1√
2
gL`′Liγ

µν′LiW
−
Lµ

(A.25)
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Similarly, the kinetic terms for the RH leptons and neutrinos are written as

L′Riiγ
µDµL

′
Ri = ν ′Riiγ

µ∂µν
′
Ri + `′Riiγ

µ∂µ`
′
Ri +

1

2
ν ′Riγ

µν ′Ri(gRW
3
Rµ − g′Bµ)

− 1

2
`′Riγ

µ`′Ri(gRW
3
Rµ + g′Bµ) +

1√
2
gRν ′Riγ

µ`′RiW
+
Rµ +

1√
2
gR`′Riγ

µν ′RiW
−
Rµ.

(A.26)

Quark sector

For quarks, we have

QLiiγ
µDµQLi = uLiiγ

µ∂µuLi + dLiiγ
µ∂µdLi +

1

2
uLiγ

µuLi

(
gLW

3
Lµ +

1

3
g′Bµ

)
− 1

2
dLiγ

µdLi

(
gLW

3
Lµ −

1

3
g′Bµ

)
+

1√
2
gLuLiγ

µdLiW
+
Lµ +

1√
2
gLdLiγ

µuLiW
−
Lµ

(A.27)

and

QRiiγ
µDµQRi = uRiiγ

µ∂µuRi + dRiiγ
µ∂µdRi +

1

2
uRiγ

µuRi

(
gLW

3
Rµ +

1

3
g′Bµ

)
− 1

2
dRiγ

µdRi

(
gLW

3
Rµ −

1

3
g′Bµ

)
+

1√
2
gRuRiγ

µdRiW
+
Rµ +

1√
2
gRdRiγ

µuRiW
−
Rµ.

(A.28)

Scalar field sector

For scalar fields, we have

Ls = tr[(DµΦ)†(DµΦ)] + tr[(Dµ∆L)†(Dµ∆L)] + tr[(Dµ∆R)†(Dµ∆R)]. (A.29)

Now we explicitly calculate the masses of gauge bosons.
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Contribution from 〈Φ〉

We have

LΦ = tr[(DµΦ)†(DµΦ)]

= tr

[(
∂µΦ† + igLΦ†

σaL
2
W aµ
L − igR

σaR
2
W aµ
R Φ†

)(
∂µΦ− igL

σbL
2
W b
LµΦ + igRΦ

σbR
2
W b
Rµ

)]
= tr

[
∂µΦ†∂µΦ− i

2
gL∂

µΦ†σaLW
a
LµΦ +

i

2
gR∂

µΦ†ΦσaRW
a
Rµ +

i

2
gLΦ†σaLW

aµ
L ∂µΦ− i

2
gRσ

a
RW

aµ
R Φ†∂µΦ

+
1

4

(
g2
LΦ†σaLσ

b
LΦW aµ

L W b
Lµ − gLgRΦ†σaLΦσbRW

aµ
L W b

Rµ

−gLgRσaRΦ†σbLΦW aµ
R W b

Lµ + g2
Rσ

a
RΦ†ΦσbRW

aµ
R W b

Rµ

)]
. (A.30)

After Φ acquires the VEV, we can write

tr
[
〈Φ†〉σaLσbL〈Φ〉W aµ

L W b
Lµ

]
=

1

2
(κ2

1 + κ2
2)W 3µ

L W 3
Lµ + (κ2

1 + κ2
2)W+µ

L W−Lµ, (A.31)

tr
[
〈Φ†〉σaL〈Φ〉σbRW aµ

L W b
Rµ

]
=

1

2
(κ2

1 + κ2
2)W 3µ

L W 3
Rµ + κ1κ2e

iαW+µ
L W−Rµ + κ1κ2e

−iαW−µL W+
Rµ,

(A.32)

tr
[
〈Φ〉σaR〈Φ†〉σbLW aµ

L W b
Rµ

]
= tr

[
〈Φ†〉σaL〈Φ〉σbRW aµ

L W b
Rµ

]†
=

1

2
(κ2

1 + κ′2)W 3µ
L W 3

Rµ + κ1κ2e
iαW+µ

L W−Rµ + κκ2e
−iαW−µL W+

Rµ,

(A.33)

tr
[
〈Φ〉σbRσaR〈Φ†〉W aµ

R W b
Rµ

]
= tr

[
〈Φ†〉σaRσbR〈Φ〉W aµ

R W b
Rµ

]†
=

1

2
(κ2

1 + κ2
2)W 3µ

R W 3
Rµ + (κ2

1 + κ2
2)W+µ

R W−Rµ. (A.34)

We therefore have

〈LΦ〉 =
1

8
(κ2

1 + κ2
2)
(
g2
LW

3µ
L W 3

Lµ − 2gLgRW
3µ
L W 3

Rµ + g2
RW

3µ
R W 3

Rµ

)
+

1

4
g2
L(κ2

1 + κ2
2)W+µ

L W−
Lµ −

1

2
gLgRκ1κ2e

iαW+µ
L W−

Rµ

− 1

2
gLgRκ1κ2e

−iαW−µ
L W+

Rµ +
1

4
g2
R(κ2

1 + κ2
2)W+µ

R W−
Rµ + · · · . (A.35)
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Contribution from 〈∆〉

We can write the scalar triplet ∆ as

∆ =
1√
2
σaδa (A.36)

where

δ0 =
1√
2

(δ1 + iδ2), δ+ = δ3, δ++ =
1√
2

(δ1 − iδ2). (A.37)

The gauge invariant kinetic term for ∆ is given by

L∆ = tr[(Dµ∆)†(Dµ∆)] =
1

2
tr[{Dµ(σaδa)}†{Dµ(σbδb)}]

=
1

2
tr[σaσb](∂µδa∗ + igδc∗Tca ·Wµ + ig′Bµδa∗)(∂µδ

b − igTbd ·Wµδ
d − ig′Bµδ

b)

= ∂µδa∗∂µδ
a − ig∂µδa∗(T i)adδdW i

µ − ig′∂µδa∗δaBµ

+ igδc∗(T i)ca∂µδ
aW iµ + g2δc∗(T i)ca(T j)adδdW iµW j

µ + gg′δc∗(T i)caδaW iµBµ

+ ig′δa∗∂µδ
aBµ + gg′δa∗(T j)adδdW j

µB
µ + g′2δa∗δaBµBµ

= ∂µδa∗∂µδ
a − ig∂µδa∗(T i)adδdW i

µ + igδc∗(T i)ca∂µδ
aW iµ + g2δc∗(T i)ca(T j)adδdW iµW j

µ

+ 2gg′δc∗(T i)caδaW iµBµ − ig′∂µδa∗δaBµ + ig′δa∗∂µδ
aBµ + g′2δa∗δaBµBµ

(A.38)

where T i is the generator of the SU(2) adjoint representation. Since (T c)ab = −iεabc,

we have

δc∗(T i)ca(T j)adδd = δc∗εaciεadjδd = δc∗(δcdδij − δcjδid)δd = δc∗δcδij − δj∗δi,

δc∗(T i)caδa = −iδc∗εcaiδa. (A.39)
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Therefore, the kinetic terms can be written as

L∆ = ∂µδa∗∂µδ
a − gεabc∂µδa∗δbW c

µ + gεabcδa∗∂µδ
bW cµ + g2δa∗δaW bµW b

µ − g2δa∗δbW aµW b
µ

− 2igg′εabcδa∗δbW cµBµ − ig′∂µδa∗δaBµ + ig′δa∗∂µδ
aBµ + g′2δa∗δaBµBµ.

(A.40)

We also have

δa∗δa = δ0∗δ0 + δ−δ+ + δ−−δ++,

δa∗W a
µ = δ−−W+

µ + δ0∗W−µ + δ−W 3
µ ,

δaW a
µ = δ++W−µ + δ0W+

µ + δ+W 3
µ ,

εabcδa∗δbW c
µ = (δ1∗δ2 − δ2∗δ1)W 3

µ + (δ2∗δ3 − δ3∗δ2)W 1
µ + (δ3∗δ1 − δ1∗δ3)W 2

µ

= i(δ++δ−−W 3
µ − δ0∗δ0W 3

µ + δ0δ−W+
µ − δ−−δ+W+

µ + δ0∗δ+W−µ − δ++δ−W−µ ).

(A.41)

After ∆ acquires the VEV, the Lagrangian terms relevant to the masses of gauge

bosons can be written as

〈L∆〉 =
1

2
g2v2(2W+µW−

µ +W 3µW 3
µ)− 1

2
g2v2W+µW−

µ − gg′v2W 3µBµ +
1

2
g′2v2BµBµ + · · ·

=
1

2
g2v2W+µW−

µ +
1

2
g2v2W 3µW 3

µ − gg′v2W 3µBµ +
1

2
g′2v2BµBµ + · · · .

(A.42)
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Total contributions

Hence, we have

〈Ls〉 = 〈LΦ〉+ 〈L∆L
〉+ 〈L∆R

〉

=
1

8
(κ2

1 + κ2
2)
(
g2
LW

3µ
L W 3

Lµ − 2gLgRW
3µ
L W 3

Rµ + g2
RW

3µ
R W 3

Rµ

)
+

1

4
g2
L(κ2

1 + κ2
2)W+µ

L W−Lµ −
1

2
gLgRκ1κ2e

iαW+µ
L W−Rµ

− 1

2
gLgRκ1κ2e

−iαW−µL W+
Rµ +

1

4
g2
R(κ2

1 + κ2
2)W+µ

R W−Rµ

+
1

2
g2
Lv

2
LW

+µ
L W−Lµ +

1

2
g2
Lv

2
LW

3µ
L W 3

Lµ − gLg′v2
LW

3µ
L Bµ +

1

2
g′2v2

LB
µBµ

+
1

2
g2
Rv

2
RW

+µ
R W−Rµ +

1

2
g2
Rv

2
RW

3µ
R W 3

Rµ − gRg′v2
RW

3µ
R Bµ +

1

2
g′2v2

RB
µBµ + · · ·

=
1

8
g2
L(κ2

1 + κ2
2 + 4v2

L)W 3µ
L W 3

Lµ −
1

4
gLgR(κ2

1 + κ2
2)W 3µ

L W 3
Rµ +

1

8
g2
R(κ2

1 + κ2
2 + 4v2

R)W 3µ
R W 3

Rµ

− gLg′v2
LW

3µ
L Bµ − gRg′v2

RW
3µ
R Bµ +

1

2
g′2(v2

L + v2
R)BµBµ

+
1

4
g2
L(κ2

1 + κ2
2 + 2v2

L)W+µ
L W−Lµ −

1

2
gLgRκ1κ2e

iαW+µ
L W−Rµ −

1

2
gLgRκ1κ2e

−iαW−µL W+
Rµ

+
1

2
g2
R(κ2

1 + κ2
2 + 2v2

R)W+µ
R W−Rµ + · · · . (A.43)

We therefore can write the mass terms for gauge bosons as

Lmass
g =

1

2
(W 3µ

L W 3µ
R Bµ)


1
4g

2
L(κ2

1 + κ2
2 + 4v2

L) −1
4gLgR(κ2

1 + κ2
2) −gLg′v2

L

−1
4gLgR(κ2

1 + κ2
2) 1

4g
2
R(κ2

1 + κ2
2 + 4v2

R) −gRg′v2
R

−gLg′v2
L −gRg′v2

R g′2(v2
L + v2

R)




W 3
Lµ

W 3
Rµ

Bµ



+ (W+µ
L W+µ

R )

 1
4g

2
L(κ2

1 + κ2
2 + 2v2

L) −1
2gLgRκ1κ2e

iα

−1
2gLgRκ1κ2e

−iα 1
4g

2
R(κ2

1 + κ2
2 + 2v2

R)


 W−Lµ

W−Rµ

+ · · · .

(A.44)

(i) Charged gauge bosons
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Without loss of generality, the general form of the change of basis for charged gauge

bosons can be written as W−
L

W−
R

 =

 cos ξ sin ξeiα

− sin ξe−iα cos ξ


 W−

1

W−
2

 (A.45)

where W−
1 and W−

2 are mass eigenstates. We can find

cos ξ =
b− a+

√
(b− a)2 + 4c2√

[b− a+
√

(b− a)2 + 4c2]2 + 4c2

, sin ξ = − 2c√
[b− a+

√
(b− a)2 + 4c2]2 + 4c2

(A.46)

where

a ≡ 1

4
g2
L(κ2

1 + κ2
2 + 2v2

L), b ≡ 1

4
g2
R(κ2

1 + κ2
2 + 2v2

R), c ≡ 1

2
gLgRκ1κ2. (A.47)

Note that we have

tan 2ξ = − 2c

b− a = − 4gLgRκ1κ2

(g2
R − g2

L)(κ2
1 + κ2

2) + 2(g2
Rv

2
R − g2

Lv
2
L)
. (A.48)

The masses of charged gauge bosons are found to be

m2
W1

=
1

2
[b+ a−

√
(b− a)2 + 4c2], m2

W2
=

1

2
[b+ a+

√
(b− a)2 + 4c2].

(A.49)

With the phenomenological assumption vL � κ1, κ2 � vR, we have a, c� b. Then,

we can approximately write
√

(b− a)2 + 4c2 ≈ b− a+ 2c2/b, which gives

cos ξ ≈ 1− c2

2b2
= 1− 2g2

Lκ
2
1κ

2
2

g2
R(κ2

1 + κ2
2 + 2v2

R)2
≈ 1− g2

Lκ
2
1κ

2
2

2g2
Rv

4
R

, (A.50)

sin ξ ≈ −c
b

(
1 +

a

b

)
= − 2gLκ1κ2

gR(κ2 + κ2
2 + 2v2

R)

[
1 +

g2
L(κ2

1 + κ2
2 + 2v2

L)

g2
R(κ2

1 + κ2
2 + 2v2

R)

]
≈ −gLκ1κ2

gRv2
R

,

(A.51)

(A.52)
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and

tan 2ξ ≈ −2gLκ1κ2

gRv2
R

. (A.53)

Note that we have 0 < −ξ � 1. The charged gauge boson masses can also be

written as

m2
W1
≈ a− c2

b
=

1

4
g2
L(κ2

1 + κ2
2 + 2v2

L)− 2g2
Lκ

2
1κ

2
2

κ2
1 + κ2

2 + 2v2
R

, (A.54)

m2
W2
≈ b+

c2

b
=

1

4
g2
R(κ2

1 + κ2
2 + 2v2

R) +
2g2

Lκ
2
1κ

2
2

κ2
1 + κ2

2 + 2v2
R

, (A.55)

or simply as

m2
W1
≈ 1

4
g2
L(κ2

1 + κ2
2), m2

W2
≈ 1

2
g2
Rv

2
R. (A.56)

These approximate expressions are obtained by systematically expanding the trigono-

metric functions and gauge boson masses in terms of the small parameters a/b and

c/b up to the second order.

(ii) Neutral gauge bosons

Without loss of generality, the general form of the change of basis for neutral gauge

bosons can be written as
W 3
L

W 3
R

B

 =


1 0 0

0 cos ζ1 sin ζ1

0 − sin ζ1 cos ζ1




cos ζ2 0 sin ζ2

0 1 0

− sin ζ2 0 cos ζ2




cos ζ3 sin ζ3 0

− sin ζ3 cos ζ3 0

0 0 1




Z1

Z2

A


(A.57)

=


cos ζ2 cos ζ3 cos ζ2 sin ζ3 sin ζ2

− sin ζ1 sin ζ2 cos ζ3 − cos ζ1 sin ζ3 cos ζ1 cos ζ3 − sin ζ1 sin ζ2 sin ζ3 sin ζ1 cos ζ2

− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3 − sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3 cos ζ1 cos ζ2




Z1

Z2

A


(A.58)
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where Z1, Z2, and A are the mass eigenstates, and the mixing angles are given by

cos ζ1 =
gR√

g2
R + g′2

, sin ζ1 =
g′√

g2
R + g′2

, (A.59)

cos ζ2 =
gL
√
g2
R + g′2√

g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2 , sin ζ2 =

gRg
′√

g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2 , (A.60)

tan 2ζ3 =
2
√
g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2[4g′2v2

L − g2
R(κ2

1 + κ2
2)]

(g4
R − g2

Lg
2
R − g2

Lg
′2 − g2

Rg
′2)(κ2

1 + κ2
2) + 4(g′4 − g2

Lg
2
R − g2

Lg
′2 − g2

Rg
′2)v2

L + 4(g2
R + g′2)2v2

R

.

(A.61)

Note that we have the identity

gLgRg
′√

g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2

= g′ cos ζ1 cos ζ2 = gL sin ζ2 (A.62)

or

g′ =
gL tan ζ2

cos ζ1

. (A.63)

The gauge field A corresponds to the photon with zero mass, and the masses of the

other neutral gauge bosons are

m2
Z1

=
1

8
(g2
L + g2

R)(κ2
1 + κ2

2) +
1

2
(g2
L + g′2)v2

L +
1

2
(g2
R + g′2)v2

R

− 1

4(g2
R + g′2)

{
(g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2)[4g′2v2

L − g2
R(κ2

1 + κ2
2)]2

+

[
1

2
(g4
R − g2

Lg
2
R − g2

Lg
′2 − g2

Rg
′2)(κ2

1 + κ2
2)

+ 2(g′4 − g2
Lg

2
R − g2

Lg
′2 − g2

Rg
′2)v2

L + 2(g2
R + g′2)2v2

R

]2}1/2

,

(A.64)

m2
Z2

=
1

8
(g2
L + g2

R)(κ2
1 + κ2

2) +
1

2
(g2
L + g′2)v2

L +
1

2
(g2
R + g′2)v2

R

+
1

4(g2
R + g′2)

{
(g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2)[4g′2v2

L − g2
R(κ2

1 + κ2
2)]2

+

[
1

2
(g4
R − g2

Lg
2
R − g2

Lg
′2 − g2

Rg
′2)(κ2

1 + κ2
2)

+ 2(g′4 − g2
Lg

2
R − g2

Lg
′2 − g2

Rg
′2)v2

L + 2(g2
R + g′2)2v2

R

]2}1/2

.

(A.65)
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The neutral gauge bosons that couple to the LH fermions can be written as

gLW
3
Lµ − g′Bµ = gL(cos ζ2 cos ζ3Z1 + cos ζ2 sin ζ3Z2 + sin ζ2A)

− g′
[
(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)Z1

+ (− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)Z2 + cos ζ1 cos ζ2A
]

=
[
gL cos ζ2 cos ζ3 − g′(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)

]
Z1

+
[
gL cos ζ1 sin ζ2 − g′(− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)

]
Z2

+ (gL sin ζ2 − g′ cos ζ1 cos ζ2)A

= (gL cos ζ2 cos ζ3 + g′ cos ζ1 sin ζ2 cos ζ3 − g′ sin ζ1 sin ζ3)Z1

+ (gL cos ζ2 sin ζ3 + g′ sin ζ1 cos ζ3 + g′ cos ζ1 sin ζ2 sin ζ3)Z2

=
gL

cos ζ2

[
(cos ζ3 − tan ζ1 sin ζ2 sin ζ3)Z1 + (tan ζ1 sin ζ2 cos ζ3 + sin ζ3)Z2

]
(A.66)

and

gLW
3
Lµ + g′Bµ = gL(cos ζ2 cos ζ3Z1 + cos ζ2 sin ζ3Z2 + sin ζ2A)

+ g′
[
(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)Z1

+ (− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)Z2 + cos ζ1 cos ζ2A
]

=
[
gL cos ζ2 cos ζ3 + g′(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)

]
Z1

+
[
gL cos ζ2 sin ζ3 + g′(− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)

]
Z2

+ (gL sin ζ2 + g′ cos ζ1 cos ζ2)A

= (gL cos ζ2 cos ζ3 − g′ cos ζ1 sin ζ2 cos ζ3 + g′ sin ζ1 sin ζ3)Z1

+ (gL cos ζ2 sin ζ3 − g′ sin ζ1 cos ζ3 − g′ cos ζ1 sin ζ2 sin ζ3)Z2

+ 2gL sin ζ2A

=
gL

cos ζ2

[
(cos 2ζ2 cos ζ3 + tan ζ1 sin ζ2 sin ζ3)Z1

+ (− tan ζ1 sin ζ2 cos ζ3 + cos 2ζ2 sin ζ3)Z2

]
+ 2gL sin ζ2A. (A.67)

For the RH sector, we have

gRW
3
Rµ − g′Bµ = gR

[
(− sin ζ1 sin ζ2 cos ζ3 − cos ζ1 sin ζ3)Z1
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+ (cos ζ1 cos ζ3 − sin ζ1 sin ζ2 sin ζ3)Z2 + sin ζ1 cos ζ2A
]

− g′
[
(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)Z1

+ (− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)Z2 + cos ζ1 cos ζ2A
]

=
[
gR(− sin ζ1 sin ζ2 cos ζ3 − cos ζ1 sin ζ3)− g′(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)

]
Z1

+
[
gR(cos ζ1 cos ζ3 − sin ζ1 sin ζ2 sin ζ3)− g′(− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)

]
Z2

+ (gR sin ζ1 cos ζ2 − g′ cos ζ1 cos ζ2)A

= (−gR sin ζ1 sin ζ2 cos ζ3 − gR cos ζ1 sin ζ3 + g′ cos ζ1 sin ζ2 cos ζ3 − g′ sin ζ1 sin ζ3)Z1

+ (gR cos ζ1 cos ζ3 − gR sin ζ1 sin ζ2 sin ζ3 + g′ sin ζ1 cos ζ3 + g′ cos ζ1 sin ζ2 sin ζ3)Z2

=
gR

cos ζ1
(− sin ζ3Z1 + cos ζ3Z2) (A.68)

and

gRW
3
Rµ + g′Bµ = gR

[
(− sin ζ1 sin ζ2 cos ζ3 − cos ζ1 sin ζ3)Z1

+ (cos ζ1 cos ζ3 − sin ζ1 sin ζ2 sin ζ3)Z2 + (sin ζ1 cos ζ2)A
]

+ g′
[
(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)Z1

+ (− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)Z2 + cos ζ1 cos ζ2A
]

=
[
gR(− sin ζ1 sin ζ2 cos ζ3 − cos ζ1 sin ζ3) + g′(− cos ζ1 sin ζ2 cos ζ3 + sin ζ1 sin ζ3)

]
Z1

+
[
gR(cos ζ1 cos ζ3 − sin ζ1 sin ζ2 sin ζ3) + g′(− sin ζ1 cos ζ3 − cos ζ1 sin ζ2 sin ζ3)

]
Z2

+ (gR sin ζ1 cos ζ2 + g′ cos ζ1 cos ζ2)A

= (−gR sin ζ1 sin ζ2 cos ζ3 − gR cos ζ1 sin ζ3 − g′ cos ζ1 sin ζ2 cos ζ3 + g′ sin ζ1 sin ζ3)Z1

+ (gR cos ζ1 cos ζ3 − gR sin ζ1 sin ζ2 sin ζ3 − g′ sin ζ1 cos ζ3 − g′ cos ζ1 sin ζ2 sin ζ3)Z2

+ 2gR sin ζ1 cos ζ2A

= gR
[
− 2 sin ζ1 sin ζ2 cos ζ3 − cos ζ1(1− tan2 ζ1) sin ζ3

]
Z1

+ gR
[

cos ζ1(1− tan2 ζ1) cos ζ3 − 2 sin ζ1 sin ζ2 sin ζ3
]
Z2

+ 2gR sin ζ1 cos ζ2A

=
gR

cos ζ1

[
− (sin 2ζ1 sin ζ2 cos ζ3 + cos 2ζ1 sin ζ3)Z1
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+ (cos 2ζ1 cos ζ3 − sin 2ζ1 sin ζ2 sin ζ3)Z2

]
+ 2gR sin ζ1 cos ζ2A. (A.69)

With the phenomenological assumption vL � κ1, κ2 � vR, we can approximately

write

tan 2ζ3 ≈ −
g2
R

√
g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2(κ2

1 + κ2
2)

2(g2
R + g′2)2v2

R

(A.70)

where 0 < −ζ3 � 1. The neutral gauge boson masses can be written as

m2
Z1
≈ g2

Lg
2
R + g2

Lg
′2 + g2

Rg
′2

4(g2
R + g′2)

(κ2
1 + κ2

2 + 4v2
L) ≈ g2

Lg
2
R + g2

Lg
′2 + g2

Rg
′2

4(g2
R + g′2)

(κ2 + κ′2),

(A.71)

m2
Z2
≈ g4

R

4(g2
R + g′2)

(κ2
1 + κ2

2) +
g′4

g2
R + g′2

v2
L + (g2

R + g′2)v2
R ≈ (g2

R + g′2)v2
R. (A.72)

The first approximate approximate expressions are obtained by expanding the gauge

boson masses in terms of the small parameters (κ2
1 + κ2

2)/v2
R and v2

L/v
2
R up to the

first order. From the second approximate expressions, we can identify the Weinberg

angle θW from its experimental definition

cos θW ≡
mW1

mZ1

≈ cos ζ2 (A.73)

and also the electric charge from

e = gL sin ζ2 = gR sin ζ1 cos ζ2

≈ gL sin θW = gR sin ζ1 cos θW (A.74)

where we have chosen e, gL, gR, θW > 0. Now we can rewrite

m2
Z1
≈ g2

L(κ2
1 + κ2

2)

4 cos2 θW
, m2

Z2
≈ g2

Rv
2
R

1− (g2
L/g

2
R) tan2 θW

, (A.75)
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and

ζ1 = sin−1

(
gL
gR

tan θW

)
, ζ2 ≈ θW , ζ3 ≈ −

gL
√
g2
R − g2

L tan2 θW (κ2
1 + κ2

2)

4 cos θWm2
Z2

.

(A.76)

Since 0 < sin ζ1 ≤ 1, we must have

0 <
gL
gR

tan θW ≤ 1 (A.77)

where tan θW ≈ 0.548. In addition,

tan 2ζ3 ≈ −
2g2

R√
g2
Lg

2
R + g2

Lg
′2 + g2

Rg
′2

m2
Z1

m2
Z2

= −2 cos θW

√
g2
R/g

2
L − tan2 θW

m2
Z1

m2
Z2

.

(A.78)

Now we simply write ζ ≡ ζ3. Then, we have

gLW
3
Lµ − g′Bµ =

gL
cos ζ2

[
(cos ζ3 − tan ζ1 sin ζ2 sin ζ3)Z1 + (tan ζ1 sin ζ2 cos ζ3 + sin ζ3)Z2

]
≈ gL

cos θW

1− ζ gL sin2 θW√
g2
R sin2 θW − g2

L cos2 θW

Z1 +

 gL sin2 θW√
g2
R sin2 θW − g2

L cos2 θW

+ ζ

Z2


(A.79)

and

gLW
3
Lµ + g′Bµ =

gL
cos ζ2

[
(cos 2ζ2 cos ζ3 + tan ζ1 sin ζ2 sin ζ3)Z1 + (− tan ζ1 sin ζ2 cos ζ3 + cos 2ζ2 sin ζ3)Z2

]
+ 2gL sin ζ2A

≈ gL
cos θW

cos 2θW + ζ
gL sin2 θW√

g2
R sin2 θW − g2

L cos2 θW

Z1

+

− gL sin2 θW√
g2
R sin2 θW − g2

L cos2 θW

+ ζ cos 2θW

Z2

+ 2gL sin θWA.

(A.80)

For the RH sector,

gRW
3
Rµ − g′Bµ =

gR
cos ζ1

(− sin ζ3Z1 + cos ζ3Z2) ≈ g2
R√

g2
R − g2

L tan2 θW

(−ζZ1 + Z2) (A.81)
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and

gRW
3
Rµ + g′Bµ =

gR
cos ζ1

[
− (sin 2ζ1 sin ζ2 cos ζ3 + cos 2ζ1 sin ζ3)Z1 + (cos 2ζ1 cos ζ3 − sin 2ζ1 sin ζ2 sin ζ3)Z2

]
+ 2gR sin ζ1 cos ζ2A

≈ gL√
g2
R − g2

L tan2 θW

[
−
(

2 sin θW tan θW

√
g2
R/g

2
L − tan2 θW + ζ

[
g2
R/g

2
L − 2 tan2 θW

])
Z1

+

(
g2
R/g

2
L − 2 tan2 θW − 2ζ sin θW tan θW

√
g2
R/g

2
L − tan2 θW

)
Z2

]
+ 2gL sin θWA

=
gL

cos θW

−
2 sin2 θW + ζ

[
g2
R/g

2
L − 2 tan2 θW

]
cos θW√

g2
R/g

2
L − tan2 θW

Z1

+

[g2
R/g

2
L − 2 tan2 θW

]
cos θW√

g2
R/g

2
L − tan2 θW

− 2ζ sin2 θW

Z2

+ 2gL sin θWA.

(A.82)

84



Appendix B: Expressions of observables

For the observables discussed here, the expressions presented in reference [12] are

mostly used. The exceptions are the form factors FZ1
R and Bµeee

RR : for FZ1
R , a mixed

expression from references [12] and [57] is used; for Bµeee
RR , the suppression factor

(mWL
/mWR

)2 is multiplied to the whole expression. The normalized Yukawa cou-

plings h̃L and h̃R are explicitly distinguished in this paper, since they are generally

different even with the manifest left-right symmetry.

Charged lepton flavour violation

The normalized Yukawa couplings h̃L, h̃R in the charged lepton mass basis are given

by [58]

h̃L ≡
2

g
V `T
L hLV

`
L =

2

g
V `T
L

M∗
Le
−iθL

√
2vL

V `
L, (B.1)

h̃R ≡
2

g
V `T
R hRV

`
R =

2

g
V `T
R

MR√
2vR

V `
R = V `T

R

MR

mWR

V `
R. (B.2)

Note that h̃L 6= h̃R in general since V `
L 6= V `

R for nonzero α, although h ≡ hL = hR

with the parity symmetry. The loop functions of CLFV are given in appendix B.
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`a → `bγ

For on-shell decay `a → `bγ, the branching ratio is given by

BR`a→`bγ =
α3
W s

2
Wm

5
`a

256π2m4
WL

Γ`a

(
|Gγ

L|2 + |Gγ
R|2
)

(B.3)

where αW ≡ g2/(4π), sW ≡ sin θW , and Γ`a is the decay rates of `a: Γµ = 2.996·10−19

GeV and Γτ = 2.267 · 10−12 GeV [59]. The form factors Gγ
L, Gγ

R are given by

Gγ
L =

3∑
i=1

[
VµiV

∗
eiξ

2Gγ
1(xi)− S∗µiV ∗eiξe−iαGγ

2(xi)
mNi

m`a

+ VµiV
∗
ei

m2
WL

m2
WR

Gγ
1(yi) + h̃Rµih̃

∗
Rei

2

3

m2
WL

m2
δ++
R

]
,

(B.4)

Gγ
R =

3∑
i=1

[
S∗µiSeiG

γ
1(xi)− VµiSeiξeiαGγ

2(xi)
mNi

m`a

+ h̃Lµih̃
∗
Lei

(
2

3

m2
WL

m2
δ++
L

+
1

12

m2
WL

m2
H+

1

)]
(B.5)

where xi = (mNi/mWL
)2 and yi = (mNi/mWR

)2. The initial and final charged

leptons have opposite chiralities, and L or R in Gγ
L,R denotes the chirality of the

initial charged lepton. The Feynman diagrams of on-shell µ→ eγ are given in figure

B.1.

µ→ eee

The tree-level contribution to µ→ eee is

BRtree
µ→eee =

α4
Wm

5
µ

24576π3m4
WL

Γµ

(4π)2

2α2
W

(∣∣h̃Lµeh̃∗Lee∣∣2 m4
WL

m4
δ++
L

+
∣∣h̃Rµeh̃∗Ree∣∣2 m4

WL

m4
δ++
R

)
. (B.6)

The Feynman diagrams of the tree-level processes are given in figure B.2. The
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one-loop type-I seesaw contribution is given by [60,61]

BRtype-I
µ→eee =

α4
Wm

5
µ

24576π3m4
WL

Γµ

[
2

{∣∣∣∣12Bµeee
LL + FZ1

L − 2s2
W

(
FZ1
L − F γ

L

)∣∣∣∣2 +

∣∣∣∣12Bµeee
RR − 2s2

W

(
FZ1
R − F γ

R

)∣∣∣∣2}
+

∣∣∣∣2s2
W

(
FZ1
L − F γ

L

)
−Bµeee

LR

∣∣∣∣2 +

∣∣∣∣2s2
W

(
FZ1
R − F γ

R

)
−
(
FZ1
R +Bµeee

RL

)∣∣∣∣2
+ 8s2

W

{
Re

[(
2FZ1

L +Bµeee
LL +Bµeee

LR

)
Gγ∗
R

]
+ Re

[(
FZ1
R +Bµeee

RR +Bµeee
RL

)
Gγ∗
L

]}
− 48s4

W

{
Re

[(
FZ1
L − F γ

L

)
Gγ∗
R

]
+ Re

[(
FZ1
R − F γ

R

)
Gγ∗
L

]}
+ 32s4

W

(
|Gγ

L|2 + |Gγ
R|2
){

ln

(
m2
µ

m2
e

)
− 11

4

}]
, (B.7)

and the interference terms are

BRtree+type-I
µ→eee =

α4
Wm

5
µ

24576π3m4
WL

Γµ

2(4π)

αW
×[

m2
WL

m2
δ++
L

Re

[
h̃∗Lµeh̃Lee

{
2s2

WF
γ
L + 4s2

WG
γ
R +Bµeee

LL + FZ1
L (1− 2s2

W )

}]

+
m2
WL

m2
δ++
R

Re

[
h̃∗Rµeh̃Ree

{
2s2

WF
γ
R + 4s2

WG
γ
L +Bµeee

RR − 2s2
WF

Z1
R

}]]
.

(B.8)

The form factors for the off-shell photon exchange are

F γ
L =

3∑
i=1

[
S∗µiSeiFγ(xi)− h̃Lµih̃∗Lei

(
2

3

m2
WL

mδ++
L

ln
m2
µ

mδ++
L

+
1

18

m2
WL

mH+
1

)]
, (B.9)

F γ
R =

3∑
i=1

[
VµiV

∗
ei

(
ξ2Fγ(xi) +

m2
WL

m2
WR

Fγ(yi)

)
− h̃Rµih̃∗Rei

2

3

m2
WL

mδ++
R

ln
m2
µ

mδ++
R

]
. (B.10)
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For the Z1-exchange diagrams, the form factors are given by

FZ1
L =

3∑
i,j=1

S∗µiSej

[
δij
{
FZ(xi) + 2GZ(0, xi)

}
+ (STS∗)ij

{
GZ(xi, xj)−GZ(0, xi)−GZ(0, xj)

}
+ (S†S)ijHZ(xi, xj)

]
,

(B.11)

FZ1
R =

3∑
i=1

VµiV
∗
ei

[
8ζ3c

2
W√

1− 2s2
W

{
FZ(yi) + 2GZ(0, yi)−

yi
2

}
+ 2

(
κ1κ2

vEWvR

)2

DZ(yi, xi)

+

(
κ2

1 − κ2
2√

2vEWvR

)2

DZ(yi, zi)

]
(B.12)

where zi = (mNi/mH+
2

)2, cW ≡ cos θW , and ζ3 is the Z1-Z2 mixing parameter given

by equation 2.18. The Feynman diagrams that contribute to F γ
L,R and FZ1

L,R are

presented in reference [58]. The form factors of the box diagrams are written as

Bµeee
LL = −2

3∑
i=1

S∗µiSei
[
FXbox(0, xi)− FXbox(0, 0)

]
+

3∑
i,j=1

S∗µiSej

[
− 2S∗ejSei

{
FXbox(xi, xj)− FXbox(0, xj)− FXbox(0, xi) + FXbox(0, 0)

}
+ S∗eiSejGbox(xi, xj, 1)

]
, (B.13)

Bµeee
RR = −2

m2
WL

m2
WR

3∑
i,j=1

VµiV
∗
ei

[
FXbox(0, yi)− FXbox(0, 0)

]
+
m2
WL

m2
WR

3∑
i,j=1

VµiV
∗
ej

[
− 2VejV

∗
ei

{
FXbox(yi, yj)− FXbox(0, yj)− FXbox(0, yi) + FXbox(0, 0)

}
+ VeiV

∗
ejGbox(yi, yj, 1)

]
, (B.14)

Bµeee
LR =

1

2

m2
WL

m2
WR

3∑
i,j=1

S∗µiSejVeiV
∗
ejGbox

(
xi, xj,

m2
WL

m2
WR

)
, (B.15)

Bµeee
RL =

1

2

m2
WL

m2
WR

3∑
i,j=1

VµiV
∗
ejS
∗
eiSejGbox

(
xi, xj,

m2
WL

m2
WR

)
. (B.16)
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Here, the masses of light neutrinos and the momenta of external fields are assumed

to be zero. The Feynman diagrams of the box diagrams are presented in figure B.3.

µ→ e

The µ→ e conversion rate is given by [58,61–63]

RA(N,Z)
µ→e =

α3
emα

4
Wm

5
µ

16π2m4
WL

Γcapt

Z4
eff

Z

∣∣Fp(−m2
µ)
∣∣2(∣∣QW

L

∣∣2 +
∣∣QW

R

∣∣2). (B.17)

Here, A, N , and Z are the mass, neutron, and atomic numbers of a nucleus, respec-

tively, and Zeff is the effective atomic number. The parameter Fp is the nuclear form

factor, Γcapt is the capture rate, and αem ≡ e2/(4π). The values of Fp and Γcapt of

various nuclei are summarized in table B.1 [63]. The form factors in equation B.17

Nucleus A
ZN Zeff |Fp(−m2

µ)| Γcapt (106 s−1)

27
13Al 11.5 0.64 0.7054

48
22Ti 17.6 0.54 2.59

197
79 Au 33.5 0.16 13.07

208
82 Pb 34.0 0.15 13.45

Table B.1: Form factors and capture rates of various nuclei associated with µ → e

conversion.

are given by

QW
L,R = (2Z +N)

[
W u
L,R −

2

3
s2
WG

γ
R,L

]
+ (Z + 2N)

[
W d
L,R +

1

3
s2
WG

γ
R,L

]
(B.18)
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and

W u
L,R =

2

3
s2
WF

γ
L,R +

(
− 1

4
+

2

3
s2
W

)
FZ1
L,R +

1

4

(
Bµeuu
LL,RR +Bµeuu

LR,RL

)
, (B.19)

W d
L,R = −1

3
s2
WF

γ
L,R +

(
1

4
− 1

3
s2
W

)
FZ1
L,R +

1

4

(
Bµedd
LL,RR +Bµedd

LR,RL

)
. (B.20)

The box diagram form factors are

Bµeuu
LL =

3∑
i=1

S∗µiSei[Fbox(0, xi)− Fbox(0, 0)], (B.21)

Bµedd
LL =

3∑
i=1

S∗µiSei
[
FXbox(0, xi)− FXbox(0, 0)

+ |V q
Ltd|2{FXbox(xt, xi)− FXbox(0, xi)− FXbox(0, xt) + FXbox(0, 0)}

]
,

(B.22)

Bµeuu
RR =

3∑
i=1

VµiV
∗
ei[Fbox(0, xi)− Fbox(0, 0)], (B.23)

Bµedd
RR =

3∑
i=1

VµiV
∗
ei

[
FXbox(0, xi)− FXbox(0, 0)

+ |V q
Rtd|2{FXbox(xt, xi)− FXbox(0, xi)− FXbox(0, xt) + FXbox(0, 0)}

]
,

(B.24)

and Bµeqq
LR = Bµeqq

RL = 0 due to their chiral structures. Here, xt = m2
t/m

2
WL

and

yt = m2
t/m

2
WR

where mt is the mass of a top quark, and the masses of all the

other quarks as well as light neutrinos are assumed to be zero. The matrix V q
L is

the Cabibbo-Kobayashi-Maskawa matrix, and V q
R is its RH counterpart. Note that

V q
L 6= V q

R for nonzero α, although V q
Ltd = V q

Rtd is assumed for the numerical analysis

in this paper. The momenta of external fields are also assumed to be zero. The

Feynman diagrams of the box diagrams are given in figure B.4.
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Loop functions

The loop functions of CLFV are

Fγ(x) =
7x3 − x2 − 12x

12(1− x)3
− x4 − 10x3 + 12x2

6(1− x)4
lnx, (B.25)

Gγ
1(x) = −2x3 + 5x2 − x

4(1− x)3
− 3x3

2(1− x)4
lnx, (B.26)

Gγ
2(x) =

x2 − 11x+ 4

2(1− x)2
− 3x2

(1− x)3
lnx, (B.27)

FZ(x) = − 5x

2(1− x)
− 5x2

2(1− x)2
lnx, (B.28)

GZ(x, y) = − 1

2(1− x)

[
x2(1− y)

1− x lnx− y2(1− x)

1− y ln y

]
, (B.29)

HZ(x, y) =

√
xy

4(x− y)

[
x(x− 4)

1− x lnx− y(y − 4)

1− y ln y

]
, (B.30)

DZ(x, y) = x
(

2− ln
y

x

)
+
x(−8 + 9x− x2)− x2(8− x) lnx

(1− x)2
+
xy(1− y + y ln y)

(1− y)2

+
2xy(4− x) lnx

(1− x)(1− y)
+

2x(x− 4y) ln y
x

(1− y)(x− y)
, (B.31)

Fbox(x, y) =
(

4 +
xy

4

)
I2(x, y, 1)− 2xyI1(x, y, 1), (B.32)

FXbox(x, y) = −
(

1 +
xy

4

)
I2(x, y, 1)− 2xyI1(x, y, 1), (B.33)

Gbox(x, y, η) = −√xy [(4 + xyη)I2(x, y, η)− (1 + η)I1(x, y, η)] (B.34)
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where

I1(x, y, η) =

[
x lnx

(1− x)(1− ηx)(x− y)
+ (x↔ y)

]
− η ln η

(1− η)(1− ηx)(1− ηy)
,

(B.35)

I2(x, y, η) =

[
x2 lnx

(1− x)(1− ηx)(x− y)
+ (x↔ y)

]
− ln η

(1− η)(1− ηx)(1− ηy)
,

(B.36)

Ii(x, y, 1) ≡ lim
η→1

Ii(x, y, η). (B.37)

Neutrinoless double beta decay

The dimensionless parameter associated with the WL- and light neutrino exchange

is

ην =

∑3
i=1(Uei)

2mνi

me

. (B.38)

For the WL- and heavy neutrino exchange, we have

ηLNR = mp

3∑
i=1

(Sei)
2

mNi

(B.39)

where mp is the mass of a proton. For the WR- and heavy neutrino exchange, the

parameter is given by

ηRNR = mp

(
mWL

mWR

)4 3∑
i=1

(V ∗ei)
2

mNi

. (B.40)

For the δ++
R -exchange, we have

ηδR =

∑3
i=1(Vei)

2mNi

m2
δ++
R

m4
WR

mp

G2
F

. (B.41)
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For the λ-diagram with final state electrons of different helicities, the parameter is

written as

ηλ =

(
mWL

mWR

)2 3∑
i=1

UeiT
∗
ei. (B.42)

For the η-diagram with WL-WR mixing,

ηη = −ξe−iα
3∑
i=1

UeiT
∗
ei. (B.43)

The Feynman diagrams corresponding to those parameters are given in figure B.5.

The phase space factors G0ν
01 and matrix elements M0ν for various processes that

lead to 0νββ are summarized in table B.2 [12,64–71]. The inverse half-life is written

as

[T 0ν
1/2]−1 = G0ν

01

(
|M0ν

ν |2|ην |2 + |M0ν
N |2|ηLNR |2 + |M0ν

N |2|ηRNR + ηδR |2 + |M0ν
λ |2|ηλ|2 + |M0ν

η |2|ηη|2
)

+ interference terms. (B.44)

Isotope G0ν
01 (10−14 yrs.−1) M0ν

ν M0ν
N M0ν

λ M0ν
η

76Ge 0.686 2.58− 6.64 233− 412 1.75− 3.76 235− 637

82Se 2.95 2.42− 5.92 226− 408 2.54− 3.69 209− 234

130Te 4.13 2.43− 5.04 234− 385 2.85− 3.67 414− 540

136Xe 4.24 1.57− 3.85 164− 172 1.96− 2.49 370− 419

Table B.2: Phase space factors and matrix elements associated with 0νββ.
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Electric dipole moments of charged leptons

The EDM of the charged lepton `α (α = e, µ, τ) is given by [11,72]

dα =
eαW

8πm2
WL

Im

[ 3∑
i=1

SαiVαiξe
iαGγ

2(xi)mNi

]
. (B.45)

The Feynman diagrams that generate the EDM of an electron are given in figure

B.6.

Benchmark model parameters and their predictions

The benchmark model parameters and their predictions are summarized in tables

B.3 and B.4. These parameters are chosen to obtain BRµ→eγ, BRµ→eee, Rµ→e, and

T 0ν
1/2 large enough to be observable in near-future experiments.

The Yukawa coupling matrices f , f̃ in the symmetry basis calculated from

these parameters are

f =


−0.117629 −0.0954074− 0.303042i −0.287722− 0.316317i

−0.0954074 + 0.303042i 0.858098 −0.581546− 0.997804i

−0.287722 + 0.316317i −0.581546 + 0.997804i 1.55438

 · 10−6,

(B.46)

f̃ =


9.02581 0.362808− 3.15221i −0.217594 + 0.423914i

0.362808 + 3.15221i 1.53907 3.98014 · 10−4 − 0.328771i

−0.217594− 0.423914i 3.98014 · 10−4 + 0.328771i 0.260124

 · 10−3.

(B.47)
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Parameter Value Parameter Value

log10 (mν3/eV) −10.2 log10 (κ2/GeV) −1.12

mWR
3.60 TeV α 0.7843093682120977π rad

δD −0.700π rad log10 (|A11|/GeV) −8.20

δM1 −0.0640π rad A11/|A11| 1

δM2 0.850π rad A22/|A22| −1

θL12 0.287π rad A33/|A33| −1

θL13 0.387π rad θA12 −0.5970870460412485π rad

θL23 0.546π rad θA13 0.26505775139215687π rad

δL1 −0.488π rad θA23 −0.6679707059438431π rad

δL2 −0.953π rad log10 α3 0.520

δL3 −0.769π rad log10 (ρ3 − 2ρ1) 0.328

δL4 −5.30 · 10−5π rad log10 ρ2 0.450

Table B.3: Benchmark parameters for large CLFV and 0νββ. The predictions from

these parameters are given in table B.4.
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Parameter Value

mWR
3.60 TeV

mν1 0.0631 eV

mν2 0.0637 eV

mν3 0.0807 eV

mN1 0.139 TeV

mN2
0.280 TeV

mN3
4.13 TeV

mH+
1

8.08 TeV

mH+
2

10.1 TeV

mδ++
L

8.09 TeV

mδ++
R

18.6 TeV

κ1 246 GeV

κ2e
iα 0.0759ei0.784π GeV

α3 3.31

ρ3 − 2ρ1 2.13

ρ2 2.82

The charged lepton and Dirac neutrino mass matrices in the symmetry basis are

M` =
1√
2

(fκ2e
iα + f̃κ1)

=


1.57002− 3.95569 · 10−9i 0.0631099− 0.548321i −0.0378502 + 0.0737391i

0.0631098 + 0.548321i 0.267718 + 2.88565 · 10−8i 6.92918 · 10−5 − 0.0571891i

−0.0378501− 0.0737391i 6.92247 · 10−5 + 0.0571891i 0.0452481 + 5.22714 · 10−8i

 GeV,

(B.48)
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MD =
1√
2

(fκ1 + f̃κ2e
−iα)

=


−3.97641− 3.03524i −1.37761 + 0.668135i 0.733973 + 0.446252i

0.742466− 0.912148i 0.849485− 0.517565i −1.12232− 1.59841i

0.448861− 0.299905i −0.901194 + 1.59814i 2.59511− 0.0874759i

 · 10−4 GeV.

(B.49)

The mixing matrices that diagonalize M` are

V `
L =


0.215620 + 3.59016 · 10−5i 0.272630 0.0353401 + 0.936980i

−0.174794− 0.555520i 0.00850025− 0.736518i −0.340224 + 0.0506041i

−0.527503 + 0.579736i 0.526439− 0.325580i 0.0374439− 0.0332209i

 ,

(B.50)

V `
R =


0.215620 0.272630 0.0353401 + 0.936980i

−0.174886− 0.555491i 0.00850025− 0.736518i −0.340224 + 0.0506041i

−0.527407 + 0.579824i 0.526439− 0.325580i 0.0374439− 0.0332209i

 .

(B.51)

The neutrino mass matrices in the charged lepton mass basis are written as

M c
ν = UPMNSM

diag
ν UT

PMNS

=


6.14141 + 0.604007i −0.641188 + 1.37500i −0.414134− 0.161926i

−0.641188 + 1.37500i 5.21993 + 3.90978i −0.721679 + 2.37952i

−0.414134− 0.161926i −0.721679 + 2.37952i 5.35910 + 4.32684i

 · 10−11 GeV,

(B.52)
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M c
D = V `†

L MDV
`
R

=


−0.887458− 0.00113569i −0.596983− 1.80367i −0.364728− 0.967911i

−0.596682 + 1.80377i 2.44772− 0.204264i 0.650485− 0.676299i

−0.364567 + 0.967972i 0.650486 + 0.676299i −3.86700− 3.43503i

 · 10−4 GeV,

(B.53)

M c
R = −M cT

D (M c
ν)−1M c

D

=


327.179− 124.513i −141.421− 201.931i 36.0396 + 816.162i

−141.421− 201.931i 56.2978 + 60.4971i 517.744− 74.6682i

36.0396 + 816.162i 517.744− 74.6682i −2486.91− 2973.37i

 GeV.

(B.54)

The neutrino mixing matrices are given by

U = UPMNS =


0.824240 0.535780 + 0.109200i 0.131084− 0.0667906i

−0.365548 + 0.0658493i 0.632967 + 0.173591i −0.585126− 0.298136i

0.420911 + 0.0741679i −0.516908 + 0.0551401i −0.659043− 0.335799i

 ,

(B.55)

S =


−0.492113− 0.340868i 0.999284 + 0.0561499i 0.239615 + 0.0281506i

−0.0475962 + 0.503081i −0.231028− 1.26661i −0.00795814− 0.320325i

0.232020− 0.00648341i −0.401571 + 0.125068i −0.175188 + 0.136668i

 · 10−6,

(B.56)

T =


−6.53107− 6.47350i −8.46370 + 5.72968i −1.16360− 8.20634i

2.04202− 6.05309i −4.69170− 5.30774i 3.49735− 2.06263i

−1.83711− 0.641098i 0.0608069 + 1.46932i 0.103607− 0.502026i

 · 10−7,

(B.57)
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V =


−0.183724 + 0.375972i 0.879386 + 0.0740900i 0.195953− 0.0876577i

−0.881006 + 0.210057i −0.242230− 0.320460i −0.0720947− 0.114618i

−0.0677616 + 0.00212502i 0.177470− 0.168300i −0.408123 + 0.876937i

 .

(B.58)

The Yukawa coupling matrix h in the symmetry basis is

h =
1√
2vR

V `∗
R M c

RV
`†
R

=


0.206578 + 0.223735i 0.120506− 0.0241230i −0.0469350− 0.0641918i

0.120506− 0.0241230i 0.00351664− 0.0376782i −0.0257606 + 0.00173595i

−0.046935− 0.0641918i −0.0257606 + 0.00173595i −0.00335158 + 0.0385022i

 ,

(B.59)

and the normalized Yukawa couplings h̃L, h̃R in the charged lepton mass basis are

h̃L =
2

g
V `T
L hV `

L

=


0.0908945− 0.0345568i −0.0392741− 0.0560986i 0.00997325 + 0.226713i

−0.0392741− 0.0560986i 0.0156383 + 0.0168047i 0.143818− 0.0207412i

0.00997325 + 0.226713i 0.143818− 0.0207412i −0.690808− 0.825936i

 ,

(B.60)

h̃R =
2

g
V `T
R hV `

R

=


0.0908830− 0.0345871i −0.0392835− 0.0560921i 0.0100110 + 0.226712i

−0.0392835− 0.0560921i 0.0156383 + 0.0168047i 0.143818− 0.0207412i

0.0100110 + 0.226712i 0.143818− 0.0207412i −0.690808− 0.825936i

 .

(B.61)

Note that h̃L ≈ h̃R since we are considering the cases of V `
L ≈ V `

R for the TeV-scale

phenomenology.
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µ−
R NRi

W+
1

µ−
L e−R

mµ −Vµiξeiα −V ∗
eiξe

−iα

γ

(a) GγL

N c
Ri NRi

W+
1

µ−
L e−R

S∗
µi mNi

−V ∗
eiξe

−iα

γ

(b) GγL

µ−
R NRi

W+
2

µ−
L e−R

mµ Vµi V ∗
ei

γ

(c) GγL

µ−
R `+Ri

δ++
R

µ−
L e−R

mµ h̃Rµi h̃∗Rei

γ

(d) GγL

µ−
R δ++

R

`+Ri

µ−
L e−R

mµ h̃Rµi h̃∗Rei

γ

(e) GγL

µ−
L N c

Ri

W+
1

µ−
R e−L

mµ S∗
µi Sei

γ

(f) GγR

NRi N c
Ri

W+
1

µ−
R e−L

−Vµiξeiα mNi Sei

γ

(g) GγR

µ−
L `+Li

δ++
L

µ−
R e−L

mµ h̃Lµi h̃∗Lei

γ

(h) GγR

µ−
L δ++

L

`+Li

µ−
R e−L

mµ h̃Lµi h̃∗Lei

γ

(i) GγR

µ−L νcLi

H+
1

µ−R e−L

mµ
1√
2
h̃Lµi

1√
2
h̃∗Lei

γ

(j) GγR

Figure B.1: Feynman diagrams of on-shell µ→ eγ. Here, W+
L ≈ W+

1 +ξe−iαW+
2 and

W+
R ≈ −ξeiαW+

1 +W+
2 . Figures B.1a−B.1e contribute to Gγ

L, and figures B.1f−B.1j

to Gγ
R. The arrows in neutrino propagators denote the directions of the propagation

of Ni = NRi +N c
Ri.
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L
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e−L
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h̃∗Lee

e+L

(a)

δ++
R

µ−
R

e−R

e−R
h̃Rµe

h̃∗Ree

e+R

(b)

Figure B.2: Feynman diagrams of the tree-level processes of µ→ eee.
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N c
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e−L
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∗
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∗
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W+
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2

(c) BµeeeRR
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Vei V ∗
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(d) BµeeeRR
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N c
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N c
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µi Sej

(e) BµeeeLR

N c
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N c
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NRj
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µ−
R

e−L

e−R

S∗
ei Sej

Vµi V ∗
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(f) BµeeeRL

Figure B.3: Feynman diagrams of Bµeee. Note that the arrows in neutrino propaga-

tors indicate the directions of the propagation of νi = νLi + νcLi or Ni = NRi +N c
Ri.
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(d) BµeddRR

Figure B.4: Feynman diagrams of Bµeqq.
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V ∗
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√
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2
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Figure B.5: Feynman diagrams of 0νββ. Here, W+
L ≈ W+

1 + ξe−iαW+
2 and W+

R ≈

−ξeiαW+
1 +W+

2 . The coupling hcR ≡ V `T
R hV `

R = M c
R/(
√

2vR) is the Yukawa coupling

matrix in the charged lepton mass basis. The typical momentum transfer of the

processes is q ≈ 100 MeV.

N c
Ri NRi
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NRi N c
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Figure B.6: Feynman diagrams contributing to the EDM of e.

103



Prediction Near-future sensitivity

BRµ→eγ 5.98 · 10−14 < 5.0 · 10−14 (Upgraded MEG)

BRτ→µγ 1.94 · 10−13 ·

BRτ→eγ 4.85 · 10−13 ·

BRµ→eee 8.12 · 10−14 < 1.0 · 10−15 (PSI) [24]

RAl
µ→e 2.17 · 10−13 < 3.0 · 10−17 (COMET)

RTi
µ→e 4.13 · 10−13 < 1.0 · 10−18 (PRISM/PRIME)

RAu
µ→e 3.98 · 10−13 ·

RPb
µ→e 3.83 · 10−13 ·

|ην | 1.21 · 10−7 . 1.4 · 10−7 (CUORE)

|ηLNR | 4.97 · 10−15 ·

|ηRNR | 4.77 · 10−10 ·

|ηδR | 4.24 · 10−11 ·

|ηλ| 4.61 · 10−10 ·

|ηη| 2.81 · 10−13 ·

T 0ν
1/2

∣∣
Ge

2.12 · 1026 − 1.31 · 1027 yrs. ·

T 0ν
1/2

∣∣
Se

6.11 · 1025 − 3.43 · 1026 yrs. ·

T 0ν
1/2

∣∣
Te

5.91 · 1025 − 2.41 · 1026 yrs. > 2.1 · 1026 yrs. (CUORE)

T 0ν
1/2

∣∣
Xe

1.05 · 1026 − 5.48 · 1026 yrs. ·

|de| |−2.98 · 10−31| e·cm ·

|dµ| |1.99 · 10−31| e·cm ·

|dτ | |−3.13 · 10−31| e·cm ·

Table B.4: Predictions from the benchmark model parameters of table B.3. Only

near-future experiments that would detect the corresponding processes are presented

here.
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Appendix C: Parametrization of the Dirac neutrino mass matrix

In this section, we show that the Casas-Ibarra parametrization [47] of the Dirac

neutrino mass matrix is the most general form of MD for given heavy neutrino

masses.

Standard Model with right-handed Majorana neutrinos

For a diagonal matrix D with positive entries, i.e.

D =


d1 0 0

0 d2 0

0 0 d3

 (C.1)

with di > 0, we define

√
D ≡


√
d1 0 0

0
√
d2 0

0 0
√
d3

 . (C.2)

We write C which satisfies CTC = CCT = D as C =
√
DB where B ≡

√
D−1C.

Then, BBT = (
√
D−1C)(

√
D−1C)T =

√
D−1CCT

√
D−1 = I, i.e. B is an orthog-

onal matrix. In other words, any matrix C which satisfies CTC = CCT = D is

orthogonally equivalent to
√
D−1.
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Now we go to the basis in the flavour space where the light and heavy neutrino

mass matrices are diagonal with positive entries. In that basis, we denote the charged

lepton mass matrix as M`, the Dirac neutrino mass matrix as MD, the right-handed

Majorana neutrino mass matrix as Md
R, and light neutrino mass matrix as Md

ν . We

assume that the neutrino mass matrices are invertible, which is trivially satisfied as

long as the lightest neutrino mass is nonzero. Then, for a matrix CR which satisfy

CRC
T
R = Md

R, we can write CR =
√
Md

ROR for an orthogonal matrix OR. The

neutrino mass matrices satisfy the type-I seesaw formula, and thus

Md
ν = −MD(Md

R)−1MT
D = −MD

(√
(Md

R)−1OR

)(√
(Md

R)−1OR

)T

MD

=

[
iMD

√
(Md

R)−1OR

] [
iMD

√
(Md

R)−1OR

]T
. (C.3)

We can therefore write

iMD

√
(Md

R)−1OR =
√
Md

νOν (C.4)

for an orthogonal matrix Oν , and

MD = −i
√
Md

νO
√
Md

R (C.5)

where O ≡ OνO
T
R is also an orthogonal matrix.

In the charged lepton mass basis, we have

M c
` = UM`V

`
R, M c

ν = UMd
νU

T, M c
D = UMD, M c

R = Md
R (C.6)

where U and V `
R are the unitary matrices which transform M` into the diagonal

matrix M c
` with charged lepton masses as its entries. Note that U ≡ UPMNS is the
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PMNS matrix. We can write

M c
D = −iU

√
Md

νO
√
Md

R. (C.7)

Without loss of generality, the complex orthogonal matrix O can be parametrized

as O = eS where S is a skew-symmetric matrix, i.e. ST = −S, as the exponential

map is surjective.

Left-right symmetric model

We follow the same steps up to the proof of the generality of equations ?? and ??.

In the charged lepton mass basis, we have

M c
` = UM`V

`
R, M c

ν = UMd
νU

T, M c
D = UMDV

`
R, M c

R = V `T
R Md

RV
`
R.

(C.8)

Hence,

M c
D = −iU

√
Md

νO
√
Md

RV
`
R. (C.9)
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Appendix D: Boltzmann equation

In this section, we explicitly derive the Boltzmann equations for the RH neutrino

density and LH lepton doublet asymmetry. Here, we consider the extension of the

SM only with three RH neutrinos for simplicity. Note that the relations of collision

terms and the correct forms of Boltzmann equations in any other models should be

carefully derived in a similar way.

The generic form of the Boltzmann equation is

dna
dt

+ 3Hna = −
∑
aX↔Y

[
nanX
neq
a n

eq
X

γ(aX → Y )− nY
neq
Y

γ(Y → aX)

]
. (D.1)

Since φ is a massless scalar field, we have nφ = neq
φ . In addition, neq

Li
= neq

Lci
=

neq
`i

where neq
`i
≡ neq

`Li
+ neq

`Ri
is the total lepton number density of each flavour in

equilibrium. The CP-conserving decay term is defined by

γNαLiφ ≡ γ(Nα → Liφ) + γ(Nα → Lciφ
†), (D.2)

and the CP-violating decay term by

δγNαLiφ ≡ γ(Nα → Liφ)− γ(Nα → Lciφ
†). (D.3)

By CPT invariance, we have

γ(Liφ→ Nα) = γ(Nα → Lciφ
†) =

1

2
(γNαLiφ − δγ

Nα
Liφ

), (D.4)

γ(Lciφ
† → Nα) = γ(Nα → Liφ) =

1

2
(γNαLiφ + δγNαLiφ). (D.5)
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The Boltzmann equation for the RH neutrino density is written as

dnNα
dt

+ 3HnNα = −
3∑
j=1

[
nNα
neq
Nα

{
γ(Nα → Ljφ) + γ(Nα → Lcjφ

†)
}

− nLjnφ
neq
Lj
neq
φ

γ(Ljφ→ Nα)−
nLcjnφ

neq
Lcj
neq
φ

γ(Lcjφ
† → Nα)

]

= −
3∑
j=1

[
nNα
neq
Nα

γNαLjφ −
nLj
2neq

`j

(γNαLjφ − δγ
Nα
Ljφ

)−
nLcj
2neq

`j

(γNαLjφ + δγNαLjφ)

]

= −
3∑
j=1

[
nNα
neq
Nα

γNαLjφ −
nLj + nLcj

2neq
`j

γNαLjφ +
nLj − nLcj

2neq
`j

δγNαLjφ

]

≈ −
(
nNα
neq
Nα

− 1

)
γNαLφ −

3∑
j=1

n∆Lj

2neq
`j

δγNαLjφ. (D.6)

In addition, the RIS-subtracted CP-conserving scattering terms are defined by

γ′Liφ
Lcjφ

† ≡ γ′(Liφ→ Lcjφ
†) + γ′(Lciφ

† → Ljφ), (D.7)

γ′LiφLjφ
≡ γ′(Liφ→ Ljφ) + γ′(Lciφ

† → Lcjφ
†). (D.8)

The corresponding CP-violating terms can be written as [49]

γ′(Liφ→ Lcjφ
†)− γ′(Lciφ† → Ljφ) =

1

2

3∑
α=1

(Bi
Nαδ

j
Nα

+Bj
Nα
δiNα)γNαLφ , (D.9)

γ′(Liφ→ Ljφ)− γ′(Lciφ† → Lcjφ
†) = −1

2

3∑
α=1

(Bi
Nαδ

j
Nα
−Bj

Nα
δiNα)γNαLφ (D.10)

where

δiNα =
Γ(Nα → Liφ)− Γ(Nα → Lciφ

†)∑3
j=1

[
Γ(Nα → Ljφ) + Γ(Nα → Lcjφ

†)
] , (D.11)

Bi
Nα =

Γ(Nα → Liφ) + Γ(Nα → Lciφ
†)∑3

j=1

[
Γ(Nα → Ljφ) + Γ(Nα → Lcjφ

†)
] . (D.12)
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We therefore have

γ′(Liφ→ Lcjφ
†) =

1

2
γ′Liφ
Lcjφ

† +
1

4

3∑
α=1

(Bi
Nαδ

j
Nα

+Bj
Nα
δiNα)γNαLφ , (D.13)

γ′(Lciφ
† → Ljφ) =

1

2
γ′Liφ
Lcjφ

† −
1

4

3∑
α=1

(Bi
Nαδ

j
Nα

+Bj
Nα
δiNα)γNαLφ , (D.14)

γ′(Liφ→ Ljφ) =
1

2
γ′LiφLjφ

− 1

4

3∑
α=1

(Bi
Nαδ

j
Nα
−Bj

Nα
δiNα)γNαLφ , (D.15)

γ′(Lciφ
† → Lcjφ

†) =
1

2
γ′LiφLjφ

+
1

4

3∑
α=1

(Bi
Nαδ

j
Nα
−Bj

Nα
δiNα)γNαLφ . (D.16)

The Boltzmann equations for the LH lepton doublet number density are written as

dnLi
dt

+ 3HnLi = −
3∑

α=1

nLinφ
neq
Li
neq
φ

γ(Liφ→ Nα)−
3∑
j=1

nLinφ
neq
Li
neq
φ

γ′(Liφ→ Lcjφ
†)

−
3∑
j=1

nLinφ
neq
Li
neq
φ

γ′(Liφ→ Ljφ) +

3∑
α=1

nNα
neq
Nα

γ(Nα → Liφ)

+

3∑
j=1

nLcjnφ

neq
Lcj
neq
φ

γ′(Lcjφ
† → Liφ) +

3∑
j=1

nLjnφ

neq
Lj
neq
φ

γ′(Ljφ→ Liφ) + · · · ,

(D.17)

dnLci
dt

+ 3HnLci = −
3∑

α=1

nLcinφ

neq
Lci
neq
φ

γ(Lciφ
† → Nα)−

3∑
j=1

nLcinφ

neq
Lci
neq
φ

γ′(Lciφ
† → Ljφ)

−
3∑
j=1

nLcinφ

neq
Lci
neq
φ

γ′(Lciφ
† → Lcjφ

†) +

3∑
α=1

nNα
neq
Nα

γ(Nα → Lciφ)

+

3∑
j=1

nLjnφ

neq
Lj
neq
φ

γ′(Ljφ→ Lciφ
†) +

3∑
j=1

nLcjnφ

neq
Lcj
neq
φ

γ′(Lcjφ
† → Lciφ

†) + · · ·

(D.18)

where we have explicitly written only the terms that would contribute to δγNαLiφ. We

can thus write

dn∆Li

dt
+ 3Hn∆Li = −

3∑
α=1

nLinφ
neq
Li
neq
φ

γ(Liφ→ Nα)−
3∑
j=1

nLinφ
neq
Li
neq
φ

γ′(Liφ→ Lcjφ
†)

−
3∑
j=1

nLinφ
neq
Li
neq
φ

γ′(Liφ→ Ljφ) +

3∑
α=1

nNα
neq
Nα

γ(Nα → Liφ)

+

3∑
j=1

nLcjnφ

neq
Lcj
neq
φ

γ′(Lcjφ
† → Liφ) +

3∑
j=1

nLjnφ

neq
Lj
neq
φ

γ′(Ljφ→ Liφ),
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+

3∑
α=1

nLcinφ

neq
Lci
neq
φ

γ(Lciφ
† → Nα) +

3∑
j=1

nLcinφ

neq
Lci
neq
φ

γ′(Lciφ
† → Ljφ)

+

3∑
j=1

nLcinφ

neq
Lci
neq
φ

γ′(Lciφ
† → Lcjφ

†)−
3∑

α=1

nNα
neq
Nα

γ(Nα → Lciφ)

−
3∑
j=1

nLjnφ

neq
Lj
neq
φ

γ′(Ljφ→ Lciφ
†)−

3∑
j=1

nLcjnφ

neq
Lcj
neq
φ

γ′(Lcjφ
† → Lciφ

†) + · · ·

= −
3∑

α=1

nLi
2neq

`i

(γNαLiφ − δγ
Nα
Liφ

)−
3∑
j=1

nLi
2neq

`i

[
γ′Liφ
Lcjφ

† +
1

2

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

]

−
3∑
j=1

nLi
2neq

`i

[
γ′LiφLjφ

− 1

2

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

]

+

3∑
α=1

nNα
2neq

Nα

(γNαLiφ + δγNαLiφ) +

3∑
j=1

nLcj
2neq

`j

[
γ′Liφ
Lcjφ

† −
1

2

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

]

+

3∑
j=1

nLj
2neq

`j

[
γ′LiφLjφ

+
1

2

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

]
,

+

3∑
α=1

nLci
2neq

`i

(γNαLiφ + δγNαLiφ) +

3∑
j=1

nLci
2neq

`i

[
γ′Liφ
Lcjφ

† −
1

2

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

]

+

3∑
j=1

nLci
2neq

`i

[
γ′LiφLjφ

+
1

2

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

]

−
3∑

α=1

nNα
2neq

Nα

(γNαLiφ − δγ
Nα
Liφ

)−
3∑
j=1

nLj
2neq

`j

[
γ′Liφ
Lcjφ

† +
1

2

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

]

−
3∑
j=1

nLcj
2neq

`j

[
γ′LiφLjφ

− 1

2

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

]
+ · · ·

= −
3∑

α=1

nLi − nLci
2neq

`i

δγNαLiφ +

3∑
α=1

nLi + nLci
2neq

`i

δγNαLiφ +

3∑
α=1

nNα
neq
Nα

δγNαLiφ

−
3∑
j=1

nLi − nLci
2neq

`i

γ′Liφ
Lcjφ

† −
3∑
j=1

nLi + nLci
4neq

`i

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

−
3∑
j=1

nLi − nLci
2neq

`i

γ′LiφLjφ
+

3∑
j=1

nLi + nLci
4neq

`i

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

−
3∑
j=1

nLj − nLcj
2neq

`j

γ′Liφ
Lcjφ

† −
3∑
j=1

nLj + nLcj
4neq

`j

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

+

3∑
j=1

nLj − nLcj
2neq

`j

γ′LiφLjφ
+

3∑
j=1

nLj + nLcj
4neq

`j

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ + · · ·

≈ −
3∑

α=1

n∆Li

2neq
`i

δγNαLiφ +

3∑
α=1

δγNαLiφ +

3∑
α=1

nNα
neq
Nα

δγNαLiφ

−
3∑
j=1

n∆Li

2neq
`i

γ′Liφ
Lcjφ

† −
1

2

3∑
j=1

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ
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−
3∑
j=1

n∆Li

2neq
`i

γ′LiφLjφ
+

1

2

3∑
j=1

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ

−
3∑
j=1

n∆Lj

2neq
`j

γ′Liφ
Lcjφ

† −
1

2

3∑
j=1

3∑
α=1

(BiNαδ
j
Nα

+BjNαδ
i
Nα)γNαLφ

+

3∑
j=1

n∆Lj

2neq
`j

γ′LiφLjφ
+

1

2

3∑
j=1

3∑
α=1

(BiNαδ
j
Nα
−BjNαδ

i
Nα)γNαLφ + · · ·

= −
3∑

α=1

n∆Li

2neq
`i

δγNαLiφ +

3∑
α=1

δγNαLiφ +

3∑
α=1

nNα
neq
Nα

δγNαLiφ

−
3∑
j=1

n∆Li

2neq
`i

γ′Liφ
Lcjφ

† −
1

2

3∑
α=1

(BiNαδγ
Nα
Lφ + δγNαLiφ)

−
3∑
j=1

n∆Li

2neq
`i

γ′LiφLjφ
+

1

2

3∑
α=1

(BiNαδγ
Nα
Lφ − δγNαLiφ)

−
3∑
j=1

n∆Lj

2neq
`j

γ′Liφ
Lcjφ

† −
1

2

3∑
α=1

(BiNαδγ
Nα
Lφ + δγNαLiφ)

+

3∑
j=1

n∆Lj

2neq
`j

γ′LiφLjφ
+

1

2

3∑
α=1

(BiNαδγ
Nα
Lφ − δγNαLφ ) + · · ·

=

3∑
α=1

(
nNα
neq
Nα

− 1

)
δγNαLiφ −

3∑
α=1

n∆Li

2neq
`i

δγNαLiφ

−
3∑
j=1

n∆Li

2neq
`i

(γ′Liφ
Lcjφ

† + γ′LiφLjφ
)−

3∑
j=1

n∆Lj

2neq
`j

(γ′Liφ
Lcjφ

† − γ′LiφLjφ
) + · · · . (D.19)

Now we simplify the left-hand side of the Boltzmann equation D.1. Since

T ∝ a where a is the scale factor in the Friedmann-Robertson-Walker metric, we

have

1

T

dT

dt
=
ȧ

a
= −H, (D.20)

and thus

dz

dt
= − z

T

dT

dt
= zH. (D.21)

Hence,

dnX
dt

=
dz

dt

dnX
dz

= zH
dnX
dz

, (D.22)
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and for ηX ≡ nX/nγ, we have

dηX
dz

=
1

nγ

dnX
dz
− nX
n2
γ

dnγ
dz

=
1

nγ

(
dnX
dz

+
3

z
nX

)
=

1

zHnγ

(
dnX
dt

+ 3HnX

)
=

z

HNnγ

(
dnX
dt

+ 3HnX

)
. (D.23)

Therefore, we can write

dnX
dt

+ 3HnX =
HNnγ
z

dηX
dz

. (D.24)

Reduced scattering cross section

The thermally averaged scattering rate is given by

γ(ab→ 12) = neq
a n

eq
b 〈σ(ab→ 12)|v|〉

=
T

64π4

∫ ∞
smin

ds
√
s σ̂(s) K1

(√
s

T

)
. (D.25)

Here, smin ≡ max[(ma +mb)
2, (m1 +m2)2]. The Källén function is defined by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca. (D.26)

The scattering cross section is given by

σ(ab→ Y ) =
1

4
√
λ

∫ (∏
c∈Y

d3pc
(2π)32Ec

)
(2π)4δ(4)(pa + pb − Y )

∑
spin

|M(ab→ Y )|2.

(D.27)

In reference [48], the phase space factors are defined as follows:

dπX =
∏
b∈X

dπb, dπb = gb
d3pb
(2π)3

1

2E(pb)
. (D.28)
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Note that equation A7 in that paper has a typo in the expression of dπb: (2π)2 →

(2π)3. The reduced cross section is defined as

σ̂(s) ≡ 8πΦ2(s)

∫
dπY (2π)4δ4(pa + pb − pY )|A(ab→ Y )|2

= 8πΦ2(s)

∫ (∏
c∈Y

gc
d3pc
(2π)3

1

2E(pc)

)
(2π)4δ4(pa + pb − pY )|A(ab→ Y )|2.

(D.29)

Rewriting the multipicative degrees of freedom, ga, gb, and gc as spin sums, we

obtain

σ̂(s) = 8πΦ2(s)

∫ (∏
c∈Y

d3pc
(2π)3

1

2E(pc)

)
(2π)4δ4(pa + pb − pY )

1

gagb

∑
spin

|M(ab→ Y )|2

= 8πΦ2(s)
4
√
λ

gagb
σ(ab→ Y ) (D.30)

The two-body phase space factor Φ2(s) is given by

Φ2(s) ≡
∫
dπadπb(2π)4δ4(pa + pb − pY )

=
gagb
8πs

√
[s− (ma +mb)2][s− (ma −mb)2]

=
gagb
8πs

√
λ. (D.31)

Therefore, we can write

σ̂(s) =
4

s
λσ(ab→ Y ) (D.32)

which is twice the expression below equation 2.8 in reference [48]. The differential

cross section is given by

dσ

dt
=

1

16πs
√
λ

∑
spin

|M(ab→ Y )|2. (D.33)
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In principle, the differential scattering cross section is given by

dσ

dt
=

1

4
√
λ

∫ (∏
c∈Y

d3pc
(2π)32Ec

)
(2π)4δ(4)(pa + pb − Y )

∑
spin

|M(ab→ Y )|2δ(t− (pa − p1)2).

(D.34)

According to reference [48], the differential reduced scattering cross section is given

by

dσ̂

dt
=
gagbgcgd

8πs
|A(ab→ Y )|2

→ 1

8πs

∑
spin

|M(ab→ Y )|2. (D.35)

Nα`Rα → ucRdR

The Feynman amplitude for this process is given by

iM =

(
i
gR√

2

)2

vN(pN)γµRu`(p`)
−i

(pN + p`)2 −m2
WR

+ imWR
ΓWR

ud(pd)γµRvu(pu)

= i
g2
R

2
vN(pN)γµRu`(p`)

1

(pN + p`)2 −m2
WR

+ imWR
ΓWR

ud(pd)γµRvu(pu),

(D.36)

and thus

−iM† = −ig
2
R

2
v†u(pu)Rγ

†
νγ

0ud(pd)
1

(pN + p`)2 −m2
WR
− imWR

ΓWR

u†`(p`)Rγ
ν†γ0vN(pN)

= −ig
2
R

2
vu(pu)γνRud(pd)

1

(pN + p`)2 −m2
WR
− imWR

ΓWR

u`(p`)γ
νRvN(pN)

(D.37)

where we have used ucs = v−s. We therefore have

∑
spin

|M|2 =
g4
R

4

1

[(pN + p`)2 −m2
WR

]2 +m2
WR

Γ2
WR

tr[γνRvNvNγ
µRu`u`]tr[γνRududγµRvuvu].

(D.38)
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The trace part is calculated as follows:

tr[γνRvNvNγ
µRu`u`]tr[γνRududγµRvuvu]

= tr[γνR(/pN +mN )γµR/p`]tr[γνR/pdγµR/pu] = tr[γν/pNγ
µ
/p`L]tr[γν/pdγµ/puL]

= tr[γνγργµγσL]tr[γνγαγµγβL]pNρpeσpd
αpu

β

=
1

4

(
tr[γνγργµγσ]− tr[γνγργµγσγ5]

) (
tr[γνγαγµγβ ]− tr[γνγαγµγβγ

5]
)
pNρp`σpd

αpu
β

= 4(gνρgµσ − gνµgρσ + gνσgρµ + iενρµσ)(gναgµβ − gνµgαβ + gνβgαµ + iεναµβ)pNρp`σpd
αpu

β

= 4[pN
νp`

µ − gνµ(pN · p`) + p`
νpN

µ + iενρµσpNρp`σ][pdνpuµ − gνµ(pd · pu) + puνpdµ + iεναµβpd
αpu

β ]

= 4[(pN · pd)(p` · pu)− (pd · pu)(pN · p`) + (p` · pd)(pN · pu) + iενρµσpNρp`σpdνpuµ

− (pN · p`)(pd · pu) + 4(pN · p`)(pd · pu)− (p` · pN )(pd · pu)

+ (pN · pu)(p` · pd)− (pu · pd)(pN · p`) + (p` · pu)(pN · pd) + iενρµσpNρp`σpuνpdµ

+ iεναµβpN
νp`

µpd
αpu

β + iεναµβp`
νpN

µpd
αpu

β − ενρµσεναµβpNρpeσpdαpuβ ]

= 4[(pN · pd)(p` · pu)− (pd · pu)(pN · p`) + (p` · pd)(pN · pu) + 2(pN · p`)(pd · pu)

+ (pN · pu)(p` · pd)− (pd · pu)(pN · p`) + (p` · pu)(pN · pd) + 2(δραδ
σ
β − δρβδσα)pNρpeσpd

αpu
β ]

= 4[2(pN · pd)(p` · pu) + 2(p` · pd)(pN · pu) + 2(pN · pd)(p` · pu)− 2(pN · pu)(p` · pd)]

= 16(pN · pd)(p` · pu). (D.39)

Since we have

s = (pN + p`)
2 = (pd + pu)

2,

t = (pN − pu)2 = (pd − p`)2,

u = (pN − pd)2 = (pu − p`)2, (D.40)
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we can write

2(pN · p`) = −(m2
N − s), 2(pd · pu) = s,

2(pN · pu) = m2
N − t, 2(pd · p`) = −t,

2(pN · pd) = m2
N − u, 2(pu · p`) = −u. (D.41)

Hence, we have

tr[γνRvNvNγ
µRu`u`]tr[γνRududγµRvuvu] = 4(m2

N − u)(−u) = 4(s+ t)(s+ t−m2
N)

= 4(s2 + 2st+ t2 −m2
Ns−m2

N t) = 4[t2 − (m2
N − 2s)t− s(m2

N − s)], (D.42)

and thus

∑
spin

|M|2 = g4
R

t2 − (m2
N − 2s)t− s(m2

N − s)
(s−m2

WR
)2 +m2

WR
Γ2
WR

. (D.43)

Now the differential reduced scattering cross section is written as

dσ̂

dt
=

9

8πs

∑
spin

|M|2 =
9g4

R

8πs

t2 − (m2
N − 2s)t− s(m2

N − s)
(s−m2

WR
)2 +m2

WR
Γ2
WR

(D.44)

where the multiplicative factor 9 is from the numbers of quark flavours and color

factors. Note that this is the result for one flavour of RH neutrino. The Mandelstam

variable t is written as

t = (pN − pu)2 = E2
N − 2ENEu + E2

u − |pN |2 − |pu|2 + 2pN · pu

= m2
N − 2(ENEu − |pN ||pu| cos θ). (D.45)

In the center-of-momentum (CM) frame, we have

|pN | =
1

2
√
s

√
s2 − 2m2

Ns+m4
N =

s−m2
N

2
√
s

, |pu| =
√
s

2
, (D.46)
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and

EN =
√
|pN |2 +m2

N =
s+m2

N

2
√
s
, Eu =

√
s

2
. (D.47)

Hence, we have

t = m2
N −

1

2
[s+m2

N − (s−m2
N) cos θ], (D.48)

and thus

tmin = m2
N − s, tmax = 0. (D.49)

Therefore, the reduced cross section is

σ̂(s) =
9g4

R

8πs[(s−m2
WR

)2 +m2
WR

Γ2
WR

]

∫ 0

m2
N−s

dt [t2 − (m2
N − 2s)t− s(m2

N − s)]

=
9g4

R

8πs[(s−m2
WR

)2 +m2
WR

Γ2
WR

]

1

6
(m2

N − s)2(m2
N + 2s), (D.50)

which is the same as equation 2.15 in [46]. Hence, the CP-conserving reduced cross

section is

σ̂Nα`αucd (s) =
9g4

R

4πs[(s−m2
WR

)2 +m2
WR

Γ2
WR

]

1

6
(m2

N − s)2(m2
N + 2s). (D.51)

Nαu
c
R → `Rαd

c
R

The Feynman amplitude is written as

iM = i
g2
R

2
u`(p`)γ

µRuN(pN)
1

(pN − p`)2 −m2
WR

vu(pu)γµRvd(pd), (D.52)

and its Hermitian conjugate as

−iM† = −ig
2
R

2
v†d(pd)Rγ

†
νγ

0vu(pu)
1

(pN − p`)2 −m2
WR

u†N(pN)Rγν†γ0u`(p`)

= −ig
2
R

2
vd(pd)γνRvu(pu)

1

(pN − p`)2 −m2
WR

uN(pN)γνRu`(p`). (D.53)
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We thus have

∑
spin

|M|2 =
g4
R

4

1

[(pN − p`)2 −m2
WR

]2
tr[γνRu`u`γ

µRuNuN ]tr[γνRvuvuγµRvdvd],

(D.54)

where

tr[γνRu`u`γ
µRuNuN ]tr[γνRvuvuγµRvdvd]

= tr[γνR/peγ
µR(/pN −mN)]tr[γνR/puγµR/pd] = tr[γν/peγ

µ
/pNL]tr[γν/puγµ/pdL]

= 16(pN · pd)(p` · pu). (D.55)

Since we have

s = (pN + pu)
2 = (p` + pd)

2,

t = (pN − p`)2 = (pd − pu)2,

u = (pN − pd)2 = (p` − pu)2, (D.56)

we can write

2(pN · p`) = m2
N − t, 2(pd · pu) = −t,

2(pN · pu) = −(m2
N − s), 2(p` · pd) = s,

2(pN · pd) = m2
N − u, 2(p` · pu) = −u. (D.57)

Therefore, we have

tr[γνRu`u`γ
µRuNuN ]tr[γνRvuvuγµRvdvd] = 4(m2

N − u)(−u)

= 4(s+ t)(s+ t−m2
N). (D.58)
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Hence, we have

∑
spin

|M|2 = g4
R

(s+ t)(s+ t−m2
N)

(t−m2
WR

)2
, (D.59)

and the differential reduced scattering cross section is given by

dσ̂

dt
=

9

8πs

∑
spin

|M|2 =
9g4

R

8πs

(s+ t)(s+ t−m2
N)

(t−m2
WR

)2
(D.60)

where the multiplicative factor 9 is from the numbers of quark flavours and color

factors. We have

t = (pN − p`)2 = E2
N − 2ENEe + E2

e − |pN |2 − |pe|2 + 2pN · pe

= m2
N − 2(ENEe − |pN ||pe| cos θ). (D.61)

In the CM frame, we can write

|pN | =
1

2
√
s

√
s2 − 2m2

Ns+m4
N =

s−m2
N

2
√
s

, |pe| =
√
s

2
, (D.62)

and

EN =
√
|pN |2 +m2

N =
s+m2

N

2
√
s
, Ee =

√
s

2
. (D.63)

Hence, we obtain

t = m2
N −

1

2
[s+m2

N − (s−m2
N) cos θ], (D.64)

and thus

tmin = m2
N − s, tmax = 0. (D.65)

Therefore, the reduced cross section is

σ̂(s) =
9g4

R

8πs

∫ 0

m2
N−s

dt
(s+ t)(s+ t−m2

N)

(t−m2
WR

)2
, (D.66)
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which is the same as equation 2.16 in [46]. Hence, the CP-conserving reduced cross

section is

σ̂Nαu
c

`αdc
(s) =

9g4
R

4πs

∫ 0

m2
N−s

dt
(s+ t)(s+ t−m2

N)

(t−m2
WR

)2
. (D.67)

NαdR → `RαuR

The Feynman amplitude is

iM = i
g2
R

2
u`(p`)γ

µRuN(pN)
1

(pN − p`)2 −m2
WR

uu(pu)γµRud(pd), (D.68)

and

−iM† = −ig
2
R

2
ud(pd)γνRuu(pu)

1

(pN − p`)2 −m2
WR

uN(pN)γνRu`(p`). (D.69)

We thus have

∑
spin

|M|2 =
g4
R

4

1

[(pN − p`)2 −m2
WR

]2
tr[γνRu`u`γ

µRuNuN ]tr[γνRuuuuγµRudud],

(D.70)

where

tr[γνRu`u`γ
µRuNuN ]tr[γνRuuuuγµRudud]

= tr[γνR/peγ
µR(/pN −mN)]tr[γνR/puγµR/pd] = tr[γν/peγ

µ
/pNL]tr[γν/puγµ/pdL]

= 16(pN · pd)(p` · pu). (D.71)

Since we have

s = (pN + pd)
2 = (p` + pu)

2,

t = (pN − p`)2 = (pu − pd)2,

u = (pN − pu)2 = (p` − pd)2, (D.72)
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we can write

2(pN · p`) = m2
N − t, 2(pd · pu) = −t,

2(pN · pu) = m2
N − u, 2(p` · pd) = −u,

2(pN · pd) = −(m2
N − s), 2(p` · pu) = s. (D.73)

We therefore have

tr[γνRu`u`γ
µRvNvN ]tr[γνRududγµRvuvu] = −4s(m2

N − s). (D.74)

Hence, we have

∑
spin

|M|2 = −g4
R

s(m2
N − s)

(t−m2
WR

)2
, (D.75)

and the differential reduced scattering cross section is given by

dσ̂

dt
=

9

8πs

∑
spin

|M|2 = −9g4
R

8π

m2
N − s

(t−m2
WR

)2
(D.76)

where the multiplicative factor 9 is from the numbers of quark flavours and color

factors. As in the previous case, we have

tmin = m2
N − s, tmax = 0. (D.77)

Therefore, the reduced cross section is

σ̂(s) = −9g4
R

8π

∫ 0

m2
N−s

dt
m2
N − s

(t−m2
WR

)2
=

9g4
R

8π
(m2

N − s)
[

1

t−m2
WR

]0

m2
N−s

=
9g4

R

8π
(m2

N − s)
[
− 1

m2
WR

− 1

m2
N − s−m2

WR

]
=

9g4
R

8π
(m2

N − s)
[

1

s+m2
WR
−m2

N

− 1

m2
WR

]
=

9g4
R

8π

(m2
N − s)2

m2
WR

(s+m2
WR
−m2

N)
, (D.78)
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which is the same as equation 2.17 in equation [46]. Hence, the CP-conserving

reduced cross section is

σ̂Nαd`αu
(s) =

9g4
R

4π

(m2
N − s)2

m2
WR

(s+m2
WR
−m2

N)
. (D.79)
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Appendix E: Lepton asymmetry

Exact solution

We can also derive the expression 4.41 by directly solving the differential equation

4.39. This equation is in the form

dy

dx
= Q(x)− P (x)y (E.1)

where

x ≡ z, y ≡ η∆Li , P (x) ≡ 2

3
Wi(x), Q(x) ≡

3∑
α=1

δiNα
dηNα
dz

D̃α(x)

Dα(x) + Sα(x)
.

(E.2)

The differential equation E.1 can be rewritten as

0 =
[
Q(x)− P (x)y

]
dx− dy. (E.3)

In order to solve this differential equation, we need an integrating factor f(x, y):

dϕ = f(x, y)
[
Q(x)− P (x)y

]
dx− f(x, y)dy

=
∂ϕ

∂x
dx+

∂ϕ

∂y
dy

= 0. (E.4)
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Then,

∂2ϕ

∂y∂x
=

∂

∂y

{
f(x, y)

[
Q(x)− P (x)y

]}
=
∂f(x, y)

∂y

[
Q(x)− P (x)y

]
− f(x, y)P (x)

∂2ϕ

∂x∂y
=

∂

∂x

[
− f(x, y)

]
= −∂f(x, y)

∂x
, (E.5)

Thus, we need

∂f(x, y)

∂y

[
Q(x)− P (x)y

]
− f(x, y)P (x) = −∂f(x, y)

∂x
(E.6)

to have an exact differential dϕ. Now we assume f(x, y) = f(x). Then, the condition

E.6 is written as

f(x)P (x) =
df(x)

dx
, (E.7)

thus we can write

P (x)dx =
df(x)

f(x)
. (E.8)

The solution of this equation is given by

∫ x

x0

P (x′)dx′ = ln f(x)− ln f(x0), (E.9)

thus

f(x) = f(x0) exp

[∫ x

x0

P (x′)dx′
]
. (E.10)

The differential dϕ is given by

dϕ = f(x)[Q(x)− P (x)y]dx− f(x)dy = 0. (E.11)
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We choose the integration path (x0, y0) −−−→
x=x0

(x0, y) −−−→
y=y0

(x, y). Then, we obtain

ϕ(x, y) = C

=

∫ x

x0

f(x′)[Q(x′)− P (x′)y]dx′ − f(x0)

∫ y

y0

dy′

=

∫ x

x0

f(x′)[Q(x′)− P (x′)y]dx′ − f(x0)(y − y0)

=

∫ x

x0

f(x′)Q(x′)dx′ −
[∫ x

x0

f(x′)P (x′)dx′ + f(x0)

]
y + f(x0)y0 (E.12)

where C = ϕ(x0, y0) = 0. Hence, we can write

y(x) =
f(x0)y0 +

∫ x
x0
f(x′)Q(x′)dx′

f(x0) +
∫ x
x0
f(x′)P (x′)dx′

=
y0 +

∫ x
x0

exp
[∫ x′

x0
P (x′′)dx′′

]
Q(x′)dx′

1 +
∫ x
x0

exp
[∫ x′

x0
P (x′′)dx′′

]
P (x′)dx′

=
y0 +

∫ x
x0

exp
[∫ x′

x0
P (x′′)dx′′

]
Q(x′)dx′

1 +
{

exp
[∫ x

x0
P (x′′)dx′′

]
− 1
}

= y0 exp

[
−
∫ x

x0

P (x′′)dx′′
]

+

∫ x

x0

exp

[
−
∫ x

x′
P (x′′)dx′′

]
Q(x′)dx′. (E.13)

At x = xc, we have

y(xc) = y0 exp

[
−
∫ xc

x0

P (x′′)dx′′
]

+

∫ xc

x0

exp

[
−
∫ xc

x′
P (x′′)dx′′

]
Q(x′)dx′. (E.14)

Using the definitions of variables E.2, we can rewrite this as

η∆Li(zc) = η∆Li(z0) exp

[
−2

3

∫ zc

z0

dz′′Wi(z
′′)

]
+

1

2ζ(3)

∫ zc

z0

dz′z′2K1(z′)
∑
α

δiNα
D̃α(z′)

Dα(z′) + Sα(z′)
exp

[
−2

3

∫ zc

z′
dz′′Wi(z

′′)

]

= η∆Li(z0) exp

[
−2

3

∫ zc

z0

dz′′Wi(z
′′)

]
−
∑
α

δiNακ
l
Nα(zc) (E.15)

where

κlNα(z) ≡
∫ zc

z0

dz′
dηNα
dz′

D̃α(z′)

Dα(z′) + Sα(z′)
exp

[
−2

3

∫ zc

z′
dz′′Wi(z

′′)

]
(E.16)
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is the efficiency factor. Assuming the first term in equation E.15 is much smaller

than the second, (i.e. the initial lepton asymmetry is not so large as to be completely

washed out at the critical temperature), we can write

η∆Li(zc) = −
3∑

α=1

δiNακ
i
Nα(zc). (E.17)

Approximate solution

Now we derive the approximate solution 4.44 from equations E.16 and E.17. Note

that we do not follow mathematically rigorous steps in this derivation. We define

A(z) ≡ 2

3
Wi(z), (E.18)

B(z) ≡ −dη
eq
Nα

dz

D̃α(z)

Dα(z) + Sα(z)
=

1

2ζ(3)
z2K1(z)

D̃α(z)

Dα(z) + Sα(z)
. (E.19)

Note that we have A(z)� 1 in the strong washout regime. We have

−κiNα(zc) =

∫ zc

z0

dz′B(z′) exp

[
−
∫ zc

z′
dz′′A(z′′)

]
≈
∫ zc

z1

dz′B(z′) exp

[
−
∫ zc

z′
dz′′A(z′′)

]
(E.20)

for some z1 which is very close to zc due to the large suppresion by the exponential

factors. Since z1 is close to zc, we can also approximately write

∫ zc

z1

dz′B(z′) exp

[
−
∫ zc

z′
dz′′A(z′′)

]
≈ B(zc)

∫ zc

z1

dz′ exp

[
−A(zc)

∫ zc

z′
dz′′
]

= B(zc)

∫ zc

z1

dz′ exp [−A(zc)(zc − z′)]

=
B(zc)

A(zc)
{1− exp [−A(zc)(zc − z1)]}

≈ B(zc)

A(zc)
. (E.21)
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At the last step, we assumed

A(zc)(zc − z1) > 1, (E.22)

which can be satisfied when A(zc)� 1, i.e. Wi(zc)� 1, with appropriate z1. Then,

we obtain

−κiNα(zc) =
B(zc)

A(zc)
, (E.23)

which gives the expression 4.44. Note that this solution corresponds to

yc =
Q(xc)

P (xc)
. (E.24)

In other words, the expression 4.44 is approximately valid solution of the differential

equation E.1 when

∣∣∣∣dydx(xc)

∣∣∣∣� Q(xc) ≈ P (xc)yc, (E.25)

which can be satisfied if P (xc)� 1, i.e. Wi(zc)� 1.
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