
Techniques for Indexing and Querying TemporalObservations for a Collection of Objects�(CS-TR-4503 & UMIACS-TR-2003-72)Qingmin Shi and Joseph JaJaInstitute for Advanced Computer StudiesDepartment of Electrical and Computer EngineeringUniversity of Maryland, College Park, MD 20742, USAfqshi,joseph@umiacs.umd.edugAbstractWe consider the problem of dynamically indexing temporal observations about a collec-tion of objects, each observation consisting of a key identifying the object, a list of attributevalues and a timestamp indicating the time at which these values were recorded. We makeno assumptions about the rates at which these observations are collected, nor do we assumethat the various objects have about the same number of observations. We develop indexingstructures that are almost linear in the total number of observations available at any giventime instant, and that support dynamic insertions in polylogarithmic time. Moreover, thesestructures allow the quick handling of queries to identify objects whose attribute values fallwithin a certain range at every time instance of a speci�ed time interval. Provably goodbounds are established.1 IntroductionConsider the scenario in which temporal observations about a large collection of objects arebeing collected asynchronously. Each observation record consists of a key identifying theobject, a list of the values of a number of attributes, and a timestamp indicating the timeat which these particular values were recorded. We make no assumptions about the rates atwhich these observations are collected, nor do we assume that various objects will have thesame number of observations. In fact, we even allow the collection of objects to vary withtime, with possibly new objects inserted into our collection. The only assumption we makeis that the timestamp of a new observation record for a given object has to be larger thanthe timestamp of the object's observations that are already stored in our data structure.This assumption seems to be quite natural for the types of applications we have in mind.�Supported in part by the National Science Foundation through the National Partnership for AdvancedComputational Infrastructure (NPACI), DoD-MDProcurement under contract MDA90402C0428, and NASAunder the ESIP Program NCC5300. 1

We are interested in storing these observations into an indexing structure that will en-able the quick discovery of temporal patterns. For our purposes, the patterns of interestcan be de�ned as the values of certain attributes remaining within certain bounds, changingaccording to a given pattern, or satisfying certain statistical distributions, for every obser-vation with a timestamp falling within a given time interval. We will focus in this paperon detecting the objects whose temporal patterns are characterized by a set of value ranges.More speci�cally, we want to dynamically maintain an indexing structure so as to quicklyidentify objects whose attributes consistently fall within a set of ranges during a given timeperiod.We next introduce the problem more formally and give a few possible applications thatwill �t under this framework.1.1 Problem De�nitionConsider a set S of n objects fO1; O2; : : : ; Ong, each identi�ed by a key oi and characterizedby a set of d attributes fvi;1(t); vi;2(t); : : : ; vi;d(t)g whose values change over time t. Obser-vations about each object are collected at discrete time instances. Let mi be the numberof observations about object Oi, say collected at time instances t1i < t2i < � � � < tmii . Wedenote the observations of Oi at tji as a vector vji = [vji;1; vji;2; : : : ; vji;d], where vji;l = vi;l(tji) forl = 1; : : : ; d. The total number of observations for all the objects in S is m = Pi=1;:::;n mi.We denote the number of distinct time instances among ftji j1 � i � n; 1 � j � mig as m0.Note that m0 � m.We are interested in developing dynamic data structures to index all the observations sothat the following type of queries, called temporal range queries, can be handled quickly:Given two vectors a = [a1; a2; : : : ; ad] and b = [b1; b2; : : : ; bd], and a time interval[ts; te], determine the set Q of objects such that Oi 2 Q if and only if the followingtwo conditions are satis�ed:� 9j such that tji 2 ftlijl = 1; : : : ;mig and ts � tji � te, i.e., there is at leastone observation of Oi recorded between ts and te.� 8j such that tji 2 ftlijl = 1; : : : ;mig and ts � tji � te, ak � vji;k � bk for all1 � k � d.We will call each such object a proper object with respect to the query.We allow new observations to be incorporated into the existing data structure. Wheneverit happens, we assume that the timestamp associated with a new observation is larger thanthat of any previous observation of the same object. However, we allow the timestamp of anew observation to be smaller than the timestamps of observations related to other objects.We note that the condition that at least one observation exists in the time interval [ts; te]can be relaxed as follows. We construct a set of intervals f(tji ; tj+1i)jj = 0; : : : ;mig for eachobject Oi, where t0i = �1 and tmi+1i = +1. Reporting objects with no observation in [ts; te]is equivalent to reporting intervals that contain [ts; te], which can easily be performed usinga priority search tree [17] in O(log n + f) time (note that only one interval will be reportedfor each such object). The priority search tree can handle insertions of new observations as2

well. The complexity of maintaining the correct set of intervals in the priority search treefor each insertion of a new observation is O(log n) time.The complexity of our algorithms will be measured by the storage cost of the data struc-ture, the time spent on answering a temporal range query, and the time it takes to incorporatea new observation into our data structure. We will represent these costs as functions of n,m and d, where d is typically considered to be a constant.The problem described here is more general than the one discussed in our previouspaper [23], in which we require that the observations of these objects are collected in asynchronized fashion. That is, the observations of the objects are all collected at the sametime instances. In addition, only the static case was addressed in that paper.1.2 Sample ApplicationsMany applications seem to involve the general problem described above. A typical scenarioconsists of a large distributed network of sensors asynchronously collecting some type ofmeasurements, and sending these measurements to a central location for storage, real-timeaccess, and mining. Two examples are provided next.� Environmental monitoring. A large number of sensors are distributed over speci�c geo-graphic areas, each working independently and collecting measurements about variousenvironmental factors (such as temperature, humidity, and wind speed, etc). Thesemeasurements, each coupled with a key identifying the sensor (and hence the geo-graphic area) and a timestamp are sent to a central server. Users will query thecentral server to discover spatio-temporal environmental patterns based on the infor-mation collected thus far, and try to relate them to di�erent physical phenomena.� Marine tra�c control. We have a number of vessels, each reporting its position (andpossibly some other information) to a tra�c center on a regular basis. The sta� atthe tra�c center may want to identify the vessels whose trajectories lied in a certainregion during a time interval.1.3 Previous Related WorkA special case of our problem is the well-studied d-dimensional orthogonal range search prob-lem. In spite of the existence of an extensive literature, only a limited number of specialorthogonal range search problems admit linear space data structures with polylogarithmicquery time solutions. These special problems include the three-sided 2-D range queries [17]and the 3-D dominance queries [6, 15]. Otherwise, all fast query algorithms require non-linear space, sometimes coupled with matching lower bounds under certain computationalmodels [4, 5, 12]. Note that we cannot treat our problem as an orthogonal range searchby simply treating the time snapshots as just an extra time dimension added to the d di-mensions corresponding to the attributes. This is the case since the observations collectedat di�erence time instances for the same object cannot not be treated as independent ofeach other. However another version of our problem, in which there exists some observationin [ts; te] which satis�es the required bounds, can be reduced to the so called generalizedintersection problem addressed in [11, 10]. 3

A related class of problems that have been studied in the literature, especially thedatabase literature, deals with time series of data by appending a timestamp (or time inter-val) to each piece of data separately, thus treating each record, rather than each object, asan individual entity. As far as we can tell, none of these techniques seem to be suitable toaddress the general problem de�ned in this paper. Examples of such techniques include thosebased on persistent data structures [8], such as the Multiversion B-tree [14], and MultiversionAccess Methods [26], and the Overlapping B+-trees and its extensions [16, 18, 24, 25]. Eventhough these techniques work well for queries that involve only a single time instance, theydo not capture temporal information about individual objects, nor do they seem to be ableto e�ciently handle long time intervals (the query time of these methods typically dependson the length of the time interval, which is undesirable for our general problem since thetemporal range query could cover a very long time period characterized only by the twoparameters ts and te). See [22] for a recent survey about these techniques.Some work does explicitly address queries that involve time intervals, especially in in-dexing moving objects. However, they all deal with the \or" queries, queries that report anobject if its values fall in the query ranges at some time within the query interval, whichis quite di�erent from our problem. In the case where the objects are assumed to be mov-ing along a straight line and at constant speed, which implies that the positions of theobjects need not be explicitly stored, solutions with provable bounds exist (See for exam-ple [1, 13, 21]). In other cases, where the trajectories of objects are recorded as sequencesof line segments, practical algorithms have only been proposed with no guaranteed bounds,such as in [3, 20].We start by addressing the special case when there is only one attribute for each object.We deal in Section 2 with the static case, where them observations about the di�erent objectsare given as input for preprocessing, and propose three solutions with di�erent space-timetrade-o�s. In Section 3, we show how these solutions can be made dynamic so that newobservations can be e�ciently incorporated into the existing structures. We generalize thesetechniques in Section 4 for an arbitrary number of attributes whenever we have a prede�nedtime hierarchy, and in Section 5 we brie
y mention how to extend our techniques to handlequeries that also involve key ranges.2 One-Sided Temporal Range Queries: The Static CaseOne of our goals in designing the indexing structure and query algorithm is to make surethat no proper object will be missed and the query complexity is proportional to the numberof such objects. To achieve this goal, we �rst transform the query on objects to a query onidentifying speci�c observations. Our approach is based on enhancing each observation withadditional information such that for each proper object, exactly one of its observations willbe reported.2.1 PreliminariesLet vji denote the observation of object Oi at time instance tji . Given a query represented bythe triple (ts; te; a), we aim at identifying the objects that have at least one observation during4

the time interval [ts; te] and whose observations within that time interval are all greater thanor equal to a. We call this type of queries one-sided temporal range queries.We will give three solutions to this problem, each providing a tradeo� between the storagecost and the query time. To develop these algorithms, we reformulate our problem to makeuse of a number of known techniques borrowed from computational geometry.We start by making the following straightforward observation.Observation 1. An object Oi is proper with respect to the query (ts; te; a) if and only ifminfvji jts � tji � teg � a.Note that we de�ne minfvji jts � tji � teg = �1 whenever no j exists such that ts �tji � te. We de�ne the dominant interval Iji = (sji ; eji) of observation vji as the longest timeinterval during which vji is the smallest observation of Oi. More speci�cally, let vj1i be thelatest observation such that j1 < j and vj1i � vji and vj2i be the earliest observation such thatj2 > j and vj2i < vji . Then sji = j1 and eji = j2. If j1 does not exist, then sji = �1. Similarly,eji = +1 if j2 does not exist. Note that Iji is an open interval, meaning that it does notinclude the time instances sji and eji . We thus transform an observation vji into a 5-tuple(or tuple for short) (vji ; tji ; sji ; eji ; oi). Figure 1 shows an object with eight observations, takenat time instances 1; 2; : : : ; 8. For example, the dominant of interval of the 4th instance is(�1; 6) and that of the 5th instance is (4; 6). The following lemma shows that there existsa unique representative tuple for each proper object.
t

v

1 4 5

8 4 3 1 7 2

32 6 7 8

6 3

1 3

2 5 7

4 8

6Figure 1: Dominant intervals for a time-series of observations corresponding to an object.Lemma 1. An object Oi is proper with respect to the query (ts; te; a) if and only if thereexists a unique tuple (vji ; tji ; sji ; eji ; oi) such that (sji ; eji) � [ts; te], tji 2 [ts; te], and vji � a.Proof. By de�nition an object Oi is proper if during the time interval [ts; te] no observationis smaller than a. Let vji = minfvlijts � tli � teg (it always exists for a proper object),where j is the smallest such index if multiple minima exist. It is obvious that the tuple(vji ; tji ; sji ; eji ; oi) satis�es the three conditions stated in the lemma. On the other hand, if Oiis not proper, then either there is no observation of Oi in [ts; te], or the value of at least onesuch observation is less than a. In the latter case, no interval (sli; eli) with tli 2 [ts; te] andvli � a will be able to cover [ts; te]. The uniqueness of this tuple is due to the fact that thedominant intervals are maximal.Lemma 1 reduces the problem of determining the set of proper objects to �nding for eachsuch object one tuple that satis�es the three stated conditions. In the next sections, we showthat such tuples can be e�ciently identi�ed using techniques from computational geometry.5

2.2 An O(m logm)-Space O(logn logm + f)-Time SolutionThe indexing structures we propose in this and the next sections both follow the strategyof �rst singling out those tuples whose corresponding observations are collected during thetime interval [ts; te] and then �ltering them using the remaining two conditions. We callthe data structure proposed in this section the fast temporal range tree (FTR-tree) becauseit is the fastest among the three solutions proposed; and the one discussed in Section 2.3,which uses less space but requires more query time, is called the compact temporal range tree(CTR-tree).Let (t1; t2; : : : ; tm0) be the sorted list of all the distinct time instances. The skeleton ofthe FTR-tree is a balanced binary tree T built on this list. Each node u is associated with aset S(u) of up to n tuples (n is the number of objects). If u is the kth leaf starting from theleft, then S(u) = f(vji ; tji ; sji ; eji ; oi)jtji = tkg. If u is an internal node with two children v andw, we decide for each object Oi which tuple to be added to S(u) by examining the tuplescorresponding to Oi in v and w. If S(v) and S(w) do not contain any such tuple, then notuple for Oi will be added to S(u). If only one of them do, then that tuple is included inS(u). If both of them do, then the tuple with the longest dominant interval is chosen. Notethat in this case the longer interval always contains the shorter one. Figure 2 illustrates howthe tuples associated with each node are collected for an example consisting of two objectsand a total of 16 observations. In this example, each node is associated with up to 2 tuples,the one above the horizontal line corresponds to object O1 and the one below it correspondsto object O2. We omit the values of tji and oi for each tuple.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t

48 6 3 5 1 7 2

25 4 1 7 3 6 8O2

O1

(8,- ,3) (4,- ,7)
(6,3,7)

(3,- ,9)
(5,7,9)

(1,- ,) (7,9,15) (2,9,)

(2,- ,10) (1,- ,) (3,10,) (6,12,) (8,14,)

8 8

8 8

8 8 8
8 8 8 8 8

8

(1,- ,)
(1,- ,)

(1,- ,)

(3,- ,9) (1,- ,)

(2,9,)(4,- ,7)

(4,- ,7)

(8,- ,3)

(5,- ,5)

(2,- ,10)

(2,- ,10)
(3,- ,9)

(1,- ,)

(2,- ,10) (1,- ,) (6,12,)
(2,9,)

(6,12,)
(7,9,15)

(3,10,)(1,- ,)
(1,- ,)(3,- ,9) (5,- ,5)

8
8 8

8

8 8
8 8

8
8 8

8

8

8
8

8
8 8

8

8
8

8
8

8 8
88

8
8 8

 (5,- ,5)
(4,5,10) (7,10,12)

8
8

8(8,14,)Figure 2: The observations of two objects and the corresponding FTR-tree.Given a query (ts; te; a), we can easily �nd the set of at most 2(logm0�1) allocation nodesin T that correspond to the interval [ts; te]. An allocation node is a node whose correspondingtime interval is fully contained in [ts; te] and that of whose parent is not. For each allocationnode v, we know that all the O(n) tuples in S(v) correspond to observations taken duringthe time interval [ts; te]. Therefore we only need to report those tuples in S(v) that satisfy6

(sji ; eji) � [ts; te], and vji � a. Lemma 1 guarantees that exactly one such tuple will bereported for each proper object whenever tji 2 [ts; te]. No further search on v's descendantsis necessary.One �nal note is that, even though an object is stored multiple times in the form of itsrepresentative tuples, it will be reported at most once. This can be seen as follows. If anobject is reported, then only one of its m tuples satis�es the conditions derived from thequery. Even though a tuple may be stored in up to logm0 + 1 nodes, these nodes form asu�x of the path from the root to its corresponding leaf node and, as a result, only theallocation node will be considered.For each allocation node v, looking for tuples (vji ; tji ; sji ; eji ; oi) that satisfy (sji ; eji) � [ts; te]and vji � a is equivalent to a three dimensional dominance reporting problem, which can besolved in O(log n(v) + f(v)) time and O(n(v)) space using the data structure of Makris andTsakalidis [15], which we call the dominance tree, where n(v) is the number of tuples storedin v and f(v) is the number of tuples reported.The storage cost of this data structure can be estimated as follows. First, since any tuplecan appear at most once at each level of the tree T , the total number of tuples stored in Tis O(m logm). Second, we have at most 2m � 1 nodes in the tree T and each node storesat most n tuples. Hence the total number of tuples is O(mn). Since the dominance treeassociated with each node in T is linear in the number of tuples stored there, the overallstorage cost is O(mmin(logm;n)). As to the search complexity, �nding the allocation nodestakes O(logm) time, and O(log n + f(v)) is spent at each such node v with f(v) tuplescorresponding to proper objects. We thus have the following algorithm.Theorem 1. Using O(mmin(logm;n)) space, any one-sided temporal range query involvingn objects with a total number of m observations can be handled in O(log n logm+ f) time,where f is the number of objects satisfying the query.2.3 An O(m)-Space O(logm(log n+ f))-Time SolutionThe solution in the previous section requires non-linear space because a tuple could be storedat multiple levels of the primary tree T . For example, if the �rst two observations of objectOi are taken at time t1 and t9, then the tuple associated with v1i is stored at least in theleftmost node at each of the three bottom levels of T . Indeed, it is easy to construct anexample where each of the m observations will be replicated O(log(m=n)) times.To reduce the storage cost, we have to remove these duplicates. Consider an arbitraryobservation vji stored in an node u of T . We stipulate that vji be removed from u if thereis no observation of Oi stored in the sibling of u. We illustrate this new structure using thesame example shown in Figure 3, with the tuples removed according to this new rule shownin gray color.Lemma 2. The modi�ed data structure uses O(m) space.Proof. Since the auxiliary data structure associated with each node of T is linear in thenumber of tuples stored there, we only need to show that the total number of tuples inT is O(m). To accomplish this, it su�ces to demonstrate that the total number of tuplescorresponding to each object Oi is O(mi). This becomes obvious if we view the primary tree7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t

48 6 3 5 1 7 2

25 4 1 7 3 6 8O2

O1

(6,3,7)
(3,- ,9)

(5,7,9)
(1,- ,) (7,9,15)

(2,- ,10) (1,- ,) (3,10,) (6,12,) (8,14,)

8

8 8

8 8
8 8 8 8 8

8

(1,- ,)
(1,- ,)

(1,- ,)

(3,- ,9) (1,- ,)

(2,9,)(4,- ,7)

(4,- ,7)

(8,- ,3)

(5,- ,5)

(2,- ,10)

(2,- ,10)
(3,- ,9)

(1,- ,)

(2,- ,10) (1,- ,) (6,12,)
(2,9,)

(6,12,)
(7,9,15)

(3,10,)(1,- ,)
(1,- ,)(3,- ,9) (5,- ,5)

8
8 8

8

8 8
8 8

8
8 8

8

8

8
8

8
8 8

8

8
8

8
8

8 8
88

8
8 8

(4,5,10) (7,10,12)

8
8

8(8,14,)

8

 (5,- ,5)

8(8,- ,3) (4,- ,7) (2,9,)Figure 3: The observations of two objects and the corresponding CTR-tree.nodes that contain a tuple of Oi as the nodes of another tree Ti. The children of a node uin Ti is its nearest descendants in T with regard to Ti. A node v in T is called a nearestdescendant of u with regard to Ti if v is in Ti and there is no node v0 in Ti such that v0 is adescendant of u and an ancestor of v in T . It is easy to realize that Ti is a full binary tree,and each leaf of Ti contain a distinct tuple of Oi. Hence the number of tuples stored in Ti isO(mi).A negative e�ect of this reduction in storage cost is that it is no longer su�cient to onlysearch the allocation nodes corresponding to the time interval speci�ed by the query, since atuple that would previously be stored in an allocation node v may now only appear at someancestors of v. To ensure the correctness of our algorithm, we search not only the allocationnodes, but also the nodes on the path from the root to them. Although no proper object willbe missed in this process, some tuples that do not satisfy the conditions stated in Lemma 1may be mistakenly reported. Consider a tuple (vji ; tji ; sji ; eji ; oi) found in an ancestor of anallocation node which satis�es the conditions (sji ; eji) � [ts; te] and vji � a. Its timestamptji could be outside [ts; te]. Fortunately, the corresponding object Oi is still proper since theobservation vji is smaller than or equal to any observation during [ts; te]. An object may bereported at most O(logm) times, once at each level of T .The search time depends on the number of nodes visited, as O(log n) time is taken ateach of them. The following lemma completes our complexity analysis.Lemma 3. The total number of nodes on the paths from the root to the allocation nodes isO(logm).Proof. Consider the embedded tree T 0 that consists of all the nodes on the paths from theroot of T to the allocation nodes. Let �l (resp. �r) be the set of leftmost (resp. rightmost)nodes at each level of T 0. It is easy to see that each internal node of T 0 which is not on �lnor on �r has two children, that each internal node on �l has a right child, and that each8

internal node on �r has a left child. For each internal node v of T 0 on �l that does not havea left child, we add one, and we add right children to those internal nodes on �r which donot have one. By doing so, we turn T 0 into a full binary tree; and we have added at mosttwo leaf nodes during the process. Clearly, the number of internal nodes of the full binarytree T 0 is O(logm) as the number of its leaf nodes is O(logm).Theorem 2. Using O(m) space, any one-sided temporal range query involving n objectswith a total of m observations can be answered in O(logm log n + f logm) time, where f isthe number of proper objects.2.4 An O(m)-Space O(log3m + f)-Time SolutionIn this section, we give a linear space solution that reports each proper object exactly once.We call it linear temporal range tree (LTR-tree). In designing the LTR-tree, we apply twicethe interval tree techniques of Edelsbrunner [9] and use dominance trees to handle the queries.Rewriting the conditions stated in Lemma 1, we have ts 2 (sji ; tji], te 2 [tji ; eji), andvji � a. Handling such a query can be viewed as a geometrical retrieval problem. Each tuple(vji ; tji ; sji ; eji ; oi) can be viewed as a rectangular plate in a three-dimensional space whoseedges are parallel to the x- and y-axes, and whose projections to these two axes are (sji ; tji]and [tji ; eji) respectively; and the query can be viewed as �nding the plates that are intersectedby a ray perpendicular to the x-y plane shooting in the direction of positive z-axis from thepoint (ts; te; a). Figure 4 illustrates such a geometrical interpretation of the query.
t i

j

s i
j

e i
j

t
j
i

(t ,t ,a)s e

v i
j

z

x

y

Figure 4: Illustration of the plate intersection problem.We consider the projections of these plates to the x-y plane, which are rectangles. Theprimary structure of the LTR-tree is a balanced binary tree built by recursively partitioningthese rectangles according to the x-coordinates of their vertical edges. We choose a verticalline x = x(r) such that half of the distinct verticals of these rectangles are to the left of it andthe other half to the right, and store the value x(r) at the root node r of the primary intervaltree T . This vertical line partitions the set of rectangles into three groups: those whose9

corresponding horizontal edges are intersected by the partition line: f(vji ; tji ; sji ; eji ; oi)jsji <x(r) � tjig; those rectangles that are completely to its left: f((vji ; tji ; sji ; eji ; oi)jtji < x(r)g;and those completely to its right: f(vji ; tji ; sji ; eji ; oi)jsji � x(r)g. We associate the tuples thatcorrespond to the �rst group of rectangles with the root node and recursively construct its leftand right subtrees for the tuples corresponding the latter two sets of rectangles respectively.See Figure 5 for an example, in which the rectangles A, B, and E are associated with thenode r; D and G with the subtree rooted at node u; and C and F with the subtree rootedat node v.
x(r)

A
B

CD

E
F

G

x(u) x(v)

r

u v

x

y

{A,B,E}
{D,G} {C,F}Figure 5: An LTR-tree.Each node v of T is now associated with a set S(v) of tuples. Similar to the constructionof the primary interval tree, we build a secondary interval tree T (v) on S(v), this time basedon the y-coordinates of the horizontal edges of their corresponding rectangles. By doingso, we further distribute the tuples in S(v) to the nodes of T (v). To be exact, a node �of T (v) with a partition line y = y(�) contains tuples that satisfy tji � y(�) < eji ; its leftsubtree contains tuples that satisfy eji � y(�); and its right subtree contains tuples thatsatisfy tji > y(�).For the tuples associated with each node � of T (v), we construct four versions T0(�),T1(�), T2(�), and T3(�) of the dominance tree, for the following point dominance queriesrespectively: 1. (ts > sji ; te � tji ; vji � a); 2. (ts > sji ; te < eji ; vji � a); 3. (ts � tji ; te � tji ; vji �a); 4. (ts � tji ; te < eji ; vji � a).To analyze the storage cost of this data structure, we �rst notice that a tuple is storedin exactly one secondary tree. In this secondary tree, it is stored in at most 4 dominancetrees. Since a dominance tree is linear in the number of tuples stored there, the total size ofall the dominance trees is O(m); for the same reason, the overall size of the secondary treeis also O(m); and �nally, the primary tree is of size O(m).To answer a query (ts; te; a), we start from the root of the primary tree r. We �rst accessthe secondary tree T (r) to report tuples stored at r. Then we check if ts � x(r). If this isthe case, we recursively access the subtree rooted at r's left child; otherwise, we recursivelyaccess the subtree rooted at r's right child. When accessing a secondary tree T (u), we startfrom its root �. We �rst compare te with y(�). Depending on whether ts � x(u) and whetherte < y(�), we access one of the four dominance trees associated with �. More speci�cally, weaccess T0(�) if ts � x(u) and te < y(�); T1(�) if ts � x(u) and te � y(�); T2(�) if ts � x(u)and te < y(�); and T3(�) if ts � x(u) and te � y(�). After the points associated with � are10

reported, we recursively access its left child if te � y(�) or its right child otherwise.To demonstrate the correctness of the query algorithm, let's follow one search path duringthe handling of query (ts; te; a). At a node v being visited, suppose ts � x(v); then all thetuples stored in T (v) satisfy ts � tji . At a node � of T (v) being visited, suppose te � y(�).Then all the tuples stored in T (v) satisfy te � tji . Therefore, we only need to �lter thesetuples using the conditions (ts > sji , te < eji , and vji � a), which is exactly what T1(�) isdesigned to do. It is easy to verify that the tuples stored in T0(�), T2(�), and T3(�) cannotsatisfy the query. Also due to the fact that te � y(�), no tuples stored in the �'s left subtreewill be reported; so we only need to recursively access its right subtree. Similarly, when theaccess to the node v is �nished, we only need to recursively access its left subtree.Now we analyze the complexity of the query algorithm. To answer a query, we need toaccess O(logm) primary tree nodes, one at each level. For each such node v, O(logm) nodesin T (v) need to be processed. And �nally, for each node � in T (v) visited, O(logm+ f(�))time is spend to access one of its associated dominance trees, where f(�) is the number oftuples reported. Note that each tuple that satis�es query will be reported exactly once.Theorem 3. Using O(m) space, any one-sided temporal range query involving n objects witha total of m observations can be answered in O(log3m+ f) time, where f is the number ofproper objects.3 One-Sided Temporal Range Queries: The DynamicCaseIn this section, we consider the problem of designing dynamic indexing structures that enablethe quick handling of temporal range queries and at the same time can be e�ciently updatedwhen new observations are added. As stated before, we make the assumption that thetimestamp of a new observation of an objectOi is larger than that of any existing observationofOi. Note that adding a new object simplymeans adding the �rst observation of that object.Since our solution will use the characterization given in Lemma 1, we need to examinethe changes that will occur to the object's tuples when a new observation of that object isinserted. In Section 3.1, we show how to quickly determine the tuples that need to be updatedand the one tuple to be inserted due to the introduction of a new observation. Since ouralgorithms will use the 3-D dominance query data structure, we introduce a data structure forthe dynamic case in Section 3.2. This data structure is a crucial component of the dynamicversions of our temporal range trees, which will be presented in Sections 3.3 through 3.5.We will describe in detail the \dynamization" of the FTR-tree. The techniques introducedcan also be used to \dynamize" the other two temporal range trees. Therefore, for these twostructures, we will only comment on the new issues they raise.3.1 Creating and Updating TuplesThe addition of new observations may require that many of the existing tuples correspondingto the same object be updated to re
ect the possible change of their dominant intervals. Tofacilitate the quick identi�cation of such tuples, we maintain a Cartesian tree [27] Ci for11

each object Oi. A Cartesian tree for a sequence (tji ; vji); 1 � j � mi, is a binary tree withmi nodes. The root stores the smallest value vji over the time interval [t1i ; tmii], where j isthe smallest such index if multiple minima exist. Its left child is the root of the Cartesiantree for observations fv1i ; : : : ; vj�1i g; and its right child is the root of the Cartesian tree forobservations fvj+1i ; : : : ; vmii g. Note that a node may not have a left or right child. TheCartesian tree Ci can be built in O(mi logmi) time by inserting the observations in order oftheir timestamps, using an algorithm that we discuss later.Let vmi+1i be the new observation of object Oi with a timestamp tmi+1i , where tmi+1i > tmii .Let �i be the rightmost path of the Cartesian tree Ci before the addition of vmi+1i and �ibe the pre�x of �i such that each node on �i, except the root, is the right child of itsparent. To update Ci, we �rst �nd the pair of parent-child nodes upred and usucc on �iand the corresponding observations vjpredi and vjsucci such that vjpredi � vmi+1i < vjsucci . Notethat upred (usucc) is null if vmi+1i is less than (greater than or equal to) all the observationsassociated with �i. Since the values of the observations corresponding to the nodes on �iare non-decreasing from the root, we can easily �nd this pair in O(logmi) time using binarysearch.Now consider the parent node upred and the child node usucc. If upred is not null, then thenew node u that corresponds to vmi+1i becomes its right child. If usucc is not null, it becomesthe left child of u. The node u becomes the root of the new Ci if upred is null. Figure 6 showshow the additions of two new observations v9i = 1 and v10i = 5 for object Oi is handled. Thepath �i can be maintained in an array whose size is hi, where hi is the length of �i.
8

6

4

3 3

2

7

1 1

8

6

4

3 3

1

2

7

1

5

u pred

8

6

4

3 3

1

2

7

u succ

u pred

= v9
i

= v10
iFigure 6: The addition of two new observations to an existing Cartesian tree.The following lemma guarantees that on average, only a constant number of tuples needto be updated.Lemma 4. Let mi be the number of observations of object Oi maintained in the currentCartesian tree Ci prior to the insertion of the new observation vmi+1i with a time stamptmi+1. Then the g tuples that need to be updated after inserting vmi+1i can be identi�edin O(logmi + g) time. Furthermore the amortized value of g over the next mi insertionscorresponding to Oi is at most 2. 12

Proof. Consider the insertion of a new observation vmi+1i of Oi. It easy to realize that for any1 � k � mi, if vki � vmi+1i , then its dominant interval (ski ; eki) does not change. Furthermore,for any observation vji stored in a descendent of a left child of a node v on �i, we know thatits dominant interval will be limited from the right by the timestamp of vj0i which is storedin v and thus will not be a�ected by the insertion of the new instance. Therefore we onlyneed to update the tuples whose corresponding observations are associated with the su�xof �i, starting from usucc. Indeed, for each such tuple, whose dominant interval is in theform (s;+1), the updated dominant interval will be (s; tmi+1i). We also need to add thetuple (vmi+1i ; tmi+1i ; jpred;+1; oi) that corresponds to the (mi + 1)-th observation of Oi, or(vmi+1i ; tmi+1i ;�1;+1; oi) if upred is null.Let hji be the length of �i in the version of Ci with j observations and lji be the height ofthe node uprec, i.e., the number of nodes on the path from the root to uprec, including uprec.It is clear from the previous analysis that hji � lji existing tuples need to be updated. Thesetuples can be retrieved in O(1) time each, provided that usucc has been located, a task thatcan be done in O(log hji) time. Furthermore, the length hj+1i of the new �i after the additionis lji + 1.Now consider the mi consecutive additions of new observations of object Oi, assumingthatmi observations have already been recorded. The number of tuples to be updated duringthese mi insertions is given by:2mi�1Xj=mi hji � lji = 2mi�1Xj=mi hji � (hj+1i � 1) = hmii � h2mii +mi < 2mi: (1)Therefore the amortized number of tuples to be modi�ed per insertion over the next miinsertions is less than 2.The following lemma shows that that the aggregate number of tuples that need to beupdated over a sequence of inserting m observations is less than 2m.Lemma 5. Let m be the number of observations maintained in the current primary datastructure corresponding to all the objects. Then the aggregate number of tuples that need tobe updated over the insertions of the next k new observations is less than m+ k.Proof. Let n0 be the number of objects in the data structure after the k insertions, and letmi and ki, with i = 1; : : : n0, be respectively the numbers of current and new observationscorresponding to object Oi. Note that Oi may not have any observations in the current datastructure, in which case mi = 0.Using the notation of the proof of Lemma 4 and similar to Equation 1, we can calculatethe number of tuples to be updated during these m insertion asPn0i=1Pmi+ki�1j=mi �hji � lji �= Pn0i=1Pmi+ki�1j=mi �hji � hj+1i + 1�= Pn0i=1 �hmii � hmi+kii + ki�< Pn0i=1 (mi + ki)= m+ k: (2)13

Lemma 5 allows us to handle the insertions by �rst identifying the old tuples that needto be updated, followed by performing each of the updates, and �nally adding the new tuple.Note that if we start from an empty data structure, then the amortized cost for including anew observation is one update operation and one insertion. On the other hand, if we startfrom a data structure that already contains m tuples, then the amortized cost for insertinga new observation over the next m insertions is at most two update operations and oneinsertion.3.2 Dynamic Data Structures for 3-D Dominance QueriesOnce we identify the tuples to be modi�ed and the new tuple to be inserted, we need toupdate the corresponding data structures for handling dominance queries. In particular,we have to remove the points corresponding to old tuples and insert the points associatedwith the updated tuples. Although the dominance tree described before has very goodperformance in terms of space and query time, it does not appear to be suitable for thedynamic case. To make our data structure dynamic, we use a combination of the range treeand the priority search tree, a structure that we will refer to as the dynamic dominance tree,to solve the 3-D dominance query problem. We now elaborate on this data structure usingthe version of dominance query in which we are asked to �nd all the points p = (px; py; pz)that are dominated by a query point q = (qx; qy; qz), i.e., px � qx, py � qy, and pz � qz.Given a set of n three dimensional points, we �rst build a weight-balanced tree [2] T ofdegree c on the z-coordinates sorted in increasing order, where c is a constant. A weight-balanced tree storing n points is a dynamic search tree of O(log n) height which supportsinsertion and search in O(log n) time. More importantly, if a node whose subtree has w leafnodes is split, then for each new node created as a result of this split, at least
(w) insertionshave to pass through it to make it split again.For each internal node v, we build a priority search tree [17] that stores the set of pointsin the subtree of v projected onto the x-y plane. Recall that a priority search tree containingn elements requires O(n) space and O(n log n) preprocessing time, and can handle search,insertion, and deletion operations in O(log n) time [17]. A dominance query can be answeredby �rst identifying the O(c log n) allocation nodes in T that together correspond to the z-range (�1; qz], and then searching the corresponding priority search trees to answer thequery (px � qx; py � qy). The query time is O(log2 n+f) and the space required by the datastructure in O(n log n).To insert a point, we �rst perform a virtual insertion to handle any necessary node splitin T . When a node is split, the priority search trees of the two newly created nodes are builtfrom scratch. Since the total size of the priority search trees stored in a subtree rooted ata node v is asymptotically the same as the number of leaves in that subtree, the amortizedcost of this split is O(log n). After that, the new point is inserted into T as well as into thepriority search trees on the path from the root to its corresponding leaf node. This processtakes O(log2 n) time.Deletion can be done using global rebuilding technique [19]. For each node on the pathfrom the root to the leaf corresponding to the point being deleted, we remove this point fromits associated priority search tree in an overall O(log2 n) time. We do not delete the leafnode in the primary tree at this time. Instead, we wait until n=2 deletions have happened14

and then rebuild the entire data structure using O(n log2 n) time.Generalization of the above results to higher dimensions is straightforward. and can besummarized by the following lemma.Lemma 6. For any d � 2, using O(n logd�2 n) space and O(n logd�1 n) preprocessing, wecan store n d-dimensional points in a data structure such that dominance queries can beanswered in O(logd�1 n + f) time and updates can be performed in O(logd�1 n) amortizedtime.3.3 Dynamic FTR-treeTo make the structure in Section 2.2 dynamic, we replace the binary tree built on the timeinstances by a weight-balanced tree T of degree c. Each node is associated with a set oftuples, each representing an object. The dominant interval of a tuple associated with aninternal node v contains the dominant intervals of all the tuples stored in the subtree ofv representing the same object. With each node v of T , we store the dynamic dominancetree structure Tdom(v) built on the tuples stored at v, and a dynamic binary search tree,say a red-black tree [7], Tkey(v) built on the keys associated with these tuples. It can beshown using similar arguments as in the static case that the size of our data structure willbe O(m log nminflogm;ng) (the extra log n factor is due to the dynamic dominance treestructure being used).The query process is almost the same as in the static case. The only di�erence is thatwe now have up to O(c logm) allocation nodes, each of which takes O(log2 n+ f(v)) time tosearch.There are two major steps required to update our overall data structure. The �rst is toupdate the tuples that are no longer valid, and the second is to insert the new time stampand the new tuple into the primary tree.Consider the update step. Suppose that the tuple (vli; tli; sli; eli; oi) needs to be updated.Notice that the entry tli of this tuple does not change. Therefore, there is no need to updatethe primary tree. Furthermore, we have the following lemma.Lemma 7. An updated tuple associated with a previous observation should be stored in theauxiliary tree structures Tdom(v) and Tkey(v) of the new primary structure if and only if theold tuple is also stored there.Proof. This lemma is immediate once we realize that the node at which a tuple (vji ; tji ; sji ; eji ; oi)resides depends solely on its value vji and timestamp tji , which do not change when a newobservation is inserted.Therefore, what we need to do is to go through each node on the path from the root tothe leaf node corresponding to tli. For each node v on this path, we search Tkey(v) using oito �nd the old tuple and replace it with the new one. Then we remove the same old tuplefrom, and insert the new tuple into, Tdom(v). The whole process takes O(logm log2 n) time.To add a new tuple (vj+1i ; tj+1i ; sj+1i ;+1; oi), we �rst insert the new time instance intothe primary tree T . This may cause up to O(logm) nodes to split, which can be handled inO(logm log2 n) amortized time following similar arguments as in Section 3.2. To insert the15

new tuple, we traverse the path from the leaf node corresponding to tj+1i up toward the root.At each node v visited, we search the representative tuple for Oi in Tkey(v) using oi. If thereis no such tuple, we insert the new tuple into both Tkey(v) and Tdom(v). If one such tuple isfound, we check if it needs to be replaced by the new tuple. If it does, then we remove theold tuple from and insert the new tuple into both Tkey(v) and Tdom(v). Otherwise, we do notneed to visit any of v's ancestors.Theorem 4. Any temporal range query involving n objects with a total number of m obser-vations can be answered in O(logm log2 n+f) time using a data structure of size O(m log n �minflogm;ng). This data structure can be constructed in O(m logm log2 n) time and updatedin O(logm log2 n) amortized time over the next m updates.3.4 Dynamic CTR-treeSince a CTR-tree is derived from its corresponding FTR-tree, a dynamic CTR-tree is derivedfrom the corresponding dynamic FTR-tree by removing the representative tuple p of objectOi from a node v if none of its siblings contains an observation of Oi. It is easy to showthat the storage cost of the dynamic CTR-tree is still O(m log n) and the query time is stillO(logm log2 n+ f logm).Notice that Lemma 7 holds for CTR-trees as well. Therefore, updating an exiting tuplein a CTR-tree takes O(logm log2 n) time.Now consider the process of adding a new tuple. If a node v splits into v0 and v00 duringthe insertion of the new time instance, we rebuild, as we did for the FTR-tree, the subtreesrooted at v0 and v00 completely. The amortized cost is O(logm log2 n). The only additionaldetail we need to examine carefully is whether the set of tuples associated with the parentu of v might change. Notice u does not have a representative tuple of object Oi if and onlyif either (i) no observation of Oi was taken during the time period associated with u; or (ii)the set of observations associated with the subtree rooted at u is the same as that associatedwith the subtree rooted at u's parent. These two conditions will not change as a result ofthe node-split, and hence the tuples associated with u will not change.Finally, we comment on the insertion of the new tuple p = (vj+1i ; tj+1i ; sj+1i ;+1; oi). Aswe did in the case of dynamic FTR-trees, we traverse the path � from the root of T tothe leaf node corresponding to tj+1i . At each node v, we �rst use Tkey(v) to identify therepresentative tuple of Oi in S(v). If no such tuple is found, i.e. no tuple correspondingto Oi is stored in the subtree rooted at v, we simply insert the new tuple in Tkey(v) andTdom(v). If there is such a tuple, say q = (vli; tli; sli;+1; oi), we check whether the dominantinterval of p contains that of q and in the a�rmative replace q with p in both Tdom(v) andTkey(v), and continue to visit the next node on �. Unlike the FTR-tree, when the tuple q isreplaced by p, and p and q belong to subtrees of di�erent children of v, we need to insert qto the root of the subtree it belongs to. Hence, the process of inserting the new tuple takesO(logm log2 n) time.Theorem 5. Any temporal range query involving n objects with a total number of m ob-servations can be answered in O(logm(log2 n + f)) time using O(m log n) space. This datastructure can be constructed in O(m logm log2 n) time and updated in O(logm log2 n) amor-tized time. 16

3.5 Dynamic LTR-treeTo make the LTR-tree dynamic, we replace the primary and secondary binary search treeswith weight-balanced trees of degree c. In either the primary tree or the secondary tree, anode is thus associated with c� 1 partition lines; and a tuple is associated with a node if itscorresponding rectangle intersects at least one of its partition lines.Let S(u) be the set of tuples associated with a primary tree node u, S(u) is partitionedinto �(c2) subsets, each containing the tuples whose corresponding rectangles intersect aspeci�c pair of vertical partition lines and is organized as a secondary tree Tg;h(u) with0 < g � h < c. Similarly the set of tuples associated with each such secondary tree node �is indexed using �(c2) dynamic dominance trees, four of di�erent versions for each pair ofhorizontal partition lines.It is easy to see that the overall storage cost of this data structure is O(m logm), thequery time is O(log4m+ f), and the preprocessing time is O(m log2m). Following the samearguments as in Section 3.3, and by using the properties of the weight balanced trees and thetechniques of global rebuilding, it is not di�cult to show that we can insert a new tuple inO(log3m) time and delete an old tuple in O(log2m) time, both amortized. Thus updatingan LTR-tree takes O(log3m) time.Theorem 6. Any temporal range query involving n objects with a total number of m obser-vations can be answered in O(log4m+f)) time using a O(m logm) space data structure. Thisdata structure can be constructed in O(m log2m) time and updated in O(log3m) amortizedtime.4 Handling The General Temporal QueriesFor the general problem, we assume that we have a prede�ned time hierarchy imposedon our time line, say starting at a �xed time instance t0 until tm+1 = +1, such that allqueries involve one of the time intervals de�ned in this hierarchy. This is indeed the casein many applications. In fact, the hierarchy \day!week!month!season!year" is widelyused for applications such as OLAPs. We are interested in queries that will identify objectswhose attributes fall within certain ranges at every time instance in one of the time intervalsde�ned by the hierarchy. As a speci�c application, consider a set of probes located in alarge number of geographic areas, each collecting a number of measures (say temperature,humidity, snowfall, wind speed, pressure, etc.) and sending the information to a server - theymay arrive at di�erent times but will have a timestamp indicating when the information wasrecorded. A typical query would be to determine the regions which, during the �rst weekof February 2002, the temperature was higher than 30�C and the snowfall smaller than 2inches during each day of that week.Let us formally de�ne our time hierarchy as a tree T = (V;E). Each node v of Tis associated with a time interval I(v) = [ts; te) at a certain level of this hierarchy. Aninternal node v has a set of children that correspond to the time intervals of a �ner gran-ularity. Except for the root, which is associated with the time interval [t0;+1), the timeinterval associated with any other internal node v is I(v) = [u2children(v)I(u). The leavescorrespond to time intervals of the �nest granularity in the hierarchy. For example, for the17

\day!week!month!season!year" hierarchy, the root corresponds to the entire history ofthe data set. Each child of the root represents a year and has four children, each correspond-ing to a di�erent season of that year, etc. Let I(v) be the time interval associated with nodev, a query of type Q0 is de�ned as follows.Q0. Given two vectors a = [a1; a2; : : : ; ad] and b = [b1; b2; : : : ; bd], and a nodev 2 V , determine the set Q of objects such that Oi 2 Q if and only if thefollowing two conditions are true:� There exist at least one observation taken at time tji such that tji 2 I(v).� For every observation vji such that tji 2 I(v), we have ak � vji;k � bk fork = 1; 2; : : : ; d.We store at each node v a set S(v) of (2d + 1)-tuples: S(v) = f(minvi;1;maxvi;1; : : : ;minvi;d;maxvi;d; oi)j9j; tji 2 I(v)g, where minvi;l and maxvi;l are the minimum and maximumvalues of the lth attribute of Oi during the time interval I(v). Note that if there is noobservation for Oi during the time interval I(v), then there is no tuple in S(v) representingOi. To be able to tell which objects are represented in v, we maintain a red-black tree Tkey(v)to index the tuples in S(v) on the keys oi.By observation 1, we can answer a query of type Q0 by determining the (2d � 1)-tuplesat v which satisfy: maxvi;1 � bl and minvi;1 � al, for all l = 1; 2; : : : ; d. Finding such tuplesin S(v) is equivalent to answering a (2d)-dimensional dominance query. By Lemma 5, thereexists a data structure Tdom(v) of size O(n log2d�2 n) such that the proper objects in S(v)can be reported in O(log2d�1 n+f(v)) time. The total number of tuples stored in T is O(m),since each tuple is stored in a constant number of nodes, one at each level of the hierarchy(the number of hierarchy levels is assumed to be constant independent of the number ofobservations). Let n(v) be the number of tuples stored in v. The overall size of the datastructure isO Xv2V n(v) log2d�2 n(v) +m0! = O log2d�2 nXv2V n(v) +m0! = O �m log2d�2 n+m0� ;wherem0 is the number of leaves in T , which is typically much smaller than m. The construc-tion of this data structure is straightforward. We �rst use O(m) time to construct the set S(v)for each node v. We then spend O(n(v) log n(v)) to build Tkey(v) and O(n(v) log2d�1 n(v))time to build Tdom(v). The overall preprocessing time is O(m log2d�1 n+m0).When a new observation vmi+1i of object Oi is added, we �rst look for the leaf node u suchthat tji is in its corresponding time interval. We distinguish between two cases as describedbelow:Case 1. A leaf node u containing tji already exists in our structure. We visit nodes onthe path from u to the root. For each such node v, we �rst look for the representativetuple of Oi in S(v) by searching Tkey(v), which takes O(log n(v)) time. If such a tupleis found, we compare vmi+1i;k against minvi;k and maxvi;k for each 1 � k � d, and updatethe maximum or minimum value if necessary. If one of the maximum or minimumvalues is updated, then the old (2d + 1)-tuple is removed from Tdom(v) and the newtuple is inserted. Only O(log2d�1 n) time is needed to perform this task.18

Case 2. No leaf node containing tji exists. We need to add a sequence of leaf nodesto the right of the rightmost leaf of the existing tree, so that the time interval of lastnode u added covers the time instance tmi+1i , and the new tuple (vmi+1i;1 ; : : : ; vmi+1i;d ; oi) isinserted into the empty node u. If the newly added nodes are children of the rightmostnode v one level higher in the hierarchy, the trees Tkey(w) and Tdom(w) for each nodew on the path from v to the root are updated using vmi+1i as described in Case 1.Otherwise, new nodes at this level need to be added. We repeat the same process untilwe reach the level just below the root. Since the root is associated with the entirehistory of the data set, the process of adding new nodes is guaranteed to end at thislevel. The complexity of adding the new observation in this case is O(log2d�1 n+�m0),where �m0 is the number of new leaf nodes added.We thus have the following theorem.Theorem 7. Any temporal range query of type Q0 involving n objects with a total numberof m observations, and involving a time hierarchy with m0 prede�ned time intervals at thelowest level, can be answered in O(log2d�1 n + f) time using O(m log2d�2 n + m0) space.The preprocessing takes O(m log2d�1 n + m0) time. Any new observation can be added inO(log2d�1 n + �m0) amortized time, where �m0 is the number of new time intervals addedto the lowest level of the hierarchy.5 Adding Key Ranges to the SearchBy increasing the storage by a factor of O(log n), we can extend all the previous datastructures so that they can be used to answer queries that not only specify the time andvalue ranges, but also the key ranges. That is, only a subset of the proper objects Oi, thosewith keys between k1 and k2 satisfying the temporal range constraints will be reported. Weuse a dynamic balanced binary tree to index the tuples according to their keys. Each nodeof this tree is thus associated with a key range; and we attach one of the data structuresdescribed in the previous sections, containing only tuples within this key range. The querytimes are increased by a factor of O(log n).References[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In 19th ACMSymposium on Principles of Database Systems, pages 175{186, 2000.[2] L. Arge and J. S. Vitter. Optimal dynamic interval management in external mem-ory. In 37th Annual Symposium on Foundations of Computer Science, pages 560{569,Burlington, Vermont, Oct. 1996.[3] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory data sets withSETI. In First Biennial Conference on Innovative Data Systems Research, 2003.[4] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal onComputing, 15(3):703{724, Aug. 1986. 19

[5] B. Chazelle. Lower bounds for orthogonal range search I. The reporting case. Journalof the ACM, 37(2):200{212, 1990.[6] B. Chazelle and H. Edelsbrunner. Linear space data structures for two types of rangesearch. Discrete Comput. Geom., 3:113{126, 1987.[7] Cormen, Leiserson, and Rivest. Introduction to Algorithms. MIT Press, 1990.[8] J. R. Driscoll, N. Sarnak, D. Sleattor, and R. E. Tarjan. Make data structures persistent.J. of Compu. and Syst. Sci., 38:86{124, 1989.[9] H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. ComputerMathematics, 13:209{219, 1983.[10] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection search-ing problems: counting, reporting, and dynamization. Journal of Algorithms, 19:282{317, 1995.[11] R. Janardan and M. Lopez. Generalized intersection searching problems. InternationalJournal of Computational Geometry & Applications, 3(1):39{69, 1993.[12] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicatingindex structures. In Proceedings of the 7th International Conference on Database Theory,pages 257{276, Jerusalem, Israel, Jan. 1999.[13] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Proceed-ings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems, pages 261{272, 1999.[14] S. Lanka and E. Mays. Fully persistent B+-trees. In Proceedings of the ACM SIGMODInternational Conference on Management of Data, pages 426{435, 1991.[15] C. Makris and A. K. Tsakalidis. Algorithms for three-dimensional dominance searchingin linear space. Information Processing Letters, 66(6):277{283, 1998.[16] Y. Manolopoulos and G. Kapetanakis. Overlapping B+-trees for temporal data. InProceedings of the 5th Jerusalem Conference on Information Technology, pages 491{498, 1990.[17] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257{276,May 1985.[18] M. A. Nascimento and J. R. O. Silva. Towards historical R-trees. In Proceedings of theACM Symposium on Applied Computing, pages 235{240, Feb. 1998.[19] M. H. Overmars. The design of dynamic data structures. Springer-Verlag, LNCS 156,1983. 20

[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing formoving object trajectories. In Proceedings of 26th International Conference on VeryLarge Databases, pages 395{406, Sept. 2000.[21] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions ofcontinuously moving objects. In Proceedings of the 2000 ACM SIGMOD InternationalConference on Management of Data, pages 331{342, 2000.[22] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving data.ACM Computing Surveys, 31(2):158{221, 1999.[23] Q. Shi and J. JaJa. A new framework for addressing temporal range queries and somepreliminary results. Technical Report CS-TR-4438, Institute of Advanced ComputerStudies (UMIACS), University of Maryland, 2003.[24] Y. Tao and D. Papadias. E�cient historical R-trees. In Proceedings of the 13th Inter-national Conference on Scienti�c and Statistical Database Management, pages 223{232,2001.[25] T. Tzouramanis, Y. Manolopoulos, and M. Vassilakopoulos. Overlapping LinearQuadtrees: A spatio-temporal access method. In Proceedings of the 6th ACM Sympo-sium on Advances in Geographic Information Systems (ACM-GIS), pages 1{7, Bethesda,MD, 1998.[26] P. J. Varman and R. M. Verma. An e�cient multiversion access structure. IEEETransactions on Knowledge and Data Engineering, 9(3):391{409, 1997.[27] J. Vuillemin. A unifying look at data structures. Communications of the ACM,23(4):229{239, 1980.
21

