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In quantitative risk analysis, the problem of estimating small threshold ex-

ceedance probabilities and extreme quantiles arise ubiquitously in bio-surveillance,

economics, natural disaster insurance actuary, quality control schemes, etc. A use-

ful way to make an assessment of extreme events is to estimate the probabilities of

exceeding large threshold values and extreme quantiles judged by interested author-

ities. Such information regarding extremes serves as essential guidance to interested

authorities in decision making processes. However, in such a context, data are usu-

ally skewed in nature, and the rarity of exceedance of large threshold implies large

fluctuations in the distribution’s upper tail, precisely where the accuracy is desired

mostly. Extreme Value Theory (EVT) is a branch of statistics that characterizes

the behavior of upper or lower tails of probability distributions. However, existing

methods in EVT for the estimation of small threshold exceedance probabilities and

extreme quantiles often lead to poor predictive performance in cases where the un-

derlying sample is not large enough or does not contain values in the distribution’s



tail. In this dissertation, we shall be concerned with an out of sample semipara-

metric (SP) method for the estimation of small threshold probabilities and extreme

quantiles. The proposed SP method for interval estimation calls for the fusion or

integration of a given data sample with external computer generated independent

samples. Since more data are used, real as well as artificial, under certain condi-

tions the method produces relatively short yet reliable confidence intervals for small

exceedance probabilities and extreme quantiles.

This dissertation is organized as follows: In Chapter One, an overview of

Extreme Value Theory will be given, and the existing methods for exceedance prob-

ability and extreme quantile estimation in EVT will be presented in some detail.

Chapter Two introduces some necessary background about the Density Ratio Model.

In Chapter Three, the idea of out of sample fusion (OSF) and repeated out of sam-

ple fusion (ROSF) are reviewed. We will show how to estimate tail probabilities

and construct confidence intervals through OSF and ROSF. Results from extensive

simulation studies are presented to demonstrate the performance of the proposed

model when the underlying sample is from a highly skewed distribution. The re-

sults are compared with those obtained by EVT, and other well known methods.

In Chapter Four, how extreme quantiles are estimated based on ROSF is presented

with results from simulation studies. In Chapter Five, applications of the proposed

method to real data problems in food safety and a clinical trial will be given. Fi-

nally, asymptotic theorems and results for quantiles under the density ratio model

appear in the appendix.
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Chapter 1: Extreme Value Theory

1.1 Introduction

The estimation of the probability of rare and hazardous events is of interest

in many disciplines, including environmental studies, finance modeling, engineering

and earth sciences etc. Extreme Value Theory (EVT) is a branch of statistics that

characterizes the behavior of upper or lower tails of probability distributions. Given

a sample from a distribution, EVT seeks to model large deviations far away from

the median.

This chapter briefly reviews the theoretical underpinnings of EVT. Three clas-

sical methods in modeling extreme values will be covered: the block maxima ap-

proach, the peaks over threshold approach, and Poisson processes. This introduction

is by no means exhaustive, and its purpose is just to review traditional methods in

estimation of tail probabilities and extreme quantiles which will later serve as bench-

marks to assess the performance of the semiparametric methods. For more rigorous

and thorough treatment of EVT, the reader is referred to Beirlant et al. (2004 [3],

Coles (2001) [10], Haan and Ferreira (2006) [24], Leadbetter et al. (1983) [33], and

Resnick (1987) [42].

Section 1.2 provides model formulation and inference. The Block Maxima
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approach is introduced in Section 1.3 and threshold models are given in Section 1.4.

The notations are adopted from Coles (2001) [10].

1.2 Model Formulation

Consider a sequence of independent and identically distribution (i.i.d.) random

variables X1, . . . , Xn, the extreme value model focuses on the statistical behavior of

Mn = max{X1, . . . , Xn},

which is the maximum of the sequence of random variables. Determining which

distribution Mn follows is the essential problem in EVT. In real applications, the

sequence Xi’s could represent either independent measurements of certain quanti-

ties on different individuals in the sample or values of a process measured over a

time span. For example, in our food safety application, Xi’s represent lead intake

levels of 3000 Americans resulting from consuming seafood, while in a financial data

application the Xi’s may represent daily log-returns.

Theoretically, the distribution of Mn could be derived exactly, given that the

distribution function F of Xi is known:

P(Mn ≤ z) = P(X1 ≤ z, . . . Xn ≤ z) = P(X1 ≤ z)× · · · × P(Xn ≤ z) = (F (z))n.

(1.1)

In practice, however this approach is not feasible for the following reasons. First,

the distribution function F is unknown in general. The problem might be overcame

by using standard statistical techniques. One possibility would be estimating F

by a kernel density estimate, the other would be assuming that Xi’s are coming
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from a particular distribution. Then the estimated F needs to be raised to the

power of n to obtain the distribution function of Mn. Small discrepancies in the

estimates of F may lead to substantial discrepancies in F n. Alternatively, a family of

distribtuons F n that approximate any unknown F may be found. In other words, the

characteristics and asymptotic properties of F n are needed. However, one difficulty

could arise. Suppose z+ is the smallest value of z such that F (z) = 1, or put

differently, let z+ be the upper end point of F . Then for any z < z+, F n(z)→ 0 as

n→∞. In this case, the distribution of Mn degenerates to a point mass on z+. To

circumvent this problem, a linear transformation of the variable Mn is introduced:

M∗
n =

Mn − bn
an

where an > 0 and bn are sequences of constants. Appropriate choices of an and

bn would prevent a probability mass collapse over a single point and stabilize the

location and scale of M∗
n as n increases.

Theorem 1.1 (Fisher-Tippett-Gnedenko). Let Xn be a sequence of i.i.d. random

variables. If there exist constants an > 0, bn ∈ < and some non-degenerate distribu-

tion function G such that

Mn − bn
an

d−→ G, (1.2)

then G belongs to one of the three standard extreme value distributions:

3



I Féchet: Φ(z) = exp
{
− exp

[
−
(
z−b
a

)]}
, −∞ < z <∞;

II Weibull: Ψ(z) =


exp

{
−
(
z−b
a

)−α}
, z > b

0, z ≤ b

III Gumbel: Λ(z) =


exp

{
−
[
−
(
z−b
a

)α]}
, z < b

1, z ≥ b

for parameters a > 0, b, and in the case of families II and III, α > 0.

This is the first EVT result (also known as the Fisher-Tippett-Gnedenko The-

orem) which characterizes the asymptotic distribution of the sample maxima. The

theorem states that the asymptotic distribution G of the maximum of a sample of

i.i.d. random variables after proper renormalization can converge in distribution to

only one of three possible distributions: Gumbel, Féchet, or Weibull. Collectively,

these three classes of distributions are termed as the extreme value distribution

(EVD).

Early applications of EVT are based on characterization of “maximum do-

mains of attraction”. By definition, a random variable X (the distribution function

F of X) belongs to the maximum domain of attraction of the extreme value dis-

tribution G if there exists constants an > 0, bn such that 1.2 holds. It was usually

assumed the underlying distribution F belongs to one of the three “maximum do-

mains of attraction” (MDA) of extreme value distribution G (F ∈ D(G)) and adopt

the associated distribution family D(G). Then the relevant parameters of the EVD

can be estimated, the quantiles or tail probabilities can be derived based on the

estimators. In the estimation process, one selects the k largest order statistics to

4



obtain a fraction of the sample which represents the distribution tail. Then estima-

tors, depending on the number of upper order statistics, are used in the estimation.

There are two issues related to the implementation of this approach. First, a tech-

nique is required to choose which of the three families is most appropriate for the

data at hand. Second, once a decision is made, subsequent inference presumes this

choice to be correct, and does not allow for the uncertainty which such a selection

involves.

A reformulation of Theorem 1.1 combines the three distributions into a single

family of models called the generalized extreme value (GEV) distribution. The

modified version of the first theorem characterizes the asymptotic distribution of a

series of maxima, and states that under certain conditions the distribution of the

standardized maximum of the series is shown to converge to one of the Gumbel,

Féchet, or Weibull distributions.

Theorem 1.2. Let Xn be a sequence of i.i.d. random variables. If there exist

constants an > 0, bn ∈ < and some non-degenerate distribution function G such that

Mn − bn
an

d−→ G,

then G is a member of the GEV family:

G(z) = exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ}
defined on {z : 1 + ξ(x− µ)/σ > 0} where −∞ < µ <∞ is the location parameter,

σ > 0 the scale and ξ 6= 0 the shape parameter.

5



The above one parameter representation of the three standard cases into

one family is also known as the Jenkinson-von Mises representation (Embrechts

et al.) [14] which allows one to write the c.d.f. of G as a function Gγ(x) ≡

exp(−(1 + ξx)(−1/ξ)) depending on the extreme value index ξ. The limiting case

ξ → 0, corresponds to the Gumble distribution, the case ξ > 0 corresponds to the

Féchet distribution and the case ξ < 0 to the Weibull distribution. The three types

of distributions correspond to the different tail behaviors for the distribution of the

original population. Gumbel is related to light-tailed distributions such as normal,

gamma or exponential distributions; Féchet is related to heavy-tailed distributions

such as Pareto, Cauchy or Student-distribution and Weibull is related to distribu-

tions with finite support such as Uniform and Beta. This result is very significant.

The theorem states that Mn can be stabilized with properly chosen an and bn, the

corresponding transformed sample maxima (Mn−bn)/an converges to a variable hav-

ing a distribution within the generalized extreme value (GEV) distribution families,

regardless of the underlying distribution F of the population.

For an illustrative example on the choice of centering and normalizing con-

stants an and bn, suppose X1, . . . , Xn is a sequence of exponential variables with

parameter λ = 1. Then, for an = 1 and bn = log n, the limiting distribution of Mn

is the Gumbel distribution as n→∞, as shown:

6



P
(
Mn−bn
an

)
= F n(z + log n)

= [1− exp(−(z + log n))]n

= [1− n−1 exp(−z)]n

→ exp(− exp(−z))

The above calculation show the resulting distribution is indeed Gumbel, correspond-

ing to ξ → 0 in the GEV family. For a summary of maximum domains of attraction

and derivation of normalizing constants an and bn, the reader is referred to Em-

brechts et al. (1997) [14] Chapter 3.

Theorem 1.2 plays a fundamental role when modeling the maxima of random

variables which is analogous to the Central Limit Theorem when modeling sums of

random variables. Through inference of the shape parameter ξ, the most appropriate

type of tail behavior is determined by the data themselves. This allows the risk

modelers to avoid making a subjective selection about which individual extreme

value family to adopt which may lead to substantial uncertainty. The unification of

the original three families greatly simplifies statistical implementation and leads to

the so called Block Maxima approach.

Figure 1.1 illustrates the shape of the probability density functions of the

standard Féchet, Weibull, and Gumbel distributions.
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Figure 1.1: Density Plots for distributions from GEV Families

1.3 Block Maxima

The Block Maxima approach considers the maximum the variable takes in

successive observations. More precisely, a sample is divided into sub-samples or

blocks first. Then, the largest observations in each block (block maximum) are taken

as extreme data points which will be used for fitting the GEV. An alternative version

of this approach called rth largest order model is suggested to deal with cases when

the underlying sample is not sufficiently large enough. In this alternative approach,

not only the maximal observation in a given block is used as a data point for fitting

the GEV, but the r largest observations are taken as well.

The block maxima and r largest order data selection methods are better il-

lustrated in Figure 1.2. In the figure, 100 points that follows Gamma(1, 0.1) dis-

tribution are randomly generated and subdivided into 10 blocks of equal size. The
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Figure 1.2: Block Maxima Approach Illustration

maximum observation in each block is marked by a red diamond, and the second

largest observation is indicated by a blue triangle. The diamonds would be employed

by the block maxima approach, and both diamonds and triangles would be utilized

if one were to fit a second largest order model. Several issues arise when the block

maxima approach is adopted in a real data application. First, in practical situations,

it is very common that the sample size is not large enough, so that the unknown

distribution parameters are subject to great uncertainty. The confidence intervals

for the unknown distribution parameters and the derived risk measures would be

too wide to make any practical sense. Of course, the rth largest order approach

might be employed to reduce the variance by increasing the sample size. However,

another problem is that the rth largest observations probably do not qualify as

extreme events, and the inclusion of such points would lead to a biased sample.

Furthermore, if a given sample is a time series, it is very natural that the series

fluctuates more in volatile periods than it does in tranquil periods. The inclusion

9



of data points during tranquil periods as block maxima values would also lead to

substantial estimation bias.

1.3.1 Parameter Estimation

For notational convenience, let Z1, . . . , Zm be the block maxima when a se-

quence of random variables Xi are divided into m blocks. It is reasonable to assume

that Z1, . . . , Zm are independent variables following the GEV distribution according

to Theorem 1.2. Then, based on Z1, . . . , Zm, the parameters (µ, σ, ξ) can be esti-

mated by fitting the GEV distribution in a variety of ways. These include graph-

ical techniques based on (versions of) probability plots, moment based techniques

in which functions of model moments are set equal to their empirical equivalents,

procedures in which the parameters are estimated as specified functions of order

statistics and likelihood based techniques. Each technique has its pros and cons;

however, in this dissertation we will focus on the likelihood based method due to its

wide adaptability. The reader may refer to Beirlant et al. (2004) [3] for a detailed

introduction on other estimation methods.

In general, maximum likelihood estimators of the parameters for the GEV

distribution are obtainable. The the log-likelihood for the GEV parameters when

ξ 6= 0 is

`(µ, σ, ξ) = −m log σ−(1+1/ξ)
m∑
i=1

log

[
1 + ξ

(
zi − µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
zi − µ
σ

)]−1/ξ

given that 1 + ξ
(
zi−µ
σ

)
> 0, for i = 1, . . . ,m.

When ξ = 0, the Gumbel limit of the GEV distribution leads to the log-
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likelihood of the following form

`(µ, σ) = −m log σ −
m∑
i=1

(
zi − µ
σ

)
−

m∑
i=1

exp

[
−zi − µ

σ

]

Maximization of the log-likelihood function with respect to the parameters (µ, σ, ξ)

yields the maximum likelihood estimates. Unfortunately, there is no closed form

solution. For any given dataset, the maximization can be done by standard nu-

merical optimization algorithms. The approximate distribution of the estimators

(µ̂, σ̂, ξ̂) follows a multivariate normal with mean (µ, σ, ξ) and variance-covariance

matrix equal to the inverse of the observed information matrix evaluated using the

obtained maximum likelihood estimates.

The support of G depends on the unknown parameter values: µ − σ/ξ is an

upper endpoint of the distribution when ξ < 0, and a lower endpoint when ξ > 0.

This violates the regularity conditions so the standard asymptotic likelihood results

do not hold. Smith (1985) [43] studied this problem in depth and concludes the

following:

√
m
(
(µ̂, σ̂, ξ̂)− (µ, σ, ξ)

d−→ N(0, V )
)
, ξ > −0.5

where V is the inverse of the Fisher information matrix. In words, when ξ > −0.5,

the usual properties of consistency, asymptotic efficiency and asymptotic normality

hold.
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1.3.2 Tail Probability and Extreme Quantile Estimation

The main focus of this dissertation is the estimation of threshold exceeding

probabilities and extreme quantiles. Substituting the parameters (µ, σ, ξ) by their

estimates (µ̂, σ̂, ξ̂), we can obtain the estimated tail probability:

p̂z = P̂(Z > z) = 1− Ĝ(z) = 1− exp
{
−
[
1 + ξ̂

(z − µ̂
σ̂

)]−1/ξ̂}
,

as well as the p quantile:

ẑp = Ĝ−1(p) =


µ̂+ σ̂

ξ̂
[y−ξ̂p − 1], ξ 6= 0

µ̂+ σ̂ log yp, ξ = 0

where yp = − log(p).

In this dissertation, zp is defined as the p quantile for the block maxima data,

meaning that G(zp) = p. In EVT literature, zp is commonly referred to as the

return level associated with a return period. For the block maxima approach, the

return period is 1/(1 − p). In other words, the level zp is expected to be exceeded

on average once every 1/(1− p) blocks with probability 1− p.

Let qp denote the p quantile of the original data. In many applications, an

estimation of this extreme quantile of the original data is desired. Suppose that

the original sample of size n is divided into m blocks, then qp corresponds to the

m/((1−p)n) blocks return level or the [m−n(1−p)]/m quantile of the block maxima

data.

Standard errors and confidence intervals for the exceedance probability p and
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the pth quantile zp can be derived by the delta method,

Var(p̂z) ≈ OpTz V Opz

Var(ẑp) ≈ OzTp V Ozp

(1.3)

where

OpTz =

[
∂pz
∂µ

,
∂pz
∂σ

,
∂pz
∂ξ

]
=
[
(1/σ)(1− pz)(ξ(z − µ)/σ + 1)−(1+ξ)/ξ,

(z − µ)/σ2(1− pz)(ξ(z − µ)/σ + 1)−(1+ξ)/ξ,

(1− pz) log(1− pz)((ξ(z − µ) + σ) log(ξ(z − µ)/σ + 1) + ξ(µ− z))

ξ2(ξ(z − µ) + σ)
,

OzTp =

[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂ξ

]
=
[
1, ξ−1(y−xip − 1), σξ−2(y−ξp − 1) + σξ−1y−xip log yp

]
,

evaluated at (σ̂, ξ̂, ζ̂u). Coles (2001) [10] suggested caution is required in the interpre-

tation of tail probabilities and quantile inferences using EVT, especially for extreme

tail probabilities and quantiles for few reasons. First, the normal approximation

to the distribution of the maximum likelihood estimators could be poor and better

approximations are generally obtained from appropriate profile likelihood functions.

More fundamentally, estimates and their measures of precision are based on the

assumption that the EVT model is valid. Though the EVT models are supported

by mathematical argument, the inference for small tail probability or large quantile

requires extrapolation based on unverifiable assumptions.
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1.3.3 Model Diagnostics

When EVT is applied to tail probabilities and extreme quantile estimation, the

analysis is essentially an extrapolation outside of the sample. Although EVT is well

supported by mathematical argument, it is not possible to check the validity of an

extrapolation based on a GEV model in general. However, assessment can be made

with reference to the observed data through several graphical means: probability

plots, quantile plots, return level plots and density plots. These are not sufficient to

justify extrapolation, but may serve as model diagnostic tools to check the quality of

a fitted GEV model. Let z(1) ≤ · · · ≤ z(m) denote ordered block maxima data, Ĝ be

the estimated GEV distribution function, and G̃(z(i)) = i/(m+ 1) be the empirical

distribution function evaluated at z(i).

If the GEV fit works reasonably well, then Ĝ(z(i)) ≈ G̃(z(i)) for each i. The

probability plot consists of the pairs

(Ĝ(z(i)), G̃(z(i))), i = 1, . . . ,m

where Ĝ(z(i)) = exp{−[1 + ξ̂/σ̂(z(i) − µ̂)]−1/ξ̂}, should lie close to the unit diagonal.

Substantial departures from linearity indicates lack of goodness of fit in the GEV

model.

Usually, the accuracy of the model for large values of z are of greatest interest.

However, in the probability plot for extreme value models, Ĝ(z(i)) and G̃(z(i))) are

both bound to approach 1 as z(i) increases. In other words, the probability plot

provides the least information in the region of most interest. This deficiency is
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complemented by the quantile plot which consists of the pairs

(Ĝ−1(
i

m+ 1
), z(i)), i = 1, . . . ,m

where

Ĝ−1(
i

m+ 1
) = µ̂− σ̂

ξ̂

[
1−

{
− log

( i

m+ 1

)}−ξ̂]
.

Departures from linearity indicates lack of goodness-of-fit of the GEV model. If the

GEV fit is reasonable for modeling the block maxima, then both the probability and

quantile plot should consist of points that are approximately linear.

A return level plot consists of the locus of points (1/(1 − p), ẑp) for small

values of p, where ẑp is the estimated (1/(1 − p)-block return level. It is usual to

plot the return level curve on a logarithmic scale to reflect the effect of extrapolation.

Confidence bounds and empirical estimates of the return levels also help to make

goodness of fit judgments when added to the plot.

For completeness, the density plot of the fitted GEV can be compared against

the histogram of the block maxima data.

1.4 Peaks Over Threshold

The peaks over threshold (POT) method is an alternative approach that ame-

liorates the above mentioned issues to some extent. It considers all observations

above a certain threshold value as extreme observations as illustrated in Figure 1.3.

Again, the figure shows 100 randomly generated points from Gamma(1, 0.1) distri-
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bution. The threshold u = 200 is represented by a horizontal dashed line in the plot;

all points above this threshold which are marked as diamonds would be considered

as extreme observations for the POT method. Confidence intervals and inference in

other forms follow from the approximate normality of the estimators.
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Figure 1.3: Peaks Over Threshold

The conditional distribution functions of values of x above the threshold u is

denoted as Fu. How to estimate this conditional excess distribution function is a

question of interest. By definition, Fu can be written in the following form:

Fu(y) = P(X − u ≤ y|X > u), y ≥ 0

= F (u+y)−F (u)
1−F (u)

= F (x)−F (u)
1−F (u)

The second EVT result (Picklands-Baikema-de Haan theorem) provides a very help-

ful theoretical results that help the modeling of the conditional excess distribution.
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It is needed for the Peaks Over Threshold approach. The theorem states the follow-

ing:

Theorem 1.3 (Picklands-Baikema-de Haan). Let Xn be a sequence of i.i.d. random

variables with common distribution function F and let

Mn = max(X1, . . . , Xn).

Suppose that F satisfies Theorem 1.1, so that for large n, (Mn − bn)/(an)
d−→ G,

where

G(z) = exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ}
for some µ, σ > 0. Then, for large enough u, the distribution function Fu of X − u,

conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

defined on {y : y > 0, and (1 + ξy)/σ̃ > 0}, where σ̃ = σ + ξ(u− µ).

The family of distributions determined by H is called the generalized Pareto

distribution (GPD). Theorem 1.3 states that, if the limiting distribution of block

maxima approximates the GEV distributionG, then the threshold exceedances could

be approximated by the generalized Pareto distribution for sufficiently large thresh-

old u. The shape parameter ξ determines the tail behavior, the larger ξ, the heavier

the tail. Furthermore, ξ is identical for both GEV and GPD which implies that ξ is

invariant to block size. In summary, ξ plays the same role as it does for GEV: for

ξ < 0 the distribution of exceedances possesses an upper bound of u− σ̃/ξ; for ξ > 0
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the distribution is unbounded to the right. As ξ → 0, the distribution function

becomes

H(y) = 1− exp
(
−y
σ̃

)
, y > 0

which corresponds to exponential distribution with parameter 1/σ̃.

When POT approach is adopted in a practical application, it is necessary to

properly choose the threshold u. If u is too small, a biased sample is obtained.

Observations that do not qualify as extreme values would be included in the sample

and violate the GPD approximation. On the other hand, if this value is chosen

too large, the sample size would be too small leading to large estimation errors

for the unknown distribution parameters. This is the extreme value version of the

bias variance trade-off. A sufficiently large threshold can be determined, and a

graphical tool called the mean residual life (MRL) plot may serve this purpose.

Let Y denote excess of a threshold u0 generated by X and Y follows a generalized

Pareto distribution with parameters σ and ξ. Then the expected mean of Y equals

σ/(1 − ξ) when ξ < 1 and infinite when ξ ≥ 1. The plot is based on the expected

value E(Y ) = σ/(1− ξ) of the GPD. Then we have

E(X − u0|X > u0) =
σu0

1− ξ
,

given ξ < 1. In the above equation, σu0 denotes the scale parameter when the

threshold is chosen to be u0. If the GPD is valid as a model for excesses of the

threshold u0, it should equally be valid for all u > u0.
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E(X − u|X > u) =
σu

1− ξ
=
σu0 + ξu

1− ξ

Therefore, for a range of threshold values u, the conditional expected values are

plotted against u. The above equation implies that at levels of u for which the

generalized Pareto model is appropriate, the mean excess values should be linear

with respect to u. Therefore, an appropriate value for u is given when the MRL

plot of points {u, 1/nu
∑nu

i=1(x(i) − u)} starts to become linear. The sign of the

gradient in the linear part of the MRL plot also suggests the shape of the tail. A

negative slope is associated with short-tailed distributions; a horizontal line (zero

gradient) suggests exponential type tail; and a positive slope indicates a heavy-tailed

distribution.

An illustrative MRL plot is shown in Figure 1.4. The underlying sample is

randomly generated from a Normal(0,3) distribution with a sample of size 10000.

The mean excess becomes linear for u ranging from 2 to 6. Therefore, a wide range of

choices of u seem to be reasonable as suggested by the MRL plot. Empirical studies

show that often the 50th to 70th percentile may serve as a suitable threshold.

1.4.1 Parameter Estimation

Once the threshold is determined, and the GPD is fitted to the reduced sub-

sample consisting of threshold exceedances, the parameters of the GPD can be

estimated by a variety of methods: the ML method, the method of probability
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Figure 1.4: MRL Plot for Random Normal(0,3) Sample of Size 10000

weighted moments (PWM) and the elemental percentile method (EPM) etc. In this

dissertation, we only use the likelihood based method. Let y1, . . . , yk be k excesses of

a predetermined threshold u. Then the log-likelihood derived from the distribution

function is:

ξ 6= 0, `(σ, ξ) =


−k log σ − (1 + 1/ξ)

∑k
i=1 log(1 + ξyi/σ), 1 + ξyi/σ > 0

0, otherwise

ξ = 0, `(σ) = −k log σ − σ−1
∑k

i=1 yi

Again, closed-form solutions of the maximum likelihood estimators do not exist and
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numerical optimization routines are required.

In real data applications in Food and Drug safety, the sample size is typically

small. With small sample sizes, the GPD log-likelihood function may become flat

and the optimizer could fail to converge. This problem could be overcome through

penalizing the likelihood by some function of the parameters. Empirical studies

suggest that such problems are often overcome by putting a moderate penalty on

ξ2. That is, instead of maximizing the log-likelihood `(σ, ξ), one seeks to maxi-

mize `(σ, ξ)− λξ2 for some λ. This expression can be exponentiated and rewritten

as L(σ, ξ)e−ξ
2/2θ2 , where θ =

√
1/2λ. This factor term of this expression is pro-

portional to a Gaussian distribution with zero mean. In this sense, the penalized

likelihood estimation has a Bayesian interpretation and corresponds to the mode of

the posterior distribution. In practice, MLE is attempted first. When convergence

issues arise, penalized MLE with a diffuse prior is used.

1.4.2 Tail Probability and Extreme Quantile Estimation

It should be noticed that the tail probability for the POT method is computed

differently. Theorem 1.3 states:

P(X > x|X > u) =

[
1 + ξ

(
x− u
σ

)]−1/ξ

It follows that the tail probability is then:

P(X > x) = P(X > u)

[
1 + ξ

(
x− u
σ

)]−1/ξ

Let ζu denote P(X > u), the natural estimator of this probability is ζ̂u = k/n. In

other words, the estimator of P(X > u) is simply the proportion of the observations
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in the sample that exceeds the predetermine threshold u. Denote the estimated tail

probability by p̂x; this can be obtained by substituting the parameters (σ, ξ, ζu) by

their estimates σ̂, ξ̂, ζ̂u:

p̂x = P̂(X > x) = ζ̂u(1− Ĥ(x)) =
k

n

[
1 + ξ̂

(
x− u
σ̂

)]−1/ξ̂

Similarly, the estimated p quantile can be obtained:

ẑp = Ĥ−1(p) =


u+ σ̂

ξ̂

[(
k
np

)−ξ
− 1

]
, ξ 6= 0

u+ σ̂ log( k
np

), ξ = 0

By construction, zp is the 1/(1−p)-observations return level. This is equivalent

to the pth quantile qp of the original data. Standard errors or confidence intervals

for the exceedance probability p and the pth quantile zp can be derived by the delta

method. For the POT method, the uncertainty in the estimate of ζu should also be

considered in the calculation. By standard properties of the binomial distribution,

Var(ζ̂u) ≈ ζ̂u(1 − ζ̂u). The complete variance-covariance matrix for (σ̂, ξ̂, ζ̂u) is

approximately:

V =


ζ̂u(1− ζ̂u) 0 0

0 v1,1 v1,2

0 v2,1 v2,2


where vi,j denotes the (i, j) term of the covariance matrix of σ̂ and ξ̂. By the delta

method,

Var(p̂x) ≈ OpTxV Opx

Var(ẑp) ≈ OzTp V Ozp

(1.4)
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where

OpTx =

[
∂px
∂ζu

,
∂px
∂σ

,
∂px
∂ξ

]
=
[
[1 + ξ(x− u)/σ]−1/ξ, ζ(x− u)/σ2(ξ(x− u)/σ + 1)−(1+ξ)/ξ,

px((ξ(x− u) + σ) log(ξ(x− u)/σ + 1) + ξ(u− x))

ξ2(ξ(x− u) + σ)

]
,

OzTp =

[
∂zp
∂ζu

,
∂zp
∂σ

,
∂zp
∂ξ

]
=
[
σζξ−1

u /p, ξ−1{(ζu/p)ξ − 1},

− σξ−2{(ζu/p)ξ − 1}+ σξ−1(ζu/m)ξ log(ζu/p)
]
,

evaluated at (σ̂, ξ̂, ζ̂u).

1.4.3 Model Diagnostics

Probability plots, quantile plots, return level plots and density plots are useful

graphical model diagnostic tools for assessing the quality of a fitted GPD model.

Let y(1) ≤ · · · ≤ y(k) denote ordered threshold excesses for a threshold u, and Ĥ be

an estimated GPD fit, the probability plot consists of the pairs

(
i

k + 1
, Ĥ(y(i))), i = 1, . . . , k

where Ĥ(y) = 1− (1 + ξ̂y/σ̂)−1/x̂i for ξ̂ 6= 0 and Ĥ(y) = 1− exp(−y/σ̂) for ξ̂ = 0.

The quantile plot consists of the pairs

(Ĥ−1(
i

k + 1
), y(i)), i = 1, . . . , k

where Ĥ−1(y) = u+ σ̂/ξ̂(y−ξ̂ − 1) for ξ̂ 6= 0.
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If the GPD fit is reasonable for modeling excesses of u, then both the proba-

bility and quantile plots should consist of points that are approximately linear.

A return level plot consists of the locus of points (1/(1−p), x̂p) for small values

of p, where x̂p is the estimated (1/(1−p)-observation return level. It is usual to plot

the return level curve on a logarithmic scale to reflect the effect of extrapolation.

Confidence bounds and empirical estimates of the return levels also help to make

goodness of fit judgments when added to the plot.

Finally, the density plot of the fitted GPD can be compared against the his-

togram of the threshold exceedances.

1.5 Other Methods in Tail Probability and Extreme Quantile Esti-

mation

In this section, two other methods in computing threshold exceeding probabil-

ities and the associated confidence intervals will be introduced. One method is the

widely known empirical method, and the other is called the Agresti-Coull method.

1.5.1 Empirical Method

Let X1, . . . , Xn be a sequence of i.i.d. variables with a common distribution

function G. Then the empirical distribution function can be defined as:

G̃(t) =
1

n

n∑
i=1

1{xi ≤ t}

where 1{xi ≤ t} is the indicator that follows a Bernoulli distribution with parameter

p = G(t) for some fixed t. Therefore, G̃ is a binomial random variable with mean
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G(t) and standard deviation
√
nG(t)(1− g(t). The empirical distribution converges

weakly to the true distribution function for every t:

√
n(G̃(t)−G(t))

d−→ N (0, G(t)(1−G(t)))

Thus the tail probability that a random variable exceeds a fixed threshold t is simply

p̂ = P̂(X > t) = 1− G̃(t)

If the significance level α is specified, due to the above convergence result, the

confidence intervals for this probability can also be constructed:

{1− G̃(t)z1−α/2σEP (t)/
√
n, 1− G̃(t)z1−α/2σEP (t)/

√
n}

where σEP =
√
nG(t)(1− g(t). This method is widely known and taught as the

standard method in all introductory statistical text books. If exceeding a fixed

threshold t for any observation in the sample is considered as a success, and X

denotes the number of successes in a sample of size n, then X simply follows the

binomial distribution, and the point estimator of the success proportion is p̂ = X/n.

It is a nonparametric method that does not require any distributional assumptions,

and is relatively robust. However, the confidence interval constructed by this ap-

proach often does not have the nominal coverage when the threshold t is large. In

other words, the performance of this method is poor when G(t) is close to 0 or 1,

especially when the sample size is not large enough. Some remedial approaches are

proposed to overcome this difficulty. The Agresti-Coull method which is one of the

remedial methods will be described next.
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1.5.2 Agresti-Coull Method

The Agresti-Coull method has been proposed to improve the coverage of the

empirical confidence intervals when the sample size is small and the threshold prob-

ability is close to 0 and 1. In the Agresti-Coull method, the usual point estimator

of the threshold exceeding probability p̂ is replaced by the modified estimator:

p̃ =
X + z2

1−α/2/2

ñ

where ñ = n+z2
1−α/2 is the modified sample size which replaces the true sample size

n. Similar to the empirical method, the Agrest-Coull method also uses the normal

approximation to obtain the confidence interval.

(
p̃− z1−α/2

√
p̃(1− p̃)

ñ
, p̃+ z1−α/2

√
p̃(1− p̃)

ñ

)
Note that z1−α/2 is the 1 − α/2 quantile of a standard normal distribution. When

a 95% confidence interval for the tail probability is desired, α = 0.05 and z1−α/2 =

1.96. If 2 is used instead of 1.96, then the Agresti-Coull method simply adds approx-

imately two successes and two failures in the computation of p̃ and the associated

confidence interval. Therefore, the resulting confidence interval is a very conserva-

tive one and usually wider than the confidence interval of the empirical method.
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Chapter 2: The Density Ratio Model

2.1 Overview

In this chapter, some necessary background about the density ratio model

will be introduced. The ideas of Out of Sample Fusion (OSF)and Repeated Out of

Sample Fusion (ROSF)are reviewed.

The estimation of a distribution function is one of the most fundamental prob-

lems in probability and statistics. Given an observed sample, one may directly

estimate the underlying distribution function through the empirical distribution

function which is a step function that jumps by 1/n at each of the n data points.

The details of Density Ratio Models are discussed in Sec. 2.2. The DRM is by no

mean a new discipline - its roots can be traced back to the 1980s. An early form of

DRM was suggested by Patil and Rao (1978) [37], and Vardi (1982) [48]. In Vardi’s

study, the length of an object is assumed to be distributed according to the cdf G,

and the selection probability for any particular object is proportional to its length.

The distribution of the length of sampled objects is given by the model,

F (y) =
1

µ

∫ y

0

xdG(x), y ≥ 0

where µ =
∫∞

0
xdG(x) < ∞ is the normalization constant. Here the cdf G is
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unknown and is to be estimated. The cdf F , the length-biased distribtuion cor-

responding to G, turns out to be a weighted version of G in terms of the weight

function x. Vardi later generalized the two sample model to allow for s+ 1 different

biased samples:

Fi(y) = Wi(G)−1

∫ y

−∞
wi(x)dG(x), i = 1, . . . , s

where wi’s are given the nongegative selection bias weight function and

Wi(G) =

∫ ∞
−∞

wi(x)dG(x).

A simple way to estimate G is to use the empirical distribution of the reference

sample X0 only, but this ignores the other s samples. A bias-corrected estimator

which corrects for the biasing involved in the distributions Fi is desired. Vardi [49]

developed methodology for obtaining a nonparametric maximum likelihood estimate

(NPMLE) by using all the n = n0 +n1 + · · ·+ns observations from the s+1 samples.

In Vardi’s original treatment, the weight functions were assumed completely known.

However, in many practical situations, a complete specification of the weight func-

tions is unrealistic and too restrictive. To overcome this issue, one may assume that

the weight function comes from a parametric family. In this case, the model involves

two components to be estimated: the unknown reference distribution G and the pa-

rameters involved in the weight function. These types of models are called biased

sampling semiparametric models, and the logistic regression models in case-control

studies is an example.

Case-control is a frequently used tool to study risk factors related to disease in-

cidence, and logistic regression models are commonly used in analyzing case-control
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data. Let D = 0 be the control, D = 1 be the case, x = (x1, . . . , xp) be the regres-

sion vector or covariates, and P (D = i | x) denote the probability that individual

with characteristic x develops disease D = i, the logistic regression model takes the

following form:

P (D = i | x) =
exp(αi + β′ix)

1 +
∑m

j=0 exp(αj + β′jx)
, i = 0, 1 (2.1)

Let p(x) be the marginal distribution of x, and letπi = P (D = i) (note that

the πi’s satisfy
∑m

i=0 πi = 1). Then, by Bayes rule, we have:

P (x | D = i) =
P (D = i | x)p(x)

πi
, i = 0, 1

Therefore,

P (x | D = 1)

P (x | D = 0)
=
π0

π1

P (D = 1 | x)

P (D = 0 | x)
(2.2)

Substituting 2.1 into 2.2, and notice that α0 = β0 = 0, we get the density ratio

setup:

P (x | D = 1)

P (x | D = 0)
= exp(α∗1 + β′1x)

where α∗1 = log(π0/π1) + α. If we let gi(x) denote the conditional density function

P (x | D = i), i = 0, 1. We can rewrite the previous formula as:

g1(x) = exp(α∗1 + β′1x)g0(x)

The case pdf become a weighted version of the control pdf. This is a density ratio

model. The exponential function is the weight, x is called the distortion function,

and the function g0(x) is regarded as the density of the reference sample X0. The
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parameters αi, βi, and the density g0 are to be estimated. This shows that the

logistic regression model for a case-control study is equivalent to the biased sampling

model with weight function exp(α + βX). Later we will show that the multiple-

sample semiparametric density ratio model is equivalent to the generalized logistic

regression model.

2.2 Density Ratio Models

Motivated by biased sampling models and case-control studies, density ratio

models were studied in Qin and Lawless (1994) [39], Qin and Zhang (1997) [40],

Fokianos et al. (2001) [20], Kedem et al. (2008) [29], Voulgaraki et al. (2012) [51],

Zhou et al. (2013) [53]. For the two-sample case:

X0 = (x01, . . . , x0n0)
′ ∼ g0(x)

X1 = (x11, . . . , x1n1)
′ ∼ g1(x)

the density ratio model is:

g1(x)

g0(x)
= eα+β′·h(x) (2.3)

where h(x) is the so called tilt function, which can be regarded as distortion of

sample x1’s pdf from the reference sample x0’s pdf. The model is intuitive since the

density ratio of two pdfs’ has the form 2.3 if both of them come from the exponential

family. Now let’s consider two cases.
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2.2.1 When g0 and g1 are from the same exponential family

SupposeX0 andX1 are from the same exponential family with pdf gi(x|θ), i =

0, 1 expressed in the following form:

gi(x|θ) = h(x)c(θ) exp

[
k∑
j=1

wj(θ)tj(x)

]

= h(x)c(θ) exp

[
(w1(θ), . . . , wk(θ))


t1(x)

...

tk(x)


]

= h(x)c(θ) exp

[
w(θ) · t(x)

]
, x ∈ χ ⊂ Rq,

where w1, . . . , wk and c are real-valued functions of θ, and real-valued functions

t1, . . . , tk and h have their supports on Rq. Then:

g1(x)

g0(x)
=

c(θ1)

c(θ0)
· exp

{
k∑
j=1

[
wj(θ1)− wj(θ0)

]
· tj(x)

}

= exp

{
k∑
j=1

[
wj(θ1)− wj(θ0)

]
· tj(x) + log

c(θ1)

c(θ0)

}
= exp {α + β · h(x)}

where,

α = log
d(θ1)

d(θ0)

β =
(
wj(θ1)− wj(θ0)

)
, j = 1, . . . k

h(x) = t(x) =
(
ti(x)

)′
, j = 1, . . . , k

A list of the one-to-one correspondence between the tilt function h(t) and pdf

follows:
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h(x) distribution

h(x) = x g(x) ∼ exp(λ)

h(x) = x, x2 g(x) ∼ N(µ, σ2)

h(x) = x, log(x) g(x) ∼ Γ(k, λ)

h(x) = log(x), log(1− x) g(x) ∼ Beta(α, β)

h(x) = log(x), (log(x))2 g(x) ∼ Log-Normal(µ, σ2)

h(x) = x, log(δ2 + (x− µ)2) g(x) ∼ GHD(λ, α, β, δ, µ)

When the underlying distribution of the reference sample approximately fol-

lows the normal distribution, the tilt function h(x) = x, x2 would be valid. In risk

analysis, however, the distribution of the underlying sample is often skewed with

long and possibly heavy tails. In such cases, the tilt function should be chosen with

discretion. Typically, the “gamma” tilt and the “log-normal” tilt are good choices

when the reference sample takes only positive values and has a long tail, such as

pathogen counts and contamination intake. When the sample takes negative values

(eg. stock returns), it is appropriate to use the ”GHD” (Generalized Hyperbolic

Distribution) tilt.

For example, let us consider the ratio of two gamma probability densities with

shapes r1, r2 and rates λ1, λ2. Then the parameters take on the form

α = log
λr11 Γ(r2)

λr22 Γ(r1)

(β1, β2) = (λ2 − λ1, r1 − r2)

and the tilt function is h(x) = (x, log(x))
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2.2.2 When g0 and g1 come from different exponential families

g1(x)

g0(x)
=

c(θ1)h1(x)

c(θ0)h0(x)
· exp

{
k∑
j=1

[
w1j(θ1) · t1j(x)− w0j(θ0) · t0j(x)

]}

= exp

{
k∑
j=1

[
w1j(θ1) · t1j(x)− w0j(θ0) · t0j(x)

]
+ log

c1(θ1)

c0(θ0)
+ log

h1(x)

h0(x)

}
= exp{α + φ(x,β)}

where,

α = log
c(θ1)

c(θ0)

φ(x,β) =
k∑
j=1

[
w1j(θ1) · t1j(x)− w0j(θ0) · t0j(x) + log

h1(x)

h0(x)

}]
The semiparametric density ratio model establishes relationships between a

reference distribution and its tilted versions. The multiple sample semiparametric

density ratio model considers the following m+ 1 independent samples:

X0 = (x01, . . . , x0n0)
′ ∼ g(x)

X1 = (x11, . . . , x1n1)
′ ∼ g1(x)

...

Xm = (xm1, . . . , xmnm)′ ∼ gm(x)

where gj(x) is the probability density of the jth sample of size nj. We denote X0 as

the reference sample, its distribution G(x) is assumed to be unknown. To estimate

g and G, we assume there are additional samples from related distributions, or in

some sense, similar with regard to the regions of values of the variable(s) of interest.
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In particular, the samples may be computer generated. The out of sample fusion

idea is to combine or fuse the reference real data X0 with computer generated data

using the density ratio model. See Katzoff et al. (2014) [28] and Zhou (2013) [53].

The density ratio model assumes that the reference distribution g(x) and its

tilted versions gj(x) are related by the ratios,

g1(x)

g(x)
= exp(α1 + β

′

1h(x))

... (2.4)

gm(x)

g(x)
= exp(αm + β

′

mh(x))

This in turn gives the tilt model:

gj(x) = eαj+β′jh(x)g(x), j = 1, . . . ,m (2.5)

where βj is p × 1 parameter vectors, αj are scalar parameters and h(x) is a vector

valued distortion or tilt function. The probability densities g, g1, ... , gm and the

parameters α’s and β’s are unknown, but h is assumed to be a known function.

The relationship 2.4 is called the density ratio model, and allows semiparametric

inference about all the parameters and distributions from the fused m+ 1 samples,

t = (t1, ..., tn)′ = (X
′

0,X
′

1, ...,X
′

m)
′

(2.6)

of sizes n = n0 + n1 + ... + nm. Since n0 ≪ n, the reference G, under 2.4, is

estimated with much more data. For a rigorous treatment of the semiparametric

inference under 2.4, see, for example, Lu (2007) [34] and Qin (1997) [40].
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2.3 Estimation for Density Ratio Model

Maximum likelihood estimates for all the parameters and G(x) can be obtained

by maximizing the empirical likelihood over the class of step cumulative distribution

functions with jumps at the observed values t1, ..., tn (see [36]). Note that from

2.6 the reference distribution function G is supported at all the n observed values

t1, ...tn and not just at the n0 values from the reference sample X0. Thus, if we let

pi = dG(ti) be the mass at ti, for i = 1, ..., n, the empirical likelihood becomes

L(θ,G) =
n∏
i=1

pi

n1∏
j=1

exp(α1 + β
′

1h(x1j))× · · · ×
nm∏
j=1

exp(αm + β
′

mh(xmj)) (2.7)

Maximizing L(θ,G) subject to the constraints
∑n

i=1 pi = 1 and

n∑
i=1

pi[w1(ti)− 1] = 0, ...,
n∑
i=1

pi[wm(ti)− 1] = 0

where wj(x) = exp(αj + β
′
jh(x)), j = 1, ...,m, we obtain the desired estimates

through the method of Lagrange multiplier. First, set up the objective function

logL(θ,G)−λ0(1−
n∑
i=1

pi)−λ1

n∑
i=1

pi[w1(ti)−1]−· · ·−λm
n∑
i=1

pi[wm(ti)−1], i = 1, . . . , n

and obtain λ0 = n and λj = nj j = 1, . . . ,m and

pi =
1

n0

· 1

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)

Back substitute pi’s into L(θ,G) to get the profile log-likelihood as a function of θ

only:
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`(θ) = −n log n0 −
n∑
i=1

log[1 + ρ1w1(ti) + · · ·+ ρmwm(ti)]

+

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·

+
nm∑
j=1

(αm + β′mh(xmj))

Then, differentiate the objective function logL w.r.t. α’s and β’s to get the

score equations

∂l

∂αj
= −

n∑
i=1

ρjwj(ti)

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)
+ nj = 0

∂l

∂βj
= −

n∑
i=1

ρjh(ti)wj(ti)

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)
+

nj∑
i=1

h(xji) = 0

The solution of the score equations gives the maximum likelihood estimators α̂, β̂.

Consequently, by substitution,

p̂i =
1

n0

· 1

1 +
∑q

j=1 ρj exp(α̂j + β̂′jh(ti))
(2.8)

In particular, the maximum likelihood estimate Ĝ of G is given in 2.9 for relative

sample sizes ρj = nj/n0,

Ĝ(t) =
1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ1ŵ1(ti) + ...+ ρmŵm(ti)
(2.9)

where ŵj(x) = exp(α̂j + β̂
′
jh(x)), j = 1, ...,m, and I(ti ≤ t) equals one for ti ≤ t

and is zero otherwise. Similarly, Ĝj can be estimated by accumulating exp(α̂j +

β̂′jh(ti))dG(ti). The asymptotic results for Ĝ are given in the next section.
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2.4 Asymptotic Theory for Ĝ

The multiple sample asymptotic behavior of Ĝ is obtained by Lu (2007) from

which we obtain semiparametric (SP) confidence intervals for using the covariance

matrix given below. The following quantities must be defined first before we give

the asymptotic behavior of Ĝ(t):

Aj(t) =

∫
wj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

Bj(t) =

∫
wj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

Ā(t) = (A1(t), ..., Am(t))
′

, B̄(t) = (B′1(t), ..., B′m(t))′

ρ = diag{ρ1, . . . , ρm}m×m, 1p = (1, ..., 1)′

Then the asymptotic distribution of Ĝ(t) for m ≥ 1 is given in the following theorem.

Theorem 2.1 (Lu). The process
√
n(Ĝ(t)− G̃(t)) converges weakly to a zero-mean

Gaussian process in the space of real right continuous functions that have left limits

with covariance matrix given by

Cov
{√

n(Ĝ(t)− G̃(t)),
√
n(Ĝ(s)− G̃(s))

}
=

m∑
k=0

ρk

m∑
j=1

ρjAj(t ∧ s))

−
(
Ā′(t)ρ, B̄′(t)(ρ⊗ 1p)

)
S−1

 ρĀ(s)

(ρ⊗ 1p)B̄(s)


Theorem 2.2 (Lu). The process

√
n(Ĝ(t)−G(t)) converges to a zero-mean Gaus-

sian process in the space of real right continuous functions that have left limits with

covariance matrix given by

Cov
{√

n(Ĝ(t)−G(t)),
√
n(Ĝ(s)−G(s))

}
= (

m∑
k=0

ρk)(G(t ∧ s)−G(t)G(s)−
m∑

j=1

ρjAj(t ∧ s))

+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ 1p)

)
S−1

 ρĀ(t)

(ρ⊗ 1p)B̄(t)


where 1p is the p× p identity matrix, and ⊗ denotes Kronecker product.
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The complete derivation of the theory is quite technical and only the main

steps of the proof are given here. First express
√
n(Ĝ(t)−G(t)) as the sum of two

parts:

√
n(Ĝ(t)−G(t)) =

√
n(Ĝ(t)− G̃(t)) +

√
n(G̃(t)−G(t))

where G̃(t) = 1
nm

∑nm

i=1 I[xmi < t] is the empirical distribution of the reference

sample Xm only. The asymptotic properties of
√
n(G̃(t) − G(t)) are well known.

Thus, the objective is to prove the weak convergence of
√
n(Ĝ(t) − G̃(t)). By the

strong consistency of the estimators θ̂, the Taylor series expansion of Ĝ(t) at the

true parameter θ0 approximates Ĝ uniformly in t:

Ĝ(t) = H1(t)−H2(t) +Rn(t)

where

H1(t;α,β) =
1

nm

n∑
i=1

I(ti ≤ t)∑m
k=0 ρkwk(ti;αk, βk)

H2(t;α,β) =
1

n

(
Ā′(t)ρ, B̄′(s)(ρ⊗ 1p)

)
S−1

 ∂l(α0,β0)
∂α

∂l(α0,β0)
∂β


In this case, the asymptotic behavior of

√
n(Ĝ(t) − G̃(t)) is equivalent to that

of
√
n(H1(t) − H2(t) − G̃(t)) which involves the true parameter θ0 only. The

weak convergence of the finite-dimensional distributions of
√
n(H1(t) − H2(t) −

G̃(t)) follows from the multivariate central limit theorem after obtaining the vari-

ance covariance structure. Tightness of the process is proved by noting that both

√
n(H1(t) − G̃(t)) and

√
nH2(t) can be decomposed into sums of empirical pro-

cesses. Each empirical process is evaluated at a function f(·) in a Donsker class
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(Pnf = n−1
∑n

i=1 f(Ti), where Pn = n−1
∑n

i=1 δTi is an empirical measure defined

on i.i.d. observations T1, . . . , Tn). The weak convergence of each empirical process

follows from the classical Donsker theory.

2.5 Goodness-of-Fit

Goodness-of-fit tests are needed to justify the density ratio model applicability.

Let Ĝ(t) be the estimated reference cdf and G̃(t) be the corresponding emipircal cdf

from X0. Most goodness-of-fit tests measure the discrepancy between Ĝ(t) and

G̃(t). A simple graphical method is to plot Ĝ(t) versus G̃(t), see Voulgaraki et al.

(2012) [51]. A more prudent numerical method is propposed by Qin and Zhang

(1997) [40]. Define the difference between Ĝ(t) and G̃(t) as:

∆n(t) =
√
n |Ĝ− G̃|, ∆n = sup

−∞<t<∞
∆n(t)

∆n can be used to measure the departure from the assumption of the Semiparametric

Density Ratio Model. Theorem 2.1 shows that
√
n(Ĝ(t) − G̃(t)) converges weakly

to a Gaussian process W . Let wα denote the α-quantile of the distribution of

sup−∞<t<∞|W (t)|. By Theorem 2.1,

lim
n→∞

P (∆n ≥ w1−α) = lim
n→∞

P ( sup
−∞<t<∞

√
n |Ĝ− G̃| ≥ w1−α)

= P ( sup
−∞<t<∞

√
n |W (t)| ≥ w1−α) = α

The density ratio model is rejected at level α if ∆n ≥ w1−α. However, there is no

analytic expression available for the distribution of the supremum of a Gaussian

process W (t) and its corresponding quantile function. A bootstrap procedure must
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be applied to simulate the distribution of sup−∞<t<∞|W (t)| and its quantiles. We

follow the following steps to get the distribution of ∆n :

1. Obtain the estimated SP CDF’s Ĝ, Ĝ1, . . . , Ĝm from combined samples (X0, X1,

. . . , Xm).

2. Let X∗0 , X
∗
1 , . . . , X

∗
m be random samples generated from Ĝ, Ĝ1, . . . , Ĝm.

3. Let (α̂∗, β̂
∗
) and let Ĝ∗ be the estimates for the parameters and the reference

distribution obtained from (X∗0 , X
∗
1 , . . . , X

∗
m).

4. Let G̃∗ be the empirical (EP) reference CDF from X∗0 .

5. The bootstrap version of the test statistic ∆n is given by: ∆∗n(t) =
√
n |Ĝ∗ −

G̃∗|, ∆∗n = sup−∞<t<∞∆∗n(t).

6. Repeat Step 2 to Step 4 to generate many bootstrap replications of ∆∗n and

calculate the empirical p-value.

It turns out that as n→∞,
√
n(Ĝ∗ − G̃∗) d−→ W in D[−∞,+∞], where W is

the Gaussian process defined in Theorem 2.1 [34]. This shows that the asymp-

totic behavior of
√
n(Ĝ∗ − G̃∗) agrees with that of

√
n(Ĝ − G̃), and ∆∗n(t) =

sup−∞≤+∞
√
n |Ĝ∗−G̃∗| has the same limiting behavior as ∆n(t) = sup−∞≤+∞

√
n |Ĝ−

G̃|. Thus, it is legitimate to approximate the quantiles of∆n by those of ∆∗n.
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Chapter 3: Threshold Exceedance Probabilities Using DRM

In this chapter, two new methods based on density ratio model in computing

threshold exceedance probabilities and its associated confidence intervals will be

introduced. One method is called the Out of Sample Fusion (OSF) and the other

is called Repeated Out of Fusion (ROSF). See Katzoff et al. (2014) [28] and Zhou

(2013) [53]. The performance of the existing methods (mentioned in Chapter 1) and

DRM based methods will be compared through extensive simulations.

3.1 Out of Sample Fusion in Estimation of Threshold Probabilities

Let X0 denote an i.i.d. sample from some given population

X0 = (x01, . . . , x0n0)
′ ∼ g(x)

The distribution function G(x) of X0 is assumed to be unknown, and the threshold

exceedance probability p̂ = P̂(X0 > t) for some fixed threshold t is of interest. X0

is referred to as the reference sample. Let Xj denote a computer generated i.i.d.

sample with sample sizes nj, j = 1, . . . ,m

Xj = (xj1, . . . , xjnj
)′ ∼ gj(x)
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The computer generated samples Xj will be referred to as the fusion samples. Then

under the density ratio model, we have

gj(x)

g(x)
= exp

(
αj + β

′

jh(x)
)
, j = 1, . . . ,m

where αj is a scalar parameter, βj is a known p × 1 parameter vector, and h(x) is

a p × 1 vector valued distortion or tilt function. All probability distributions are

connected under the density ratio model as shown in Chapter 2. Thus the semipara-

metric statistical inference about all the parameters and the probability distribution

of the reference X0 can be obtained from the combined data from the m+1 samples

X0, X1, . . . ,. The combined data now has the size of n = n0 +n1 + · · ·+nm. There-

fore, the reference distribution function G is estimated from the fused data with n

observations and not just from the reference sample itself with n0 observations. The

maximum likelihood estimator of the reference distribution function can be obtained

from equation 2.8. So the corresponding threshold exceedance probability is:

p̂ = P̂(X0 > t) = 1− Ĝ(t) = 1− 1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ1ŵ1(ti) + ...+ ρmŵm(ti)

where ŵj(x) = exp(α̂j + β̂
′
jh(x)), j = 1, ...,m.

For a large threshold T , the 100(1−α)% confidence intervals for p̂ = 1−G(T )

can be constructed based on the asymptotic results given in Theorem 2.2:

(
1− Ĝ(t)− z1−α/2

√
V̂ (t), 1− Ĝ(t) + z1−α/2

√
V̂ (t)

)
where V̂ (t) denotes the estimated variance of Ĝ(t) as given in Theorem 2.2. When

the tail probability p = 1 − G(t) of interest becomes very small as the threshold t
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becomes large, only the upper bound is used in the construction of the confidence

intervals and lower bound is set to 0.

3.2 Repeated Out of Sample Fusion

Based on OSF, Repeated Out of Sample Fusion (ROSF) is a modified algo-

rithm to estimate the tail probabilities and its confidence intervals where a given

reference sample is fused or combined repeatedly with computer generated data.

In statistics, bootstrapping is an extremely powerful idea that is widely used to

compute the standard deviation of a quantity of interest when direct computation

of such quantity is hard or even infeasible. Bootstrapping can be also used in a

completely different context to improve measures of accuracy (defined in terms of

variance, standard error, confidence intervals, etc) of sample estimates. In machine

learning, there is also a list of techniques for model averaging and improvements

based on the idea of bootstrapping. Bootstrapping aggregation or bagging is a gen-

eral purpose algorithm for reducing the variance of a statistical learning method.

Given a set of n independent observations Z1, . . . , Zn, each with variance σ2, the

variance of the mean Z̄ is then σ2/n. Thus, averaging a set of observations could

reduce the variance significantly. Therefore, it is natural to reduce the variance and

hence increase the prediction accuracy of any statistical learning method by taking

many training datasets from the population, building a separate prediction model

using each training set and averaging the resulting predictions. In other word, B

separate training sets can be used to calculate f̂ 1(x), f̂ 2(x), . . . , f̂B(x). Averaging
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the predictions would yield a single low variance statistical learning model,

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x).

This is not practical since access to multiple training sets is generally not available.

However, multiple training datasets can be generated by repeatedly sampling from

the single training data set. Suppose B different bootstrapped training datasets

are generated. Then the statistical method can be trained on the bth bootstrapped

training set to obtain f̂ ∗b(x), and averaging all the predictions to yield:

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x).

This algorithm is also known as bagging in the machine learning literature.

The general idea of ROSF is closely related to bootstrapping/bagging. While

bootstrapping/bagging improves the estimation results by repeatedly sampling within

a given sample, ROSF improves the results by repeatedly fusing a given sample with

external samples. We shall now describe the implementation of ROSF in the estima-

tion of threshold exceedance probabilities and the associated confidence intervals.

We are interested in estimating a small threshold exceedance probability p > 0

for a random sample X0 from some distribution. X0 is referred to as the reference

sample. A fusion sample X1 is then generated by the computer and fused together

with the reference sample. The point estimate p̂1 and the confidence interval [0, B1]

is then obtained through the semiparametric density ratio model as described in

OSF method. The same reference sample is then fused with another computer

generated sample (from the same distribution of the previous artificial sample and

independent of it) to obtain another p̂2 and confidence interval [0, B2] in the same
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manner as before. This process is repeated nr (stands for number of repetition)

times to produce a sequence of point estimates p̂i and confidence intervals [0, Bi], i =

1, . . . , nr. Conditional on X0, the sequence of upper bounds Bi are independent and

identically distributed from some distribution FB. Denote the empirical distribution

of Bi’s by F̂B. By Glivenko-Cantelli theorem, F̂B converges to FB almost surely

uniformly as nr increases. Since the process may be repeated many times, a very

close approximation of FB can be obtained. In other words, as the number of fusions

becomes very large, F̃B is almost the exact FB.

The final point estimate of the threshold exceedance probability from ROSF

algorithm is the average of p̂i’s from nr OSF runs:

p̂ = P̂(X0 > t) =
1

nr

nr∑
i=1

p̂i, i = 1, . . . , nr,

and the associated 100(1− α)% confidence interval is

[
0, F−1

B

(
α1/N

)]
.

where N is a large enough positive integer.

Theorem 3.1. Let p̂i and Bi be the the sequence of point estimates of the tail prob-

abilities and its upper bounds of associated confidence intervals obtained by ROSF.

Let FB denote the distribution function of the B’s. Under the condition

P(B > p) = 1− FB(p) > 0, (3.1)

there exists N0 such that for all N > N0, the confidence interval for the tail proba-

bility p,
[
0, F−1

B

(
α1/N

)]
gives at least 100(1− α)% coverage.
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Proof. For an i.i.d. sample B1, . . . , BN , denote the maximum by B(N) = max(Bi).

It follows that

P(B(N) > p) = 1− FN
B (p)

If P(B > p) = 1−FB(p) > 0, then from the above equation, the probability that the

maximum upper bound covers the desired tail probability increases as the tuning

parameter N increases. Conditional on the given sample X0, for all N > N0, we

have the following inequality:

1− FN
B (p) ≥ 0.95

for some N0 sufficiently large. The inequality can be rewritten by inverting the

distributon function:

0 < p ≤ F−1
B (0.051/N)

The above relationship implies that the interval
[
0, F−1

B

(
α1/N

)]
covers the true tail

probability p with at least 95% confidence for sufficiently large N .

The length of the confidence interval depends on the choice of N . Here, N

serves as a tuning parameter. Intuitively, as the number of fusions increases, the

number of Bi’s grows and the confidence interval [0,max(Bi)] covers p with a large

probability close to one. That is, as nr →∞,

P(B(nr) > p)→ 1.

In practice, the exact CDF of B’s FB is unknown. So the corresponding empir-

ical distribution F̂B is estimated based on Bi’s obtained from nr OSF repetitions. As

nr →∞, F̂B → FB uniformly almost surely. Therefore, as we control the number of
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repetitions nr, FB is practically known. The only problem here is to determine the

tuning parameter N . Let b denote the true upper bound of the confidence interval,

then by solving the following equation for the tuning parameter N ,

b = F−1
B (0.051/N)

we have

N =
log 0.05

logFB(b)

Suppose b is close to the median of the Bi’s, then FB(b) = P(B ≤ b) = 0.5. From

the above expression, N ≈ 5. In some cases, b is close to the maximum of the Bi’s.

Let’s say FB(b) = P(B ≤ b) ≈ 0.99, then N ≈ 300 would yield the “correct” upper

bound that reflect the truth. How to choose the optimal tuning parameter N is still

an open problem. From many simulation results, the choice N = 5 suffices in many

misspecified cases for small tail probabilities. This means that the ROSF confidence

intervals yield desired coverage when N = 5. The choice N = 100 is more prudent

across most misspecified cases. In some difficult cases (e.g. when X0 ∼ Pareto),

N = 300 is needed so that the confidence intervals give the desired coverage. In

other words, in difficult cases, it is advisable to use the 99th quantile of the Bi’s as

the upper bound of the ROSF confidence interval.

3.3 Tilt Function Specification

In Chapter 2, a list the of one-to-one correspondence of the tilt function h(x)

and the probability density functions of the reference and fusion was given. Here

we revisit the specification of the tilt function.
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Consider now the case of two samples (m = 1): the reference sample X0 ∼ g

and the fusion sample X1 ∼ g1. Suppose both g and g1 are gamma densities.

Then by the density ratio g1/g, the corresponding tilt function h(x) = (x, log x).

If the densities are right truncated at the same point b > 0, the resulting density

ratio still holds with h(x) = (x, log x). The same holds true if g1 is replaced by a

uniform distribution on (0, b). If g is indeed a gamma density and g1 is uniform

with sufficiently large support, then the density ratio is satisfied approximately

with h(x) = (x, log x). In all simulation studies we present in the next section,

the reference sample X0 is fused with computer-generated uniform random samples

X1, and the threshold exceedance probability P (X0 > T ) is estimated through

DRM. Since X1 must be generated from a uniform distribution with sufficiently large

support, an appropriate upper limit of the uniform distribution must be determined.

In all cases, the threshold T and the maximum value of X0 are known. As a rule

of thumb, the upper limit of the uniform distribution is chosen to be greater than

both T and the maximum of X0.

Under the mild assumption that 3.1 holds, it will be demonstrated later that

in many cases, when g is skewed (not necessarily gamma density), then fusing the

given reference sample X0 repeatedly with computer generated random samples X1

with uniform density g1 and with the tilt function h(x) = (x, log x), the resulting

confidence intervals for the threshold exceedance probabilities are surprisingly short

and reliable. Furthermore, experiments also show that the log-normal tilt function

h(x) = (log x, log2 x) is a useful alternative to the gamma tilt and could be used in

the ROSF algorithm to accommodate a wide range of skewed reference distributions.
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The normal tilt h(x) = (x, x2) obtained from the ratio of two normal densities is a

reasonable choice when the reference sample X0 comes from a symmetric or nearly

symmetric distribution family. However, it is a poor choice when X0 is highly skewed

and typically causes computational issues when applied in ROSF.

It should also be noticed that, to generate the fusion samples Xj , the cor-

responding density function gj must be specified. However, beyond the generating

stage, this knowledge is not used in ROSF, and the algorithm proceeds as if the gj

are unknown. Thus, beyond the generating stage, in the semiparametric estimation

both g and gj, as well as the corresponding parameters, are all assumed unknown.

3.4 Simulation Studies: h(x) Correctly Specified

In this section, BM, POT, OSF, ROSF, and other well-known methods of

estimation of tail probabilities and associated intervals will be applied and compared

in simulation studies.

In the context of quantitative risk assessment, data are usually highly skewed

in nature. Furthermore, in many cases (e.g. number of patients in an early stage

clinical trial), the size of the given reference sample is limited. Therefore, we focus

our attention on moderately large samples that come from highly skewed distri-

butions. In the simulation studies, the reference samples are randomly generated

from a range of skewed distributions including: Exponential, Gamma, Log-normal,

Weibull, Pareto, etc. Then the reference sample is fused with a computer generated

uniform random sample. In all cases, the upper limit of the uniform distribution is
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chosen to be greater than both the threshold T and the largest value of X0. As men-

tioned earlier, the density ratio model with both the gamma tilt h(x) = (x, log x)

and the log-normal tilt (log x, log2(x)) hold approximately when the reference sam-

ple comes from a skewed distribution. Unless otherwise specified, the gamma tilt

h(x) = (x, log x) will be used as the default. For each case, the tail probabilities

p = 0.01 and p = 0.001 will be considered. For each given tail probability, the cor-

respond theoretical quantile will be used as the threshold T . For example, the 0.99

theoretical quantile for Exp(1.2) is 3.8376. Then the threshold exceedance probabil-

ity P (X > 3.8376) = 0.01 is estimated based on the given sample using the methods

we covered so far. Mean absolute error (MAE) which calculates the mean absolute

value of the differences between the estimated threshold exceedance probability p̂

and the true proababilty p is the metric that will be used to measure the precision of

the point estimates of the tail probabilities. More importantly, the 95% confidence

interval for this tail probability is calculated. The confidence intervals for OSF,

AC and EP can be obtained through explicit expressions; however, computing the

confidence intervals for BM and POT is quite involved.

To obtain the confidence intervals for the BM and POT method, it is natural to

first consider using the delta method. However, when the sample size of the reference

is small, the normal approximation to the distribution of the maximum likelihood

estimator may be poor. Since the estimator of the tail probability p relies on the

estimated parameters from fitting the GEV or GP distributions, the confidence

interval of the estimated tail probability through the delta method is not reliable.

Therefore, for the BM and POT methods, confidence intervals are bootstrapped
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with 500 replications. Since many of the bootstrapped estimates hit the 0 limit, the

confidence intervals are constructed from the 0th to 95th percentiles.

To obtain reliable coverage results, in each study, five hundred confidence inter-

vals are computed for each method. The performance of the methods are evaluated

based on coverage, mean length of the confidence intervals, and mean absolute error

which is the mean absolute difference between the estimated tail probability and

the true tail probability.

The tilt function is correctly specified if it corresponds to the distribution of

the reference sample correctly. For example, if the reference sample comes from

the gamma family, the gamma tilt h(x) = (x, log x) is appropriate. Likewise, if

the reference sample comes from the log-normal, family then the log-normal tilt

would be appropriate. In this section, we will see, as a check that under correctly

specified tilt functions where the density ratio model holds, the OSF method gives

very precise point estimates for the threshold exceedance probability, and short yet

reliable confidence intervals as well.

3.4.1 X0 ∼ Exp(1.2)

In our first example, X0 ∼ Exp(1.2). In each simulation run, a sample of size

100 that follows Exp(1.2) is generated. The goal is to predict the threshold exceeding

probability P(X > t) for some large threshold t and construct its confidence interval

using all methods introduced so far. For tail probability p = 0.01, the theoretical

quantile t = 3.8376 is used as the threshold t. So the true probability P(X > 3.8376)
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is 0.01. The performance is evaluated based on 500 such runs.
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Figure 3.1: Density Plot for Exp(1.2)

For the OSF method, the fusion samples X1 of size 100 are generated from

Uniform(0,5). Exp(λ) distribution is a special case of the gamma distribution when

the shape parameter α = 1 and the scale parameter β = λ. The gamma tilt

h(x) = (x, log x) is appropriate in this case and therefore adopted.

In this example, detailed procedures on how the point estimates and confidence

intervals are obtained through Block Maxima (BM) and Peak Over Threshold (POT)

approach will be given. Recall that, in Chapter 1, BM and POT are introduced as

the two primary approaches to analyzing extremes of a data set. Block Maxima

reduces the data by taking maxima of blocks of data of fixed length (e.g. annual

maxima). Peak Over Threshold restricts attention to large observations that exceed

a high threshold. Both methods reduces the size of the data, while OSF on the other
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hand augments the data. In practice, difficulties arise if one adopts two traditional

approaches, BM and POT, based on the Extreme Value Theorem. For BM, the

number of blocks must be determined before fitting GEV to the reduced data set,

while for POT an adequate threshold has to be selected before GP is fitted to the

reduced data set. If the number of blocks in BM or the threshold in POT are

chosen too small, a biased sample results. In this case, small observations which

are not qualified as extreme observations are included in the sample, and the EVT

approximations would be violated. On the contrary, if the number of block in BM

or the threshold in POT is chosen too large, the sample size would be too small

to yield reliable estimates for the tail probabilities. The trade-off between a biased

estimate and a large estimation error often puts practitioners in a dilemma when

trying to apply EVT analysis.

For POT, these problems can be solved to some extent through graphical

means such as a thresh range plot or a MRL plot. These graphical approaches

do not pick a threshold for the user, and one may still have to rely on subjective

decisions with the plots. For BM, if the underlying sample is a time series, the

sample is typically blocked by some specified regular period (week, quarter, annual).

Unfortunately, there is no general rule or guideline on how to choose the appropriate

number of blocks when the underlying sample is not a time series. The researchers

would need to choose a reasonable number of blocks with discretion.

In each run, we subdivide the sample of size 100 into 20 blocks of five obser-

vations in each block. The maximum observation from each block is taken to form

a Block Maxima sample of size 20. Then the GEV distribution is fitted to the BM
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sample to obtain the distribution parameters and to derive the estimated threshold

exceedance probability. The choice of the number of blocks is arbitrary. Different

choices of this number are tested in many simulation studies, and the outcomes

produced are quite similar.

The mean residual life (MRL) plot is used to help to determine an appropriate

choice for the threshold u in the POT method. Recall that MRL plots the mean

excess values for a range of threshold choices with uncertainty. For the reference

sample of size 100 from Exp(1.2), we will restrict our attention to the range of zero

to four. The idea behind a MRL plot is to select a threshold whereby the graph

becomes linear as the threshold increases.

In Figure 3.2, we have the MRL plot for a random sample of size 100 from an

Exp(1.2) distribution in the top panel, and the MRL plot for a random sample of

size 1000 from the same distribution in the bottom panel. Both plots in this case

are not very informative, since the mean excess stays linear for a wide range (0 to

2.25) in both cases. Therefore, to ensure we have enough data to produce relatively

stable estimates, u is chosen to be 1.25; that is, approximately 20% of the sample

is used for the fitting of the GP distribution.

Table 3.1: OSF Interval Coverage and Length for p = 1−G(T ) = 0.01, T = 3.8376,
X0 ∼ Exp(1.2), X1 ∼ Unif(0, 5), n0 = n1 = 100, h(x) = (x, log x)

OSF AC EP POT BM

Coverage 94.6% 96.8% 66.6% 76.4% 96.6%
CI Length 0.02456218 0.0600026 0.02729541 0.01973923 0.10109796
MAE 0.00533125 0.0192253 0.00782000 0.00598448 0.04208432
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Figure 3.2: MRL Plot for Exp(1.2). Top sample size is 100; bottom sample size is

1000.

Figure 3.3 shows the coverage and histograms of the CI length of the first

100 confidence intervals obtained from various methods, when the true probability

P(X > 3.8376) is 0.01.

From Table 3.1, it can be observed that OSF outperformed the other methods

in all aspect. Among all methods, OSF gives the smallest MAE which shows that

the point estimate p̂OSF has the best accuracy. Furthermore, the mean length of the

confidence intervals associated with OSF is the shortest while the nominal coverage

is maintained. In other words, the confidence intervals produced by OSF are short

yet reliable.
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Figure 3.3: Coverage and Histograms of the Length of CI. The true probability

P(X > 3.8376) = 0.01.

For a tail probability of p = 0.001, the theoretical quantile t = 5.7565 is used

as the threshold. Fusion samples X1 are generated from Uniform(0,6.5).

This is a much smaller tail probability, the threshold t = 5.7565 is quite large

for randomly generated samples of size 100 from an Exp(1.2) distribution. Numeri-
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Table 3.2: OSF Interval Coverage and Length for p = 1−G(T ) = 0.001, T = 5.7565
X0 ∼ Exp(1.2), X1 ∼ Unif(0, 6.5), n0 = n1 = 100, h(x) = (x, log x)

OSF AC EP POT BM

Coverage 95.8% 100% 8.5% 72.6% 94.6%
CI Length 0.00502374 0.0457728 0.00252677 0.00524260 0.03416001
MAE 0.00081316 0.0183449 0.00171600 0.00145271 0.00991796

cal experiments show that out of 100,000 randomly generated Exp(1.2) samples of

size 100, 90.432% samples do not contain observations greater than the threshold

t = 5.7565. This means that over 90% of the samples contains no success at all.

When the sample contains no success, the estimator of the binomial probability∑
Xi/n is simply 0. Therefore, there’s no surprise that the EP method has the

worst performance. Only 4 EP intervals cover the true tail probability p = 0.001.

AC intervals yield 100% coverage, but this method produces the same estimates all

the time. The resulting point estimate and the confidence intervals are too large to

have any practical meaning. POT intervals also become worse for p = 0.001. In

this particular simulation, only about 73% intervals covered the true tail probabil-

ity. OSF method shows its true potential when the tail probability gets this small.

The point estimates p̂OSF has the smallest MAE. The associated CI not only has

the shortest length but a high coverage rate as well. The nominal 95% coverage is

achieved in this simulation. The coverage and histograms of the CI length of the first

100 confidence intervals obtained from various methods when the true probability

P(X > 5.7565) = 0.001 is shown in Figure 3.4.
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Figure 3.4: Coverage and Histograms of the Length of CI. The true probability

P(X > 5.7565) = 0.001.

3.4.2 X0 ∼ Gamma(5, 3)

In this and the next subsection, we demonstrate the results when the reference

sample X0 is simulated from two different gamma distributions. The histograms and
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the density plots are given in Figure 3.5. The correctly specified gamma tilt function

h(x) = (x, log x) is adopted for both cases; thus, the density ratio model holds.
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Figure 3.5: Density Plot for Gamma(5,3) and Gamma(1,0.01)

In this example, X0 ∼ Gamma(5, 3). For tail probability p = 0.01, the theo-

retical quantile t = 3.8682 is used as the threshold. Fusion samples X1 are gener-

ated from a Uniform(0,6). For tail probability p = 0.001, the theoretical quantile

t = 4.9314 is used as the threshold. Fusion samples X1 are generated from a Uni-

form(0,7). The gamma tilt function h(x) = (x, log x) is appropriate and therefore

adopted.

3.4.3 X0 ∼ Gamma(1, 0.01)

In this example, X0 ∼ Gamma(1, 0.01). For tail probability p = 0.01, the

theoretical quantile t = 460.517 is used as the threshold. Fusion samples X1 are
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Table 3.3: OSF Interval Coverage and length for p = 1− G(T ) = 0.01/T = 3.8682
and p = 1 − G(T ) = 0.001/T = 4.9314, X0 ∼ Gamma(5, 3), n0 = n1 = 100,
h(x) = (x, log x)

p/Threshold Method Fusion Sample X1 Coverage CI Length MAE

p = 0.01,
T = 3.87

OSF Unif(0, 6) 94.2% 0.02351581 0.00536009
AC - 97.6% 0.05834720 0.01797340
EP - 63.4% 0.02465786 0.00716000
POT - 65.4% 0.01789809 0.00664344
BM - 94.2% 0.09298356 0.03764912

p = 0.001,
T = 4.93

OSF Unif(0, 7) 98.2% 0.00549161 0.00082905
AC - 99.4% 0.04613860 0.01857600
EP - 10.6% 0.00323482 0.00190800
POT - 61.0% 0.00414608 0.00134398
BM - 91.4% 0.02869033 0.00826318

generated from Uniform(0,600). For tail probability p = 0.001, the theoretical

quantile t = 690.7755 is used as the threshold. Fusion samples X1 are generated

from Uniform(0,800). The gamma tilt function h(x) = (x, log x) is appropriate and

therefore adopted.

3.4.4 X0 ∼ Log-Normal(1, 1)

In this and the next subsection, we demonstrate the results when the reference

sample X0 is simulated from two different log-normal distributions. The histograms

and the density plots are given in Figure 3.6. The correctly specified gamma tilt

function h(x) = (log x, log2 x) is adopted for both cases; thus the density ratio model

holds.

In this example, X0 ∼ Log-Normal(1, 1). For tail probability p = 0.01, the

theoretical quantile t = 27.83649 is used as the threshold. The fusion samples X1
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Table 3.4: OSF Interval Coverage and length for p = 1−G(T ) = 0.01/T = 460.517
and p = 1 − G(T ) = 0.001/T = 690.7755, X0 ∼ Gamma(1, 0.01), n0 = n1 = 100,
h(x) = (x, log x)

p/Threshold Method Fusion Sample X1 Coverage CI Length MAE

p = 0.01,
T = 460.72

OSF Unif(0, 600) 95.4% 0.02407956 0.00510845
AC - 97.4% 0.05918750 0.01849340
EP - 65.4% 0.02590928 0.00730000
POT - 75.6% 0.01935038 0.00581125
BM - 98.2% 0.09923025 0.04095700

p = 0.001,
T = 690.78

OSF Unif(0, 800) 97.4% 0.00508180 0.00075557
AC - 99.8% 0.04577470 0.01834490
EP - 8.6% 0.00257303 0.00170800
POT - 80.0% 0.00555302 0.00143851
BM - 97.6% 0.03638597 0.01113462

99
%

 Q
ua

nt
ile

,  
t1

 =
 2

7.
83

64
9

99
.9

%
 Q

ua
nt

ile
,  

t2
 =

 5
9.

75
37

7

0.00

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80

de
ns

ity

Density Empirical Log−Normal(1, 1)

Log−Normal(1,1) Density Plot

99
%

 Q
ua

nt
ile

,  
t1

 =
 1

0.
24

04
7

99
.9

%
 Q

ua
nt

ile
,  

t2
 =

 2
1.

98
21

8

0.0

0.2

0.4

0.6

0 10 20 30

de
ns

ity

Density Empirical Log−Normal(0, 1)

Log−Normal(0,1) Density Plot

Figure 3.6: Density Plot for Log-Normal(1,1) and Log-Normal(0,1)

are generated from Uniform(1,65). For tail probability p = 0.001, the theoretical

quantile t = 59.75377 is used as the threshold. Fusion samples X1 are generated

from Uniform(1,85). In this case, the log-normal tilt function h(x) = (log x, log2 x)
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is appropriate and therefore adopted.

Table 3.5: OSF Interval Coverage and length for p = 1−G(T ) = 0.01/T = 27.83649
and p = 1 − G(T ) = 0.001/T = 59.75377, X0 ∼ Log-Normal(1, 1), n0 = n1 = 100,
h(x) = (log x, (log x, log2 x)

p/Threshold Method Fusion Sample X1 Coverage CI Length MAE

p = 0.01,
T = 27.84

OSF Unif(1, 65) 96.6% 0.02838072 0.00619843
AC - 98.6% 0.05842430 0.01787710
EP - 64.6% 0.02473896 0.00682000
POT - 77.6% 0.02030155 0.00574118
BM - 99.0% 0.10742792 0.04359354

p = 0.001,
T = 59.75

OSF Unif(1, 85) 98.8% 0.00672108 0.00114244
AC - 99.8% 0.04571260 0.01830630
EP - 8.2% 0.00245502 0.00167600
POT - 80.2% 0.00565705 0.00139721
BM - 99.0% 0.03996896 0.01116874

3.4.5 X0 ∼ Log-Normal(0, 1)

In this example, X0 ∼ Log-Normal(0, 1). For tail probability p = 0.01, the

theoretical quantile t = 10.24047 is used as the threshold. Fusion samples X1

are generated from Uniform(1,20). For tail probability p = 0.001, the theoretical

quantile t = 21.98218 is used as the threshold. Fusion samples X1 are generated

from Uniform(1,35). In this case, the log-normal tilt function h(x) = (log x, log2 x)

is appropriate and therefore adopted.

3.5 Simulation Studies: h(x) Misspecified

The key assumption of the density ratio model is that the log ratio of two un-

known probability density functions takes some known linear form which depends
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Table 3.6: OSF Interval Coverage and length for p = 1−G(T ) = 0.01/T = 10.24047
and p = 1 − G(T ) = 0.001/T = 21.98218, X0 ∼ Log-Normal(0, 1), n0 = n1 = 100,
h(x) = (log x, log2 x)

p/Threshold Method Fusion Sample X1 Coverage CI Length MAE

p = 0.01,
T = 10.24

OSF Unif(1, 65) 96.2% 0.02916668 0.00667020
AC - 98.8% 0.05851740 0.01789630
EP - 65.6% 0.02492600 0.00664000
POT - 79.0% 0.01976141 0.00554119
BM - 99.0% 0.10284490 0.04184385

p = 0.001,
T = 21.98

OSF Unif(1, 85) 98.2% 0.00783214 0.00149434
AC - 99.8% 0.04586780 0.01840260
EP - 9.2% 0.00275004 0.00175600
POT - 82.8% 0.00553023 0.00131581
BM - 98.2% 0.03714942 0.01096847

on finite dimensional parameters. In the previous section, it was shown that when

the tilt function h(x) is correctly specified, the tail probability estimated by the

OSF method is precise and the associated confidence intervals are short and reli-

able. Fokianos and Kaimi (2006) [21] studied the effect of misspecified tilt functions

by embedding the unknown linear form to some parametric transformation family

which leads ultimately to its identification. In this section, how the misspecifica-

tion issue could be addressed by Repeated Out of Sample Fusion (ROSF) will be

presented in simulation examples. Random samples generated from various types

of skewed distributions will be treated as the reference sample. Skewed distribu-

tions we considered in the simulation studies include: Pareto, F, Inverse Gaussian,

Weibull, and Truncated Gumbel. See Figure 3.7 for thedensity plot for various types

of skewed distributions we considered in this section. Instead of using the correct

tilt function for each case, the gamma tilt function h(x) = (x, log x) will be used
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Table 3.7: OSF Interval Coverage and Length for p = 1−G(T ) = 0.01, T = 3.1623,
X0 ∼ Pareto(1, 4), X1 ∼ Unif(1, 5.5), n0 = n1 = 100, h(x) = (x, log x)

OSF AC EP POT BM

Coverage 78.4% 98.8% 64.8% 77.0% 97.8%
CI Length 0.02291682 0.0583229 0.02458624 0.01962555 0.10122122
MAE 0.00702798 0.0177615 0.00666000 0.00600362 0.04120398

throughout.
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Figure 3.7: Density Plot for Various Types of Skewed Distributions

3.5.1 X0 ∼ Pareto(1, 4)

In this example, X0 ∼ Pareto(1, 4). For tail probability p = 0.01, the theoret-

ical quantile t = 3.1623 is used as the threshold. Fusion samples X1 are generated

from Uniform(1,5.5). In this case, the gamma tilt function h(x) = (x, log x) is

inappropriate and the density ratio model is misspecified.
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From Table 3.7, the OSF confidence interval no longer has the nominal 95%

coverage when the tilt function is misspecified. Nevertheless, the estimated tail

probabilities given by the non-parametric methods (AC and EP) and EVT based

methods(POT and BM) are not satisfactory either. But, ROSF fixes the situation.

The ROSF procedure to estimate the tail probability and confidence interval

is described in detail in section 3.2. Here we summarize the ROSF algorithm:

1. Fuse the given reference sample X0 with the computer generated sample (fu-

sion sample) X1, and obtain the estimated tail probability p̂ and its confidence

interval [0, B1] through the Density Ratio Model.

2. Fuse the given reference sample X0 again with another computer generated

sample (of the same type of the previous artificial sample and independent of

it) to get another p̂ and confidence interval [0, B2] in the same manner as in

step one.

3. Repeat the process nr times to produce a sequence of p̂i and confidence inter-

vals [0, Bi], i = 1, . . . , nr.

4. Obtain the empirical distribution for the upper bounds Bi and denote it as F̂B.

Based on computational efficiency consideration, in our simulation studies F̂B

is obtained from nr = 200 B’s.

5. Obtain the ROSF point estimate of the tail probability by p̂ = P̂(X0 > t) =

1
n

∑n
i=1 p̂i and the confidence interval by [0, F−1

B (α1/N)].
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Table 3.8: ROSF Interval Coverage and Length for p = 1−G(T ) = 0.01, T = 3.1623,
X0 ∼ Pareto(1, 4), X1 ∼ Unif(1, 5.5), n0 = n1 = 100, h(x) = (x, log x)

N=5 N=20 N=50 N=100 N=300

Coverage 79.8% 86.8% 90.0% 90.6% 92.8%
CI Length 0.02336956 0.0259955 0.02730116 0.02822144 0.02958183
MAE 0.00686935
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Figure 3.8: Typical ECDF Plot of the ROSF Upper Bounds B’s

Figure 3.8 shows the empirical CDF of the ROSF upper bounds. The ECDF

is obtained based on nr = 10, 000 B’s for illustrative purposes. Note that the

choice N = 5 approximately corresponds to the median of the B’s, N = 10 roughly
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gives the third quantile of the B’s, and N = 300 yields the 99th quantile. The

coverage increases as N increases. However, the length of the confidence intervals

also increases with N . The subject on how to determine the optimal N is discussed

in section 3.2. In the simulation studies results from N = 5 to N = 300 are provided.

As we will see soon, in many misspecified cases, the choice N = 5 suffices, as the

resulted point estimate is precise (low MAE) and the coverage is high. This case

when X0 follows a Pareto distribution is a difficult case, and the choice of N = 300

yields confidence intervals with the targeted coverage. Since p̂ = 1
n

∑n
i=1Bi, the

point estimate does not depend on the choice of N . The mean absolute deviation

(MAE) is also independent of N . The MAE obtained from 500 simulation runs

in this case is 0.006869346. The ROSF coverage, CI length, and MAE for various

choices of N can be found in Table 3.8 Note that the ROSF point estimate of the

tail probability is p̂ =
∑

i p̂i/nr and does not depend on the tuning parameter N .

Therefore, the MAE stays the same across all N values and we report it only once.

For tail probability p = 0.001, the theoretical quantile t = 5.6234 is used as

the threshold. Fusion samples X1 are generated from Uniform(1,8). Detailed results

are given in Table 3.9

From Table 3.9, the coverage for OSF does not reach the desired 95 percent.

However, it is clear that the condition P(B > p) > 0 holds so the ROSF can be

applied. As N becomes larger, the ROSF algorithm gradually improves the interval

coverage and the MAE of the point estimate at the expense of slightly increased

interval length. The desired coverage is reached when N = 300. Again, the ROSF

point estimate does not depend on the tuning parameter N and we report it only
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Table 3.9: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 5.6234, X0 ∼ Pareto(1, 4), X1 ∼ Unif(1, 8), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 70.6% 0.00511820 0.00154342
AC - 99.6% 0.04567740 0.01828710
EP - 7.8% 0.00237289 0.00166400
POT - 77.8% 0.00527968 0.00138423
BM - 96.4% 0.03476016 0.00990250

ROSF

5 72.8% 0.00511630 0.00143907
25 85.6% 0.00666390 -
50 89.6% 0.00748020 -

100 92.4% 0.00806978 -
300 96.4% 0.00892499 -

once.

3.5.2 X0 ∼ F(2, 12)

In this example, X0 ∼ F(2, 12). For tail probability p = 0.01, the theoretical

quantile t = 6.9266 is used as the threshold. Fusion samples X1 are generated

from Uniform(0,10). In this case, the gamma tilt function h(x) = (x, log x) is

inappropriate and the density ratio model is misspecified.

From Table 3.10, the OSF confidence interval no longer has the nominal 95%

coverage when the tilt function is misspecified. Likewise, the estimated tail prob-

abilities obtained by the non-parametric methods (AC and EP) and EVT based

methods(POT and BM) are not satisfactory either. As N becomes larger, the ROSF

algorithm gradually improves the interval coverage and the MAE of the point esti-

mate at the expense of slightly increased interval length. The desired coverage is
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Table 3.10: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.01/T = 6.9266, X0 ∼ F(2, 12), X1 ∼ Unif(0, 10), n0 = n1 = 100, h(x) = (x, log x)

Method N Coverage CI Length MAE

OSF - 79.0% 0.02041963 0.00618648
AC - 98.2% 0.05942880 0.01828710
EP - 65.8% 0.02638146 0.00748000
POT - 75.6% 0.01976238 0.00624685
BM - 97.0% 0.10230150 0.04257300

ROSF

5 82.8% 0.02070051 0.00583096
25 90.6% 0.02536070 -
50 93.6% 0.02779773 -

100 95.0% 0.02945160 -
300 96.6% 0.03184255 -

reached when N = 100. The ROSF point estimate does not depend on the tuning

parameter N and we report it only once.

For tail probability p = 0.001, the theoretical 0.999 quantile t = 12.9737 is used

as the threshold. Fusion samples X1 are generated from Uniform(1,16). Detailed

results are given in Table 3.11.

Similar results are obtained in this case. The coverage for OSF does not

reach the desired 95 percent. However, as N becomes larger, the ROSF algorithm

gradually improves the interval coverage and the MAE of the point estimate at the

expense of slightly increased interval length. The desired coverage is reached when

N = 25. The ROSF point estimate does not depend on the tuning parameter N

and we report it only once.
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Table 3.11: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 12.9737, X0 ∼ F(2, 12), X1 ∼ Unif(0, 16), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 91.2% 0.00647695 0.00134798
AC - 99.6% 0.04573940 0.01832560
EP - 8.2% 0.00249090 0.00169600
POT - 76.0% 0.00530864 0.00143199
BM - 96.0% 0.03557303 0.01037317

ROSF

5 94.2% 0.00660943 0.00080944
25 97.4% 0.00805930 -
50 99.0% 0.00881673 -

100 99.2% 0.00935866 -
300 99.4% 0.01020506 -

3.5.3 X0 ∼ Inverse-Gaussian(4, 5)

In this example, X0 ∼ IG(4, 5). For tail probability p = 0.01, the theoretical

quantile t = 17.87176 is used as the threshold. Fusion samples X1 are generated

from Uniform(1,30). In this case, the gamma tilt function h(x) = (x, log x) is

inappropriate and the density ratio model is misspecified.

From Table 3.12, the coverage for OSF does not reach the desired 95 percent.

However, as N becomes larger, the ROSF algorithm gradually improves the interval

coverage and the MAE of the point estimate at the expense of slightly increased

interval length. The desired coverage is reached when N = 25. The ROSF point

estimate does not depend on the tuning parameter N and we report it only once.

For tail probability p = 0.001, the theoretical quantile t = 28.95409 is used

as the threshold. Fusion samples X1 are generated from Uniform(1,35). Detailed
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Table 3.12: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.01/T = 17.87176, X0 ∼ IG(4, 5), X1 ∼ Unif(1, 30), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 87.2% 0.02416190 0.00582463
AC - 98.4% 0.05848490 0.01799260
EP - 64.2% 0.02486776 0.00702000
POT - 77.8% 0.01948964 0.00575958
BM - 99.2% 0.10354190 0.04137860

ROSF

5 89.6% 0.02435503 0.00558762
25 95.8% 0.02839780 -
50 98.0% 0.03049135 -

100 98.6% 0.03193300 -
300 99.2% 0.03398256 -

results are given in Table 3.13.

Table 3.13: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 28.95409, X0 ∼ IG(4, 5), X1 ∼ Unif(1, 35), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 88.4% 0.00468428 0.00950715
AC - 99.6% 0.04580150 0.01836410
EP - 8.6% 0.00260890 0.00172800
POT - 81.4% 0.00602746 0.00160986
BM - 98.8% 0.04122780 0.01284510

ROSF

5 91.4% 0.00462069 0.00087914
25 98.4% 0.00631720 -
50 99.6% 0.00728733 -

100 99.6% 0.00803363 -
300 99.8% 0.00922135 -

Similar results are obtained in this case. The coverage for OSF does not

reach the desired 95 percent. However, as N becomes larger, the ROSF algorithm

gradually improves the interval coverage and the MAE of the point estimate at the
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expense of slightly increased interval length. The desired coverage is reached when

N = 25. The ROSF point estimate does not depend on the tuning parameter N

and we report it only once.

3.5.4 X0 ∼ Inverse-Gaussian(2, 40)

In this example, X0 ∼ IG(2, 40). For tail probability p = 0.01, the theoretical

quantile t = 3.257718 is used as the threshold. Fusion samples X1 are generated from

Uniform(0,5). In this case, the gamma tilt function h(x) = (x, log x) is inappropriate

and the density ratio model is misspecified.

Table 3.14: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.01/T = 3.257718, X0 ∼ IG(2, 40), X1 ∼ Unif(0, 5), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 85.0% 0.02035902 0.00518535
AC - 98.4% 0.05942890 0.01864750
EP - 67.8% 0.02647355 0.00698000
POT - 67.0% 0.01857640 0.00656944
BM - 95.8% 0.09546870 0.03841630

ROSF

5 90.4% 0.02034459 0.00451952
25 96.6% 0.02566740 -
50 98.6% 0.02850117 -

100 99.2% 0.03055052 -
300 99.4% 0.03372030 -

From Table 3.14, the coverage for OSF does not reach the desired 95 percent.

However, as N becomes larger, the ROSF algorithm gradually improves the interval

coverage and the MAE of the point estimate at the expense of slightly increased

interval length. The desired coverage is reached when N = 25. The ROSF point
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estimate does not depend on the tuning parameter N and we report it only once.

For tail probability p = 0.001, the theoretical quantile t = 3.835791 is used as

the threshold. Fusion samples X1 are generated from Uniform(0,6). Detailed results

are given in Table 3.15.

Table 3.15: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 3.835791, X0 ∼ IG(2, 40), X1 ∼ Unif(0, 6), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 89.6% 0.00375765 0.00776180
AC - 99.8% 0.04611600 0.01855670
EP - 10.8% 0.00322207 0.00188400
POT - 59.4% 0.00404488 0.00135171
BM - 90.6% 0.02792973 0.00797250

ROSF

5 94.8% 0.00362604 0.00065085
25 98.6% 0.00530770 -
50 99.4% 0.00635649 -

100 99.6% 0.00720078 -
300 99.8% 0.00862340 -

Similar results are obtained in this case. The coverage for OSF does not

reach the desired 95 percent. However, as N becomes larger, the ROSF algorithm

gradually improves the interval coverage and the MAE of the point estimate at the

expense of slightly increased interval length. The desired coverage is reached when

N = 25. The ROSF point estimate does not depend on the tuning parameter N

and we report it only once.
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3.5.5 X0 ∼Weibull(1, 2)

In this example, X0 ∼Weibull(1, 2). For tail probability p = 0.01, the theoret-

ical quantile t = 9.21034 is used as the threshold. Fusion samples X1 are generated

from Uniform(0,12). In this case, the gamma tilt function h(x) = (x, log x) is inap-

propriate and the density ratio model is misspecified.

Table 3.16: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.01/T = 9.21034, X0 ∼ Weibull(1, 2), X1 ∼ Unif(0, 12), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 92.4% 0.02257618 0.00489417
AC - 97.8% 0.05882050 0.01826230
EP - 64.8% 0.02537867 0.00718000
POT - 73.8% 0.01871685 0.00582358
BM - 98.4% 0.09990350 0.03900090

ROSF

5 95.4% 0.02284684 0.00422050
25 97.8% 0.02776200 -
50 98.4% 0.03034152 -

100 99.8% 0.03215609 -
300 99.8% 0.03498779 -

From Table 3.16, the coverage for OSF does not reach the desired 95 percent.

However, as N becomes larger, the ROSF algorithm gradually improves the interval

coverage and the MAE of the point estimate at the expense of slightly increased

interval length. The desired coverage is reached when N = 5. The ROSF point

estimate does not depend on the tuning parameter N and we report it only once.

For tail probability p = 0.001, the theoretical quantile t = 13.81551 is used

as the threshold. Fusion samples X1 are generated from Uniform(0,16). Detailed
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results are given in Table 3.17.

Table 3.17: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 13.81551, X0 ∼ Weibull(1, 2), X1 ∼ Unif(0, 16), n0 = n1 = 100, h(x) =
(x, log x)

Method N Coverage CI Length MAE

OSF - 96.4% 0.00481890 0.00072284
AC - 99.6% 0.04586350 0.01840260
EP - 9.0% 0.00272691 0.00176000
POT - 77.2% 0.00530155 0.00140549
BM - 98.0% 0.04307054 0.01043342

ROSF

5 98.2% 0.00476868 0.00059276
25 99.8% 0.00653690 -
50 100% 0.00754933 -

100 100% 0.00830616 -
300 100% 0.00954166 -

Similar results are obtained in this case. The coverage for OSF actually reaches

the desired 95 percent. As N becomes larger, the ROSF algorithm improves the

interval coverage and the MAE of the point estimate at the expense of slightly

increased interval length. The desired coverage is reached when N = 5. The ROSF

point estimate does not depend on the tuning parameter N and we report it only

once.

3.5.6 X0 ∼ Truncated Gumbel(0, 5)

In this example, X0 ∼ Truncated Gumbel(0, 5). For tail probability p = 0.01,

the 99% quantile t = 25.36103 is used as the threshold. Fusion samples X1 are

generated from Uniform(0,28). In this case, the gamma tilt function h(x) = (x, log x)

is inappropriate and the density ratio model is misspecified.
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Table 3.18: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.01/T = 25.36103, X0 ∼ Trunc. Gumbel(0, 5), X1 ∼ Unif(0, 28), n0 = n1 = 100,
h(x) = (x, log x)

Method N Coverage CI Length MAE

OSF - 86.4% 0.01766805 0.00463530
AC - 98.4% 0.05855340 0.01812750
EP - 63.6% 0.02502152 0.00728000
POT - 69.6% 0.01828719 0.00641836
BM - 98.0% 0.12222860 0.03820720

ROSF

5 91.4% 0.01790894 0.00425766
25 97.6% 0.02232830 -
50 99.2% 0.02476274 -

100 99.2% 0.02652814 -
300 99.6% 0.02926242 -

From Table 3.18, the coverage for OSF does not reach the desired 95 percent.

As N becomes larger, the ROSF algorithm gradually improves the interval coverage

and the MAE of the point estimate at the expense of slightly increased interval

length. The desired coverage is reached when N = 25. The ROSF point estimate

does not depend on the tuning parameter N and we report it only once.

For tail probability p = 0.001, the 99.9% quantile t = 37.20 is used as the

threshold. Fusion samples X1 are generated from Uniform(0,40). Detailed results

are given in Table 3.19.

Similar results are obtained in this case. The coverage for OSF actually reaches

the desired 95 percent. As N becomes larger, the ROSF algorithm gradually im-

proves the interval coverage and the MAE of the point estimate at the expense of

slightly increased interval length. The desired coverage is reached when N = 25.

The ROSF point estimate does not depend on the tuning parameter N and we
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Table 3.19: OSF and ROSF interval coverage and length for p = 1 − G(T ) =
0.001/T = 37.20, X0 ∼ Trunc. Gumbel(0, 5), X1 ∼ Unif(0, 40), n0 = n1 = 100,
h(x) = (x, log x)

Method N Coverage CI Length MAE

OSF - 96.4% 0.00390412 0.00059924
AC - 99.4% 0.04582830 0.01838340
EP - 8.6% 0.00264478 0.00174800
POT - 72.2% 0.00474003 0.00140497
BM - 96.6% 0.05526941 0.00940537

ROSF

5 99.2% 0.00387261 0.00053174
25 100% 0.00528320 -
50 100% 0.00611575 -

100 100% 0.00675228 -
300 100% 0.00781973 -

report it only once.

3.6 Discussion

For cases when the tilt function is correctly specified, the density ratio model

holds approximately when the reference samples are fused with uniform samples.

In these cases, the point estimates of the tail probability given by the OSF method

are precise. More importantly, under correctly specified cases, the OSF confidence

intervals reach the 95% nominal coverage for the tail probabilities. For misspec-

ified cases, the confidence intervals produced by the OSF method no longer have

95% coverage. The ROSF method provides a way to relax the density ratio model

assumption by repeatedly fusing the reference sample with artificial samples. The

resulted point estimate can be obtained by averaging many OSF point estimates

from repeated fusions. They are more accurate than OSF estimates and closer to
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the true tail probability as indicated by smaller MAE. ROSF method provides a

way to balance the coverage and the length of confidence interval. By choosing

appropriate N , the ROSF method provides in general a wider interval (relative to

OSF) with significantly improved coverage. For the conservative choice N = 100,

ROSF intervals reach the 95% coverage almost in all misspecified cases (except for

the Pareto case), while the length of the confidence intervals are still much shorter

than the AC and BM methods. The confidence intervals given by EP and POT

methods are short but unreliable. The coverage for both EP and POT intervals is

poor.

The AC method almost always gives the same point estimates and confidence

interval. For p = 0.01, AC upper bounds are almost always 0.06; while for p = 0.001,

the AC upper bounds are almost always 0.04. When p = 0.01, the EP method gives

reasonable point estimates and confidence intervals approximately 60% of the time.

However, when p = 0.001, almost none of the simulation samples contain “suc-

cesses”, due to the relatively small size of the sample (n0 = 100). The EP method

gives mostly 0 point estimates and upper bounds, as none of the data points in the

reference sample exceeds the high threshold associated with the small tail probabil-

ity. The performance of the two EVT methods (POT and BM) are not satisfactory

either. The BM method gives confidence intervals with high coverage. However, the

BM estimates can be highly variable leading to wide confidence intervals. The BM

method gives the widest interval among all methods. The POT method gives good

point estimates for the tail probabilities, however the POT confidence intervals are

too short. In general, POT confidence intervals are about the same length as the
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OSF intervals, and are slightly shorter than the ROSF intervals. However, the cov-

erage of the POT intervals are around 60% to 70% in most cases. Such low coverage

suggests that the POT estimates and intervals are unreliable and should be treated

with caution.

EVT based modeling approaches characterize the behavior of distribution tails

by reducing the sample and fitting GEV or GDP to the extreme observations. On

the other hand, the DRM based approach augments the sample by combining real

and artificial samples. DRM connects the distributions and produces estimated

distribution functions and tail probabilities. The EVT data reduction and the DRM

data augmentation idea are the major differences between EVT based and DRM

based approaches. Given samples of limited size, EVT based approaches further

reduce the sample size, thus the results are highly variable. In such scenarios, the

DRM data fusion mechanism produces precise and reliable estimates and confidence

intervals.
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Chapter 4: Quantile Estimation Using DRM

4.1 Overview

Quantile estimation is an important task in many applications. For example,

Value at Risk (VaR) which is an extreme upper quantile serves as a crucial risk

indicator in the field of finance. In this Chapter, traditional quantile estimation

based on empirical distribution function and the extreme value theorem (EVT )will

be reviewed. New methods in quantile estimation based on the density ratio model

will be introduced.

The estimation of quantiles and quantile functions is one of the most funda-

mental problems in probability and statistics. Let X be a random variable with

distribution function F , and let qp be the pth quantile for some p ∈ (0, 1). Then

qp = F−1(p) = inf{x : F (x) ≥ p}. (4.1)

For instance, q0.5 would be the median and q0.99 would be the 99th percentile, etc.

Furthermore, we define the 0th quantle as q0 = limp→0 qp and q1 is defined as

q1 = limp→1 qp. From the definition, it is clear that if F is strictly increasing in

a neighborhood of qp, then qp is the inverse of the CDF F at p. If F happens to

consist of flat sections (that is, an interval of points x satisfy F (x) = p), then qp is
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the smallest x in the interval (see 4.1).

The sample quantile is a widely used estimator of qp. Let X1. . . . , Xn be a

random sample of size n with common CDF F ; then the sample quantile q̂p, ∈ (0, 1)

is defined by:

q̂p = F̂−1(p)

where F̂ = 1/n
∑n

i=1 I{Xi ≤ x} is the empirical CDF.

As implied by the Glivenko-Cantelli Theorem, for a large sample of size n,

F̂ ≈ F (x) for all x, therefore q̂p ≈ qp. Furthermore, p = F (qp), and we have the

following:

p ≈ F (q̂p) ≈ F (qp) + f(qp)(q̂p − qp) ≈ F̂ (qp) + f(qp)(q̂p − qp).

The second step follows from a Taylor approximation and the last step holds

as F̂ ≈ F (x) for all x. Rearranging terms gives

q̂p ≈ qp −
F̂ (qp)− p
f(qp)

+Rn

where Rn = O(n−3/4(log n)1/2(log log n)1/4) almost surely (a.s.) as n→∞.

This result is known as the Bahadur representation of the sample quantile.

Bahadur (1966) [2] had a rigorous development of the above argument.

The following theorem shows that the asymptotic distribution of the sample

quantiles q̂p for p ∈ (0, 1) are normally distributed.

Theorem 4.1 (Bahadur). Let X1, . . . , Xn be i.i.d. drawn from a CDF F with

continuous density f . If f(qp) > 0 for 0 < p < 1, then

√
n(q̂p − qp) =

√
n
(
F̂−1(p)− F−1(p)

) d−→ N(0, σ2),
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where σ2 = p(1− p)/f 2(qp).

To estimate the variance of a quantile, it is required to estimate the density

f at the unknown point qp. In practice, bootstrapping provides a simpler way for

the estimation of the variance. It is also important to note that the two cases p = 0

and p = 1 were excluded in the above theorem as the asymptotic distribution of

these extreme value statistics is very different and generally non-normal. In fact,

the asymptotic behaviors of these extreme quantiles were described by EVT as

introduced in Chapter 1. Let us briefly recap the methods for quantile estimation

in EVT.

For the Block Maximum (BM) method, the data are blocked into a number of

blocks of equal length from which a series of block maxima points are obtained. GEV

distribution are fitted to the block maxima sample. Let zp denote the p quantile

of the block maxima data. Then zp can be obtained by inverting the fitted GEV

distribution function:

ẑp = Ĝ−1(p) =


µ̂+ σ̂

ξ̂
[y−ξ̂p − 1], ξ̂ 6= 0

µ̂+ σ̂ log yp, ξ̂ = 0

where yp = − log(p). Recall that zp is also known as the 1/(1 − p)-blocks return

level. Let qp denote the p quantile of the original sample. Suppose now the estimated

extreme quantile of the original data is desired, and further assume that the original

sample of size n is divided into m blocks. Then qp corresponds to the m/((1− p)n)

blocks return level or the n-observation return level. When using the BM method to

estimate the extreme quantile for the original data, one should pay close attention to
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the fact that the p quantile of the original data is equivalent to the [m−n(1−p)]/m

quantile of the block maxima data.

For the Peaks Over Threshold (POT) method, a generalized Pareto distribu-

tion is fitted to the subsample whose values exceed a large threshold. The estimates

of extreme quantiles can be then obtained by inverting the fitted GPD distribution

function:

q̂p = Ĥ−1(p) =


u+ σ̂

ξ̂

[(
k
np

)
− 1
]
, ξ̂ 6= 0

u+ σ̂ log( k
np

), ξ̂ = 0

.

4.2 ROSF in Extreme Quantile Estimation

In this section, we study the quantile estimator based on the density ratio

model and ROSF. Let X0 denote an i.i.d. sample from some given population

X0 = (x01, . . . , x0n0)
′ ∼ g(x)

The distribution function G(x) of X0 is assumed to be unknown, and the p quantile

q̂ = inf{x : Ĝ(x) ≥ p} is the statistic of interest. X0 is referred to as the reference

sample. Let Xj denote a computer generated i.i.d. sample with sample size nj, j =

1, . . . ,m

Xj = (xj1, . . . , xjnj
)′ ∼ gj(x)

The computer generated samples Xj will be referred to as the fusion samples. Con-

sider density ratio model 2.4, and let Ĝ denote the estimated distribution func-

tion for the reference sample. For any p ∈ (0, 1), define the pth quantile of G as
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qp = inf{x : G(x) ≥ p}, then the density ratio model based estimator is:

q̂DRM
p = inf{x : Ĝ(x) ≥ p}.

The 100(1− α)% confidence interval for the p quantile q̂p can be constructed

based on the asymptotic results given in Appendix A:

(
q̂p − zα/2

√
v̂ar(q̂p), q̂p + zα/2

√
v̂ar(q̂p)

)
.

A consistent and effective estimator of the estimated variance of q̂p, v̂ar(q̂p), is

needed. Based on asymptotic results, plug-in consistent variance estimator can

be obtained. Two necessary ingredients are consistent estimation of vij(x, y) and

gi(x). Note that vij is the i, jth component in the covariance matrix of the process

√
n(Ĝ(t) − G(t)) given in Theorem 2.2. Thus, vij can be obtained through DRM.

To obtain ĝi can be a bit more involved due to the fact that Ĝ is discrete. However,

the idea of kernel density estimation can be used to produce a density estimate.

Let K(.) ≥ 0 be a commonly used kernel function (e.g. standard normal density

function) such that
∫
K(x)dx = 1,

∫
xK(x)dx = 0 and

∫
x2K(x)dx < ∞. For

some bandwidth b¿0, let Kb(x) = (1/b)K(x/b). Then a kernel estimate of g can be

obtained by

ĝ(x) =

∫
Kb(x− y)dĜ(y).

For detailed introduction about kernel density estimation on DRM, see Voulgaraki

et al. (2012) [51]. The variance of q̂p becomes large as p → 1 or p → 0. Therefore,

we propose the ROSF algorithm to construct short confidence interval for extreme

quantiles.
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We shall now describe the implementation of ROSF in the estimation of ex-

treme quantiles and the associated confidence interval. We are interested in esti-

mating quantile qp for a large p based a random sample X0 from some distribution.

X0 is referred to as the reference sample. A fusion sample X1 is then generated by

the computer and fused together with the reference sample. The point estimate q̂1

is then obtained through the OSF as described above. The same reference sample is

then fused with another computer generated sample (from the same distribution of

the previous artificial sample and independent of it) to obtain another q̂2 in the same

manner as before. This process is repeated nr (nr stands for number of repetition)

times to produce a sequence of OSF point estimators of the quantile q̂i, i = 1, . . . , nr.

The final point estimate of the p quantile q̂p from ROSF algorithm is the average

of q̂i’s from nr OSF runs:

q̂ = inf{x : Ĝ(x) ≥ p} =
1

nr

nr∑
i=1

q̂i, i = 1, . . . , nr

and the associated 100(1− α)% confidence interval is

[
F−1
Q

(
1− α1/N

)
, F−1

Q

(
α1/N

)]
.

where N is a large enough positive integer.

Conditional on X0, the sequence of the OSF quantile estimators q̂i are independent

and identically distributed from some distribution FQ. Denote the empirical distri-

bution of Qi’s by F̂Q. By Glivenko-Cantelli theorem, F̃Q converges to FQ almost

surely uniformly as nr increases. Since the process may be repeated many times, a
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very close approximation of FQ can be obtained. In other words, as the number of

fusions becomes very large, F̂Q is almost the exact FQ.

The ROSF point estimate of the quantile is the average of B OSF point esti-

mates. The ROSF confidence interval for the estimated quantile q̂p depends on the

estimated cumulative distribution function F̂Q and a tuning parameter N .

The construction of the ROSF confidence interval follows from similar reason-

ing as presented in Chapter 3. For an i.i.d. sequence of the estimated OSF quantiles

q̂1, . . . , q̂N , denote the distribution of the sequence by Q. Furthermore, let us denote

the maximum of the sequence by q(N) = max(q̂i) and the true quantile by q. It

follows that

P(q(N) > q) = 1− FN
Q (q)

If P(Q > q) = 1 − FQ(q) > 0, then from the above equation, the probability that

the maximum of OSF quantile estimates covers the true quantile increases as the

tuning parameter N increases. Conditional on the given sample X0, for all N > N0,

we have the following inequality:

1− FN
Q (q) ≥ 0.95

for some N0 sufficiently large. The inequality can be rewritten by inverting the

distributon function:

q ≤ F−1
Q (0.051/N)

The above relationship implies that the constructed ROSF upper bound (for the

estimated quantile) F−1
Q

(
α1/N

)
covers the true quantile q with at least 95% confi-

dence for sufficiently large N . The ROSF lower bound for the estimated quantile
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can be constructed by similar arguments. As N becomes larger, the length of the

confidence interval also becomes larger. In the next section, it will be shown that

the ROSF confidence intervals reach the desired coverage for sufficiently large N in

simulation studies.

4.3 Simulation Studies: h(x) Correctly Specified

In this section, BM, POT, ROSF, and empirical methods of estimation of

extreme quantiles and associated confidence intervals will be applied and compared

in simulation studies.

Following Chapter 3, the reference samples in simulation studies are randomly

generated from a range of skewed distributions including: Exponential, Gamma,

Log-normal, Weibull, Pareto, F and Truncated Gumbel. The reference sample is

then fused repeatedly with computer generated uniform random samples. In all

cases, a sufficiently large upper limit of the uniform distribution needs to be deter-

mined. Recall that, when the reference sample comes from a skewed distribution,

the gamma tilt h(x) = (x, log x) and the log-normal tilt (log x, log2(x)) make the

density ratio model hold approximately. The analysis is conducted in two parts: in

the first part, we consider scenarios when the tilt function is correctly specified and

in the second part when the tilt function is misspecified. For each case, the 0.99 and

0.999 extreme tail quantiles are estimated. Mean absolute error (MAE) which cal-

culates the mean absolute value of the differences between the estimated quantiles

q̂ and the true quantile q is the metric that is used to measure the precision of the
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point estimates. More importantly, the 95% confidence intervals for the estimated

quantiles are calculated.

The BM and POT confidence intervals are obtained from the delta method

and bootstrapping. Delta method intervals are calculated from explicit expressions

given in 1.3 and 1.4. Bootstrapped intervals are constructed from the 2.5th to 97.5th

percentiles based on 500 replications. The ROSF confidence intervals are obtained

by setting the tuning parameter N to 3000 for all cases.

To obtain reliable coverage results, in each study, five hundred confidence

intervals are computed for each method. The performance of the methods is evalu-

ated based on the coverage, mean length of the confidence intervals, and the mean

absolute error.

The tilt function is correctly specified, if it corresponds to the distribution of

the reference sample correctly. For example, if the reference sample comes from

the gamma family, the gamma tilt h(x) = (x, log x) is appropriate; if the reference

sample comes from the log-normal family then the log-normal tilt would be appro-

priate. In this section, we will see that under a correctly specified tilt function where

the density ratio model holds exactly, the ROSF methods give very precise point

estimates for the extreme quantiles and short yet reliable confidence intervals as

well.
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4.3.1 X0 ∼ Exp(1.2)

In this example, X0 ∼ Exp(1.2). The true theoretical 0.99 and 0.999 quantiles

are q0.99 = 3.837642 and q0.999 = 5.756463 respectively. For the 0.99 quantile,

fusion samples X1’s are generated from Uniform(0,20), and FQ is based based on

nr = 10000 repetitions; for the 0.999 quantile, fusion samples X1’s are generated

from Uniform(0,25) and FQ is obtained based on nr = 2000 repetitions. In this case,

the gamma tilt function h(x) = (x, log x) is appropriate and hence adopted. See

Table 4.1 for the performance of various methods.

Table 4.1: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
Exp(1.2), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.2% 84.2% 85.0% 93.0% 74.4% 65.8%
CI Length 2.17 3.28 2.89 3.35 2.31 2.26
MAE 0.44 0.59 0.53 0.54 0.53 0.56

q0.999

Coverage 99.2% 85.4% 94.0% 93.2% 79.2% 9.6%
CI Length 5.56 16.21 18.84 15.25 15.71 2.05
MAE 0.78 2.43 1.60 1.66 1.57 1.87

4.3.2 X0 ∼ Gamma(5, 3)

In this example, X0 ∼ Gamma(5, 3). The true theoretical 0.99 and 0.999

quantiles are q0.99 = 3.868209 and q0.999 = 4.931383 respectively. For the 0.99

quantile, fusion samples X1’s are generated from Uniform(0,20), and FQ is obtained

based on nr = 3500 repetitions; for the 0.999 quantile, fusion samples X1’s are

generated from Uniform(0,25) and FQ is obtained based on nr = 2500 repetitions.
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In this case, the gamma tilt function h(x) = (x, log x) is appropriate and hence

adopted. See Table 4.2 for the performance of various methods.

Table 4.2: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
Gamma(5, 3), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 97.8% 81.4% 79.6% 97.0% 69.6% 66.2%
CI Length 1.29 1.70 1.49 2.47 1.30 1.42
MAE 0.26 0.33 0.31 0.32 0.31 0.35

q0.999

Coverage 99.6% 76.6% 86.6% 97.8% 74.0% 11.2%
CI Length 3.00 6.63 6.96 9.25 5.90 1.27
MAE 0.40 1.07 0.80 0.91 0.87 1.04

4.3.3 X0 ∼ Gamma(1, 0.01)

In this example, X0 ∼ Gamma(1, 0.01). The true theoretical 0.99 and 0.999

quantiles are q0.99 = 460.517 and q0.999 = 690.7755 respectively. For the 0.99 quan-

tile, fusion samples X1’s are generated from Uniform(0,600), and FQ is obtained

based on nr = 10000 repetitions; for the 0.999 quantile, fusion samples X1’s are

generated from Uniform(0,800) and FQ is obtained based on nr = 3500 repetitions.

In this case, the gamma tilt function h(x) = (x, log x) is appropriate and hence

adopted. See Table 4.3 for the performance of various methods.

4.3.4 X0 ∼ Log-Normal(1, 1)

In this example, X0 ∼ Log-Normal(1, 1). The true theoretical 0.99 and 0.999

quantiles are q0.99 = 27.83649 and q0.999 = 59.75377 respectively. For the 0.99

quantile, fusion samples X1’s are generated from Uniform(0,95), and FQ is obtained
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Table 4.3: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
Gamma(1, 0.01), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 93.2% 85.8% 85.6% 91.4% 74.8% 63.4%
CI Length 219.99 404.39 363.72 380.84 287.47 272.38
MAE 45.72 71.06 64.27 64.58 64.14 67.04

q0.999

Coverage 97.6% 85.2% 94.4% 89.2% 79.6% 9.0%
CI Length 321.97 1001.68 1592.45 930.69 799.63 246.21
MAE 61.55 181.49 151.98 155.30 161.27 223.40

based on nr = 4000 repetitions; for the 0.999 quantile, fusion samples X1’s are

generated from Uniform(0,120) and FQ is obtained based on nr = 3500 repetitions.

In this case, the log-normal tilt function h(x) = (log x, (log x)2) is appropriate and

hence adopted. See Table 4.4 for the performance of various methods.

Table 4.4: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
lnorm(1, 1), n0 = n1 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.4% 87.8% 90.6% 83.2% 77.6% 63.6%
CI Length 23.88 49.14 37.61 37.06 37.41 26.05
MAE 5.84 8.00 6.77 6.88 6.59 6.96

q0.999

Coverage 96.4% 86.8% 96.0% 76.6% 81.2% 8.8%
CI Length 66.45 206.50 383.00 127.17 148.05 24.33
MAE 12.35 26.71 23.19 24.92 24.98 30.40

4.3.5 X0 ∼ Log-Normal(0, 1)

In this example, X0 ∼ Log-Normal(0, 1). The true theoretical 0.99 and 0.999

quantiles are q0.99 = 10.24047 and q0.999 = 21.98218 respectively. For the 0.99

quantile, fusion samples X1’s are generated from Uniform(0,50), and FQ is obtained
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based on nr = 3500 repetitions; for the 0.999 quantile, fusion samples X1’s are

generated from Uniform(0,65) and FQ is obtained based on nr = 2000 repetitions.

In this case, the log-normal tilt function h(x) = (log x, (log x)2) is appropriate and

hence adopted. See Table 4.5 for the performance of various methods.

Table 4.5: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
lnorm(0, 1), n0 = n1 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.6% 86.0% 89.0% 81.8% 79.2% 62.6%
CI Length 9.95 18.89 19.11 14.34 14.23 9.99
MAE 2.29 3.19 2.74 2.83 2.67 2.74

q0.999

Coverage 97.4% 87.0% 94.8% 78.2% 82.6% 12.4%
CI Length 33.29 82.20 147.83 49.33 59.41 9.34
MAE 6.67 10.87 9.47 9.33 9.49 10.98

4.4 Simulation Studies: h(x) Misspecified

The key assumption of the density ratio model is that the log ratio of two

unknown probability density functions takes some known linear form which depends

on finite dimensional parameters. In the previous section, it was shown that when

the tilt function h(x) is correctly specified, the estimated quantile by the ROSF

method is precise. The associated confidence intervals are short and reliable. In this

section, the performance of the ROSF method under misspecified scenarios will be

presented in simulation examples. Random samples generated from various types of

skewed distributions will be treated as the reference sample. Skewed distributions we

considered in the simulation studies include: Pareto, F, Inverse Gaussian, Weibull,
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and Truncated Gumbel. Instead of using the correct tilt function for each case,

either the gamma tilt h(x) = (x, log x) or the log-normal tilt h(x) = (log x, (log x)2)

will be used.

4.4.1 X0 ∼ Pareto(1, 4)

In this example, X0 ∼ Pareto(1, 4). The true theoretical 0.99 and 0.999 quan-

tiles are q0.99 = 3.162278 and q0.999 = 5.623413 respectively. For the 0.99 quantile,

fusion samples X1’s are generated from Uniform(0,160), and FQ is obtained based

on nr = 3500 repetitions; for 0.999 quantile, fusion samples X1’s are generated from

Uniform(0,200) and FQ is obtained based on nr = 2000 repetitions. In this case, the

gamma tilt function h(x) = (x, log x) is adopted. See Table 4.6 for the performance

of various methods.

Table 4.6: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
Pareto(1, 4), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.8% 85.0% 85.4% 80.2% 76.4% 64.8%
CI Length 1.93 3.51 3.43 2.67 2.63 1.97
MAE 0.48 0.61 0.52 0.53 0.51 0.53

q0.999

Coverage 99.6% 84.2% 94.0% 72.6% 76.8% 7.8%
CI Length 6.00 32.30 54.56 21.56 30.98 1.84
MAE 1.93 4.50 2.60 3.17 2.59 2.37

4.4.2 X0 ∼ F(2, 12)

In this example, X0 ∼ F(2, 12). The true theoretical 0.99 and 0.999 quantiles

are q0.99 = 6.926608 and q0.999 = 12.97367 respectively. For the 0.99 quantile,
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fusion samples X1’s are generated from Uniform(0,8), and FQ is obtained based on

nr = 500 repetitions; for the 0.999 quantile, fusion samples X1’s are generated from

Uniform(0,15) and FQ is obtained based on nr = 2000 repetitions. In this case, the

gamma tilt function h(x) = (x, log x) is adopted. See Table 4.7 for the performance

of various methods.

Table 4.7: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
F(2, 12), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 97.2% 82.0% 85.6% 84.8% 77.8% 65.8%
CI Length 1.73 9.19 8.60 7.30 6.57 5.42
MAE 0.34 1.67 1.45 1.44 1.39 1.43

q0.999

Coverage 98.8% 84.2% 92.4% 80.0% 79.4% 8.2%
CI Length 4.20 31.13 51.15 22.38 23.72 5.03
MAE 0.72 5.04 4.44 4.37 4.28 5.75

4.4.3 X0 ∼ Inv-Gauss(4, 5)

In this example, X0 ∼ IG(4, 5). The true theoretical 0.99 and 0.999 quantiles

are q0.99 = 17.87176 and q0.999 = 28.95409 respectively. For the 0.99 quantile,

fusion samples X1’s are generated from Uniform(0,60), and FQ is obtained based on

nr = 10000 repetitions; for 0.999 quantile, fusion samples X1’s are generated from

Uniform(0,60) and FQ is obtained based on nr = 2000 repetitions. In this case, the

log-normal tilt function h(x) = (log x, (log x)2) is adopted. See Table 4.8 for the

performance of various methods.
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Table 4.8: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
invgauss(4, 5), n0 = n1 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 97.6% 86.2% 90.4% 88.8% 78.2% 64.2%
CI Length 13.93 16.31 16.97 13.91 11.59 11.79
MAE 2.41 2.48 2.42 2.38 2.41 2.95

q0.999

Coverage 96.6% 86.2% 98.4% 86.4% 82.4% 9.2%
CI Length 28.77 64.81 126.39 45.81 46.83 10.77
MAE 4.92 9.34 8.26 7.86 7.41 10.67

4.4.4 X0 ∼ Inv-Gauss(2, 40)

In this example, X0 ∼ IG(2, 40). The true theoretical 0.99 and 0.999 quantiles

are q0.99 = 3.257718 and q0.999 = 3.835791 respectively. For the 0.99 quantile,

fusion samples X1’s are generated from Uniform(0,20), and FQ is obtained based

on nr = 5000 repetitions; for the 0.999 quantile, fusion samples X1’s are generated

from Uniform(0,20) and FQ is obtained based on nr = 1000 repetitions. In this case,

the log-normal tilt function h(x) = (log x, (log x)2) is adopted. See Table 4.9 for the

performance of various methods.

Table 4.9: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
invgauss(2, 40), n0 = n1 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 96.8% 78.6% 74.0% 96.6% 65.4% 59.8%
CI Length 0.77 0.84 0.75 1.36 0.63 0.75
MAE 0.16 0.18 0.18 0.18 0.18 0.20

q0.999

Coverage 99.6% 75.8% 85.2% 97.0% 67.2% 7.4%
CI Length 1.44 2.96 3.21 4.70 2.17 0.66
MAE 0.23 0.56 0.45 0.47 0.47 0.59
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4.4.5 X0 ∼Weibull(1, 2)

In this example, X0 ∼Weibull(1, 2). The true theoretical 0.99 and 0.999 quan-

tiles are q0.99 = 9.21034 and q0.999 = 13.81551 respectively. For the 0.99 quantile,

fusion samples X1’s are generated from Uniform(0,30), and FQ is obtained based on

nr = 6000 repetitions; for the 0.999 quantile, fusion samples X1’s are generated from

Uniform(0,40) and FQ is obtained based on nr = 500 repetitions. In this case, the

gamma tilt function h(x) = (x, log x) is adopted. See Table 4.10 for the performance

of various methods.

Table 4.10: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
weibull(1, 2), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.0% 84.6% 90.2% 93.4% 74.6% 64.8%
CI Length 5.03 8.38 8.87 8.00 6.63 5.44
MAE 0.99 1.49 1.28 1.32 1.29 1.37

q0.999

Coverage 97.4% 83.4% 96.6% 91.0% 79.0% 9.0%
CI Length 11.12 21.73 35.87 17.72 14.84 4.92
MAE 1.73 3.67 3.92 4.48 4.12 4.51

4.4.6 X0 ∼ Truncated Gumbel(0, 5)

In this example, X0 ∼ Trunc. Gumbel(0, 5). The true 0.99 and 0.999 quantiles

are q0.99 = 25.36103 and q0.999 = 37.2 respectively. For the 0.99 quantile, fusion

samples X1’s are generated from Uniform(0,40), and FQ is obtained based on nr =

5000 repetitions; for the 0.999 quantile, fusion samples X1’s are generated from

Uniform(0,50) and FQ is obtained based on nr = 1000 repetitions. In this case, the
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gamma tilt function h(x) = (x, log x) is adopted. See Table 4.11 for the performance

of various methods.

Table 4.11: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 ∼
Trunc. Gumbel(0, 5), n0 = n1 = 100, h(x) = (x, log x)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 96.2% 82.0% 90.4% 93.8% 72.6% 63.0%
CI Length 10.43 19.45 26.54 21.88 14.39 13.90
MAE 2.12 3.68 3.41 3.48 3.41 3.64

q0.999

Coverage 96.4% 80.8% 97.4% 92.0% 78.0% 8.6%
CI Length 15.66 52.63 99.15 47.82 36.57 12.54
MAE 3.08 9.47 8.35 8.95 8.76 11.78

4.5 Discussion

For 0.99 quantiles, the EP method gives reasonable point estimates and con-

fidence intervals approximately 60% of the time. However, when 0.999 quantiles

are under consideration, the EP confidence intervals result in very poor coverage

(from roughly 7% to 12%). The coverage of the two EVT methods (POT and BM)

are satisfactory in some cases. The BM method gives confidence intervals with

high coverage. However, the BM estimates can be highly variable leading to wide

confidence intervals which are not informative for risk assessment purposes. The

BM method gives the widest interval among all methods. The POT method gives

shorter confidence intervals (relative to BM intervals). Also, the coverage of POT

confidence intervals is not stable, ranging from 65% to 98%.

The ROSF method demonstrates its advantage in estimation of extreme quan-
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tiles across all simulation studies. The ROSF method repeatedly fuses the reference

sample with artificial samples. The resulting point estimate is obtained by averag-

ing many OSF point estimates from repeated fusions. In all cases, the ROSF point

estimates for quantiles are more accurate than estimates obtained from EVT based

methods. The ROSF point estimates are closer to the true tail probability as indi-

cated by smaller MAE. To obtain the ROSF confidence interval for the estimator of

quantile, a tuning parameter N needs to be determined. How to choose the optimal

N is still an open problem. From many simulation results, the choice N = 3000

suffices in many specified and misspecified cases for extreme quantiles. This means

that the ROSF confidence intervals give desired coverage when N = 3000. There-

fore choice N = 3000 is prudent and used as default. In some difficult cases, a

larger N is needed so that the confidence intervals give the desired coverage. In our

simulation studies, the ROSF confidence intervals for extreme quantiles reach the

95% nominal coverage for almost all cases regardless of whether the tilt function

h(x) is correctly specified or not. Furthermore, the length of the ROSF confidence

intervals is much shorter than intervals obtained from EVT based methods. The

advantage of the ROSF method is quite significant when the 0.999 quantile is under

consideration. The difference between the ROSF method and EVT based methods

are more noticeable, if the underlying sample is from a distribution with a long tail

(e.g. Gamma(1,0.01)). In conclusion, the estimation of extreme quantiles based on

ROSF is precise and reliable when the size of the underlying sample is moderately

large.
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Chapter 5: Real Data Applications

In this chapter, the EVT based methods and DRM based methods in the

estimation of threshold exceedance probabilities and extreme quantiles are applied

in two real data problems. The performance of various methods will be compared.

5.1 Application in Food Safety

Certain foods may contain varying amounts of toxins, chemicals, and/or heavy

metals. Exposures to high levels of these contaminants in food may cause severe

health problems. Since food is predominantly safe, the outbreak of food-borne illness

is rare. However, rare events like food poisoning could be lethal and costly. Ac-

cording to the Centers for Disease Control (CDC) [7], “About one in six Americans

gets sick every year from food-borne diseases and 3, 000 die. Salmonella, a bacte-

ria that commonly causes food-borne diseases incurs $365 million in direct medical

costs annually”. To establish regulatory standards to prevent the contamination

of food and to provide nutritional recommendations, risk assessment measures are

required. Risk assessment should be based not only on the detection of the con-

taminants (qualitative risk assessment), but also on the quantitative evaluation of

contaminants in food products (quantitative risk assessment). Joint work by Food
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and Agriculture Organization (FAO) and World Health Organization (WHO) rec-

ommended a stepwise procedure to quantitatively assess consumer exposure to food

contaminants [15]. A commonly used measure of risk related to the presence of con-

taminants in food is the probability that the contaminant intake/exposure exceeds

a safe level determined by a FAO/WHO joint expert committee on food additives

(JECFA) based on experimental and/or epidemiological studies. This exceedance

probability is referred to as the risk index, and the safe level of intake dosage is called

provisional tolerable weekly intake (PTWI) which is defined in micrograms per week

per kg of body weight (µg/kgbw). When both consumption data and contamination

data are available, exposure can be defined as the cross product of contamination

and consumption for given food items and contaminants. For detailed guidelines

and information, the reader may refer to FAO/WHO (1999) [16] and FAO/WHO

(2000) [17].

Since the quantity of interest is the probability that the individual intake of

contaminants via food exceeds a certain threshold, our goal is to produce precise

estimation of this threshold exceedance probability (or risk index) and construct

short and reliable confidence intervals. To be more specific, the tail probability

P(X > PTWI) (where X is a random variable that represents individual intake of

contaminants through consumption of a certain food) and its associated confidence

intervals are desired. Various methods for risk index calculation can be found in

existing literature. Tressou et al. (2004) [47] suggested the use of extreme value the-

ory (EVT) to evaluate the risk. They argued that PTWI belongs to the exposure

tail distribution, and modeled the exposure tail by a Pareto type distribution char-
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acterized by a Pareto index which may be seen as a measure of the risk of exceeding

the PTWI. Gauchi and Leblanc (2002) [22] proposed a more empirical approach

based on Monte Carlo estimation and a parametric type method of simulation. In

their study, confidence intervals of the risk index are constructed by the bootstrap

method.

In this section, we focus our attention on heavy metal (lead and mercury)

exposures related to the consumption of fish and seafood products. How OSF and

ROSF methods are used in the estimation of risk index will be presented.

5.1.1 Food Consumption Data

Consumption data come from the National Health and Nutrition Examina-

tion Survey (NHANES) which is a program of studies designed to assess the health

and nutritional status of adults and children in the United States. A dietary in-

terview component, called What We Eat in America (WWEIA 2005-2006), is con-

tained in the survey. The interviews are conducted as joint work between the US

Department of Agriculture (USDA) and the US Department of Health and Hu-

man Services (DHHS). Under this partnership, DHHS’s National Center for Health

Statistics (NCHS) is responsible for the sample design and data collection. USDA’s

Food Surveys Research Group (FSRG) is responsible for the dietary data collection

methodology, maintainance of the databases used to code and process data, and

data review and processing.

Detailed dietary intake information from NHANES participants are obtained
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during dietary recall interviews. The dietary intake data are used to estimate the

types and amounts of foods and beverages consumed during a 24-hour period prior

to the interview (midnight to midnight 24 hour recall). The intakes of energy,

nutrients and other food components based on consumed food and beverages are

also estimated.

NHANES provides a detailed food list contains 7178 food items clustered in

groups including: dairy products, poultry, fish, meat product, and beverages etc.

Among this food list, 179 food items belongs to the group “Fish”. Among all partici-

pants of the food survey, n = 3021 individuals who consumed one or more fish items

are considered as fish and seafood product consumers. For each seafood product

consumer, the total consumption is properly calculated and recorded. Consumer

body weights are also available from the survey. The body weight information is

crucial to the study since PTWI is expressed as a contaminant unit per kilogram

of body weight (µg/kgbw). The calculation of the normalized consumption (con-

sumption divided by individual weight) relies on the availability of the body weight

data.

5.1.2 Contamination Data

Seafood product contamination data are collected by National Oceanic and

Atmospheric Administration (NOAA) through their National Status and Trends

(NST) program. This is a monitoring program that collects and records data of

heavy metal and pesticides residue concentrations present in samples of seafood
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products. For each of the contaminants of interest (Pb and Hg), there are 327

values expressed in µg per gram of fresh weight of sea product.

Methylmercury (MeHg), the toxic form of mercury, are almost exclusively

present in sea products. The amount of Methylmercury in seafood products can be

derived from mercury contents. Claisse et al (2001) [9] suggested that methylmer-

cury concentration in seafood can be obtained by simply applying the conversion

factor (0.84 for seafood) to the mercury concentration data. This method is adopted

in our study.

It is very common that concentration data are subject to left censoring due

to detection or quantification limits of analytical methods. By convention, the

censored data can be replaced by either the limit of detection (LOD), or by half

of LOD, or by zero based on the proportion of left censored data. In our study

the proportion of censored lead and mercury concentration data are low, 8.87% and

2.75%, respectively. A conservative method is adopted in our application; that is,

censored data are replaced by the limit of detection (LOD).

5.1.3 Exposure Calculation

To our knowledge, heavy metal intakes have not been measured directly.

Hence, human heavy metal intake from food consumption is derived from consump-

tion and contamination data. A dataset of 3000 daily heavy metal intakes (in µg/kg

BW) was constructed bu multiplying the daily seafood consumption data for each

individual (in g/kg BW) by heavy metal concentration values (in µg/g) randomly
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sampled from the contamination data for seafood.
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Figure 5.1: Histogram of 3000 Mercury Exposure Measurements
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Figure 5.2: Histogram of 3000 Lead Exposure Measurements

The construction of the contamination intake dataset relies on random draws
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of heavy metal concentration from seafood contamination data. Many contamina-

tion intake dataset could be generated and each would be slightly different from

the others due to randomness in sampling. The international toxicological refer-

ences (PTWI) were estabilshed and revised by JECFA. The most recent tolerable

intake for heavy metals considered in this study can be found on the WHO web-

site: 25µg/kg/week for lead, and 4µg/kg/week for mercury. For each simulation,

the contamination intake data are generated and the risk index P(X > PTWI) is

calculated. From many simulation, the risk index is approximately 0.001 for lead

and 0.05 for mercury. For illustrative purposes, we record one lead exposure dataset

when the risk index is exactly 0.001 and the mercury exposure dataset when the

risk index is exactly 0.05. These risk indices are considered as the true risk indices.

OSF and ROSF method together with other methods described previously will be

applied to samples of size 100 to estimate the risk indices. The performance of each

method will be given in the following section. The histograms of the recorded lead

and mercury intake data are given in Figure 5.1 and Figure 5.2.

5.1.4 Tail Probability Estimation

To apply the OSF and/or the ROSF methods, the first thing is to specify

the tilt function. With a correctly specified tilt function, the density ratio model

gives significantly better results (more precise point estimates, better coverage, and

shorter confidence intervals). The appropriateness of the tilt function depends on

the distribution of the reference sample. In simulation studies, the distribution of
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the reference sample is known, so whether the tilt function is correct or misspeci-

fied is known. In real data applications, however, the distribution of the reference

sample is generally unknown. To check if the data follow a certain distribution is

essentially a model selection problem. From the histogram of the data, the distribu-

tion of heavy metal exposures is skewed with a long tail. From simulation results,

skewed distributions can be accommodated by either the gamma or log-normal tilt

quite well. Instead of finding the right model among the infinite dimensional set

of distributions, we focus our attention on checking whether the data come from

the gamma or log-normal distributions. In this application, AIC is used to identify

which model is more appropriate for the reference data.

The identification process first starts with fitting both the gamma and log-

normal distributions to the heavy metal intake. The AIC values of both models are

then obtained. The model with the lower AIC value is favored. For the mercury

intake, the log-normal model yields a lower AIC value. Thus the log-normal tilt is

more appropriate for the mercury intake.

For the merucry exposure, the threshold PTWI = 4 and the true tail prob-

ability is p = 1 − G(T ) = 0.05. Based on AIC, the log-normal tilt function is

a more appropriate choice. The performance of the OSF with log-normal tilt is

better than the performance of the OSF with gamma tilt. However, the desired

coverage is not reached by all OSF methods. Hence, we will use ROSF to fix this

situation. The POT method works well when the tail probability is not too small.

The POT confidence interval has about 90% coverage, and the mean length of the

CI is slightly larger than OSF CI. See Table 5.1 for detailed comparison of the
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Table 5.1: OSF Interval Coverage and Length for p = 1−G(T ) = 0.05, T = 4, X0

is sampled from Mercury Intake, in all cases n0 = n1 = 100

Method Fusion Sample X1 Tilt h(x) Coverage CI Length MAE

OSF

Unif(0, 100) (x, log x) 418/83.6% 0.0606627 0.0174473
Unif(1, 100) (x, log x) 417/83.4% 0.0583135 0.0164046

Unif(0, 100) (log x, log2 x) 459/91.8% 0.0712286 0.0158632

Unif(1, 100) (log x, log2 x) 445/89.0% 0.0699552 0.0158091

AC - - 496/99.2% 0.1138280 0.0212072
EP - - 440/88.0% 0.0912952 0.0168400
POT - - 452/90.4% 0.0886092 0.0176988
BM - - 498/99.6% 0.3745127 0.1971111

performances. When the tilt function is “misspecified”, then in general, the OSF

confidence intervals do not give the desired coverage. In this case, both the gamma

and the log-normal tilt could not accommodate the underlying reference sample of

mercury intake well. However, the misspecification problems can be overcome by

ROSF. The precision of the point estimates and the CI coverage can be improved

through repeated fusions. ROSF results for the gamma tilt h(x) = (x, log x) and

the log-normal tilt (log x, log2 x) are given in Table 5.2.

The ROSF CI now reaches the desired coverage at the expense of slightly

increased interval length. The OSF and ROSF methods demonstrate advantages in

cases when the tail probability is extremely small as we will see in the lead case.

For the lead exposure, the threshold PTWI = 25 and true tail probability is

p = 1−G(T ) = 0.001. The true tail probability is much smaller in this case and a

much harder one to estimate. Fitting both gamma and log-normal distributions to

the 3000 lead intake measurements give almost identical AIC. No model is preferred
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Table 5.2: ROSF Interval Coverage and Length for p = 1−G(T ) = 0.05, T = 4, X0

is sampled from Mercury Intake, in all cases n0 = n1 = 100, h(x) = (x, log x)

Tilt h(x) & X1 N Coverage CI Length MAE

(x, log x), X1 ∼ Unif(0,100)

5 451/90.2% 0.08480878 0.01663014
20 469/93.8% 0.09374276

100 477/95.4% 0.10193500
300 482/96.4% 0.10723810

(log x, log2 x), X1 ∼ Unif(0,100)

5 452/90.4% 0.08431168 0.01584975
20 474/94.8% 0.09283605

100 484/96.8% 0.09970069
300 491/98.2% 0.10364770

Table 5.3: OSF Interval Coverage and Length for p = 1 − G(T ) = 0.001, T = 25,
X0 is sampled from Lead Intake, in all cases n0 = n1 = 100, h(x) = (x, log x)

Method Fusion Sample X1 Coverage CI Length MAE

OSF

Unif(0, 30) 312/62.4% 0.00325662 0.00103555
Unif(0, 60) 343/68.6% 0.00434648 0.00117528
Unif(1, 30) 432/86.4% 0.00608691 0.00140467
Unif(1, 60) 420/84.0% 0.00502910 0.00142479

AC - 500/100% 0.04602715 0.01849893
EP - 52/10.4% 0.00306818 0.00183200
POT - 443/88.6% 0.00713434 0.00180256
BM - 496/99.2% 0.04644317 0.01605755

as suggested by AIC values. Therefore, the default gamma tilt function is adopted

in this case.

The same problem persists for all methods. See Table 5.3 for a detailed com-

parison of various methods. AC and BM intervals provide perfect coverage with

extremely wide confidence intervals. The confidence intervals given by these two

methods are too wide to make any practical sense. The traditional EP method

completely fails when no “success” is contained in the sample. In this difficult case,
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POT method still yields reasonable results. It gives point estimate with low MAE,

and short confidence intervals with 88% coverage. The performance of the ROSF

method is given in Table 5.4.

Table 5.4: ROSF Interval Coverage and Length for p = 1−G(T ) = 0.001, T = 25,
X0 is sampled from Lead Intake, in all cases n0 = n1 = 100, h(x) = (x, log x)

Method & X1 N Coverage CI Length MAE

ROSF, X1 ∼ Unif(0,30)

5 329/65.8% 0.00319330 0.0009782407
20 398/79.6% 0.00477476

100 443/88.6% 0.00628520
300 465/93.0% 0.00716078

ROSF, X1 ∼ Unif(0,60)

5 356/71.2% 0.00444333 0.0011247530
20 427/85.4% 0.00622525

100 467/93.4% 0.00754800
300 480/96.0% 0.00821010

ROSF, X1 ∼ Unif(1,30)

5 436/87.2% 0.00610342 0.001406795
20 463/92.6% 0.00731402

100 479/95.8% 0.00836823
300 485/97.0% 0.00903573

ROSF, X1 ∼ Unif(1,60)

5 429/85.5% 0.00622608 0.001388078
20 464/92.8% 0.00737810

100 481/96.2% 0.00830965
300 485/97.0% 0.00883218

In all cases, the ROSF MAE is lower than POT MAE. It can be seen that

useful information about the true magnitude of p can be obtained for N = 20.

However, a larger N is needed to obtain adequate coverage. By choosing a larger

N , the desired 95% coverage can be reached at the expense of slightly increased CI

length.
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5.1.5 Extreme Quantile Estimation

In this section, the ROSF method is applied to estimate the extreme quantiles

for the mercury and lead data. Specifically, the 0.99 and the 0.999 quantiles obtained

from 3000 observations are treated as the “true” quantiles. Then, the ROSF method

and EVT methods are applied to samples of size 100. Our goal is to check capabilities

of various methods in capturing the true quantiles from samples of limited number

of observations.

For mercury exposures, the “true” (from the data) 0.99 and 0.999 quantiles

are 15.75393 and 108.71895 respectively. Recall that the log-normal tilt h(x) =

(log x, (log x)2) is more appropriate. In this example, fusing with two artificial uni-

form samples yields more reliable confidence intervals for the quantiles. For the

0.99 quantile, the first fusion samples X1’s are generated from Uniform(0,30) and

the second fusion samples X2’s are generated from Uniform(0,200). For the 0.999

quantile, the first fusion samples X1’s are generated from Uniform(0,150), and the

second fusion samples X2’s are generated from Uniform(0,500). For each confidence

interval, FQ is obtained based on nr = 2500 and N = 3000 . Detailed comparison

of the performance of various methods is given in Table 5.5.

For lead exposures, the “true” 0.99 and 0.999 quantiles are 9.976886 and

21.264956 respectively. Recall that fitting both gamma and log-normal distribu-

tion to lead intake measurements gives almost identical AIC. No model is preferred

as suggested by AIC values. We only present results from applying the log-normal

tilt function. For the 0.99 quantile, fusion samples X1’s are generated from Uni-
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Table 5.5: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 is
sampled from mercury intake, n0 = n1 = n2 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 96.6% 75.4% 83.6% 69.4% 76.2% 60.8%
CI Length 23.50 29.25 36.82 23.41 25.37 52.21
MAE 4.45 6.79 6.49 6.47 6.32 15.12

q0.999

Coverage 95.7% 66.2% 85.6% 59.0% 73.4% 10.2%
CI Length 224.36 283.26 841.99 196.11 320.27 51.60
MAE 55.41 78.39 75.91 79.91 81.30 88.62

form(0,16); for the 0.999 quantile, the fusion samples X1’s are generated from Uni-

form(0,25). For each confidence interval, FQ is obtained based on nr = 2000 and

N = 3000. Detailed comparison of the performance of various methods is given in

Table 5.6.

Table 5.6: ROSF Interval Coverage and Length for 0.99 and 0.999 quantiles, X0 is
sampled from lead intake, n0 = n1 = 100, h(x) = (log x, (log x)2)

ROSF BMDelta BMBoot POTDelta POTBoot EP

q0.99

Coverage 95.6% 90.0% 92.0% 85.0% 84.4% 64.4%
CI Length 6.35 21.66 22.89 15.35 15.10 11.34
MAE 1.38 2.85 2.69 2.61 2.62 2.90

q0.999

Coverage 97.4% 93.8% 95.4% 90.0% 91.4% 10.4%
CI Length 8.42 184.19 405.48 104.72 150.31 10.69
MAE 1.57 22.85 15.05 11.73 11.14 10.28

For both cases, the confidence intervals for quantiles produced by ROSF are

in general much shorter. Yet, such short intervals have very high coverage for the

true quantiles. Furthermore, the MAE of the ROSF estimates are much smaller

the the MAE of other methods, meaning the ROSF estimates are very close to the

true quantiles on average. From the above results, we can confidently conclude that
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for samples of limited number of observations, the ROSF outperforms the other

methods in terms of accuracy and reliability.

5.2 Application in a Clinical Trial

In the drug development process, clinical research is a critical step to study how

the drug will interact with the human body. Drug developers and researchers design

and carry out clinical trials to evaluate drug efficacy and safety before marketing

approval is granted by the US Food and Drug Administration (FDA). Typical clinical

trials consist of three phases, from early stage small-scale, shorter duration Phase

1 studies to late stage, large scale, long duration Phase 3 studies. Phase 1 studies

may involve 20 to 100 volunteers or people with the disease conditions and last for

several months. Phase 3 studies typically involve 300 to 3,000 volunteers with the

disease conditions and last for one up to four years.

Drug safety is a crucial part of clinical research where researchers focus on

detection, assessment, and monitoring side effects, adverse effects and toxicity of

pharmaceutical products. Due to the high cost of drug development, opportunity

cost of investing in one compound rather than another and risk to patients, there is

a strong desire for researchers and pharmaceutical companies to be able to detect

potential toxic effects in early stages of the drug development process.

In this application, we will show how the ROSF method is applicable in clinical

trials to evaluate drug toxicity related to liver health issues.
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5.2.1 Data

According to the FDA guidance [18] and Common Terminology Ceriteria

guidelines [27], liver toxicity is typically reflected by the elevation in values of certain

clinical laboratory measurements. Alanine Aminotransferase (ALT) levels are com-

monly measured (in units per liter or U/L) clinically as biomarker for liver health.

Elevation of ALT levels during the time period a drug is used suggests potential

hepatotoxic effects of the drug. The probabilities that post-medication ALT level

exceeds the upper limit of normal (ULN) are of interest.

The laboratory dataset of a drug developed by AstraZeneca is contained in the

R package texmex (see Southworth and Heffernan 2015 [46]). The dataset consists of

606 observations on 9 variables related to liver health from a randomized, blind, par-

allel group clinical trial with four doses of the drug. The response variables include

baseline (prior to treatment) and post-medication (on treatment) measurements of

ALT (alanine aminostransferase), AST (aspartate aminotransferase), ALP (alkaline

phosphatase), TBL (total bilirubin) and a dosage group indicator (a factor variable

with levels A B C D).

Biologically, liver cells release ALT and AST as they die causing elevation in

ALT and AST levels. If a sufficient amount of liver cells is destroyed, liver fails

to function properly and ceases to clear bilirubin which leads to a rise in TBL

level. Furthermore, ALP level may also go up as a consequence of blockage in the

liver. There is a common understanding that ALT is a more sensitive biomarker for

potential liver injury, thus the ALT level will be the focus of this study.
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The doses are equally spaced on a log scale where dose D is twice dose C, dose C

is twice dose B, and dose B is twice dose A. There are 152 ,148 148, and 158 subjects

in each dose group respectively. The purpose of the study is to assess the capability

of the proposed ROSF method in predicting drug toxicity in early stage of clinical

trials. To accomplish this goal, samples of 60 patients are obtained from each dosage

group. For each dose group, the probabilities of exceeding values of interest and the

100-patient return level are predicted based on samples of size 60. Specifically, tail

probabilities P(ALT > ULN), P(ALT > 3 × ULN), P(ALT > 10 × ULN), and

0.99 quantiles will be predicted by ROSF and a extreme value modeling approach

for different dosage levels separately. ULN for ALT is defined differently in different

studies, ranging from 30 to 48 U/L. All our analysis treat ULN as being 30 U/L.

In practice, the probabilities of exceeding specified multiples of ULN in early

stage clinical trials are typically lower than their corresponding probabilities in late

stage trials. There is more opportunity to observe extreme ALT elevations when

more patients are included in clinical trials and when trials are of longer duration. To

take this phenomenon into account, subsamples of size 60 are taken so that empirical

tail probabilities and quantiles of the subsample are lower than their corresponding

full-sample observed counterparts. In this setup, whether the nature and magnitude

of the toxic effect of the drug on ALT levels could be adequately characterized by

the EVT and ROSF method in early stage clinical trials can be examined. The

histogram of the ALT levels from the full-sample and subsample are shown in figure

5.3.
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Figure 5.3: Histogram of ALT levels. The full sample consists of 606 observations

are represented by red bars. The subsample consists of 240 observations are in blue.

5.2.2 Extreme Value Modeling

Southworth and Heffernan (2014) [45] proposed a two stage modeling proce-

dure in predicting liver toxicity. In the first stage, a robust linear model is fitted

to the data to take account the baseline effect. The peaks over threshold (POT)

method is applied to the residuals from the robust regression in the second stage.

In other words, the generalized Pareto Distribution (GPD) is fitted to the residuals

above a predetermined threshold. The two stage modeling is adopted in this analysis
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Table 5.7: Parameter Estimates from Robust Linear Model

Value SE t-value

Intercept 0.406 0.121 3.350
log Baseline ALT 0.817 0.044 18.726
Dose 0.101 0.016 6.140

for comparison purposes.

As illustrated by the histogram of the ALT measurements,the data is non-

normal and highly skewed. Thus the robust linear mode using MM-estimation [35]

with Gaussian efficiency set to 85% and bisquare weight functions is preferred. The

model

log(ALT.M) ≈ log(ALT.B) + dose

is entertained. The log-transformed baseline and post-baseline ALT values are used

so that the distribution of residuals are near symmetric and the assumption of the

robust regression model holds approximately. The parameter estimates are given in

Table 5.7.

The boxplots of the scaled residuals from the linear model is given in Figure

5.4. In the second stage, the POT method is applied to the residuals in the figure.

Southworth and Heffernan (2014) [45] suggested that it is appropriate to fit GPD

to residuals above the 70th quantile. The standard threshold selection methods,

namely the mean residual life plot also indicates that the 70th quantile would be a

reasonable threshold u.

The GPD model can be fitted with covariates in σ and/or ξ. Various models

with covariates are fitted and model selection is performed based on AIC. The log-
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Figure 5.4: Boxplot of Scaled Residuals from Robust Linear Model

likelihood and the AIC for models considered are given in Table 5.8. According to

AIC, the preferred model is the one with a term for dosage in the parameter ξ.

To take into account the uncertainty in the parameter estimates, Southworth

(2014) suggested that the preferred model should be refitted by a Markov Chain

Monte Carlo method. The diffusion Gaussian priors N(0, 104) were adopted for

parameters so that predictions would depend on the data instead of the choice of

the prior. The standard checks of the chains show that the algorithm has converged

on the target distribution. Burn-in and thinning is performed to obtain a chain that

is closer to independent. The predicted exceedance probabilities and 100-patient

return levels are based on the simulated posterior distributions.
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Table 5.8: GPD Models Considered, Number of Parameters, Log-likelihoods and
AIC’s

Model No. Parameters Log-likelihood AIC

Null Model 2 19.64 -35.28
σ, ξ = f(factor(dose)) 8 22.48 -29
σ, ξ = f(ndose) 4 21.48 -34.95
σ = f(ndose) 3 20.77 -35.55
ξ = f(ndose) 3 21.43 -36.86

5.2.3 ROSF

For each dosage group, the ROSF method is applied to predict the probabilities

of exceeding multiples of ULN. In all cases, the gamma tilt function h(x) = (x, log x)

is used. In each run, the reference sample of size 60 is fused with artificially generated

uniform samples of size 60. Each predicted exceedance probability is based on 1000

repetitions of OSF run. The point estimate of the tail probability is the mean of

the 1000 OSF point estimates. As described in Chapter 3, we obtain the empirical

distribution for the upper bounds Bi (FB) based on the sequence of 1000 Bi’s. Then

the upper bound of the ROSF interval is given by F−1
B (α1/N). For all cases, we let

N = 5 which approximately corresponds to the median of 1000 OSF upper bounds.

In this application, some tail probabilities of interest is not very small (eg. the

observed P(ALT > ULN) for group D patients is 0.2152). Therefore, it is no longer

appropriate to use 0 as the lower bound. The ROSF lower bounds can be obtained

in a very similar way as with the ROSF upper bounds Bi. Suppose A1, . . . , AN

is a sequence of i.i.d. lower bounds from distribution FA. Then considering the

minimum of A1, . . . , AN . The inequality F−1
A (1 − 0.051/N) ≤ p holds with at least
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95% confidence. Thus F−1
A (1 − 0.051/N) can be used as the lower bound, and this

decreases to 0 as N increases. For all cases, we let N = 5 which approximately

corresponds to the median of 1000 OSF lower bounds.

The 100-patient return level or the 0.99 quantile is also predicted by the ROSF

method as described in Chapter 4.

5.2.4 Results

The predicted exceedance probabilities from EVT based modeling and ROSF

together with the sub-sample and the full-sample observed exceedance probabilities

are given in in Figure 5.5 and Table 5.9.

The predicted 100-patient return level or the 0.99 quantile q̂0.99 from the two-

stage EVT and ROSF are given in in Figure 5.6 and Table 5.10.

Despite that the empirical tail probabilities and quantiles from the subsample

are lower than their corresponding observed counterparts obtained from the full

sample, both ROSF and EVT demonstrated power in making extrapolation out of

sample. There is only one case when the EVT confidence interval failed to captured

the “true” tail probability P(ALT > 3ULN) for dose level D. In all other cases,

the “true” tail probabilities and quantiles are contained in the confidence intervals

produced by both ROSF and EVT. From the results, we may conclude with confident

that the nature and magnitude of the toxic effect of the drug on ALT levels could

be adequately characterized by the ROSF and EVT method in early stage clinical

trials. Given early stage data with reasonable degree of characteristics of the late
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Figure 5.5: Predicted Probabilities of Exceeding 1, 3 and 10 Times the Upper Limit

of Normal (ULN). Note that the Horizontal Scale Vary from Panel to Panel.

stage data, the predictions based on ROSF and EVT method would have suggested

a potential liver toxicity. However, in many cases, the EVT confidence intervals are

often too wide to be informative, especially for P(ALT > ULN). ROSF provides

an alternative way to obtain good predictions with short and reliable confidence

intervals.

5.3 Discussion

In this section, we have described a new method (ROSF) in assessing risks

in food safety and drug safety. The two quantities of interest in quantitative risk
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Table 5.9: Predicted vs. Observed Probabilities of Exceeding Specified Multiples of
ULN

Dose Method P(ALT > ULN) P(ALT > 3ULN) P(ALT > 10ULN)

A

ROSF
0.06446 0.00002154 0.000002887

(0.02065,0.11602) (0,0.00022631) (0,0.00002923)

Two Stage EVT
0.0162 0.0007 0.0001

(0,0.0914) (0,0.0041) (0,0.0010)
Empirical 0 0 0
Observed 0.06579 0 0

B

ROSF
0.07222 0.0001294 0.00010035

(0.02601,0.12635) (0,0.0007516) (0,0.00016794)

Two Stage EVT
0.0271 0.0010 0.0001

(0.0002,0.1623) (0,0.0052) (0,0.0013)
Empirical 0.08330 0 0
Observed 0.11490 0 0

C

ROSF
0.09190 0.000689 0.0006267

(0.04028,0.15016) (0,0.001127) (0,0.0010731)

Two Stage EVT
0.0453 0.0028 0.0006

(0.0032,0.2191) (0.0000, 0.0111) (0,0.0039)
Empirical 0.1000 0 0
Observed 0.1419 0 0

D

ROSF
0.1745 0.01333 0.001917

(0.1067,0.2422) (0,0.03357) (0,0.008936)

Two Stage EVT
0.0678 0.0068 0.002

(0.0073,0.3269) (0.0001,0.0231) (0,0.011)
Empirical 0.1167 0.01667 0
Observed 0.2152 0.02532 0.006329

assessment include: threshold exceedance probabilities and extreme quantiles. We

have shown that these two quantities can be precisely and reliably estimated through

density ratio model by repeatedly fusing a given reference sample with computer

generated uniform data. In real data applications, one could use different uniform

fusion samples as done in the food safety application for validation purposes (See

Table 5.3 and 5.4 for examples). The ROSF method is quite robust, similar results
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Table 5.10: Predicted vs. Observed 100-patient return level in U/L

Method A B C D

ROSF
37.54 37.71 37.71 102.40

(35.14,46.84) (36.92,76.90) (36.27,93.21) (38.93, 254.80)

Two Stage EVT
30.14 37.11 48.63 65.20

(17.23,65.14) (21.83,76.45) (27.35,116.08) (32.10, 451.27)

Empirical 26.64 37.23 37.41 103.37
max(x0) 29.00 39.00 38.00 196.00
Observed 40.49 56.89 57.54 230.83

are obtained when different uniform fusion samples are used. The robustness of the

method is supported by additional experiments not reported in this dissertation.

Tools for quantifying the robustness of the models can be developed in future works.
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In the dissertation, the gamma tilt function h(x) = (x, log x) and the log-

normal tilt function h(x) = (log x log2 x) are considered. It is shown that the gamma

tilt and the log-normal tilt together accommodate a wide range of skewed distribu-

tions in quantitative risk assessment. Natural extensions could consider more types

of tilt functions. The effects and impacts of different types of tilt function needs to

be studied in the future.

The construction of the ROSF confidence intervals involves choosing a tuning

parameter N . The length of the confidence interval depends on the choice of N .

As N becomes larger, the coverage of the ROSF confidence intervals for tail prob-

abilities improve at the expense of slightly increased length of the intervals. From

many simulation results,the choice N = 100 is prudent across most specified and

misspecified cases. How to choose the optimal N is still an open problem. We plan

to explore this problem in future works.

Furthermore, ROSF can be applied whenever it is required to estimate ex-

ceedance probabilities and/or large quantiles. An example in point is the estimation

of the predictive distribution in time series, given that the time series is represented

by a regression model (e.g. Kedem and Gagnon (2010 [30]). When the residuals

follow approximately the normal distribution, it is sensible to fuse the residuals with

artificial normal data. Then, the normal tilt function h(x) = (x, x2) can be adopted

and the predictive distribution can be obtained through the density ratio model. In

Kedem and Gagnon (2008) [29], instead of artificial fusion samples, residuals from

several sources were fused. The ROSF method, on the other hand fuses the residuals

with external samples. The process can be repeated as many times as desired for
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validation purposes.

Finally, given appropriate tilt functions, the density ratio model holds for both

univariate and multivariate data. Hence, ROSF can be extended to multivariate

data as well. In the multivariate setting, useful tilt functions can by suggested from

the ratio of two multivariate distribution (e.g. the ratio of two multivariate normal

distribution). Extending the ROSF method to multivariate case is another possible

direction of future research.
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Appendix A: Asymptotic Theory for p Quantile q̂p

The asymptotic theory for p Quantile q̂p based on the semiparametric density

ratio model is given in Chen and Liu (2013) [8]. The estimator q̂p will be referred

to as SP quantile for simplicity.

Theorem A.1. Assume Density Ratio Model 2.4 holds, and the density function

g(x) is continuous and positive at x = qp. Then the density ratio model based p

quantile estimator q̂p has Bahadur representation:

q̂p = qp −
Ĝ(qp − p)
g(qp)

+O(n−3/4(log n)1/2).

With the Bahadur representation and the multivariate asymptotic normality

of the Ĝ’s given in Appendix A, the multivariate asymptotic normality of the SP

quantiles can be obtained. We define qi be the population quantile of the ith popu-

lation in the DRM at some level pi, and similarly let qj be the population quantile

of the jth population in the DRM at some level pj. We further denote an arbitrary

term in the covariance matrix of the process
√
n(Ĝ(t) − G(t)) in Theorem 2.2 by

vi,j(x, y). Then the following theorem describes the asymptotic behavior of the SP

quantiles.
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Theorem A.2. Assume Density Ratio Model 2.4 holds, the process

√
n(q̂i − qi, q̂j − qj)

is asymptotically bivariate normal with mean zero and covariance matrix

Σ =

 vii(qi, qi)/g
2
i (qi) vij(qi, qj)/{gi(qi)gj(qj)}

vij(qi, qj)/{gi(qi)gj(qj)} vjj(qj, qj)/g
2
j (qj)


where vij is the i, jth component in the covariance matrix of the process

√
n(Ĝ(t)−

G(t)) given in Theorem 2.2.

For the detailed derivation of theorem A.1 and A.2, the reader may refer to

Chen and Liu (2013) [8].
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