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We consider three quantum many-body systems motivated by recent develop-

ments in condensed matter physics, namely topological superconductivity, strongly

interacting Bose-Einstein condensates and many-body localization with periodically

driven systems. In each of the three problems, an analogy with classical mechanics

is employed in the solution of the problem and the interpretation of results. These

analogies, in addition to facilitating the solution, illustrate how unique features of

classical mechanics or macroscopic phenomena such as macroscopic order parameter

and observables, hydrodynamics, spacetime curvature, noise and dissipation, chaos

and delocalization emerge out of quantum mechanics. The three problems we study

are as follows.

In the first problem, we use quasiclassical methods of superconductivity to

study the superconducting proximity effect from a topological p-wave superconduc-

tor into a disordered quasi-one-dimensional metallic wire. We demonstrate that

the corresponding Eilenberger equations with disorder reduce to a closed nonlinear



equation for the superconducting component of the matrix Green’s function. Re-

markably, this equation is formally equivalent to a classical mechanical system (i.e.,

Newton’s equations), with the Green’s function corresponding to a coordinate of a

fictitious particle and the coordinate along the wire corresponding to time. This

mapping allows us to obtain exact solutions in the disordered nanowire in terms

of elliptic functions. A surprising result that comes out of this solution is that the

p-wave superconductivity proximity induced into the disordered metal remains long

range, decaying as slowly as the conventional s-wave superconductivity. It is also

shown that impurity scattering leads to the appearance of a zero-energy peak.

In the second problem, we consider a system of bosons in the superfluid phase.

Collective modes propagating in a moving superfluid are known to satisfy wave equa-

tions in a curved spacetime, with a metric determined by the underlying superflow.

We use the Keldysh technique in a curved spacetime to develop a quantum geo-

metric theory of fluctuations in superfluid hydrodynamics. This theory relies on a

“quantized” generalization of the two-fluid description of Landau and Khalatnikov,

where the superfluid component is viewed as a quasi-classical field coupled to a

normal component – the collective modes/phonons representing a quantum bath.

This relates the problem in the hydrodynamic limit to the “quantum friction” prob-

lem of Caldeira-Leggett type. By integrating out the phonons, we derive stochastic

Langevin equations describing a coupling between the superfluid component and

phonons. These equations have the form of Euler equations with additional source

terms expressed through a fluctuating stress-energy tensor of phonons. Conceptu-

ally, this result is similar to stochastic Einstein equations that arise in the theory



of stochastic gravity. We formulate the fluctuation-dissipation theorem in this geo-

metric language and discuss possible physical consequences of this theory.

In the third problem, we investigate dynamical many-body localization and

delocalization in an integrable system of periodically-kicked, interacting linear ro-

tors. The linear-in-momentum Hamiltonian makes the Floquet evolution operator

analytically tractable for arbitrary interactions. One of the hallmarks of this model

is that depending on certain parameters, it manifests both localization and delocal-

ization in momentum space. We present a set of “emergent” integrals of motion,

which can serve as a fundamental diagnostic of dynamical localization in the in-

teracting case. We also propose an experimental scheme, involving voltage-biased

Josephson junctions, to realize such many-body kicked models.
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Chapter 1: Introduction

1.1 Classical and Quantum mechanics

In this thesis, we will solve or extend the solution of three quantum many-

body problems. These problems in addition to their practical value in the context

of recent developments in condensed matter physics, such as zero-energy modes in

topological systems, strongly interacting Bose condensates and many-body localized

systems, serve an auxiliary purpose as well. Each model is connected to a seemingly

unrelated analogous classical system that elucidates the underlying physics or helps

us address a broader issue in modern physics, such as the emergence of classical

degrees of freedom, spacetime and quantum chaos. Before introducing these three

problems, we will give a very brief qualitative review of the relation between classical

and quantum mechanics.

Classical mechanics is a theory of nature that describes the motion of an N -

body system in the 6N dimensional phase space. All observables are functions

of 3N configuration space variables and their 3N conjugate momenta. [1, 2] The

N →∞ limit leads to an idealization called the classical field and is the subject of

continuum mechanics. The geometry of spacetime on which physical systems live

is thought of as a continuum itself whose dynamics is determined by the Einstein
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equation. [3] When the gravitational field is weak, the solution to this equation ap-

proaches the Minkowski geometry. [4] In this geometry, phenomena are described

by the Lorentz covariant equations of motion. For example, electrodynamics is de-

scribed by Maxwell’s equations. Finally, when the typical speeds are slow compared

to the speed of light, Galilean relativity, Newton’s laws of motion and universal grav-

itation hold to a good approximation. In situations where it is impossible to exactly

locate the system in phase space, the equations of motion for a probability distri-

bution is written [5]. Finally where the number of constituents are too numerous

and undergo random collisions, aggregate quantities are described by thermodynam-

ics. [6]

Ever since the conception of quantum theory, the problem of how the classical

description of nature emerges out of quantum mechanics has attracted a great deal

of interest, and it is still at the heart of many interesting physical problems. [7, 8]

Roughly speaking, classical mechanics is thought of as the ~→ 0 limit of quantum

theory. (The numerical value of the Planck constant measured in terms of the

typical scales of the system is small ). Depending on the mathematical formalism

that describes quantum mechanics, this limit manifests itself in myriad ways. In

the path integral quantization, the ratio of the action functional to Planck constant

appears in a complex exponential that represents the amplitude of a matter wave.

When this quantity grows, the path integral tends to zero due to a rapidly oscillating

integrand, except for classical trajectories, for which the action is extremized. [9]

In the canonical quantization, the fundamental commutation relation tends to zero,

which means that the expectation value of a product of position and momentum

2



operators reduces to the product of their expectation values, each of which obeys

the classical equation of motion by Ehrenfest’s principle. [10, 11] In phase space

formulation, the Moyal bracket reduces to the Poisson bracket, and the equations

of motion for observables obey Hamilton’s equation of motion. [12]

To get a grasp of the situation, consider a harmonic oscillator made up of a

mass of 1 kg and spring constant of 1 kg s−2. Assuming that a sinusoidal mode

with an amplitude of 1 m is excited, the energy is 0.5 J and the time scale is 1

s. Compare the product of energy and time scales to the metric value of reduced

Planck constant which is 34 orders of magnitude smaller. Alternatively, we can

compute the quantum of energy ~ω in the system to find the occupation number

to be on the order of 1033 particles (phonons). In other words, the quanta are too

small to be perceived.

An important issue worth noting is the measurement problem. So long as

one stays in the classical realm where ~ is small, as everybody did till the 20th

century, the above considerations roughly (we will explain this further 1.1.2) explain

the emergence of classical mechanics. However, the problem deepens when one

considers a quantum system, typically surrounded by an experimental physicist and

her apparatus which are both in the classical realm. As in Schroedinger’s thought

experiment [13], the result of a quantum phenomenon might trigger a macroscopic

classical event, for example the death of a cat. How the quantum state collapses

to a definite classical outcome is the so-called measurement problem that is at the

heart of many scientific and philosophical issues in quantum theory. [8, 14]

In the many-body context, quantum mechanics is responsible for many macro-
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scopic electromagnetic and thermal phenomena, and the problem of how macro-

scopic observables follow from the many-body wave function encompasses an entire

branch of physics called condensed-matter physics.

Therefore, the transition to classical mechanics, or emergence of classical de-

grees of freedom, is complicated through interactions that entangle the underlying

quantum degrees of freedom. This seems to indicate that the measurement prob-

lem is related to how a quantum system is interacting with its environment, which

can be a macroscopic measurement device or simply the rest of the particles in the

system. This, we believe, should convince the reader that the quantum to classical

transition is essentially a many-body phenomenon.

The process of classicalization of a system due to interactions with an envi-

ronment or a ‘bath’ is called decoherence. One interpretation is that only classical

looking degrees of freedom survive the decoherence process. [8] A simple toy model

is a quantum particle that is coupled to a thermal bath i.e. a family of oscillators.

The so called Caldeira-Leggett model, that we will solve in the Keldysh field integral

method, describes how classical equations of motion, dissipation and noise can be

calculated from quantum mechanics, assuming that decoherence takes place. [15]

The complete resolution of the measurement problem and transition to classical

mechanics is beyond the scope and aims of this thesis, therefore we refer the reader

to the above references. However, as in the Calderra-Leggett model, the models we

consider in this thesis will help us understand how various unique features of clas-

sical mechanics can come out of the many-body quantum mechanics at least from

an operational point of view.
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1.1.1 Macroscopic wave functions and order parameter fields

At low temperatures a many-body quantum system, due to the vast number

of its constituents, is approximated by a quantum field. [15] (This ‘low’ tempera-

ture can be as large as thousands of Kelvins in metals due to the vast number of

electrons that occupy high energy states as a result of the exclusion principle). The

quantum field is described as modes (quasiparticles) excited over a vacuum state.

The concept of a vacuum state of a many-body system is intimately connected to

the phases of matter. In metals it is an incompressible sea of electrons; in a BEC,

it is a macroscopic wave function, that behaves like a fluid through Madelung’s de-

scription. In any case, the typical procedure is to start from a phase (that forms by

spontaneously breaking a symmetry) and consider the excitations above the vacuum

defined by the phase. [16]

One of the holy grails of the condensed matter theory is the phases of matter

that has macroscopic quantum properties, such as superfluids and superconductors.

In these systems, a macroscopic number of fermions or bosons get locked and form

a single giant wave function ( a classical matter wave similar to a classical light field

). This classical wave is called the order parameter field of the phase. The many-

body wave function is, by the above mentioned general picture, described by the

quantum field of quasiparticles that are excited over the vacuum defined by the order

parameter. The order parameter field, together with correlation functions of the

quasiparticle field, obeys a set of partial differential equations [17,18]. The resulting

description predicts how macroscopic observables arise from quantum mechanics;
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hence, it answers the quantum to classical transition question for the system at

hand. Furthermore, once a PDE is obtained, one can conjure up an unrelated

classical system that mimics its behavior.

In Part 2, we consider a superconductor, where the order parameter (Cooper

field), together with the matrix of two-point correlation functions, satisfies the PDE

called the Gorkov equation supplemented by a self-consistency condition. Further

simplification is obtained by considering the slow varying dynamics of the correlation

functions. In thermal equilibrium, the PDE reduces to a set of three ODE’s with

non-linear terms due to the disorder in the superconductor. By identifying a hidden

constant of motion, we reduce the ODE system to a single second-order ODE, that

can be thought of as the equation of motion of a classical particle moving in a

potential. Using this simple and intuitive system, we compute the Green’s function

of a topological superconducting wire in contact with a dirty lead, a problem of great

practical interest in the field of topological quantum computing. Our calculation

reveals the smoking gun for the long-sought Majorana zero mode in this system.

In Part 3, we start with a bosonic system in the superfluid phase. Writing the

superfluid wave function in hydrodynamic variables, we write the fluid equations

of motion that describe the interplay between the superfluid ‘classical’ degrees of

freedom and the quantum field of excitations, that is phonons. As in the Caldeirra-

Leggett model, the bath of quasaiparticles create dissipative and noisy dynamics

on the background field. Another interesting layer of analogy appears due to the

effective covariance of the phonon field. Phonons in this theory appear as though

they are propagating in a pseudo-Riemannian metric defined by the background flow.
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In this respect, the momentum, mass and energy conservation laws of the superfluid

are analogous to Einstein’s equations and the covariant conservation of the stress

energy tensor for matter. We use this analogy to compute the noise correlator and

transport coefficients in the system in a manifestly covariant form. This analogy

provides a hint for the emergence of the classical spacetime from the yet-to-be-

found quantum theory of everything. Moreover, one can discuss the vacuum energy,

cosmological constant and other quantum gravitational phenomena such as black

holes, Hawking radiation and covariance anomalies in this context.

1.1.2 Chaos and localization

Even for macroscopic objects, the ~ → 0 limit does not straightforwardly ex-

plain classical behavior all together, because the limit is singular. [19] When ~ = 0

strictly, classical mechanics predicts chaos. Differential equations that describe clas-

sical systems with positive Lyapunov exponents is ubiquitous. A positive Lyapunov

exponent means that the distance between two particles in the system or in the

ensemble grows exponentially with time, despite being infinitesimally small at the

beginning. The linearity and the unitarity of quantum mechanics and the ensuing

integrability prohibits this behavior for isolated systems. [20] Although, at first the

phase space distribution of a quantum system explores the phase space in a way

similar to a classical ensemble at a certain time scale quantum effects take over

and the phase space diffusion stops. [21, 22] This time scale, the Ehrenfest time, is

perceivably short even for astronomical bodies, despite the fact that ~ is extremely
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small yet non-zero. For example, the inverse Lyapunov exponent i.e. time scale

for chaos to develop for the rotation of Hyperion, the non-round moon of Saturn

is approximately 30 days. The Ehrenfest time for Hyperion is 37 years. However,

chaotic motions of macroscopic bodies persist. [23]

The resolution is again hidden in the decoherence process. The rotation angle

of Hyperion is not a quantum variable. Hyperion is showered by a variety of particles

that causes decoherence on a time scale of order 10−53 s. [24] The environment

restores chaos.

Prohibition of chaos in quantum mechanics has an important consequence in

many-body physics: Anderson localization. In a disordered lattice, the diffusion of

a wave packet stops due to quantum destructive self-interference. The Ehrenfest

time is replaced by the localization length. [25,26]

An illustrative model, dubbed the Maryland Model, that connects the pre-

vention of dynamical chaos in quantum mechanics and localization was put forward

by Fishman, Grempel and Prange. [25] The quantized version of a quintessential

chaotic system, the standard map that describes the motion of a rotor kicked with

a constant period, is mapped onto a tight binding model. The sites of the lattice

are angular momentum quantum numbers, so that dynamical chaos maps to delo-

calization. It is shown that, unless certain resonances are avoided, the phase space

diffusion comes to a halt, in other words wave functions of the lattice are localized.

An integrable version of the Maryland model was also proposed, where localiza-

tion is controlled by the rotation number of the rotor, i.e. the number of turns it

completes between each kick. [27, 28]
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For a given subsystem located deep inside a many-body system, the environ-

ment is the rest of the system itself. So far, it has been believed that localization

would be destroyed due to the interacting system acting on its components as a bath.

As a result electron transport has been expected to be restored, just as the chaotic

orbit of Hyperion persists due to decoherence enforced by the showering light and

cosmic particles. This process of an interacting system acting as a bath to its sub-

systems is called thermalization and it is what makes the predictions of equilibrium

statistical mechanics applicable to a quantum many-body system. [29–31]

However, recently a class of interacting models have been proposed where

thermalization does not occur, causing a phenomenon called many-body localiza-

tion. [32–39] A many-body localized system can not be described by equilibrium

statistical mechanics because it does not thermalize; instead, it is described by a set

of local conserved quantities that remember their initial values. [40]

In Part 4, inspired by the Maryland model, we consider a set of interacting

integrable rotors and discuss localization in the context of integrals of motion and

resonances in the energy-momentum transfer due interactions and kicking.

Quite surprisingly, the quantum and classical behavior of the integrable Mary-

land model are very similar. [41] For this reason, as a side note, a similar Hamiltonian

is proposed as a building block for a deterministic quantum theory. [42]
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1.2 Keldysh contour and nonequilibrium quantum theory

The goals we laid out in the introduction requires formulating quantum theory

of fields and particles and, extracting classical/macroscopic observables. The path

integral formulation is an ideal candidate for this. Moreover, choosing a closed

time integration contour provides great utility in non-equilibrium and disordered

systems, as well as noisy and dissipative scenarios. In this section we will provide a

brief review of Keldysh field integral.

Nonequilibrium quantum field theory is developed by the pioneers of the quan-

tum theory such as Schwinger, Kadanoff, Baym, Konstantinov, Perel and Keldysh

around the same time that Matsubara developed the thermal field theory tech-

nique. [43–46] The method is applied to a variety of problems in non-equilibrium

statistical mechanics, quantum Brownian motion, transport problems and disor-

dered systems and it forms the backbone of nonequilibrium kinetic theory. [15, 47]

The technique we refer to as Keldysh formalism is also referred to as Closed Time

Path formalism due to the choice of the integration contour of the path integral.

Calzetta and Hu applied this formalism to fields on curved spacetime [48] and the

marriage between non-equilibrium fields and gravity gave rise to the stochastic grav-

ity paradigm. [49].

In the Keldysh formalism one replaces the vacuum persistence amplitude of

the “in-out” formalism with the following partition function,

Z[V ] = Tr
{
ÛC(V̂ )%̂(−∞)

}
(1.1)
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In this equation %̂(−∞) is the (normalized ) density matrix of the system

at an early time, and Tr%̂(−∞) = 1. The operator ÛC is the evolution operator

path ordered on a closed time contour.The closed time contour starts at an early

time t → −∞. extends to t → ∞, forming the forward branch of the contour,

and reverses back to t → −∞ ,forming the backward branch of the contour. The

Hamiltonian for the evolution is Ĥ = Ĥ0 + V̂ ±(t) where the external time dependent

potential is allowed to be different on the forward and backward branches of the

contour. If V̂ ±(t) denotes the forward and backward values of the external potential,

V +(t) = V −(t) renders UC = 1 and the partition function becomes Z = 1. This has

a technical advantage over the usual in/out formalism, where Z = 〈in|out〉 is not

necessarily unity and should be accounted for while computing amplitudes.

1.2.1 Keldysh field integral for bosons

Specifically, suppose we have a scalar real massless free field φ that obeys the

scalar wave equation. The partition function is then written as a functional integral

over the closed time path C, and it reads

Z =

∫
D [φ]ei

∫
C d4x d4x′ φ̄(x)D̂−1(x,x′)φ(x′) (1.2)

where D is the Green’s function. The objective is to determine the Green’s function,

given the initial density matrix. Let φ± denote the values of the forward/backward

values of the field , thereby effectively doubling the number of degrees of freedom

in the problem. Let S denote the classical action of the field φ. Labeling the initial
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and final values of the fields as φ±i = φ±(−∞) and φ±f = φ±(+∞), respectively, we

can write the Feynman path integral representation of Z in Eq. (1.1) as

Z =

∫
D [φ±]%[φ+

i , φ
−
i ]δ(φ+

f − φ
−
f )ei(S[φ+]−S[φ−]) (1.3)

Here S, the action integral, is taken from t → −∞ to t → +∞. Notice that we

explicitly imposed the initial and final conditions on the fields. Keldysh discovered

that the initial and final value constraints can be handled by constructing the fields

φc(q) =
1

2

(
φ+ ± φ−

)
(1.4)

φc(q) are classical and quantum components of the field. Defining ~φ = (φc φq)T and

absorbing the density matrix into the action and the Jacobian of the transformation

in Eq. (1.4) in the integration measure we get the following path integral for the

field vector:

Z =

∫
D [~φ] exp

[
i

2

∫
d4xd4x′ ~φT (x)D̂−1(x, x′)~φ(x′)

]
(1.5)

where the inverse Green’s function matrix reads

D̂−1(x, x′) =

 0 [DA]−1

[DR]−1 [D−1]K


x,x′

(1.6)

The retarded (advanced) Green’s functions DR(A) are lower(upper) triangular

matrices in the time domain that are independent of the initial density matrix. They

are formally written as:

− i
〈
φc(q)(x)φq(c)(x′)

〉
= DR(A)(x, x′) =

1

2

{
(i∂t ± i0)2 +∇2

~r

}−1
δ(x− x′) (1.7)
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So we can write them as a Fourier integral over 4-momentum

DR(A)(x, x′) =
1

2

∫
d4k

(2π)4

e−ik(x−x′)

(k0 ± i0)2 − |~k|2
(1.8)

and therefore

DR(x− x′) = DR(y) = − 1

4π
θ(y0)δ (yµyµ) (1.9)

They satisfy the properties

[DA]T = DR (1.10a)

DA(k0, ~k) = DR(−k0, ~k) = [DR]∗(k0, ~k) (1.10b)

DA(R)(y0 = 0, ~y) = 0 (1.10c)

The last one means, in the continuum limit the step function in Eq. (1.9) is regu-

larized as θ(0) = 0.

The Keldysh Green’s function contains the information about the initial cor-

relations, and it is the correlator

DK(x, x′) = −i 〈φc(x)φc(x′)〉 (1.11)

It is parametrized by using an antisymmetric kernel F

DK(x− x′) = DR ◦ F − F ◦DA (1.12a)

[D−1]K = [DR]−1 ◦ F − F ◦ [DA]−1 (1.12b)

F T = −F (1.12c)

Here F (x, x′) contains the initial correlations hence it depends on %̂(−∞) and the

symbol ◦means convolution. The Wigner transform of F is the distribution function
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and in equilibrium it is F (ε) = coth(ε− µ)/2T , a manifestation of the Fluctuation-

Dissipation Relation (FDR). For real bosons, F (ε) is real and odd; therefore, the

chemical potential vanishes.

Note that the action in Eq. (1.5) vanishes when quantum components of fields

are put to zero,

S0|φq = 0 and
δS0

δφq

∣∣∣∣
φq=0

= 0 (1.13)

gives the classical equation of motion for the field φc. This justifies the names chosen

for the field components φc, φq. The above properties of the Keldysh action and its

Green’s functions are collectively referred as the ‘causality structure’. The causality

structure is intact when external potentials or interactions are switched on.

1.2.2 Quantum particle in contact with an environment

Here we will derive the Langevin equation for the Brownian motion of a quan-

tum particle in contact with a bath. The particle has the following action in the

Keldysh formalism:

Sp[X] =

∫
C

dt
1

2
Ẋ2 − V (X) (1.14)

Denoting the coordinate over the forward/backward branches as X± and per-

forming the rotation to classical and quantum components

Xcl =
1

2
(X+ +X−); Xq =

1

2
(X+ −X−) (1.15)
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the action reads

Sp[X] =

∫ ∞
−∞

dt 2ẊclẊq − V
(
Xcl +Xq

)
+ V

(
Xcl −Xq

)
(1.16)

Note that variational derivative with respect to Xq at the limit Xq → 0 gives

the classical equation of motion

Ẍcl + V ′(Xcl) = 0 (1.17)

In addition to the particle, we have the heat bath, commonly assumed to be a

collection of bosonic degrees of freedom with a wide spectrum, i.e. a collection of

harmonic oscillators with characteristic frequencies indexed by s. The action for the

bath and bath-system coupling will be taken as

Sbath[~φs] =
1

2

∑
s

∫ ∞
−∞

dt~φTsD
−1
s
~φ (1.18a)

Scoupling =
∑
s

gs

∫
C

dtXφs =
∑
s

gs

∫ ∞
−∞

dt ~XTσ1
~φs (1.18b)

The choice for the form of the couplings make the partition function amenable

to Gaussian integration so that

Z =

∫
D [~φs]D ~Xei[Sp+Sbath+Scoupling ] =

∫
D [ ~X]ei[Sb+Sdiss] (1.19)

where the resulting dissipative term reads

Sdiss =
1

2

∫ ∫
dtdt′ ~XT (t)D−1(t− t′) ~X(t′) (1.20)

with the dissipative kernel
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D−1(t− t′) = −σ1

(∑
s

g2
sDs(t− t′)

)
σ1 (1.21)

The kernel D inherits is causality structure from the bosonic Green’s function

D. The retarded and advanced components in Fourier space reads

[D−1(ω)]R(A) = −1

2

∑
s

g2
s

(ω ± i0)2 − ω2
s

(1.22)

The spectral density of the path is defined as

J(ω) = π
∑
s

(g2
s/ωs)δ(ω − ωs) (1.23)

and it is assumed to behave as J(ω) = 4γω at low frequencies. With this definition

the dissipative kernel becomes

[D−1(ω)]R(A) = 4γ

∫
dω′

2π

ω′2

ω′2 − (ω ± i0)2
= const± 2iγω (1.24)

The constant contributes to the definition of the classical potential in which

the particle is moving. In thermal equilibrium the Keldysh component follows from

these as

[D−1(ω)]K =
(
[D−1(ω)]R − [D−1(ω)]A

)
coth

ω

2T
= 4iωγ coth

ω

2T
≈ 8iTγ (1.25)

where the approximation holds in the classical limit where ~ω/kT � 1.

All in all the total action in real space after integrating out the bath reads:

Stot[ ~X] =

∫ ∞
−∞

dt 2ẊclẊq − V
(
Xcl +Xq

)
+ V

(
Xcl −Xq

)
− 2XqγẊcl + 8iγT (Xq)2

(1.26)
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The variational derivative around X1 = 0 will produce a damped equation of

motion. The full Langevin equation can be obtained by decoupling the (Xq)2 by

using an auxiliary noise variable.

Z =

∫
D [ ~X]eiStot =

∫
D [ ~X, ξ]e

i
4γT

∫
dt ξ2e−i

∫
dt 2Xq(Ẍcl+V ′(Xcl)+γẊcl−ξ) (1.27)

where, the higher terms in the external potential are dropped, as they don’t con-

tribute to the equations of motion. The Langevin equation immediately follows after

applying Eq. (1.13) to Eq. (1.27).

Ẍ + V ′(X) + γẊ = ξ (1.28)

The correlation function of noise can be computed from Eq. (1.27) as

〈ξ(t)ξ(t′)〉 = 2γTδ(t− t′) (1.29)

The fluctuation dissipation relation manifests itself in this equation, as the

noise correlator is proportional to the friction coefficient γ.

1.2.3 Keldysh field integral for fermions

The path integral for a fermionic field is written in terms of two independent

Grassmann fields ψ and ψ̄. On a closed time path contour C, the functional integral

for a free fermion field with Green’s function G reads

Z =

∫
D [ψ̄ψ]ei

∫
C d4xd4x′ ψ̄(x)Ĝ−1(x,x′)ψ(x′) (1.30)
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Similar to the boson case, let ψ± and ψ̄± denote the forward/backward values of

the Grassmann fields. The following Keldysh parametrization

ψ1 =
1√
2

(
ψ+ + ψ−

)
, ψ2 =

1√
2

(
ψ+ − ψ−

)
(1.31a)

ψ̄1 =
1√
2

(
ψ̄+ − ψ̄−

)
, ψ̄2 =

1√
2

(
ψ̄+ + ψ̄−

)
(1.31b)

proposed by Larkin and Ovchinnikov and defining

~Ψ =

ψ1

ψ2

 , ~̄Ψ =

ψ̄1

ψ̄2

 (1.32)

brings the action into the following

Z =

∫
D [~̄Ψ~Ψ] exp

[
i

∫
d4xd4x′ ~̄ΨT (x)Ĝ−1(x, x′)~Ψ(x′)

]
(1.33)

where the inverse Green’s function matrix reads

Ĝ−1(x, x′) =

[GR]−1 [G−1]K

0 [GA]−1


x,x′

(1.34)

The components of the Green’s function satisfy the following symmetry prop-

erties

GA =
[
GR
]†
, GK = −

[
GK
]†

(1.35)

Therefore, the Keldysh component can be parametrized by using a hermitian matrix

F = F † as

GK = GR ◦ F − F ◦GA (1.36)
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where the symbol ◦ means convolution. In thermal equilibrium the Green’s function

depends only on the difference between time components, due to the time transla-

tional symmetry. Fourier transform in this time coordinate produces the equilibrium

distribution function F as a function of energy ε as

F (ε) = 1− 2nF (ε) = tanh
ε− µ
2T

(1.37)

To be more specific, consider the free gas of electrons under a uniform Zeeman

field HZ that has the Hamiltonian

Ĥ =
p̂2

2m
+ ~HZ · ~̂s (1.38)

With the spin degrees of freedom σ, σ′ = ±, the Keldysh action of the free

Fermi gas reads

S0 =
∑
σ,σ′

∫
d4xd4x′ ~̄ΨT

σ (x)Ĝ−1
σσ′(x, x

′)~Ψσ′(x
′) (1.39)

Choosing the direction of HZ as the z axis and using the fact that energy, momentum

and the z-component of spin are good quantum numbers, and defining the Fourier

decomposition of the fermion fields as

ψ(~r, t) =
∑
~k

ψ(~k, t)ei
~k·~r, ψ̄(~r, t) =

∑
~k

ψ̄(~k, t)e−i
~k·~r (1.40)

the bare Green’s functions can be immediately written down as

G
R(A)
σσ′ (~k, ε) = δσσ′

(
ε− ε~k,σ ± i0

)−1

(1.41a)

GK
σσ′(

~k, ε) = −2πiδσσ′F (ε)δ(ε− ε~k,σ) (1.41b)

where

ε~k,σ =
|~k|2

2m
+ σHZ (1.42)
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1.2.4 BCS theory of superconductivity in the Keldysh formalism

The free electron gas is just an idealization, as collisions and momentum trans-

fer between electrons occur due to interactions. The two-body interaction term can

be captured by including the interaction term in the action S = S0 + Sint where in

reciprocal space we have

Sint = −1

2

∫
C

dt
∑
~q.~k,~k′

∑
σσ′

U(~q)ψ̄~k,σψ̄~k′,σ′ψ~k′+~q.σ′ψ~k−~q,σ (1.43)

Depending on the magnitudes of the momenta of the incoming electrons, we

can have three classes of scattering events. First, the incoming electrons have

momenta comparable to the Fermi momentum so that k, k′ ∼ kF and the trans-

ferred momentum q � kF is small. Second, the sum of the incoming momenta

|~k + ~k′| ∼ 2kF is close to twice Fermi momentum; and third, the difference of the

momenta |~k−~k′| ∼ 2kF is nearly twice Fermi momentum. In the last two cases, the

momentum transfer is on the order of kF .

The second type, where |~k − ~k′| ∼ 2kF is the most important, as it produces

Cooper pairs in the following way. Relabeling the momenta so that the transferred

momentum is exactly |~k + ~k′|, we get

SBCS = −1

2

∫
C

dt
∑
~q,~k,~k′

∑
σσ′

U(~k + ~k′)ψ̄~k,σψ̄−~k+~q,σ′ψ~k′+~q,σ′ψ−~k′,σ (1.44)

where the subscript BCS stands for Bardeen-Cooper-Schrieffer theory that is based

on the idea that interactions that flip the momenta of the incoming pair binds them
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into bosonic pairs. In BCS theory, the interaction between electrons are mediated

by phonons with momentum ∼ kF is frequency independent and attractive and

is −λ/ν where ν is the density of states at Fermi energy and λ > 0. Indeed, in

this case, the interaction is of pairing type because the interaction vanishes due to

fermionic commutation relations when the spins of the interacting electrons are the

same. Defining the Cooper pair fields as:

Φ(~q, t) =
∑

ψ~k+~q↓(t)ψ−~k↑(t), Φ̄(~q, t) =
∑

ψ̄−~k↑(t)ψ̄~k+~q↓(t) (1.45)

The interaction in real space reads

SBCS =
λ

ν

∫
C

d4x Φ̄(x)Φ(x) (1.46)

A bosonic degree of freedom ∆ is introduced so that the total action becomes

quadratic in the fermionic fields. This effectively decouples the Cooper fields at

expense of creating a bosonic condensate ∆. To do this observe that, BCS action

can be written as

exp(iSBCS) =

∫
D [∆]ei

∫
C d4x[− νλ |∆|2+∆Φ̄+∆∗Φ] (1.47)

Now, the partition function for the free and interacting parts S0 + SBCS can

be expressed in terms of a single quadratic action, the Bogoluibov de Gennes action

SBdG

∫
D [ψ̄ψ]e(iS0+iSBCS) =

∫
D [∆]e−

ν
λ
i
∫
C d4x|∆|2

∫
D [ψ̄ψ]eiSBdG (1.48)
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where

SBdG =

∫
C

d4x

(
ψ̄↑ −ψ↓

)i∂t + 1
2m

(∇r + i ~A)2 − Vdis ∆

−∆∗ −i∂t + 1
2m

(∇r − i ~A)2 − Vdis


ψ↑
ψ̄↓


(1.49)

The crystal dislocations and non-magnetic impurities impose a disordered elec-

tric potential on the system, which we call Vdis. In addition, we assumed the Zeeman

coupling is small and ignored it.

This 2×2 kernel is defined in the particle-hole or the so-called Nambu space. In

a general situation coupling terms exist between the particle hole spinor (ψ↑, ψ̄↓) and

the spinor with opposite spin structure (ψ↓,−ψ̄↑). So the BdG kernel is 4×4 acting

on bi-spinors that live in the direct product of Nambu and spin spaces. Here, due

to the absence magnetic impurities and spin orbit coupling, the spin space becomes

trivial and we get two copies of the Nambu space.

However, we still need to enlarge the kernel if we want to double the degrees

of freedom to account for the closed-time contour. So we are working in the product

of Nambu and Keldysh spaces. In this space, we can write

~Ψ =

(
ψ1↑, ψ̄1↓, ψ2↑, ψ̄2↓

)T
, ~̄Ψ =

(
ψ̄1↑, −ψ1↓, ψ̄2↑, −ψ2↓

)
(1.50)

SBdG =

∫ ∫
d4xd4x′ ~̄Ψ(x)

[
Ĝ−1

0 (x, x′)− V̂dis(x, x′)
]
~Ψ(x′) (1.51)

where G0 is the Green’s function of the clean superconducting system and the dis-
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order potential V̂dis(x, x
′) = V (x)δ(x − x′)1 i.e. it is diagonal in spacetime as well

as Keldysh and Nambu spaces. The derivation of Gorkov equations for the Green’s

function and quasiclassical Green’s functions for a disordered superconductor follows

from the Keldysh BdG action in Eq. (1.51). [50]
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Chapter 2: Long range p-wave proximity effect into a disordered metal

2.1 Introduction

Superconducting heterostructures have attracted a lot of attention recently

as possible hosts of Majorana fermions [51–59]. One of the important outstanding

questions in the studies of these heterostructures is the interplay between topologi-

cal superconductivity and disorder [60–63]. Here we explore this issue, focusing on

the leakage of p-wave superconductivity into a disordered metal. Näıvely, it may

not appear to be a particularly meaningful question, because unconventional super-

conductivity is known to be suppressed by disorder per Anderson’s theorem [64].

However, Anderson’s theorem is only relevant to an intrinsic superconductor and

has little to do with a leakage of superconductivity.

The linearized Usadel equations are standard tools in studies of proximity

effects [65, 66]. Their derivation, however, assumes that an anisotropic component

of the superconducting condensate’s wave function is small compared to the isotropic

one, which is not the case in the systems we are interested in. Here, we focus on

the more general Eilenberger equations [18,67], which allow us to straightforwardly

model systems with complicated geometries and varying degree of disorder. (In

the context of topological superconductivity, similar approach has been used in
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Refs. [68–71].)

In this work, we consider an infinite quasi-one-dimensional system (nanowire),

at least part of which is superconducting. To describe the electronic correlations

in the system we utilize the quasiclassical Green’s function ĝ – a matrix in Nambu

and spin space [18]. It is obtained from the full microscopic Green’s function and

faithfully captures the long length scale features of the system. For a recent compar-

ison between quasiclassical and fully microscopic calculation of the same structure,

see, for example [72]. In a one-dimensional model, ĝ depends on the Matsubara fre-

quency (ω), the center-of-mass coordinate of the pair (x), and the direction of the

momentum at the Fermi points (ζ ≡ px/pF is +1/−1 for right/left going particles).

It obeys the Eilenberger equation [18,66,67]

ζvF∂xĝ = −[ωτ̂3, ĝ] + i[∆̂, ĝ]− 1

2τimp
[〈ĝ〉, ĝ]. (2.1)

Here τ̂ are the Pauli matrices in Nambu space. The effects of impurities enter the

equation through the last term, in which τimp is the mean time between collisions,

and 〈...〉 denotes an average over the Fermi surface (actually, two disconnected points

in the one-dimensional case). Since we are interested in wires in which supercon-

ductivity is induced by a proximity with a bulk superconductor, we treat ∆̂ as an

external parameter, which, furthermore, we assume constant throughout the wire.

This allows us to ignore self-consistency, and simplifies the calculations.

The outline of this chapter is as follows. In Sec. 2.2 and Sec. 2.3, we obtain

exact solutions of Eq. (2.1) for s-wave and p-wave order parameters respectively. In

Sec. 2.4 we introduce an intuitive picture for the behavior of the solution by mapping
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the equations to the equation of motion of a classical particle in an external force

field. In Sec. 2.5 we study superconducting correlations induced by proximity in

a metallic wire. In particular, we demonstrate that the p-wave correlations can

be surprisingly long-ranged, even in the presence of disorder. We also show that

impurity scattering produces a zero-energy peak in the density of states (DOS).

We summarize the results of our work in Sec 2.6. Although self-consistency is not

relevant for the experimental setup we are considering, in the Appendix we provide

for completeness the solutions of the fully self-consistent Eilenberger equations for

both s-wave and p-wave quasi-one-dimensional superconductors.

2.2 The s-wave case

We decompose ĝ in Nambu space using the Pauli matrices τi: ĝ = −ig1τ̂1 +

g2τ̂2 + g3τ̂3. The off-diagonal scalar functions g1 and g2 describe the superconduct-

ing particle-particle correlations, whereas the diagonal component g3 contains the

particle-hole correlations. These functions have to satisfy the normalization condi-

tion −g2
1 + g2

2 + g2
3 = 1.

In the case of an s-wave superconductor, ∆̂ is a spin-singlet and, ignoring

the spin indices, it can be written as ∆0iτ2 – this is equivalent to choosing the

order parameter to be purely real. We ignore self consistency and assume that ∆ is

constant in space. The function g2 is in the same channel as ∆̂, and thus encodes the

s-wave pairing correlations. The g1 function has more interesting origin – it describes

the p-wave, odd-frequency superconducting correlations, induced by boundaries or
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other inhomogeneities, and disappearing in bulk uniform superconductors [73–76].

The component g1 is odd in momentum; therefore, its Fermi surface average vanishes

identically: 〈g1〉 = 0. The components g2 and g3 are even in momentum; therefore,

〈g2〉 = g2 and 〈g3〉 = g3 are satisfied. With these considerations, Eq. 2.1 can be

now written as a set of three coupled first order differential equations for the scalar

functions gi:

ζvF∂xg1 = −2ωg2 + 2∆g3, (2.2a)

ζvF∂xg2 = −2ωg1 −
1

τimp
g1g3, (2.2b)

ζvF∂xg3 = 2∆g1 +
1

τimp
g1g2. (2.2c)

To be integrable this system of equations has to have two constants of integra-

tion. The norm of ĝ, which is −g2
1 + g2

2 + g3 = 1 is one of them. We have identified

another constant Cs, given by

Cs = g2
1/(2τimp) + 2∆g2 + 2ωg3, (2.3)

and obeying ∂xCs = 0. Note that the value of Cs can be fixed using the appropriate

boundary conditions. Using it we can reduce the system given by Eq. (2.2) to a

single second-order differential equation for g1:

v2
F∂

2
xg1 =

(
4ω2 + 4∆2 +

Cs
τimp

)
g1 −

1

2τimp
g3

1. (2.4)

Let us note several interesting limits for this equation. The τimp → ∞ is the clean

superconductor limit, which was considered in Refs. [73, 74]. The τimp → 0 is the
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strong disorder limit, in which Eq. (2.4) leads to results equivalent to those obtained

by the Usadel equations [66]. Finally, ∆ → 0 is the normal metal limit, where non

trivial (proximity) solutions follow from superconducting boundary conditions.

The bulk superconducting energy ∆0 is a convenient energy scale for the sys-

tem. Even in a normal metal, where ∆ = 0, non-trivial solutions can appear be-

cause of proximity with a superconductor. In this case we can still use ∆0, the

bulk gap parameter value in the neighboring superconductor, as a convenient en-

ergy scale. To streamline the notation we denote the coefficient from Eq. (2.4) by

αs = ω2 + ∆2 + Cs/(4τimp), and normalize Cs and αs by the superconducting en-

ergy ∆0, to get C̃s = Cs/∆0 and α̃s = αs/∆
2
0. We also introduce the dimensionless

coordinate x̃ = x/ξ0 (where ξ0 ≡ vF/∆0 is the superconducting coherence length)

and the dimensionless disorder strength β = 1/(2∆0τimp). With these substitutions

we can write Eq. (2.4) as

∂2
x̃g1 = 4α̃sg1 − 2β2g3

1. (2.5)

Once the boundary values of the Green’s function components are given, the

value of Cs and therefore αs is fixed. Then we can solve Eq. (2.5) without explicit

reference to the other components of ĝ. Multiplying both sides of Eq. (2.5) with

∂x̃g1, the solution can be obtained implicitly as an integral:∫ g1(x̃2)

g1(x̃1)

dg1

±
[
4α̃sg2

1 − β2g4
1 + 2Ẽs

]1/2
= ζx̃2 − ζx̃1. (2.6)

Here, Ẽs is a constant of integration (in itself a function of Cs), about which we will

have more to say in Sec. 2.4. Note that the Fermi index ζ = ±1 appears on the

right side of Eq. (2.6), therefore the function g1 is manifestly odd in momentum. We
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determine the plus/minus sign in front of the integrand by demanding consistency

with the boundary conditions and the integration path so that the signs of both sides

in Eq. (2.6) match. We will present an intuitive way to understand this solution in

Sec. 2.4 and show that only monotonic solutions are physically acceptable. For a

solution that starts from x̃ = 0, it is convenient to recast the integral in Eq. (2.6)

in terms of the inverse elliptic function sn−1, which leads to

sn−1

(
g1(x̃′)

(ρ+
s )1/2

∣∣∣∣ρ+
s

ρ−s

) ∣∣∣∣x̃
0

= ±ζβx̃[−ρ−s ]1/2, (2.7a)

ρ±s =
1

β2

(
2αs ±

[
4α2

s + 2Ẽsβ
2
]1/2
)
. (2.7b)

where x̃′ is a dummy variable.

Once we have g1(x), we can obtain the other components by using the constant

of integration Cs and the system in Eq. (2.2), to get

g2(x) =
∆̃
(
C̃s − βg2

1(x)
)
− ω̃ζ∂x̃g1(x)

2
(
ω̃2 + ∆̃2

) , (2.8a)

g3(x) =
ω̃
(
C̃s − βg2

1(x)
)

+ ζ∆̃∂x̃g1(x)

2
(
ω̃2 + ∆̃2

) . (2.8b)

2.3 The p-wave case

In the case of a p-wave wire we consider spinless fermions. As in the previous

section, we decompose ĝ using the Pauli matrices τ̂i. The order parameter can be

written as ζ∆0iτ2, and we again assume that ∆ is a constant in space. The difference

from the s-wave case arises from the fact that now g2 is p-wave, and g1 contains the

secondary s-wave (odd-frequency) correlations [76,77], and references therein.
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The components of ĝ again obey three coupled differential equations, which

differ from the s-wave case, due to the Fermi surface averaging in the last term of

Eq. (2.1). In the p-wave case the order parameter has p-wave symmetry; therefore,

we get 〈g1〉 = g1, 〈g2〉 = 0. Note that 〈g3〉 = g3 applies (particle-hole correlations

are s-wave-like). With these we have

ζvF∂xg1 = −2ωg2 + 2ζ∆g3 −
1

τimp
g2g3, (2.9a)

ζvF∂xg2 = −2ωg1, (2.9b)

ζvF∂xg3 = 2ζ∆g1 −
1

τimp
g1g2. (2.9c)

In the clean case, these equations are linear and easily solved [70,73,74]. Impurities

introduce nonlinear coupling, proportional to 1/τimp. Nevertheless, as we demon-

strate, these equations can be treated analytically. The next several steps closely

follow the discussion in the preceding section. We have again identified a constant

Cp obeying ∂xCp = 0. It is given by

Cp = −g2
2/(2τimp) + 2ζ∆g2 + 2ωg3. (2.10)

Using it we can derive from the system in Eqs. (2.9) a single second-order equation

for g2 :

v2
F∂

2
xg2 = −2ζ∆Cp + 4αpg2 −

3ζ∆

τimp
g2

2 +
g3

2

2τ 2
imp

, (2.11)

where for convenience we have introduced αp = ω2 + ∆2 + Cp/(4τimp). Notice the

difference with Eq. (2.4), which is for g1.

Again, we use the energy scale ∆0 (see Sec. 2.2 for more explanation) to intro-

duce normalized coordinate x̃ = x/ξ0 (where ξ0 ≡ vF/∆0), dimensionless disorder
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strength β = 1/(2∆0τimp), and normalize Cp and αp as C̃p = Cp/∆0 and α̃p = αp/∆
2
0.

With these substitutions Eq. (2.11) becomes

∂2
x̃g2 = −2ζ∆̃C̃p + 4α̃pg2 − 6ζβ∆̃g2

2 + 2β2g3
2. (2.12)

Now we integrate the equation Eq. (2.12), which can be done without any

explicit reference to the other two components:

∫ g2(x̃2)

g2(x̃1)

dg2[
−4ζ∆̃C̃pg2 + 4α̃pg2

2 − 4ζ∆̃g3
2 + β2g4

2 + 2Ẽp

]1/2
= ±ζ(x̃2 − x̃1) (2.13)

The Fermi momentum appears on the right hand side of equation Eq. (2.13)

and g2 is odd in momentum, as it should. We determine the plus/minus sign of the

integral in Eq. (2.13) in order to be consistent with the boundary conditions and

the integration path.

In this chapter, we are interested in the behavior of the solution in a disordered

normal metal next to a superconductor, so we consider the special case ∆ = 0, and

recast the integral in Eq. (2.13) in terms of the inverse elliptic function sn−1 to get

Eq. (2.14):

sn−1

(
g2(x̃′)

(ρ+
p )1/2

∣∣∣∣ρ+
p

ρ−p

) ∣∣∣∣x̃
0

= ±ζβx̃
ξ0

[ρ−p ]1/2, (2.14a)

ρ±p =
1

β2

(
−2αp ±

[
4α2

p − 2Ẽpβ
2
]1/2
)
. (2.14b)

Once we have g2(x), we can obtain g1(x) and g3(x) by using the constant of
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integration Cp and the system in Eq. (2.9), to get

g1(x) =
−ζ∂x̃g2(x)

2ω̃
, (2.15a)

g3(x) =
C̃p + βg2(x)2 − 2ζ∆̃g2(x)

2ω̃
. (2.15b)

2.4 Classical particle analogy

There is a surprising but intuitive way to understand the results from the

previous two sections. We can think of Eq. 2.6 as an equation of motion of a

classical particle with coordinate g1, in an external force field. In this interpretation

the normalized position ζx̃ takes the role of the dynamical time of this classical

particle. The Hamiltonian of the classical particle is given by the following equation:

Hs[g1] =
1

2
(∂x̃g1)2 − 2α̃sg

2
1 +

β2

2
g4

1. (2.16)

This Hamiltonian describes a particle in a double-well potential Vs[g1] =

−2α̃sg
2
1 + β2g4

1/2, as shown in Fig. 2.1. We denote the conserved energy of this

Hamiltonian as Ẽs. We can furnish the solution to the “equation of motion” by in-

verting the integral in equation Eq.(2.6) that sums up to the elapsed time ζx̃2− ζx̃1

between initial and final coordinates g1(x̃1) and g2(x̃2), respectively.

The double well potential Vs[g1], allows non-monotonic solutions. However,

the classical turning points of this potential scale as ±(ωτimp) at high frequency,

and for both ω → ∞ or τimp → ∞ the non-monotonic motion has unbounded

amplitude; hence, these solutions are not physical. Therefore, we will only consider

the monotonic solutions. If we denote the poles of the integrand as ρ±s then we can
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Figure 2.1: The potential landscape of a classical particle with motion
describing the Green’s function, for a normal metallic segment, in contact
with a superconductor. Depending on the superconductor (s or p-wave)
potential is either Vs or Vp. In the clean limit both converge to V clean.

conveniently write the integral in Eq. (2.6) with monotonic integration path that

starts from the point g1(x̃ = 0), in terms of the inverse Jacobi elliptic function sn−1

as in equation Eq. (2.7).

In a similar manner, we can interpret Eq. (2.12) as the equation of motion

of a classical particle with coordinate g2, moving in an external potential. The

Hamiltonian of this classical particle is given in Eq. (2.17)

Hp[g2] =
1

2
(∂x̃g2)2 + 2ζ∆̃C̃pg2 + 2α̃pg

2
2 − 2ζ∆̃g3

2 +
β2

2
g4

2. (2.17)

The Hamiltonian given by equation Eq. (2.17) describes the particle in the

external potential potential Vp[g2] = 2ζ∆̃C̃pg2 +2α̃pg
2
2−2ζ∆̃g3

2 +β2g4
2/2. We denote

the conserved energy of this Hamiltonian as Ẽp. We can again find the solution to

the “equation of motion” by inverting the integral in equation Eq.(2.6) that sums
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up to the elapsed time ζx̃2 − ζx̃1 between initial and final coordinates g2(x̃1) and

g2(x̃2), respectively.

In the special case of interest, where we are solving the equations in a disor-

dered metal, ∆ = 0, therefore the potential Vp[g2], shown in Fig. 2.1, permits only

monotonic solutions (given in Eq. (2.14)).

2.5 The p-wave wire with normal segment

We now proceed to study the leakage of superconductivity in a metallic wire.

We consider an infinite wire extending along the x-axis with two segments that

meet at x = 0. The infinite segment on the left (x < 0) is made of clean p-wave

superconductor with order parameter ζ∆0. The segment on the right (x > 0)

is made of a diffusive normal metal (the order parameter is zero). We are, in

fact, considering a quasi-one-dimensional system, with several conducting channels,

rather than a truly one-dimensional wire, which would be in an insulating state even

for infinitesimal disorder strength.

We want a solution that for x → −∞ reproduces the mean field result for a

uniform clean p-wave superconductor. Introducing the parameter B and the dimen-

sionless variables Ω̃ = Ω/∆0, ω̃ = ω/∆0, we can write such a solution [70, 78, 79]:

g1(x) = (1/ω̃)[1− Ω̃B] exp(2Ω̃x/ξ0), (2.18a)

g2(x) = ζ(1/Ω̃)
(

1− [1− Ω̃B] exp(2Ω̃x/ξ0)
)
, (2.18b)

g3(x) =
{

[1− Ω̃B]/(Ω̃ω̃)
}

exp(2Ω̃x/ξ0) + ω̃/Ω̃. (2.18c)
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B has to be determined from the boundary conditions at the junction (x = 0). For

simplicity, we consider the case of perfectly transparent boundary, which guarantees

the continuity of the Green’s functions at the junction (More realistic modeling of

the boundary requires more complicated boundary conditions) [80,81]. (Note that

Eqs. (2.18) were derived under the assumption that the order parameter is constant

in the clean p-wave superconductor.)

Now we consider the diffuse normal segment with infinite length. Then, for

x → ∞ we have g1 → 0, g2 → 0 and g3 → sgn(ω), and using the constant of

integration C̃p(x = 0) = C̃p(x → ∞) = 2|ω̃| we get a quadratic equation, with one

of the two solutions given as:

B =
1

β

[
−1 +

√
1 + 2β(Ω̃− ω̃)

]
, (2.19)

and we discard the other solution because it leads to a non-monotonic solution.

We can understand intuitively the behavior of g2 by invoking the classical anal-

ogy. The particle in potential Vp starts at “position” g2(0) = ζB, with velocity

∂x̃g2(0) = −2ω̃ζg1(0) = −2ζ(1 − Ω̃B), and moves towards its unstable equilibrium

point g1(+∞) = 0, gradually slowing down until ∂x̃g2(+∞) = 0, from which we

deduce Ẽp = 0. Indeed, it takes infinite amount of time for the particle to reach the

point g2 = 0, a fact we see from the diverging integral in Eq. (2.13) for Ẽp = 0, as

g2 → 0.

For Ẽp = 0 the elliptic integral leads to inverse hyperbolic functions, and defin-

ing the dimensionless constant κ = [1 + β2B2/(4α̃p)]
1/2, we can write the solution
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for g2:

g2(x) =
ζB

cosh(x/ξ′) + κ sinh(x/ξ′)
. (2.20)

Here ξ′ = ξ0/(2α̃
1/2
p ) gives the effective decay length of the solution (at T = 0). In

physical units it is

ξ′ =
vF√

4ω2 + 2|ω/τimp|
. (2.21)

In the dirty limit we have ξ′ =
√
D/|ω|, where D is the diffusion coefficient. Finally,

in the clean limit g2 converges to ζB exp(−2|ω̃|x/ξ0), as expected [70].

The other two components of the Green’s function can be derived from g2 using

C̃p and the Eilenberger equations: g1 = −ζξ0∂xg2/(2ω̃) and g3 = sgn(ω̃)+βg2
2/(2ω̃).

As expected, impurities suppress g2 relative to g1. However, they both decay in the

normal segment over the same length scale, given by Eq. (2.21). This decay is long-

range, and furthermore, with exactly the same length scale obtained for the case of

s-wave order parameter [73, 74]. Thus, the näıve expectation of strong suppression

of the p-wave correlations is misleading in this case. This is one of the main points

of this chapter ( Also, note that the order parameter amplitude ∆0 appears only in

the boundary conditions at x = 0. Thus, even a complete self-consistent treatment

of the superconducting segment would not change the decay length, only the overall

prefactor), and it is also supported by the fact that the same decay length scale

appears also in the case of an s-wave superconductor with magnetic disorder [75],

which is known to be analogous in some ways to a p-wave superconductor with

potential disorder.

We can now obtain the DOS of the system from Re[g3(ω → −iε + δ)] [70].
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Figure 2.2: Contour plot of the DOS of an infinite wire. There is mod-
erate disorder (β = 1) in the normal segment (x > 0). The solid yellow
marks the regions that are beyond the plot range (where N/N0 > 3.5).
Notice the zero-energy peak in the normal segment.

On Fig. 2.2 we show it for a system with moderate disorder. Several things are

apparent from this plot. First, for low energies there is a significant decrease in the

DOS of the normal segment, caused by the proximity effect; however, it is not a

real gap, since the DOS stays finite. This decrease is entirely due to the impurities,

which “trap” the superconducting correlations close to the boundary (in the clean

case the DOS is constant for x > 0 [70]). The impurity-induced term in g3 also has

a divergence in the limit of small frequencies (g3 ∼ 1/ω), which leads to an infinite

peak in the DOS (see Fig. 2.3). This zero-energy peak has the same origin as the

Majorana edge state (namely, the sign change in the order parameter [78, 79, 82]).

37



From Eq. (2.20), we can see that the weight of the zero-energy peak has a power-law

decay ∼ (1 + βBx/ξ0)−2 into the metalic segment.

Figure 2.3: DOS at the junction of infinite normal and superconduct-
ing segments. Three cases for the disorder in the normal segment are
plotted: weak (β = 0.1, blue), moderate (β = 1, purple), and strong
(β = 10, red). Notice the suppression of DOS with the increase of dis-
order strength.

As a side note, in the case of an s-wave superconductor, the solution of Eq. (2.4)

is g1 = ζA[cosh(x/ξ′)+κs sinh(x/ξ′)]−1, with A and κs that can be derived by match-

ing the solutions at the junction. However, unlike the p-wave case, the g1 component

at the boundary is proportional to ω̃. This dependence on ω̃ changes the behavior

of the DOS. From g3 = sgn(ω̃)−β/(2ω̃)g2
1, we can see that the low frequency limit is

finite, and there is no zero-energy peak in the s-wave case (Analogous calculation in

the s-wave case leads not to a peak, but linear suppression of DOS at low energies.

The overall DOS profiles are very similar to those obtained earlier numerically ) [83].
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If the normal segment has finite length L, we impose the condition g2(L) = 0

(the p-wave component is suppressed by boundary reflection). Then the solution

follows immediately from Eq. 2.14 as g2(x) = ζ(ρ+
p )1/2sn[β(ρ−p )1/2(x − L)/ξ0], with

elliptic parameter m = ρ+
p /ρ

−
p . However, this expression has limited value, since BL,

which should be obtained from matching the two solutions for g2 at x = 0, enters

the expression through the parameters ρ±p , and is difficult to find. Fortunately, an

approximate analytic form for BL can be obtained. Numerical investigation suggests

that BL can be approximated by B[1− exp(−2L/λB)], with λB = Bξ0 (it controls

how quickly BL approaches to the infinite wire limit). Once we have BL, we can

write g2 in a form that manifestly converges to that of the L = ∞ case [84]. The

common elliptic parameter of the elliptic functions is (ρ−p − ρ+
p )/ρ−p , and it lies in

the interval [0, 1]. With these definition we get:

g2(x) = ζ
BLdn

(
β|ρ−p |1/2 xξ0

)
− sn

(
β|ρ−p |1/2 xξ0

)
cn
(
β|ρ−p |1/2 xξ0

)√
|ρ+
p |+B2

L

√
1 +B2

L/|ρ−p |

cn2
(
β|ρ−p |1/2 xξ0

)
− (B2

L/|ρ−p |)sn2
(
β|ρ−p |1/2 xξ0

) .

(2.22)

We can again obtain the two other components from g2 by using: g1 = −ζξ0∂xg2/(2ω̃)

and g3 = (α̃p − ω̃2)/(βω̃) + βg2
2/(2ω̃). Figure 2.4 shows the components g1, g2, g3 of

the quasiclassical matrix Green’s function ĝ, for varying disorder strengths, over a

semi infinite wire with disordered section.

As L→∞, the elliptic functions are replaced by their hyperbolic counterparts,

and we recover Eq. 2.20. This convergence is exponential, so the wire is effectively

infinite when L/(Bξ0)� 1. Conversely, if L/(Bξ0)� 1, g2(x) decays linearly in the

normal metal. Again, it is the impurity-induced contribution to g3 that is of most
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Figure 2.4: Components of ĝ,(g1: blue, g2: purple, g3: red) for a wire

with infinite p-wave section and finite disordered section of length L =

5ξ0. Top panel: weak disorder(β = 1/(2τimp∆0) = 0.1). Middle panel:

moderate disorder (β = 1). And bottom panel: strong disorder (β = 10).

The Matsubara frequency is set to ω = ∆0/2.

interest. After analytic continuation we can write the zero-energy limit as

g3(x) =
1

π
δ(ε)M(x). (2.23)

Here, M(x) describes the x-dependent weight of the zero-energy mode, and can be

extracted from Eq. (2.22):

M(x) =
αp
β

+
β

2

BL −
√

αp
2β2

(
1 + β2B2

2αp

)
sin
(
β|ρ−p |1/2 xξ0

)
cos
(
β|ρ−p |1/2 xξ0

)
cos2

(
β|ρ−p |1/2 xξ0

)
− β2B2

2αp
sin2

(
β|ρ−p |1/2 xξ0

)
2

.

(2.24)
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It is monotonically decreasing function, and its values at the ends of the wire are

M(0) = 1− BL and M(L) =M(0)− βB2
L/2 respectively. Figure 2.5 shows M(x)

in the normal section with length L = 5ξ0, for various disorder strengths. As can

be seen, it becomes peaked closer to x = 0 as the disorder in the normal section

increases. On the other hand, for weak disorder, [M(0) −M(L)]/(L/ξ0) is small,

so the zero-energy peak is delocalized over the entire normal segment.

Figure 2.5: The weight of the zero-energy modeM(x) in a normal section
with length L = 5ξ0 for three disorder strengths (blue: β = 0.1, purple:
β = 1, red: β = 10).

2.6 Conclusion

We presented a quasiclassical description of a quasi-one-dimensional supercon-

ductor. The appropriate Eilenberger equations of the system were solved exactly.

Surprisingly, we discovered that this problem can be mapped to a one-dimensional

classical particle moving in an external potential. In view of the recent interest
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in superconducting heterostructures, we studied the proximity effects in a normal

segment, attached to a clean p-wave wire. We discovered that despite the presence

of impurities, the proximity-induced superconducting correlations are long-range.

We also found that impurity scattering leads to the appearance of a delocalized

zero-energy peak.
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Chapter 3: Analogue stochastic gravity in strongly interacting Bose-

Einstein condensates

3.1 Introduction

The idea that a curved spacetime is an emergent structure has a long his-

tory [85, 86] and has been discussed in various physical contexts [87] from classical

fluid mechanics [88,89] and crystals with defects [90] to quantum entanglement [91].

While in the context of fundamental gravity, the emergent scenario remains specu-

lative at this stage, there has been a number of concrete realizations of various as-

pects of general relativity in “analogue gravity” models, where a non-trivial curved

spacetime metric arises naturally in the description of collective modes relative to

a background solution of the field equations [87, 92]. A prominent example of such

analogue theory is a strongly correlated superfluid [93], where the phonon modes,

propagating relative to a (generally inhomogeneous and non-stationary) superflow,

satisfy a wave-equation in an effective curved spacetime

∂µ
(√
−ggµν∂νφ

)
= 0, (3.1)
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where φ(~r, t) is the phonon field – a small deviation from a “mean-field” configura-

tion, g = detgµν is the determinant and gµν is the matrix inverse of the metric

gµν =
ρ

c

c2 − v2 ~vT

~v −I3×3

 (3.2)

which is determined by the underlying superflow (~v and c are the superfluid velocity

and the speed of sound, ρ is the density of the fluid including the excitations).

Many exciting general-relativistic effects immediately follow from this observation,

including the formation of sonic horizons and black hole-type physics [92], analogue

Hawking radiation [94], proposed by Unruh [88] and recently reported by Steinhauer

to have been observed in cold-atom Bose-Einstein condensates [95], and a unifying

principle for cosmology and high energy physics discussed extensively by Volovik [93,

96].

This geometric theory of excitations in a superfluid, that this work focuses on

and develops further, is an alternative formulation of the phenomenological Landau-

Khalatnikov two-fluid theory of superfluidity [97, 98], which has been originally de-

veloped as a macroscopic description of superfluid Helium. As the name suggests,

this theory separates the fluid flow into two components – one being the zero entropy,

zero viscosity superflow and the other being the entropy-carrying, dissipative nor-

mal flow. The two-fluid theory relies on the conservation laws for mass, energy, and

momentum in a Galilean-invariant continuum made up of these two components.

In addition to being an accurate macroscopic description of superfluid helium, the

two-fluid theory can be viewed as the first historical example of a long wavelength

hydrodynamic limit of a strongly interacting quantum field theory. The low energy
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effective field theory paradigm offers a number of powerful techniques to analyze

strongly interacting field theories and the hydrodynamic limit of high energy theo-

ries (e.g., the AdS/CFT and string theory) [99–102].

The main idea of this work relies on a conceptual analogy between the quantum

generalization of the Landau-Khalatnikov two-fluid description and the Caldeira-

Leggett-type theories of “quantum friction”, where a closed system is separated into

two components – a quantum “particle” and a bath to which it is coupled [15,103].

Integrating out the bath leads to classical equations of motion for the particle, which

necessarily feature a friction force and a stochastic Langevin force, connected to each

other via a fluctuation-dissipation theorem. For a strongly correlated BEC, this

analogy associates the superfluid order parameter field with the Caldeira-Leggett

“particle” and the Bogoliubov excitations with the bath. The question we ask here

is what are the corresponding Langevin equations of motion that arise? We develop

and use a combination of the aforementioned geometric theory of excitations and

Keldysh field-theoretical methods in a curved spacetime to answer this question.

The main result is the following stochastic equations of motion

∂tρ+∇ · (ρ~v) =
1

2
∇ ·
[√
−g
(〈
T̂µν

〉
+ ξµν

) δgµν
δ~v

]
, (3.3a)

∂tθ +
1

2
v2 + µ(ρ) =

√
−g
2

(〈
T̂µν

〉
+ ξµν

) δgµν
δρ

, (3.3b)

where ρ is the density of the fluid, θ is the superfluid flow potential, ~v = ∇θ is the

irrotational flow fluid of the superfluid component, µ(ρ) is the chemical potential of

the fluid, gµν is the matrix inverse of the metric tensor (3.2),
√
−g = |det(gµν)|1/2

is the spacetime volume measure, T̂µν(x) is the stress-energy tensor operator of the
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phonons (here x is a short-hand for the (3 + 1)-spacetime variable and the Einstein

summation convention is in use) and ξµν(x) is a stochastic tensor field, describing

its fluctuations around the average 〈T̂µν(x)〉. That is, the statistics of the Gaussian

noise with zero average is determined by the correlator

〈ξµν(x)ξµ′ν′(x
′)〉 =

1

2

〈{
t̂µν(x), t̂µ′ν′(x

′)
}〉
,

where t̂µν(x) = T̂µν(x) − 〈T̂µν(x)〉 and {·, ·} is the anti-commutator. The averages

here are calculated relative to a deterministic background. What these equations

actually describe are fluctuations in the superfluid, e.g. they yield statistics of

density and velocity fluctuations, which in turn determine a stochastic metric. In

this sense, there is a strong similarity to the stochastic Einstein equations discussed

n the context of stochastic gravity [49,104].

While these stochastic Einstein equations are interesting in and of themselves,

their derivation presents a technical challenge (a non-trivial generalization of the

non-equilibrium Keldysh techniques for a curved spacetime is required) [48] and

gives rise to a number of additional interesting results along the way, as discussed

below. This chapter is structured as follows:

In Sec. 3.2, we discuss the applicability of the metric description of a superfluid

by analyzing the relevant length and energy scales. In analogy with cosmology, the

geometric description breaks down at an effective “Planck energy,” where both the

linear dispersion of phonons and the hydrodynamic description break down.

In Sec. 3.3, we use the background field formalism to write down the Keldysh

quantum field theory of quasiparticles. We emphasize that the Keldysh description

46



is necessary for taking the dynamical fluctuations of the phonon field into account.

In Sec. 3.4, we derive the analogous Einstein equation that governs the back-

ground and the excitations – “matter field.” We establish equivalence of the ana-

logue Einstein equation and the covariant conservation law for the phonons to the

two-fluid conservation laws of Landau and Khalatnikov. We prove the equivalence of

the two descriptions by reducing the covariant conservation law down to the Noether

current of the two-fluid system by using the equations of motion. In Appendix B,

we provide the technical details of this derivation.

In Sec. 3.5, we take the analogy between the superfluid system and general

relativity further to the domain of stochastic fluctuations. We write the response

and dissipation kernels in the covariant language, and give the details of this in

Appendix C. In global thermal equilibrium, we discuss the notion of temperature

on curved spacetime. We prove the fluctuation dissipation relation for a metric with

globally time-like Killing vectors, that is for a flow that can brought to a stationary

form after a Galilean transformation.

Finally in Sec. 3.6, we linearize the stochastic analogue Einstein equation and

obtain a Langevin-type equation for the stochastic corrections to the background.

We show that the symmetries of the flow determine the structure of the Langevin

equation, by considering the Minkowski case.

Throughout this chapter, we will use the Einstein summation convention for

the indices, unless otherwise stated. The spacetime indices are in lower case Greek

letters while the space indices are in lower case Latin letters. We use the sign

convention (+ − −−). In addition, the fluid dynamics equations are written in
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terms of Cartesian tensors, where there is no distinction between covariant and

contravariant tensors.

3.2 The model and energy scales

In this section, we review the energy scales involved in the analysis of an

interacting system of bosons and its excitations. The analogue“general relativistic”

description is an approximation to the exact theory and its applicability is controlled

by our ability, or lack thereof, to neglect a quantum pressure term discussed below.

The main conclusion of this section is that the stronger the repulsive interactions

between bosons composing the superfluid, the less important the quantum pressure

term and correspondingly the wider the domain of applicability of the general-

relativistic approximation (in the sense of a range of energies and length-scales

where the description applies). We discuss these “Planck” energy and length-scales

below.

Our starting point is just the standard Lagrangian of interacting bosons

L [Φ,Φ∗] = Φ∗i~∂tΦ−
~2

2m
|∇Φ|2 − ε

(
|Φ|2

)
, (3.4)

where Φ(~r, t) ≡ Φ(x) is the boson field, m is the mass of a boson, and the energy

ε(|Φ|2) describes an external potential and density-density repulsion between the

bosons. Though, at this stage we do not specify the external potential and inter-

action potential between bosons, for ε = g
2
|Φ|4 + V |Φ|2, the saddle point of this

Lagrangian, satisfies the Gross-Pitaevskii or non-linear Schrödinger equation:

i~∂tΦ = − ~2

2m
∇2Φ + V (~r, t)Φ + g|Φ|2Φ. (3.5)
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The first step in deriving the hydrodynamic theory is the Madelung transformation

of the boson field [105], which is a change of variables to polar coordinates in each

point of spacetime:

Φ(x) =

√
ρ(x)

m
eimθ(x)/~. (3.6)

The new variables are the density, ρ, and the phase θ, which in effect is a “flow

potential” for the superfluid, that gives rise to the irrotational flow velocity field

~v = ∇θ.

In terms of these variables, the Lagrangian (3.4) takes the form

−L = ρ∂tθ +
1

2
ρ~v2 + ε(ρ) +

1

8

(
~
m

∇ρ
√
ρ

)2

︸ ︷︷ ︸
“quantum pressure”

. (3.7)

Classically, the long-wavelength description of this system in local thermo-

dynamic equilibrium is fluid dynamics. This description can be extended to the

quantum regime, where a macroscopic order exists as in the case of a condensate.

This macroscopic order is a non-trivial vacuum that solves the mean field fluid equa-

tion Eq. (3.8), which is just the Gross-Pitaevskii equation Eq. (3.5) in the Madelung

parametrization:

∂tρ+∇ · (ρ~v) = 0, (3.8a)

∂tθ +
1

2
~v2 +

∂ε

∂ρ
=

1

2

~2

m2

1
√
ρ
∇2√ρ. (3.8b)

These are the Euler equations for an ideal, zero entropy fluid, with an additional

energy per unit mass appears in the right-hand side of Eq. (3.8b) due to the quan-

tum potential term ∼ (∇√ρ)2 in Eq. (3.7). Together with the continuity equation
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Eq. (3.8a), the gradient of (3.8b), when multiplied by the density ρ, produces a

momentum balance equation. In this equation, the quantum potential leads to a

pressure gradient, hence this potential is called “quantum pressure” in Eq. (3.7).

The excitations over this non-trivial vacuum state are the Bogoluibov quasi-

particles. These quasiparticles can be thought of a quantum field propagating on top

of the ground state manifold. When treated semiclassically, the quasiparticles con-

stitute sources to the hydrodynamic equations (3.8), in the spirit of the two-fluid

hydrodynamics. Moreover, the entropy-carrying quasiparticle quantum field acts

as a bath on the background system. In addition to momentum and energy flux

and stresses, the quantum bath creates a noise to the evolution of the background,

leading to a stochastic Langevin component.

We now show, by analyzing the appropriate scales, that when the repulsive

interactions between the bosons are strong, the quantum pressure term is suppressed.

Such a fluid is the basis of the gravitational analogy, as it simulates the spacetime

on which the matter field – that is, the phonon field – propagates [93,96].

If we momentarily ignore the quantum pressure proportional to ∇√ρ, we get

the Lagrangian density of a vortex free perfect fluid with flow velocity ~v = ∇θ. The

excitations of this system are obtained by linearizing the equations of motion and are

the sound waves with speed c2 = ρd2ε/dρ2 at equilibrium density. When quantized,

the excitations have the linear spectrum Ep = ~ck. Therefore, the dimensional

parameters characterizing the vortex free quantum hydrodynamics are the Planck

constant, ~, the equilibrium density ρe, and the equilibrium speed of sound, ce. The

relevant energy scale of this theory is EQ = (~3c5
eρe)

1/4. Since the energy density
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is ∼ ρec
2
e, the characteristic length scale is dQ = (ρece/~)−1/4. Therefore, the mass

scale is ρed
3
Q = MQ = (ρe~3/c3

e)
1/4 and the time-scale is tQ = dQ/ce = (ρec

5
e/~)−1/4.

With the addition of the quantum pressure term, the spectrum of Bogoliubov

phonons receives a correction as Ep = ~cek
√

1 + ~2k2/(4m2c2
e). Therefore the linear

spectrum of phonons breaks down at a length scale of ξ = ~/(mce), this is the

coherence length of the condensate. At this scale, the phonon energy is of order

ELorentz = mc2, which can be dubbed the Lorentz violation energy (i.e., where the

phonon spectrum deviates from the linear dispersion). Note that, Lorentz violations

do not necessarily occur at exactly the inter atomic length scale d and thus ELorentz

is generally distinct from the “Planck” energy scale EPlanck = ~ce/d – that is the

energy required to resolve the individual atoms separated by a distance d (at such

length-scales the hydrodynamic description becomes meaningless). Indeed, the ratio

of the coherence length to the inter atomic distance is determined by the strength

of the atomic interactions. Defining g0 = ~2d/m3, and setting gρ2
e = ε(ρe) = ρec

2
e,

we get (ξ/d)2 = g0/g. In summary the relationships between different scales can be

written in terms of the normalized strength of interactions g0/g as:

EPlanck
ELorentz

=
ξ

d
=

√
g0

g
=

(
MQ

m

)4/3

. (3.9)

This ratio determines the relative importance of the quantum pressure term

compared to the interaction energy. The corresponding ratio is (below, L is a length-

scale on which the density changes):

( ~
m
∇√ρ

)2

ε(ρ)
∼ ~2

gm2ρL2
∼ ξ2

L2
.
ξ2

d2
=
g0

g
.
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In the weak interaction limit, as in a dilute Bose gas, the coherence length ξ and

the quantum mass scale MQ are large compared to microscopic counterparts d and

m. This signals that the system behaves like a macroscopic quantum object, hence

the condensate fraction is closed to unity. In this regime, Lorentz violation occurs

much before the interatomic scales are reached and the excitations are Bogoluibov

quasiparticles with the non-linear spectrum. In the strong interaction regime, as in

Helium-II or a strongly interacting BEC, the condensate fraction is small, however

the Lagrangian (3.7) is still valid, as it produces correct equations for a zero entropy

dissipationless classical fluid. In this regime, the quantum pressure is negligible

down to the ξ ∼ d scale. This means that the collective excitations are sound

waves all the way up to the effective Planck energy. Therefore, geometric theory of

analogue gravity for the covariant sound waves, that we will summarize in the next

section, applies as long as we stay in the hydrodynamic regime, that is to say at

length scales larger than the inter atomic distance.

3.3 Background field formalism on the Keldysh contour for Bogoli-

ubov quasiparticles

Here, we outline a procedure to extract a field theory of the excitations starting

from Eq. (3.7). We show that an effective curvature and covariance emerge when the

amplitude modes of the excitations are integrated out. Finally, we obtain an effective

action for the superfluid system and the phonon bath. Unless noted otherwise, we
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Figure 3.1: The Keldysh contour and its forward/backward branches
labeled by the path index s = ±: Each degree of freedom and the
associated sources are defined twice, one on each branch. The values are
matched at tf , for example ρ+

f = ρ−f .

use the units, where

~ = ce = kB = 1. (3.10)

We employ the closed-time path integral or the Keldysh functional integral [43–

46] and the background field formalism [106, 107] to separate the superfluid back-

ground and the quantum field theory of excitations. Note that the procedure, out-

lined below in Eqs. (3.11) – (3.27) is completely general and does not rely on a

particular form of the initial action, but we will apply it specifically to the super-

fluid Lagrangian (3.7).

Generally, given an initial density matrix %̂(ti) and the evolution operator Ût′,t

that takes the system from t to t′, the density matrix at any point in time t is

%̂(t) = Ût,ti%̂(ti)Ûti,t. (3.11)

Suppose Ô is an observable. In the Schrödinger picture, the expectation value of

this operator at time t is

〈O(t)〉 = Tr [O%̂(t)] . (3.12)
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In the Keldysh formalism, the time contour is made up of two branches that

start at an early time ti and meet at tf as shown in Fig 3.1. Each degree of freedom

in the system is defined twice, one on the forward and one on the backward branch of

the time contour labeled by ± respectively. The values of all variables are matched

at the final point tf where the branches meet. The observable can be coupled to

the system via the source currents J±(~r, t) that are added to the Hamiltonian Ĥ →

Ĥ + J±Ô. The forward/backward evolution operators associated with the modified

Hamiltonian are denoted as Û (J±). Then the forward/backward expectation values

of the observable can be obtained from the following generating function

Z [J±] = Tr
[
Ûti,tf (J

−)Ûtf ,ti(J
+)%̂(ti)

]
, (3.13)

by differentiating it with respect to the forward/backward source currents J±

〈
O±(t)

〉
= ±i δ

δJ±(t)
Z [J±]

∣∣∣∣
J±=0

. (3.14)

Note that, if we set J+ = J− from the outset, the forward/backward evolution

operators cancel due to unitarity and

Z [ ~J+ = ~J−] = Tr %̂(ti) = 1. (3.15)

This means taking the logarithm of the generating function as in ordinary field

theory, is redundant in Keldysh theory.

The generating function Eq. (3.13) for the boson system in Eq. (3.7) can be

written as a closed time path integral as [15, 47]:

Z [J±ρ , J
±
θ ] =

∫
D [θ±, ρ±]%

(
ρ±i , θ

±
i

)
×exp

[
i
∑
C=±

C

∫
dxL (ρC , θC) + JCρ ρ

C + JCθ θ
C

]
.

(3.16)

54



where dx ≡ dtd3r, the sum goes over the upper and lower Keldysh contours, the

factor C is (±1) for the upper/lower contour.

The simplest observables are the mean fields, that is the expectation values of

the fields. Writing

Z [J±ρ , J
±
θ ] = eiW [J±ρ ,J

±
θ ], (3.17)

the mean fields are generated by using Eq. (3.14) and Eq. (3.15)

ρ±0 := 〈ρ±〉 = ± δW
δJ±ρ

∣∣∣∣
J±ρ =0

and θ±0 := 〈θ±〉 = ± δW
δJ±θ

∣∣∣∣
J±θ =0

. (3.18a)

Now, we can separate the system into a classical background and quantum

excitations around it as follows. Suppose that the mean fields are given. Then one

can express the sources in terms of the mean fields by constructing the effective

action, that is the Legendre transform

Γ[ρ±0 , θ
±
0 ] = W [J±ρ , J

±
θ ]−

∑
C=±

C

∫
dx
(
JCρ ρ

C
0 + JCθ θ

C
0

)
. (3.19)

Now, the sources can be expressed as

δΓ

δρ±0
= ∓J±ρ and

δΓ

δθ±0
= ∓J±θ . (3.20a)

Exponentiating the effective action and using (3.19) one can eliminate the sources

in (3.16) in favor of the mean fields. If we define the deviations from the mean fields:

ρ̃± = ρ± − ρ±0 , (3.21a)

φ± = θ± − θ±0 , (3.21b)
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we can write the following integral equation for the effective action

eiΓ[J±ρ ,J
±
θ ] =

∫
D [θ±, ρ±]%

(
ρ±i , θ

±
i

)
×exp

[
i
∑
C=±

C

∫
dxL (ρC , θC)− δΓ

δρC0
ρ̃C − δΓ

δθC0
φC

]
.

(3.22)

The effective action, Γ, can be solved for iteratively and be expressed as a series

(we restore the Planck constant below to emphasize the semiclassical nature of the

expansion)

Γ = Γ0 + ~Γph + ~2Γ2 + . . . (3.23)

the classical action

S[ρ±, θ±] =

∫
dxL (ρ±, θ±), (3.24)

being the zeroth term:

Γ0 = S[ρ+
0 , θ

+
0 ]− S[ρ−0 , θ

−
0 ]. (3.25)

In this work we consider only the first order or one-loop correction Γph to the classical

action. This correction encapsulates the quantum field of Bogoluibov quasiparticles

over the background, that become phonons at long wavelengths (hence we use the

subscript ph, a shorthand for “phonon” corresponding to the first loop correction).

We substitute the lowest-order expression( 3.25) into Γ’s on the right hand

side of Eq. (3.22). On the left-hand side, we substitute Γ0 + Γph, where Γph is an

unknown. Expanding S around ρ0 and θ0, and matching the terms in the equation,

we find the phonon effective action Γph i.e. the leading-order correction in ρ̃ and φ

to Γ. Defining

%̃
(
ρ̃±i , φ

±
i

)
= %

(
ρ±i − ρ±0 , θ±i − θ±0

)
,
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we write

eiΓph[ρ±0 ,θ
±
0 ] =

∫
D [ρ̃±, φ±]%̃

(
ρ̃±i , φ

±
i

)
× exp

{
i
∑
C=±

C

∫
dxL C(2)(ρ̃C , φC)

}
, (3.26)

where the L 2, depends on the path index C = ± not only through its arguments

but explicitly as

L ±(2)(ρ̃, θ) = (ρ̃, φ) · δ2L

δ2(ρ, θ)

∣∣∣∣
ρ±0 ,θ

±
0

· (ρ̃, φ) (3.27)

in multi-index notation. So far, the results are completely general. Now we use the

explicit Lagrangian (3.7) and obtain the phonon effective Lagrangian, L (2). After

suppressing the time-path index C = ±, it is

−L (2) = ρ̃(∂t + ~v0 · ∇)φ+
1

2
ρ̃

(
c2

0

ρ0

+ K̂Q

)
ρ̃+

1

2
ρ0(∇φ)2, (3.28)

where we defined the “quantum pressure” operator,

K̂Q =
1

4m2

[
(∇ρ0)2

ρ3
0

− ∇ρ0

ρ2
0

· ∇ − ∇
2

ρ0

]
. (3.29)

3.3.1 Covariant phonon action

The one-loop correction can be computed exactly in the strong interaction

limit, as the path integral reduces to a Gaussian integral. As noted in Sec. 3.2, at

energy scales below ELorentz, the operator K̂Q in (3.28), that results from quantum

pressure, can be neglected compared with the term c2
0/ρ0. This yields the following

Lagrangian

L (2)

K̂Q→0
→ −ρ̃Dtφ−

1

2
ρ̃

(
c2

0

ρ0

)
ρ̃− 1

2
ρ0(∇φ)2, (3.30)

where we defined the material derivative

Dtφ = ∂tφ+ ~v0 · ∇φ.
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Now, the density fluctuations, ρ̃, can be integrated out. To do the path integral

over ρ̃, we can think of spacetime as divided into cubes with volume ξ4/ce and

discretize the integral. Note that the integrand is a diagonal matrix over spacetime

and the path integral reduces to a product of Gaussian integrals. At this point, we

shorten the notations for the mean-field parameters ρ0, θ0 and ~v0, writing them as

simply ρ, θ and ~v for the sake of brevity. If we define the density matrix as

%φ
(
φ+
i , φ

−
i

)
= %̃

( ρ
c2
Dtφ

+
i , φ

+
i ;

ρ

c2
Dtφ

−
i , φ

−
i

)
, (3.31)

integrating out the ρ̃ field produces:

Zph = eiΓph[ρ±,θ±] =

∫
D ′[φ±]%φe

i(S+
ph[φ+]−S−ph[φ−]). (3.32)

with the measure of the path integral being, again suppressing the ± signs,

D ′[φ] =
∏

dφ

√
ρ

2πc2
, (3.33a)

and the following covariant action for phonons

Sph =
1

2

∫
dt d3x

ρ

c2

[
(Dtφ)2 − c2 (∇φ)2] . (3.34)

This action can also be obtained through a classical treatment of the La-

grangian Eq. (3.7) [89]. The material derivative Dtφ = ∂tφ+ ~v · ∇φ is the measure

of the time rate of change of φ in a frame comoving with the fluid. This means

the action in Eq. (3.34) describes non-dispersive waves with speed c in the fluid

comoving frame. Galilean invariance of the fluid system requires that the sound

wave velocity ~u = d~x/dt in the lab frame satisfy (~u−~v) = c2. This means the sound

rays with velocity with d~x/dt = ~u are null rays on the manifold with line element
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ds2 = −ρ
c

[−(c2 − v2)dt2 − 2~v · ~dxdt+ ~dx · ~dx]. (3.35)

This is the line element for any analogue gravity system with background

Galilean symmetry up to a conformal factor, for which the choice of ρ/c allows us

to write the phonon action of Eq (3.34) in the following suggestive form [88,89]

Sph =
1

2

∫
d4x
√
−ggµν∂µφ∂νφ. (3.36)

Here, the metric can be read off from the line element Eq. (3.35) by writing ds2 =

gµνdx
µdxν as

gµν =
ρ

c

c2 − v2 ~vT

~v −I3×3

 , (3.37)

here (+−−−) convention is used.

The volume measure factor turns out to be
√
−g = ρ2/c . At static equilibrium

the line element Eq. (3.35) is that of Minkowski space.

The measure in Eq. (3.33) is written as

D ′[φ] =
∏
x

(g00)1/2︸ ︷︷ ︸
“anomaly”

(−g)1/4dφ. (3.38)

We note that this measure is manifestly non-covariant due to the coordinate depen-

dent factor g00. For a field in curved spacetime the covariant measure ought to be

(−g)1/4 [108,109]. This means, although the phonon action Eq. (3.34) is covariant,

the path integral is not, leading to a quantum anomaly. We will come back to this

issue in Sec. 3.4.3 where we derive the conservation law of the stress tensor.

59



Figure 3.2: The Keldysh contour for the phonon field. The metric tensor
depends on the background variables ρ±0 and θ±0 and therefore is also
defined twice.

Before going into obtaining equations of motion from the effective action of

the Keldysh field theory, it is worthwhile to list a number of properties that Keldysh

theory obeys. We draw Fig. 3.2 to show the forward/backward fields and sources

of the phonon field. We identified Eq. (3.32) with the closed-time-path partition

function of phonons Zph. The first order correction Γph to the classical action is

then given as:

Γph = −i logZph[g
+, g−]. (3.39)

As a consequence of unitarity, similar to Eq.(3.15),

Zph[g
± = g] = 1, (3.40)

i.e. when the background is the same on the forward and backward directions,

the product of backward and forward evolution operators is unitary. Also, from

Eq. (3.32),

Zph[g
+, g−; J+, J−] = (Zph[g

−, g+; J−φ , J
+
φ ])∗, (3.41)

where J±φ are additional sources attached in order to compute expectation values of
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φ. It follows from Eq. (3.40) and Eq. (3.41) that the effective action satisfies

Γph[g, g] = 0, (3.42a)

Γph[g
+, g−] = −Γ∗ph[g

−, g+]. (3.42b)

These properties are handy while computing the Keldysh correlation functions.

3.4 Analogue Einstein equations and two-fluid hydrodynamics

In general relativity, the relationship between matter and spacetime curvature

is governed by the Einstein’s equation. Being covariant under coordinate transfor-

mations, the matter field obeys the covariant conservation law. However, this is

not a total conservation law, as there is energy momentum exchange between fields

and the spacetime curvature. There are pseudo-tensor constructions like Einstein

pseudotensor or the Landau-Lifshitz pseudotensor that quantify the stress energy

of the gravitational field [110,111]. These pseudo-tensors, when added to the stress

tensor of matter, become a totally conserved quantity.

In this section, in analogy with general relativity, we will start with the first

loop effective action

Γ = S[ρ+, θ+]− S[ρ−, θ−]− i logZph[g
±], (3.43)

where the metric g± is a functional of ρ± and θ± according to Eq. (3.2). The ef-

fective action Eq. (3.43), albeit without using the Keldysh contour, is considered

to compute backreaction corrections to acoustic black holes where the quantum ef-

fects, i.e. Hawking radiation, is important. [112] Unlike Ref. [112], in this chapter,

61



we explicitly integrated out the phonons through methods discussed in Sec. 3.3.

First, this approach revealed the anomalous measure in Eq. (3.38). Secondly, the

controlled series Eq. (3.23), produces higher order loop corrections. The contribu-

tion of these higher loops to the backreaction, especially near the horizon; where

the acoustic approximation becomes less accurate, and the interplay between the

Hawking radiation and covariance anomaly are interesting problems. However, all

of these are subleading corrections at first order. Therefore we will not address these

problems. Moreover, for the sake of computing the stochastic corrections, we extend

the effective action by using the Keldysh formalism.

We will first write the stress-energy tensor for the covariant phonons starting

from the effective action Eq. (3.19). Then we will write down an analogue Einstein

equation that describes the evolution of metric tensor (3.2) due to the stress-energy

of phonons, which play the part of matter. To complete the analogy, we will derive

a total conservation law by using the covariant conservation law and the analogue

Einstein’s equation. Moreover, we will show that the conserved quantity is a canon-

ical Noether current and therefore describes the total conservation of momentum

and energy in the lab frame. This means two fluid hydrodynamics directly follows

from the analogue gravity formalism.
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3.4.1 Hilbert stress-energy operator of the covariant phonon field

The expectation value of the stress-energy operator can be defined by using

Schwinger’s variational principle [113] as

〈
T̂µν

〉
= −i 2√

−g
δ logZph
δ(g+)µν

∣∣∣∣
g+=g−

=
2√
−g

δΓph
δ(g+)µν

∣∣∣∣
g+=g−

. (3.44)

Then, the stress-energy operator is defined (symmetrized for convenience) as

T̂µν(x) =
1

2
{∂µφ̂(x), ∂νφ̂(x)} − 1

2
gµν∂

αφ̂(x)∂αφ̂(x). (3.45)

This expression is problematic because it contains a product of field operators at

the same spacetime point and generally leads to divergences. These can be cured

through a variety of regularization and renormalization schemes [113]. One of these

methods is called point splitting where the field operators are taken on different

spacetime points, and the limit of coincidence is taken after performing derivatives

and averages. In semiclassical gravity diverging quantities are renormalized into

coupling constants in Einstein’s equation [49,113].

Physically, the zero point quantum fluctuations that add up to an infinite vac-

uum energy. In the strongly interacting analoguesystem, the divergent quantities

are believed to be already accounted for in the background as a part of the internal

energy of the fluid [93]. This ensures the stability of the liquid droplets, by renor-

malizing the equilibrium pressure to zero. Recently, the role of zero point energy

in the formation of stable macroscopic droplets in strongly interacting BEC’s was

investigated both theoretically [114] and experimentally [115]. Therefore, assuming

that the vacuum energy is already renormalized into the background energy, we will
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formally discard the divergent piece of the stress-energy expectation value. Note

that, in field theory on flat spacetime, the divergence is tacitly discarded through

the normal ordering of operators.

Let 〈T̂µν(x)〉div represent the divergent piece in the expectation value for the

stress-energy operator. Throughout this chapter we will refer to the renormalized

stress-energy as:

〈
T̂µν(x)

〉
=

1

2

(
δαµδ

β
ν + δαν δ

β
µ − gµνgαβ

)
×

lim
x′,x′′→x

∂

∂x′α
∂

∂x′′β

〈
Tφ̂(x′)φ̂(x′′)

〉
−
〈
T̂µν(x)

〉
div
. (3.46)

where T is the time ordering operator. The time ordered correlation function is

equivalent to the forward-forward correlation function of the Keldysh theory [47]

〈
Tφ̂(x′)φ̂(x′′)

〉
=
〈
φ̂+(x′)φ̂+(x′′)

〉
=

δ2Zph[J
+, J−]

δJ+(x′)δJ+(x′′)

∣∣∣∣
J+=J−=0

. (3.47)

3.4.2 Semiclassical analogue Einstein equations and the “phonon mat-

ter”

Having defined the stress tensor of the matter field (phonons), we now write

down the equations of motion for the superfluid and the phonons and argue that it

is analogous to the semi-classical Einstein’s equation.

After dropping the quantum pressure, and using Eq. (3.44), the Euler-Lagrange

equations that follow from the effective action Eq. (3.43) in the limit (ρ±, θ±)→ (ρ,
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θ) are the fluid equations of motion Eq. (3.8) with semiclassical source terms

∂tρ+∇ · (ρ~v) =
1

2
∇ ·
(√
−g
〈
T̂µν

〉 δgµν
δ~v

)
, (3.48a)

∂tθ +
1

2
v2 + µ(ρ) =

1

2

(√
−g
〈
T̂µν

〉 δgµν
δρ

)
. (3.48b)

Here µ(ρ) = ∂ε/∂ρ is the local chemical potential for the superfluid.

Given the initial density operator of phonons and initial values and boundary

conditions for the background fields ρ and θ, one can compute the metric everywhere

by solving Eq. (3.48) and plugging the solutions into the definition Eq. (3.2). The

source terms on the right hand side must be self-consistent with this solution, as the

metric appears both explicitly in (3.48) and also inside the definition of the stress

tensor in Eq. (3.46). This is because the metric tensor determines how the sound

field propagates, classically expressed as Eq. (3.1). In this respect, the Eqs. (3.48)

resembles Einstein’s equations where the Eulerian left hand sides provide dynamics

to the metric tensor and are analogous to the Einstein tensor and the stress-tensor

corresponds to the matter whose motion is dictated by the curvature.

3.4.3 Canonical versus covariant conserved currents

Here, we show that the covariant conservation law and the analogue Einstein

equations Eq. (3.48) leads to a canonical conservation law for energy-momentum.

Classically, the stress tensor in Eq. (3.44), obeys the covariant conservation

law

∇µT
µ
ν = ∂µT

µ
ν + T θν Γµθµ − T

µ
θ Γθµν = 0, (3.49)

owing to the fact that it is derived from the effective action [113], where ∇µ denotes
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the covariant derivative. Writing the definitions of Christoffel symbols Eq. (B.1) in

terms of the metric and using Eq. (B.2) and Eq. (B.3), we get:

∇µT
µ
ν =

1√
−g

∂µ
(
T µν
√
−g
)

+
1

2
Tαβ ∂νg

αβ = 0. (3.50)

The partial derivative is streamlined with comma notation whenever convenient,

i.e. for any quantity A, ∂µA = A,µ. The Lagrangian density for phonons can be

extracted from Eq. (3.36) as

Lph =
1

2

√
−ggµν∂µφ∂νφ. (3.51)

Then the first term in Eq. (3.50) is related to the canonical stress tensor of phonons,

and by inspecting the classical version of the Hilbert stress-energy tensor Eq. (3.45),

it can be written as

√
−gT µν =

∂Lph

∂φ,µ
φ,ν −Lphδ

µ
ν . (3.52)

By using the chain rule and the definition Eq. (3.44), the second piece in Eq. (3.50)

reduces to

1

2

√
−gTαβ ∂νgαβ =

∂Lph

∂θ,µ
θ,µν +

∂Lph

∂ρ
ρ,ν . (3.53)

Let Lcl denote the Lagrangian density of the background after the quantum

pressure term is dropped

−Lcl = ρ∂tθ +
1

2
ρ~v2 + ε(ρ). (3.54)

By using the equations of motion Eq. (3.48), in the Euler-Lagrange form, as shown

in Appendix B write can write Eq. (3.50) as the conservation of the following current

Tµν =
∂Lph

∂φ,µ
φ,ν +

∂(Lph + Lcl)

∂θ,µ
θ,ν − (Lph + Lcl) δ

µ
ν . (3.55)
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If we define the total Lagrangian of the background-phonon composite system

Lsys = Lcl + Lph,

and noticing that ∂Lcl/∂ρ,µ and ∂Lcl/∂φ,µ both vanish, T in Eq. (3.55) is is precisely

the conserved Noether current

Tµν =
∂Lsys

∂(ρ, θ, φ),µ
· (ρ, θ, φ),ν −Lsysδ

µ
ν .

due to the spacetime translation invariance of the overall system represented by the

effective action Eq. (3.43).

We define T , the stress energy tensor of the analoguegravitational field as

√
−gT µν =

∂(Lph + Lcl)

∂θ,µ
θ,ν −Lclδ

µ
ν . (3.56)

This expression generates the familiar energ and momentum density in the back-

ground. For example the energy density of the background in the laboratory frame

follows from Eq. (3.56) as

√
−gT 0

0 =
1

2
ρ~v2 + ε(ρ). (3.57)

Similarly, the laboratory frame momentum density of the background follows from

Eq. (3.56) as

√
−gT 0

i = −ρvi. (3.58)

The Noether current Eq. (3.55) can be written as the current due to the

background and the excitations as Eq. (3.49) as the

Tµν =
√
−gT µν +

√
−gT µν . (3.59)
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This means the mixed canonical stress tensor of the excitations correspond to energy-

momentum corrections due to excitations in the laboratory frame.

However, because of the covariance anomaly of the quantum phonon field that

manifests itself in the path integral measure Eq. (3.38), the covaraint derivative of

the expectation value of the quantum stress operator must be equal to an anomalous

current, i.e. ∇µ〈T̂ µν 〉 = Janomν . Furthermore this current should be Galilean covari-

ant due to the overall Galilean invariance of the system. This is the second type of

anomaly in the analogue gravity system, the first being the trace anomaly due to

Hawking radiation, which occurs when there is a sonic horizon in the system [94].

In this work we assume that no sonic horizon exists and that the quantum pressure

term is weak everywhere. We defer the rigorous analysis and computation of the

anomalous current to another publication. Since anomalies are necessarily quantum

effects, in the regimes we work, they should be washed out by thermal contributions.

Then for the expectation

Tµν =
√
−g
〈
T̂ µν

〉
+
√
−g
〈
T µν [φ̂]

〉
, (3.60)

the conservation law

∂µT
µ
ν = 0 (3.61)

holds. In the next section we rewrite Eq. (3.61) and Eq. (3.48) in the two-fluid

variables.
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3.4.4 Mass-energy-momentum balance and the covariant conserva-

tion of stress-energy operator

In this section, we complete the connection of the analogue Einstein equation

Eq. (3.48) and the covariant conservation law Eq. (3.50) and two-fluid hydrodynam-

ics by identifying the normal and superfluid components in terms of the background

fields and the stress tensor.

Inspecting the conservation law Eq. (3.60) that we derived in Sec. 3.4.3, we

define the momentum density ~P , energy density E and energy flux ~Q due to phonons,

in the lab frame

Pi : = −
√
−g
〈
T̂ 0

i

〉
, (3.62a)

E : =
√
−g
〈
T̂ 0

0

〉
, (3.62b)

Qi : =
√
−g
〈
T̂ i0

〉
. (3.62c)

Here, the quantities on the left hand side are momentum density, momentum flux

tensor and energy density. Being Cartesian tensors, their indices are uppered/lowered

by using the Kronecker delta function. By Galilean transforming the quantities on

the right hand side according to the usual tensor transformation rules, we observe

that Pi is Galilean invariant while E and Qi are not.

We define the following symmetric, Galilean invariant, Cartesian momentum

flux tensor

πij :=
c

ρ

√
−g
〈
T̂ij

〉
=
c

ρ

√
−g
〈
T̂ µj

〉
giµ. (3.63)

By using the expression for the metric Eq. (3.2) and the definitions in Eq. (3.62),
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the mixed momentum flux tensor due to phonons is

−
√
−g
〈
T̂ ij

〉
= πij + Pjv

s
i , (3.64)

The equations of two fluid hydrodynamics are conservation laws for the den-

sity, momentum and energy for the superfluid and normal components of the system

denoted by the superscripts s and n respectively. We make the following identifica-

tion of velocity and density in Eq. (3.48) as the velocity of the superfluid component

and the total density (i.e. superfluid plus normal)respectively.

~v := ~vs, (3.65a)

ρ := ρs + ρn. (3.65b)

Consequently, ~vs = ∇θ.

Now, we identify the analogue Einstein equations Eq. (3.48) as mass conser-

vation and superflow equations respectively, by writing the phonon contribution in

terms of energy and momenta defined in Eq. (3.62).

The inverse metric in Eq. (3.48) follows from Eq. (3.2) as

gµν =
1

ρc

 1 ~vTs

~vs −c2I3×3 + ~vs~v
T
s

 . (3.66)

If A is any tensor with two covariant indices contracted and κ = ∂ ln c/∂ ln ρ

characterizes the logarithmic derivative of the energy of a linearly dispersing sound

wave with respect to the density of the medium, then the derivative of the metric
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Eq. (3.66) obeys the following rules

δgµν

δρ
A ...
µν... =

1

ρ
(κ− 1)Aµ ...

µ... − 2κcA00 ...
... , (3.67a)

δgµν

δvis
A ...
µν... = A0 ...

i... + A 0 ...
i ... . (3.67b)

The source current can be written as quasi-particle momentum by making the

identification

− 1

2

√
−g
〈
T̂µν

〉 δgµν
δ~vs

= −
√
−g
〈
T̂ 0

i

〉
= Pi. (3.68)

Then the first analogue Einstein equation Eq. (3.48a) is recast as the continuity

equation for mass

∂tρ+∇ · (ρ~vs + ~P ) = 0. (3.69)

The source term in Eq. (3.48b) reads

1

2

√
−g
〈
T̂µν

〉 δgµν
δρ

=

√
−g

2ρ
[κ− 1]

〈
T̂ µµ

〉
anom

− κ

ρ
ρc
√
−g
〈
T̂ 00
〉

:= −κ
ρ

[E − ~vs · ~P ] = −κ
ρ
E0 = −∂E0

∂ρ
. (3.70)

Here, the trace of the stress-operator is zero in the absence of an acoustic horizon

where the Hawking radiation creates a trace anomaly. The frame shifted E0, by

virtue of its tensorial expression being manifestly Galilean invariant, is the comoving

frame energy density of quasiparticles. In these variables the Bernoulli Eq. (3.48b)

takes its familiar form

∂tθ +
1

2
v2
s + µ(ρ) +

∂E0

∂ρ
= 0. (3.71)

A corrolary of this equation is that the classical Lagrangian L of the background is

related to the isotropic pressure in the system

Lcl = −ρ∂tθ − ρ
1

2
v2
s − ε(ρ) = [ρµ(ρ)− ε(ρ)] + ρ

∂E0

∂ρ
− E0 + E0 = p+ E0. (3.72)
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From Eq. (3.61), the momentum conservation equation reads

∂µT
µ
i = ∂tT

0
i + ∂jT

j
i = 0. (3.73)

Writing T as in Eq. (3.60), computing T according to Eq. (3.56) and using Eqs. (3.62),

Eq. (3.64) and Eq. (3.72) we get

∂t(ρvsi + Pi) + ∂j([ρvsi + Pi]vsj + Pjvsi + πij) + ∂i(p + E0) = 0. (3.74)

where repeated indices are summed.

Similarly, From Eq. (3.61), the energy conservation equation reads

∂µT
µ

0 = ∂tT
0
0 + ∂jT

j
0 = 0. (3.75)

Writing T as in Eq. (3.60), computing T according to Eq. (3.56) and using Eqs. (3.62)

and Eq. (3.71), we get

∂t

(
1

2
ρv2 + ε(ρ) + E

)
+ ∂i

(
Qi + [ρvsi + Pi]

[
1

2
v2
s + µ(ρ) + ∂E0/∂ρ

])
= 0 (3.76)

In summary, the analogue Einstein equation Eq. (3.48), the covariant conser-

vation law of stress tensor Eq. (3.49) and the consequent conservation law Eq. (3.61)

leads to the continuity of mass Eq. (3.69), Bernouilli equation Eq. (3.71) and the

conservation of momentum Eq. (3.74). If we define the current density ~J , energy

density E , momentum flux Π and the superfluid potential G as

Ji := ρvsi + Pi, (3.77a)

E :=
1

2
ρv2 + ε(ρ) + E, (3.77b)

Πij := ρvsivsj + Pivsj + Pjvsi + πij + [p+ E0]δij , (3.77c)

G :=
1

2
v2
s + µ(ρ) +

∂E0

∂ρ
. (3.77d)
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we rewrite Eq. (3.69), Eq. (3.74), Eq. (3.76) and Eq. (3.71) as the Landau- Khalat-

nikov equations for the superfluid

∂tρ+∇ · ~J = 0, (3.78a)

∂tJi +∇jΠij = 0, (3.78b)

∂tE +∇ · ( ~Q+ ~JG) = 0, (3.78c)

∂t~vs +∇G = 0. (3.78d)

The Eqs. (3.78a) and (3.78d) share the manifest Galilean invariance of Euler

equations, because the Pi and E0 are comoving frame momentum and energy of

phonons. The Galilean invariance of Eqs. (3.78b) and (3.78c) follow immediately,

because they are derived using the covariant conservation law Eq. (3.49), that is

valid in all frames, and the analogue Einstein equations, which in the two-fluid

language become Eqs. (3.78a) and (3.78d).

Finally, note that the dissipative effects due to the normal fluid are taken into

account in the heat flux ~Q and the momentum flux tensor πij. The dissipative

components of these tensors can be computed according to linear response theory

which we explain in the next section. In the limit ~vs → 0, the Eqs. (3.78) become

that of a normal fluid with ρ → ρn is the normal density and Pi → ρnvni defines

the velocity of normal component. Assuming Stoke’s constitutive law for stress, the

momentum balance equation (3.78b) becomes the Navier-Stokes equation.
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3.5 Stochastic analogue Einstein equations

Starting from the Lagrangian Eq. (3.7), we first derived the Euler equations

Eq. (3.8) for the background and then compute the phonon contribution and called

the overall system of equations the analogue Einstein (order one in metric pertur-

bation) equations Eq. (3.48).

In this section we will go to second order in the metric perturbations and

obtain dissipation and noise kernels due to phonons through a generalized linear

response method. We will write an effective stochastic action for phonons that cap-

ture this noise and derive the stochastic analogue Einstein equation. This equation

when linearized around a deterministic solution for the background fields ρ and θ,

describes the motion of the stochastic corrections to the solution. Finally we show

that in thermodynamic equilibrium the stochastic forcing term is balanced by the

dissipation, that is the fluctuation-dissipation relation holds.

3.5.1 Linear response and the covariant stress-energy correlator

To see the semi-classical expansion due to metric perturbations, we first define

the vector in time-path space composed of forward/backward metric tensors

~g =
(
g+µν(x), g−µν(x)

)
. (3.79)

Then the expansion of phonon effective action up to second order in metric pertur-

bations is

Γph =
δΓph
δ~g
· δ~g +

1

2
δ~g · δ

2Γph
δ~gδ~g

· δ~g +O(δ~g3). (3.80)
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Here the boldface symbol δ is for variation with respect to the element g+µν is

defined as

δΓ

δg+µν
=

1√
−g(x)

δΓ[g+(x), g−(x)]

δg+µν(x)

∣∣∣∣
g+=g−=g

, (3.81)

and the product of two time-path vectors (~A · ~B) sums over all path and tensor

indices and integrates over position by using the metric g+ = g− = g, namely,

~A · ~B =

∫
d4x
√
−g(x)

(
A+µν(x)B+

µν(x) + A−µν(x)B−µν(x)

)
. (3.82)

Using Eq. (3.40), (3.41) and (3.42), it follows that the first order variation of

the phonon effective action is

δΓph
δ~g

=
1

2

(
T ,−T

)
, (3.83)

where

T =
〈
T̂µν(x)

〉
. (3.84)

We define the deviations of the stress energy operator from its expectation

value

t̂µν(x) = T̂µν(x)−
〈
T̂µν(x)

〉
. (3.85)

Following Martin and Verdaguer [116] we define the local stress deviation K, the

causal response kernel H and the noise kernel N that are bi-tensors made of corre-

lators of t̂

Ĥµναβ(x, y) = −iθ(x0 − y0)
〈[
t̂µν(x), t̂αβ(y)

]〉
, (3.86a)

N̂µναβ(x, y) =
1

2

〈{
t̂µν(x), t̂αβ(y)

}〉
, (3.86b)

K̂µναβ(x, y) =
−4√

g(x)g(y)

〈
δ2Sph[φ̂]

δgµν(x)δgαβ(y)

〉
. (3.86c)
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These tensors are symmetric in the following way. If A is any of the above kernels

than

Aµναβ = Aνµαβ = Aµνβα (3.87)

In Eq. (3.86a), H is manifestly causal and HS,A are symmetric/anti-symmetric parts

of H respectively,

HS,A
µναβ(x, y) = ±HS,A

αβµν(y, x). (3.88)

and they are

ĤS
µναβ(x, y) = Im

〈
T∗
{
t̂µν(x)t̂αβ(y)

}〉
, (3.89a)

ĤA
µναβ(x, y) =

−i
2

〈[
t̂µν(x), t̂αβ(y)

]〉
. (3.89b)

As we show in the Appendix C, the second order variation is a matrix in

time-path space is

δ2Γph
δ~gδ~g

=
1

4

iN−HS −K −iN−HA

−iN + HA iN + HS + K

 . (3.90)

All of these kernels are real. HA, the anti-symmetric component of the causal

response function H, changes sign in Eq. (3.90) when the forward/backward branches

are switched. Therefore it breaks time-reversal symmetry and therefore gives rise

to dissipative effects.

3.5.2 Global thermal equilibrium and fluctuation dissipation relation

Here we show, at global thermal equilibrium, that the noise kernel N and the

dissipation kernel H are related in a stationary flow. For example, a flow through a
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tube with varying cross section, but constant in time for each point in the tube and

the temperature measured in the lab is uniform throughout the system.

The stationary flow with global thermal equilibrium is especially important

because in the analogue gravity language it maps onto a hot curved spacetime at

global thermal equilibrium. Such a space contains globally time-like Killing vectors

κµ. [113,117] The local temperature in the spacetime varies according to the norm

of the time-like Killing vector and is dictated by Tolman’s law:

TTol
√
gµνκµκν = constant. (3.91)

Once there are globally time-like Killing vectors, modes that solve the covariant wave

equation Eq. (3.1) are classified as positive/negative Killing frequencies according

to the value of their directional (Lie) derivative along the Killing vector, that is

Lκun = −iωnun, (3.92a)

Lκu
∗
n = iωiu

∗
n, ω > 0. (3.92b)

Now the field operator is written in the second quantization language and reads

φ̂ =
∑
n

â†nu
∗
n + ânun, (3.93)

where the vacuum state is uniquely defined. The Hamiltonian operator with eigen-

values equal to the Killing frequencies can be written in terms of the positive energy

mode operators

Ĥ =
∑
n

ωnâ
†
nân. (3.94)

As long as the conserved energy ω and the associated temperature is used, the

methods of thermal field theory in flat spacetime is easily generalized to the curved

77



spacetime case [116]. In the fluid system, this is not a surprise, as in a stationary

case, the Hamiltonian associated with the Lagrangian in Eq. (3.34) is time indepen-

dent and second quantized in the form of Eq. (3.94).

In analogue gravity systems, this energy ω coincides with the lab frame energy

of the mode [118]. Note that, this is not the comoving frame energy or the energy

measured by observers in curved spacetime, which is not conserved. This means

the temperature in the comoving frame and the lab frame and the different and

are related to each other through the Tolman law [93]. Stationary flow means the

Killing vector is κ = (1, 0, 0, 0) In global thermodynamic equilibrium, the positive

energe modes ui are distributed thermally according to the lab frame temperature

so that we have

TTol
√
g00 = TTol

√
ρc(1− v2/c2) = Tlab =

1

β
. (3.95)

Note that this analogue Tolman law is a purely classical effect that stems from the

emergent Lorentz invariance of excitations in the strongly correlated superfluid. It

is to be distinguished from the Unruh effect, where an accelerating observer detects

a thermal radiation of phonons even if the lab frame’s temperature is zero.

In equilibrium the eigenstates are distributed according to the lab frame tem-

perature, with the density operator of defined in Eq. (3.31) that reads

%̂φ = exp(−βĤ)/Tr
{
%̂φ
}
. (3.96)

Then, the operator averages are best handled in imaginary time (it = τ) formalism.

For example for two operators Ô1 and Ô2 we have, suppressing the space indices,
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〈
Ô1(τ)Ô2(τ ′)

〉
= Tr

(
Ô1(τ)Ô2(τ ′)ρ̂

)
= Tr

(
U(iτ)Ô1U(−iτ)U(iτ ′)Ô2U(−iτ ′)U(−iβ)

)
= Tr

(
Ô2(τ ′ + β)Ô1(τ)ρ̂

)
=
〈
Ô2(τ ′ + β)Ô1(τ)

〉
. (3.97)

Stationarity allows the use of Fourier transformation in time domain, hence this

equation can be written as

〈
Ô1(ω)Ô2(−ω)

〉
= eβω

〈
Ô2(−ω)Ô1(ω)

〉
. (3.98)

Now we show that a fluctuation dissipation relation exists. Inspection of

Eq. (3.104), (3.90) and (3.106) reveals that the time- reversal odd piece HA of

the causal response causes dissipation and the fluctuation kernel N causes noise.

Defining

Fµναβ(ω, ~x, ~y) =

∫
dω

2π
ei(t−t

′)
〈
t̂µν(t, ~x)t̂αβ(t′, ~y)

〉
, (3.99)

and rewriting the definitions in Eq. (3.86) in frequency domain and using Eq. (3.98)

we get:

ĤA
µναβ(ω, ~x, ~y) = − i

2
F (ω, ~x, ~y)

(
1− e−βω

)
, (3.100a)

N̂µναβ(ω, ~x, ~y) =
1

2
F (ω, ~x, ~y)

(
1 + e−βω

)
. (3.100b)

The fluctuation dissipation relation immediately follows as:

ĤA
µναβ(ω, ~x, ~y) = −i tanh(βω/2)N̂µναβ(ω, ~x, ~y). (3.101)
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3.5.3 Hydrodynamic fluctuations around a deterministic solution

Suppose ρ̄ and θ̄ are solutions to the analogue Einstein equations Eq. (3.48).

Define the classical and quantum corrections to the solutions

ρ± = ρ̄+ ρ± = ρ̄+ ρc ± ρq (3.102a)

θ± = θ̄ + θ± = θ̄ + θc ± θq. (3.102b)

Let the corresponding perturbations to the metric tensor be hc + hq and hc − hq so

that

~g = (ḡµν + (hq)µν + (hq)µν , ḡµν + (hc)µν − (hq)µν). (3.103a)

Breaking the deviations into classical and quantum parts amounts to (Keldysh)

rotating the matrix in Eq. (3.90). The classical deviation can be thought of as a

real displacement while the quantum deviation as a virtual displacement. Variation

with respect to virtual displacement (hq) gives the classical equations of motion with

one loop corrections as in Eq. (3.48). To find the fluctuations of the stress-energy,

we can expand the effective actions as a Taylor series in the classical and quantum

deviations to second order as

Γph[~g] = T · hq − 1

2
hq · (H + K) · hc +

i

2
hq ·N · hq +O(h3), (3.104)

where, all the kernels are functionals of the unperturbed metric g and ~h is decom-

posed as (hc,hq) and the dot product on the right hand side contracts spacetime

indices with g and integrates over spacetime. We notice that the equation (3.104)
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is in the same form as the Keldysh action for a quantum particle in a bath [15].

The well established technique to derive Langevin type equation from this action

is to define an auxiliary stochastic tensor ξ to decouple the O((hq)2) term (the

Hubbard-Stratanovich decomposition).

exp (iΓph[~g]) =
1√

Det(2πN)

∫
D [ξ]e−

1
2
ξ·N−1·ξeiRe{Γph}+iξ·hq

=
〈
eiRe{Γph}+iξ·hq

〉
ξ

= 〈exp (iΓph[~g; ξ])〉ξ . (3.105)

The mean and correlation function of the noise tensor field ξ is defined by the

above Gaussian path integral, using the definition Eq. (3.106) of the noise kernel N,

which yields

〈ξµν(x)〉ξ = 0, (3.106a)

〈ξµν(x)ξαβ(y)〉ξ =
1

2

〈
{t̂µν(x), t̂αβ(y)}

〉
. (3.106b)

The new phonon effective action

Γph[~g; ξ[ḡ]] = (T + ξ) · hq − 1

2
hq · (H + K) · hc +O(h3) (3.107)

depends on the noise tensor ξ.

Then the background plus phonon effective action in Eq. (3.43) as a functional

of noise tensor

Γ[ρ±, θ±, ξ] = S[ρ+, θ+]− S[ρ−, θ−] + Γph[~g; ξ[ḡ]]. (3.108)
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3.5.4 Stochastic analogue Einstein equation

The Euler-Lagrange equations for the stochastic effective action Γ[ρ±, θ±, ξ] in

the limit (ρ±, θ±) → (ρ, θ) and hence hq → 0 are the following stochastic analogue

Einstein equations for the two-fluid hydrodynamics

∂tρ+∇ · (ρ~v) =
1

2
∇ ·
(√
−g
[〈
T̂µν

〉
+ ξµν

] δgµν
δ~v

)
; (3.109a)

∂tθ +
1

2
v2 + µ(ρ) =

1

2

(√
−g
[〈
T̂µν

〉
+ ξµν

] δgµν
δρ

)
. (3.109b)

In this equation, the noise source ξ[ḡ] is computed by using the metric ḡ(ρ̄, v̄) that

solves Eq. (3.48), while ρ and θ suffer deviations ρc, θc from the solution of Eq. (3.48)

due to the existence of noise. The energy momentum tensor is also computed by

taking these deviations in to account. Next we summarize the procedure to find the

stochastic deviations ρc and θc of the background.

3.5.5 Procedure to compute background metric fluctuations from the

analogue Einstein equation

Below, we outline the procedure to determine fluctuations of the metric, given

initial data that consists of the initial conditions, boundary conditions, an initial

state of the phonon density operator, and external sources, if any.

First, is to compute the deterministic solution (ρ̄, v̄) and the associated metric

ḡµν [ρ̄, θ̄] as defined in Eq. (3.2), by solving the analogue Einstein equation (3.48)

self consistently. In general this is equivalent to solving the two-fluid equations
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Eq. (3.78) and is a difficult task. However, one can approach this problem pertur-

batively. If one has a solution to the Euler equations that describes the background

without the phonons (Eq. (3.8) with no quantum pressure), then one can compute

the expectation value of the stress-energy operator Eq. (3.46) by using the tech-

niques in Ref. [113] and references therein. One then continues this process up to

a desired order, so that the background is consistent with the metric on which the

sources are computed.

Second, is to compute the correlators of the stress tensor in Eq. (3.86) to form

the response and noise kernels. For the methods required to perform this, we refer

the reader to Ref.[ 119, 120] and references therein.

Third, is to linearize the stochastic analogue Einstein equation (3.109) around

the deterministic solution ρ̄, θ̄. The resulting equation is linear in the stochastic

corrections ρc and θc, to the background variables. The associated first-order cor-

rections to the deterministic metric ḡ follow from the chain rule as

(hc)µν = ρc
δḡµν

δρ
+ ~vc · δḡ

µν

δ~v
. (3.110)

Then, the linearized stochastic analogue Einstein equation, that we dub the analogue

Einstein-Langevin equation, follows from Eq. (3.109), where we linearize the stress

tensor by using Eq. (3.104), as

∂tρ
c+∇·(ρ̄~vc)+∇·(ρcv̄) =

1

2
∇·
(√
−ḡ δḡ

µν

δv̄
×
[
−1

2

∫
d4y(H +K)µναβ(x, y)(hc)αβ(y) + ξµν

])
(3.111)
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and

∂tθ
c+v̄ ·~vc+ c̄2

ρ̄
ρc =

1

2

(√
−ḡ δḡ

µν

δρ
×
[
−1

2

∫
d4y(H +K)µναβ(x, y)(hc)αβ(y) + ξµν

])
.

(3.112)

Fourth and final, is to write down correlators of hc. To do this, one first

expresses the correlators of the background corrections ρc and θc in terms of the

noise correlator N by using the Green’s functions of the linear equations Eq. (3.111)

and Eq. (3.112). Then the correlators of hc follow from Eq. (3.110).

3.6 Equilibrium ‘Minkowski’ fluctuations

In this section we illustrate the procedure of Sec. 3.5.5 for the static (~vs = 0)

thermodynamic equilibrium focusing on a qualitative analysis (detailed technical cal-

culations and results for the correlators are cumbersome and will be presented else-

where). The metric tensor for the static background reduces to that of Minkowski,

if one sets

ρ̄ = ρe = ce = c̄ = 1 (3.113)

in addition to the choice of units in Eq. (3.10).

This renders Step 1 in Sec. 3.5.5 trivial. The analogue Einstein equations

Eq. (3.48) and the covariant conservation law Eq. (3.49) are trivially satisfied. Nev-

ertheless, it is instructive to outline how the expectation value of the stress-tensor

is computed.

The isotropy and homogeneity of Minkowski space places strong restrictions

on the stress-energy tensor and its correlators. For the stress tensor, homogeneity
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means all components are constant in spacetime. The trace of the expectation value

of stress energy vanishes for a massless scalar field. The energy density is positive.

There is no isotropic Cartesian vector; therefore, the momentum density vanishes.

The only isotropic rank-2 Cartesian tensor is the Kronecker delta; therefore, the

spatial components are isotropic. The only rank-2 Minkowski tensor with the above

properties is

〈
T̂ µν

〉
=
π2T 4

45



3 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, (3.114)

where the overall factor is the black body energy density and can be obtained from

the standard momentum space integral that arise in Eq. (3.46), after dropping the

infinite vacuum energy.

Similarly to the stress tensor, the symmetries greatly reduce the complexity of

calculating its correlates as well. First of all, the homogeneity of spacetime requires

that any function f(x, y) = f(x−y). The stress tensor correllators can be expressed

as momentum space integrals. In thermal equilibrium, all non-local behavior is due

to the factor coth(βω/2), which behaves like

coth(βω/2)
kBT�~ω−−−−−→ 2kBT

~ω
(3.115)

in the high-temperature limit and all kernels become local (memoryless) operators

in spacetime.

In this limit, we linearize Eq. (3.109) around ρ̄ and θ̄ to get Eq. (3.111) and
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(3.112) for the static equilibrium. This linearized equation is in the Langevin form.

In Fourier domain it reads−iω −|~k|2

1 −iω


ρc
θc

 =

R11 R12

R21 R22


ρc
θc

+

ζ1

ζ2

 . (3.116)

where R̂’s are local operators, hence polynomials in ~k and ω and ζ’s are stochastic

sources.

The stochastic sources ζ’s are deduced from ξµν by applying Eq. (3.67a), as

ζ1 = −ikjξ0j (3.117a)

ζ2 =
1

2
(κ− 1)ξµµ − κξ00 (3.117b)

where κ = ∂ ln c/∂ ln ρ is the change of energy of phonons with density.

The diagonal terms R11 and R22 in Eq. (3.116) are equal and the symmetric

part of the response kernel does not contribute to them:

R11 = R22 = −i(1− κ)

2
kj(HA)0 µ

j µ − iκkj(HA)0 00
j . (3.118)

Whereas, the antisymmetric part of the response kernel does not contribute to the

off diagonal components

R12 = kikj(HS +K)0 0
i j (3.119)

and

R21 = −(1− κ)2

4
(HS +K)ν µ

ν µ− κ2(HS +K)0000 + κ(κ− 1)(HS +K)µ 00
µ . (3.120)

Now one can solve Eq. (3.116) and express the correlators of stochastic correc-

tions ρc and θc in terms of the noise correlators and the metric fluctuation follows

by using Eq. (3.110).
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We also note that, to lowest order in k, introducing some constants α, β, ν we

have

R11 = R22 → −ν|~k|2 (3.121a)

R12 → αijk
ikj (3.121b)

R21 → −β (3.121c)

and the Eq. (3.116) takes the form of the linearized Navier-Stokes and continuity

equations with stochastic forcing terms

∂tρ
c + (δij + αij)∇i~v

c
j − ν∇2ρc = ζ1, (3.122a)

∂t~v
c − ν∇2~vc = −(1 + β)∇ρc +∇ζ2. (3.122b)

The coefficient of viscosity ν can be extracted as

ν =
1

3

∂

∂kj

[
(1− κ)

2
(HA)0 µ

j µ − κ(HA)0 00
j

] ∣∣∣∣
~k=0

. (3.123)

3.7 Conclusions and outlook

In this work, we develop a geometric generalization of the Landau-Khalatnikov

two-fluid hydrodynamics for a strongly correlated bosonic superfluid and derive a

system of coupled equations describing the motion of the superfluid background and

the entropy-carrying normal fluid of phonon excitations. By exploiting the emergent

covariance of the phonon field, we draw analogies between general relativity and the
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two-fluid system including stochastic effects due to the fluctuations of the phonon

“matter” field.

We emphasize that the methods and analogies used here are applicable to a

variety of systems. Indeed, weakly interacting quasiparticles excited over a ground

state is a common picture in many-body physics. Hydrodynamics captures the long-

wavelength behavior of such systems. Galilean invariance requires that quasiparticle

dynamics is defined on the frame comoving with the background fluid that represents

the ground state manifold. This means, when referred to the lab frame, that the

quasiparticle field experiences shifts due to the background flow – an effect captured

in the definition of the metric tensor (3.2). From thereon, the quasiparticles can

be described by quantum field theory on curved spacetime, thereby justifying the

geometric formulation of the problem.

We would like to conclude with a brief summary of our work and promising

directions for further research

In Sec. 3.2, following an earlier work [93], we discussed the applicability of

the metric description for fluid by analyzing the length- and energy-scales. In anal-

ogy with cosmology [96,121], the geometric description breaks down at an effective

“Planck energy,” where the hydrodynamic description becomes inapplicable. How-

ever, the quantum description of the boson system is known at all energies contrary

to the case in cosmology. This paves the way to understanding the cosmological

phenomena through condensed matter systems [122–124].

In Sec. 3.3, we used the background field formalism to write down the Keldysh

theory of quasiparticles. We use the Keldysh contour because the dynamical fluc-
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tuations of the phonon field follow naturally from the Keldysh effective action that

is “designed” to account for non-equilibrium phenomena. One interesting finding of

this analysis is an additional “gravitational anomaly” , not present in the original

work of Unruh [88] and Stone [89] : that is, despite the action for the phonons is

covariant, as already noted in the literature, the measure of the path integral is not

covariant. Hence, in contrast to classical phonon action, their full quantum theory

is not covariant. We believe this anomaly should be taken into account, whenever

quantum effects such as Hawking radiation, is important. It is curious to see if this

anomaly is related to gravitational anomalies in high-energy phenomena. These

interesting issues will be discussed in a future publication.

In Sec. 3.4, inspired by Ref. 93, we derive the analogue Einstein equation

that governs the background and the excitations (matter). We establish the equiv-

alence of the analogue Einstein equation and the covariant conservation law for the

phonons, to the two-fluid conservation laws. Instead of assuming a specific form

for the stress-energy tensor as in Ref. [96], we prove the equivalence of the two de-

scriptions by reducing the covariant conservation law down to the Noether current

of the two-fluid system and by using the equations of motion. We believe that the

proof presented here is more general, than the specific superfluid model we study,

and should be applicable to any emergent general-relativistic theory, which may be

derived in the hydrodynamic, long-wave-length limit of a “parent” condensed matter

system.

In Sec. 3.5, we take the analogy between the superfluid system and general

relativity further to the domain of stochastic fluctuations. This allows the appli-

89



cation of a variety of methods that have been invented for stochastic gravity [49]

to condensed matter systems.We write the response and dissipation kernels in the

covariant language. In global thermal equilibrium, we discuss the notion of temper-

ature on curved spacetime and show the appearance of analogue Tolman’s law. We

prove the fluctuation-dissipation relation for a metric with globally time-like Killing

vectors – that is, for a flow that can be brought to a stationary form after a Galilean

transformation. Finally, we outline a procedure to calculate correlators of various

observables, including fluctuations of the metric.

One interesting direction would be to consider the effects of higher order cor-

relators of the stress-energy tensor and build a hierarchy of equations similar to the

BBGKY hierarchy.

Finally, we linearize the stochastic analogue Einstein equation and obtain a

Langevin-type equation for the stochastic corrections to the background. We show

that the symmetries of the flow determine structure of the Langevin equation, by

considering the Minkowski case. Classification of the flow induced spacetimes, the

stress tensor and its fluctuations on the basis of the symmetry of the flow is a

well defined mathematical problem. In general relativity these correspond to the

Petrov classification of spacetimes and Segre classification of symmetric tensors [125].

Together with the machinery of general relativity such as conformal transformations

and general coordinate transformations, the classification of the solutions of the two-

fluid equations can be carried out in a similar spirit.

The main fundamental physical consequence of our analysis is the finding that

sound waves propagating on a superfluid background at a finite temperature experi-
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ence a random, stochastic metric on top a dynamical but deterministic background

metric determined by the classical superfluid flow. Even in the absence of any flows

and in equilibrium, where the average metric is that of flat Minkowski space, the

phonon “rays” would experience random deviations from the flat background. This

may lead to analogue gravitational lensing of acoustic waves due to the phenomenon

called ‘intermittency’. In Ref. [126], Zeldovich considered light rays propagating in

a random medium with a fluctuating metric, and showed that even if the average

metric is flat, an observer receiving two distant rays would see the rays bend and the

corresponding object shrink, due to the stochasticity. The effect seems unobserv-

able in actual general relativity due to very weak metric fluctuations, if any [127].

However, similar fluctuations of “synthetic metric” can be greatly enhanced in a

superfluid and it is conceivable that the corresponding analogue Zeldovich effect –

bending of phonon “rays” propagating through a thermal superfluid – could become

observable.
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Chapter 4: Dynamical many-body localization in an integrable model

4.1 Introduction

Recently, there has been a lot of interest and progress in understanding Anderson-

type localization properties of disordered, interacting many-body systems. No-

tably, the remarkable phenomenon of many-body localization (MBL) was discov-

ered [32–39]. In an isolated system, MBL manifests itself in the localization of all

eigenstates and leads to the breakdown of ergodicity and violation of the eigenvalue

thermalization hypothesis [29,31], forcing to revisit the very foundations of quantum

statistical mechanics [128,129].

In this work, we ask whether a driven interacting system can be dynamically

many-body localized. We answer this question in the affirmative and present an

exactly solvable model of a kicked chain of interacting linear rotors, which shows

both dynamical MBL and delocalized regimes.

A quantum kicked-rotor is a canonical model of quantum chaos [25,130] which

exhibits dynamical localization in momentum space. The time dependent Schrödinger

equation for a general kicked rotor is given by (here and below, we set ~ = 1 and
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the driving period T = 1),

i∂tψ(θ, t) = [2πα(−i∂θ)
l +K(θ)δ(t− n)]ψ(θ, t). (4.1)

In the ground-breaking paper [25], Fishman, Prange, and Grempel proved that

the eigenvalue problem for the Floquet operator of a kicked rotor is equivalent to

that of a particle hopping in a (quasi)periodic potential ((ir)rational α) in one-

dimension [28] given by,

∑
r

Wm+rur + tan[ω − 2παml]um = Eum. (4.2)

This mapping traced the origin of the dynamical localization in driven systems

to Anderson localization in time-independent settings. While the quadratic rotor

(l = 2) is nonintegrable, the linear rotor model (l = 1) in Eq. (4.1) was exactly

solved in Refs. [25, 27, 28, 41, 131]. The corresponding integrable lattice version

in Eq. (4.2) with l = 1 is dubbed Maryland model (MM) [132, 133] (See section

A.1 for technical details of this mapping). For the linear rotor, both classical and

quantum dynamics is integrable, and the dynamical localization (absence of chaos)

is due to the existence of a complete set of integrals of motion [41]. However, the

incommensurate MM is an Anderson insulator with no classical interpretation [28]

even though the linear rotor manifests classical integrability. Thus, the dynamical

localization for the quantum version of both linear (l = 1) and quadratic rotor

(l = 2) seems to stem from the Anderson mechanism [28].

In this work, we generalize the linear kicked rotor model by considering an

interacting chain of driven rotors in order to understand the anatomy of many-body
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localization in the dynamical space. One of the remarkable features of this many-

particle model is that it manifests both localization and delocalization in dynamical

space depending on whether the components of ~α are irrational or rational.

Let us emphasize from the outset that the model we consider is integrable for

all parameters owing to the first order differential operator. This leads to integrals

of motion (IOMs), which are local in the spatial (angular) variables. The underlying

integrability is a special, non-universal feature of our model (4.3), which allows us to

solve it exactly. However, the existence of the local-in-θ IOMs has no direct relation

to dynamical MBL, which occurs in momentum space. The non-interacting version

of these emergent IOM’s for the linear kicked rotor was pointed out by Berry in

Ref. ( [41]).

As shown below, dynamical MBL is accompanied by the appearance of ad-

ditional integrals of motion bounded in momentum space – a central result of this

work. As argued below, these “emergent” IOMs and the dynamical MBL are univer-

sal phenomena, which would survive in non-integrable generalizations of the model

(which however is not analytically solvable).

To capture the dynamical localization for this interacting model, we monitor

three indicators: energy growth at long times, (momentum degrees of freedom at

long times, and the existence of integrals of motion in momentum space. Below, we

first present the details of our model in Section 4.2. The main analytical results are

outlined in Section 4.3, and their numerical analysis and key conclusions are given in

Section 4.4. An outline of technical derivation of the results is given in Section 4.5.

The experimental proposal to realize our model (4.3), is explained in Section 4.6.
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In section 4.7 we list our conclusions. Finally, Appendix A.1 and Appendix A.2 are

devoted to the summary of the connection of the rotor problem to a lattice model

and the correspondence between our model and a d-dimensional lattice, respectively.

Throughout the text, in all the summations
∑

i ... or
∑

ij ... we only consider

i 6= j. So that, expressions like
∑

j 1/(αi − αj) are not divergent. The denominator

vanishes only when there is a resonance, such as αi → αj.

4.2 The Model

We consider a many-body interacting generalization,

Ĥ(t) = Ĥ0 + V̂
∞∑

n=−∞

δ(t− n), with V̂ =
d∑
i=1

K(θ̂i),

Ĥ0 = 2π
d∑
i=1

αip̂i +
1

2

d−1∑
i 6=j

Jij(θ̂i − θ̂j) (4.3)

of the linear rotor model.

Ĥ0 is the static Hamiltonian describing d particles on a ring, each rotating

2παi radians per one period of the kick. θ̂i is the position operator for the ith

particle on the ring and p̂i is its momentum. These d particles interact through a

translationally invariant two-body potential Jij(θ̂i− θ̂j). This form of the interaction

ensures conservation of momentum. The rotors are driven by V̂ (t), which contains

periodic delta function impulses, where the strength of the impulse is given by a

general periodic one-body potential K(θ̂i). The local potentials are periodic with 2π

and therefore the most general form can be written as K(θj) =
∑

m kme
imθj . Here,

km is the mth Fourier component of the potential that acts on the jth particle. The
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periodic form of the interaction potential J can be written as Jij =
∑

m b
ij
me

im(θi−θj).

Here, bijm is the mth Fourier component of the interaction potential between the

ith and jth particle. Reversing i and j and replacing m with −m in this Fourier

expansion has no effect on the components; therefore, bijm = bji−m. This property will

be handy while deriving formulas throughout the text.

Note that in our model the localization is a consequence of incommensurate

driving period and angular velocities ~α. This situation is different from recent works

using Floquet analysis to probe dynamical properties of MBL states of disordered

Hamiltonians [134–137] (in these papers, a Floquet perturbation is imposed on a

state, many-body localized in coordinate space, while our goal is to induce dynamical

many-body localization in momentum space by the Floquet perturbation).

4.3 Main Results

4.3.1 Energy dynamics

Following the conjecture of D’Alessio and Polkovnikov [138], we test the dy-

namical localization by computing the energy growth as a function of time at long

times. The average energy after N kicks (equivalent to time) can be written as,

E(N) = 〈ψN |Ĥ0|ψN〉. To compute it, we write

|ψN〉 = ÛN
F |ψ0〉, ÛF = e−iV̂ e−iĤ0 , (4.4)

where ÛF is the Floquet evolution operator, which captures the state of the sys-

tem after each kick. Owing to the linear dependence of the Hamiltonian on the
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momentum, we can explicitly compute this expectation.

E(N) = E(0) +
d∑
i=1

∑
m

2παi〈Γ̂mi〉0
sin(mNπαi)

sin(mπαi)
. (4.5)

In the above expression, E(0) = 〈ψ0|H0|ψ0〉 corresponds to the average many-body

energy over the initial state. Γ̂mi = −imkme
im(θ̂i+παi[N+1]) depends on the chosen

form of K(θ̂) averaged over the initial state and due to its periodic nature is a

bounded function of the number of kicks N . The growth of energy for large N is

then completely dependent on the nature of αi appearing in the ratio sin(mNπαi)
sin(mπαi)

.

Note that this expression is completely independent of interactions, which we prove

in Section 4.5.1. This is a consequence of momentum conserving interactions and

this property is no longer valid when the translational invariance of interactions is

broken.

4.3.2 Momentum dynamics

Another indicator for dynamical localization is the spread in the momentum

degrees of freedom. The ith momentum after N kicks, pi(N) = 〈ψN |p̂i|ψN〉 is given

by the following expression,

pi(N) = 〈p̂i〉0 +
∑
m

〈Γ̂mi〉0
sin(mNπαi)

sin(mπαi)
+
∑
mj

〈Γ̂intmij〉0
sin(mNπ∆αij)

mπ∆αij
.

We have defined ∆αij = αi − αj. In the above expression, the first term is the ith

momentum in the initial eigenstate 〈pi〉0 = 〈ψ0|p̂i|ψ0〉. The second term corresponds

to the kicking potential as defined in Eq. (4.5). The last term depends explicitly

on the form of interaction via Γ̂intmij = −imbijme
im(θ̂i−θ̂j+πN∆αij) and is a bounded
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function of N . The growth of momenta at long times corresponding to the last term

is completely determined by the ratio
sin(mNπ∆αij)

mπ∆αij
.

4.3.3 Integrals of motion

Recent works have shown that the existence of integrals of motion (IOM) can

be used as a diagnostic to quantify both non-interacting Anderson localization [139]

and many-body localization [40, 140]. In the context of dynamical localization for

the model at hand, we work in the momentum basis and search for existence of

IOMs in this basis. We begin by constructing IOMs by identifying operators Ĉi

that satisfies [Ĉi, ÛF ] = 0 and [Ĉi, Ĉj] = 0. The existence of these IOMs encode

information about dynamical localization. Operators that commute with ÛF satisfy

the property 〈Ĉi〉N+1 = 〈Ĉi〉N and are given by

Ĉi = p̂i +
1

2

∑
m

mkme
im(θ̂i+παi)

sin(mπαi)
+

1

2

∑
mj

bijme
im(θ̂i−θ̂j)

π(αi − αj)
. (4.6)

This expression is a generalization of the constant of motion given by Berry [41]. The

derivation of this expression is given in Sec. 4.5.2. Since Ĉi is an IOM, p̂i is bounded

in time as long as the series in the last two terms converges. The delocalization of

p̂i with time will occur due to the diverging denominators in the θ̂ dependent terms.

We reiterate that the model always contains d integrals of motion, B̂i =

θ̂i/αi(mod 2π) ([B̂i, ÛF ] = 0) which results in integrability for both localized and

delocalized cases. For example, if αi = ri/si is rational, the existence of B̂i results

in integrability even though Ĉ1...d do not exist. Since B̂i is momentum independent,

its existence cannot bind pi(N). For the fully localized case, we have additional
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Figure 4.1: (Top panel) Plots showing evolution of the root mean square
deviation of energy, σ(E) =

√
〈H2

0 〉 − 〈H0〉2, as a function of time, la-
beled by the number of kicks, N . (Bottom Panel) Plots showing evo-
lution of the root mean square deviation of individual momenta in an
ensemble of 10 particles σ(pi) =

√
〈p2
i 〉 − 〈pi〉2 as a function of time,

labeled by the number of kicks, N . The initial states of the rotors are
assumed to be definite momentum states. The total number of particles
in this interacting ensemble is d = 10 and circular boundary conditions
apply. We consider two body interaction term to be Jij = cos(θi − θj).
The periodic kicking potential is given by K(θ) =

∑∞
m=1 km cos(mθ) for

all particles. The m-th Fourier coefficient is fixed by km = z̃/m2, where
z̃ is a random complex number with real and imaginary parts uniformly
distributed in the interval [0,1]. We make sure that K(θ) is real. We
choose ~α corresponding to three scenarios: Figs. (AI, AII): If ϕ denotes
the golden ratio, αj = (j/d)ϕ− (1/2)ϕ are all irrationals for j = 1 . . . 10.
Figs. (BI, BII): We consider αj distinct irrationals as in Case A, but set
α1 = α2, which results in the resonant growth of σ(p1) and σ(p2), while
σ(E) is bounded. Figs. (CI, CII): We consider αj as in Case A and set
α1 = 1/2, which results in the resonant growth of σ(E) and σ(pi).
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d IOM’s Ĉ1...d given in Eq. (4.6) that explicitly depend of p̂i and thus constrain

it. Thus, Ĉi’s can be thought of as “emergent” IOM’s constraining the momentum

growth, resulting in dynamical MBL and “emergent” superintegrability.

4.4 Dynamical many-body localization and the structure of ~α

Equipped with three analytical expression for the energy growth, momentum

growth and IOMs [Eqs. (4.5), (4.6), and (4.6)], we now diagnose the dynamical

localization for three distinct cases with varying structure of ~α. We note that, there

are cases where mαi can get arbitrarily close to integers (Liouville numbers) and

total energy and momentum are no longer bounded. In the single rotor case, such

a situation yields interesting consequences like marginal resonance and a mobility

edge in the momentum lattice, [41, 141]. In this study we exclude this possibility

and refer to generic irrationals only.

4.4.1 Case I: α1 . . . αd are distinct generic irrationals

For irrational values of αi, the total energy in Eq. (4.5) is always a bounded

function of N since mαi /∈ integer. In Fig. 4.1(AI), we fix initial states to be

momentum eigenstates ψ0(θ) = eip0θ. For momentum eigenstates, 〈Γ̂mi〉0 ∼ 0. Thus,

we plot the root mean square (RMS) of system’s energy σ(E) =

√
〈Ĥ2

0 〉 − 〈Ĥ0〉2 as

a function of N . Fig. 4.1 (AI) shows boundedness in the spread of the energy as a

function N . The momentum growth shown in Eq. (4.6) has contributions from both

interactions and the kicking potential. In Fig. 4.1 (AII) we plot RMS deviation of
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momenta σ(p1) . . . σ(pd) (we used d = 10 for the specific simulation) and show that

the spread in the momenta is bounded as a function of N . For this case the integrals

of motion in Eq. (4.6) exist and convergent. Thus, all the diagnostics for this case

point towards a true many-body dynamical localization.

4.4.2 Case II: α1 = α2 and α2 . . . αd are distinct generic irrationals

For this case, the energy remains a bounded function of N since mαi are not

integers. Thus, the RMS deviation σ(E) is bounded as shown in Fig. (4.1 BI).

However, the second term in the momentum expression (Eq. (4.6)) develops a res-

onance (for the momenta p1 and p2) since α1 → α2. Due to this resonance term,

sin(mNπ∆α12)/(mπ∆α12) ∼ N as α1 → α2. This resonant growth is reflected in the

RMS deviation of σ(p1) and σ(p2) growing linearly with N , while the σ(p3) . . . σ(p10)

remain bounded as shown in Fig. 4.1 (BII). This is a striking scenario where the

resonant momenta are not localized even if the total energy is bounded for large

N . However, the delocalization of p1 and p2 in time is reflected in the break down

of IOMs Ĉ1 and Ĉ2 due to diverging denominators in the resonant limit α1 → α2.

For this case, the bounded total energy fails to diagnose delocalization as shown in

Fig. 4.1 (BI, BII). We note that this scenario has no analogue in the non-interacting

limit. Notice that interactions we considered possess translational invariance, i.e.

in the form J(θi − θj) given in Eq. (4.3) and therefore interactions conserve mo-

mentum. The dichotomy between the energy growth and momentum growth is a

result of conservation of momentum and the linear dependence of energy on mo-
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mentum. If we allow interactions that break translational invariance, momentum is

no longer conserved and resonance due to interactions triggers unbounded growth

(delocalization) of both momenta and the total energy.

4.4.3 Case III: α1 = 1/2 and α2 . . . αd are distinct generic irrationals

For rational α1 = 1/2, the system develops a different kind of resonance com-

pared to Case II. We consider a kicking potential with (k2 6= 0). The resonance

condition mα1 ∈ integer can be satisfied for m = 2 and the ratio sin(mNπα1)
sin(mπα1)

grows

as N . It results in energy growth and delocalization of momenta p1 as shown in

the RMS deviations in Fig. 4.1 (CI, CII). This is a converse situation to Case II

where the energy delocalizes with the delocalization of p1 even though the momenta

p2, p3, . . . p10 are bounded. This situation is again captured by the IOMs, where Ĉ1

does not exist, while Ĉ2 . . . Ĉ10 are well defined and convergent as seen in Eq. (4.6).

We can generalize the above representative cases. For each rational αi, its

integral of motion Ĉi breaks down and the corresponding momentum and energy

diverge with time. For each pair αi = αj both Ĉi and Ĉj break down and the

corresponding momenta diverge in opposite directions, therefore Ĉi + Ĉj is still an

IOM and the total momentum and energy of the pair are bounded.

Other than the behaviour of energy in Case II in Section 4.4.2, the rest of our

analysis apply equally to the interactions that break translational symmetry.
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4.5 Derivation of main results

Having established the physical understanding of localization for this model,

we now sketch the brief derivation leading to the final results in Eq. (4.5), Eq. (4.6)

and Eq. (4.6). In the following we consider the expectation of a generic operator as a

function of time, X(N) = 〈ψN |X̂|ψN〉. We write the explicit evolution of the many-

body wave function between two successive kicks, |ψN〉 = e−iV̂ e−iĤ0|ψN−1〉. Notice

that Ĥ0 = 2π~α·~̂p+ 1
2

∑d−1
i 6=j Jij(θ̂i−θ̂j) contains the many-body interaction term which

may seem daunting, however, the linear momentum term allows a factorization in the

Floquet operator. The Baker-Campbell-Hausdorff formula Ẑ = ln(eX̂eŶ ) becomes

tractable when [X̂, Ŷ ] = sŶ . In this case, the result simply reads Ẑ = X̂ + sŶ /(1−

e−s). Now fix m and let X̂ = i2π(α1p̂1 + α2p̂2) and Ŷ = ib̃12
m exp(im[θ̂1 − θ̂2])

where ∆α12 = α1 − α2. The result of the commutator reads [X̂, Ŷ ] = i2π∆α12mŶ ,

precisely the tractable case discussed above. Replacing s with i2π∆α12m in the

formula Ẑ = X̂ + sŶ /(1 − e−s) and inverting both sides of the equality, we obtain

the following factorization

e−i2π~α·~p−ib̃
12
m exp(im[θ1−θ2]) = e−ib

12
m exp(im[θ1−θ2])e−i2π~α·~p. (4.7)

For this to hold, the Fourier coefficients must satisfy

b̃ijm =
sin(πm∆αij)

πm∆αij
bijme

−imπ∆αij . (4.8)

This argument can be generalized to more particles and Fourier coefficients. Due to

linearity summations over particle indices i, j and Fourier indices m are introduced.
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All in all, we can factorize the evolution operator for our model in Eq. (4.3) as,

|ψN〉 = e−iV̂−
i
2

∑
ij J̃ij(θ̂i−θ̂j)e−i2π~α·~̂p|ψN−1〉, (4.9)

where we have defined the modified interaction term as,

J̃ij =
∑
m

b̃ijme
im(θi−θj) (4.10a)

=
∑
m

sin(πm∆αij)

πm(∆αij)
bijme

im(θi−θj−π∆αij). (4.10b)

The advantage of this factorization is that the operator e−i2π~α·~̂p is a trans-

lation operator in the position basis. We can rewrite Eq. (4.9) in the position

basis by acting with 〈θ| from the left. We define 〈θ|ψN〉 = ψN(θ) and express

〈θ|e−i2π~α·~p|ψN−1〉 = ψN−1(~θ − 2π~α). For a single kick we then have,

ψN(~θ) = e−iV (~θ)−i 1
2

∑
ij J̃ij(θi−θj)ψN−1(~θ − 2π~α). (4.11)

The above equation can be recursively iterated to yield,

ψN(~θ) = e
−i

N−1∑
n=0

[V (~θ−2πn~α)+
∑
ij J̃ij(

~θ−2πn~α)]
ψ0(~θ − 2πN~α). (4.12)

4.5.1 Derivation of the evolution of energy and momentum averages

Now consider a generic operator X̂ ≡ X(p̂1...p̂d; θ̂1...θ̂d). The expectation value

of this operator after N kicks is

X(N) =

∫
d~θ ψ∗N(~θ)X

(
∂

dθ1

...
∂

dθd
; θ1...θd

)
ψN(~θ). (4.13)

If we substitute X̂ = p̂k, we get

pl(N) = 〈p̂l〉0 −
N∑
n=1

〈
∂lV (~θ + 2πn~α) + ∂l

1

2

∑
ij

J̃ij(~θ + 2πn~α)

〉
0

.
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Here, ∂l ≡ ∂/∂θl and 〈...〉0 ≡
∫
d~θ...|ψ0|2. The contribution from the kicking poten-

tial is:

〈
−∂l

∑
n

V (~θ + 2πn~α)

〉
0

=
∑
m

〈Γ̂ml〉0
sin(mNπαl)

sin(mπαl)
. (4.14)

The contribution from the interaction potential is

〈
−∂l

∑
n

1

2

∑
ij

J̃ij(θ̂i − θ̂j + 2πn[αi − αj])

〉
0

=
∑
jm

〈Γ̂intmlj〉0
sin(mNπ∆αli)

πm∆αli
.

Putting together above expressions, we obtain the expression for the momentum

dynamics presented in Sec. (4.3.2).

pi(N) = 〈p̂i〉0 +
∑
m

〈Γ̂mi〉0
sin(mNπαi)

sin(mπαi)
+
∑
mji

〈Γ̂intmij〉0
sin(mNπ∆αij)

mπ∆αij
. (4.15)

Now we derive the expression for the energy growth. Substituting X̂ = Ĥ0 in

Eq. (4.13), we have

E(N) = E(0) +
∑
mi

2παi〈Γ̂mi〉0
sin(mNπαl)

sin(mπαl)
+

1

2

∑
ij

〈Jij(θ̂i − θ̂j + 2πN∆αij)− Jij(θ̂i − θ̂j)〉0

+
∑
ijm

2παi〈Γ̂intmij〉0
sin(mNπ∆αij)

mπ∆αij
.

(4.16)

In the above equation, a cancellation occurs between the interaction terms in the

last two lines of Eq. (4.16) owing to the following relation,

1

2

∑
ij

〈Jij(θ̂i − θ̂j + 2πN∆αij)− Jij(θi − θj)〉0

= −
∑
ijm

2παi〈Γ̂intmij〉0
sin(mNπ∆αij)

mπ∆αij
. (4.17)
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This completes the derivation of the energy growth shown in Sec. (4.16)

E(N) = E(0) +
d∑
i=1

∑
m

2παi〈Γ̂mi〉0
sin(mNπαi)

sin(mπαi)
. (4.18)

The dropping out of interaction terms from the total energy can be interpreted

in the following way. As seen from Eq. (4.15), the contribution of interaction to the

momentum average picks up a negative sign when i and j are interchanged. This

means interaction transfers momentum from one particle to the other at each kick,

in other words momentum is conserved for each couple of rotors. Since the energy

is linear in momenta, when the momenta of rotors are summed, the contribution of

interactions vanishes. We emphasize that when the interactions break translational

invariance, they no longer conserve momentum and in that case energy growth

depends on interactions too.

4.5.2 Construction of integrals of motion

In this section, we outline the derivation involved in the construction of in-

tegrals of motion. By inspecting Eq. (4.14) and using the identity sin(mπα) =

[exp(imπα)− exp(−imπα)]/(2i), we can write

pl(N + 1)− pl(N) =
1

2

∑
m

mkm
sin(mπαl)

(〈
eim(θ̂l+παl)

〉
N
−
〈
eim(θ̂l+παl)

〉
N+1

)

+
1

2

∑
mj

bljm
π∆αlj

(〈
eim(θ̂l−θ̂j)

〉
N
−
〈
eim(θ̂l−θ̂j)

〉
N+1

)
, (4.19)

noting that, the expression is valid whenever the denominators sin(mπαl) and

∆αlj = αl − αj are non-zero, in other words, whenever the resonances are avoided.
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The above expression can be organized in a way that it manifests the IOMs,〈
p̂i +

1

2

∑
m

mkme
im(θ̂i+παi)

sin(mπαi)
+

1

2

∑
mj

bijme
im(θ̂i−θ̂j)

π(αi − αj)

〉
N+1

=

〈
p̂i +

1

2

∑
m

mkme
im(θ̂i+παi)

sin(mπαi)
+

1

2

∑
mj

bijme
im(θ̂i−θ̂j)

π(αi − αj)

〉
N

(4.20)

If we use the definition in Eq.(4.6) we get 〈Ĉl〉N+1 = 〈Ĉl〉N , thereby proving

that Ĉl is an integral of motion.

4.5.3 Floquet Hamiltonian and quasienergy eigenstates

A special case of our model is when there are no resonances, namely, all IOMs

associated with the momentum localization Ĉ1..d are intact. In this case, of particular

importance is the following combination of the integrals of motion

ĤF =
∑
i

2παiĈi. (4.21)

Where ĤF is known as the Floquet Hamiltonian and is defined as,

e−iHF = e−iV̂ e−iĤ0 = ÛF . (4.22)

The quasienergy wave functions ψω are simultaneous eigenstates of ĤF and Ĉi’s.

The quasienergy-ω state centered around momenta 〈~̂p〉 = ~M is

ψω(~θ) = (2π)−N/2 exp

{
i ~M · ~θ −

∑
jm

kme
im(θj+παj)

2 sin(mπαj)
−
∑
ijm

bijm
4πm(αi − αj)

eim(θi−θj)
}
.

(4.23)

This satisfies Ĉiψω = Miψω. By writing ĤFψω = ωψω and using Eq. (4.21),

we see that the eigenvalue equation is satisfied when, ω = 2π~α · ~M(mod 2π).
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We can also compute the momentum-momentum correlator, 〈p̂ip̂j〉 − 〈p̂i〉〈p̂j〉

for i 6= j over quasienergy eigenstates. The correlator over this state follows as

〈p̂ip̂j〉 − 〈p̂i〉〈p̂j〉 = −1

4

∑
m

|bijm|2

π2(αi − αj)2
. (4.24)

In the case of a resonance αi → αj, this correlator clearly diverges, while in the

localized case it remains finite.

4.6 Experimental proposal

A natural venue for realizing the interacting kicked rotor model is supercon-

ducting grains. The Hamiltonian, Eq. (4.3) could be implemented using a chain

of voltage-biased superconducting grains coupled to each other using Josephson

junctions. Consider a chain of grains gated by a ground plane which resistively

connected to ground (see, Fig. 4.2). We then supply a gate voltage Vi to each grain,

and connect them to each other by Josephson junctions Jij.

Because the voltage on the i-th grain is locked to be Vi, its phase winds with

an angular velocity φ̇i = 2eVi/~. Therefore, the resistance and gate capacitor can

be ignored when writing the effective stationary part of the Hamiltonian:

H0 =
∑
i

qiVi −
∑
ij

Jij cos(φi − φj). (4.25)

In addition, the “kick” term is obtained by connecting each grain to a common

macroscopic superconductor (which is itself grounded), for a short time and through

a strong Josephson coupling.

V (t) = −
∑
i, n

K(t− nT ) cosφi, (4.26)
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Figure 4.2: Schematic of chain of voltage-biased (Vi) superconducting
grains coupled to each other (Ji) using Josephson junctions. Each grain
is connected (Ki) to a grounded common macroscopic superconductor
stroboscopically through a strong Josephson coupling.

with K(t) = K when |t| < τ . To make the kick term as close to a delta function as

possible, we must have 2eViτ � ~2π, and Kτ ∼ ~, and τ � T . A diagram of the

circuit for a nearest-neighbor interaction is shown in Fig. 4.2. Identifying, φi = θi,

2παi = 2eVi/~ and pi = ~qi/2e we see that we indeed obtain the Hamiltonian of

Eq. (4.3).

4.7 Conclusions

In this work, we introduced the concept of dynamical many-body localization

and presented an exactly-solvable model of driven linear rotors, which exhibits this

phenomenon. Although the model possesses a full set of integrals of motion, it is

shown that dynamical MBL is accompanied by the emergence of additional integrals
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of motion, local in momentum space. We believe that this observation has important

general implications for understanding dynamics of interacting many-body systems.

We have shown that these integrals of motion break down due to two types

of resonances indicating delocalization in momentum space. One type of resonance

originates from commensuration of the external driving period with the parameters

of the system and the other from the static interactions. An interesting feature of

this model is that the total energy in the system, that is linear in momenta, fails

to be a good indicator of dynamical localization, since when momentum conserving

interactions delocalize momentum, momenta of interacting pair grow in opposite

directions.

Moreover, we have shown, by utilizing the lattice mapping introduced by Fish-

man and Grempel and Prange, that our model maps into a disordered lattice with

as many dimensions as there are rotors. Based on this observation, we argue that

what is observed is an Anderson type localization, particularly of the type seen in

correlated disorder systems.

We also have proposed an experimental setup composed of Josephson junctions

and superconducting grains to realize the model Hamiltonian.

Finally, we emphasize that the results presented here can apply to more generic

non-integrable systems. For example, a recent work [142] considers interacting

kicked Dirac particles with individual Hamiltonians, H0 = 2πασxp + Mσz, and

provides a simple argument that this non- integrable system also exhibits MBL.

First, this model also exhibits localization when α’s are generic distinct irrationals.

Second, although the number of interacting particles that can be considered numer-
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ically is limited, note that at large momenta the Dirac model crosses over to the

linear model considered here. This suggests that MBL should be robust to a class

of non-integrable generalizations, for any number of interacting rotors.
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Chapter 5: Conclusions

Classical mechanics is built on assumptions that hold for macroscopic bodies,

therefore, is applicable to a diverse set of phenomena that includes those that appear

in anthropic scales, which makes the theory appealing to our intuition. For this

very reason it historically precedes quantum mechanics that lies at the heart of our

current understanding of nature.

Classical models have enormous utility for being well understood and intuitive.

In this thesis we put forward three models for many-body quantum systems, solve

them under certain assumptions and employ a classical analogy to help understand

the underlying physics and/or make inference about a broader class of systems.

From a different perspective, these analogies contribute to resolve the problem

of how classical dynamics emerge from quantum mechanics. Although the emer-

gence of classical mechanics from quantum mechanics, commonly referred to as the

classical limit, is controlled by a single parameter, the Planck constant, the quali-

tative picture the two theories paint is fundamentally different. The measurement

problem, the failure of conventional quantization schemes for the gravitational field

and the emergence of chaos from unitary quantum dynamics are all different cases

of the ‘classical limit’ problem that plagues almost all fields of modern physics in
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addition to rising foundational questions. All three of these issues are related to

how we extract a set of observables (what we refer to as the ‘system’) from a very

large number of interacting quantum degrees of freedom, a majority of which make

up the ‘environment’ for the system. Therefore, the afore-mentioned issues can be

considered in the context of the ‘quantum many-body problem’ as we argued in the

introduction.

Below is a summary of the models considered in these thesis, the corresponding

classical analogy, its advantages and/or its relation to a broader problem say of

classicalization of particles/fields, emergence of spacetime or chaos.

In Part 2, we considered a quasi-one-dimensional superconductor. In the su-

perconducting phase of matter, the complete many-body quantum field theory can

be reduced to the solution of a PDE for the superconducting order parameter and

the two-point function for the quasiparticles. This PDE parametrically depends on

the disorder in the system. In the long wavelength limit, the appropriate Eilen-

berger equations of the system were solved. We discovered that this problem can

be mapped to a one-dimensional classical particle moving in an external potential.

In view of the recent interest in superconducting heterostructures, we studied the

proximity effects in a normal segment, attached to a clean p-wave wire. We discov-

ered that despite the presence of impurities, the proximity-induced superconducting

correlations are long-range. We also found that impurity scattering leads to the ap-

pearance of a delocalized zero-energy peak that hints to the long sought zero-energy

Majorana mode. The methods we employ can be applied to analyze a variety of sit-

uations with quasi one dimensional disordered superconductor and metal junctions,
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which will form the building block of topological quantum computers.

In Part 3, we considered a strongly interacting Bose system. Similarly, the

superfluid phase is described as a classical object: a perfect fluid. The environment

is the gas of phonons which effect the background flow by applying stresses. This

picture is called the two-fluid model. The phonons, possessing Lorentz symmetry,

can be shown to travel on an emergent spacetime metric defined by the perfect fluid.

With this observation we drew analogies between general relativity and the two-fluid

system including stochastic effects due to the fluctuations of the phonon “matter”

field. This gives an idea of how classical spacetime might emerge from quantum

degrees of freedom in the low energy limit. Moreover, based on this analogy, we

conjectured a lensing for a phonon wave packet due to stochastic fluctuations of the

background fluid, similar to lensing of light rays due to a fluctuating metric field.

In Part 4 we considered the analogy between localization of electron states in

a lattice and the quantum bounds to classical chaos, known as the Maryland model.

To understand if the quantum suppression of chaos persists despite interactions,

we introduced the concept of dynamical many-body localization and presented an

exactly-solvable model of driven and interacting linear rotors, which exhibits this

phenomenon. For each rotor, the rest of the rotors is the environment. The ex-

istence of dynamical MBL depends on whether the environment restores chaos or

not. Although the model possesses a full set of integrals of motion, it is shown that

dynamical MBL is accompanied by the emergence of additional integrals of motion,

local in momentum space. In both cases the quantum evolution equations closely

follow their classical counter parts. The additional integrals of motion break down
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when interactions become resonant causing phase space diffusion or delocalization.

We also have proposed an experimental setup composed of Josephson junctions

and superconducting grains to realize the model Hamiltonian. Finally, we emphasize

that the results presented here can apply to more generic non-integrable systems.

For example, a later work [142] considers interacting kicked Dirac particles with

individual Hamiltonians, H0 = 2πασxp + Mσz, and provides a simple argument

that this non- integrable system also exhibits MBL. This suggests that MBL should

be robust to a class of non-integrable generalizations, for any number of interacting

rotors.
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Appendix A: Mapping between Quantum Kicked Rotor and the tight-

binding model

In the first part of this section, we derive the known lattice mapping of the

one dimensional kicked rotor [28]. Once we establish this derivation, we show that

the many-body linear kicked rotor 4.3 also admits a lattice mapping of a particle

on a d-dimensional lattice. We emphasize that existence of such a mapping in the

many-body case is limited to the case of linear p model (l = 1).

A.1 Lattice model of single quantum kicked rotor

In the introduction we considered the time dependent Schrödinger equation

for a kicked rotor. The kinetic part was considered to be p̂l. For the quadratic

kicked rotor case l = 2 and the linear kicked rotor that we consider in this work is

l = 1. Also ~ = 1 and kicking period T = 1 are used in this equation.

i∂tψ(θ, t) = [2πα(−i∂θ)
l +K(θ)

∑
n

δ(t− n)]ψ(θ, t). (A.1)

The above equation can be solved for ψ(θ, t) = e−iωtu(θ, t), where the function u

has the unit periodicity of the driving. Let u± defines the state just before and after
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the kick and are connected by the evolution operator in the following way,

u+ = e−iK(θ)u−, u− = ei(ω−2παp̂l)u+ (A.2)

Define the following: ū = u++u−

2
, exp(−iK̂(θ)) = (1 − iŴ (θ))−1(1 + iŴ (θ)),

exp(−i[2παp̂l − ω]) = (1 − iT̂ (θ))−1(1 + iT̂ (θ)). Based on the above definitions,

u± = (1∓ iT̂ (θ))ū and

[T̂ (θ) + Ŵ (θ)]ū = 0 (A.3)

is obtained.

Fourier transforming the above expression, we get the following tight binding

model,

∑
n 6=m

Wm−nun + Tmum = Eum. (A.4)

Here, the energies and hoppings are:

Wm−n = −Eδm,n−

1

2π

∫ 2π

0

e−i(m−n)θ

{
tan

(
K(θ)

2

)}
dθ,

(A.5a)

Tm = tan

(
1

2
[ω − 2παml]

)
. (A.5b)

This completes the derivation for the lattice mapping for the single rotor case. In

the following section, we generalize this derivation to demonstrate the existence of

a lattice mapping for the interacting rotor model of Eq. (4.3).

A.2 d-dimensional lattice model

In this section we show that there exists a d− dimensional lattice model corre-

sponding to the d particle interacting version of the kicked rotor model in Eq. (4.3).
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Such a mapping has been previously identified for the case of a d rotors driven by

an interaction potential [131]. Notice that in our case, the interactions are encoded

in the stating Hamiltonian Ĥ0. However, we show that for the linear momentum

dependence of the kinetic term, static interactions can expressed as the driven inter-

actions and the rest of the lattice mapping simple follows from Ref. ( [131]). In order

to establish this mapping, we use the factorization of the Floquet operator discussed

in the Section. (4.5). The time dependent Hamiltonian in Eq. (4.3) produces the

same Floquet operator as,

Ĥ(t) = 2π
d∑
i=1

αip̂i + V̂ F

∞∑
n=−∞

δ(t− n), (A.6)

where we have defined,

V̂ F =
d∑
i=1

K(θ̂i) +
1

2

∑
i 6=j

J̃ij(θ̂i − θ̂j) (A.7)

=
d∑
j=1

∑
m

kme
imθ̂j +

1

2

∑
i 6=j

∑
m

b̃ijme
im(θ̂i−θ̂j). (A.8)

The factorization enables to treat on site and interaction potentials on equal footing.

The b̃ij is defined in Eq. (4.8). Moreover, we write:

V̂ F =
∑
~m

V F
~m e

i~m·~θ. (A.9)

Here, ~m is a d-dimensional vector characterized by the integer m. The com-

ponents of the potential V F
~m are as follows. For fixed i and j, for vectors ~m parallel

to a coordinate axis, i.e. ml = mδlj, V
F
~m takes the value km. For vectors ~m such

that ml = m(δli − δlj), V
F
~m takes the value b̃ijm/2. For any other vector, V F

~m van-

ishes. Treating α’s and p’s as d-dimensional vectors as well, the Hamiltonian can be

succinctly as:
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Ĥ(t) = 2π~α · ~̂p+
∑
~m

V~me
i~m·~̂θ

∞∑
n=−∞

δ(t− n). (A.10)

Following Ref. ( [131]), the above driven Hamiltonian can be mapped on to a d-

dimensional lattice model, which is closely related to the lattice mapping outlined

in the previous section for the single rotor case.

H~m,~nu~n = T~mu~m +
∑
~n

W~m,~nu~n = Eu~m. (A.11)

Here, ~m and ~n are vectors that contain integers that correspond to the quantized

eigenvalues of the angular momentum operator. The hopping and onsite terms are

defined as,

W~m−~n = −Eδ~m,~n+

1

(2π)d

∫ 2π

0

e−i(~m−~n)·~θ

{
− tan

(
V F (~θ)

2

)}
d~θ

, (A.12a)

T~m = tan

(
1

2
[ω − 2π~α · ~m]

)
. (A.12b)

Here, we defined E = −(1/[2π]d)
∫

tan
(
V F (~θ)/2

)
so as to make W0 = 0.
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Appendix B: Derivation of the canonical conservation law

Here we derive the canonical conservation laws in Part 3, by using the covari-

ant conservation law and the equations of motion for the two-fluid system. The

Chrystoffel symbols are

Γµνα =
1

2
gµβ (gβν,α + gβα,ν − gνα,β) , (B.1)

where the comma notation means

gβν,α ≡
∂

∂xα
gβν .

For a symmetric tensor T µθ , with the application of chain rule, we have

T µθ Γθµν = −1

2
Tγθ

(
gγµ,νδ

θ
µ + gγµ,µδ

θ
ν − gθµ,µδγν

)
= −1

2
Tγθ

(
gγµ,νδ

θ
µ

)
= −1

2
Tγµ g

γµ
,ν .

(B.2)

Similarly, we have

Γµνµ =
1

2
gµβ
(
gβν,µ + gβµ,ν − gνµ,β

)
=

1

2
gµβgβµ,ν =

1

2g
g,ν = ∂ν log

√
−g. (B.3)

Using Eq. (B.2) and Eq. (B.3) and relabeling dummy indices as required, we

write the covariant conservation law Eq. (3.49) in the main text as Eq. (3.50).
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Now, by using Eq. (3.52) and Eq. (3.53), the covariant conservation law

Eq. (3.50) can be recast in the Noether current form that appears in Eq. (3.55)

as follows.

√
−g∇µT

µ
ν =

(
∂Lph

∂φ,µ
φ,ν −Lphδ

µ
ν

)
,µ

+
∂Lph

∂θ,µ
θ,µν +

∂Lph

∂ρ
ρ,ν = 0. (B.4)

Using the Euler-Lagrange equation (classical limit of Eq. (3.48a))

∂(Lph + Lcl)

∂ρ
=

(
∂(Lph + Lcl)

∂ρ,µ

)
,µ

= 0,

and using the chain rule

∂νLcl =
∂Lcl

∂ρ
∂νρ+

∂Lcl

∂θ,µ
θ,µν ,

the covaraint derivative in Eq. (B.4) becomes

√
−g∇µT

µ
ν =

(
∂Lph

∂φ,µ
φ,ν −Lphδ

µ
ν

)
,µ

+
∂(Lph + Lcl)

∂θ,µ
θ,µν − ∂µLclδ

µ
ν = 0. (B.5)

Now using, the second Euler-Lagrange equation (classical limit of Eq. (3.48b)),

(
∂(Lph + Lcl)

∂θ,µ

)
,µ

=
∂(Lph + Lcl)

∂θ
= 0.

the Eq. (B.5) reduces to

√
−g∇µT

µ
ν =

(
∂Lph

∂φ,µ
φ,ν − (Lcl + Lph)δ

µ
ν

)
,µ

+

(
∂(Lph + Lcl)

∂θ,µ
θ,ν

)
,µ

= 0. (B.6)

The total derivative on the right hand side can be written as the divergence of the

Noether current Eq. (3.55).
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Appendix C: Noise and response kernels

Here, we write the first and second order variations of the effective phonon

action in Part 3 as tensors and bi-tensor kernels. For example consider the second

order variations of the phonon effective action with respect to the forward metric:

δ2Γph
δ(g+)µν(x)δ(g+)αβ(y)

∣∣∣∣
g+=g−

=

−i
4

√
−g(x)

〈
T̂µν(x)

〉√
−g(y)

〈
T̂µν(y)

〉
− i δ2Zph

δ(g+)µν(x)δ(g+)αβ(y)

∣∣∣∣
g+=g−

. (C.1)

In the last part we used the unitarity of the partition function in Eq. (3.40).

The second order variation of the phonon partition function contains the ex-

pectation value of a product of stress-energy operators.

δ2Zph
δ(g+)µν(x)δ(g+)αβ(y)

∣∣∣∣
g+=g−

=

− 1

4

√
−g(x)

√
−g(y)

〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
+ i

〈
δ2Sph[φ̂]

δgµν(x)δgαβ(y)

〉
. (C.2)

Here, the Weyl or T∗ ordered average of the product of stress operators is understood

in the following way. The stress-energy operator contains terms quadratic in the

field and its derivatives. It can be regularized by using the point splitting method

[104,113]. In this regularization scheme, to take an average as in Eq. (C.2), one first
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writes the quadratic operator average as

lim
x′,x′′→x

〈
T∗
{
∂µφ̂(x′)∂νφ̂(x′′)

}〉
= lim

x′,x′′→x

∂

∂x′µ
∂

∂x′′ν

〈
T
{
φ̂(x′)φ̂(x′′)

}〉
. (C.3)

Then, the time ordered operator average is computed and renormalized by sub-

tracting the divergent terms. Lastly, the operators are acted on the result and the

coincidence limit is taken.

Weyl ordering inherits all properties of time or path ordering, for example it

is possible to rewrite the Weyl ordered average as

2
〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
=
〈{

T̂µν(x), T̂αβ(y)
}〉

+
〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
−
〈
T̃∗
{
T̂µν(x)T̂αβ(y)

}〉
. (C.4)

Here, {, } is the anti-commutator and T̃ is the reverse Weyl ordering computed by

reversing the time ordering in Eq. (C.3). Using Eq. (3.41), we can decompose the

Weyl ordered average into its real and imaginary parts

〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
=

1

2

〈{
T̂µν(x), T̂αβ(y)

}〉
+ iIm

〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
.

(C.5)

Following Martin and Verdaguer [116] we define the (bi-tensor) real kernels.

ĤS
µναβ(x, y) = Im

〈
T∗
{
T̂µν(x)T̂αβ(y)

}〉
, (C.6a)

ĤA
µναβ(x, y) =

−i
2

〈[
T̂µν(x), T̂αβ(y)

]〉
, (C.6b)

Ĥµναβ(x, y) = ĤA
µναβ(x, y) + ĤS

µναβ(x, y), (C.6c)

= −iθ(x0 − y0)
〈[
T̂µν(x), T̂αβ(y)

]〉
(C.6d)
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N̂µναβ(x, y) =
1

2

〈{
t̂µν(x), t̂αβ(y)

}〉
, (C.7a)

where t̂µν(x) = T̂µν(x)−
〈
T̂µν(x)

〉
, (C.7b)

K̂µναβ(x, y) =
−4√

−g(x)
√
−g(y)

〈
δ2Sph[φ̂]

δgµν(x)δgαβ(y)

〉
. (C.7c)

The kernels HS and HA are the symmetric and anti-symmetric bi-tensor parts of

H, i.e.

HS,A
µναβ(x, y) = ±HS,A

αβµν(y, x). (C.8)

With these, the second order variational derivative of the effective action on

the forward branch reads

4√
−g(x)

√
−g(y)

δ2Γph
δ(g+)µν(x)δ(g+)αβ(y)

∣∣∣∣
g+=g−

= iN̂µναβ(x, y)−ĤS
µναβ(x, y)−K̂µναβ(x, y).

(C.9)

Similarly, the second order variation with respect to the other combinations

of the forward and backward values of the metric are

4√
−g(x)

√
−g(y)

δ2Γph
δ(g+)µν(x)δ(g−)αβ(y)

∣∣∣∣
g+=g−

= −iN̂µναβ(x, y)− ĤA
µναβ(x, y),

(C.10)

4√
−g(x)

√
−g(y)

δ2Γph
δ(g−)µν(x)δ(g+)αβ(y)

∣∣∣∣
g+=g−

= −iN̂µναβ(x, y) + ĤA
µναβ(x, y),

(C.11)

4√
−g(x)

√
−g(y)

δ2Γph
δ(g−)µν(x)δ(g−)αβ(y)

∣∣∣∣
g+=g−

= iN̂µναβ(x, y)+ĤS
µναβ(x, y)+K̂µναβ(x, y).

(C.12)

The Eq. (3.90) is a compact way to write the above second order variations

Eqs. (C.9)– (C.12).
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