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Urbanization is a global phenomenon with far-reaching environmental impacts. 

Monitoring, understanding, and modeling its trends and impacts require accurate, 

spatially detailed and updatable information on urban extent, change, and structure. In 

this dissertation, new methods have been developed to map urban extent, sub-pixel 

impervious surface change (ISC), and vertical structure at national to global scales. 

First, an innovative multi-level object-based texture classification approach was 

adopted to overcome spectral confusion between urban and nonurban land cover types. 

It was designed to be robust and computationally affordable. This method was applied 

to the 2010 Global Land Survey Landsat data archive to produce a global urban extent 

map. An initial assessment of this product yielded over 90% overall accuracy and good 

agreement with other global urban products for the European continent. Second, for 

sub-pixel ISC mapping, the uncertainty caused by seasonal and phenological variations 



  

is one of the greatest challenges. To solve this issue, I developed an iterative training 

and prediction (ITP) approach and used it to map the ISC of entire India between 2000 

and 2010. At 95% confidence, the total ISC for India between 2000 and 2010 was 

estimated to be 2274.62±7.84 km2. Finally, using an object-based feature extraction 

approach and the synergy of Landsat and freely available elevation datasets, I produced 

30m building height and volume maps for England, which for the first time 

characterized urban vertical structure at the scale of a country. Overall, the height 

RMSE was only ±1.61 m for average building height at 30m resolution. And the 

building volume RMSE was ±1142.3 m3. In summary, based on innovative data 

processing and information extraction methods, this dissertation seeks to fill in the 

knowledge gaps in urban science by advancing the fine scale characterization of global 

urban extent, change, and structure. The methods developed in this dissertation have 

great potentials for automated monitoring of global urbanization and have broad 

implications for assessing the environmental impact, disaster vulnerability, and long-

term sustainability of urbanization. 
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Chapter 1: Introduction 

1.1 Background 

Earth has become an urban planet (Wigginton et al. 2016), which is manifested by the 

following facts. More than half of the world’s population now dwells in urban areas 

and the urban population is expected to reach two thirds of the world’s population by 

2050 (United Nations 2015). For the last three decades of the 20th century, the rate of 

urban land expansion has been even higher than the rate of urban population growth, a 

trend that is expected to continue in the future and projected to contribute additional 

1,527,000 km2 of urban land cover globally (an area roughly equal to the size of 

Mongolia) by 2030 (Seto et al. 2011). Far beyond the physical boundary of urban areas, 

urbanization impacts the Earth’s environment profoundly. The ecological footprint of 

a city could be as large as 200 times the area of a city itself, as demands on food, energy, 

and materials grow as urban areas expand (Wigginton et al. 2016). The environmental 

pressure induced by these demands is also amplified by agricultural land loss due to 

urban expansion and teleconnections enabled by global trade networks (DeFries et al. 

2010; Jiang et al. 2013; Pandey and Seto 2015; Satterthwaite et al. 2010; Seto and 

Ramankutty 2016). The reach of the environmental impact of urbanization is broadened 

through not only land-based or demand-driven teleconnections, but also pollutant 

pathways. Because global economic activities are concentrated within urban areas, ~70% 

of global greenhouse gas emissions could be attributed to urban areas (Seto et al. 2014). 

Urban areas are also major sources of air and water pollution (Brabec et al. 2002; 
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Duncan et al. 2016; Fichot et al. 2016; Lamsal et al. 2013). Finally, the modification of 

local to regional environment by urbanization, such as the urban heat island effect and 

increased stream flashiness, may also lead to consequences at larger spatial scales 

(Bounoua et al. 2015; Imhoff et al. 2010; McDonald et al. 2014; McGrane 2016). In 

summary, in the era of an urban planet, urbanization has become a planet-scale 

phenomenon with global environmental impacts. 

The sheer scale and speed of urbanization present grand challenges to humanity. 

Facing global climate change, environmental change, and natural disasters, urban areas 

are particularly vulnerable (Cutter and Finch 2008; Mosquera-Machado and Dilley 

2008; Tessler et al. 2015). The development of essential infrastructure and services 

(e.g., water supply, transportation, and waste management) may lag greatly behind the 

growth of urban population and urban land (Cotton and Franceys 1994; Larsen et al. 

2016; McDonald et al. 2014; Zeug and Eckert 2010). Such lag is often more severe in 

developing countries and may disproportionately affect low-income population groups, 

leading to inequality and public health risks (Njoh 2016; Tatem and Hay 2004; Unger 

and Riley 2007). In addition, urbanization is often accompanied by economic, social, 

and cultural changes, threatening the stability of economic and societal structures (Chen 

et al. 2014; Cohen 2004), challenging established governance models and institutions 

(Pierre 1999; Stren 2009; United Nations 2011), and raising issues of stress and anxiety 

among urban inhabitants (Lederbogen et al. 2011). Among all the challenges, the 

biggest is probably the rising demand of water, food and energy, questioning if 

urbanization is a sustainable path of development (Bogardi et al. 2012; Cohen 1995; 

Cohen and Garrett 2009; Foley et al. 2005). 
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However, many people argue that urbanization also brings great opportunities 

towards solving pressing environmental and societal issues. Approximately 60% of the 

urban area estimated for 2050 will be newly built, particularly in developing countries 

(Ramaswami et al. 2016). With energy-efficient urban designs, urban areas have great 

potential for energy savings and emission reduction, especially in developing areas 

where the urban form and structure are still being shaped (Cheshmehzangi and Butters 

2016; Creutzig et al. 2015; Kammen and Sunter 2016). With respect to sustainability 

in general, two arguments suggest possible scenarios of environment-friendly 

urbanization. The first argument follows the logic of the “environmental Kuznets curve 

hypothesis” (Grossman and Krueger 1991), linking the gain of economic efficiency 

through compact urban growth with environmental efficiency (Li and Ma 2014; 

Williams et al. 1996). The second one focuses on the concentration of human capital 

and thus innovation in urban areas, highlighting the importance of new technologies 

and ideas in achieving sustainable urbanization (Seto and Ramankutty 2016). 

The environmental impacts of urban expansion, challenges and opportunities 

associated with urbanization have been central themes of urban studies and debate 

topics. In response to many open questions associated these topics, there has been a 

boom in urban studies since the 1990s (Wang et al. 2012). However, huge knowledge 

gaps still exist and continue to hinder our understanding of urbanization, particularly 

at continental to global scales. Several fundamental aspects of urbanization remain to 

be better characterized: (1) How to define the term “urban” and its spatial extent? (2) 

How fast do urban areas grow and how are these growths spatially distributed? (3) How 

to measure the form and structure of urban areas, particularly in the vertical dimension? 
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Addressing these issues are not only fundamental to understanding urbanization and its 

impacts, but also crucial to establishing scientific grounds for developing polices and 

strategies to meet the challenges of urbanization.  

First, an accurate urban extent map is one of the prerequisites of further study 

on urbanization. Urban extent map from various data sources has been widely used to 

define urban-rural boundary for urban studies such as the environmental impacts of 

urbanization and socioeconomic drivers of urban development. (Bechle et al. 2015; 

Patino and Duque 2013; Samuel et al. 2016; Xu et al. 2016). Urban extent information 

is also an important input for modeling the response of the climatic system to 

urbanization (Bounoua et al. 2015). To model the spatiotemporal dynamics of urban 

expansion, historical urban extent is critical for model calibration (Jantz et al. 2004; Liu 

and Seto 2008; Seto et al. 2012). Also, compared to other information sources such as 

administrative boundaries, urban extent maps provide a basis to define urban population 

and urban economic activities consistently across spatial scales (Brockerhoff 1999; 

Cohen 2004; Hsieh 2014). Global urban extent maps has been produced using coarse- 

and moderate-resolution remote sensing data (Arino et al. 2007; Bartholomé and 

Belward 2005; Imhoff et al. 1997; Loveland and Belward 1997; Schneider et al. 2009). 

However, huge uncertainties exist in the global urban land area estimates given by these 

maps (Table 1-1). One way to improve global urban extent maps is using finer 

resolution satellite (e.g., Landsat) to map urban extent. Yet great technical challenges 

still exist for finer resolution urban extent mapping, including the amount of data 

processing needed and data quality issues such as insufficient spectral resolution, 

confusions between spectrally similar land cover types, and spectral variations (Gong et 
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al. 2013; Herold et al. 2003a; Herold et al. 2004), although 30 m data products have 

been recently made available (Chen et al. 2015b; Klotz et al. 2016). 

Table 1-1: A partial list of percent urban land area estimations from existing global 
urban products. 

Name of 
dataset 

% of urban 
land in global 

land area 
Time Data 

Source Resolution Reference 

GRUMP 2.38 1995 DMSP/
OLS  1km 

(CIESIN (Center for 
International Earth 

Science Information 
Network) 2011) 

Global 
Urban 

Extent in 
2000 

0.50 2000 DMSP/
OLS  1km (Zhou et al. 2015) 

MOD500 0.45 Circa 2001-
2002 MODIS 500m (Schneider et al. 2009; 

Schneider et al. 2010) 

Global 
Impervious 

Surface 
0.43 Circa 2000-

2001 42.3% 1km (Elvidge et al. 2007) 

 

Second, the fast rate of global urbanization makes it necessary to map urban 

change and to update the global urban maps regularly. However, to map urban change 

effectively, very high resolution (VHR) data is often required (Jensen and Cowen 1999), 

particularly in low- to medium-density areas, where the majority of urban changes 

happen. For global scale urban change mapping, because of limitations in data 

availability, the best representation of urban area is a subpixel continuous field variable, 

commonly referred as impervious surface cover (Sexton et al. 2013b; Song et al. 2016). 

With impervious surface cover mapping techniques, it has been demonstrated that 

Landsat data could be used to construct a spatially and temporal detailed record of 

urban change (Xian and Homer 2010; Yang et al. 2003). However, because existing 
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impervious surface change mapping techniques are sensitive to spectral variations, 

great uncertainties many exist in the change derived from year-to-year difference (Li 

and Wu 2014; Walton 2008; Yuan et al. 2008). Although effective methods based on 

time series have been developed to address this issue (Sexton et al. 2013b; Song et al. 

2016), impervious surface change estimation from bi-temporal images remains a 

technical challenge when time series data is not available. 

Finally, three-dimensional (3D) structural information has been missing in 

global urban data products. Structural information, including building height and 

volume, are greatly needed for key applications such as disaster vulnerability 

assessment (Geiß et al. 2016), climate change adaption (Seto and Christensen 2013), 

and population distribution mapping (Lu et al. 2011; Qiu et al. 2010). Technologies 

such as light detection and ranging (Lidar) have enabled the mapping of urban 

structures at unprecedented levels of detail (Gonzalez-Aguilera et al. 2013; Zheng and 

Weng 2015). However, for most areas of the world, the vertical structures of urban 

landscape are yet to be mapped in most areas of the world due to data constraints. 

For all the three urban attributes, data availability has been a major factor 

limiting the use remote sensing datasets. Recent development of Earth observation 

capabilities has brought the richness of remote sensing data to an unprecedented level. 

Global Land Survey (GLS) dataset, a series of global orthorectified cloud-free Landsat 

image archive at multiple epochs, greatly reduces the difficulty of global urban 

mapping (REF HERE). The first global 30 m impervious surface fraction product is 

being produced by the global man-made impervious surface (GMIS) project (PIs: Drs. 

Brown de Colstoun and Huang) using this dataset. Moreover, space-borne 
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interferometric synthetic aperture radar (InSAR) and orthophotography technologies 

have been used to produce global wall-to-wall observations of land surface heights. 

Global 30 m digital surface model (DSM) datasets have been made available, including 

the Shuttle Radar Topography Mission (SRTM), Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 

(GDEM), and Advanced Land Observing Satellite (ALOS) World 3D–30 m (AW3D30) 

datasets (Rodriguez et al. 2006; Tachikawa et al. 2011; Tadono et al. 2016; Van Zyl 

2001). Finally, nightlights data has been made available from the Defense 

Meteorological Satellite Program (DMSP) satellites and the Visible Infrared Imaging 

Radiometer Suite (VIIRS) onboard the Suomi NPP satellite (Elvidge et al. 2017; Imhoff 

et al. 1997). Therefore, there is a timely opportunity to bring together multiple remote 

sensing datasets for better characterization of global urban land cover, change, and 

structure.  

1.2 Research Objectives 

One clear vision guided the development of the research objectives of this 

dissertation: advancing urban remote sensing to address the challenges of urbanization. 

As identified in the previous section, urban extent, change, and structure are three key 

areas where remote sensing information is urgently needed and where great knowledge 

gaps exist. Although greatly limited by data availability and quality, the 

characterization of these urban attributes at global scale may be greatly advanced based 

on innovative information extraction and machine learning techniques. The following 

research objectives were formulated as concrete steps towards achieving this vision: 
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1. Design and implement a method for global urban extent mapping using Landsat 

data. 

2. Investigate effective methodology for mapping sub-pixel urban impervious 

surface change using bi-temporal Landsat imagery at global scale. 

3. Establish and prototype a method for characterizing large-scale vertical 

structure of urban areas using free datasets. 

As discussed in the review of the state-of-the-art methods for characterizing 

these urban attributes, there are many technical challenges to achieve each objective. 

Among these challenges, these three are highlighted and posed as the main research 

questions: 

1. How to develop robust feature variables for mapping global urban extent 

consistently using Landsat datasets containing spectral and phenological 

inconsistency? 

2. How to minimize biases and errors in impervious surface change estimated 

from bi-temporal Landsat imagery acquired during different seasons? 

3. How to extract height information from global DSMs for building height and 

volume estimation? 

1.3 Dissertation Outline 

This dissertation is organized into five chapters. The following three chapters 

are the primary chapters, which address the research objectives listed above. These 

three chapters are self-contained and structured in the format of journal articles. A 
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review of literature relevant to each chapter is provided in the introduction section in 

each chapter. A flowchart of the research objective organization into the primary 

chapters of this dissertation is shown in Figure 1-1. As shown in the diagram, the 

following three chapters are closely related because (1) they aim to successively 

characterize urban areas in the two-dimensional, temporal, and vertical domains; (2) 

they all use Landsat data and are linked to the GMIS project; and (3) the urban extent 

maps from Chapter 2 are used in Chapters 3 and 4. 

 

Figure 1-1: A schematic illustration of the overall structure of this dissertation. 

 
Chapter 2 presents a method for the mapping of the global urban extent using 

the Global Land Survey Landsat dataset. An innovative hierarchical object-based 

texture (HOTex) classification approach was designed to overcome spectral confusion 

between urban and nonurban land cover types and to address the issue of inconsistent 
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phenology among global Landsat images. A new definition of urban extent was also 

developed to achieve a balance between the purely “physical” and “human” perspective 

of urban land. The method was successfully used globally to produce an urban extent 

map, which is integral to the GMIS project and is used as an urban mask (Figure 1-1). 

Initial assessments of the method and comparisons with other global urban datasets will 

be performed for the European continent. Moving to the temporal domain, Chapter 3 

investigates sub-pixel impervious surface change mapping with bi-temporal Landsat 

data, which may be subject to seasonal and phenological variations. To this end, an 

iterative training and prediction (ITP) approach was developed to reduce the bias of 

impervious surface change caused by these variations. The method was applied to map 

the impervious surface change in India between 2000 and 2010. To characterize the 

urban vertical structure, Chapter 4 establishes an approach for mapping building height 

and volume using multiple datasets. Building height/volume mapping is estimated from 

global digital surface model (DSM) datasets by leveraging impervious surface and 

segmentation derived from Landsat data. Note that although the methods developed in 

all three chapters are intended for global applications, Chapter 2 focuses on Europe, 

while Chapters 3 and 4 focus on country-level case studies due to time constraints. 

India was chosen as the study area of Chapter 3 because of its fast rate of urbanization 

(Pandey et al. 2013). On the other hand, England, a country with relatively slow urban 

change, was chosen for Chapter 4 to minimize temporal discrepancy issues caused by 

different acquisition dates of the available datasets. The findings and contributions of 

these chapters are summarized in Chapter 5 together with discussions of their 

implications.  
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Chapter 2: Mapping Human Built-up and Settlement Extent 
(HBASE) at Global Scale Using Landsat-based Hierarchical 

Segmentation and Texture Information 

2.1 Introduction 

Urban land cover only accounts for a small percentage of the Earth’s land surface 

(estimates range from 0.2% ~ 3% (Liu et al. 2014; Schneider et al. 2009; Small 2004)), 

whereas more than half of the world’s population now dwells in urban areas. Urban 

population is continuing to grow rapidly and is expected to reach two thirds of the 

world’s population by 2050 (United Nations 2015). This ongoing global urbanization 

process has broad impacts on the Earth’s environmental systems including climatic 

systems (Arnfield 2003; Seto and Shepherd 2009), hydrologic systems (Arnold and 

Gibbons 1996), and ecosystems (Foley et al. 2005; Kaye et al. 2006). Such impacts can 

go far beyond the physical footprint of urban areas (Lambin et al. 2001). Understanding 

the drivers, impacts, and feedbacks of urban growth requires detailed and up-to-date 

information on the spatial extent of urban areas (Wentz et al. 2014).  

Conventional data sources used for urban extent mapping include vector data 

and census population data based on administrative boundaries (Potere and Schneider 

2007). As valuable as these data sources are, they are too coarse for many applications 

and can become outdated quickly due to long updating cycles. The rapid development 

of Earth observation technologies in recent decades made it possible to mitigate these 

problems. Global datasets acquired by coarse- to moderate-resolution satellites, such 

as the Defense Meteorological Satellite Program Operational Linescan System 
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(DMSP-OLS) (Imhoff et al. 1997; Zhou et al. 2015), Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Schneider et al. 2009), Satellite Pour l'Observation de la 

Terre Vegetation (SPOT VEGETATION) (Bartholomé and Belward 2005) and 

Medium Resolution Imaging Spectrometer (MERIS) (Arino et al. 2007), have been 

used to map urban extent at the global scale (Potere et al. 2009). However, many urban 

features are much smaller than the large pixel sizes of these datasets and hence cannot 

be mapped reliably using these datasets (Jensen and Cowen 1999; Weng 2012). Ideally, 

meter or sub-meter resolution images should be used in order to map the fine scale 

urban features accurately (Small and Sousa 2016; Weng 2012), but such high-

resolution images have yet to be acquired for many land areas worldwide. Landsat-

class satellites provide a viable option that balances the need for global coverage and 

spatial detail for urban monitoring. 

Since the launch of the first Landsat in 1972, the series of Landsat satellites 

have created and will continue to create global datasets with the level of spatial details 

(i.e., sub-hectare spatial resolutions) needed to reveal the unique textures of typical 

urban areas and to delineate the boundaries of most built-up areas (Patino and Duque 

2013). Global Landsat datasets known as the Global Landsat Survey (GLS) have 

already been assembled using historical acquisitions (Gutman et al. 2008; Gutman et 

al. 2013; Tucker et al. 2004). Based on the global acquisition strategies that have been 

implemented since the launch of Landsat 7 (Arvidson et al. 2006; Irons et al. 2012), 

global coverage of Landsat data has been and will continue to be generated annually or 

sub-annually from 2000 onward.  
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Urban areas are among the most heterogeneous landscapes and thus are 

inherently difficult to map from remote-sensed observations. Most urban pixels are 

mixtures of buildings, pavements, trees, lawn/grass, and/or other nonpaved surfaces. 

Even pixels with a single type of surface cover often have spectral signatures similar 

to the same cover type in nonurban areas. For example, urban trees likely have nearly 

identical spectral values as trees in nonurban areas and therefore can be confused with 

each other when classified using spectral data. One solution for this problem is to use 

spatial image features such as edge density or local statistics (Gong and Howarth 1990; 

Herold et al. 2003b). Other spatial features useful for urban mapping include texture 

measures derived from the gray level co-occurrence matrix (GLCM) (Haralick et al. 

1973; Shaban and Dikshit 2001), wavelets (Myint et al. 2004), fractal (Myint 2003), 

and spatial autocorrelation (Myint and Lam 2005). Improved urban mapping may also 

be achieved by using multi-temporal or dense time series of spectral data (Schneider 

2012; Sexton et al. 2013b). Due to lack of a well-designed global acquisition strategy 

prior to 2000, however, it is difficult to obtain multiple cloud free Landsat observations 

during any given epoch before 2000 for all urban areas globally.  

Another challenge in Landsat-based large-area urban mapping is the lack of a 

consistent vegetation phenology. Although images acquired during the peak growing 

season were preferred in developing the GLS dataset, more than 10% of the images of 

the GLS dataset were not acquired during the peak growing season (Gutman et al. 2013; 

Townshend et al. 2012). Similarly, a large number of images used to produce a global 

30 m land cover classification were acquired in the winter months (Gong et al. 2013). 

These leaf-off images may yield low classification accuracies due to the low spectral 
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separability between deciduous vegetation and non-vegetated surfaces. Furthermore, 

the classification of adjacent images with different vegetation phenology using 

spectral-based methods can result in large discontinuities among those images. To 

mitigate these problems, composite algorithms are being developed for the creation of 

more consistent global datasets using Landsat or Landsat-class images (Hansen et al. 

2013; Hermosilla et al. 2015; Roy et al. 2010). However, the usefulness of those 

composited images for urban mapping has yet to be assessed. 

The main purpose of this study is to develop an approach suitable for 

continental- to global-scale mapping of the human built-up and settlement extent 

(HBASE) using existing global Landsat datasets, namely, the GLS images (Gutman et 

al. 2008; Gutman et al. 2013). Here, the term “HBASE” is introduced to avoid 

ambiguities and implied limitations of the term “urban” and some other commonly used 

terms. By definition, “urban” is the opposite of rural and therefore may imply the 

exclusion of villages and other built-up and settlement areas outside urban perimeters. 

Other terms such as “built-up” or “impervious surface” may imply the exclusion of 

non-built-up or non-impervious surfaces such as lawns, gardens, and other green spaces 

around houses, buildings, and pavements, which should be considered within the extent 

of human settlements. While the term “settlement” may be subject to different 

interpretations, to some it may imply the exclusion of roads and other built-up areas 

not developed for residential purposes. By considering both “built-up” and 

“settlement”, HBASE includes all types of human built-up surfaces and the 

surrounding areas that were developed along with those surfaces to support their 

functionality. In an urban area, HBASE is similar to the urban extent class of the Global 
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Rural–Urban Mapping Project (GRUMP) dataset (CIESIN (Center for International 

Earth Science Information Network) 2011). It also includes most of the urban related 

classes as defined in the Urban Atlas (UA) (see Table 2-1 and subsection 2.3.2.2 for 

more details), a European Union-wide dataset providing high-resolution land use maps 

for functional urban areas (FUAs) (European Environment Agency (EEA) 2016; 

Seifert 2009), and extends these classes beyond the traditional urban or city limit. 

The HBASE mapping method is based on the observation that many HBASE 

areas have distinctive textural patterns. It uses texture measures derived from Landsat 

spectral bands instead of applying spectral data as direct input of a classification model 

to map urban areas. To overcome some of the limitations of traditional window-based 

texture calculation methods (Chen et al. 2004; Gong 1994; Guindon and Zhang 2009; 

Hodgson 1998), the following improvements were made: (1) generate image segments 

at multiple levels using the RHSeg hierarchical segmentation algorithm (Tilton 2007; 

Tilton et al. 2012b), (2) calculate textures using image objects instead of local windows, 

(3) use textures calculated at multiple object levels to represent texture information at 

different scales, and (4) include cross-band (color) textures in addition to single-band 

(grayscale) textures to better separate HBASE and non-HBASE areas. Furthermore, 

nightlight data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night 

Band (DNB) were used to improve urban detection and vegetation phenology 

information from an annual MODIS vegetation index (VI) dataset was used to account 

for phenology differences among the Landsat images. Below, I first describe this 

hierarchical object-based texture (HOTex) method and its use to produce a circa-2010, 

global 30 m HBASE product using GLS 2010 data. Subsequently, the comprehensive 
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assessment of the mapping method and derived product over the European continent is 

presented, followed by discussions and a summary of the conclusions.   

2.2 Methods 

The HBASE mapping algorithm follows a typical supervised classification 

approach driven by training data. Given the many challenges with urban mapping using 

spectral-based methods that were discussed earlier and the fact that many urban areas 

have unique textures, the algorithm uses hierarchical textures instead of spectral data 

for the classification. This HOTex method consists of the following major components: 

derivation of hierarchical image segments, texture calculation, high-level feature 

extraction, training and classification, and post-classification processing (Figure 2-1). 

In this study, GLS 2010 images obtained over Europe were used to derive image 

segments and texture measures. Nightlight data obtained from the VIIRS DNB band 

and a MODIS VI dataset were used to derive high-level features to improve the 

classification performance. A road network dataset was used for post-classification 

processing to improve the representation of major roads in the derived HBASE product. 

I evaluated the mapping approach with different sets of input features. The feature set 

that yielded the best results was used to produce the final European-wide HBASE 

dataset, which was evaluated against several urban datasets existing for Europe 

following assessments through cross-validation and using an independent reference 

dataset. Finally, the method for mapping HBASE in Europe was applied to the entire 

GLS 2010 dataset to produce a global HBASE product. 
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Figure 2-1: Overall workflow of the HBASE mapping methodology. 
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2.2.1 Derivation of Image Objects 

2.2.1.1 GLS Data and Preprocessing 

The GLS dataset was developed through a joint NASA–USGS collaboration to 

provide a convenient basis for developing global land cover and change products 

(Gutman et al. 2008; Gutman et al. 2013). The goal was to provide one cloud-free image 

acquired during the peak growing season per epoch per location, although suboptimal 

images were also used when a qualified image was not available (Gutman et al. 2013; 

Townshend et al. 2012). The GLS 2010 dataset used in this study consisted of ~53% 

Landsat 5 TM images, 42% gap-filled Landsat 7 ETM+ images, and 5% Earth Observer 

1 (EO-1) Advanced Land Imaging (ALI) images (Gutman et al. 2013). Only the TM 

and gap-filled ETM+ images of Europe were used in this study because the ALI images 

were used to cover small islands only. The TM and ETM+ images have been 

atmospherically corrected and converted to surface reflectance (SR) using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS; (Masek et al. 2006) of 

the Global Land Cover Facility (GLCF). Global assessments revealed that the LEDAPS 

SR values were highly consistent with MODIS SR (Feng et al. 2012; Feng et al. 2013). 

2.2.1.2 Image Segmentation 

The GLS SR images were segmented using the Recursive Hierarchical Image 

Segmentation (RHSeg) software package (Tilton et al. 2012b), a recursive 

approximation of the Hierarchical Image Segmentation (HSeg) package. The HSeg 

combines the power of the best merge region growing to delineate the boundaries 

between spatially adjacent regions and spectral clustering to group spatially disjoint 

regions together. However, the computational cost is very high for Landsat-level 
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(~8000 by 8000 pixels) or larger images. Using a divide-and-conquer approach, RHSeg 

was designed to improve the speed of the HSeg algorithm on cluster- or cloud-

computing systems, which greatly reduced the computing time in this study. The output 

of the RHSeg algorithm includes image objects at multiple levels, where finer-level 

objects are nested within coarser-level objects.  

2.2.1.3 Object Level Selection 

Depending on the image complexity, the processing of the Landsat images by 

RHSeg typically resulted in 20–80 levels. Although one could use textures calculated 

at all object levels, this would result in varying numbers of texture variables. In addition, 

textures calculated at adjacent levels might be highly correlated, leading to redundant 

features and high computing costs. Based on heuristic analyses of the RHSeg results, I 

used texture metrics calculated from objects at three representative levels for the 

classification. The objects at these three levels were determined by three levels of the 

maximum object size: 2,500 pixels (2.25 km2), 250,000 pixels (225 km2), and 

25,000,000 pixels (22,500 km2), which represent HBASE and non-HBASE features at 

local, intermediate, and macroscales, respectively. Following the hierarchical 

segmentation structure, a bottom-up merging process was applied: starting from the 

finest level, finer scale RHSeg objects were merged to coarser scale until the maximum 

object size at each level was reached. Figure 2-2 provides a demonstration of how this 

bottom-up merging procedure works at level 1 using 2,500 as object size threshold. For 

example, fine level objects A and B were merged into object H. The merging stopped 

at object H because the higher-level object L exceeded the size threshold. Moreover, 
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the merging process followed the segmentation hierarchy (hence “bottom-up”). For 

example, object A was merged with B instead of E. 

 
Figure 2-2: A conceptual diagram showing how finest-scale RHSeg objects are merged 
to create level-1 objects following the segmentation hierarchy using bottom-up 
merging: finer-scale RHSeg objects were merged to coarser scale until a threshold for 
objects size was reached. 

  

2.2.2 Feature Extraction 

2.2.2.1 Conventional GLCM Textures  

For every object at each level, GLCM textures were calculated. Given an image 

I  with G gray levels, an object O , and an offset vector ),( yxv ∆∆= , the equation for 

calculating GLCM is:  

 ∑ ∆∆=∆∆ ),,,,,,(),,,( yxyxjiAyxjiGLCM   (2-1) 

where 
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GLCM was converted into a symmetrical matrix ),( jiP described in (Haralick 

et al. 1973). Based on the resulting matrix ),( jiP , I calculated four of the Haralick 

texture features: 
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and G is the number of grayscale levels. Based on preliminary tests of G values in 

published studies (Clausi 2002; Gong et al. 1992; Marceau et al. 1990), G was set to 

32 in this study. 

Another implementation issue to consider when calculating GLCM from 

Landsat bands is how to rescale the SR values into a limited number of grayscales 

without significant loss of information. Usually, this is done by setting the grayscale 
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value to 1−G  when the band value is above a certain threshold and performing a linear 

stretch on the band values below the threshold: 

 .
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However, we found that no single threshold could preserve adequate image 

details across a large area. Therefore, when calculating textures, I used a set of high 

thresholds (0.8 for the SR of all bands used) to distinguish dark and bright areas and a 

set of low thresholds (band 5: 0.4, band 4: 0.5, band 3: 0.15) to focus on the details 

within the low- and medium-value range. This generated two sets of features that 

jointly provide a better representation of the textures. 

2.2.2.2 Color Textures  

The GLCM texture features were calculated for Landsat spectral bands 5 (mid-

infrared), 4 (near-infrared), and 3 (red), a widely used band combination to distinguish 

urban land cover and other land cover types. Because traditional GLCM texture 

features only use one band for calculation, no spatial pattern of color appearance could 

be represented. In past studies, it has been tried to use a stacking approach to combine 

spectral features (e.g., band values, spectral indices, and spectral transforms) with 

texture features. However, because spectral values exhibit large within-class variation 

and between-class similarity, I argue that the introduction of spectral features provides 

little benefits to the goal of building a robust feature set for large-scale application. 

Studies on general purpose image classification also support that the joint use of color 

and texture features may actually lower the performance of the classifier (Mäenpää and 

Pietikäinen 2004). Therefore, I used a modified cross-band GLCM (Palm 2004) for 
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color texture representation. For a pair of spectral bands ),( nm , the cross-band GLCM 

is calculated by: 

 ∑ ∆∆=∆∆ ),,,,,,(),,,( ,, yxyxjiAyxjiGLCM nmnm

  (2-9) 
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and mI , nI are the values of band m and n, respectively. 

Color texture features were calculated by substituting the GLCM with the cross-

band GLCM in Equations (1–7). Because I used a symmetrical GLCM, there were only 

three different combinations of spectral bands 5, 4, and 3, which are (5, 4), (4, 3), and 

(5, 3). 

2.2.2.3 Non-texture Features 

In addition to textures, three groups of variables were used to address some of 

the issues with the GLS dataset. The first was a flag indicating if an image was a 

Landsat 7 image. The Scan Line Corrector (SLC) of Landsat 7 failed in 2003, resulting 

in SLC-off images with ~22% data gaps (Roy et al. 2008). The gaps created artificial 

objects defined by gap boundaries; therefore, a flag was needed to separate Landsat 5 

and 7 images. 

The second variable group was designed to provide contextual information on 

local and regional vegetation phenology and other environmental conditions, which is 

similar to the ecoregion-based stratification idea described in Schneider et al. (2010). 
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Here, we used metrics derived from the MODIS-normalized difference vegetation 

index (NDVI) instead of ecoregions. Specifically, we used the MODIS 0.05 degree 

NDVI monthly composites (MOD13C2), a global cloud-free NDVI record derived 

from 16-day 1 km MODIS NDVI composites (MOD13A2; (Didan 2015), to calculate 

three values for each 0.05-degree MODIS pixel: annual maximum NDVI, annual 

median NDVI, and the NDVI value for the Landsat image acquisition date. The median 

value of these three layers was then calculated for every Landsat level-3 object and for 

the footprint of the entire Landsat image being analyzed. Considering the large pixel 

size of the MOD13C2 dataset, no aggregated NDVI value was derived for level-1 and 

level-2 objects. 

The third variable group was designed to improve the separability between 

HBASE areas and some large non-HBASE areas such as large agriculture fields, 

deserts, and areas covered by snow/ice using nightlight data. Global nightlight data 

acquired by the DMSP-OLS and VIIRS/DNB have been provided by the Earth 

Observation Group (EOG) of the NOAA National Geophysical Data Center (NGDC) 

(Earth Observation Group 2016). At the time this study was conducted, a full-year 

DNB composite with gas flare detection was only available for 2015. To minimize the 

impact of lights unrelated to human built-up or settlement areas, including lights from 

auroras, air glow, gas flare, and fishing boats (Baugh et al. 2013), I first derived an 

annual median nightlight product from the 2015 DNB monthly composites and then 

applied a stable light mask to set the annual median product to 0 for areas in which the 

stable light was 0. The stable light product was derived based on 2010 DMSP-OLS 

data by the EOG. The use of the 2010 DMSP-based stable light product not only 
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provided an alternative approach for filtering DNB data in absence of a reliable VIIRS 

stable light product (Li et al. 2013) but also removed lights from new HBASE areas 

developed after the GLS 2010 acquisition time. Finally, I overlaid this hybrid VIIRS–

DMSP stable light product on the Landsat-based segmentation results to calculate the 

minimum, average, and maximum DNB values for each of the objects at the three 

selected levels. 

2.2.3 Classification and Product Generation 

2.2.3.1 The Random Forest Classifier 

The Random Forest (RF) machine learning algorithm has become one of the 

most widely used algorithms in remote sensing land cover studies. It uses random 

subsets of training data and explanatory variables to build an ensemble of decision trees, 

which reduces the generalization error due to overfitting (Breiman 2001). Its robust 

performance and capabilities to model nonlinear data and to handle the wide range of 

feature variables made it suitable for use in this study. Compared with other state-of-

the-art algorithms (e.g., support vector machines, SVM), it also involves lower 

computational cost (Rodriguez-Galiano et al. 2012), which is particularly important for 

global-scale applications. Furthermore, another great advantage of RF is that it could 

generate an estimate the probabilities of a pixel belonging to different classes, which 

has been found to be a valuable information for mapping land cover change (Yin et al. 

2014). 
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2.2.3.2 Training Data Collection 

The required training data were delineated through visual interpretation of the 

Landsat images and high-resolution images available from Google Earth™ (GE). In 

addition to HBASE and non-HBASE samples, cloud/shadow samples were also 

selected because many GLS images had some level of cloud contamination. The 

training samples were selected based on the following rules: (1) an object was assigned 

as HBASE if it contained at least one HBASE pixel and no cloud/shadow pixels; (2) 

an object was assigned as non-HBASE if all pixels were non-HBASE pixels; (3) any 

object containing cloud/shadow pixels was assigned as cloud/shadow. This rule set was 

designed to produce an inclusive HBASE product that could capture low-density 

residential areas, which means the final product would be optimized to minimize the 

omission of HBASE areas. Note that this does not imply that the HBASE definition is 

intrinsically object-based. The training pixels were selected on a pixel-by-pixel basis 

and assessments including cross-validation were also conducted in a pixel-based 

manner. As a necessary step to provide training data for an object-based classification, 

converting per-pixel labels of HBASE/non-HBASE to object-based labels may 

introduce errors in the training data when the segmentation result is not accurate. 

However, these will be considered as mapping errors rather than natural outcome of 

the definition. 

I adopted an iterative approach to derive training data. The initial set of training 

samples was selected to represent different urban types. This training dataset was then 

applied to train a RF model, which was used to produce an initial product. The derived 

product was then examined against the input Landsat images and high-resolution GE 
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images. Additional training samples were collected over areas with large classification 

errors. This was repeated until no large errors were detected; remaining errors were 

more likely due to the lack of separability than the lack of representative training 

samples. At the end, a total of 183,324 objects from 325 Landsat images distributed 

across Europe were collected as the final training dataset (Figure 2-3). 

 
Figure 2-3: The distribution of Landsat tiles with training data, Urban Atlas functional 
urban areas (UA-FUA, (European Environment Agency (EEA) 2016)), and impervious 
surface percentage (ISP) maps used for product assessments. 

 
2.2.3.3 Classification Experiments 

Given the large number of features derived in Subsection 2.2.2 from different 

data sources, we conducted a series of experiments to determine the best feature set 

combination by progressively including more variables in the classification. First, only 
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the textures plus the Landsat 7 indicator variable were used. The MODIS NDVI-based 

feature set and nightlight-based feature set were then added, first separately and then 

together. Finally, these classification results were compared with a baseline 

classification experiment in which only the SR of six Landsat spectral bands and four 

widely used spectral indices were used as input variables. The four spectral indices 

were calculated as follows (Crist 1985; Kriegler et al. 1969) : 
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𝑤𝑤here 1ρ ~ 7ρ are surface reflectance values of Landsat TM/ETM bands. 

2.2.3.4 HBASE Product Generation and Post-processing 

As will be shown in Subsection 2.3.1, the use of all feature variables derived in 

Section 2 yielded the best performance in terms of overall accuracy, user’s and 

producer’s accuracy, and kappa statistic. Therefore, the final HBASE classification was 

produced using all features. During the examination of the classification results, I 

noticed that most roads were not captured. To mitigate this omission error, I used the 

OpenStreetMap (OSM) to provide information on major roads. OSM is a publicly 

available dataset intended to provide up-to-date information on the global road network 
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by incorporating open government data and user-contributed data (OpenStreetMap 

contributors 2016). Knowing that some of the OSM users contributed datasets of local 

roads and their quality could be difficult to assess, only major roads (motorways and 

primary and trunk roads, according to the OSM nomenclature), secondary roads, and 

airport runways from the OSM were included. These roads were rasterized and added 

to the final HBASE classification generated by the RF classifier. 

Global HBASE maps were produced by applying the HOTex approach to all 

8,689 Landsat TM and ETM scenes in the GLS2010 archive. Following the approach 

described in Subsection 2.2.3.2, a total of 1,658,805 training objects were collected 

worldwide (Table 2-1), which were used to train a global random forest model. The 

global model input features the same as the ones used by the European model. 

 

Table 2-1: The number of HBASE training objects by continent. 

Continent Number of Training Objects 

Asian 583,592 

Africa 509,412 

Europe 183,324 

North America 325,958 

South America 44,574 

Oceania 11,945 

Total 1,658,805 
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2.2.4 Algorithm and Product Assessment 

2.2.4.1 Scene Level Cross Validation  

The classification experiments described in Subsection 2.2.3.3 were evaluated 

through scene-level cross-validation (SLCV) as follows. First, the 325 Landsat images 

over Europe from which training samples were selected were divided into ten random 

groups. For each feature set to be evaluated, training samples from nine of the ten scene 

groups were used together to train the RF algorithm, which was then evaluated using 

reference samples in the set-aside image group. This was repeated ten times such that 

each time samples from a different image group were used to evaluate the RF model 

derived using samples from the other nine image groups. The results from the ten 

assessments were pooled together to produce cross-validation accuracy estimates. The 

overall accuracy, kappa coefficient, and producer’s and user’s accuracies for the 

HBASE class were calculated using standard accuracy assessment equations 

(Congalton 1991; Stehman and Czaplewski 1998). Note that although the classification 

was done using an object-based method, the cross-validation was performed at the pixel 

level because the final HBASE product will be provided to users as a pixel-by-pixel 

map and the definition of HBASE does not intrinsically rely on object segmentation, 

as discussed in Subsection 2.2.3.2. When performed at the pixel level, the cross-

validation may produce inflated accuracy estimates because spatially adjacent pixels 

could be divided into training and testing samples in each fold of cross-validation, 

resulting in spatial autocorrelations between some training and testing samples (Friedl 

et al. 1999). Because there is no overlap of training data of adjacent scenes, by splitting 

the training and testing samples by Landsat images, this SLCV method was designed 
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to eliminate spatial autocorrelations between training and testing samples in each fold 

of cross-validation and hence should produce reasonably unbiased accuracy estimates.  

2.2.4.2 Independent Assessments  

Two independent reference datasets were used to evaluate the final HBASE 

product. The first dataset consisted of 93 image windows with a size of ~ 6 by 6 km. 

Based on commercial high-resolution satellite imagery from the National Geospatial-

Intelligence Agency (NGA)’s unclassified commercial satellite data archive, the image 

windows were made available to NASA under the NGA’s NextView license agreement. 

These image windows were selected along the rural to urban center gradient of many 

cities distributed across Europe (Figure 2-3). These images were processed through a 

NASA-funded sister project to map Global Man-made Impervious Surfaces (GMIS) 

from Landsat (PIs: E. Brown de Colstoun and C. Huang). Typically used images have 

four spectral bands (blue, green, red, and near-infrared) and a spatial resolution between 

one to two meters. Within the queried images, visual assessment was made to identify 

a cloud-free image acquired around 2010. The selected image was orthorectified with 

the GLS images used in this study to achieve a satisfactory co-registration accuracy 

(i.e., < 30 m). It was then classified by an image analyst to create a highly reliable, 

high-resolution impervious surface map using computer-assisted image interpretation 

software, where impervious surfaces included buildings, pavements, and other 

manmade impervious surface materials (Tilton et al. 2012a). This map was overlaid on 

top of the 30 m grids of the GLS images to calculate the impervious surface percentage 

(ISP) at 30 m resolution. Imperviousness threshold values of 0%, 25%, 50%, and 75% 

were used to classify the 30 m pixels into four imperviousness classes. This dataset was 
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used to evaluate the HBASE product based on imperviousness, a key factor considered 

in defining urban areas in most studies (Potere and Schneider 2007). 

The second dataset was the Urban Atlas (UA), a European Union-wide dataset 

providing high-resolution land use maps for functional urban areas [FUAs;(European 

Environment Agency (EEA) 2016; Seifert 2009). This dataset was produced by 

classifying high-resolution satellite imagery (e.g., 2.5 m SPOT 5) and integrating 

multiple ancillary datasets including a navigation database. It uses a hierarchical 

classification system to define FUAs (Seifert 2009). At the most detailed level, the 

classification system had 17 urban-related classes and 10 nonurban classes. The urban 

and nonurban classes had minimum mapping units of 0.25 and 1 ha, respectively. The 

preliminary accuracy assessment revealed that the classes had an overall accuracy of 

99% and 91%, respectively (Copernicus Land Monitoring Services 2015). 

At the time of this study, UA data were available for 2006 and 2012. The 2012 

dataset was used in this study. It consisted of 437 FUAs distributed mostly in western 

and central Europe (Figure 2-3). To evaluate how different FUAs were represented by 

the derived HBASE product, we kept all 17 urban-related classes but aggregated the 

ten nonurban classes into four classes: agriculture, natural and semi-natural area, 

wetland, and water (see Table 2-6 for a detailed list of urban and nonurban classes). 

For each class, we calculated the proportion classified as HBASE and non-HBASE in 

the derived HBASE product. 

2.2.4.3 Comparison with Other Urban/settlement Data Products  

Several existing data products provided information on the distribution of urban 

and human settlement areas in Europe around 2010 including: 1) GlobeLand30, a 30 
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m land cover map for 2010 (Chen et al. 2015b); 2) Global Urban Footprint (GUF), a 

12 m urban footprint map for year 2012 from TanDEM-X (Esch et al. 2013; Esch et al. 

2012); 3) Global Human Settlement Layer (GHSL), which includes a 38 m built-up 

layer based on Landsat (Pesaresi et al. 2013); 4) GlobCover, a 300 m land cover map 

for 2009 (Arino et al. 2007); 5) MODIS Collection 5.1 land cover product (MCD12Q1), 

a 500 m global land cover map for 2010 (Friedl et al. 2010); and 6) GRUMP, a 1 km 

(30 arcseconds) urban/rural map (CIESIN (Center for International Earth Science 

Information Network) 2011)]. A summary of these datasets is provided in Table 2-2. 

The derived HBASE product was compared with these products at five levels. First, 

spatial characteristics of the products with 30 m or higher resolution were examined 

through visual assessment at selected sites. Second, the independent imperviousness 

dataset was used to compare the HBASE and other urban datasets at different levels of 

urban density. Third, the UA dataset was used to evaluate HBASE/urban areas 

calculated from each dataset at the FUA level. Fourth, agreement matrices were used 

to calculate agreement metrics between the HBASE product and other datasets. Finally, 

country-level HBASE/urban area estimates were calculated using each product and the 

differences among those estimates were examined. Because the GlobCover, MODIS, 

and GRUMP datasets have a much lower resolution than the rest of the datasets, they 

were only used for comparison at the country level. Note that all these datasets have 

different degrees of differences with the HBASE product in terms of definition. For 

example, the MCD12Q1 and GlobCover products define urban as built-up land 

with >50% density, while the GRUMP dataset defines urban based on threshold of 
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nightlight. Disagreements introduced by these definition differences need to be 

carefully interpreted.  

 

Table 2-2: List of datasets used for comparison with the HBASE product. 

Name Year Spatial 
Extent 

Resolution Data Source Definition of “urban” 

GRUMP 2000 Global 30 arc-
seconds DMSP-OLS 

A combination of areas with 
nightlight above a threshold and 
polygons with > 5000 population.  

MCD12Q1 2010 Global 500 m MODIS 

Areas dominated by built 
environment (>50%), including 
non-vegetated, human-constructed 
elements, with minimum mapping 
unit > 1km. 

GlobCover 2009 Global 300 m MERIS Artificial surfaces and associated 
areas (urban areas >50%). 

GHSL 2013-
2014 Global 38 m Landsat The area occupied by buildings 

and its surrounding. 

GlobeLand
30 2010 Global 30 m Landsat 

Artificial surfaces mainly consist 
of urban areas, roads, rural 
cottages and mines, which are 
primarily based on asphalts, 
concrete, sand and stone, bricks, 
glasses, and other materials. 

Urban Atlas 2012 EU-28 100 m (rural), 
50 m (urban) 

SPOT 5 
/ALOS 17 urban land use classes 

GUF 2011-
2012 Global 12 m TerraSAR-X/ 

TanDEM-X 

Man-made structures with a 
vertical component, including all 
kind of buildings and 
constructions. 

 

2.3 Results 

2.3.1 Effectiveness of Input Features for HBASE Classification 

The scene-level cross-validation (SLCV) accuracies revealed large differences 

among HBASE classifications derived using different input feature sets (Table 2-3). 

Because HBASE only accounted for a small portion of the total area, the overall 

accuracies differed by less than 5% among the different input feature sets. However, 

use of texture resulted in near 10% or more improvements in kappa as well as user’s 
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and producer’s accuracies than the spectral based classification. Adding MODIS NDVI 

based features resulted in further improvements in the user’s accuracy and kappa, while 

the VIIRS DNB based features helped to improve the producer’s accuracy and kappa. 

Combining both feature sets with the texture features led to improvements in both 

user’s and producer’s accuracies as well as further improvement in kappa (Table 2-3). 

The visual examination of HBASE products derived using different input feature sets 

revealed that initial texture-based classifications had noticeable commission or 

omission errors. Many of those errors were removed when additional feature sets 

derived based on MODIS NDVI and VIIRS DNB were used (Figure 2-4).  

 

Table 2-3: Scene-level cross-validation (SLCV) scores of HBASE classifications 
using different input feature sets (OA: overall accuracy, UA: user’s accuracy, PA: 
producer’s accuracy). 

 
Number of 

Features 

Cross-validation Scores 

OA UA PA Kappa  

Spectral 9 94.0% 76.5% 78.1% 0.74 

GLCM 145 96.8% 86.2% 89.9% 0.83 

GLCM+VI 151 97.1% 91.1% 86.3% 0.87 

GLCM+DNB 154 97.1% 86.6% 92.3% 0.88 

GLCM+DNB+VI 160 97.9% 91.4% 92.8% 0.91 



 

 

36 
 

 
Figure 2-4: Comparison of HBASE products (derived using spectral features, texture 
features, and the combination of texture, MODIS NDVI, and DNB features) and other 
urban datasets including GlobeLand30, GHSL, and GUF (black: HBASE/urban, white: 
non-HBASE/nonurban). Google Earth™ images for the smaller window (shown as red 
boxes) are provided for each site to better show the details. 
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2.3.2 European HBASE Product Assessment 

Because the use of MODIS NDVI and VIIRS DNB together with object-based 

textures yielded the best accuracies, the final HBASE product was produced using this 

feature group. This product was assessed in three ways including scene-level cross-

validation (SLCV) and assessments based on imperviousness and functional areas. The 

SLCV accuracies were discussed in Section 2.3.1 (Table 2-3). The derived European 

HBASE product had a kappa coefficient value of 0.91 and overall, user’s, and 

producer’s accuracies over 90%. Because the SLCV was carefully designed to avoid 

spatial autocorrelations between training and testing samples during each fold cross-

validation, these accuracy estimates were not necessarily overestimated, although they 

were not derived using a probability-based accuracy assessment method. 

2.3.2.1 Imperviousness-based Assessment 

Although HBASE was not defined based on specific imperviousness threshold 

values, the most important feature of an HBASE area is the presence of man-made 

impervious surfaces or proximity to such surfaces. A comparison of the HBASE 

product with the percent imperviousness reference data derived based on high-

resolution satellite images revealed that ~95%, 90%, and 80% of the areas with percent 

imperviousness values in the ranges of > 75%, 51%–75%, and 26%–50% were 

classified as HBASE (Table 2-4). Pixels with percent imperviousness values between 

1% and 25% were highly confused with non-HBASE pixels. Only slightly more than 

50% were classified as HBASE. Approximately 10% of the pixels without impervious 

cover were classified as HBASE. These were not necessarily commission errors 
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according to the definition of HBASE because non-impervious surfaces such as lawns, 

gardens, and other urban green spaces should be included in the product. 

When the HBASE product was evaluated against reference data derived using 

percent imperviousness as a sole criterion, its user’s accuracy decreased, while the 

producer’s accuracy increased as the imperviousness threshold value increased (Figure 

2-5). A balance of ~75% was achieved when the imperviousness threshold was ~ 5%. 

 

Table 2-4: Proportion of pixels classified as HBASE/urban/settlements by HBASE, 
GlobeLand30, GHSL, and GUF datasets for different imperviousness intervals. 

Percent 
Imperviousness 

Proportion 
classified as 

HBASE 

Proportion 
classified as urban 
by GlobeLand30 

Proportion 
classified as 

urban by GHSL 

Proportion 
classified as 

urban by GUF 

>75% 95.63% 92.18% 91.71% 79.23% 

51%-75% 89.63% 87.42% 82.06% 75.48% 

26%-50% 78.84% 77.82% 65.16% 62.32% 
1%-25% 56.94% 56.97% 35.62% 34.54% 

0% 9.87% 6.78 1.48% 1.48% 
 
 

 
Figure 2-5: HBASE accuracy scores using different imperviousness thresholds. 
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2.3.2.2 Functional Urban Area-based Assessment 

If HBASE was defined to include all functional urban classes and non-HBASE 

nonurban classes of the UA dataset (Table 2-5), the derived HBASE product showed 

an overall agreement of 89.7% with the UA dataset. Less than 3% of nonurban areas 

were classified as HBASE. However, only 51.5% of the pixels classified as urban by 

UA were classified as HBASE (49.3% if three classes not in the HBASE definition 

were excluded). This could be attributed to a number of factors. More than 95% of 

areas classified as isolated structures in UAs were not classified as HBASE. This class 

had a maximum size of 2 ha (~22 Landsat pixels), and hence might not be identified as 

a separate object, even at the finest object level. Although the segmentation approach 

allows the identification of objects as small as one Landsat pixel, isolated structures are 

likely to be merged with surrounding non-HBASE objects due to spectral mixing. Also, 

two transportation classes, including other roads and associated land and railways and 

associated land, had less than 50% of the areas classified as HBASE. As discussed 

earlier, due to consistency issues with the OpenStreetMap (OSM) dataset at more 

detailed levels, only major roads were included in the final HBASE product. Other UA 

classes with low agreement with the HBASE product included discontinuous very low-

density urban fabric and sports and leisure facilities, which have a low percentage of 

built-up surfaces and are more likely to be merged with other non-HBASE objects. 
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Table 2-5: Areal proportion of UA classes classified as HBASE/urban by HBASE 
product and other urban datasets including GlobeLand30, GHSL, and GUF. 

Urban Atlas land use class Percent 
classified 

as 
HBASE 

Percent 
classified as 

urban by 
GlobeLand30 

Percent 
classified 
as urban 
by GHSL 

Percent 
classified 
as urban 
by GUF 

“Urban” classes     
Continuous urban fabric 91.4% 88.9% 88.0% 88.0% 

Discontinuous dense urban fabric 85.4% 71.3% 73.1% 78.2% 

Discontinuous Medium density urban 
 

75.3% 55.3% 54.0% 62.9% 

Discontinuous low density urban fabric 60.5% 37.3% 33.2% 45.1% 

Discontinuous very low density urban 
 

40.5% 25.4% 18.7% 29.5% 

Isolated structures 4.9% 3.2% 9.5% 13.5% 

Industrial, commercial, public, 
    

67.6% 71.5% 71.9% 64.5% 

Fast transit roads and associated land 71.6% 26.5% 55.4% 16.0% 

Other roads and associated land 43.0% 41.4% 38.4% 36.4% 

Railways and associated land 47.5% 43.7% 42.3% 29.0% 

Port areas 83.0% 87.8% 85.8% 74.8% 

Airports 68.0% 84.3% 34.5% 11.8% 

Construction sites 61.4% 57.4% 35.0% 11.1% 

Mineral extraction and dump sites 27.2% 36.3% 48.7% 28.8% 

Land without current use 68.3% 73.0% 40.1% 30.2% 

Green urban areas 60.3% 60.9% 27.0% 19.1% 

Sports and leisure facilities 42.8% 45.5% 26.7% 21.8% 

All “urban” classes in Urban Atlas 
(excluding construction, mines, and 

land without current use) 

 

 

49.3% 50.5% 44.4% 41.6% 

All “urban” classes in Urban Atlas 51.5% 48.5% 44.2% 41.0% 

“Non-urban” classes     

Agricultural classes 2.8% 4.4% 1.8% 

 

0.9% 

Natural and semi-natural areas 1.5% 1.7% 0.6% 0.3% 

Wetlands 1.0% 4.6% 1.4% 0.2% 

Water 0.4% 3.4% 4.1% 2.1% 

All “non-urban” classes 2.7% 3.4% 1.4% 0.7% 

 
2.3.2.3 Comparison with Other 30m-grade Products 

First, four of the urban products with 30 m or higher spatial resolution were 

compared visually (Figure 2-4). Because of differences in the definition and 
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methodology, there were apparent differences in the spatial characteristics among them. 

First, the final HBASE product and GlobeLand30 tended to include more pixels in the 

HBASE/urban boundary, especially in low-density areas, as demonstrated by the Berlin 

and Davos test sites. Second, the GHSL and GUF datasets contained more small 

patches than HBASE and GlobeLand30. Third, the HBSE dataset showed more 

commission errors in areas with agricultural land use, while the GHSL dataset showed 

more commission errors in bare areas. Finally, the GUF dataset captured only buildings, 

a result expected based on its definition and SAR-based methodology. 

 

Table 2-6: Agreement matrix between HBASE and other datasets including 
GlobeLand30, GHSL, and GUF over the entire Europe, with values normalized by 
the total number of valid pixels Europe. 

 Non-HBASE HBASE Total Producer’s Agreement 

GlobeLand30 non-urban 95.57% 1.45% 97.02 % 98.50% 

GlobeLand30 urban 1.25% 1.73% 2.98% 58.05% 

Total 96.82% 3.18% 100% / 

User’s Agreement  98.71% 54.40% / 97.30% (overall agreement) 

GHSL non-urban 96.88% 1.24% 98.12% 98.74% 

GHSL urban 0.71% 1.17% 1.88% 62.23% 

Total 97.59% 2.41% 100% / 

User’s Agreement  99.27% 48.55% / 98.05% (overall agreement) 

GUF non-urban 96.44% 1.46% 97.90% 98.51% 

GUF urban 0.80% 1.30% 2.10% 61.9% 

Total 97.24% 2.76% 100% / 

User’s Agreement  99.18% 47.1% / 98.74% (overall agreement) 

 

The overall agreement between the derived HBASE product and GlobeLand30, 

GHSL, and GUF datasets was > 97% when all nonurban classes in the compared 

datasets were considered as non-HBASE and their urban classes as HBASE. However, 
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the agreement matrices between these products (Table 2-6) showed that areas in which 

the HBASE and other datasets agree were dominated by nonurban/non-HBASE pixels. 

Considerable disagreements were found based on the user and producer metrics. 

Approximately 50% of the HBASE pixels were classified as urban by other datasets, 

while ~60% of the urban pixels in other datasets were classified as HBASE.  

Using metrics calculated from the impervious surface based and functional 

urban area based assessments, I further analyzed these disagreements. First, from the 

impervious surface based assessments (Table 2-4), the HBASE and GlobeLand30 

products clearly included more pixels with no impervious surface cover (0%) than other 

datasets, especially compared with the GHSL and GUF datasets. This does not 

necessarily imply that HBASE and GlobeLand30 had higher commission errors 

because the HBASE and GlobeLand30 products included more urban green space than 

GHSL and GUF, as shown by FUA-based assessments (Table 2-5). However, the 

HBASE and GlobeLand30 products included more agricultural and natural and semi-

natural areas (Table 2-4). Second, HBASE consistently mapped more urban areas for 

all impervious surface percentage intervals (Table 2-4) and mapped more FUAs (Table 

2-5), as defined by the UA dataset. Third, HBASE, GlobeLand30 and GHSL mapped 

over 90% of the pixels with high impervious cover (>75%), while the GUF product 

only mapped ~80% of these pixels, likely because of the exclusion of flat-built surfaces 

(e.g., parking spaces and roads) in the definition of GUF. Finally, GlobeLand30 had 

similar characteristics with HBASE but appeared to have slightly higher omission 

errors than the HBASE product in areas with 50% or higher impervious surface cover. 

However, it mapped less areas with no impervious cover as urban land (Table 2-4). In 
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terms of functional types, the HBASE product had better accuracies in mapping all five 

urban fabric classes and fast transit roads and associated land, railroads and associated 

land, and construction sites, while the GlobeLand30 mapped more areas as ports, 

airports, mineral extraction and dump sites, and land without current use (Table 2-5). 

2.3.3 European HBASE Area Estimation 

According to the derived HBASE product, the total human built-up and 

settlement area in Europe was 308,564 km2 in 2010, which is ~ 3.18% of the total land 

area of Europe. This estimate is comparable to the total urban area calculated based on 

the GlobeLand30 product (2.98% of total land area), ~60% more than the GHSL and 

GUF products (less than 2% of total land area), approximately twice as much as that 

calculated using the MODIS land cover product (less than 1.5% of total land area), 

three times the GlobCover product (less than 1% of total land area),  and 40% of the 

total settlement area based on the GRUMP product (7.85% of total land area)  (Table 

2-7). The differences in the total urban land area estimates were consistent with the 

differences in their definitions. Furthermore, the percentage of HBASE area per 

country varied substantially among European countries, ranging from 1.41% in 

Norway to ~14% in Belgium. Again, these estimates were in general agreement with 

the percentage of urban areas calculated using the GlobeLand30 product but differed 

substantially from those derived using the other three coarse-resolution global products 

(Figure 2-6). Finally, there was modest disagreement between HBASE and 

GHSL/GUF products, which is expected based on the differences in the definition.  
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Table 2-7: Estimated urban area from HBASE and other urban products for European 
countries/regions (countries/regions smaller than 2000 km2 are listed together as “all 
other countries/regions”). 

Country/ 
Region 

Land 
Area 
(km2) 

Urban Area (km2) 

HBASE Globe 
Land30 GHSL GUF Glob 

Cover MODIS GRUMP 

Albania 28738 443 565 467 406 321 198 1525 
Austria 83852 3895 3683 2930 2432 861 1984 11102 
Belarus 206845 5319 6970 1086 2366 1315 1335 7897 
Belgium 30707 4334 4344 4713 3568 1416 3241 12578 

Bosnia and 
Herzegovina 51065 1051 898 413 547 77 369 1317 

Bulgaria 111585 3422 5117 1926 2137 2221 2513 6075 
Croatia 57085 2065 1799 1129 1229 187 689 4765 
Czech  78768 4327 5074 3463 3417 1065 3415 11388 

Denmark 43140 3286 3036 2123 1912 921 796 9584 
Estonia 45484 666 966 201 269 187 181 2646 
Finland 336917 5414 5863 854 1182 1567 472 19802 
France 549494 28072 28281 23414 21165 7488 12179 75294 

Germany 357538 29575 26867 27082 23275 10019 24636 60434 
Greece 132559 4999 3984 2321 3053 2802 1952 18285 

Hungary 93022 3771 5669 3356 3552 1277 3506 11068 
Ireland 70374 2062 1236 1140 1036 471 282 5746 

Italy 300753 28398 16786 16362 15533 12568 13556 73179 
Latvia 64713 1178 1050 211 391 230 224 3420 

Lithuania 65012 1150 2165 369 877 326 333 4967 
Luxembourg 2580 328 217 211 161 58 146 796 
Macedonia 24825 582 413 372 344 342 372 2685 
Moldova 33906 755 2619 1248 932 227 1050 2085 

Montenegro 13337 285 198 103 106 18 100 963 
Netherlands 37670 4549 4973 5905 4112 2574 4458 12415 

Norway 325097 4589 3462 1916 1133 237 362 19315 
Poland 312060 15991 13136 8288 9300 3824 7950 26490 

Portugal 91877 6594 4236 4097 3669 2479 759 12476 
Romania 238326 4921 13571 5951 5071 1441 5341 14389 
European 

Russia 3935012 60894 42872 18681 31160 10646 15274 118063 

Serbia 78225 2378 2123 1019 1876 304 1789 5913 
Slovakia 49068 1649 2616 2079 1597 356 1691 6866 
Slovenia 19979 582 711 673 462 119 332 2662 

Spain 506014 23014 12557 9257 10146 8123 4544 69326 
Sweden 450019 6249 6111 2067 2451 1555 1242 36453 

Switzerland 41248 2499 2007 2321 1673 450 1274 8055 
Ukraine 601189 8566 36467 14876 11130 4846 10300 27214 

UK 245446 19550 16622 14370 13214 10244 8620 54262 
All other 
countries 4753 347 293 241 205 121 162 1452 

European 
Total 9718278 308564 289556 187235 187086 93284 137625 762950 
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Figure 2-6: Scatterplots between country-level percentages of HBASE areas and 
percentages of urban areas estimated from (a) GRUMP, (b) MODIS, (c) GlobCover, 
(d) GlobeLand30, (e) GHSL, and (f) GUF products. 
 

2.3.4 Global HBASE Product 

A global random forest classification model was trained using global training 

dataset, based on the same HOTex method used for producing the European HBASE 

product. Applying this model and post-processing steps defined in Subsection 2.2.3.4 

to the entire GLS 2010 dataset, global HBASE maps were produced. A global HBASE 

mosaic was created based on the produced HBASE maps (see Figure 2-7). In areas 

where Landsat scenes overlap, the random forest output class with maximum 

probability was selected for the mosaicked product. Although the accuracy of the global 

HBASE product is yet to be assessed, it was found to be a good representation of the 

overall spatial pattern of global urban areas. Large clusters of urban areas in the world, 

including those in Northern America, Western Europe, and Eastern Asia, were well 

characterized in the global product. Beside, no wide-spreading errors of commission 
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were found, particularly in arid and semi-arid regions, where HBASE could be 

confused with other non-urban land cover types. 

 
Figure 2-7: Circa-2010 global HBASE map (red: HBASE, white: non-HBASE, 

projection: Robinson). 



 

 

47 
 

2.5 Discussion 

Human built-up and settlement areas, or HBASE as defined in this study, are 

inherently difficult to map using only spectral-based methods. Consisting of buildings, 

pavements, and vegetated and non-vegetated surfaces surrounding them, these areas 

typically have a large within-class spectral variability and low spectral separability 

between some of the surface materials within and outside of HBASE areas. The close 

proximity of built-up and adjacent surfaces and the way they are arranged, however, 

create textures that are often unique to HBASE areas and hence can be used to 

characterize those areas. Designed based on this phenomenon, the HOTex has several 

features that makes it possible to provide a robust approach for Landsat-based mapping 

of HBASE at continental to global scales.  

First, due to differences in the acquisition date, location, vegetation phenology, 

illumination geometry, and other factors, the spectral data of Landsat images needed to 

cover large areas typically have substantial within-image variations not related to 

surface characterization, which can lead to inconsistent classification results derived 

using spectral-based methods. To minimize the potential negative impacts of 

inconsistent spectral data among Landsat images, the HOTex algorithm relied heavily 

on texture variables. No Landsat band or spectral index was used as a predictor variable 

in deriving the HBASE classification. To increase the class separability in different 

seasons over different areas, I explored several ways to expand the information contents 

of the selected texture variables. For each texture variable, I used two rescaling 

threshold values to increase its sensitivity at different brightness levels. In addition to 

conventional single band textures, I explored cross-band information by using “color” 
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textures. In addition, spatial information at different scales was considered by 

calculating textures at three object levels. 

In addition to using the Landsat-based texture variables, the HOTex algorithm 

appeared to be effective in leveraging the consistency and additional information 

provided by MODIS and VIIRS-DMSP composites. By providing information on local 

and regional vegetation phenology and environmental conditions, the MODIS data 

contributed to a 4.9% increase in the user’s accuracy (Table 2-4). While the initial 

intention of using the VIIRS–DMSP nightlight data was to improve the separability 

between HBASE and some large non-HBASE areas, such as bare fields, desert, and 

other non-vegetated surfaces, this dataset also contributed to a 2.4% increase in the 

producer’s accuracy . Together, these two datasets contributed to 5.2%, 2.9%, and 8% 

increases in the user and producer accuracies and kappa value, respectively. 

The hierarchical segments produced by the RHSeg algorithm provided a good 

framework for integrating Landsat-based fine-scale textures with coarser-resolution 

MODIS and VIIRS–DMSP data. The use of image objects instead of moving windows 

with predetermined sizes to calculate textures eliminated a major problem of the latter 

approach, which typically produces abnormal texture values along the edges between 

image objects and hence often results in large classification errors in those areas (Gong 

1994; Hodgson 1998). The object level variables calculated by overlaying MODIS and 

VIIRS–DMSP data on the Landsat-based image objects provided an effective way to 

minimize the impact of the larger footprints of MODIS and VIIRS–DMSP data, which 

often results in a blocky appearance of the derived fine-resolution data products. Such 

a blocky appearance was not observed for the final HBASE product (e.g., Figure 2-4).  
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Overall, the use of multi-level objects and expanded texture measures together 

with globally consistent MODIS and VIIRS–DMSP data provided a consistently better 

separability between HBASE and non-HBASE areas than the use of Landsat spectral 

data alone. Due to substantial within-image differences present in the GLS 2010 dataset 

(Gutman et al. 2013), an HBASE classification derived using a spectral-based approach 

would have substantial errors and obvious seamlines between adjacent images (Figure 

2-8). No visible seamlines were found in the final HBASE product derived using the 

HOTex approach and most of the errors in the spectral-based product were eliminated 

(Figure 2-8). 
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Figure 2-8: Continental mosaic of HBASE products over Europe and regional mosaics 
for two sets of overlapping Landsat tiles: (a) Landsat images p190r025 and p189r025; 
(b) spectral-based classification for (a); (c) classification for (a) using the HOTex 
method; (d) Landsat images p202r023 and p201r023; (e) spectral-based classification 
for (d); (f) classification for (d) using the HOTex method. 
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Because of the vital roles of image objects in the HOTex algorithm, the quality 

of the products derived using this algorithm depends on the quality of the image 

segmentation. For the Landsat 7 images in the GLS 2010 dataset that had residual SLC-

off gaps (Gutman et al. 2013), contiguous image objects that formed by individual land 

cover patches were broken into multiple pieces in arbitrary ways. While we mapped 

the HBASE using those Landsat 7 images by including training samples selected to 

represent the “broken” objects, negative impacts of the SLC-off gaps on the derived 

HBASE product were notable. Figure 2-9 shows two examples of HBASE products in 

areas with SLC-off gaps. The HBASE/non-HBASE boundaries were mapped 

reasonably well for the London test site, although there were breaks introduced by the 

gaps. However, the mapped boundaries for the test site in Vasteras, Sweden, exhibited 

discontinuities, where SLC-off gaps were present. Because the 2010 GLS collection 

only includes 26.8% of the Landsat 7 images and the percentage of total European land 

area covered by SLC-off gaps is less than 0.4%, the overall impact of this issue on the 

data quality is limited. For future studies, two approaches might be useful for removing 

artifacts and data gaps associated with the SLC-off problem. First, by fusion with the 

GUF product, which is not affected by the SLC-off problem, the data quality in affected 

areas could be significantly improved. Second, great efforts have been made to develop 

synthetic or composited Landsat datasets and improve the spatial and temporal 

consistencies at continental to global scales (Roy et al. 2010; White et al. 2014; Zhu et 

al. 2015). Based on the assessment of the quality of image objects derived using such 

synthetic or composited datasets, they might be a valuable alternative data source for 

large-scale HBASE mapping. 
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Figure 2-9: Examples of the effect of SLC-off gaps on the HBASE products for 
London, UK, and Vasteras, Sweden (black: HBASE, white: non-HBASE). 

 

Statistically, the HBASE products derived in this study were comparable to the 

GlobeLand30 product associated with an urban/nonurban classification. The country-

level percentage of HBASE/urban areas derived using these two datasets was 

comparable (Figure 2-6). When assessed according to imperviousness and urban 

functional areas, they produced similar results, with those derived using the HBASE 

product being slightly better since HBASE maps more impervious surface or urban 

related classes. At the pixel level, however, the overall agreement between the two 

products was 97.3%. While some of the disagreements could be contributed to 



 

 

53 
 

commission and omission errors of each product, others were due to differences in the 

local boundaries between HBASE and non-HBASE in the HBASE product and those 

between urban and nonurban in the GlobeLand30 product. In particular, many urban 

areas in the GlobeLand30 product had boundaries that appeared to be the result of 

“manual interaction,” which was part of the pixel–object–knowledge (POK) approach 

used to produce that product (Chen et al. 2015a). While it was not clear how much 

human effort was required to meet the needs of “manual interaction” in producing the 

GlobeLand30 product as the direct output of the RF algorithm superimposed with 

major roads from the OpenStreetMap, the HBASE product did not require any human 

editing during post-classification processing and hence had more “natural” boundaries 

resembling those of the input Landsat images (Figure 2-4). 

I acknowledge that the use of the OpenStreetMap to address the limitations of 

Landsat data in mapping roads may introduce uncertainties, especially in developing 

countries, where both government and user-generated data are relatively scarce. To the 

best of my knowledge, no global- or continental-scale assessment of the quality of 

OpenStreetMap has been published. Therefore, I only included major roads, as listed 

in Section 2.2.3.4. I also used a separate label for roads in the final product, which 

enables the end user to exclude these road pixels or choose to use a different data source 

for roads.  

The comparison with GHSL and GUF datasets showed that, in general, HBASE 

mapped more urban areas and is more likely to contain commission error. Although 

these disagreements need to be interpreted carefully because (a) there are differences 

in the definitions and (b) the UA dataset does not necessarily reflect the ground truth 
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and cannot be used as a basis for calculating the accuracy, the HBASE and these two 

datasets may have complimentary advantages. The fusion of HBASE and these datasets 

may have potential for producing a harmonized urban extent map with higher quality. 

By comparing 30m grade urban products with coarser resolution datasets, this 

study demonstrated the need for 30 m or finer-resolution datasets for mapping human 

built-up and settlement areas. Although two of the 30 m products considered in this 

study, including the HBASE product from this study and the GlobeLand30 product, 

were produced independently using two different methods and had a relatively low 

overall agreement, they produced country-level and Europe-wide estimates of HBASE 

and urban proportions that differed by less than 10%. The estimates from the other 

three coarser-resolution products ranged from ~30% to ~250% of those derived from 

the 30 m products. While definition and methodological differences were likely the 

main reasons for the large discrepancies among the three products, this likely was 

exacerbated by the inability to differentiate fine-scale HBASE features at coarse spatial 

resolutions. With an increasing amount of 30 m or finer-resolution satellite datasets 

becoming available, including those acquired by Landsat 8 and Sentinel-2, the highly 

automated HOTex algorithm makes it possible to routinely map HBASE and its change 

at continental to global scales. 

2.6 Conclusion 

A HOTex approach was developed to map the HBASE at continental and global 

scales. This approach used a segmentation algorithm to produce hierarchical image 

objects, which provided a framework for calculating multi-level textures and 

integrating coarser-resolution VIIRS–DMSP night light data and MODIS-based 
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phenology information in a Landsat-resolution classification. In Europe, the HBASE 

classifications derived using this algorithm had kappa values and user and producer 

accuracies of over 90% when evaluated using the SLCV approach designed to 

minimize potential biases in accuracy estimates due to spatial autocorrelations between 

training and testing data. Similar products derived using a traditional spectral-based 

classification method had SLCV accuracies below 80%.  

The HOTex method was applied to GLS 2010 Landsat images to produce a 

circa-2010 global HBASE product. Based on an initial inter-product comparison for 

Europe, this product had a low commission error of 2.7% when evaluated using an 

European Urban Atlas dataset derived using high-resolution images. Omission errors 

varied substantially among different FUA types, but 80% or more of the areas with > 

25% impervious cover were correctly mapped as HBASE. After being aggregated into 

an urban/nonurban classification, the GlobeLand30 product had comparable but 

slightly higher errors when evaluated using the same reference datasets. These two 30 

m products provided comparable estimates of the total HBASE/urban areas for Europe 

and individual countries. The estimates of total urban land area derived from coarser-

resolution products, such as the 500 m MODIS land cover product and the 300 m 

GlobCover, were half to one third of those derived from HBASE, but those from the 1 

km GRUMP dataset were approximately three times that of the 30 m estimates. 

Although GHSL and GUF have modest disagreements with the HBASE because of 

differences in the definition, they agree with HBASE reasonably well in areas for which 

their definitions agree.  
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This study demonstrated the effectiveness of the HOTex approach in 

consistently mapping HBASE areas at continental to global scales with a dataset 

exhibiting spectral inconsistency. Such spectral inconsistencies may arise from 

differences in the acquisition dates, illumination and viewing geometry, and vegetation 

phenology, among others, and are common for imagery products acquired by mid-

resolution satellites such as Landsat and Sentinel-2. The use of multi-level objects and 

expanded texture measures together with globally consistent MODIS and VIIRS–

DMSP data not only greatly reduced the negative impacts of such within-image 

inconsistencies but also provided a consistently better separability between HBASE 

and non-HBASE areas than the use of Landsat spectral data alone. In addition, given 

the ability to handle spectral inconsistencies, the HOTex approach may be useful for 

the mapping of urbanization using multitemporal images. Moreover, with minor 

adjustments, this approach likely will be effective for the mapping of other land cover 

types, especially those with clear patch boundaries. Future algorithm refinements and 

application to global scales are ongoing in conjunction with the GMIS sister project 

and final results will be provided through NASA’s SocioEconomic Data and 

Applications Center (SEDAC, http://sedac.ciesin.columbia.edu). 
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Chapter 3: Mapping 2000-2010 Impervious Surface Change 
in India using Landsat Data 

3.1 Introduction 

The first decade of the 21st century witnessed rapid urbanization. More than half of the 

world’s population now dwells in urban areas and the urban population is expected to 

reach two thirds of the world’s population by 2050 (United Nations 2015). The physical 

manifestation of this global urbanization process on the Earth’s surface includes the 

conversion of forests, grasslands, and croplands to impervious surface (IS) cover. The 

IS cover may alter the Earth’s environmental systems in many ways: areas covered by 

IS may have a distinctive local climate, commonly known as the “urban heat island 

effect” (Arnfield 2003; Seto and Shepherd 2009). Hydrologic systems may be severely 

impacted as a result of increased runoff and degradation of the water quality (Arnold 

and Gibbons 1996). Urbanization is often associated with the loss of natural land, which 

may have adverse implications for biodiversity and other ecosystem services (Foley et 

al. 2005; Kaye et al. 2006) at local to regional scales. Moreover, recent studies on the 

linkages between urbanization and global environmental change have demonstrated 

that urbanization could have impacts well beyond the physical footprint of urban areas 

(Lambin et al. 2001). 

However, monitoring urbanization as a process of impervious surface change 

(ISC) is an inherently difficult task. The IS only covers a small percentage of the Earth’s 

land surface (estimates range from 0.2%–3%; (Liu et al. 2014; Schneider et al. 2009; 

Small 2004). In addition, urban areas are complex system in terms of both spatial 



 

 

58 
 

variability of the IS cover density within the urban extent and temporal dynamics 

throughout the urbanization cycle (Lambin et al. 2003; Lambin and Meyfroidt 2010; 

Lambin et al. 2001). 

Much effort has been made towards representing IS or urban land cover in 

remote sensing-based global maps. Such datasets include global land cover datasets 

with urban class (Friedl et al. 2010; Hansen et al. 2000; Loveland and Belward 1997), 

binary urban/nonurban maps (CIESIN (Center for International Earth Science 

Information Network) 2011; Schneider et al. 2009; Zhou et al. 2015)], and continuous 

field IS cover maps (Elvidge et al. 2007). These datasets are produced using medium 

to coarse resolution data such as from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Defense Meteorological Satellite Program 

Operational Linescan System (DMSP-OLS). Only recently, 30 m resolution Landsat 

data are being used for mapping urban areas globally (Chen et al. 2015b; Gong et al. 

2013). As valuable as these datasets are, monitoring urbanization requires much more 

detailed data than the available global products. The complexity of urban landscapes in 

the spatial domain requires very high-resolution (VHR) data to map (Jensen and Cowen 

1999). Even at 30 m resolution, much of the IS cover is mixed with other non-

impervious land cover types (Small 2003). To better map the spatial distribution of IS 

cover, Landsat spectral data have been used to produce continuous field IS cover 

products such as the United States National Land Cover Dataset (NLCD) percent IS 

(Yang et al. 2003). Similarly, at 30 m resolution, most non-impervious to impervious 

cover conversion is best characterized as a continuous field variable instead of discrete 

classes because continuous field variables better represent urban mosaics and 
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boundaries. Therefore, under the constraint of using publicly available datasets, 

mapping continuous field impervious surface change (ISC) at 30 m provides the best 

characterization of the spatiotemporal dynamics of urbanization. 

Landsat-based IS has been mapped using spectral mixture analysis (Lu et al. 

2014; Weng et al. 2008) and machine learning algorithms such as regression trees 

(Walton 2008; Xian and Homer 2010; Yang et al. 2003). Both methods are sensitive to 

seasonal and phenological variations within Landsat images (Wu and Yuan 2007; Yuan 

et al. 2008). As a result, seasonal phenology changes could lead to fluctuations of the 

estimated IS and thus biases and errors in the estimated ISC when images for the two 

dates are acquired from different seasons. Landsat time series could be used to produce 

more stable IS estimates and thus a more accurate ISC (Sexton et al. 2013b; Song et al. 

2016). However, the data requirements for Landsat time series analysis may not be 

satisfied in many areas of the world, especially in areas with chronic cloud cover.  

This study mainly aims to produce the ISC between 2000 and 2010 for India, a 

country with one of the fastest urbanization rates around the world (Pandey et al. 2013). 

India contributes currently ~10% of the world’s urban population (Swerts et al. 2014). 

This number is expected to grow because its economic development drives future 

urbanization and more of its vast rural population migrate to urban areas (United 

Nations 2015). India also has a very diverse landscape, climate, and biome, making it 

an ideal place to test large-scale IS mapping. In addition to the primary goal, I also aim 

to produce quantitative assessments of the accuracies of the mapped ISC and 

state/country-level statistics of ISC for the entire country of India. Finally, the 

correlation between ISC and socioeconomic drivers of ISC, including population 
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growth and the growth of gross domestic production (GDP), are examined to validate 

the overall quality of the derived ISC product. 

3.2 Study Area and Datasets 

3.2.1 Study Area 

The study area of this chapter is India, the country with the seventh largest area 

(near 3.3 million km2) and second largest population (more than 1.2 billion as of 2016). 

India has experienced rapid urbanization in the first decade of the 21st century. From 

2001 to 2011, the urban population has increased by 31.8%, at a much higher rate than 

the rural population growth (12.2%; (Office of the Registrar General & Census 

Commissioner of Inida 2011; Pandey et al. 2013). With this significant rate of 

urbanization, India faces many challenges. In a previous study, it was found that ~24% 

of the districts in India experienced significant agricultural land loss (> 1000 hectare), 

which is mainly explained by urbanization (Pandey and Seto 2015). Urbanization in 

India also has adverse impacts on the biodiversity because important habitats are being 

converted to IS (Nagendra et al. 2013). 

 The impact of seasonal phenology change on remotely sensed IS is particularly 

severe in India. Because of the effect of the monsoon and spatial distribution of rainfall, 

different vegetation dynamics spread across the country (Tian et al. 2014). In addition, 

shaped by meteorological cycles, the spectral signatures of agricultural land in India 

change seasonally. For example, during dry months, fallow fields are often confused 

with ISs, which are difficult to separate with single temporal data (Haack et al. 2002).  
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3.2.2 Global Land Survey Surface Reflectance Datasets 

As described in Subsection 2.2.1.1, Global Land Survey (GLS) datasets are 

global, mostly cloud-free, collections of orthorectified Landsat images. Up to now, 

GLS datasets for the nominal years of 1975, 1990, 2000, 2005, and 2010 have been 

made available (Gutman et al. 2013). In this chapter, I used 2000 and 2010 GLS surface 

reflectance (SR) datasets processed using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS; Masek et al. 2006) by the Global Land Cover Facility 

(GLCF) at University of Maryland. To cover all land areas of India, 195 GLS Landsat 

scenes were used for each epoch. 

3.3 Methods 

3.3.1 Impervious Surface Mapping for 2010 

A regression tree-based method was developed to map the IS for 2010 by the 

GMIS project (Brown de Colstoun et al. 2017). The GMIS project adopted a method 

similar to the NLCD IS product using Landsat spectral bands as input variables and IS 

percentages interpreted from high-resolution images as training data. In addition to the 

six Landsat spectral bands, the inputs to the regression tree model also included four 

spectral indices. These spectral indices were calculated as described in Subsection 

2.2.3.3. 

The regression tree model was generated by the Cubist™ software by Rulequest 

(Rulequest Research 2016), a machine learning algorithm widely used in mapping the 

IS and other continuous field land cover variables (Sexton et al. 2013a; Sexton et al. 

2013b; Song et al. 2016; Walton 2008). In addition to the predicted variable, Cubist™ 
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also generates mean absolute error (MAE) estimations, which I modified into root-

mean-square error (RMSE) using a public version of the Cubist™ code. 

Due to the spectral similarity between IS and other non-impervious land cover 

types, such as agricultural fields and bare land, regression trees tend to overestimate 

the IS cover in these areas. Therefore, an urban mask is needed to mask the IS 

predictions outside of the urban extent. Compared with the NLCD IS product, which 

uses a nighttime lights dataset derived from DMSP-OLS (Xian et al. 2011), the binary 

masks of human built-up and settlement extent (HBASE) developed in Chapter 2 were 

used by GMIS. Based on object-based texture information, HBASE includes both IS 

and non-IS covers within the urban boundary and smaller settlements such as towns 

and villages. The HBASE classification was performed using the Random Forest 

algorithm, an ensemble machine learning algorithm based on decision trees (Breiman 

2001). With Random Forest, I generated not only the categorical classes for every pixel 

but also the probability of a pixel belonging to each class, which will be used later in 

this study (Section 3.3.2.3). 

Training data for IS and HBASE machine learning models were collected 

worldwide for a global IS mapping project. In this study, I used models based on 

training datasets developed for the Asian continent to map the IS and HBASE in 2010. 

Initial assessments using cross-validation estimated the RMSE of IS to be 12.3% for 

the Asian IS model. Based on the results of the cross-validation for the Asian HBASE 

classification model, the user’s accuracy , producer’s accuracy , overall accuracy, and 

kappa statistic were 91.5%, 90.3%, 97.9%, and 90.0%, respectively. 
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3.3.2 Impervious Surface Mapping for 2000 

3.3.2.1 Overall Algorithm Design 

Based on the processing chain developed for the mapping of the 2010 IS, the 

task of estimating the ISC between 2000 and 2010 could be reduced to porting the 2010 

IS model to map the 2000 IS. Due to differences in acquisition dates and imaging 

geometries between corresponding 2000 and 2010 GLS images, there are considerable 

spectral and phenological differences between images for these two epochs. As a result, 

the 2010 IS model could not be directly applied to GLS 2000. To produce more realistic 

and higher quality 2000 IS, the regression tree algorithm must be supplied with training 

data for the 2000 epoch. Instead of collecting training data for 2000, which cannot be 

achieved for many areas due to the lack of necessary high-resolution images, my 

approach for estimating the 2000 IS cover is featured by an iterative process designed 

to identify pixels with unchanged IS values between 2000 and 2010. Using the 2010 IS 

prediction for these pixels as training data, a regression tree was then developed to map 

the 2000 IS. The major steps of the overall methodology are shown as gray boxes in 

Figure 3-1. The following subsections will provide details on each of these steps. 
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Figure 3-1: Overall schematic diagram for the impervious surface change mapping 
algorithm. 

 
3.3.2.2 Algorithm Initialization 

The initial estimation of IS-2000 was produced by simply applying the Cubist™ 

regression tree model used for the 2010 IS mapping to the 2000 Landsat images. I also 

applied the 2010 HBASE classification model to 2000 Landsat data to produce 2000 

HBASE maps. Because the HBASE algorithm is based on the classification of texture 

features, which are not sensitive to spectral and phenological variations, I used this 

HBASE mapping result for all the subsequent analyses.  
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3.3.2.3 No Change Mask Generation 

The goal of generating a “No Change” (NC) mask is to provide a set of pixels 

in which IS-2000 could be considered equal to IS-2010 with great confidence. Because 

the IS-2010 of these pixels will be used as training data to estimate IS-2000, I used the 

best information available and heuristics to obtain a conservative NC mask (this means 

that the NC mask is designed to include a minimum amount of change pixels). Figure 

3-2 shows the criteria for determining if a pixel is in the NC mask. 

 
Figure 3-2: Schematic diagram for the “No Change” (NC) mask generation 

algorithm. 

 

First, I considered pixels that were mapped as non-HBASE by the HBASE 

algorithm for both 2000 and 2010 as 0% impervious for both epochs. To further reduce 

the commission error, I applied an erosion morphological operator using a 67 by 67 

kernel, which generated a set of pixels with at least 1 km (33 Landsat pixels) distance 
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to any HBASE pixel. The resulting pixels were labeled as “No Change non-HBASE” 

(NC-non-HBASE) in the NC mask. 

Second, I considered pixels that were mapped as HBASE for both 2000 and 

2010 by the HBASE algorithm. For these pixels, I calculated the relative impervious 

surface change between 2000 and 2010 as )IS(IS)/ IS-(IS2 2000201020002010 +× . I 

considered the pixels with less than 10% relative change to be “No Change HBASE” 

(NC-HBASE). Because the HBASE classification contains commission errors, the NC-

HBASE category may also contain non-HBASE pixels. The use of such pixels to train 

the 2000 model may lead to systematic bias in the estimated 2000 IS. To filter out 

remaining non-HBASE pixels, I leveraged the class probability output of the HBASE 

classification model and removed from the NC-HBASE category pixels where the 

HBASE probability for either date is below a threshold. In this study, I used 60% as 

the threshold for HBASE probability. This threshold and the 10% threshold for relative 

change were empirically determined based on accuracy assessments of the ISC. 

Finally, the HBASE product contains “NODATA” pixels when clouds/shadows 

or data gaps exist as a result of the failure of the Scan Line Corrector (SLC) of Landsat 

7 (Gutman et al. 2013). I applied a dilation morphological operator using a 21 by 21 

kernel to the “NODATA” pixels. This large buffer was designed to minimize the 

potential impact of pixels adjacent to bad observations during the identification of NC 

pixels. 

3.3.2.4 Iterative Training and Prediction (ITP) 

Based on the NC mask, I created for each GLS-2000 image a training dataset: 

pixels within the NC-HBASE class were assumed to have impervious surface cover as 
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predicted by the GMIS-2010 product; and pixels within the NC-non-HBASE class 

were given 0% IS cover. Using these training datasets, I trained Cubist™ regression 

tree models for each GLS 2000 image to predict the 2000 IS cover from Landsat data.  

While I assumed that the IS values of all NC-HBASE pixels did not change 

between 2000 and 2010, some of those pixels could have changes in their IS values. 

For example, the redevelopment of an urban block could completely change the IS 

value of that block. Increasing the building density in a low density urban area will 

result in a substantial IS value increase. Such pixels should not be used as training 

pixels in developing the 2000 IS Cubist™ model. To identify such pixels, I adopted an 

iterative training and prediction (ITP) approach: the initial estimation of IS-2000 from 

the regression tree model based on 2010 training data was denoted as 0-th iteration; for 

the thk −  iteration, I generated a NC mask using IS-2000 from the thk −− )1(  

iteration; the ITP process continued and generated a new IS-2000 based on the thk −  

NC mask until the thk −  NC mask satisfied a stabilization criterion: 

 %,10%100
210

10 <×
++

+
TTT

TT
   (3-1) 

where 0T  is the number of pixels labeled as NC-HBASE for the thk −− )1(  NC mask 

but not the thk −  NC mask, 1T  is the number of pixels labeled NC-HBASE for the 

thk −  NC mask but not the thk −− )1(  NC mask, and 2T  is the number of pixels 

labeled NC-HBASE for both the thk −  and the thk −− )1(  NC mask. 

When the stabilization criterion was met, I considered the NC mask to be 

accurate enough and used it to generate the final IS-2000. The HBASE-2000 from the 
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algorithm initialization stage was used to filter out overestimates of the IS in non-

HBASE areas. 

3.3.3 Quantification of 2000-2010 Impervious Surface Change 

A simple subtraction of the final IS-2000 from the IS-2010 product was used to 

map the ISC between 2000 and 2010. In rapidly developing countries such as India, 

most urban changes increase the imperviousness. A predicted IS-2010 smaller than the 

predicted IS-2000 is much more likely due to natural factors such as changes in the 

vegetation phenology instead of real imperviousness decrease. Therefore, I set all 

pixels with negative ISC to 0. 

To further reduce random errors in the ISC product, I utilized the RMSE output 

using the modified Cubist™ code. Under the assumption that IS2000 and IS2010 are 

independent, the standard error of an ISC prediction was estimated using: 

 ,2
2010

2
2000 ISISISC RMSERMSE +≈σ    (3-2) 

where 2000ISRMSE  and 2010ISRMSE  are the RMSE of the 2000 and 2010 IS predictions 

estimated by the Cubist™ regression tree algorithm. I applied a threshold of one 

standard error to the ISC predictions, which was determined empirically to minimize 

the RMSE of the estimated ISC. The ISC predictions below one standard error were set 

to zero. 
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3.3.4 Validation of 2000-2010 Impervious Surface Change 

To assess the accuracy of the produced ISC dataset, I developed an ISC 

validation dataset using Google Earth™ imagery, which uses pan-sharpened QuickBird 

imagery with 61 cm resolution and pan-sharpened Worldview-2 imagery with 46 cm 

resolution as sources for the high-resolution image for the study period. The selection 

of validation points followed a three-step stratified sampling approach: 

1. The 500 most populous Indian cities were classified into seven groups: more 

than 5 million, 1–5 million, 500000–1000000, 250000–500000, 100000–

250000, 50000–100000, and less than 50000. From each group, I selected two 

cities. In total, I selected 14 cities that distribute across different regions of India. 

2. A total of 18 Landsat scenes covering these 14 cities were identified. 

3. For every Landsat scene, I randomly select 50 pixels from each of these four 

groups: 0=ISC , %250 ≤< ISC , %50%25 ≤< ISC , and %50>ISC . 

I then searched the historical Google Earth™ imagery archive to find two 

images closest to the 2000 and 2010 GLS image acquisitions dates for each of the 3600 

sample points. For the use as ISC validation points, the following rules had to be 

satisfied:  

1. The difference between the Google Earth™ and Landsat image acquisition 

dates is within two years (730 days) for both 2000 and 2010. This constraint 

could be relaxed if multiple Google Earth™ images with the same ISC were 

found before, during, and after the date range between GLS-2000 and GLS-

2010. 

2. There are no clouds/shadows in the Google Earth™ image for both dates. 
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3. There are no apparent misregistration errors between the two Google Earth™ 

images. 

A Google Earth™ imagery interpretation tool was developed to estimate the 

ISC (Figure 3-3). Using the rules listed above, I determined that 1322 points were 

interpretable, which accounts for approximately 1/3 of the randomly sampled 

validation points. Among the 2278 dropped points, 1835 points were uninterpretable 

because of the first rule and the rest were dropped because substantial misregistration 

was identified between the Google Earth™ images for two dates. Although the 

randomness of the samples may be compromised after filtering out the uninterpretable 

points, the validation datasets are still spatially distributed across all of India and 

represent the entire range of ISC (Figure 3-4). For each of the usable validation points, 

the extent of the Landsat pixel was overlaid on 2000 and 2010 Google Earth™ images. 

The Landsat pixel to be validated was divided into 10 by 10 grids. By counting the 

number of grids with IS cover, I estimated the IS for 2000 and 2010. For example, 87 

out of 100 grids were covered by IS in 2010 and no grid was covered by IS in 2000 

(Figure 3-3). Therefore, I estimated that IS 2010, IS 2000, and ISC were 87%, 0%, and 

87%, respectively. 
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Figure 3-3: The impervious surface change validation tool based on Google Earth™: 
the red square in the upper panels, which is further divided into 1010×  grids, shows 
how the extent of the validated pixel overlays with Google Earth™ high-resolution data 
at two dates; the difference between impervious surface estimations for two dates is 
shown in the lower panels and is used as reference impervious surface change and to 
validate the impervious surface change product. 
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Figure 3-4: Distribution of selected cities, Landsat scenes, and validation points from 
the sampling. The histogram shows the distribution of the reference impervious surface 
change (ISC) used for validation. 

 

3.4 Results 

3.4.1 Visual Assessments of the IS and ISC products 

I first assessed the quality of the bias-corrected ISC product by visual 

comparison against Google Earth™ images. I found that the ISC mapping method 

performs well in different areas with a wide range of landscape characteristics and 

urban densities. In Figure 3-5, site (a) is an area that was converted from an agricultural 
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field to a high-density IS. The 2000 IS correctly mapped the center pixel as 0% and the 

2010 IS mapped it as 95% impervious. Figure 3-5b shows an agricultural area 

converted to low- to medium-density IS cover. The ISC product predicted a 44% 

increase of the IS cover. Figure 3-5c shows a bare area that was started to be developed 

prior 2000 and was continued to be converted to a low- to medium-density IS cover. 

The mapped ISC is 90%. Figure 3-5d shows a medium-density area expanded with 

new high-rise residential buildings. The proposed method mapped newly built areas as > 

90% ISC. Figure 3-5e shows that a new airport was mapped correctly. 
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Figure 3-5: Examples of impervious surface change products for (a) an area converted 
from an agricultural field to a high-density impervious surface, (b) an agricultural area 
converted to low- to medium-density impervious surface cover, (c) a bare area that was 
started to be developed prior 2000 and was continued to be converted to low- to 
medium-density impervious surface cover, (d) a medium-density area expanded with 
new high-rise residential buildings, and (e) a newly built airport in a non-impervious 
area. 
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Although the visual representations of ISC indicated a good overall 

performance, I identified several types of errors in the IS and ISC products. In Figure 

3-6a, an area remaining agriculture land during the 2000–2010 period was mapped as 

low- to medium-density IS cover for 2010, which resulted in a predicted ISC of 20%–

40%. Mining areas are a major source of error as shown in Figure 3-6b. Both 2000 and 

2010 versions overestimated the IS in this area. The expansion of mining caused an 

ISC prediction of > 90%. Turbulent water bodies were found to be confused with IS. 

In Figure 3-6c, the river was correctly mapped as 0% impervious in 2000 but showed 

~20% IS retrievals in 2010. There were also cases in which the ISC was underestimated. 

Figure 3-6d shows a low-density town undergoing intensification. However, the IS 

products mapped only a few road pixels for both dates. This is caused by the omission 

error of the HBASE maps. Figure 3-6e shows an area in which fallow agricultural 

fields were converted for industrial use. The 2010 IS product mapped the high 

impervious cover correctly. However, because the IS 2000 product predicted medium 

IS with high standard error, the predicted change did not exceed one standard error and 

was set to zero. 
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Figure 3-6: Examples of impervious surface change products for (a) an area that 
remained agriculture land during the 2000–2010 period with overestimated impervious 
surface change, (b) a mining area, (c) a river with ~20% ISC predictions, (d) a low-
density town undergoing intensification, and (e) an area converted from an agricultural 
field to a high-density impervious surface. 

 

A mosaic of the ISC product for the entire country of India was created to 

examine its overall spatial distribution pattern (Figure 3-7). First, the ISC changes are 

mainly distributed near larger urban centers (e.g., New Delhi, Mumbai, and Bengaluru), 

which have experienced strong population and economic growth during the 2000–2010 
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period. Second, Uttar Pradesh, Maharashtra, Gujarat, and Tamil Nadu are among the 

states with the highest ISC, which agrees with a MODIS-based analysis of agricultural 

land to urban land conversion in India (Pandey and Seto 2015). Finally, as shown by 

the zoom-in views for New Delhi and Bengaluru, most of the IS changes occurred in 

the urban fringe areas, which is an accurate representation of the urban development 

patterns of these two cities. 

 
Figure 3-7: The 300 m mosaic of India’s impervious surface change product (Lambert 
Azimuthal Equal Area projection). The zoom-in views of the 2000 impervious surface 
(IS2000), 2010 impervious surface (IS2010), and impervious surface change (ISC) are 
provided for New Delhi and Bengaluru at 30 m resolution. 
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3.4.2 Accuracies of IS and ISC products 

The validation dataset developed in Subsection 3.3.4 was used for the additional 

assessment of the IS and ISC products. Figure 3-8 shows the scatter plots between 

reference data and predicted IS for 2000 and 2010. I assigned colors to the scatterplot 

using numbers of points for each 10% by 10% grid. The RMSE of the IS 2000 is 15.4%, 

while the RMSE of IS 2010 is 19.7%. Figure 3-9 shows the scatter plots between 

reference and predicted ISC for the ISC result using IS-2000 from the algorithm 

initialization in Subsection 3.3.2.2, the ISC result after iterative training and prediction 

(ITP) in Subsection 3.3.2.4, and the final ISC product after applying the threshold of 

one standard error. Figure 3-9a illustrates the magnitude of errors in the ISC when 

estimating the IS using the same regression tree model for two dates. Without the ITP 

process, the RMSE of the ISC was higher than the RMSE of the IS for both epochs. 

After the ITP process, the agreement between reference and predicted ISC improved 

significantly, which is demonstrated by the increase of 𝑅𝑅2  from 0.59 to 0.78 and 

decrease of RMSE from 25.4% to 20.4% in Figure 3-9b. Figure 3-9c shows that 

further improvement of accuracy was obtained by applying the threshold of one 

standard error. In addition, the bias of ISC was reduced from 20.61% to 8.41% after 

ITP and postprocessing. 
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Figure 3-8: Scatterplots of reference vs. predicted impervious surface change (IS) for 
(a) 2000 and (b) 2010. The number of points for each 10% by 10% grid was used to 
assign colors to the scatterplot. The blue lines are fitted functions between reference IS 
(x) and predicted IS (y). 

 
Figure 3-9: Scatterplots of reference vs. predicted impervious surface change (ISC) for 
(a) the initial result, (b) the result after iterative training and prediction (ITP) and (c) 
result after ITP and thresholding. The number of points for each 10% by 10% grid was 
used to assign colors to the scatterplot. The blue lines are fitted functions between 
reference ISC (x) and predicted ISC (y). 
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Because a significant portion of the randomly selected reference points could 

not be used, the statistical distribution of ISC values in the actual dataset is likely to be 

different from the histogram of the reference ISC, as shown in Figure 3-4. To better 

assess the errors of the ISC product, I estimated the RMSE for each 10% predicted ISC 

interval using the validation dataset (Figure 3-10), which enabled us to establish a 

lookup table between an ISC prediction and its corresponding RMSE estimation. I used 

this lookup table to assign a RMSE estimation to each pixel as the approximate standard 

deviation for the ISC prediction. 

 
Figure 3-10: Root-mean-square error (RMSE) of the predicted impervious surface 
change (ISC) for the initial result, result after iterative training and prediction (ITP), 
and result after ITP and thresholding. The RMSE was estimated for each 10% interval 
of the predicted ISC. 
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3.4.3 ISC in India and Relationships between ISC and Socioeconomic Change 

In this section, I assess the overall performance of ISC mapping using state-

level statistics of the impervious surface change area (ISCA) and its correlation with 

socioeconomic change. For every state and union territory of India, I calculated the 

ISCA and its standard deviation (STD) by:  
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where iISC  is the predicted ISC for the thi −  pixel; N  is the number of pixels within 

the state boundary; 0009.0  is the size of a Landsat pixel in km2; ISCAσ  is the standard 

deviation of ISCA for the state; and iσ  the standard deviation of ISC for the thi −  

pixel, which is approximated using the estimated RMSE for the ISC under the 

assumption that there is no spatial autocorrelation in the estimated ISC. The ISCA 

calculation was based on state boundaries defined by the Global Administrative Areas 

(GADM) dataset (GADM 2015). 

Population growth and economic development are known to be two major 

drivers of urbanization. To examine the relationship between the mapped ISC and 

socioeconomic change in India, I calculated state-wise change statistics for the gross 

state domestic product (GSDP) and population between 2001 and 2011. The GSDP 

data were produced by the Planning Commission of India (Planning Commission of 

India 2014) and the population data were retrieved from the India Census 2001 and 
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2011 (Office of the Registrar General & Census Commissioner of Inida 2011). These 

statistics are listed in Table 3-1. The GSDP and population data for three small union 

territories (Dadra and Nagar Haveli, Daman and Diu, and Lakshadweep) were not 

available. In addition, the GADM state boundaries list Andhra Pradesh and Telangana 

as two different states, which were separated from the state of Andhra in 2014. At the 

time when GSDP and population data were collected, these two states were not 

separated; therefore, we did not calculate the GSDP and population change for them. 

I plotted the state-level total ISCA (y-axis) against the (a) gross state domestic 

product (GSDP) change and (b) population change (x-axis) from Table 3-1 in Figure 

3-11. Both the GSDP and population have good correlations with the ISC product, 

which are indicators of good overall performance of the ISC mapping method. 

 
Figure 3-11: Scatterplots between the state-wise total impervious surface (IS) change 
area (y-axis) and (a) gross state domestic product (GSDP) change and (b) population 
change (x-axis). 
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Table 3-1: Statistics of the gross state domestic product (GSDP) change (billion 
rupees), population change (million people), and impervious surface change area 
(ISCA; km2) and the standard deviation (STD) of the ISCA (km2). 

State/Union Territory GSDP Change  Population Change  ISCA  STD  
Andaman and Nicobar 36.64 0.02 0.77 0.18 
Andhra Pradesh N/A N/A 55.32 0.81 
Arunachal Pradesh 85.15 0.28 3.29 0.58 
Assam 875.07 4.53 34.97 0.57 
Bihar 1896.61 20.93 42.17 0.62 
Chandigarh 177.21 0.15 1.11 0.02 
Chhattisgarh 1033.33 4.71 34.71 0.75 
Dadra and Nagar Haveli N/A N/A 2.80 0.05 
Daman and Diu N/A N/A 1.09 0.02 
Goa 289.28 0.11 4.79 0.12 
Gujarat 4709.9 9.79 307.72 0.88 
Haryana 2364.54 4.67 65.23 0.43 
Himachal Pradesh 478.09 0.78 14.44 0.48 
Jammu and Kashmir 477.2 2.48 30.18 0.66 
Jharkhand 1088.22 6.02 48.09 0.57 
Karnataka 3423.65 8.40 167.59 0.89 
Kerala 2299.82 1.55 27.40 0.39 
Lakshadweep N/A N/A 0.02 0.01 
Madhya Pradesh 2249.25 12.21 134.25 1.13 
Maharashtra 9263.6 15.62 304.42 1.23 
Manipur 71.35 0.43 1.84 0.30 
Meghalaya 119.34 0.66 6.05 0.30 
Mizoram 52.51 0.20 1.69 0.29 
Nagaland 92.31 -0.01 4.97 0.26 
NCT of Delhi 2319.3 2.90 36.37 0.08 
Odisha 1678.27 5.24 61.23 0.80 
Puducherry 103.71 0.27 1.49 0.05 
Punjab 1768.19 3.42 73.52 0.46 
Rajasthan 3116.51 12.15 67.60 1.18 
Sikkim 74.8 0.07 1.76 0.17 
Tamil Nadu 5164.51 10.03 148.64 0.73 
Telangana N/A N/A 73.43 0.69 
Tripura 146.12 0.48 13.17 0.21 
Uttar Pradesh 4887.38 33.53 388.78 1.09 
Uttarakhand 825.52 1.63 48.18 0.47 
West Bengal 3810.65 11.13 65.56 0.59 
Total India 62939.65 181.99 2274.62 3.92 
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3.5 Discussion 

The proposed approach for ISC mapping is designed to solve the fundamental 

problem of estimating the ISC from bi-temporal images using spectral information, 

which is the sensitivity of estimated IS to spectral and phenological differences 

between bi-temporal images. Instead of applying an existing year-2010 regression tree 

to GLS-2000 images, we designed an ITP process to automatically generate training 

data for a year-2000 regression tree model, estimated IS-2000, and mapped ISC as the 

difference between IS-2010 and IS-2000.  

Based on visual assessments, quantitative assessments using an independent 

validation dataset, and the correlation between ISC and changes in population and GDP, 

the ISC mapping algorithm achieved a low level of error. However, the final ISC 

products still show a bias towards overestimation as a result of an underestimated 2000 

IS (see Figure 3-8a) and overestimated 2010 IS (see Figure 3-8b). Several 

methodological limitations and sources of errors remain to be better addressed in future 

studies. 

First, the generation of the NC mask and training datasets for 2000 relies on 

HBASE masks. If an impervious pixel is classified as non-HBASE for both 2000 and 

2010, it might be included in the 2000 training as 0% impervious. The inclusion of such 

pixels in 2000 training could lead to an underestimation of IS-2000 and therefore 

overestimation of ISC. To better identify pixels without ISC, unsupervised change 

detection methods and spectral mixture analysis may yield better results than the 

heuristic method used in this study (Sexton et al. 2015). 
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Second, regression trees are known to have a tendency to over-estimate IS for 

non-impervious areas spectrally similar to IS (Lu et al. 2014; Yuan et al. 2008). I used 

HBASE masks to remove retrievals of IS in these areas. Yet, there are commission 

errors in the HBASE masks, as shown in Figure 3-6a, where the ISC might be 

overestimated. In addition, HBASE masks have omissions in low- to medium-density 

villages/towns, where the ISC might be underestimated. These issues highlight the 

importance of an accurate HBASE/urban mask for ISC estimation. Other currently 

available global urban maps may be used in addition to or as an alternative to the 

HBASE product used in this study. These maps include the GlobeLand30 product (30 

m;(Chen et al. 2015b), MODIS Land Cover product (500 m; (Friedl et al. 2010; 

Schneider et al. 2010), and map from the Global Rural Urban Mapping Project 

(GRUMP; (CIESIN (Center for International Earth Science Information Network) 

2011). More studies on better representation of HBASE/urban in global maps could 

lead to better estimations of the ISC within the presented framework. 

Third, by applying the threshold of one standard error to ISC predictions, I 

reduced the overestimation of the ISC in areas in which the IS was overestimated. The 

RMSE of the final ISC product is lower than the RMSE of 2000 IS or 2010 IS. However, 

this also led to the omission of the real ISC in areas in which the uncertainty of the 

Cubist™ prediction was high. Bias correction methods, as described in (Huang et al. 

2014), might be a better way to remove bias when a high-quality reference dataset is 

available. 

Finally, the ITP process requires many iterations to generate a stable NC mask 

and corresponding IS-2000. During the processing of the 195 Landsat scenes covering 
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India, 152 scenes (78%) required more than 100 iterations to converge to a final product. 

More studies are also needed to improve the computational efficiency of the proposed 

algorithm for large-scale applications. 

Addressing the problems mentioned above requires major methodological 

improvements. On the other hand, Landsat time series have been demonstrated to be 

able to deal with ISC errors associated with spectral and phenological differences in bi-

temporal datasets (Song et al. 2016). Given the increasing availability of 30 m or finer-

resolution satellite datasets, including those acquired by Landsat 8 and Sentinel-2, ISC 

mapping using dense time series Landsat-like data could be performed at large scales 

in the near future. 

Nevertheless, the proposed method shows great potential for large-scale ISC 

mapping. It could be particularly useful when mapping the change between a recent 

date with good coverage of a high-resolution image and a much earlier date when high-

resolution data was scarce.  

3.6 Conclusion 

An ITP approach was developed for mapping the ISC for all of India. The 2010 

IS was mapped using a well-established regression tree-based method. Without 

additional training data collected for the 2000 epoch, the 2000 IS was mapped by 

automatically generated 2000 training data based on an NC mask. The estimated 2000 

IS was in turn used to generate a better NC mask in an iterative fashion.  

The ITP method was applied to GLS Landsat images to produce a 2000–2010 

ISC product for India. This product had a RMSE of 18.4% and a bias of 8.41% when 

evaluated using a validation dataset derived from Google Earth™ images. By 
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calculating the RMSE for every 10% interval of the predicted ISC, I also found that the 

RMSEs for all predicted ISC intervals were within the 5%–30% range. The 

performance of the ITP method was further validated by the high correlation between 

the mapped ISC and socioeconomic changes. Based on statistical analyses of the 

mapped ISC, I estimated that, if there is no spatial autocorrelation in the estimated ISC, 

at 95% confidence, the total ISC for India between 2000 and 2010 is 2274.62 ± 7.84 

km2. 

It has been demonstrated that the ITP approach is effective for consistently 

mapping the ISC at national scales with a dataset that exhibited spectral differences 

between two dates. Such spectral differences may be attributed to differences in 

acquisition dates, illumination and viewing geometry, and vegetation phenology. With 

the ability to handle spectral inconsistency, the ITP approach may have a potential for 

global-scale impervious surface change mapping even when Landsat time series data 

is not available, leading to fully automated long-term urbanization monitoring and 

urbanization record from the multi-decadal Landsat historic archive. The implications 

of this capability are enormous, including the modeling of urbanization induced climate 

and environmental change, projecting of future urban growth rate and pattern, and 

making policies to limit unsustainable urban growth. 
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Chapter 4:  Characterizing Urban Structure using the 
Synergy of Landsat and Global Elevation Datasets: A Case 

Study of England 

4.1 Introduction 

Recently, within the urban remote sensing community, a growing amount of interest 

has shifted from two-dimensional (2D) properties of urban landscape to the vertical 

dimension (Frolking et al. 2013; Gamba et al. 2000; Geiss et al. 2015; Gong et al. 2011). 

Indeed, the three-dimensional (3D) structure of an urban area are closely linked to the 

spatial distribution of its population and human activities as well as its physical 

properties (Gong et al. 2011; Masson 2006; Souch and Grimmond 2006). Therefore, 

without proper characterization of urbanization in the 3D space, it is impossible to fully 

understand the functions and mechanisms of the urban system, its interactions with the 

environment, and the opportunities and challenges it will present to humanity. A 

reliable, spatially detailed, updatable, and consistent-across-scales database of urban 

structural information is needed for key applications such as disaster vulnerability 

assessment (Geiß et al. 2016) and population distribution mapping (Lu et al. 2011; Qiu 

et al. 2010). Structural information is also vital to answering many open questions in 

urban science, from finding the most efficient and sustainable urban layout to 

optimizing the urban structure to understand local climatic impacts of urbanization (e.g., 

the urban heat island effect, changes in urban effects precipitation patterns) (Arnfield 

2003; Masson 2006; Seto and Christensen 2013; Souch and Grimmond 2006). Earth 
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observation, empowered by its far-reaching capabilities across spatial and temporal 

scales, represents the best opportunity to fulfill this need. 

To date, studies based on light detection and ranging (Lidar) technology have 

dominated the literature on urban three-dimensional structures (Cheng et al. 2011; 

Gong et al. 2011; Gonzalez-Aguilera et al. 2013; Zheng and Weng 2015). Optical 

image stereography (Sirmacek et al. 2012; Wurm et al. 2014) and synthetic aperture 

radar interferometry (InSAR; (Gamba et al. 2000; Thiele et al. 2010) have also been 

proven to be effective technologies to map urban structural parameters such as building 

height and volume. While Lidar provides an unmatched vertical accuracy, its 

applications are often limited by incomplete spatial coverage due to its sampling nature. 

Although to a lesser extent, spatial limitations also apply to high-resolution stereo 

optical images and sometimes also InSAR images (Lu et al. 2007; Wurm et al. 2014). 

Besides, there are two additional major technical challenges of urban 3D structure 

mapping, even for areas with satisfactory data coverage. First, all three technological 

approaches typically measure the height of buildings on top of bare ground, that is, 

digital surface models (DSMs). To extract the building height and volume, either direct 

approaches that separate the ground and top of building signals or indirect approaches 

that remove the ground height from DSM products have been adopted (Gamba et al. 

2000; Geiss et al. 2015; Meng et al. 2010). Second, buildings are not the only vertical 

structures on the ground surface. Trees, for example, must be removed from height 

measurements for urban applications. To address this issue, there are also direct and 

indirect approaches (Gamba et al. 2000; Zheng and Weng 2015). In addition to these 

direct and indirect approaches, building boundaries derived from classifying optical 
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images or vector data layers have also been used as ancillary information to address 

these two technical issue (Thiele et al. 2010; Wegner et al. 2014). 

Since the success of the Shuttle Radar Topography Mission (SRTM), several 

satellite missions have provided global seamless measurements of surface elevation 

including the DSM dataset from the recent TanDEM-X mission (Krieger et al. 2007; 

Tachikawa et al. 2011; Tadono et al. 2016; Van Zyl 2001). Some of these global DSM 

datasets have been made freely available, raising the question if they could be used for 

large-scale urban structure characterization, a possibility first envisioned by Nghiem et 

al. (2001).  

In this study, the synergy of Landsat data and global elevation datasets is 

investigated to address technical challenges of urban structure mapping discussed 

above. The objective of this chapter is to develop methods for mapping building height 

and volume at 30 m resolution and to demonstrate the effectiveness of the developed 

method on a large scale. By leveraging the spatial information from Landsat-based 

segmentation of urban land patches as demonstrated in the previous chapters, this study 

explores multiple object-based height metrics derived from global DSMs and machine 

learning estimation of building height/volume from these metrics, which are used to 

produce 30 m building height and volume products for the entire country of England. 

To the best of the author’s knowledge, this study is the first attempt to produce wall-

to-wall maps of the building height/volume at the scale of a country the size of England. 
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4.2 Study Area and Datasets 

The study area of this chapter is the entire country of England, covering 

130,279 km2 of land area and with a population of 53,012,456 people (according to the 

2011 census). Based on two land cover maps (LCM) for 2000 and 2015, the total urban 

area of England is 13,788 km2 and 14,194 km2, respectively, representing a 2.94% 

increase between the two years (Fuller et al. 2002; Rowland et al. 2017). According to 

the United Nations (United Nations 2015), the average annual rate of population growth 

for the United Kingdom (UK) is 0.45%, 0.98%, and 0.65% for the time periods 2000–

2005, 2005–2010, and 2010–2015, respectively, which is much lower than that of mid-

income and low-income countries. From 2000 to 2012, the total business floor space 

of England moderately increased from 527,058 m2 to 544,414 m2, with a growth rate 

of 3.29% (Valuation Office Agency 2012), compared with a growth of 29.34% of the 

total commercial floor space in the United States from 1999 to 2012 (U.S. Energy 

Infromation Administration 2016). Therefore, it was assumed that both the overall 

growth rate of 2D urban expansion and overall urban growth rate in the vertical 

dimension were relatively slow during the 1998–2016 period, although much faster 

urban growth might exist in certain areas including the suburban areas of large 

metropolises such as London. 

The relative slow urban growth of England was an important factor in the 

selection of the study area. Limited by how frequently data are updated, the datasets 

used in this study to map the building height/volume and for regression model 

training/validation were collected over a wide time span between 1998 and 2016, which 

will be further discussed in the following subsections. This would lead to potential 
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discrepancies among (a) training/validation data and datasets used for mapping and (b) 

different datasets used for mapping. Such discrepancies could be greatly reduced by 

choosing England as the study area. Because year 2010 is approximately the mid-point 

of the temporal range of the best available datasets, 2010 was picked as the nominal 

mapping year. 

4.2.1 Lidar-based Building Height Dataset 

The UK Environment Agency (EA) has been collecting airborne Lidar data 

since 1998. By 2016, ~75% of England has been mapped at least once with accurate 

elevation measurements. The 1 m resolution DSM and DTM datasets have been made 

freely available (UK Environment Agency 2016). As shown in Figure 4-1, most of the 

1 m Lidar data were acquired during the 2006–2014 period. According to the EA, the 

absolute height error of the dataset is within ±15 cm, while the relative height error is 

less than ±5 cm (UK Environment Agency 2016), making it an excellent source of 

accurate training and validation data for building height/volume estimation. 

As described in the introduction, building height mapping with Lidar data 

requires either accurate auxiliary building boundary information or the automatic 

separation of buildings and other vertical structures, such as trees. Here, I used an open 

dataset provided by Emu Analytics (Emu Analytics 2016). Based on the EA Lidar data, 

the Emu DataPacks used building boundaries from the ordnance survey of Britain to 

separate buildings and non-buildings. While the quality of this dataset has not been 

fully assessed, it is expected to be among the highest-quality building height datasets 

freely available, based on its data source and methodology.  
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Figure 4-1: England lidar data coverage maps by year and resolution. The maps are 
provided by (UK Environment Agency 2016). 

 

4.2.2 Global Elevation Datasets 

Three global elevation datasets were used in this study including the Shuttle 

Radar Topography Mission (SRTM), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and 

Advanced Land Observing Satellite (ALOS) World 3D–30 m (AW3D30) datasets. 

Table 4-1 lists the main characteristics of these datasets. All three datasets are posted 

at ~ 30 m spatial resolution and provide DSM measurements. Yet, these datasets 

perform differently in terms of vertical accuracy due to the use of different sensors and 

technological approaches. Although less well characterized given its recent release date, 

it is expected that AW3D30 has a better vertical accuracy than the other two datasets 
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because its data source, the Panchromatic Remote-sensing Instrument for Stereo 

Mapping (PRISM) sensor, has superior spatial resolution (2.5 m, (Tadono et al. 2016)). 

This is particularly important for urban applications because most urban features can 

be best resolved at high spatial resolution. However, as a result of cloud cover and gaps 

between satellite orbits, AW3D30 has a considerable amount of data gaps in many parts 

of the world (Tadono et al. 2016). On the other hand, the SRTM and ASTER GDEM 

have been widely utilized in different applications and assessed in different areas of the 

world (Mukherjee et al. 2013; Satge et al. 2016; Small and Sohn 2015). Based on 

selected studies on the accuracy of these two datasets, none of them consistently 

outperforms the other. The vertical accuracy varies among different terrain types. In 

urban areas, both the SRTM and ASTER GDEM demonstrate an overestimation of the 

ground height and underestimation of the building top height (Small and Sohn 2015). 

However, the ASTER GDEM may have a higher error in urban areas because 

stereography in heterogeneous urban environments may require higher spatial 

resolution than what ASTER provides. In summary, there is no clear best choice among 

these three datasets considering both spatial coverage and vertical accuracy. Therefore, 

I included all three datasets in the mapping of building height and volume assuming 

they have complimentary advantages. For further processing, these elevation datasets 

were projected and resampled using a nearest neighbor resampling technique to match 

them with Landsat images. 
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Table 4-1: Characteristics of the global elevation datasets used to map building 
height/volume. 

Name Collection 
Year Resolution 

Sensor/ 
Data 

Source 
Version Vertical Accuracy 

(RMSE) 

SRTM 2000 
(11 days) 

1 arc-second 
(30m) 

C/X band 
InSAR 

SRTMGL1 
v3 

6.6 m (Satge et al. 2016), 
5.53 – 12.77 m 
(Rodriguez et al. 2006), 
17.76m (Mukherjee et al. 
2013) 

ASTER 
GDEM 2000-2011 1 arc-second 

(30m) 

ASTER 
stereo 

imagery 
v2 

8.68 m (Tachikawa et al. 
2011), 9 m (Satge et al. 
2016), 12.62 m 
(Mukherjee et al. 2013)  

AW3D30 2006-2011 1 arc-second 
(30m) 

PRISM 
stereo 

imagery 
v1 4.4 m (Tadono et al. 

2016) 

 

4.2.3 Landsat Datasets 

Due to extensive cloud cover and the SLC-off gap issue with Landsat 7 ETM+ 

images in different parts of the study area, I manually selected 24 Landsat 5 and Landsat 

8 scenes covering the entire land mass of England instead of using the GLS Landsat 

dataset. Among them, 16 images were within the 2009–2011 temporal window, 5 were 

acquired during 2003–2006, and 3 were Landsat 8 images acquired between 2013 and 

2014. In the selection of Landsat images, if no SLC-off gap or cloud was present, 

acquisitions close to the temporal range of DSM datasets (2000-2011) were preferred, 

because Landsat images need to be overlaid with DSM datasets for height information 

extraction. 
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4.3 Methods 

4.3.1 Training Data Derivation 

Based on the 1m lidar-derived building height, building volume for a 30m pixels was 

calculated as 
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where Nhh ~1  are the above ground height of 1m building pixels within the 30 m 

pixel and 21mA = is the area of a 1 m pixel. Consequently, the average building 

height for the target 30 m pixel was defined as 
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Note that only building pixels within the 30 m pixels were used to calculate the 

average building height. 

 

4.3.2 Input Features for Machine Learning Algorithms 

Using the training data derived above, machine learning regression models 

based on features derived from Landsat and DSM datasets were trained to predict 

average building height and volume. A total of 88 feature variables was used as input 

for the machine learning algorithms. They include pixel-level metrics, which were 

calculated on a pixel-by-pixel basis, and object-level metrics, which were calculated 
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based on multi-level Landsat image objects. Table 4-2 lists all features used by the 

feature calculation spatial scale and data source. The following subsections describe 

how these features were calculated in detail. 

 

Table 4-2: List of input features used for machine learning regression models including 
features derived from AW3D30, GDEM, SRTM, and Landsat-based impervious 
surface (IS). The right column shows the count of features at different levels. 

Level Features # 

AW3D30 GDEM SRTM IS 

Pixel Height, slope Same as 

AW3D30 

Same as 

AW3D30 

IS value 7 

Level-1 object Mean, max, min and STD of height 

IS-weighted mean of height 

Mean height for pixel with max IS  

Mean height for pixel with min IS 

Object-level average slope 

Same as 

AW3D30 

Same as 

AW3D30 

Mean, 

max, and 

min of IS 

value 

27 

Level-2 object Same as above 27 

Level-3 object Same as above 27 

Stacked - - - - 88 

 

4.3.2.1 Pixel-level Metrics 

The first set of pixel-level metrics used as input features are height values from 

the three elevation datasets described in Subsection 4.2.2. Conceptually, it is notable 

that slope is also an important factor to consider. For example, slope information is key 
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to many morphology-based filters for separating the ground height (DTM) from surface 

height (DSM) and the filtered results are generally less reliable in areas with steep 

terrains if the slope information is not properly considered (Geiss et al. 2015; Maguya 

et al. 2013; Meng et al. 2010; Zhang et al. 2003). Therefore, for each of the DSM 

datasets used, I also included its slope information using a calculation method proposed 

by (Horn 1981): 
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where x
jiS ,  and y

jiS ,  are the slope in the X and Y directions, respectively; 
jiZ ,
is the 

DSM height value for the pixel ( )ji, ; X∆  and Y∆  are the distances between pixels in 

the X and Y directions, respectively (30 m in this case); and 
jiS ,
is the estimated slope 

of the pixel ( )ji, . 

As described in Subsection 3.3.1, the GMIS project produced a 30 m percent IS 

product. By applying the same Cubist™ regression model to the Landsat images used 

in this study, the percent IS was produced for the study area. I used this variable as 

another pixel-level metric to incorporate density information into the modeling of 

building height/volume. 
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4.3.2.2 Object-based Height and Imperviousness Metrics 

The segmentation of Landsat images at three levels of detail was obtained using 

the RHSeg software package and a bottom-up merging procedure, as described in 

Subsections 2.2.1.2 and 2.2.1.3. However, the size thresholds of objects defined in 

Chapter 2 was not suitable for height and volume mapping. In this chapter, a different 

set of thresholds, 100, 1000, and 10000, was used for object derivation to better resolve 

fine-scale height variations within urban areas. 

The first group of features calculated at the object level was the mean, 

maximum, minimum, and standard deviation of the height, which included features 

derived at all three object levels using all three elevation datasets. The rationale for 

including these features was that the maximum and minimum of the height are related 

to the roof-top and ground heights within an object, while the mean and standard 

deviation describe the general pattern of the height distribution in an object.  

The second group of features included the mean, maximum, and minimum IS 

percentages within the objects. These features were included to help separating areas 

with different urban densities. On a conceptual level, when deriving the building height 

from DSM data, different ground and roof-top height estimation strategies should be 

adopted in areas with different urban densities. For example, for low density urban 

areas, minimum value of DSM may be a good estimation of ground height, while 

minimum value of DSM may overestimate ground height in dense urban areas because 

of the absence of pure ground pixels. Therefore, this 2D urban information is also 

expected to be useful for the height and volume estimation. 
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Based on the combination of the IS and height from elevation datasets, I derived 

the third group of features. First, for an object O  containing N  pixels, the IS-

weighted mean of height was calculated as: 
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where ih  and iIS  were the height value and IS percentage of a pixel within the object, 

respectively. The rationale for including this feature was to use impervious surface to 

separate the height of non-building vertical structures such as trees from building height 

at sub-pixel level. Similarly, two other features were also included: 
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where 0O  and 1O  were subsets of the object O  where impervious surface percentages 

of pixels were minimum and maximum within the object, respectively. 

Finally, for an object O containing N pixels, average slope was estimated by 

calculating the average of slope in the X and Y directions first: 



 

 

101 
 

 ,1
),(

,∑
∈

=
Oji

x
ji

x
O S

N
S     (4-9) 

 ,1
),(

,∑
∈

=
Oji

y
ji

y
O S

N
S     (4-10) 

 .)()( 22 y
O

x
OO SSS +=    (4-11) 

4.3.4 Machine Learning Regression Experiments 

Using the features derived in Subsection 4.3.2 and the Lidar-based training data, 

I tested different machine learning regression techniques to estimate the building height 

and volume. Note that although most of the features were derived at the object level, 

the machine learning modeling and prediction was performed at the pixel level because 

pixel-level features were also used. Moreover, using the urban extent map developed 

in Chapter 2, all non-HBASE pixels were excluded from the prediction of the building 

height and volume. Finally, because this study focuses on the buildings and their 

height/volume, major roads pixels included from the OpenStreetMap vector layer into 

the HBASE products were also excluded. 

Two sets of experiments were designed to test (1) the usefulness of input 

features derived from different elevation datasets, and (2) the efficacy of different 

machine learning algorithms in predicting the building height and volume. For the first 

group of experiments, I performed random forest (RF) regression of the building height 

based on features derived from AW3D30, GDEM, SRTM only, and a combination of 

all features. The IS-based features were used in all four tests. For the second experiment, 

two most widely used regression algorithms in remote sensing, RF (Breiman 2001) and 
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Cubist™ (Rulequest Research 2016), were selected for the height and volume 

estimation. The results of these two experiments were used as a basis for the selection 

of the feature set and learning algorithm used to produce the final height and volume 

products. 

4.3.5 Validation of Estimated Height/Volume 

The validation of building height and volume measurements is difficult. In the 

case of this study, the Lidar-based training data are the most accurate source of 

references available. Therefore, to interpret the machine learning experiments designed 

in Subsection 4.3.4., 10-fold cross-validation was adopted, which was also used to 

validate the final height and volume product. Following an approach similar to the 

scene-level cross-validation (SLCV) used in Subsection 2.2.4.1, the partition of 

training data into blocks was performed based on the scene they belong to. The 

rationale for this approach is to avoid inflated accuracy estimates produced by spatial 

autocorrelation between training and testing samples when spatially adjacent pixels are 

divided into training and testing samples in each fold of cross-validation (Friedl et al. 

1999). Using SLCV, cross-validation accuracy estimates were produced, including the 

root-mean-square error (RMSE) and correlation coefficient ( 2R ). These accuracy 

estimates, as explained above, should be considered as reasonably unbiased because 

spatial autocorrelations between training and testing samples have been minimized by 

the SLCV approach. 

Additional validation was done based on correlation between the estimated 

building volume and socioeconomic variables. I used here a dataset containing series 

of socioeconomic variables (e.g., population, GDP, and CO2 emission) for 12 
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metropolitan areas defined by the Organization for Economic Co-operation and 

Development (OECD; (Brezzi 2012)). Regression analyses were performed between 

these variables and estimated building volume. Because these variables have been 

found to be correlated with building volume (Cheng et al. 2011; Qiu et al. 2010; Resch 

et al. 2016), strong correlations with these variables are indicators of the performance 

of the building volume mapping method. 

4.4 Results 

4.4.1 Comparison of Input Features Based on Different Elevation Datasets  

The comparisons of the effectiveness of different features focused on the height 

estimation accuracy using RF. Surprisingly, AW3D30 produced the worst result in 

terms of both 2R  and RMSE (Figure 4-2). As expected, the SRTM-based result was 

slightly better than the result using GDEM, while the best result was achieved using 

input features derived from all three elevation datasets together. These results 

confirmed the hypothesis mentioned in Subsection 4.2.2 that these elevation datasets 

complement each other. Thus, the final height and volume maps will be produced using 

the combination of all features. 

The relatively higher RMSE (1.86 m) of the height estimation using AW3D30 

compared to using ASTER GDEM (1.79 m) and SRTM (1.76 m) contradicts the fact 

that the AW3D30 is expected to have a higher vertical accuracy, particularly in urban 

areas. This is may be driven by the relatively high amount of data gaps in the AW3D30 

product. Figure 4-3 shows that a large portion of the study area lacks data or has low-

reliability data. In these areas, the error of the estimated height was clearly higher than 
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in areas with valid AW3D30 data, as shown by the zoom-in views of Figure 4-3, where 

a boundary is present between East and West London in terms of overall error, which 

coincided with the boundary of missing data.  

 
Figure 4-2: Scatterplot-based comparison of the accuracies of the building height using 
random forest and input features from different elevation datasets. The points in the 
scatterplots were derived from the 10-fold cross-validation. 
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Figure 4-3: The spatial distribution of (a) Lidar-based training data, (b) quality flag of 
the AW3D30 elevation dataset, where black and blue mark no-data- and low data-
reliability areas, respectively, (c) error of height estimation using random forest, and 
(d) error of height estimation using the Cubist™ regression tree. The zoom-in window 
shows the distributions for the city of London. 
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4.4.2 Comparison of Results using Random Forest and Cubist™ 

Based on the comparison of the spatial distribution of errors of RF and Cubist™, 

as shown in Figure 4-3, it is clear that missing data plays an important role because 

different missing data handling methods were employed by these two machine learning 

algorithms. When height predictions were made over pixels containing features with 

missing data, RF tried to make predictions based on regression trees that do not involve 

the missing features, while Cubist™ replaced the missing values with average values 

(derived from the entire training data) for each feature, which is a statistical technique 

known as imputation. The imputation-based method is clearly problematic in this case 

because the final prediction might be made based on the imputed values. Therefore, the 

Cubist™ results exhibited more contrast between areas with and without valid 

AW3D30 data. To further investigate how missing data affected the performance of the 

height estimation, I examined the histograms of the error for pixels with valid AW3D30 

data, invalid AW3D30 data, and all pixels (Figure 4-4). When valid AW3D30 data 

were available, the height estimation error was consistently lower than that of the pixels 

with invalid AW3D30 data and all pixels. In fact, the error histograms for all pixels fall 

in the middle of the other two, suggesting that AW3D30 would generate the best results 

among the three elevation datasets if much less data gaps were present in the study area. 

Again, Cubist™ appeared to be more affected by missing data. 
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Figure 4-4: The histogram of error in predicted height using (a) random forest and (b) 
Cubist™ regression tree. The histograms for three groups of pixels where AW3D30 
data is valid, invalid, and all pixels are plotted using different colors. 

 

Judging from the results from the cross-validation approach described in 

Subsection 4.3.5, RF clearly outperformed the Cubist™ regression tree in estimating 

both the building height and volume (Figure 4-5). Using RF, a RMSE of 1.61 m was 

achieved for the building height estimation, which is 22% lower than that of the 

Cubist™ regression tree. And an RMSE of 1142 m3 was achieved for the building 

volume estimated by RF, 24% lower than that of the Cubist™ regression tree. Based 

on these results, RF was chosen to produce the final height and volume maps. 
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Figure 4-5: Scatterplot-based comparison of the accuracies of height and volume 
estimation using random forest (RF) and Cubist™ regression tree. The points in the 
scatterplots were derived from the 10-fold cross-validation. 

 

4.4.3 Characteristics of the Mapped Building Height and Volume 

The final building height and volume maps were produced using the 

combination of features derived from all elevation datasets and the RF regression 

algorithm. As shown in Figure 4-6, the overall distribution of the mapped average 

building height and volume exhibit a strong pattern of agglomeration. Many of the main 

urbanized areas in England were mapped with less than 6m of average building height 

and less than 1,500 m3 of building volume. For the bulk of greater London and the core 

areas of several large cities (e.g., Birmingham and Manchester), however, the mapped 

building height was approximately 6 to 15 m and the building volume was 1500 to 

3000 m3. Finally, average building heights higher than 30 m were found mostly 
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distributed in the core area of the city of London and a few hub cities including 

Birmingham and Manchester. 

 
Figure 4-6: Final product of (a) building height and (b) building volume for England. 
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More detailed maps and side-by-side comparisons with Lidar data for the city 

of London and Leicester are shown in Figure 4-7 and Figure 4-8. The predicted height 

and volume match the spatial patterns of Lidar data very well. However, the prediction 

errors tended to be higher in urban centers because the elevation datasets used do not 

have a sufficient spatial resolution to effectively map the complex height variations in 

the urban centers. 

 

 
Figure 4-7: Mapped building height and volume for the city of London, in comparison 
with lidar derived reference data (gray areas do not have lidar coverage). The error of 
height and volume are derived from the difference between random forest predictions 
and lidar reference data. 
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Figure 4-8: Mapped building height and volume for the city of Leicester, in 
comparison with lidar derived reference data (gray areas do not have lidar coverage). 
The error of height and volume are derived from the difference between random forest 
predictions and lidar reference data. 

4.4.3 Correlation between Building Volume and Socioeconomic Variables 

To assess the overall quality of the mapped building volume in terms of 

correlation with socioeconomic variables, statistical analyses were performed for 12 

metropolitan areas defined by the Organization for Economic Co-operation and 

Development (OECD; (Brezzi 2012). Table 4-3 lists the total building volume and IS 

area of these metropolises, alongside population, gross domestic product (GDP), and 

transportation CO2 emission data from the OECD metropolitan database. Population 

and GDP are two important socioeconomic variables for urban areas that have been 

associated with built-up area and building volume (Avelar et al. 2009; Council 1998; 

Lu et al. 2010; Lu et al. 2011). The CO2 emission data were used here as a proxy of 
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energy consumption from the transportation sector, assuming a uniform emission 

efficiency across the whole country. I did not include the emission from other sectors, 

which might be more impacted by other exogenous factors such as local climate 

(Baiocchi et al. 2015). As shown in Figure 4-9, the correlation coefficients (R2) 

between total building volume and population, GDP, and transportation CO2 emission 

was 0.88, 0.78, and 0.81, respectively. In addition to the strong correlations building 

volume and socioeconomic variables, the building volume explained the variance of 

population, GDP, and CO2 emission slightly better than IS. Note that all fitted lines and 

R2 were derived with greater London excluded, which is an outlier because it is one 

order of magnitude larger than other cities. These results provide not only evidence for 

the accuracy of the building volume mapping method but also evidence for the 

usefulness of the mapping building volume in socioeconomic studies.  

 

Table 4-3: Total building volume and impervious surface area of 12 metropolitan 
areas in England defined by OECD. Population, GDP, and CO2 emission data are 
from the OECD metropolitan database are also listed (Brezzi 2012). 

Name Population GDP (billion 
US $) 

CO2 Emission 
(million tons) 

Building 
Volume (km3) 

Impervious 
Surface (km2) 

London 11,793,530 616.07 28.89 4.30 986.80 

Birmingham 1,884,199 59.46 5.63 0.64 208.78 

Manchester 1,841,382 68.67 4.66 0.61 194.49 

Leeds 1,166,267 42.64 2.37 0.49 167.63 

Newcastle 1,050,561 28.33 2.23 0.51 145.25 

Liverpool 929,014 30.43 1.52 0.39 109.64 

Sheffield 880,237 24.54 1.51 0.30 100.77 

Nottingham 835,625 25.92 1.66 0.31 102.18 

Bristol 795,481 34.53 1.12 0.31 80.05 

Leicester 660,817 20.45 1.14 0.19 70.27 

Portsmouth 577,191 22.66 0.60 0.18 56.17 

Bradford 540,172 13.87 0.76 0.15 50.29 
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Figure 4-9: The scatterplots between (a) total impervious surface and population, (b) 
total building volume and population, (c) total impervious surface and GDP, (d) total 
building volume and GDP, (e) total impervious surface and CO2 emission, and (f) total 
building volume and transportation CO2 emission. Each point represents a metropolitan 
area defined by the OECD. Note that all fitted lines and correlation coefficients (R2) 
were derived with greater London excluded, which is an outlier because it is one order 
of magnitude larger than other cities. 
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4.5 Discussion 

The machine learning regression experiments clearly demonstrate that global 

DSM datasets have the potential to characterize large-scale urban structures. However, 

several limitations exist in this study and should be addressed in future studies. 

One of the limitations is the discrepancy between the acquisition periods of the 

Landsat, DSM, and Lidar data. Major contributing factors that led to this discrepancy 

include data availability and cloud cover. This has been partially addressed by choosing 

England as the study area. The relatively slow change in England enabled this study to 

accurately map the building height and volume using data from a much broader 

temporal range. However, for other fast-changing regions in the world, temporal 

discrepancy is a much greater issue, which can only be solved if more recent elevation 

datasets, such as TanDEM-X DEM, become available. 

Another limitation of this study is the relative high error in urban center areas 

as a result of insufficient spatial resolution to resolve complex height variations in such 

areas. Again, this is, to a large degree, a data availability issue. Higher resolution DSM 

data, such as TanDEM-X, are promising for more accurate height measurements in 

dense urban areas (Geiss et al. 2015; Gruber et al. 2012; Rossi et al. 2011). However, 

more studies are needed to determine their suitability for large-area applications. 

The limitations of the HOTex approach in mapping the urban extent discussed 

in chapter 2 also apply here because the urban extent map was used as a mask for areas 

with and without buildings. It is not clear how much the Landsat-derived urban extent 

map and other Landsat-based inputs (e.g., IS map and segmentation results) affected 

the mapping accuracy. For example, Landsat-based segmentation was used as spatial 
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units of height information extraction. Height information from DSM was not 

considered in the segmentation of building and non-building patches. Inaccurate 

delineation of building patches may introduce biases and errors in estimated height. 

More systematic investigations are needed to determine the optimal strategy for 

synergic use of Landsat and DSM data. 

4.6 Conclusion 

Urbanization is a 3D phenomenon that needs to be observed through remote 

sensing in not only the traditional 2D space but also the vertical domain. This chapter 

presents an innovative methodology combining the strength of Landsat imagery and 

freely available global elevation datasets to spatially map the building height and 

volume across all of England. It was demonstrated that the proposed method can 

achieve a reasonably high accuracy, even with suboptimal data. The method was 

applied to England and assessed using a cross-validation approach based on Lidar 

measurements. For all of England, the overall height RMSE was only ±1.61 m for the 

average building height at 30 m resolution. The building volume RMSE was ±1142.3 

m3 for 30 m pixels. Also, the mapped building volume had strong correlation with 

population, GDP, and CO2 emission variables at the metropolis scale, indicating a good 

overall performance of the building volume mapping method and a potential for 

integrating the mapped building volume in socioeconomic studies. 

Despite great limitations in data availability, the proposed method exhibits great 

potential for large-area characterization of urban structures. Spatial maps of urban 

structural information, including building height and volume, are important for many 
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urban applications including disaster vulnerability assessment, climate change 

adaptation, and population estimation. With the increasing availability of global 

elevation datasets, it is possible to generate global products of 3D urban structures, 

which will greatly enhance our understanding of urbanization, particularly in the fields 

of urban vulnerability to natural disasters, urban heat island effect and patterns of local 

weather, environmental sustainability of urbanization.  
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Chapter 5:  Concluding Remarks 

5.1 Major Findings and Contributions 

Urbanization is a global phenomenon with far-reaching environmental impacts, 

challenging sustainability and food security and raising important questions about 

policies on urban growth and governance. Monitoring, understanding, and modeling its 

trends and impacts require accurate, spatially detailed, and updatable information of 

the urban extent, change rate, and structure. This dissertation seeks to meet this urgent 

need through innovative processing of freely available data. In this section, I 

summarize the major findings of the primary chapters and contributions made. 

First, I developed a hierarchical object-based texture (HOTex) approach to 

address the issues of spectral confusion and inconsistency in global urban mapping 

(Chapter 2). A preliminary assessment of the method in Europe has yielded an overall 

accuracy of 97.9%, user’s accuracy  of 91.4%, producer’s accuracy  of 92.8%, and 

kappa statistic of 0.91 when evaluated using scene-level cross-validation (SLCV) 

designed to minimize potential biases in accuracy estimates due to spatial 

autocorrelations between training and testing data. Based on assessments for the entire 

continent of Europe, the proposed method generated products comparable to the 

GlobeLand30 global land cover product and two recently released global urban datasets 

in areas in which their definitions agree. These results demonstrate that the proposed 

method can effectively map the urban extent over large areas and generate consistently 

accurate results using images with acquisition time, illumination, and phenology 
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differences. In addition, the proposed method is not only highly accurate, but also 

demonstrated global applicability from its application on the entire global land survey 

(GLS) Landsat dataset. 

Second, a method was designed to map the sub-pixel impervious surface change 

(ISC) using bi-temporal Landsat data (Chapter 3). Landsat-based estimation of IS is 

subject to seasonal and phenological variations, which leads to biases and errors of the 

ISC when estimated using the simple difference of bi-temporal IS values estimated by 

the same model. To address this issue, an iteration training and prediction (ITP) 

approach was adopted to automatically transfer an IS regression tree model for the 2010 

epoch to the 2000 epoch on an image-by-image basis. The method was applied to India 

to produce an ISC map for the period from 2000 to 2010. Assessed using an 

independent reference dataset developed by this study, the ITP algorithm reduced the 

bias of ISC from 20.61% to 8.41%. According to the statistical analysis and accuracy 

assessment of this map, the total ISC for India between 2000 and 2010 is 2274.62 ± 

7.84 km2 at 95% confidence. Furthermore, the accuracy of ISC estimation using the 

proposed method was demonstrated by the strong correlations between ISC and 

changes of socioeconomic variables, including population and GDP.  

Finally, Chapter 4 attempts to map the vertical structure of urban areas, that is, 

the building height and volume. Due to the limited availability of elevation data, the 

characterization of urban areas in the vertical domain has been limited to individual 

cities. Here, I mapped the building height and volume at 30 m resolution using the 

synergy of Landsat imagery and freely available global elevation datasets. The HOTex 

approach used in Chapter 2 was adopted and was proven to be an effective data fusion 
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approach as well as a useful feature extraction framework for machine learning. Tested 

over the entire country of England and assessed using Lidar measurements, the height 

RMSE of the prosed method was estimated to be 1.61 m for the average building height 

at 30 m resolution, while the building volume RMSE was 1142.3 m3. The mapped 

building volume were shown to in good correlation (R2 > 0.8) with socioeconomic 

variables including population, GDP, and transportation CO2 emission, which indicated 

that the mapped building volume is accurate and has great potential for applications in 

socioeconomic studies. 

The unique contributions of this dissertation include: 

1. An approach was developed to consistently maps the urban extent using 

images containing phenological differences. The method was applied to the 

Global Land Survey 2010 dataset to produce a circa-2010 global HBASE 

map, which is distributed through the NASA Socioeconomic Data and 

Applications Center (SEDAC; (Wang et al. 2017). By adopting an urban 

extent definition that includes all human built-up and settlement extents 

(HBASE), this product is unique among global urban products because of 

its balanced definition considering both physical properties and functions 

of urban areas. Therefore, the HBASE product may provide much-needed 

consistent definitions of urban population and economic activities in 

socioeconomic studies.  

2. A method was established to map the ISC at national scales. It does not 

require time series data nor training data for both dates. It has been 

successfully used to produce a 2000-2010 ISC dataset for India. The 
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proposed method has a great potential for generating a multi-decadal record 

of global urbanization from the Landsat archive, which would greatly 

benefit the study of global urbanization impacts and socioeconomic drivers 

of urbanization. 

3. Building height and volume was mapped at fine spatial resolution (30 m) 

for the first time at the scale of a country using a method based on the 

synergy of Landsat and global DSM datasets. The biggest implication of the 

success of this study is that, with advanced data processing and machine 

learning techniques, it is possible to generate global products of 3D urban 

structures using freely available datasets. Such products would be highly 

valuable in many urban science applications including population 

distribution mapping and disaster vulnerability assessment. Furthermore, by 

demonstrating the value of accurate elevation measurements in these 

applications, this study may provide useful information for planning future 

Earth observation missions. 

5.2 Future Research Directions 

In this dissertation, I took concrete steps towards the goal of advancing urban 

remote sensing to better characterize the urban extent, change, and structure. Following 

this work, there are several research directions worth pursing in future studies. 

First, the methods developed in previous chapters showed great potentials for 

fully automated global applications. The availability of new datasets provides greater 

prospects of applying these methods to generate global products. Datasets such as 

Landsat-8, Sentinel-2, annual stable nightlights from VIIRS (Elvidge et al. 2017), may 
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be used to better address issues associated with SLC-off gaps or other GLS data issues. 

Using bistatic InSAR technology, the global DSM from TanDEM-X has superior 

spatial coverage, spatial resolution (12 m) and vertical accuracy (relative vertical 

accuracy ~ 2 m for most terrains) over existing products, promising a better mapping 

accuracy for building height and volume (Gruber et al. 2012; Rizzoli et al. 2017). In 

addition, space-borne Lidar missions, including the Global Ecosystem Dynamics 

Investigation (GEDI) and the Ice, Cloud and land Elevation Satellite-2 (ICESAT-2), 

will generate globally distributed accurate elevation measurements (Abdalati et al. 

2010; Dubayah et al. 2014). These measurements would be highly valuable for training 

building height estimation models and the validation of results. Therefore, it would be 

interesting to test the combination of new datasets with the methods developed in this 

dissertation in large-scale applications. 

Second, the methods and products developed in this dissertation enable 

exploration of the science questions related to the challenges of urbanization identified 

in Chapter 1. For example, one of the limitations of existing assessments of urban 

vulnerability to natural hazards is that they only consider the exposures of population 

and GDP to different hazards (Dilley et al. 2005). With the large-scale building volume 

mapping capability developed in this dissertation, the exposure of building volume to 

natural hazards cloud be spatially mapped to quantify the vulnerability of global 

buildings and infrastructures. Another possible research direction is the mapping of 

long-term impervious surface change for assessing the total climate forcing of 

urbanization, including both indirect effects, such as carbon loss due to the conversion 

of productive lands to IS, and direct effects, such as the urban heat island effect.  
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