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Spatio-temporal patterns abound in the real world, and understanding them com-

putationally holds the promise of enabling a large class of applications such as video

surveillance, biometrics, computer graphics and animation. In this dissertation, we study

models and algorithms to describe complex spatio-temporalpatterns in videos for a wide

range of applications.

The spatio-temporal pattern recognition problem involvesrecognizing an input video

as an instance of a known class. For this problem, we show thata first order Gauss-

Markov process is an appropriate model to describe the spaceof primitives. We then

show that the space of primitives is not a Euclidean space buta Riemannian manifold.

We use the geometric properties of this manifold to define distances and statistics. This

then paves the way to model temporal variations of the primitives. We then show appli-

cations of these techniques in the problem of activity recognition and pattern discovery

from long videos.

The pattern discovery problem on the other hand, requires uncovering patterns from

large datasets in an unsupervised manner for applications such as automatic indexing and

tagging. Most state-of-the-art techniques index videos according to the global content in

the scene such as color, texture and brightness. In this dissertation, we discuss the prob-

lem of activity based indexing of videos. We examine the various issues involved in such

an effort and describe a general framework to address the problem. We then design a



cascade of dynamical systems model for clustering videos based on their dynamics. We

augment the traditional dynamical systems model in two ways. Firstly, we describe activ-

ities as a cascade of dynamical systems. This significantly enhances the expressive power

of the model while retaining many of the computational advantages of using dynamical

models. Secondly, we also derive methods to incorporate view and rate-invariance into

these models so that similar actions are clustered togetherirrespective of the viewpoint or

the rate of execution of the activity. We also derive algorithms to learn the model parame-

ters from a video stream and demonstrate how a given video sequence may be segmented

into different clusters where each cluster represents an activity.

Finally, we show the broader impact of the algorithms and tools developed in this

dissertation for several image-based recognition problems that involve statistical inference

over non-Euclidean spaces. We demonstrate how an understanding of the geometry of the

underlying space leads to methods that are more accurate than traditional approaches. We

present examples in shape analysis, object recognition, video-based face recognition, and

age-estimation from facial features to demonstrate these ideas.



Statistical and Geometric Modeling of Spatio-Temporal Patterns for
Video Understanding

by

Pavan K. Turaga

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor Adrian Papamarcou
Professor Min Wu
Professor V. S. Subrahmanian



c© Copyright by
Pavan K. Turaga

2009



Dedication

Dedicated to my family.

ii



Acknowledgments

I owe my gratitude to all the people who have made this dissertation a reality.

First and foremost I’d like to thank my advisor, Professor Rama Chellappa for ac-

cepting me as a student and guiding me through my research. The extremely high stan-

dards he sets for himself and the professional heights he hasscaled will always remain

an inspiration for me. Inspite of his professional achievements, his polite persona and

humility teach valuable lessons.

I have been fortunate to have found an opportunity to work with several great re-

searchers all of whom greatly influenced my graduate experience, both within and outside

of research – Prof. V. S. Subrahmanian, Prof. Anuj Srivastava, Dr. Yuri Ivanov, and Dr.

Tanveer Syeda-Mahmood. Special gratitude is due to Dr. Ashok Veeraraghavan – col-

league and collaborator – whose great mentoring during my early graduate days proved

invaluable to me.

The former and current fellow graduate students at the Computer Vision Labo-

ratory who made my everday life pleasant deserve a special mention. Aravind Sundare-

san, Ashok Veeraraghavan, Narayanan Ramanathan, Gaurav Aggarwal, Seong-Wook Joo,

Naresh Cuntoor, Feng Guo, Arun Mohanchettiar, Kaushik Mitra, Soma Biswas, James

Sherman, Aswin Sankaranarayanan, Mahesh Ramachandran, Wu Hao, Ruonan Li, Dik-

pal Reddy, Nitesh Shroff, Raghuraman Gopalan, Sima Taheri, Mohammed Abdelkader,

Ming Du, Ming Liu, Vishal Patel.

I would also like to acknowledge help and support from several staff members who

make it possible for us to find our ways through the administrative jungle – Janice Perrone

iii



(CfAR), Maria Hoo (ECE), Meg Richmond (IES), the UMIACS staff (Arlene Schenk,

Yerty Valenzuela, Edna Walker) and the UMIACS computing staff.

I do not think I can do justice with words in acknowledging therole of my family

members - Mom, Dad, Brother, Sis-in-law and Ramya.

My friends and housemates, what a group ! Ramya Chari, Abhinav Gupta, Swati

Jarial, Ravi Tandon, Srikanth Vishnubhotla, Gaurav Agarwal, Surbhi Jain, Aravind Sun-

daresan, Sudarshan Koushik, Gunjan Sharma, Nitin Kumar, Manish Shukla, Archana

Anibha, Anuj Rawat, Himanshu Tyagi, Anshu Sarje, Jishnu, Sravya and so many more.

It is impossible to remember all, and I apologize to those I’ve inadvertently left out.

Lastly, thank you all and thank God!

iv



Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Organization of the Dissertation . . . . . . . . . . . . . . . . . . .. . . 3

2 Related Work 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Point trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Background subtracted blobs . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Shape features . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Modeling and Recognizing Actions . . . . . . . . . . . . . . . . . . . .8
2.3.1 Non-Parametric Approaches for Action Recognition . . .. . . . 9

2.3.1.1 2D-templates . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1.2 3-D Space-time Volumes . . . . . . . . . . . . . . . . 10
2.3.1.3 3D Object models . . . . . . . . . . . . . . . . . . . . 11
2.3.1.4 Manifold Learning Methods . . . . . . . . . . . . . . . 12

2.3.2 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2.1 Hidden Markov Models . . . . . . . . . . . . . . . . . 13
2.3.2.2 Linear Dynamical Systems . . . . . . . . . . . . . . . 14
2.3.2.3 Non-linear Dynamical Systems (NLDS) . . . . . . . . 15

2.3.3 Invariances in Human Action Analysis . . . . . . . . . . . . . .. 16
2.3.3.1 View-Invariance . . . . . . . . . . . . . . . . . . . . . 16
2.3.3.2 Execution Rate Invariance . . . . . . . . . . . . . . . . 17
2.3.3.3 Anthropometric Invariance . . . . . . . . . . . . . . . 18

2.4 Modeling and Recognizing Complex Activities . . . . . . . . . . .. . . 18
2.4.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1.1 Belief Networks . . . . . . . . . . . . . . . . . . . . . 19
2.4.1.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1.3 Other Graphical Models . . . . . . . . . . . . . . . . . 20

2.4.2 Syntactic Approaches . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2.1 Context free Grammars . . . . . . . . . . . . . . . . . 21
2.4.2.2 Stochastic Grammars . . . . . . . . . . . . . . . . . . 21

2.4.3 Knowledge and Logic-based Approaches . . . . . . . . . . . . .21
2.4.3.1 Logic Based Approaches . . . . . . . . . . . . . . . . 22
2.4.3.2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 22

v



3 Spatio-Temporal Models for Videos 24
3.1 Perception of Activities . . . . . . . . . . . . . . . . . . . . . . . . . .. 24
3.2 Computational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Dynamic Sketches . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Action-sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Semantic Sketches . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Modeling motion primitives with Dynamical Systems . . . .. . . . . . . 30
3.4 Estimation of the model parameters . . . . . . . . . . . . . . . . . .. . 32
3.5 Generative Power of the Model . . . . . . . . . . . . . . . . . . . . . . .33
3.6 Model Order Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Distance Metrics on LDS space . . . . . . . . . . . . . . . . . . . . . . .35
3.8 Building Invariances into the LDS Distance Metrics Model. . . . . . . . 36

3.8.1 Affine and View Invariance . . . . . . . . . . . . . . . . . . . . . 37
3.8.2 Application to Invariances . . . . . . . . . . . . . . . . . . . . . 38
3.8.3 Invariance to Execution Rate of Activity . . . . . . . . . . . .. . 42

3.9 View Invariance-Simulated Data . . . . . . . . . . . . . . . . . . . .. . 43

4 Sequence of Dynamical Systems for Video Clustering 44
4.1 Sequence of Dynamical Systems . . . . . . . . . . . . . . . . . . . . . .46
4.2 Learning Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . .48

4.2.1 Discovering Action Boundaries . . . . . . . . . . . . . . . . . . 48
4.2.2 Relation with Switching Linear Dynamical Systems: . . .. . . . 50
4.2.3 Clustering Action Element Prototypes . . . . . . . . . . . . . .. 51
4.2.4 Discovering the Cascade Structure . . . . . . . . . . . . . . . . .53

4.3 Sequence of Dynamical models for Activity based Video Mining . . . . . 54
4.3.1 Experiments on UMD Dataset [1] . . . . . . . . . . . . . . . . . 54
4.3.2 INRIA - Free-Viewpoint Database [2] . . . . . . . . . . . . . . . 55
4.3.3 Torino 2006 Figure Skating data . . . . . . . . . . . . . . . . . . 57

5 Temporal Modeling: Time Varying Models 66
5.1 Modeling of Complex Activities . . . . . . . . . . . . . . . . . . . . . .68

5.1.1 Estimating the parameters . . . . . . . . . . . . . . . . . . . . . 69
5.2 Trajectories on the Model Space . . . . . . . . . . . . . . . . . . . . .. 71
5.3 Statistics and Geometry of the Grassmann manifold . . . . .. . . . . . . 72
5.4 Comparing sequences of Subspaces . . . . . . . . . . . . . . . . . . . .74
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Blackjack Game Summarization . . . . . . . . . . . . . . . . . . 76
5.5.2 Complex Activity Recognition . . . . . . . . . . . . . . . . . . . 78

6 Detailed analysis of the Geometry of the Primitive Space 80
6.1 Mathematical Preliminaries: Notation and Definitions .. . . . . . . . . . 82

6.1.1 The Special Orthogonal Group SO(n) . . . . . . . . . . . . . . . 83
6.2 Stiefel and Grassmann Manifolds as Quotient of SO(n) . . .. . . . . . . 85
6.3 Sample Statistics on the Grassmann manifold . . . . . . . . . .. . . . . 88

6.3.1 Parametric Densities . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



6.3.1.1 Some Synthetic Examples . . . . . . . . . . . . . . . . 91
6.3.2 Note on Efficient Computations . . . . . . . . . . . . . . . . . . 93
6.3.3 Moving along the Geodesic . . . . . . . . . . . . . . . . . . . . 94
6.3.4 Computing the Velocity Matrix . . . . . . . . . . . . . . . . . . 95

6.4 Non-parametric methods: Procrustes Representation forthe Grassmann
manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Experiments on Linear Dynamic Models . . . . . . . . . . . . . . . .. . 97
6.5.1 Experiments on Activity Recognition . . . . . . . . . . . . . . .97
6.5.2 Video-Based Face Recognition . . . . . . . . . . . . . . . . . . . 100

7 Applications to Still Image based Recognition 102
7.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Object and Image Classification . . . . . . . . . . . . . . . . . . . . . .105
7.3 Affine Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.1 Articulation Database . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.2 Affine MPEG-7 Database . . . . . . . . . . . . . . . . . . . . . 108
7.3.3 Sampling from Distributions . . . . . . . . . . . . . . . . . . . . 110

7.4 Age Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4.1 Modeling the Geometry of the Face . . . . . . . . . . . . . . . . 114
7.4.2 Aging on the Manifold . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.3 Differential Geometric methods for Aging . . . . . . . . . .. . . 117
7.4.4 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Directions for Future Work 125
8.1 Indexing the Manifold: Applications to Database Searching . . . . . . . . 125
8.2 Separating Style and Content . . . . . . . . . . . . . . . . . . . . . . . .126
8.3 Geometric Subspace Dynamics . . . . . . . . . . . . . . . . . . . . . . .127
8.4 Online Visual Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 129

vii



List of Tables

3.1 Various Features for the low-level representation (Dynamic Sketch) andtheir
properties and applicability in various scenarios. . . . . . . . . . . . . . . . 28

3.2 Various approaches for activity based mining from video and their characteristics 31

3.3 Recognition experiment simulated view change data on the UMD database. Ta-
ble shows a comparison of recognition performance using (a) Baseline technique
- direct application of system distance, (b) Center of Mass heuristic, (c)Proposed
Compensated distance metric.. . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Composition of the Discovered Clusters in the UMD database. . . . . . . . . 55

4.2 Confusion matrix showing view-invariant clustering using the proposed algo-
rithm on the INRIA dataset.. . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Recognition percentages on Compound actions. . . . . . . . . . . . . . . . 79

6.1 Comparison of view invariant recognition of activities in the INRIA dataset using
a) Best DimRed [3] on 16×16×16 features, b) Best Dim. Red. [3] on 64×
64×64 features, c) Nearest Neighbor using ARMA model distance (16×16×16
features), d) Nearest Neighbor using Procrustes distance (16×16×16 features). 97

6.2 Results of Statistical Modeling on recognition of activities in the INRIA dataset
using a) Wrapped Normal + Single Tangent Plane b) Wrapped Normal + Class
specific tangent plane c) Procrustes Kernel method M = I.. . . . . . . . . . . 99

6.3 INRIA Activity Recognition: Variation of performance of the kernel den-
sity estimator with different choices of the width parameter M. . . . . . . 99

6.4 Comparison of video based face recognition approaches using a) Subspace An-
gles + Arc-length metric, b) Procrustes Distance, c) kernel density, d) Wrapped
Normal on Tangent Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 CMU-PIE Database: Face Identification using various Grassmann statistical meth-
ods. Performance of various methods is compared as the subspace dimension is
varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Retrieval experiment on articulation dataset. Last row is the results obtained
using Grassmann manifold Procrustes representation. No articulation invariant
descriptors were used.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



7.3 Mean-Absolute Errors using different regression methods using the Cauchy-
Binet embedding and the warping velocities on the Passport dataset.. . . . . . 122

7.4 Comparison of Mean-Absolute Errors using proposed methods with state-of-the-
art on the FG-Net dataset.. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



List of Figures

2.1 Near-field video: Example of Walking action. Figure taken from [4]. . . . 5

2.2 Medium-field video: Example video sequence of a simulated bank attack. 5

2.3 Far-field video: Modeling dynamics of groups of humans asa deforming
shape. Figure taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Overview of approaches for action and activity recognition. . . . . . . . . 6

3.1 A model for the silhouette dynamics for gait was learnt using 1 segment. Shown
above is the generated gait sequence from the learnt model.. . . . . . . . . . . 34

3.2 A model for silhouette dynamics during ‘bending’ was learnt using 3 segments.
Shown above is the generated bending sequence from the learnt cascade of LTI
models.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Model order selection experiment on the USF gait database. Bar plot shows
recognition performance as a function of the hidden state dimension (d) on the 7
different challenge experiments (probes A-G) in the USF gait database.. . . . . 35

3.4 (a)Variation of Mean Distance as viewing angle changes. Sample views shown,
(b)Histogram of difference between Frobenius anddcompensatedas seen from dif-
ferent views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 System Overview: (a) Input video, (b) Feature extraction (Dynamic Sketch), (c)
Temporal segmentation, (d) Build and learn dynamical models, (e,f) Cluster in
model space taking into account invariances on the data, (g) Identify repetitive
activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Illustration of a cascade of three linear dynamical systems. The temporal order
of the execution of these dynamical models and their switching times are shown
with arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Sample segment boundaries for 5 activities. Note that the temporal segmentation
algorithm finds a boundary whenever there is a change in the direction of motion.
Notice that the segmentation results are consistent across view changes.. . . . . 50

4.4 Bending boundaries (a) Before refinement, (b) After refinement. . . . . . . . 50

x



4.5 Illustrative example for estimating the number of clusters using heuristics based
on the eigenvalues of the Laplacian of the similarity matrix (a) Similarity Matrix,
(b) Eigenvalues of the normalized Laplacian. The location of the elbow (shown
circled) represents the estimate of the number of clusters.. . . . . . . . . . . . 53

4.6 Color coded activity labeling for a 4000 frame video sequence of the UMD
database (a) Manual Labeling (b) Unsupervised Clustering result. Image best
viewed in color.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 (a)Visualization of the Clusters in Laplacian Space dimensions 1-3. (b) Visual-
ization of Clusters in Laplacian Space dimensions 4-6. Best viewed in color.. . 56

4.8 Color coded activity labeling for three sequences by actor ‘Florian’. First row
in each is the groundtruth, second row is the discovered labeling. Image best
viewed in color.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Color coded activity labeling for three sequences by actor ‘Alba’. Firstrow
in each is the groundtruth, second row is the discovered labeling. Image best
viewed in color.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Sample images from the skating video of Emily Hughes of USA.. . . . . . . . 59

4.11 Shown above are a few sequences from Cluster1. Each row shows contiguous
frames of a sequence. We see that this cluster dominantly corresponds to ‘Sitting
Spins’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Shown above are a few sequences from Cluster2. Each row shows contiguous
frames of a sequence. Notice that this cluster dominantly corresponds to ‘Stand-
ing Spins’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Shown above are a few sequences from Cluster3. Each row shows contiguous
frames of a sequence. Notice that this cluster dominantly corresponds to ‘Spirals’. 62

4.14 Shown above are a few sequences from Cluster4. Each row shows contiguous
frames of a sequence. This cluster dominantly corresponds to ‘Leap Spins’. . . . 63

4.15 Shown above are a few sequences from Cluster5. Each row shows contiguous
frames of a sequence. This cluster did not dominantly correspond to any ‘in-
teresting’ skating pose but seemed to capture the ‘usual’ postures. Imagebest
viewed in color.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Shown above is the input query corresponding to a Leap Spin and the top 5
matches obtained. The last match is a false match. Image best viewed in color.. 65

4.17 Shown above is the input query corresponding to a Standing Spin and the top
5 matches obtained. All the matches correspond to standing spins. Image best
viewed in color.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



5.1 (a) Original sequence taken from the common activities dataset [1], (b) Synthesis
by a sequence of linear dynamic models with boundaries shown by vertical yel-
low lines, (c) Synthesis by a continuous time-varying model. It can be seen that
when actions are segmented and modeled using switching models, the synthesis
results show abrupt changes in pose across boundaries whereas thetime-varying
model results in a much more natural evolution of poses.. . . . . . . . . . . . 66

5.2 Illustration of how statistical properties change with time for 5 activities. The
y-axis measures the KL divergence between ensemble statistics as a function of
the time-lag. Figure best viewed in color.. . . . . . . . . . . . . . . . . . . 67

5.3 (a) Original skating sequence taken from [6], (b) Synthesis by a sequence of
linear dynamic models with boundaries shown by vertical yellow lines, (c) Syn-
thesis by a continuous time-varying model. It can be seen that synthesis results
show abrupt changes in pose across boundaries whereas the time-varying model
results in a smoother evolution of poses.. . . . . . . . . . . . . . . . . . . . 76

5.4 A few sample frames from the Blackjack dataset of [7].. . . . . . . . . . . . 77

5.5 An embedding of the entire Blackjack video sequence. Figure best viewedin color. 77

5.6 Estimated structure of the game of Blackjack. (For the sake of clarity arcs with
low weights have not been shown).. . . . . . . . . . . . . . . . . . . . . . 78

6.1 Illustration of Karcher mean on the Grassmann manifold. InR
2 the set of all

axes (lines passing through the origin) is the Grassmann manifold withn= 2 and
d = 1. Blue dotted lines represent individual points on the Grassmann manifold.
The bold red line is the Karcher mean of this set. The Karcher mean corresponds
to the notion of a mean axis.. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Karcher mean of two clusters of lines with equal spread. One cluster is centered
at θ = π/3 to the X-axis and the other is clustered nearθ = 2π/3. The bold red
line is the Karcher mean of this set. It corresponds to the physically meaningful
solution of a vertical axis as the mean.. . . . . . . . . . . . . . . . . . . . . 92

6.3 Karcher mean of two clusters of lines with unequal spread. One cluster is cen-
tered atθ = π/3 to the X-axis and the other is clustered nearθ = 2π/3. The
bold red line is the Karcher mean of this set. It corresponds to the physically
meaningful solution of a vertical axis as the mean.. . . . . . . . . . . . . . . 93

6.4 Wrapped Normal class conditional-densities of two classes on the Grassmann
manifold. Each class is shown in a different color. The mean of each classis
shown in bold lines. The wrapped standard-deviation lines are shown in dashed
lines for each class.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



7.1 Synthetic data generated from the MPEG database. The first column showsbase-
shapes from the original MPEG dataset for 5 objects. The remaining columns
show random affine warps for the base shapes with increasing levels ofadditive
noise.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Comparison of recognition performance on MPEG-7 database. For comparison
we used the shape Procrustes measure [8] and the Grassmann arc-length distance
[9]. Manifold based methods perform significantly better than direct application
of shape Procrustes measure. Among the manifold methods, statistical modeling
via kernel methods outperforms the others.. . . . . . . . . . . . . . . . . . . 110

7.3 Samples generated from estimated class conditional densities for a few classes
of the MPEG dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Facial geometric variation across ages. Samples shown correspond to individual
2 from the FG-net dataset.. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Distribution of ages in (a) Passport, (b) FG-Net dataset. . . . . . . . . . . . . 120

7.6 Sample images from the FG-Net dataset. . . . . . . . . . . . . . . . . . . . 120

7.7 Passport data Cumulative scores using (a) Cauchy-Binet kernel, (b)velocity pa-
rameters with polynomial kernel.. . . . . . . . . . . . . . . . . . . . . . . 122

7.8 FG-Net data Cumulative scores using (a) Cauchy-Binet kernel, (b) velocity pa-
rameters with polynomial kernel.. . . . . . . . . . . . . . . . . . . . . . . 123

xiii



Chapter 1

Introduction

Videos play an ever increasing role in our everyday lives with applications ranging

from broadcast news, entertainment, scientific research, security and surveillance. Video

is a rich source of patterns in the form of spatio-temporal intensity variations. Since

such visual patterns evolve with time, we not need to understand the underlying geometry

of the pattern that is evolving, but also need to characterize the dynamics of evolution.

The goal of this dissertation is to study the related problems of pattern recognition and

pattern discovery from video data with various applications that include modeling and

recognizing human activities.

We show that short-segments of videos can be considered as outputs of station-

ary linear dynamic systems which can be parametrized as first-order Gauss-Markov pro-

cesses. We show under certain assumptions that the parameter-space can be considered

as a Grassmann manifold, which is not a linear space but a Riemannian manifold. In

order to develop accurate inference algorithms on these manifolds we need to a) under-

stand the geometric structure of these manifolds b) derive appropriate distance measures

and c) develop probability distribution functions (pdf) and estimation techniques that are

consistent with the geometric structure of these manifolds. We show how accurate statis-

tical characterization that is tuned to the geometry of these manifolds allows us to design

efficient algorithms that compare favorably to the state of the art in various applications.

We further consider the problem of modeling the temporal dynamics that give rise

to the wide variety of spatio-temporal patterns. In general, the exact nature of these laws

is very difficult to estimate. This is because real patterns arise out of complex non-linear

processes that are usually unknown. To simplify the problemwe consider two models -

a sequential compositional model of primitives, and a smooth time-varying model in the

primitive space. For both these models, we show how an understanding of the distance

metrics and statistics on the manifold of primitives leads to elegant methods for solving
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the problem.

We apply these techniques to the problem of pattern discovery from large datasets

in an unsupervised manner for applications such as automatic indexing and tagging of

videos. We examine the various issues involved in such an effort and describe a general

framework to address the problem. We design a cascade of dynamical systems model

for clustering videos based on their dynamics. We augment the traditional dynamical

systems model in two ways. Firstly, we describe activities as a cascade of dynamical

systems. This significantly enhances the expressive power of the model while retaining

many of the computational advantages of using dynamical models. Secondly, we also

derive methods to incorporate view and rate-invariance into these models so that similar

actions are clustered together irrespective of the viewpoint or the rate of execution of the

activity. We also derive algorithms to learn the model parameters from a video stream

and demonstrate how a single video sequence may be clusteredinto different clusters

where each cluster represents an activity. Further, we generalize this approach to the case

of complex patterns where a sequential model is not appropriate due to co-articulatory

effects. This is generalized by considering the evolution of the dynamics as a smoothly

varying linear system whose parameters vary with time. Thisis modeled as a trajectory

on the Grassmann manifold. The dynamics of this variation can be learnt from the data

using the geometry of the manifold.

Finally, we show the applicability of the methods developedhere for several other

problems in computer vision that involve statistical inference over non-Euclidean spaces.

Specifically, we show that linear-subspace constraints appear naturally in several vision

problems such as shape analysis, object recognition, video-based face recognition, and

age-estimation from facial features. We demonstrate how anunderstanding of the geom-

etry of the Grassmann manifold leads to methods that are moreaccurate than traditional

approaches. This also provides a principled framework for awide-class of problems in-

volving statistics over subspaces.
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1.1 Organization of the Dissertation

In chapter 2, we start with a comprehensive overview of past work in video analysis

focusing on human activities. In chapter 3, we discuss a theory of motion perception that

leads naturally to the computational model as a linear dynamic system (LDS). We discuss

estimation techniques, and distance metrics on the space ofLDS. Further, we also discuss

geometric variations such as view and execution rate changes and how they influence the

model parameters. In chapter 4, we discuss a cascade of dynamical systems model to

describe complex activities that are formed by a sequencingof simpler primitives. We

show its utility in activity-based video clustering applications. In chapter 5, we discuss a

more general time-varying model that can account for the phenomenon of co-articulation

and assimilation of primitives on the boundaries. In chapter 6, we discuss in detail the

geometry of the parameter-space of the LDS and show that the parameter-space can be

considered as a Grassmann manifold. We develop statisticalclassification techniques on

the manifold and show that it can outperform more traditional nearest neighbor classifiers

on several applications. In chapter 7, we discuss the broader impact of these methods

on several still-image based recognition applications such as age-estimation from facial

features, object recognition from landmarks, and object recognition from image-sets. In

chapter 8, we discuss directions for future work.
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Chapter 2

Related Work

In this chapter, we provide a comprehensive review of various approaches that have

been pursued over the past couple of decades in the computer vision community to un-

derstand and model human motion and human activities.

2.1 Introduction

Several related survey papers that deal with action and activity modeling in videos

have appeared over the years. Most notable among them are thefollowing: Aggarwal

and Cai [10] discuss three important sub-problems that together form a complete action

recognition system – extraction of human body structure from images, tracking across

frames, and finally, recognizing the action. Cedras and Shah [11] present a survey on

motion-based approaches to recognition as opposed to structure-based approaches. They

argue that motion is a more important cue for action recognition than the structure of

the human body. Gavrila [12] presented a survey of literature which focused mainly on

tracking of hands and humans via 2D or 3D models and a discussion of action recognition

techniques. Recently, Moeslund et al [13] presented a surveyof problems and approaches

in human motion capture including human model initialization, tracking, pose estima-

tion and activity recognition. Since the scope of the dissertation is limited to recognizing

actions from tracked motion or structure features, this chapter will focus exclusively on

reviewing approaches for recognition of action and activities from video, and not on the

lower-level modules of detection and tracking which is discussed at length in earlier sur-

veys [10, 11, 12, 13, 14].

The terms ‘Action’ and ‘Activity’ are frequently used interchangeably in the vi-

sion literature. In the ensuing discussion, by ‘actions’ werefer to simple motion patterns

usually executed by a single person, typically lasting for short durations of time on the

order of tens of seconds. Examples of actions include bending, walking etc (for example,
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see figure 2.1). On the other hand, by ‘Activities’ we refer tothe complex sequences of

actions performed by several people who could be interacting with each other in a con-

strained manner. They are typically characterized by much longer temporal durations,

for example, two persons shaking hands, a football team scoring a goal or a co-ordinated

bank attack by multiple robbers (for example, see figure 2.2). This is not a hard bound-

ary and there is a significant ‘gray-area’ between these two extremes. For example, the

gestures of a music conductor conducting an orchestra, or the constrained dynamics of a

group of humans (see figure 2.3), is neither as simple as an ‘action’ nor as complex as

an ‘activity’ according to the above interpretation. However, this simple categorization

provides a starting-point to organize many approaches thathave been proposed to solve

the problem. A quick preview of the various approaches that fall under each of these

categories is shown in figure 2.4.

Figure 2.1: Near-field video: Example of Walking action. Figure taken from [4].

Frame 1 Frame 2 Frame 3 Frame 4

Frame 5 Frame 6 Frame 7 Frame 8

Figure 2.2: Medium-field video: Example video sequence of a simulated bank attack.
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Figure 2.3: Far-field video: Modeling dynamics of groups of humans as a deforming

shape. Figure taken from [5].

Figure 2.4: Overview of approaches for action and activity recognition.

In this dissertation, we focus on methods of recognition of simple and complex

actions. We do not address high-level semantic ‘activity’ representation and recognition.

In this chapter, we review methods for modeling and recognition of simple and complex

action classes.

2.2 General Overview

A generic action or activity recognition system can be viewed as proceeding in a

series of steps, from a sequence of images to a higher level interpretation. The major steps

involved are the following:

1. Input video or sequence of images
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2. Extraction of concise low-level features

3. Mid-level action descriptions from low-level features

4. High-level semantic interpretations from primitive actions

Video data consist of massive amounts of raw information in the form of spatio-

temporal pixel intensity variations. But, most of this information is not directly relevant

to the task of understanding and identifying the activity occurring in the video. A classic

experiment by Johansson [15] demonstrated that humans can perceive gait patterns from

point light sources placed at a few limb joints with no additional information. Extraneous

factors such as the color of the clothes, illumination conditions, background clutter do not

aid in the recognition task. We briefly describe a few popularlow-level features and refer

readers to alternate sources for a more in-depth treatment as we progress.

2.2.1 Optical flow

Optical flow is defined as the apparent motion of individual pixels on the image

plane. Optical flow often serves as a good approximation of the true physical motion

projected onto the image plane. Most methods to compute optical flow assume that the

color/intensity of a pixel is invariant under the displacement from one video frame to

the next. We refer the reader to [16] for a comprehensive survey and comparison of

optical flow computation techniques. Optical flow provides aconcise description of both

the regions of the image undergoing motion and the velocity of motion. In practice,

computation of optical flow is susceptible to noise and illumination changes. Applications

include [17] which used optical flow to detect and track vehicles in traffic.

2.2.2 Point trajectories

Trajectories of moving objects have popularly been used as features to infer the

activity of the object. The image-plane trajectory itself is not very useful as it is sensi-

tive to translations, rotations and scale changes. Alternative representations such as tra-

jectory velocities, trajectory speeds, spatio-temporal curvature, relative-motion etc have
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been proposed that are invariant to some of these variabilities. A good survey of these

approaches can be found in [11]. Extracting unambiguous point trajectories from video is

complicated by several factors such as occlusions, noise, background clutter etc. Accurate

tracking algorithms are needed for obtaining the motion trajectories [14].

2.2.3 Background subtracted blobs

Background subtraction is a popular method to isolate the moving parts of a scene

by segmenting it into background and foreground. Several approaches to background

modeling exist. One popular approach is to learn a statistical distribution of pixel inten-

sities that correspond to the background as in [18]. By adapting the background model

according to new data, the method can also be applied to scenarios with changing back-

ground [18].

2.2.4 Shape features

Shape of the human silhouette plays a very important role in recognizing human

actions. Several methods have been proposed to quantify shape – global, boundary and

skeletal based. Global methods consider the entire shape region to compute the shape-

descriptors, for example, shape moments [19]. Boundary methods on the other hand

consider only the shape contour as the defining characteristic of the shape. Such meth-

ods include chain codes [20] and landmark-based shape descriptors [8]. Skeletal methods

represents a complex shape as a set of 1D skeletal curves, forexample, the medial axis

transform [21]. Applications include shape-based dynamicmodeling of the human sil-

houette as in [22] to perform gait recognition.

2.3 Modeling and Recognizing Actions

Approaches for human action recognition fall into one of thetwo following cate-

gories – a) Methods that rely on human body models, b) Methodsthat do not rely on hu-

man body models. Methods that fall in the first category rely on segmentation of the body
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into individual parts and extract features such as joint-angles or joint-trajectories. How-

ever, segmentation of the human body is a computationally intensive task, and extraction

of joints and angles requires good tracking algorithms. These approaches were popular in

the early 90s and an excellent survey can be found in [10]. More recently, the focus has

shifted to approaches which do not assume a body model, but rely on motion information

extracted directly from the images. Motion-based approaches for modeling actions fall

into two major classes – parametric and non-parametric. Parametric approaches typically

impose a model on the dynamics of the motion. The particular parameters for a class

of actions is then estimated from training data. Examples include Hidden Markov Mod-

els (HMMs), Linear Dynamical Systems (LDSs) etc. Non-parametric approaches on the

other hand do not impose a model, instead relying on coarse representations drawn from

data such as action-templates. We will first discuss the non-parametric methods and later,

the parametric methods.

2.3.1 Non-Parametric Approaches for Action Recognition

2.3.1.1 2D-templates

One of the earliest attempts at action-recognition that does not depend on 3-D struc-

ture estimation was proposed by Polana and Nelson [23]. Theyfirst rely on motion-

detection and tracking of humans in the scene. After tracking, a ‘cropped’ sequence

constraining the human is constructed where scale changes are compensated for. A peri-

odicity index is computed for the given activity and the algorithm proceeds to recognize

the action if it is found to be sufficiently periodic. To perform recognition, the periodic

sequence is segmented into individual cycles using the periodicity estimate and combined

to get an average-cycle. The average-cycle is divided into afew temporal segments and

flow-based features are computed for each spatial location in each segment. The flow-

features in each segment are averaged into a single frame. The average-flow frames within

an activity-cycle form the templates for each action class.Other related approaches for

representation and recognition of quasi-cyclic actions have been proposed in [24]. Since,

these methods are periodicity-based, they are best suited to quasi-periodic actions such as
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walking, running, swimming etc.

Bobick and Davis [25] proposed using ‘temporal templates’ asmodels for actions.

In their approach, background subtraction is followed by anaggregation of a sequence of

background subtracted blobs into a single static image. They propose two methods of ag-

gregation – the first methods gives equal weight to all imagesin the sequence, which gives

rise to a representation called the ‘Motion Energy Image’ (MEI). The second method

gives decaying weights to the images in the sequence with higher weight given to new

frames and low weight to older frames. This leads to a representation called the ‘Motion

History Image’ (MHI). The MEI and MHI together comprise a ‘template’ for a given

action. From the templates, translation, rotation and scale invariant Hu-moments are ex-

tracted which are then used for recognition. It was shown in [25] that MEI and MHI have

sufficient discriminating ability for several simple action classes such as ‘sitting down’,

‘bending’, ‘crouching’ and other aerobic postures. However, it was noted in [26] that

MEI and MHI lose discrimination for complex activities due to overwriting of the motion

history and hence are unreliable for matching.

2.3.1.2 3-D Space-time Volumes

While most of the above approaches extract features from individual video frames,

direct analysis of actions as 3-D spatio-temporal volumes has also been investigated by

several researchers. Chomat et al. [27] model a segment of video as a(x,y, t) spatio-

temporal volume and compute local appearance models at eachpixel using a Gabor filter

bank at various orientation and spatial scales and a single temporal scale. A given action

is recognized using a spatial average of the probabilities of individual pixels in a frame.

Since, actions are analyzed at a single temporal scale, thismethod is not applicable to

variations in execution rate. As an extension to this approach, local histograms of nor-

malized space-time gradients at several temporal scales are extracted by Zelnik-Manor

and Irani [28]. The sum of the chi-square metric between histograms is used to match an

input video with a stored exemplar.

Laptev and Lindeberg [29] proposed a spatio-temporal generalization of the well-
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known Harris interest point detector, which is widely used in object recognition applica-

tions, and applied it to modeling and recognizing actions inspace-time. Dollar et al. [30]

model a video sequence by the distribution of space-time (ST) feature prototypes. The

feature prototypes are obtained by k-means clustering of a large set of features – space-

time gradients – extracted at ST interest points from the training data. Neibles et al. [31]

use a similar approach where they use a bag-of-words model torepresent actions. The

bag-of-words model is learnt by extracting spatio-temporal interest points and clustering

of the features. Since, most of these methods are based on linear operations such as filter-

ing and spatio-temporal gradients, the descriptors are sensitive to changes in appearance,

noise, occlusions etc. It has also been noted that interest points are extremely sparse in

real-life human actions and certain types of actions do not give rise to distinctive features

[31, 30].

2.3.1.3 3D Object models

Successful application of models and algorithms to object recognition problems led

researchers in action-recognition to propose alternate representations of actions as spatio-

temporal objects. Syeda-Mahmood et al. proposed a representation of actions as gener-

alized cylinders in the joint(x,y, t) space [32]. Yilmaz and Shah [33] represent actions as

3-D objects induced by stacking together tracked 2-D objectcontours. A sequence of 2-D

contours in(x,y) space can be treated as an object in the joint(x,y, t) space. This represen-

tation encodes both the shape and motion characteristics ofthe human. From the(x,y, t)

representation, concise descriptors of the object’s surface are extracted corresponding to

geometric features such as peaks, pits, valleys and ridges.Since this approach is based on

stacking together a sequence of silhouettes, accurate correspondence between points of

successive silhouettes in the sequences needs to be established. Quasi view-invariance for

this representation was shown theoretically by assuming anaffine camera model. Similar

to this approach, [34] proposed using background subtracted blobs, instead of contours,

which are stacked together to create an(x,y, t) binary space-time volume. Since, this

approach uses background subtracted blobs, the problem of establishing correspondence
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between points on contours in the sequence does not exist. From this space-time volume,

3-D shape descriptors are extracted by solving a Poisson equation [34].

2.3.1.4 Manifold Learning Methods

Most approaches in action recognition involve dealing withdata in very high-

dimensional spaces. Hence, these approaches often suffer from the ‘curse of dimension-

ality’. The feature-space becomes sparser in an exponential fashion with the dimension,

thus requiring a larger number of samples to build efficient class-conditional models.

Learning the manifold on which the data resides enables us todetermine the inherent

dimensionality of the data as opposed to the raw dimensionality. The inherent dimen-

sionality contains fewer degrees of freedom and allows efficient models to be designed in

the lower-dimensional space. The simplest way to reduce dimensionality is via Principal

Component Analysis (PCA) which assumes that the data lies on a linear subspace. Except

in very special cases, data does not lie on a linear subspace.This requires methods that

can learn the intrinsic geometry of the manifold from a largenumber of samples. Nonlin-

ear dimensionality reduction techniques allow for representation of data points based on

their proximity to each other on nonlinear manifolds. Several methods for dimensionality

reduction such as PCA, locally linear embedding (LLE) [35], Laplacian eigenmap [36],

and Isomap [37] have been applied to reduce the high-dimensionality of video data in

action-recognition tasks (c. f. [38, 39, 40]).

2.3.2 Parametric Methods

The previous section focused on representations and modelsfor the simplest of ac-

tion classes – known as atomic or primitive actions. The parametric approaches that we

will describe in this section are much more powerful modeling tools. Parametric methods

such as HMMs, LDSs are well suited to model more complex actions where the un-

derlying process is characterized by complex temporal dynamics. In such cases, simple

template matching approaches would either require too manytemplates or would not cap-

ture the dynamics of the action at all. Examples of such complex actions include the steps
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in a ballet dancing video, juggling a ball or conducting an orchestra using complex hand

gestures. Accurate modeling and recognition of this class of complex actions requires

more sophisticated methods that explicitly model the temporal dynamics of the action.

The most popular method used for modeling complex temporal dynamics is the so

called state-space approach. The state-space approach models the temporal evolution of

features as a trajectory in some configuration space, where each point on the trajectory

corresponds to a particular ‘configuration’ or ‘state’ – forinstance, a particular pose or

stance of the actor.

2.3.2.1 Hidden Markov Models

One of the most popular state-space models is the HMM. In the discrete HMM

formalism, the state space is considered to be a finite set of discrete points. The tempo-

ral evolution is modeled as a sequence of probabilistic jumps from one discrete state to

the other. HMMs first found wide applicability in speech recognition applications in the

early 80s. An excellent source for a detailed explanation ofHMMs and its associated

three problems – inference, decoding and learning – can be found in [41]. Beginning

in the early 90’s, HMMs have found many applications in computer vision. One of the

earliest approaches to recognize human actions via HMMs wasproposed by Yamato et

al. [42] where they recognized tennis shots such as backhandstroke, backhand volley,

forehand stroke, forehand volley, smash etc by modeling a sequence of background sub-

tracted images as outputs of class-specific HMMs. Several successful gesture recognition

systems such as in [43, 44], make extensive use of HMMs by modeling a sequence of

tracked features such as hand blobs as HMM outputs.

Apart from gesture recognition, HMMs and its extensions have also been used for

other action recognition applications such as in Siskind and Morris [45]. HMMs have

also found applicability in modeling the temporal evolution of human gait patterns both

for action recognition and biometrics (cf. Kale et al. [46],Liu and Sarkar [47]). All

these approaches are based on the assumption that the feature sequence being modeled is

a result of a single person performing an action. Hence, theyare not directly applicable to
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applications where there are multiple agents performing anaction or interacting with each

other. To address this issue, Brand et al [48] proposed a coupled HMM to represent the

dynamics of interacting targets. They demonstrate the superiority of their approach over

conventional HMMs in recognizing two-handed gestures. Incorporating domain knowl-

edge into the HMM formalism has been investigated by severalresearchers. Moore, Essa

and Hayes [49] use HMMs in conjunction with object detectionmodules to exploit the

relationship between actions and objects. Hongeng and Nevatia [50] incorporatea pri-

ori beliefs of state-duration into the HMM framework and the resultant model is called

Hidden semi-Markov Model (semi-HMMs). Cuntoor and Chellappa[51] have proposed

a mixed-state HMM formalism to model non-stationary activities, where the state-space

is augmented with a discrete label for higher-level behavior modeling.

HMMs are efficient tools for modeling time-sequence data andare useful both for

their generative and discriminative capabilities. HMMs are well-suited for tasks that re-

quire recursive probabilistic estimates [52] or when explicit segmentation into atomic

action units is difficult. However, their utility is restricted due to the simplifying as-

sumptions that the model is based on. Most significantly, theassumption of Markovian

dynamics and the time-invariant nature of the model restricts the applicability of HMMs

to relatively simple andstationarytemporal patterns.

2.3.2.2 Linear Dynamical Systems

Linear dynamical systems are a form of HMMs where the state-space is not con-

strained to be a finite set of symbols but can take on continuous values inRk wherek is

the dimensionality of the state-space. The simplest form ofLDS is the first order time-

invariant Gauss-Markov process which can be interpreted asa continuous state-space

generalization of HMMs with a Gaussian observation model. Several applications such

as recognition of humans and actions based on gait (Bissacco et al [53], Veeraraghavan

et al [4], Mazzaro et al. [54]) and dynamic texture modeling and recognition [55, 56]

have been proposed using LDSs. First order LDSs were used by Vaswani et al [5] to

model the configuration of groups of people in an airport tarmac setting by considering

14



a collection of moving points (humans) as a deforming shape.Advances in system iden-

tification theory for learning LDS model parameters [57, 58,59] from data and distance

metrics on the LDS space [60] have made LDSs popular for learning and recognition of

high-dimensional time-series data.

2.3.2.3 Non-linear Dynamical Systems (NLDS)

While time-invariant HMMs and LDSs are efficient modeling andlearning tools,

they are restricted to linear and stationary dynamics. Consider the following activity –

a person bends down to pick up an object, then he walks to a nearby table and places

the object on the table and finally rests on a chair. This activity is composed of a se-

quence of short segments each of which can be modeled as a LDS.The entire process

can be seen as switching between LDSs. To tackle such complexdynamics, a popular

approach is to model the process using Switching Linear Dynamical systems (SLDS) or

Jump Linear Systems (JLS). An SLDS, consists of a set of LDSs with a switching func-

tion that causes model parameters to change by switching between models. Bregler [61]

presented a multi-layered approach to recognize complex movements consisting of sev-

eral levels of abstraction. The lowest level is a sequence ofinput images. The next level

consists of ‘blob’ hypotheses where each blob is a region of coherent motion. At the

third level, blob tracks are grouped temporally. The final level, consists of a HMM which

represents the complex behavior. North et al [62] augment the continuous state vector

with a discrete state component to make a ‘mixed’ state. The discrete component repre-

sents a mode of motion or more generally a ‘switch’ state. Corresponding to each switch

state, a Gaussian Autoregressive (AR) model is used to represent the dynamics. A max-

imum likelihood approach is used to learn the model parameters for each motion class.

Pavlovic and Rehg [63] model the non-linearity in human motion in a similar framework,

where the dynamics are modeled using LDS and the switching process is modeled using a

probabilistic finite state-machine. Other applications ofthis framework include the work

of Del Vecchio et al [64] who used this framework for classification of drawing tasks.

Though the SLDS framework has greater modeling and descriptive power than HMMs
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and LDSs, learning and inference in SLDS are much more complicated, often requiring

approximate methods [65]. In practice, determining the appropriate number of switch-

ing states is challenging and often require large amounts oftraining data. Apart from

maximum likelihood (ML) approaches, algebraic approacheswhich can simultaneously

estimate the number of switching states, the switching instants and also the parameters

of the model for each switch state have been proposed by Vidal, Chiuso and Soatto [66].

However, algebraic approaches are often not robust to noiseand outliers in the data.

2.3.3 Invariances in Human Action Analysis

One of the most significant challenges in action recognitionis to find methods that

can explain and be robust to the wide variability in featuresthat is observed within the

same action class. Sheikh et. al. [67] have identified three important sources that give

rise to variability in observed features. They are

1. Viewpoint

2. Execution Rate

3. Anthropometry

Any real-world action recognition system needs to be invariant to these factors. In

this section, we will review some efforts in this direction that have been pursued in the

research community.

2.3.3.1 View-Invariance

A fundamental problem in video-based recognition of activities is achieving view

invariant representations of actions. While it may be easy tobuild statistical models

of simple actions based on the representations discussed sofar from a single view, it

is extremely challenging to generalize them to other views even for very simple action

classes. This is due to the wide variations in motion-based features induced by camera

perspective effects and occlusions. One way to deal with theproblem is to store templates
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from several canonical views as done by Bobick et al. [25] and interpolate across the

stored views as proposed by Darrell, Essa and Pentland [68].This approach however is in

general not scalable since one does not know how many views toconsider as canonical.

Another approach is to assume that point correspondences across views are available as

in Syeda-Mahmood et al. [32] and compute a transformation that maps a stored model to

an example from an arbitrary view. Seitz and Dyer [24] present an approach to recognize

cyclic motion that is affine-invariant by assuming that feature correspondence between

successive time-instants is known. It was shown by Rao and Shah [69] that extrema in

space-time curvature of trajectories is preserved across views. The extrema in space-

time curvature of hand trajectories are denoted as ‘dynamicinstants’. An action is then

considered as a sequence of dynamic instants which is preserved across several views.

Another example is the work of Parameswaran and Chellappa [70, 71] who define a view

invariant representation of actions based on the theory of 2D and 3D invariants. In their

approach, they consider an action to be a sequence ofposes. They assume that there

exists at least onekey-posein the sequence in which 5 points are aligned on a plane in

the 3-D world coordinates. Using this assumption, they derive a set of view-invariant

descriptors. More recently, the notion of motion-history [25] was extended to 3-D by

Weinland et al [2] where the authors combine views from multiple cameras to arrive at a

three-dimensional binary occupancy volume. Motion history is computed over these 3-D

volumes and view-invariant features are extracted by computing the circular FFT of the

volume.

2.3.3.2 Execution Rate Invariance

The second major source of observed variability in featuresarises from the differ-

ences in execution rates while performing the same action. Variations in execution style

exist both in inter-person and intra-person settings. State-space approaches are robust to

minor changes in execution rates, but are not truly rate-invariant since they do not explic-

itly model transformations of the temporal axis ((c. f. Bobick and Wilson [72], Hoey

and Little [73])). Mathematically, the variation in execution rate is modeled as a warping
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function of the temporal scale. The simplest case of linear time-warps can be usually

dealt with fairly easily (c. f. [25, 74]). To model highly non-linear warping functions,

common methods methods include Dynamic Time Warping of the feature sequence such

as the works of Takahashi et. al [75], Darrel et al [68], Gieseand Poggio [76], Rao et al

[77] and Veeraraghavan et al [1].

2.3.3.3 Anthropometric Invariance

Anthropometric variations such as those induced by the size, shape, gender etc.

of humans is another important class of variabilities that requires careful attention. Un-

like viewpoint and execution-rate variabilities which have been well-studied, a systematic

study of anthropometric variations has only been receivinginterest in recent years. Ad hoc

methods which normalize the extracted features to compensate for changes in size, scale

etc. are usually employed when no further information is available. Drawing on studies

on human anthropometry, Gritai et al. in [78], suggested that the anthropometric transfor-

mation between two different individuals can be modeled as aprojective transformation

of the image co-ordinates of body joints. Based on this, they define a similarity metric

between actions, by using epipolar geometry to provide constraints on actions performed

by different individuals.

2.4 Modeling and Recognizing Complex Activities

Most activities of interest in applications such as surveillance, content-based in-

dexing etc involve several actors, who interact not only with each other, but also with

contextual entities. The approaches discussed so far are mostly concerned with modeling

and recognizing actions of a single actor. Modeling a complex scene and the inherent

structure and semantics of complex activities require higher-level representation and rea-

soning methods. The previously discussed approaches are not suited to deal with the

complexities of spatio-temporal constraints on actors andactions, temporal relations such

as sequencing and synchronization, and the presence of multiple execution threads. Thus,

structural and syntactic approaches such as dynamic beliefnetworks, grammars, petri-nets
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etc are well-suited to tackle these problems. Moreover, some amount of domain knowl-

edge can be incorporated in the design of concise and intuitive structural descriptions of

activities. Syntactic and structural methods typically follow a hierarchical approach. At

the lower levels are the standard vision modules such as background-foreground segmen-

tation, tracking, object detection etc. At the mid-level are action-recognition modules

such as the ones discussed so far. At the high-level are the reasoning engines which

encode the activity semantics/structure based on lower level action-primitives.

2.4.1 Graphical Models

2.4.1.1 Belief Networks

A Bayesian network (BN) [79] is a graphical model that encodes complex condi-

tional dependencies between a set of random variables. BNs are directed acyclic graphs

where the nodes represent random variables and directed edges represent causality re-

lations. Dynamic Belief networks (DBNs) are a generalizationof the simpler Bayesian

networks which incorporate temporal dependencies betweenrandom variables. DBNs

encode far more complex conditional dependence relations among several random vari-

ables as opposed to just one hidden random variable in the case of HMMs. Development

of efficient algorithms for learning and inference in graphical models (c. f. [80, 81]) have

made them popular tools to model structured activities [17]. Methods to learn the topol-

ogy or structure of Bayesian networks from data [82] have alsobeen investigated in the

machine learning community.

2.4.1.2 Petri Nets

Petri Nets were defined by Carl Adam Petri as a mathematical tool for describing

relations between conditions and events. Petri Nets are particularly useful to model and

visualize behaviors such as sequencing, concurrency, synchronization and resource shar-

ing. Conditions refers to the state of an entity and events refer to changes in the state

of the entity. Petri nets have traditionally found use in modeling hybrid systems, where
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they are well-suited to model complex behavior such as concurrency, synchronization and

resource sharing [83, 84]. Petri Nets were used by Castel et al[85] to develop a system

for high-level interpretation of image sequences and by Ghanem et al [86] as a tool for

querying surveillance videos. Albanese et al [87] have recently proposed the concept of

a probabilistic Petri Net (PPN).

2.4.1.3 Other Graphical Models

While DBNs are an attractive means to model relations between several variables,

they are not particularly well suited for describing complex temporal relations other than

simple sequencing. Researchers have proposed alternate graphical approaches that specif-

ically model more complex temporal relations such as sequentiality, duration, parallelism,

synchrony etc. Examples include the work of Pinhanez and Bobick [88] who use a sim-

plified version of Allen’s interval algebra to model sophisticated temporal ordering con-

straints such as past, now, future (PNF). Shi et al [89] represent activities using partially

ordered temporal intervals. In their approach, an activityis constrained by temporal and

logical ordering, including duration, of the activity intervals.

2.4.2 Syntactic Approaches

Syntactic pattern recognition approaches such as Context-free grammars (CFG) ex-

press the structure of a process using a set of production rules. To draw a parallel to

grammars in language modeling, the production rules specify how complex sentences

(activities) can be constructed in a grammatically sound manner from simpler words (ac-

tivity primitives), and how to recognize if a given sentence(video) conforms to the rules

of a given grammar (activity model). Syntactic approaches are useful when the structure

of a process is difficult to learn but may be known a priori. Syntactic pattern recognition

approaches were first successfully applied to still-image recognition tasks such as shape

modeling [90]. Success in these domains coupled with the success of HMMs and DBNs

in action-recognition tasks, led to renewed interest in syntactic approaches for activity

recognition.
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2.4.2.1 Context free Grammars

One of the earliest use of grammars for visual activity recognition was proposed by

Brand [91], who used a grammar to recognize hand manipulations in sequences contain-

ing disassembly tasks. They made use of simple grammars withno probabilistic modeling

or error analysis. Ryoo and Aggarwal [92] used the CFG formalism to model and recog-

nize composite human activities and multi-person interactions. They followed a hierar-

chical approach where the lower-levels are composed of HMMsand Bayesian Networks.

The higher-level interactions are modeled by CFGs.

2.4.2.2 Stochastic Grammars

Algorithms for detection of low-level primitives are frequently probabilistic in na-

ture. Thus, Stochastic Context-free grammars (SCFGs) which are a probabilistic exten-

sion of CFGs were found to be suitable for integration with real-life vision modules.

SCFGs were used by Ivanov and Bobick [93] to model the semanticsof activities whose

structure was assumed to be known. They used HMMs for low-level primitive detection.

The grammar production rules were augmented with probabilities and a ‘skip’ transi-

tion was introduced. This resulted in increased robustnessto insertion errors in the input

stream and also to errors in low-level modules. Results on surveillance videos and com-

plex gestures of a music conductor showed promising results. Moore and Essa [94] used

SCFGs to model multi-tasked activities – activities that have several independent threads

of execution with intermittent dependent interactions with each other, as demonstrated in

a Blackjack game with several participants.

2.4.3 Knowledge and Logic-based Approaches

Logic and knowledge based approaches express activities interms of primitives and

constraints on them. These methods can express far more complex constraints than gram-

mar based approaches. While grammars can be efficiently parsed due to their syntactic

structure, logical rules can lead to a computational overhead due to constraint satisfaction

checks. But, logical rules are often far more intuitive and human-readable than grammat-
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ical rules.

2.4.3.1 Logic Based Approaches

Logic-based methods rely on formal logical rules to describe constraints in activi-

ties. Logical rules are useful to express domain knowledge as input by a user or to present

the results of high-level reasoning in an intuitive and human-readable format. Medioni et

al. [95] propose a hierarchical representation to recognize a series of actions performed

by a single agent. Symbolic descriptors of actions are extracted from low-level features

through several mid-level layers. Then, a rule based methodis used to approximate the

probability of occurrence of a specific activity, by matching the properties of the agent

with the expected distributions (represented by a mean and avariance) for a particular

action. In a later work Hongeng, Nevatia and Bremond [96] extend this representation by

considering an activity to be composed of several action threads. Each action thread is

modeled as a stochastic finite-state automaton. Constraintsbetween the various threads

are propagated in a temporal logic network. Shet et al [97] propose a system that relies on

logic programming to represent and recognize high-level activities. Low level modules

are used to detect primitive events. The high level reasoning engine is based on Prolog,

and recognizes activities which are represented by logicalrules between primitives.

2.4.3.2 Ontologies

In most practical deployments, that use any of the afore-mentioned approaches,

symbolic activity definitions are constructed in an empirical manner. Though empirical

constructs are fast to design and even work very well in most cases, they are limited

in their utility to the specific deployment for which they have been designed. Hence,

there is a need for a centralized representation of activitydefinitions or ontologies for

activities which are independent of algorithmic choices. Ontologies standardize activ-

ity definitions, allow for easy portability to specific deployments, enable interoperability

of different systems and allow easy replication and comparison of system performance.

Chen et al. [98] use ontologies for analyzing social interaction in nursing homes. Ha-
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keem et al have used ontologies for classification of meetingvideos [99]. Georis et al

[100] use ontologies to recognize activities in a bank monitoring setting. Bremond and

Thonnat [101] have investigated the use of contextual information in activity recognition

through domain ontologies. As a result of the Video Event Challenge Workshops held

in 2003 [102], ontologies have been defined for six domains ofvideo surveillance - 1)

Perimeter and Internal Security, 2) Railroad Crossing Surveillance, 3) Visual Bank Mon-

itoring, 4) Visual Metro Monitoring, 5) Store Security, 6) Airport-Tarmac Security. This

led to the development of two formal languages - The Video Event Representation Lan-

guage (VERL) [103], which provides an ontological representation of complex events in

terms of simpler sub-events, and the Video Event Markup Language (VEML) which is

used to annotate VERL events in videos. Though ontologies provide concise high-level

definitions of activities, they do not necessarily suggest the right ‘hardware’ to ‘parse’ the

ontologies for recognition tasks.
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Chapter 3

Spatio-Temporal Models for Videos

In this chapter, we discuss a hierarchy of perceptual processes that start from low-

level pixel intensity variations, towards higher level semantic interpretation of human

motion. This will lay the foundations for the computationalmodels and methods that

shall be used later in the dissertation.

3.1 Perception of Activities

In this section, we propose a general framework for activityperception and recog-

nition, from which specific algorithms can be derived. The perception of activities can

be seen as proceeding from a sequence of 2-D images to a semantic description of the

activity. Activity perception can be naturally decomposedinto the following three stages:

1. Dynamic Sketches

2. Action sketch

3. Semantic sketch

1. Dynamic Sketches: The purpose of early stages of vision [104] is to construct

primitive descriptions of the action contents in the frame.These primitive descrip-

tions must be rich enough to allow for inference and recognition of activities. The

dynamic sketch provides a coarse description of shape and motion characteristics

of the actor or group of actors involved in the activity. In computational terms, this

stage corresponds to the extraction of low-level features from each frame (or pair

of frames) of the video. Most of the sensory information thatis available in videos

is actually uninteresting for the purpose of activity-based video indexing and only

serves to confound the latter stages of the algorithms. One very important character-

istic of this stage is to weed out all the unnecessary sensoryinformation and retain
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just those elements of the sensory field that are relevant foractivity based video

indexing. Visual encoding mechanisms present in the human brain mimic this phe-

nomenon and is called predictive coding. Barlow [105] and Srinivasan et.al. [106]

contend that predictive coding is not just a mechanism for compression but actually

goes much further than compression and enables animals to process information in

a timely manner. They argue that in the absence of such predictive encoding mech-

anisms in the neuronal responses, the visual information would flood the brain of

these animals and not allow for timely response to these visual stimuli. We refer

the interested reader to early works of Barlow, Srinivasan and Marr ([105], [106],

[104]) on the importance of this stage of visual processing in order to enable vision

systems to react and process information in a timely manner.

2. Action Sketch: Studies into human behavior show that human actions can be tem-

porally segmented into elementary units, where each unit consists of functionally

related movement [107]. For example, a car parking activitymay be considered

to be formed of the following primitives - ‘Car enters parkinglot’, ‘Car stops in

parking slot’, ‘Person walks away from car’. Such a description requires the ability

to segment an activity into its constituents and then develop a model for each of

the constituent actions. Each constituent action is like a word describing a short,

consistent motion fragment. Hence, this stage can be interpreted as providing a

‘vocabulary’ with which to create sentences (activities).In the remainder of the

chapter, by ‘action’ we refer to a short segment of consistentmotion, whereas, by

‘activity’ we refer to a composition of such actions that leads to an activity.

Representing activities using such linguistic models has been in existence in various

other fields and disciplines. Several dance notation schemes are used in practice to

interpret complex dance moves. Though not extremely detailed, they are easy to in-

terpret and reproduce in actual steps. It has also been foundthat the most commonly

observed human activities in surveillance settings such asreaching, striking etc are

characterized by distinctive velocity profiles of the limbsthat can be conveniently

modeled as a specific sequence of individual segments – constant acceleration fol-

25



lowed by constant velocity followed by constant deceleration [108]. This lends

credence to the fact that human actions can be modeled as a sequence of primitive

actions, where each action is governed by a simple model. There is also evidence

from neuroscience about the existence of ‘mirror neurons’ in humans. These neu-

rons fire not just when a particular activity is performed, but also when the same

activity is observed by the subject as being performed by someone else [109]. This

suggests that there is a strong correlation between the way we perform activities

and the way we recognize them. In computational terms, this suggests that the un-

derlying mathematical model for activity recognition and activity synthesis should

be the same.

3. Semantic descriptions:Semantic descriptions perform the same function as gram-

matical rules for a language. They detail how several constituent action primitives

may be combined together in order to construct or recover complex activities. The

most common rules for creating complex activities from constituent actions are

sequencing, co-occurrence and synchronization. For example, a single-thread ac-

tivity can be said to consist of a linear sequence of a few primitives. An example of

a single-thread activity is ‘Person approaches a door’→ ‘Person swipes the access

card’→ ‘Person enters a building’. Similarly, a complex multi-thread activity can

be seen as a collection of several single-thread activitieswith some constraints such

as concurrence and synchronization among them. Thus, this stage can be seen as

providing the rules for combining the primitives - similar to a set of grammatical

rules needed to construct meaningful sentences from individual words. As men-

tioned earlier, evidence from neuroscience [109] suggeststhe use of a common

mathematical framework, that allows for activity recognition as well as activity

synthesis. In the context of machine learning, this requires the model to be both

discriminative (recognition) and generative (synthesis)in nature. The model should

also be rich enough to accommodate the addition of new activities i.e. it should be

possible to create representations for new activities using the same general rules of

combination, using a different set of primitives.
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In the next section, we draw connections with computationalapproaches and show

how several well-known mathematical tools can be used at each of these stages.

3.2 Computational Models

There exists a wealth of literature on building computational models for each of the

stages outlined above. In this section, we review some of theimportant and well-known

techniques that can be used at each of the stages.

3.2.1 Dynamic Sketches

The search for suitable low-level features that can compactly represent the specific

information that we seek from images has been at the heart of computer vision research

for many years [104]. Low-level features that can compactlyrepresent the information

we seek from very short segments of videos (typically 1 or 2 frames) form the dynamic

sketch or the frame sketch. The appropriateness of a specificfeature is dependent on the

specific application and the nature of the video sequences being analyzed. In this chapter,

we are interested in clustering video sequences according to the type of activity present

in the video sequences. Therefore, these low-level features must be able to compactly

capture the instantaneous motion of the various scene and actor elements in a manner that

enables the next levels (action sketch and the semantic sketch) to efficiently represent the

activity occurring in these videos. We summarize in Table 3.1 some widely used low-level

features and their respective characteristics.

3.2.2 Action-sketches

A significant body of work in activity recognition builds upon extracting action-

primitives and modeling the interactions between them. Oneapproach has been to define

action-primitives a priori using domain knowledge and userexperience. This approach

has obvious limitations, since it requires one to enumeratea new list of primitives for

every new domain. Thus, techniques for automatic primitiveextraction have been gain-
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Feature Type of Video Type of Activity Illumination In-

variance

View Robustness Examples

Background Sub-

tracted Silhouette

Near Field,

Medium Field

Single agent or

small number of

agents

Moderate Not Robust Gait Recognition

([4, 110])

Shape Near Field Single agent Moderate Can be incorpo-

rated by affine

invariance on

shapes

Gait Recognition

([4, 22]), Far

Field Activity

Recognition ([5])

Optical Flow or

Texture Flow

Near Field,

Medium Field,

Restricted Far-

Field

Single agent

(Near Field),

Small number of

agents (Medium

Field) and Large

number of agents

(Crowds in far

field)

Moderate Affine invariance

can be incorpo-

rated

Traffic Monitor-

ing ([111, 112],

Crowd Monitor-

ing ([113])

Point Trajectories Far Field or Con-

strained Medium

Field

Single agent

(Constrained) or

small number of

agents (far-field)

Strongly illumi-

nation insensitive

Easy to incorpo-

rate

View Invari-

ant action

recognition([114],

Traffic monitor-

ing ([17]), Far-

field surveillance

[51])

Circular Fourier

Features

Medium and Near

field

Single Agent Moderate View Invariant Action recogni-

tion [3]

Table 3.1:Various Features for the low-level representation (Dynamic Sketch) andtheir proper-

ties and applicability in various scenarios
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ing importance in recent years. Computationally, automaticprimitive extraction may be

achieved by mapping the low-level sketches to specific modelspaces. There are several

choices for the model space such as is reviewed below. Most ofthe popular approaches

can be divided into two broad classes - Spatio-temporal models and Dynamical models.

Spatiotemporal models:These approaches typically encode configurations of spatio-

temporal patterns as a model for a video segment, for example, as representative human

poses or bags of spatio-temporal features etc. [115] represent human actions using a series

of codewords called ‘movelets’ where each movelet encodes aparticular configuration of

the human body - head, torso, upper and lower limbs. A similarapproach was used in

[116] to learn human actions performed in the profile view from a long sequence. Tem-

poral templates called motion-history and motion energy which encode both the shape

and temporal motion characteristics of the action were proposed as features in [25]. De-

scribing an activity by a collection of space-time interestpoints which represent points

of high gradient in the three-dimensional space-time was proposed by [31]. In a similar

approach, [28] represent video segments as histograms of spatio-temporal gradients at

multiple temporal scales. Each segment of video was modeledas a document with words

drawn from a corpus of quantized spatial motion histograms in [7].

Dynamical Models: Dynamical approaches explicitly encode the temporal evolu-

tion of features for each action. A method to segment human actions into elementary

building blocks called movemes - each moveme assumed to belong to a known alpha-

bet of dynamical systems was presented in [117]. Modeling ofcomplex activities using a

switching linear dynamic system, where each system corresponding to an action-primitive

was proposed in [62] and [118]. Similarly, human gait patterns have been modeled as lin-

ear dynamical systems in [4, 53] and by HMM’s in [46].

We summarize in Table 3.2 some of the well-known tools and their respective char-

acteristics.
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3.2.3 Semantic Sketches

In activity recognition context, semantic sketches for activities essentially model

the spatio-temporal constraints between the primitives. The major approaches to model

such constraints fall into two classes - statistical and rule-based.

Statistical Approaches: HMM’s provide an elegant mathematical tool to model

the temporal relationships among action primitives [115],[61]. Dynamic belief networks

allow complex conditional dependencies between several primitives to be expressed using

directed acyclic graphs and have been used for traffic scene analysis in [17]. Complex

activities can be modeled as being generated by a switching linear dynamic system as in

[62], [118], [119] where each system corresponds to a particular primitive. Textural video

sequences have been modeled as a finite collection of visual processes, each of which is

a dynamic texture in [56].

Rule-based approaches:Syntactic approaches such as stochastic context free gram-

mars allow expressing the relationships as a set of production rules and have been used for

action recognition in [93, 120]. Temporal logic networks which encode logical relation-

ships between primitives were used for recognizing events involving multiple objects in

[121]. A bag of primitives approach is used in [122] to represent activities. Petri-nets pro-

vide rich descriptive capabilities to express complex interactions such as synchronization,

co-occurrence and concurrence, and have been used in [85].

3.3 Modeling motion primitives with Dynamical Systems

First, we assume that a suitable low-level feature has been chosen that encodes the

desired properties such as shape and motion. Given a sequence of these features, we

would now like to represent them in a compact manner. In this section, we show that

LDS is an appropriate model to describe short-term dynamics. We review the necessary

mathematical details and estimation algorithms for LDSs and show that they are well

suited to model human actions.

Linear Dynamical System for Action Elements:The dynamics of each action el-

ement can be modeled using a time-invariant dynamical system. In several scenarios (like
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Property CLDS SLDS [62] [118] Grammars [93] DBNs [17] Sliding win-

dow approaches

[7, 28]

View Invariance Yes No Yes Yes No

Rate Invariance Yes No Maybe Maybe No

Activity based

Clustering

Yes No No No Yes

Action Recogni-

tion

Yes Yes Yes Yes Yes

Frame Sketch Any appropriate

low level feature

Any appropriate

feature

Any Appropriate Any Appropriate Any appropriate

Action Sketch Linear Dynamical

System (ARMA)

Linear Dynamic

System

Vocabulary of

Primitives

Vocabulary of

primitives

Action prototypes

Semantic Sketch Cascade Structure Switching Grammatical

Rules

Directed Acyclic

Graph

Bag of features

Sports Video Yes Yes Yes Yes Yes

Surveillance

Video

Yes Yes Yes Yes Yes

Table 3.2:Various approaches for activity based mining from video and their characteristics
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far-field surveillance, objects moving on a plane etc), it isreasonable to model constant

motion in the real world using an LDS model on the image plane.Given the boundaries

between action elements, we model each of these segments using an LDS model. Lets

assume that theP+ 1 consecutive framessk, ...,sk+P belong to thekth segment and let

f (i) denote the observations (flow/silhouette etc) from that frame. Then, the dynamics

during this segment can be represented as

f (t) =Cz(t)+w(t) w(t)∼ N(0,R) (3.1)

z(t +1) = Az(t)+v(t) v(t)∼ N(0,Q) (3.2)

z is the hidden state vector,A the transition matrix andC the measurement matrix.

w andv are noise components modeled as normal with 0 mean and covarianceR andQ

respectively. When flow is used as the feature, we can write similar equations for the

x andy components independently. We assume independence of flow components for

simplicity and to reduce the dimensionality of the estimation problem. We denote the

cross correlation betweenw andv by S. The parameters of the model are given by the

transition matrixA and the state matrixC. We note that the choice of matricesA,C,R,Q,S

is not unique. However, we can transform these models to their corresponding “innovation

representations” [57] which is unique. Similar models havebeen successfully applied in

several tasks such as dynamic texture synthesis and analysis [123], comparing silhouette

sequences [4], [53] etc. But we differ from these as we do not assume that we know

the temporal span of the segments. We explicitly deal with the temporal segmentation

problem in section 4.2.1. In summary, the parametric model for each segment consists of

the measurement matrixC and the transition matrixA.

3.4 Estimation of the model parameters

It is easily shown that there are infinitely many choices of parameters that give rise

to the same sample pathf (t). Resolving this ambiguity requires one to impose further

constraints and choose a canonical model. The conditions asproposed in [123] are that
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m>> d, rank(C) = d andCTC = I . The number of unknowns that need to be solved for

are:md− d(d+1)
2 for C, d2 for A, d(d+1)

2 for Q: resulting inmd+d2 unknowns (we have

ignored the observation noise covariance as of now). For each observed frame we getm

equations. Hence,d+1 linearly independent observations are sufficient to solvefor the

required parameters (m(d+1)> md+d2 sincem>> d).

Using these constraints, the parameter estimates can be obtained in closed form.

The algorithm is described in [57] and was adopted for texture modeling in [123]. Let ob-

servationsf (1), f (2), . . . f (τ), represent the features for the frames 1,2, ...τ. Let [ f (1), f (2), . . . f (τ)]

=UΣVT be the singular value decomposition of the data. ThenĈ=U, Â=ΣVTD1V(VTD2V)−1Σ−1,

whereD1 = [0 0;Iτ−1 0] andD2 = [Iτ−1 0;0 0]. These estimates ofC andA constitute the

model parameters for each action segment. For the case of flow, the same estimation pro-

cedure is repeated for thex andy-components of the flow separately. Thus, each segment

now is represented by the matrix pair(A,C) as shown in figure 4.1 (d) in order to estimate

the corresponding system and transition matrices. The datamatrix is a tall thin matrix

(size MN× τ ). Computing the singular vectors of the data matrix can be reduced to

finding the singular vectors for aτ × τ matrix and taking appropriate linear combinations

of those singular vectors. The details of these matrix operations are fairly standard and

one may refer to [124] for brief details of the approach. Thismakes the algorithm for

estimating the system and transition matrices, efficient, robust, simple and closed-form.

3.5 Generative Power of the Model

A useful test for a representational model is to synthesize from it, and see how well

the synthesized samples resemble real-world phenomenon. In this section, we show a

few synthesis results obtained using the learnt models. In the first experiment, we used

one walk sequence from the USF gait gallery data [125] to learn one walk pattern. We

use background subtracted images as the features. We modeled the entire walk sequence

using just one LTI model. Then, we used the learnt model to generate the sequence. A

few frames from the generated sequence are shown in figure 3.1.

In the next experiment, we generated a bending sequence. During the learning
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Figure 3.1:A model for the silhouette dynamics for gait was learnt using 1 segment. Shown

above is the generated gait sequence from the learnt model.

stage, the sequence was segmented automatically into 3 segments by the proposed seg-

mentation technique. A model was learnt for each segment. Tosynthesize the activity, we

generated sequences from each of the models, and switched from one model to the other

according to the discovered cascade. The dwell time in each segment was sampled from

the learnt distributions. The generated sequence is shown in figure 3.2.

Figure 3.2: A model for silhouette dynamics during ‘bending’ was learnt using 3 segments.

Shown above is the generated bending sequence from the learnt cascade of LTI models.

3.6 Model Order Selection

A practical issue in learning the LTI model parameters is to choose an appropriate

value for the hidden state dimensiond. The answer to this is tied to the domain, and

there is no general selection rule. The numberd represents the number of basis vectors

to project the data on to (the number of principal components). Usually, the higher the

dimensiond, the more accurate the representation will be. But, the higher thed, the more

the data required for robust estimation of the parameters and the higher the computational

cost. Higher-order models also tend to over fit the training data with poor generalization

to test instances. One needs to make a trade-off between these issues. To see the effect

of varyingd, we conducted recognition experiments on the USF dataset [125] usingd =

5,10,15 on Probes A-G. Results are shown in figure 3.3. We see that therecognition
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accuracies show an increasing trend asd increases from 5 to 10, but the increase fromd=

10 tod = 15 is only marginal and in some cases even negative. This can be attributed to

over fitting of the training data which does not generalize well to test instances. In general,

criteria such as Akaike Information Criteria (AIC) [126], Bayesian Information Criteria

(BIC) [127], etc may also be used to estimate the optimal numberof free parameters (in

our cased). In our experiments, we empirically found that usingd= 10 gives good results

across various domains and activity classes.

Figure 3.3:Model order selection experiment on the USF gait database. Bar plot shows recog-

nition performance as a function of the hidden state dimension (d) on the 7 different challenge

experiments (probes A-G) in the USF gait database.

3.7 Distance Metrics on LDS space

One of the most commonly used distance metrics on the LDS space is based on

subspace angles(θi , i = 1,2, ....n) between two ARMA models. These are defined in

[60] as the principal angles (θi , i = 1,2, ....n) between the column spaces generated by the

observability spaces of the two models extended with the observability matrices of the

inverse models [60]. The subspace angles (θ1,θ2, ...) between the range spaces of two
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matricesA andB is recursively defined as follows [60],

cosθ1 = max
x,y

∣

∣xTATBy
∣

∣

‖Ax‖2‖By‖2
=

∣

∣xT
1 ATBy1

∣

∣

‖Ax1‖2‖By1‖2
(3.3)

cosθk = max
x,y

∣

∣xTATBy
∣

∣

‖Ax‖2‖By‖2
=

∣

∣xT
k ATByk

∣

∣

‖Axk‖2‖Byk‖2
f or k= 2,3, ... (3.4)

subject to the constraintsxT
i ATAxk = 0 andyT

i BTByk = 0 for i = 1,2. . . ,k−1. The

subspace angles between two ARMA models [A1,C1,K1] and [A2,C2,K2] can be com-

puted by the method described in [60].

Using these subspace anglesθi , i = 1,2, ...n, three distances, Martin distance (dM),

gap distance (dg) and Frobenius distance (dF ) between the ARMA models are defined as

follows:

d2
M = ln

n

∏
i=1

1
cos2(θi)

, dg = sinθmax, d2
F = 2

n

∑
i=1

sin2 θi (3.5)

3.8 Building Invariances into the LDS Distance Metrics Model

The distance metrics defined in the previous section do not take into account ge-

ometric transformations that do not alter the perception ofthe spatio-temporal pattern.

When there is a change in viewpoint or there is an affine transformation of the low-level

features, the distance metrics will break down. Some features such as shape are invariant

to affine transformations by definition. Features such as point trajectories can be easily

made invariant to view and affine transforms. But, in general,it is not guaranteed that a

given feature is invariant under these transformations (optical flow, background subtracted

masks, motion-history ([25]) and other ‘image-like’ features). Reliance on the feature to

provide invariance to these factors will tie the rest of the processing to that particular fea-

ture, which is not desirable as different features are appropriate for different domains and

video characteristics. Thus, instead of relying on the feature, we propose a technique to

build these invariances into the distance metrics defined above. This makes the algorithm

flexible to the choice of feature.
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3.8.1 Affine and View Invariance

In our model, under feature level affine transforms or view-point changes, the only

change occurs in the measurement equation and not in the state equation. As described

in section 3.4 the columns of the measurement matrix (C) are the principal components

(PCs) of the observations of that segment. Thus, we need to discover the transformation

between the correspondingC matrices under an affine/view change. We start by prov-

ing a theorem that relates low level feature transforms to transformation of the principal

components.

Theorem: Let {X(p)} be a zero-mean random field wherep ∈ D1 ⊆ R2. Let

{λ X
n } and{φX

n } be the eigenvalues and corresponding eigenfunctions in theK-L expan-

sion of the covariance function ofX. Let T : D2 −→ D1, whereD2 ⊆ R2 be a continuous,

differentiable one-to-one mapping. Let{G(q)}, q ∈ D2 be a random field derived from

X asG(q) = X(T(q)). If the Jacobian ofT, denoted byJT(r), is such thatdet(JT(r)) is

independent ofr, then the eigenvalues and eigenfunctions ofG are given byλ G
n =

λ X
n

|JT |
1/2

andφG
n (q) = φX

n (T(q))

|JT |
1/2 .

Proof: Let KX(p,s) be the covariance function ofX. Then by the definition of

the K-L expansion the following equations hold.

∫

D1

KX(p,s)φX
n (s)ds= λ X

n φX
n (p),

∫

D1

φX
m(s)φX

n (s) = δ (m,n) (3.6)

where bothp,s∈ D1 and δ (m,n) = {1 if m = n, 0 otherwise}. Now, {G(q)} is

related toX asG(q) = X(T(q)). For q, r ∈ D2, the covariance function ofG is given

by KG(q, r) = E[G(q)G(r)] = E[X(T(q))X(T(r))] = KX(T(q),T(r)). Now consider the

following equation.

∫

D2

KG(q, r)φX
n (T(r))dr =

∫

D2

KX(T(q),T(r))φX
n (T(r))dr (3.7)

=
∫

D1

KX(p,s)φX
n (s)

1
|JT(r)|

ds (3.8)

37



where (3.8) is obtained by a change of variables given byp= T(q),s= T(r), and

|JT(r)| is the determinant of the Jacobian ofT with respect tor evaluated atr = T−1(s).

Now, if |JT(r)| = |JT | = constant, then it comes out of the integral in (3.8), and using

(3.6) we obtain

∫

D2

KG(q, r)φX
n (T(r))dr =

λ X
n

|JT |
φX

n (T(q)) (3.9)

It can further be shown that the set of functions{
φX

n (T(q))

|JT |
1/2 } form an orthonormal set.

Thus, we have shown that the eigenvalues and eigenfunctionsof G are given by{ λ X
n

|JT |
1/2}

and{φX
n (T(q))

|JT |
1/2 } respectively. The utility of this theorem is that if the low-level features

like flow/silhouettes undergo a spatial transformation which satisfies the conditions stated

in the theorem, then the corresponding PCs also undergo the same transformation.

3.8.2 Application to Invariances

When two images are related by a general spatial transform (affine, homography

etc), they are related byI2(x,y) = I1(T(x,y)).

Affine Transforms: Consider the set of 2-D affine-transforms given byT(p) =

Ap+ t. Expressing this in inhomogeneous coordinatesp= [x,y]′

T(p) =





a11x+a12y+ t1

a21x+a22y+ t2



 (3.10)

The Jacobian for the transformation is given byJT =





a11 a12

a21 a22



 whose determinant

is a constant. Thus, by the above theorem, if a set of observations are affine transformed

then their principal components also get transformed by thesame affine parameters.

Homography: Consider now a 2-D plane homography given byH =
[

hi j
]

. In

the inhomogeneous coordinates the transformation is givenby

T(p) =





(h11x+h12y+h13)/(h31x+h32y+h33)

(h21x+h22y+h23)/(h31x+h32y+h33)



 (3.11)
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As is apparent, the theorem does not hold for a general homography. We discuss

approximations under which the theorem may be applied to homographies. Let, the trans-

formation between the coordinate frame of the first camera and that of the second camera

be given by a rotation and translation. Then, the homographyinduced by a planeπ,

between the two views is given by [128]

H = M′(R+
TnT

dπ
)M−1 (3.12)

whereR andT are the rotation matrix and translation vector respectively, n is the normal

to the planeπ anddπ is the distance of the planeπ from the origin,M andM′ are the

transformation from the image plane to the camera coordinate system for the two cameras.

In the simplest case, we can takeM = M′ =











f 0 x0

0 f y0

0 0 1











, where f denotes the focal

length of the camera, andx0,y0 is the origin of the image plane. When the two views are

close to each other, we can approximateT = [εx,εy,εz]
′ andR using small rotations as

[129]

R≈











1 −n3θ n2θ

n3θ 1 −n1θ

−n2θ n1θ 1











(3.13)

where,θ is the rotation angle,n1,n2,n3 are the directional cosines of the axis of rotation,

hence, related byn2
1+n2

2+n2
3 = 1. On substituting these quantities and the plane normal

n= [nx,ny,nz], in (3.12) and simplifying, we obtain the following relations between the

required elements ofH – h31,h32,h33,

h31

h33
=

a/ f
−ax0/ f −by0/ f +c

(3.14)

h32

h33
=

b/ f
−ax0/ f −by0/ f +c

(3.15)
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wherea= −n2θ + εznx
dπ

,b= n1θ +
εzny
dπ

,c= 1+ εznz
dπ

. In the limit, whenθ → 0 and

εx,εy,εz → 0, we obtaina→ 0,b→ 0,c→ 1.

lim
θ ,εx,εy,εz→0

h31

h33
= 0 (3.16)

lim
θ ,εx,εy,εz→0

h32

h33
= 0 (3.17)

Thus, for small view changesh31,h32<< h33. Under these conditions, the Jacobian

of the above transformation can be approximated by

JT = 1
h33





h11 h12

h21 h22



 whose determinant is also a constant. Thus, the above theorem

can be used even in the case where observations are transformed by a homography under

the above approximation.

Note: The invariance theorem was proved for continuous random fields. In real

images, spatial transforms are not one-to-one maps due to the discrete nature of the un-

derlying lattice. But, our experiments suggest that this theorem can be used to get very

good approximations even in the discrete case.

Modified Distance Metric: Proceeding from the above, to match two ARMA

models of the same activity related by a spatial transformation, all we need to do is to

transform theC matrices (the observation equation). Given two systemsS1 = (A1,C1)

andS2 = (A2,C2) we modify the distance metric as

dcompensated(S1,S2) = min
T

d(T(S1),S2) (3.18)

whered(., .) is any of the distance metrics in (3.5),T is the transformation.T(S1) =

(A1,T(C1)). Columns ofT(C1) are the transformed columns ofC1. The optimal trans-

formation parameters are those that achieve the minimization in (3.18). Depending on

the complexity of the transformation model, one can use featureless image registration

techniques such as [130], [131] to arrive at a good initial estimate ofT. Computing the

gradient of the proposed distance metric is extremely difficult due to the recursive way the

subspace angles are defined (section 4.2.3). We could not arrive at closed form expres-

sions for the gradients. Instead, we resort to using Nelder-Mead’s (NM) simplex method
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to perform the optimization. The NM method is a direct searchalgorithm that is used

when gradients cannot be computed or accessed. Even though only limited convergence

results for the NM method are known, it is known to work well inpractice [132].

To illustrate the effectiveness of our proposed technique,we conducted the follow-

ing experiment. We took a set of 10 dynamic textures from [133]. The textures were

modeled to be lying on a plane in front of the camera perpendicular to the optical axis,

and a change in viewing angle from 0◦ to 20◦ in increments of 5◦ was simulated by means

of a homography (0◦ corresponds to the frontal view). The images were taken as observa-

tions. Figure 3.4(a) shows how the Frobenius distance breaks-down as the viewing angle

is changed. The plot also showsdcompensated. It can be seen that the proposed technique

indeed works better. In figure 3.4(b), we plot normalized histograms of(dF −dcompensated)

for same textures as seen from different views and differenttextures as seen from different

views. When comparing different textures,dcompensatedis not significantly lower thandF ,

hence the peak at 0. But, for the same texture as seen from different views, we see that

dcompensatedis significantly lower thandF .

(a) (b)

Figure 3.4: (a)Variation of Mean Distance as viewing angle changes. Sample views shown,

(b)Histogram of difference between Frobenius anddcompensatedas seen from different views
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3.8.3 Invariance to Execution Rate of Activity

While building models for activities, one also needs to consider the effect of dif-

ferent execution rates of the activity [67]. In the general case, one needs to consider

warping functions of the formg(t) = f (w(t)) such as in [1] where DTW is used to esti-

matew(t). We consider linear warping functions of the formw(t) = qt for each action

segment. Linear functions for each segment give rise to a piece-wise linear warping func-

tion for the entire activity, which accounts for variabilities in execution rate well. It can

be shown that, under linear warps the stationary distribution of the Markov process in

(3.2) does not change. Hence, a linear warp will affect only the state equation and not

the measurement equation i.e. theA matrices and not theC matrices. Consider the state

equation of a segment:X1(k) = A1X1(k− 1) + v(k). Ignoring the noise term for now,

we can writeX1(k) = Ak
1X(0). Now, consider another sequence that is related toX1 by

X2(k) = X1(w(k)) = X1(qk). In the discrete case, for non-integerq this is to be interpreted

as a fractional sampling rate conversion as encountered in several areas of DSP. Then,

X2(k) = X1(qk) = Aqk
1 X(0). i.e. the transition matrix for the second system is relatedto

the first byA2 = Aq
1.

Estimating q: Given two transition matrices of the same activity but with dif-

ferent execution rates, we need a technique to estimate the warp factorq. Consider

the eigendecomposition ofA1 = V1D1V
−1
1 , andA2 = V2D2V

−1
2 . Then, for rationalq,

A2 = Aq
1 = V1Dq

1V
−1
1 . Thus,D2 = Dq

1, i.e. if λ is an eigenvalue ofA1, thenλ q is an

eigenvalue ofA2 and so forth. Thus, we can get an estimate ofq from the eigenvalues of

A1 andA2 as

q̂=
∑i log

∣

∣

∣λ (i)
2

∣

∣

∣

∑i log
∣

∣

∣λ (i)
1

∣

∣

∣

(3.19)

whereλ (i)
2 andλ (i)

1 are the complex eigenvalues ofA2 andA1 respectively. Thus,

we compensate for different execution rates by computing ˆq. In the presence of noise, the

above estimate ofq may not be accurate, and can be taken as an initial guess in an opti-

mization framework similar to the one proposed in section 3.8.1. Note that compensation

for execution rate is done only for segments which have very similar Ĉ matrices.
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3.9 View Invariance-Simulated Data

We show a recognition experiment based on our modified distance metric. In the

next experiment, the setup is the same as described above. But, this time we have 10 ac-

tivities –Bend, Jog, Push, Squat, Wave, Kick, Batting, Throw, Turn Sideways, Pick Phone.

Each activity is executed at varying rates. For each activity, a model is learnt and stored as

an exemplar. The features (flow-fields) are then translated and scaled to simulate a camera

shift and zoom. Models were built on the new features, and tested using stored exemplars.

For the recognition experiment, we learnt only a single LTI model for the entire duration

of the activity instead of a sequence. We also implemented a heuristic procedure in which

affine transforms are compensated for by locating the centerof mass of the features and

building models around its neighborhood. We call it Center ofMass Heuristic – CMH.

Recognition percentages are shown in table 3.3. The baselinecolumn corresponds to di-

rect application of the Frobenius distance. We see that our method performs better in

almost all cases.

Baseline CMH Compensated

distance

Exemplars Exemplars Exemplars

Activity 1 10 1 10 1 10

1 40 0 40 40 40 50

2 0 0 0 10 70 80

3 0 0 20 40 10 20

4 40 30 10 20 30 60

5 30 30 40 20 40 40

6 10 0 40 50 30 50

7 0 10 0 30 30 70

8 0 10 30 40 0 40

9 0 40 20 20 30 70

10 0 0 10 20 40 40

Average 12 12 21 29 32 52

Table 3.3: Recognition experiment simulated view change data on the UMD database. Table

shows a comparison of recognition performance using (a) Baseline technique - direct application

of system distance, (b) Center of Mass heuristic, (c) Proposed Compensated distance metric.
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Chapter 4

Sequence of Dynamical Systems for Video Clustering

Parallel to the development of accurate and efficient recognition techniques, there

has also been a lot of interest into the discovery of patternsfrom raw data in the pat-

tern recognition community. Pattern recognition vs pattern discovery is a fundamental

choice that is faced in almost all areas of machine learning.Specific to the activity anal-

ysis area, existing literature focuses on the recognition problem to a large extent. In a

largely unrelated setting, there has been significant research into indexing of multimedia

data such as news clips, sports videos etc according to theircontent such as in [134].

The pattern discovery approach has also been pursued for this problem domain such as in

[135]. Applications for automatic discovery of activity patterns are numerous. For exam-

ple, security and surveillance videos typically have very repetitive activities. If the typical

activities can be clustered, then several problems such as unusual activity detection, effi-

cient indexing and retrieval can be addressed. Forensic analysis of surveillance videos is

another fast growing and important application area. In theabsence of extra information,

such as the specific time and location of an unusual activity,current approaches to video

forensics involve linear searches over the entire video feed by a human analyst and hence

are not scalable when there are a large number of cameras deployed at various locations.

Instead of expecting an analyst to sift through the voluminous data, we ask - can ‘clus-

ters’ of activities be presented that embody the essential characteristics of the videos ?

The need for such activity based indexing stands to increasein the near future as more

security installations are deployed in a wider variety of locations.

Unsupervised activity-based indexing goes far beyond the traditional problems of

activity analysis and recognition, where one knows what oneis looking for. Unsuper-

vised indexing requires that activity patterns be discovered without deciding a priori what

to look for. As a motivating example, consider the problem ofunderstanding a foreign

language. If one hears only a continuous stream of words, howdoes one know where
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a word begins and where it ends. If one knew the words, the boundaries between them

can be easily perceived. And if one knew the boundaries, thenthe words can be learnt

as well. Similarly, given a continuous video stream, if we knew what activities occur in

it, we can discover the boundaries between them – and if we were given the boundaries,

the individual activities could be learnt as well. [136] showed evidence that supports the

notion that infants solve this problem by using coherent patterns of sounds to discover

syllables and transitions of syllables within words to distinguish the ends of words. We

use a similar framework in the context of activities - where each action primitive is com-

posed of a coherent set of features, and an activity is definedby the way the primitives

are put together. Activity-based indexing can benefit by gaining insight into how humans

perceive and recognize activities. First, we discuss a general framework of activity per-

ception. Then, we discuss how the cascade of linear dynamical systems model (CLDS)

can be derived from the proposed framework.

Most single-agent activities in surveillance settings consist of an actor (subject) ex-

ecuting a series of action elements (verbs) in order to achieve a certain goal. For example,

a man driving a car into a parking lot, parking the car, alighting from it, walking out of

the parking lot (series of action elements-verbs) contributes to a typical activity. More-

over, several multi-agent activities may also be adequately represented by a sequence of

actions. Thus, CLDS is an appropriate model for representinga wide variety of com-

mon activities. The model for an activity must be able to represent each of the verbs

(action elements) separately while simultaneously being able to detect the boundaries be-

tween them. As we mentioned earlier, we use the consistency of features within each

action-element as a cue to discover the boundaries between them. The specific way the

action-elements interact with each other is used to discover the activities themselves. The

overall system overview is shown in figure 4.1. Each of the components will be described

in detail in the ensuing discussion.
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Figure 4.1: System Overview: (a) Input video, (b) Feature extraction (Dynamic Sketch), (c)

Temporal segmentation, (d) Build and learn dynamical models, (e,f) Cluster inmodel space taking

into account invariances on the data, (g) Identify repetitive activities

4.1 Sequence of Dynamical Systems

We assume that a complex activity can be broken down into its constituent action

elements. During each action element, the motion of the actor remains consistent. In fact,

it is this consistency of motion that segments an activity into action elements. Therefore,

each action element is modeled using a time invariant dynamical system and the activity

is modeled as a cascade of dynamical systems. In reality, most activities have a very

specific temporal order for the execution of action elements. For example, if our goal is

to get to the office, then the sequence of actions executed might be - drive into parking lot,

park car, alight from car, walk away from the parking lot. Therefore, we model an activity

as a cascade of action elements with each action element modeled as an LDS. Figure 4.2

illustrates the complete model for such an activity.

Switching between Dynamical Systems: In order to completely specify the

model we also need to specify the switching times between these dynamical systems or

equivalently, the amount of time (or frames) spent executing an action element i.e. the

dwell time. We considered modeling the activity as a Markov model,in which case the
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Figure 4.2:Illustration of a cascade of three linear dynamical systems. The temporal order of the

execution of these dynamical models and their switching times are shown with arrows.

probability distribution of the dwell time turns out to be anexponential distribution whose

mode is at 0. But, physically the amount of time spent doing oneparticular action takes a

finite amount of time. Thus, to model the dwell time, we need a continuous distribution

over time that satisfies the following requirements - a) Support set which is the entire non-

negative real line, b) Non-zero mode. The Gamma distribution satisfies both the above

requirements. Simpler choices such as Gaussian, exponential, double exponential violate

one or the other requirement. Thus, we model the dwell time for each action element as

a Gamma distribution with parametersαk andβk with αk > 1 (this constraint ensures a

non-zero mode). The Poisson distribution also shares the above properties except that it

is a discrete distribution.

The parametric Gamma distribution is given by

g(x;α,β ) = xα−1β αe−βx

Γ(α)
f or x> 0 (4.1)

whereΓ(α) is the gamma function. The meanµ and varianceσ2 of the gamma

distribution are given by

µ =
α
β
, σ2 =

α
β 2 (4.2)

Given samples drawn from the above distribution, we can estimate the parameters

α andβ as follows. Denoting the the sample mean byµ̂ and the sample variance bŷσ2,

we obtain

α̂ =
µ̂2

σ̂2 , β̂ =
µ̂
σ̂2 (4.3)
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4.2 Learning Model Parameters

We have modeled an activity as a cascade of dynamical systems. But given a video

sequence, we first need to segment the video into action elements and discover the re-

lationship among them. The challenge is to accomplish all ofthis in a completely un-

supervised manner while being invariant to variabilities in an activity such as execution

rate, resolution of video, rotation and translation etc. Wewill now describe an algorithm

to automatically segment the video and learn the model parameters in an unsupervised

manner.

4.2.1 Discovering Action Boundaries

As mentioned earlier, we use ‘consistency’ of features within each action-element

as a cue to discover boundaries between them. Naturally, theexact measure of ‘consis-

tency’ is tied to the specific feature at hand. For example, ifthe features were point-

trajectories, a natural metric to discover segment boundaries would be space-time curva-

ture [77]. Similarly, for shape features a reasonable metric would be shape deformation

[137]. In this section, we describe a simple method for discovering action boundaries that

works well for background subtracted silhouettes (and other image-like features).

During each action segment, the evolution of features is modeled using an affine

motion model as is usually the case with traditional tracking algorithms. The crucial

difference is that, we do not actually segment and track individual objects in the scene,

but instead model the entire feature during a segment using the affine motion model.

For the first few (about 5) set of frames after the beginning ofa new segment, we

cumulatively learn a single set of affine parameters for the change in the feature. For

every incoming new frame, we evaluate whether it is consistent with the predictions of

the learnt affine parameters. If so, we add the frame to the current segment. Otherwise,

we detect the presence of a boundary. Learning the affine parameters for each segment

can be achieved in closed-form using the properties of the fourier-transform [130] (FFT).

This segmentation scheme is suboptimal due to the assumption of affine motion. To

overcome this we iterate back and forth between learning theLDS parameters for each
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segment and tweaking the segment boundaries till convergence is reached. Taking the

output of the above scheme as an initial point, we learn the LDS parameters for each

segment. Without loss of generality, letS1 = (A1,C1) andS2 = (A2,C2) be two adjacent

segments and their corresponding LDS models. Suppose the temporal span ofS1 is [t1, tb)

and that ofS2 is [tb, t2]. Heretb denotes the boundary between the segments. As will

be described in section 3.4, columns ofCk correspond to the topd principal components

(PCs) of the observations in segmentk. To evaluatethe boundary according to the learnt

models, we compute the reconstruction error of all the observations according to the PCs

in the corresponding segments. We move the boundary by an amount τ in forward and

backward directions and choose the one that minimizes this error. Thus, we search for the

minima of the following cost functional:

∆(τ) =
tb+τ

∑
t=t1

∥

∥C1(C
T
1 ft)− ft

∥

∥

2
+

t2

∑
t=tb+τ

∥

∥C2(C
T
2 ft)− ft

∥

∥

2
(4.4)

ft is the observation at timet andτ ∈ [−T,T]. In our experiments we typically

choseT to be 10. The new boundary is found astnew
b = told

b +argminτ ∆(τ). With the

new boundary the models are learnt again, and the process is repeated till convergence, i.e.

the boundary does not change anymore argminτ ∆(τ) = 0. We show some segmentation

results on a near-field video sequence of an actor performing5 different activities. Each

activity is repeated several times at random. Note that the segmentation algorithm is

independent of the rate of execution of the activity. The video sequence was consistently

segmented at the same pose in several instances of the same activity.

Some segmentation results obtained on actual video sequences of a person perform-

ing 5 different activities are shown in Figure 4.3 from two different views.

We see that the videos are segmented at the same pose consistently in both views.

This indicates that our algorithm indeed finds semanticallymeaningful segment bound-

aries consistently and in a view-invariant manner.

Effect of Boundary Improvement: In most cases, temporal segmentation based

on affine parameters gave consistent results for segmentinga sequence into its constituent

action elements. Nevertheless, there were some sequences where the segmentation was
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Figure 4.3: Sample segment boundaries for 5 activities. Note that the temporal segmentation

algorithm finds a boundary whenever there is a change in the direction of motion. Notice that the

segmentation results are consistent across view changes.

inadequate and we found that refinement of these boundaries using feedback significantly

improved the results. We show one such example in figure 4.4. We notice that the last

segment boundary is incorrect, and it is corrected by refinement using feedback. Note

that the boundary improvement algorithm itself is independent of what feature is used.

Figure 4.4:Bending boundaries (a) Before refinement, (b) After refinement

4.2.2 Relation with Switching Linear Dynamical Systems:

Learning the switching instants between LDS models is also encountered in

SLDS. In SLDS, usually an extra hidden state is used to model switches. Any change

in this hidden state corresponds to a switch between the LDS models such as in [62] and

[63]. Usually, the number of states to switch amongst is assumed to be known (equal to

the number of distinct actions), but we do not make any such assumption. An approach

was presented in [66] for a special class of systems to estimate the number of states as well

as to learn the dynamics of each system. In our experiments, we found that our algorithm

for segmentation works reasonably well with a far smaller computational burden.
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4.2.3 Clustering Action Element Prototypes

We have now segmented a long video sequence into several distinct segments and

learnt the model parameters(Â,Ĉ) for each of these segments using the method described

in section 3.3. Even though a long video might consist of several segments, not all of them

will be distinct. We need to cluster these segments (figures 4.1 (e), (f)) to discover the

distinct action elements (words). In order to perform this clustering, we need a distance

measure on the space of LDS models. We use subspace angles(θi , i = 1,2, ....n) between

two ARMA models which are defined in [60] as discussed in section 3.7.

We use the Frobenius distance in all the results shown in thischapter. Suppose we

haveN segments in the video sequence, then we create anN×N matrixW whose(i, j)th

element contains the distance between the models of segmenti and segmentj.

Clustering the SegmentsIn the current setting, we only have the notion of a ‘dis-

tance’ between two points (segments), but we do not have a Euclidean representation of

the points. Thus, this precludes the use of clustering techniques that rely on Euclidean

representation, such as k-means etc. The other popular alternative for clustering rely on

graph-theoretic methods such as Normalized cuts ([138]). The advantage offered by these

approaches is that they do not rely on Euclidean representations. The only requirement

is that a distance metric be defined between any two points. Hence, graph clustering al-

gorithms are a natural choice in the current setting. But, a practical problem in using

these algorithms is choosing the number of clusters. Resultsin spectral graph theory also

provide principled means for estimating the number of clusters. A well known result

regarding the Laplacian of a graph is briefly summarized as follows.

Let G= (V,E) be an undirected and unweighted graph with vertex setV of cardi-

nality n and edge set E of cardinalitym. The existence of an edge between two verticesvi

andv j is denoted as(vi ,v j) ∈ E(G). Let d j denote the degree of vertexv j . Let A be the

n×n adjacency matrix of the graph such thatAi j = 1 if and only if (vi ,v j) ∈ E(G). Let D

be the diagonal matrix withD j j = d j .

The Laplacian of the graph,L is defined as

L = D−A (4.5)

51



and the normalized Laplacian,Lnorm is defined as

Lnorm= D−1/2LD−1/2 (4.6)

A connected graph is a graph such that there exists a path between all pairs of

vertices. Aconnected componentis a maximal subset of the graph that forms a connected

graph. The following is a well-known result [139] that relates the number of connected

components of a graph to eigenvalues of its Laplacian.

Result: If G is a graph andL its Laplacian as defined above, then the multiplicity

of 0 as an eigenvalue ofL is equal to the number of connected components ofG ([139]).

This result is true for the normalized graph-Laplacian as well. While this result

holds for unweighted graphs, in our case the pairwise distance/similarity matrix represents

a weighted graph with the similarities as the edge weights. Connected components in our

case represent the clusters that we are looking for. Thus forthe weighted case, the smallest

eigenvalues will be close to 0 but not exactly 0. We have used this result to estimate

the number of clusters given the similarity matrix by analyzing the eigenvalues of the

Laplacian and searching for an ‘elbow’ that represent a sudden change in the eigenvalues.

The index at which the elbow is located is the estimated number of clusters. Practically,

it is easier to use the normalized Laplacian to search for theelbow, since its non-zero

eigenvalues are all 1 by a similar result as above. A synthetic example is shown in figure

4.5 for the case of two clusters. We generated scalar data from two Gaussian densities

with different means and large variances such that there is significant overlap in the pdfs.

This overlap is reflected in the similarity matrix as well in figure 4.5(a). The eigenvalues

of the normalized Laplacian are shown in figure 4.5(b). The ‘elbow’ is observed at 2 as

shown circled.

Once we have estimated the number of clusters, we can generate the clusters using

any standard graph clustering algorithm. We have used normalized cuts in our experi-

ments [138]. Let theK cluster centers thus obtained be given byC1,C2,C3, . . .CK. The

segmented video is then given by a sequence of these labels.
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Figure 4.5:Illustrative example for estimating the number of clusters using heuristics based on

the eigenvalues of the Laplacian of the similarity matrix (a) Similarity Matrix, (b) Eigenvalues of

the normalized Laplacian. The location of the elbow (shown circled) represents the estimate of

the number of clusters.

4.2.4 Discovering the Cascade Structure

After clustering the action elements each segment is assigned a label. Suppose we

have the following sequence of labels(C1,C3,C2,C6,C7,C8,C1,C3,C5,C2,C6,C1,C7,C8).

Persistent activities in the video would appear as a repetitive sequence of these labels.

From this sequence, we need to find theapproximatelyrepeating patterns. We sayap-

proximatebecause oversegmentation may cause the patterns to be not exactly repetitive.

We can say that(C1,C3,C2) and(C6,C7,C8) are the repeating patterns, up to one insertion

error. To discover the repeating patterns, we build n-gram statistics of the segment labels

as shown in figure 4.1 (g). We start by building a bi-gram, tri-gram and four-gram models.

In our experience, oversegmentation of the video is more common than undersegmenta-

tion. Thus, we allow for up to one insertion error while building the n-gram statistics. We

prune the bi-grams which appear as a subsequence of a tri-gram. We prune the tri-grams

in a similar fashion. Finally, we declare the n-grams with a count above a threshold (de-

pending on the length of the video) as the repeating patternsin the video. The cascade

structure of individual activities is the exact sequence ofthe prototypes in the n-grams.

Once we have the cascade structure, we can go one step furtherand build a generative
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model by learning the statistics of the duration of each action prototype. We model the

duration of each action prototype as a Gamma distribution with parametersαk > 1 and

βk. The parameters of the distribution can be learnt from training data as described in

section 4.1.

4.3 Sequence of Dynamical models for Activity based Video Mining

In order the validate and show the efficacy of the CLDS model foractivity based

unsupervised clustering of videos, we perform experimentson 5 databases.

1. UMD Dataset: This dataset contains 10 activities and 10 sequences per activity

performed by one actor and captured in 2 views.

2. INRIA database: This database consists of 10 actors performing 11 activities in

a near field setting and contains 3 executions per actor. Actors freely change their

orientation.

3. Torino 2006 figure skating data:We have used figure skating video from the 2006

Winter Olympics at Torino. This is completely unconstrained data and involves real

world conditions – pan, tilt and zoom of camera and rapid motion of the actor.

Note: Since most of the results are best viewed as videos, we refer the reader to

http://www.umiacs.umd.edu/∼pturaga/VideoClustering.html for video results.

4.3.1 Experiments on UMD Dataset [1]

In the experiment described in section 4.2.1, five differentcomplex activities –

throw, bend, squat, bat and pick phone were discovered automatically. We were also

able to learn the cascade of dynamical systems model in a completely unsupervised man-

ner. We manually validated the segment boundaries and the corresponding discovered

activities. We call each discovered repetitive pattern amotif. To counter oversegmenta-

tion effects, we merge very similar motifs. Since, a motif isa string of labels, we used the

Levenshtein distance [140] as the metric to merge them. The classification of the activities
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into motifs is tabulated in Table 4.1. We see that the table has a strong diagonal structure

indicating that each of the discovered motifs corresponds to one of the activities in the

dataset. Motifs 1-5 correspond to ‘bending’, ‘squatting’,‘throwing’, ‘pick up phone’ and

‘batting’ respectively. This demonstrates that the algorithm does indeed discover seman-

tically meaningful boundaries and also is able to distinguish among various activities by

learning the right cascade structure of the action prototypes.

Figure 4.6 shows activity labels for the entire video sequence extracted manually

and automatically. Matching of the colors in the figure indicates that the algorithm is

able to discover and identify activities in an unsupervisedmanner. We found that the

errors in labeling are typically near the transition between two activities, where the actual

labeling of those frames is itself subject to confusion. To visualize the clusters and to

see thetrajectoriesof each activity, we embedded each segment into a six-dimensional

Laplacian eigenspace. Dimensions 1-3 are shown in figure 4.7(a) and dimensions 4-6

in figure 4.7(b). We see that the trajectories of the same activity are closely clustered

together in the Laplacian-space.

Activity
Type

Motif
1

Motif
2

Motif
3

Motif
4

Motif
5

Bending 10 1 0 2 1

Squatting 2 8 2 0 0

Throwing 0 0 7 0 1

Pick

Phone

3 0 0 9 0

Batting 0 0 0 1 9

Table 4.1:Composition of the Discovered Clusters in the UMD database

4.3.2 INRIA - Free-Viewpoint Database [2]

The INRIA multiple-camera multiple video database of the PERCEPTION group

consists of 11 daily-live motions performed each 3 times by 10 actors. The actors freely

change position and orientation. Every execution of the activity is done at a different rate.
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(b) Automatically Discovered Labels (unsupervised−clustering)

(a) Manual Labeling

Figure 4.6:Color coded activity labeling for a 4000 frame video sequence of the UMD database

(a) Manual Labeling (b) Unsupervised Clustering result. Image best viewed in color.

(a) (b)

Figure 4.7:(a)Visualization of the Clusters in Laplacian Space dimensions 1-3. (b) Visualization

of Clusters in Laplacian Space dimensions 4-6. Best viewed in color.

For this dataset, we extract 16×16×16 circular FFT features as described in [2]. Instead

of modeling each segment of activity as a single motion history volume as in [2], we build

a time series of motion history volumes using small sliding windows. This allows us to

build a dynamic model for each segment. We use the segmentation method proposed in

[141].

We performed a clustering experiment on all 30 sequences (10actors×3 sequences

per actor). Segmentation was performed using the method described in [141]. The clus-

tering results are shown in Table 4.2. The strong diagonal structure of the table indicates

that meaningful clusters are found. We also see that some activities such as ‘Check Watch’

56



and ‘Cross Arms’ are confused. Similarly, ‘Scratch Head’ is most often confused with

‘Wave Hand’ and ‘Cross Arms’. Such a confusion maybe attributed to the similar and

also sparse motion patterns that are generated by those activities.

Motifs 1 2 3 4 5 6 7 8 9 10 11

Sit Down 28 3 0 0 0 1 0 0 0 0 0

Get Up 0 31 0 0 0 0 0 0 0 0 0

Turn Around 0 0 28 0 0 0 1 0 0 0 0

Check Watch 0 0 0 17 5 2 0 6 4 0 0

Cross Arms 0 0 0 0 16 3 0 10 1 0 1

Scratch Head 1 0 0 3 9 3 0 7 4 0 1

Walk 0 0 0 0 0 0 30 0 0 0 0

Wave Hand 0 0 0 6 0 4 0 10 1 0 0

Punch 0 0 0 0 0 4 0 7 9 5 0

Kick 0 0 0 1 0 1 0 0 2 26 0

Pick Up 2 2 0 1 0 1 0 0 4 0 23

Table 4.2:Confusion matrix showing view-invariant clustering using the proposed algorithm on

the INRIA dataset.

We also show the actual summarization results obtained on two of the actors –

‘Florian’ and ‘Alba’ in figures 4.8 and 4.9.

4.3.3 Torino 2006 Figure Skating data

We performed a clustering and retrieval experiment on the Torino 2006 Winter

Olympics figure skating videos. This data is very challenging since it is unconstrained

and involves rapid motion of both the actor (skater) and real-world motion of the camera

including pan, tilt and zoom. Some representative frames from the raw video are shown

in figure 4.10.

Low-level processing:We built color models of the foreground and background

using normalized color histograms. The color histograms are used to segment the back-

ground and foreground pixels. We perform median filtering followed by connected com-
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Figure 4.8:Color coded activity labeling for three sequences by actor ‘Florian’. First row in each

is the groundtruth, second row is the discovered labeling. Image best viewed in color.

ponent analysis to reject small isolated blobs. From the segmented results, we fit a bound-

ing box to the foreground pixels by estimating the 2D mean andsecond order moments

alongx andy directions. We perform temporal smoothing of the bounding box parameters

to remove jitter effects. The final feature is a rescaled binary image of the pixels inside

the bounding box.

Clustering Experiment: In a setting such as figure skating, it was difficult even

for us to semantically define temporal boundaries of an activity, let alone define a met-

ric for temporal segmentation. Thus, this makes it very difficult to break the video into

temporally consistent segments. Instead, we build models for fixed length subsequences

using sliding windows. We use 20 frame long overlapping windows for building models

of the video. Also, most of the ‘interesting’ activities such as sitting spins, standing spins,

leaps etc are usually few and far between. To discover these ‘interesting’ activities, we

apply a two-stage clustering algorithm. First, we cluster all the available subsequences

into a fixed number of clusters (say 10). Then, from each cluster we remove the outliers

using a simple criterion of average distance to the cluster.Then, we recluster the remain-

ing segments. We show some sample sequences in the obtained clusters in figures 4.11 –

4.15. We observe that Clusters 1 - 4 correspond dominantly to ‘Sitting Spins’, ‘Standing
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Figure 4.9:Color coded activity labeling for three sequences by actor ‘Alba’. Firstrow in each

is the groundtruth, second row is the discovered labeling. Image best viewed in color.

Figure 4.10:Sample images from the skating video of Emily Hughes of USA.

Spins’, ‘Leaping Spins’ and ‘Spirals’ respectively (in a spiral the skater glides on one foot

while raising the free leg above hip level). Cluster 5 on the other hand seems to capture

the rest of the ‘uninteresting’ actions.

Retrieval Experiment: We performed a retrieval experiment in which a query

segment was selected by the user and provided as input to the matching algorithm. The

top 5 matches for two different queries corresponding to Leap spin and standing spin are

shown in figures 4.16 - 4.17.
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Figure 4.11: Shown above are a few sequences from Cluster1. Each row shows contiguous

frames of a sequence. We see that this cluster dominantly corresponds to ‘Sitting Spins’.
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Figure 4.12: Shown above are a few sequences from Cluster2. Each row shows contiguous

frames of a sequence. Notice that this cluster dominantly corresponds to ‘Standing Spins’.
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Figure 4.13: Shown above are a few sequences from Cluster3. Each row shows contiguous

frames of a sequence. Notice that this cluster dominantly corresponds to ‘Spirals’.
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Figure 4.14: Shown above are a few sequences from Cluster4. Each row shows contiguous

frames of a sequence. This cluster dominantly corresponds to ‘Leap Spins’.
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Figure 4.15: Shown above are a few sequences from Cluster5. Each row shows contiguous

frames of a sequence. This cluster did not dominantly correspond to any ‘interesting’ skating pose

but seemed to capture the ‘usual’ postures. Image best viewed in color.
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Figure 4.16:Shown above is the input query corresponding to a Leap Spin and the top 5matches

obtained. The last match is a false match. Image best viewed in color.

Figure 4.17:Shown above is the input query corresponding to a Standing Spin and the top 5

matches obtained. All the matches correspond to standing spins. Image bestviewed in color.
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Chapter 5

Temporal Modeling: Time Varying Models

In several domains, it has been observed that human activities are better described

as a continuum of actions where the individual boundaries between actions are often

blurry [142]. To draw a parallel to language processing, it has been long known in the

speech community that words spoken in isolation sound quitedifferent when spoken in

continuous speech. This is commonly attributed to ‘co-articulation’ and ‘assimilation’

effects. Similarly, when actions appear in a connected form, it is hard to identify precisely

where an action ends and where another begins. Consider the action shown in figure

5.1 (a) and a synthesized version which relies on finding segment boundaries and fitting

models to each segment in figure 5.1 (b). As can be seen, segmentation followed by

modeling causes abrupt changes to appear at segment boundaries during synthesis. This

effect is also observed in sign-language where gestures areinfluenced by adjacent gestures

[142], making segmentation and recognition difficult.

Activities may also be viewed from a stochastic process point of view. In this con-

text, ‘stationarity’ or ‘non-stationarity’ is an important property of the stochastic process

under consideration. Stationarity requires that the ensemble statistics of the process do

not change with time. On the other hand, ‘time-invariant’ and ‘time-varying’ refer to the

properties of the model used to describe a given stochastic process. A good discussion of

the relation between stationary processes and time-invariant models is given in [143]. A

Figure 5.1:(a) Original sequence taken from the common activities dataset [1], (b) Synthesis by a

sequence of linear dynamic models with boundaries shown by vertical yellowlines, (c) Synthesis

by a continuous time-varying model. It can be seen that when actions are segmented and mod-

eled using switching models, the synthesis results show abrupt changes in pose across boundaries

whereas the time-varying model results in a much more natural evolution of poses.
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Figure 5.2:Illustration of how statistical properties change with time for 5 activities. The y-axis

measures the KL divergence between ensemble statistics as a function of thetime-lag. Figure best

viewed in color.

key observation is that if a process is stationary, it can be well described by time-invariant

models such as the Gauss-Markov model [123]. Now one might ask the question whether

activities are stationary or non-stationary. Consider the common activities dataset of [1].

Each activity in the dataset contains 10 executions from 2 views. Considering each ex-

ecution to be a realization of a random processX(t), we compute the pdf of the random

variable at each time instantfX(t), by fitting a parametric Gaussian estimated from the

ensemble. If the activity is indeed stationary, then the pdf’s at time-instantst andt + δ

would be identical. We will answer the question using empirical estimates of KL diver-

gence.

We computed the KL-divergence between the pdfs as a functionof the lagδ av-

eraged over all time-instants i.e.KLavg(δ ) = 1
M ∑M−1

t=0 KL( fX(t), fX(t + δ )). Figure 5.2

shows howKLavgvaries withδ for different activities. As is evident, the statistical proper-

ties of the activity vary smoothly but significantly over time even for these simple actions.

This suggests that complex human activities cannot be considered stationary stochastic

processes. Indeed, in this chapter, we consider human actions as quasi-stationary pro-

cesses. To model such quasi-stationary processes, we notice that the plot in figure 5.2

reveals that we can assume local stationarity, since for small values ofδ the statistical

properties do not change significantly. Thus, it would suffice to fit locally time-invariant

models, but allow the parameters of the model to vary with time. This observation forms

the basis for the current work. Note that this approach is widely used in the speech pro-
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cessing community where speech signals are considered short-term stationary in windows

of 20-40 milliseconds [144].

We consider human actions as a continuum of dynamical processes, where the pa-

rameters change continuously over time as opposed to discrete jumps in time. We rep-

resent the LDS at each time-instant as a point on the Grassmann manifold. Then, the

overall activity is considered as a trajectory on the Grassmann manifold. Time-varying

linear dynamical processes have also been studied in the control literature where they

are traditionally used as approximations to non-linear processes [59]. Modeling of time-

invariant dynamical systems as points on the Grassmann manifold was considered by

[145]. Tracking points on the Grassmann manifold by a HiddenMarkov Model on the

manifold was proposed by [146] in array-signal processing applications, where a con-

stant velocity model is assumed on the manifold. In contrastto the generative approaches

discussed above, there exist discriminative approaches for modeling human actions. An

in-depth discussion of discriminative models is beyond thescope of this chapter, and we

refer the reader to [147, 148] and references therein.

5.1 Modeling of Complex Activities

An activity is considered as a complex evolution of poses which is governed by an

underlying dynamic process. The underlying process is potentially highly non-linear and

time-varying. We model complex activities as outputs of a time-varying linear dynamical

process. At each time-instant, we assume that the dynamicalprocess is linear. We then

allow the parameters of the LDS to vary at each time-instant.Let f (t) ∈ R
m denote the

observations (flow/silhouette etc) at time-instantt. Then, the time-varying dynamical

model is represented as

f (t) =C(t)z(t)+w(t),w(t)∼ N(0,R(t)) (5.1)

z(t +1) = A(t)z(t)+v(t),v(t)∼ N(0,Q(t)) (5.2)

where,z(t) ∈ R
d is the hidden state vector of dimensiond, A(t) is the time-varying

transition matrix andC(t) is the time-varying measurement matrix.w(t) andv(t) are noise
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components modeled as normal with 0 mean and covarianceR(t) andQ(t) respectively.

When the model parametersA,C,Q,Rare constant, the model reduces to the well-known

time-invariant LDS which has been successfully applied in several vision tasks [149, 123].

In summary, the model consists of a sequence of parameters: the measurement matrix

C(t) and the transition matrixA(t) and the noise covariancesR(t),Q(t). Before we discuss

the problem of parameter estimation, we show the strength ofthe model on the synthesis

experiment described earlier. The results of synthesis using a continuous time-varying

model are shown in figure 5.1(c). It can be seen that the synthesized sequence exhibits a

much more realistic evolution of poses.

5.1.1 Estimating the parameters

We first present a brief review of the parameter estimation problem for the time-

invariant case before turning to the time-varying case.

The time-invariant case: Consider the time-invariant version of the model in

equations (5.1) and (5.2).

f (t) =Cz(t)+w(t),w(t)∼ N(0,R) (5.3)

z(t +1) = Az(t)+v(t),v(t)∼ N(0,Q) (5.4)

For the time-invariant case, it is easily shown that there are infinitely many choices

of parameters that give rise to the same sample pathf (t). Resolving this ambiguity re-

quires one to impose further constraints and choose a canonical model. The conditions as

proposed in [123] are thatm>> d, rank(C) = d andCTC= I . The number of unknowns

that need to be solved for are:md− d(d+1)
2 for C, d2 for A, d(d+1)

2 for Q: resulting in

md+ d2 unknowns (we have ignored the observation noise covarianceas of now). For

each observed frame we getmequations. Hence,d+1 linearly independent observations

are sufficient to solve for the required parameters (m(d+1)> md+d2 sincem>> d).

The parameter estimates can be obtained in closed form usingprediction error meth-

ods. Several estimation algorithms exist such as the ones described in [57] and [123]. We

use the solution derived in [123] here. Let observationsf (1), f (2), . . . f (τ), represent the
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features for the frames 1,2, ...τ. Let [ f (1), f (2), . . . f (τ)] = UΣVT be the singular value

decomposition of the data. Then̂C = U, Â = ΣVTD1V(VTD2V)−1Σ−1, whereD1 = [0

0;Iτ−1 0] andD2 = [Iτ−1 0;0 0].

The time-varying case: Estimation of time-varying models for time-series has

been studied in various domains such as speech processing, econometric data and com-

munication channels. A commonly used assumption in these domains is that the time-

varying AR (auto-regressive) and ARMA (auto-regressive moving average) parameters

can be expressed as linear combinations of known deterministic functions of time such as

the Fourier basis or the exponential basis [144]. Other approaches include Taylor-series

expansions of the model parameters such as in [150] for econometric applications. Esti-

mation of time-varying single-input single-output (SISO)AR models has been proposed

by estimating an equivalent time-invariant single-input multiple-output (SIMO) process

[151], and was applied for channel estimation in communication networks. These ap-

proaches are restricted to single-dimensional time-series data. Multi-dimensional time-

varying dynamical models traditionally arise as a result oflinearizing a non-linear dy-

namical system. In such cases, the time-varying parameterscan be solved for analytically

using Taylor series expansions around a ‘nominal trajectory’ [59]. However, in most

practical applications including activity modeling, one does not know what the underly-

ing non-linear equations are nor does one have the knowledgeof a nominal trajectory.

Recently, linear parameter varying (LPV) systems have been proposed to model time-

varying processes. In these approaches, the time-varying model parameters are consid-

ered to be linear combinations of a small set of time-invariant parameters. The linear

combination weights, also called the scheduling weights, change with time [152, 153].

However, identification of LPV systems is computationally very expensive [153]. In the

following, we propose a computationally efficient and conceptually simple method to

estimate the time-varying parameters of a dynamical systemwithout making strong as-

sumptions on the nature of the time-varying process.

To begin with, it is easily seen that even in the time-varyingcase there are in-

finitely many choices of the model parameters that can give rise to the same sample

path f (t). So, we impose the same set of conditions as in the time-invariant case i.e.
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m>> d, rank(C(t)) = d andC(t)TC(t) = I . Based on the analysis given above, there

aremd+d2 unknowns foreachtime-instant andmequations per time-instant. Obviously

this is an ill-posed problem since there are far more unknowns than there are equations.

Hence, we impose another condition that the model parameters stay constant in local tem-

poral neighborhoods. The temporal neighborhood in which the parameters are assumed

to stay constant should also ensure thatd+ 1 linearly independent observations can be

obtained within the neighborhood. In general, it cannot be guaranteed that a fixedd+1

sized neighborhood will satisfy this condition. However, in our experience we found that

a neighborhood of size 1.5d−2d was sufficient to meet this condition in most real-world

human activities. Typically,d is of the order of 5−10 and complex human activities ex-

tend to several hundred frames. It is reasonable to assume that in short windows of about

15−20 frames the dynamics can be easily modeled by simple time-invariant dynamical

processes.

We now have a sequence of dynamical systems which defines a trajectory on the

space of LDS. Before we discuss how we model this trajectory, we first discuss the Grass-

mann manifold formulation of the LDS space.

5.2 Trajectories on the Model Space

For the time-invariant case, starting from an initial condition z(0), it can be shown

that theexpectedobservation sequence is given by
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z(0) = O∞(M)z(0) (5.5)

Thus, the expected observation sequence generated by a time-invariant modelM =

(A,C) lies in the column spaceSof the extendedobservabilitymatrix given byO∞(M) =

[CT ,(CA)T ,(CA2)T , ...]T . In the time-varying case, we assumed that the model parameters

stay constant in short temporal neighborhoods. Let the sizeof the temporal window ben.
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Thus, then-length expected observation sequence generated by the model Mt = (Ct ,At)

(model at timet) lies in the column spaceSt of thefiniteobservability matrix given by

On(Mt) =
[

Ct ;CtAt ; . . . ;CtA
n−1
t

]

(5.6)

Thus, the time-varying model can be viewed as a sequence of subspacesSt , where

each subspace is spanned by the columns of the observabilitymatrix at the corresponding

time instant. Finite dimensional subspaces such as these can be identified as points on

the Grassmann manifold [154]. Thus, the sequence of subspaces can be mathematically

expressed as a trajectory on the Grassmann manifold.

5.3 Statistics and Geometry of the Grassmann manifold

To model and compare trajectories on the Grassmann manifold, we need to under-

stand a) the representation of points, b) distance metrics and c) statistical models on the

manifold. In this section, we provide a brief overview of each of these aspects. The

Grassmann manifoldGm,k is the space whose points arek-planesor k-dimensional hy-

perplanes (containing the origin) inRm. To eachk-planeν in R
m, we can associate an

m×k orthonormal matrixY such that the columns ofY form an orthonormal basis for the

plane. Note that there exist several choices for the basisY. Thus, all the choices of basis

vectors that span the same subspace need to be considered equivalent. To eachk-planeν

in Gm,k is associated an equivalence class ofm×k matricesYRin R
m×k, for non-singular

R, whereY is an orthonormal basis for thek-plane. This is also called the Procrustes

representation. Alternately, one can define a unique projection matrix for the subspace

given byP=YYT which projects points from the ambient Euclidean space ontothe given

subspace. In applications to human activities, the projection matrix representations leads

to large computational overheads since it is a squarem×m matrix. In practice,m is of

the order of 103 or higher. Thus, we rely on the Procrustes representation ofpoints which

relies on storing only tall-thinm×k matrices.

A point X on Sn,d is represented as a tall-thinn× d orthonormal matrix. The

corresponding equivalence class ofn×d matricesXRin Rm,k, for R∈SO(d) is also called
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the Procrustes representation of the Stiefel manifold. Thus, to compare two points inGn,d,

we simply compare the smallest squared distance between thecorresponding equivalence

classes on the Stiefel manifold according to the Procrustesrepresentation. Given matrices

X1 andX2 onSn,d, the smallest squared Euclidean distance between any pair of matrices

in the corresponding equivalence classes is given by

d2
Procrust(X1,X2) = min

R
tr(X1−X2R)T(X1−X2R) (5.7)

= min
R

tr(RTR−2XT
1 X2R+ Ik) (5.8)

WhenR varies over the orthogonal groupO(k), the minimum is attained atR=

H1HT
2 = A(ATA)−1/2, whereA= H1DHT

2 is the singular value decomposition ofA. We

refer the reader to [154] for proofs and alternate cases.

Given several examples from a class(X1,X2, . . . ,Xn) on the manifoldVk,m, the class

conditional density can be estimated using an appropriate kernel function. We first assume

that an appropriate choice of a divergence on the manifold has been made such as the one

above. For the Procrustes measure the density estimate is given by [154] as

f̂ (X;M) =
1
n

C(M)
n

∑
i=1

K[M−1/2(Ik−XT
i XXTXi)M

−1/2] (5.9)

whereK(T) is the kernel function,M is ak×k positive definite matrix which plays

the role of the kernel width or a smoothing parameter.C(M) is a normalizing factor cho-

sen so that the estimated density integrates to unity. The matrix valued kernel function

K(T) can be chosen in several ways. We have usedK(T) = exp(−tr(T)) in all the exper-

iments reported in this chapter. In this non-parametric method for density estimation, the

choice of kernel widthM becomes important. Thus, though this is a non-iterative proce-

dure, the optimal choice of the kernel width can have a large impact on the final results.

In general, there is no standard way to choose this parameterexcept for cross-validation.
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5.4 Comparing sequences of Subspaces

Given a video of a long activity, first the time-varying modelparametersMt =

(At ,Ct) are estimated using small temporal sliding-windows and themethod described

in section 5.1.1. Subsequently, for each window the observability matrix On(Mt) is com-

puted. Then for each observability matrix, an orthonormal basis is computed using stan-

dard SVD based algorithms. So, we now have a sequence of subspaces, or in other words

a trajectory on the Grassmann manifold. To compare two subspace trajectories we pro-

pose two approaches.

Dynamic time warping: Dynamic time-warping (DTW) only requires an ap-

propriate distance metric between points on the manifold. Given two complex activities

and their corresponding subspace sequencesS1(t) andS2(t), DTW tries to find a warping

patha(t) such thatS1(t) = S2(a(t)). To solve the problem we can use any standard DTW

algorithm.

Grassmann switching model: In the second approach, we parametrize the tra-

jectory using a switching model akin to the HMM on the Grassmann manifold. Corre-

sponding to an activity classC, suppose we are givenM subspace sequences{SC
i (t)}

M
i=1.

We consider the dynamics to be described by a set ofK hidden statesL(1), . . .L(K).

The state at timet is denoted byQ(t) and the observation at timet is denoted byS(t).

The overall model for the activity consists of theK hidden states, the intra-cluster pdfs

f (S(t)|Q(t) = L(i)), the transition probability matrix and the prior probability. In general,

the Baum-Welch algorithm provides solutions for the above problems in a maximum like-

lihood sense. This requires one to have analytical expressions for the intra-cluster pdfs

and the gradient of the likelihood of a sequence in terms of these parameters. In our case,

we solve these problems in a much simpler, although sub-optimal way as follows. Given

a sequence of subspaces{SC
i (t)}

M
i=1, the following procedure is adopted to estimate the

switching model.

1. Cluster the points intoK clusters or hidden-statesL(1), . . .L(K).

2. Estimate a pdf within each clusterf (S(t)|Q(t) = L(i)).

3. Estimate the transition probabilitiesp(Q(t) = L(i)|Q(t −1) = L( j)) between the clusters.
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4. Estimate the prior probabilityp(Q(0)). Any of the distance metrics on the Grass-

mann manifold can be used to perform clustering. In our experiments, we used a spectral

clustering algorithm – Normalized cuts – to get the clusters. Within each cluster, we use

the non-parametric density estimate as described in chapter 6 to estimate the intra-cluster

pdf. Once the clusters are found, we form the sequence of cluster labels corresponding

to the sequence of subspaces. The sequence of labels is used to estimate the transition

probabilities by bi-gram counts. Thus, we have now learnt a switching model on the

Grassmann manifold for each activity class.

Given a new subspace sequence, we need a method to classify itinto one of the

action classes. In the case of standard HMMs, this problem issolved by the forward-

backward algorithm and its variants. We use a simpler version that works much faster

and using fewer computations. Given a sequenceS(t) and an activity model, we first

assign eachS(t) into one of the clusters of the model. Let us denote byQ(t) the se-

quence of cluster labels thus obtained. Then we compute the likelihood of the sequence as

p(Q(0))∏k f (S(k)|Q(k))p(Q(k)|Q(k−1)). Though this is sub-optimal than the forward-

backward algorithm, we found that we obtain significant computational advantages using

these approximations.

Relation to Switching Linear Dynamical Systems: SLDS [118, 115, 155, 62]

model a complex activity by breaking it down into simpler motion patterns where each

motion pattern is modeled using a simple model such as an HMM or an LDS. The over-

all activity is then modeled by switching amongst a small setof dynamical systems.

In the above Grassmann switching model, if we constrain the intra-cluster pdf to be

f (S(t)|Q(t) = L(k)) = δ (S(t)− µk), whereµk is the cluster center, then the Grassmann

switching model reduces to the SLDS model. Thus, the SLDS model is a special case

of the proposed Grassmann switching model. Further, in SLDSit is usually assumed

that complex human actions can be separated into simpler motion patterns. However, we

do not rely on segmentation of activities into primitive actions and thus our approach is

applicable even in complex cases when segmentation is difficult.
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5.5 Experiments

In the first experiment we performed a synthesis experiment on a skating dataset

obtained from [6]. From a segment of video of about a 100 frames that contained fast

skating actions as shown in figure 5.3 (a), a discrete-switching model and a time-varying

model were estimated. The actions in the sequence exhibit co-articulation effects, where

transitions between distinct poses contain intermediate poses that share the appearance

of both the starting and the ending pose. The results of synthesis using the models are

shown in figure 5.3. The experiment shows that the time-varying model can account for

such co-articulatory effects and produce realistic looking sequences.

Figure 5.3:(a) Original skating sequence taken from [6], (b) Synthesis by a sequence of linear

dynamic models with boundaries shown by vertical yellow lines, (c) Synthesisby a continuous

time-varying model. It can be seen that synthesis results show abrupt changes in pose across

boundaries whereas the time-varying model results in a smoother evolution ofposes.

Next we present experiments demonstrating the strength of the model for summa-

rizing and recognizing complex activities. In the first experiment we show the results of

summarizing a long video containing a complex activity – thegame of Blackjack. For

this, we used the dataset reported in [7].

5.5.1 Blackjack Game Summarization

The game of Blackjack consists of a few elements such as dealing cards, waiting

for bids, shuffling the cards etc. We try to estimate a Grassmann switching model for

the entire video of Blackjack. The Grassmann switching modelwould then represent a

‘summary’ of the game, where the clusters of the model represent various elements of the

game and the switching structure represents how the game progresses. This video consists

of about 1700 frames. We extracted the motion-histogram features as proposed in [7] for

each frame of the video. The time-varying model parameters are estimated in sliding
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Figure 5.4:A few sample frames from the Blackjack dataset of [7].

windows of size 10. The dimension of the state vector is chosen to bed = 5. To estimate

the Grassmann switching model for the game of Blackjack, we manually set the number

of clusters to 5. In figure 5.5, we show an embedding of the video obtained from the

model parameters using Laplacian eigenmaps. Each point corresponds to a time-invariant

model parameter(A,C) pair or equivalently a point on the Grassmann manifold. Each

cluster was found to correspond dominantly to a distinct element of the game as shown.

The switching structure between the clusters is encoded in the transition matrix and is

shown in figure 5.6. As can be seen the switching structure corresponds to a normal game

of Blackjack. Since this is a data-driven procedure, it should be noted that the switching

structure will not necessarily be the same for every individual Blackjack game. However,

given two distinct Blackjack games we can now quantify the notion of how similarly the

two games proceeded.
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Figure 5.5:An embedding of the entire Blackjack video sequence. Figure best viewedin color.
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Figure 5.6:Estimated structure of the game of Blackjack. (For the sake of clarity arcs withlow

weights have not been shown).

5.5.2 Complex Activity Recognition

In the next experiment, we took the common activities dataset described in [1]

consisting of 10 simple actions –{Pick Object, Jog, Push, Squat, Wave, Kick, Side Bend,

Throw, Turn around, Talk on cellphone}. Each action is performed 10 times each by

the same actor under two different viewing angles separatedby about 20◦. We create

more complex actions from this set. We divided the actions into two groups - the first

group contains the first 5 actions, the second group containsthe next 5 actions. Then,

we created compound actions by taking one action from the first group and an action

from the second group. Then, we swapped the two constituent actions. This causes the

two resulting compound actions to share similar global second-order statistics (the mean

and covariance). Thus, we have 10 compound actions as shown in table 5.1. To test the

framework, we performed a leave-one-out testing where we trained on 9 executions and

tested on the remaining execution. Both views were used in training as well as testing.

Since the global second order-statistics of activities such as PickObject-Kick and Kick-

PickObject etc are similar, time-invariant linear dynamicsystems are expected to show

confusion between them. The results of the recognition experiment are shown in table

5.1. As is evident, both the DTW based and the Switching modelshow 100% recognition

since they account for the time-varying dynamics of the compound actions.
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Activity Type LDS Grass. DTW Grass.

Switch-

ing

model

PickObject - Kick 100 100 100

Kick - PickObject 50 100 100

Jog - SideBend 100 100 100

SideBend - Jog 50 100 100

Push - Throw 0 100 100

Throw - Push 100 100 100

Squat - TurnAround 100 100 100

TurnAround - Squat 0 100 100

Wave - TalkCellphone 50 100 100

TalkCellphone - Wave 50 100 100

Average 60% 100% 100%

Table 5.1:Recognition percentages on Compound actions
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Chapter 6

Detailed analysis of the Geometry of the Primitive Space

Let us now consider the ARMA model in more detail and try to understand the

space of the model parameters. The ARMA model equations are given by

f (t) =Cz(t)+w(t) w(t)∼ N(0,R) (6.1)

z(t +1) = Az(t)+v(t) v(t)∼ N(0,Q) (6.2)

where,z is the hidden state vector,A the transition matrix andC the measurement ma-

trix. f represents the observed features whilew andv are noise components modeled as

normal with 0 mean and covarianceR andQ respectively. For high-dimensional time-

series data (dynamic textures etc), the most common approach is to first learn a lower-

dimensional embedding of the observations via PCA, and learntemporal dynamics in the

lower-dimensional space.

The model parameters(A,C) do not lie in a vector space. The transition matrix

A is only constrained to be stable with eigenvalues inside theunit circle. For the time-

invariant ARMA case, starting from an initial conditionz(0), it can be shown that the

expectedobservation sequence is given by
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z(0) = O∞(M)z(0) (6.3)

Thus, the expected observation sequence generated by a time-invariant modelM =

(A,C) lies in the column spaceSof the extendedobservabilitymatrix given byO∞(M) =

[CT ,(CA)T ,(CA2)T , ...]T . Thus, a linear dynamical system can be alternately identified

assubspacecorresponding to the column space of the observability matrix. In experi-

mental implementations, we approximate the extended observability matrix by the finite

observability matrix as is commonly done [149].
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OT
n =

[

CT ,(CA)T ,(CA2)T , . . .(CAn−1)T] (6.4)

Finite dimensional subspaces such as these can be identifiedas points on theGrass-

mann manifold. We provide the definition of the Grassmann manifold next.

The Grassmann Manifold Gn,d [154]: The Grassmann manifoldGn,d is the

space whose points ared-planesor d-dimensional hyperplanes (containing the origin)

in R
n.

On a related note, the Stiefel manifold is the space ofd orthonormal vectors in

R
n.In the rest of the chapter, we review the geometry of the Grassmann manifold. This

will then lead to appropriate distance metrics and statistical modeling methods on the

Grassmann manifold. The set Grassmann manifold ofd-dimensional subspaces ofR
n will

be denoted asGn,d. The set of alln×d orthonormal matrices shall be denoted asSn,d. On

a computer, a linear subspace ofR
n is stored as a tall-thin orthonormal matrixU such that

the columns ofU span the subspace. However, this choice ofU is non-unique, there exist

infinite choices ofU that span the same subspace. We are interested in understanding the

geometry ofGn,d andSn,d. The two underlying spaces – StiefelSn,d and Grassmann

Gn,d – associated with our application are nonlinear manifolds and any statistical analysis

intrinsic to those spaces requires some tools from differential geometry.

Related Work: The geometric properties of general Riemannian manifolds forms

the subject matter of differential geometry. A good introduction to it can be found in

[156]. Statistical methods on manifolds have been studied for several years in the statis-

tics community. Some of the landmark papers in this area include [157, 158, 159], how-

ever an exhaustive survey is beyond the scope of this chapter. The geometric properties

of the Stiefel and Grassmann manifolds have received significant attention. A good in-

troduction to the geometry of the Stiefel and Grassmann manifolds can be found in [160]

who introduced these methods in the context of eigenvalue problems. These problems

mainly involved optimization of cost functions with orthogonality constraints. Issues in-

volved in algorithmic computations of the geometric operations in such problems was

discussed in [161]. A compilation of research results on statistical analysis on the Stiefel
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and Grassmann manifolds can be found in [154].

In certain vision applications involving subspace constraints, the problems have

been recast using the Grassmann manifold. Examples include, [162] who performed

optimization over the Grassmann manifold for obtaining informative projections. The

Grassmann manifold structure of the affine shape space is exploited in [9] to perform

affine invariant clustering of shapes. [163] performs discriminative classification over

subspaces for object recognition tasks by using Mercer kernels on the Grassmann mani-

fold. Most of these methods do not fully exploit the Riemannian geometry of the Grass-

mann manifold, or are tuned to specific domains lacking generality. [146] exploited the

geometry of the Grassmann manifold for subspace tracking inarray signal processing

applications. The methods that we present here form a comprehensive (not exhaustive)

set of tools that draw upon the Riemannian geometry of the Grassmann manifold. Along

with the mathematical formulation, we also present efficient algorithms to perform these

computations. Riemannian manifolds have also been exploredin the vision community in

other contexts such as in [164, 165], where Euclidean mean shift clustering is extended to

Riemannian manifolds. Theoretical foundations for manifolds based shape analysis were

described in [166, 167]. Statistical learning of shape classes using non-linear shape man-

ifolds was presented in [168] where statistics are learnt onthe manifold’s tangent space.

manifold’s tangent space.

Organization of the Chapter: In section 6.1, we discuss the notation and the

special orthogonal group that will lay the foundation for deriving results for the Stiefel and

Grassmann manifolds. In section 6.2, we discuss the Stiefeland Grassmann manifolds as

quotients of the special orthogonal group. In section 6.3, we discuss statistical methods

that follow from the quotient interpretation. In section 6.4, we discuss Procrustes methods

and non-parametric density estimation on the Grassmann manifold.

6.1 Mathematical Preliminaries: Notation and Definitions

The two underlying spaces – StiefelSn,d and GrassmannGn,d – associated with

our applications are nonlinear manifolds and any statistical analysis intrinsic to those

82



spaces requires some tools from differential geometry. Since learning and using such

fundamental mathematical tools demands additional effort, we first motivate their need.

We are interested in statistical inferences on these spaces, i.e. estimation and analysis of

variables taking values inSn,d andGn,d. Statistical inferences require probability models

that are often based on simple statistics, such as means and covariances, learnt from the

past data. LetU1 U2, . . . ,Uk be some previously estimated points onSn,d and we seek

their sample mean, an average, for defining a probability model onSn,d. TheseUis are

tall, orthogonal matrices. It is easy to see that the Euclidean sample mean1k ∑k
i=1Ui is not

a valid operation, mainly because it is not a vector space. Similarly, many of the standard

tools in estimation and modeling theory do not directly apply to such spaces but can be

modified to account for their nonlinear geometry. This motivates the need to understand

the geometry ofSn,d andGn,d, a task we will try in this section.

The spaces of interest – Stiefel and Grassmann – are often studied as quotient spaces

of the special orthogonal groupSO(n). So we start by briefly introducing the special

orthogonal group, followed by the notion of quotient spaces. Then we shall show how the

Stiefel and Grassmann manifolds can be derived as quotient spaces ofSO(n).

6.1.1 The Special Orthogonal Group SO(n)

Let GL(n) be the set ofn× n nonsingular matrices; this set is called thegener-

alized linear groupbecause it is also a group with the group operation given by matrix

multiplication. The setGL(n) possesses some additional structure that makes it more

interesting. It is a differentiable manifold. One consequence is that although it is not a

vector space, it can be locally approximated as a vector space using smoothly varying

Euclidean coordinates. This property is essential to understanding the task of modifying

tools from standard Euclidean statistics to nonlinear manifolds. The dual properties of

being a group and a differentiable manifold make it aLie group. If we consider the subset

of all orthogonal matrices, and further restricting to the ones with determinant+1, we

obtain a subgroupSO(n), called thespecial orthogonal group. It can be shown that this

is a submanifold ofGL(n) and, therefore, also possesses a Lie group structure. Sinceit

83



hasn2 elements andn+n(n−1)/2 constraints (unit length columns→ n constraints and

perpendicular columns→ n(n− 1)/2 constraints), it is ann(n− 1)/2-dimensional Lie

group.

To perform differential calculus on a manifold, one needs its tangent spaces. On

one hand the elements of tangent spaces are velocities of differentiable curves lying on

the manifold; on the other hand, they act as differential operators for functions on the man-

ifold and lead to the definitions of the directional derivatives, gradients, optimal points,

etc, all essential in optimization problems. For then× n identity matrix I , the tangent

spaceTI (SO(n)) is given by ([156]):

TI (SO(n)) = {X ∈ R
n×n : X+XT = 0},

It is the set of alln×n skew-symmetric matrices. For an arbitrary pointO∈ SO(n), the

tangent space is obtained by a simple rotation ofTI (SO(n)):

TO(SO(n)) = {OX|X ∈ TI (SO(n))} .

Define an inner product for anyY,Z ∈ TO(SO(n)) by 〈Y,Z〉 = trace(YZT), wheretrace

denotes the sum of diagonal elements. With this metricSO(n) becomes a Riemannian

manifold.

Using the Riemannian structure, it becomes possible to definelengths of paths on a

manifold. Letα : [0,1] 7→ SO(n) be a parameterized path onSO(n) that is differentiable

everywhere on[0,1]. Thendα
dt , the velocity vector att, is an element of the tangent space

Tα(t)(SO(n)) and its length is defined to be
√

〈

dα
dt ,

dα
dt

〉

. The length of the pathα is then

given by:

L[α] =
∫ 1

0

√

(〈

dα(t)
dt

,
dα(t)

dt

〉)

dt . (6.5)

For any two pointsO1,O2 ∈ SO(n), one can define a distance between them as the infi-

mum of the lengths of all smooth paths onSO(n) which start atO1 and end atO2:

d(O1,O2) = inf
{α :[0,1] 7→SO(n)|α(0)=O1,α(1)=O2}

L[α] . (6.6)

A path α̂ which achieves the above minimum, if it exists, is ageodesicbetweenO1 and

O2 onSO(n). Geodesics onSO(n) can be written explicitly using the matrix exponential.
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For ann×n matrix A, define its matrix exponential exp(A) by:

exp(A) = I +
A
1!

+
A2

2!
+

A3

3!
+ . . . (6.7)

We can see that given any skew-symmetric matricX, exp(X)∈SO(n). Now we can define

geodesics onSO(n) as follows: for anyO∈ SO(n) and any skew-symmetric matrixX,

α(t)≡ Oexp(tX) ,

is the unique geodesic inSO(n) passing throughO with velocity vectorOX at t = 0.

An important tool in statistics on a manifold is an exponential map. If M is a

Riemannian manifold andp∈ M, theexponential mapexpp : Tp(M)→ M, is defined by

expp(v) = αv(1) whereαv is a constant speed geodesic starting atp. In case ofSO(n),

the exponential map expO : TO(SO(n))→ SO(n) is given by

expO(X) = Oexp(X) ,

where the exponential on the right side is actually the matrix exponential.

6.2 Stiefel and Grassmann Manifolds as Quotient of SO(n)

A quotient of a space defines equivalence relations between points in the space. If

one wants to identify certain elements of a set, using an equivalence relation, then the

set of such equivalent classes forms a quotient space. This framework is very useful in

understanding the geometry ofSn,d andGn,d by viewing them as quotient spaces, using

different equivalence relations, ofSO(n).

Sn,d is the set of alld-dimensional orthnormal bases ofR
n andGn,d is the set of all

d-dimensional subspaces ofRn. A d-dimensional basis ofRn can be represented by an

n×d matrixU such thatUTU = Id, while ad-dimensional subspace is represented by all

such matrices whose columns span that subspace. Notice thatsuch aU can be viewed as

the firstd columns of an element ofSO(n). This sets up the equivalence relations needed

to formSn,d andGn,d as quotient spaces ofSO(n).

1. Stiefel Manifold: A Stiefel manifold is the set of all orthonormal bases ofR
n.

Since each orthonormal basis can be identified with ann×d matrix, a Stiefel man-

ifold is also a set ofn×d matrices with orthonormal columns. More interestingly,
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Sn,d can be viewed as a quotient space ofSO(n) as follows. Consider the sub-

group of smaller rotationsSO(n−d) as a subgroup ofSO(n) using the embedding:

φa : SO(n−d) 7→ SO(n), defined by

φa(V) =





Id 0

0 V



 ∈ SO(n) . (6.8)

Now define two elementsO1, O2 ∈ SO(n) to be equivalent, i.e.O1 ∼a O2, if O1 =

O2φa(V) for someV ∈ SO(n−d). (The subscripta is used to distinguish it from

another equivalence relation used later for studyingGn,d.) Note thatφa(SO(n−d))

consists of those rotations inSO(n) that rotate only the last(n− d) components

in R
n, leaving the firstd unchanged. Hence,O1 ∼ O2 if and only if their firstd

columns are identical, irrespective of the remaining columns. The resulting equiv-

alence classes are:

[O]a = {Oφa(V)|V ∈ SO(n−d)}.

Since all elements of[O]a have the same firstd columns, we will use that submatrix

U ∈ R
n×d to represent[O]a. Sn,dis now viewed as the set of all such equivalence

classes and is denoted simply bySO(n)/SO(n−d).

2. Grassmann Manifold: A Grassmann manifold is the set of alld-dimensional

subspace ofRn. Here we are interested ind-dimensional subspaces and not in a

particular basis. In order to obtain a quotient space structure forGn,d, let SO(d)×

SO(n−d) be a subgroup ofSO(n) using the embeddingφb : (SO(d)×SO(n−d)) 7→

SO(n):

φb(V1,V2) =





V1 0

0 V2



 ∈ SO(n). (6.9)

Define an equivalence relation onSO(n) according toO1∼b O2 if O1=O2φb(V1,V2)

for someV1 ∈ SO(d) andV2 ∈ SO(n−d). In other words,O1 andO2 are equivalent

if the first d columns ofO1 are rotations of the firstd columns ofO2 and the last

(n−d) columns ofO1 are rotations of the lastn−d columns ofO2. An equivalence

class is given by:

[O]b = {Oφb(V1,V2)|V1 ∈ SO(d), V2 ∈ SO(n−d)} ,

86



and the set of all such equivalence classes isGn,d. Notationally,Gn,d can also be

denoted as simplySO(n)/(SO(d)×SO(n−d)).

For efficiency, we often denote the set[O]b by the set

[U ] = {UO∈ R
n×d|O∈ SO(d)} .

whereU denotes the firstd columns ofO.

The main advantage of studying the Stiefel and Grassmann manifolds as quotient spaces

of SO(n) is that it lets us use well-known results about geodesics andtangent planes

of SO(n) in a systematic manner. Using the tangent structure onSO(n), we can derive

tangent structures on the quotient spacesSn,d andGn,d using the following principle. If

M/H is a quotient space ofM under the action of a groupH ⊂ M (assumingH acts

on M), then, for any pointp ∈ M, a vectorv ∈ Tp(M) is also tangent toM/H as long

as it is perpendicular to the tangent spaceTp(pH). Here, Tp(pH) is considered as a

subspace ofTp(M). We will use this idea to find tangent spaces onSn,d andGn,d, from

the corresponding tangent structure ofSO(n).

1. Tangent Structure of Sn,d: SinceSn,d = SO(n)/φa(SO(n−d)), setM = SO(n)

andH = φa(SO(n−d)), with φa as defined in Eqn. 6.8. The Jacobian ofφa provides

a linear map:dφa : TIn−d(SO(n−d)) 7→ TI (SO(n)) according to:

dφa(D) =





0 0

0 D



 ∈ TI (SO(n)).

Let J ∈ R
n×d be a tall-skinny matrix, made up of the firstd columns ofIn; J acts

as the “identity” element inSn,d. A vector inTIn(SO(n)), that is perpendicular to

dφa(TIn−d(SO(n−d))), when multiplied on right byJ results in a tangent toSn,d at

J. A simple calculation shows that

TJ(Sn,d) = {





C

BT



 |C∈ R
d×d skew-symm,B∈ R

d×(n−d)} . (6.10)

For any other pointU ∈Sn,d, let O∈ SO(n) be a matrix that rotates the columns of

U to align with the columns ofJ, i.e. letU = OTJ. Note that the choice ofO is not
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unique. It follows that the tangent space atU is given by:TU(Sn,d) = {OTG|G∈

TJ(Sn,d)}.

2. Tangent Structure of Gn,d: In this case, setM = SO(n) and H = φb(SO(d)×

SO(n−d)), with φb as given in Eqn. 6.9. Using the same argument as earlier, the

tangent spaceTI (H) is considered a subspace ofTI (SO(n)) under the embedding

dφb:

dφb(A1,A2) =





A1 0

0 A2



 ∈ TI (SO(n)) .

The vectors tangent toSO(n) and perpendicular to the space(TId(SO(d))×TIn−d(SO(n−

d))), will also be tangent toGn,d after multiplication on right byJ. The resulting

tangent space at[J] ∈ Gn,d is:

T[J](Gn,d) = {





0

BT



 | B∈ R
d×(n−d)} (6.11)

For any other point[U ]∈ Gn,d, let O∈ SO(n) be a matrix such thatU = OTJ. Then,

the tangent space at[U ] is given byT[U ](Gn,d) = {OTG|G∈ T[J](Gn,d)}.

For anyO ∈ SO(n), a geodesic flow in a tangent direction, say,OA, is given by

ψO(A, t) = Oexp(tA) where exp is the matrix exponential. This is a one-parametercurve

with t as the parameter. Similarly, in case ofSn,d andGn,d a geodesic flow starting from

a pointU ∈ Sn,d in a directionOTAJ∈ TU(Sn,d), is given by:

ψU(O
TAJ, ·) : t 7→ OT exp(tA)J , (6.12)

Recall that in case ofSn,d, the skew-symmetric matrixA is of the type





C −B

BT 0



,

whereas forGn,d it is of the type





0 −B

BT 0



.

6.3 Sample Statistics on the Grassmann manifold

The first question that we consider is: What is a suitable notion of a mean on the

Riemannian manifoldM ? A popular method for defining a mean on a manifold was

proposed by Karcher [169] who used the centroid of a density as its mean.
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Karcher Mean [169] The Karcher meanµint of a probability density functionf onM is

defined as a local minimizer of the cost function:ρ : M → R≥0, where

ρ(p) =
∫

M
d(p,q)2 f (q) dq . (6.13)

dq denotes the reference measure used in defining the probability density f on M. The

value of the functionρ at the Karcher mean is called theKarcher mean. How does the

definition of the Karcher mean adapt to a sample set, i.e. a finite set of points drawn from

an underlying probability distribution ? Letq1,q2, . . . ,qk be independent random samples

from the densityf . Then, the sample Karcher mean of these points is defined to bethe

local minimizer of the function:

ρk(p) =
1
k

k

∑
i=1

d(p,qi)
2 . (6.14)

An iterative algorithm for computing the sample Karcher mean is as follows. Letµ0 be

an initial estimate of the Karcher mean. Setj = 0.

1. For eachi = 1, . . . ,k, compute the tangent vectorvi such that the geodesic fromµ j ,

in the directionvi, reachesqi at time one, i.e.ψ1(µ j ,vi) = qi or vi = exp−1
µ j
(qi).

2. Compute the average direction ¯v= 1
k ∑k

i=1vi.

3. If ‖v̄‖ is small, then stop. Else, updateµ j in the update direction using

µ j+1 = ψε(µ j , v̄),

whereε > 0 is small step size, typically 0.5. ψt(p,v) denotes the geodesic path

starting fromp in the directionv parameterized by timet. In other words,µ j+1 =

expµ j
(ε v̄).

4. Set j = j +1 and return to Step 1.

It can be shown that this algorithm converges to a local minimum of the cost function

given in Eqn. 6.14 which is the definition ofµint . Depending upon the initial valueµ0

and the step sizeε, it converges to the nearest local minimum.
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We exploit the fact that the tangent spaces ofM are vector spaces and can provide

a domain for defining covariances. We can transfer the probability density f from M

to a tangent spaceTp(M), using the inverse exponential map, and then use the standard

definition of central moments in that vector space. For any point p∈M, let p→ exp−1
µ (p)

denote the inverse exponential map atµ from M to Tµ(M). The pointµ maps to the origin

0∈ Tµ(M) under this map. Now, we can define the Karcher covariance matrix as:

Kint =
∫

Tµ (M)
vvTdv, v= exp−1

µ (q) .

For a finite sample set, the sample Karcher variance is given by

K̂int =
1

k−1

k

∑
i=1

viv
T
i , where vi = exp−1

µ (qi) . (6.15)

6.3.1 Parametric Densities

In addition to sample statistics such as the mean and covariance, it is possible to

define parametric probability distribution functions on manifolds. We shall here discuss

intrinsic methods for defining pdfs. The general idea here isdefine a pdf on the tan-

gent space of the manifold, and then ‘wrap’ the distributionback onto the manifold. This

allows us to draw upon the wealth of methods available from classical multi-variate statis-

tics for the problem at hand.

Suppose, we haven sample points, given byq1,q2, ...qn from a manifoldM . Then,

we first compute their Karcher mean ¯q as discussed before. The next step is to define and

compute a sample covariance for the observedqi ’s. The key idea here is to use the fact

that the tangent spaceTq̄(q) is a vector space. For ad-dimensional manifold, the tangent

space at a point is alsod dimensional. Using a finite-dimensional approximation, say

V ⊂ Tq̄(q), we can use the classical multivariate calculus for this purpose. The resulting

sample covariance matrix is given by:

Σ̄ =
1

n−1

n

∑
i=1

viv
T
i

where eachvi is a d-dimensional sample of the functionexp−1
q̄ qi . Note that by

definition, the mean ofvis should be zero. In cases where the number of samplesn
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is smaller thand, one can apply an additional dimension-reduction tool to work on a

smaller space. For instance, we can use the singular value decomposition (SVD) of the

sample covariance matrix̄Σ and retain only the topm significant singular values and the

corresponding singular vectors. In such cases, the covariance matrix is indirectly stored

usingλ1,λ2, ...λm singular values and their corresponding singular vectorsu1,u2, ...um.

The exponential map: expq̄ : Tq̄(q)→M maps this covariance back toM . Specifi-

cally, this approach is widely used to define wrapped-Gaussian densities on a given man-

ifold. In general, one can define arbitrary pdfs on the tangent plane such as mixtures of

Gaussians, Laplace etc and wrap it back to the manifold via the exponential map. This

allows us to experiment with and choose an appropriate pdf that works well for a given

problem domain.

6.3.1.1 Some Synthetic Examples

In this section, we illustrate via some simple examples the concepts of karcher mean

and wrapped distributions for the Grassmann manifold. To help visualize the results, we

chooseGn,d with n= 2 andd = 1 i.e. 1-dimensional subspaces ofR
2. This is easily vi-

sualized as the set of all lines passing through of the originon the X-Y plane. Lines on a

plane can be parametrized by their principal angle with the X-axis. Using this parameter-

ization, in the first experiment we randomly sample directions centered aroundθ = π/3

with variance inθ set to 0.2. A set of such samples in shown in figure 6.1 with dotted

blue lines. The Karcher mean of this set is shown as a red line in figure 6.1. As can be

seen, the Karcher mean corresponds well to the notion of a ‘mean-axis’ in this case.

In the next experiment, we sampled two sets of lines centeredat θ = π/3 and

θ = 2∗ π/3 once with equal variances as shown in figure 6.2 and once withunequal

variances as shown in figure 6.3. In both cases, the karcher mean is vertically oriented as

shown in the plots which is the physically meaningful solution we expect.

Finally, in figure 6.4 we illustrate the concept of the wrapped normal distribution.

In this experiment, we generated samples from two classes - one centered atθ = 0 and

the other centered atθ = π/2. Points from each class are shown in different colors. The
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Figure 6.1:Illustration of Karcher mean on the Grassmann manifold. InR
2 the set of all axes

(lines passing through the origin) is the Grassmann manifold withn= 2 andd = 1. Blue dotted

lines represent individual points on the Grassmann manifold. The bold redline is the Karcher

mean of this set. The Karcher mean corresponds to the notion of a mean axis.
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Figure 6.2:Karcher mean of two clusters of lines with equal spread. One cluster is centered at

θ = π/3 to the X-axis and the other is clustered nearθ = 2π/3. The bold red line is the Karcher

mean of this set. It corresponds to the physically meaningful solution of a vertical axis as the

mean.
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Figure 6.3:Karcher mean of two clusters of lines with unequal spread. One cluster is centered at

θ = π/3 to the X-axis and the other is clustered nearθ = 2π/3. The bold red line is the Karcher

mean of this set. It corresponds to the physically meaningful solution of a vertical axis as the

mean.

Karcher mean of the whole dataset was taken as the pole to compute the tangent vectors

for the points. Each of the classes was parameterized by a mean µ and standard-deviation

σ on the tangent plane. The points corresponding toµ and andµ ±σ were then wrapped

back onto the manifold. The mean and standard-deviation axes for each of the classes are

shown as bold and dashed lines respectively in figure 6.4.

6.3.2 Note on Efficient Computations

To compute the Karcher mean, we need efficient methods for twosub-problems.

Given a pointS0 on the manifold, how does one move on the manifold along a specified

direction ? and, b) Given two pointsS0 andS1, how does one compute the direction that

takesS0 towardS1. Efficient methods have been proposed for these two tasks by Gallivan

et al [170]. Here we summarize the key results that will be used in this chapter. Recall

that geodesic paths onSO(n) are given by one-parameter exponential flowst → exp(tA),

whereA ∈ R
n×n is a skew-symmetric matrix. The quotient geometry of the Grassmann

manifold implies that geodesics inGn,d are given by one-parameter exponential flows

t → exp(tA) whereA has a more specific structure given by
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Figure 6.4:Wrapped Normal class conditional-densities of two classes on the Grassmann mani-

fold. Each class is shown in a different color. The mean of each class is shown in bold lines. The

wrapped standard-deviation lines are shown in dashed lines for each class.

A=





0 BT

−B 0



 (6.16)

whereB∈R
(n−d)×d. The matrixBparameterizes the direction and speed of geodesic

flow. We now discuss the solution to the two questions enumerated above.

6.3.3 Moving along the Geodesic

Given a point on the Grassmann manifoldS0 represented by orthonormal basisY0,

and a direction matrixB, the one-parameter geodesic path emanating fromY0 in this

direction is given by

Y(t) = Q exp(tA) J (6.17)

where,Q∈ SO(n) andQTY0 = J andJ = [Id;0n−d,d]. GivenY0 andA the following

are the steps involved in samplingY(t) for various values oft.

1. Compute then×n orthogonal completionQ of Y0. This can be achieved by the QR

decomposition ofY0.
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2. Compute the compact SVD of the direction matrixB= Ũ2ΘU1.

3. Compute the diagonal matricesΓ(t) andΣ(t) such thatγi(t) = cos(tθi) andσi(t) =

sin(tθi), whereθ ’s are the diagonal elements ofΘ.

4. Compute

Y(t) = Q





U1Γ(t)

−U2Σ(t)



 (6.18)

for various values oft ∈ [0,1].

6.3.4 Computing the Velocity Matrix

Now, given two points on the manifoldS0 andS1 with orthonormal basisY0 and

Y1, we need an efficient way to compute the velocity parameterB such that traveling

in this direction fromS0 leads toS1 in unit-time. Given two subspacesS0 andS1 and

correspondingn×d orthonormal basis-vectorsY0 andY1:

1. Compute then×n orthogonal completionQ of Y0.

2. Compute the thin CS decomposition ofQTY1 given by

QTY1 =





X

Y



=





U1 0

0 U2















Γ(1)

−Σ(1)

0











VT
1

=





U1 0

0 Ũ2









Γ(1)

−Σ(1)



VT
1

3. Compute{θi} which are given by the arcsine and arcos of the diagonal elements of

Γ andΣ respectively. i.e.γi = cos(θi) andσi = sin(θi). Form the diagonal matrix

Θ containingθ ’s on its diagonal.

4. ComputeA= Ũ2ΘU1.
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6.4 Non-parametric methods: Procrustes Representation for the Grass-

mann manifold

The Stiefel and Grassmann manifolds are endowed with a Riemannian structure

that lends itself to computation of distances between points on the manifold via geodesics.

The Riemannian computations outlined above are in general computationally expensive

for a general manifold. Though efficient algorithms have been proposed for the Stiefel

and Grassmann manifolds, Karcher mean computation is an iterative procedure. In recent

years the Procrustes methods proposed by [154] have become popular for non-iterative

density estimation as an alternative. However, as will be seen later this approach requires

a choice of parameters (kernel-width) whose optimal value is not known in advance.

A point X on Sn,d is represented as a tall-thinn× d orthonormal matrix. The

corresponding equivalence class ofn×d matricesXRin Rm,k, for R∈SO(d) is also called

the Procrustes representation of the Stiefel manifold. Thus, to compare two points inGn,d,

we simply compare the smallest squared distance between thecorresponding equivalence

classes on the Stiefel manifold according to the Procrustesrepresentation. Given matrices

X1 andX2 onSn,d, the smallest squared Euclidean distance between any pair of matrices

in the corresponding equivalence classes is given by

d2
Procrust(X1,X2) = min

R
tr(X1−X2R)T(X1−X2R) (6.19)

= min
R

tr(RTR−2XT
1 X2R+ Ik) (6.20)

WhenR varies over the orthogonal groupO(k), the minimum is attained atR=

H1HT
2 = A(ATA)−1/2, whereA= H1DHT

2 is the singular value decomposition ofA. We

refer the reader to [154] for proofs and alternate cases.

Given several examples from a class(X1,X2, . . . ,Xn) on the manifoldVk,m, the class

conditional density can be estimated using an appropriate kernel function. We first assume

that an appropriate choice of a divergence on the manifold has been made such as the one

above. For the Procrustes measure the density estimate is given by [154] as
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f̂ (X;M) =
1
n

C(M)
n

∑
i=1

K[M−1/2(Ik−XT
i XXTXi)M

−1/2] (6.21)

whereK(T) is the kernel function,M is ak×k positive definite matrix which plays

the role of the kernel width or a smoothing parameter.C(M) is a normalizing factor cho-

sen so that the estimated density integrates to unity. The matrix valued kernel function

K(T) can be chosen in several ways. We have usedK(T) = exp(−tr(T)) in all the exper-

iments reported in this chapter. In this non-parametric method for density estimation, the

choice of kernel widthM becomes important. Thus, though this is a non-iterative proce-

dure, the optimal choice of the kernel width can have a large impact on the final results.

In general, there is no standard way to choose this parameterexcept for cross-validation.

6.5 Experiments on Linear Dynamic Models

6.5.1 Experiments on Activity Recognition

Activity Dim. Red. [3] 163

volume

Best Dim. Red. [3]

643 volume

Subspace Angles163

volume

NN-Procrust 163 vol-

ume

Check Watch 76.67 86.66 93.33 90

Cross Arms 100 100 100 96.67

Scratch Head 80 93.33 76.67 90

Sit Down 96.67 93.33 93.33 93.33

Get Up 93.33 93.33 86.67 80

Turn Around 96.67 96.67 100 100

Walk 100 100 100 100

Wave Hand 73.33 80 93.33 90

Punch 83.33 96.66 93.33 83.33

Kick 90 96.66 100 100

Pick Up 86.67 90 96.67 96.67

Average 88.78 93.33 93.93 92.72

Table 6.1:Comparison of view invariant recognition of activities in the INRIA dataset using a)

Best DimRed [3] on 16×16×16 features, b) Best Dim. Red. [3] on 64×64×64 features, c)

Nearest Neighbor using ARMA model distance (16×16×16 features), d) Nearest Neighbor using

Procrustes distance (16×16×16 features)
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We performed a recognition experiment on the publicly available INRIA dataset

[3]. The dataset consists of 10 actors performing 11 actions, each action executed 3 times

at varying rates while freely changing orientation. We usedthe view-invariant represen-

tation and features as proposed in [3]. Specifically, we usedthe 16× 16× 16 circular

FFT features proposed by [3]. Each activity was modeled as a linear dynamical sys-

tem. Testing was performed using a round-robin experiment where activity models were

learnt using 9 actors and tested on 1 actor. For the kernel method, all available training

instances per class were used to learn a class-conditional kernel density as described in

section 6.4. In table 6.1, we show the recognition results obtained using four methods.

The first column shows the results obtained using dimensionality reduction approaches

of [3] on 16× 16× 16 features. [3] reports recognition results using a variety of di-

mensionality reduction techniques (PCA, LDA, Mahalanobis)and here we choose the

row-wise best performance from their experiments (denoted‘Best Dim. Red.’) which

were obtained using 64×64×64 circular FFT features. The third column corresponds

to the method of using subspace angles based distance between dynamical models [60].

Column 4 shows the nearest-neighbor classifier performance using Procrustes distance

measure (16×16×16 features). We see that the manifold Procrustes distance performs

as well as ARMA model distance.

In table 6.1 we show results of statistical modeling using parametric and non-

parametric methods. For the parametric method, we considertwo cases - single pole

and multiple poles. In the single pole case, the tangent plane is constructed at the Karcher

mean of the entire training dataset. In the multiple pole case, we construct a class-specific

tangent plane at the Karcher mean of each of the classes. For classification of a test-

point, we compute its probability of belonging to a class using the wrapped normal on

the class-specific tangent plane. Then, the point is classified into the class that has the

highest likelihood. As can be seen in the results in table 6.2, statistical modeling of class

conditional densities leads to a significant improvement inrecognition performance over

simpler methods shown in table 6.1. Note that even though themanifold approaches

presented here use only 16×16×16 features they outperform other approaches that use

higher resolution (64×64×64 features) as shown in table 6.1.
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Activity Wrapped Normal:

Single Pole

Wrapped Normal:

Multiple Poles

Procrustes Kernel

M = I

Check Watch 96.67 100 100

Cross Arms 93.33 100 100

Scratch Head 93.33 90 96.67

Sit Down 90 96.67 93.33

Get Up 100 96.67 96.67

Turn Around 96.67 100 100

Walk 93.33 90 100

Wave Hand 86.67 93.33 100

Punch 90 100 100

Kick 93.33 100 100

Pick Up 93.33 100 100

Average 93.33 96.06 98.78

Table 6.2:Results of Statistical Modeling on recognition of activities in the INRIA datasetusing

a) Wrapped Normal + Single Tangent Plane b) Wrapped Normal + Class specific tangent plane c)

Procrustes Kernel method M = I.
Kernel width: M 10−3 ∗ I 10−2 ∗ I 10−1 ∗ I 100 ∗ I 101 ∗ I 102 ∗ I 103 ∗ I

Avg. Perfor-

mance

90 97.87 97.87 98.78 93.63 90.91 90.91

Table 6.3: INRIA Activity Recognition: Variation of performance of the kernel density

estimator with different choices of the width parameterM.

As mentioned before, for the non-parametric case, an appropriate choice of the

kernel widthM has to be made. In general, cross-validation is suggested toestimate

the optimal kernel width. Different classes may have a different optimal kernel width.

Hence, cross-validation requires a lengthy training phase. A sub-optimal choice can often

lead to poor performance. This is one of the significant drawbacks of non-parametric

methods. In table 6.3, we empirically show how the performance depends on the choice

of the kernel width. We choose the kernel to be of the formM = σ ∗ I . We choose

σ = 10−3,10−2, . . . ,103, and show the variation of the performance.
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6.5.2 Video-Based Face Recognition

Video-based face recognition (FR) by modeling the ‘cropped video’ either as dy-

namical models ([171]) or as a collection of PCA subspaces [172] have recently gained

popularity because of their ability to recognize faces fromlow resolution videos. How-

ever, in this case, we focus only on theC matrix of the ARMA model or PCA subspace as

the distinguishing model parameter. This is because theC matrix encodes the appearance

of the face, whereas theA matrix encodes the dynamic information. TheC matrices are

orthonormal, hence points on the Stiefel manifold. But, for recognition applications, the

important information is encoded in the subspace spanned bytheC matrix. Hence, we

identify the model parameters (C’s) as points on the Grassmann Manifold.

We performed a recognition experiment on the NIST-MBGC VideoChallenge dataset.

The MBGC dataset consists of a large number of subjects walking towards a camera in

a variety of illumination conditions. Face regions are tracked and a sequence of cropped

images is obtained. There were a total of 143 subjects with the number of videos per

subject ranging from 1 to 5. In our experiments we took subsets of the dataset which

contained at least 2 sequences per person denoted asS2, at least 3 sequences per person

denoted asS3 etc. Each of the face-images was first preprocessed to zero-mean and unity

variance. In each of these subsets, we performed a leave-one-out testing. The results

of the leave one out testing are shown in table 6.4. Also reported are the total number

of distinct subjects and the total number of video sequencesin each of the subsets. In

the comparisons, we show results using the ‘arc-length’ metric between subspaces [160].

This metric computes the subspace angles between two subspaces and takes the frobenius

norm of the angles as a distance measure [160]. We also show comparisons with the Pro-

crustes measure, the Kernel density estimate withM = I and a wrapped normal density

with the Karcher mean of the entire dataset as the pole.

As can be seen, statistical methods outperform nearest neighbor based approaches.

As one would expect, the results improve when more examples per class are available.

Since the optimal kernel-width is not known in advance, thismight explain the relatively

poor performance of the kernel density method.
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Subset Distinct

Subjects

Total Se-

quences

Arc-length

Metric

Procrustes

Metric

Kernel

density

Wrapped

Normal

S2 143 395 38.48 43.79 39.74 63.79

S3 55 219 48.85 53.88 50.22 74.88

S4 54 216 48.61 53.70 50.46 75

Avg. 45.31% 50.45% 46.80% 71.22%

Table 6.4:Comparison of video based face recognition approaches using a) Subspace Angles +

Arc-length metric, b) Procrustes Distance, c) kernel density, d) Wrapped Normal on Tangent Plane
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Chapter 7

Applications to Still Image based Recognition

Many applications in computer vision such as dynamic textures [123],[56], human

activity modeling and recognition [53],[4], video based face recognition [171], shape

analysis [166],[167] involve learning and recognition of patterns from exemplars which

obey certain constraints. In this chapter, we shall examinea broad class of applications

where the underlying constraints on the data have a special structure. The structure under

study is the linear subspace structure. Subspace constraints have proved to be a simple

yet powerful tool in several applications. While estimatinglinear subspace models of

variation is standard fare in several problems in vision such as linear regression, linear

classification, linear subspace estimation etc, much less attention has been devoted to

statistical inference on the space of linear subspaces.

In many of these applications, given a database of examples and a query, the fol-

lowing two questions are usually addressed – a) what is the ‘closest’ example to the query

in the database ? b) what is the ‘most probable’ class to whichthe query belongs ? A

systematic solution to these problems involves a study of the underlying constraints that

the data obeys. The answer to the first question involves study of the geometric proper-

ties of these constraints, which then leads to appropriate definitions of distance metrics

such as geodesics etc. The answer to the second question involves statistical modeling

of inter- and intra-class variations. We shall discuss in a later section that the space of

linear subspaces can be shown to be a Riemannian manifold. More formally, the space

of k-dimensional subspaces inRn is called the Grassmann manifold. On a related note,

the Stiefel manifold is the space ofk orthonormal vectors inRn. The study of these man-

ifolds has important consequences for applications such asdynamic textures [123, 56],

human activity modeling and recognition [53, 4], video based face recognition [171] and

shape analysis [166, 167] where data naturally lies either on the Stiefel or the Grassmann

manifold.
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First, we discuss some motivating examples in vision that illustrate the need to study

these manifolds and their geometry.

7.1 Motivating Examples

1. Spatio-temporal dynamical models: A wide variety of spatio-temporal data in

computer vision are modeled as realizations of dynamical models. Examples in-

clude Dynamic textures [123], human joint angle trajectories [53] and silhouette

sequences [4]. One popular dynamical model for such time-series data is the au-

toregressive and moving average (ARMA) model. For the ARMA model closed

form solutions for learning the model parameters have been proposed in [57, 123]

and are widely used. An ARMA model can be equivalently considered as the sub-

space spanned by the columns of its observability matrix. A subspace such as this,

is a point on the Grassmann manifold. Given several instances, current approaches

involve computing the distance between them using well-known distance measures

[60] followed by nearest neighbor classification. Instead,given several instances

of each class we can learn compact class conditional probability density functions

over the parameter space – the Grassmann manifold spanned bythe columns of the

observability matrix in this case. This is an example of a modeling constraint that

leads to linear subspace structure of the data.

2. Shape Analysis: Representation and recognition of shapes is a well understood

field in statistics and vision [8, 173]. The shape observed inan image is a perspec-

tive projection of the original 3D shape. In order to accountfor this, shape theory

studies the equivalent class of all configurations that can be obtained by a specific

class of transformation (e.g. linear, affine, projective) on a single basis shape. It

can be shown that affine and linear shape spaces for specific configurations can

be identified by points on the Grassmann manifold [167]. Given several exemplar

shapes belonging to a few known classes, we are interested inestimating a prob-

ability distribution over the shape space for each of the classes. These can then

be used for problems such as retrieval, classification or even to learn a generative
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model for shapes. This is an example of an invariance requirement that leads to a

linear subspace structure of data.

3. Image Matching and retrieval: In image and object recognition, recent methods

have focused on utilizing multiple images of the same object, taken under varying

viewpoints or varying illumination conditions, for recognition [174, 163, 175, 176].

e.g. The set of face images of the same person under varying illumination condi-

tions is frequently modeled as a linear subspace of 9-dimensions which is motivated

from the nine-points of light model [177]. In such applications, an object ‘category’

consists of image-sets of several ‘instances’. For example, a category of horses

would have image-sets of several distinct horses, with several images per distinct

horse. A common approach in such applications is to approximate the image-space

of a single instance under these variations as a linear subspace [163, 178]. Lin-

ear subspaces are points on the Grassmann manifold. Given several image-sets per

object category, the goal then is to learn a statistical model over the Grassmann

manifold.

4. On-line Visual Learning via Subspace Tracking: Applications involving dy-

namic environments and autonomous agents such as a mobile robot navigating

through an unknown space cannot be represented by static models. In such applica-

tions it is important to adapt models, that have been learnt offline, according to new

observations in an online fashion. One approach is to perform incremental PCA to

dynamically learn a better representational model as the appearance of the target

dynamically changes as in [179]. Incremental PCA has also been used to recognize

abnormalities in the visual field of a robot as in [180]. In an unrelated domain, the

theory of subspace tracking on the Grassmann manifold [146]has been developed

for array signal processing applications. Since PCA basis vectors represent a sub-

space which is identified by a point on the Grassmann manifold, subspace tracking

lends itself readily to statistical analysis for online visual learning applications.

5. Projective Geometry: A fundamental concept inherent in projective geometry is

the notion of scale ambiguity [181]. In homogeneous co-ordinates, two points re-
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lated by a constant scale factor are considered to be equivalent. Thus, points in 3D

are considered as lines in 4D homogeneous space passing through the origin. Sim-

ilarly points in 2D are considered as lines in homogeneous 3D space. The set of

lines passing through the origin is a special case of the Grassmann manifold. The

scale ambiguity also manifests in several other quantitiessuch as the fundamental

matrix, essential matrix etc. Applications such as estimating fundamental matrices

or computing an average fundamental matrix from several independent estimates

require statistical methods on the Grassmann manifold.

Contributions: We first show how a large class of problems in computer vision

can be recast as statistical inference problems on the Stiefel and/or Grassmann manifolds.

Then, we solve these problems using the Riemannian geometry of the manifolds. We

also discuss some recently proposed non-Riemannian approaches to statistical modeling

on the Grassmann manifold. Finally, we present a wide range of experimental evalua-

tion to demonstrate the effectiveness of these approaches and provide a comprehensive

comparison. We show in the chapter that inspite of the ease ofuse of non-Riemannian ap-

proaches, their performance is tied to a good choice of parameters. On the other hand, the

performance of the Riemannian approaches is consistent overseveral applications with

minimal tuning of parameters.

Next we present a few application areas and experiments thatdemonstrate the use-

fulness of statistical analysis on the manifolds.

7.2 Object and Image Classification

Recent efforts in object recognition, have focused on utilizing multiple images of

the same object, taken under varying viewpoints or varying illumination conditions [174,

163, 175, 176]. The most common physical factors that give rise to the multitude of

appearances are illumination and view change. There has been significant research in

understanding the mathematics of these variations in computer vision. A simplistic model

for object appearance variations is a mixture of subspaces.In this section, we shall explore

how multiple exemplars can be effectively utilized in a subspace framework for object
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recognition.

We consider the CMU-PIE face dataset which contains images of68 persons under

varying poses, illumination and expressions. For comparison, we use the methods pro-

posed in [163]. The methods proposed in [163] involve discriminative approaches on the

Grassmann manifold using Mercer-kernels. In this approach, a Mercer-kernel is defined

on the Grassmann manifold which then enables using kernel versions of SVMs, Fisher

Discriminant Analysis etc for classification. In this experiment, we use the experimental

protocol suggested in [182]. For each of the 68 subjects, 7 near frontal poses are used in

the experiment. For each person under a fixed pose, we approximate the variations due to

expressions and illumination as a linear subspace. Thus, for each person we have a set of

subspaces corresponding to each pose. This allows us to build a statistical model on the

Grassmann manifold for each person. A round-robin experiment is performed in which

6 poses are used for training and the remaining pose is used for testing. The results are

shown in table 7.1. The results using the other methods were reported in [182].

Subspace Dimension m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

GDA (Proj) [163] 74.8 89.8 87.2 91.7 92.5 93.8 93.6 95.3

GDA (BC) [163] 71.4 82.5 64.8 58.6 47.5 43.1 39.9 36.3

MSM [183] 67.0 65.0 64.6 64.2 64.0 64.6 64.6 64.6

cMSM [184] 71.2 67.6 68.2 69.7 69.9 70.2 72.7 72.5

DCC [174] 78.9 66.5 63.8 64.6 67.6 67.6 67.6 65

Kernel Density: M = I 78.36 88.44 89.91 93.69 95.79 97.26 96.84 97.26

Wrapped Normal: Single Pole 69.95 76.89 69.74 77.73 79.83 79.20 80.46 76.26

Wrapped Normal: Multiple

Poles

69.95 76.89 70.16 77.31 82.56 84.66 85.50 86.97

Table 7.1:CMU-PIE Database: Face Identification using various Grassmann statistical methods.

Performance of various methods is compared as the subspace dimension is varied.

As can be seen, the proposed statistical approaches comparewell with the state of

the art. In particular, the kernel density method outperforms all of the other methods. The
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discriminative approaches of [163] outperforms the wrapped normal approach. However,

the variability of the performance is high depending on whatMercer kernel is chosen. The

wrapped normal provides consistent performance and beats most of the other methods.

7.3 Affine Shape Analysis

Algorithmic Details: The representation and analysis of shapes has important

applications in object recognition, gait recognition and image registration. Landmark

based shape analysis is one of the most widely used approaches for representing shapes.

A shape is represented by a set of landmark points on its contour. A shape is represented

by the matrixL= [(x1,y1);(x2,y2); . . . ;(xm,ym)], of the set ofm landmarks of the centered

scaled shape. Theshape spaceof a base shape is the set of equivalent configurations that

are obtained by transforming the base shape by an appropriate spatial transformation. For

example, the set of all affine transformations of a base shapeforms theaffine shape space

of that base shape. More rigorously, letχ = (x1,x2, . . . ,xm) be a configuration ofmpoints

where eachxi ∈ R2. Let γ be a transformation onR2. For example,γ could belong to the

affine group, linear group, projective group etc. Let

A(γ,(x1, . . . ,xm)) = (γ(x1), . . . ,γ(xm)) (7.1)

be theactionof γ on the point configuration.

In particular, theaffine shape space[166] [185] is very important because the effect

of the camera location and orientation can be approximated as affine transformations

on the original base shape. The affine transforms of the shapecan be derived from the

base shape simply by multiplying the shape matrixS by a 2×2 full rank matrix on the

right (translations are removed by centering). Multiplication by a full-rank matrix on the

right preserves the column-space of the matrixS. Thus, all affine deformations of the

same base shape, map to the same point on the Grassmann manifold [185]. Therefore, a

systematic study of affine shape space essentially boils down to a study of the points on

the Grassmann manifold. We can use both Procrustes distanceand kernel density methods
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Algorithm Rank

1

Rank

2

Rank

3

Rank

4

SC [186] 20/40 10/40 11/40 5/40

IDSC [186] 40/40 34/40 35/40 27/40

Hashing [187] 40/40 38/40 33/40 20/40

Grassmann

Procrustes

38/40 30/40 23/40 17/40

Table 7.2:Retrieval experiment on articulation dataset. Last row is the results obtainedusing

Grassmann manifold Procrustes representation. No articulation invariant descriptors were used.

described earlier for several applications of affine invariant shape analysis such as shape

retrieval and recognition.

7.3.1 Articulation Database

We conducted a retrieval experiment on the articulated shape database from [186].

We use the same test scheme proposed in [186]. The database consists of 8 object classes

with 5 examples for each class. For each shape, 4 top matches are selected and the number

of correct hits for ranks 1,2,3,4 are reported. Table 7.2 summarizes the results obtained

on this dataset. The proposed approach compares well with other approaches. It should

be noted however, that this is not a fair comparison, as we do not use any articulation-

invariant descriptors such as the ones used in [186] and [187]. In spite of this, manifold-

based distance metrics perform very well.

7.3.2 Affine MPEG-7 Database

Since the strength of the approach lies in affine invariant representation of shapes,

we conducted a synthetic experiment using the MPEG-7 database. We took one base

shape from each of the 70 object classes and created 10 randomaffine warps of the

shapes with varying levels of additive noise. This new set ofshapes formed the gallery

for the experiment. Sample shapes that were generated are shown in figure 7.1. The

test set was created by randomly picking a gallery shape and affine warping it with ad-
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Figure 7.1:Synthetic data generated from the MPEG database. The first column showsbase-

shapes from the original MPEG dataset for 5 objects. The remaining columns show random affine

warps for the base shapes with increasing levels of additive noise.

ditive noise. The recognition experiment was performed using the Procrustes distance

and the kernel density methods. For comparison, we used the popular shape Procrustes

distance [8] as a baseline measure. We also used the ‘arc-length’ distance metric used

in [9]. The arc-length distance metric is the Frobenius normof the angle between two

subspaces. In all cases, the experiments were repeated with100 Monte-Carlo trials for

each noise level in order to robustly evaluate the performance. The performance of the

methods is compared in Figure 7.2 as a function of noise to signal ratio. It can be seen

that manifold-based methods perform significantly better than straightforward shape Pro-

crustes measures. Among the manifold methods, the kernel density method outperforms

both the Procrustes and the arc-length distance measures. Since the Grassmann manifold

based methods accurately account for the affine variations found in the shape, they outper-

form simple methods that do not account for affine invariance. Moreover, since the kernel

methods learn a probability density function for the shapeson the Grassmann manifold, it

outperforms distance based nearest neighbor classifiers using Grassmann arc-length and

Grassmann Procrustes.
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Figure 7.2:Comparison of recognition performance on MPEG-7 database. For comparison we

used the shape Procrustes measure [8] and the Grassmann arc-length distance [9]. Manifold based

methods perform significantly better than direct application of shape Procrustes measure. Among

the manifold methods, statistical modeling via kernel methods outperforms the others.

7.3.3 Sampling from Distributions

Generative capabilities of parametric probability densities can be exploited via ap-

propriate sampling strategies. Once the distribution is learnt, one can synthesize samples

from the distribution in a two step process. We first generatea sample from a proposal

distribution (we used a matrix-variate normal centered around the class mean), then we

use an accept-reject strategy to generate the final shape [154]. We show a sampling ex-

periment using this technique. For this experiment, we tookone shape from each of the

object classes in the MPEG-7 database and corrupted it with additive noise to generate

several noisy samples for each class. We used the Grassmann representation of points as

idempotent projection matrices. Then, we learnt a parametric Langevin distribution on

the Grassmann manifold for each class. Note that the distribution is learnt on the Grass-

mann manifold, hence, a sample from the distribution represents a subspace in the form

of a projection matrix. To generate an actual shape we need tofirst choose a 2− f rame

for the generated subspace which can be done via SVD of the projection matrix. Once

the 2− f rameis chosen, actual shapes can be generated by choosing randomcoordinates

in the 2− f rame. We show sampling results in Figure 7.3.
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Figure 7.3:Samples generated from estimated class conditional densities for a few classes of the

MPEG dataset

7.4 Age Estimation

Understanding and modeling of aging in human faces is an important problem in

many real-world applications such as biometrics, authentication and synthesis. In this

chapter, we provide a Riemannian interpretation of the geometric attributes of faces as

they age. Specifically, we consider faces to be described by aset of landmark points on

the face whose geometry can be described as a Grassmann manifold. Then the problem

of age estimation is posed as a problem of function estimation on the manifold. Further,

motivated by studies in neuroscience, we quantify the deformation that warps an ‘average’

face to a given face. This deformation is then shown to contain important information

about the age of the face. The warping of an average face to a given face is then considered

to be described by a velocity vector that transforms the average to a given face along a

smooth geodesic in unit-time. We show experiments on age estimation using the standard

FG-Net dataset and a passport dataset which illustrate the effectiveness of this approach.

The modeling of the appearance of human faces is an importantcomponent in sev-

eral applications such as biometrics, animation, and picture annotation. Faces are de-

formable 3D objects. As a result of the imaging process, the perceived 2D appearance of

a given face exhibits wide variation due to illumination changes, shadows, and pose vari-

ations. These variations are usually referred to as structured variations since there exist
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mathematical models of image formation under these conditions. Unstructured variations

such as expressions further increase the space of 2D appearances of a given face. Given

a 2D image of a face, humans are capable of factoring out thesevariations in a manner

that has not yet been fully understood. Several computational approaches to account for

these variations have been proposed and we refer to [188] fora survey. Facial geometry

and texture, both aid in several perception tasks such as recognition, age perception, and

matching.

In this chapter, by facial geometry we refer to the location of 2D facial landmarks

on images. We discuss how to characterize the ‘space’ of these facial landmarks. We

provide a mathematically well grounded and unified Riemannian framework for modeling

facial geometry. The proposed Riemannian interpretation enables the application of a rich

class of classification and inference tools. To demonstratethe practical utility and power

of these methods, we choose the problem of age-estimation asan example. However, the

primary goal is not to provide an algorithm for age-estimation, but to provide a systematic

and unified perspective for facial geometric modeling. The theory developed here would

prove useful in other face modeling tasks where an accurate description of statistical

models on face-spaces is required. We demonstrate in experiments that even with simple

learning and regression methods, the results of the proposed framework are comparable

to several complex and optimized state-of-the-art systems, and even outperform many of

them. Thus, the proposed framework can form the basis of a more principled approach to

facial geometric modeling that can be optimized to reach even higher performance levels

in several applications.

One might ask, why do we choose age-perception as the exampleand what is the

role of geometry in it ? Aging is a source of variation which has only recently been gaining

attention. Understanding the appearance variations induced by aging is important for

applications where the claimed identity and the enrolled face may show a large difference

in apparent age. Studies in neuroscience have shown that facial geometry is a strong

factor that influences age perception [189]. In [189], it is shown that shape-averaged

faces are perceived to be younger. Further, the ‘distance’ from the average is a strong

indicator of the apparent age of the person. The regions where a given face shows a large
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difference in shape from a shape-averaged face when furtherexaggerated, results in a

caricature [190, 191]. Young faces exhibit distinct growth-related anthropometric trends.

Anthropometric variations in adults are distinctive to a lesser degree than in children, but

nevertheless they do exhibit drifts in facial features surrounding the mouth, eyebrows etc.

This is illustrated in figure 7.4 where distinct geometric changes can be observed as a

person ages.

To develop appropriate statistical inference methodologies, one needs to understand

a) what is the space of these geometric landmarks, and b) What are the appropriate statis-

tical models and distance metrics in this space. We show thatan affine-invariant represen-

tation of facial landmark geometry can be analytically modeled as a Grassmann manifold.

Then, we discuss how to measure distances and model transformations in this space. Fur-

ther, we describe the warping process of one face to another by a smooth geodesic flow

on the Grassmann manifold. Then, these warping parameters are shown to contain age-

specific information which can prove useful for estimating the apparent age of a person.
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Figure 7.4:Facial geometric variation across ages. Samples shown correspond to individual 2

from the FG-net dataset.

Related Work: Research in modeling aging can be divided into two main classes

– physics-based models and data-driven models. The first class concerns itself with com-

putational models to describe the physical process of aging. Examples include the works

of Pittenger and Shaw [192] who studied facial growth as a viscalelastic event defined on

the craniofacial complex. Mark et al. [193] studied geometric invariants that characterize

cardioidal strain transformations and their relation to perception of growth. Todd et al.

[194] treated the human head as a fluid filled spherical objectand proposed the revised

cardioidal strain model to account for craniofacial growth. More recently, Narayanan and

Chellappa [195] applied these models in conjunction with anthropometric data to identify
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different growth parameters for different parts of the face. Physics-based approaches such

as these have mostly found use in synthesis applications such as age progression and re-

gression, where it is important to synthesize realistic younger or older looking faces from

a given face.

In the data driven approaches, modeling of age progression is typically done by es-

timating functional forms of the aging process or learning classifiers from training data.

Examples include the work of [196], who proposed methods to classify face images as that

of babies, young adults and senior adults. Facial anthropometric measurements were used

to classify faces as babies and adults. Adult faces were further classified into young or se-

nior adults using texture analysis. Ramanathan and Chellappa[197] proposed a Bayesian

age-difference classifier built on a probabilistic eigenspaces framework to perform face

verification across age progression. Several regression-based methods have been pro-

posed to estimate the perceived age of a face from images. Lanitis et al. [198, 199] con-

structed an aging function based on a parametric model for human faces and performed

automatic age progression, age estimation, face recognition across aging. Fu et al. [200]

combined dimensionality reduction methods such as PCA, LLE,LPP, OLPP etc with re-

gression. Guo et. al. [201] proposed robust regression followed by local adjustments

for age estimation and showed that local adjustments improve performance. All these

approaches mainly differ in the features used and variations in the choice of regression

methods.

7.4.1 Modeling the Geometry of the Face

Representations and recognition of shapes is a well understood field [8, 202]. In this

chapter, we are interested in the 2D geometry of facial landmarks. The shape observed in

an image of a face is a perspective projection of the 3D locations of the landmarks. Stan-

dard approaches to describe shapes involve extracting features such as moments [19],

shape context [203] etc. These approaches extract coarse features which correspond to

the average properties of the shape. These approaches are particularly useful when land-

marks on shapes cannot be reliably located across differentimages or do not necessarily
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correspond to physically meaningful parts of the object. However, in the case of faces,

there exist physically meaningful locations such as eyes, mouth, nose etc which can be

reliably located on most faces. This suggests the use of a representation that exploits the

entire information offered by the location of landmarks instead of relying on coarse fea-

tures. In several face recognition tasks, the locations of the landmarks have been shown

to be extremely informative [204, 205]. There exist severalautomatic methods to locate

facial landmarks which work well on constrained images suchas passport photos. It is in

constrained scenarios such as these that the methods proposed here are applicable.

The drawback of using the locations of landmarks is that theyare sensitive to trans-

formations such as affine transforms, view changes etc. In order to account for this, shape

theory studies the equivalent class of all configurations that can be obtained by a specific

transformation (e.g. linear, affine, projective) from a given base shape. A shape is repre-

sented by a set of landmark points, given by am×2 matrixL= [(x1,y1);(x2,y2); . . . ;(xm,ym)],

of the set ofm landmarks of the centered shape. Theshape spaceof this base shape is

the set of equivalent configurations that are obtained by transforming the base shape by

an appropriate spatial transformation. For example, the set of all affine transformations

forms theaffine shape spaceof that base shape.

The affine shape space[166] [185] is very important because small changes in

camera location or change in the pose of the subject can be approximated well as affine

transformations on the original base shape. The affine transforms of the shape can be

derived from the base shape simply by multiplying the shape matrix L by a 2× 2 full

rank matrix on the right. For example, letA be a 2×2 affine transformation matrix i.e.

A=





a11 a12

a21 a22



. Then, all affine transforms of the base shapeLbasecan be expressed

asLa f f ine(A) = Lbase∗AT . Note that, multiplication by a full-rank matrix on the right

preserves the column-space of the matrixLbase. Thus, the 2D subspace ofRm spanned

by the columns of the matrixLbase is anaffine-invariantrepresentation of the shape. i.e.

span(Lbase) is invariant to affine transforms of the shape. Subspaces such as these can be

identified as points on a Grassmann manifold. We now define theGrassmann manifold.

As already known, the Grassmann manifoldGk,m is the space whose points are
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k-planesor k-dimensional hyperplanes (containing the origin) inR
m.

7.4.2 Aging on the Manifold

The basic premise of our work is that the perceived age will show a functional de-

pendence on the geometry of the face. Given several facesXi, along with their respective

agesyi, the goal is to estimate a functiony = f (X) that can explain the aging patterns.

This can be formulated as a regression problem. Regression problems are mostly stud-

ied in Euclidean vector spaces and there exist a wealth of methods for robust regression.

Regression has been applied to age-estimation tasks before by assuming that faces, or fea-

tures extracted from faces lie in a Euclidean space such as in[198, 200, 201]. However,

for geometric features considered here, we need to solve theregression problem on the

Grassmann manifold. The Grassmann manifold is not a vector space, thus precluding the

use of classical techniques. We explore two distinct approaches for solving the regression

problem – a differential geometric and a kernel-based machine learning approach. In the

differential geometric approach, all points on the manifold are projected onto the tangent

plane at a mean-point and standard vector-space methods areapplied on the tangent plane,

which is a Euclidean vector space [157]. This approach can also be viewed as performing

regression on the transformation required to warp an ‘average-face’ to a given face. Thus

this approach is motivated by [189]. Given a face and an ‘average-face’, we compute the

directional velocity vector with which the average-face should move on the manifold so

that it reaches the given face in unit time. This velocity vector is then used as an age

signature.

On the other hand, kernel methods offer an alternative approach for solving such

problems. The assumption is that the kernel provides a mapping into a higher-dimensional

Euclidean space, thereby implicitly enabling standard vector space approaches on the

higher dimensional space. For the case of the Grassmann manifold, there is an elegant

interpretation of points as vectors via the so called Cauchy-Binet embedding [206], which

arises from the Cauchy-Binet kernel. However, the differential geometric approach en-

ables a far richer class of statistical estimation techniques to be deployed, whereas the
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kernel-based method is limited in applicability to those algorithms that admit a kernel

interpretation. Since there exist kernel versions of regression algorithms (Ridge, SVM,

RVM etc) we shall see in experiments that both approaches offer comparable performance

on age-estimation tasks.

7.4.3 Differential Geometric methods for Aging

Given an ‘average-face’ or a shape-normalized face, we would like to quantify the

deformation that can warp the average to any given face. We can conveniently model

these deformations via geodesics on the Grassmann manifold. We parameterize the de-

formation between two shapes on the Grassmann manifold as the velocity with which a

point on the manifold should move in order to reach the secondpoint in unit-time. We

have already discussed in chapter 6 how to compute these parameters. We shall use these

velocity parameters as aging signatures. Once these velocity parameters are computed, we

canflattenthem to a vectorial form. Once this is done, we can apply standard Euclidean

space regression methods on the velocity parameters. But first, we need to specify what

the ‘shape-normalized’ or ‘average’ face is and how to compute it.

The shape-normalized face can be a generic face that is obtained by averaging the

shapes of several faces. In the current setup, we need to find the mean of a set of sub-

spaces, or the mean of a set of points on the Grassmann manifold. The problem can be

solved by computing the Karcher mean.

7.4.4 Kernel Methods

To discuss how to solve the function estimation problemy = f (X) on the Grass-

mann manifold using kernels, we first define the Cauchy-Binet embedding. This em-

bedding maps points from the Grassmann manifold to a large dimensional vector space.

The Cauchy-Binet embedding [206] is a mapping fromGk,m to R
n, wheren=

(m
k

)

. The

mapping is understood as follows. LetS∈ Gk,m andY be anm× k tall-thin orthonor-

mal matrix such thatspan(Y) = S. Let s be a subset of{1, . . . ,m} with k elements

s= {r1, . . . , rk}, andY(s) be thek× k matrix whose row indices are given by the vec-
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tor s. Then, there aren=
(m

k

)

combinations for the vectors. Let these combinations be

given bys1, . . .sn. Then, the Cauchy-Binet embedding is a mappingΦ : Gk,m→R
n where

Φ(S) = [det(Y(s1)), . . .det(Y(sn))], wherespan(Y) =S,YTY= I . Note that this embedding

is independent of the choice ofY as long as it is orthonormal and satisfiesspan(Y) = S. It

can be shown that dot-products in the Cauchy-Binet space can beevaluated via a Mercer

kernel on the Grassmann manifold [163]. Specifically, ifS1 andS2 are two subspaces

with orthonormal basisY1 andY2, then

Φ(S1)
TΦ(S2) = det(YT

1 Y2)
2 (7.2)

Let us denote byKCB(Y1,Y2) = det(YT
1 Y2)

2 the Cauchy-Binet kernel on the Grass-

mann manifold. This dot-product interpretation makes it feasible to implement standard

regression algorithms such as Ridge Regression, SVM-based regression etc. via the

‘kernel-trick’ on the Grassmann manifold. Further, standard vector-space kernels such

as the polynomial, radial basis and sigmoid can be rewrittenin terms of the Cauchy-Binet

kernel on the Grassmann manifold. As an example, the polynomial kernel in the CB space

can be rewritten as

Kpoly(Φ(S1),Φ(S2)) = (1+ γΦ(S1)
TΦ(S2))

d

= (1+ γKCB(Y1,Y2))
d

Similarly the RBF kernel on the CB-space can be rewritten as

KRBF(Φ(S1),Φ(S2)) = exp−γ(Φ(S1)−Φ(S2))
T(Φ(S1)−Φ(S2))

= exp−γ(KCB(Y1,Y1)+KCB(Y2,Y2)−2KCB(Y1,Y2))

This gives rise to a new family of kernels on the Grassmann manifold which can

also be shown to be Mercer kernels. In practice, we need not compute the large
(m

k

)

di-

mensional embedding itself. As shown above, dot products and Mercer Kernels in the CB

space can be evaluated using the Cauchy-Binet kernel on the Grassmann manifold. This

makes this approach computationally efficient and flexible in the choice of the regression

method.
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7.4.5 Experiments

We evaluate the strength of the Riemannian framework on age-estimation tasks on

two datasets. The first dataset is the Passport dataset [195]which contains mostly adult

faces. The age distribution of the faces is shown figure 7.5(a). In this dataset, we used

47 fiducial points marked manually. The second is the publicly available FG-Net dataset

[207], which contains both adult and young faces. The distribution of ages is shown

in figure 7.5(b). Some sample images from this dataset are shown in figure 7.6. For

this dataset, 68 fiducial points are available with each face. Both datasets exhibit wide

variations in age ranges of the faces, thus testing the framework on both young and adult

faces.

Given a face and its landmarks, we extract the tall-thin Grassmann Procrustes repre-

sentation using standard SVD methods. Given the matrix of landmarksL we center it and

compute its SVDL = UΣVT . The affine-invariant Grassmann Procrustes representation

of L is then given byYL =U . Now given several examplesYi with corresponding agesyi,

we want to estimate the aging-functiony= f (Y) in a robust manner. Given a training set,

we compute the shape-normalized faceµ as described in section 6.3. For each face in the

training setYi, we compute the aging signatures using the flattened warpingparametersAi

as described in section 6.3.2. Then, we estimate the aging functionyi = f (Ai) using stan-

dard regression methods. Further, we also use the Cauchy-Binet kernel on the Grassmann

manifold to perform kernel regression.

For performing regression using the Cauchy-Binet kernel, we useε-SVMs, RVMs,

and ridge regression (regularized linear least-squares).We use theε-SVM with ε = 0.02,

the cost parameterC= 1000, and regularization parameterλ = 10−6. For RVMs, there are

no parameters to tune except the number of iterations for theRVM optimization routine.

We set this to 50 iterations. For ridge regression, the regularization parameterλ is chosen

to beλ = 10−6. To perform regression using the velocity vectors, we use the same regres-

sion methods, but with the polynomial kernel of degree 2 i.e.K(A1,A2) = (1+AT
1 A2)

2,

whereA1 andA2 are the vectorial forms of the velocity matrices.

Two metrics have been proposed in literature for quantifying the performance of
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Figure 7.5:Distribution of ages in (a) Passport, (b) FG-Net dataset

Figure 7.6:Sample images from the FG-Net dataset

age-estimation algorithms. The first criterion measures the mean absolute error (MAE)

in age-estimation across the entire dataset. i.e.MAE = 1
N ∑i |l i − l̂ i |, whereN is the size

of the dataset,l i is the true age of theith person being tested, andl̂ i is the assigned age.

The second metric is the cumulative match score. The cumulative score is defined as

CS( j) = Ne≤ j/N×100%, whereNe≤ j is the number of test-images on which the absolute

error in age-estimation is withinj years.

Passport dataset: In the passport dataset, we performed a leave-one-out testing

in which the regression algorithms are trained on the entiredataset except one sample on

which the testing is done. The MAE results using various algorithms is summarized in

table 7.3. The SVM and RVM based regression are seen to perform better than the simpler

ridge-regression. We see that the lowest MAE was achieved byusing velocity vectors with

RVM regression and it is 8.84 years. Considering that the average age in this dataset is 42

years, the obtained MAE is quite encouraging. Figure 7.7(a)shows the cumulative score

curves as a function of the error-level using the Cauchy-Binetkernel with SVM, RVM,

and ridge regression. We see that about 85% of the faces are classified within 15 years

of their true age. Similar results are obtained using the velocity parameters as shown in

figure 7.7(b).
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FG-Net dataset: For the FG-Net dataset, we performed a leave-one-person-out

testing as has recently been suggested [208]. In this mode, all images corresponding

to the same person are used for testing and the remaining images are used for training.

The results of the proposed framework on the FG-Net dataset is shown in table 7.4. The

lowest MAE was obtained by using SVM + Cauchy-Binet kernel, andalso by SVM +

polynomial kernel on velocity vectors. MAE in both these cases was 5.89 years. The

table also shows a comparison with other recently publishedmethods. The cumulative

scores of the proposed methods are shown in figures 7.8(a) and7.8(b). We see that more

than 90% of the faces are classified within 15 years of their true age.

We see that the proposed algorithms are comparable to the state-of-the-art methods

and even outperform most of them except RUN1 [209] (MAE = 5.78) and LARR [201]

(MAE = 5.07). The work of [209] deals primarily with a new regression method that can

deal with uncertain labels. The features used are cropped face images. Our approach is

flexible in the choice of regression method, and we can utilize the method of [209] as

well. Here, we show that accurate characterization of geometry yields comparable results

even with simple, unoptimized regression methods. In [201], a suite of dimensionality

reduction approaches – PCA, LLE, LPP etc – etc are empiricallyevaluated. It was found

that Orthogonal LPP (OLPP) performs best in age-estimationtasks. However, there is

no principled argument on why this is so. Further, the age estimation results are locally

adjusted around the estimated age to tweak estimation results. The proposed method can

be combined with the features of [201] and also the suggestedlocal adjustment, but as

stated in the introduction the focus of the current work is not to outperform these methods

in age-estimation, but to show how a principled method to model the geometric variations

of faces can provide comparable results.

It is generally accepted that geometric variations are morepronounced in children

than adults. This might explain why the age-estimation error in the passport dataset is

larger than in the FG-Net dataset. Further, the published methods compared in table

7.4 rely on some form of joint structure and texture information such as using the whole

images themselves, or using Active Appearance models. Inspite of this obvious handicap,

it is interesting to note that accurate characterization ofgeometry provides better results
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Method Ridge Re-

gression

SVM RVM

Cauchy-Binet 12.49 9.03 9.85

Warping Velocities 15.72 9.78 8.84

Table 7.3: Mean-Absolute Errors using different regression methods using the Cauchy-Binet

embedding and the warping velocities on the Passport dataset.
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Figure 7.7:Passport data Cumulative scores using (a) Cauchy-Binet kernel, (b)velocity parame-

ters with polynomial kernel.

in many cases. This does not downplay the role of texture in age-perception, and the

proposed methods may be further combined with textural features.

7.5 Conclusion

In this chapter we have presented a comprehensive set of tools and algorithms for

statistical computing on the Grassmann manifold. We have shown that the Grassmann

manifold arises naturally in many important applications in computer vision. We have

presented statistical modeling methods that are derived from the Riemannian geometry

of the manifold. We have also presented Procrustes representation and non-parametric

density estimation methods which offer an alternative to the Riemannian approaches. As

seen in experiments the Riemannian geometric approaches tend to perform uniformly well

over several experiments. However, the performance of the non-parametric approach is
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Method MAE

Cauchy-Binet

Ridge 6.60

SVM 5.89

RVM 6.86

Warping Velocities

Ridge 7.57

SVM 5.89

RVM 6.69

Other Algorithms

AAS [199] 14.83

WAS [208] 8.06

Ages [208] 6.77

Ageslda

[208]

6.22

QM [198] 6.55

MLP [198] 6.98

RUN1 [209] 5.78

LARR [201] 5.07

Table 7.4:Comparison of Mean-Absolute Errors using proposed methods with state-of-the-art

on the FG-Net dataset.
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Figure 7.8:FG-Net data Cumulative scores using (a) Cauchy-Binet kernel, (b) velocity parame-

ters with polynomial kernel.
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strongly tied to the choice of the kernel-width. With a good choice of the kernel-width pa-

rameter, it can outperform the wrapped-normal approach. This is because non-parametric

methods can provide better fit to the data than imposing a parametric form. Further, the

computational cost involved in classification using the non-parametric method is quite

high as it involves computing distances to every point in thetraining dataset. Whereas for

the wrapped normal case, classification is much faster. Further, the geometric methods

presented in this chapter offer principled solutions to several interesting problems such as

smoothing, prediction, and time-sequence modeling on the manifold.
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Chapter 8

Directions for Future Work

The problems addressed in this thesis and the methods proposed to solve them lead

us to several interesting future research directions. In this chapter we outline a few direc-

tions for future research work.

8.1 Indexing the Manifold: Applications to Database Searching

In the preceding discussion, we have represented the members of a database – e.g.

actions or shapes – as points on the Grassmann manifold. We always assumed that the

dataset was small enough to ignore the complexity involved in nearest neighbor searching.

When the size of the dataset is extremely large, searching forthe most similar element to

a given query can be prohibitively expensive if done in a brute-force linear fashion. Thus,

for large datasets, it is necessary to index and organize thedata in a form that enables

fast-lookup. Two of the most commonly used approaches for organizing a database are

based on a) Space-partitioning, and b) Clustering.

Space partitioning methods divide the data-space into distinct regions. The parti-

tioning is done so that each region is made up of ‘similar’ data points. For example, if

the input data lies on a sphere inR3, a natural way of partitioning the data-space would

be in terms of the longitude and latitude of the points. The longitude and latitude are an

‘index’ into the manifold. For complex manifolds, this process is more commonly known

as ‘Charting’ the manifold. Space-partitioning is well understood for Euclidean spaces

and is known to work efficiently for low-dimensions. For high-dimensional spaces, space

partitioning methods are known to perform as poorly as simple linear searches. This is

due to the fact that in high-dimensional spaces, the number of regions required to cover

the entire space grows in an exponential fashion with the dimension, hence requiring an

exponentially larger number of similarity checks [210]. Moreover, due to the sparse na-

ture of high-dimensional spaces most of the regions are empty, and thus do not add to the
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retrieval results. By careful analysis of the underlying manifold on which the data lies,

more efficient space partitioning methods can be devised with fewer number of partitions,

which are also more populated. Future research would focus on mathematical represen-

tations and methods that would enable charting the Grassmann and the Stiefel manifold

for fast similarity search applications.

Space partitioning methods are directly related to the geometry of the manifold,

and are insensitive to the naturally embedded clusters in a given dataset. By specifically

discovering the clusters inherent within the given dataset, one can design more efficient

indexing methods rather than charting the entire manifold.Clustering based methods rely

on a notion of ‘distance’ or ‘similarity’ in the data space. Designing the right clustering

algorithm requires both a notion of a natural distance metric on the manifold (geodesics

etc) and algorithms for finding clusters that are consistentwith the geometry of the man-

ifold. Standard clustering methods such as k-means are designed for euclidean spaces

and thus are not directly applicable. Future research wouldfocus on deriving appropri-

ate clustering algorithms that are adapted to the structures of our Manifolds of interest

– Grassmann and Stiefel. Further, hierarchical clusteringmethods such as dendrograms

can be employed to organize the data in a hierarchical fashion, where the lower-levels of

the hierarchy encode coarse similarity relations and the higher-levels provide successive

levels of refinement to the similarity search.

8.2 Separating Style and Content

Visual patterns can be viewed as characterized by two underlying attributes – their

style and their content. Traditional pattern recognition approaches attempt to build mod-

els for the content of a pattern without specific regard to thestyle. As an example, in

computer generated text, the alphabet ‘a’ may be rendered inone of several font styles.

The style of the font does not change the content itself. However, the style reflects itself

in the wide variations of observable features such as corners, edges etc. Similarly in ac-

tion recognition, the same action such as walking may be performed in several different

styles. A choice of features that is invariant to stylistic changes does not usually exist.
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However, one can exploit the geometry of the underlying feature space to learn models of

stylistic variations and the individual mappings between style and content. We propose to

study the problem of separating the style and content of human actions by exploiting the

geometry of the Grassmann manifold.

8.3 Geometric Subspace Dynamics

So far, we have treated points on the Grassmann manifold in a ‘static’ manner.

We explored statistical modeling methods and distance metrics on the manifold. This

naturally leads us to extend these techniques to situationswhere we are interested in

modeling the dynamics of a process on the manifold. This requires accurate modeling of

the temporal dependence in a way that is consistent with the geometry of the manifold.

As a specific example, consider the problem of shape sequencemodeling. A 2-D shape

is usually represented in the form of a few landmarks on its contour. The affine-shape

space of a shape is the space of all possible affine warps of a given shape. Affine shape

spaces can be identified as points on the Grassmann manifold.Preliminary experiments

in Chapter 6 have shown promising results on affine-invariantshape classification from

still images. Future work would focus on extending this framework to shape sequences.

A shape sequence can be modeled as a trajectory on the Grassmann manifold. Paramet-

ric and non-parametric methods will be extended to model theevolution of the shape on

the Grassmann manifold. Non-parametric methods such as Dynamic Time Warping only

require a measure of distance between two points on the manifold, hence they are easily

applicable to shape sequence matching on the Grassmann manifold. Parametric methods

such as HMMs can also be suitably extended by a careful derivation of each of the com-

ponents of the model. HMMs consist of two major components – the hidden state space

and the observation model. The hidden state space in the current context would consist of

a discrete set of points on the Grassmann manifold which can be estimated by clustering

algorithms which will be developed as proposed in section 8.1. The observation model

would consist of parametric probability density functionson the Grassmann manifold

such as the matrix Bingham distribution as described in chapter 6. This would then allow
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concise parametric models to represent shape sequences that are also consistent with the

geometry of the manifold.

8.4 Online Visual Learning

Applications involving dynamic environments and autonomous agents such as a

mobile robot navigating through an unknown space cannot be represented by static mod-

els. In such applications it is important to adapt models, that have been learnt offline,

according to new observations in an online fashion. In the object recognition domain, one

common approach is to perform incremental PCA to dynamicallylearn a better represen-

tational model as the appearance of the target dynamically changes as in [179]. Incre-

mental PCA has also been used to recognize abnormalities in the visual field of a robot as

in [180]. In an unrelated domain, the theory of subspace tracking on the Grassmann man-

ifold [211] has been developed for array signal processing applications. Since PCA basis

vectors represent a subspace which is identified by a point onthe Grassmann manifold,

subspace tracking can be applied for online visual learningapplications. By tracking the

evolution of the appearance subspace or the model parameters of an ARMA model on the

Grassmann manifold, one can identify points of large changes in the trajectory which can

potentially be used for anomaly detection also.

8.5 Anomaly Detection

Detecting anomalies in the field of view of a camera is an important problem with

several applications in computer vision and robotics. One of the frequently used strategies

for detecting anomalies is based on outlier detection. The dynamic nature of patterns in a

the field of view of a stationary or a moving camera can be well described by a sequence of

time-varying dynamical systems. A simpler approximation would be to represent only the

coarse observation subspaces and model the dynamic nature of patterns are time-varying

subspaces. This model can be used to detect anomalies in the field of veiew of the camera

and hence can be used for anomaly detection.
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