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Spatio-temporal patterns abound in the real world, and nstaieding them com-
putationally holds the promise of enabling a large classppfiieations such as video
surveillance, biometrics, computer graphics and animatio this dissertation, we study
models and algorithms to describe complex spatio-tempatétrns in videos for a wide
range of applications.

The spatio-temporal pattern recognition problem invoheg®gnizing an input video
as an instance of a known class. For this problem, we showatli@st order Gauss-
Markov process is an appropriate model to describe the splapamitives. We then
show that the space of primitives is not a Euclidean spaca Riemannian manifold.
We use the geometric properties of this manifold to defineadises and statistics. This
then paves the way to model temporal variations of the prest We then show appli-
cations of these techniques in the problem of activity redtmn and pattern discovery
from long videos.

The pattern discovery problem on the other hand, requiresuaning patterns from
large datasets in an unsupervised manner for applicatiarsas automatic indexing and
tagging. Most state-of-the-art techniques index videa®@ling to the global content in
the scene such as color, texture and brightness. In thierthéi®n, we discuss the prob-
lem of activity based indexing of videos. We examine theausiissues involved in such

an effort and describe a general framework to address thaggno We then design a



cascade of dynamical systems model for clustering videssdan their dynamics. We
augment the traditional dynamical systems model in two waystly, we describe activ-
ities as a cascade of dynamical systems. This significantigeces the expressive power
of the model while retaining many of the computational adagaes of using dynamical
models. Secondly, we also derive methods to incorporate aiel rate-invariance into
these models so that similar actions are clustered togetespective of the viewpoint or
the rate of execution of the activity. We also derive aldoris to learn the model parame-
ters from a video stream and demonstrate how a given videgeseg may be segmented
into different clusters where each cluster represents @antgc

Finally, we show the broader impact of the algorithms andstdeveloped in this
dissertation for several image-based recognition problfat involve statistical inference
over non-Euclidean spaces. We demonstrate how an unddirgjaf the geometry of the
underlying space leads to methods that are more accuratéfiehitional approaches. We
present examples in shape analysis, object recognitidapvibased face recognition, and

age-estimation from facial features to demonstrate thoessi
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Chapter 1

Introduction

Videos play an ever increasing role in our everyday livesajpplications ranging
from broadcast news, entertainment, scientific reseaedurgy and surveillance. Video
is a rich source of patterns in the form of spatio-temporg&neity variations. Since
such visual patterns evolve with time, we not need to undedsthe underlying geometry
of the pattern that is evolving, but also need to chara&etie dynamics of evolution.
The goal of this dissertation is to study the related proklefpattern recognition and
pattern discovery from video data with various applicatidiat include modeling and
recognizing human activities.

We show that short-segments of videos can be consideredtpst®wf station-
ary linear dynamic systems which can be parametrized asofidstr Gauss-Markov pro-
cesses. We show under certain assumptions that the parasspate can be considered
as a Grassmann manifold, which is not a linear space but a R@aramanifold. In
order to develop accurate inference algorithms on theseéfoldswe need to a) under-
stand the geometric structure of these manifolds b) deppeapriate distance measures
and c) develop probability distribution functions (pdf)da@stimation techniques that are
consistent with the geometric structure of these manifdlds show how accurate statis-
tical characterization that is tuned to the geometry of¢hmanifolds allows us to design
efficient algorithms that compare favorably to the statéhefdrt in various applications.

We further consider the problem of modeling the temporaladiyics that give rise
to the wide variety of spatio-temporal patterns. In geneha exact nature of these laws
is very difficult to estimate. This is because real patteriseaout of complex non-linear
processes that are usually unknown. To simplify the probdentonsider two models -
a sequential compositional model of primitives, and a simdiate-varying model in the
primitive space. For both these models, we show how an utathelieg of the distance

metrics and statistics on the manifold of primitives leamglegant methods for solving



the problem.

We apply these techniques to the problem of pattern disgdvem large datasets
in an unsupervised manner for applications such as autonmatexing and tagging of
videos. We examine the various issues involved in such amtethd describe a general
framework to address the problem. We design a cascade ofrdgalasystems model
for clustering videos based on their dynamics. We augmentrtditional dynamical
systems model in two ways. Firstly, we describe activitiesaacascade of dynamical
systems. This significantly enhances the expressive poisteeanodel while retaining
many of the computational advantages of using dynamicaletsodSecondly, we also
derive methods to incorporate view and rate-invarianae tinése models so that similar
actions are clustered together irrespective of the viemtpmwithe rate of execution of the
activity. We also derive algorithms to learn the model pagtars from a video stream
and demonstrate how a single video sequence may be clusteéoedifferent clusters
where each cluster represents an activity. Further, wergkrethis approach to the case
of complex patterns where a sequential model is not ap@tgpdue to co-articulatory
effects. This is generalized by considering the evolutibthe dynamics as a smoothly
varying linear system whose parameters vary with time. hmodeled as a trajectory
on the Grassmann manifold. The dynamics of this variationlmlearnt from the data
using the geometry of the manifold.

Finally, we show the applicability of the methods developede for several other
problems in computer vision that involve statistical igfiece over non-Euclidean spaces.
Specifically, we show that linear-subspace constrainteappaturally in several vision
problems such as shape analysis, object recognition, \Abdsed face recognition, and
age-estimation from facial features. We demonstrate hounaerstanding of the geom-
etry of the Grassmann manifold leads to methods that are axagrate than traditional
approaches. This also provides a principled framework faide-class of problems in-

volving statistics over subspaces.



1.1 Organization of the Dissertation

In chapter 2, we start with a comprehensive overview of paskwn video analysis
focusing on human activities. In chapter 3, we discuss aryhafamotion perception that
leads naturally to the computational model as a linear dynaystem (LDS). We discuss
estimation techniques, and distance metrics on the spad@SfFurther, we also discuss
geometric variations such as view and execution rate clsaauge how they influence the
model parameters. In chapter 4, we discuss a cascade of tatlaystems model to
describe complex activities that are formed by a sequengirgympler primitives. We
show its utility in activity-based video clustering applions. In chapter 5, we discuss a
more general time-varying model that can account for thepimenon of co-articulation
and assimilation of primitives on the boundaries. In chaptenve discuss in detail the
geometry of the parameter-space of the LDS and show thatatesmneter-space can be
considered as a Grassmann manifold. We develop statistasgification techniques on
the manifold and show that it can outperform more traditiore@arest neighbor classifiers
on several applications. In chapter 7, we discuss the braagect of these methods
on several still-image based recognition applicationhsagage-estimation from facial
features, object recognition from landmarks, and objembgeition from image-sets. In

chapter 8, we discuss directions for future work.



Chapter 2
Related Work

In this chapter, we provide a comprehensive review of varaqproaches that have
been pursued over the past couple of decades in the compsitan gommunity to un-

derstand and model human motion and human activities.

2.1 Introduction

Several related survey papers that deal with action anditgatnodeling in videos
have appeared over the years. Most notable among them afelltveing: Aggarwal
and Cai [10] discuss three important sub-problems that begéorm a complete action
recognition system — extraction of human body structurenfimages, tracking across
frames, and finally, recognizing the action. Cedras and Shahgdresent a survey on
motion-based approaches to recognition as opposed tdisitizased approaches. They
argue that motion is a more important cue for action recagnithan the structure of
the human body. Gavrila [12] presented a survey of liteeatunich focused mainly on
tracking of hands and humans via 2D or 3D models and a dismus$action recognition
techniques. Recently, Moeslund et al [13] presented a sufyeoblems and approaches
in human motion capture including human model initialiaati tracking, pose estima-
tion and activity recognition. Since the scope of the disdemn is limited to recognizing
actions from tracked motion or structure features, thigptdrawill focus exclusively on
reviewing approaches for recognition of action and adétigifrom video, and not on the
lower-level modules of detection and tracking which is d&ged at length in earlier sur-
veys [10, 11, 12, 13, 14].

The terms ‘Action’ and ‘Activity’ are frequently used intdrangeably in the vi-
sion literature. In the ensuing discussion, by ‘actions’refer to simple motion patterns
usually executed by a single person, typically lasting fawrs durations of time on the

order of tens of seconds. Examples of actions include bgndialking etc (for example,



see figure 2.1). On the other hand, by ‘Activities’ we refetlte complex sequences of
actions performed by several people who could be intergetith each other in a con-
strained manner. They are typically characterized by moolgdr temporal durations,
for example, two persons shaking hands, a football teanirgeargoal or a co-ordinated
bank attack by multiple robbers (for example, see figure. 2ZIB)s is not a hard bound-
ary and there is a significant ‘gray-area’ between these wtremes. For example, the
gestures of a music conductor conducting an orchestragardhstrained dynamics of a
group of humans (see figure 2.3), is neither as simple as &@priaoor as complex as
an ‘activity’ according to the above interpretation. Howguhis simple categorization
provides a starting-point to organize many approacheshidnzt been proposed to solve

the problem. A quick preview of the various approaches tattunder each of these

categories is shown in figure 2.4.

Figure 2.1: Near-field video: Example of Walking action. tiig taken from [4].

Frame 5 Frame 6 Frame 7 Frame 8

Figure 2.2: Medium-field video: Example video sequence afrukated bank attack.
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Figure 2.3: Far-field video: Modeling dynamics of groups afrfans as a deforming

shape. Figure taken from [5].
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Figure 2.4: Overview of approaches for action and activetyognition.

In this dissertation, we focus on methods of recognitioniofpée and complex

actions. We do not address high-level semantic ‘activigresentation and recognition.

In this chapter, we review methods for modeling and recagmibf simple and complex

action classes.

2.2 General Overview

A generic action or activity recognition system can be vidvas proceeding in a

series of steps, from a sequence of images to a higher |l¢egbretation. The major steps

involved are the following:

1. Input video or sequence of images



2. Extraction of concise low-level features
3. Mid-level action descriptions from low-level features

4. High-level semantic interpretations from primitiveiaot

Video data consist of massive amounts of raw informatiorha form of spatio-
temporal pixel intensity variations. But, most of this infaation is not directly relevant
to the task of understanding and identifying the activitgurcing in the video. A classic
experiment by Johansson [15] demonstrated that humanseceaiye gait patterns from
point light sources placed at a few limb joints with no aduhal information. Extraneous
factors such as the color of the clothes, illumination coads, background clutter do not
aid in the recognition task. We briefly describe a few popldarlevel features and refer

readers to alternate sources for a more in-depth treatrsemé @rogress.

2.2.1 Optical flow

Optical flow is defined as the apparent motion of individualefs on the image
plane. Optical flow often serves as a good approximation eftthe physical motion
projected onto the image plane. Most methods to computealgtow assume that the
color/intensity of a pixel is invariant under the displaaarhfrom one video frame to
the next. We refer the reader to [16] for a comprehensiveesuand comparison of
optical flow computation techniques. Optical flow providesacise description of both
the regions of the image undergoing motion and the veloditynotion. In practice,
computation of optical flow is susceptible to noise and ilil@tion changes. Applications

include [17] which used optical flow to detect and track vedsan traffic.

2.2.2 Point trajectories

Trajectories of moving objects have popularly been usedeasifes to infer the
activity of the object. The image-plane trajectory itssliniot very useful as it is sensi-
tive to translations, rotations and scale changes. Altenaepresentations such as tra-

jectory velocities, trajectory speeds, spatio-tempouaVature, relative-motion etc have
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been proposed that are invariant to some of these variabilitA good survey of these
approaches can be found in [11]. Extracting unambiguous pr@ijectories from video is
complicated by several factors such as occlusions, nas&goound clutter etc. Accurate

tracking algorithms are needed for obtaining the motiojettaries [14].

2.2.3 Background subtracted blobs

Background subtraction is a popular method to isolate themgqgvarts of a scene
by segmenting it into background and foreground. Severpiagthes to background
modeling exist. One popular approach is to learn a stagistiistribution of pixel inten-
sities that correspond to the background as in [18]. By adgphe background model
according to new data, the method can also be applied to soenéth changing back-
ground [18].

2.2.4 Shape features

Shape of the human silhouette plays a very important role@gnizing human
actions. Several methods have been proposed to quantie shglobal, boundary and
skeletal based. Global methods consider the entire shgpmrto compute the shape-
descriptors, for example, shape moments [19]. Boundary adstlon the other hand
consider only the shape contour as the defining charaateoisthe shape. Such meth-
ods include chain codes [20] and landmark-based shapdpuptess(8]. Skeletal methods
represents a complex shape as a set of 1D skeletal curvesxdomple, the medial axis
transform [21]. Applications include shape-based dynamacleling of the human sil-

houette as in [22] to perform gait recognition.

2.3 Modeling and Recognizing Actions

Approaches for human action recognition fall into one of tihve following cate-
gories — a) Methods that rely on human body models, b) Methwaisdo not rely on hu-
man body models. Methods that fall in the first category relgegmentation of the body



into individual parts and extract features such as joirgi@or joint-trajectories. How-
ever, segmentation of the human body is a computationatiysive task, and extraction
of joints and angles requires good tracking algorithms.s€repproaches were popular in
the early 90s and an excellent survey can be found in [10].eMecently, the focus has
shifted to approaches which do not assume a body model, lgudnenotion information
extracted directly from the images. Motion-based appreadhr modeling actions fall
into two major classes — parametric and non-parametri@n®atric approaches typically
impose a model on the dynamics of the motion. The particudaarpeters for a class
of actions is then estimated from training data. Examplekide Hidden Markov Mod-
els (HMMs), Linear Dynamical Systems (LDSs) etc. Non-pagtrio approaches on the
other hand do not impose a model, instead relying on coapsegentations drawn from
data such as action-templates. We will first discuss thepavametric methods and later,

the parametric methods.

2.3.1 Non-Parametric Approaches for Action Recognition

2.3.1.1 2D-templates

One of the earliest attempts at action-recognition thas ¢ depend on 3-D struc-
ture estimation was proposed by Polana and Nelson [23]. Tingyrely on motion-
detection and tracking of humans in the scene. After tragkan ‘cropped’ sequence
constraining the human is constructed where scale changesmpensated for. A peri-
odicity index is computed for the given activity and the altfon proceeds to recognize
the action if it is found to be sufficiently periodic. To pemfio recognition, the periodic
sequence is segmented into individual cycles using thegieity estimate and combined
to get an average-cycle. The average-cycle is divided iritovatemporal segments and
flow-based features are computed for each spatial locati@ach segment. The flow-
features in each segment are averaged into a single frareeavEhnage-flow frames within
an activity-cycle form the templates for each action cla3ther related approaches for
representation and recognition of quasi-cyclic actionehseen proposed in [24]. Since,

these methods are periodicity-based, they are best soitpdhsi-periodic actions such as



walking, running, swimming etc.

Bobick and Davis [25] proposed using ‘temporal templateshaslels for actions.
In their approach, background subtraction is followed byggregation of a sequence of
background subtracted blobs into a single static imagey phepose two methods of ag-
gregation — the first methods gives equal weight to all imag#se sequence, which gives
rise to a representation called the ‘Motion Energy ImageE{(M The second method
gives decaying weights to the images in the sequence witiehigreight given to new
frames and low weight to older frames. This leads to a reptaten called the ‘Motion
History Image’ (MHI). The MEI and MHI together comprise aritplate’ for a given
action. From the templates, translation, rotation andesiceiariant Hu-moments are ex-
tracted which are then used for recognition. It was show2%} {hat MEI and MHI have
sufficient discriminating ability for several simple agticlasses such as ‘sitting down’,
‘bending’, ‘crouching’ and other aerobic postures. Howewewas noted in [26] that
MEI and MHI lose discrimination for complex activities duedverwriting of the motion

history and hence are unreliable for matching.

2.3.1.2 3-D Space-time Volumes

While most of the above approaches extract features fronaithdil video frames,
direct analysis of actions as 3-D spatio-temporal volunsesdiso been investigated by
several researchers. Chomat et al. [27] model a segment @b \dad a(x,y,t) spatio-
temporal volume and compute local appearance models apeadhusing a Gabor filter
bank at various orientation and spatial scales and a siegipdral scale. A given action
is recognized using a spatial average of the probabilitiesdividual pixels in a frame.
Since, actions are analyzed at a single temporal scalemigilsod is not applicable to
variations in execution rate. As an extension to this apgrpbocal histograms of nor-
malized space-time gradients at several temporal scadesxaracted by Zelnik-Manor
and Irani [28]. The sum of the chi-square metric betweerofgistms is used to match an
input video with a stored exemplar.

Laptev and Lindeberg [29] proposed a spatio-temporal gdimation of the well-
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known Harris interest point detector, which is widely use@bject recognition applica-
tions, and applied it to modeling and recognizing actionspace-time. Dollar et al. [30]
model a video sequence by the distribution of space-timg {&iture prototypes. The
feature prototypes are obtained by k-means clustering afge Iset of features — space-
time gradients — extracted at ST interest points from thaitrg data. Neibles et al. [31]
use a similar approach where they use a bag-of-words modeptesent actions. The
bag-of-words model is learnt by extracting spatio-tempimtarest points and clustering
of the features. Since, most of these methods are basedeam bperations such as filter-
ing and spatio-temporal gradients, the descriptors argtsento changes in appearance,
noise, occlusions etc. It has also been noted that inteoastspare extremely sparse in
real-life human actions and certain types of actions do ivetgse to distinctive features
[31, 30].

2.3.1.3 3D Object models

Successful application of models and algorithms to obgmbgnition problems led
researchers in action-recognition to propose alterngtesentations of actions as spatio-
temporal objects. Syeda-Mahmood et al. proposed a repegganof actions as gener-
alized cylinders in the jointx,y,t) space [32]. Yilmaz and Shah [33] represent actions as
3-D objects induced by stacking together tracked 2-D olgjentours. A sequence of 2-D
contours inx,y) space can be treated as an object in the joint t) space. This represen-
tation encodes both the shape and motion characteristibe dfuman. From théx y,t)
representation, concise descriptors of the object’s saréae extracted corresponding to
geometric features such as peaks, pits, valleys and ridyese this approach is based on
stacking together a sequence of silhouettes, accuratespamdence between points of
successive silhouettes in the sequences needs to begstablQuasi view-invariance for
this representation was shown theoretically by assumirajfare camera model. Similar
to this approach, [34] proposed using background subttdutebs, instead of contours,
which are stacked together to create (any,t) binary space-time volume. Since, this

approach uses background subtracted blobs, the problestatflishing correspondence
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between points on contours in the sequence does not exish this space-time volume,

3-D shape descriptors are extracted by solving a Poissatiequy34].

2.3.1.4 Manifold Learning Methods

Most approaches in action recognition involve dealing witta in very high-
dimensional spaces. Hence, these approaches often soffethe ‘curse of dimension-
ality’. The feature-space becomes sparser in an expohéglaon with the dimension,
thus requiring a larger number of samples to build efficidass-conditional models.
Learning the manifold on which the data resides enables uetermine the inherent
dimensionality of the data as opposed to the raw dimenstgnalhe inherent dimen-
sionality contains fewer degrees of freedom and allowsiefftanodels to be designed in
the lower-dimensional space. The simplest way to reducemsonality is via Principal
Component Analysis (PCA) which assumes that the data liesioparisubspace. Except
in very special cases, data does not lie on a linear subsp#te requires methods that
can learn the intrinsic geometry of the manifold from a langenber of samples. Nonlin-
ear dimensionality reduction techniques allow for repnésstgon of data points based on
their proximity to each other on nonlinear manifolds. Savarethods for dimensionality
reduction such as PCA, locally linear embedding (LLE) [39placian eigenmap [36],
and Isomap [37] have been applied to reduce the high-dirnealsy of video data in

action-recognition tasks (c. f. [38, 39, 40]).

2.3.2 Parametric Methods

The previous section focused on representations and mimaete simplest of ac-
tion classes — known as atomic or primitive actions. Thepatac approaches that we
will describe in this section are much more powerful modgtimols. Parametric methods
such as HMMs, LDSs are well suited to model more complex astiwhere the un-
derlying process is characterized by complex temporal myc& In such cases, simple
template matching approaches would either require too rreanplates or would not cap-

ture the dynamics of the action at all. Examples of such cergttions include the steps
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in a ballet dancing video, juggling a ball or conducting ach&stra using complex hand
gestures. Accurate modeling and recognition of this cldsmplex actions requires
more sophisticated methods that explicitly model the terapynamics of the action.
The most popular method used for modeling complex tempgraéduahics is the so
called state-space approach. The state-space approaesrtoeltemporal evolution of
features as a trajectory in some configuration space, wlasie goint on the trajectory
corresponds to a particular ‘configuration’ or ‘state’ — fostance, a particular pose or

stance of the actor.

2.3.2.1 Hidden Markov Models

One of the most popular state-space models is the HMM. In ibaete HMM
formalism, the state space is considered to be a finite sasofede points. The tempo-
ral evolution is modeled as a sequence of probabilistic gifingm one discrete state to
the other. HMMs first found wide applicability in speech rgodion applications in the
early 80s. An excellent source for a detailed explanatiohl@iMs and its associated
three problems — inference, decoding and learning — can lradfan [41]. Beginning
in the early 90’s, HMMs have found many applications in cotepwision. One of the
earliest approaches to recognize human actions via HMMspn@sosed by Yamato et
al. [42] where they recognized tennis shots such as backstaokke, backhand volley,
forehand stroke, forehand volley, smash etc by modelingjaesece of background sub-
tracted images as outputs of class-specific HMMs. Sevecakssful gesture recognition
systems such as in [43, 44], make extensive use of HMMs by limgda sequence of
tracked features such as hand blobs as HMM outputs.

Apart from gesture recognition, HMMs and its extensionsehalgo been used for
other action recognition applications such as in Siskind storris [45]. HMMs have
also found applicability in modeling the temporal evoluatiof human gait patterns both
for action recognition and biometrics (cf. Kale et al. [4Bju and Sarkar [47]). All
these approaches are based on the assumption that the feaquence being modeled is

a result of a single person performing an action. Hence,dheyot directly applicable to
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applications where there are multiple agents performingction or interacting with each
other. To address this issue, Brand et al [48] proposed a eduiMM to represent the
dynamics of interacting targets. They demonstrate thergrpg of their approach over
conventional HMMs in recognizing two-handed gesturesoiporating domain knowl-
edge into the HMM formalism has been investigated by sevesslarchers. Moore, Essa
and Hayes [49] use HMMs in conjunction with object detectioodules to exploit the
relationship between actions and objects. Hongeng andtidg®] incorporatea pri-
ori beliefs of state-duration into the HMM framework and theutesnt model is called
Hidden semi-Markov Model (semi-HMMs). Cuntoor and ChellapgH have proposed
a mixed-state HMM formalism to model non-stationary atitad, where the state-space
is augmented with a discrete label for higher-level behraviodeling.

HMMs are efficient tools for modeling time-sequence data amduseful both for
their generative and discriminative capabilities. HMMs arell-suited for tasks that re-
quire recursive probabilistic estimates [52] or when esiplsegmentation into atomic
action units is difficult. However, their utility is restted due to the simplifying as-
sumptions that the model is based on. Most significantlyagsimption of Markovian
dynamics and the time-invariant nature of the model rdsttlee applicability of HMMs

to relatively simple andtationarytemporal patterns.

2.3.2.2 Linear Dynamical Systems

Linear dynamical systems are a form of HMMs where the stpéea is not con-
strained to be a finite set of symbols but can take on contmwalues inRK wherek is
the dimensionality of the state-space. The simplest forml is the first order time-
invariant Gauss-Markov process which can be interpreted esntinuous state-space
generalization of HMMs with a Gaussian observation modelvegal applications such
as recognition of humans and actions based on gait (Bissa@d53], Veeraraghavan
et al [4], Mazzaro et al. [54]) and dynamic texture modelimgl @aecognition [55, 56]
have been proposed using LDSs. First order LDSs were usedafwani et al [5] to

model the configuration of groups of people in an airport tarmetting by considering
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a collection of moving points (humans) as a deforming sh&glwances in system iden-
tification theory for learning LDS model parameters [57, 58] from data and distance
metrics on the LDS space [60] have made LDSs popular for ileguand recognition of

high-dimensional time-series data.

2.3.2.3 Non-linear Dynamical Systems (NLDS)

While time-invariant HMMs and LDSs are efficient modeling dadrning tools,
they are restricted to linear and stationary dynamics. @enghe following activity —
a person bends down to pick up an object, then he walks to d&wyéable and places
the object on the table and finally rests on a chair. This @égtis composed of a se-
guence of short segments each of which can be modeled as aTli@Sntire process
can be seen as switching between LDSs. To tackle such cordpteamics, a popular
approach is to model the process using Switching Linear Byee systems (SLDS) or
Jump Linear Systems (JLS). An SLDS, consists of a set of LD8sawswitching func-
tion that causes model parameters to change by switchimgebatmodels. Bregler [61]
presented a multi-layered approach to recognize complesements consisting of sev-
eral levels of abstraction. The lowest level is a sequendepoit images. The next level
consists of ‘blob’ hypotheses where each blob is a regionoberent motion. At the
third level, blob tracks are grouped temporally. The finaéleconsists of a HMM which
represents the complex behavior. North et al [62] augmenttntinuous state vector
with a discrete state component to make a ‘mixed’ state. T$&rete component repre-
sents a mode of motion or more generally a ‘switch’ state. €&ponding to each switch
state, a Gaussian Autoregressive (AR) model is used to mmrdse dynamics. A max-
imum likelihood approach is used to learn the model paramdéte each motion class.
Pavlovic and Rehg [63] model the non-linearity in human motioa similar framework,
where the dynamics are modeled using LDS and the switchigegs is modeled using a
probabilistic finite state-machine. Other applicationshas framework include the work
of Del Vecchio et al [64] who used this framework for classifion of drawing tasks.

Though the SLDS framework has greater modeling and des&ipbwer than HMMs
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and LDSs, learning and inference in SLDS are much more coatpli, often requiring
approximate methods [65]. In practice, determining thergypate number of switch-
ing states is challenging and often require large amountsaofing data. Apart from
maximum likelihood (ML) approaches, algebraic approackieieh can simultaneously
estimate the number of switching states, the switchingaimistand also the parameters
of the model for each switch state have been proposed by \@daliso and Soatto [66].

However, algebraic approaches are often not robust to aod®utliers in the data.

2.3.3 Invariances in Human Action Analysis

One of the most significant challenges in action recognisdo find methods that
can explain and be robust to the wide variability in featuted is observed within the
same action class. Sheikh et. al. [67] have identified thrg®rtant sources that give

rise to variability in observed features. They are

1. Viewpoint
2. Execution Rate

3. Anthropometry

Any real-world action recognition system needs to be irardrto these factors. In
this section, we will review some efforts in this directidrat have been pursued in the

research community.

2.3.3.1 View-Invariance

A fundamental problem in video-based recognition of atiésiis achieving view
invariant representations of actions. While it may be easpuitd statistical models
of simple actions based on the representations discussét §mm a single view, it
is extremely challenging to generalize them to other viewendor very simple action
classes. This is due to the wide variations in motion-baeatufes induced by camera

perspective effects and occlusions. One way to deal witpttblelem is to store templates
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from several canonical views as done by Bobick et al. [25] amerpolate across the
stored views as proposed by Darrell, Essa and PentlandT&&.approach however is in
general not scalable since one does not know how many vieasnsider as canonical.
Another approach is to assume that point correspondencessagews are available as
in Syeda-Mahmood et al. [32] and compute a transformatiatrttaps a stored model to
an example from an arbitrary view. Seitz and Dyer [24] preserapproach to recognize
cyclic motion that is affine-invariant by assuming that éeatcorrespondence between
successive time-instants is known. It was shown by Rao antl [§i%4 that extrema in
space-time curvature of trajectories is preserved acr@sgsy The extrema in space-
time curvature of hand trajectories are denoted as ‘dynamstants’. An action is then
considered as a sequence of dynamic instants which is pessacross several views.
Another example is the work of Parameswaran and Chellapp& [f@vho define a view
invariant representation of actions based on the theorypadrad 3D invariants. In their
approach, they consider an action to be a sequen@®sd¥s They assume that there
exists at least onkey-posen the sequence in which 5 points are aligned on a plane in
the 3-D world coordinates. Using this assumption, theywdea set of view-invariant
descriptors. More recently, the notion of motion-histo?p| was extended to 3-D by
Weinland et al [2] where the authors combine views from midtcameras to arrive at a
three-dimensional binary occupancy volume. Motion histercomputed over these 3-D
volumes and view-invariant features are extracted by camguhe circular FFT of the

volume.

2.3.3.2 Execution Rate Invariance

The second major source of observed variability in featareses from the differ-
ences in execution rates while performing the same actianabbns in execution style
exist both in inter-person and intra-person settings.eStpaice approaches are robust to
minor changes in execution rates, but are not truly ratariamnt since they do not explic-
itly model transformations of the temporal axis ((c. f. Bdbend Wilson [72], Hoey

and Little [73])). Mathematically, the variation in exemirt rate is modeled as a warping
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function of the temporal scale. The simplest case of lineae-tvarps can be usually
dealt with fairly easily (c. f. [25, 74]). To model highly ndimear warping functions,

common methods methods include Dynamic Time Warping of¢laéufe sequence such
as the works of Takahashi et. al [75], Darrel et al [68], Giasd Poggio [76], Rao et al

[77] and Veeraraghavan et al [1].

2.3.3.3 Anthropometric Invariance

Anthropometric variations such as those induced by the sizape, gender etc.
of humans is another important class of variabilities tleguires careful attention. Un-
like viewpoint and execution-rate variabilities which edxeen well-studied, a systematic
study of anthropometric variations has only been receivitegest in recent years. Ad hoc
methods which normalize the extracted features to compefmachanges in size, scale
etc. are usually employed when no further information islalée. Drawing on studies
on human anthropometry, Gritai et al. in [78], suggestetttimanthropometric transfor-
mation between two different individuals can be modeled psogective transformation
of the image co-ordinates of body joints. Based on this, thefind a similarity metric
between actions, by using epipolar geometry to providetcaimss on actions performed

by different individuals.

2.4 Modeling and Recognizing Complex Activities

Most activities of interest in applications such as sutaeide, content-based in-
dexing etc involve several actors, who interact not onlyhvaach other, but also with
contextual entities. The approaches discussed so far astymsoncerned with modeling
and recognizing actions of a single actor. Modeling a comptzne and the inherent
structure and semantics of complex activities require éridgével representation and rea-
soning methods. The previously discussed approaches auited to deal with the
complexities of spatio-temporal constraints on actorsaatins, temporal relations such
as sequencing and synchronization, and the presence aplaeixecution threads. Thus,

structural and syntactic approaches such as dynamic bebebrks, grammars, petri-nets
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etc are well-suited to tackle these problems. Moreover,esamount of domain knowl-
edge can be incorporated in the design of concise and wdtstructural descriptions of
activities. Syntactic and structural methods typicalljde a hierarchical approach. At
the lower levels are the standard vision modules such agbaahkd-foreground segmen-
tation, tracking, object detection etc. At the mid-levet action-recognition modules
such as the ones discussed so far. At the high-level are #samang engines which

encode the activity semantics/structure based on lowel #stion-primitives.

2.4.1 Graphical Models

2.4.1.1 Belief Networks

A Bayesian network (BN) [79] is a graphical model that encodespiex condi-
tional dependencies between a set of random variables. BNdir@cted acyclic graphs
where the nodes represent random variables and directexs edgresent causality re-
lations. Dynamic Belief networks (DBNSs) are a generalizatibthe simpler Bayesian
networks which incorporate temporal dependencies betwaetom variables. DBNs
encode far more complex conditional dependence relatiommg several random vari-
ables as opposed to just one hidden random variable in tleeot&tMMs. Development
of efficient algorithms for learning and inference in gragahimodels (c. f. [80, 81]) have
made them popular tools to model structured activities.[M@thods to learn the topol-
ogy or structure of Bayesian networks from data [82] have bésn investigated in the

machine learning community.

2.4.1.2 Petri Nets

Petri Nets were defined by Carl Adam Petri as a mathematichfaodescribing
relations between conditions and events. Petri Nets ateplarly useful to model and
visualize behaviors such as sequencing, concurrencyhsymization and resource shar-
ing. Conditions refers to the state of an entity and eventy rief changes in the state

of the entity. Petri nets have traditionally found use in eloty hybrid systems, where
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they are well-suited to model complex behavior such as avecay, synchronization and
resource sharing [83, 84]. Petri Nets were used by Castel[8bpto develop a system
for high-level interpretation of image sequences and byn8haet al [86] as a tool for
guerying surveillance videos. Albanese et al [87] haventdgg@roposed the concept of
a probabilistic Petri Net (PPN).

2.4.1.3 Other Graphical Models

While DBNs are an attractive means to model relations betweegral variables,
they are not particularly well suited for describing conxgiemporal relations other than
simple sequencing. Researchers have proposed alternpkeagiaapproaches that specif-
ically model more complex temporal relations such as settpléy, duration, parallelism,
synchrony etc. Examples include the work of Pinhanez andd&dB8] who use a sim-
plified version of Allen’s interval algebra to model soplaated temporal ordering con-
straints such as past, now, future (PNF). Shi et al [89] mereactivities using partially
ordered temporal intervals. In their approach, an actigityonstrained by temporal and

logical ordering, including duration, of the activity imtals.

2.4.2 Syntactic Approaches

Syntactic pattern recognition approaches such as Conexgfammars (CFG) ex-
press the structure of a process using a set of producties.rufo draw a parallel to
grammars in language modeling, the production rules spéwév complex sentences
(activities) can be constructed in a grammatically soundmeafrom simpler words (ac-
tivity primitives), and how to recognize if a given senterfeigleo) conforms to the rules
of a given grammar (activity model). Syntactic approachesuseful when the structure
of a process is difficult to learn but may be known a priori. tagtic pattern recognition
approaches were first successfully applied to still-imag®gnition tasks such as shape
modeling [90]. Success in these domains coupled with theesscof HMMs and DBNs
in action-recognition tasks, led to renewed interest intagtic approaches for activity

recognition.
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2.4.2.1 Context free Grammars

One of the earliest use of grammars for visual activity rextogn was proposed by
Brand [91], who used a grammar to recognize hand manipukatiosequences contain-
ing disassembly tasks. They made use of simple grammarswiphobabilistic modeling
or error analysis. Ryoo and Aggarwal [92] used the CFG formmatis model and recog-
nize composite human activities and multi-person intévast They followed a hierar-
chical approach where the lower-levels are composed of HidisBayesian Networks.

The higher-level interactions are modeled by CFGs.

2.4.2.2 Stochastic Grammars

Algorithms for detection of low-level primitives are fregptly probabilistic in na-
ture. Thus, Stochastic Context-free grammars (SCFGs) whech arobabilistic exten-
sion of CFGs were found to be suitable for integration withl-tiéa vision modules.
SCFGs were used by Ivanov and Bobick [93] to model the semauitiastivities whose
structure was assumed to be known. They used HMMs for loetlewmitive detection.
The grammar production rules were augmented with probsiland a ‘skip’ transi-
tion was introduced. This resulted in increased robustttessertion errors in the input
stream and also to errors in low-level modules. Results oredlance videos and com-
plex gestures of a music conductor showed promising reddit®re and Essa [94] used
SCFGs to model multi-tasked activities — activities thatehseveral independent threads
of execution with intermittent dependent interactiondwvaach other, as demonstrated in

a Blackjack game with several participants.

2.4.3 Knowledge and Logic-based Approaches

Logic and knowledge based approaches express activitiesms of primitives and
constraints on them. These methods can express far mordeoagmstraints than gram-
mar based approaches. While grammars can be efficientlycpdtseto their syntactic
structure, logical rules can lead to a computational owestitie to constraint satisfaction

checks. But, logical rules are often far more intuitive anthan-readable than grammat-
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ical rules.

2.4.3.1 Logic Based Approaches

Logic-based methods rely on formal logical rules to descdbnstraints in activi-
ties. Logical rules are useful to express domain knowledgegut by a user or to present
the results of high-level reasoning in an intuitive and homeadable format. Medioni et
al. [95] propose a hierarchical representation to recagaiseries of actions performed
by a single agent. Symbolic descriptors of actions are etddafrom low-level features
through several mid-level layers. Then, a rule based methaded to approximate the
probability of occurrence of a specific activity, by mataiithe properties of the agent
with the expected distributions (represented by a mean aradiance) for a particular
action. In a later work Hongeng, Nevatia and Bremond [96]mxthis representation by
considering an activity to be composed of several actioeditis. Each action thread is
modeled as a stochastic finite-state automaton. Constizetigeen the various threads
are propagated in a temporal logic network. Shet et al [9Fppse a system that relies on
logic programming to represent and recognize high-levavides. Low level modules
are used to detect primitive events. The high level reagpengine is based on Prolog,

and recognizes activities which are represented by logites between primitives.

2.4.3.2 Ontologies

In most practical deployments, that use any of the aforetioeed approaches,
symbolic activity definitions are constructed in an emgirimanner. Though empirical
constructs are fast to design and even work very well in maseg, they are limited
in their utility to the specific deployment for which they teatdeen designed. Hence,
there is a need for a centralized representation of actdafynitions or ontologies for
activities which are independent of algorithmic choicestdlbgies standardize activ-
ity definitions, allow for easy portability to specific dephoents, enable interoperability
of different systems and allow easy replication and conspariof system performance.

Chen et al. [98] use ontologies for analyzing social inteoacin nursing homes. Ha-
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keem et al have used ontologies for classification of meetidgos [99]. Georis et al
[100] use ontologies to recognize activities in a bank narmy setting. Bremond and
Thonnat [101] have investigated the use of contextual médion in activity recognition
through domain ontologies. As a result of the Video Event &éhgke Workshops held
in 2003 [102], ontologies have been defined for six domaingiado surveillance - 1)
Perimeter and Internal Security, 2) Railroad Crossing Sliaveie, 3) Visual Bank Mon-
itoring, 4) Visual Metro Monitoring, 5) Store Security, 6)rport-Tarmac Security. This
led to the development of two formal languages - The VideonERepresentation Lan-
guage (VERL) [103], which provides an ontological reprea@ah of complex events in
terms of simpler sub-events, and the Video Event Markup bagg (VEML) which is

used to annotate VERL events in videos. Though ontologieageaoncise high-level
definitions of activities, they do not necessarily sugdestight ‘hardware’ to ‘parse’ the

ontologies for recognition tasks.
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Chapter 3

Spatio-Temporal Models for Videos

In this chapter, we discuss a hierarchy of perceptual psesethat start from low-
level pixel intensity variations, towards higher level sartic interpretation of human
motion. This will lay the foundations for the computatiomabdels and methods that

shall be used later in the dissertation.

3.1 Perception of Activities

In this section, we propose a general framework for actpéyception and recog-
nition, from which specific algorithms can be derived. Thecpption of activities can
be seen as proceeding from a sequence of 2-D images to a sedestription of the

activity. Activity perception can be naturally decomposg#d the following three stages:

1. Dynamic Sketches
2. Action sketch

3. Semantic sketch

1. Dynamic Sketches: The purpose of early stages of vision [104] is to construct
primitive descriptions of the action contents in the fraffikese primitive descrip-
tions must be rich enough to allow for inference and recagmiof activities. The
dynamic sketch provides a coarse description of shape atidmaharacteristics
of the actor or group of actors involved in the activity. Imgautational terms, this
stage corresponds to the extraction of low-level featur@s feach frame (or pair
of frames) of the video. Most of the sensory information ikatvailable in videos
is actually uninteresting for the purpose of activity-tzhseleo indexing and only
serves to confound the latter stages of the algorithms. @ry@mportant character-

istic of this stage is to weed out all the unnecessary sensfmgymation and retain
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just those elements of the sensory field that are relevaraduvity based video
indexing. Visual encoding mechanisms present in the humeain mimic this phe-

nomenon and is called predictive coding. Barlow [105] andi$asan et.al. [106]
contend that predictive coding is not just a mechanism farm@ssion but actually
goes much further than compression and enables animaled¢eg® information in
a timely manner. They argue that in the absence of such piredencoding mech-
anisms in the neuronal responses, the visual informatiauidvitood the brain of
these animals and not allow for timely response to theseavisimuli. We refer

the interested reader to early works of Barlow, SrinivasathMarr ([105], [106],

[104]) on the importance of this stage of visual processingrder to enable vision

systems to react and process information in a timely manner.

. Action Sketch: Studies into human behavior show that human actions camte te
porally segmented into elementary units, where each unisists of functionally
related movement [107]. For example, a car parking activigy be considered
to be formed of the following primitives - ‘Car enters parkilay’, ‘Car stops in
parking slot’, ‘Person walks away from car’. Such a des@iptequires the ability
to segment an activity into its constituents and then degvaloanodel for each of
the constituent actions. Each constituent action is likeoedvdescribing a short,
consistent motion fragment. Hence, this stage can be netiexgh as providing a
‘vocabulary’ with which to create sentences (activitief).the remainder of the
chapter, by ‘action’ we refer to a short segment of consisteation, whereas, by

‘activity’ we refer to a composition of such actions that lsdd an activity.

Representing activities using such linguistic models has lieexistence in various
other fields and disciplines. Several dance notation schameused in practice to
interpret complex dance moves. Though not extremely @etaihey are easy to in-
terpret and reproduce in actual steps. It has also been thahthe most commonly
observed human activities in surveillance settings suckaching, striking etc are
characterized by distinctive velocity profiles of the linthat can be conveniently

modeled as a specific sequence of individual segments —actdrestceleration fol-
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lowed by constant velocity followed by constant decelerafil08]. This lends
credence to the fact that human actions can be modeled asi@seqof primitive
actions, where each action is governed by a simple modeleTibalso evidence
from neuroscience about the existence of ‘mirror neuramgiumans. These neu-
rons fire not just when a particular activity is performedt &lso when the same
activity is observed by the subject as being performed byesma else [109]. This
suggests that there is a strong correlation between the weagerform activities
and the way we recognize them. In computational terms, tlygests that the un-
derlying mathematical model for activity recognition aradivaty synthesis should

be the same.

. Semantic descriptions:Semantic descriptions perform the same function as gram-
matical rules for a language. They detail how several ctugsit action primitives
may be combined together in order to construct or recovept®aactivities. The
most common rules for creating complex activities from ¢ibmsnt actions are
sequencing, co-occurrence and synchronization. For eeamasingle-thread ac-
tivity can be said to consist of a linear sequence of a fewigivies. An example of
a single-thread activity is ‘Person approaches a desptPerson swipes the access
card’ — ‘Person enters a building’. Similarly, a complex multi¢ad activity can
be seen as a collection of several single-thread activititssome constraints such
as concurrence and synchronization among them. Thus,tge san be seen as
providing the rules for combining the primitives - similar & set of grammatical
rules needed to construct meaningful sentences from ohaaiwords. As men-
tioned earlier, evidence from neuroscience [109] suggbstaise of a common
mathematical framework, that allows for activity recogmitas well as activity
synthesis. In the context of machine learning, this reguine model to be both
discriminative (recognition) and generative (synthesisjature. The model should
also be rich enough to accommodate the addition of new &egvie. it should be
possible to create representations for new activitiesgusia same general rules of

combination, using a different set of primitives.
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In the next section, we draw connections with computatiapgroaches and show

how several well-known mathematical tools can be used &t etihese stages.

3.2 Computational Models

There exists a wealth of literature on building computadlonodels for each of the
stages outlined above. In this section, we review some ofntipertant and well-known

techniques that can be used at each of the stages.

3.2.1 Dynamic Sketches

The search for suitable low-level features that can conipespresent the specific
information that we seek from images has been at the headmpuater vision research
for many years [104]. Low-level features that can compamjyresent the information
we seek from very short segments of videos (typically 1 ora2nies) form the dynamic
sketch or the frame sketch. The appropriateness of a spkfiare is dependent on the
specific application and the nature of the video sequendeg bealyzed. In this chapter,
we are interested in clustering video sequences accorditigettype of activity present
in the video sequences. Therefore, these low-level featumest be able to compactly
capture the instantaneous motion of the various scene amdedements in a manner that
enables the next levels (action sketch and the semantichgketefficiently represent the
activity occurring in these videos. We summarize in Tablestme widely used low-level

features and their respective characteristics.

3.2.2 Action-sketches

A significant body of work in activity recognition builds upaxtracting action-
primitives and modeling the interactions between them. &p@oach has been to define
action-primitives a priori using domain knowledge and useguerience. This approach
has obvious limitations, since it requires one to enumeaiatew list of primitives for

every new domain. Thus, techniques for automatic primigixaction have been gain-
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agents (far-field)

Feature Type of Video Type of Activity lllumination In- View Robustness | Examples
variance
Background Sub-| Near Field, | Single agent or| Moderate Not Robust Gait Recognition
tracted Silhouette| Medium Field small number of ([4, 110])
agents
Shape Near Field Single agent Moderate Can be incorpo-| Gait Recognition
rated by affine| ([4, 22]), Far
invariance on| Field Activity
shapes Recognition ([5])
Optical Flow or | Near Field, | Single agent| Moderate Affine invariance | Traffic Monitor-
Texture Flow Medium  Field, | (Near Field), can be incorpo-| ing ([111, 112],
Restricted  Far-| Small number of rated Crowd Monitor-
Field agents (Medium ing ([113])
Field) and Large
number of agents
(Crowds in far
field)
Point Trajectories| Far Field or Con-| Single agent| Strongly illumi- | Easy to incorpo-| View Invari-
strained Medium| (Constrained) or| nation insensitive | rate ant action
Field small number of recognition([114],

Traffic monitor-
ing ([17]),
field surveillance
[51])

Far-

Circular Fourier

Features

Medium and Near
field

Single Agent

Moderate

View Invariant

Action

tion [3]

recogni-

Table 3.1:Various Features for the low-level representation (Dynamic Sketchyreidproper-

ties and applicability in various scenarios
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ing importance in recent years. Computationally, autonmaiimitive extraction may be
achieved by mapping the low-level sketches to specific mgpates. There are several
choices for the model space such as is reviewed below. Mdbkegbopular approaches
can be divided into two broad classes - Spatio-temporal le@a Dynamical models.

Spatiotemporal models: These approaches typically encode configurations of spatio
temporal patterns as a model for a video segment, for exampleepresentative human
poses or bags of spatio-temporal features etc. [115] reptésiman actions using a series
of codewords called ‘movelets’ where each movelet encogestecular configuration of
the human body - head, torso, upper and lower limbs. A sinaijfgoroach was used in
[116] to learn human actions performed in the profile viewfra long sequence. Tem-
poral templates called motion-history and motion energyctvlencode both the shape
and temporal motion characteristics of the action were gsegd as features in [25]. De-
scribing an activity by a collection of space-time intengsints which represent points
of high gradient in the three-dimensional space-time wap@sed by [31]. In a similar
approach, [28] represent video segments as histogramsatibgpmporal gradients at
multiple temporal scales. Each segment of video was mo@seddocument with words
drawn from a corpus of quantized spatial motion histogramjg|i

Dynamical Models: Dynamical approaches explicitly encode the temporal evolu
tion of features for each action. A method to segment huméprecinto elementary
building blocks called movemes - each moveme assumed tadpeétoa known alpha-
bet of dynamical systems was presented in [117]. Modelirgpaiplex activities using a
switching linear dynamic system, where each system carrepg to an action-primitive
was proposed in [62] and [118]. Similarly, human gait patsdrave been modeled as lin-
ear dynamical systems in [4, 53] and by HMM’s in [46].

We summarize in Table 3.2 some of the well-known tools anul teepective char-

acteristics.
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3.2.3 Semantic Sketches

In activity recognition context, semantic sketches foidtoes essentially model
the spatio-temporal constraints between the primitivdse major approaches to model
such constraints fall into two classes - statistical and-hdsed.

Statistical Approaches: HMM's provide an elegant mathematical tool to model
the temporal relationships among action primitives [1]1&]]. Dynamic belief networks
allow complex conditional dependencies between severaltpres to be expressed using
directed acyclic graphs and have been used for traffic scealgsas in [17]. Complex
activities can be modeled as being generated by a switcimagrldynamic system as in
[62], [118], [119] where each system corresponds to a pdatigrimitive. Textural video
sequences have been modeled as a finite collection of visoeggses, each of which is
a dynamic texture in [56].

Rule-based approachesSyntactic approaches such as stochastic context free gram-
mars allow expressing the relationships as a set of praztunties and have been used for
action recognition in [93, 120]. Temporal logic networksigthencode logical relation-
ships between primitives were used for recognizing evemsiving multiple objects in
[121]. A bag of primitives approach is used in [122] to rer@sactivities. Petri-nets pro-
vide rich descriptive capabilities to express complexrextdons such as synchronization,

co-occurrence and concurrence, and have been used in [85].

3.3 Modeling motion primitives with Dynamical Systems

First, we assume that a suitable low-level feature has beesen that encodes the
desired properties such as shape and motion. Given a sexjoéticese features, we
would now like to represent them in a compact manner. In tbetien, we show that
LDS is an appropriate model to describe short-term dynanWesreview the necessary
mathematical details and estimation algorithms for LDSd simow that they are well
suited to model human actions.

Linear Dynamical System for Action Elements: The dynamics of each action el-

ement can be modeled using a time-invariant dynamical sydteseveral scenarios (like
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Property CLDS SLDS [62] [118] | Grammars [93] DBNs [17] Sliding win-
dow approacheg
[7, 28]
View Invariance Yes No Yes Yes No
Rate Invariance | Yes No Maybe Maybe No
Activity  based | Yes No No No Yes
Clustering
Action Recogni-| Yes Yes Yes Yes Yes
tion
Frame Sketch Any appropriate| Any appropriate| Any Appropriate | Any Appropriate | Any appropriate
low level feature | feature
Action Sketch Linear Dynamical | Linear Dynamic | Vocabulary of | Vocabulary of | Action prototypes
System (ARMA) | System Primitives primitives
Semantic Sketch | Cascade Structure Switching Grammatical Directed Acyclic | Bag of features
Rules Graph
Sports Video Yes Yes Yes Yes Yes
Surveillance Yes Yes Yes Yes Yes
Video

Table 3.2:Various approaches for activity based mining from video and their ctexiatics
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far-field surveillance, objects moving on a plane etc), iei@sonable to model constant
motion in the real world using an LDS model on the image plddieen the boundaries
between action elements, we model each of these segmengsarsiiDS model. Lets
assume that th® + 1 consecutive frames, ..., S p belong to thek!" segment and let
f(i) denote the observations (flow/silhouette etc) from than&a Then, the dynamics

during this segment can be represented as

f(t) =Cat) +w(t) w(t) ~N(O,R) (3.1)

2(t+1) = AZt) +v(t) v(t) ~N(0,Q) (3.2)

zis the hidden state vectoh the transition matrix an@ the measurement matrix.
w andv are noise components modeled as normal with 0 mean and aogeR andQ
respectively. When flow is used as the feature, we can writdagimquations for the
x andy components independently. We assume independence of flmpatents for
simplicity and to reduce the dimensionality of the estimatproblem. We denote the
cross correlation betweem andv by S. The parameters of the model are given by the
transition matrixA and the state matri@. We note that the choice of matricRC,R,Q, S
is not unique. However, we can transform these models to¢baiesponding “innovation
representations” [57] which is unique. Similar models hiagen successfully applied in
several tasks such as dynamic texture synthesis and aHI28i], comparing silhouette
sequences [4], [53] etc. But we differ from these as we do nstiras that we know
the temporal span of the segments. We explicitly deal withtdmporal segmentation
problem in section 4.2.1. In summary, the parametric mamtet&ich segment consists of

the measurement matrxand the transition matriR.

3.4 Estimation of the model parameters

It is easily shown that there are infinitely many choices aohpa#eters that give rise
to the same sample paftit). Resolving this ambiguity requires one to impose further

constraints and choose a canonical model. The conditiopsop®sed in [123] are that
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m>> d,rank(C) = d andC'C = |. The number of unknowns that need to be solved for
are:md— d(d—;l) for C, d? for A, d(d—;l) for Q: resulting inmd+ d? unknowns (we have
ignored the observation noise covariance as of now). Fdr easerved frame we get
equations. Hencal + 1 linearly independent observations are sufficient to stdvehe
required parametersn(d + 1) > md+d? sincem >> d).

Using these constraints, the parameter estimates can amedttin closed form.
The algorithm is described in [57] and was adopted for textnodeling in [123]. Let ob-
servations (1), f(2),... f(1), represent the features for the frame8 1.71. Let[f(1), f(2),... f(T)]
=U3VT be the singular value decomposition of the data. TherlJ, A=5VTDV(VTD,V) 171,
whereD1 =[0 0;l;_1 0] andD> = [I;_1 0;0 0]. These estimates GfandA constitute the
model parameters for each action segment. For the case ofllewame estimation pro-
cedure is repeated for tikeandy-components of the flow separately. Thus, each segment
now is represented by the matrix p&d, C) as shown in figure 4.1 (d) in order to estimate
the corresponding system and transition matrices. Therdatax is a tall thin matrix
(sizeMN x 1 ). Computing the singular vectors of the data matrix can beaed to
finding the singular vectors forax t matrix and taking appropriate linear combinations
of those singular vectors. The details of these matrix djpera are fairly standard and
one may refer to [124] for brief details of the approach. Thiskes the algorithm for

estimating the system and transition matrices, efficief,ist, simple and closed-form.

3.5 Generative Power of the Model

A useful test for a representational model is to synthesa® it, and see how well
the synthesized samples resemble real-world phenomemothisl section, we show a
few synthesis results obtained using the learnt modelshdrfitst experiment, we used
one walk sequence from the USF gait gallery data [125] tonleae walk pattern. We
use background subtracted images as the features. We rdadelentire walk sequence
using just one LTI model. Then, we used the learnt model tegda the sequence. A
few frames from the generated sequence are shown in figure 3.1

In the next experiment, we generated a bending sequencenddine learning
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Figure 3.1: A model for the silhouette dynamics for gait was learnt using 1 segment. rS8how

above is the generated gait sequence from the learnt model.

stage, the sequence was segmented automatically into 3segby the proposed seg-
mentation technique. A model was learnt for each segmergyfithesize the activity, we
generated sequences from each of the models, and switadradfre model to the other
according to the discovered cascade. The dwell time in eagiment was sampled from

the learnt distributions. The generated sequence is shofigure 3.2.

PRAARAAAAA R AR haaanabashabRiRrddhartfadnyg

Segment] ‘ Segment?2 ‘ Segment3

Figure 3.2: A model for silhouette dynamics during ‘bending’ was learnt using 3 setgnen

Shown above is the generated bending sequence from the learrdeastd | models.

3.6 Model Order Selection

A practical issue in learning the LTI model parameters ishoase an appropriate
value for the hidden state dimensidn The answer to this is tied to the domain, and
there is no general selection rule. The numtbeepresents the number of basis vectors
to project the data on to (the number of principal componenisually, the higher the
dimensiond, the more accurate the representation will be. But, the hitjieal, the more
the data required for robust estimation of the parameteatstenhigher the computational
cost. Higher-order models also tend to over fit the trainiatadvith poor generalization
to test instances. One needs to make a trade-off between idse®es. To see the effect
of varyingd, we conducted recognition experiments on the USF data26t [fsingd =

5,10,15 on Probes A-G. Results are shown in figure 3.3. We see thaedognition
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accuracies show an increasing trend ascreases from 5 to 10, but the increase frdea
10 tod = 15 is only marginal and in some cases even negative. Thiseattibuted to
over fitting of the training data which does not generaliz# tedest instances. In general,
criteria such as Akaike Information Criteria (AIC) [126], Bay@n Information Criteria
(BIC) [127], etc may also be used to estimate the optimal nurab&ee parameters (in
our casal). In our experiments, we empirically found that usthg 10 gives good results

across various domains and activity classes.

a0
=5

80} Cdd=10H
=15

f0r

6O

50+

a0t

30+

20

10

Figure 3.3:Model order selection experiment on the USF gait database. Bar platsiecog-
nition performance as a function of the hidden state dimengipiorf the 7 different challenge

experiments (probes A-G) in the USF gait database.

3.7 Distance Metrics on LDS space

One of the most commonly used distance metrics on the LDSesigatased on
subspace angle®,i = 1,2,....n) between two ARMA models. These are defined in
[60] as the principal angle®(i = 1,2, ....n) between the column spaces generated by the
observability spaces of the two models extended with thembsbility matrices of the

inverse models [60]. The subspace angies&,...) between the range spaces of two
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matricesA andB is recursively defined as follows [60],

CosH, = max X ATBy = PAATBy,| (3.3)
xy - [[AXIl2 [1BYll (A%l [IByall
xTATB xrATB
cosh = max | Y = XCATBY for k=23,... (3.4)

xy [|AX2[BYl2 A2 1Bkl

subject to the constrainig ATAx = 0 andy] BTBy, =0 fori=1,2... k—1. The
subspace angles between two ARMA modég, C1,K;] and [A2,Co,K>] can be com-
puted by the method described in [60].

Using these subspace anglgs = 1,2, ...n, three distances, Martin distanai(),
gap distancedy) and Frobenius distanced) between the ARMA models are defined as

follows:

n
2 _ _ i 2 _ ;
dM_IniElco§(&)’ dg = SiNBmay, dZ 2i;$n29| (3.5)

3.8 Building Invariances into the LDS Distance Metrics Model

The distance metrics defined in the previous section do hketiteo account ge-
ometric transformations that do not alter the perceptiothefspatio-temporal pattern.
When there is a change in viewpoint or there is an affine tramsftion of the low-level
features, the distance metrics will break down. Some featsuch as shape are invariant
to affine transformations by definition. Features such astpgmjectories can be easily
made invariant to view and affine transforms. But, in genétr&é, not guaranteed that a
given feature is invariant under these transformationscalflow, background subtracted
masks, motion-history ([25]) and other ‘image-like’ feads). Reliance on the feature to
provide invariance to these factors will tie the rest of thecpssing to that particular fea-
ture, which is not desirable as different features are gppate for different domains and
video characteristics. Thus, instead of relying on theuieatwe propose a technique to
build these invariances into the distance metrics definedeabl his makes the algorithm

flexible to the choice of feature.
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3.8.1 Affine and View Invariance

In our model, under feature level affine transforms or vieinpchanges, the only
change occurs in the measurement equation and not in tieeesfafition. As described
in section 3.4 the columns of the measurement ma@)xafe the principal components
(PCs) of the observations of that segment. Thus, we needdowdisthe transformation
between the correspondir@ matrices under an affine/view change. We start by prov-
ing a theorem that relates low level feature transformsandfiormation of the principal
components.

Theorem: Let {X(p)} be a zero-mean random field whepec D; C R%. Let
{AX} and{ g} be the eigenvalues and corresponding eigenfunctions iK-thexpan-
sion of the covariance function &f. Let T : D, —» D4, whereD, C R2 be a continuous,
differentiable one-to-one mapping. LEB(T)}, g € D, be a random field derived from
X asG(q) = X(T(q)). If the Jacobian off, denoted byt (T), is such thatlet(Jr(T)) is

)\X

independent of, then the eigenvalues and eigenfunction&are given byA® = ﬁ

andgf(q) = .

Proof:  Let Kx(P,S) be the covariance function &f. Then by the definition of

the K-L expansion the following equations hold.
| k< pIREds=2E D). [ @ =smn) 36)

where bothp,s € D; and 8(m,n) = {1if m =n, O otherwisé. Now, {G(Q)} is
related toX asG(qQ) = X(T(q)). Forq,r € Dy, the covariance function db is given
by Ka(a,7) = E[G(@)G(r)] = E[X(T (@)X (T(r))] = Kx(T (@), T(r)). Now consider the

following equation.

o, Ke@DATM)Ar= | Kx(T(@),T () (T()dr (3.7)
IR S
= Jo, Kx (P9 (3) ;3708 (38)
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where (3.8) is obtained by a change of variables givepbyT(q),5= T(T), and
|37 (1)| is the determinant of the Jacobian®fvith respect ta evaluated at = T1(3).
Now, if |Jr(F)| = |Jr| = constant then it comes out of the integral in (3.8), and using
(3.6) we obtain

|, Ke@n@(rmar= 2 (@) 39)

It can further be shown that the set of functid| J(TT|1(2)) } form an orthonormal set.
Ay

Thus, we have shown that the eigenvalues and eigenfunaifddsire given by{ 2

and{q’TXJ(TTll(g))} respectively. The utility of this theorem is that if the Idewel features

like flow/silhouettes undergo a spatial transformationchitsatisfies the conditions stated

in the theorem, then the corresponding PCs also undergortie tsansformation.

3.8.2 Application to Invariances

When two images are related by a general spatial transfofimgahomography
etc), they are related Hy(x,y) = 11(T (x,y)).
Affine Transforms:  Consider the set of 2-D affine-transforms givenTaip) =

Ap+1. Expressing this in inhomogeneous coordingtes x,y|’

- apIX+apy+ty
T(p) = (3.10)
ax1X+ agy +to

a;r a2

The Jacobian for the transformation is givenky= { ] whose determinant

dx1 Az
is a constant. Thus, by the above theorem, if a set of obsengatre affine transformed

then their principal components also get transformed bygémee affine parameters.
Homography:  Consider now a 2-D plane homography givenHby= [hj]. In

the inhomogeneous coordinates the transformation is dgyen

_ (h11X+ h12y + hi3) /(h31X+ hazy + hs3)
T ( p) = (3.11)
(h21X+ hooy + h23) / (ha1xX+ hzoy + hga)
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As is apparent, the theorem does not hold for a general hapbgr We discuss
approximations under which the theorem may be applied todgoaphies. Let, the trans-
formation between the coordinate frame of the first camedatfaat of the second camera
be given by a rotation and translation. Then, the homograptiyced by a planer,

between the two views is given by [128]

Tn'
H=MR+—— )M
dre

(3.12)
whereR andT are the rotation matrix and translation vector respegtjveis the normal
to the planerr anddy; is the distance of the plare from the origin,M andM’ are the

transformation from the image plane to the camera coorelsyatem for the two cameras.

f 0 X
In the simplest case, we can take=M'= | 0 f yg |, wheref denotes the focal
0 01
length of the camera, and, Yo is the origin of the image plane. When the two views are

close to each other, we can approximaite- &, &, &;|" andR using small rotations as
[129]

1 —n39 n26
R~| m6 1 —nmb (3.13)
—n26 n16 1

where,0 is the rotation anglaji, np, n3 are the directional cosines of the axis of rotation,
hence, related byZ + n3 +n3 = 1. On substituting these quantities and the plane normal
n = [ny, Ny, nzJ, in (3.12) and simplifying, we obtain the following relati® between the

required elements dfl — ha1, hsp, haz,

h31 a/f

L 3.14
hss —axy/f—byy/f+cC ( )
Ns2 _ b/t (3.15)

has  —axo/f —byo/f+c
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wherea= —n,0 + eé—:x,b: n19+£é—?,c: 1+ sé—:Z. In the limit, when8 — 0 and

&, &y, & — 0, we obtaina— 0,b — 0,c — 1.

im 8t _g (3.16)

0,606,650 33

im 182 _ g (3.17)

97sx,£y,£z—>0h_33 N
Thus, for small view changéds, h3o << hzs. Under these conditions, the Jacobian

of the above transformation can be approximated by

h h . .
;= % 1 e whose determinant is also a constant. Thus, the above theore

3
ha1  h2o
can be used even in the case where observations are traegfogna homography under

the above approximation.

Note: The invariance theorem was proved for continuous randormsfieln real
images, spatial transforms are not one-to-one maps due tisbrete nature of the un-
derlying lattice. But, our experiments suggest that thi®tlae can be used to get very
good approximations even in the discrete case.

Modified Distance Metric:  Proceeding from the above, to match two ARMA
models of the same activity related by a spatial transfaonagll we need to do is to
transform theC matrices (the observation equation). Given two syst&ns (A1,Cy)

and$S, = (A2,C,) we modify the distance metric as
deompensatelS1, ) = n]l_ind(T(SJ.),SZ) (3.18)

whered(.,.) is any of the distance metrics in (3.9)]s the transformationT () =
(A1,T(Cy1)). Columns ofT(Cy) are the transformed columns Gf. The optimal trans-
formation parameters are those that achieve the miniroizati (3.18). Depending on
the complexity of the transformation model, one can useufeddss image registration
techniques such as [130], [131] to arrive at a good initiiheste of T. Computing the
gradient of the proposed distance metric is extremely ditfaue to the recursive way the
subspace angles are defined (section 4.2.3). We could rive atrclosed form expres-

sions for the gradients. Instead, we resort to using Ne\tkeaie’s (NM) simplex method
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to perform the optimization. The NM method is a direct sealgorithm that is used
when gradients cannot be computed or accessed. Even thalyglnated convergence
results for the NM method are known, it is known to work welpiractice [132].

To illustrate the effectiveness of our proposed technigueegonducted the follow-
ing experiment. We took a set of 10 dynamic textures from [133e textures were
modeled to be lying on a plane in front of the camera perpeali¢o the optical axis,
and a change in viewing angle from® 20 in increments of Swas simulated by means
of a homography (Ocorresponds to the frontal view). The images were taken sesrol-
tions. Figure 3.4(a) shows how the Frobenius distance brdawn as the viewing angle
is changed. The plot also showgmpensated It can be seen that the proposed technique
indeed works better. In figure 3.4(b), we plot normalizeddgsams of dr — dcompensatet
for same textures as seen from different views and diffaextitires as seen from different
views. When comparing different textur@gempensatedS NOt significantly lower thanr,
hence the peak at 0. But, for the same texture as seen fromediffeiews, we see that

Variation of Mean distance as viewing angle changes 07
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Figure 3.4: (a)Variation of Mean Distance as viewing angle changes. Sample viewesho

(b)Histogram of difference between Frobenius dpghpensatedts seen from different views
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3.8.3 Invariance to Execution Rate of Activity

While building models for activities, one also needs to coesthe effect of dif-
ferent execution rates of the activity [67]. In the gener@dea; one needs to consider
warping functions of the forng(t) = f(w(t)) such as in [1] where DTW is used to esti-
matew(t). We consider linear warping functions of the fom(t) = qt for each action
segment. Linear functions for each segment give rise tocepiase linear warping func-
tion for the entire activity, which accounts for variabés in execution rate well. It can
be shown that, under linear warps the stationary distabutf the Markov process in
(3.2) does not change. Hence, a linear warp will affect ohéy dtate equation and not
the measurement equation i.e. thenatrices and not th€ matrices. Consider the state
equation of a segmentX; (k) = A1X;(k—1) + v(k). Ignoring the noise term for now,
we can writeX; (k) = AKX (0). Now, consider another sequence that is relate¥; tby
Xa(k) = Xp(w(k)) = X1(gk). In the discrete case, for non-integgthis is to be interpreted
as a fractional sampling rate conversion as encounteredveral areas of DSP. Then,
Xo(K) = X1(qk) = ATKX(O). I.e. the transition matrix for the second system is related
the first byA, = Af.

Estimating q:  Given two transition matrices of the same activity but witf d
ferent execution rates, we need a technique to estimate ding factorq. Consider
the eigendecomposition @& = ViD1V; %, andA; = VuD,V, . Then, for rational,
Ay = Al =v,DV; L. Thus,D, = Df, i.e. if A is an eigenvalue ofy, thenA9 is an
eigenvalue ofA, and so forth. Thus, we can get an estimatg &bm the eigenvalues of

A; andA, as
(3.19)

Where/\z(i) and)\l(i) are the complex eigenvalues &) andA; respectively. Thus,
we compensate for different execution rates by compuging the presence of noise, the
above estimate af may not be accurate, and can be taken as an initial guess iptian o
mization framework similar to the one proposed in secti@l3.Note that compensation

for execution rate is done only for segments which have vienjla C matrices.
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3.9 View Invariance-Simulated Data

We show a recognition experiment based on our modified distametric. In the
next experiment, the setup is the same as described abovghButme we have 10 ac-
tivities —Bend, Jog, Push, Squat, Wave, Kick, Batting, Throw, Turn\&ige, Pick Phone
Each activity is executed at varying rates. For each agt@imodel is learnt and stored as
an exemplar. The features (flow-fields) are then translatddealed to simulate a camera
shift and zoom. Models were built on the new features, anddassing stored exemplars.
For the recognition experiment, we learnt only a single LDid@l for the entire duration
of the activity instead of a sequence. We also implementesigdtic procedure in which
affine transforms are compensated for by locating the cefterass of the features and
building models around its neighborhood. We call it CenteMais Heuristic — CMH.
Recognition percentages are shown in table 3.3. The basslinen corresponds to di-
rect application of the Frobenius distance. We see that aihod performs better in

almost all cases.

Baseline CMH Compensated

distance

Exemplars Exemplars Exemplars
Activity 1 10 1 ‘ 10 1 ‘ 10

1 40 0 40 40 40 50
2 0 10 70 80
3 0 0 20 40 10 20
4 40 30 10 20 30 60
5 30 30 40 20 40 40
6 10 0 40 50 30 50
7 0 10 0 30 30 70
8 0 10 30 40 0 40
9 0 40 20 20 30 70
10 0 0 10 20 40 40
Average 12 12 21 29 32 52

Table 3.3: Recognition experiment simulated view change data on the UMD databask Tab
shows a comparison of recognition performance using (a) Baselineigeehndirect application

of system distance, (b) Center of Mass heuristic, (c) Proposed Caageihdistance metric.
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Chapter 4

Sequence of Dynamical Systems for Video Clustering

Parallel to the development of accurate and efficient reitiogrtechniques, there
has also been a lot of interest into the discovery of pattéom raw data in the pat-
tern recognition community. Pattern recognition vs patidiscovery is a fundamental
choice that is faced in almost all areas of machine learrfémggcific to the activity anal-
ysis area, existing literature focuses on the recogniti@blem to a large extent. In a
largely unrelated setting, there has been significant resaato indexing of multimedia
data such as news clips, sports videos etc according to ¢betent such as in [134].
The pattern discovery approach has also been pursueddggrtthlem domain such as in
[135]. Applications for automatic discovery of activitytparns are numerous. For exam-
ple, security and surveillance videos typically have vepatitive activities. If the typical
activities can be clustered, then several problems suchwsual activity detection, effi-
cient indexing and retrieval can be addressed. Forenslgsasiaf surveillance videos is
another fast growing and important application area. Iratbsgence of extra information,
such as the specific time and location of an unusual actsifyrent approaches to video
forensics involve linear searches over the entire vided bgea human analyst and hence
are not scalable when there are a large number of camerasyddpmit various locations.
Instead of expecting an analyst to sift through the volum@data, we ask - can ‘clus-
ters’ of activities be presented that embody the essert@lacteristics of the videos ?
The need for such activity based indexing stands to increae near future as more
security installations are deployed in a wider variety @i@tons.

Unsupervised activity-based indexing goes far beyondrtditional problems of
activity analysis and recognition, where one knows what isrieoking for. Unsuper-
vised indexing requires that activity patterns be discedeavithout deciding a priori what
to look for. As a motivating example, consider the problenuonélerstanding a foreign

language. If one hears only a continuous stream of words, da®s one know where
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a word begins and where it ends. If one knew the words, the danies between them
can be easily perceived. And if one knew the boundaries, tirenvords can be learnt
as well. Similarly, given a continuous video stream, if weknwhat activities occur in
it, we can discover the boundaries between them — and if we gigen the boundaries,
the individual activities could be learnt as well. [136] sleal evidence that supports the
notion that infants solve this problem by using coherentgpas of sounds to discover
syllables and transitions of syllables within words to idigtiish the ends of words. We
use a similar framework in the context of activities - wheaeteaction primitive is com-
posed of a coherent set of features, and an activity is debgetle way the primitives
are put together. Activity-based indexing can benefit byigai insight into how humans
perceive and recognize activities. First, we discuss argéfr@amework of activity per-
ception. Then, we discuss how the cascade of linear dynasystems model (CLDS)
can be derived from the proposed framework.

Most single-agent activities in surveillance settingssisinof an actor (subject) ex-
ecuting a series of action elements (verbs) in order to aeldeertain goal. For example,
a man driving a car into a parking lot, parking the car, aliggnfrom it, walking out of
the parking lot (series of action elements-verbs) conteibio a typical activity. More-
over, several multi-agent activities may also be adequaggresented by a sequence of
actions. Thus, CLDS is an appropriate model for represeratimgde variety of com-
mon activities. The model for an activity must be able to espnt each of the verbs
(action elements) separately while simultaneously belihg @ detect the boundaries be-
tween them. As we mentioned earlier, we use the consistehfgatures within each
action-element as a cue to discover the boundaries betwieen tThe specific way the
action-elements interact with each other is used to disdbeeactivities themselves. The
overall system overview is shown in figure 4.1. Each of the monents will be described

in detail in the ensuing discussion.
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Figure 4.1: System Overview: (a) Input video, (b) Feature extraction (DynamidcBike(c)
Temporal segmentation, (d) Build and learn dynamical models, (e,f) Clusterdel space taking

into account invariances on the data, (g) ldentify repetitive activities
4.1 Sequence of Dynamical Systems

We assume that a complex activity can be broken down intooitsttuent action
elements. During each action element, the motion of the aetoains consistent. In fact,
it is this consistency of motion that segments an activity erction elements. Therefore,
each action element is modeled using a time invariant dycelmsystem and the activity
is modeled as a cascade of dynamical systems. In realityt actigsities have a very
specific temporal order for the execution of action elemelRts example, if our goal is
to get to the office, then the sequence of actions executeut imég drive into parking lot,
park car, alight from car, walk away from the parking lot. Téfere, we model an activity
as a cascade of action elements with each action elementiedaatean LDS. Figure 4.2
illustrates the complete model for such an activity.

Switching between Dynamical Systems: In order to completely specify the
model we also need to specify the switching times betweesetdgnamical systems or
equivalently, the amount of time (or frames) spent exegudéin action element i.e. the

dwell time. We considered modeling the activity as a Markov moielyhich case the
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Figure 4.2:lllustration of a cascade of three linear dynamical systems. The tempdealafrthe

execution of these dynamical models and their switching times are shown vathsarr

probability distribution of the dwell time turns out to be @xponential distribution whose
mode is at 0. But, physically the amount of time spent doingmarécular action takes a
finite amount of time. Thus, to model the dwell time, we needmtiauous distribution
over time that satisfies the following requirements - a) Supget which is the entire non-
negative real line, b) Non-zero mode. The Gamma distribus@tisfies both the above
requirements. Simpler choices such as Gaussian, expaheittible exponential violate
one or the other requirement. Thus, we model the dwell time&zh action element as
a Gamma distribution with parametexrg and 3« with ay > 1 (this constraint ensures a
non-zero mode). The Poisson distribution also shares theegtroperties except that it
is a discrete distribution.

The parametric Gamma distribution is given by

,1Bae_ﬁx

r(a)

whererl (a) is the gamma function. The meanand variances? of the gamma

gxa,B) =x* forx>0 4.1)

distribution are given by

U= %, 0% = % (4.2)

Given samples drawn from the above distribution, we camedé the parameters
a andp as follows. Denoting the the sample meanfbgnd the sample variance IGf,

we obtain
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4.2 Learning Model Parameters

We have modeled an activity as a cascade of dynamical sysBumgiven a video
sequence, we first need to segment the video into action atsraed discover the re-
lationship among them. The challenge is to accomplish athsfin a completely un-
supervised manner while being invariant to variabilitiesn activity such as execution
rate, resolution of video, rotation and translation etc. Wilenow describe an algorithm
to automatically segment the video and learn the model patersiin an unsupervised

manner.

4.2.1 Discovering Action Boundaries

As mentioned earlier, we use ‘consistency’ of features iwidach action-element
as a cue to discover boundaries between them. Naturallgxhet measure of ‘consis-
tency’ is tied to the specific feature at hand. For exampléheffeatures were point-
trajectories, a natural metric to discover segment boueslarould be space-time curva-
ture [77]. Similarly, for shape features a reasonable metauld be shape deformation
[137]. In this section, we describe a simple method for discmg action boundaries that
works well for background subtracted silhouettes (andrathage-like features).

During each action segment, the evolution of features isat@atdusing an affine
motion model as is usually the case with traditional tragkahgorithms. The crucial
difference is that, we do not actually segment and trackviddal objects in the scene,
but instead model the entire feature during a segment usengftine motion model.

For the first few (about 5) set of frames after the beginning oeéw segment, we
cumulatively learn a single set of affine parameters for thenge in the feature. For
every incoming new frame, we evaluate whether it is consistgth the predictions of
the learnt affine parameters. If so, we add the frame to therusegment. Otherwise,
we detect the presence of a boundary. Learning the affinenedess for each segment
can be achieved in closed-form using the properties of thedotransform [130] (FFT).

This segmentation scheme is suboptimal due to the assungftadfine motion. To

overcome this we iterate back and forth between learnindg. Bt parameters for each
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segment and tweaking the segment boundaries till conveegsnreached. Taking the
output of the above scheme as an initial point, we learn th& lp@rameters for each
segment. Without loss of generality, Bt = (A;1,C1) andS, = (A2,Cy) be two adjacent
segments and their corresponding LDS models. Supposentipotal span 0§ is [ty tp)

and that ofS; is [ty,tp]. Herety denotes the boundary between the segments. As will
be described in section 3.4, columnsGyfcorrespond to the to@ principal components
(PCs) of the observations in segmé&niTo evaluatethe boundary according to the learnt
models, we compute the reconstruction error of all the alasiens according to the PCs
in the corresponding segments. We move the boundary by anrdgman forward and
backward directions and choose the one that minimizes ttos d hus, we search for the

minima of the following cost functional:

to+T to

A(T) :t; [Ca(CT f) — ft}|2+t:gﬂ [Ca(CT f) — £ (4.4)

fi is the observation at timeandt € [-T,T]. In our experiments we typically
choseT to be 10. The new boundary is found t§8" = t2'9 + arg min, A(T). With the
new boundary the models are learnt again, and the processaiated till convergence, i.e.
the boundary does not change anymore argijm) = 0. We show some segmentation
results on a near-field video sequence of an actor perforBtifferent activities. Each
activity is repeated several times at random. Note that ¢#genentation algorithm is
independent of the rate of execution of the activity. Theesidequence was consistently
segmented at the same pose in several instances of the starntg ac

Some segmentation results obtained on actual video seggieha person perform-
ing 5 different activities are shown in Figure 4.3 from twdfelient views.

We see that the videos are segmented at the same pose athsistboth views.
This indicates that our algorithm indeed finds semantical®aningful segment bound-
aries consistently and in a view-invariant manner.

Effect of Boundary Improvement: In most cases, temporal segmentation based
on affine parameters gave consistent results for segmemsiaguence into its constituent

action elements. Nevertheless, there were some sequehees the segmentation was
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Figure 4.3: Sample segment boundaries for 5 activities. Note that the temporal segmentatio
algorithm finds a boundary whenever there is a change in the directiont@frm®lotice that the

segmentation results are consistent across view changes.

inadequate and we found that refinement of these boundaiies feedback significantly
improved the results. We show one such example in figure 44 ndtice that the last
segment boundary is incorrect, and it is corrected by refemrasing feedback. Note

that the boundary improvement algorithm itself is indepamaf what feature is used.

Figure 4.4:Bending boundaries (a) Before refinement, (b) After refinement

4.2.2 Relation with Switching Linear Dynamical Systems:

Learning the switching instants between LDS models is atsmentered in
SLDS. In SLDS, usually an extra hidden state is used to mosligtises. Any change
in this hidden state corresponds to a switch between the LB&ta such as in [62] and
[63]. Usually, the number of states to switch amongst is mgslto be known (equal to
the number of distinct actions), but we do not make any sustiraption. An approach
was presented in [66] for a special class of systems to etgtithh@ number of states as well
as to learn the dynamics of each system. In our experimeetsyund that our algorithm

for segmentation works reasonably well with a far smallenpatational burden.
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4.2.3 Clustering Action Element Prototypes

We have now segmented a long video sequence into sevelactstgments and
learnt the model paramete(ré, C) for each of these segments using the method described
in section 3.3. Even though a long video might consist of sdwegments, not all of them
will be distinct. We need to cluster these segments (figurege), (f)) to discover the
distinct action elements (words). In order to perform thistering, we need a distance
measure on the space of LDS models. We use subspace &figies1,2,....n) between
two ARMA models which are defined in [60] as discussed in sa@id.

We use the Frobenius distance in all the results shown irctiapter. Suppose we
haveN segments in the video sequence, then we creakéahl matrix W whose(i, )t
element contains the distance between the models of seg@memisegment.

Clustering the Segmentdn the current setting, we only have the notion of a ‘dis-
tance’ between two points (segments), but we do not have kdean representation of
the points. Thus, this precludes the use of clustering igdes that rely on Euclidean
representation, such as k-means etc. The other populanatite for clustering rely on
graph-theoretic methods such as Normalized cuts ([138}¢.advantage offered by these
approaches is that they do not rely on Euclidean represemsatThe only requirement
is that a distance metric be defined between any two pointacéjeyraph clustering al-
gorithms are a natural choice in the current setting. But,a&twal problem in using
these algorithms is choosing the number of clusters. Rasudfgectral graph theory also
provide principled means for estimating the number of eisst A well known result
regarding the Laplacian of a graph is briefly summarized bovs.

Let G = (V,E) be an undirected and unweighted graph with vertex/set cardi-
nality n and edge set E of cardinality. The existence of an edge between two vertiges
andv;j is denoted asvi,vj) € E(G). Letd; denote the degree of vertex LetAbe the
n x nadjacency matrix of the graph such tigt = 1 if and only if (vi,vj) € E(G). LetD
be the diagonal matrix witDj; = d;.

The Laplacian of the grapl,is defined as

L=D-A (4.5)
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and the normalized Laplaciabgorm is defined as
Lnorm= D~ Y2LD~%/2 (4.6)

A connected graph is a graph such that there exists a patreéetall pairs of
vertices. Aconnected componeista maximal subset of the graph that forms a connected
graph. The following is a well-known result [139] that r&atthe number of connected
components of a graph to eigenvalues of its Laplacian.

Result: If Gis a graph andL its Laplacian as defined above, then the multiplicity
of 0 as an eigenvalue a&fis equal to the number of connected components {fi39]).

This result is true for the normalized graph-Laplacian af.wé/hile this result
holds for unweighted graphs, in our case the pairwise distaimilarity matrix represents
a weighted graph with the similarities as the edge weightain€cted components in our
case represent the clusters that we are looking for. Thukéaweighted case, the smallest
eigenvalues will be close to 0 but not exactly 0. We have ubedresult to estimate
the number of clusters given the similarity matrix by analgzthe eigenvalues of the
Laplacian and searching for an ‘elbow’ that represent asandtiange in the eigenvalues.
The index at which the elbow is located is the estimated nurobelusters. Practically,
it is easier to use the normalized Laplacian to search forethew, since its non-zero
eigenvalues are all 1 by a similar result as above. A syrtleatample is shown in figure
4.5 for the case of two clusters. We generated scalar datatinm Gaussian densities
with different means and large variances such that theligngfisant overlap in the pdfs.
This overlap is reflected in the similarity matrix as well igdre 4.5(a). The eigenvalues
of the normalized Laplacian are shown in figure 4.5(b). THieow’ is observed at 2 as
shown circled.

Once we have estimated the number of clusters, we can gerleeatlusters using
any standard graph clustering algorithm. We have used r@edacuts in our experi-
ments [138]. Let th& cluster centers thus obtained be giveniyC,,Cs,...Cx. The

segmented video is then given by a sequence of these labels.
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Figure 4.5:lllustrative example for estimating the number of clusters using heuristicsl loase
the eigenvalues of the Laplacian of the similarity matrix (a) Similarity Matrix, (b) Big&ies of
the normalized Laplacian. The location of the elbow (shown circled) repteghe estimate of

the number of clusters.

4.2.4 Discovering the Cascade Structure

After clustering the action elements each segment is asdigrabel. Suppose we
have the following sequence of lab¢;,Cs,C,, Cs,C7,Cg,C1,C3,C5,Cp,Cs,C1,C7,Cs).
Persistent activities in the video would appear as a repetequence of these labels.
From this sequence, we need to find tpproximatelyrepeating patterns. We say-
proximatebecause oversegmentation may cause the patterns to beaotlyyerpetitive.
We can say thaC;,C3,C,) and(Cg,C7,Cg) are the repeating patterns, up to one insertion
error. To discover the repeating patterns, we build n-griatissics of the segment labels
as shown in figure 4.1 (g). We start by building a bi-gramgtam and four-gram models.
In our experience, oversegmentation of the video is morencomthan undersegmenta-
tion. Thus, we allow for up to one insertion error while bunigl the n-gram statistics. We
prune the bi-grams which appear as a subsequence of arni-§ve prune the tri-grams
in a similar fashion. Finally, we declare the n-grams witloartt above a threshold (de-
pending on the length of the video) as the repeating patiartige video. The cascade
structure of individual activities is the exact sequencéhefprototypes in the n-grams.

Once we have the cascade structure, we can go one step farthdjuild a generative
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model by learning the statistics of the duration of eachoactirototype. We model the
duration of each action prototype as a Gamma distributigh parametersr, > 1 and
Bx. The parameters of the distribution can be learnt from ingimata as described in

section 4.1.

4.3 Sequence of Dynamical models for Activity based Video Mining

In order the validate and show the efficacy of the CLDS modehftivity based

unsupervised clustering of videos, we perform experiments databases.

1. UMD Dataset: This dataset contains 10 activities and 10 sequences peityact

performed by one actor and captured in 2 views.

2. INRIA database: This database consists of 10 actors performing 11 acsvitie
a near field setting and contains 3 executions per actor.raéteely change their

orientation.

3. Torino 2006 figure skating data: We have used figure skating video from the 2006
Winter Olympics at Torino. This is completely unconstraimata and involves real

world conditions — pan, tilt and zoom of camera and rapid arotf the actor.

Note: Since most of the results are best viewed as videos, we Iletaretder to

http://www.umiacs.umd.edufpturaga/VideoClustering.html for video results.

4.3.1 Experiments on UMD Dataset [1]

In the experiment described in section 4.2.1, five differemhplex activities —
throw, bend, squat, bat and pick phone were discovered atitcatly. We were also
able to learn the cascade of dynamical systems model in aletetypunsupervised man-
ner. We manually validated the segment boundaries and thesponding discovered
activities. We call each discovered repetitive pattemadif. To counter oversegmenta-
tion effects, we merge very similar motifs. Since, a mot# string of labels, we used the

Levenshtein distance [140] as the metric to merge them. THssification of the activities
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into motifs is tabulated in Table 4.1. We see that the tabseahstrong diagonal structure
indicating that each of the discovered motifs correspondsne of the activities in the
dataset. Motifs 1-5 correspond to ‘bending’, ‘squattintfirowing’, ‘pick up phone’ and
‘batting’ respectively. This demonstrates that the alifponi does indeed discover seman-
tically meaningful boundaries and also is able to distisguamong various activities by
learning the right cascade structure of the action proegyp

Figure 4.6 shows activity labels for the entire video segeegxtracted manually
and automatically. Matching of the colors in the figure iradés that the algorithm is
able to discover and identify activities in an unsuperviseahner. We found that the
errors in labeling are typically near the transition betaveeo activities, where the actual
labeling of those frames is itself subject to confusion. Tualize the clusters and to
see thetrajectoriesof each activity, we embedded each segment into a six-diioeals
Laplacian eigenspace. Dimensions 1-3 are shown in figut@yand dimensions 4-6
in figure 4.7(b). We see that the trajectories of the sameigcare closely clustered

together in the Laplacian-space.

Activity Motif | Motif | Motif | Motif | Motif
Type 1 2 3 4 5
Bending | 10 1 0 2 1
Squatting | 2 8 2 0 0
Throwing | o 0 7 0 1
Pick 3 0 0 9 0
Phone

Batting 0 0 0 1 9

Table 4.1:Composition of the Discovered Clusters in the UMD database

4.3.2 INRIA - Free-Viewpoint Database [2]

The INRIA multiple-camera multiple video database of the PERTION group
consists of 11 daily-live motions performed each 3 times @dtors. The actors freely

change position and orientation. Every execution of thwiacts done at a different rate.
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(a) Manual Labeling

(b) Automatically Discovered Labels (unsupervised—clustering)

Figure 4.6:Color coded activity labeling for a 4000 frame video sequence of the UktBldise

(a) Manual Labeling (b) Unsupervised Clustering result. Image bestden color.

(a) (b)

Figure 4.7:(a)Visualization of the Clusters in Laplacian Space dimensions 1-3. (baNstion

of Clusters in Laplacian Space dimensions 4-6. Best viewed in color.

For this dataset, we extract X616 x 16 circular FFT features as described in [2]. Instead
of modeling each segment of activity as a single motion hystolume as in [2], we build
a time series of motion history volumes using small slidingdews. This allows us to
build a dynamic model for each segment. We use the segmamtatthod proposed in
[141].

We performed a clustering experiment on all 30 sequencesadibdsx 3 sequences
per actor). Segmentation was performed using the methadided in [141]. The clus-
tering results are shown in Table 4.2. The strong diagonattsire of the table indicates

that meaningful clusters are found. We also see that sonwtiastsuch as ‘Check Watch’
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and ‘Cross Arms’ are confused. Similarly, ‘Scratch Head’ isstnoften confused with
‘Wave Hand’ and ‘Cross Arms’. Such a confusion maybe attatub the similar and

also sparse motion patterns that are generated by thoseiesti

Motifs 1/2|3|4]|5|6|7]8|9|10|11
Sit Down 28| 3|0|0|0|1]|l0|0]|0| 0] O
Get Up 0o|31|0|0|0|0|lO|O]O|] O] O
Turn Around o|lo|2|0|0|0|1]|0]|0] O0]oO

Check Watch olo|o|17|5|2]|0|6|4]| 0 0

Cross Arms 0 0 0 0|16 3| 0 |10 1 0 1

Scratch Head 1lo0|lo|3]|9]|3|0]| 7|40 1

Walk o|jlo|lo|o|o|lo|l3]|o0o|o0o| O] oO
Wave Hand o|lo|o|6|0|4a]lo|10]1] 0] O
Punch olo|lo|o|o|4|lo0|7]|9]| 5 ]| o0
Kick ojlo|lo|1]|o|1|l0]o0o]|2]|26] 0O
Pick Up 2|20 1]0|1|0]|0]|4| 0] 23

Table 4.2:Confusion matrix showing view-invariant clustering using the proposeatiggn on

the INRIA dataset.

We also show the actual summarization results obtained onofwhe actors —

‘Florian’ and ‘Alba’ in figures 4.8 and 4.9.

4.3.3 Torino 2006 Figure Skating data

We performed a clustering and retrieval experiment on then®o2006 Winter
Olympics figure skating videos. This data is very challeggimce it is unconstrained
and involves rapid motion of both the actor (skater) and-weald motion of the camera
including pan, tilt and zoom. Some representative framas fthe raw video are shown
in figure 4.10.

Low-level processing: We built color models of the foreground and background
using normalized color histograms. The color histogramresuged to segment the back-

ground and foreground pixels. We perform median filterin@pieed by connected com-
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Check Watch
Cross Arms
Scratch Head
Sit Down

Get Up

Turn Around
Walk

Wave Hand
Punch

Kick

Pick Up

Figure 4.8:Color coded activity labeling for three sequences by actor ‘FlorianstFaw in each

is the groundtruth, second row is the discovered labeling. Image bestdieveolor.

ponent analysis to reject small isolated blobs. From thenseged results, we fit a bound-
ing box to the foreground pixels by estimating the 2D meansewbnd order moments
alongx andy directions. We perform temporal smoothing of the boundiogfsarameters

to remove jitter effects. The final feature is a rescaledtyiiraage of the pixels inside

the bounding box.

Clustering Experiment: In a setting such as figure skating, it was difficult even
for us to semantically define temporal boundaries of an iagtiet alone define a met-
ric for temporal segmentation. Thus, this makes it very diftito break the video into
temporally consistent segments. Instead, we build modelsxed length subsequences
using sliding windows. We use 20 frame long overlapping wimsl for building models
of the video. Also, most of the ‘interesting’ activities $uas sitting spins, standing spins,
leaps etc are usually few and far between. To discover theteésting’ activities, we
apply a two-stage clustering algorithm. First, we clustethee available subsequences
into a fixed number of clusters (say 10). Then, from each etuse remove the outliers
using a simple criterion of average distance to the clusteen, we recluster the remain-
ing segments. We show some sample sequences in the obthiseiin figures 4.11 —

4.15. We observe that Clusters 1 - 4 correspond dominantlgitbrig Spins’, ‘Standing
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Check Watch
Cross Arms
Scratch Head
Sit Down

Get Up
Turn Around

Walk
Wave Hand
Punch

Kick

Pick Up

Figure 4.9:Color coded activity labeling for three sequences by actor ‘Alba’. Fastin each

is the groundtruth, second row is the discovered labeling. Image bestdieveolor.

Figure 4.10:Sample images from the skating video of Emily Hughes of USA.

Spins’, ‘Leaping Spins’ and ‘Spirals’ respectively (in arspthe skater glides on one foot
while raising the free leg above hip level). Cluster 5 on tHeeohand seems to capture
the rest of the ‘uninteresting’ actions.

Retrieval Experiment: We performed a retrieval experiment in which a query
segment was selected by the user and provided as input toatuhimy algorithm. The
top 5 matches for two different queries corresponding tgplsgan and standing spin are

shown in figures 4.16 - 4.17.
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Figure 4.11: Shown above are a few sequences from Clusterl. Each row showigumis

frames of a sequence. We see that this cluster dominantly correspoigiitg ‘'Spins’.
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Figure 4.12: Shown above are a few sequences from Cluster2. Each row showigumis

frames of a sequence. Notice that this cluster dominantly correspondsialiSy Spins’.
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Figure 4.13: Shown above are a few sequences from Cluster3. Each row shaowigumis

frames of a sequence. Notice that this cluster dominantly correspondgitalss
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Figure 4.14: Shown above are a few sequences from Cluster4. Each row shaowigums

frames of a sequence. This cluster dominantly corresponds to ‘Leag’ Spin
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Figure 4.15: Shown above are a few sequences from Cluster5. Each row showiguemis
frames of a sequence. This cluster did not dominantly correspond tindese'sting’ skating pose

but seemed to capture the ‘usual’ postures. Image best viewed in color.
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Input
Query

Match1
Match2 ™8
Match3

Match4

Match5

False alarm

Figure 4.16:Shown above is the input query corresponding to a Leap Spin and thertapches

obtained. The last match is a false match. Image best viewed in color.

Match2

Match3

Match4

Match5

Figure 4.17:Shown above is the input query corresponding to a Standing Spin andptie to

matches obtained. All the matches correspond to standing spins. Imagéehexst in color.
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Chapter 5
Temporal Modeling: Time Varying Models

In several domains, it has been observed that human aesiate better described
as a continuum of actions where the individual boundarigs/dxen actions are often
blurry [142]. To draw a parallel to language processingag been long known in the
speech community that words spoken in isolation sound alifferent when spoken in
continuous speech. This is commonly attributed to ‘cosaléition’ and ‘assimilation’
effects. Similarly, when actions appear in a connected fansihard to identify precisely
where an action ends and where another begins. Consider tibe ahown in figure
5.1 (a) and a synthesized version which relies on finding segimoundaries and fitting
models to each segment in figure 5.1 (b). As can be seen, s&gioarfollowed by
modeling causes abrupt changes to appear at segment biesndizning synthesis. This
effectis also observed in sign-language where gesturésfarenced by adjacent gestures
[142], making segmentation and recognition difficult.

Activities may also be viewed from a stochastic processtpimiew. In this con-
text, ‘stationarity’ or ‘non-stationarity’ is an importaproperty of the stochastic process
under consideration. Stationarity requires that the ebtestatistics of the process do
not change with time. On the other hand, ‘time-invariant &ime-varying’ refer to the
properties of the model used to describe a given stochastoeps. A good discussion of

the relation between stationary processes and time-amamodels is given in [143]. A
© YN TN RN RN WYYy YR NN
OBt # b 4]e & o o [6 & & & & & & 8 #]l £ 5 £ x x x xlD b}
oyt 4 4 b 6 6 o e s & & 4 4 4 4+ 4 4 4 A £ £ £ 5 £ A}
Figure 5.1:(a) Original sequence taken from the common activities dataset [1]y(ih&sis by a
sequence of linear dynamic models with boundaries shown by vertical yitiesy (c) Synthesis
by a continuous time-varying model. It can be seen that when actionsg@rested and mod-

eled using switching models, the synthesis results show abrupt changeseiagross boundaries

whereas the time-varying model results in a much more natural evolution e$pos
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Figure 5.2:lllustration of how statistical properties change with time for 5 activities. Thaig-
measures the KL divergence between ensemble statistics as a functioniwfetHag. Figure best

viewed in color.
key observation is that if a process is stationary, it can ékkdaescribed by time-invariant

models such as the Gauss-Markov model [123]. Now one migtthasquestion whether
activities are stationary or non-stationary. Consider thrarmon activities dataset of [1].
Each activity in the dataset contains 10 executions frome@vsi Considering each ex-
ecution to be a realization of a random prockst), we compute the pdf of the random
variable at each time instarfik (t), by fitting a parametric Gaussian estimated from the
ensemble. If the activity is indeed stationary, then théspalf time-instants andt + &
would be identical. We will answer the question using encpirestimates of KL diver-
gence.

We computed the KL-divergence between the pdfs as a funofidthe lagd av-
eraged over all time-instants i.&Layg(0) = & M KL(fx(t), fx(t + 8)). Figure 5.2
shows howK Layg varies witho for different activities. As is evident, the statisticabper-
ties of the activity vary smoothly but significantly over #maven for these simple actions.
This suggests that complex human activities cannot be deresi stationary stochastic
processes. Indeed, in this chapter, we consider humamadi® quasi-stationary pro-
cesses. To model such quasi-stationary processes, we tioéitthe plot in figure 5.2
reveals that we can assume local stationarity, since fofl simlaes of 0 the statistical
properties do not change significantly. Thus, it would sefti fit locally time-invariant
models, but allow the parameters of the model to vary witletiffhis observation forms

the basis for the current work. Note that this approach ielyidsed in the speech pro-
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cessing community where speech signals are consideredtehorstationary in windows
of 20-40 milliseconds [144].

We consider human actions as a continuum of dynamical psesegvhere the pa-
rameters change continuously over time as opposed to thgamps in time. We rep-
resent the LDS at each time-instant as a point on the Grassmanifold. Then, the
overall activity is considered as a trajectory on the Grassmmanifold. Time-varying
linear dynamical processes have also been studied in theotditerature where they
are traditionally used as approximations to non-lineacesses [59]. Modeling of time-
invariant dynamical systems as points on the Grassmannfofdhmvas considered by
[145]. Tracking points on the Grassmann manifold by a Hidiemkov Model on the
manifold was proposed by [146] in array-signal processipglieations, where a con-
stant velocity model is assumed on the manifold. In contaiie generative approaches
discussed above, there exist discriminative approachi@addeling human actions. An
in-depth discussion of discriminative models is beyondsit@pe of this chapter, and we

refer the reader to [147, 148] and references therein.

5.1 Modeling of Complex Activities

An activity is considered as a complex evolution of posescWiis governed by an
underlying dynamic process. The underlying process ispiaiey highly non-linear and
time-varying. We model complex activities as outputs ohaetivarying linear dynamical
process. At each time-instant, we assume that the dynaprgeéss is linear. We then
allow the parameters of the LDS to vary at each time-instaet.f(t) € R™ denote the
observations (flow/silhouette etc) at time-instantThen, the time-varying dynamical

model is represented as

F(t) = C)z(t) +w(t), w(t) ~ N(O,R(t)) (5.1)
Z(t+1) = A(t)z(t) +v(t),v(t) ~ N(0,Q(t)) (5.2)
where z(t) € RY is the hidden state vector of dimensidpA(t) is the time-varying

transition matrix an€(t) is the time-varying measurement matnxt) andv(t) are noise
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components modeled as normal with 0 mean and covarig(igeandQ(t) respectively.
When the model parametetsC, Q, R are constant, the model reduces to the well-known
time-invariant LDS which has been successfully applieciresal vision tasks [149, 123].

In summary, the model consists of a sequence of parameteraneéasurement matrix
C(t) and the transition matrif(t) and the noise covariancBét), Q(t). Before we discuss
the problem of parameter estimation, we show the strengtiieafnodel on the synthesis
experiment described earlier. The results of synthesisgusicontinuous time-varying
model are shown in figure 5.1(c). It can be seen that the sgizek sequence exhibits a

much more realistic evolution of poses.

5.1.1 Estimating the parameters

We first present a brief review of the parameter estimatiatlem for the time-
invariant case before turning to the time-varying case.
The time-invariant case: Consider the time-invariant version of the model in

equations (5.1) and (5.2).

£(t) = Ct) +w(t),w(t) ~ N(O,R) (5.3)
Z(t +1) = Azt) +v(t),v(t) ~ N(0,Q) (5.4)

For the time-invariant case, it is easily shown that theearinitely many choices
of parameters that give rise to the same sample péth Resolving this ambiguity re-
quires one to impose further constraints and choose a caalonodel. The conditions as
proposed in [123] are that >> d,rank(C) = d andC"C = I. The number of unknowns

that need to be solved for arend — d(d—zﬂ) for C, d? for A, d(dgrl) for Q: resulting in

md+ d? unknowns (we have ignored the observation noise covariasag now). For
each observed frame we gatequations. Hencel+ 1 linearly independent observations
are sufficient to solve for the required parameten&(4- 1) > md-+ d? sincem >> d).

The parameter estimates can be obtained in closed form pigdgction error meth-
ods. Several estimation algorithms exist such as the orsesided in [57] and [123]. We

use the solution derived in [123] here. Let observatibfly, f(2),... f(1), represent the
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features for the frames 2,...1. Let[f(1), f(2),...f(1)] =UZVT be the singular value
decomposition of the data. Théh=U,A=35VTDV(VTD,V) 151 whereD; = [0
0;l;_1 0] andD2 =[l;_1 0;0 0].

The time-varying case: Estimation of time-varying models for time-series has
been studied in various domains such as speech processonpreetric data and com-
munication channels. A commonly used assumption in thesgads is that the time-
varying AR (auto-regressive) and ARMA (auto-regressive imgp\average) parameters
can be expressed as linear combinations of known detertiifugctions of time such as
the Fourier basis or the exponential basis [144]. Otheraaares include Taylor-series
expansions of the model parameters such as in [150] for @cetnw applications. Esti-
mation of time-varying single-input single-output (SISER models has been proposed
by estimating an equivalent time-invariant single-inputltiple-output (SIMO) process
[151], and was applied for channel estimation in commuraecabhetworks. These ap-
proaches are restricted to single-dimensional timeset&a. Multi-dimensional time-
varying dynamical models traditionally arise as a resullirgarizing a non-linear dy-
namical system. In such cases, the time-varying paramedarse solved for analytically
using Taylor series expansions around a ‘nominal trajgt{d0]. However, in most
practical applications including activity modeling, oneed not know what the underly-
ing non-linear equations are nor does one have the knowlefigenominal trajectory.
Recently, linear parameter varying (LPV) systems have beeposed to model time-
varying processes. In these approaches, the time-varyatghparameters are consid-
ered to be linear combinations of a small set of time-invar@arameters. The linear
combination weights, also called the scheduling weightange with time [152, 153].
However, identification of LPV systems is computationalryexpensive [153]. In the
following, we propose a computationally efficient and cqtoelly simple method to
estimate the time-varying parameters of a dynamical systghout making strong as-
sumptions on the nature of the time-varying process.

To begin with, it is easily seen that even in the time-varygage there are in-
finitely many choices of the model parameters that can gse 1 the same sample

path f(t). So, we impose the same set of conditions as in the timeinacase i.e.
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m >> d,rank(C(t)) = d andC(t)"C(t) = I. Based on the analysis given above, there
aremd+ d? unknowns foreachtime-instant andgn equations per time-instant. Obviously
this is an ill-posed problem since there are far more unkmscivan there are equations.
Hence, we impose another condition that the model paras&ti@y constant in local tem-
poral neighborhoods. The temporal neighborhood in whiehpdwrameters are assumed
to stay constant should also ensure tthat 1 linearly independent observations can be
obtained within the neighborhood. In general, it cannot bargnteed that a fixedi+ 1
sized neighborhood will satisfy this condition. Howeverpur experience we found that
a neighborhood of size 8d — 2d was sufficient to meet this condition in most real-world
human activities. Typicallyl is of the order of 5- 10 and complex human activities ex-
tend to several hundred frames. It is reasonable to asswnmtshort windows of about
15— 20 frames the dynamics can be easily modeled by simple tiwaiant dynamical
processes.

We now have a sequence of dynamical systems which definegeeattnry on the
space of LDS. Before we discuss how we model this trajectagyfinst discuss the Grass-

mann manifold formulation of the LDS space.

5.2 Trajectories on the Model Space

For the time-invariant case, starting from an initial cdiwai z(0), it can be shown

that theexpectedbservation sequence is given by

f(0) C
f(1) CA
E| f(2) | = | CA | Z0)=0x(M)z0) (5.5)

Thus, the expected observation sequence generated by-atianent modeM =
(A,C) lies in the column spac®of the extendedbservabilitymatrix given byO.,(M) =
[CT,(CAT,(CA)T,..]T. Inthe time-varying case, we assumed that the model paeasnet

stay constant in short temporal neighborhoods. Let thed$itee temporal window ba.
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Thus, then-length expected observation sequence generated by thel Mpe- (C;, A;)

(model at tim&) lies in the column spacg of thefinite observability matrix given by
On(Mi) = | C;GA;...;GAM (5.6)

Thus, the time-varying model can be viewed as a sequencéspanes, where
each subspace is spanned by the columns of the observafwiitix at the corresponding
time instant. Finite dimensional subspaces such as thesbecalentified as points on
the Grassmann manifold [154]. Thus, the sequence of subsgan be mathematically

expressed as a trajectory on the Grassmann manifold.

5.3 Statistics and Geometry of the Grassmann manifold

To model and compare trajectories on the Grassmann manifeltheed to under-
stand a) the representation of points, b) distance metndsastatistical models on the
manifold. In this section, we provide a brief overview of kauf these aspects. The
Grassmann manifoln is the space whose points deegplanesor k-dimensional hy-
perplanes (containing the origin) ™. To eachk-planev in R™, we can associate an
m x k orthonormal matrixY such that the columns &f form an orthonormal basis for the
plane. Note that there exist several choices for the basihus, all the choices of basis
vectors that span the same subspace need to be considenaleaquTo eactk-planev
in Gy is associated an equivalence classof k matricesy Rin R™K for non-singular
R, whereY is an orthonormal basis for theplane. This is also called the Procrustes
representation. Alternately, one can define a unique projeenatrix for the subspace
given byP =Y YT which projects points from the ambient Euclidean space thegjiven
subspace. In applications to human activities, the prgjechatrix representations leads
to large computational overheads since it is a squarxem matrix. In practicem s of
the order of 18 or higher. Thus, we rely on the Procrustes representatipoiats which
relies on storing only tall-thim x k matrices.

A point X on .} 4 is represented as a tall-thmx d orthonormal matrix. The

corresponding equivalence classwof d matricesXRin Ry, for Re SQ(d) is also called
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the Procrustes representation of the Stiefel manifold sTtaucompare two points i, q,
we simply compare the smallest squared distance betwee&othesponding equivalence
classes on the Stiefel manifold according to the Procrusfgesentation. Given matrices
X1 andX; on.#, 4, the smallest squared Euclidean distance between anyfpaatdaces

in the corresponding equivalence classes is given by

3, ocrust(X1, Xo) = mRintr(Xl —X%R)T (X1 — XoR) (5.7)

= mRintr(RTR—leTXZRJrIk) (5.8)

WhenR varies over the orthogonal grodp(k), the minimum is attained & =
HiHJ = A(ATA)~1/2, whereA = H;DH] is the singular value decomposition Af We
refer the reader to [154] for proofs and alternate cases.

Given several examples from a cld$§, Xp, ..., Xn) on the manifoldVy m, the class
conditional density can be estimated using an appropretekfunction. We firstassume
that an appropriate choice of a divergence on the manifddbkan made such as the one

above. For the Procrustes measure the density estimaieeis gy [154] as

FXM) = §C<M>__§1K[M—l/2<lk—xTxmeM-W] (5.9)

whereK(T) is the kernel functionM is ak x k positive definite matrix which plays
the role of the kernel width or a smoothing parame®M ) is a normalizing factor cho-
sen so that the estimated density integrates to unity. Thaxnwalued kernel function
K(T) can be chosen in several ways. We have Ws€ld) = exp(—tr(T)) in all the exper-
iments reported in this chapter. In this non-parametricioefor density estimation, the
choice of kernel widtiM becomes important. Thus, though this is a non-iterativegro
dure, the optimal choice of the kernel width can have a lamygact on the final results.

In general, there is no standard way to choose this parametept for cross-validation.
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5.4 Comparing sequences of Subspaces

Given a video of a long activity, first the time-varying mogerametersvi; =
(A,C) are estimated using small temporal sliding-windows andntie¢hod described
in section 5.1.1. Subsequently, for each window the obsdityamatrix On (M) is com-
puted. Then for each observability matrix, an orthonornasi®is computed using stan-
dard SVD based algorithms. So, we now have a sequence ofasidssr in other words
a trajectory on the Grassmann manifold. To compare two sufesprajectories we pro-
pose two approaches.

Dynamic time warping:  Dynamic time-warping (DTW) only requires an ap-
propriate distance metric between points on the manifolideiitwo complex activities
and their corresponding subspace sequeSggsandS(t), DTW tries to find a warping
patha(t) such that5,(t) = S$(a(t)). To solve the problem we can use any standard DTW
algorithm.

Grassmann switching model: In the second approach, we parametrize the tra-
jectory using a switching model akin to the HMM on the Grassmmanifold. Corre-
sponding to an activity clags, suppose we are givevl subspace sequenc{eﬁc(t) }V':l.

We consider the dynamics to be described by a sef dfidden states (V... LK),
The state at time is denoted byQ(t) and the observation at tinteis denoted by§(t).
The overall model for the activity consists of thehidden states, the intra-cluster pdfs
f(S(t)|Q(t) = L1), the transition probability matrix and the prior probatyilin general,
the Baum-Welch algorithm provides solutions for the abowd@ms in a maximum like-
lihood sense. This requires one to have analytical expmesdor the intra-cluster pdfs
and the gradient of the likelihood of a sequence in termsesgdlparameters. In our case,
we solve these problems in a much simpler, although sulmapivay as follows. Given

a sequence of subspao@c(t) {V':l, the following procedure is adopted to estimate the
switching model.

1. Cluster the points int& clusters or hidden-statésV, ... LK),

2. Estimate a pdf within each clustéfS(t)|Q(t) = LM).

3. Estimate the transition probabilitiggQ(t) = L1 |Q(t — 1) = L()) between the clusters.
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4. Estimate the prior probabilitp(Q(0)). Any of the distance metrics on the Grass-
mann manifold can be used to perform clustering. In our expeErts, we used a spectral
clustering algorithm — Normalized cuts — to get the clustévghin each cluster, we use
the non-parametric density estimate as described in ch@pbeestimate the intra-cluster
pdf. Once the clusters are found, we form the sequence diecllabels corresponding
to the sequence of subspaces. The sequence of labels isousstihtate the transition
probabilities by bi-gram counts. Thus, we have now learniviiching model on the
Grassmann manifold for each activity class.

Given a new subspace sequence, we need a method to classify ane of the
action classes. In the case of standard HMMs, this problesolised by the forward-
backward algorithm and its variants. We use a simpler vergiat works much faster
and using fewer computations. Given a sequeBtg and an activity model, we first
assign eaclg(t) into one of the clusters of the model. Let us denoteQlfy) the se-
guence of cluster labels thus obtained. Then we computégidnbod of the sequence as
P(Q(0)) Mk f(S(k)|Q(Kk)) p(Q(k)|Q(k—1)). Though this is sub-optimal than the forward-
backward algorithm, we found that we obtain significant cataponal advantages using
these approximations.

Relation to Switching Linear Dynamical Systems: SLDS [118, 115, 155, 62]
model a complex activity by breaking it down into simpler ioatpatterns where each
motion pattern is modeled using a simple model such as an HMah@.DS. The over-
all activity is then modeled by switching amongst a small gletlynamical systems.
In the above Grassmann switching model, if we constrain ti-icluster pdf to be
f(S(t)|Q(t) = LM) = 5(S(t) — ), wherepy is the cluster center, then the Grassmann
switching model reduces to the SLDS model. Thus, the SLDSemigca special case
of the proposed Grassmann switching model. Further, in Sk@Susually assumed
that complex human actions can be separated into simpleomuatterns. However, we
do not rely on segmentation of activities into primitiveians and thus our approach is

applicable even in complex cases when segmentation isutiffic
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5.5 Experiments

In the first experiment we performed a synthesis experimerd ekating dataset
obtained from [6]. From a segment of video of about a 100 frathat contained fast
skating actions as shown in figure 5.3 (a), a discrete-swigcimodel and a time-varying
model were estimated. The actions in the sequence exhiaitteulation effects, where
transitions between distinct poses contain intermediatep that share the appearance
of both the starting and the ending pose. The results of egighusing the models are
shown in figure 5.3. The experiment shows that the time-ngrynodel can account for

such co-articulatory effects and produce realistic loglgequences.

gy F P AXXTITAAARITE SRR LAY
QI FIAXAZTZZTZAAZZ N
Ay FIFXXZAZAZZRIZIZZ TR NN

Figure 5.3:(a) Original skating sequence taken from [6], (b) Synthesis by aeseguof linear
dynamic models with boundaries shown by vertical yellow lines, (c) Synthsa continuous
time-varying model. It can be seen that synthesis results show abrupgesh&n pose across
boundaries whereas the time-varying model results in a smoother evoluposes.

Next we present experiments demonstrating the strengtheafnbdel for summa-
rizing and recognizing complex activities. In the first esipent we show the results of
summarizing a long video containing a complex activity — ¢jaene of Blackjack. For

this, we used the dataset reported in [7].

5.5.1 Blackjack Game Summarization

The game of Blackjack consists of a few elements such as deedirds, waiting
for bids, shuffling the cards etc. We try to estimate a Grassngavitching model for
the entire video of Blackjack. The Grassmann switching medeild then represent a
‘summary’ of the game, where the clusters of the model regmtegrious elements of the
game and the switching structure represents how the gargegsses. This video consists
of about 1700 frames. We extracted the motion-histograntufes as proposed in [7] for

each frame of the video. The time-varying model paramete¥sesatimated in sliding
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Figure 5.4:A few sample frames from the Blackjack dataset of [7].

windows of size 10. The dimension of the state vector is ahts®ed = 5. To estimate
the Grassmann switching model for the game of Blackjack, weually set the number
of clusters to 5. In figure 5.5, we show an embedding of theovioletained from the
model parameters using Laplacian eigenmaps. Each pomgspmmds to a time-invariant
model parametefA,C) pair or equivalently a point on the Grassmann manifold. Each
cluster was found to correspond dominantly to a distinanelet of the game as shown.
The switching structure between the clusters is encodelerransition matrix and is
shown in figure 5.6. As can be seen the switching structuresponds to a normal game
of Blackjack. Since this is a data-driven procedure, it stidad noted that the switching
structure will not necessarily be the same for every indigidBlackjack game. However,
given two distinct Blackjack games we can now quantify theamoof how similarly the

two games proceeded.
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Figure 5.5:An embedding of the entire Blackjack video sequence. Figure best vievesdbor.

77



Figure 5.6:Estimated structure of the game of Blackjack. (For the sake of clarity arcdamith
weights have not been shown).

5.5.2 Complex Activity Recognition

In the next experiment, we took the common activities datdsscribed in [1]
consisting of 10 simple actions{Pick Object, Jog, Push, Squat, Wave, Kick, Side Bend,
Throw, Turn around, Talk on cellphohe Each action is performed 10 times each by
the same actor under two different viewing angles sepatayeabout 20. We create
more complex actions from this set. We divided the actiots two groups - the first
group contains the first 5 actions, the second group contagmsext 5 actions. Then,
we created compound actions by taking one action from thednsup and an action
from the second group. Then, we swapped the two constitudioinag. This causes the
two resulting compound actions to share similar global sdearder statistics (the mean
and covariance). Thus, we have 10 compound actions as simotahle 5.1. To test the
framework, we performed a leave-one-out testing where aiaed on 9 executions and
tested on the remaining execution. Both views were used iminiggas well as testing.
Since the global second order-statistics of activitiehsag PickObject-Kick and Kick-
PickObject etc are similar, time-invariant linear dynarsystems are expected to show
confusion between them. The results of the recognition x@at are shown in table
5.1. Asis evident, both the DTW based and the Switching msigielv 100% recognition

since they account for the time-varying dynamics of the conmal actions.
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Activity Type LDS | Grass. DTW| Grass.
Switch-
ing
model

PickObiject - Kick 100 100 100
Kick - PickObject 50 100 100
Jog - SideBend 100 100 100
SideBend - Jog 50 100 100
Push - Throw 0 100 100
Throw - Push 100 100 100
Squat - TurnAround | 100 100 100
TurnAround - Squat| O 100 100
Wave - TalkCellphong 50 100 100
TalkCellphone - Wave 50 100 100
Average 60% 100% 100%

Table 5.1:Recognition percentages on Compound actions
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Chapter 6

Detailed analysis of the Geometry of the Primitive Space
Let us now consider the ARMA model in more detail and try to ustind the

space of the model parameters. The ARMA model equations eea by
f(t) =Czt)+w(t) w(t)~N(O,R) (6.1)
Z(t+1)=Azt)+v(t) v(t) ~N(0,Q) (6.2)

where,z is the hidden state vectof the transition matrix an@ the measurement ma-
trix. f represents the observed features whilandv are noise components modeled as
normal with 0 mean and covarian&and Q respectively. For high-dimensional time-
series data (dynamic textures etc), the most common appiedo first learn a lower-
dimensional embedding of the observations via PCA, and keanporal dynamics in the
lower-dimensional space.

The model parameter@\, C) do not lie in a vector space. The transition matrix
A'is only constrained to be stable with eigenvalues insideuthiecircle. For the time-
invariant ARMA case, starting from an initial conditia(0), it can be shown that the

expectedbservation sequence is given by

£(0) C
f(1) CA
E| f2) | = | cA |20) = 0u(M)z(0) (6.3)

Thus, the expected observation sequence generated by-atianent modeM =
(A,C) lies in the column spac®of the extendedbservabilitymatrix given byO., (M) =
[CT,(CAT,(CA)T,...]T. Thus, a linear dynamical system can be alternately idedtifi
as subspacecorresponding to the column space of the observability imatn experi-
mental implementations, we approximate the extended wisiity matrix by the finite

observability matrix as is commonly done [149].
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Op =[CT.(CAT,(CA)T,...(CAHT] (6.4)

Finite dimensional subspaces such as these can be ideasffamints on th&rass-
mann manifold. We provide the definition of the Grassmann manifold next.

The Grassmann Manifold ¢, 4 [154]:  The Grassmann manifol#, 4 is the
space whose points ateplanesor d-dimensional hyperplanes (containing the origin)
in R",

On a related note, the Stiefel manifold is the spacel @rthonormal vectors in
R".In the rest of the chapter, we review the geometry of the €enasn manifold. This
will then lead to appropriate distance metrics and statistmnodeling methods on the
Grassmann manifold. The set Grassmann manifotddimensional subspacesif will
be denoted a%;, 4. The set of alh x d orthonormal matrices shall be denoted#sy. On
a computer, a linear subspacelt¥is stored as a tall-thin orthonormal mattixsuch that
the columns oJ span the subspace. However, this choicd & non-unique, there exist
infinite choices ofJ that span the same subspace. We are interested in undangtérel
geometry of%, 4 and.#, 4. The two underlying spaces — Stiefet, 4 and Grassmann
“n.q — associated with our application are nonlinear manifotatbany statistical analysis
intrinsic to those spaces requires some tools from difteabgeometry.

Related Work: The geometric properties of general Riemannian manifoldago
the subject matter of differential geometry. A good introtilon to it can be found in
[156]. Statistical methods on manifolds have been studeddveral years in the statis-
tics community. Some of the landmark papers in this areaidec[157, 158, 159], how-
ever an exhaustive survey is beyond the scope of this chaphergeometric properties
of the Stiefel and Grassmann manifolds have received signifiattention. A good in-
troduction to the geometry of the Stiefel and Grassmann folasican be found in [160]
who introduced these methods in the context of eigenvalabl@ms. These problems
mainly involved optimization of cost functions with orthagglity constraints. Issues in-
volved in algorithmic computations of the geometric opera in such problems was

discussed in [161]. A compilation of research results otistieal analysis on the Stiefel
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and Grassmann manifolds can be found in [154].

In certain vision applications involving subspace constga the problems have
been recast using the Grassmann manifold. Examples inc[t@82] who performed
optimization over the Grassmann manifold for obtaininginfative projections. The
Grassmann manifold structure of the affine shape space Isiegin [9] to perform
affine invariant clustering of shapes. [163] performs disgrative classification over
subspaces for object recognition tasks by using Mercerekgion the Grassmann mani-
fold. Most of these methods do not fully exploit the Riemanrg@ometry of the Grass-
mann manifold, or are tuned to specific domains lacking geiter [146] exploited the
geometry of the Grassmann manifold for subspace trackirayray signal processing
applications. The methods that we present here form a cdmapséve (not exhaustive)
set of tools that draw upon the Riemannian geometry of thesBrasn manifold. Along
with the mathematical formulation, we also present efficagorithms to perform these
computations. Riemannian manifolds have also been expioted vision community in
other contexts such as in [164, 165], where Euclidean meaérchlstering is extended to
Riemannian manifolds. Theoretical foundations for maddddased shape analysis were
described in [166, 167]. Statistical learning of shapesgasising non-linear shape man-
ifolds was presented in [168] where statistics are learrthermanifold’s tangent space.
manifold’s tangent space.

Organization of the Chapter: In section 6.1, we discuss the notation and the
special orthogonal group that will lay the foundation forideg results for the Stiefel and
Grassmann manifolds. In section 6.2, we discuss the StaatélGrassmann manifolds as
guotients of the special orthogonal group. In section 6 8 dgcuss statistical methods
that follow from the quotient interpretation. In sectiod Bwve discuss Procrustes methods

and non-parametric density estimation on the Grassmanifoithn

6.1 Mathematical Preliminaries: Notation and Definitions

The two underlying spaces — Stieféf, 4 and Grassmanf#, 4 — associated with

our applications are nonlinear manifolds and any stasisémalysis intrinsic to those
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spaces requires some tools from differential geometry.ceSlaarning and using such
fundamental mathematical tools demands additional effegtfirst motivate their need.
We are interested in statistical inferences on these spaeesstimation and analysis of
variables taking values ¥}, 4 and¥, 4. Statistical inferences require probability models
that are often based on simple statistics, such as meansgaadances, learnt from the
past data. Let; Uy,...,Ux be some previously estimated points.ofi 3 and we seek
their sample mean, an average, for defining a probabilityeghod.#, 4. TheseU;s are
tall, orthogonal matrices. It is easy to see that the Euahdsample meaﬁnz{‘zlui is not
a valid operation, mainly because it is not a vector spacgail&@iy, many of the standard
tools in estimation and modeling theory do not directly gaplsuch spaces but can be
modified to account for their nonlinear geometry. This et the need to understand
the geometry of#, 4 and%, 4, a task we will try in this section.

The spaces of interest — Stiefel and Grassmann — are oftdiedtas quotient spaces
of the special orthogonal groUpQn). So we start by briefly introducing the special
orthogonal group, followed by the notion of quotient spaddsn we shall show how the

Stiefel and Grassmann manifolds can be derived as quopients oSQ(n).

6.1.1 The Special Orthogonal Group SO(n)

Let GL(n) be the set oh x n nonsingular matrices; this set is called tyener-
alized linear groupbecause it is also a group with the group operation given hbyixna
multiplication. The seGL(n) possesses some additional structure that makes it more
interesting. It is a differentiable manifold. One consetpeeis that although it is not a
vector space, it can be locally approximated as a vectorespsing smoothly varying
Euclidean coordinates. This property is essential to wstdeding the task of modifying
tools from standard Euclidean statistics to nonlinear fokds. The dual properties of
being a group and a differentiable manifold makelii@group If we consider the subset
of all orthogonal matrices, and further restricting to three® with determinant-1, we
obtain a subgroupQ(n), called thespecial orthogonal grouplt can be shown that this

is a submanifold ofGL(n) and, therefore, also possesses a Lie group structure. Bince
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hasn? elements and +n(n— 1)/2 constraints (unit length columns n constraints and
perpendicular columns» n(n—1)/2 constraints), it is am(n— 1) /2-dimensional Lie
group.

To perform differential calculus on a manifold, one needdaingent spaces. On
one hand the elements of tangent spaces are velocitiesfefedifiable curves lying on
the manifold; on the other hand, they act as differentiatafoes for functions on the man-
ifold and lead to the definitions of the directional derivas, gradients, optimal points,
etc, all essential in optimization problems. For the n identity matrix|, the tangent
spacerl; (SQ(n)) is given by ([156]):

T(SAQN)) = {X e R™": X +XT =0},

It is the set of alln x n skew-symmetric matrices. For an arbitrary pdhe SQn), the

tangent space is obtained by a simple rotatiom ¢8Q(n)):

To(SQAN)) = {OX|X € Ti(SAN))} -

Define an inner product for any, Z € To(SQ(n)) by (Y,Z) = trace(Y Z"), wheretrace
denotes the sum of diagonal elements. With this m&fn) becomes a Riemannian
manifold.

Using the Riemannian structure, it becomes possible to diefirgghs of paths on a
manifold. Leta : [0,1] — SQn) be a parameterized path &(n) that is differentiable

everywhere o010, 1]. Then%—‘{, the velocity vector at, is an element of the tangent space
Ta)(SQN)) and its length is defined to b (da day The length of the patlr is then

given by:
aft)
/\/ dt , dt >)dt. (6.5)

For any two point€1,0, € SQn), one can define a distance between them as the infi-

mum of the lengths of all smooth paths 8@(n) which start atD; and end aO,:

d(01,07) = inf Lla]. 6.6
(01,02) {a:[O,l]HS(Xn)|!}(0):Ol,a(1):02} @] (6.:6)
A path a which achieves the above minimum, if it exists, igeodesidbetweenO; and

O, onSQ(n). Geodesics o8Q(n) can be written explicitly using the matrix exponential.
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For ann x n matrix A, define its matrix exponential ekfy) by:
A A2 A
We can see that given any skew-symmetric mafriexp(X) € SQ(n). Now we can define

geodesics 08Q(n) as follows: for anyO € SQ(n) and any skew-symmetric matrk,
a(t) = Oexp(tX) ,

is the unique geodesic BQn) passing throug® with velocity vectorOX att = 0.

An important tool in statistics on a manifold is an exponanthap. IfM is a
Riemannian manifold and € M, theexponential mapexp, : To(M) — M, is defined by
expy(v) = ay(1) whereay is a constant speed geodesic starting.atn case ofSQ(n),

the exponential map e¥a To(SQn)) — SQ(n) is given by
expp(X) = OexfgX) ,

where the exponential on the right side is actually the maixponential.

6.2 Stiefel and Grassmann Manifolds as Quotient of SO(n)

A quotient of a space defines equivalence relations betweiesgn the space. If
one wants to identify certain elements of a set, using anvatgrice relation, then the
set of such equivalent classes forms a quotient space. fEmgeivork is very useful in
understanding the geometry of, 4 and%, 4 by viewing them as quotient spaces, using
different equivalence relations, 8Q(n).

“nd is the set of altd-dimensional orthnormal baseskf and%, 4 is the set of all
d-dimensional subspaces Bf'. A d-dimensional basis dR" can be represented by an
nx d matrixU such that) TU = I4, while ad-dimensional subspace is represented by all
such matrices whose columns span that subspace. NoticsuttatlJ can be viewed as
the firstd columns of an element &Q(n). This sets up the equivalence relations needed

to form ., ¢ and%, 4 as quotient spaces 8Q(n).

1. Stiefel Manifold: A Stiefel manifold is the set of all orthonormal bases®t.
Since each orthonormal basis can be identified with ard matrix, a Stiefel man-

ifold is also a set oh x d matrices with orthonormal columns. More interestingly,
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“nd can be viewed as a quotient spaceS@}(n) as follows. Consider the sub-
group of smaller rotationSQn— d) as a subgroup dQ(n) using the embedding:
@ : SQn—d) — SQ(n), defined by

(V) = [ a0 ] e san). (6.8)
0OV
Now define two element®1, O, € SQ(n) to be equivalent, i.e01 ~4 Oy, if O1 =
O>¢4(V) for someV € SOQn—d). (The subscript is used to distinguish it from
another equivalence relation used later for studydhg.) Note thatg,(SQn—d))
consists of those rotations BQ(n) that rotate only the lagtn — d) components
in R", leaving the firstd unchanged. Henc&); ~ O if and only if their firstd
columns are identical, irrespective of the remaining calanirhe resulting equiv-

alence classes are:
[Ola = {O@(V)|V € SQn—d)}.
Since all elements dDJ4 have the same firstcolumns, we will use that submatrix

U € R™ to represeniOla. .7 q4is Now viewed as the set of all such equivalence

classes and is denoted simply 8@(n) /SQn—d).

. Grassmann Manifold: A Grassmann manifold is the set of alt-dimensional
subspace oR". Here we are interested ohrdimensional subspaces and not in a
particular basis. In order to obtain a quotient space sirador%, 4, let SQ(d) x
SQn—d) be a subgroup dQ(n) using the embedding, : (SQd) x SO n—d)) —
SQn):

Vi O
(Po(Vl,Vz)—[ ] e san). (6.9)

0 W,
Define an equivalence relation &@Q(n) according td; ~p Oy if O3 = O2¢(V1,V2)

for someV; € SQ(d) andV, € SOn—d). In other words©; andO, are equivalent
if the firstd columns ofO; are rotations of the firsd columns ofO, and the last
(n—d) columns ofO; are rotations of the last—d columns ofO,. An equivalence

class is given by:
[Olb = {O@(V1,V2)|V1 € SQd), V2 € SOQn—d)} ,
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and the set of all such equivalence classe4,ig. Notationally,%, 4 can also be
denoted as simplgQ(n)/(SQ(d) x SO n—d)).

For efficiency, we often denote the $&i, by the set
U] ={UOecR™0esqd)}.

whereU denotes the firad columns ofO.

The main advantage of studying the Stiefel and Grassmanifott®as quotient spaces

of SQ(n) is that it lets us use well-known results about geodesicstangent planes

of SQ(n) in a systematic manner. Using the tangent structur&@m), we can derive

tangent structures on the quotient spaggg and%, 4 using the following principle. If

M/H is a quotient space d¥l under the action of a groud C M (assumingH acts

on M), then, for any poinp € M, a vectorv € Tp(M) is also tangent tiv/H as long

as it is perpendicular to the tangent spdgépH). Here, To(pH) is considered as a

subspace ofp(M). We will use this idea to find tangent spaces.8hy and%, 4, from

the corresponding tangent structureSgi(n).

1. Tangent Structure of ./}, 4: Since.#,q = SQN)/@(SAn—d)), setM = SQ(n)

andH = ¢, (SQ(n—d)), with ¢, as defined in Eqn. 6.8. The Jacobiampgpprovides
alinear mapde, : Ty, ,(SQn—d)) — T;(SQn)) according to:

dgu(D) = [2 S] e Tisam).

Let J € R™d pe a tall-skinny matrix, made up of the fitcolumns ofl,; J acts
as the “identity” element in/;, 4. A vector inT,,(SQ(n)), that is perpendicular to
dea(T, 4(SQn—d))), when multiplied on right byl results in a tangent t&, 4 at

J. A simple calculation shows that

C
T3(Fnd) = { [ o IC € R%*Y skew-symm B € R4 (") | (6.10)

For any other point) € .7, 4, letO € SQ(n) be a matrix that rotates the columns of

U to align with the columns aJ, i.e. letU = O'J. Note that the choice @ is not
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unique. It follows that the tangent spacelats given by: Ty (#hq) = {OTG|G €
T (yn,d)}-

2. Tangent Structure of %,4: In this case, seM = SQn) andH = ¢,(SQd) x
SQn—d)), with @, as given in Eqn. 6.9. Using the same argument as earlier, the

tangent spacé, (H) is considered a subspace BfSQn)) under the embedding
dg:

AL 0
dcpo(Al,Az)[ ] c Ti(SQn)).

0 A
The vectors tangent ®Q(n) and perpendicular to the spade, (SQd)) x Tj, ,(SQn—
d))), will also be tangent t&, 4 after multiplication on right byl. The resulting

tangent space &l] € ¥4, q is:

0
Tw%,d){[ or || BERTY) (6.11)

For any other poinfU] € %, 4, letO € SQ(n) be a matrix such thad = O'J. Then,
the tangent space @] is given byTyy)(%nd) = {OTG|G e Ty (%ha)}-

For anyO € SQ(n), a geodesic flow in a tangent direction, s&#A, is given by
Po(At) = Oexp(tA) where exp is the matrix exponential. This is a one-paranoetee
with t as the parameter. Similarly, in case.df 4 and¥, 4 a geodesic flow starting from

a pointU € .% 4 in a directionOT AJ € Ty (#n4), is given by:

Yy (OTAJ,-) :t— OT exptA)d | (6.12)
. . . C -B
Recall that in case af/, 4, the skew-symmetric matriR is of the type N ,
B" O

0O -B
whereas fof, 4 it is of the type :
BT 0

6.3 Sample Statistics on the Grassmann manifold

The first question that we consider is: What is a suitable natioa mean on the
Riemannian manifold ? A popular method for defining a mean on a manifold was

proposed by Karcher [169] who used the centroid of a densitisanean.
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Karcher Mean [169] The Karcher meap;,; of a probability density functiori onM is

defined as a local minimizer of the cost functign: M — R, where

p(p)= | d(p.q)*f(q) da. (6.13)

dg denotes the reference measure used in defining the prdpatshsity f on M. The
value of the functiorp at the Karcher mean is called tRarcher mean. How does the
definition of the Karcher mean adapt to a sample set, i.e. ta et of points drawn from
an underlying probability distribution ? Lgg, 0y, ..., 0k be independent random samples
from the densityf. Then, the sample Karcher mean of these points is defined tisebe

k| o ' '

An iterative algorithm for computing the sample Karcher mesaas follows. Lefug be

an initial estimate of the Karcher mean. $et 0.

1. Foreach=1,...,k, compute the tangent vectarsuch that the geodesic from),

in the directionv;, reachesj; at time one, i.ey(Hj,Vi) =g Orv; = expﬁjl(qi).
2. Compute the average direction- 1 K Vi

3. If ||v]| is small, then stop. Else, updaigin the update direction using

Hj+1 = Pe(lj,V),

wheree > 0 is small step size, typically.B. ¢x(p,v) denotes the geodesic path

starting fromp in the directionv parameterized by time In other words uj, 1 =

expy, (ev).
4. Setj = j+1andreturnto Step 1.

It can be shown that this algorithm converges to a local mimmof the cost function
given in Egn. 6.14 which is the definition pfy;. Depending upon the initial valugy

and the step sizg, it converges to the nearest local minimum.
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We exploit the fact that the tangent spaced/oére vector spaces and can provide
a domain for defining covariances. We can transfer the pibtyadensity f from M
to a tangent spacg (M), using the inverse exponential map, and then use the standar
definition of central moments in that vector space. For anmgtgoe M, let p — expljl(p)
denote the inverse exponential mapdtom M to T;,(M). The pointy maps to the origin

0 € Ty (M) under this map. Now, we can define the Karcher covariancexastr

K= [ wWidy v=exp, ).
Tu(M)

For a finite sample set, the sample Karcher variance is giyen b

R 1 kK
Kint = 1 _;viviT, where v; = exp, (q) - (6.15)

6.3.1 Parametric Densities

In addition to sample statistics such as the mean and coeariat is possible to
define parametric probability distribution functions onntialds. We shall here discuss
intrinsic methods for defining pdfs. The general idea herdeine a pdf on the tan-
gent space of the manifold, and then ‘wrap’ the distribuback onto the manifold. This
allows us to draw upon the wealth of methods available fraaasital multi-variate statis-
tics for the problem at hand.

Suppose, we havesample points, given by, O, ...qn from a manifold.#. Then,
we first compute their Karcher mearas discussed before. The next step is to define and
compute a sample covariance for the obsery&d The key idea here is to use the fact
that the tangent spadg(q) is a vector space. Fordrdimensional manifold, the tangent
space at a point is alsh dimensional. Using a finite-dimensional approximatiory sa
V C Tg(q), we can use the classical multivariate calculus for thigppse. The resulting

sample covariance matrix is given by:

— 1 n
S=——S v
n_li; .

where eachy; is a d-dimensional sample of the functicm(pglqi. Note that by

definition, the mean of;s should be zero. In cases where the number of sanmples
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is smaller thard, one can apply an additional dimension-reduction tool tokwan a
smaller space. For instance, we can use the singular vatgmesition (SVD) of the
sample covariance matri and retain only the tom significant singular values and the
corresponding singular vectors. In such cases, the coxarimatrix is indirectly stored
usingAi, Ao, ...Am Singular values and their corresponding singular veaignsy, ...Un.

The exponential map: e¥pTg(q) — .# maps this covariance back 4. Specifi-
cally, this approach is widely used to define wrapped-Gauns$ensities on a given man-
ifold. In general, one can define arbitrary pdfs on the tahgéme such as mixtures of
Gaussians, Laplace etc and wrap it back to the manifold waekponential map. This
allows us to experiment with and choose an appropriate @dfworks well for a given

problem domain.

6.3.1.1 Some Synthetic Examples

In this section, we illustrate via some simple examples tmeepts of karcher mean
and wrapped distributions for the Grassmann manifold. Tp Wisualize the results, we
choose&¥, g with n =2 andd = 1 i.e. 1-dimensional subspacesRA. This is easily vi-
sualized as the set of all lines passing through of the ongithe X-Y plane. Lines on a
plane can be parametrized by their principal angle with tkexks. Using this parameter-
ization, in the first experiment we randomly sample direticentered arouné = 11/3
with variance in@ set to 0.2. A set of such samples in shown in figure 6.1 withediott
blue lines. The Karcher mean of this set is shown as a rednifigure 6.1. As can be
seen, the Karcher mean corresponds well to the notion of anragis’ in this case.

In the next experiment, we sampled two sets of lines centatéd= /3 and
6 = 2x /3 once with equal variances as shown in figure 6.2 and once waiggual
variances as shown in figure 6.3. In both cases, the karchen meertically oriented as
shown in the plots which is the physically meaningful sanotive expect.

Finally, in figure 6.4 we illustrate the concept of the wragpp®rmal distribution.
In this experiment, we generated samples from two classae €entered af = 0 and

the other centered & = 11/2. Points from each class are shown in different colors. The
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Figure 6.1:lllustration of Karcher mean on the Grassmann manifoldR#rthe set of all axes
(lines passing through the origin) is the Grassmann manifold mith2 andd = 1. Blue dotted
lines represent individual points on the Grassmann manifold. The boltineds the Karcher

mean of this set. The Karcher mean corresponds to the notion of a mean axis.

0.8
0.6
0.4
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i i i i
-1 -0.5 0 0.5 1

Figure 6.2:Karcher mean of two clusters of lines with equal spread. One cluster isredrat
0 = /3 to the X-axis and the other is clustered n@a# 211/3. The bold red line is the Karcher
mean of this set. It corresponds to the physically meaningful solution oftecaleaxis as the

mean.
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Figure 6.3:Karcher mean of two clusters of lines with unequal spread. One clustentsred at
6 = /3 to the X-axis and the other is clustered n@a# 211/3. The bold red line is the Karcher
mean of this set. It corresponds to the physically meaningful solution oftecaleaxis as the

mean.

Karcher mean of the whole dataset was taken as the pole toutertipe tangent vectors
for the points. Each of the classes was parameterized by a mnaad standard-deviation
o on the tangent plane. The points corresponding émd andu + o were then wrapped
back onto the manifold. The mean and standard-deviatios faxeach of the classes are

shown as bold and dashed lines respectively in figure 6.4.

6.3.2 Note on Efficient Computations

To compute the Karcher mean, we need efficient methods forstweproblems.
Given a pointS on the manifold, how does one move on the manifold along aifspec
direction ? and, b) Given two poin& andS;, how does one compute the direction that
takesS towardS,;. Efficient methods have been proposed for these two taskabiydh
et al [170]. Here we summarize the key results that will bedusehis chapter. Recall
that geodesic paths @Q(n) are given by one-parameter exponential flows exptA),
whereA € R™" is a skew-symmetric matrix. The quotient geometry of thesGmeann
manifold implies that geodesics i, 4 are given by one-parameter exponential flows

t — exptA) whereA has a more specific structure given by
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Figure 6.4:Wrapped Normal class conditional-densities of two classes on the Grassnaaui-
fold. Each class is shown in a different color. The mean of each clabswasin bold lines. The

wrapped standard-deviation lines are shown in dashed lines for eash cla

0 BT
A= (6.16)
B 0

whereB e R"-9xd_ The matrixB parameterizes the direction and speed of geodesic

flow. We now discuss the solution to the two questions enutaé@bove.

6.3.3 Moving along the Geodesic

Given a point on the Grassmann manif@grepresented by orthonormal ba¥is
and a direction matrixB, the one-parameter geodesic path emanating frenm this

direction is given by

Y(t) = Q exftA) J (6.17)

where,Q € SQn) andQ"Yy = J andJ = [Ig; On—d.4). GivenYp andA the following

are the steps involved in samplii¥gt) for various values of.

1. Compute the x n orthogonal completio of Yp. This can be achieved by the QR

decomposition ofp.

94



2. Compute the compact SVD of the direction maBix: U,@U.

3. Compute the diagonal matrice&) andZ(t) such that(t) = cogt6) anda;(t) =

sin(t6;), wheref's are the diagonal elements &f

Y(t)—Q( ) ) (6.18)
—Uo2(t)

4. Compute

for various values of € [0, 1].

6.3.4 Computing the Velocity Matrix

Now, given two points on the manifol§y and S; with orthonormal basi¥y and
Y1, we need an efficient way to compute the velocity paramBtsuch that traveling
in this direction fromS& leads toS; in unit-time. Given two subspacé&y andS; and

correspondingn x d orthonormal basis-vectoly andY;:

1. Compute the x n orthogonal completio® of Yp.

2. Compute the thin CS decomposition@¥Y; given by
r
. X U 0 .
QY= = -3(1) |V
Y 0 Uy
0
U, O M1
_ 1 ) ( ) V]:r
0 U, —5(1)

3. Compute{ 6} which are given by the arcsine and arcos of the diagonal eltnoé

" andZ respectively. i.ey = cog6) andg; = sin(6). Form the diagonal matrix

© containingB’s on its diagonal.

4. ComputeA = U,0U;.
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6.4 Non-parametric methods: Procrustes Representation for the Grass-

mann manifold

The Stiefel and Grassmann manifolds are endowed with a Rieiaastructure
that lends itself to computation of distances between paintthe manifold via geodesics.
The Riemannian computations outlined above are in genenapatationally expensive
for a general manifold. Though efficient algorithms haverbpmposed for the Stiefel
and Grassmann manifolds, Karcher mean computation is iativte procedure. In recent
years the Procrustes methods proposed by [154] have becmputap for non-iterative
density estimation as an alternative. However, as will lem dater this approach requires
a choice of parameters (kernel-width) whose optimal vadueot known in advance.

A point X on %4 is represented as a tall-thimx d orthonormal matrix. The
corresponding equivalence classof d matricesXRin Ry, for Re SQ(d) is also called
the Procrustes representation of the Stiefel manifold sTtaucompare two points i, q,
we simply compare the smallest squared distance betweeottresponding equivalence
classes on the Stiefel manifold according to the Procrusfagsentation. Given matrices
Xy andX; on.#, 4, the smallest squared Euclidean distance between anyfpaatdaces

in the corresponding equivalence classes is given by

d%rocrust(xla Xz) = mF;ntr(Xl - XZR)T (X1 —X2R) (6.19)

= mRintr(RTR—leTX2R+Ik) (6.20)

WhenR varies over the orthogonal group(k), the minimum is attained & =
HiHJ = A(ATA)~1/2, whereA = H;DHJ] is the singular value decomposition Af We
refer the reader to [154] for proofs and alternate cases.

Given several examples from a cld$g, Xo, . .., Xn) on the manifoldVy m, the class
conditional density can be estimated using an appropratekfunction. We firstassume
that an appropriate choice of a divergence on the manif@dbean made such as the one

above. For the Procrustes measure the density estimateeis gy [154] as
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f(xX;m) = iC(M)iK[M1/2(|k—>qTxxTxi)M1/2] (6.21)

whereK(T) is the kernel functioniy is ak x k positive definite matrix which plays
the role of the kernel width or a smoothing parame®M ) is a normalizing factor cho-
sen so that the estimated density integrates to unity. Thexnalued kernel function
K(T) can be chosen in several ways. We have us@d) = exp—tr(T)) in all the exper-
iments reported in this chapter. In this non-parametricho@for density estimation, the
choice of kernel widttM becomes important. Thus, though this is a non-iterativegsro
dure, the optimal choice of the kernel width can have a lamggaict on the final results.

In general, there is no standard way to choose this parammetept for cross-validation.

6.5 Experiments on Linear Dynamic Models

6.5.1 Experiments on Activity Recognition

Activity Dim. Red. [3] 16° | Best Dim. Red. [3] | Subspace Anglesl6® | NN-Procrust 16° vol-
volume 643 volume volume ume
Check Watch 76.67 86.66 93.33 90
Cross Arms 100 100 100 96.67
Scratch Head | 8o 93.33 76.67 90
Sit Down 96.67 93.33 93.33 93.33
Get Up 93.33 93.33 86.67 80
Turn Around 96.67 96.67 100 100
Walk 100 100 100 100
Wave Hand 73.33 80 93.33 90
Punch 83.33 96.66 93.33 83.33
Kick 90 96.66 100 100
Pick Up 86.67 90 96.67 96.67
Average 88.78 93.33 93.93 92.72

Table 6.1:Comparison of view invariant recognition of activities in the INRIA datasitg a)
Best DimRed [3] on 16 16 x 16 features, b) Best Dim. Red. [3] on 6464 x 64 features, c)
Nearest Neighbor using ARMA model distance €86 x 16 features), d) Nearest Neighbor using
Procrustes distance (2616 x 16 features)
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We performed a recognition experiment on the publicly adé INRIA dataset
[3]. The dataset consists of 10 actors performing 11 actieash action executed 3 times
at varying rates while freely changing orientation. We usedview-invariant represen-
tation and features as proposed in [3]. Specifically, we ubedl6x 16 x 16 circular
FFT features proposed by [3]. Each activity was modeled asearl dynamical sys-
tem. Testing was performed using a round-robin experimémrevactivity models were
learnt using 9 actors and tested on 1 actor. For the kerndladeall available training
instances per class were used to learn a class-conditienalkdensity as described in
section 6.4. In table 6.1, we show the recognition resultainobd using four methods.
The first column shows the results obtained using dimenbigmaduction approaches
of [3] on 16x 16 x 16 features. [3] reports recognition results using a varadtdi-
mensionality reduction techniques (PCA, LDA, Mahalanolais)i here we choose the
row-wise best performance from their experiments (dentedt Dim. Red.) which
were obtained using 64 64 x 64 circular FFT features. The third column corresponds
to the method of using subspace angles based distance betyeamical models [60].
Column 4 shows the nearest-neighbor classifier performasicg WProcrustes distance
measure (16 16 x 16 features). We see that the manifold Procrustes distagréerms
as well as ARMA model distance.

In table 6.1 we show results of statistical modeling usingapeetric and non-
parametric methods. For the parametric method, we consideicases - single pole
and multiple poles. In the single pole case, the tangenegptaoonstructed at the Karcher
mean of the entire training dataset. In the multiple poleca® construct a class-specific
tangent plane at the Karcher mean of each of the classes. |dssification of a test-
point, we compute its probability of belonging to a classngsihe wrapped normal on
the class-specific tangent plane. Then, the point is cladsifito the class that has the
highest likelihood. As can be seen in the results in tablediaistical modeling of class
conditional densities leads to a significant improvememecognition performance over
simpler methods shown in table 6.1. Note that even thoughrtheifold approaches
presented here use only &616 x 16 features they outperform other approaches that use

higher resolution (64 64 x 64 features) as shown in table 6.1.
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Activity Wrapped Normal:| Wrapped Normal:| Procrustes Kerne
Single Pole Multiple Poles M=l
Check Watch 96.67 100 100
Cross Arms 93.33 100 100
Scratch Head | 93.33 90 96.67
Sit Down 90 96.67 93.33
Get Up 100 96.67 96.67
Turn Around 96.67 100 100
Walk 93.33 90 100
Wave Hand 86.67 93.33 100
Punch 20 100 100
Kick 93.33 100 100
Pick Up 93.33 100 100
Average 93.33 96.06 98.78

Table 6.2:Results of Statistical Modeling on recognition of activities in the INRIA datasgtg
a) Wrapped Normal + Single Tangent Plane b) Wrapped Normal + Clasffisgangent plane c)

ProcrustesKernelmethod-M=1-

Kernel width: M 1031 1021 10 1k 1001 10 | 102 | 103 %1
Avg. Perfor-| 9o 97.87 97.87 98.78 93.63 90.91 90.91
mance

Table 6.3: INRIA Activity Recognition: Variation of performae of the kernel density

estimator with different choices of the width parameier

As mentioned before, for the non-parametric case, an apptepchoice of the
kernel widthM has to be made. In general, cross-validation is suggestedtimate
the optimal kernel width. Different classes may have a offé optimal kernel width.
Hence, cross-validation requires a lengthy training phasaib-optimal choice can often
lead to poor performance. This is one of the significant deskb of non-parametric
methods. In table 6.3, we empirically show how the perforoeaslepends on the choice
of the kernel width. We choose the kernel to be of the fovim= o x1. We choose

o =103,10"2,...,10% and show the variation of the performance.
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6.5.2 Video-Based Face Recognition

Video-based face recognition (FR) by modeling the ‘croppe@e either as dy-
namical models ([171]) or as a collection of PCA subspaceg][h@ve recently gained
popularity because of their ability to recognize faces flom resolution videos. How-
ever, in this case, we focus only on t@enatrix of the ARMA model or PCA subspace as
the distinguishing model parameter. This is becaus€tmatrix encodes the appearance
of the face, whereas th&® matrix encodes the dynamic information. T@enatrices are
orthonormal, hence points on the Stiefel manifold. But, &aragnition applications, the
important information is encoded in the subspace spanngtdl@ matrix. Hence, we
identify the model parameter€’§) as points on the Grassmann Manifold.

We performed a recognition experiment on the NIST-MBGC Vi@&allenge dataset.
The MBGC dataset consists of a large number of subjects watkivards a camera in
a variety of illumination conditions. Face regions are kextand a sequence of cropped
images is obtained. There were a total of 143 subjects wemtimber of videos per
subject ranging from 1 to 5. In our experiments we took suheéthe dataset which
contained at least 2 sequences per person denotgg asleast 3 sequences per person
denoted a$§;3 etc. Each of the face-images was first preprocessed to zeao-and unity
variance. In each of these subsets, we performed a leavetdrtesting. The results
of the leave one out testing are shown in table 6.4. Also tedaare the total number
of distinct subjects and the total number of video sequentescch of the subsets. In
the comparisons, we show results using the ‘arc-lengthtimeétween subspaces [160].
This metric computes the subspace angles between two sidsspiad takes the frobenius
norm of the angles as a distance measure [160]. We also shopecsons with the Pro-
crustes measure, the Kernel density estimate ita | and a wrapped normal density
with the Karcher mean of the entire dataset as the pole.

As can be seen, statistical methods outperform nearedtlm@idpased approaches.
As one would expect, the results improve when more exammeslpss are available.
Since the optimal kernel-width is not known in advance, thight explain the relatively

poor performance of the kernel density method.
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Subset|| Distinct | Total Se-| Arc-length | Procrustes Kernel Wrapped
Subjects | quences | Metric Metric density Normal
S 143 395 38.48 43.79 39.74 63.79
S 55 219 48.85 53.88 50.22 74.88
S 54 216 48.61 53.70 50.46 75
Avg. 45.31% 50.45% | 46.80% | 71.22%

Table 6.4:Comparison of video based face recognition approaches using g)a&ebangles +

Arc-length metric, b) Procrustes Distance, c) kernel density, d) Vé@pmrmal on Tangent Plane
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Chapter 7

Applications to Still Image based Recognition

Many applications in computer vision such as dynamic teg(it23],[56], human
activity modeling and recognition [53],[4], video baseddarecognition [171], shape
analysis [166],[167] involve learning and recognition aitgerns from exemplars which
obey certain constraints. In this chapter, we shall exaraibeoad class of applications
where the underlying constraints on the data have a spéciat@re. The structure under
study is the linear subspace structure. Subspace consthaive proved to be a simple
yet powerful tool in several applications. While estimatiimgear subspace models of
variation is standard fare in several problems in visiorhsag linear regression, linear
classification, linear subspace estimation etc, much l#ssteon has been devoted to
statistical inference on the space of linear subspaces.

In many of these applications, given a database of examplks auery, the fol-
lowing two questions are usually addressed — a) what is theést’ example to the query
in the database ? b) what is the ‘most probable’ class to wihielquery belongs ? A
systematic solution to these problems involves a studyetitiderlying constraints that
the data obeys. The answer to the first question involvey sittithe geometric proper-
ties of these constraints, which then leads to appropriefi@itions of distance metrics
such as geodesics etc. The answer to the second questidvesmabatistical modeling
of inter- and intra-class variations. We shall discuss iatarlsection that the space of
linear subspaces can be shown to be a Riemannian manifolde fdonally, the space
of k-dimensional subspaces Rl is called the Grassmann manifold. On a related note,
the Stiefel manifold is the space kbrthonormal vectors ifk". The study of these man-
ifolds has important consequences for applications suatyaamic textures [123, 56],
human activity modeling and recognition [53, 4], video lwh&ece recognition [171] and
shape analysis [166, 167] where data naturally lies eitheéhe Stiefel or the Grassmann

manifold.
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First, we discuss some motivating examples in vision thattilate the need to study

these manifolds and their geometry.

7.1 Motivating Examples

1. Spatio-temporal dynamical models: A wide variety of spatio-temporal data in
computer vision are modeled as realizations of dynamicaleiso Examples in-
clude Dynamic textures [123], human joint angle trajee®ii53] and silhouette
sequences [4]. One popular dynamical model for such timessdata is the au-
toregressive and moving average (ARMA) model. For the ARMA etadosed
form solutions for learning the model parameters have beeposed in [57, 123]
and are widely used. An ARMA model can be equivalently conrsidas the sub-
space spanned by the columns of its observability matrixuldspace such as this,
is a point on the Grassmann manifold. Given several insgmtegrent approaches
involve computing the distance between them using wellAkndistance measures
[60] followed by nearest neighbor classification. Instegiden several instances
of each class we can learn compact class conditional pridiyadensity functions
over the parameter space — the Grassmann manifold spantlee bylumns of the
observability matrix in this case. This is an example of a eliog) constraint that

leads to linear subspace structure of the data.

2. Shape Analysis: Representation and recognition of shapes is a well undetstoo
field in statistics and vision [8, 173]. The shape observemhimmage is a perspec-
tive projection of the original 3D shape. In order to accdantthis, shape theory
studies the equivalent class of all configurations that @anliained by a specific
class of transformation (e.g. linear, affine, projective)aosingle basis shape. It
can be shown that affine and linear shape spaces for speaifiigamtions can
be identified by points on the Grassmann manifold [167]. Giseveral exemplar
shapes belonging to a few known classes, we are interestestimating a prob-
ability distribution over the shape space for each of thesda. These can then

be used for problems such as retrieval, classification on ewvéearn a generative
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model for shapes. This is an example of an invariance remqeiné that leads to a

linear subspace structure of data.

. Image Matching and retrieval: In image and object recognition, recent methods
have focused on utilizing multiple images of the same obja&en under varying
viewpoints or varying illumination conditions, for recagon [174, 163, 175, 176].
e.g. The set of face images of the same person under varfungniation condi-
tions is frequently modeled as a linear subspace of 9-diressvhich is motivated
from the nine-points of light model [177]. In such applicets, an object ‘category’
consists of image-sets of several ‘instances’. For exangleategory of horses
would have image-sets of several distinct horses, withraéwmages per distinct
horse. A common approach in such applications is to apprabeitihhe image-space
of a single instance under these variations as a linear aubgi63, 178]. Lin-
ear subspaces are points on the Grassmann manifold. Giverakenage-sets per
object category, the goal then is to learn a statistical hoder the Grassmann

manifold.

. On-line Visual Learning via Subspace Tracking: Applications involving dy-
namic environments and autonomous agents such as a mobdé mavigating
through an unknown space cannot be represented by statelsndnl such applica-
tions it is important to adapt models, that have been ledfime according to new
observations in an online fashion. One approach is to pariocremental PCA to
dynamically learn a better representational model as tpeapnce of the target
dynamically changes as in [179]. Incremental PCA has alsp bsed to recognize
abnormalities in the visual field of a robot as in [180]. In amelated domain, the
theory of subspace tracking on the Grassmann manifold [Ad€§een developed
for array signal processing applications. Since PCA basitove represent a sub-
space which is identified by a point on the Grassmann manisolbispace tracking

lends itself readily to statistical analysis for onlineuaslearning applications.

. Projective Geometry: A fundamental concept inherent in projective geometry is

the notion of scale ambiguity [181]. In homogeneous co+atis, two points re-
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lated by a constant scale factor are considered to be eqoivalhus, points in3

are considered as lines ibdhhomogeneous space passing through the origin. Sim-
ilarly points in 2D are considered as lines in homogeneoDsspace. The set of
lines passing through the origin is a special case of thed@grasn manifold. The
scale ambiguity also manifests in several other quantiies as the fundamental
matrix, essential matrix etc. Applications such as esimgatuundamental matrices

or computing an average fundamental matrix from severapeddent estimates

require statistical methods on the Grassmann manifold.

Contributions: We first show how a large class of problems in computer vision
can be recast as statistical inference problems on theeBdiedi/or Grassmann manifolds.
Then, we solve these problems using the Riemannian geomiethe enanifolds. We
also discuss some recently proposed non-Riemannian apy@oée statistical modeling
on the Grassmann manifold. Finally, we present a wide ramgx@erimental evalua-
tion to demonstrate the effectiveness of these approacitepravide a comprehensive
comparison. We show in the chapter that inspite of the eassebf non-Riemannian ap-
proaches, their performance is tied to a good choice of patenrs1 On the other hand, the
performance of the Riemannian approaches is consistentseveral applications with
minimal tuning of parameters.

Next we present a few application areas and experimentsigémabdnstrate the use-

fulness of statistical analysis on the manifolds.

7.2 Object and Image Classification

Recent efforts in object recognition, have focused on utdjznultiple images of
the same object, taken under varying viewpoints or varyjingination conditions [174,
163, 175, 176]. The most common physical factors that gise to the multitude of
appearances are illumination and view change. There has digeificant research in
understanding the mathematics of these variations in cenpision. A simplistic model
for object appearance variations is a mixture of subspacdisis section, we shall explore

how multiple exemplars can be effectively utilized in a qudase framework for object
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recognition.

We consider the CMU-PIE face dataset which contains imagé8 persons under
varying poses, illumination and expressions. For comparisve use the methods pro-
posed in [163]. The methods proposed in [163] involve discrative approaches on the
Grassmann manifold using Mercer-kernels. In this approad¥fiercer-kernel is defined
on the Grassmann manifold which then enables using kermsioves of SVMs, Fisher
Discriminant Analysis etc for classification. In this exipeent, we use the experimental
protocol suggested in [182]. For each of the 68 subjectsar finental poses are used in
the experiment. For each person under a fixed pose, we appatexthe variations due to
expressions and illumination as a linear subspace. Thusafth person we have a set of
subspaces corresponding to each pose. This allows us tbasthtistical model on the
Grassmann manifold for each person. A round-robin experinseperformed in which
6 poses are used for training and the remaining pose is useesting. The results are

shown in table 7.1. The results using the other methods veparted in [182].

Subspace Dimension m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
GDA (Proj) [163] 748 89.8 87.2 917 925 938 936 953
GDA (BC) [163] 714 825 648 586 475 431 399 363
MSM [183] 67.0 650 646 642 640 646 646 646
cMSM [184] 712 676 682 697 699 702 727 725
DCC [174] 789 665 638 646 67.6 67.6 67.6 65
Kernel Density: M = | 78.36 88.44 89.91 93.69 95.79 97.26 96.84 97|26
Wrapped Normal: Single Pole || 69.95 76.89 69.74 77.73 79.83 79.20 80.46 76.26
Wrapped Normal: Multiple || 69.95 76.89 70.16 77.31 82.56 84.66 85.50 86.97
Poles

Table 7.1:CMU-PIE Database: Face Identification using various Grassmann statisétizods.

Performance of various methods is compared as the subspace dimensidads v
As can be seen, the proposed statistical approaches compkngith the state of

the art. In particular, the kernel density method outpentoall of the other methods. The
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discriminative approaches of [163] outperforms the wralparmal approach. However,
the variability of the performance is high depending on WwWatcer kernel is chosen. The

wrapped normal provides consistent performance and beadsahthe other methods.

7.3 Affine Shape Analysis

Algorithmic Details:  The representation and analysis of shapes has important
applications in object recognition, gait recognition anthge registration. Landmark
based shape analysis is one of the most widely used appotmhepresenting shapes.

A shape is represented by a set of landmark points on its abrmoshape is represented
by the matrixL = [(X1,Y1); (X2,¥2); - - -.; (Xm, Ym)], Of the set omlandmarks of the centered
scaled shape. Thehape spacef a base shape is the set of equivalent configurations that
are obtained by transforming the base shape by an appm®ppatial transformation. For
example, the set of all affine transformations of a base stuapes theaffine shape space

of that base shape. More rigorously, }et (x1, X2, ..., Xm) be a configuration af points
where eaclx; € R%. Let y be a transformation oR?. For exampley could belong to the

affine group, linear group, projective group etc. Let

A(V> (X17~~-7Xm)) = (y(xl)77y(M)> (71)

be theactionof y on the point configuration.

In particular, theaffine shape spad&66] [185] is very important because the effect
of the camera location and orientation can be approximasedffane transformations
on the original base shape. The affine transforms of the stepée derived from the
base shape simply by multiplying the shape ma&by a 2x 2 full rank matrix on the
right (translations are removed by centering). Multipiica by a full-rank matrix on the
right preserves the column-space of the ma8ixThus, all affine deformations of the
same base shape, map to the same point on the Grassmannldndi@%}. Therefore, a
systematic study of affine shape space essentially boils dowa study of the points on

the Grassmann manifold. We can use both Procrustes distaddesrnel density methods
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Algorithm Rank | Rank | Rank | Rank

1 2 3 4
SC[186] 20/40 | 10/40 | 11/40 | 5/40
IDSC [186] 40/40 | 34/40 | 35/40 | 27/40

Hashing [187] | 40/40 | 38/40 | 33/40 | 20/40
Grassmann 38/40 | 30/40 | 23/40 | 17/40

Procrustes

Table 7.2:Retrieval experiment on articulation dataset. Last row is the results obtagieg
Grassmann manifold Procrustes representation. No articulation invaeiseriptors were used.

described earlier for several applications of affine iraatrishape analysis such as shape

retrieval and recognition.

7.3.1 Articulation Database

We conducted a retrieval experiment on the articulatedesapabase from [186].
We use the same test scheme proposed in [186]. The databessstsof 8 object classes
with 5 examples for each class. For each shape, 4 top matehsslacted and the number
of correct hits for ranks 2, 3,4 are reported. Table 7.2 summarizes the results obtained
on this dataset. The proposed approach compares well vidr approaches. It should
be noted however, that this is not a fair comparison, as weolase any articulation-
invariant descriptors such as the ones used in [186] and.[188pite of this, manifold-

based distance metrics perform very well.

7.3.2 Affine MPEG-7 Database

Since the strength of the approach lies in affine invarigmtegentation of shapes,
we conducted a synthetic experiment using the MPEG-7 ds¢ab®/e took one base
shape from each of the 70 object classes and created 10 raaifioen warps of the
shapes with varying levels of additive noise. This new sethafpes formed the gallery
for the experiment. Sample shapes that were generated ana sh figure 7.1. The

test set was created by randomly picking a gallery shape fineg avarping it with ad-
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Figure 7.1:Synthetic data generated from the MPEG database. The first column bases
shapes from the original MPEG dataset for 5 objects. The remaining celshanv random affine

warps for the base shapes with increasing levels of additive noise.

ditive noise. The recognition experiment was performeagishe Procrustes distance
and the kernel density methods. For comparison, we usedoihilgr shape Procrustes
distance [8] as a baseline measure. We also used the ‘gtiilatistance metric used
in [9]. The arc-length distance metric is the Frobenius nofrthe angle between two
subspaces. In all cases, the experiments were repeated @@tMonte-Carlo trials for
each noise level in order to robustly evaluate the perfomaaihe performance of the
methods is compared in Figure 7.2 as a function of noise toasigtio. It can be seen
that manifold-based methods perform significantly bettantstraightforward shape Pro-
crustes measures. Among the manifold methods, the kernsitgenethod outperforms
both the Procrustes and the arc-length distance measunes. t8e Grassmann manifold
based methods accurately account for the affine variateamsfin the shape, they outper-
form simple methods that do not account for affine invariamtereover, since the kernel
methods learn a probability density function for the shapethe Grassmann manifold, it
outperforms distance based nearest neighbor classifigerg Gsassmann arc-length and

Grassmann Procrustes.
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Figure 7.2:Comparison of recognition performance on MPEG-7 database. For cismpave
used the shape Procrustes measure [8] and the Grassmann arc-istagited9]. Manifold based
methods perform significantly better than direct application of shape U&tesrmeasure. Among

the manifold methods, statistical modeling via kernel methods outperforms thrs.othe

7.3.3 Sampling from Distributions

Generative capabilities of parametric probability deasitan be exploited via ap-
propriate sampling strategies. Once the distributionasig one can synthesize samples
from the distribution in a two step process. We first geneaasample from a proposal
distribution (we used a matrix-variate normal centerediadothe class mean), then we
use an accept-reject strategy to generate the final shape [M& show a sampling ex-
periment using this technique. For this experiment, we twok shape from each of the
object classes in the MPEG-7 database and corrupted it @dfiize noise to generate
several noisy samples for each class. We used the Grassepmsentation of points as
idempotent projection matrices. Then, we learnt a paramkeamgevin distribution on
the Grassmann manifold for each class. Note that the disivibis learnt on the Grass-
mann manifold, hence, a sample from the distribution repressa subspace in the form
of a projection matrix. To generate an actual shape we neéidtahoose a 2 frame
for the generated subspace which can be done via SVD of thecgiom matrix. Once
the 2— frameis chosen, actual shapes can be generated by choosing randotimates

in the 2— frame We show sampling results in Figure 7.3.
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Figure 7.3:Samples generated from estimated class conditional densities for a feasabdisise

MPEG dataset

7.4 Age Estimation

Understanding and modeling of aging in human faces is aniitapbproblem in
many real-world applications such as biometrics, autbatiin and synthesis. In this
chapter, we provide a Riemannian interpretation of the géderattributes of faces as
they age. Specifically, we consider faces to be describeddsy af landmark points on
the face whose geometry can be described as a Grassmanmlchamtien the problem
of age estimation is posed as a problem of function estimatiothe manifold. Further,
motivated by studies in neuroscience, we quantify the dedtion that warps an ‘average’
face to a given face. This deformation is then shown to cantaportant information
about the age of the face. The warping of an average face ¥ea fgice is then considered
to be described by a velocity vector that transforms theamesto a given face along a
smooth geodesic in unit-time. We show experiments on agea&sbn using the standard
FG-Net dataset and a passport dataset which illustratdféetieeness of this approach.

The modeling of the appearance of human faces is an impadamponent in sev-
eral applications such as biometrics, animation, and pac&nnotation. Faces are de-
formable 3D objects. As a result of the imaging process, gregived 2D appearance of
a given face exhibits wide variation due to illumination obas, shadows, and pose vari-

ations. These variations are usually referred to as stredtuariations since there exist
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mathematical models of image formation under these camditiUnstructured variations
such as expressions further increase the space of 2D appearaf a given face. Given
a 2D image of a face, humans are capable of factoring out treessions in a manner
that has not yet been fully understood. Several compuatimpproaches to account for
these variations have been proposed and we refer to [188] $arvey. Facial geometry
and texture, both aid in several perception tasks such agmémon, age perception, and
matching.

In this chapter, by facial geometry we refer to the locatib2D facial landmarks
on images. We discuss how to characterize the ‘space’ oétfaesal landmarks. We
provide a mathematically well grounded and unified Riemanfitemnework for modeling
facial geometry. The proposed Riemannian interpretatiables the application of a rich
class of classification and inference tools. To demonstharactical utility and power
of these methods, we choose the problem of age-estimatian esample. However, the
primary goal is not to provide an algorithm for age-estimatibut to provide a systematic
and unified perspective for facial geometric modeling. Theoty developed here would
prove useful in other face modeling tasks where an accurederigtion of statistical
models on face-spaces is required. We demonstrate in expets that even with simple
learning and regression methods, the results of the prdgoassmework are comparable
to several complex and optimized state-of-the-art systamd even outperform many of
them. Thus, the proposed framework can form the basis of a prancipled approach to
facial geometric modeling that can be optimized to reacim évgher performance levels
in several applications.

One might ask, why do we choose age-perception as the examgleshat is the
role of geometry in it ? Aging is a source of variation whiclslealy recently been gaining
attention. Understanding the appearance variations edlby aging is important for
applications where the claimed identity and the enrollee faay show a large difference
in apparent age. Studies in neuroscience have shown that @ometry is a strong
factor that influences age perception [189]. In [189], ith®wn that shape-averaged
faces are perceived to be younger. Further, the ‘distamoal the average is a strong

indicator of the apparent age of the person. The regionsendngiven face shows a large
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difference in shape from a shape-averaged face when fuettagygerated, results in a
caricature [190, 191]. Young faces exhibit distinct growhated anthropometric trends.
Anthropometric variations in adults are distinctive to ssker degree than in children, but
nevertheless they do exhibit drifts in facial features@umnding the mouth, eyebrows etc.
This is illustrated in figure 7.4 where distinct geometri@aefes can be observed as a
person ages.

To develop appropriate statistical inference methodemgine needs to understand
a) what is the space of these geometric landmarks, and b) Whtieappropriate statis-
tical models and distance metrics in this space. We shovathaffine-invariant represen-
tation of facial landmark geometry can be analytically Medeas a Grassmann manifold.
Then, we discuss how to measure distances and model trarafons in this space. Fur-
ther, we describe the warping process of one face to anoyharsimooth geodesic flow
on the Grassmann manifold. Then, these warping parametghawn to contain age-

specific information which can prove useful for estimating apparent age of a person.

Sjlalieiodieiiey

(a) Age 2 (b) Age 10 (c) Age 14 (d) Age 18 (e) Age 29 () Age 43

Figure 7.4:Facial geometric variation across ages. Samples shown correspondvtdiiabl2
from the FG-net dataset.
Related Work:  Research in modeling aging can be divided into two main ctasse

— physics-based models and data-driven models. The fissg ctancerns itself with com-
putational models to describe the physical process of agirgmples include the works
of Pittenger and Shaw [192] who studied facial growth as ealédastic event defined on
the craniofacial complex. Mark et al. [193] studied geoimehvariants that characterize
cardioidal strain transformations and their relation tocpption of growth. Todd et al.

[194] treated the human head as a fluid filled spherical olgjedtproposed the revised
cardioidal strain model to account for craniofacial gronttore recently, Narayanan and

Chellappa [195] applied these models in conjunction witthesggometric data to identify
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different growth parameters for different parts of the faékysics-based approaches such
as these have mostly found use in synthesis applicatiorsasiage progression and re-
gression, where it is important to synthesize realisticyg®r or older looking faces from

a given face.

In the data driven approaches, modeling of age progressitypically done by es-
timating functional forms of the aging process or learnifggsifiers from training data.
Examples include the work of [196], who proposed method&tssify face images as that
of babies, young adults and senior adults. Facial anthreprie-measurements were used
to classify faces as babies and adults. Adult faces weredudassified into young or se-
nior adults using texture analysis. Ramanathan and Chel[a@&proposed a Bayesian
age-difference classifier built on a probabilistic eigeatgs framework to perform face
verification across age progression. Several regressieacbmethods have been pro-
posed to estimate the perceived age of a face from imagesdid enal. [198, 199] con-
structed an aging function based on a parametric model forahuaces and performed
automatic age progression, age estimation, face recogratiross aging. Fu et al. [200]
combined dimensionality reduction methods such as PCA, ILIHP, OLPP etc with re-
gression. Guo et. al. [201] proposed robust regressionvield by local adjustments
for age estimation and showed that local adjustments ingop@rformance. All these
approaches mainly differ in the features used and varigtiorthe choice of regression

methods.

7.4.1 Modeling the Geometry of the Face

Representations and recognition of shapes is a well underfedd [8, 202]. In this
chapter, we are interested in the 2D geometry of facial laar@m The shape observed in
an image of a face is a perspective projection of the 3D lonatof the landmarks. Stan-
dard approaches to describe shapes involve extractingrésasuch as moments [19],
shape context [203] etc. These approaches extract coatsede which correspond to
the average properties of the shape. These approachegstcalpdy useful when land-

marks on shapes cannot be reliably located across differegfes or do not necessarily
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correspond to physically meaningful parts of the objectweleer, in the case of faces,

there exist physically meaningful locations such as eyesjtin nose etc which can be
reliably located on most faces. This suggests the use ofrageptation that exploits the

entire information offered by the location of landmarkst@a&l of relying on coarse fea-

tures. In several face recognition tasks, the locations@landmarks have been shown
to be extremely informative [204, 205]. There exist sevardgbmatic methods to locate

facial landmarks which work well on constrained images saagpassport photos. Itis in

constrained scenarios such as these that the methods eddpare are applicable.

The drawback of using the locations of landmarks is that Hreysensitive to trans-
formations such as affine transforms, view changes etc.derdo account for this, shape
theory studies the equivalent class of all configuratioas ¢in be obtained by a specific
transformation (e.g. linear, affine, projective) from aegivbase shape. A shape is repre-
sented by a set of landmark points, given bg:a2 matrixL = [(x1,Y1); (X2,¥2); - - - ; (Xm, Ym)]s
of the set ofm landmarks of the centered shape. HBmape spacef this base shape is
the set of equivalent configurations that are obtained sfoaming the base shape by
an appropriate spatial transformation. For example, thefsall affine transformations
forms theaffine shape spaag that base shape.

The affine shape spacfl66] [185] is very important because small changes in
camera location or change in the pose of the subject can bexapated well as affine
transformations on the original base shape. The affinefoans of the shape can be
derived from the base shape simply by multiplying the shapé&irL by a 2x 2 full

rank matrix on the right. For example, latbe a 22 affine transformation matrix i.e.

a1 a
A= R Then, all affine transforms of the base shapge.can be expressed

a1 a2
asLatfine(A) = Lpase* AT. Note that, multiplication by a full-rank matrix on the righ

preserves the column-space of the malixse Thus, the 2D subspace &M spanned
by the columns of the matriky,seis anaffine-invariantrepresentation of the shape. i.e.
sparLpase is invariant to affine transforms of the shape. Subspacdsasithese can be
identified as points on a Grassmann manifold. We now defin&thesmann manifold.

As already known, the Grassmann manif@gn, is the space whose points are
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k-planesor k-dimensional hyperplanes (containing the origin}Rif.

7.4.2 Aging on the Manifold

The basic premise of our work is that the perceived age willsh functional de-
pendence on the geometry of the face. Given several ¥§catong with their respective
agesy;, the goal is to estimate a functign= f(X) that can explain the aging patterns.
This can be formulated as a regression problem. Regressiteprs are mostly stud-
ied in Euclidean vector spaces and there exist a wealth diadstfor robust regression.
Regression has been applied to age-estimation tasks bgfassbming that faces, or fea-
tures extracted from faces lie in a Euclidean space such[d9&; 200, 201]. However,
for geometric features considered here, we need to solveegression problem on the
Grassmann manifold. The Grassmann manifold is not a veptares thus precluding the
use of classical techniques. We explore two distinct apgires for solving the regression
problem — a differential geometric and a kernel-based nmacleiarning approach. In the
differential geometric approach, all points on the maifate projected onto the tangent
plane at a mean-point and standard vector-space methoalgfied on the tangent plane,
which is a Euclidean vector space [157]. This approach camla viewed as performing
regression on the transformation required to warp an ‘@eeface’ to a given face. Thus
this approach is motivated by [189]. Given a face and an ayeiface’, we compute the
directional velocity vector with which the average-facewd move on the manifold so
that it reaches the given face in unit time. This velocityteeds then used as an age
signature.

On the other hand, kernel methods offer an alternative @gpréor solving such
problems. The assumption is that the kernel provides a mgppio a higher-dimensional
Euclidean space, thereby implicitly enabling standardorespace approaches on the
higher dimensional space. For the case of the Grassmanriatdarthere is an elegant
interpretation of points as vectors via the so called Cawgingt embedding [206], which
arises from the Cauchy-Binet kernel. However, the diffeedrgeometric approach en-

ables a far richer class of statistical estimation techesqgio be deployed, whereas the
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kernel-based method is limited in applicability to thosgagithms that admit a kernel
interpretation. Since there exist kernel versions of regjom algorithms (Ridge, SVM,
RVM etc) we shall see in experiments that both approaches ofimparable performance

on age-estimation tasks.

7.4.3 Differential Geometric methods for Aging

Given an ‘average-face’ or a shape-normalized face, wedwvdé to quantify the
deformation that can warp the average to any given face. \Wecocaveniently model
these deformations via geodesics on the Grassmann maniiMddparameterize the de-
formation between two shapes on the Grassmann manifoldeagethcity with which a
point on the manifold should move in order to reach the sequmat in unit-time. We
have already discussed in chapter 6 how to compute theseptmas. We shall use these
velocity parameters as aging signatures. Once these tygh@rameters are computed, we
canflattenthem to a vectorial form. Once this is done, we can apply stahBuclidean
space regression methods on the velocity parameters. Buifeseed to specify what
the ‘shape-normalized’ or ‘average’ face is and how to comdu

The shape-normalized face can be a generic face that isveddthly averaging the
shapes of several faces. In the current setup, we need tohgnehéan of a set of sub-
spaces, or the mean of a set of points on the Grassmann ntanlfoé problem can be

solved by computing the Karcher mean.

7.4.4 Kernel Methods

To discuss how to solve the function estimation probles f(X) on the Grass-
mann manifold using kernels, we first define the Cauchy-Bindieslding. This em-
bedding maps points from the Grassmann manifold to a largemkional vector space.
The Cauchy-Binet embedding [206] is a mapping frGpy, to R", wheren = (}). The
mapping is understood as follows. L8t Gy, andY be anm x k tall-thin orthonor-
mal matrix such thaspanY) =S Lets be a subset of1,...,m} with k elements

s={ry,...,rc}, andY® be thek x k matrix whose row indices are given by the vec-
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tor s. Then, there are = (}) combinations for the vectar Let these combinations be
given bysy, ...s,. Then, the Cauchy-Binet embedding is a mapphgGy m — R" where
D(S) = [det(Y)),...det(Y))], wherespan(Y) = S YTY = 1. Note that this embedding
is independent of the choice ¥fas long as it is orthonormal and satisfigsanY) = S. It
can be shown that dot-products in the Cauchy-Binet space cavalgated via a Mercer
kernel on the Grassmann manifold [163]. Specificallysifand S, are two subspaces

with orthonormal basi¥; andY,, then

B(S1)TB(S) = det(¥] ¥2)2 (7.2)

Let us denote b¥Kcg(Y1,Y2) = det(YlTYz)2 the Cauchy-Binet kernel on the Grass-
mann manifold. This dot-product interpretation makesaisfble to implement standard
regression algorithms such as Ridge Regression, SVM-baggesston etc. via the
‘kernel-trick’ on the Grassmann manifold. Further, staxdeector-space kernels such
as the polynomial, radial basis and sigmoid can be rewrittégerms of the Cauchy-Binet
kernel on the Grassmann manifold. As an example, the polyaidernel in the CB space

can be rewritten as

Kpoly(P(S1), P(S)) = (14 yP(S1) T P(S))¢
= (14 yKeg(Y1, Y2))?

Similarly the RBF kernel on the CB-space can be rewritten as

Krer(P(S1), D(Sy)) = exp V(S -0(%)" (¥(S)-®(S)

—exp y(Kea(Y1,Y1)+Keg(Y2,Y2) —2Keg(Y1,Y2))

This gives rise to a new family of kernels on the Grassmannifisidnvhich can
also be shown to be Mercer kernels. In practice, we need mopote the largd}) di-
mensional embedding itself. As shown above, dot producdvéarcer Kernels in the CB
space can be evaluated using the Cauchy-Binet kernel on tlesi@aan manifold. This
makes this approach computationally efficient and flexible choice of the regression

method.
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7.4.5 Experiments

We evaluate the strength of the Riemannian framework on atyea&ion tasks on
two datasets. The first dataset is the Passport datasett®&j contains mostly adult
faces. The age distribution of the faces is shown figure Y.3¢athis dataset, we used
47 fiducial points marked manually. The second is the pubéehilable FG-Net dataset
[207], which contains both adult and young faces. The dhstion of ages is shown
in figure 7.5(b). Some sample images from this dataset arersho figure 7.6. For
this dataset, 68 fiducial points are available with each.fd&&h datasets exhibit wide
variations in age ranges of the faces, thus testing the framkeon both young and adult
faces.

Given a face and its landmarks, we extract the tall-thin &resn Procrustes repre-
sentation using standard SVD methods. Given the matrixfrtearks. we center it and
compute its SVOL = U3VT. The affine-invariant Grassmann Procrustes representatio
of L is then given byyp. =U. Now given several exampl&swith corresponding ages,
we want to estimate the aging-functige= f(Y) in a robust manner. Given a training set,
we compute the shape-normalized facas described in section 6.3. For each face in the
training sety;, we compute the aging signatures using the flattened wapairagmeterg\
as described in section 6.3.2. Then, we estimate the agnagidmy; = f (A;) using stan-
dard regression methods. Further, we also use the Cauchyi®imel on the Grassmann
manifold to perform kernel regression.

For performing regression using the Cauchy-Binet kernel, se£t5VMs, RVMSs,
and ridge regression (regularized linear least-squavésuse the-SVM with € = 0.02,
the cost paramet€ = 1000, and regularization paramedet= 10-6. For RVMs, there are
no parameters to tune except the number of iterations foRYH@ optimization routine.
We set this to 50 iterations. For ridge regression, the eg@qation parametex is chosen
to beA = 10-°. To perform regression using the velocity vectors, we usetme regres-
sion methods, but with the polynomial kernel of degree 2KéA;,Ay) = (1+A] Ay)?,
whereA; andA, are the vectorial forms of the velocity matrices.

Two metrics have been proposed in literature for quantifytime performance of
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Figure 7.5:Distribution of ages in (a) Passport, (b) FG-Net dataset
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Figure 7.6:Sample images from the FG-Net dataset
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age-estimation algorithms. The first criterion measuresntiean absolute error (MAE)
in age-estimation across the entire dataset.NIAE = %Zi i — ﬂ|, whereN is the size

of the dataset; is the true age of thé" person being tested, afids the assigned age.
The second metric is the cumulative match score. The cuivelatore is defined as
CS(j) = Ne<j/N x 100%, whereNe<  is the number of test-images on which the absolute
error in age-estimation is withipyears.

Passport dataset: In the passport dataset, we performed a leave-one-outgesti
in which the regression algorithms are trained on the edttaset except one sample on
which the testing is done. The MAE results using various r@lgms is summarized in
table 7.3. The SVM and RVM based regression are seen to pebfetter than the simpler
ridge-regression. We see that the lowest MAE was achievedibg velocity vectors with
RVM regression and it is.84 years. Considering that the average age in this datas2t is 4
years, the obtained MAE is quite encouraging. Figure 7 3lfajvs the cumulative score
curves as a function of the error-level using the Cauchy-Bieetel with SVM, RVM,
and ridge regression. We see that about 85% of the facesamgfed within 15 years
of their true age. Similar results are obtained using theargl parameters as shown in

figure 7.7(b).
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FG-Net dataset: For the FG-Net dataset, we performed a leave-one-person-ou
testing as has recently been suggested [208]. In this mdldenages corresponding
to the same person are used for testing and the remainingesyaag used for training.
The results of the proposed framework on the FG-Net datasttawn in table 7.4. The
lowest MAE was obtained by using SVM + Cauchy-Binet kernel, alst by SVM +
polynomial kernel on velocity vectors. MAE in both theseasmsvas B9 years. The
table also shows a comparison with other recently publishethods. The cumulative
scores of the proposed methods are shown in figures 7.8(&).8(m). We see that more
than 90% of the faces are classified within 15 years of the& &ge.

We see that the proposed algorithms are comparable to tieecstthe-art methods
and even outperform most of them except RUN1 [209] (MAE.#8) and LARR [201]
(MAE =5.07). The work of [209] deals primarily with a new regressioethod that can
deal with uncertain labels. The features used are cropmedifie@ages. Our approach is
flexible in the choice of regression method, and we can atilie method of [209] as
well. Here, we show that accurate characterization of géiygeelds comparable results
even with simple, unoptimized regression methods. In [281duite of dimensionality
reduction approaches — PCA, LLE, LPP etc — etc are empiriezjyuated. It was found
that Orthogonal LPP (OLPP) performs best in age-estimatisks. However, there is
no principled argument on why this is so. Further, the agenasibn results are locally
adjusted around the estimated age to tweak estimatiortse3ile proposed method can
be combined with the features of [201] and also the suggédsted adjustment, but as
stated in the introduction the focus of the current work ista@utperform these methods
in age-estimation, but to show how a principled method toehtte geometric variations
of faces can provide comparable results.

It is generally accepted that geometric variations are rpooaounced in children
than adults. This might explain why the age-estimationremdhe passport dataset is
larger than in the FG-Net dataset. Further, the publishethads compared in table
7.4 rely on some form of joint structure and texture inforimatsuch as using the whole
images themselves, or using Active Appearance modelsiténsithis obvious handicap,

it is interesting to note that accurate characterizatiogemfmetry provides better results
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Method Ridge Re-| SVM RVM
gression

Cauchy-Binet | 12.49 9.03 9.85

Warping Velocities| 15.72 9.78 8.84

Table 7.3: Mean-Absolute Errors using different regression methods using theh@aRinet

embedding and the warping velocities on the Passport dataset.
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Figure 7.7:Passport data Cumulative scores using (a) Cauchy-Binet kerngglfizjty parame-

ters with polynomial kernel.

in many cases. This does not downplay the role of texture exyception, and the

proposed methods may be further combined with texturalifeat

7.5 Conclusion

In this chapter we have presented a comprehensive set sfdadlalgorithms for

statistical computing on the Grassmann manifold. We hawashhat the Grassmann

manifold arises naturally in many important applicationscomputer vision. We have

presented statistical modeling methods that are derivad the Riemannian geometry

of the manifold. We have also presented Procrustes repeggenand non-parametric

density estimation methods which offer an alternative ®Riemannian approaches. As

seen in experiments the Riemannian geometric approacheemtparform uniformly well

over several experiments. However, the performance of dimeparametric approach is
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Method MAE

Ridge 6.60

Cauchy-Binet SVM 5.89
RVM 6.86

Ridge 7.57

Warping Velocities|| SVM 5.89
RVM 6.69

AAS [199] | 14.83
WAS [208] | 8.06
Ages [208] | 6.77
Other Algorithms || Ageg, 6.22
[208]
QM[198] | 6.55
MLP [198] | 6.98
RUN1 [209] | 5.78
LARR [201] | 5.07

Table 7.4:Comparison of Mean-Absolute Errors using proposed methods with dtéte-art
on the FG-Net dataset.
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Figure 7.8:FG-Net data Cumulative scores using (a) Cauchy-Binet kernel, (bgitye parame-

ters with polynomial kernel.
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strongly tied to the choice of the kernel-width. With a gobdice of the kernel-width pa-
rameter, it can outperform the wrapped-normal approacls i$fbecause non-parametric
methods can provide better fit to the data than imposing anpatrac form. Further, the
computational cost involved in classification using the 4panametric method is quite
high as it involves computing distances to every point intthiming dataset. Whereas for
the wrapped normal case, classification is much faster.héyrthe geometric methods
presented in this chapter offer principled solutions tesahinteresting problems such as

smoothing, prediction, and time-sequence modeling on toaifoid.

124



Chapter 8

Directions for Future Work
The problems addressed in this thesis and the methods g@pwsolve them lead
us to several interesting future research directions.igndapter we outline a few direc-

tions for future research work.

8.1 Indexing the Manifold: Applications to Database Searching

In the preceding discussion, we have represented the msrmobardatabase — e.g.
actions or shapes — as points on the Grassmann manifold. Wéysashssumed that the
dataset was small enough to ignore the complexity involmegtarest neighbor searching.
When the size of the dataset is extremely large, searchirthéanost similar element to
a given query can be prohibitively expensive if done in adforce linear fashion. Thus,
for large datasets, it is necessary to index and organizedteein a form that enables
fast-lookup. Two of the most commonly used approaches fgarieing a database are
based on a) Space-partitioning, and b) Clustering.

Space partitioning methods divide the data-space intindtstegions. The parti-
tioning is done so that each region is made up of ‘similaradatints. For example, if
the input data lies on a spherelR?, a natural way of partitioning the data-space would
be in terms of the longitude and latitude of the points. Thagitude and latitude are an
‘index’ into the manifold. For complex manifolds, this pess is more commonly known
as ‘Charting’ the manifold. Space-partitioning is well urgteod for Euclidean spaces
and is known to work efficiently for low-dimensions. For highmensional spaces, space
partitioning methods are known to perform as poorly as sntipear searches. This is
due to the fact that in high-dimensional spaces, the numibegoons required to cover
the entire space grows in an exponential fashion with theedsion, hence requiring an
exponentially larger number of similarity checks [210]. idover, due to the sparse na-

ture of high-dimensional spaces most of the regions areyerpd thus do not add to the

125



retrieval results. By careful analysis of the underlying if@d on which the data lies,

more efficient space partitioning methods can be devisddfeiter number of partitions,

which are also more populated. Future research would focusathematical represen-
tations and methods that would enable charting the Grassauash the Stiefel manifold

for fast similarity search applications.

Space partitioning methods are directly related to the genof the manifold,
and are insensitive to the naturally embedded clusters iven glataset. By specifically
discovering the clusters inherent within the given datase¢ can design more efficient
indexing methods rather than charting the entire manifGldstering based methods rely
on a notion of ‘distance’ or ‘similarity’ in the data spacee$igning the right clustering
algorithm requires both a notion of a natural distance roetni the manifold (geodesics
etc) and algorithms for finding clusters that are consisigtiit the geometry of the man-
ifold. Standard clustering methods such as k-means argrasssifor euclidean spaces
and thus are not directly applicable. Future research wimdds on deriving appropri-
ate clustering algorithms that are adapted to the strustf@ur Manifolds of interest
— Grassmann and Stiefel. Further, hierarchical clustanethods such as dendrograms
can be employed to organize the data in a hierarchical fashibere the lower-levels of
the hierarchy encode coarse similarity relations and tgkdrilevels provide successive

levels of refinement to the similarity search.

8.2 Separating Style and Content

Visual patterns can be viewed as characterized by two widgrattributes — their
style and their content. Traditional pattern recognitippr@aches attempt to build mod-
els for the content of a pattern without specific regard tosityée. As an example, in
computer generated text, the alphabet ‘a’ may be renderedearof several font styles.
The style of the font does not change the content itself. Wewehe style reflects itself
in the wide variations of observable features such as ceyeeiges etc. Similarly in ac-
tion recognition, the same action such as walking may beopedd in several different

styles. A choice of features that is invariant to stylistianges does not usually exist.
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However, one can exploit the geometry of the underlyinguieaspace to learn models of
stylistic variations and the individual mappings betwegtesand content. We propose to
study the problem of separating the style and content of nuetions by exploiting the

geometry of the Grassmann manifold.

8.3 Geometric Subspace Dynamics

So far, we have treated points on the Grassmann manifold gtaéic’ manner.

We explored statistical modeling methods and distanceicsedn the manifold. This
naturally leads us to extend these techniques to situatidmese we are interested in
modeling the dynamics of a process on the manifold. Thisireg@accurate modeling of
the temporal dependence in a way that is consistent withebengtry of the manifold.
As a specific example, consider the problem of shape sequeodeling. A 2-D shape
is usually represented in the form of a few landmarks on itd@ar. The affine-shape
space of a shape is the space of all possible affine warps oka ghape. Affine shape
spaces can be identified as points on the Grassmann marffdtiminary experiments
in Chapter 6 have shown promising results on affine-invas@ape classification from
still images. Future work would focus on extending this feavork to shape sequences.
A shape sequence can be modeled as a trajectory on the Gressemaifold. Paramet-
ric and non-parametric methods will be extended to modeétndution of the shape on
the Grassmann manifold. Non-parametric methods such aarbigrTime Warping only
require a measure of distance between two points on the aldniifence they are easily
applicable to shape sequence matching on the GrassmanfoldaRarametric methods
such as HMMs can also be suitably extended by a careful diemvaf each of the com-
ponents of the model. HMMs consist of two major componentse-hidden state space
and the observation model. The hidden state space in thentwontext would consist of
a discrete set of points on the Grassmann manifold which eassbmated by clustering
algorithms which will be developed as proposed in sectidn &he observation model
would consist of parametric probability density functioms the Grassmann manifold

such as the matrix Bingham distribution as described in @n&ptThis would then allow
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concise parametric models to represent shape sequentesdlaso consistent with the

geometry of the manifold.

8.4 Online Visual Learning

Applications involving dynamic environments and autonosi@gents such as a
mobile robot navigating through an unknown space canno¢peesented by static mod-
els. In such applications it is important to adapt modelat tltave been learnt offline,
according to new observations in an online fashion. In theatlbecognition domain, one
common approach is to perform incremental PCA to dynamidedlyn a better represen-
tational model as the appearance of the target dynamich#inges as in [179]. Incre-
mental PCA has also been used to recognize abnormalities indhal field of a robot as
in [180]. In an unrelated domain, the theory of subspacdingmn the Grassmann man-
ifold [211] has been developed for array signal processpmgieations. Since PCA basis
vectors represent a subspace which is identified by a poith@&Grassmann manifold,
subspace tracking can be applied for online visual learapygications. By tracking the
evolution of the appearance subspace or the model paranaéi@n ARMA model on the
Grassmann manifold, one can identify points of large changéhe trajectory which can

potentially be used for anomaly detection also.

8.5 Anomaly Detection

Detecting anomalies in the field of view of a camera is an irtgydrproblem with
several applications in computer vision and robotics. Grieeofrequently used strategies
for detecting anomalies is based on outlier detection. Hmawhic nature of patterns in a
the field of view of a stationary or a moving camera can be wesbtdibed by a sequence of
time-varying dynamical systems. A simpler approximatiamuld be to represent only the
coarse observation subspaces and model the dynamic ndpaterns are time-varying
subspaces. This model can be used to detect anomalies irltheffieiew of the camera

and hence can be used for anomaly detection.
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