
ABSTRACT

Title of dissertation: RAPID PROTOTYPING OF
HIGH PERFORMANCE
SIGNAL PROCESSING APPLICATIONS

Nimish Sane, Doctor of Philosophy, 2011

Dissertation directed by: Shuvra S. Bhattacharyya (Chair/Advisor)
Professor
Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies

Andrew Harris (Co-Advisor)
Professor
Department of Astronomy

Advances in embedded systems for digital signal processing(DSP) are enabling

many scientific projects and commercial applications. At the same time, these applica-

tions are key to driving advances in many important kinds of computing platforms. In this

region of high performance DSP, rapid prototyping is critical for faster time-to-market

(e.g., in the wireless communications industry) or time-to-science (e.g., in radio astron-

omy). DSP system architectures have evolved from being based on application specific

integrated circuits (ASICs) to incorporate reconfigurableoff-the-shelf field programmable

gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs),

or heterogeneous combinations of such devices. We, thus, have a vast design space to ex-

plore based on performance trade-offs, and expanded by the multitude of possibilities for

target platforms.

In order to allow systematic design space exploration, and develop scalable and

portable prototypes, model based design tools are increasingly used in design and imple-

mentation of embedded systems. These tools allow scalable high-level representations,

model based semantics for analysis and optimization, and portable implementations that

can be verified at higher levels of abstractions and targetedtoward multiple platforms for

implementation. The designer can experiment using such tools at an early stage in the de-

sign cycle, and employ the latest hardware at later stages. In this thesis, we have focused

on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes

to various aspects of dataflow-based design flows and tools asfollows:

1. We have introduced the concept oftopological patterns, which exploits commonly

found repetitive patterns in DSP algorithms to allow scalable, concise, and parame-

terizable representations of large scale dataflow graphs inhigh-level languages. We

have shown how an underlying design tool can systematicallyexploit a high-level

application specification consisting of topological patterns in various aspects of the

design flow.

2. We have formulated thecore functional dataflow(CFDF) model of computation,

which can be used to model a wide variety of deterministic dynamic dataflow be-

haviors. We have also presented key features of the CFDF model and tools based

on these features. These tools provide support for heterogeneous dataflow behav-

iors, an intuitive and common framework for functional specification, support for

functional simulation, portability from several existingdataflow models to CFDF,

integrated emphasis on minimally-restricted specification of actor functionality, and

support for efficient static, quasi-static, and dynamic scheduling techniques.

3. We have developed a generalized scheduling technique forCFDF graphs based on

decomposition of a CFDF graph into static graphs that interact at run-time. Further-

more, we have refined this generalized scheduling techniqueusing a new notion of

“mode grouping,” which better exposes the underlying static behavior. We have

also developed a scheduling technique for a class of dynamicapplications that gen-

eratesparameterized looped schedules(PLSs), which can handle dynamic dataflow

behavior without major limitations on compile-time predictability.

4. We have demonstrated the use of dataflow-based approachesfor design and imple-

mentation of radio astronomy DSP systems using an application example of atun-

able digital downconverter(TDD) for spectrometers. Design and implementation

of this module has been an integral part of this thesis work. This thesis demonstrates

a design flow that consists of a high-level software prototype, analysis, and simula-

tion using the dataflow interchange format (DIF) tool, and integration of this design

with the existing tool flow for the target implementation on an FPGA platform,

called interconnect break-out board(IBOB). We have also explored the trade-off

between low hardware cost for fixed configurations of digitaldownconverters and

flexibility offered by TDD designs.

5. This thesis has contributed significantly to the development and release of the latest

version of a graph package oriented toward models of computation (MoCGraph).

Our enhancements to this package include support for tree data structures, andgen-

eralized schedule trees(GSTs), which provide a useful data structure for a wide

variety of schedule representations. Our extensions to theMoCGraph package pro-

vided key support for the CFDF model, and functional simulation capabilities in

the DIF package.

RAPID PROTOTYPING OF HIGH PERFORMANCE SIGNAL
PROCESSING APPLICATIONS

by

Nimish Sane

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctory of Philosophy

2011

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Andrew Harris, Co-Advisor
Professor Steven Tretter
Professor Gang Qu
Professor Amitabh Varshney, Dean’s representative

c© Copyright by
Nimish Sane

2011

Dedication

To my parents and grandparents.

ii

Acknowledgments

I express my sincere gratitude toward my advisor Prof. Shuvra S. Bhattacharyya for

his academic, research, and professional guidance throughout my PhD research work. He

allowed me to pursue my own research interests with great freedom, and enthusiastically

supported all of my efforts. This resulted in our research collaboration with the National

Radio Astronomy Observatory (NRAO). His expertise in the field of embedded signal

processing and model based design tools helped me smoothly get into and learn about

this exciting research field. His advice and insights throughout my PhD greatly enriched

my research, and helped steer it to stay on track. I have learned a great deal from his

research methods and attention to detail. I am grateful to him for providing the necessary

motivation when needed. His patience and understanding ensured that my experience

was enjoyable. I thank him for giving me excellent research,teaching, and mentoring

opportunities. I will always cherish my experience workingwith him.

I am also grateful to my co-advisor Prof. Andrew Harris for his advice on the as-

pects of my research related to astronomy as well as academicand professional guidance.

His insights into scientific, technical, and logistical aspects have been crucial in shaping

my research goals and professional career. He introduced meto the field of radio as-

tronomy instrumentation, and encouraged me to pursue my PhDresearch in that field.

His support during my internship at the Owens Valley Radio Observatory (OVRO) and

collaboration with the NRAO was very crucial. I will be always grateful to him for that.

I also thank other members of my dissertation committee Prof. Steven Tretter,

Prof. Gang Qu, and Prof. Amitabh Varshney for their advice and co-operation. Their

iii

constructive comments and feedback were valuable.

The research presented in this thesis was sponsored in part by the National Radio

Astronomy Observatory, Agilent Technologies, Inc., Laboratory of Telecommunication

Sciences, National Science Foundation, US Air Force Research Laboratory, and Austrian

Marshall Plan Foundation. I acknowledge them with thanks for their support.

I am extremely thankful to Dr. Richard Prestage of the NRAO, Green Bank, WV,

for his initial support and continued guidance in establishing a collaboration between the

NRAO and Maryland Digital Signal Processing — Computer Aided Design (DSPCAD)

research group. I am also grateful to Mr. John Ford of the NRAO, Green Bank, WV, for

his patient supervision and guidance. He encouraged me to pursue various research direc-

tions and provided valuable technical insights. He was verysupportive, understanding,

and co-operative in dealing with the logistics of the collaboration, which made it a smooth

one. I also thank Shilpa Bollineni, Srikanth Bussa, Randy McCullough, Scott Ransom,

and Jason Ray of the NRAO for their support.

I would like to thank Dr. Chia-Jui Hsu, and Josè Pino (both ofAgilent Technologies,

Inc.) for their supervision and collaboration.

I acknowledge Dr. Gunasekaran Seetharaman of the US Air Force Research Labo-

ratory with thanks for his collaboration.

It has been a memorable experience working at the Maryland DSPCAD research

group. I am thankful to Dr. William Plishker for his support and guidance throughout

my PhD research. I have learned a lot from him while working with him on various

collaborative efforts. Some of these efforts have contributed to the research presented in

this thesis. I sincerely thank him for the same. I also thank him and Dr. Chung-Ching

iv

Shen for a number of very interesting conversations that we have had on technical and

research issues as well as professional career. I also thankMary Kiemb, Kapil Anand,

Dr. Hojin Kee (now at National Instruments, Inc.), and Shenpei Wu from the Maryland

DSPCAD group for their contributions.

All the current and past DSPCAD members and friends — Dr. William Plishker,

Dr. Chung-Ching Shen, Dr. Sankalita Saha, Dr. Hojin Kee, Dr.Ruirui Gu, Mary Kiemb,

Kapil Anand, Sebastian Puthenpurayil, George Zaki, Hsiang-Huang Wu, Soujanya Kedi-

laya, Inkeun Cho, Scott Kim, Kishan Sudusinghe, and ShenpeiWu — deserve a special

mention. They have been of great help throughout my researchwork in the DSPCAD

group. I specially thank to Will, Chung-Ching, Sankalita, and Hojin for their valuable

guidance during my initial days as a PhD student. I also thankWill, George, Hsiang-

Huang, Shenpei, and Kishan for their help toward the end. I also had an opportunity

to mentor some of the high school and undergraduate student members — Saara Khan,

Kelly Davis, Chima Ebinama, Giancarlo Bautista, Rainier Gomez, and Cordell Reid —

in the DSPCAD group. Mentoring them has been a learning experience in itself, and I

appreciate their efforts and response.

During first two years of my graduate studies at the University of Maryland, College

Park, I worked in the departments of Kinesiology, Facilities Management, and Astronomy

(at the OVRO). These positions provided not only the much needed financial assistance

but also a wealth of experience, which I have cherished throughout my graduate studies.

In particular, I would like to acknowledge and thank my supervisors Prof. John Jeka

(of the Department of Kinesiology, University of Maryland), and Dr. James Lamb (of

the OVRO). Dr. James Lamb facilitated my interactions with many others in the field

v

of radio astronomy. These interactions, along with his insights and encouragement, have

been instrumental in shaping my research interests in the field of radio astronomy signal

processing. I will be always grateful to him for that.

I would like to thank all the staff of the ECE department, especially that of Graduate

Studies, Business, and Payroll offices, for their timely help and useful advice.

Though it would be too formal to thank my parents, grandparents, cousins, and

every one in the Sane, Bhat, and Dadhich families, I, still, must do it for every one of

them has been a source of inspiration and great strength. I thank all of them for always

being there.

I would like to express my sincere gratitude toward familiesof Mr. Arun and Late

Mrs. Usha Karve, Dr. Ajit and Dr. Asha Kembhavi, Dr. Naresh and Mrs. Sadhana

Dadhich, Mr. Mohammad and Mrs. Fatima Khadas, Mr. Jawahar and Mrs. Pushpa

Nagori, and Mr. Arun Sawant without whose support and financial assistance the journey

to the United States would not have been possible. It is rather unfortunate and sad that

my grandmother, Mrs. Usha Karve, is not with us when I complete my doctoral degree.

I must also remember and thank all my close friends who have been supportive

throughout my graduate studies and are as much a part of life as my family.

I am grateful to Mr. Neel and Mrs. Gandhali Phadake, and Mr. Suresh and Dr.

Kunda Joshi for their support.

I would like to thank Dr. Aniruddha Kembhavi, Avanti Shetye,Dr. Ayan Ghosh,

and Amit Apte, who helped me immensely during my initial daysin College Park, and

continued to guide me throughout my graduate studies.

I should thank my room-mates during my stay in College Park — Kunal, Dhaval,

vi

Nirankush, Mehul, Sarang, Prashant, Ashwin, Aalap, Omkar,Jagannath, Shreyas, Saurabh,

Kaustubh, Harshavardhan, Sumit, and Kamal — for being such awonderful family away

from home, and of course, bearing with me. I also thank all my friends from College

Park, who made my experience at the University of Maryland soenjoyable.

I am sure there are many others who have been of great help and support at various

stages of my PhD. It may not be possible to list all of them here. I take this opportunity

to thank each and every one of them.

vii

Table of Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 High Performance Signal Processing Applications 1
1.2 Design Tools for Rapid Prototyping 4
1.3 Contributions of the Thesis .. 8

1.3.1 Topological Patterns for Specification and Analysis of Dataflow
Graphs . 9

1.3.2 Formulation of the Core Functional Dataflow Model 11
1.3.3 Efficient Scheduling Techniques for Core Functional Dataflow

Graphs . 13
1.3.4 Dataflow-based Rapid Prototyping for Radio AstronomySignal

Processing . 14
1.3.5 Development and Release of the latest version of the MoCGraph

Package . 16
1.4 Organization of Thesis . 16

2 Background 18
2.1 Dataflow Modeling . 18

2.1.1 Synchronous Dataflow . 20
2.1.2 Cyclo-static Dataflow . 21
2.1.3 Parameterized Dataflow . 22

2.2 The Dataflow Interchange Format .27
2.3 Generalized Schedule Trees .. 29
2.4 Graph Package Oriented toward Models of Computation 30

2.4.1 MoCGraph Software Architecture and Features 31
2.4.2 mocgsched Plug-in . 33

2.5 DICE: The DSPCAD Integrative Command-Line Environment. 33
2.6 Summary . 35

3 Topological Patterns for Specification and Analysis of Dataflow Graphs 36
3.1 Introduction . 36
3.2 Related Work . 38
3.3 Topological Patterns . 42

3.3.1 Topological Patterns in Signal Processing 42
3.3.2 Parameter Propagation . 44

3.4 Topological Patterns in DIF .. 45
3.5 Applications of Topological Patterns 47

3.5.1 Graph Analysis . 48
3.5.2 Representing HSDF Graphs . 49
3.5.3 Extracting Implementation-Specific Features 52

viii

3.5.4 Exploring Implementation Trade-offs 54
3.5.5 Representing Schedules . 56
3.5.6 Experimenting with Pattern-Specific Schedules 60

3.6 Summary . 66

4 Prototyping Heterogeneous Dataflow Applications using Core Functional Dataflow 67
4.1 Related Work . 67
4.2 Formulation of Core Functional Dataflow 69
4.3 Modeling Adaptive Modulation Scheme using Core Functional Dataflow . 71
4.4 Translation to Core Functional Dataflow 74

4.4.1 Static Dataflow . 74
4.4.2 Boolean Dataflow . 76
4.4.3 Representing PSDF and PCSDF Actors using CFDF77

4.5 Functional Simulations in DIF using Core Functional Dataflow 79
4.5.1 Extensions to DIF Software Architecture 80
4.5.2 Canonical Scheduler . 81

4.6 Design Examples . 81
4.6.1 Programmable Polynomial Evaluation Accelerator 82
4.6.2 Design with Multiple Polynomial Evaluation Accelerators 83
4.6.3 Results . 85

4.7 Summary . 86

5 Efficient Scheduling Techniques for Core Functional Dataflow Graphs 88
5.1 Scheduling using Dynamic Dataflow Graph Decomposition 88

5.1.1 Dynamic Dataflow Graph Decomposition Algorithm 89
5.1.2 Simulation Results . 92

5.2 Scheduling using Mode Grouping .95
5.2.1 Simulation Results . 96

5.3 Parameterized Looped Schedules .. . 97
5.3.1 Related Work . 99
5.3.2 Constructing Parameterized Looped Schedules 100
5.3.3 Bounded Memory Execution . 102
5.3.4 Simulation Results . 104

5.4 Summary . 108

6 Dataflow-based Rapid Prototyping for Radio Astronomy Signal Processing 110
6.1 Introduction . 111
6.2 Related Work . 113
6.3 Tunable Digital Downconverter .. . 114
6.4 Dataflow-based Design and Implementation 117

6.4.1 Modeling and Prototyping using DIF 118
6.4.2 Integration with the CASPER Tool Flow125
6.4.3 Platform-specific Analysis using DIF 128
6.4.4 Software Interface for the Tunable Digital Downconveter 129

6.5 Exploring Implementation Trade-off with TDD and FDD Blocks 130

ix

6.5.1 TDD and FDD for Multistage Downconversion131
6.6 Summary . 132

7 Summary and Conclusions 134

8 Future Work 139

Bibliography 142

x

List of Figures

1.1 Design flow using a model based approach. 6

1.2 DIF based design flow. 7

2.1 An SDF graph. 21

2.2 An application graph with a simple decimator actorM using the (a) CSDF,

and (b) SDF models. ActorM is a decimator with adecimation factorof 4. 22

2.3 Modeling a parameterized decimation filter (DF) application using PCSDF:

(a) Application graph —CN denotes a vector of FIR filter coefficients,

andD denotes a decimation factor, and (b) PCSDF representation.. . . . 25

2.4 The DIF language. 28

2.5 Generalized schedule tree. .. 29

2.6 A hierarchy of classes in MoCGraph that implements various types of

graph data structures. 32

3.1 Configuring an array of nodes with a PPP. 45

3.2 Overlapping topological patterns. 46

3.3 A sample rate converter. 50

3.4 Dataflow graph for a 4-point fast Fourier transform and the topology

block in its DIF specification. 52

3.5 JPEG encoder and thetopology block in its DIF specification. 53

3.6 Dataflow graphs for (a) the generic class of applicationsunder considera-

tion, and (b) a simplified adaptive modulation scheme. 57

xi

3.7 A PLS for the application in Fig. 3.6(b), and thetopology block in a

corresponding DIF representation. Table 3.2 provides parameters associ-

ated with eachnode in the DIF specification. 58

3.8 (a) An SDF graph with abutterfly pattern. (b)-(c) two possible GST

structures using schedules that are based on acyclic pairwise clustering

(iteratively clustering two actors at a time). 61

3.9 (a)-(b) SDF graphs withbutterfly patterns. (c)-(d) GSTs for min-

imizing buffer memory requirements of the SDF graphs in (a) and (b),

respectively. 64

4.1 Mode transition behavior of themapper actor. 73

4.2 Mode transition behavior of the decimator actor. 76

4.3 Application of BDF using aSwitch actor. 77

4.4 Mode transition behavior of theSwitch actor. 78

4.5 CFDF mode transition behavior of a PCSDF actorDecimatorwith pos-

sible decimation factors3 and4. 79

4.6 A pictorial representation of the dual PEA application.. 85

4.7 Single appearance schedule for the dual PEA system. 86

4.8 Multiple appearance schedule for the dual PEA system. 86

5.1 Algorithm for dynamic dataflow graph decomposition. 90

5.2 Application decomposition example. 92

5.3 Dual sampling rate conversion. .. . 93

5.4 The APGAN schedule of the sample rate conversion application. 94

xii

5.5 Valid PLS for the application in Fig. 3.6(b). 101

6.1 Block diagram of a tunable digital downconverter. 116

6.2 Proposed dataflow-based approach. 117

6.3 Dataflow behavior of aDecimator actor with4 inputs and outputs for

adecimation factorof 6 using (a) SDF, and (b) CSDF models. 119

6.4 TDD application graph generated using DIF. 121

6.5 Partial DIF specification —topology block — for the TDD application

graph using topological patterns. .. 122

6.6 Partial DIF specification —topology block — for the TDD application

graph using topological patterns. .. 123

6.7 PLSs for the TDD application configured for a decimation factor of11,

anddecimator actor employing the (a) PSDF and (b) PCSDF models

of computation. 124

6.8 TDD System overview. 129

6.9 Two-stage digital downconversion. 132

xiii

List of Tables

2.1 Interactions among PDF subsystem components, dataflow inputs and out-

puts, and parameters. 24

3.1 Performance and resource utilization trade-offs for FPGA implementa-

tion of a JPEG encoder. 55

3.2 Actors and loop counts associated with nodes in the PLS graph represen-

tation. 59

3.3 Average simulation times for different sink control conditions (numbers

of tokens consumed by the sink) for the PLS in Fig. 3.7 using (1) GST

traversal, and (2) a hand-tuned pattern-specific schedule. 60

3.4 Buffer memory requirements for single appearance schedules generated

from the SDF graph shown in Fig. 3.9(a). 65

3.5 Buffer memory requirements for single appearance schedules generated

from the SDF graph shown in Fig. 3.9(b). 65

4.1 Valid modes for themapper actor along with their corresponding pro-

duction and consumption rates. 73

4.2 Valid modes in a CFDF representation of the decimator actor,M, in Fig. 2.2(a)

along with their corresponding production and consumptionvalues. . . . 75

4.3 The behavior of theSwitch actor modes in terms of tokens produced

and consumed. 77

4.4 The behavior of the PEA modes. 82

xiv

4.5 The behavior of the CSDF implementation of the restricted PEA used in

the dual PEA application. 84

4.6 Simulation times and maximum buffer sizes for mixed-model applications. 87

5.1 Simulation times and maximum buffer sizes for mixed-model applica-

tions using dynamic dataflow graph decomposition based schedules. . . . 95

5.2 Total buffer size requirements with and without mode grouping. 97

5.3 Average simulation time for different sink control conditions (numbers

of tokens consumed by the sink actor) using a canonical schedule (CS),

DDFS, and PLS. 106

5.4 Total buffer requirements for different sink control conditions (numbers

of tokens consumed by the sink) for a canonical schedule (CS), DDFS,

and PLS. 106

6.1 Total buffer requirements from a DIF prototype for different decimation

factors using parameterized looped schedules. 125

6.2 Implementation summary for TDD designs. 127

6.3 Implementation summary for FDD designs. 131

6.4 Implementation summary for designs employing two-stage downconver-

sion using cascaded FDF or TDF blocks. 133

xv

Chapter 1

Introduction

1.1 High Performance Signal Processing Applications

The field of signal processing has expanded to cover a wide range of application

domains, such as image and video processing, acoustic and speech processing, wireless

communication, software-defined radio, astronomical signal processing, biomedical sig-

nal processing, and medical imaging, to name a few, and it will continue to expand in

the future. Each of these application domains deals with different types of signals that

can be characterized by, for example, the signal sources, methods and speed of signal

acquisition, signal strength in terms of signal to noise ratio, and frequency content of

the signals. A signal processing algorithm processes thesesignals to derive useful in-

formation. Apart from varying application specifications,there are certain performance

metrics, such as the need for real-time signal processing, speed of real-time or offline pro-

cessing, resource utilization, power consumption, and cost, that provide complex design

spaces for exploration, and help characterize and optimizethe overall quality of a design.

These requirements may be domain-specific. For example, study of certain astronomical

objects or observations at certain wavelengths would determine specifications for a ra-

dio telescope and its signal processing backend; a wirelesscommunication standard may

determine signal processing requirements, while its deployment in a consumer product

may constrain specifications such as cost and time-to-market; specifications of a video

1

surveillance system may be determined by its expected target-tracking capability; and so

on.

A designer of any such signal processing system explores thedesign space to deter-

mine if and how the required system can be efficiently implemented using the present state

of the art hardware platforms and design tools. Signal processing hardware manufacturers

often classify their hardware that can be used to achieve maximum performance with re-

spect to certain performance metrics as“high performance”signal processors. Given the

evolving nature of hardware platforms, architectures, andtheir processing capabilities,

the term “high performance” represents the extreme end of performance achievable or

desirable under a given cost constraint using the state of the art at a given point in time. A

signal processing application, which has specifications requiring the corresponding signal

processing system to deliver maximal performance, possibly under pre-specified resource

constraints, can be classified as ahigh performance signal processing application. This is

in contrast, for example, to a commercial signal processingsystem that must be designed

to minimize cost subject to a given performance constraint.

Radio astronomy digital signal processing (DSP) is an example of high performance

signal processing. Scientific objectives drive radio astronomy telescopes toward high-

speed samplers and corresponding DSP backends that need to process large volumes of

data at high data rates. The single dish Green Bank Telescope(GBT) [68], for example,

is used for pulsar searches and high-precision timing studies, which drive bandwidth re-

quirements to extremes along with the computing needs to implement techniques such as

coherent dedispersion. The new GBT spectrometer being conceived will have a channel

bandwidth of 3 GHz (compared to the current 800 MHz), but mustalso support zooming

2

into tunable narrow bands. Many of the recent radio telescopes that have been constructed

and the ones that have been conceived for construction over the next decade clearly show a

trend toward synthesis array design [4]. These include telescope arrays such as the Square

Kilometre Array (SKA) [23]; its precursors, the Karoo ArrayTelescope (MeerKAT) [40],

and Australian SKA Pathfinder (ASKAP) [22] being built in South Africa, and Australia,

respectively; and the Long Wavelength Array (LWA) in New Mexico [27]. In the case

of synthesis array telescopes, the amount and speed of data to be processed increase due

to the bandwidth required per antenna as well as the large numbers of antennas that are

involved. The SKA will employ a large number of antennas of smaller diameters to be

able to conduct ultrasensitive surveys over large area of the sky, and its precursor arrays

being developed already pose challenging DSP applicationsin terms of processing enor-

mous amounts of high-speed data [4]. The signal processing requirements for radio arrays

(for example, the complexity of a correlator) scale quadratically or with higher order in

the number of elements in the array. The performance metricsfor these DSP backends

require handling of enormous amounts of data in real time at very high rates (on the order

of petabit per second). At the same time, the power and cost need to be minimized by

orders of magnitudes compared to the present estimates to provide realistic solutions.

Some important commercial applications that involve high performance DSP in-

clude dynamic communication systems applications relatedto modern wireless technolo-

gies, such as theworldwide interoperability for microwave access(WiMAX) [3] and3rd

generation partnership project — long term evolution(3GPP—LTE) [1]. The challenges

posed by these applications are manifold including greaterdata rates, requirements for

supporting dynamic configurability, need for faster simulations, and deployment in hand-

3

held devices. Some other domains of high performance signalprocessing include soft-

ware defined radio, multimedia processing, and medical imaging. Applications such as

these, especially those related to DSP for radio astronomy and wireless communication

systems, have driven the work presented in this thesis.

1.2 Design Tools for Rapid Prototyping

The interaction between the evolving nature of high performance hardware plat-

forms and signal processing applications will be more clearif one observes the trends

in a particular application domain. For example, in the fieldof radio astronomy signal

processing, the conventional approach has been to develop optimized custom hardware

using application specific integrated circuits (ASICs) (e.g., see [20] for an ASIC solu-

tion to SKA DSP). Such designs, however, are not scalable, reconfigurable, or portable.

Moreover, the design, development, and deployment processtends to be much longer

and more costly than that for some of the reconfigurable hardware available. To account

for these factors, DSP solutions that use field programmablegate array (FPGA) based

reconfigurable hardware and modular software libraries have been developed (e.g., see

the approach used by the Collaboration for Astronomy SignalProcessing and Electronics

Research (CASPER) group [55]). Recent years have seen the emergence of a large va-

riety of computing platforms having general purpose or specialized muticore processors,

such as graphics processing units (GPUs), the Cell, and a variety of processors by ARM,

Tilera, and Intel [14]. Such platforms are gaining popularity within the radio astronomy

domain (e.g., see [31, 81]). Moreover, it is quite possible that a DSP solution that uses a

4

combination of more than one hardware architecture for performing different signal pro-

cessing tasks may perform better under a given set of constraints than a solution that uses

only one kind of platform.

We, thus, have a complex design space to explore based on performance trade-offs

(e.g., throughput, latency, power, cost, etc.), and expanded by the multitude possibilities

of target platforms. A key to efficient implementation is theability of design processes

and tools to allow the designer to explore the design space effectively at a high-level,

and make informed design choices at an early stage rather than trying to alter the design

in major ways after having a platform-specific implementation. The need for rapid pro-

totyping is of particular importance for high performance signal processing applications

because it allows designers to focus on functionality and functional validation in early

stages of design, and decide on target platforms in later stages.

A tool for designing a high performance signal processing system should, therefore,

allow scalable high-level representations, semantics foranalysis and resource estimation,

functional verification, and portable implementations that can be reconfigured and re-

targeted toward the latest hardware technologies. This is possible using a model based

design approach as shown in Fig. 1.1 that is founded in a particular model of computation

(MoC). Model based design approaches for design and implementation of embedded sys-

tems for DSP applications continues to be an active and expanding research area both in

the industry as well as academia due to ever expanding application domains and markets

for such systems (e.g., see [8]). Model based design methodsare extensively used in this

field to make the design process streamlined, productive, robust, and efficient.

As shown in Fig. 1.1, the application specification is a high-level specification used

5

Models of Computation

Application Specification

DSP Algorithms High-level Languages

Functional VerificationModule Library

System-level Verification

Software or Hardware SynthesisModule Library

Deployment of Platform-Level Implementation

Figure 1.1: Design flow using a model based approach.

to specify only the design details that are necessary for establishing functional correct-

ness. The high-level language used for such a specification provides syntactic features

and has semantic foundations that establish the underlyingchoice of the MoC. A MoC

provides semantics (meaning) for the interaction between functional modules in a system,

and strongly influences all the significant design processes— specification, simulation,

formal verification, implementation/optimization, and interfaces to environmental or ex-

ternal systems. A MoC essentially tries to capture the designer’s intuition and effectively

translates it into a model (e.g., the model that underlies “C” and other imperative lan-

guages, finite state machines, Kahn process networks, dataflow, synchronous/reactive,

discrete-event, etc.) Model based design is important areafor innovation in domain-

specific technology and design research.

To facilitate analysis of and mapping from a model-based specification, the specifi-

cation is typically converted into an intermediate representation that can be used by design

6

Figure 1.2: DIF based design flow.

tools during subsequent design stages. For example, in dataflow-based design, a DSP ap-

plication flowgraph specification is translated into a directed graph with nodes represent-

ing functional modules and edges representing first-in-first-out communication buffers

between pairs of functional modules. The subsequent stagesutilize this representation for

further analysis and optimization. It should be noted that module libraries that contain

functional code for the modules also adhere to the prespecified interface and semantics

of the selected MoC. This allows easier transcoding among various platform-specific lan-

guages, while the glue code for these modules remains platform-agnostic. This allows

developing platform-independent functional prototypes that can be used for functional

and system level verification as well as portability across different kinds of hardware

technologies.

The work presented in this thesis primarily focuses on the dataflow MoC, which is

7

extensively used for developing embedded systems for DSP and communication appli-

cations, and electronic design automation. Dataflow-oriented DSP design tools typically

allow high-level application specification, software simulation, and possibly synthesis

for hardware or software implementation. Chapter 2 provides relevant background on

dataflow modeling. There are various existing design tools with their semantic founda-

tions in dataflow modeling such as Ptolemy [59], PeaCE [44], SysteMoc [32], StreamIt [79],

CAL [26], Compaan/Laura [77], and DIF [36]. In this work, thedataflow interchange for-

mat (DIF) tool has been primarily used for demonstration along with other tools such as

the Advanced Design System (ADS) from the Agilent Technologies, Inc. [60] and Xilinx

System Generator (XSG) [85] (See Chapter 2 for a brief description of the DIF language

and package). Fig. 1.2 provides a pictorial representationof the general DIF based design

flow. This thesis significantly contributes to the components of the design flow illustrated

in Fig. 1.2 that have been highlighted with a gray background. It can be seen from this

figure (and also comparing with the generic model based design flow in Fig. 1.1) that this

thesis addresses most of the aspects of a complete model based design flow.

1.3 Contributions of the Thesis

As mentioned earlier, this thesis deals with various aspects of a dataflow-oriented,

model based design approach. This section lists the important contributions of this thesis.

The research presented in this thesis, though demonstratedusing specific design tools,

is not restricted to those tools, and hence, can be applied toa variety of other dataflow-

based design tools. Also, the applications presented, though driving this research, are

8

demonstrative, and the prototyping methods can be extendedor adapted to other relevant

DSP applications.

1.3.1 Topological Patterns for Specification and Analysis of Dataflow

Graphs

Tools for designing signal processing systems with their semantic foundation in

dataflow modeling often use high-level graphical user interfaces (GUIs) or text based

languages that allow specifying applications as directed graphs. Such graphical repre-

sentations serve as initial reference points for further analysis and optimizations that lead

to platform-specific implementations. For large-scale applications, the underlying graphs

often consist of smaller substructures that repeat multiple times. To enable more concise

representation and direct analysis of such substructures in the context of high-level DSP

specification languages and design tools, we have introduced and developed the model-

ing concept oftopological patterns[71]. Topological patterns can be used to identify

and concisely iterate across arbitrary structures in a dataflow application graph. We have

shown how the types of flowgraph substructures that are pervasive in the DSP application

domain can be effectively represented in terms of topological patterns, and thereby used

to generate compact, scalable application representations.

Some earlier research efforts have employed useful techniques for deriving and ex-

ploiting various types of specialized dataflow substructures within their respective com-

pilers (e.g., use of highly expressive constructs from procedural languages, such as re-

currences, iteration, and conditionals, in dataflow-oriented languages [45], and various

9

textual languages for DSP system design, such as SILAGE [82], StreamIt [79], and

CAL [26]). They, however, lack a general method for explicitand scalable representation

of such substructures by the programmer. Such a programminginterface for topologi-

cal patterns is essential to capture the broad range of relevant patterns in ways that are

scalable, and flexibly extensible to accommodate new types of patterns as they emerge

from new applications and modeling techniques. Our conceptof topological patterns is

designed precisely to bridge this gap. In other prior work, higher-order functions have

been shown to permit elegant construction of structured subsystems in dataflow represen-

tations [48]. Higher-order functions are functions that take functions as inputs or produce

functions as outputs. Topological patterns provide a related but technically different ap-

proach since topological patterns operate on generic directed graph vertices. Furthermore,

our development of topological patterns is tightly integrated with textual graph represen-

tation and arrays of graph vertices and edges, which are useful for providing scalable

representations and managing large-scale designs.

We have shown how an underlying design tool can exploit a high-level applica-

tion specification consisting of topological patterns in various aspects of the design flow.

In particular, we have demonstrated the efficacy of topological patterns in dataflow graph

analysis, concise and scalable representation of homogeneous synchronous dataflow (HSDF)

graphs, and exploring implementation-specific trade-offs. We have applied the concept of

topological patterns to represent schedules for application graphs. Such representations

are useful, for example, when porting schedules generated using one design tool to other

platform-specific tools or design languages. We have demonstrated the utility of experi-

mentation with pattern-specific scheduling transformations, and how topological patterns

10

facilitate such experimentation.

1.3.2 Formulation of the Core Functional Dataflow Model

For a number of years, dataflow models have proven invaluablefor application ar-

eas such as DSP. Their graph-based formalisms allow designers to describe applications

in a natural yet semantically rigorous way. Such a semantic foundation has permitted

the development of a variety of analysis tools. As a result, dataflow languages are in-

creasingly popular. Their diversity, portability, and intuitive appeal have extended them

to many application areas with a variety of targets (e.g., see [73], [34], and [61]). As

system complexity and the diversity of components in digital signal processing platforms

increases, designers are expressing more types of behaviorin dataflow languages to retain

these implementation benefits. This has resulted in evolution of various dataflow models

with varying degrees of expressive power. On one extreme lies the synchronous dataflow

(SDF) model, which is the most restrictive form of dataflow [46] that is in widespread

use in the DSP design community. On the other hand, Turing complete models such as

boolean dataflow (BDF) [16] can express deterministic dynamic dataflow behaviors (i.e.,

dynamic behaviors in which a given set of input streams always produces a unique set

of output streams). There exist numerous dataflow models with intermediate levels of

expressive power, such as the cyclo-static dataflow (CSDF) model [13], which allows

statically specified periodic dataflow behavior, and a meta-modeling technique called pa-

rameterized dataflow (PDF), which allows limited forms of data-dependent dynamic be-

havior [6]. Each of these models also offer differing capabilities to analyze and estimate

11

resources at compile-time. The designer must explore this design space to find the model

that can best capture the application behavior and allow sufficient analysis.

While the semantic range of dataflow has expanded to cover quasi-static and dy-

namic interactions, it is often challenging to map such interactions reliably and effi-

ciently into implementations. The recently developedcore functional dataflow(CFDF)

model can be used to model a wide variety of deterministic dynamic dataflow behav-

iors [64], and thereby helps to unify the processes of analysis and scheduling of quasi-

static and dynamic dataflow interactions. CFDF supports flexible and efficient proto-

typing of dataflow-based application representations and permits natural description of

both dynamic and static dataflow actors. I have significantlycontributed to the concep-

tion and development of the CFDF MoC. This thesis presents its mathematical formu-

lation and modeling features. This model provides an interface for actor specification

that is intuitive for a DSP system designer and allows specification of heterogeneous

dataflow applications. We have applied this model to developvarious application proto-

types that demonstrate its effectiveness for rapid DSP system prototyping, as presented

in [64] and [66].

The CFDF model, and tools based on it, has the following unique set of features: 1)

support for heterogeneous dataflow behaviors, 2) intuitiveand common frameworks for

functional specification, 3) support for functional simulation, 4) portability from many

well-known dataflow models to CFDF, 5) integrated emphasis on minimally-restricted

specification of actor functionality, and 6) support for efficient static, quasi-static, and

dynamic scheduling techniques. These features distinguish CFDF from a related model

called stream based functions (SBF) [41], and other frameworks such as Ptolemy II, which

12

offers diverse MoCs [25], SystemC [32], actor-oriented languages like CAL [26], “S-

functions” in Simulink [51], and GUI based tools like LabVIEW [39].

1.3.3 Efficient Scheduling Techniques for Core Functional Dataflow Graphs

The problem of scheduling dynamic dataflow applications hasbeen studied earlier,

and important results have been established regarding bounded memory execution and

compile-time scheduling (e.g., see [16, 53]). Most of theseapproaches employ schedul-

ing schemes that suffer from significant run-time overhead,difficulties in code gener-

ation, and lack of compile-time predictability (e.g., for validating real-time signal pro-

cessing performance). We have developed generalized scheduling techniques for CFDF

graphs based on decomposition of a CFDF graph into static graphs that interact at run-

time [62]. Furthermore, we have conceived the mode groupingbased scheduling tech-

nique that achieves more efficient simulations compared to previous approaches for dy-

namic dataflow applications [63].

The scheduling techniques for generalized CFDF graphs in [62] and [63], how-

ever, do not in general guarantee bounded memory execution for the entire input applica-

tion. For dynamic communication applications that exhibita particular kind of dataflow

graph structure, I have developed a technique to constructparameterized looped sched-

ules (PLSs). Well-constructed PLSs allow expressing dynamic dataflow behavior and

enabling faster simulations without significantly compromising compile-time predictabil-

ity [70]. This class of quasi-static schedules allows for flexible, compact specification

of nested loop structures, where loop iteration counts can be either constant values or

13

symbolic expressions in terms of dynamic parameters in the underlying dataflow graph.

While it may be possible to use a meta-modeling technique called PDF (e.g., by integrat-

ing it with SDF to give a model called parameterized SDF (PSDF)) to express limited

forms of dynamic behavior and construct PLSs [6], such an approach imposes significant

restrictions on how applications are modeled (e.g., in terms of hierarchies of cooperating

init, subinit, andbodygraphs [6]), and in general, major changes in the user interface are

required to provide direct support for PDF in a design tool. In contrast, a CFDF based

approach provides PLS-based bounded memory scheduling while operating within a se-

mantic framework that can be integrated more directly into existing design tools compared

to the more hierarchical semantic structure of PDF representations.

This thesis presents analysis and scheduling techniques for CFDF graphs based on

those in [62], [63], and [70], which I have contributed to.

1.3.4 Dataflow-based Rapid Prototyping for Radio AstronomySignal Pro-

cessing

Application of dataflow modeling to the field of radio astronomy DSP is a signif-

icant contribution of this thesis. The model based approachfor designing large scale

signal processing systems with focus on radio telescopes has been previously studied

(e.g., see [2, 49]). Several frameworks have been proposed for model based high-level

abstractions of architectures along with performance/cost estimation to guide the de-

signer throughout the development cycle (e.g., see [2]). However, the focus of these

approaches has been on architecture exploration. There have also been attempts to derive

14

implementation-level specifications starting from system-level specifications by segregat-

ing signal processing and control flow into an application specification and architecture

specification, respectively (e.g., see [49]). However, thechoice of models of computation

has been made primarily from control flow considerations rather than dataflow consider-

ations. These approaches, though relevant, do not specifically address the issue of high-

level application specification for platform-independentprototyping and use of models of

computation for abstraction of heterogeneous or hybrid dataflow behaviors. This issue is

critical to efficient prototyping of high performance signal processing applications, which

are typically dataflow dominated, and include increasing levels of dynamic dataflow be-

havior (e.g., see [8]).

I demonstrate the use of dataflow-based approaches for design and development of

radio astronomy DSP systems using an application example ofa tunable digital downcon-

verter (TDD) for spectrometers at theNational Radio Astronomy Observatory(NRAO),

Green Bank. Design and development of this module has been an integral part of this the-

sis work. This thesis demonstrates a design flow that consists of (i) application specifica-

tion and modeling using parameterized SDF and CSDF models, (ii) software prototyping,

analysis, and simulation using the DIF tool, and (iii) integration of this benchmark design

with the current CASPER tool flow for the target implementation on an FPGA platform,

called theinterconnect break-out board(IBOB) [55]. My experiments show how formal

understanding of the dataflow behavior from the software prototype allows more efficient

prototyping along with estimating and accounting for some of the key resource require-

ments (e.g., throughput, hardware duplication, pipelining, buffer memory requirements)

at much earlier stages in the design cycle, unlike conventional design approaches.

15

1.3.5 Development and Release of the latest version of the MoCGraph

Package

The DIF package makes use of and extends a graph package oriented toward MoC

(MoCGraph). MoCGraph is a Java-based package of generic graph data structures and

algorithms with emphasis on supporting graph-theoretic analysis for MoCs. MoCGraph

has evolved from the graph package in Ptolemy II [25].

This thesis has contributed significantly to the development and release of the latest

version of the MoCGraph package. My contributions to MoCGraph include support for

tree data structures, and generalized schedule trees (GSTs). A GST is a data structure

used for representing schedules of dataflow graphs [42]. This extension to the MoCGraph

package has provided important support for the CFDF model, and functional simulation

in the DIF package. Chapter 2 provides a detailed description of the MoCGraph and DIF

packages, and the GST data structure.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides background

relevant to the research presented in this thesis. It specifically deals with foundations of

dataflow modeling, and features of the MoCGraph and DIF packages as well as the GST

data structure. Chapter 3 describes the concept of using topological patterns for speci-

fication of dataflow graphs and its application to analysis ofdataflow graphs. Chapter 4

discusses formulation of CFDF model, its connections to some of the existing dataflow

models, and its use in modeling dynamic dataflow applications. Chapter 5 describes var-

16

ious scheduling techniques for efficient simulation of CFDFgraphs. Chapter 6 demon-

strates the application of dataflow modeling techniques to radio astronomy DSP systems

using the TDD application. A summary of findings, and conclusions from this work are

presented in Chapter 7, while Chapter 8 lists useful directions for future research.

17

Chapter 2

Background

2.1 Dataflow Modeling

Dataflow modeling involves representing an application using a directed graph

G(V,E), whereV is a set of vertices (nodes) andE is a set of edges. Each vertex

u ∈ V in a dataflow graph is called anactor, and represents a specific computational

block, while each directed edge(u, v) ∈ E represents a first-in-first-out (FIFO) buffer

that provides a communication link between thesourceactoru and thesinkactorv. A

dataflow graph edgee can also have a non-negative integerdelay, del(e), associated with

it, which represents the number of initial data values (tokens) present in the associated

buffer. Dataflow graphs operate based ondata-driven execution, where an actor can be

executed (fired) whenever it has sufficient amounts of data (numbers of “samples” or data

“tokens”) available on all of its inputs.

In the context of a dataflow graph, asourceactor is an actor in the topology that has

no input edges (for example, actorW in Fig. 2.1), andsinkactor is an actor in the topology

that has no output edges (for example, actorsY andZ in Fig. 2.1).

During each firing, an actor consumes a certain number of tokens from each in-

put and produces a certain number of tokens on each output. When these numbers are

constant (over all firings), we refer to the actor as an SDF actor [46]. For an SDF actor,

the numbers of tokens consumed and produced in each actor execution are referred to as

18

theconsumption rateandproduction rateof the associated input and output, respectively.

If the source and sink actors of a dataflow graph edge are SDF actors, then the edge is

referred to as an SDF edge, and if a dataflow graph consists of only SDF actors, and SDF

edges, the graph is referred to as an SDF graph.

For a dataflow graph edgee, src(e) andsnk(e), denote its source and sink actors,

and if e is an SDF edge, thenprd(e) denotes the production rate of the output port of

src(e) that is connected toe, and similarly,cns(e) denotes the consumption rate of the

input port ofsnk(e) that is connected toe.

A static schedulefor a dataflow graphG is a sequence of actors inG that represents

the order in which actors are fired during an execution ofG.

Usually, production and consumption information — in particular, the number of

tokens produced and consumed (production/consumptionvolume) — by individual fir-

ings is characterized in terms of individual input and output ports so that each port of an

actor can in general have a different production or consumption volume characterization.

Such characterizations can involve constant values as in SDF [46] (as described above);

periodic patterns of constant values, as in CSDF [13]; or more complex forms that are

data-dependent (e.g., see [16, 6, 64]). A meta-modeling technique called PDF allows

limited forms of dynamic behavior [6] in terms of run-time changes to dataflow graph pa-

rameters. The BDF [16] and CFDF [64] models are highly expressive (Turing complete)

dynamic dataflow models.

The following sections elaborate more on SDF, CSDF, and PDF models.

19

2.1.1 Synchronous Dataflow

An SDF graph is characterized by its compile-time predictability through the stati-

cally known consumption and production rates, as defined above. Fig. 2.1 shows a simple

SDF graph having actorsW, X, Y, andZ. Each edge is annotated with the number of to-

kens produced on it by the source actor and that consumed fromit by the sink actor during

every invocation of the source and sink actors, respectively. For example, actorX can be

fired when there are at least two tokens on its input. WheneveractorX is fired, it con-

sumes two tokens from its input buffer, and produces three tokens onto the output buffer

connected toY and two tokens onto the output buffer connected toZ.

In case of SDF graphs, it is possible to construct a periodic schedule that repeats

itself during the application execution. For an SDF graphG(V,E), each actoru ∈ V fires

exactlyq(u) times in a periodic schedule, whereq(u) is its repetition count obtained by

solving the balance equation

q(src(e))× prd(e) = q(snk(e))× cns(e) (2.1)

for each edgee ∈ E. For example, repetition counts for actorsW, X, Y, Z in the SDF

graph shown in Fig. 2.1 are2, 1, 3, and1, respectively. One of the ways to execute this

SDF graph is to fire the actors in the orderWWXYYYZ. This sequence represents one of the

valid schedules for this SDF graph and can also be represented as an equivalent looped

schedule(2 W)X(3 Y)Z.

More information on SDF graphs, conditions for having a valid schedule for an

SDF graph, and various techniques of scheduling SDF graphs can be found in [11].

20

W X
1D

2
1

Y
13

Z2

2

Figure 2.1: An SDF graph.

2.1.2 Cyclo-static Dataflow

Many signal processing applications involve behaviors in which production and

consumption rates may change during run-time. In some cases, these changes may,

however, be known at compile-time. For example, consider the CSDF graph shown in

Fig. 2.2(a), which has adecimatoractorM in it. This actor consumes one token from its

input on each invocation, but produces a token onto its output only on every fourth invo-

cation. This behavior has been depicted using the varying production volumes denoted by

[1 0 0 0]. The numbers of tokens produced by the decimatorM follow this cyclic pattern

with a period of4. This sequence of varying production volumes, though not leading to

constant output rates like an SDF actor, is still completelydeterministic and known at

the compile-time. This kind of dataflow behavior, where actors exhibit token production

and consumption volumes (in terms of tokens per firing on specific actor ports) that are

either constant or expressible as cyclic sequences of constant volumes, is referred to as

CSDF. Thus, CSDF can be viewed as a generalization of SDF in which token production

and consumption volumes may be different across different firings of an actor, but follow

cyclic patterns that are completely specified at the compile-time.

We refer readers to [13] for more details on the CSDF model. Asshown in

Fig. 2.2(a) and Fig. 2.2(b), it may be possible to transform aCSDF actor into an SDF actor.

21

P M
[1 1 1 1]

1
R

 1

[1 0 0 0]

(a)

P M
4

1
R

1
1

(b)

Figure 2.2: An application graph with a simple decimator actor M using the
(a) CSDF, and (b) SDF models. ActorM is a decimator with adecimation
factorof 4.

In general, when feedback loops are present in a dataflow graph, such a transformation

may introduce deadlock, and therefore should be attempted with caution. Such a transfor-

mation, when admissible (not leading to deadlock), generally has trade-offs in terms of

relevant metrics including latency, throughput, and code size. More detailed comparisons

between the SDF and CSDF models of computation are presentedin [54, 10].

2.1.3 Parameterized Dataflow

Though CSDF provides enhanced expressive power compared toSDF, it is still

unable to specify patterns in token consumption and production volumes that are not

fully known at compile time. A meta-modeling technique called PDF has been proposed

to represent certain kinds of dataflow application dynamics[6]. This model can be used

with any arbitrary dataflow graph format that has a well-defined notion of aschedule

iteration. For example, the PDF meta-model, when combined with an underlying SDF

model, results in the PSDF model. A PSDF graph behaves like anSDF graph during

one schedule iteration, but can assume different configurations across different schedule

iterations.

The PDF meta-model supports semantic and syntactic hierarchy. Syntactic hierar-

22

chy is used, as in other forms of dataflow, to decompose complex designs in terms of

smaller components. On the other hand, semantic hierarchy in PDF is used to apply spe-

cific features in the meta-model that are associated with dynamic parameter reconfigura-

tion. A hierarchical actor that encapsulates such semantichierarchy in PDF encapsulates

a PDF subsystem. A PDF subsystem in turn has three underlying graphs called the init,

subinit, andbodygraphs, which interact with each other in structured ways. Intuitively,

the init and subinit graphs can capture data-dependent, dynamic behavior at certain points

during the execution of the graph and configure the body graphto adapt in useful ways to

such dynamics. Similarly, the init graph can be used to dynamically configure parameters

in the subinit graph, which, in general, executes more frequently relative to the init graph.

Intuitively, the init graph is designed to capture parameter configuration that is driven by

higher, system-level processing, while the subinit graph is designed to capture the param-

eter changes occurring across different iterations of the corresponding body graph.

A PDF actor may have a set of parameters associated with it. The PDF model al-

lows the behavior of a subsystem to be controlled by allowingsuch parameters to change

during run-time. These parameters can control functional behavior as well as dataflow

behavior (the rates at which actors produce and consume datato and from their output

and input ports). In the context of PDF, these parameters canbe classified as dataflow or

non-dataflow parameters depending on whether or not they control dataflow behavior in

the corresponding actors. In general, the functionality ofa PDF actor depends on both

dataflow and non-dataflow parameters. Depending upon the visibility of the parameters

outside a PDF subsystem (possibly, to the enclosing PDF graph or subsystem), it is possi-

ble to classify them asexternal subsystem parametersor internal subsystem parameters.

23

Table 2.1: Interactions among PDF subsystem components, dataflow inputs and outputs,
and parameters.

PDF Subsystem
Feature Component Graphs

body init subinit

Input port connected to a dataflow edge Yes No Yes

Output port connected to a dataflow edge Yes No No

Sets external dataflow subsystem parameters No Yes No

Sets external non-dataflow subsystem parametersNo Yes No

Sets internal subsystem parameters No Yes Yes

While external subsystem parameters are visible to the enclosing PDF graph, internal

subsystem parameters (for example, state information of a PDF actor) are not. These

parameters, collectively, are referred to asimmediate parameters.

Details of interactions among init, subinit and body graphsand various types of

parameters are described in [7]. Table 2.1 highlights some of the most important aspects

of this interaction.

Intuitively, the init and subinit graphs can capture data-dependent, dynamic be-

havior at certain points during the execution of the graph and configure the body graph

to adapt in useful ways to such dynamics. Similarly, the initgraph can be used to dy-

namically configure parameters in the subinit graph, which,in general, executes more

frequently relative to the init graph. Intuitively, the init graph is designed to capture pa-

rameter configuration that is driven by higher, system-level processing, while the subinit

graph is designed to capture parameter changes occurring across different iterations of the

corresponding body graph. For details related to parameterconfiguration, and semantics

24

Data FIR Filter (CN)
1

1
Decimator

[1 1 ... 1]1 x D

1
Output

 1

[1 0 0 ... 0]1 x D

(a)

(b)

Figure 2.3: Modeling a parameterized decimation filter (DF) application us-
ing PCSDF: (a) Application graph —CN denotes a vector of FIR filter coef-
ficients, andD denotes a decimation factor, and (b) PCSDF representation.

of invocations of PDF graphs, we direct the reader to [6], and[7].

To further illustrate the PDF modeling technique, we consider the application ex-

ample shown in Fig. 2.3(a). This example involves a finite impulse response (FIR) filter

with filter taps or coefficients given byCN = [c0, c1, . . . , cN−1] followed by a decimator

with a tunable decimation factor ofD. The values ofD andCN are set either through

a higher level system or user interface. We skip the details of this mechanism for the

sake of simplicity and conciseness. Such behavior can be modeled using PDF with an

25

underlying CSDF model. Such a modeling approach is referredto as theparameterized

cyclo-static dataflow(PCSDF) model [69]. Fig. 2.3(b) shows one of the possible PCSDF

graphs corresponding to the application shown in Fig. 2.3(a). The subsystemDF is a

PCSDF subsystem with its component graphs as shown in the figure. It can be seen here

that thecontrol actor in theDF.init graph ofDF subsystem sets the required

external and internal parameters,D, andCN , respectively. This actor models the required

parameter control through either a higher level system or some form of user interface. In

this particular case, theDF.subinit graph is empty (in general, the init, subinit and

body graph do not all have to be used for a given subsystem).

The PCSDF model allows CSDF actors for which the cyclic patterns of token pro-

duction and consumption volumes can be parameterized in terms of theirperiods, the

actual numbers of tokens consumed or produced in the cyclo-static sequences, or both.

Such a model is of particular interest for modeling multirate DSP systems that exhibit

parameterizable sample rate conversions. PCSDF allows desginers to systematically ex-

plore design spaces across static, quasi-static, and dynamic implementation techniques.

Here, byquasi-staticimplementation techniques, we mean techniques where relatively

large portions of the associated software or hardware structures are fixed at compile-time

with minor adjustments allowed at run-time (e.g., in response to changes in input data

or operating conditions). A variety of quasi-static dataflow techniques are discussed, for

example, in [8].

26

2.2 The Dataflow Interchange Format

To describe dataflow applications for a wide range of DSP applications, application

developers can use the DIF language, which is a standard language founded in dataflow

semantics and tailored for DSP system design [36]. DIF provides an integrated set of syn-

tactic and semantic features that can fully capture essential modeling information of DSP

applications without over-specification. From a dataflow point of view, DIF is designed

to describe mixed-grain graph topologies and hierarchies as well as to specify dataflow-

related and actor-specific information. The dataflow semantic specification is based on

dataflow modeling theory and independent of any design tool.

Fig. 2.4 illustrates some of the available constructs in theDIF language along with

the syntax used for application specification. More detailson the DIF language can be

found in [35]. Thetopology block of the specification specifies the graph topology,

which includes all of thenodes andedges in the graph. DIF supportsbuilt-in at-

tributessuch asinterface, refinement,parameter, andactor, which identify

specifications related to graph interfaces, hierarchical subsystems, dataflow parameters,

and actor configurations, respectively. DIF also allowsuser-defined attributes, which

have a similar syntax as built-in attributes except that they need to be declared with the

attribute keyword.

The DIF package (TDP) (see Fig. 1.2) facilitates use of the DIF language. Along

with the ability to transform DIF descriptions into manipulable internal representation,

it contains graph utilities, optimization engines, verification techniques, a comprehensive

functional simulation framework, and a software synthesisframework for generating C

27

[dataflowModel] graphID {
basedon {

graphID;
}

[topology] {
nodes = nodeID, ...;
edges = edgeID(srcNodeID, snkNodeID), ...;

}

[builtInAttribute] {
elementID = value;
elementID = id;
elementID = id1, id2, ...;

}

[attribute] userDefinedAttribute {
elementID = value;
elementID = id;
elementID = id1, id2, ...;

}
}

Figure 2.4: The DIF language.

code [36, 64]. These facilities make DIF an effective environment for modeling dataflow

applications, providing interoperability with other design environments, and developing

and experimenting with new tools and dataflow techniques. Beyond these features, DIF is

also suitable as a design environment for implementing dataflow-based application repre-

sentations. Describing an application graph is done by listing nodes and edges, and then

annotating dataflow specific information.

28

A B
5

1
C

2
3

(a)
1

2 3

5 B

A

C

(b)

1

2 3

5 B

A

C

(c)

Figure 2.5: (a) An SDF graph for a sample rate converter; (b) one of the
schedules for it represented as a GST; and (c) GST representing guarded and
unguarded execution of actors — a GST node with two concentric ellipses or
circles denotes guarded execution of the corresponding actor.

2.3 Generalized Schedule Trees

The GSTs provide a dataflow model independent representation of schedules, which

can then be utilized as an input to the subsequent stages of the toolflow such as simula-

tion and code synthesis [42]. GSTs are ordered trees with leaf nodes pointing to the

actors of an associated dataflow graph. An internal node of a GST denotes a loop count

(an iteration construct to be applied when executing the schedule). In this thesis, I denote

the loop count and actor associated with a nodeu in a GST bycount(u) andactor(u),

respectively. The GST representation allows exploiting topological information and al-

gorithms for ordered trees in order to access and manipulateschedule elements. The

execution of a schedule involves traversing the GST in a depth-first manner, and during

this traversal, the sub-schedule rooted at any internal node is executed as many times as

29

specified by the loop count of that node. Fig. 2.5(b) shows a GST for a valid schedule

for the SDF graph shown in Fig. 2.5(a). This particular GST represents a firing sequence

(2 (5 A)B)(3 C), where(n X) impliesn successive invocations of a schedule el-

ement (possibly an actor)X.

For sake of completeness, it must be noted that GSTs can be used to represent

guarded and unguarded execution of actors as shown in Fig. 2.5(c). A GST node with

two concentric ellipses or circles denotes guarded execution of the corresponding actor. A

schedule represented by the GST in Fig. 2.5(c) involves guarded execution of actorA, and

unguarded execution of actorsB andC. The term “guarded execution” refers to invoking

an actor following some actor-specific run-time checks, andonly if certain conditions

(e.g., with respect to availability of the required number of data tokens on all the actor

inputs) are satisfied. We will revisit this concept and elaborate more on it in Chapter 4 in

the context of CFDF model.

2.4 Graph Package Oriented toward Models of Computation

MoCGraph is a Java-based package of generic graph data structures and algorithms

with emphasis on supporting graph-theoretic analysis for MoCs. MoCGraph has been de-

veloped by the Maryland DSPCAD Research Group (“DSPCAD Group”), which focuses

on computer-aided design (CAD) techniques for DSP systems.The DIF package builds

on the MoCGraph package to provide representations and analysis techniques that are

specialized for dataflow graphs, and provide foundations for model-based design flows

targeted to embedded DSP systems [36, 64].

30

It must be noted, however, that the features provided in MoCGraph are generally

not specific to DSP or CAD-for-DSP applications, and can be used for many other kinds

of graph-theoretic specification and analysis features. Infact, MoCGraph has evolved

from the graph package in Ptolemy II [25], which allows experimentation with a wide

variety of MoCs.

This thesis has contributed significantly to the development and release of the latest

version of the MoCGraph package. This version extends the previous released version of

MoCGraph to include support for tree data structures, and GSTs, in particular. These de-

velopments have provided a key foundation for supporting capabilities in the DIF package

that are associated with CFDF modeling, and functional simulation. By linking to fea-

tures of thedot package [29], this version also allows visualization of graphs that are

constructed using the graph representations provided in MoCGraph.

2.4.1 MoCGraph Software Architecture and Features

The MoCGraph package provides for the following important features and facilities

through its software architecture:

1. MoCGraph allows creating and manipulating generic graphdata structures along

with special types of graphs, such as directed graphs, directed acyclic graphs (DAGs),

trees, and rooted trees among many others [18]. Fig. 2.6 shows a partial hierarchy

of classes in MoCGraph. Creating a graph typically involvesinstantiating the ap-

propriate graph elements — nodes and edges — along with specifying the graph

topology.

31

Graph

DirectedGraph UndirectedGraph

DirectedAcyclicGraph Forest Tree

RootedTree

OrderedTree

ScheduleTree
(mocgsched)

Figure 2.6: A hierarchy of classes in MoCGraph that implements various
types of graph data structures.

2. MoCGraph allows assigning application-specific information associated with a graph

element — a graph node or edge — through a construct known as a “weight,” which

has a generic data type. Such weights can be utilized to extend the MoCGraph

package for use in specific applications or domains. For example, the DIF package

makes use of this facility to assign dataflow-specific information to the nodes and

edges in a dataflow graph.

3. MocGraph provides implementations of algorithms for graph analysis — for exam-

ple, algorithms to determine existence of cycles in a graph,and compute all-pairs

shortest path results, to name a few.

The latest version of MoCGraph extends its earlier releasedversion by providing

the following new graph types — tree, rooted tree, ordered tree, andk-ary tree [18].

32

An important plug-in to MoCGraph is a package calledmocgsched, which stands for

MoCGraphscheduling support. Section 2.4.2 describes this plug-in.

2.4.2 mocgsched Plug-in

This plug-in augments the MoCGraph package by providing data structures used

to represent schedules for dataflow graphs. The scheduling strategies, which are graph

transformations, can make use of these data structures to represent the schedules derived

from the given application graphs. It must, however, be noted that scheduling transfor-

mations that are specific to dataflow are not part of the MoCGraph package — instead,

packages that are intended for features specific to dataflow can build on features of MoC-

Graph andmocgsched to provide such dataflow-specific transformations. This is the

approach taken in DIF for many of its scheduling features.

The latest version ofmocgsched includes the representation that supports looped

schedules (as in the previous version of MoCGraph [35]), along with a data structure for

storing and manipulating GSTs. GSTs make use of various types of tree data structures,

which have been added recently as mentioned in Section 2.4.1. The support for GSTs

in mocgsched has provided an important foundation for CFDF-based modeling and

functional simulation features in the DIF package [64].

2.5 DICE: The DSPCAD Integrative Command-Line Environment

The DSPCAD Group has developed theDSPCAD integrative command line envi-

ronment(DICE), which is a package of utilities that facilitates efficientmanagement of

33

software projects [9]. The objective of DICE is to provide a flexible, lightweight envi-

ronment for the design, implementation, testing, and integration of engineering software,

with a specific orientation towards projects that employ heterogeneous programming lan-

guages and cross-platform design methods. The DICE packagehas been used extensively

as an environment for software development for many of the projects involved in this

thesis.

DICE is implemented as a collection of utilities that are in the form of Bash scripts,

C programs, and Python scripts. Therefore, facilities for interpreting/compiling these

languages must be available to use all of the capabilities inDICE. DICE is developed

with significant attention to cross-platform operation. Platforms on which DICE is used

actively include Linux, MacOS, Solaris, and Windows (equipped with Cygwin).

Apart from DICE utilities that facilitate working in a command line environment,

such as those for directory navigation, another important aspect of the DICE is to provide

a lightweight and flexible unit testing environment. This environment is lightweight in

that it requires minimal learning of new syntax or specialized languages, and flexible in

that it can be used to test source code in many languages, including C, Java, Verilog, and

VHDL [9].

In DICE, the test suite for a project consists of anindividual test subdirectory(ITS)

for each of the unit tests in the suite. An ITS in general contains files that provide docu-

mentation related to the test, a script to perform any compilation steps necessary to build

the test, a script to execute the test, and files that contain the expected output and errors

resulting from correct execution of the test. The output anderrors resulting from the ac-

tual execution of the test are also stored in the same ITS, andcompared with the expected

34

behavior of the test. More information regarding ITS structure, and DICE utilities for unit

testing can be found in [9].

Although testing is an established concept in the software engineering field, inte-

grating testing rigorously with software development instead of testing being applied as

an afterthought to the coding process is a relatively new paradigm. DICE facilitates the

application of this paradigm.

A companion package of DICE, calleddicelang, provides a collection of language-

specific plug-ins that extend the features of DICE, and provide new features to facilitate

efficient software project design, implementation, and testing for selected programming

languages [9].

2.6 Summary

In this chapter, we have provided background information ondataflow modeling,

the dataflow interchange format, generalized schedule trees, the MoCGraph package, and

the DICE package. This background and the corresponding tools are fundamental to the

work developed and presented in the remainder of this thesis.

35

Chapter 3

Topological Patterns for Specification and Analysis of Dataflow Graphs

Tools for designing signal processing systems with their semantic foundation in

dataflow modeling often use high-level GUIs or text based languages that allow speci-

fying applications as directed graphs. Such graphical representations serve as an initial

reference point for further analysis and optimizations that lead to platform-specific imple-

mentations. For large-scale applications, the underlyinggraphs often consist of smaller

substructures that repeat multiple times. To enable more concise representation and direct

analysis of such substructures in the context of high-levelDSP specification languages

and design tools, we have developed the modeling concept oftopological patterns, and

proposed ways for supporting this concept in a high-level language. This chapter shows

how the DIF language can be augmented with constructs for supporting topological pat-

terns, and topological patterns can be effective in variousaspects of embedded signal

processing design flows using specific application examples.

3.1 Introduction

As mentioned in Section 1.2, DSP-oriented dataflow design tools typically allow

high-level application specification, software simulation, and possibly synthesis for hard-

ware or software implementation. These tools employ high-level description languages

for application specification. These languages, which may be either GUI or text based,

36

provide syntactic and semantic constructs for specifying graphical representations of DSP

applications. Such graphical representations are then parsed and converted into interme-

diate representations suitable for further processing.

In this work, we address the problem of representing large-scale and scalable dataflow

graphs that have complex topologies. Such graphs comprise of various kinds of functional

substructures that are parameterizable and can be represented in terms of concise, scalable

specifications.

For example, the dataflow graph of anN-point fast Fourier transform (FFT) algo-

rithm consists of a combination of scaled versions of a well-known pattern called the

butterfly diagram[52], and a systolic array is ameshof computing elements having

a specific dataflow structure that can solve problems such as QR-decomposition based

recursive least square adaptive filtering, and minimum variance distortionless response

beamforming [43]. We identify such common structures in dataflow graphs astopologi-

cal patterns, and treat this kind of pattern as a first class citizen in the modeling process.

Furthermore, we demonstrate and experiment with the use of topological patterns in the

DIF, a textual design language and associated software package for specification, analysis,

and synthesis based on DSP-oriented dataflow models of computation [36], [64].

Topological patterns not only permit scalable specifications of dataflow substruc-

tures but also expose the underlying graph structure explicitly to the corresponding design

tool. This allows design tools to exploit any analysis or optimization advantages offered

by the substructures without having to “discover” those structures through additional lev-

els of pre-processing analysis. Some of the key components of the design flow that can

potentially benefit from explicitly exposed patterns include various kinds of scheduling

37

transformations, and techniques for buffer memory optimization. Furthermore, by mak-

ing it easier and more efficient to apply substructure-specific analysis techniques, pro-

gramming support for topological patterns encourages the development of such analysis

techniques, and provides a natural interface for reusing them across different applications

and tools.

The concept of topological patterns is elaborated in Section 3.3. In Section 3.4,

we describe how we extend the DIF language to integrate topological patterns as a first

class modeling construct. In Section 3.5, we show how topological patterns can be used

by dataflow based design tools for dataflow graph analysis andtransformations. We

show how topological patterns can be used for graph analysis; representing equivalent

HSDF graphs of application graphs modeled using SDF and CSDFmodels; extracting

implementation-specific features; exploring trade-offs for an FPGA implementation of a

JPEG image compression application; representing schedules; and experimenting with

pattern-specific schedules.

3.2 Related Work

Block diagrams are a natural and convenient way of describing DSP algorithms,

and hence, DSP systems designers find it intuitive to have a high-level application speci-

fication that captures such a description. GUI based dataflowlanguages try to capture this

intuition using visually appealing representations, while text based languages provide

syntax that looks similar to common procedural languages, such as C, but with semantic

constructs that model the dataflow structure of DSP block diagrams. To effectively han-

38

dle the increasing complexity of signal processing system design, these languages must

provide frameworks for modular and scalable representations with sufficient expressive

power.

Earlier research efforts have focused on supporting commonly used and highly ex-

pressive constructs from procedural languages, such as recurrences, iteration, and condi-

tionals, in dataflow-oriented languages [45]. Subsequent work includes evolution of var-

ious textual languages for DSP system design, such as SILAGE[82], StreamIt [79], and

CAL [26]. The StreamIt language provides high-level, architecture-independent abstrac-

tions for streaming applications geared toward large-scale program development. The

CAL language is an actor-oriented language, which has been applied actively for field

programmable gate array (FPGA) implementation and reconfigurable video coding ap-

plications. The SILAGE language has been developed with an emphasis on support for

high-level synthesis and multidimensional signal processing.

While these previous efforts have employed useful techniques for deriving and ex-

ploiting various types of specialized dataflow substructures within their respective com-

pilers, they lack a general method for explicit and scalablerepresentation of such sub-

structures by the programmer. Such a programming interfacefor topological patterns is

essential to capture the broad range of relevant patterns inways that are scalable, and flex-

ibly extensible to accommodate new types of patterns as theyemerge from new applica-

tions and modeling techniques. Our concept of topological patterns is designed precisely

to bridge this gap.

In other prior work, higher-order functions have been shownto permit elegant con-

struction of structured subsystems in dataflow representations [48]. Higher-order func-

39

tions are functions that take functions as inputs or producefunctions as outputs. Topolog-

ical patterns provide a related but technically different approach since topological patterns

operate on generic directed graph vertices (e.g.,nodes in DIF), where the actual binding

to actor functionality and associated actor parameter values is specified separately, possi-

bly through additionalparameter propagation patterns(PPPs). Thus, unlike higher-order

functions that take functions as arguments, topological patterns take only generic graph

vertices (or arrays of such vertices) as arguments. Furthermore, our development of topo-

logical patterns is tightly integrated with textual graph representation and arrays of graph

vertices and edges, which are useful for providing scalablerepresentations and managing

large-scale designs.

Perhaps the most closely related prior work is that on support for arrays of vertices

and edges in the DIF language with array construction syntaxand semantics similar to

those in the C language [19]. These constructs provide a useful shorthand notation for

specifying related groups of graph elements (nodes or edges) as arrays in which individual

elements can be easily indexed. A typicalelementID in the DIF specification (see

Fig. 2.4) when referred to asbaseName[N], generates an array ofN elements. For

example,tap[N] in DIF specifies an arraytap of N nodes. Theith node, wherei =

0, 1, . . . , N−1, can be accessed using its index astap[i]. However, in thisfirst-version

array support within DIF, there is no mechanism for instantiating (declaring) collections

of related edges automatically as structured mappings among corresponding subsets of

nodes. It is also not possible to configure parameters acrossarrays of actors as functions of

the array indices. These two features — scalable, programmatic instantiation of graphical

substructures, and association of parameter values — are provided by our development of

40

topological patterns.

This development is orthogonal to the existing support for syntactic and semantic

hierarchy in the DIF language, which allows constructing hierarchical dataflow graphs.

The focus here is to allow the designer to specify already identified topological patterns in

the design and expose such patterns to the enclosing design tool or design process, which

is generally not achieved through conventional methods forusing hierarchical dataflow

graphs.

This chapter presents formulation of the concept of topological patterns and its ap-

plication to dataflow modeling. To prototype this concept inDIF, we build upon the first-

version framework of arrays in DIF, and introduce new modeling and language constructs

that are dedicated to topological patterns. We also demonstrate the use of topological

patterns to derive efficient implementations.

A preliminary version of this work was presented in [71], while the extended work

was presented in [72]. The work presented here, and in [72] goes beyond the develop-

ments of [71] by significantly extending the development of applications of topological

patterns. Specifically, we explore the utility of topological patterns in analyzing dataflow

graphs and extracting implementation-specific features. We also use topological patterns

to represent schedules obtained after applying schedulingtransformations to dataflow

graphs, and derive more efficient implementations from suchrepresentations. Addition-

ally, we show how specific topological patterns can be exploited to construct structured

schedules, and how designers can experiment with corresponding scheduling trade-offs.

41

3.3 Topological Patterns

We have developed the concept of topological patterns for concise specification

of functional structures at the dataflow graph (inter-actor) level. Topological patterns

provide a scalable approach to specifying regular functional structures in a manner that is

analogous in some ways to the use of design patterns in objectoriented software [28], but

with additional properties associated with being formallyintegrated with the framework

of dataflow. This integration allows not only for specification of functional patterns but

also for their analysis and optimization as part of the larger framework of dataflow.

Topological patterns build on the concepts ofgraph element arrays, which allow

indexed families of graph elements to be declared and treated as single units for pur-

poses of graph construction and analysis. As with arrays in conventional programming

languages, graph element arrays can be single- or multi-dimensional. Additionally, they

can be parameterized in terms of dataflow graph attributes sothat their sizes and other

characteristics can be conveniently adapted.

3.3.1 Topological Patterns in Signal Processing

We motivate the utility of incorporating topological patterns into dataflow frame-

works for DSP system design by illustrating the pervasive nature of these patterns in the

domain of DSP. We have already discussed a few such patterns in Section 3.1 — in partic-

ular, thebutterfly andmesh patterns, which have applications in FFTs and systolic

arrays, respectively. Additionally, thechain pattern is one of the most commonly found

topological patterns. This pattern finds applications in modeling multi-stage sample rate

42

converters, delay lines in FIR filters, or configurations of pipeline stages. A chain of de-

lay blocks, a chain of adders, and anarray of filter taps collectively specify a complete

FIR filter when connected together. A natural extension of this pattern is a2-dimensional

mesh structure. Such a structure is of particular use to model DSP architectures in which

data flows across a network of processing elements connectedto form a2-D grid such as

a systolic array, as discussed earlier in Section 3.1 [43].

A ring pattern represents a cycle in a graph as may be introduced by aphase-

locked loop [47] or more generally, afeedback loop in the system. The FFT block is

one of the most abundantly found blocks in DSP systems. AnN-point FFT computation

involves FFT computation stages of smaller dimensions thatcan be implemented as scaled

versions of the2-point FFT. These FFT stages resemble a butterfly-like pattern [52]. Such

patterns can also be found in other applications, such as sorting networks [18]. Entropy

encoding algorithms such as Huffman coding make use of thebinary tree structure,

a commonly found data structure in many computer algorithms[38]. A pattern in which

edges connect a source node to multiple sink nodes can be termed as abroadcast

pattern. This pattern finds use in applications that have computation blocks in multiple

stages with blocks in one stage connected to those in the subsequent stage. Such patterns

are observed in multi-layer neural networks used for pattern classification [24] and trellis

coding algorithms used in digital communication [47]. It isalso common to find its

dual, themerge pattern, which connects multiple source nodes to a single sink node.

Applications may also have parallel connections between corresponding nodes in adjacent

stages. We identify this pattern as aparallel pattern in which edges form a one-to-

one correspondence between nodes in two different sets. We also identify a pattern called

43

multiedge that creates multiple edges between a given pair of nodes.

3.3.2 Parameter Propagation

An important feature to support in conjunction with topological patterns is a mech-

anism for structuredparameter propagation, whereby any parameters associated with the

vertices in a topological pattern can be set as a function of the vertex indices (i.e., indices

associated with the underlying vertex ordering that is input to the pattern instance). For

example, Fig. 3.1 shows an array of5 actors identified asA 0 , A 1 , . . . , A 4 , where

each actor has a parameterangle associated with it that is an affine function of its index

in the array. Such a parameter assignment can be implementedin a scalable, reusable,

and explicitly-recognizable form as a designated PPP — in particular, a PPP for affine

mappings of parameter values across ordered vertices. Suchan affine PPP can find use

in specifying elements of asteering vectorcorresponding to each sensor in a sensor array

while estimating the direction of arrival of the received signal [33].

One of our important motivations for using topological patterns is to provide for

compact, scalable representations for large dataflow graphs. It is common for such large

graphs to have actors with the same functionality that scalein number with the size of

the application graph. These actors may have functional parameters (for example, the

parameterangleassociated with the actors in Fig. 3.1) that determine some of their func-

tional aspects and also distinguish them from the other actors of the same (parameterized)

functionality. It may be inconvenient to specify such parameters individually for all of the

actors with growing size of an application graph (in fact, such individualized parameter

44

A_0_
 angle = 5

A_1_
 angle = 15

A_2_
 angle = 25

A_3_
 angle = 35

A_4_
 angle = 45

Figure 3.1: Configuring an array of nodes with a PPP.

specification violates the compactness objective of topological patterns). PPPs can help

here by providing a compact representation format that can be used to set parameters as-

sociated with actors in the large graphs that are represented by the associated topological

patterns.

In terms of implementation in the DIF language, just as component attributes and

topological patterns can be either user-defined or built-in, similarly commonly-used PPPs

can be absorbed into the language as built-in PPPs, while users have the flexibility to

incorporate specialized PPPs by linking their interpretation (propagation functionality) to

segments of customized Java code.

3.4 Topological Patterns in DIF

We extend the DIF language by supporting topological patterns as first class citizens

in the modeling framework. These patterns can be defined as built-in patterns, which are

recognized and processed through corresponding keywords in the language. To enable

more flexible application of patterns, we also support declaring arbitrary (user-defined)

patterns, whose associated graph construction functionality can be carried out through

procedural language code (Java or C in the case of DIF) that islinked with the graph

specification.

45

A_0_ A_1_ A_2_ A_3_ A_6_

A_4_

A_5_

(a)
topology {

nodes = A[7];
edges = e0(A[0], A[1]), e1(A[3], A[6]),

ring_0[5] -> ring(A[1:1:5]),
ring_1[3] -> ring(A[1], A[3], A[2]);

}

(b)

Figure 3.2: Overlapping patterns: (a) a graph topology having two ring
patterns that have three nodes common to them, and (b) a corresponding DIF
representation.

We have added, as built-in topological pattern specifiers, new keywords in DIF

corresponding to topological patterns that are relativelycommon in signal processing sys-

tems. These keywords, such asring,parallel,merge,butterfly,broadcast,

andchain, allow specifying patterns explicitly as part of thetopology block in a DIF

specification. When declaring an instance of such a pattern,the designer must provide

a sequence of vertices and an optional set of parameter values. The pattern construct,

when parsed, generates the required edges, inserting the new edges into the graph that is

being constructed. The pattern construct also configures the underlying nodes using the

parameter propagation mechanism explained in Section 3.3.2.

A typical way to specify a sequence of nodes is through the useof DIF notation

46

for representing nodes in an array. For example, for an arrayof 7 nodes, specified as

A[7], we can specify that5 of its elements form a ring structure using the construct

ring(A[1:1:5]) in thetopology block of the DIF code as shown in Fig. 3.2. The

argumentA[1:1:5] to the constructring, specifies an array of nodes starting from

A[1], ending atA[5], and having an array index increment of1. In general, the syntax

baseName[i:j:k] denotes an array of elements in an arraybaseName starting from

the indexi, ending with the indexk, and having an array index increment ofj. Note that,

outside of the pattern instantiation construct, the nodes in the arrayA can be accessed by

their indices to create edges that are not part of thering pattern. Thus, one can flexibly

embed patterns within arbitrary structures including structures that contain other patterns.

It is also possible to generate multiple patterns that have one or more nodes common

to them, as shown in Fig. 3.2. It is, thus, possible for the designer to effectively identify

one or more types of overlapping topological patterns in theapplication graph.

3.5 Applications of Topological Patterns

As described earlier, we envision topological patterns to offer a wide range of ad-

vantages at various stages of the design flow from modeling toplatform-specific imple-

mentation. In Sections 3.3 and 3.4, we have identified topological patterns in various

DSP system specifications. In the following subsections, weexamine other aspects of the

design flow where topological patterns can be effectively used.

47

3.5.1 Graph Analysis

The explicit specification of known graphical structures astopological patterns can

significantly facilitate various types of dataflow graph analysis algorithms. For example,

one of the first and most important steps in many dataflow graphscheduling strategies

is to analyze the input graph to identify strongly connectedcomponents (SCCs). An

SCC is a maximal subgraph in which every pair of distinct nodes is connected through a

cyclic path. It is often useful to cluster SCCs — for example,SCCs can be clustered to

improve scheduling of SDF graphs (e.g., see [37]). Such clustering of SCCs is typically

performed in order to obtain a top-level DAG. For a directed graphG = (V,E), SCCs

can be identified using an algorithm with a time complexity ofthe order ofΘ(|V |+ |E|)

(see [18] for more details on the definition of theΘ-notation as well as algorithm to find

SCCs in a directed graph).

Consider an application graph that contains multiple feedback paths that can be

modeled and specified using thering pattern. Aring represents a cycle in the graph

and hence, a subset of vertices that form an SCC. Such a cycle,when directly specified as

aring can be readily reduced into a single clustered actor. Aring with n nodes in it,

when clustered into a single node, effectively reduces the number of nodes in the graphG

byn−1. Suppose that a graphG has manyring patterns that have been identified in the

graph specification. Then by identifying these rings in constant time, which an analysis

tool can do easily from explicit topological pattern specifications, the number of nodes

and edges in the graph can be reduced significantly. This can lead to more efficient SCC

computation, especially for large graphs.

48

3.5.2 Representing HSDF Graphs

Many techniques devised for generating multiprocessor schedules from SDF graphs

require that the given dataflow graph be transformed into an equivalent HSDF graph (e.g.,

see [76]). An HSDF graph is an SDF graph in which every actor consumes (produces) a

single token from (on) each input (output) port. Techniquesfor converting an SDF graph

into equivalent (for scheduling purposes) HSDF graphs havebeen developed in [46]. Such

techniques are useful, because equivalent HSDF graphs can expose parallelism much

more effectively compared to their more compact SDF counterparts.

Unfortunately, equivalent HSDF representations can scalevery inefficiently — the

size of an equivalent HSDF graph is in general not polynomially bounded in the size of

the corresponding SDF graph [58]. Representing such HSDF graphs becomes a cumber-

some exercise, as such representations require large amounts of storage to maintain and

large amounts of computation time to process them. For a large HSDF representation,

it is difficult for a design tool to traverse the HSDF representation and make effective

use of it within a reasonable amount of time. Topological patterns can help in this sit-

uation by providing concise representations to expose repetitive structures within HSDF

representations, thereby improving the efficiency of HSDF-based schedulers.

For example, Fig. 3.3(a) shows an SDF graph that models a simple sample rate

converter, and its equivalent HSDF graph (below). Here, actor B is a decimator with a

decimation factor of3. Fig. 3.3(c) shows a DIF specification of this HSDF graph using

topological patterns. Fig. 3.3(b) and (d) show an equivalent CSDF graph model with its

HSDF graph and associated topological-pattern-based DIF specification. In the CSDF

49

A B
3

1
C

2
1

A_0_

A_1_

B_0_

A_2_

A_3_

A_4_

B_1_

A_5_

C

(a) SDF graph to HSDF graph

A B
[1 1 1]

1
C

2

 [1 0 0]

A_0_

A_1_

B_0_

A_2_

B_1_

A_3_

B_2_

A_4_

B_3_

A_5_

B_4_

B_5_

C

(b) CSDF graph to HSDF graph

topology {
nodes = A[6], B[2], C;
edges = e0[3] -> merge(A[0:2], B[0]),

e1[3] -> merge(A[3:5], B[1]),
e2[2] -> merge(B[0:1], C);

}

(c) DIF topology block for HSDF graph in (a)

topology {
nodes = A[6], B[6], C;
edges = e_par[6] -> parallel(A[0:5], B[0:5]),

e_mrg[2] -> merge(B[0:3:3], C);
}

(d) DIF topology block for HSDF graph in (b)

Figure 3.3: A sample rate converter.

50

representation, actorB provides a decimation by a factor of3. Actor B consumes input

tokens on every firing while producing an output token only onevery third firing, starting

with the first firing. As this example illustrates, topological patterns can provide a concise

and scalable representation of equivalent HSDF graph representations for SDF and CSDF

graphs.

It should, however, be noted that a graph representation using topological patterns

is in general not unique. Depending on the set of available topological patterns, it may

be possible to have multiple functionally-equivalent representations of a given dataflow

graph using topological patterns. In the case of Figure 3.3(a), for example, it may be

possible to use atree pattern if the associated design tool supports it.

Structured representations of HSDF graphs can also enable efficient tuning of HSDF

graph representations in terms of application parameters.For example, for the dataflow

graph in Figure 3.3(b), it can be observed that if the decimation factor of actorB is

changed, then the DIF representation for the HSDF graph can be updated by simply

changing the numeric arguments to the topological patternsused in its representation.

In general, for a decimation factor ofD, the production rate of actorB in Fig. 3.3(b) is

[1 0 0 · · · 0]1×D and the equivalent HSDF graph for this CSDF graph has the following

specification, whereD is a suitably-declared parameter.

topology {
nodes = A[2D], B[2D], C;
edges = e_par[2D] -> parallel(A[0:2D-1], B[0:2D-1]),

e_mrg[2] -> merge(B[0:D:D], C);
}

Thus, topological patterns provide streamlined representations that are concise, tun-

able, and scalable, and are particularly useful for complexgraph structures, such as those

51

A_0_ B_0_

B_1_

C_0_

A_1_

C_1_A_2_ B_2_

B_3_

C_2_

A_3_ C_3_

D_0_

D_2_

D_1_

D_3_

topology {
nodes = A[4], B[4], C[4], D[4];
edges = fft2_0[4] -> butterfly(A[0:1], B[0:1]),

fft2_1[4] -> butterfly(A[2:3], B[2:3]),
fft4[8] -> butterfly(C[0:3], D[0:3]),
e_par[4] -> parallel(B[0:3], C[0:3]);

}

Figure 3.4: Dataflow graph for a 4-point fast Fourier transform and the
topology block in its DIF specification.

found in equivalent HSDF graphs arising from multirate SDF,and CSDF models.

3.5.3 Extracting Implementation-Specific Features

Fig. 3.4 shows an HSDF graph that models a 4-point FFT application [52], and

the topology block in its DIF specification. Note the underlying topological pat-

terns —butterfly andparallel — in the graph. It should also be noted that

butterfly(C[0:3], D[0:3]) is a scaled version of abutterfly pattern with

just 4 nodes, and is equivalent to twobutterfly patterns formed by the node subsets

{C 0 , C 2 , D 0, D 2 } and{C 1 , C 3 , D 1 , D 3 }.

Apart from scalability, there is another useful feature in this HSDF graph repre-

sentation. In particular, the bi-partite nature of both thepatterns —butterfly and

parallel— allows us to generate a pipelined implementation of this application. Here,

52

RGB
RGB2
YCbCr

Downsample
(Cb) (D_0_)

Downsample
(Cr) (D_1_)

Block
 Y (B_2_)

Block
 Cb (B_0_)

Block
 Cr (B_1_)

DCT
 Cb (T_0_)

DCT
 Cr (T_1_)

DCT
 Y (T_2_)

Quantize
 Cb (Q_0_)

Quantize
 Cr (Q_1_)

Quantize
 Y (Q_2_)

ZigZag
 Cb (Z_0_)

ZigZag
 Cr (Z_1_)

ZigZag
 Y (Z_2_)

FW
 Cb (F_0_)

FW
 Cr (F_1_)

FW
 Y (F_2_)

topology {
nodes = RGB, RGB2YCbCr, D[2], B[3], T[3], Q[3],

Z[3], F[3];
edges = e0(RGB, RGB2YCbCr),

e1[3] -> broadcast(RGB2YCbCr, D[0:1:1], B[2]),
Cb[5] -> chain(D[0], B[0], T[0], Q[0], Z[0],
F[0]),
Cr[5] -> chain(D[1], B[1], T[1], Q[1], Z[1],
F[1]),
Y[4] -> chain(B[2], T[2], Q[2], Z[2], F[2]);

}

Figure 3.5: JPEG encoder and thetopology block in its DIF specification.

segmentsA, B, C, andD, consisting of nodesA[0:3], B[0:3], C[0:3], andD[0:3],

respectively, may be considered as pipeline stages of the FFT implementation. This in-

herent pipelined nature of the FFT application can be identified easily using the bi-partite

nature of the underlying topological patterns. Of course, for FFTs, many efficient imple-

mentations have been developed in the literature, and the use of topological patterns does

not add any obvious value to the large library of existing FFTimplementation techniques.

However, this example succinctly illustrates the general potential of topological patterns

for exposing useful implementation options more clearly and efficiently to designers and

to analysis modules within design tools.

53

3.5.4 Exploring Implementation Trade-offs

Fig. 3.5 shows a JPEG encoder along with thetopology block in its DIF spec-

ification [83]. It effectively employs thebroadcast andchain patterns in its rep-

resentation. The JPEG compression algorithm downsamples both the chroma (Cb and

Cr) components before processing them. Except for this, all three components (both

chroma and lumaY) are processed through functionally similar chains of blocks. The

input pixels are grouped into blocks that are then transformed using the discrete cosine

transform (DCT), quantized, and scanned in a zigzag order. In particular, the chroma

components may be processed using shared functional modules that are clearly exposed

by thetopology block. Without the use of topological patterns, this observation may

not be clear to a designer until the entire graph is carefullytraced. For a design tool, this

observation may go entirely unexploited because such high-level structure can be difficult

to extract automatically from unstructured specifications.

The problem of identifying such graph structure is related to the graph isomor-

phism problem, which is the problem of detecting whether two graphs (or twosubgraphs

from the same or different graphs) can have their vertices and edges placed in one-to-one

correspondence with one another in a manner that maintains edge-vertex connectivity re-

lationships. There are no known polynomial time algorithmsfor the graph isomorphism

problem (e.g., see [30]).

For the JPEG encoder example, we can exploit the potential for resource sharing

— which is exposed explicitly at a high-level through the useof topological patterns —

to develop a streamlined FPGA implementation. Awareness ofthe high-level topological

54

Table 3.1: Performance and resource utilization trade-offs for FPGA implementation of a
JPEG encoder.

JPEG Throughput FPGA Resource Utilization

Encoder (samples Slices (out 18kB 18x18
/cycle) of 13696) BRAM MULT

Non-shared 0.159 8070 (58%) 41 30
Shared 0.159 6088 (44%) 37 22

pattern in this application allows for systematic trade-off analysis between two design

options — one with shared resources for chroma component processing, and another

without shared resources.

An analysis of the high-level dataflow specification suggests that downsampling of

chroma components would ensure that the chain processingY component is the bottle-

neck and hence, the throughput should remain unaffected even when theCb andCr com-

ponents are processed using shared functional modules. Precise modeling of the shared-

resource implementation of the JPEG encoder requires that the SDF design in Fig. 3.5

be transformed to expose more detail. For example, the design can be converted into an

equivalent CSDF design in which buffers between functionalmodules are duplicated and

alternate buffers are used in successive schedule iterations. For more background on this

form of CSDF-based structural modeling, we refer the readerto [10].

From inspection of the CSDF intermediate model, it can be reasoned that the buffer

requirement would remain unchanged across both designs (shared- versus separate-resource).

However, we expect that the shared-resource version of the JPEG encoder would result in

a net reduction in BRAM (block random access memory) utilization.

This analysis can be confirmed from the resource utilizationand throughput for

55

shared- and separate-resource JPEG encoder implementations on the Xilinx Virtex-II Pro

FPGA, as shown in Table 3.1 [71]. The base clock rate for our experiments is40MHz.

Even though actor-level resource sharing is often avoided in FPGA implementation due

to the relatively high costs of multiplexing and routing resources (e.g., see [78]), resource

sharing for a subgraph in a dataflow representation can result in conservation of FPGA

resources that overrides the multiplexing overhead. The shared-resource JPEG encoder

uses less BRAM than the separate-resource version, which can be attributed to the shared

DCT block. Also, the shared-resource version uses fewer (18 × 18) multiplier units by

employing shared downsampling, DCT, and quantization modules.

As expected — from the aforementioned bottleneck analysis —both versions of

the JPEG encoder achieve the same throughput. In particular, theY component remains

as the system bottleneck even when theCb andCr components are processed using shared

FPGA resources. Our experiments thus demonstrate concretely how topological patterns

can provide aformal pathfrom scalable application analysis to the systematic exploration

of implementation trade-offs in the design and implementation of signal processing sys-

tems on a relevant target platform.

3.5.5 Representing Schedules

The utility of topological patterns is not limited to representation of application

graphs alone. Their utility can be extended to create concise and parameterizable repre-

sentations of structures typical to schedules for certain application graphs. This can be of

particular importance in functionally simulating application graphs, and porting schedules

56

Figure 3.6: Dataflow graphs for (a) the generic class of applications under
consideration, and (b) a simplified adaptive modulation scheme.

across design tools or languages. We elaborate on this usingthe following example.

We consider a class of applications typically found in the domain of wireless com-

munications, and signal processing systems that exhibit dataflow graph structures similar

to the one shown in Fig. 3.6(a). A typical example of this typeis that of the adaptive

modulation scheme (AMS) shown in Fig. 3.6(b). The AMS is a dynamic communication

application, which is an important part of modern wireless standards such as theworld-

wide interoperability for microwave access(WiMAX) [3] and3rd generation partnership

project — long term evolution(3GPP—LTE) [1] standards. For details of AMS, we refer

readers to [70]. There exist other applications that exhibit the general dataflow structure

illustrated in Fig. 3.6(a), such as prediction error filters[33] and systems for frequency

domain block adaptive filtering [75]. Such dataflow graphs can be efficiently simulated

by constructing parameterized looped schedules (PLSs) as described in [70] and [42]. We

will revisit the AMS application, and show how it can be modeled using CFDF model in

Section 4.3. We will further elaborate on constructing a PLSfor the AMS application in

57

1

Mapper mi Mapper Channel 2 ni

Bits Demapper Sink

topology {
nodes = Root, N[6], B, D, Snk;
edges = e0[6] -> broadcast(Root, N[0:5]),

e1(N[1], B), e2(N[4], D), e3(N[5], Snk);
}

Figure 3.7: A PLS for the application in Fig. 3.6(b), and thetopology
block in a corresponding DIF representation. Table 3.2 provides parameters
associated with eachnode in the DIF specification.

Section 5.3.

Fig. 3.7 shows a PLS for the AMS application. A PLS of this typeis of particular

importance since it can capture the dynamic dataflow behavior inherent in the applica-

tion without compromising compile-time analysis. It is possible to perform useful anal-

ysis (e.g., estimation of upper bounds on total buffer memory requirements) for PLSs at

compile-time.

In Fig. 3.6(a), the consumption rateci and production ratepi can vary over finite

ranges of positive integer values with known upper boundscmax andpmax, respectively.

The subscripti in the symbolspi andci represents the dependence of this production and

consumption rate pair on the actor execution indexi — thus,pi represents the number of

tokens produced ontoe4 in theith execution (firing) of D2, andci represents the number

of tokens consumed frome1 during theith firing of D1. In Fig. 3.7, the loop countsmi

andni are computed dynamically.

58

Table 3.2: Actors and loop counts associated with nodes in the PLS graph representation.
Here,NULL indicates an internal node in the GST that does not have any actor associated
with it.

Node Actor Loop Count

Root NULL 1
N[0] Mapper 1
N[1] NULL mi

N[2] Mapper 1
N[3] Channel 1
N[4] NULL 2
N[5] NULL ni

B Bits 1
D Demapper 1

Snk Sink 1

In the context of this AMS example, topological patterns help not only in specifi-

cation of the application dataflow graph using thering pattern, which can be used to

identify the pair of dynamic actors easily, but also representation of generated PLSs using

broadcast patterns with hierarchical nodes for SDF-schedules, as shown in Fig. 3.7.

For such a well-structured schedule representation, it is possible to hand-tune an imple-

mentation and use that representation explicitly for applications having similar dataflow

behavior instead of traversing the GST using a generic process to derive a software or

hardware implementation. In this case, topological patterns provide a framework by

which hand-tuned schedules can be formally specified and reused across different ap-

plications or target platforms.

Table 3.3 shows a comparison between simulation times usingGST traversal and

hand-tuned pattern-specific implementation for the PLS in Fig. 3.7. These simulation

experiments — the results of which are presented in Table 3.3— differ from related ex-

periments that we have reported on previously (e.g, in [72])in that we have eliminated

59

Table 3.3: Average simulation times for different sink control conditions (numbers of
tokens consumed by the sink) for the PLS in Fig. 3.7 using (1) GST traversal, and (2) a
hand-tuned pattern-specific schedule.

Sink control condition Average simulation time (ms)Improvement

(Number of tokens) (1) (2) (%)

10000 73 32 56.16
20000 90 47 47.78
50000 148 62 58.11
100000 248 93 62.50

some of the common overheads by suppressing printing of routine debug and status infor-

mation. This allows us to determine the extent of effect of these two simulation strategies

on simulation speed, and compare them more precisely. It canbe seen that the hand-tuned

software implementation results in faster simulations by afactor of up to62%. Further-

more, through its formulation in the framework of topological patterns, the hand-tuned

implementation can be analyzed, maintained, ported, and reused effectively across differ-

ent design contexts.

3.5.6 Experimenting with Pattern-Specific Schedules

When specifying signal processing systems, an important motivation for using topo-

logical patterns is to facilitate application of pattern-specific transformations, such as

pattern-specific scheduling transformations. In such a context, it can be useful for a design

tool to provide features that allow the designer to experiment with various “scheduling

patterns” at a high level of abstraction. Since topologicalpatterns provide well-defined,

scalable topological information, one can generate a structured schedule from a given

pattern. We demonstrate this application of topological patterns through an example of a

60

u0 w0

w1u1

(a)
c0

c1 c2

c3 c4 l3

l0 c5 c6

l1 l2

(b)

c0

c1 c2

l0 c3 c4

c5 c6 l3

l1 l2

(c)

Figure 3.8: (a) An SDF graph with abutterfly pattern. (b)-(c) two pos-
sible GST structures using schedules that are based on acyclic pairwise clus-
tering (iteratively clustering two actors at a time).

commonly usedbutterfly pattern.

Consider an SDF graph having abutterfly pattern, as shown in Fig. 3.8(a). One

commonly used scheduling transformation involves applying clustering transformations

on one pair of connected actors at a time such that no cycle is introduced in the resultant

graph, and then generating a hierarchical schedule for the given application graph by it-

eratively applying such acyclic pairwise clustering (APC)[11]. In case of SDF graphs, a

group of actors can beSDF-clusteredif its component actors can be scheduled together

(i.e., the group can be scheduled as a single unit in the overall schedule for the graph)

without introducing deadlock [11]. It can be observed that more than one schedule can be

61

generated using APC depending on the pair of actors clustered at every stage of schedul-

ing. In case of SDF graphs, the total buffer memory requirements depend upon the choice

of a schedule, and in general, a schedule that has minimum total buffer memory require-

ments is desirable in many applications. A scheduling technique based on APC called

acyclic pairwise grouping of adjacent nodes (APGAN) has been described in [11] that

chooses a pair of actors to be clustered at every stage of scheduling using a metric based

on repetition counts of the actors in the graph. This heuristic is widely used and attempts

to minimize the total buffer memory requirements. We refer readers to [11] for more

information on SDF-clustering, and SDF scheduling heuristics that are based on APC

including APGAN.

A useful class of SDF schedules is that of single appearance looped schedules, as

described in Section 2.1. LetG(V,E) denote the graph in Fig. 3.8(a), where

V = {u0, u1, wo, w1}, and E = {(u0, w0), (u0, w1), (u1, w0), (u1, w1)}, (3.1)

and suppose that we apply APC to the graph. Based on the steps involved in APC, there

are only two possible GST structures for this example. Thesetwo structures are shown

in Fig. 3.8(b) and (c). Here, eachci, i = 0, 1, · · · , 6, denotes a loop count, while each

li, i = 0, 1, · · · , 3, denotes the actor pointed to by a leaf node in the GST. The existence

of exactly two unique GST structures for this example can be verified from the following

observations regarding the operation of APC (see [11] for further details on the operation

of APC for SDF graphs).

1. LetU = {u0, u1}, andW = {w0, w1}. Then we can describe the graphG(V,E) as

62

V = U ∪W, and E = U ×W. (3.2)

2. Lete ∈ E denote the group of actors clustered during the first clustering step. Then,

l1 ∈ U , andl2 ∈ W . This follows from the bipartite nature of thebutterfly

pattern.

3. Following the first APC step, operation of APC ensures thatl0 ∈ (U \ {l1}), and

l3 ∈ (W \ {l2}). This is because clustering actorsa andb such thata ∈ U and

b ∈ W at this stage would amount to adding a cycle into the clustered graph, which

is not permitted by APC.

4. Loop countsci, i = 0, 1, · · · , 6, can be accordingly determined using the SDF

repetitions vector (the vector of minimal repetition counts in a periodic schedule)

for the application graph.

Given that each of the4 pairs of actors can be grouped in the first-step, which,

in turn, results in possibly two different schedules upon further grouping, we observe

that there are at most8 different single appearance looped schedules generated using

this approach. Such different schedules can in general havedifferent buffer memory

requirements [11]. Thus, it can be useful for a designer to experiment with alternative

schedules, estimate the buffer memory requirements for these schedules, and identify the

schedule that best matches the application requirements and resource constraints.

For thebutterfly pattern shown in Fig. 3.9(a), Table 3.4 shows9 different

schedules, including a flat schedule for comparison. It can be seen that each of these

63

A C
2

3

D

5
3

B

4

8 5
4

(a)

A C
1

2

D

5
6

B

2

5 2
3

(b)
1

5 12

4 3 D

A 1 2

B C

(c)

1

5 2

A 1 5

2 3 C

B D

(d)

Figure 3.9: (a)-(b) SDF graphs withbutterfly patterns. (c)-(d) GSTs for
minimizing buffer memory requirements of the SDF graphs in (a) and (b),
respectively.

schedules has different buffer memory requirements. In a given design context, a de-

signer may want to experiment with all schedules that fit the available resources in the

target platform. The optimal schedule from the viewpoint oftotal buffer memory cost

(schedule (1)) has a total buffer memory cost of 140 memory units, and is generated

using the APGAN strategy.

However, APGAN is in general a heuristic and is therefore notalways guaranteed

to derive an optimal solution. For example, consider thebutterfly pattern shown in

Fig. 3.9(b). Table 3.5 shows6 different schedules for this graph, including, again, a flat

64

Table 3.4: Buffer memory requirements for single appearance schedules generated from
the SDF graph shown in Fig. 3.9(a).

Schedule Single Appearance ScheduleTotal buffer requirement
(number of tokens)

Flat (20 A)(15 B)(30 C)(12 D) 300
1 (5 (4 A)(3 B(2 C)))(12 D) 140
2 (20 A)(3 (5 B(2 C))(4 D)) 148
3 (5 (3 B)(2 (2 A)(3 C)))(12 D) 150
4 (15 B)(2 (5 (2 A)(3 C))(6 D)) 216
5 (15 B)(4 (5 A)(3 D))(30 C) 255
6 (15 B)(2 (2 (5 A)(3 D))(15 C)) 225
7 (20 A)(3 (5 B)(4 D))(30 C) 260
8 (20 A) (3 (5 B)(4 D)(10 C)) 180

Table 3.5: Buffer memory requirements for single appearance schedules generated from
the SDF graph shown in Fig. 3.9(b).

Schedule Single Appearance ScheduleTotal buffer requirement
(number of tokens)

Flat (5 A)(4 B)(10 C)(6 D) 72
1 (4 B)(5 A(2 C))(6 D) 64
2 (5 A)(2 (2 B)(5 C)(3 D)) 56
3 (5 A)(2 (2 B)(5 C))(6 D) 62
4 (5 A)(2 (2 B)(3 D))(10 C) 66
5 (5 A)(2 (2 B)(3 D)(5 C)) 56

schedule, and5 different looped schedules. Here, schedule (1) is the one generated by ap-

plying the APGAN strategy, and it can be seen that schedules (2), (3), and (5) outperform

this schedule in terms of total buffer memory requirements.

This example demonstrates the utility of experimenting with alternative schedules

even if established heuristics, such as APGAN, are available. Topological patterns facil-

itate such experimentation through their capabilities forschedule representation. In par-

ticular, topological patterns allow designers to construct structured patterns of schedules,

65

which can then be examined separately to determine which oneis most suitable in a given

design context. Furthermore, topological pattern representations can be used to maintain

libraries of subsystem-specific schedules, which can then be drawn upon efficiently when

constructing larger applications that employ those subsystems.

3.6 Summary

We have introduced the concept of topological patterns, which can be used to iden-

tify and concisely iterate across arbitrary structures in adataflow application graph. We

have shown how the types of flowgraph substructures that are pervasive in the DSP appli-

cation domain can be effectively represented in terms of topological patterns, and thereby

used to generate compact, scalable application representations.

We have also shown how an underlying design tool can exploit ahigh-level ap-

plication specification consisting of topological patterns in various aspects of the de-

sign flow. In particular, we have demonstrated the efficacy oftopological patterns in

dataflow graph analysis, concise and scalable representation of HSDF graphs, and ex-

ploring implementation-specific trade-offs. We have also shown the use of topological

patterns in graph analysis and extracting implementation-specific features. We have ap-

plied the concept of topological patterns to represent schedules for application graphs.

Such representations are useful, for example, when portingschedules generated using one

design tool to other platform-specific tools or design languages. We have demonstrated

the utility of experimentation with pattern-specific scheduling transformations, and how

topological patterns facilitate such experimentation.

66

Chapter 4

Prototyping Heterogeneous Dataflow Applications using Core Functional

Dataflow

We have provided a brief summary of dataflow models relevant to the work pre-

sented in this thesis in Chapter 2. These dataflow models withvarying degrees of ex-

pressive power can model dataflow behaviors that range from being completely static to

highly dynamic, where production and consumption volumes can vary on a per-invocation

basis. In Section 1.3.2, we introduced the CFDF model, whichwe have formulated and

developed as part of this thesis. The CFDF model can be used tomodel a wide variety of

deterministic dynamic dataflow behaviors [64]. At the same time, it supports flexible and

efficient prototyping of dataflow-based application representations and permits natural

description of both dynamic and static dataflow actors. In this chapter, we present the se-

mantics of CFDF. We demonstrate how various heterogeneous dataflow applications can

be modeled using CFDF. We show how various existing dataflow models can be repre-

sented using CFDF semantics. We also present application ofCFDF to rapid prototyping

of heterogeneous dataflow applications.

4.1 Related Work

A number of development environments utilize dataflow models to aid in the cap-

ture and optimization of functional application descriptions. Ptolemy II encompasses a

67

diversity of dataflow-oriented and other kinds of MoCs [25].To describe an application

subsystem, developers employ adirector that controls the communication and execution

schedule of an associated application graph. If an application developer is able to write

the functionality of an actor in a prescribed manner, it willbe polymorphic with respect

to other MoCs. To describe an application with multiple MoCs, developers can insert a

“composite actor” that represents a subgraph operating with a different MoC (and there-

fore its own director). In such hierarchical representations, directors manage the actors

only at their associated levels, and directors of compositeactors only invoke their actors

when higher level directors execute the composite actors. This paradigm works well for

developers who know a priori the modeling techniques with which they plan to represent

their applications.

One of the other techniques employs SystemC to capture actors as composed of in-

put ports, output ports, functionality, and an execution finite state machine (FSM), which

determines the communication behavior of the actor [32]. There exist languages, such

as CAL [26], that specifically target actor descriptions. For complete functionality in

Simulink [51], actors are described in the form of “S-functions.” By describing them in a

specific format, actors can be used in continuous, discrete-time, and hybrid systems. Lab-

VIEW [39] even gives designers a way of programmatically describing graphical blocks

for dataflow systems.

Semantically, perhaps the most related work is that of a MoC called the SBF [41].

In SBF, an actor is represented by a set of functions, a controller, state, and transition

function. Each function is sequentially enabled by the controller, and uses on each invo-

cation a blocking read for each input to consume a single token. Once a function is done

68

executing, the transition function defines the next function in the set to be enabled.

CFDF semantics, and features in the DIF tool based on those, differ from these re-

lated efforts in dataflow based design in their integrated emphasis on minimally-restricted

specification of actor functionality, and support for efficient static, quasi-static, and dy-

namic scheduling techniques. Each may be critical to prototyping overall dataflow graph

functionality. Compared to models such as SBF, CFDF allows adesigner to describe actor

functionality in an arbitrary set of fixed modes, instead of parceling out actor behavior as

side-effect free functions, a controller, and a transitionfunction. CFDF is also more gen-

eral than SBF as it permits multi-token reads and can enable actors based on application

state. As designers experiment with different dataflow representations with different lev-

els of actor dynamics, they need corresponding capabilities to experiment with compatible

scheduling techniques. This is a key motivation for the integrated actor- and scheduler-

level prototyping considerations in CFDF and its support inDIF. The material presented

in this chapter is based on the work in [64], [66], and [65].

4.2 Formulation of Core Functional Dataflow

CFDF semantics can be viewed as a “deterministic dataflow subset” of enable-

invoke dataflow(EIDF) semantics, which require that actor specification bedivided into

separateenableandinvokefunctions [64] (described below). A CFDF actora also has a

set of valid modesMa in which it can execute. When the actora executes in a modem ∈

Ma, it consumes (produces) a fixed number of tokens from its inputs (onto its outputs), but

the number of tokens consumed and produced by an actor can vary across different modes

69

in Ma. The separation ofenableand invokecapabilities helps in prototyping efficient

scheduling techniques.

Theenablefunction is designed to be used as a “hook” for dynamic or quasi-static

scheduling techniques to rapidly query actors at run-time,and check whether or not they

are executable. Theenablefunction only checks for the availability of sufficient input

data to allow an actor to fire in its current mode, and does not consume any tokens from

the actor inputs. The current mode of an actor is always unique in CFDF, so this check of

“data sufficiency” is unambiguous. Given an actora ∈ V in a dataflow graphG(V,E),

theenabling functionfor a is defined as:

εa : (Ta ×Ma)→ B, (4.1)

whereTa = ℵ|in(a)| is a tuple of the number of tokens on each of the input edges to actor

a (here,|in(a)| is the number of input edges to actora); Ma is the set of modes associated

with actora; andB = {true, false} is true when an actora ∈ V has an appropriate

number of tokens for modem ∈ Ma available on each input edge, andfalse otherwise.

An actor can be executed in a given mode at a given point in timeif and only if the

enabling function is true-valued.

Theinvokefunction, on the other hand, consumes as many tokens from theinputs as

specified by its mode of execution, and correspondingly produces the specified numbers

of tokens onto the actor outputs. Theinvokefunction can generally change the mode of

the actor by returning a valid mode of execution in which the actor should be fired during

its next invocation. Thus, actors proceed deterministically to a unique “next mode” of

70

execution whenever they are enabled. Theinvoking functionfor an actora is defined as:

κa : (Ia ×Ma)→ (Oa ×Ma), (4.2)

whereIa = X1 ×X2 × · · · ×X|in(a)| is the set of all possible inputs toa, whereXi is the

set of possible tokens on the edge on input porti of actora. After a executes, it produces

outputsOa = Y1 × Y2 × · · · × Y|out(a)|, whereYi is the set of possible tokens on the edge

connected to porti of actora, and|out(a)| is the number of output ports. If no mode is

returned (i.e., an empty mode set is returned), the actor is forever disabled.

We further illustrate these CFDF semantics by applying those to model the dynamic

dataflow behavior of actors in applications such as the AMS inSection 4.3.

For use of EIDF in modeling applications that cannot be modeled using CFDF, such

as the Gustav function [5], we refer readers to the discussion in [65].

4.3 Modeling Adaptive Modulation Scheme using Core Functional Dataflow

As mentioned in Section 3.5.5, the AMS is an example of a useful, restricted class of

dataflow-based applications or subsystem modules, the graphical representation of which

can be reduced to the form shown in Fig. 3.6(a). In Fig. 3.6(a), S1, S2, andS3 denote

regions consisting of SDF actors that can be SDF-clustered,while actorsD1 andD2 have

dynamic behavior. A group of actors can be said to beSDF-clusteredif its component

actors can be scheduled together (i.e., the group can be scheduled as a single unit in the

overall schedule for the graph) without introducing deadlock [11]. The dataflow edges

e1, e2, . . . , e5 denote FIFO buffers. TheD on edgee5 denotes the delay, del(e5), associ-

ated with it. In this targeted class of applications, it is assumed that the production and

71

consumption ratesk, x, y, z, q are positive integer constants, while the consumption rate

ci and production ratepi can vary over finite ranges of positive integer values with known

upper boundscmax andpmax, respectively. The subscripti in the symbolspi andci repre-

sents the dependence of this production and consumption rate pair on the actor execution

indexi — thus,pi represents the number of tokens produced ontoe4 in theith execution

(firing) of D2, andci represents the number of tokens consumed frome1 during theith

firing of D1. Such a class of applications is of particular importance since useful compile-

time analysis can be performed while handling the dynamic behavior as explained later

in Section 5.3.

Fig. 3.6(b) shows a simplified representation of the AMS witha source of input

bits, dynamicmapper, channel, dynamicdemapper, feedback path (e5), and out-

put sink actor. Themapper maps the bit(s) from the input bitstream to a symbol for

transmission over thechannel, while thedemapper outputs one or more bits for each

of the symbols received from thechannel. The number of bits per symbol depends upon

the modulation and demodulation schemes (e.g., QPSK or 64QAM) used by themapper

anddemapper, respectively. Themapper receives feedback from thedemapper in-

dicating the result of channel estimation and accordingly selects one of the modulation

schemes to be employed, which in turn determines the number of bits per symbol. Hence,

the number of tokens consumed (produced) by themapper (demapper) from the buffer

e1 (e4) in general can vary from one invocation to the next.

We use CFDF to model dataflow behavior of the actors in the AMS application,

and in particular, the dynamicmapper anddemapper actors. The remaining actors

are SDF actors and can be modeled easily as CFDF actors with just one valid mode

72

Table 4.1: Valid modes for themapper actor along with their corresponding production
and consumption rates.

Consumption rate Production rate

Mode e1 e5 e2

control 0 1 0
QPSK 2 0 1

16QAM 4 0 1
64QAM 6 0 1

Control

QPSK 16QAM 64QAM

Figure 4.1: Mode transition behavior of themapper actor.

each. Table 4.1 shows the possible modes for a generic dynamicmapper actor with their

respective production and consumptions rates. It has a modecorresponding to each of

the possible modulation schemes being employed (here QPSK,16QAM, and 64QAM),

and an additional mode calledcontrol. In the control mode, the mapper actor

reads a channel quality indicator token from the feedback edge e5 (see Fig. 3.6). This

information is then used to determine the modulation schemeto be employed, and the

invokefunction returns (as the next mode value) the mode that corresponds to this scheme.

The demapper actor can be modeled in a similar manner. Fig. 4.1 shows the mode

transition behavior for themapper actor.

73

4.4 Translation to Core Functional Dataflow

Many of the commonly used dataflow models can be directly translated to CFDF in

an efficient and intuitive manner. In this section we show such constructions that demon-

strate the expressibility of CFDF, and how the existing designs can be readily represented

using CFDF semantics.

4.4.1 Static Dataflow

SDF, CSDF, and other static dataflow-actor behaviors can be translated into finite

sequences of CFDF modes for equivalent operation. Consider, for example, CSDF, in

which the production and consumption behavior of each actora is divided into a finite

sequence of periodic phasesP = (1, 2, ..., na). Each phase has a particular production

and consumption behavior. The pattern of production and consumption across phases can

be captured by a functionφa whose domain isPa. Given a phasei ∈ Pa, φa(i) = (Gi, Hi),

whereGi andHi are vectors indexed by the input and output ports ofa, respectively, that

give the numbers of tokens produced and consumed on these edges for each port during

theith phase in the execution of actora.

To construct a CFDF actor from such a model, a mode is created for each phase,

and we denote the set of all modes created in this way byMa. Given a modem ∈ Ma

corresponding to phasep ∈ Pa, the enable method for this mode checks the input edges

of the actor for sufficient numbers of tokens based on what thephase requires in terms

of the associated CSDF semantics. Thus, for each input portz of a, modem checks

for the availability of at leastGp(z) tokens on that port, whereφ(p) = (Gp, Hp). For

74

Table 4.2: Valid modes in a CFDF representation of the decimator actor,M, in Fig. 2.2(a)
along with their corresponding production and consumptionvalues.

Consumption rate Production rate
Mode in out

mode0 1 1
mode1 1 0
mode2 1 0
mode3 1 0

the complementary invoke method, the consumption of input ports is fixed toGp, the

production of output ports is fixed toHp. The next mode returned by the invoke method

must be the mode corresponding to the next phase in the CSDF phase sequence.

For example, consider the decimator actor,M, in Fig. 2.2(a), which has a decimation

factor of4. Its dataflow behavior can be modeled using the CSDF model, asexplained

in Section 2.1.2. We can construct an equivalent CFDF representation of this actor using

the process explained above. Table 4.2 shows modes of the decimator actor with their

corresponding consumption and production values. In this table,in andout refer to the

input and output ports, respectively, of the decimation actor. Fig. 4.2 shows the mode

transition behavior of the decimator actor.

Since any SDF actor can be viewed as a single-phase CSDF actor, the CFDF con-

struction process for SDF is a specialization of the CSDF-to-CFDF construction process

described above in which there is only one mode created.

75

mode_0

mode_1

mode_2

mode_3

Figure 4.2: Mode transition behavior of the decimator actor. See Table 4.2
for the dataflow behavior of the actor in each mode.

4.4.2 Boolean Dataflow

BDF adds dynamic behavior to dataflow [16]. The two fundamental elements of

BDF areSwitch andSelect. Switch routes a token from its input to one of two

outputs based on the Boolean value of a token on its control input. The concept of a con-

trol input is also utilized forSelect, in which the value of the control token determines

which input port will have a token read and forwarded to its one output.

Consider an application shown in Fig. 4.3 that uses aSwitch actor. To construct a

CFDF actor that implements BDF semantics, we create a mode that is dedicated to read-

ing that input value, which we call theControl mode. The result of this examination

sends the actor into either aTrue mode or aFalse mode that corresponds to that con-

trol input. In the case ofSwitch, this implies three modes with behavior described in

Table 4.3. The mode transition behavior of theSwitch actor is shown in Fig. 4.4. For a

strict construction of BDF, only theSwitch andSelect actors are needed for imple-

76

Control

Switch

control_input

Data

data_input

Truetrue_output

False

false_output

Figure 4.3: Application of BDF using aSwitch actor.

Table 4.3: The behavior of theSwitch actor modes in terms of tokens produced and
consumed.

mode consumption rate production rate

control input datainput true output falseoutput

Control 1 0 0 0
True 0 1 1 0
False 0 1 0 1

mentation, but CFDF does permit more flexibility, allowing designers to specify arbitrary

behavior ofTrue andFalse modes as long as each mode has a fixed production and

consumption behavior.

4.4.3 Representing PSDF and PCSDF Actors using CFDF

It is also possible to construct an equivalent CFDF representation of a PSDF or

PCSDF actor in ways similar to those described in Sections 4.4.1 and 4.4.2. For construct-

ing a CFDF representation, a PSDF or PCSDF actor can be considered as a combination

of static and dynamic dataflow behaviors. A PSDF or PCSDF actor mode corresponding

to parameter configuration can be viewed as a control-oriented mode, while other modes

model different static behaviors for specific settings of actor parameters. We illustrate this

using an example of a TDD.

77

Control

True False

Figure 4.4: Mode transition behavior of theSwitch actor. See Table 4.3 for
dataflow behavior of the actor in each mode.

Consider the application graph shown in Fig. 2.3(a) along with its PCSDF descrip-

tion in Fig. 2.3(b). In particular, consider theDecimator actor. Suppose the decimation

factor of this actor can be set to either3 or 4 depending upon a parameter set from its con-

trol port. Fig. 4.5 shows the mode transition behavior of theDecimator actor in one

of its possible CFDF representations. Here, modesmode 4 0, mode 4 1, mode 4 2,

andmode 4 3 together represent a behavior similar to a CSDFDecimator actor with a

decimation factor of4, whilemode 3 0, mode 3 1, andmode 3 2 together represent a

behavior similar to a CSDFDecimator actor with a decimation factor of3. The control

mode models the parameter configuration. Note that actor does not consume or produce

any dataflow tokens in this mode. Also, note the transitions out of modesmode 4 3 and

mode 3 2. It is possible that parameters associated with theDecimator are config-

ured after every CSDF cycle (for example, if configured by a subinit graph) or multiple

CSDF cycles (for example, if configured by an init graph). Thescheduler can exploit this

behavior depending upon the application under consideration to construct efficient PLSs.

78

control (0, 0)

mode_4_0 (1, 1) mode_3_0 (1, 1)

mode_4_1 (1, 0)

mode_4_2 (1, 0)

mode_4_3 (1, 0)

mode_3_1 (1, 0)

mode_3_2 (1, 0)

Figure 4.5: CFDF mode transition behavior of a PCSDF actorDecimator
with possible decimation factors3 and4. The annotation(i, j) for a CFDF
mode indicates the corresponding numbers of tokens consumed from the in-
put (i), and produced onto the output (j) by the actor.

4.5 Functional Simulations in DIF using Core Functional Dataflow

The CFDF semantics allow the DIF package to support functional simulations. The

segregation of enable and invoke functions allows use of a guarded execution of an actor.

The term guarded execution refers to a scheme of firing an actor in which the actor is

fired (i.e. its invoke function is called) only if its enable function asserts the availability

of sufficient data to fire the actor in its current mode by returning true. This feature allows

using acanonical schedule(described below in Section 4.5.2) in which every actor is fired

once in every schedule iteration. Such simulations can alsobe used for analyzing and

estimating the buffer requirements in terms of number of tokens accumulated in those

buffers. This provides an estimate of total memory requirements as well as individual

buffers when porting an application to the target platform.It is also possible to use more

79

sophisticated scheduling techniques such as those we will describe in Chapter 5.

4.5.1 Extensions to DIF Software Architecture

The DIF package has been restructured to support functionalsimulations. We have

introduced a library of actors, which adhere to CFDF semantics, described in Java pro-

gramming language for use in the applications. Actors are objects derived from a base

class that provides each actor with mode and edge interfacesalong with base methods for

the enabling and invoking functions, called the enable method and the invoke method re-

spectively. Modes can be created either by a user through an API or automatically, based

on other information about the application (e.g., the sequence of phases in a CSDF rep-

resentation). While a designer will redefine an actor’s class methods to define the proper

functionality, the enable method is always restricted to only checking the number of to-

kens on each input (as per the enabling function definition).The invoke method may read

values from inputs, but it must consume them as tokens. In other words, when a mode is

invoked on an actor, the actor consumes a fixed number of tokens that is associated with

that mode, and no more values are read. In either case, we expect designers to effectively

construct a case statement of all of the possible modes for a given actor, and fill in the

functionality of each mode in a case.

A scheduler uses GST representation to represent the generated schedule, which is

then used to simulate the application graph.

80

4.5.2 Canonical Scheduler

We can always construct a canonical schedule for an application graph. This is the

most trivial schedule that can be constructed from the application graph. The canonical

schedule is a single appearance schedule (a schedule in which actors of the application

graph appear once) which includes all actors in some order. In terms of the GST repre-

sentation, a canonical schedule has a root node specifying the loop count of 1 with its

child nodes forming leaves of the schedule tree. Each leaf node points to a unique actor

in the application graph. The ordering of leaf nodes determines the order in which actors

of the application graph are traversed. When the simulator traverses GST, each actor in

the graph is fired, if it is enabled.

4.6 Design Examples

Polynomial evaluation is a commonly used primitive in various domains of signal

processing, such as wireless communications and cryptography. Polynomial functions

may change whenever senders transmit data to receivers. Thekernel is the evaluation

of a polynomialFi(x) =
∑ni

k=0 ck × xk, wherec1, c2, . . . , cn are coefficients,x is the

polynomial argument, andni is the degree of the polynomial. Since the coefficients may

change at runtime, a programmablepolynomial evaluation accelerator(PEA) is useful

for accelerating the computation of multipleFi’s.

81

Table 4.4: The behavior of the PEA modes.

mode
consumes produces

Control Data Result Status

Normal 1 0 0 0
Reset 0 0 0 0

Store Poly 0 1 0 1
Evaluate Poly 0 1 1 1

Evaluate Block 0 1 1 1

4.6.1 Programmable Polynomial Evaluation Accelerator

Since the degree and coefficients of a polynomial may change at run-time (e.g., for

different communications standards or different subsystem functions), a programmable

PEA is useful for accelerating the computation of multipleFi ’s in a flexible way. To

this end, we design a PEA with the following instructions:reset, store polynomial(STP),

evaluate polynomial, andevaluate block(EVB). Evaluate polynomialis for a single eval-

uation, and EVB is for a bulk evaluation of the same polynomial.

Since data consumption and production behavior for the PEA depends on the spe-

cific instruction, a PEA actor cannot follow the semantics ofconventional dataflow mod-

els, such as SDF. However, if we define multiple modes of operation, we can capture the

required dynamic behavior as a collection of CFDF modes. Following this principle, we

have implemented the PEA as a single CFDF actor. In our functional description of the

actor, we defined different modes according to the four PEA instructions. These modes

are summarized in Table 4.4.

The normal mode (like the “decode” stage in a typical processor) reads an instruc-

tion and determines the next operating mode of the data path.Of particular note here

82

is the behavior of STP in which the number of coefficients readvaries. Each individual

mode is restricted to one particular consumption rate, so when the STP mode is invoked,

it reads a single coefficient, stores it, and updates an internal counter. If the counter is less

than the total number of coefficients to be stored, invoke returns STP as the next mode,

so it will continue reading until done. Note that persistentinternal variables (“actor state

variables”), such as a counter, can be represented in dataflow as self-loop edges (edges

whose source and sink actors are identical), and thus, the use of internal variables does

not violate the pure dataflow semantics of the enclosing DIF environment.

We find that functional simulations using the high-level DIFprototype of a PEA

application based on CFDF model are faster by a factor of4.9 compared to those using

an implementation in lower level language, such as Verilog [64].

4.6.2 Design with Multiple Polynomial Evaluation Accelerators

To illustrate the problem of heterogeneous complexity, we suppose that a DSP ap-

plication designer might use two PEA actors customized for different length polynomi-

als. For this application, we restrict the PEA’s functionality to be a CSDF actor with two

phases: reading the polynomial coefficients and then processing a block ofx’s to be eval-

uated, as shown in Table 4.5. The overall PEA system is shown in Fig. 4.6. Two PEA

actors are in the same application and we made them selectable by bracketing them with

aSwitch and aSelect block. To manage these two PEA actors properly, this design

requires control to select thePEA1 or PEA2 branch. In this system, the CSDF PEA ac-

tors consume a different number of polynomial coefficient tokens, so the control tokens

83

Table 4.5: The behavior of the CSDF implementation of the restricted PEA used in the
dual PEA application.

Actor mode
consumes produces

Data Result

PEA1
Store Poly 4 0

Evaluate Block 15 15

PEA2
Store Poly 7 0

Evaluate Block 15 15

driving theSwitch andSelect on the data path must be able to create batches of19

and22 tokens, respectively for each path. If the designer is restricted to onlySwitch

andSelect for BDF functionality, the balloon withCONTROLLER shows how this can

be done.

This design can certainly be captured with model oriented approach, pulling the

proper actors into super-nodes with different models. But like many designs, this ap-

plication has a natural functional hierarchy in it with the refinement ofCONTROLLER,

and withPEA1 andPEA2. We believe that competing design concerns of functional and

model hierarchy will ultimately be distracting for a designer. With this work, we focus

designers on efficient application representation and not model related issues.

Immediate simulation of the dual PEA application is possible to verify correctness

by using the canonical schedule. We simulated the application with a random control

source and a stream of integer data. A nontrivial schedule tree can significantly improve

upon the canonical performance. Given that the probabilityof a given PEA branch being

selected is uniform, we can derive a single appearance schedule shown in Figure 4.7,

where each leaf node is annotated with an actor and each interior node is annotated with

84

1

1

1

1

1

1

[19,22]

11

1

[1,0] [0,1]

(4,15) (7,15)

15

1[1,0]
[0,1]

1

1

(0,15) (0,15)

1

1

11

1

22

22

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4.6: A pictorial representation of the dual PEA application.

a loop count. Figure 4.8 shows a manually designed multiple appearance schedule (a

schedule in which actors may appear more than once) that attempts to process polynomial

coefficients first, before queuing up data to be evaluated, toreduce buffering. Note that the

SRC andCONTROL actor are unguarded as they require no input tokens to successfully

fire.

4.6.3 Results

We also implemented an polyphase uniform discrete Fourier transform (DFT) filter

bank and a sample rate conversion application. We constructed the decimated uniform

DFT filter bank using a mixed-model consisting of CSDF and SDFactors [54]. The sam-

85

1

2 41 602

CONTROL COPY VECTORIZE 2 SRC 2 2 RESULT

CONTROLLER SWITCH

PEA1 PEA2

SELECT

Figure 4.7: Single appearance schedule for the dual PEA system.

1

2 30 30111 1

CONTROL COPY VECTORIZE 2 SRC 2 2 RESULT

CONTROLLER

SRC 2

SWITCH

PEA1 PEA2

SWITCH

PEA1 PEA2

SELECT

Figure 4.8: Multiple appearance schedule for the dual PEA system.

ple rate conversion application is based on concepts found in [21] and [36]. Results for

these different implementations with different schedulesare summarized in Table 4.6. We

simulated10000 evaluations running on a1.7GHz Pentium with1GB of physical mem-

ory. We measured the time it took to complete enough iterations to complete all of the

evaluations and maximum total queue size. The manually designed schedules performed

notably better than the canonical schedule. Such insight can be invaluable when consid-

ering the final implementation of the controller logic.

4.7 Summary

We have formulated the CFDF model, which can be used to model awide vari-

ety of deterministic dynamic dataflow behaviors, and used tocapture various well known

86

Table 4.6: Simulation times and maximum buffer sizes for mixed-model applications.

Simulation Maximum observed
Application Schedule Time (s) buffer size (tokens)

Dual PEA - BDF Strict
Canonical 6.88 2,327,733

Single appearance 1.72 1,729
Multiple appearance 1.59 1,722

Dual PEA - CFDF
Canonical 3.57 1,018,047

Single appearance 0.95 1,791
Multiple appearance 0.99 1,800

DFT Filter
Canonical 0.91 17

Single appearance 1.02 24

Sample Rate Converter
Canonical 9.15 9,394

Single appearance 1.43 2,408

forms of dataflow in a single, unified formulation. We have also presented the features

of CFDF model and tools based on it, such as support for heterogeneous dataflow behav-

iors, intuitive and common framework for functional specification, support for functional

simulations that allows designers to model and verify interactions between those models,

portability from most of the existing dataflow models to CFDF, and integrated emphasis

on minimally-restricted specification of actor functionality. With this CFDF modeling ap-

proach integrated into DIF, we have demonstrated its use with various applications. Such

an approach has allowed us to functionally simulate the design immediately, and then

focus on experimenting on schedules and dataflow styles to improve performance.

87

Chapter 5

Efficient Scheduling Techniques for Core Functional Dataflow Graphs

In Chapter 4, we described various features of the CFDF modelof computation,

and applied this model to specify and prototype different heterogeneous dataflow ap-

plications. For functional simulations of CFDF application graphs, we used the CFDF

canonical scheduler, as explained in Section 4.5.2. It is, however, possible to use more

efficient scheduling techniques that are applicable to general or specialized classes of

CFDF graphs. In this chapter, we focus on scheduling techniques for CFDF graphs, and

present three different scheduling techniques that employ, respectively, (1) decomposition

of dynamic dataflow graphs, (2) mode grouping, and (3) parameterized looped schedules.

5.1 Scheduling using Dynamic Dataflow Graph Decomposition

We proposed this technique as a generalized scheduling strategy in [62]. It is based

on decomposing a dynamic dataflow graph into a set of static interacting graphs. It makes

use of the fact that every CFDF mode has a fixed production and consumption behavior.

To construct a static graph based on these modes, it finds the combination of modes in

which one mode from each actor in the subgraph is producing orconsuming on an edge

that has a consuming or producing mode at the other end of the edge. Since every actor

can potentially provide many modes, there are an exponential number of combinations to

be considered. To avoid exploring this entire space, a reachability analysis is performed

88

to consider only those modes that are connected to each other. For this, an extension of

depth first search (DFS) graph traversal with the concept of mode traversal to arrive at the

set of static subgraphs is employed as shown in Fig. 5.1.

We have mentioned the relevant research efforts related to modeling and simulat-

ing heterogeneous dataflow applications, and highlighted novelty of CFDF approach in

Section 4.1. In the context of efficient scheduling and simulations of applications, our

generalized scheduling framework differs from these related efforts in dataflow-based de-

sign in that our framework uses top-down analysis of (explicitly-specified) application

structure combined with integration of static dataflow sub-behaviors (actor modes) across

groups of dataflow actors. This approach to analysis and integration systematically ex-

tends the reach of static scheduling techniques so that theycan be used across significant

portions of dynamic dataflow designs. The approach is drivenby the modeling semantics

of CFDF, which provides the explicit decomposition of actors into static dataflow sub-

behaviors, and efficiently exposes to the scheduler the design spaces associated with sep-

arating sub-behaviors of individual actors, and grouping subsets of sub-behaviors across

different actors.

5.1.1 Dynamic Dataflow Graph Decomposition Algorithm

The key addition to the traditional DFS is that the next nodesto be added to the

working stackS are found by following a mode from the current node. Another stack

of nodesT keeps track of what order the nodes have been visited, so thatthe graph

visited state may be unwound. When a static subgraph has beencompleted or an invalid

89

Function DecomposeCFDFGraph
Data: CFDF Graph G
Result: Returns set of static graphs
Graphs Gs← {} ;
foreach source mode in Gdo

/* we use stacks for both the DFS and ensuring all modes are
visited */

Stack S← {} ;
Stack T← {} ;
SDFGraph sdfG← empty graph;
T.push(node that contains the source mode) ;
while T has elementsdo

S.push(T.pop()) ;
while S has elementsdo

Actor A← S.pop() ;
if A not visitedthen

mark A as visited ;
foreach mode M in Ado

if M not visited matches the connecting edgethen
S.push(actors on inputs and outputs of M) ;
sdfG.add(A) ;
sdfG.annInEdges(M.cons) ;
sdfG.annOutEdges(M.prod) ;

end
mark M as visited ;

end
T.push(A)

end
end
/* when the stack is empty, one static graph is complete */
if sdfG is a valid graphthen

if Gs.doesNotContain(sdfG)then
Gs.add(sdfG) ;

end
end
/* in every case, unwind graph */
while T has elementsdo

if T.peek().allModesVisited()then
Actor B← T.pop() ;
B.resetNodeVisitedFlag() ;
B.resetAllModeVisitedFlags() ;

else
T.peek().resetNodeVisitedFlag() ;
break ;

end
end

end
end
return Gs ;

Figure 5.1: Algorithm for dynamic dataflow graph decomposition.

90

graph has been found in the course of DFS, nodes are popped offof T until a node is

found that has another mode to be considered (i.e. the potential of another unique static

subgraph). Each of the popped nodes have their mode and node visited flags cleared,

thus unwinding the graph state by making them available for the mode at the top ofT .

Therefore multiple graphs maybe constructed from the same source mode. Currently,

we only consider directed acyclic graphs, so DFS is started at the source modes in the

application (i.e., those that do not need input tokens to execute). Note that mode transition

edges are not considered as edges to be traversed in DFS, effectively separating the graph

at mode boundaries.

For example, consider the decomposition of theSwitch application in Fig. 5.2(a)

as shown in Fig. 5.2(b). Two source modes were found inA andB. The DFS from the

mode ofA ended immediately in thecontrol mode ofSwitch, but the DFS fromB

found two matching modes inSwitch (namelytrue andfalse). After a full run of

DFS fromB, the graph visited state unwinds back toSwitch and DFS restarts again

from the otherSwitch mode. Thus, the single dynamic BDF application graph has been

transformed into three static subgraphs. Note that for a complete iteration of the original

application to finish, more than one of the subgraphs must be run to completion. Indeed,

because mode transitions may be arbitrary, we have noa priori way in general of exactly

balancing the execution of these three graphs, and we must rely on the dynamic GSTs for

proper simulation.

All graphs in the set of graphs that are created by this algorithm must be subgraphs

of the original graph. Edges of this subgraph are annotated with the corresponding pro-

duction and consumption numbers described by the modes usedin a given run of DFS.

91

(a)
(b)

Figure 5.2: Application decomposition example.

Since the decomposition algorithm is based on DFS, the complexity of this algorithm

is founded on it as well, but mode combinations make it exponential in the number of

modes. Fortunately, in practice, this approach is efficient, since modes tend to be con-

nected together in a structured way.

5.1.2 Simulation Results

To demonstrate this approach, we chose representative mixed-model applications to

experiment with: a CSDF data distribution of audio streams to be sample-rate-converted,

a polyphase decimated DFT filter bank, and an application with multiple polynomial eval-

uation accelerators.

Figure 5.3 shows a pictorial representation of the sample rate conversion application

based on concepts found in [21] and [36]. Two audio channels are to be converted on

two different subsystems. The input streams are interleaved, such as how multiple audio

92

Figure 5.3: Dual sampling rate conversion.

channels might come over a single digital input. With a fixed interleaving, the CSDF

DISTRIBUTOR actor distributes them to the appropriate multirate data path. In this case,

a series of FIR filters is dedicated to sample rate conversion.

As in the case of Section 4.6.3, we also implemented an polyphase uniform DFT fil-

ter bank. We constructed a decimated uniform DFT filter bank using a mixed-model con-

sisting of CSDF and SDF actors [54]. In addition, to show the dynamic capability of our

approach, we used an application with PEAs, which utilizes both CSDF, SDF, and BDF

elements. Polynomial functions may change when senders transmit data to receivers, so

the application employsSwitch andSelect to dynamically change between the two

data paths.

93

1

2 1

1

IN 1

DISTRIBUTOR

4

1

cd2dat1_A

5

1

cd2dat1_B

8

7

cd2dat1_C

49

2

cd2dat1_D

3

1

cd2dat1_E 1

cd2dat1_F

1

MERGE 1

OUTPUT

1

IN 1

DISTRIBUTOR

3

1

cd2dat2_A 1

cd2dat2_B

49

2

cd2dat2_C

8

7

cd2dat2_D

5

1

cd2dat2_E

4

1

cd2dat2_F 1

MERGE

1

OUTPUT

Figure 5.4: The APGAN schedule of the sample rate conversionapplication.

We applied our generalized scheduling approach to each of these applications and

compared it to a CFDFcanonical schedule. We compared this to the static subgraphs

generated by our approach, which were scheduled with both a flat scheduler based on the

repetition vectors of the SDF clusters and an APGAN-based scheduler [11]. The resulting

GSTs were combined into a single GST by profiling the number successful executions, to

balance the execution rates.

As an example, Fig. 5.4 shows the APGAN-generated schedule derived from our

design flow on the sample rate conversion application. Two unique schedule trees resulted

from the two subgraphs from the original application, and (based on the distributor ele-

ment) one was executed twice as often as the other. Thus, these two trees were merged

with iteration counts that balanced their execution (2 and 1, respectively).

Results for these different styles of implementation with different schedules are

summarized in Table 5.1. We simulated thousands of tokens for each application on a

1.7GHz Pentium with1GB of memory. The results show the utility of being able to apply

the generalized scheduling approach presented in this work.

94

Table 5.1: Simulation times and maximum buffer sizes for mixed-model applications
using dynamic dataflow graph decomposition based schedules.

Average Maximum Observed
Application Schedule Simulation buffer

Strategy Time (ms) size (tokens)

Canonical 9,148 9,394
Sample Rate Converter Flat 1,425 2,408

APGAN 1,462 2,278

Polyphase DFT Filter Bank
Canonical 910 17

Flat 1,017 24
APGAN 1,117 24

Multi-PEA
Canonical 2,163 11,198

Flat 586 57
APGAN 548 57

5.2 Scheduling using Mode Grouping

While static subgraphs can be successfully found by a generalized scheduling ap-

proach to dynamic applications in [62], some static behaviors are not considered. For

example, in the decomposition of the switch application from Fig. 5.2 theTrue and

False modes act predictably, always returning toControl, which is the mode that

transitioned to them in the first place. The repeatable nature of these branches are the

kind of static behavior that is exploitable. To this end, theactor description is augmented

with the concept ofmode grouping, in which application writers can refine their original

application by grouping modes together [63]. For an actora with modesMa, we define

a mode grouping,Da ⊆ Ma, as a set of modes with a static relationship. The static

mode behavior exposed in this work is a cyclic mode transitions in which all modes in the

grouping return exactly one mode as the next mode, except forone mode, called theen-

trance mode. The entrance mode may have multiple transitions out, as it marks the single

95

point of dynamic behavior in the grouping, but after it is fired, the modes that follow it do

so in a static sequence. The mode grouping can be considered by the scheduler as a single

mode that has production and consumption behavior equal to the sum of the individual

modes in it. The resulting schedule then includes a repeatedfiring the size of the mode

grouping.

In the switch example, two mode groupings are

Da = {{Control,True}, {Control,False}},

each withControl as the entrance mode. This exposes thatControl always precedes

aTrue or aFalse, allowing a larger schedule tree to be formed. For this smallexample

performance benefits are slight, but for more complex applications, the assertion that a

set of modes execute in a static sequence can lead to notably smaller buffer requirements.

5.2.1 Simulation Results

To evaluate the benefits of mode grouping, a set of both staticand dynamic applica-

tions with actors that had mode groupings to exploit were considered. These application

include B-spline interpolator, a CSDF data distribution ofaudio streams to be sample-

rate-converted, a polyphase decimated DFT filter bank, and multiple PEAs. Apart from

the applications that we have used for previously describedexperiments in this thesis,

B-spline interpolator is a new one. We refer readers to [63] for detailed information re-

garding this application and how it can be modeled using CFDFmodel. For each applica-

tion, the generalized scheduling strategy employing decomposition of dynamic dataflow

graphs (using APGAN as the static scheduler) with and without mode groupings was em-

96

Table 5.2: Total buffer size requirements with and without mode grouping.

Without With Percentage
Application Groups Groups Improvement

BSpline Interpolation 479 304 37%
Sample Rate Converter 2,278 2,278 0%

Polyphase DFT Filter Bank 24 24 0%
Multi-PEA 3,802 2,976 22%

ployed. The resulting schedule trees were balanced and ordered based on the known input

conditions, be it static patterns or probability distributions (see [63] for more details).

As seen from the simulation results in Table 5.2, the two purely static applica-

tions showed no benefit of using mode grouping. While mode groups were identified in

CSDF actors, the original generalized scheduler performedequally well with and with-

out groups. Once any dynamic behavior was inserted (i.e. theB-splineController

and the PEA dynamicSwitch andSelect pair), mode grouping showed a significant

improvement finding more (and larger) static schedule trees, which provided a direct sav-

ings in buffering by more optimal actor firings. Generalizedscheduling with and without

groups for each of these examples took less than5 seconds on a modern CPU [63].

5.3 Parameterized Looped Schedules

The latest communication technologies invariably consistof modules with dynamic

behavior. There exists a number of design tools for communication system design with

their foundation in dataflow modeling semantics. These tools must not only support the

functional specification of dynamic communication modulesand subsystems but also pro-

vide accurate estimation of resource requirements for efficient simulation and implemen-

97

tation. We explore this trade-off — between flexible specification of dynamic behavior

and accurate estimation of resource requirements — using a representative application

employing an AMS. We propose an approach for precise modeling of such applications

based on a recently-introduced form of dynamic dataflow called core functional dataflow.

From our proposed modeling approach, we show how parameterized looped schedules

can be generated and analyzed to simulate applications withlow run-time overhead as

well as guaranteed bounded memory execution. We have presented some of this work

in [70] using the Advanced Design System from Agilent Technologies, Inc., which is a

commercial tool for design and simulation of communicationsystems, for demonstration.

In this thesis, We use DIF for demonstrating this technique.

There is generally a trade-off between the expressive powerof the dataflow model

being used and the compile-time (i.e., prior to execution orsimulation) predictability that

is available when analyzing specifications in that model. Although it is desirable to have

as much expressive power as possible to best capture the dynamic nature of modern DSP

and communication applications, this can lead to significant reductions in the ability to

predict hardware and software resource requirements when targeting simulation or effi-

cient implementation. Many of these applications are “mostly-static” hybrids in that they

involve static dataflow components along with a relatively small proportion of dynamic

components. We show an approach to modeling and scheduling of such hybrid commu-

nication system applications using CFDF.

The scheduling technique presented in this section is applicable to a class of ap-

plications that we have already explained in Sections 3.5.5and 4.3. In these sections,

we have also introduced the AMS, which we use as a case study, and modeled it using

98

CFDF model. In this work, we show how efficient PLSs can be derived from the CFDF

representations. for this restricted class of the CFDF applications. This restricted form

is defined in a way that introduces a new trade-off point between expressive power and

analysis potential that is useful for modeling of modern communication systems.

5.3.1 Related Work

We have explained in previous chapters use of dataflow modelslike BDF to model

dynamic dataflow behavior. The problem of scheduling such dynamic dataflow appli-

cations has also been studied, and important results have been established regarding

bounded memory execution and compile-time scheduling (e.g., see [16, 53]). Most of

these approaches employ scheduling schemes that suffer from significant run-time over-

head, difficulties in code generation, and lack of compile-time predictability (e.g., for val-

idating real-time signal processing performance). The scheduling techniques described in

earlier sections — using dynamic dataflow graph decomposition and mode grouping —

do not in general guarantee bounded memory execution for theentire input application.

A meta-modeling technique such as PDF [6] supports limited forms of dynamic

behavior and has more compile-time predictability than more general kinds of dynamic

dataflow models such as BDF. A useful feature of PSDF, for example, is its capability

of efficient quasi-static scheduling in terms of PLSs [6]. This class of schedules allows

for flexible, compact specification of nested loop structures, where loop iteration counts

can be either constant values or symbolic expressions in terms of dynamic parameters in

the underlying dataflow graph. While PDF is useful for many kinds of signal processing

99

applications, it imposes significant restrictions on how applications are modeled (e.g., in

terms of hierarchies of cooperatinginit, subinit, andbodygraphs [6]), and in general,

major changes in the user interface are required to provide direct support for PDF in a

design tool.

In contrast to the approaches for scheduling BDF or PDF graphs, the approach

that we present here provides PLS-based bounded memory scheduling while operating

within a semantic framework that can be integrated more directly into existing design

tools compared to the more hierarchical semantic structureof PDF representations.

5.3.2 Constructing Parameterized Looped Schedules

This technique, developed in [70], is applicable to a class of applications shown in

Fig. 3.6(a). It seeks to generate efficient PLSs to reduce therun-time overhead associ-

ated with dynamic scheduling. Such quasi-static schedulesare also useful from a code

generation perspective as the only dynamic components of such schedules are the loop

iteration counts. Our approach finds static regions in the application graph that can be

clustered and completely scheduled at compile-time. It then proceeds to identify the dy-

namic components along with the corresponding static components, which must execute

varying numbers of times in relation to the dynamic components. We then merge the

appropriately-iterated static and dynamic components into a single PLS.

The following sequence of steps outlines our algorithm for PLS construction (see

Fig. 3.6(a)):

1. Identify SDF components in the dataflow graph and cluster them individually to

100

1

Mapper mi Mapper Channel 2 ni

Bits Demapper Sink

Figure 5.5: Valid PLS for the application in Fig. 3.6(b).

obtain SDF-clustered regionsS1, S2, andS3. This step can be performed efficiently

since the specification of a CFDF actor mode includes the associated production or

consumption rate for each actor port.

2. Use established SDF scheduling techniques [11, 37] for scheduling the SDF regions

identified in step 1, assuming that a valid consistent schedule exists for each of the

SDF subgraphs [46].

3. Identify the pairD1 andD2 of actors with dynamic behavior, and determine which

of the SDF sub-schedule loop (iteration) counts are dependent onD1 andD2.

4. Combine static sub-schedules into a PLS in which parameterized loop count ex-

pressions are set up at compile time, and symbolic parameters in these expressions

are varied at run-time.

Fig. 5.5 illustrates a PLS for the dataflow graph in Fig. 3.6(b) that is derived using

our approach to PLS construction.

As can be seen from the GST in Fig. 5.5, CFDF actors useguarded execution,

while other SDF actors are fired usingunguarded executionin which the actor is fired

101

without checking if it is enabled (enabling is guaranteed through a carefully constructed

PLS). The values ofmi andni are determined dynamically by the simulator based on

the current modes of themapper anddemapper actors, respectively. Since the mode

of an actor is visible to the simulator (through a flexible mode-querying mechanism in

our implementation of CFDF), it can be used to set loop countsbased on dynamically-

changing execution state of the actor.

For the class of applications targeted in this section of thethesis (see Sections 3.5.5

and 4.3) and PLSs generated using the algorithm described inthis section, the number

of tokens accumulated on the edgee1 (e4) after theith iteration is related tomi and

ci (ni andpi). These expressions can then be used to prove that the numbers of tokens

accumulated on edgese1 ande4 are bounded byk+cmax−1 andq+pmax−1, respectively

(see Section 5.3.3). Together with bounds that are derived based on the static dataflow

properties of the other edges, this leads to a bound on total buffer memory requirement

that can be computed at compile-time. Such bounds provide for more efficient execution

or simulation (since dynamic memory allocation is not required) as well as enhanced

predictability and reliability.

5.3.3 Bounded Memory Execution

Since the CFDF model is Turing complete, the problem of determining whether a

CFDF graph can be scheduled within bounded memory in finite time is undecidable [16].

However, for a class of applications, the graphical representations of which can be re-

duced to the topology shown in Fig. 3.6(a), we can guarantee abounded memory execu-

102

tion, if one exists.

Consider the dataflow graph shown in Fig. 3.6(a). We assume that there exist valid,

consistent schedules for the SDF clusters in this dataflow graph [46, 11]. Note that such

schedules are periodic schedules that execute with boundedmemory. From the graph

topology, it is clear that we have a simple cycle, where the feedback edge and all other

edges in the cycle are single-rate. Hence, the only buffer edges where we can have un-

bounded accumulation of data tokens are the edges that connect SDF clusterS1 with the

actorD1 and the actorD2 with SDF clusterS3. With these assumptions and observations,

it suffices to show that these two buffers can be bounded in order to establish bounded

memory execution for the application.

Consider the edgee1. Let ti denote the number of tokens accumulated on an edge

e1 after theith iteration of the entire graph schedule, fori = 0, 1, . . . with t0 = 0. Let

mi andci denote the value of the parameterized loop counts and the number of tokens

consumed from edgee1 during theith iteration, respectively, fori = 1, 2, From the

dataflow graph topology shown in Fig. 3.6(a) and (b), and the schedule shown in Fig. 5.5,

we have

ti = k ·mi + ti−1 − ci, (5.1)

where

mi = d(ci − ti−1)/ke . (5.2)

Substituting (5.2) in (5.1) and using the following relation [18]

d(a/b)e ≤ (a+ b− 1)/b, ∀ integersa, b > 0,

103

it can be shown that

ti ≤ k − 1. (5.3)

Now the maximum number of tokens that is ever queued on the buffer e1 is bounded

above by the sum of the maximum number of tokens that remain after a schedule iteration

and the maximum number of tokens that can be consumed from thebuffer during an

iteration. Thus, the number of tokens that are accumulated in the buffer for edgee1 is

bounded above by(k + cmax − 1). Similarly, we can show that the buffer for edgee4 has

an upper bound on the number of tokens accumulated in it that is given by(q+pmax−1).

We thus have upper bounds on the numbers of tokens accumulated in dataflow

buffers for which dataflow behavior varies during run-time.These bounds, together with

bounds that are derived based on the static dataflow properties of the other edges, provide

a bound on the total buffer memory requirement. Moreover, this aggregate bound can be

computed at compile-time, which has advantages as mentioned in Section 5.3.2.

5.3.4 Simulation Results

We have implemented the approaches to CFDF modeling and PLS construction us-

ing theAdvanced Design System(ADS) tool from Agilent Technologies, Inc. [60]. We

have employed the CFDF model for dynamic actors along with the existing SDF based

actors in Agilent ADS. Using such a design approach, we implemented the AMS appli-

cation shown in Fig. 3.6(b). Results for simulations of PLS-based execution of the AMS

application, as implemented in Agilent ADS, are presented in [70].

In this thesis, we use DIF to prototype the AMS application using the CFDF model

104

and generate a PLS using the algorithm described in [70] as well as Section 5.3.2. In [70],

we compared the performance of a PLS with that from a canonical schedule. Extend-

ing [70] further, we also compare the performance of a PLS with that of thedynamic

dataflow schedule(DDFS) employed in Ptolemy II [16, 15]. For this, we have imple-

mented the algorithm used in Ptolemy II to generate a DDFS in DIF. A DDFS is widely

used to simulate dynamic dataflow applications. In a DDFS, atany given time during a

simulation, the scheduler determines whether each of the actors is enabled or deferrable.

A deferrable actor is the one that is enabled, but does not require to be fired in order for

any of its downstream actors to be enabled. Correspondingly, we may also have actors

that areenabled but not deferrable(EBND) — that is, actors that are enabled, and must

be fired in order to have sufficient number of tokens produced at their outputs for one or

more of their downstream actors to be enabled. Among the enabled actors, a DDFS first

attempts to fire an actor only from the set of actors that are EBND. If there is no such

actor, it proceeds to fire one of the enabled actors. After every invocation of an enabled

actor, the DDFS checks if the invocation has changed the status of any of the other actors

in the graph in terms of being enabled or deferrable. The execution proceeds until the

control condition (a pre-specified condition for terminating graph execution) is reached

or a deadlock condition is reached. A DDFS is designed to fire actors only when re-

quired for enabling downstream actors. By doing so, it aims to minimize the total buffer

requirements for the application graph.

The results of our experiments for different sink control conditions (the total number

of tokens that must be consumed by the sink actor during the simulation) are shown in

Table 5.3 and Table 5.4.

105

Table 5.3: Average simulation time for different sink control conditions (numbers of to-
kens consumed by the sink actor) using a canonical schedule (CS), DDFS, and PLS.

Sink control Average simulation time (ms)Reduction (%) compared to

condition CS DDFS PLS CS DDFS

10000 78 186 73 6.41 60.75
20000 111 301 90 18.92 70.10
50000 222 665 148 33.33 77.74
100000 401 1313 248 38.15 81.11

Table 5.4: Total buffer requirements for different sink control conditions (numbers of
tokens consumed by the sink) for a canonical schedule (CS), DDFS, and PLS.

Sink control Total buffer requirement (number of tokens)

condition CS CS CS DDFS PLS PLS
Minimum Average Maximum Experiments Theory

10000 25 28 37 19 19 19
20000 27 31 37 19 19 19
50000 29 35 45 19 19 19
100000 31 34 37 19 19 19

As evident from the results, the PLS method exhibits significant reductions in run-

time overhead over a canonical schedule and DDFS, which leads to improvements in

average simulation time — up to38% over a canonical schedule and81% over a DDFS

in our DIF implementation. Speed-up in simulation over a DDFS can be attributed to

elimination of run-time overheads corresponding to determining the status of each actor

(enabled or deferrable) in the graph. For a canonical schedule, total buffer requirements

vary from one simulation of an application to another owing to dynamically changing

dataflow behavior. We have reported minimum, maximum, and average buffer require-

ments from our experiments using a canonical schedule. It should be noted that the total

buffer requirements for a canonical schedule not only vary significantly across different

106

simulations but also are much higher compared to that of a PLSor DDFS. These experi-

ments not only confirm the theoretical buffer bounds for PLSsestimated using the results

mentioned above but also demonstrate significant reductions in the total buffer memory

requirements over the canonical schedule, especially for larger values of sink control con-

ditions (i.e., longer simulations). Since a DDFS employs a strategy in which actors are

fired only when needed, it tries to optimize the total buffer requirements. For the AMS

application in our experimental study, our PLS can achieve this optimized buffer require-

ment, but with much higher simulation speeds.

In summary, from our study, trade-offs among the schedulingtechniques that we

have examined in this section can be summarized by listing the advantages of each of the

techniques as follows:

• CFDF canonical scheduler offers simplicity of implementation (e.g., for fast, early

stage prototyping) and generality (arbitrary topologies can be handled).

• DDFS offers buffer size minimization, and generality.

• PLS offers buffer size minimization with compile-time analysis, and fast simulation

performance.

Intuitively, while the canonical schedule and DDFS offer generality for the associ-

ated dynamic dataflow modeling techniques, PLSs typically require significant amounts

of static or quasi-static structure to be useful — however, when such structure can be

found, their benefits can be significant, as shown in our case study using the AMS ap-

plication. Furthermore, it is conceivable that the performance benefits presented here for

107

PLSs can be extended beyond simulation to implementation/synthesis scenarios; this is a

useful direction for further investigation.

5.4 Summary

We have presented a generalized scheduling strategy for scheduling dynamic dataflow

applications that leverages CFDF semantics, which structures dynamic actors as a set of

modes with fixed behavior. We presented an algorithm that decomposes dynamic dataflow

graphs into a set of dynamically interacting static dataflowgraphs. We demonstrated this

on mixed-model applications with existing schedulers, which gave a positive indication

of the utility of this approach for software implementations of such dynamic dataflow ap-

plications. An immediate direction of future work is to improve the sophistication of the

simulator. With a more intelligent way of dynamically switching between the resulting

static schedule trees, we should achieve better run times and smaller maximum buffer

sizes. A limitation of our approach, compared to related techniques, is that special at-

tention is required by the designer to explicitly specify the dataflow properties associated

with individual modes, and attention is also needed during testing to validate that the

declared and observed behaviors match. An interesting direction for future work is the

integration of our proposed scheduling methods with more formal reasoning about actor

sub-behaviors, such as those being developed in conjunction with languages and models

such as CAL and SysteMoc.

We have presented a generalized scheduling approach with mode grouping that ex-

poses more static behavior of a dynamic application graph. By identifying static groups

108

of “modes” inside actors, we expose more of the static natureof the application, allowing

traditional scheduling techniques to improve on memory requirements by up to37%. De-

veloping dynamic schedule tree selector so that a simulatoror a final implementation may

strategically switch between the known static behaviors atrun-time is a useful direction

for future work.

Our PLS approach identifies the underlying static components in the application,

systematically integrates the well-established compile-time scheduling techniques for SDF

graphs with more flexible CFDF semantics, and uses combined CFDF/SDF analysis to

generate PLSs that have significantly reduced run-time overhead, guaranteed memory

bounds, and reduced memory requirements. Our approach, therefore, provides robust

simulation of dynamic communication applications withoutmajor limitations on compile-

time predictability and efficient scheduling.

109

Chapter 6

Dataflow-based Rapid Prototyping for Radio Astronomy Signal

Processing

There is a growing trend toward using high-level tools for design and implementa-

tion of radio astronomy DSP systems. Such tools, for example, those from the CASPER

group, are usually platform-specific, and lack high-level,platform-independent, portable,

scalable application specifications. This limits the designer’s ability to experiment with

designs at a high-level of abstraction and early in the development cycle. We address

some of these issues using a model based design approach employing dataflow modeling,

which is extensively used in design of embedded DSP systems.We use an application

employing a TDD to allow narrow band modes in spectrometers as a driving and demon-

strative application. Our design is targeted toward an FPGAplatform, called the IBOB,

that is available from the CASPER group. By a TDD, we imply a hardware digital down-

converter design that can be reconfigured without the need for regenerating the hardware

code. Such a design is currently not supported in the CASPER DSP library. The work

presented in this chapter focuses on two aspects. Firstly, we introduce and demonstrate

a dataflow-based design approach using the DIF tool for high-level application specifica-

tion, and we integrate this approach with the CASPER tool flow. Secondly, we explore

the trade-off between the flexibility of TDD designs and the low hardware cost of fixed-

configuration digital downconverter (FDD) designs that usethe available CASPER DSP

110

library. We further explore this trade-off in the context ofa two-stage downconversion

scheme employing a combination of TDD or FDD designs.

6.1 Introduction

Key challenges in designing DSP systems employed in the fieldof radio astronomy

arise from the need to process very large amounts of data at very high rates arriving from

one or more telescopes. It is also desirable to have scalableand reconfigurable designs

for shorter development cycles and faster deployment. Moreover, these designs should be

portable to different platforms to keep up with advances in new hardware technologies.

However, conventional design methodologies for signal processing systems in the field

of radio astronomy focus on custom designs that are platform-specific. Such designs,

by virtue of being platform-specific, are highly specialized, and thus difficult to retarget.

The design approaches also lack high-level platform-independent application specifica-

tions that can be experimented with, and later ported to and optimized for various target

platforms. This limits the scalability, reconfigurability, portability, and evolvability across

varying requirements and platforms of such DSP systems.

A model based approach for design and implementation of a DSPsystem can ef-

fectively exploit the semantics of underlying models of computation for precise estima-

tion and optimization of system performance and resource requirements (e.g., see [8]).

Though approaches for scalable and reconfigurable design based on modular FPGA hard-

ware and software libraries have been developed (e.g., see [55, 56]), they neither allow

for high-level abstraction nor provide linkage to formal models of computation.

111

We propose an approach using DSP-oriented dataflow models ofcomputation to

address some of these issues [46]. Dataflow modeling is extensively used in developing

embedded systems for signal processing and communication applications, and electronic

design automation [8]. Our design methodology involves specifying the application in

DIF [36] using an appropriate dataflow model. This application specification is trans-

formed into an intermediate, graphical representation, which can be further processed

using graph transformations. The DIF tool allows designersto verify the functional cor-

rectness of the application, estimate resource requirements, and experiment with various

dataflow graph transformations, which help to analyze or optimize the design in terms of

specific objectives. The DIF-based dataflow specification isthen used as a reference while

developing a platform-specific implementation. We show howformal understanding of

the dataflow behavior from the software prototype allows more efficient prototyping and

experimentation at a much earlier stage in the design cycle compared to conventional

design approaches.

As mentioned earlier, we demonstrate our approach using thedesign of a TDD

that allows fine-grain spectroscopy on narrow-band signals. The TDD, which was origi-

nally designed for theGreen Bank Ultimate Pulsar Processing Instrument(GUPPIat the

NRAO, Green Bank, finds its use in the spectrometers currently under development for

the GBT and 20m telescope at the NRAO, Green Bank. One of the motivations has been

to have a TDD design, where by a TDD, we mean a digital downconversion system that

supports changes to the targeted downconversion ratio without requiring regeneration of

the corresponding hardware code. Development of such a TDD is a significant contribu-

tion of this work. We compare our TDD with the FDD designs thatuse the current DSP

112

library from the CASPER group. Through this kind of comparison, we explore trade-offs

between the flexibility offered by TDD designs and their hardware cost.

6.2 Related Work

There exist high-end reusable, modular, scalable, and reconfigurable FPGA plat-

forms such as theBerkeley Emulation Engine 2(BEE2) and IBOB, which have been in-

troduced specifically for DSP systems [17]. The BEE2 uses SDFas a unified computation

model for both the microprocessor and the reconfigurable fabric. It uses a high-level block

diagram design environment based on The Mathworks’ Simulink and the XSG. This de-

sign environment, however, does not expose the underlying dataflow model. In particular,

the designer has little or no scope to make use of the underlying dataflow model for ex-

perimentation. Also, the SDF model used for programming theBEE2 is a static dataflow

model in that all the dataflow information is available at compile-time (i.e., before exe-

cuting or running the application). Though this feature provides maximal compile-time

predictability, it has limited expressive power. It does not allow for data-dependent, dy-

namic behavior, which is exhibited by many modern DSP applications, such as the TDD

application introduced in Section 6.3. Other forms of dataflow models that can capture

more application dynamics with acceptable levels of compile-time predictability may bet-

ter exploit the features offered by platforms such as the BEE2.

Model based approaches for designing large scale signal processing systems with

a focus on radio telescopes has been previously studied (e.g., see [2, 50, 49]). Several

frameworks have been proposed for model based, high-level abstractions of architec-

113

tures along with performance/cost estimation methods to guide the designer throughout

the development cycle (see [2]). However, the focus of theseapproaches has been on

architecture exploration. There have also been attempts toderive implementation-level

specifications starting from system-level specifications by segregating signal processing

and control flow into an application specification and architecture specification, respec-

tively (see [50, 49]). However, the choice of models of computation has been made

primarily from control flow considerations rather than dataflow considerations. These ap-

proaches, though relevant, do not specifically address the issue of high-level application

specification for platform-independent prototyping and use of models of computation for

abstraction of heterogeneous or hybrid dataflow behaviors.This issue is critical to effi-

cient prototyping of high performance signal processing applications, which are typically

dataflow dominated, and include increasing levels of dynamic dataflow behavior (e.g.,

see [8]).

We address this issue using the CFDF model with underlying PSDF or PCSDF be-

havior and using it for system prototyping. We then show how platform-independent spec-

ifications based on this modeling technique can be used to efficiently develop platform-

specific implementations.

6.3 Tunable Digital Downconverter

In DSP literature, the terms downsampling, decimation, anddownconversion are

often used interchangeably. In this chapter, adecimatorrefers to a block that simply deci-

mates, downsamples, or downconverts the input signal without any other processing (e.g.,

114

see Fig. 2.2(a) and (b)). The ratio of the sampling rate at theinput of a decimator to that

at its output is referred to as itsdecimation factor. A decimator is generally preceded by

an anti-aliasing filter [80]. In this chapter, we refer to such a combined structure, con-

sisting of a filter and decimator, as adecimation filter(e.g., see Fig. 2.3(a) and (b)). In

a polyphase implementation of a decimation filter, such as the one we use in our imple-

mentation, this structure is implemented as a single computing block [80]. We refer to the

system or application that employs a decimator or decimation filter, possibly with other

blocks such as mixers and filters, as a digital downconverter, and in particular, a FDD

or TDD (e.g., see Fig. 6.1). The decimation factor of a decimation filter, TDD, or FDD

refers to that of the decimator in it.

Fig. 6.1 shows a block diagram of a TDD application. It shows an 8-bit analog-to-

digital converter (ADC) that receives a baseband input IF signal of bandwidth800MHz

and samples it at the sampling rate of1.6 giga-samples/second (GS/s). The internal design

of the ADC block is such that8 samples, where each sample is an8-bit fixed point number,

are output on the eight output lines at the same clock pulse. This results in200mega-

samples/second (MS/s) on each of the outputs of the ADC block. Correspondingly, all

the downstream blocks also have8 input and output ports. We, thus, have8 connections

between any two blocks shown in Fig. 6.1 that are directly connected. We, however, have

not shown this detail (all8 connections) for the sake of clarity and simplicity.

The TDD subsystem, identified by the dotted box in Fig. 6.1, has to downsample

this signal so that the resultant signal at the output of the TDD will have a tunable band of

user-specified bandwidth (Bw) and center frequency (Cf). The output of the TDD is fed

to the downstream DSP blocks over the10x auxiliary user interface (XAUI) ports. The

115

Figure 6.1: Block diagram of a tunable digital downconverter.

XAUI ports stream data over CX4 connectors of the IBOB, and have a maximum data

transfer capability of10 giga-bits per second (Gbps).

During narrow-band observation modes, the TDD allows narrow-band signals to be

sampled at their corresponding Nyquist rates. When presented to the same number of

channels in the downstream DSP system as that for the wide-band IF input, this allows

fine-grain spectroscopy. Our TDD design supports integer decimation factors between5

and12. The valid values ofCf corresponding to the selectedBw can vary so as to span

the entire800MHz IF input.

As shown in Fig. 6.1, the TDD consists of a tunable FIR filter. If the desired output

is a baseband signal, then the FIR filter simply acts as a rectangular window with each

of its taps set to1. Also, in this case, the fork and select blocks are configuredto route

the output of the FIR filter directly to the tunable decimation filter (TDF), bypassing the

mixer.

If the desired output is not a baseband signal, the FIR filter acts as a bandpass

filter (BPF). The cut-off frequencies for this BPF are set using the specified parameter

configuration (Bw andCf). In this case, the output of the BPF is fed to a real mixer,

116

Figure 6.2: Proposed dataflow-based approach.

which translates it into a baseband signal. The local oscillator, with a frequencyfLO, is

implemented as a numerically controlled oscillator (NCO).The frequency,fLO, is depen-

dent on the value ofCf andBw. The output of the mixer is then fed to the TDF, which

downsamples its input depending upon the specifiedBw or decimation factor.

6.4 Dataflow-based Design and Implementation

We propose an approach for design and implementation of a TDDbased on the

dataflow formalisms discussed in Section 2.1 along with relevant capabilities of the DIF

tool described in Section 2.2. Fig. 6.2 gives an overview of our dataflow based approach,

which we now describe.

117

6.4.1 Modeling and Prototyping using DIF

We start with an application specification that describes the DSP algorithm under

consideration (for example, here, TDD) along with proper input and output interfaces.

The application is specified using the DIF language. This DIFspecification consists of

topological information about the dataflow graph — interconnections between the actors

along with input and output interfaces. The DIF specification is a platform-independent,

high-level application specification. The specification can be used, for example, to simu-

late the application, given the library of actors from whichthe specification is constructed.

Depending upon the application under consideration, the designer can select from

among a variety of dataflow models of computation in DIF to effectively capture rele-

vant aspects of the application dynamics. It should be notedthat the designer does not

always need to a specify the model in advance. The CFDF model can be used to de-

scribe individual modules (actors) in the application, andthe DIF package can analyze

the CFDF representation (CFDF modes, to be specific) of the actors, as specified by the

designer through the actor code, and annotate the actors with additional dataflow infor-

mation using various techniques for identifying specialized forms of dataflow behavior

(e.g., see [67]). This step requires the functionality of individual actors to be specified in

CFDF semantics. The designer can use the existing blocks from the Java actor library in

DIF or develop his or her own library of CFDF actors.

In terms of tunability, the key components of the TDD as seen from Fig. 6.1 are the

tunable FIR filter, and decimation filter blocks. The TDF block is of particular interest,

considering that it is the only multirate block in the system. Its behavior resembles that of

118

ADC Decimator

6
1 6
1 6
1 6
1

Output

1
1 1
1 1
1 1
1

(a)

ADC Decimator

[1 1 1 1 1 1]
1 [1 1 1 1 1 1]
1 [1 1 1 1 1 1]
1 [1 1 1 1 1 1]
1

Output

1
 [0 0 0 0 1 0] 1
 [0 0 0 1 0 0] 1
 [0 1 0 0 0 0] 1
 [1 0 0 0 0 0]

(b)

Figure 6.3: Dataflow behavior of aDecimator actor with 4 inputs and
outputs for adecimation factorof 6 using (a) SDF, and (b) CSDF models.

the one described in Section 2.1.3. In view of this, we have identified PSDF and PCSDF

as candidate dataflow models for efficient implementation ofthe targeted TDD system.

For this system, we have to take into account the multiple inputs and outputs to actors, as

mentioned in Section 6.3.

To illustrate details of the dataflow behavior of a decimatoractor based on such

specifications, we have shown one suchDecimator actor with4 inputs and outputs, and

having a decimation factor of6 in Fig. 6.3(a) and Fig. 6.3(b). For the sake of simplicity

and clarity, we have excluded the other single rate blocks from the application graphs in

this figure. In our implementation, we extend this behavior for an actor with8 inputs

and outputs. We have created a DIF prototype using PSDF and PCSDF as underlying

models for equivalent CFDF representation of actor blocks.We have also developed a

Java library of actors in DIF adhering to CFDF semantics for all of the blocks.

We then used DIF for software prototyping, analysis, and functional simulation.

The DIF package uses the DIF specification to generate an intermediate graph represen-

119

tation, which can then be used as an input for further graph transformations including a

schedulingtransformation, which determines the schedule for an application. Here, by a

schedule, we mean the assignment of actors to processing resources, and the execution

ordering of actors that share the same resource. The functional simulation capabilities

provided in DIF can be used to analyze and estimate buffer requirements in terms of the

numbers of tokens accumulated on the buffers that correspond to dataflow graph edges.

This provides an estimate of total memory requirements as well as specifications for in-

dividual buffers when porting the application to the targeted implementation platform.

Fig. 6.4 shows the TDD application graph generated using DIF. This is based on the

TDD block diagram shown in Fig. 6.1 with addition of some actors that handle parameter

configuration for the actors. We discard one of the two sets ofoutputs (more specifically,

sineoutput) of thelocalOsc actor as we have employed a real mixer in our design. The

complexity of the graph, which is increased due to multiple parallel edges between two

actors, can easily be captured through a DIF specification that makes use of topological

patterns. We have shown two possible specifications of the graph topology in DIF using

topological patterns in Fig. 6.5 and Fig. 6.6.

Using the TDD specification and employing the notion of PLSs described in Sec-

tion 5.3, we construct PLSs for the TDD application. Fig. 6.7(a) shows a PLS for a

TDD application, where thedecimator actor has the underlying SDF model, while

Fig. 6.7(b) shows one in which thedecimator actor employs the CSDF model. As an-

notated in these GSTs, loop countsp0, p1, andp2 are parameterizable. The loop count

p0 is set to a user-specified number of iterations, while the loop countsp1 andp2 are

tuned based upon the decimation factor as well as the underlying dataflow model for the

120

source

copy

bpf

Merge

multiplier

decimator

sink

control

fork_0_

fork_1_

fork_2_

localOsc

dump

Figure 6.4: TDD application graph generated using DIF.

decimator. Fig. 6.7(a) and (b), in particular, show values of the parameterizable loop

counts set for adecimator with a decimation factor of11. This PLS can be viewed as

providing CFDF-based execution for the given PDF-based actor specification model. The

effect of various decimation factors on the total buffer requirements (in number of tokens)

is shown in Table 6.1.

Table 6.1 shows the total buffer requirements using PLSs forvarious configurations

of decimation factors. Note that for a given configuration (setting of graph parameters), a

121

topology {
nodes = source, copy, bpf, Merge, decimator,

sink, control, fork[3], multiplier,
localOsc, dump;

edges = soCp[8] -> multiedge(source, copy),
cpMrg[8] -> multiedge(copy, Merge),
cpBpf[8] -> multiedge(copy, bpf),
bpfMul[8] -> multiedge(bpf, multiplier),
mulMrg[8] -> multiedge(multiplier, Merge),
mrgDec[8] -> multiedge(Merge, decimator),
decSnk[8] -> multiedge(decimator, sink),
loMul[8] -> multiedge(localOsc, multiplier),
loDump[8] -> multiedge(localOsc, dump),
conFrk, f0f1, f1f2 -> chain(control, fork[0:2]),
f0Bpf(fork[0], bpf),
f1Lo(fork[1], localOsc),
f2Mrg(fork[2], Merge),
f2Dec(fork[2], decimator);

}

Figure 6.5: Partial DIF specification —topology block — for the TDD
application graph using topological patterns.

PSDF or PCSDF graph behaves like an SDF or CSDF graph, respectively. It can be seen

that for the SDF model, the total buffer requirements vary with the decimation factor, and

this is due to input buffers to the TDD block that need to accumulate varying numbers

of tokens. Thus, employing the PSDF model will require tuning buffer sizes for different

decimation factors if one wants to provide for optimized buffer sizes in terms of graph

parameters.

We have used the CASPER tool flow for developing our platform-specific imple-

mentation as explained later in Section 6.4.2. This implementation is targeted to an

FPGA. Our objective here is to support tuning the decimationfactor without regener-

ating hardware code. A dataflow buffer can be emulated using dual-port random access

122

topology {
nodes = source, copy, bpf, Merge, decimator, sink,

control, fork[3], multiplier, localOsc, dump;
edges = c0[6] -> chain(source, copy, bpf,

multiplier, Merge, decimator, sink),
c1[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c2[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c3[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c4[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c5[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c6[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
c7[6] -> chain(source, copy, bpf,
multiplier, Merge, decimator, sink),
cpMrg[8] -> multiedge(copy, Merge),
loMul[8] -> multiedge(localOsc, multiplier),
loDump[8] -> multiedge(localOsc, dump),
conFrk, f0f1, f1f2 -> chain(control, fork[0:2]),
f0Bpf, f1Lo, f2Mrg, f2Dec -> parallel(fork[0:2],
fork[2], bpf, localOsc, Merge, decimator);

}

Figure 6.6: Partial DIF specification —topology block — for the TDD
application graph using topological patterns.

memory (RAM) blocks in the targeted FPGA device, but tuning the sizes of such blocks

is not possible during run-time. The ADC output is of a streaming nature (data is pro-

duced or consumed at every clock cycle without any synchronization signal), as is the

DSP subsystem downstream of the TDD.

In order to achieve the throughput constraint imposed by themaximum data rate

of the ADC output stream, SDF buffers need to be pipelined, which is not efficient using

RAM blocks. Thus, we use the CSDF model, which does not require tuning of dataflow

123

1

control fork_0_ fork_1_ bpf fork_2_ localOsc Merge decimator

1

p0 = 10

p2 = 11

source copy bpf localOsc multiplier dump Merge

p1 = 1

1 sink

decimator

(a)

1

control fork_0_ fork_1_ bpf fork_2_ localOsc Merge decimator

1

p0 = 10

p2 = 1

source copy bpf localOsc multiplier dump Merge

p1 = 11

1 sink

decimator

(b)

Figure 6.7: PLSs for the TDD application configured for a decimation fac-
tor of 11, anddecimator actor employing the (a) PSDF and (b) PCSDF
models of computation.

124

Table 6.1: Total buffer requirements from a DIF prototype for different decimation factors
using parameterized looped schedules.

Decimation Factor 5 6 7 8 9 10 11 12

Total buffer requirements SDF 132 140 148 156 164 172 180 188
(Number of tokens) CSDF 100 100 100 100 100 100 100 100

buffer sizes to achieve the maximum throughput constraint,as observed from our DIF-

based prototype. A synchronization or enable signal derived from the TDD is used as

a clock to drive the downstream DSP system. This signal is a decimated version of the

clock signal.

We use our DIF prototype as a reference while integrating thedesign with the cur-

rent CASPER tool flow for the target implementation on the IBOB. Section 6.4.2 further

elaborates on this approach along with implementation results.

6.4.2 Integration with the CASPER Tool Flow

The CASPER tool flow is based on the BEEXPS tool flow [56]. This tool flow

requires that an application be specified as a Simulink modelusing XSG [56]. Since

we do not have an automated tool for transforming a DIF representation into an equiv-

alent Simulink model, porting the DIF specification to Simulink/XSG requires manual

transcoding of the DIF specification. This also requires implementing parameterizable

actor blocks that are currently not supported in the XSG, CASPER, or BEEXPS libraries.

Each actor gets transformed into an equivalent functional XSG block. For each of

the Simulink actor blocks, we provide a pre-synthesis parameterization that allows chang-

ing block parameters before hardware synthesis (see [57] for more details on Simulink

125

scripting). In order to implement our objective of tunability — post-synthesis parame-

terization — we use thesoftware registermechanism in the BEEXPS library to specify

parameters that change during run-time (that is, after hardware code is generated, and

depending upon user requirements.)

Software registers can be accessed and set during run-time from the TinyShell inter-

face available for IBOB. This allows tuning TDD parameters without re-synthesizing the

hardware each time the parameters change from the previous setting. Each block has an

enable input signal. Through systematic transformations,an application graph in DIF can

be converted into an equivalent Simulink/XSG model. We havedeveloped an interface

software package using C programs, and Bash and Python scripts to compute software

register values for the required TDD configuration, and set these values on the IBOB over

a telnet connection, which is used for remote access to the hardware platform at NRAO.

On the targeted FPGA device, we have employed dual-port RAM blocks that are

loaded with pre-computed sinusoidal signal values of the required precision. Each of

these dual-port RAM blocks is used to simultaneously read sine and cosine values from

both of its ports. The oscillator frequency is set using a software register, and depends

upon the desired output signal band.

The FIR filter associated with the TDF block can have up to16 taps. Currently, the

generic FIR filter without any decimation (used, for example, as a BPF in the design) can

have up to8 taps. These, again, are set using software registers. We have employed two

filter banks in our design of a TDF that operate in tandem to allow maximum throughput.

Hence, our TDF block has32 multiplication operations. As mentioned earlier, our TDF

design employs a polyphase implementation as described in [80].

126

Table 6.2: Implementation summary for TDD designs.

Parameter Design 1 Design 2 Design 3 Design 4

Mixer No Yes No Yes
Input bandwidth (MHz) 800 800 800 800
Decimation factorD 5 ≤ D ≤ 12 5 ≤ D ≤ 12 5 ≤ D ≤ 12 5 ≤ D ≤ 12
Latency (ns) 65 150 85 190
FPGA slices 12234 (52%) 13315 (56%) 12322 (52%) 14232 (60%)
(Out of 23616)
4 input LUTs 14139 (29%) 16123 (34%) 12123 (25%) 15035 (31%)
(Out of 47232)
Block RAMs 41 (17%) 48 (20%) 41 (17%) 48 (20%)
(Out of 232)
18× 18 Multipliers — — 32 (13%) 95 (40%)
(Out of 232)

Table 6.4.2 shows results for the TDD implementation on the IBOB using the Xilinx

EDK 7.1.2. We have used this hardware platform and tool for all of the experiments

reported on in the remainder of this chapter. Design1 shows some of the device utilization

parameters for a TDD that supports only baseband modes. Thisdesign does not include

the tunable FIR filter, NCO, and mixer blocks shown in Fig. 6.1. Design2 is based on the

block diagram of a TDD shown in Fig. 6.1. As evaluation metrics for hardware cost, we

have used the utilization of FPGA slices,4-input look-up tables (LUTs), and block RAM

units, and the number of embedded multipliers. Note that neither of these two designs

use any of the available embedded multipliers for multiplication. Designs3 and4 are

modified versions of designs1 and2, respectively, in that they employ embedded18× 18

multipliers. It can be seen that using embedded multipliersdoes not provide significant

improvements in hardware cost. We observe that use of embedded multipliers, in fact,

needs to be accompanied by addition of extra latency in the design to achieve timing

127

closure. We have been able to achieve maximal throughput using an implementation

based on the PCSDF model as explained in Section 6.4.1.

6.4.3 Platform-specific Analysis using DIF

It is common to go back and forth between a high-level prototype and a correspond-

ing platform-specific implementation while designing an embedded DSP system. Such

alternation in design phases is common, for example, when one is developing a platform-

specific library or tool flow. In support of such a design methodology, it is desirable

for a high level design tool to support platform-specific analysis. This can be achieved

by annotating the high-level application specification with platform-specific implementa-

tion parameters, which are derived through device data sheets, experimentation or some

combination of both.

DIF supports specifying user-defined actor parameters. We use this feature in DIF

to annotate actors with two relevant implementation parameters — the latency constraint,

and number of embedded multipliers. This allows estimatingresults based on the DIF

prototype itself instead of determining them from the constructed design, which is gen-

erally time consuming. We have verified the accuracy of metrics estimated by our DIF

model compared with actual hardware synthesis results, as shown in Table 6.4.2.

Developers of tool flows and DSP libraries can profile their library blocks to deter-

mine a wide variety of platform-specific implementation parameters. DIF can use such

information to estimate implementation parameters at a high level of abstraction, and ear-

lier in the design cycle to help efficiently prune segments ofthe design space. Support

128

User interface

Controller

TDD interface
(Bash, C, Python)

Hardware
(e.g. iBOB)

 telnet

Figure 6.8: TDD System overview.

for estimation of various platform-specific resources for different platforms is beyond the

scope of this thesis. It is, however, an important directiontoward developing alternative

model based design flows and open access tool flows for astronomical DSP solutions.

6.4.4 Software Interface for the Tunable Digital Downconveter

As mentioned earlier, parameterization associated with the TDD blocks is handled

through the use ofsoftware registers. We have developed a TDD interface that computes

various programmable TDD parameters, and sets the corresponding software registers by

communicating with the IBOB board using thetelnetutility depending upon the narrow-

band mode chosen by the user.

Fig. 6.8 shows an overview of the system organization. A usercan specify a valid

narrow-band mode through auser interface. This information is then provided to the un-

derlyingTDD interfaceby acontroller. The TDD interface uses this information (band-

width, and center frequency of the narrow-band), along withthe decimation factor (either

129

derived from the input bandwidth or set explicitly), and configures the corresponding

TDD block. It then communicates this TDD configuration with the hardware. The TDD

interface is implemented as a collection of utilities in theform of C programs, Bash

scripts, and Python scripts.

One important aspect in our development of this TDD interface has been our em-

phasis on unit testing. We have used the unit testing features in the DICE framework (see

Section 2.5) to develop an extensive unit test suite, which can be applied for rigorous val-

idation of system functionality, and can be retargeted efficiently across different levels of

abstraction (e.g., simulation versus implementation) anddifferent design languages (e.g.,

C, Verilog and VHDL).

6.5 Exploring Implementation Trade-off with TDD and FDD Blocks

One of the motivations for the work presented in this chapterhas been to develop

library blocks needed for a TDD using Xilinx LogicCore and CASPER library blocks.

The current CASPER DSP library provides a decimator that supports decimation factors

that are powers of2. The decimation factor as well as the filter coefficients of the FIR

filter are not tunable after the hardware code is generated. Our design provides flexibil-

ity with not only the decimation factor but also the filter coefficients through the use of

software registers, as explained earlier. The FDD designs,though not tunable, have lower

hardware cost in terms of device utilization. Table 6.5 provides a summary of some of the

hardware utilization parameters for the FDD designs. Thesedesigns have also been im-

plemented on a CASPER IBOB. Note that the decimation factor of 10 has been achieved

130

Table 6.3: Implementation summary for FDD designs.

Parameter Design 1 Design 2 Design 3 Design 4

Mixer No No Yes Yes
Input bandwidth (MHz) 800 800 800 800
Decimation factor 8 10 8 10
Bw (MHz) 100 80 100 80
Cf (MHz) 50 40 400 400
Latency (ns) 35 440 50 455
FPGA slices 4175 (17%) 6142 (26%) 5690 (24%) 6439 (27%)
(Out of 23616)
4 input LUTs 5153 (10%) 5216 (11%) 5984 (12%) 6003 (12%)
(Out of 47232)
Block RAMs 41 (17%) 41 (17%) 49 (21%) 49 (21%)
(Out of 232)
18× 18 Multipliers 8 (3%) 8 (3%) 32 (13%) 32 (13%)
(Out of 232)

by first interpolating the input by a factor of80, and then decimating it by a factor of8.

Comparison between the results in this table and those in Table 6.4.2 clearly highlights the

trade-off between design flexibility and hardware cost. Using the model-based approach

presented in Section 6.4, the designer can effectively explore this trade-off based on the

given design requirements.

6.5.1 TDD and FDD for Multistage Downconversion

Though our TDD design supports limited decimation factors (integer factors be-

tween5 and12), its usage is not limited to these factors. It can be readilyscaled and

applied to achieve other decimation factors by cascading multiple TDF blocks. Fig. 6.9

shows some of the possible input/output sampling rate relations that can be achieved

by such use of cascaded TDF blocks. Design1 in Table 6.5.1 employs cascaded TDF

131

Input
 Sample Rate
 1600 MS/s

Decimation
 by 2

Decimation
 by 11

Output
 Sample Rate
 72.72 MS/s

Input
 Sample Rate
 1600 MS/s

Decimation
 by 8

Decimation
 by 5

Output
 Sample Rate

 40 MS/s

Input
 Sample Rate
 1600 MS/s

Decimation
 by 10

Decimation
 by 5

Output
 Sample Rate

 32 MS/s

Figure 6.9: Two-stage digital downconversion.

blocks, while design2 in Table 6.5.1 employs cascaded fixed-configuration decimation

filter (FDF) blocks. Both of these designs have been developed to demonstrate multistage

downconversion for a baseband signal and neither of them employs a mixer. It is possible

to extend these designs to include a mixer to allow all possible narrow band outputs and

not just the baseband output. For all of the designs in this table that use one or more TDF

blocks, the TDF block employs dedicated embedded multipliers.

In this light, we further explore the trade-off between the low hardware cost of FDD

designs and flexibility offered by TDD designs by examining adesign consisting of an

FDF block followed by a TDF block (designs3 and4 in Table 6.5.1). These designs

provide limited tunable decimation factors compared to design 1, but also have lower

hardware cost in terms of device utilization.

6.6 Summary

We have proposed a dataflow-based approach for prototyping radio astronomy DSP

systems. We have used a dataflow-based high-level application model that provides a

132

Table 6.4: Implementation summary for designs employing two-stage downconversion
using cascaded FDF or TDF blocks.Bw, if tunable, can be tuned to frequencies consistent
with decimation factors supported by the TDD block.

Parameter Design 1 Design 2 Design 3 Design 4

Mixer No No No No
Input bandwidth (MHz) 800 800 800 800
No. of FDD blocks 0 2 1 1
No. of TDD blocks 2 0 1 1
FDD Decimation factor(s) — 8, 10 8 10
Bw (MHz) Tunable 10 Tunable Tunable

(≤ 800) (≤ 100) (≤ 80)
Latency (ns) 170 475 120 505
FPGA slices 17141 (72%) 5765 (24%) 11073 (46%) 12641 (53%)
(Out of 23616)
4 input LUTs 19718 (41%) 5506 (11%) 12245 (25%) 12310 (26%)
(Out of 47232)
Block RAMs 41 (17%) 41 (17%) 41 (17%) 41 (17%)
(Out of 232)
18× 18 Multipliers 64 (27%) 16 (6%) 40 (17%) 40 (17%)
(Out of 232)

platform-independent specification, and assistance in functional verification and impor-

tant resource estimation tasks. This can prove effective inreducing the development cycle

and faster deployment of DSP systems across various target platforms. We have employed

this approach to methodically develop a TDD based DSP backend design. Our TDD im-

plementation is targeted to the CASPER FPGA board, called IBOB, and supports tuning

narrow band modes without the need for regenerating hardware code. We have also ex-

plored the trade-off between the low hardware cost for FDD designs and the flexibility

offered by TDD designs. This trade-off has also been highlighted in the context of de-

signs employing a two-stage downconversion scheme. A designer can explore this design

space to best meet the application requirements.

133

Chapter 7

Summary and Conclusions

In this thesis, we have addressed various aspects of design flows employed by model

based design tools for embedded systems in the context of rapid prototyping of high

performance signal processing applications. We summarizethese contributions along

with our conclusions as follows:

1. We have introduced the concept of topological patterns, which can be used in

dataflow modeling languages to identify and concisely iterate across arbitrary struc-

tures in a dataflow application graph. We have shown how the types of flowgraph

substructures that are pervasive in the digital signal processing (DSP) application

domain can be effectively represented in terms of topological patterns, and thereby

used to generate compact, scalable application representations. We have also shown

how an underlying design tool can exploit a high-level application specification

consisting of topological patterns in various aspects of the design flow. In particular,

we have demonstrated the efficacy of topological patterns indataflow graph anal-

ysis, concise and scalable representation of homogeneous synchronous dataflow

(HSDF) graphs, and exploring implementation-specific trade-offs. We have also

demonstrated the use of topological patterns in graph analysis and extraction of

implementation-specific features. We have applied the concept of topological pat-

terns to represent schedules for application graphs. Such representations are use-

134

ful, for example, when porting schedules generated using one design tool to other

platform-specific tools or design languages. We have demonstrated the utility of

experimentation with pattern-specific scheduling transformations, and how topo-

logical patterns facilitate such experimentation.

2. We have formulated the core functional dataflow (CFDF) model of computation,

which can be used to model a wide variety of deterministic dynamic dataflow be-

haviors, and used to capture various well known forms of dataflow in a single,

unified formulation. We have also presented features of the CFDF model and tools

based on it, such as support for 1) heterogeneous dataflow behaviors, 2) intuitive

functional specification, 3) functional simulation that allows designers to model

and verify interactions among various forms of dataflow, 4) portability from ex-

isting dataflow models, 5) minimally-restricted specification of actor functionality,

and 6) efficient static, quasi-static, and dynamic scheduling techniques. With the

CFDF modeling approach integrated into dataflow interchange format (DIF), we

have demonstrated the use of CFDF concretely on various applications. Such an

approach has allowed us to functionally simulate designs from early stages of de-

sign, and then focus on experimenting with schedules and dataflow transformations

to improve performance.

3. We have presented a new scheduling technique for dynamic dataflow applications.

This technique leverages the CFDF model, and operates by decomposing dynamic

dataflow graphs into sets of dynamically interacting staticdataflow graphs. We have

demonstrated this scheduling technique on mixed-model applications with existing

135

schedulers, which has given a positive indication of the utility of the approach for

software implementations of such dynamic dataflow applications. By identifying

static groups of “modes” inside actors, we have exposed moreof the static nature

of applications, allowing traditional scheduling techniques to improve on memory

requirements by up to 37%.

We have further used CFDF semantics to model a class of signalflow topologies

that is important for modern communication systems. Our approach identifies the

underlying static components in the application, systematically integrates well-

established compile-time scheduling techniques for synchronous dataflow (SDF)

graphs with more flexible CFDF semantics, and uses combined CFDF/SDF anal-

ysis to generate parameterized looped schedules (PLSs) that have significantly re-

duced run-time overhead, guaranteed memory bounds, and reduced memory re-

quirements. Our approach therefore provides robust simulation of dynamic com-

munication applications without major limitations on compile-time predictability

and efficient scheduling.

4. We have demonstrated the use of a dataflow-based approach for prototyping radio

astronomy DSP systems. We have used a dataflow-based high-level application

specification format that provides a platform-independentspecification, and assis-

tance in functional verification and useful kinds of resource estimation. Such an

approach is useful in improving designer productivity and facilitating faster de-

ployment of DSP systems across various target platforms. Wehave employed this

approach to methodically develop a tunable digital downconverter (TDD) based

136

DSP backend design. Our TDD implementation, which is targeted toward an FPGA

board, called the interconnect break-out board (IBOB), from the collaboration for

astronomical signal processing and electronics research (CASPER), supports tun-

ing narrow band modes without the need for regenerating hardware code. We have

also explored the trade-off between low hardware cost for fixed-configuration digi-

tal downconverter (FDD) designs and the flexibility offeredby TDD designs. This

trade-off has also been highlighted in the context of designs employing multistage

downconversion schemes. Using our approach for trade-off exploration between

hardware cost and flexibility, a designer can efficiently explore the associated de-

sign space to help optimize an implementation in terms of thegiven application

requirements.

5. This thesis has contributed significantly to the development and release of the latest

version of a graph package, called MoCGraph, that is oriented toward providing

fundamental graphical data structures and implementations of graph algorithms to

support analysis and manipulation of models of computation. Our contributions to

this graph package include support for tree data structures, and generalized sched-

ule trees (GSTs), in particular. Our extensions to the MoCGraph package have sup-

ported important features for the CFDF model, and for new functional simulation

capabilities in the DIF package.

The work presented in this thesis, though demonstrated using specific design tools,

is not restricted to those tools, and hence, can be applied toa wide variety of dataflow-

based environments. Also, the applications presented, though instrumental in driving this

137

research, are demonstrative, and the prototyping methods can be extended readily to other

relevant DSP applications.

138

Chapter 8

Future Work

We believe that pattern-specific scheduling techniques canprovide improved schedul-

ing capabilities for dataflow-based design environments that employ topological patterns.

In our work on topological patterns in this thesis, we have emphasized the same by pro-

viding a facility that allows a user to experiment with various schedules in a systematic

manner. The development of pattern-specific scheduling heuristics and support of those

in design tools has been, however, beyond the scope of this thesis. Such exploration

along with automating the application and integration of topological patterns are useful

directions for further investigation.

For scheduling generalcore functional dataflow(CFDF) graphs, it would be useful

to look into an approach that involves identifying static and dynamic components of het-

erogeneous dataflow graphs, generating two-actor schedules for clusters of two CFDF ac-

tors in the graphs, and merging those into nested schedules that are optimized for selected

performance cost metrics based on probabilistic analysis of CFDF graphs. The motivation

here is to build on the pairwise grouping methodology for dataflow graph clustering [12],

which is a useful and flexible scheduling framework for synchronous dataflow graphs,

and develop efficient simulation and synthesis capabilities for dynamic dataflow graphs.

In this regard, it would be also useful to explore general CFDF topologies as targets for

parameterized looped schedule(PLS) construction, and apply our methods to optimized

139

hardware and software synthesis.

Expanding on our work to integratetunable digital downconverter(TDD) design

with ongoing development of spectrometer designs at the National Radio Astronomy Ob-

servatory (NRAO) on the latest hardware from the Collaboration for Astronomical Signal

Processing and Electronics Research (CASPER) group is a natural extension of the work

presented in this thesis. There is growing interest in the radio astronomy community to

have open-access and portable astronomical signal processing solutions. Currently, this

is constrained by proprietary commercial tools targeted for specific platforms. We have

also relied on these tools, mainly for hardware synthesis and code generation, in our

work. In this context, it is of interest to have high-level application description languages

with semantic foundations in models of computation and the corresponding design tools

for efficient specification, simulation, functional verification, and synthesis. Develop-

ing model based platform-specific libraries, and devising techniques for automatic code

generation from high-level representations, such as thosein dataflow interchange format

(DIF), specifically for the radio astronomy domain is an important direction for future

research.

There have been some other directions that we have explored while working on

the core aspects of this thesis. We have contributed to the development of a dataflow-

based design tool, calledtargeted DIF(TDIF), which extends the capabilities of DIF with

dynamic dataflow software synthesis, cross-platform actordesign support, and dataflow-

integrated features for instrumenting and tuning implementations [74]. The dataflow-

based approach used in TDIF is unique in that it leverages thepower of dynamic dataflow

models, and provides integration of automatic code generation for programming inter-

140

faces and low level customizations for implementations targeted to heterogeneous plat-

forms. Also, a new model based schedule representation called thedataflow schedule

graph (DSG) representation has been recently introduced [84]. Integrating prototyping

features and techniques presented in this thesis with thesenew tools and models is also

an important direction for future work.

141

Bibliography

[1] 3GPP TS 36.211 V8.7.0 (2009-05): Physical channels and modulation, 2009.

[2] S. Alliot and E. Deprettere. Architecture exploration of a large scale system. InPro-
ceedings of the IEEE International Workshop on Rapid SystemPrototyping, pages
217–224, Geneva, Switzerland, June 2004.

[3] J. G. Andrews, A. Ghosh, and R. Muhamed.Fundamentals of WiMAX: understand-
ing broadband wireless networking. Prentice Hall, 2007.

[4] J.W.M. Baars, L.R. D’Addario, and A.R. Thompson. Radio astronomy in the early
twenty-first century.Proceedings of the IEEE, 97(8):1377 –1381, August 2009.

[5] G. Berry. Bottom-up computation of recursive programs.ITA, 10(1):47–82, 1976.

[6] B. Bhattacharya and S. S. Bhattacharyya. Parameterizeddataflow modeling of DSP
systems. InProceedings of the International Conference on Acoustics,Speech, and
Signal Processing, pages 1948–1951, Istanbul, Turkey, June 2000.

[7] B. Bhattacharya and S. S. Bhattacharyya. Parameterizeddataflow modeling for
DSP systems.IEEE Transactions on Signal Processing, 49(10):2408–2421, October
2001.

[8] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors.Handbook of
Signal Processing Systems. Springer, 2010.

[9] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane, C. Shen, and G. Zaki. The
DSPCAD integrative command line environment: Introduction to DICE version 1.
Technical Report UMIACS-TR-2009-13, Institute for Advanced Computer Studies,
University of Maryland at College Park, August 2009.

[10] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code
generation for DSP.IEEE Transactions on Circuits and Systems — II: Analog and
Digital Signal Processing, 47(9):849–875, September 2000.

[11] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, 1996.

[12] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. APGAN and RPMC: Comple-
mentary heuristics for translating DSP block diagrams intoefficient software im-
plementations.Journal of Design Automation for Embedded Systems, 2(1):33–60,
January 1997.

[13] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static dataflow.
IEEE Transactions on Signal Processing, 44(2):397–408, February 1996.

142

[14] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors.IEEE
Signal Processing Magazine, 26(6):26 –37, November 2009.

[15] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Hetero-
geneous concurrent modeling and design in Java (Volume 3: Ptolemy II domains).
Technical Report UCB/EECS-2008-37, EECS Department, University of Califor-
nia, Berkeley, April 2008.

[16] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. PhD thesis, EECS Department, University of California, Berkeley,
1993.

[17] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: a high-end reconfigurable
computing system.Design & Test of Computers, IEEE, 22(2):114–125, March-April
2005.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algo-
rithms. MIT Press and McGraw-Hill, second edition, 2001.

[19] I. Corretjer, C. Hsu, and S. S. Bhattacharyya. Configuration and representation of
large-scale dataflow graphs using the dataflow interchange format. InProceedings
of the IEEE Workshop on Signal Processing Systems, pages 10–15, Banff, Canada,
October 2006.

[20] L. R. D’Addario and C. Timoc. Digital signal processingfor the SKA: A strawman
design. Technical Report SKA Memo No. 25, Square Kilometre Array, August
2002.

[21] J. Dalcolmo, R. Lauwereins, and M. Ade. Code generationof data dominated DSP
applications for FPGA targets. InProceedings of the International Workshop on
Rapid System Prototyping, pages 162–167, June 1998.

[22] D.R. DeBoer, R.G. Gough, J.D. Bunton, T.J. Cornwell, R.J. Beresford, S. John-
ston, I.J. Feain, A.E. Schinckel, C.A. Jackson, M.J. Kesteven, A. Chippendale, G.A.
Hampson, J.D. O’Sullivan, S.G. Hay, C.E. Jacka, T.W. Sweetnam, M.C. Storey,
L. Ball, and B.J. Boyle. Australian SKA pathfinder: A high-dynamic range wide-
field of view survey telescope.Proceedings of the IEEE, 97(8):1507 –1521, 2009.

[23] P. E. Dewdney, P.J. Hall, R. T. Schilizzi, and T.J.L.W. Lazio. The square kilometre
array.Proceedings of the IEEE, 97(8):1482 –1496, August 2009.

[24] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. John Wiley and
Sons, Inc., second edition, 2000.

[25] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S.R. Sachs,
and Y. Xiong. Taming heterogeneity - the Ptolemy approach.Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded Software, 91(1):127–
144, January 2003.

143

[26] J. Eker and J. W. Janneck. CAL language report, languageversion 1.0 — document
edition 1. Technical Report UCB/ERL M03/48, Electronics Research Laboratory,
University of California at Berkeley, December 2003.

[27] S.W. Ellingson, T.E. Clarke, A. Cohen, J. Craig, N.E. Kassim, Y. Pihlstrom, L.J.
Rickard, and G.B. Taylor. The Long Wavelength Array.Proceedings of the IEEE,
97(8):1421 –1430, August 2009.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[29] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing di-
rected graphs.IEEE Transactions on Software Engineering, 19(3):214 –230, March
1993.

[30] M. R. Garey and D. S. Johnson.Computers and intractability: A guide to the theory
of NP-Completeness. W. H. Freeman and Company, 1979.

[31] C. Harris, K. Haines, and L. Staveley-Smith. GPU accelerated radio astronomy
signal convolution.Experimental Astronomy, 22:129–141, 2008. 10.1007/s10686-
008-9114-9.

[32] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubhr, A. Deyhle, A. Hadert, and
J. Teich. A SystemC-based design methodology for digital signal processing sys-
tems. EURASIP Journal on Embedded Systems, 2007:Article ID 47580, 22 pages,
2007.

[33] S. Haykin.Adaptive filter theory. Prentice-Hall, Inc., 1996.

[34] Y. Hemaraj, M. Sen, R. Shekhar, and S. S. Bhattacharyya.Model-based mapping of
image registration applications onto configurable hardware. In Proceedings of the
IEEE Asilomar Conference on Signals, Systems, and Computers, pages 1453–1457,
Pacific Grove, California, October 2006. Invited paper.

[35] C Hsu, I. Corretjer, M. Ko., W. Plishker, and S. S. Bhattacharyya. Dataflow inter-
change format: Language reference for DIF language version1.0, user’s guide for
DIF package version 1.0. Technical Report UMIACS-TR-2007-32, Institute for Ad-
vanced Computer Studies, University of Maryland at CollegePark, June 2007. Also
Computer Science Technical Report CS-TR-4871.

[36] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the dataflow
interchange format. InProceedings of the International Workshop on Software and
Compilers for Embedded Systems, pages 37–49, Dallas, Texas, September 2005.

[37] C. Hsu, S. Ramasubbu, M. Ko, J. L. Pino, and S. S. Bhattacharyya. Efficient sim-
ulation of critical synchronous dataflow graphs. InProceedings of the Design Au-
tomation Conference, pages 893–898, San Francisco, California, July 2006.

144

[38] D. A. Huffman. A method for the construction of minimum-redundancy codes. In
Proceedings of the IRE, pages 1098–1101, September 1952.

[39] G. Johnson.LabVIEW Graphical Programming: Practical Applications inInstru-
mentation and Control. McGraw-Hill School Education Group, 1997.

[40] J.L. Jonas. MeerKAT — the South African array with composite dishes and wide-
band single pixel feeds.Proceedings of the IEEE, 97(8):1522 –1530, August 2009.

[41] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the SBF
model of computation. InProceedings of the IEEE Workshop on Signal Processing
Systems, pages 385–394, September 2001.

[42] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and
E. Deprettere. Parameterized looped schedules for compactrepresentation of execu-
tion sequences in DSP hardware and software implementation. IEEE Transactions
on Signal Processing, 55(6):3126–3138, June 2007.

[43] S. Y. Kung.VLSI Array processors. Prentice Hall, 1988.

[44] S. Kwon, H. Jung, and S. Ha. H.264 decoder algorithm specification and simulation
in Simulink and PeaCE. InProceedings of the International SoC Design Confer-
ence, pages 9–12, October 2004.

[45] E. A. Lee. Recurrences, iteration, and conditionals instatically scheduled block
diagram languages. InProceedings of the International Workshop on VLSI Signal
Processing, 1988.

[46] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow pro-
grams for digital signal processing.IEEE Transactions on Computers, C-36(1):24–
35, Jan 1987.

[47] E. A. Lee and D. G. Messerschmitt.Digital Communication. Kluwer Academic
Publishers, 1988.

[48] E. A. Lee and T. M. Parks. Dataflow process networks.Proceedings of the IEEE,
pages 773–799, May 1995.

[49] J. Lemaitre.Model-based specification and design of large-scale embedded signal
processing systems. PhD thesis, Leiden University, The Netherlands, 2008.

[50] J. Lemaitre and E. Deprettere. FPGA implementation of aprototype hierarchical
control network for Large-Scale signal processing applications. InProceedings of
the International Euro-Par Conference, Lecture Notes in Computer Science 4128,
pages 1192–1203. Springer, Dresden, Germany, August 2006.

[51] The MathWorks Inc.Using Simulink, Version 3, January 1999.

[52] A. V. Oppenheim and R. W. Schafer.Discrete-Time Signal Processing. Prentice-
Hall, Inc., 1989.

145

[53] T. M. Parks.Bounded Scheduling of Process Networks. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 1995.

[54] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cyclo-static
dataflow. InProceedings of the IEEE Asilomar Conference on Signals, Systems,
and Computers, volume 1, pages 204–210 vol.1, Pacific Grove, California, October
1995.

[55] A. Parsons, D. Backer, C. Chang, D. Chapman, H. Chen, P. Droz, C. de Jesus,
D. MacMahon, A. Siemion, D. Werthimer, and M. Wright. A new approach to
radio astronomy signal processing. InProceedings of the General Assembly of the
International Union of Radio Science, October 2005.

[56] A. Parsons, D. Backer, Chen Chang, D. Chapman, H. Chen, P. Crescini, C. de Je-
sus, C. Dick, P. Droz, D. MacMahon, K. Meder, J. Mock, V. Nagpal, B. Nikolic,
A. Parsa, B. Richards, A. Siemion, J. Wawrzynek, D. Werthimer, and M. Wright.
PetaOp/Second FPGA signal processing for SETI and radio astronomy. InProceed-
ings of the IEEE Asilomar Conference on Signals, Systems, and Computers, pages
2031 –2035, Pacific Grove, California, November 2006. Invited paper.

[57] A. Parsons, D. Chapman, and H. Chen. Xilinx system generator for DSP in the
CASPER group. Technical Report CASPER Memo 11, Center for Astronomy Sig-
nal Processing and Electronic Research, University of California, Berkeley, January
2007.

[58] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A hierarchical multiprocessor
scheduling system for DSP applications. InProceedings of the IEEE Asilomar Con-
ference on Signals, Systems, and Computers, pages 122–126 vol.1, Pacific Grove,
California, November 1995.

[59] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. Software synthesis for DSP using
Ptolemy.Journal of VLSI Signal Processing, 9(1), January 1995.

[60] J. L. Pino and K. Kalbasi. Cosimulating synchronous DSPapplications with analog
RF circuits. InProceedings of the IEEE Asilomar Conference on Signals, Systems,
and Computers, November 1998.

[61] W. Plishker. Automated Mapping of Domain Specific Languages to Application
Specific Multiprocessors. PhD thesis, University of California, Berkeley, January
2006.

[62] W. Plishker, N. Sane, and S. S. Bhattacharyya. A generalized scheduling approach
for dynamic dataflow applications. InProceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pages 111–116, Nice, France, April 2009.

[63] W. Plishker, N. Sane, and S. S. Bhattacharyya. Mode grouping for more effective
generalized scheduling of dynamic dataflow applications. In Proceedings of the
Design Automation Conference, pages 923–926, San Francisco, July 2009.

146

[64] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Functional
DIF for rapid prototyping. InProceedings of the International Symposium on Rapid
System Prototyping, pages 17–23, Monterey, California, June 2008.

[65] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya.Heterogeneous design
in functional DIF.Transactions on High-Performance Embedded Architecturesand
Compilers. Online version available from http://www.hipeac.net/node/3030, print
version to appear.

[66] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya.Heterogeneous design in
functional DIF. InProceedings of the International Workshop on Systems, Architec-
tures, Modeling, and Simulation, pages 157–166, Samos, Greece, July 2008.

[67] W. Plishker, C. Shen, S. S. Bhattacharyya, G. Zaki, S. Kedilaya, N. Sane, K. Sudus-
inghe, T. Gregerson, J. Liu, and M. Schulte. Model-based DSPimplementation on
FPGAs. InProceedings of the International Symposium on Rapid SystemProto-
typing, Fairfax, Virginia, June 2010. Invited paper, DOI 10.1109/RSP2010.SS4, 7
pages.

[68] R.M. Prestage, K.T. Constantikes, T.R. Hunter, L.J. King, R.J. Lacasse, F.J. Lock-
man, and R.D. Norrod. The Green Bank telescope.Proceedings of the IEEE,
97(8):1382 –1390, August 2009.

[69] S. Saha, S. Puthenpurayil, and S. S. Bhattacharyya. Dataflow transformations in
high-level DSP system design. InProceedings of the International Symposium on
System-on-Chip, pages 131–136, Tampere, Finland, November 2006. Invited paper.

[70] N. Sane, C.-J. Hsu, J. L. Pino, and S. S. Bhattacharyya. Simulating dynamic com-
munication systems using the core functional dataflow model. In Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, pages
1538–1541, Dallas, Texas, March 2010.

[71] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya. Scalable representation
of dataflow graph structures using topological patterns. InProceedings of the IEEE
Workshop on Signal Processing Systems, pages 13–18, San Francisco Bay Area,
USA, October 2010.

[72] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya. Topological patterns for
scalable representation and analysis of dataflow graphs.Journal of Signal Process-
ing Systems - Special Issue on SIPS 2010, December 2011. To appear.

[73] C. Shen, W. Plishker, S. S. Bhattacharyya, and N. Goldsman. An energy-driven
design methodology for distributing DSP applications across wireless sensor net-
works. InProceedings of the IEEE Real-Time Systems Symposium, pages 214–223,
Tucson, Arizona, December 2007.

147

[74] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya. A design tool for
efficient mapping of multimedia applications onto heterogeneous platforms. InPro-
ceedings of the IEEE International Conference on Multimedia and Expo, Barcelona,
Spain, July 2011.

[75] J. J. Shynk. Frequency-domain and multirate adaptive filtering. IEEE Signal Pro-
cessing Magazine, 9(1):14–37, January 1992.

[76] S. Sriram and S. S. Bhattacharyya.Embedded Multiprocessors: Scheduling and
Synchronization. CRC Press, second edition, 2009.

[77] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, andE. Deprettere. System design
using Kahn process networks: the Compaan/Laura approach. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, volume 1, pages
340 – 345 Vol.1, February 2004.

[78] W. Sun, M. J. Wirthlin, and S. Neuendorffer. FPGA pipeline synthesis design
exploration using module selection and resource sharing.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(2):254–265, 2007.

[79] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:A language for stream-
ing applications. InInternational Conference on Compiler Construction, Grenoble,
France, 2002.

[80] P. P. Vaidyanathan. Multirate digital filters, filter banks, polyphase networks, and
applications: a tutorial.Proceedings of the IEEE, 78(1):56 –93, January 1990.

[81] R.V. van Nieuwpoort and J.W. Romein. Building correlators with many-core hard-
ware. IEEE Signal Processing Magazine, 27(2):108 –117, March 2010.

[82] I. M. Verbauwhede, C. J. Scheers, and J. M. Rabaey. Specification and support for
multidimensional DSP in the SILAGE language. InIEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 2, pages II/473 –II/476, April
1994.

[83] G. K. Wallace. The JPEG still picture compression standard. IEEE Transactions on
Consumer Electronics, 38(1):xviii –xxxiv, February 1992.

[84] H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya. A model-based
schedule representation for heterogeneous mapping of dataflow graphs. InPro-
ceedings of the International Heterogeneity in Computing Workshop, pages 66–77,
Anchorage, Alaska, May 2011.

[85] Xilinx Inc. System Generator for DSP - User Guide, Release 10.1.1, April 2008.

148

