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Advances in embedded systems for digital signal proced§)d&#) are enabling
many scientific projects and commercial applications. A&tshme time, these applica-
tions are key to driving advances in many important kindsoofputing platforms. In this
region of high performance DSP, rapid prototyping is caitifor faster time-to-market
(e.g., in the wireless communications industry) or times¢egence (e.g., in radio astron-
omy). DSP system architectures have evolved from beingdoaseapplication specific
integrated circuits (ASICs) to incorporate reconfiguraifehe-shelf field programmable
gate arrays (FPGAS), the latest multiprocessors such phigegprocessing units (GPUSs),
or heterogeneous combinations of such devices. We, thus awast design space to ex-
plore based on performance trade-offs, and expanded byuh#ude of possibilities for

target platforms.



In order to allow systematic design space exploration, ancldp scalable and
portable prototypes, model based design tools are incrglgsised in design and imple-
mentation of embedded systems. These tools allow scalajteldvel representations,
model based semantics for analysis and optimization, andle implementations that
can be verified at higher levels of abstractions and targetedrd multiple platforms for
implementation. The designer can experiment using sudb &han early stage in the de-
sign cycle, and employ the latest hardware at later stagdhid thesis, we have focused
on dataflow-based approaches for rapid DSP system promatyphis thesis contributes

to various aspects of dataflow-based design flows and toddlaws:

1. We have introduced the concepttopological patternswhich exploits commonly
found repetitive patterns in DSP algorithms to allow sclatoncise, and parame-
terizable representations of large scale dataflow graphigitlevel languages. We
have shown how an underlying design tool can systematiealioit a high-level
application specification consisting of topological pattein various aspects of the

design flow.

2. We have formulated theore functional dataflofCFDF) model of computation,
which can be used to model a wide variety of deterministicaghyic dataflow be-
haviors. We have also presented key features of the CFDFIraodeools based
on these features. These tools provide support for heteenges dataflow behav-
iors, an intuitive and common framework for functional sfieation, support for
functional simulation, portability from several existidgtaflow models to CFDF,

integrated emphasis on minimally-restricted specificatdioactor functionality, and



support for efficient static, quasi-static, and dynamicesithing techniques.

. We have developed a generalized scheduling techniqueRDIF graphs based on
decomposition of a CFDF graph into static graphs that iotextrun-time. Further-
more, we have refined this generalized scheduling technigung a new notion of
“mode grouping,” which better exposes the underlying staghavior. We have
also developed a scheduling technique for a class of dynappilications that gen-
erateparameterized looped schedu(®Ss), which can handle dynamic dataflow

behavior without major limitations on compile-time pretdigility.

. We have demonstrated the use of dataflow-based apprdachiesign and imple-
mentation of radio astronomy DSP systems using an apmitattample of aun-
able digital downconverte(TDD) for spectrometers. Design and implementation
of this module has been an integral part of this thesis wohks thesis demonstrates
a design flow that consists of a high-level software protetymalysis, and simula-
tion using the dataflow interchange format (DIF) tool, artégnation of this design
with the existing tool flow for the target implementation am BPGA platform,
calledinterconnect break-out boarfiIBOB). We have also explored the trade-off
between low hardware cost for fixed configurations of digtiavnconverters and

flexibility offered by TDD designs.

. This thesis has contributed significantly to the develeprnand release of the latest
version of a graph package oriented toward models of cortipatéMoCGraph).
Our enhancements to this package include support for tteesttaictures, angen-

eralized schedule treg$STs), which provide a useful data structure for a wide



variety of schedule representations. Our extensions thti@Graph package pro-
vided key support for the CFDF model, and functional simatatapabilities in

the DIF package.
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Chapter 1
Introduction

1.1 High Performance Signal Processing Applications

The field of signal processing has expanded to cover a widgerahapplication
domains, such as image and video processing, acoustic aedlsprocessing, wireless
communication, software-defined radio, astronomicalaignocessing, biomedical sig-
nal processing, and medical imaging, to name a few, and itoeittinue to expand in
the future. Each of these application domains deals witlerdift types of signals that
can be characterized by, for example, the signal sourcethoae and speed of signal
acquisition, signal strength in terms of signal to noiséoradnd frequency content of
the signals. A signal processing algorithm processes thigsals to derive useful in-
formation. Apart from varying application specificatiotisere are certain performance
metrics, such as the need for real-time signal processuegdsof real-time or offline pro-
cessing, resource utilization, power consumption, antl tieat provide complex design
spaces for exploration, and help characterize and optitheeverall quality of a design.
These requirements may be domain-specific. For exampldy sficertain astronomical
objects or observations at certain wavelengths would oheter specifications for a ra-
dio telescope and its signal processing backend; a wiretaasnunication standard may
determine signal processing requirements, while its depémt in a consumer product

may constrain specifications such as cost and time-to-maggecifications of a video



surveillance system may be determined by its expectedtttagEking capability; and so
on.

A designer of any such signal processing system exploredetsign space to deter-
mine if and how the required system can be efficiently impletee using the present state
of the art hardware platforms and design tools. Signal @msiog hardware manufacturers
often classify their hardware that can be used to achievermam performance with re-
spect to certain performance metrics'lagh performance”signal processors. Given the
evolving nature of hardware platforms, architectures, @it processing capabilities,
the term “high performance” represents the extreme end byeance achievable or
desirable under a given cost constraint using the stateeadrtrat a given pointin time. A
signal processing application, which has specificatiogsirang the corresponding signal
processing system to deliver maximal performance, possider pre-specified resource
constraints, can be classified dsigh performance signal processing applicatidinis is
in contrast, for example, to a commercial signal processysgem that must be designed
to minimize cost subject to a given performance constraint.

Radio astronomy digital signal processing (DSP) is an exaoffhigh performance
signal processing. Scientific objectives drive radio awiroy telescopes toward high-
speed samplers and corresponding DSP backends that neextésplarge volumes of
data at high data rates. The single dish Green Bank TeleGIpE) [68], for example,
is used for pulsar searches and high-precision timing eg,dvhich drive bandwidth re-
guirements to extremes along with the computing needs tteimgnt techniques such as
coherent dedispersion. The new GBT spectrometer beingeoattwill have a channel
bandwidth of 3 GHz (compared to the current 800 MHz), but nalst support zooming

2



into tunable narrow bands. Many of the recent radio telesstipat have been constructed
and the ones that have been conceived for constructionloweext decade clearly show a
trend toward synthesis array design [4]. These includstelge arrays such as the Square
Kilometre Array (SKA) [23]; its precursors, the Karoo Arraglescope (MeerKAT) [40],
and Australian SKA Pathfinder (ASKAP) [22] being built in Sbfrica, and Australia,
respectively; and the Long Wavelength Array (LWA) in New Nt&x[27]. In the case
of synthesis array telescopes, the amount and speed ofodag¢gprocessed increase due
to the bandwidth required per antenna as well as the largdertsmof antennas that are
involved. The SKA will employ a large number of antennas oter diameters to be
able to conduct ultrasensitive surveys over large areaeo$kly, and its precursor arrays
being developed already pose challenging DSP applicaiiot@sms of processing enor-
mous amounts of high-speed data [4]. The signal processqdrements for radio arrays
(for example, the complexity of a correlator) scale quadadly or with higher order in
the number of elements in the array. The performance mduiahese DSP backends
require handling of enormous amounts of data in real timegt kigh rates (on the order
of petabit per second). At the same time, the power and cest t.eebe minimized by
orders of magnitudes compared to the present estimates\vampmrealistic solutions.
Some important commercial applications that involve higihfgrmance DSP in-
clude dynamic communication systems applications rekatedodern wireless technolo-
gies, such as thevorldwide interoperability for microwave acce@aiMAX) [3] and 3rd
generation partnership project — long term evolut{®sPP—LTE [1]. The challenges
posed by these applications are manifold including gredé¢a rates, requirements for
supporting dynamic configurability, need for faster sintiolas, and deployment in hand-
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held devices. Some other domains of high performance sfoakssing include soft-
ware defined radio, multimedia processing, and medical imgagApplications such as
these, especially those related to DSP for radio astronordynareless communication

systems, have driven the work presented in this thesis.

1.2 Design Tools for Rapid Prototyping

The interaction between the evolving nature of high pertotoe hardware plat-
forms and signal processing applications will be more cikane observes the trends
in a particular application domain. For example, in the fieldadio astronomy signal
processing, the conventional approach has been to devptopirped custom hardware
using application specific integrated circuits (ASICs)(esee [20] for an ASIC solu-
tion to SKA DSP). Such designs, however, are not scalabtenfegurable, or portable.
Moreover, the design, development, and deployment praessts to be much longer
and more costly than that for some of the reconfigurable harehavailable. To account
for these factors, DSP solutions that use field programmgéitie array (FPGA) based
reconfigurable hardware and modular software librarie® lien developed (e.g., see
the approach used by the Collaboration for Astronomy Signatessing and Electronics
Research (CASPER) group [55]). Recent years have seen thgence of a large va-
riety of computing platforms having general purpose or geed muticore processors,
such as graphics processing units (GPUSs), the Cell, andetyaf processors by ARM,
Tilera, and Intel [14]. Such platforms are gaining popuiawithin the radio astronomy

domain (e.g., see [31, 81]). Moreover, it is quite possibl &t DSP solution that uses a



combination of more than one hardware architecture forgpering different signal pro-
cessing tasks may perform better under a given set of camstthan a solution that uses
only one kind of platform.

We, thus, have a complex design space to explore based anrparfce trade-offs
(e.g., throughput, latency, power, cost, etc.), and expdiy the multitude possibilities
of target platforms. A key to efficient implementation is @rality of design processes
and tools to allow the designer to explore the design spdeetekly at a high-level,
and make informed design choices at an early stage rathetrgfiag to alter the design
in major ways after having a platform-specific implemermtati The need for rapid pro-
totyping is of particular importance for high performanagnal processing applications
because it allows designers to focus on functionality amttional validation in early
stages of design, and decide on target platforms in latgesta

A tool for designing a high performance signal processirggesy should, therefore,
allow scalable high-level representations, semanticatiatysis and resource estimation,
functional verification, and portable implementationsttban be reconfigured and re-
targeted toward the latest hardware technologies. Thisssible using a model based
design approach as shown in Fig. 1.1 that is founded in acpdatimodel of computation
(MoC). Model based design approaches for design and impittien of embedded sys-
tems for DSP applications continues to be an active and epamesearch area both in
the industry as well as academia due to ever expanding agiplicdomains and markets
for such systems (e.g., see [8]). Model based design metred=sxtensively used in this
field to make the design process streamlined, productibeistpand efficient.

As shown in Fig. 1.1, the application specification is a hig\rel specification used
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Figure 1.1: Design flow using a model based approach.

to specify only the design details that are necessary fabéshing functional correct-
ness. The high-level language used for such a specificatmrndes syntactic features
and has semantic foundations that establish the undertyioge of the MoC. A MoC
provides semantics (meaning) for the interaction betweaeatfonal modules in a system,
and strongly influences all the significant design processespecification, simulation,
formal verification, implementation/optimization, andarfaces to environmental or ex-
ternal systems. A MoC essentially tries to capture the desig intuition and effectively
translates it into a model (e.g., the model that underliesd@ other imperative lan-
guages, finite state machines, Kahn process networks, aatafynchronous/reactive,
discrete-event, etc.) Model based design is important Eme&anovation in domain-
specific technology and design research.

To facilitate analysis of and mapping from a model-basedifipation, the specifi-

cation is typically converted into an intermediate repn¢égon that can be used by design
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Figure 1.2: DIF based design flow.

tools during subsequent design stages. For example, ifladetbased design, a DSP ap-
plication flowgraph specification is translated into a dieelograph with nodes represent-
ing functional modules and edges representing first-it-fics communication buffers
between pairs of functional modules. The subsequent staijes this representation for
further analysis and optimization. It should be noted thatiuie libraries that contain
functional code for the modules also adhere to the prespddiiterface and semantics
of the selected MoC. This allows easier transcoding amorigu&platform-specific lan-
guages, while the glue code for these modules remains plathgnostic. This allows
developing platform-independent functional prototypest tcan be used for functional
and system level verification as well as portability acrosterent kinds of hardware
technologies.

The work presented in this thesis primarily focuses on thafldav MoC, which is



extensively used for developing embedded systems for DER-@mmunication appli-
cations, and electronic design automation. Dataflow-tegDSP design tools typically
allow high-level application specification, software slation, and possibly synthesis
for hardware or software implementation. Chapter 2 praviadevant background on
dataflow modeling. There are various existing design toatks their semantic founda-
tions in dataflow modeling such as Ptolemy [59], PeaCE [4/8t&Vioc [32], Streamlt[79],
CAL [26], Compaan/Laura [77], and DIF [36]. In this work, tHataflow interchange for-
mat (DIF) tool has been primarily used for demonstratiomglwith other tools such as
the Advanced Design System (ADS) from the Agilent Techn@sgnc. [60] and Xilinx
System Generator (XSG) [85] (See Chapter 2 for a brief detson of the DIF language
and package). Fig. 1.2 provides a pictorial representatitime general DIF based design
flow. This thesis significantly contributes to the composaritthe design flow illustrated
in Fig. 1.2 that have been highlighted with a gray backgrouhdan be seen from this
figure (and also comparing with the generic model based dédieigy in Fig. 1.1) that this

thesis addresses most of the aspects of a complete moddIdesign flow.

1.3 Contributions of the Thesis

As mentioned earlier, this thesis deals with various aspefca dataflow-oriented,
model based design approach. This section lists the immpartentributions of this thesis.
The research presented in this thesis, though demonstraiteg specific design tools,
is not restricted to those tools, and hence, can be appliadséwiety of other dataflow-

based design tools. Also, the applications presentedgthduving this research, are



demonstrative, and the prototyping methods can be extemrdadbpted to other relevant

DSP applications.

1.3.1 Topological Patterns for Specification and AnalydiDataflow
Graphs

Tools for designing signal processing systems with themnasgic foundation in
dataflow modeling often use high-level graphical user fatars (GUIs) or text based
languages that allow specifying applications as directegblygs. Such graphical repre-
sentations serve as initial reference points for furthatesis and optimizations that lead
to platform-specific implementations. For large-scaldliappons, the underlying graphs
often consist of smaller substructures that repeat maltipies. To enable more concise
representation and direct analysis of such substructarégeicontext of high-level DSP
specification languages and design tools, we have intradacd developed the model-
ing concept oftopological patternd71]. Topological patterns can be used to identify
and concisely iterate across arbitrary structures in dldatapplication graph. We have
shown how the types of flowgraph substructures that are pievan the DSP application
domain can be effectively represented in terms of topokigatterns, and thereby used
to generate compact, scalable application represensation

Some earlier research efforts have employed useful teahsifipr deriving and ex-
ploiting various types of specialized dataflow substrietuwithin their respective com-
pilers (e.g., use of highly expressive constructs from @doecal languages, such as re-

currences, iteration, and conditionals, in dataflow-dedrlanguages [45], and various



textual languages for DSP system design, such as SILAGE [B2¢amlit [79], and
CAL [26]). They, however, lack a general method for explasitd scalable representation
of such substructures by the programmer. Such a programmiedace for topologi-
cal patterns is essential to capture the broad range ofamigatterns in ways that are
scalable, and flexibly extensible to accommodate new typgsatterns as they emerge
from new applications and modeling techniques. Our conckfipological patterns is
designed precisely to bridge this gap. In other prior woighbr-order functions have
been shown to permit elegant construction of structuredystbms in dataflow represen-
tations [48]. Higher-order functions are functions th&etéunctions as inputs or produce
functions as outputs. Topological patterns provide a edl&ut technically different ap-
proach since topological patterns operate on generictdolegraph vertices. Furthermore,
our development of topological patterns is tightly inteégdawith textual graph represen-
tation and arrays of graph vertices and edges, which areilulefproviding scalable
representations and managing large-scale designs.

We have shown how an underlying design tool can exploit a-legél applica-
tion specification consisting of topological patterns ini@as aspects of the design flow.
In particular, we have demonstrated the efficacy of topaligiatterns in dataflow graph
analysis, concise and scalable representation of homogsisgnchronous dataflow (HSDF)
graphs, and exploring implementation-specific trade-0fs have applied the concept of
topological patterns to represent schedules for apptinagraphs. Such representations
are useful, for example, when porting schedules generaiaed one design tool to other
platform-specific tools or design languages. We have detraiged the utility of experi-
mentation with pattern-specific scheduling transformratj@nd how topological patterns

10



facilitate such experimentation.

1.3.2 Formulation of the Core Functional Dataflow Model

For a number of years, dataflow models have proven invaldabkgpplication ar-
eas such as DSP. Their graph-based formalisms allow desigmdescribe applications
in a natural yet semantically rigorous way. Such a semantiadation has permitted
the development of a variety of analysis tools. As a reswdtaftow languages are in-
creasingly popular. Their diversity, portability, anduitive appeal have extended them
to many application areas with a variety of targets (e.ge, [8], [34], and [61]). As
system complexity and the diversity of components in digignal processing platforms
increases, designers are expressing more types of beladataflow languages to retain
these implementation benefits. This has resulted in ewolwf various dataflow models
with varying degrees of expressive power. On one extrersdhie synchronous dataflow
(SDF) model, which is the most restrictive form of dataflov@][4hat is in widespread
use in the DSP design community. On the other hand, Turingpteigmodels such as
boolean dataflow (BDF) [16] can express deterministic dyioatataflow behaviors (i.e.,
dynamic behaviors in which a given set of input streams adwaypduces a unique set
of output streams). There exist numerous dataflow models wiermediate levels of
expressive power, such as the cyclo-static dataflow (CSDd¢jetn[13], which allows
statically specified periodic dataflow behavior, and a nmetateling technique called pa-
rameterized dataflow (PDF), which allows limited forms ofaddependent dynamic be-

havior [6]. Each of these models also offer differing capaés to analyze and estimate
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resources at compile-time. The designer must explore #sgd space to find the model
that can best capture the application behavior and alloficgrit analysis.

While the semantic range of dataflow has expanded to covesi-gtatic and dy-
namic interactions, it is often challenging to map suchraxtgons reliably and effi-
ciently into implementations. The recently develomede functional datafloWfCFDF)
model can be used to model a wide variety of deterministicadyin dataflow behav-
iors [64], and thereby helps to unify the processes of amabsd scheduling of quasi-
static and dynamic dataflow interactions. CFDF supportshiexand efficient proto-
typing of dataflow-based application representations archjis natural description of
both dynamic and static dataflow actors. | have significatiytributed to the concep-
tion and development of the CFDF MoC. This thesis presestmathematical formu-
lation and modeling features. This model provides an iaterffor actor specification
that is intuitive for a DSP system designer and allows spmadibn of heterogeneous
dataflow applications. We have applied this model to devesous application proto-
types that demonstrate its effectiveness for rapid DSReBysgtrototyping, as presented
in [64] and [66].

The CFDF model, and tools based on it, has the following unggt of features: 1)
support for heterogeneous dataflow behaviors, 2) intuéine common frameworks for
functional specification, 3) support for functional simtida, 4) portability from many
well-known dataflow models to CFDF, 5) integrated emphagisninimally-restricted
specification of actor functionality, and 6) support for @ént static, quasi-static, and
dynamic scheduling techniques. These features distihgli<DF from a related model
called stream based functions (SBF) [41], and other framlesxsuch as Ptolemy I, which
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offers diverse MoCs [25], SystemC [32], actor-orientedglaeges like CAL [26], “S-

functions” in Simulink [51], and GUI based tools like LabW\E[39].

1.3.3 Efficient Scheduling Techniques for Core Functioretiflow Graphs

The problem of scheduling dynamic dataflow applicationsidess studied earlier,
and important results have been established regardingdedumemory execution and
compile-time scheduling (e.g., see [16, 53]). Most of thegperoaches employ schedul-
ing schemes that suffer from significant run-time overhehfficulties in code gener-
ation, and lack of compile-time predictability (e.g., faalidating real-time signal pro-
cessing performance). We have developed generalized Watngtechniques for CFDF
graphs based on decomposition of a CFDF graph into statmhgrthat interact at run-
time [62]. Furthermore, we have conceived the mode groupasged scheduling tech-
nique that achieves more efficient simulations compareddvigus approaches for dy-
namic dataflow applications [63].

The scheduling techniques for generalized CFDF graphsdhdfd [63], how-
ever, do not in general guarantee bounded memory execatidhd entire input applica-
tion. For dynamic communication applications that exhébpiarticular kind of dataflow
graph structure, | have developed a technique to congbaretmeterized looped sched-
ules (PLSs). Well-constructed PLSs allow expressing dynamic datafiehavior and
enabling faster simulations without significantly comprsimg compile-time predictabil-
ity [70]. This class of quasi-static schedules allows foxkifie, compact specification

of nested loop structures, where loop iteration counts @eitiher constant values or
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symbolic expressions in terms of dynamic parameters in tiienying dataflow graph.
While it may be possible to use a meta-modeling techniguea¢&DF (e.qg., by integrat-
ing it with SDF to give a model called parameterized SDF (PSDé express limited
forms of dynamic behavior and construct PLSs [6], such amagmbh imposes significant
restrictions on how applications are modeled (e.g., in $avfrhierarchies of cooperating
init, subinit andbodygraphs [6]), and in general, major changes in the user aterare
required to provide direct support for PDF in a design tool.contrast, a CFDF based
approach provides PLS-based bounded memory scheduling agrerating within a se-
mantic framework that can be integrated more directly inisteng design tools compared
to the more hierarchical semantic structure of PDF reptasiens.

This thesis presents analysis and scheduling techniqu&€&HDF graphs based on

those in [62], [63], and [70], which | have contributed to.

1.3.4 Dataflow-based Rapid Prototyping for Radio Astron&igyal Pro-
cessing

Application of dataflow modeling to the field of radio astrompDSP is a signif-
icant contribution of this thesis. The model based apprdachlesigning large scale
signal processing systems with focus on radio telescopgdéan previously studied
(e.g., see [2, 49]). Several frameworks have been propasetiddel based high-level
abstractions of architectures along with performancé/esimation to guide the de-
signer throughout the development cycle (e.g., see [2])weéver, the focus of these

approaches has been on architecture exploration. Theecdfy been attempts to derive

14



implementation-level specifications starting from sysiewel specifications by segregat-
ing signal processing and control flow into an applicatioacsjication and architecture
specification, respectively (e.g., see [49]). Howeverdaice of models of computation
has been made primarily from control flow considerationseathan dataflow consider-
ations. These approaches, though relevant, do not spdyifackiress the issue of high-
level application specification for platform-independerdtotyping and use of models of
computation for abstraction of heterogeneous or hybridfttat behaviors. This issue is
critical to efficient prototyping of high performance sigpeocessing applications, which
are typically dataflow dominated, and include increasinmglieof dynamic dataflow be-
havior (e.qg., see [8]).

| demonstrate the use of dataflow-based approaches fomdasiydevelopment of
radio astronomy DSP systems using an application exampluofble digital downcon-
verter (TDD) for spectrometers at thigational Radio Astronomy ObservatofffRAQ,
Green BankDesign and development of this module has been an integrabfthis the-
sis work. This thesis demonstrates a design flow that cansigt) application specifica-
tion and modeling using parameterized SDF and CSDF modi¢spftware prototyping,
analysis, and simulation using the DIF tool, and (iii) imagpn of this benchmark design
with the current CASPER tool flow for the target implemeraaton an FPGA platform,
called theinterconnect break-out boardBOB) [55]. My experiments show how formal
understanding of the dataflow behavior from the softwaréopype allows more efficient
prototyping along with estimating and accounting for sorhthe key resource require-
ments (e.g., throughput, hardware duplication, pipejnlouffer memory requirements)
at much earlier stages in the design cycle, unlike conveatidesign approaches.
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1.3.5 Development and Release of the latest version of thé Bfaph
Package

The DIF package makes use of and extends a graph packagtdrieward MoC
(MoCGraph). MoCGraph is a Java-based package of genenth gtata structures and
algorithms with emphasis on supporting graph-theoretadyais for MoCs. MoCGraph
has evolved from the graph package in Ptolemy Il [25].

This thesis has contributed significantly to the developraad release of the latest
version of the MoCGraph package. My contributions to MoQgBranclude support for
tree data structures, and generalized schedule trees JGBTSST is a data structure
used for representing schedules of dataflow graphs [42% &¥tension to the MoCGraph
package has provided important support for the CFDF model fanctional simulation
in the DIF package. Chapter 2 provides a detailed descniptithe MoCGraph and DIF

packages, and the GST data structure.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. Chi&ypeovides background
relevant to the research presented in this thesis. It spaityfideals with foundations of
dataflow modeling, and features of the MoCGraph and DIF pgekas well as the GST
data structure. Chapter 3 describes the concept of usirgjoigipal patterns for speci-
fication of dataflow graphs and its application to analysidathflow graphs. Chapter 4
discusses formulation of CFDF model, its connections toesofrthe existing dataflow

models, and its use in modeling dynamic dataflow applicati@hapter 5 describes var-
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ious scheduling techniques for efficient simulation of CFipRphs. Chapter 6 demon-
strates the application of dataflow modeling techniqueadoorastronomy DSP systems
using the TDD application. A summary of findings, and conidas from this work are

presented in Chapter 7, while Chapter 8 lists useful divestfor future research.
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Chapter 2
Background

2.1 Dataflow Modeling

Dataflow modeling involves representing an applicatiomgsa directed graph
G(V,E), whereV is a set of vertices (nodes) ard is a set of edges. Each vertex
u € V in a dataflow graph is called aactor, and represents a specific computational
block, while each directed edde,v) € E represents a first-in-first-out (FIFO) buffer
that provides a communication link between #wirceactoru and thesinkactorv. A
dataflow graph edgecan also have a non-negative intedetay, del(e), associated with
it, which represents the number of initial data valuedkéns present in the associated
buffer. Dataflow graphs operate baseddata-driven executignwvhere an actor can be
executedffred) whenever it has sufficient amounts of data (hnumbers of “sesfipr data
“tokens”) available on all of its inputs.

In the context of a dataflow graphsaurceactor is an actor in the topology that has
no input edges (for example, ackMn Fig. 2.1), andsinkactor is an actor in the topology
that has no output edges (for example, actbesndZ in Fig. 2.1).

During each firing, an actor consumes a certain number oinok@m each in-
put and produces a certain number of tokens on each outpuen\Wiese numbers are
constant (over all firings), we refer to the actor as an SDbrdd6]. For an SDF actor,

the numbers of tokens consumed and produced in each actautiexeare referred to as
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theconsumption ratandproduction rateof the associated input and output, respectively.
If the source and sink actors of a dataflow graph edge are SidFsathen the edge is
referred to as an SDF edge, and if a dataflow graph consistdyS®F actors, and SDF
edges, the graph is referred to as an SDF graph.

For a dataflow graph edge src(e) andsnk(e), denote its source and sink actors,
and if e is an SDF edge, theprd(e) denotes the production rate of the output port of
src(e) that is connected te, and similarly,cns(e) denotes the consumption rate of the
input port ofsnk(e) that is connected te.

A static scheduléor a dataflow grapld- is a sequence of actorsdnthat represents
the order in which actors are fired during an executiotr of

Usually, production and consumption information — in partar, the number of
tokens produced and consumed (production/consumpbtumég — by individual fir-
ings is characterized in terms of individual input and otifparts so that each port of an
actor can in general have a different production or consiompblume characterization.
Such characterizations can involve constant values as i [86] (as described above);
periodic patterns of constant values, as in CSDF [13]; orentmmplex forms that are
data-dependent (e.g., see [16, 6, 64]). A meta-modelingntque called PDF allows
limited forms of dynamic behavior [6] in terms of run-timeastges to dataflow graph pa-
rameters. The BDF [16] and CFDF [64] models are highly exgiveq Turing complete)
dynamic dataflow models.

The following sections elaborate more on SDF, CSDF, and PDéfets.
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2.1.1 Synchronous Dataflow

An SDF graph is characterized by its compile-time prediditgtthrough the stati-
cally known consumption and production rates, as definedal¥eig. 2.1 shows a simple
SDF graph having actoMy X, Y, andZ. Each edge is annotated with the number of to-
kens produced on it by the source actor and that consumedtflynthe sink actor during
every invocation of the source and sink actors, respegtivr example, actaX can be
fired when there are at least two tokens on its input. Whenraster X is fired, it con-
sumes two tokens from its input buffer, and produces thrken® onto the output buffer
connected td¥ and two tokens onto the output buffer connected.to

In case of SDF graphs, it is possible to construct a periochedule that repeats
itself during the application execution. For an SDF gréfil, '), each actor. € V fires
exactlyq(u) times in a periodic schedule, wheyéu) is its repetition count obtained by

solving the balance equation

q(src(e)) x prd(e) = g(snk(e)) x cns(e) (2.1)

for each edge € E. For example, repetition counts for actdgsX, Y, Z in the SDF
graph shown in Fig. 2.1 ar 1, 3, and1, respectively. One of the ways to execute this
SDF graph is to fire the actors in the ord®#kKYYYZ. This sequence represents one of the
valid schedules for this SDF graph and can also be reprabsastan equivalent looped
scheduld 2 W X(3 Y) Z

More information on SDF graphs, conditions for having a dachedule for an

SDF graph, and various techniques of scheduling SDF graahbe found in [11].
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Figure 2.1: An SDF graph.

2.1.2 Cyclo-static Dataflow

Many signal processing applications involve behaviors hicl production and
consumption rates may change during run-time. In some calsese changes may,
however, be known at compile-time. For example, consider@BDF graph shown in
Fig. 2.2(a), which has decimatoractorMin it. This actor consumes one token from its
input on each invocation, but produces a token onto its dutply on every fourth invo-
cation. This behavior has been depicted using the varyiodymtion volumes denoted by
[1000]. The numbers of tokens produced by the decim®&téwllow this cyclic pattern
with a period of4. This sequence of varying production volumes, though redileg to
constant output rates like an SDF actor, is still completidterministic and known at
the compile-time. This kind of dataflow behavior, where es®xhibit token production
and consumption volumes (in terms of tokens per firing onifipeactor ports) that are
either constant or expressible as cyclic sequences ofaanablumes, is referred to as
CSDF. Thus, CSDF can be viewed as a generalization of SDFichvibken production
and consumption volumes may be different across differangg of an actor, but follow
cyclic patterns that are completely specified at the contpite.

We refer readers to [13] for more details on the CSDF model. sih@wn in

Fig. 2.2(a) and Fig. 2.2(b), it may be possible to transfo@®F actor into an SDF actor.
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Figure 2.2: An application graph with a simple decimatooadusing the
(a) CSDF, and (b) SDF models. Actbtis a decimator with alecimation
factor of 4.

In general, when feedback loops are present in a dataflovhgsaggh a transformation
may introduce deadlock, and therefore should be attemptactaution. Such a transfor-
mation, when admissible (not leading to deadlock), gehehals trade-offs in terms of
relevant metrics including latency, throughput, and cade. sViore detailed comparisons

between the SDF and CSDF models of computation are presiritetl 10].

2.1.3 Parameterized Dataflow

Though CSDF provides enhanced expressive power compar8®Ro it is still
unable to specify patterns in token consumption and praaluctolumes that are not
fully known at compile time. A meta-modeling technique edIPDF has been proposed
to represent certain kinds of dataflow application dynarfé¢sThis model can be used
with any arbitrary dataflow graph format that has a well-dsdimotion of aschedule
iteration. For example, the PDF meta-model, when combined with annyidg SDF
model, results in the PSDF model. A PSDF graph behaves likeC#n graph during
one schedule iteration, but can assume different configmsaacross different schedule
iterations.

The PDF meta-model supports semantic and syntactic higra8yntactic hierar-
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chy is used, as in other forms of dataflow, to decompose congasigns in terms of
smaller components. On the other hand, semantic hierancRpF is used to apply spe-
cific features in the meta-model that are associated witlaalyo parameter reconfigura-
tion. A hierarchical actor that encapsulates such semhrgrarchy in PDF encapsulates
a PDF subsystemA PDF subsystem in turn has three underlying graphs cdfleahit,
subinit andbodygraphs, which interact with each other in structured wagtuitively,
the init and subinit graphs can capture data-dependengndigrbehavior at certain points
during the execution of the graph and configure the body gimpdapt in useful ways to
such dynamics. Similarly, the init graph can be used to dyoalhg configure parameters
in the subinit graph, which, in general, executes more ety relative to the init graph.
Intuitively, the init graph is designed to capture parametafiguration that is driven by
higher, system-level processing, while the subinit grajdeisigned to capture the param-
eter changes occurring across different iterations of theesponding body graph.

A PDF actor may have a set of parameters associated with & PDF model al-
lows the behavior of a subsystem to be controlled by allowingh parameters to change
during run-time. These parameters can control functioeablior as well as dataflow
behavior (the rates at which actors produce and consumealatad from their output
and input ports). In the context of PDF, these parameterbearassified as dataflow or
non-dataflow parameters depending on whether or not theyata@ataflow behavior in
the corresponding actors. In general, the functionalitg 8fDF actor depends on both
dataflow and non-dataflow parameters. Depending upon ti&liysof the parameters
outside a PDF subsystem (possibly, to the enclosing PDFhgnagubsystem), it is possi-
ble to classify them asxternal subsystem parametersinternal subsystem parameters
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Table 2.1: Interactions among PDF subsystem componern&d|ada inputs and outputs,
and parameters.

PDF Subsystem
Feature Component Graphs

body | init | subinit

Input port connected to a dataflow edge Yes | No | Yes

Output port connected to a dataflow edge Yes | No No

Sets external dataflow subsystem parameters| No | Yes| No

Sets external non-dataflow subsystem parametek® | Yes| No

Sets internal subsystem parameters No | Yes| Yes

While external subsystem parameters are visible to theosimgf PDF graph, internal
subsystem parameters (for example, state information ddR &ctor) are not. These
parameters, collectively, are referred tarasnediate parameters

Details of interactions among init, subinit and body graphd various types of
parameters are described in [7]. Table 2.1 highlights sontieeomost important aspects
of this interaction.

Intuitively, the init and subinit graphs can capture dagépehdent, dynamic be-
havior at certain points during the execution of the grapth @nfigure the body graph
to adapt in useful ways to such dynamics. Similarly, the gnéph can be used to dy-

namically configure parameters in the subinit graph, whichgeneral, executes more

frequently relative to the init graph. Intuitively, the frgraph is designed to capture pa
rameter configuration that is driven by higher, systemilpvecessing, while the subinit
graph is designed to capture parameter changes occurriogsatifferent iterations of the

corresponding body graph. For details related to parancetdiguration, and semantics
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Figure 2.3: Modeling a parameterized decimation fil@@f)(application us-
ing PCSDF: (a) Application graph -&, denotes a vector of FIR filter coef-
ficients, andD denotes a decimation factor, and (b) PCSDF representation.

of invocations of PDF graphs, we direct the reader to [6], [@hd

To further illustrate the PDF modeling technique, we coessitie application ex-
ample shown in Fig. 2.3(a). This example involves a finiteufap response (FIR) filter
with filter taps or coefficients given b¥/y = [co, c1, ..., cn—1] followed by a decimator
with a tunable decimation factor db. The values ofD andC'y are set either through
a higher level system or user interface. We skip the detdithis mechanism for the

sake of simplicity and conciseness. Such behavior can beeleddising PDF with an
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underlying CSDF model. Such a modeling approach is refaoes theparameterized
cyclo-static dataflofPCSDH model [69]. Fig. 2.3(b) shows one of the possible PCSDF
graphs corresponding to the application shown in Fig. 2.3{dne subsystendF is a
PCSDF subsystem with its component graphs as shown in thefigwcan be seen here
that thecont r ol actor in theDF. i ni t graph ofDF subsyst emsets the required
external and internal parametef, andC'y, respectively. This actor models the required
parameter control through either a higher level system wresform of user interface. In
this particular case, thBF. subi ni t graph is empty (in general, the init, subinit and
body graph do not all have to be used for a given subsystem).

The PCSDF model allows CSDF actors for which the cyclic past@f token pro-
duction and consumption volumes can be parameterized nmstef theirperiods the
actual numbers of tokens consumed or produced in the cyatwsequences, or both.
Such a model is of particular interest for modeling muler®SP systems that exhibit
parameterizable sample rate conversions. PCSDF allovgsnides to systematically ex-
plore design spaces across static, quasi-static, and dymampiementation techniques.
Here, byquasi-staticimplementation techniques, we mean techniques wheravediat
large portions of the associated software or hardwaretstres are fixed at compile-time
with minor adjustments allowed at run-time (e.g., in reg@to changes in input data
or operating conditions). A variety of quasi-static dataftechniques are discussed, for

example, in [8].
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2.2 The Dataflow Interchange Format

To describe dataflow applications for a wide range of DSPieajbns, application
developers can use the DIF language, which is a standarddgegounded in dataflow
semantics and tailored for DSP system design [36]. DIF piean integrated set of syn-
tactic and semantic features that can fully capture esdentideling information of DSP
applications without over-specification. From a dataflownpof view, DIF is designed
to describe mixed-grain graph topologies and hierarctsesel as to specify dataflow-
related and actor-specific information. The dataflow seroamtecification is based on
dataflow modeling theory and independent of any design tool.

Fig. 2.4 illustrates some of the available constructs indlelanguage along with
the syntax used for application specification. More detailghe DIF language can be
found in [35]. Thet opol ogy block of the specification specifies the graph topology,
which includes all of thenodes andedges in the graph. DIF supportbuilt-in at-
tributessuch as nt er f ace,r ef i nenent , par anet er, andact or , which identify
specifications related to graph interfaces, hierarchigbsgstems, dataflow parameters,
and actor configurations, respectively. DIF also allavger-defined attributesvhich
have a similar syntax as built-in attributes except thay theed to be declared with the
attri but e keyword.

The DIF package (TDP) (see Fig. 1.2) facilitates use of the lehguage. Along
with the ability to transform DIF descriptions into maniphble internal representation,
it contains graph utilities, optimization engines, vesgtion techniques, a comprehensive

functional simulation framework, and a software synthésimework for generating C
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[ dat af | omvbdel | graphl D {

basedon ({
gr aphl D;
}
[ topol ogy] {
nodes = nodel D, ...;
edges = edgel D(srcNodel D, snkNodel D), ...;
}
[builtlInAttribute] {
el ement | D = val ue;
elenentI D = id;
elementI D = idl, id2, ...;
}
[attribute] userDefinedAttribute {
el enent | D = val ue;
elenentI D = id;
elementI D = idl, id2, ...;
}

Figure 2.4: The DIF language.

code [36, 64]. These facilities make DIF an effective enwinent for modeling dataflow
applications, providing interoperability with other dgisienvironments, and developing
and experimenting with new tools and dataflow techniquegoBe these features, DIF is
also suitable as a design environment for implementingldatdbased application repre-
sentations. Describing an application graph is done byngstodes and edges, and then

annotating dataflow specific information.
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(b) (©)

Figure 2.5: (a) An SDF graph for a sample rate converter; (t® of the

schedules for it represented as a GST; and (c) GST repregentarded and
unguarded execution of actors — a GST node with two conaeellipses or
circles denotes guarded execution of the correspondirg. act

2.3 Generalized Schedule Trees

The GSTs provide a dataflow model independent represemtatschedules, which
can then be utilized as an input to the subsequent stages tdatflow such as simula-
tion and code synthesis [42]. GSTs are ordered trees withniedes pointing to the
actors of an associated dataflow graph. An internal node & & @&notes a loop count
(an iteration construct to be applied when executing thedake). In this thesis, | denote
the loop count and actor associated with a nede a GST bycount(u) andactor(u),
respectively. The GST representation allows exploitiqgptogical information and al-
gorithms for ordered trees in order to access and manipstdtedule elements. The
execution of a schedule involves traversing the GST in ahdégst manner, and during

this traversal, the sub-schedule rooted at any interna¢ modxecuted as many times as

29



specified by the loop count of that node. Fig. 2.5(b) shows & @&%a valid schedule
for the SDF graph shown in Fig. 2.5(a). This particular GSIresents a firing sequence
(2 (5 AB)(3 C),where(n X) impliesn successive invocations of a schedule el-
ement (possibly an actog).

For sake of completeness, it must be noted that GSTs can lbetasepresent
guarded and unguarded execution of actors as shown in Ei(g)2.A GST node with
two concentric ellipses or circles denotes guarded exatofithe corresponding actor. A
schedule represented by the GST in Fig. 2.5(c) involvesttaabexecution of actgk, and
unguarded execution of actdBsandC. The term “guarded execution” refers to invoking
an actor following some actor-specific run-time checks, anly if certain conditions
(e.g., with respect to availability of the required numbédata tokens on all the actor
inputs) are satisfied. We will revisit this concept and efab®more on it in Chapter 4 in

the context of CFDF model.

2.4 Graph Package Oriented toward Models of Computation

MoCGraph is a Java-based package of generic graph dattusésiand algorithms
with emphasis on supporting graph-theoretic analysis fo€C81 MoCGraph has been de-
veloped by the Maryland DSPCAD Research Group (“DSPCAD @thwvhich focuses
on computer-aided design (CAD) techniques for DSP systdie.DIF package builds
on the MoCGraph package to provide representations angsamaéchniques that are
specialized for dataflow graphs, and provide foundationsrfodel-based design flows

targeted to embedded DSP systems [36, 64].
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It must be noted, however, that the features provided in M@&p@ are generally
not specific to DSP or CAD-for-DSP applications, and can leglder many other kinds
of graph-theoretic specification and analysis featurestach MoCGraph has evolved
from the graph package in Ptolemy Il [25], which allows expentation with a wide
variety of MoCs.

This thesis has contributed significantly to the developraad release of the latest
version of the MoCGraph package. This version extends tedqurs released version of
MoCGraph to include support for tree data structures, an@isii particular. These de-
velopments have provided a key foundation for supportipgbdities in the DIF package
that are associated with CFDF modeling, and functional Etian. By linking to fea-
tures of thedot package [29], this version also allows visualization ofpdrs that are

constructed using the graph representations provided i@®&taph.

2.4.1 MoCGraph Software Architecture and Features

The MoCGraph package provides for the following importaatéires and facilities

through its software architecture:

1. MoCGraph allows creating and manipulating generic grdgia structures along
with special types of graphs, such as directed graphs tdaecyclic graphs (DAGS),
trees, and rooted trees among many others [18]. Fig. 2.6ssh@artial hierarchy
of classes in MoCGraph. Creating a graph typically involvesantiating the ap-

propriate graph elements — nodes and edges — along withfgipecthe graph

topology.
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DirectedGraph

UndirectedGraph
DirectedAcyclicGraph

ScheduleTree
(mocgsched)

Figure 2.6: A hierarchy of classes in MoCGraph that impletsemrious
types of graph data structures.

2. MoCGraph allows assigning application-specific infotioraassociated with a graph
element — a graph node or edge — through a construct knownvasigltit” which
has a generic data type. Such weights can be utilized to éxttenMoCGraph
package for use in specific applications or domains. For ekarthe DIF package
makes use of this facility to assign dataflow-specific infation to the nodes and

edges in a dataflow graph.

3. MocGraph provides implementations of algorithms fopgranalysis — for exam-
ple, algorithms to determine existence of cycles in a grapk, compute all-pairs

shortest path results, to name a few.

The latest version of MoCGraph extends its earlier releasesion by providing
the following new graph types — tree, rooted tree, ordered,tandk-ary tree [18].
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An important plug-in to MoCGraph is a package calteacgsched, which stands for

MoCGraphschediling support. Section 2.4.2 describes this plug-in.

2.4.2 nocgsched Plug-in

This plug-in augments the MoCGraph package by providing d&tctures used
to represent schedules for dataflow graphs. The schedutaiggies, which are graph
transformations, can make use of these data structurepriesent the schedules derived
from the given application graphs. It must, however, be shdeat scheduling transfor-
mations that are specific to dataflow are not part of the Mo@lmackage — instead,
packages that are intended for features specific to dataflaveaild on features of MoC-
Graph androcgsched to provide such dataflow-specific transformations. Thides t
approach taken in DIF for many of its scheduling features.

The latest version afocgsched includes the representation that supports looped
schedules (as in the previous version of MoCGraph [35]h@leith a data structure for
storing and manipulating GSTs. GSTs make use of varioustgp&ee data structures,
which have been added recently as mentioned in Section. ZIhé& support for GSTs
in nocgsched has provided an important foundation for CFDF-based modeiind

functional simulation features in the DIF package [64].

2.5 DICE: The DSPCAD Integrative Command-Line Environment

The DSPCAD Group has developed th8 PCAD integrative command line envi-

ronment(DICE), which is a package of utilities that facilitates efficienanagement of
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software projects [9]. The objective of DICE is to provide exible, lightweight envi-
ronment for the design, implementation, testing, and naign of engineering software,
with a specific orientation towards projects that emplogh@jeneous programming lan-
guages and cross-platform design methods. The DICE patieageeen used extensively
as an environment for software development for many of tlogepts involved in this
thesis.

DICE is implemented as a collection of utilities that aretia form of Bash scripts,
C programs, and Python scripts. Therefore, facilities fderpreting/compiling these
languages must be available to use all of the capabilitid3I@E. DICE is developed
with significant attention to cross-platform operationatRirms on which DICE is used
actively include Linux, MacOS, Solaris, and Windows (egpgig with Cygwin).

Apart from DICE utilities that facilitate working in a commd line environment,
such as those for directory navigation, another importgpeet of the DICE is to provide
a lightweight and flexible unit testing environment. Thivieonment is lightweight in
that it requires minimal learning of new syntax or specidizanguages, and flexible in
that it can be used to test source code in many languagesdinglC, Java, Verilog, and
VHDL [9].

In DICE, the test suite for a project consists ofiadividual test subdirectorfd TS
for each of the unit tests in the suite. An ITS in general costéiles that provide docu-
mentation related to the test, a script to perform any caatipih steps necessary to build
the test, a script to execute the test, and files that corftaiexpected output and errors
resulting from correct execution of the test. The output @emdrs resulting from the ac-
tual execution of the test are also stored in the same ITScamgared with the expected
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behavior of the test. More information regarding ITS stowet and DICE utilities for unit
testing can be found in [9].

Although testing is an established concept in the softwaggneering field, inte-
grating testing rigorously with software development&ast of testing being applied as
an afterthought to the coding process is a relatively newagigm. DICE facilitates the
application of this paradigm.

A companion package of DICE, calléd cel ang, provides a collection of language-
specific plug-ins that extend the features of DICE, and pl®view features to facilitate
efficient software project design, implementation, andingsor selected programming

languages [9].

2.6 Summary

In this chapter, we have provided background informatiordataflow modeling,
the dataflow interchange format, generalized scheduls,ttke MoCGraph package, and
the DICE package. This background and the correspondirg &me fundamental to the

work developed and presented in the remainder of this thesis
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Chapter 3

Topological Patterns for Specification and Analysis of Blata Graphs
Tools for designing signal processing systems with themnasgic foundation in
dataflow modeling often use high-level GUIs or text basedl@ages that allow speci-
fying applications as directed graphs. Such graphicalesmtations serve as an initial
reference point for further analysis and optimizations kbad to platform-specific imple-
mentations. For large-scale applications, the underlgiaghs often consist of smaller
substructures that repeat multiple times. To enable mareise representation and direct
analysis of such substructures in the context of high-I&&P specification languages
and design tools, we have developed the modeling conceppofogical patternsand
proposed ways for supporting this concept in a high-levaglege. This chapter shows
how the DIF language can be augmented with constructs fqrastipg topological pat-
terns, and topological patterns can be effective in varesgects of embedded signal

processing design flows using specific application examples

3.1 Introduction

As mentioned in Section 1.2, DSP-oriented dataflow desigtsttypically allow
high-level application specification, software simulatiand possibly synthesis for hard-
ware or software implementation. These tools employ heylell description languages

for application specification. These languages, which nmagither GUI or text based,
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provide syntactic and semantic constructs for specifynaghical representations of DSP
applications. Such graphical representations are these@and converted into interme-
diate representations suitable for further processing.

In this work, we address the problem of representing laogdesand scalable dataflow
graphs that have complex topologies. Such graphs comgnseious kinds of functional
substructures that are parameterizable and can be refgeéseterms of concise, scalable
specifications.

For example, the dataflow graph of afipoint fast Fourier transform (FFT) algo-
rithm consists of a combination of scaled versions of a \etwn pattern called the
butterfly diagram[52], and a systolic array is meshof computing elements having
a specific dataflow structure that can solve problems suchRagggomposition based
recursive least square adaptive filtering, and minimumavene distortionless response
beamforming [43]. We identify such common structures iraflatv graphs asopologi-
cal patterns and treat this kind of pattern as a first class citizen in tloel@ing process.
Furthermore, we demonstrate and experiment with the usapoldgical patterns in the
DIF, a textual design language and associated softwarapeadkr specification, analysis,
and synthesis based on DSP-oriented dataflow models of datigru[36], [64].

Topological patterns not only permit scalable specificetiof dataflow substruc-
tures but also expose the underlying graph structure ettplic the corresponding design
tool. This allows design tools to exploit any analysis orimiation advantages offered
by the substructures without having to “discover” thosadtires through additional lev-
els of pre-processing analysis. Some of the key componénie aesign flow that can
potentially benefit from explicitly exposed patterns irdguwarious kinds of scheduling
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transformations, and techniques for buffer memory optati@n. Furthermore, by mak-
ing it easier and more efficient to apply substructure-gpeanalysis techniques, pro-
gramming support for topological patterns encourages ¢veldpment of such analysis
techniques, and provides a natural interface for reusiegntacross different applications
and tools.

The concept of topological patterns is elaborated in Sec@i@. In Section 3.4,
we describe how we extend the DIF language to integrate egpezal patterns as a first
class modeling construct. In Section 3.5, we show how tapo#d patterns can be used
by dataflow based design tools for dataflow graph analysistem$formations. We
show how topological patterns can be used for graph analyggisesenting equivalent
HSDF graphs of application graphs modeled using SDF and Q8bdels; extracting
implementation-specific features; exploring trade-offisdn FPGA implementation of a
JPEG image compression application; representing sobgdahd experimenting with

pattern-specific schedules.

3.2 Related Work

Block diagrams are a natural and convenient way of desgrib8P algorithms,
and hence, DSP systems designers find it intuitive to havglalbivel application speci-
fication that captures such a description. GUI based datéddloguages try to capture this
intuition using visually appealing representations, whixt based languages provide
syntax that looks similar to common procedural languagesh as C, but with semantic

constructs that model the dataflow structure of DSP blocgrdias. To effectively han-

38



dle the increasing complexity of signal processing systesigh, these languages must
provide frameworks for modular and scalable represematith sufficient expressive
power.

Earlier research efforts have focused on supporting conhmmed and highly ex-
pressive constructs from procedural languages, such ageeces, iteration, and condi-
tionals, in dataflow-oriented languages [45]. Subsequenkmcludes evolution of var-
ious textual languages for DSP system design, such as SIBZEStreamlt [79], and
CAL [26]. The Streamlt language provides high-level, atetture-independent abstrac-
tions for streaming applications geared toward largeespabgram development. The
CAL language is an actor-oriented language, which has bpplied actively for field
programmable gate array (FPGA) implementation and recorsfide video coding ap-
plications. The SILAGE language has been developed witmagphasis on support for
high-level synthesis and multidimensional signal process

While these previous efforts have employed useful techesdar deriving and ex-
ploiting various types of specialized dataflow substrietuwithin their respective com-
pilers, they lack a general method for explicit and scalabfgesentation of such sub-
structures by the programmer. Such a programming inteftac@pological patterns is
essential to capture the broad range of relevant pattekayia that are scalable, and flex-
ibly extensible to accommodate new types of patterns asehmyrge from new applica-
tions and modeling techniques. Our concept of topologiattepns is designed precisely
to bridge this gap.

In other prior work, higher-order functions have been shtwermit elegant con-
struction of structured subsystems in dataflow represent&a{48]. Higher-order func-
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tions are functions that take functions as inputs or produecetions as outputs. Topolog-
ical patterns provide a related but technically differgagr@ach since topological patterns
operate on generic directed graph vertices (e@des in DIF), where the actual binding
to actor functionality and associated actor parameteregikispecified separately, possi-
bly through additiongbarameter propagation patterfBPPs). Thus, unlike higher-order
functions that take functions as arguments, topologictiepas take only generic graph
vertices (or arrays of such vertices) as arguments. Fumibver, our development of topo-
logical patterns is tightly integrated with textual gragipresentation and arrays of graph
vertices and edges, which are useful for providing scalagessentations and managing
large-scale designs.

Perhaps the most closely related prior work is that on sugpoarrays of vertices
and edges in the DIF language with array construction syataksemantics similar to
those in the C language [19]. These constructs provide allusiebrthand notation for
specifying related groups of graph elements (nodes or ¢dgesrays in which individual
elements can be easily indexed. A typiedlenent | D in the DIF specification (see
Fig. 2.4) when referred to dsaseNane[ N] , generates an array df elements. For
examplet ap[ N] in DIF specifies an arrayap of N nodes. Theth node, wheré =
0,1,...,N—1, can be accessed using itsindex ap[ i ] . However, in thidirst-version
array support within DIF, there is no mechanism for instrig (declaring) collections
of related edges automatically as structured mappings groomesponding subsets of
nodes. Itis also not possible to configure parameters aarcsgs of actors as functions of
the array indices. These two features — scalable, prograimmsatantiation of graphical
substructures, and association of parameter values —awvapd by our development of
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topological patterns.

This development is orthogonal to the existing support ymtactic and semantic
hierarchy in the DIF language, which allows constructingraichical dataflow graphs.
The focus here is to allow the designer to specify alreadytified topological patterns in
the design and expose such patterns to the enclosing desigor design process, which
is generally not achieved through conventional methodsigimg hierarchical dataflow
graphs.

This chapter presents formulation of the concept of topokdgatterns and its ap-
plication to dataflow modeling. To prototype this concepDif, we build upon the first-
version framework of arrays in DIF, and introduce new mougénd language constructs
that are dedicated to topological patterns. We also demaiesthe use of topological
patterns to derive efficient implementations.

A preliminary version of this work was presented in [71], lglthe extended work
was presented in [72]. The work presented here, and in [7@3$ gpeyond the develop-
ments of [71] by significantly extending the development mplecations of topological
patterns. Specifically, we explore the utility of topolagjipatterns in analyzing dataflow
graphs and extracting implementation-specific features aldb use topological patterns
to represent schedules obtained after applying schedtiamgformations to dataflow
graphs, and derive more efficient implementations from sephesentations. Addition-
ally, we show how specific topological patterns can be exgibio construct structured

schedules, and how designers can experiment with corrdsgpacheduling trade-offs.
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3.3 Topological Patterns

We have developed the concept of topological patterns facise specification
of functional structures at the dataflow graph (inter-gctevel. Topological patterns
provide a scalable approach to specifying regular funelistructures in a manner that is
analogous in some ways to the use of design patterns in alsjeated software [28], but
with additional properties associated with being formaliegrated with the framework
of dataflow. This integration allows not only for specificatiof functional patterns but
also for their analysis and optimization as part of the lafgemework of dataflow.

Topological patterns build on the conceptsgoéph element arrayswhich allow
indexed families of graph elements to be declared and tteadesingle units for pur-
poses of graph construction and analysis. As with array®nventional programming
languages, graph element arrays can be single- or muletkional. Additionally, they
can be parameterized in terms of dataflow graph attributébataheir sizes and other

characteristics can be conveniently adapted.

3.3.1 Topological Patterns in Signal Processing

We motivate the utility of incorporating topological patis into dataflow frame-
works for DSP system design by illustrating the pervasivenmeaof these patterns in the
domain of DSP. We have already discussed a few such patte@estion 3.1 — in partic-
ular, thebut t er f | y andnesh patterns, which have applications in FFTs and systolic
arrays, respectively. Additionally, thehai n pattern is one of the most commonly found

topological patterns. This pattern finds applications irdelmg multi-stage sample rate
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converters, delay lines in FIR filters, or configurations ipigtine stages. A chain of de-
lay blocks, a chain of adders, andanr ay of filter taps collectively specify a complete
FIR filter when connected together. A natural extension isfplattern is 2-dimensional
mesh structure. Such a structure is of particular use to hi@@e architectures in which
data flows across a network of processing elements conntectedn a2-D grid such as
a systolic array, as discussed earlier in Section 3.1 [43].

A ri ng pattern represents a cycle in a graph as may be introducedpbpse-
locked loop [47] or more generallyfeeedback | oop inthe system. The FFT block is
one of the most abundantly found blocks in DSP systemsNApoint FFT computation
involves FFT computation stages of smaller dimensionstidwabe implemented as scaled
versions of th@-point FFT. These FFT stages resemble a butterfly-like pafi]. Such
patterns can also be found in other applications, such éisgaoretworks [18]. Entropy
encoding algorithms such as Huffman coding make use dbitmar y t r ee structure,

a commonly found data structure in many computer algoritf88f A pattern in which
edges connect a source node to multiple sink nodes can bedeamabr oadcast
pattern. This pattern finds use in applications that havepcation blocks in multiple
stages with blocks in one stage connected to those in thegubest stage. Such patterns
are observed in multi-layer neural networks used for patté&ssification [24] and trellis
coding algorithms used in digital communication [47]. Itaso common to find its
dual, thener ge pattern, which connects multiple source nodes to a single rsbde.
Applications may also have parallel connections betweemesponding nodes in adjacent
stages. We identify this pattern agpar al | el pattern in which edges form a one-to-
one correspondence between nodes in two different setslsé/edantify a pattern called
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mul t i edge that creates multiple edges between a given pair of nodes.

3.3.2 Parameter Propagation

An important feature to support in conjunction with topatad patterns is a mech-
anism for structuregarameter propagatiorwhereby any parameters associated with the
vertices in a topological pattern can be set as a functioheo¥ertex indices (i.e., indices
associated with the underlying vertex ordering that is tripuhe pattern instance). For
example, Fig. 3.1 shows an array ©actors identified a&n0_, A1, ..., A4_, where
each actor has a parametargl e associated with it that is an affine function of its index
in the array. Such a parameter assignment can be implemengedcalable, reusable,
and explicitly-recognizable form as a designated PPP — rtiqudar, a PPP for affine
mappings of parameter values across ordered vertices. &uaffine PPP can find use
in specifying elements of steering vectocorresponding to each sensor in a sensor array
while estimating the direction of arrival of the receivedral [33].

One of our important motivations for using topological patis is to provide for
compact, scalable representations for large dataflow grapfs common for such large
graphs to have actors with the same functionality that scafeimber with the size of
the application graph. These actors may have functionanpeters (for example, the
parameteangleassociated with the actors in Fig. 3.1) that determine sdrtteeo func-
tional aspects and also distinguish them from the othersofdhe same (parameterized)
functionality. It may be inconvenient to specify such paetens individually for all of the

actors with growing size of an application graph (in facgtsindividualized parameter
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angle=5 angle = 15 angle = 25 angle = 35 angle = 45

Figure 3.1: Configuring an array of nodes with a PPP.

specification violates the compactness objective of tagosd patterns). PPPs can help
here by providing a compact representation format that eamsled to set parameters as-
sociated with actors in the large graphs that are represéytéhe associated topological

patterns.

In terms of implementation in the DIF language, just as comet attributes and
topological patterns can be either user-defined or builsimilarly commonly-used PPPs
can be absorbed into the language as built-in PPPs, whils heee the flexibility to
incorporate specialized PPPs by linking their interpretafpropagation functionality) to

segments of customized Java code.

3.4 Topological Patterns in DIF

We extend the DIF language by supporting topological pastas first class citizens
in the modeling framework. These patterns can be definedilisrbpatterns, which are
recognized and processed through corresponding keywortiheilanguage. To enable
more flexible application of patterns, we also support dedaarbitrary (user-defined)
patterns, whose associated graph construction funciigrean be carried out through
procedural language code (Java or C in the case of DIF) tHatkied with the graph

specification.
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(a)
t opol ogy {
nodes = Al 7];
edges = e0O(A 0], Al1]), el(A 3], A 6]),

ring_0[5] -> ring(Al1:1:5]),
ring_1[3] -> ring(A[1], A[3], Al2]);

(b)

Figure 3.2: Overlapping patterns: (a) a graph topology fgawwo r i ng
patterns that have three nodes common to them, and (b) apornéing DIF
representation.

We have added, as built-in topological pattern specifieesy keywords in DIF

corresponding to topological patterns that are relatigelymon in signal processing sys-

tems. These keywords, suchrasng, par al | el ,nmerge,butterfly,broadcast,

andchai n, allow specifying patterns explicitly as part of thepol ogy block in a DIF

specification. When declaring an instance of such a patteengdesigner must provide

a sequence of vertices and an optional set of parametersvalllee pattern construct,

when parsed, generates the required edges, insertinguhedues into the graph that is

being constructed. The pattern construct also configueesitiderlying nodes using the

parameter propagation mechanism explained in Sectio.3.3.

A typical way to specify a sequence of nodes is through theofigiF notation
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for representing nodes in an array. For example, for an afaynodes, specified as
Al 7] , we can specify thab of its elements form a ring structure using the construct
ring(A[1: 1:5]) inthet opol ogy block of the DIF code as shown in Fig. 3.2. The
argumentA[ 1: 1: 5] to the construct i ng, specifies an array of nodes starting from
Al 1] , ending atA[ 5] , and having an array index incrementlofin general, the syntax
baseNamne[i : | : k] denotes an array of elements in an afag e Nane starting from
the indexi, ending with the indeX, and having an array index incrementjofNote that,
outside of the pattern instantiation construct, the nodelse arrayA can be accessed by
their indices to create edges that are not part of iheg pattern. Thus, one can flexibly
embed patterns within arbitrary structures includingatrtes that contain other patterns.
Itis also possible to generate multiple patterns that haeeo more nodes common
to them, as shown in Fig. 3.2. Itis, thus, possible for thegies to effectively identify

one or more types of overlapping topological patterns ireghy@ication graph.

3.5 Applications of Topological Patterns

As described earlier, we envision topological patternsfter@ wide range of ad-
vantages at various stages of the design flow from modeliqpgatborm-specific imple-
mentation. In Sections 3.3 and 3.4, we have identified tapoéd patterns in various
DSP system specifications. In the following subsectionsex#mine other aspects of the

design flow where topological patterns can be effectivegdus
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3.5.1 Graph Analysis

The explicit specification of known graphical structures@mlogical patterns can
significantly facilitate various types of dataflow graph lggses algorithms. For example,
one of the first and most important steps in many dataflow gsapleduling strategies
is to analyze the input graph to identify strongly conneatechponents (SCCs). An
SCC is a maximal subgraph in which every pair of distinct rsodeconnected through a
cyclic path. It is often useful to cluster SCCs — for exam@€Cs can be clustered to
improve scheduling of SDF graphs (e.g., see [37]). Suchediung) of SCCs is typically
performed in order to obtain a top-level DAG. For a directeapp G = (V, £), SCCs
can be identified using an algorithm with a time complexityhaf order ofo (|V| + |E|)
(see [18] for more details on the definition of tBenotation as well as algorithm to find
SCCs in a directed graph).

Consider an application graph that contains multiple feellpaths that can be
modeled and specified using theng pattern. Ari ng represents a cycle in the graph
and hence, a subset of vertices that form an SCC. Such a eyed®, directly specified as
ari ng can be readily reduced into a single clustered actari Ag with n nodes in it,
when clustered into a single node, effectively reduces timeler of nodes in the gragh
byn — 1. Suppose that a graghhas many i ng patterns that have been identified in the
graph specification. Then by identifying these rings in ¢antstime, which an analysis
tool can do easily from explicit topological pattern spegifions, the number of nodes
and edges in the graph can be reduced significantly. Thisezahtb more efficient SCC

computation, especially for large graphs.
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3.5.2 Representing HSDF Graphs

Many techniques devised for generating multiprocessardidies from SDF graphs
require that the given dataflow graph be transformed intajairvalent HSDF graph (e.g.,
see [76]). An HSDF graph is an SDF graph in which every actosames (produces) a
single token from (on) each input (output) port. Technigieesonverting an SDF graph
into equivalent (for scheduling purposes) HSDF graphs baea developed in [46]. Such
techniques are useful, because equivalent HSDF graphsxpasee parallelism much
more effectively compared to their more compact SDF copaits.

Unfortunately, equivalent HSDF representations can saalg inefficiently — the
size of an equivalent HSDF graph is in general not polyndsni@unded in the size of
the corresponding SDF graph [58]. Representing such HSBphgrbecomes a cumber-
some exercise, as such representations require large &adstorage to maintain and
large amounts of computation time to process them. For & [BI§DF representation,
it is difficult for a design tool to traverse the HSDF reprdastéion and make effective
use of it within a reasonable amount of time. Topologicatgras can help in this sit-
uation by providing concise representations to exposeitieeestructures within HSDF
representations, thereby improving the efficiency of H3iaBed schedulers.

For example, Fig. 3.3(a) shows an SDF graph that models alesisgmple rate
converter, and its equivalent HSDF graph (below). HeregraBtis a decimator with a
decimation factor oB. Fig. 3.3(c) shows a DIF specification of this HSDF graph gsin
topological patterns. Fig. 3.3(b) and (d) show an equivaB®DF graph model with its

HSDF graph and associated topological-pattern-based paEifscation. In the CSDF
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(a) SDF graph to HSDF graph (b) CSDF graph to HSDF graph
t opol ogy {
nodes A 6], B[2], C

edges e0[3] -> nerge(A[0:2], B[O]),
el[3] -> nerge(A 3:5], B[1]),

e2[2] -> merge(B[0:1], O;

}
(c) DIFt opol ogy block for HSDF graph in (a)
t opol ogy {
nodes = A 6], B[6], C
edges = e _par[6] -> parallel (A[0:5], B[0:5]),
e nmrg[2] -> nmerge(B[0:3:3], O;
}

(d) DIFt opol ogy block for HSDF graph in (b)

Figure 3.3: A sample rate converter.
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representation, actd provides a decimation by a factor ®f Actor B consumes input
tokens on every firing while producing an output token onlyewary third firing, starting
with the first firing. As this example illustrates, topologlipatterns can provide a concise
and scalable representation of equivalent HSDF graphseptations for SDF and CSDF
graphs.

It should, however, be noted that a graph representatiorguspological patterns
is in general not unique. Depending on the set of availalgeltmical patterns, it may
be possible to have multiple functionally-equivalent esgantations of a given dataflow
graph using topological patterns. In the case of Figurea},.36r example, it may be
possible to use air ee pattern if the associated design tool supports it.

Structured representations of HSDF graphs can also enffiblerd tuning of HSDF
graph representations in terms of application parametesexample, for the dataflow
graph in Figure 3.3(b), it can be observed that if the deaonaactor of actorB is
changed, then the DIF representation for the HSDF graph eaunpldated by simply
changing the numeric arguments to the topological pattesesl in its representation.
In general, for a decimation factor @1, the production rate of actd in Fig. 3.3(b) is
[100--- 0]1xp and the equivalent HSDF graph for this CSDF graph has theviiailg

specification, wheré is a suitably-declared parameter.

t opol ogy {
nodes = Al 2D, B[2D], C
edges = e_par[2D] -> parallel (AlO: 2D 1], B[0:2D1]),
e nmrg[2] -> nmerge(B[0:D: D], O;
}

Thus, topological patterns provide streamlined reprediemts that are concise, tun-
able, and scalable, and are particularly useful for comgtaph structures, such as those
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t opol ogy {
nodes = A[4], B[4], C[4], D4];
edges = fft2 0[4] -> butterfly(A0:1], B[0:1]),
fft2 _1[4] -> butterfly(A2:3], B[2:3]),
fft4[8] -> butterfly(C0:3], DO0:3]),
e par[4] -> parallel (B[0:3], CO0:3]);
}

Figure 3.4: Dataflow graph for a 4-point fast Fourier transfaand the
t opol ogy block in its DIF specification.

found in equivalent HSDF graphs arising from multirate S&kl CSDF models.

3.5.3 Extracting Implementation-Specific Features

Fig. 3.4 shows an HSDF graph that models a 4-point FFT apmic§52], and
the t opol ogy block in its DIF specification. Note the underlying topolcgli pat-
terns —butterfly andparal | el — in the graph. It should also be noted that
butterfly(C0:3], D[ 0:3]) is ascaled version of but t er f | y pattern with
just4 nodes, and is equivalent to tviout t er f | y patterns formed by the node subsets
{CO0, C2., DO, D2}and{C1, C3., D1, D3.}.

Apart from scalability, there is another useful featurehis tHSDF graph repre-
sentation. In particular, the bi-partite nature of both plaéterns —butterfly and

par al | el — allows us to generate a pipelined implementation of thidiegtion. Here,
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t opol ogy {
nodes = RGB, RGEB2YCbCr, D[2], B[3], T[3], 3],

edges =

Z[3], F[3];

e0( RGB, RGB2YChCr),

el[ 3] -> broadcast (RG2YChCr, D[ 0:1:1], B[2]),
Cb[5] -> chain(D[ 0], B[O], T[O], QO], Z0],
F[O]),

Cr[5] -> chain(D[1], B[1], T[1], Q 1], Z1],
F[1]),

Y[4] -> chain(B[2], T[2], Q2], Z2], F[2]);

Figure 3.5: JPEG encoder and thepol ogy block in its DIF specification.

segmentg\, B, C, andD, consisting of node&[ 0: 3] ,B[ 0: 3], 0: 3] ,andD[ 0: 3],
respectively, may be considered as pipeline stages of tharmplementation. This in-
herent pipelined nature of the FFT application can be ifiedteasily using the bi-partite
nature of the underlying topological patterns. Of couree HFTs, many efficient imple-
mentations have been developed in the literature, and thefuspological patterns does
not add any obvious value to the large library of existing kplementation techniques.
However, this example succinctly illustrates the geneosé¢ptial of topological patterns

for exposing useful implementation options more clearlg efficiently to designers and

to analysis modules within design tools.
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3.5.4 Exploring Implementation Trade-offs

Fig. 3.5 shows a JPEG encoder along with tlegol ogy block in its DIF spec-
ification [83]. It effectively employs thér oadcast andchai n patterns in its rep-
resentation. The JPEG compression algorithm downsamplistbe chroma, and
C,) components before processing them. Except for this, adlettomponents (both
chroma and lum&”) are processed through functionally similar chains of kéocThe
input pixels are grouped into blocks that are then transéarmsing the discrete cosine
transform (DCT), quantized, and scanned in a zigzag ordepalrticular, the chroma
components may be processed using shared functional nsotthaleare clearly exposed
by thet opol ogy block. Without the use of topological patterns, this obagon may
not be clear to a designer until the entire graph is careftdiged. For a design tool, this
observation may go entirely unexploited because such leig-structure can be difficult
to extract automatically from unstructured specifications

The problem of identifying such graph structure is relatedhie graph isomor-
phism problemwhich is the problem of detecting whether two graphs (or $wbgraphs
from the same or different graphs) can have their verticdsaiges placed in one-to-one
correspondence with one another in a manner that maintdges\eertex connectivity re-
lationships. There are no known polynomial time algoritiforghe graph isomorphism
problem (e.g., see [30]).

For the JPEG encoder example, we can exploit the potentiakmurce sharing
— which is exposed explicitly at a high-level through the o$¢opological patterns —

to develop a streamlined FPGA implementation. Awarenesiseoiigh-level topological

54



Table 3.1: Performance and resource utilization tradgfoff FPGA implementation of a
JPEG encoder.

JPEG Throughput| FPGA Resource Utilization
Encoder (samples | Slices (out| 18kB | 18x18
Icycle) of 13696) | BRAM | MULT
Non-shared  0.159 8070 (58%)| 41 30
Shared 0.159 6088 (44%)| 37 22

pattern in this application allows for systematic tradeasfalysis between two design
options — one with shared resources for chroma componerepsmg, and another
without shared resources.

An analysis of the high-level dataflow specification sugg#sat downsampling of
chroma components would ensure that the chain proce3Sicgmponent is the bottle-
neck and hence, the throughput should remain unaffectedvelren the”, andC,. com-
ponents are processed using shared functional moduless®raodeling of the shared-
resource implementation of the JPEG encoder requireslteaSDF design in Fig. 3.5
be transformed to expose more detail. For example, the mesig be converted into an
equivalent CSDF design in which buffers between functionadiules are duplicated and
alternate buffers are used in successive schedule itesatior more background on this
form of CSDF-based structural modeling, we refer the resmgr0].

From inspection of the CSDF intermediate model, it can beaeed that the buffer
requirement would remain unchanged across both desigae($tversus separate-resource).
However, we expect that the shared-resource version oPB&Encoder would result in
a net reduction in BRAMIflock random access memputilization.

This analysis can be confirmed from the resource utilizaéiod throughput for
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shared- and separate-resource JPEG encoder implemastatithe Xilinx Virtex-Il Pro
FPGA, as shown in Table 3.1 [71]. The base clock rate for opeaments ist0 MHz.
Even though actor-level resource sharing is often avoiddePiGA implementation due
to the relatively high costs of multiplexing and routingaasces (e.g., see [78]), resource
sharing for a subgraph in a dataflow representation cantnescbnservation of FPGA
resources that overrides the multiplexing overhead. Theeshresource JPEG encoder
uses less BRAM than the separate-resource version, whichecattributed to the shared
DCT block. Also, the shared-resource version uses fewex(18) multiplier units by
employing shared downsampling, DCT, and quantization riesdu

As expected — from the aforementioned bottleneck analysiseth versions of
the JPEG encoder achieve the same throughput. In parfitégr” component remains
as the system bottleneck even whend@h@andC', components are processed using shared
FPGA resources. Our experiments thus demonstrate colychete topological patterns
can provide dormal pathfrom scalable application analysis to the systematic exfilan
of implementation trade-offs in the design and implemeaiadf signal processing sys-

tems on a relevant target platform.

3.5.5 Representing Schedules

The utility of topological patterns is not limited to repesegation of application
graphs alone. Their utility can be extended to create ceransl parameterizable repre-
sentations of structures typical to schedules for certapli@ation graphs. This can be of

particular importance in functionally simulating applica graphs, and porting schedules
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Figure 3.6: Dataflow graphs for (a) the generic class of appbins under
consideration, and (b) a simplified adaptive modulatioresod

across design tools or languages. We elaborate on this tsrfgllowing example.

We consider a class of applications typically found in thendn of wireless com-
munications, and signal processing systems that exhitafldes graph structures similar
to the one shown in Fig. 3.6(a). A typical example of this typ¢hat of the adaptive
modulation scheme®dMS§ shown in Fig. 3.6(b). The AMS is a dynamic communication
application, which is an important part of modern wirelessmdards such as theorld-
wide interoperability for microwave accefa/iMAX) [3] and 3rd generation partnership
project — long term evolutioBGPP—LTE [1] standards. For details of AMS, we refer
readers to [70]. There exist other applications that exltlii@ general dataflow structure
illustrated in Fig. 3.6(a), such as prediction error filtf88] and systems for frequency
domain block adaptive filtering [75]. Such dataflow graphs ba efficiently simulated
by constructing parameterized looped schedu?s%) as described in [70] and [42]. We
will revisit the AMS application, and show how it can be mastelising CFDF model in

Section 4.3. We will further elaborate on constructing a RuShe AMS application in
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t opol ogy {
nodes

edges

Root, N 6], B, D, Snk;
e0[ 6] -> broadcast (Root, N 0:5]),
el(N[1], B), e2(N 4], D, e3(N 5], Snk);

}
Figure 3.7: A PLS for the application in Fig. 3.6(b), and thepol ogy

block in a corresponding DIF representation. Table 3.2 idies/parameters
associated with eaamode in the DIF specification.

Section 5.3.

Fig. 3.7 shows a PLS for the AMS application. A PLS of this typef particular
importance since it can capture the dynamic dataflow behavitwrent in the applica-
tion without compromising compile-time analysis. It is pide to perform useful anal-
ysis (e.g., estimation of upper bounds on total buffer mgmequirements) for PLSs at
compile-time.

In Fig. 3.6(a), the consumption ratgand production rat@; can vary over finite
ranges of positive integer values with known upper boungs andp,..., respectively.
The subscript in the symbol®; andc; represents the dependence of this production and
consumption rate pair on the actor execution ingdex thus,p; represents the number of
tokens produced ontg, in theith executionfiring) of D,, andc; represents the number
of tokens consumed fromy, during theith firing of D,. In Fig. 3.7, the loop counts:;

andn; are computed dynamically.
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Table 3.2: Actors and loop counts associated with nodesifPtts graph representation.
Here,NULL indicates an internal node in the GST that does not have aoyassociated
with it.

Node| Actor Loop Count
Root| NULL 1
N[O] | Mapper 1
N[1] NULL m;
N[2] Mapper 1
N[3] | Channel 1
N[4] NULL 2
N[5] NULL n;
B Bits 1
D Demapper 1
Snk Sink 1

In the context of this AMS example, topological patterngphsbt only in specifi-
cation of the application dataflow graph using theng pattern, which can be used to
identify the pair of dynamic actors easily, but also repnéston of generated PLSs using
br oadcast patterns with hierarchical nodes for SDF-schedules, assho Fig. 3.7.
For such a well-structured schedule representation, ibssiple to hand-tune an imple-
mentation and use that representation explicitly for agpions having similar dataflow
behavior instead of traversing the GST using a generic peot® derive a software or
hardware implementation. In this case, topological pasterovide a framework by
which hand-tuned schedules can be formally specified anskdeacross different ap-
plications or target platforms.

Table 3.3 shows a comparison between simulation times WSBif traversal and
hand-tuned pattern-specific implementation for the PLSign B.7. These simulation
experiments — the results of which are presented in Table-3dffer from related ex-

periments that we have reported on previously (e.g, in [if2that we have eliminated
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Table 3.3: Average simulation times for different sink gohttonditions (humbers of
tokens consumed by the sink) for the PLS in Fig. 3.7 usindST traversal, an®2j a
hand-tuned pattern-specific schedule.

Sink control condition Average simulation time (ms) Improvement
(Number of tokens) | (1) (2) (%)
10000 73 32 56.16
20000 90 47 47.78
50000 148 62 58.11
100000 248 93 62.50

some of the common overheads by suppressing printing ahedebug and status infor-
mation. This allows us to determine the extent of effect esthtwo simulation strategies
on simulation speed, and compare them more precisely. bheaeen that the hand-tuned
software implementation results in faster simulations gcaor of up to62%. Further-
more, through its formulation in the framework of topolagipatterns, the hand-tuned
implementation can be analyzed, maintained, ported, ars®ceeffectively across differ-

ent design contexts.

3.5.6 Experimenting with Pattern-Specific Schedules

When specifying signal processing systems, an importativatmn for using topo-
logical patterns is to facilitate application of pattepesific transformations, such as
pattern-specific scheduling transformations. In such syt can be useful for a design
tool to provide features that allow the designer to expeninvath various “scheduling
patterns” at a high level of abstraction. Since topologpadterns provide well-defined,
scalable topological information, one can generate a tstred schedule from a given

pattern. We demonstrate this application of topologic#lgras through an example of a
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(b) (©)

Figure 3.8: (a) An SDF graph withlaut t er f | y pattern. (b)-(c) two pos-
sible GST structures using schedules that are based oncpgowise clus-
tering (iteratively clustering two actors at a time).

commonly usedbut t er f | y pattern.

Consider an SDF graph havindpat t er f | y pattern, as shown in Fig. 3.8(a). One
commonly used scheduling transformation involves applylustering transformations
on one pair of connected actors at a time such that no cyatérediuced in the resultant
graph, and then generating a hierarchical schedule forittea @pplication graph by it-
eratively applying such acyclic pairwise clustering (AHC)]. In case of SDF graphs, a
group of actors can b8DF-clusteredf its component actors can be scheduled together
(i.e., the group can be scheduled as a single unit in the bweteedule for the graph)

without introducing deadlock [11]. It can be observed that@&than one schedule can be

61



generated using APC depending on the pair of actors cluktgrevery stage of schedul-
ing. In case of SDF graphs, the total buffer memory requirgséepend upon the choice
of a schedule, and in general, a schedule that has minimainogifer memory require-
ments is desirable in many applications. A scheduling teglenbased on APC called
acyclic pairwise grouping of adjacent nodes (APGAN) hasbdescribed in [11] that
chooses a pair of actors to be clustered at every stage al@damg using a metric based
on repetition counts of the actors in the graph. This haaristwidely used and attempts
to minimize the total buffer memory requirements. We ref=ders to [11] for more
information on SDF-clustering, and SDF scheduling hewssthat are based on APC
including APGAN.

A useful class of SDF schedules is that of single appearaupet schedules, as

described in Section 2.1. L&{(V, E) denote the graph in Fig. 3.8(a), where

V= {u07 Uy, Wo, UJl}, and E = {(u07 w0)7 (u07w1)7 (ulva)v (u17 wl)}v (31)

and suppose that we apply APC to the graph. Based on the stephgad in APC, there
are only two possible GST structures for this example. Tlwesestructures are shown
in Fig. 3.8(b) and (c). Here, each, i = 0,1,---,6, denotes a loop count, while each
l;,,7=0,1,---,3, denotes the actor pointed to by a leaf node in the GST. Trstezde
of exactly two unique GST structures for this example candréied from the following
observations regarding the operation of APC (see [11] fah&r details on the operation

of APC for SDF graphs).

1. LetU = {ug,us }, andW = {wy, w; }. Then we can describe the grapliV, £) as
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V=UUW, and E=U x W. (3.2)

2. Lete € F denote the group of actors clustered during the first cluggetep. Then,
Iy € U, andl, € W. This follows from the bipartite nature of theut terfly

pattern.

3. Following the first APC step, operation of APC ensures that (U \ {l;}), and
I3 € (W \ {lo}). This is because clustering actar&ndb such thata € U and
b € W at this stage would amount to adding a cycle into the cludtgraph, which

is not permitted by APC.

4. Loop counts;, @ = 0,1,---,6, can be accordingly determined using the SDF
repetitions vector (the vector of minimal repetition caunt a periodic schedule)

for the application graph.

Given that each of thd pairs of actors can be grouped in the first-step, which,
in turn, results in possibly two different schedules uporitfer grouping, we observe
that there are at most different single appearance looped schedules generaied us
this approach. Such different schedules can in general diffexent buffer memory
requirements [11]. Thus, it can be useful for a designer mearment with alternative
schedules, estimate the buffer memory requirements fgetbehedules, and identify the
schedule that best matches the application requiremedtseanurce constraints.

For thebut terfly pattern shown in Fig. 3.9(a), Table 3.4 showslifferent

schedules, including a flat schedule for comparison. It Gasden that each of these
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(©) (d)

Figure 3.9: (a)-(b) SDF graphs witiut t er f | y patterns. (c)-(d) GSTs for
minimizing buffer memory requirements of the SDF graphsandnd (b),
respectively.

schedules has different buffer memory requirements. Invangdesign context, a de-
signer may want to experiment with all schedules that fit tvedlable resources in the
target platform. The optimal schedule from the viewpointaifl buffer memory cost
(schedule 1)) has a total buffer memory cost of 140 memory units, and seged
using the APGAN strategy.

However, APGAN is in general a heuristic and is thereforeatatys guaranteed
to derive an optimal solution. For example, considertihét er f | y pattern shown in

Fig. 3.9(b). Table 3.5 show&different schedules for this graph, including, again, a flat
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Table 3.4: Buffer memory requirements for single appeaaahedules generated from
the SDF graph shown in Fig. 3.9(a).

Schedulel Single Appearance ScheduleTotal buffer requirement
(number of tokens)
Flat (20 A)(15 B)(30 C)(12 D) 300
1 5@ A)@BB(2C))(12D) 140
2 (20 A)(3(5B(2C))(4 D)) 148
3 5@B)(2(12A(BC))(12D) 150
4 (15 B)(2 (5 (2 A)(3 C))(6 D)) 216
5 (15B)(4 (5A)(3D))(30C) 255
6 (15B)(2 (2 (5 A)(3D))(15C)) 225
7 (20 A)(3 (5B)(4 D))(30C) 260
8 (20A) (3(5B)(4 D)(10C)) 180

Table 3.5: Buffer memory requirements for single appeaawhedules generated from
the SDF graph shown in Fig. 3.9(b).

Schedulel Single Appearance Schedul&otal buffer requiremen|t
(number of tokens)
Flat (5A)(4 B)(10 C)(6 D) 72
1 (4B)(5A(2C))(6D) 64
2 (5A)(2(2B)(5C)(3D)) 56
3 (5A)(2(2B)(5C))6D) 62
4 (5A)2((2B)(3D))(100C) 66
5 (5A)(2((2B)(3D)50Q)) 56

schedule, and different looped schedules. Here, schedu)eq the one generated by ap-
plying the APGAN strategy, and it can be seen that sched)e63], and 6) outperform
this schedule in terms of total buffer memory requirements.

This example demonstrates the utility of experimentindaiternative schedules
even if established heuristics, such as APGAN, are availaldpological patterns facil-
itate such experimentation through their capabilitiessiciiedule representation. In par-

ticular, topological patterns allow designers to congtsticictured patterns of schedules,
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which can then be examined separately to determine whicksanest suitable in a given
design context. Furthermore, topological pattern repred®ns can be used to maintain
libraries of subsystem-specific schedules, which can teadrdéwn upon efficiently when

constructing larger applications that employ those subgys.

3.6 Summary

We have introduced the concept of topological patternsglvban be used to iden-
tify and concisely iterate across arbitrary structures dataflow application graph. We
have shown how the types of flowgraph substructures thatawagive in the DSP appli-
cation domain can be effectively represented in terms adltgpcal patterns, and thereby
used to generate compact, scalable application repré¢isssta

We have also shown how an underlying design tool can explbigh-level ap-
plication specification consisting of topological pat®iin various aspects of the de-
sign flow. In particular, we have demonstrated the efficacyopblogical patterns in
dataflow graph analysis, concise and scalable represemtatiHSDF graphs, and ex-
ploring implementation-specific trade-offs. We have alsovén the use of topological
patterns in graph analysis and extracting implementatjpetcific features. We have ap-
plied the concept of topological patterns to representcides for application graphs.
Such representations are useful, for example, when patingdules generated using one
design tool to other platform-specific tools or design laagps. We have demonstrated
the utility of experimentation with pattern-specific schkag transformations, and how

topological patterns facilitate such experimentation.
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Chapter 4
Prototyping Heterogeneous Dataflow Applications usingeGamctional

Dataflow
We have provided a brief summary of dataflow models relevatihé work pre-

sented in this thesis in Chapter 2. These dataflow modelswaitying degrees of ex-
pressive power can model dataflow behaviors that range feingltompletely static to
highly dynamic, where production and consumption volunags\@ary on a per-invocation
basis. In Section 1.3.2, we introduced the CFDF model, whvethave formulated and
developed as part of this thesis. The CFDF model can be usaddel a wide variety of
deterministic dynamic dataflow behaviors [64]. At the sammf it supports flexible and
efficient prototyping of dataflow-based application reprgations and permits natural
description of both dynamic and static dataflow actors. im¢hapter, we present the se-
mantics of CFDF. We demonstrate how various heterogenemtafiav applications can
be modeled using CFDF. We show how various existing dataflodeats can be repre-
sented using CFDF semantics. We also present applicatiGR D to rapid prototyping

of heterogeneous dataflow applications.

4.1 Related Work

A number of development environments utilize dataflow medelaid in the cap-

ture and optimization of functional application descops. Ptolemy Il encompasses a
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diversity of dataflow-oriented and other kinds of MoCs [2B§ describe an application
subsystem, developers emplodigector that controls the communication and execution
schedule of an associated application graph. If an apitaeveloper is able to write
the functionality of an actor in a prescribed manner, it Ww#él polymorphic with respect
to other MoCs. To describe an application with multiple Mp@svelopers can insert a
“composite actor” that represents a subgraph operating avitifferent MoC (and there-
fore its own director). In such hierarchical representajalirectors manage the actors
only at their associated levels, and directors of comp@siters only invoke their actors
when higher level directors execute the composite actangs garadigm works well for
developers who know a priori the modeling techniques witlictvithey plan to represent
their applications.

One of the other technigques employs SystemC to capturesaasaromposed of in-
put ports, output ports, functionality, and an executioitdistate machine (FSM), which
determines the communication behavior of the actor [32]er&lexist languages, such
as CAL [26], that specifically target actor descriptions.r Eomplete functionality in
Simulink [51], actors are described in the form of “S-funcis.” By describing them in a
specific format, actors can be used in continuous, disti®e-and hybrid systems. Lab-
VIEW [39] even gives designers a way of programmaticallycdéig graphical blocks
for dataflow systems.

Semantically, perhaps the most related work is that of a Mal@d the SBF [41].
In SBF, an actor is represented by a set of functions, a dtertretate, and transition
function. Each function is sequentially enabled by the algr, and uses on each invo-
cation a blocking read for each input to consume a singletoace a function is done
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executing, the transition function defines the next functiothe set to be enabled.
CFDF semantics, and features in the DIF tool based on thdgs, fdom these re-

lated efforts in dataflow based design in their integratedteamsis on minimally-restricted
specification of actor functionality, and support for etfiai static, quasi-static, and dy-
namic scheduling techniques. Each may be critical to pyptog overall dataflow graph
functionality. Compared to models such as SBF, CFDF allodeségner to describe actor
functionality in an arbitrary set of fixed modes, instead afqeling out actor behavior as
side-effect free functions, a controller, and a transifiomction. CFDF is also more gen-
eral than SBF as it permits multi-token reads and can enabdesabased on application
state. As designers experiment with different datafloweasg@ntations with different lev-
els of actor dynamics, they need corresponding capabititiexperiment with compatible
scheduling techniques. This is a key motivation for thegraéed actor- and scheduler-
level prototyping considerations in CFDF and its suppoiDiR. The material presented

in this chapter is based on the work in [64], [66], and [65].

4.2 Formulation of Core Functional Dataflow

CFDF semantics can be viewed as a “deterministic dataflowettlof enable-
invoke dataflow(EIDF) semantics, which require that actor specificatiomiveded into
separatenableandinvokefunctions [64] (described below). A CFDF actoalso has a
set of valid moded/, in which it can execute. When the actoexecutes in a mode ¢
M,, it consumes (produces) a fixed number of tokens from itstgaunto its outputs), but

the number of tokens consumed and produced by an actor caaarass different modes
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in M,. The separation oénableandinvoke capabilities helps in prototyping efficient
scheduling techniques.

Theenablefunction is designed to be used as a “hook” for dynamic or gsiasic
scheduling techniques to rapidly query actors at run-tane, check whether or not they
are executable. Thenablefunction only checks for the availability of sufficient infpu
data to allow an actor to fire in its current mode, and does onseme any tokens from
the actor inputs. The current mode of an actor is always @nilgCFDF, so this check of
“data sufficiency” is unambiguous. Given an actoe V' in a dataflow grapld:(V, F),

theenabling functiorfor a is defined as:

ea: (Ty x M,) — B, (4.1)

whereT, = Rl*@l s a tuple of the number of tokens on each of the input edgestto a
a (here,|in(a)| is the number of input edges to actgr 1/, is the set of modes associated
with actora; and B = {true, false} is true when an actor. € V' has an appropriate
number of tokens for mode. € M, available on each input edge, afid se otherwise.
An actor can be executed in a given mode at a given point in tiraed only if the
enabling function is true-valued.

Theinvokefunction, on the other hand, consumes as many tokens fromphbés as
specified by its mode of execution, and correspondingly peed the specified numbers
of tokens onto the actor outputs. Thwokefunction can generally change the mode of
the actor by returning a valid mode of execution in which tt@ashould be fired during

its next invocation. Thus, actors proceed determinidtidal a unique “next mode” of
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execution whenever they are enabled. Trweking functiorfor an actora is defined as:
Ko : (Ig X My) — (Of X M,), (4.2)

wherel, = X; x X3 X - -+ x Xjin(e) IS the set of all possible inputs to whereX;; is the
set of possible tokens on the edge on input poftactora. After a executes, it produces
outputsO, = Y] x Y5 X - -+ X Y]ou(a)|, Wherey; is the set of possible tokens on the edge
connected to port of actora, and|out(a)| is the number of output ports. If no mode is
returned (i.e., an empty mode set is returned), the actoréevér disabled.

We further illustrate these CFDF semantics by applyingeiiosnodel the dynamic
dataflow behavior of actors in applications such as the AMSdation 4.3.

For use of EIDF in modeling applications that cannot be medlasing CFDF, such

as the Gustav function [5], we refer readers to the discussi{65].

4.3 Modeling Adaptive Modulation Scheme using Core Fumai®ataflow

As mentioned in Section 3.5.5, the AMS is an example of a igefstricted class of
dataflow-based applications or subsystem modules, théigapepresentation of which
can be reduced to the form shown in Fig. 3.6(a). In Fig. 3,6¥a).S,, and.S; denote
regions consisting of SDF actors that can be SDF-clusterkile actorsD; and D, have
dynamic behavior. A group of actors can be said td&Sid--clusteredf its component
actors can be scheduled together (i.e., the group can bdideldeas a single unit in the
overall schedule for the graph) without introducing deaKlIfil1]. The dataflow edges
e1, e, ...,e5 denote FIFO buffers. Th® on edgee; denotes the delay, dek), associ-
ated with it. In this targeted class of applications, it isamed that the production and
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consumption rates, z, y, z, ¢ are positive integer constants, while the consumption rate
¢; and production ratg; can vary over finite ranges of positive integer values witbvkn
upper bounds,,., andp,,.x, respectively. The subscriptn the symbols, andc; repre-
sents the dependence of this production and consumptiepaaton the actor execution
index: — thus,p; represents the number of tokens produced enta theith execution
(firing) of Dy, and¢; represents the number of tokens consumed fepmuring theith
firing of D;. Such a class of applications is of particular importanneesuseful compile-
time analysis can be performed while handling the dynamiabier as explained later

in Section 5.3.

Fig. 3.6(b) shows a simplified representation of the AMS vaiteource of input
bi t s, dynamicmapper ,channel , dynamicdemapper , feedback pathef), and out-
putsi nk actor. Themapper maps the bit(s) from the input bitstream to a symbol for
transmission over thehannel , while thedenmapper outputs one or more bits for each
of the symbols received from tlednannel . The number of bits per symbol depends upon
the modulation and demodulation schemes (e.g., QPSK or 64)@&ed by therapper
anddemapper , respectively. Thempper receives feedback from tldeemapper in-
dicating the result of channel estimation and accordinglgas one of the modulation
schemes to be employed, which in turn determines the nunfilbé@sger symbol. Hence,
the number of tokens consumed (produced) byntleper (demapper ) from the buffer
e1 (e4) in general can vary from one invocation to the next.

We use CFDF to model dataflow behavior of the actors in the Alddieation,
and in particular, the dynamicepper anddemapper actors. The remaining actors
are SDF actors and can be modeled easily as CFDF actors witlone valid mode
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Table 4.1: Valid modes for theapper actor along with their corresponding production

and consumption rates.

Consumption rate Production rate
Mode | ¢, es €2
control | O 1 0
QPSK | 2 0 1
16QAM | 4 0 1
64QAM | 6 0 1

=5 o b

Figure 4.1: Mode transition behavior of thepper actor.

each. Table 4.1 shows the possible modes for a generic dgmaapper actor with their

respective production and consumptions rates. It has a madesponding to each of

the possible modulation schemes being employed (here QEEBAM, and 64QAM),

and an additional mode callezbnt rol . In thecontrol mode, the mapper actor

reads a channel quality indicator token from the feedbageeg (see Fig. 3.6). This

information is then used to determine the modulation schenee employed, and the

invokefunction returns (as the next mode value) the mode thatsporals to this scheme.

The demapper actor can be modeled in a similar manner. Fig. 4.1 shows th#emo

transition behavior for thempper actor.
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4.4 Translation to Core Functional Dataflow

Many of the commonly used dataflow models can be directlystedad to CFDF in
an efficient and intuitive manner. In this section we showhstanstructions that demon-
strate the expressibility of CFDF, and how the existinggiesican be readily represented

using CFDF semantics.

4.4.1 Static Dataflow

SDF, CSDF, and other static dataflow-actor behaviors canaoslated into finite
sequences of CFDF modes for equivalent operation. Condmleexample, CSDF, in
which the production and consumption behavior of each acisrdivided into a finite
sequence of periodic phasés= (1,2, ...,n,). Each phase has a particular production
and consumption behavior. The pattern of production andwmption across phases can
be captured by a functiop, whose domain i®,. Given aphasec P,, ¢,(i) = (G;, H;),
whereG; and H; are vectors indexed by the input and output ports, séspectively, that
give the numbers of tokens produced and consumed on thees afgeach port during
the:th phase in the execution of aciar

To construct a CFDF actor from such a model, a mode is createglatch phase,
and we denote the set of all modes created in this way/by Given a moden € M,
corresponding to phagee P,, the enable method for this mode checks the input edges
of the actor for sufficient numbers of tokens based on whaph@se requires in terms
of the associated CSDF semantics. Thus, for each inputzpofta, modem checks

for the availability of at least/,(z) tokens on that port, where(p) = (G,, H,). For
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Table 4.2: Valid modes in a CFDF representation of the detwingctor,M in Fig. 2.2(a)
along with their corresponding production and consumpteloes.

Consumption rate Production rate
Mode in out
mode0 1 1
mode 1 1 0
mode 2 1 0
mode3 1 0

the complementary invoke method, the consumption of inputspis fixed toG,, the
production of output ports is fixed tH,. The next mode returned by the invoke method
must be the mode corresponding to the next phase in the CS&¥e gequence.

For example, consider the decimator ackbin Fig. 2.2(a), which has a decimation
factor of4. Its dataflow behavior can be modeled using the CSDF modexp@lained
in Section 2.1.2. We can construct an equivalent CFDF reptation of this actor using
the process explained above. Table 4.2 shows modes of tlmatec actor with their
corresponding consumption and production values. In #tiketi n andout refer to the
input and output ports, respectively, of the decimatiomiacFig. 4.2 shows the mode
transition behavior of the decimator actor.

Since any SDF actor can be viewed as a single-phase CSDF thet@FDF con-
struction process for SDF is a specialization of the CSDEf®F construction process

described above in which there is only one mode created.
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Figure 4.2: Mode transition behavior of the decimator act&ee Table 4.2
for the dataflow behavior of the actor in each mode.

4.4.2 Boolean Dataflow

BDF adds dynamic behavior to dataflow [16]. The two fundamalesiements of
BDF areSwi t ch andSel ect. Swi t ch routes a token from its input to one of two
outputs based on the Boolean value of a token on its confpakiifhe concept of a con-
trol input is also utilized foSel ect , in which the value of the control token determines
which input port will have a token read and forwarded to ite ontput.

Consider an application shown in Fig. 4.3 that us8s/at ch actor. To construct a
CFDF actor that implements BDF semantics, we create a madéstdedicated to read-
ing that input value, which we call théont r ol mode. The result of this examination
sends the actor into eithefTat ue mode or aFal se mode that corresponds to that con-
trol input. In the case owi t ch, this implies three modes with behavior described in
Table 4.3. The mode transition behavior of & t ch actor is shown in Fig. 4.4. For a

strict construction of BDF, only th8wi t ch andSel ect actors are needed for imple-
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Table 4.3: The behavior of th&wi t ch actor modes in terms of tokens produced and

control_input

data_input

true_output

false_output

Figure 4.3: Application of BDF using &wi t ch actor.

consumed.
mode consumption rate production rate
controlinput | datainput | true.output| falseoutput
Control 1 0 0 0
True 0 1 1 0
False 0 1 0 1

mentation, but CFDF does permit more flexibility, allowingstgners to specify arbitrary
behavior of Tr ue andFal se modes as long as each mode has a fixed production and

consumption behavior.

4.4.3 Representing PSDF and PCSDF Actors using CFDF

It is also possible to construct an equivalent CFDF reptesen of a PSDF or
PCSDF actor in ways similar to those described in Sectiohd 4nd 4.4.2. For construct-
ing a CFDF representation, a PSDF or PCSDF actor can be evedids a combination
of static and dynamic dataflow behaviors. A PSDF or PCSDF awtmle corresponding
to parameter configuration can be viewed as a control-aibmiode, while other modes
model different static behaviors for specific settings esdaparameters. We illustrate this

using an example of a TDD.
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5 s

Figure 4.4: Mode transition behavior of tB&i t ch actor. See Table 4.3 for
dataflow behavior of the actor in each mode.

Consider the application graph shown in Fig. 2.3(a) alornt ws PCSDF descrip-
tion in Fig. 2.3(b). In particular, consider teci mat or actor. Suppose the decimation
factor of this actor can be set to eittseor 4 depending upon a parameter set from its con-
trol port. Fig. 4.5 shows the mode transition behavior of Dleei mat or actor in one
of its possible CFDF representations. Here, mauede 4_0, node_4_1, node_ 4.2,
andnode _4_3 together represent a behavior similarto a CS®Ei mat or actor with a
decimation factor oft, whilenode _3_0, node_3_1, andnode _3_2 together represent a
behavior similarto a CSDBeci mat or actor with a decimation factor 8t The control
mode models the parameter configuration. Note that actar noieconsume or produce
any dataflow tokens in this mode. Also, note the transitiantodmodesrode 4 _3 and
node_3_2. It is possible that parameters associated withDbei mat or are config-
ured after every CSDF cycle (for example, if configured by birsitigraph) or multiple
CSDF cycles (for example, if configured by an init graph). $hieeduler can exploit this

behavior depending upon the application under consiaeradi construct efficient PLSs.
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control (0, 0)

mode_4_0 (1, 1)

mode_4_1 (1, 0)

mode_3_0 (1, 1)

mode_3_1 (1, 0)

mode_3_2 (1, 0)

mode_4_2 (1, 0)

mode_4_3 (1, 0)

Figure 4.5: CFDF mode transition behavior of a PCSDF aoeari mat or
with possible decimation factosand4. The annotatiorii, j) for a CFDF
mode indicates the corresponding numbers of tokens cortstnoma the in-
put (7)), and produced onto the outpy) py the actor.

4.5 Functional Simulations in DIF using Core Functional daiv

The CFDF semantics allow the DIF package to support funatisimulations. The
segregation of enable and invoke functions allows use obadga execution of an actor.
The term guarded execution refers to a scheme of firing am actwhich the actor is
fired (i.e. its invoke function is called) only if its enablaniction asserts the availability
of sufficient data to fire the actor in its current mode by neitug true. This feature allows
using acanonical schedul@escribed below in Section 4.5.2) in which every actor efir
once in every schedule iteration. Such simulations can ladsosed for analyzing and
estimating the buffer requirements in terms of number oétskaccumulated in those
buffers. This provides an estimate of total memory requéaets as well as individual

buffers when porting an application to the target platfohis also possible to use more
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sophisticated scheduling techniques such as those weaesitirdbe in Chapter 5.

45.1 Extensions to DIF Software Architecture

The DIF package has been restructured to support functsomailations. We have
introduced a library of actors, which adhere to CFDF semsantescribed in Java pro-
gramming language for use in the applications. Actors ajectd derived from a base
class that provides each actor with mode and edge interédoeg with base methods for
the enabling and invoking functions, called the enable wetnd the invoke method re-
spectively. Modes can be created either by a user througtPaiorrautomatically, based
on other information about the application (e.g., the seqaef phases in a CSDF rep-
resentation). While a designer will redefine an actor'sstagthods to define the proper
functionality, the enable method is always restricted tty @hecking the number of to-
kens on each input (as per the enabling function definitidhg invoke method may read
values from inputs, but it must consume them as tokens. leratbrds, when a mode is
invoked on an actor, the actor consumes a fixed number of $akext is associated with
that mode, and no more values are read. In either case, wetalgmgners to effectively
construct a case statement of all of the possible modes forea gctor, and fill in the
functionality of each mode in a case.

A scheduler uses GST representation to represent the gethechedule, which is

then used to simulate the application graph.
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45.2 Canonical Scheduler

We can always construct a canonical schedule for an apiplicgtaph. This is the
most trivial schedule that can be constructed from the egfitin graph. The canonical
schedule is a single appearance schedule (a schedule ih attars of the application
graph appear once) which includes all actors in some ordeterins of the GST repre-
sentation, a canonical schedule has a root node specifiggngpop count of 1 with its
child nodes forming leaves of the schedule tree. Each |ledé points to a unique actor
in the application graph. The ordering of leaf nodes deteemthe order in which actors
of the application graph are traversed. When the simuladwetses GST, each actor in

the graph is fired, if it is enabled.

4.6 Design Examples

Polynomial evaluation is a commonly used primitive in vasalomains of signal
processing, such as wireless communications and crygtbgraPolynomial functions
may change whenever senders transmit data to receiverskerhel is the evaluation
of a polynomialF;(z) = Y ;i ¢k X 2®, wherec,, cs, . . ., ¢, are coefficientsy is the
polynomial argument, and; is the degree of the polynomial. Since the coefficients may
change at runtime, a programmalplelynomial evaluation acceleratdPEA) is useful

for accelerating the computation of multipté's.
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Table 4.4: The behavior of the PEA modes.

consumes produces

mode

Control | Data| Result| Status

Normal 1 0 0 0
Reset 0 0 0 0
Store Poly 0 1 0 1
Evaluate Poly 0 1 1 1
Evaluate Block 0 1 1 1

4.6.1 Programmable Polynomial Evaluation Accelerator

Since the degree and coefficients of a polynomial may changmadime (e.g., for
different communications standards or different subsydtenctions), a programmable
PEA is useful for accelerating the computation of multiple’s in a flexible way. To
this end, we design a PEA with the following instructioreset store polynomia(STP),
evaluate polynomiakndevaluate blocKEVB). Evaluate polynomial for a single eval-
uation, and EVB is for a bulk evaluation of the same polyndmia

Since data consumption and production behavior for the P&#edds on the spe-
cific instruction, a PEA actor cannot follow the semanticsafiventional dataflow mod-
els, such as SDF. However, if we define multiple modes of aperave can capture the
required dynamic behavior as a collection of CFDF modedoatg this principle, we
have implemented the PEA as a single CFDF actor. In our fonatidescription of the
actor, we defined different modes according to the four PE&vuctions. These modes
are summarized in Table 4.4.

The normal mode (like the “decode” stage in a typical proogsgads an instruc-

tion and determines the next operating mode of the data gaftparticular note here
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is the behavior of STP in which the number of coefficients reates. Each individual
mode is restricted to one particular consumption rate, sermthe STP mode is invoked,
it reads a single coefficient, stores it, and updates amiateounter. If the counter is less
than the total number of coefficients to be stored, invokernst STP as the next mode,
so it will continue reading until done. Note that persist@térnal variables (“actor state
variables”), such as a counter, can be represented in dataficelf-loop edges (edges
whose source and sink actors are identical), and thus, thefusternal variables does
not violate the pure dataflow semantics of the enclosing Difrenment.

We find that functional simulations using the high-level Oifototype of a PEA
application based on CFDF model are faster by a factar®tompared to those using

an implementation in lower level language, such as VeriG.|

4.6.2 Design with Multiple Polynomial Evaluation Acceleres

To illustrate the problem of heterogeneous complexity, ugpese that a DSP ap-
plication designer might use two PEA actors customized fiberént length polynomi-
als. For this application, we restrict the PEA's functiatyaio be a CSDF actor with two
phases: reading the polynomial coefficients and then psotga block ofr’s to be eval-
uated, as shown in Table 4.5. The overall PEA system is shoviig. 4.6. Two PEA
actors are in the same application and we made them seletiabiracketing them with
aSwi t ch and aSel ect block. To manage these two PEA actors properly, this design
requires control to select tHREAL or PEA2 branch. In this system, the CSDF PEA ac-

tors consume a different number of polynomial coefficielketss, so the control tokens
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Table 4.5: The behavior of the CSDF implementation of théricted PEA used in the
dual PEA application.

consumes produces
Actor mode Data Result
Store Poly 4 0
PEAl| Evaluate Blockl 15 15
Store Poly 7 0
PEA2| Evaluate Blockl 15 15

driving theSwi t ch andSel ect on the data path must be able to create batchéa$ of
and22 tokens, respectively for each path. If the designer isigtett to onlySwi t ch
andSel ect for BDF functionality, the balloon witlCONTROLLER shows how this can
be done.

This design can certainly be captured with model orientgutagech, pulling the
proper actors into super-nodes with different models. B imany designs, this ap-
plication has a natural functional hierarchy in it with trefinement ofCONTROLLER,
and withPEA1 andPEA2. We believe that competing design concerns of functiondl an
model hierarchy will ultimately be distracting for a destggnWith this work, we focus
designers on efficient application representation and matatrelated issues.

Immediate simulation of the dual PEA application is posstibl verify correctness
by using the canonical schedule. We simulated the apphicatiith a random control
source and a stream of integer data. A nontrivial schede&dan significantly improve
upon the canonical performance. Given that the probalufity given PEA branch being
selected is uniform, we can derive a single appearance gleghetown in Figure 4.7,

where each leaf node is annotated with an actor and eaclomtede is annotated with
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Figure 4.6: A pictorial representation of the dual PEA aqation.

a loop count. Figure 4.8 shows a manually designed multipfearance schedule (a
schedule in which actors may appear more than once) thattié¢o process polynomial
coefficients first, before queuing up data to be evaluategdoce buffering. Note that the
SRC and CONTRCL actor are unguarded as they require no input tokens to ssfodgs

fire.

4.6.3 Results

We also implemented an polyphase uniform discrete Fouaesform (DFT) filter
bank and a sample rate conversion application. We constiube decimated uniform

DFT filter bank using a mixed-model consisting of CSDF and @bters [54]. The sam-
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Figure 4.8: Multiple appearance schedule for the dual PEstesy.

ple rate conversion application is based on concepts fauffi2lli and [36]. Results for
these different implementations with different schedalessummarized in Table 4.6. We
simulated10000 evaluations running on a7GHz Pentium withl GB of physical mem-
ory. We measured the time it took to complete enough itanatto complete all of the
evaluations and maximum total queue size. The manuallgdedischedules performed
notably better than the canonical schedule. Such insighbeanvaluable when consid-

ering the final implementation of the controller logic.

4.7 Summary

We have formulated the CFDF model, which can be used to modeati@ vari-

ety of deterministic dynamic dataflow behaviors, and usedhfiure various well known
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Table 4.6: Simulation times and maximum buffer sizes foredixnodel applications.

Simulation| Maximum observed
Application Schedule Time (s) | buffer size (tokens)
Canonical 6.88 2,327,733
Dual PEA - BDF Strict| Single appearance 1.72 1,729
Multiple appearance  1.59 1,722
Canonical 3.57 1,018,047
Dual PEA - CFDF| Single appearance 0.95 1,791
Multiple appearance  0.99 1,800
Canonical 0.91 17
DFT Filter | Single appearance 1.02 24
Canonical 9.15 9,394
Sample Rate Converter Single appearance ~ 1.43 2,408

forms of dataflow in a single, unified formulation. We haveogisesented the features
of CFDF model and tools based on it, such as support for hg@eous dataflow behav-
iors, intuitive and common framework for functional spezation, support for functional
simulations that allows designers to model and verify Bxtéons between those models,
portability from most of the existing dataflow models to CEFBRd integrated emphasis
on minimally-restricted specification of actor functioityal With this CFDF modeling ap-
proach integrated into DIF, we have demonstrated its udewaitious applications. Such
an approach has allowed us to functionally simulate thegdeishmediately, and then

focus on experimenting on schedules and dataflow stylespgoowe performance.
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Chapter 5

Efficient Scheduling Techniques for Core Functional Davaf&raphs
In Chapter 4, we described various features of the CFDF mafdebmputation,

and applied this model to specify and prototype differertetamgeneous dataflow ap-
plications. For functional simulations of CFDF applicatigraphs, we used the CFDF
canonical scheduler, as explained in Section 4.5.2. Itasever, possible to use more
efficient scheduling techniques that are applicable to grog specialized classes of
CFDF graphs. In this chapter, we focus on scheduling teciesidor CFDF graphs, and
present three different scheduling techniques that empspectively, (1) decomposition

of dynamic dataflow graphs, (2) mode grouping, and (3) paramzed looped schedules.

5.1 Scheduling using Dynamic Dataflow Graph Decomposition

We proposed this technique as a generalized scheduliriggptrian [62]. It is based
on decomposing a dynamic dataflow graph into a set of stagcdating graphs. It makes
use of the fact that every CFDF mode has a fixed production ansurnption behavior.
To construct a static graph based on these modes, it findsothbigation of modes in
which one mode from each actor in the subgraph is producimgsuming on an edge
that has a consuming or producing mode at the other end ofdtlpe &Since every actor
can potentially provide many modes, there are an exporn@nitaber of combinations to

be considered. To avoid exploring this entire space, a edality analysis is performed
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to consider only those modes that are connected to each étbethis, an extension of
depth first search (DFS) graph traversal with the conceptaafartiraversal to arrive at the
set of static subgraphs is employed as shown in Fig. 5.1.

We have mentioned the relevant research efforts relatecdbtielimg and simulat-
ing heterogeneous dataflow applications, and highlightaetlity of CFDF approach in
Section 4.1. In the context of efficient scheduling and satiahs of applications, our
generalized scheduling framework differs from these eel&tfforts in dataflow-based de-
sign in that our framework uses top-down analysis of (exblispecified) application
structure combined with integration of static dataflow s@haviors (actor modes) across
groups of dataflow actors. This approach to analysis angratien systematically ex-
tends the reach of static scheduling techniques so thattmepe used across significant
portions of dynamic dataflow designs. The approach is didyetme modeling semantics
of CFDF, which provides the explicit decomposition of astarto static dataflow sub-
behaviors, and efficiently exposes to the scheduler thguagiaces associated with sep-
arating sub-behaviors of individual actors, and groupingsgts of sub-behaviors across

different actors.

5.1.1 Dynamic Dataflow Graph Decomposition Algorithm

The key addition to the traditional DFS is that the next noiebe added to the
working stackS are found by following a mode from the current node. Anothacls
of nodesT keeps track of what order the nodes have been visited, salaagraph

visited state may be unwound. When a static subgraph hascoegpleted or an invalid
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Function DecomposeCFDFGraph

Data: CFDF Graph G

Result: Returns set of static graphs
Graphs Gs— {};

foreach source mode in @o

visited

Stack S« {};

Stack T+~ {};

SDFGraph sdfG— empty graph;

T.push(node that contains the source mode) ;

while T has elementdo

S.push(T.pop()) ;

while S has elemento

Actor A < S.pop() ;

if A not visitedthen

mark A as visited ;

foreach mode M in Ado

if M not visited matches the connecting edligen
S.push(actors on inputs and outputs of M) ;
sdfG.add(A) ;
sdfG.anninEdges(M.cons) ;
sdfG.annOutEdges(M.prod) ;

end

mark M as visited ;

end
T.push(A)

end
end
/+* when the stack is enpty, one static graph is conplete
if sdfG is a valid graphihen

if Gs.doesNotContain(sdf@)en

| Gs.add(sdfG);

end
end
/* in every case, unwi nd graph
while T has elementdo
if T.peek().allModesVisitedifien
Actor B + T.pop() ;
B.resetNodeVisitedFlag() ;
B.resetAllModeVisitedFlags() ;
else
T.peek().resetNodeVisitedFlag() ;
break ;

end
end

end
end
return Gs;

/* we use stacks for both the DFS and ensuring all npdes are

*/

*/

*/

Figure 5.1: Algorithm for dynamic dataflow graph decompgosit
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graph has been found in the course of DFS, nodes are popped Bfuntil a node is
found that has another mode to be considered (i.e. the jpatehtinother unique static
subgraph). Each of the popped nodes have their mode and itk \flags cleared,
thus unwinding the graph state by making them availableHernhode at the top Gf.
Therefore multiple graphs maybe constructed from the saonece mode. Currently,
we only consider directed acyclic graphs, so DFS is startédeasource modes in the
application (i.e., those that do not need input tokens to@ed. Note that mode transition
edges are not considered as edges to be traversed in DRSivefieseparating the graph
at mode boundaries.

For example, consider the decomposition of 8we t ch application in Fig. 5.2(a)
as shown in Fig. 5.2(b). Two source modes were found andB. The DFS from the
mode ofA ended immediately in theont r ol mode ofSwi t ch, but the DFS fronB
found two matching modes i8wi t ch (hamelyt r ue andf al se). After a full run of
DFS fromB, the graph visited state unwinds backSwi t ch and DFS restarts again
from the otheiSwi t ch mode. Thus, the single dynamic BDF application graph has bee
transformed into three static subgraphs. Note that for goteta iteration of the original
application to finish, more than one of the subgraphs mustibéa completion. Indeed,
because mode transitions may be arbitrary, we haveprtori way in general of exactly
balancing the execution of these three graphs, and we niysirré¢he dynamic GSTs for
proper simulation.

All graphs in the set of graphs that are created by this algormust be subgraphs
of the original graph. Edges of this subgraph are annotatddtiie corresponding pro-

duction and consumption numbers described by the modesisediven run of DFS.
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Figure 5.2: Application decomposition example.

Since the decomposition algorithm is based on DFS, the amxtplof this algorithm
is founded on it as well, but mode combinations make it exptakin the number of
modes. Fortunately, in practice, this approach is efficisimce modes tend to be con-

nected together in a structured way.

5.1.2 Simulation Results

To demonstrate this approach, we chose representativelfmeelel applications to
experiment with: a CSDF data distribution of audio streamise sample-rate-converted,
a polyphase decimated DFT filter bank, and an applicatiom mitltiple polynomial eval-
uation accelerators.

Figure 5.3 shows a pictorial representation of the sampdec@version application
based on concepts found in [21] and [36]. Two audio channelsabe converted on

two different subsystems. The input streams are intertiaigch as how multiple audio
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Figure 5.3: Dual sampling rate conversion.

channels might come over a single digital input. With a fixetileaving, the CSDF
DI STRI BUTORactor distributes them to the appropriate multirate data.pa this case,

a series of FIR filters is dedicated to sample rate conversion

As in the case of Section 4.6.3, we also implemented an pakgbniform DFT fil-

ter bank. We constructed a decimated uniform DFT filter basikgia mixed-model con-
sisting of CSDF and SDF actors [54]. In addition, to show tieasic capability of our
approach, we used an application with PEAs, which utilizeth CSDF, SDF, and BDF
elements. Polynomial functions may change when sendersmidata to receivers, so
the application employSwi t ch andSel ect to dynamically change between the two

data paths.
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Figure 5.4: The APGAN schedule of the sample rate conveegiptication.

We applied our generalized scheduling approach to eacheséthpplications and
compared it to a CFDIanonical scheduleWe compared this to the static subgraphs
generated by our approach, which were scheduled with bo#t sdheduler based on the
repetition vectors of the SDF clusters and an APGAN-baskddder [11]. The resulting
GSTs were combined into a single GST by profiling the numbeceassful executions, to
balance the execution rates.

As an example, Fig. 5.4 shows the APGAN-generated scheduieed from our
design flow on the sample rate conversion application. Twgueischedule trees resulted
from the two subgraphs from the original application, anas@al on the distributor ele-
ment) one was executed twice as often as the other. Thug tledrees were merged
with iteration counts that balanced their execution (2 an@dpectively).

Results for these different styles of implementation wittiedent schedules are
summarized in Table 5.1. We simulated thousands of tokems&oh application on a
1.7GHz Pentium withl GB of memory. The results show the utility of being able tolgpp

the generalized scheduling approach presented in this.work
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Table 5.1: Simulation times and maximum buffer sizes foredimnodel applications
using dynamic dataflow graph decomposition based schedules

Average | Maximum Observed
Application Schedule| Simulation buffer
Strategy | Time (ms) size (tokens)

Canonical| 9,148 9,394

Sample Rate Converter Flat 1,425 2,408

APGAN 1,462 2,278
Canonical 910 17
Polyphase DFT Filter Bank  Flat 1,017 24
APGAN 1,117 24

Canonical] 2,163 11,198
Multi-PEA Flat 586 57
APGAN 548 57

5.2 Scheduling using Mode Grouping

While static subgraphs can be successfully found by a gkredascheduling ap-
proach to dynamic applications in [62], some static behravawse not considered. For
example, in the decomposition of the switch applicatiomfrbig. 5.2 theTr ue and
Fal se modes act predictably, always returningGont r ol , which is the mode that
transitioned to them in the first place. The repeatable ratfithese branches are the
kind of static behavior that is exploitable. To this end, élcgor description is augmented
with the concept omode groupingin which application writers can refine their original
application by grouping modes together [63]. For an actaith modesi/,, we define
a mode groupingp, C M,, as a set of modes with a static relationship. The static
mode behavior exposed in this work is a cyclic mode transstia which all modes in the
grouping return exactly one mode as the next mode, excepri®mode, called then-

trance modeThe entrance mode may have multiple transitions out, aaiksthe single
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point of dynamic behavior in the grouping, but after it isdiréhe modes that follow it do
S0 in a static sequence. The mode grouping can be considetkd bcheduler as a single
mode that has production and consumption behavior equaktgsum of the individual
modes in it. The resulting schedule then includes a repdaied the size of the mode
grouping.

In the switch example, two mode groupings are

D, = {{Control, True}, {Control, False} },

each withCont r ol as the entrance mode. This exposes @uatt r ol always precedes
aTr ue or aFal se, allowing a larger schedule tree to be formed. For this sena@mple
performance benefits are slight, but for more complex apptios, the assertion that a

set of modes execute in a static sequence can lead to notaaliesbuffer requirements.

5.2.1 Simulation Results

To evaluate the benefits of mode grouping, a set of both staticlynamic applica-
tions with actors that had mode groupings to exploit weresmmared. These application
include B-spline interpolator, a CSDF data distributioraatlio streams to be sample-
rate-converted, a polyphase decimated DFT filter bank, antipte PEAs. Apart from
the applications that we have used for previously descrébgreriments in this thesis,
B-spline interpolator is a new one. We refer readers to [68ktailed information re-
garding this application and how it can be modeled using CRFidBel. For each applica-
tion, the generalized scheduling strategy employing deasition of dynamic dataflow

graphs (using APGAN as the static scheduler) with and withoade groupings was em-
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Table 5.2: Total buffer size requirements with and withooti® grouping.

Without | With Percentage

Application Groups | Groups| Improvement|
BSpline Interpolation 479 304 37%
Sample Rate Converter| 2,278 | 2,278 0%
Polyphase DFT Filter Bank 24 24 0%
Multi-PEA 3,802 | 2,976 22%

ployed. The resulting schedule trees were balanced andsatdased on the known input
conditions, be it static patterns or probability distribat (see [63] for more details).

As seen from the simulation results in Table 5.2, the two lgustatic applica-
tions showed no benefit of using mode grouping. While modepggavere identified in
CSDF actors, the original generalized scheduler perforewgally well with and with-
out groups. Once any dynamic behavior was inserted (i.eBthplineCont r ol | er
and the PEA dynamiBwi t ch andSel ect pair), mode grouping showed a significant
improvement finding more (and larger) static schedule trebich provided a direct sav-
ings in buffering by more optimal actor firings. Generalizetieduling with and without

groups for each of these examples took less theeconds on a modern CPU [63].

5.3 Parameterized Looped Schedules

The latest communication technologies invariably consistodules with dynamic
behavior. There exists a number of design tools for comnatimic system design with
their foundation in dataflow modeling semantics. Thesestamlist not only support the
functional specification of dynamic communication mod@ed subsystems but also pro-

vide accurate estimation of resource requirements fon@fficsimulation and implemen-
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tation. We explore this trade-off — between flexible speatimn of dynamic behavior

and accurate estimation of resource requirements — usiegrasentative application
employing an AMS. We propose an approach for precise maglelfirsuch applications

based on a recently-introduced form of dynamic dataflowedatbre functional dataflow.
From our proposed modeling approach, we show how pararpetelboped schedules
can be generated and analyzed to simulate applicationslovitmun-time overhead as
well as guaranteed bounded memory execution. We have peessome of this work

in [70] using the Advanced Design System from Agilent Tedbgtes, Inc., which is a

commercial tool for design and simulation of communicaggstems, for demonstration.
In this thesis, We use DIF for demonstrating this technique.

There is generally a trade-off between the expressive poidie dataflow model
being used and the compile-time (i.e., prior to executiosimulation) predictability that
is available when analyzing specifications in that modeth@ligh it is desirable to have
as much expressive power as possible to best capture thendynature of modern DSP
and communication applications, this can lead to significaductions in the ability to
predict hardware and software resource requirements vergating simulation or effi-
cient implementation. Many of these applications are “myestatic” hybrids in that they
involve static dataflow components along with a relativeta#l proportion of dynamic
components. We show an approach to modeling and scheddlswch hybrid commu-
nication system applications using CFDF.

The scheduling technique presented in this section is ey to a class of ap-
plications that we have already explained in Sections 3abhdb 4.3. In these sections,

we have also introduced the AMS, which we use as a case stadynadeled it using
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CFDF model. In this work, we show how efficient PLSs can bevaerfrom the CFDF
representations. for this restricted class of the CFDFiegipdns. This restricted form
is defined in a way that introduces a new trade-off point betwexpressive power and

analysis potential that is useful for modeling of modern pmmication systems.

5.3.1 Related Work

We have explained in previous chapters use of dataflow méelBDF to model
dynamic dataflow behavior. The problem of scheduling suatadyic dataflow appli-
cations has also been studied, and important results haame éstablished regarding
bounded memory execution and compile-time scheduling,(seg [16, 53]). Most of
these approaches employ scheduling schemes that suffieisfgmificant run-time over-
head, difficulties in code generation, and lack of compieetpredictability (e.g., for val-
idating real-time signal processing performance). Thedahng techniques described in
earlier sections — using dynamic dataflow graph decomposéand mode grouping —
do not in general guarantee bounded memory execution farttie input application.

A meta-modeling technique such as PDF [6] supports limitechs of dynamic
behavior and has more compile-time predictability thanemgeneral kinds of dynamic
dataflow models such as BDF. A useful feature of PSDF, for gkams its capability
of efficient quasi-static scheduling in terms of PLSs [6].iST¢tlass of schedules allows
for flexible, compact specification of nested loop struurehere loop iteration counts
can be either constant values or symbolic expressionsnmstef dynamic parameters in

the underlying dataflow graph. While PDF is useful for manydsi of signal processing
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applications, it imposes significant restrictions on hoplegations are modeled (e.g., in
terms of hierarchies of cooperatimgt, subinit andbodygraphs [6]), and in general,
major changes in the user interface are required to provigetdsupport for PDF in a
design tool.

In contrast to the approaches for scheduling BDF or PDF gragite approach
that we present here provides PLS-based bounded memorguictiewhile operating
within a semantic framework that can be integrated morectljrento existing design

tools compared to the more hierarchical semantic strucuRDF representations.

5.3.2 Constructing Parameterized Looped Schedules

This technique, developed in [70], is applicable to a cldsgpplications shown in
Fig. 3.6(a). It seeks to generate efficient PLSs to reduceuh¢ime overhead associ-
ated with dynamic scheduling. Such quasi-static schedreslso useful from a code
generation perspective as the only dynamic componentsobf sthedules are the loop
iteration counts. Our approach finds static regions in th@iegtion graph that can be
clustered and completely scheduled at compile-time. h fhreceeds to identify the dy-
namic components along with the corresponding static corapis, which must execute
varying numbers of times in relation to the dynamic compdsieWe then merge the
appropriately-iterated static and dynamic componentsargingle PLS.

The following sequence of steps outlines our algorithm fog Ronstruction (see

Fig. 3.6(a)):

1. Identify SDF components in the dataflow graph and clustemtindividually to
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Figure 5.5: Valid PLS for the application in Fig. 3.6(b).

obtain SDF-clustered regioiss, S,, andSs. This step can be performed efficiently
since the specification of a CFDF actor mode includes thecagsd production or

consumption rate for each actor port.

2. Use established SDF scheduling techniques [11, 37] fdiding the SDF regions
identified in step 1, assuming that a valid consistent sdieesglists for each of the

SDF subgraphs [46].

3. Identify the pairD; and D, of actors with dynamic behavior, and determine which

of the SDF sub-schedule loop (iteration) counts are depgrteD; andD,.

4. Combine static sub-schedules into a PLS in which paraimetkloop count ex-
pressions are set up at compile time, and symbolic paramieténese expressions

are varied at run-time.

Fig. 5.5 illustrates a PLS for the dataflow graph in Fig. 3)@lat is derived using
our approach to PLS construction.
As can be seen from the GST in Fig. 5.5, CFDF actorsgussded executign

while other SDF actors are fired usingguarded executiom which the actor is fired
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without checking if it is enabled (enabling is guaranteedtigh a carefully constructed
PLS). The values ofn; andn; are determined dynamically by the simulator based on
the current modes of theapper anddenapper actors, respectively. Since the mode
of an actor is visible to the simulator (through a flexible reaglierying mechanism in
our implementation of CFDF), it can be used to set loop cobated on dynamically-
changing execution state of the actor.

For the class of applications targeted in this section ofltlsis (see Sections 3.5.5
and 4.3) and PLSs generated using the algorithm describ#dsirsection, the number
of tokens accumulated on the edge(e,) after theith iteration is related ton; and
¢; (n; andp;). These expressions can then be used to prove that the naiibekens
accumulated on edgesande, are bounded b¥ + c,..x — 1 andq+ pnax — 1, respectively
(see Section 5.3.3). Together with bounds that are deriasddon the static dataflow
properties of the other edges, this leads to a bound on toffdrbomemory requirement
that can be computed at compile-time. Such bounds providadoe efficient execution
or simulation (since dynamic memory allocation is not reed)j as well as enhanced

predictability and reliability.

5.3.3 Bounded Memory Execution

Since the CFDF model is Turing complete, the problem of deiting whether a
CFDF graph can be scheduled within bounded memory in finmte ts undecidable [16].
However, for a class of applications, the graphical repred®ns of which can be re-

duced to the topology shown in Fig. 3.6(a), we can guarantemiaded memory execu-
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tion, if one exists.

Consider the dataflow graph shown in Fig. 3.6(a). We assuatéltare exist valid,
consistent schedules for the SDF clusters in this datafleplgf46, 11]. Note that such
schedules are periodic schedules that execute with bouméedory. From the graph
topology, it is clear that we have a simple cycle, where tlegllbiack edge and all other
edges in the cycle are single-rate. Hence, the only buffgegavhere we can have un-
bounded accumulation of data tokens are the edges thata@o®BD€ clusterS; with the
actorD; and the actoD, with SDF clusterSs;. With these assumptions and observations,
it suffices to show that these two buffers can be bounded iardalestablish bounded
memory execution for the application.

Consider the edge;. Lett; denote the number of tokens accumulated on an edge
e, after theith iteration of the entire graph schedule, foe 0,1,... with t, = 0. Let
m; and¢; denote the value of the parameterized loop counts and théewuai tokens
consumed from edge during theith iteration, respectively, far= 1,2,.... From the
dataflow graph topology shown in Fig. 3.6(a) and (b), and thedule shown in Fig. 5.5,

we have

ti = k-mi+ti_1—c, (5.1)

where

m; = [(c—ti-1)/k]. (5.2)

Substituting (5.2) in (5.1) and using the following relatid 8]

[(a/b)] < (a+0b—1)/b, Vintegers:, b > 0,
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it can be shown that

ti < k-1 (5.3)

Now the maximum number of tokens that is ever queued on therayfis bounded
above by the sum of the maximum number of tokens that remtnatchedule iteration
and the maximum number of tokens that can be consumed frorbutfer during an
iteration. Thus, the number of tokens that are accumulatdde buffer for edge; is
bounded above bk + c,,..x — 1). Similarly, we can show that the buffer for edgehas
an upper bound on the number of tokens accumulated in itglggten by(q + puax — 1)-

We thus have upper bounds on the numbers of tokens accuchuhatiataflow
buffers for which dataflow behavior varies during run-tiniéese bounds, together with
bounds that are derived based on the static dataflow prepe@tftithe other edges, provide
a bound on the total buffer memory requirement. Moreovés,dggregate bound can be

computed at compile-time, which has advantages as mentiartgection 5.3.2.

5.3.4 Simulation Results

We have implemented the approaches to CFDF modeling and &ts$raction us-
ing the Advanced Design SystgiADS tool from Agilent Technologies, Inc. [60]. We
have employed the CFDF model for dynamic actors along wighetkisting SDF based
actors in Agilent ADS. Using such a design approach, we implged the AMS appli-
cation shown in Fig. 3.6(b). Results for simulations of Fh&&ed execution of the AMS
application, as implemented in Agilent ADS, are presenmdda].

In this thesis, we use DIF to prototype the AMS applicatiomgshe CFDF model
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and generate a PLS using the algorithm described in [70] He®/8ection 5.3.2. In [70],
we compared the performance of a PLS with that from a canbaateedule. Extend-
ing [70] further, we also compare the performance of a PL® wiat of thedynamic
dataflow schedul¢DDFS) employed in Ptolemy Il [16, 15]. For this, we have imple-
mented the algorithm used in Ptolemy Il to generate a DDFSlifa ® DDFS is widely
used to simulate dynamic dataflow applications. In a DDF@&ngtgiven time during a
simulation, the scheduler determines whether each of tleesais enabled or deferrable.
A deferrable actor is the one that is enabled, but does natreetp be fired in order for
any of its downstream actors to be enabled. Correspondinglymay also have actors
that areenabled but not deferrabiiEBND) — that is, actors that are enabled, and must
be fired in order to have sufficient number of tokens produt¢édear outputs for one or
more of their downstream actors to be enabled. Among theleshalstors, a DDFS first
attempts to fire an actor only from the set of actors that arBIEBf there is no such
actor, it proceeds to fire one of the enabled actors. Afteryewwocation of an enabled
actor, the DDFS checks if the invocation has changed thesstditany of the other actors
in the graph in terms of being enabled or deferrable. Theuwgi@t proceeds until the
control condition (a pre-specified condition for termingtigraph execution) is reached
or a deadlock condition is reached. A DDFS is designed to fitera only when re-
quired for enabling downstream actors. By doing so, it aim®inimize the total buffer
requirements for the application graph.

The results of our experiments for different sink controtdions (the total number
of tokens that must be consumed by the sink actor during thalation) are shown in

Table 5.3 and Table 5.4.
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Table 5.3: Average simulation time for different sink camtronditions (numbers of to-
kens consumed by the sink actor) using a canonical sche@glg DDFS, and PLS.

Sink control| Average simulation time (mg) Reduction (%) compared to
condition | CS | DDFS PLS CS DDFS
10000 78 | 186 73 6.41 60.75
20000 111 | 301 90 18.92 70.10
50000 222 | 665 148 33.33 77.74
100000 |401| 1313 248 38.15 81.11

Table 5.4: Total buffer requirements for different sink tohconditions (numbers of
tokens consumed by the sink) for a canonical schedule (C3f,9)and PLS.

Sink control Total buffer requirement (number of tokens)
condition CS CS CS DDFS PLS PLS
Minimum | Average| Maximum Experiments Theory
10000 25 28 37 19 19 19
20000 27 31 37 19 19 19
50000 29 35 45 19 19 19
100000 31 34 37 19 19 19

As evident from the results, the PLS method exhibits sigaificeductions in run-
time overhead over a canonical schedule and DDFS, whicls lea@mprovements in
average simulation time — up 88% over a canonical schedule aftf; over a DDFS
in our DIF implementation. Speed-up in simulation over a 3Ddan be attributed to
elimination of run-time overheads corresponding to deieirmg the status of each actor
(enabled or deferrable) in the graph. For a canonical sdbgthial buffer requirements
vary from one simulation of an application to another owingdiynamically changing
dataflow behavior. We have reported minimum, maximum, arelegye buffer require-
ments from our experiments using a canonical scheduleolildibe noted that the total

buffer requirements for a canonical schedule not only vaygiBcantly across different
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simulations but also are much higher compared to that of ad?lI[IEIDFS. These experi-
ments not only confirm the theoretical buffer bounds for PeStsmated using the results
mentioned above but also demonstrate significant redigctiothe total buffer memory
requirements over the canonical schedule, especiallafgef values of sink control con-
ditions (i.e., longer simulations). Since a DDFS employs$rategy in which actors are
fired only when needed, it tries to optimize the total bufegquirements. For the AMS
application in our experimental study, our PLS can achibigedptimized buffer require-
ment, but with much higher simulation speeds.

In summary, from our study, trade-offs among the schedukahniques that we
have examined in this section can be summarized by list@@dtvantages of each of the

techniques as follows:

e CFDF canonical scheduler offers simplicity of implementation (e.g., for fast, early

stage prototyping) and generality (arbitrary topologias be handled).

e DDFS offers buffer size minimization, and generality.

e PL Soffers buffer size minimization with compile-time analysand fast simulation

performance.

Intuitively, while the canonical schedule and DDFS offengelity for the associ-
ated dynamic dataflow modeling techniques, PLSs typicaljire significant amounts
of static or quasi-static structure to be useful — howevdrenvsuch structure can be
found, their benefits can be significant, as shown in our casly sising the AMS ap-

plication. Furthermore, it is conceivable that the perfante benefits presented here for
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PLSs can be extended beyond simulation to implementayiotiissis scenarios; this is a

useful direction for further investigation.

5.4 Summary

We have presented a generalized scheduling strategy fedstihg dynamic dataflow
applications that leverages CFDF semantics, which strestdynamic actors as a set of
modes with fixed behavior. We presented an algorithm thairdposes dynamic dataflow
graphs into a set of dynamically interacting static datafijpaphs. We demonstrated this
on mixed-model applications with existing schedulers,chigave a positive indication
of the utility of this approach for software implementasaf such dynamic dataflow ap-
plications. An immediate direction of future work is to inoge the sophistication of the
simulator. With a more intelligent way of dynamically switng between the resulting
static schedule trees, we should achieve better run timgsialler maximum buffer
sizes. A limitation of our approach, compared to relatethnegques, is that special at-
tention is required by the designer to explicitly specifg thataflow properties associated
with individual modes, and attention is also needed duresging to validate that the
declared and observed behaviors match. An interestingtairefor future work is the
integration of our proposed scheduling methods with momnéb reasoning about actor
sub-behaviors, such as those being developed in conjuneith languages and models
such as CAL and SysteMaoc.

We have presented a generalized scheduling approach with grouping that ex-

poses more static behavior of a dynamic application graghid@ntifying static groups
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of “modes” inside actors, we expose more of the static naititiee application, allowing
traditional scheduling techniques to improve on memoryiegents by up t87%. De-
veloping dynamic schedule tree selector so that a simubatfinal implementation may
strategically switch between the known static behaviorsiattime is a useful direction
for future work.

Our PLS approach identifies the underlying static companenthe application,
systematically integrates the well-established comipiee scheduling techniques for SDF
graphs with more flexible CFDF semantics, and uses combif€FSDF analysis to
generate PLSs that have significantly reduced run-timeheael, guaranteed memory
bounds, and reduced memory requirements. Our approaaiefdhe provides robust
simulation of dynamic communication applications withmajor limitations on compile-

time predictability and efficient scheduling.
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Chapter 6
Dataflow-based Rapid Prototyping for Radio Astronomy Sligna

Processing

There is a growing trend toward using high-level tools fosiga and implementa-
tion of radio astronomy DSP systems. Such tools, for exantiptese from the CASPER
group, are usually platform-specific, and lack high-lepiiform-independent, portable,
scalable application specifications. This limits the desits ability to experiment with
designs at a high-level of abstraction and early in the adgrknt cycle. We address
some of these issues using a model based design approaatyargpulataflow modeling,
which is extensively used in design of embedded DSP syst&vesuse an application
employing a TDD to allow narrow band modes in spectrometeesdriving and demon-
strative application. Our design is targeted toward an Fip@a#form, called the IBOB,
that is available from the CASPER group. By a TDD, we imply edaaare digital down-
converter design that can be reconfigured without the nee@denerating the hardware
code. Such a design is currently not supported in the CASPER Iibrary. The work
presented in this chapter focuses on two aspects. Firsiynttoduce and demonstrate
a dataflow-based design approach using the DIF tool for leghl-application specifica-
tion, and we integrate this approach with the CASPER tool.fl8econdly, we explore
the trade-off between the flexibility of TDD designs and tbe hardware cost of fixed-

configuration digital downconverter (FDD) designs that tseeavailable CASPER DSP
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library. We further explore this trade-off in the contextartwo-stage downconversion

scheme employing a combination of TDD or FDD designs.

6.1 Introduction

Key challenges in designing DSP systems employed in thedfefaldio astronomy
arise from the need to process very large amounts of datayahigh rates arriving from
one or more telescopes. It is also desirable to have scadabl@econfigurable designs
for shorter development cycles and faster deployment. Mae these designs should be
portable to different platforms to keep up with advancesew mardware technologies.
However, conventional design methodologies for signatessing systems in the field
of radio astronomy focus on custom designs that are platgpetific. Such designs,
by virtue of being platform-specific, are highly speciatizand thus difficult to retarget.
The design approaches also lack high-level platform-ieddpnt application specifica-
tions that can be experimented with, and later ported to aticha@zed for various target
platforms. This limits the scalability, reconfigurabilipyortability, and evolvability across
varying requirements and platforms of such DSP systems.

A model based approach for design and implementation of a §§Sm can ef-
fectively exploit the semantics of underlying models of gurtation for precise estima-
tion and optimization of system performance and resourgairements (e.g., see [8]).
Though approaches for scalable and reconfigurable desggulmen modular FPGA hard-
ware and software libraries have been developed (e.g., 8e56]), they neither allow

for high-level abstraction nor provide linkage to formalaets of computation.
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We propose an approach using DSP-oriented dataflow modelsngputation to
address some of these issues [46]. Dataflow modeling is &x&dy used in developing
embedded systems for signal processing and communicajaications, and electronic
design automation [8]. Our design methodology involvesEpieg the application in
DIF [36] using an appropriate dataflow model. This applmatspecification is trans-
formed into an intermediate, graphical representationichvban be further processed
using graph transformations. The DIF tool allows desigtergerify the functional cor-
rectness of the application, estimate resource requiresnand experiment with various
dataflow graph transformations, which help to analyze oinupe the design in terms of
specific objectives. The DIF-based dataflow specificatitimes used as a reference while
developing a platform-specific implementation. We show Hormnal understanding of
the dataflow behavior from the software prototype allowseredficient prototyping and
experimentation at a much earlier stage in the design cymiepared to conventional
design approaches.

As mentioned earlier, we demonstrate our approach usinglésgn of a TDD
that allows fine-grain spectroscopy on narrow-band signie TDD, which was origi-
nally designed for th&reen Bank Ultimate Pulsar Processing Instrum@ PPl at the
NRAO, Green Bank, finds its use in the spectrometers cuyremitier development for
the GBT and 20m telescope at the NRAO, Green Bank. One of thigations has been
to have a TDD design, where by a TDD, we mean a digital downeaion system that
supports changes to the targeted downconversion rati@utitlequiring regeneration of
the corresponding hardware code. Development of such a BRignificant contribu-
tion of this work. We compare our TDD with the FDD designs ths¢ the current DSP
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library from the CASPER group. Through this kind of companiswe explore trade-offs

between the flexibility offered by TDD designs and their heeaick cost.

6.2 Related Work

There exist high-end reusable, modular, scalable, andfigewable FPGA plat-
forms such as thBerkeley Emulation Engine BEE2 and IBOB, which have been in-
troduced specifically for DSP systems [17]. The BEE2 uses &Dd-unified computation
model for both the microprocessor and the reconfigurablédfalh uses a high-level block
diagram design environment based on The Mathworks’ Sirkaid the XSG. This de-
sign environment, however, does not expose the underlyatafldw model. In particular,
the designer has little or no scope to make use of the undgrtjataflow model for ex-
perimentation. Also, the SDF model used for programming3BE&?2 is a static dataflow
model in that all the dataflow information is available at gole-time (i.e., before exe-
cuting or running the application). Though this featurevmes maximal compile-time
predictability, it has limited expressive power. It does albow for data-dependent, dy-
namic behavior, which is exhibited by many modern DSP appbas, such as the TDD
application introduced in Section 6.3. Other forms of data&finodels that can capture
more application dynamics with acceptable levels of coeapihe predictability may bet-
ter exploit the features offered by platforms such as the BEE

Model based approaches for designing large scale signeégsong systems with
a focus on radio telescopes has been previously studied ¢e [2, 50, 49]). Several

frameworks have been proposed for model based, high-léstations of architec-
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tures along with performance/cost estimation methods idegiine designer throughout
the development cycle (see [2]). However, the focus of tlsgg®oaches has been on
architecture exploration. There have also been attempdsrige implementation-level
specifications starting from system-level specificatiopségregating signal processing
and control flow into an application specification and aesttiire specification, respec-
tively (see [50, 49]). However, the choice of models of comagion has been made
primarily from control flow considerations rather than diat& considerations. These ap-
proaches, though relevant, do not specifically addressstgiof high-level application
specification for platform-independent prototyping and asmodels of computation for
abstraction of heterogeneous or hybrid dataflow behavibings issue is critical to effi-
cient prototyping of high performance signal processingliaptions, which are typically
dataflow dominated, and include increasing levels of dyocasataflow behavior (e.qg.,
see [8]).

We address this issue using the CFDF model with underlyirgfP& PCSDF be-
havior and using it for system prototyping. We then show htatfprm-independent spec-
ifications based on this modeling technique can be used tesffiy develop platform-

specific implementations.

6.3 Tunable Digital Downconverter

In DSP literature, the terms downsampling, decimation, @manconversion are
often used interchangeably. In this chaptateaimatorefers to a block that simply deci-

mates, downsamples, or downconverts the input signal wittioy other processing (e.g.,
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see Fig. 2.2(a) and (b)). The ratio of the sampling rate aingat of a decimator to that
at its output is referred to as itkecimation factor A decimator is generally preceded by
an anti-aliasing filter [80]. In this chapter, we refer to lswccombined structure, con-
sisting of a filter and decimator, asdecimation filter(e.g., see Fig. 2.3(a) and (b)). In
a polyphase implementation of a decimation filter, such atie we use in our imple-
mentation, this structure is implemented as a single comgbtock [80]. We refer to the
system or application that employs a decimator or decimdiiter, possibly with other
blocks such as mixers and filters, as a digital downconvyeated in particular, a FDD
or TDD (e.qg., see Fig. 6.1). The decimation factor of a detion&filter, TDD, or FDD
refers to that of the decimator in it.

Fig. 6.1 shows a block diagram of a TDD application. It shows-dit analog-to-
digital converter (ADC) that receives a baseband input ¢faai of bandwidt800 MHz
and samples it at the sampling ratel af giga-samples/second (GS/s). The internal design
of the ADC block is such thatsamples, where each sample iait fixed point number,
are output on the eight output lines at the same clock pulégs résults in200 mega-
samples/second (MS/s) on each of the outputs of the ADC blGckrespondingly, all
the downstream blocks also ha¥énput and output ports. We, thus, ha¥eonnections
between any two blocks shown in Fig. 6.1 that are directlyneated. We, however, have
not shown this detail (ab connections) for the sake of clarity and simplicity.

The TDD subsystem, identified by the dotted box in Fig. 6.5, tsadownsample
this signal so that the resultant signal at the output of DB Will have a tunable band of
user-specified bandwidtlB(,) and center frequency(;). The output of the TDD is fed

to the downstream DSP blocks over thix auxiliary user interface (XAUI) ports. The
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I
Tunable FIR
[ — Filter

Figure 6.1: Block diagram of a tunable digital downconwverte

XAUI ports stream data over CX4 connectors of the IBOB, andehe maximum data
transfer capability o1 0 giga-bits per second (Gbps).

During narrow-band observation modes, the TDD allows mestband signals to be
sampled at their corresponding Nyquist rates. When predeotthe same number of
channels in the downstream DSP system as that for the wide-Bainput, this allows
fine-grain spectroscopy. Our TDD design supports integeinuigion factors betweeh
and12. The valid values of; corresponding to the selectdzj, can vary so as to span
the entire800 MHz IF input.

As shown in Fig. 6.1, the TDD consists of a tunable FIR filtéthé desired output
is a baseband signal, then the FIR filter simply acts as amgelar window with each
of its taps set td. Also, in this case, the fork and select blocks are configtwedute
the output of the FIR filter directly to the tunable decimatfdter (TDF), bypassing the
mixer.

If the desired output is not a baseband signal, the FIR filkés as a bandpass
filter (BPF). The cut-off frequencies for this BPF are sengsihe specified parameter

configuration §,, andCy). In this case, the output of the BPF is fed to a real mixer,
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Figure 6.2: Proposed dataflow-based approach.

which translates it into a baseband signal. The local @goil] with a frequency,o, is
implemented as a numerically controlled oscillator (NCOje frequencyfi,o, is depen-
dent on the value of’; and B,,. The output of the mixer is then fed to the TDF, which

downsamples its input depending upon the specifigar decimation factor.

6.4 Dataflow-based Design and Implementation

We propose an approach for design and implementation of a had2d on the
dataflow formalisms discussed in Section 2.1 along withveelecapabilities of the DIF
tool described in Section 2.2. Fig. 6.2 gives an overviewwfdataflow based approach,

which we now describe.
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6.4.1 Modeling and Prototyping using DIF

We start with an application specification that describesRSP algorithm under
consideration (for example, here, TDD) along with propguinand output interfaces.
The application is specified using the DIF language. This §dEcification consists of
topological information about the dataflow graph — intemections between the actors
along with input and output interfaces. The DIF specificai®a platform-independent,
high-level application specification. The specification ba used, for example, to simu-
late the application, given the library of actors from whilsk specification is constructed.

Depending upon the application under consideration, tiseggder can select from
among a variety of dataflow models of computation in DIF teeetifzely capture rele-
vant aspects of the application dynamics. It should be ntitatthe designer does not
always need to a specify the model in advance. The CFDF maaebe used to de-
scribe individual modules (actors) in the application, #mel DIF package can analyze
the CFDF representation (CFDF modes, to be specific) of tttwsa@as specified by the
designer through the actor code, and annotate the actdrsadititional dataflow infor-
mation using various techniques for identifying specediZorms of dataflow behavior
(e.q., see [67]). This step requires the functionality afividual actors to be specified in
CFDF semantics. The designer can use the existing blockstfie Java actor library in
DIF or develop his or her own library of CFDF actors.

In terms of tunability, the key components of the TDD as seemfFig. 6.1 are the
tunable FIR filter, and decimation filter blocks. The TDF [Mag of particular interest,

considering that it is the only multirate block in the systdta behavior resembles that of
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Figure 6.3: Dataflow behavior of Beci mat or actor with4 inputs and
outputs for adecimation factoof 6 using (a) SDF, and (b) CSDF models.

the one described in Section 2.1.3. In view of this, we haeatified PSDF and PCSDF
as candidate dataflow models for efficient implementatiotheftargeted TDD system.
For this system, we have to take into account the multiplat&yand outputs to actors, as
mentioned in Section 6.3.

To illustrate details of the dataflow behavior of a decimatotor based on such
specifications, we have shown one setti mat or actor with4 inputs and outputs, and
having a decimation factor @fin Fig. 6.3(a) and Fig. 6.3(b). For the sake of simplicity
and clarity, we have excluded the other single rate bloak® fthe application graphs in
this figure. In our implementation, we extend this behavardn actor with8 inputs
and outputs. We have created a DIF prototype using PSDF asdDP@s underlying
models for equivalent CFDF representation of actor blodke. have also developed a
Java library of actors in DIF adhering to CFDF semantics foofahe blocks.

We then used DIF for software prototyping, analysis, andtional simulation.

The DIF package uses the DIF specification to generate amriatBate graph represen-
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tation, which can then be used as an input for further gragrsformations including a
schedulingransformation, which determines the schedule for an egtidin. Here, by a
schedulewe mean the assignment of actors to processing resouragsha execution
ordering of actors that share the same resource. The fuattsimulation capabilities
provided in DIF can be used to analyze and estimate bufferinements in terms of the
numbers of tokens accumulated on the buffers that corresfmodataflow graph edges.
This provides an estimate of total memory requirements disasespecifications for in-
dividual buffers when porting the application to the taegkimplementation platform.

Fig. 6.4 shows the TDD application graph generated using THIS is based on the
TDD block diagram shown in Fig. 6.1 with addition of some astilnat handle parameter
configuration for the actors. We discard one of the two setigfuts (more specifically,
sineoutput) of thd ocal Gsc actor as we have employed a real mixer in our design. The
complexity of the graph, which is increased due to multideafiel edges between two
actors, can easily be captured through a DIF specificatiahntakes use of topological
patterns. We have shown two possible specifications of thphgtopology in DIF using
topological patterns in Fig. 6.5 and Fig. 6.6.

Using the TDD specification and employing the notion of PL8saiibed in Sec-
tion 5.3, we construct PLSs for the TDD application. Fig.(&)7shows a PLS for a
TDD application, where théeci mat or actor has the underlying SDF model, while
Fig. 6.7(b) shows one in which tlieci mat or actor employs the CSDF model. As an-
notated in these GSTs, loop coup, pl, andp2 are parameterizable. The loop count
pO is set to a user-specified number of iterations, while the loountspl andp2 are

tuned based upon the decimation factor as well as the unmdgidataflow model for the
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Figure 6.4: TDD application graph generated using DIF.

deci mat or . Fig. 6.7(a) and (b), in particular, show values of the paatamzable loop
counts set for @eci mat or with a decimation factor of1. This PLS can be viewed as
providing CFDF-based execution for the given PDF-baseat agiecification model. The
effect of various decimation factors on the total bufferuiegments (in number of tokens)
is shown in Table 6.1.

Table 6.1 shows the total buffer requirements using PLSegdoous configurations

of decimation factors. Note that for a given configuraticgitisg of graph parameters), a

121



t opol ogy {

nodes = source, copy, bpf, Merge, decinator,
sink, control, fork[3], nultiplier,
| ocal Gsc, dunp;

edges = soCp[8] -> nultiedge(source, copy),
cpMg[8] -> nultiedge(copy, Merge),
cpBpf[8] -> nultiedge(copy, bpf),
bpf Mul [ 8] -> nultiedge(bpf, multiplier),
mul Mg[8] -> nultiedge(multiplier, Merge),
nrgDec[ 8] -> nultiedge(Merge, decinator),
decSnk[ 8] -> nultiedge(deci mator, sink),
loMul [8] -> nultiedge(local Gsc, nultiplier),
| oDunp[ 8] -> nultiedge(l ocal Gsc, dunp),
conFrk, fOfl, f1f2 -> chain(control, fork[0:2]),
fOBpf (fork[ 0], bpf),
f1lLo(fork[ 1], |ocal Gsc),
f2M g(fork[ 2], Merge),
f2Dec(fork[ 2], decimtor);

Figure 6.5: Partial DIF specification +opol ogy block — for the TDD
application graph using topological patterns.

PSDF or PCSDF graph behaves like an SDF or CSDF graph, resggckt can be seen
that for the SDF model, the total buffer requirements vahhe decimation factor, and
this is due to input buffers to the TDD block that need to acalate varying numbers
of tokens. Thus, employing the PSDF model will require tgriaffer sizes for different
decimation factors if one wants to provide for optimizedfeusizes in terms of graph
parameters.
We have used the CASPER tool flow for developing our platfgpaeific imple-

mentation as explained later in Section 6.4.2. This implaateon is targeted to an
FPGA. Our objective here is to support tuning the decimatamtor without regener-

ating hardware code. A dataflow buffer can be emulated usiiadyport random access
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t opol ogy {

nodes = source, copy, bpf, Merge, decinmator, sink,
control, fork[3], multiplier, |ocal Gsc, dunp;
edges = c0[6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

cl[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c2[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c3[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c4[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c5[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c6[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),

c7[ 6] -> chain(source, copy, bpf,

mul tiplier, Merge, decinmator, sink),
cpMg[8] -> nultiedge(copy, Merge),

loMul [8] -> nultiedge(local Gsc, nultiplier),
| oDunp[ 8] -> nultiedge(local Gsc, dunp),
conFrk, fOfl, f1f2 -> chain(control, fork[0:2]),
fOBpf, flLo, f2Mg, f2Dec -> parallel (fork[O: 2],
fork[ 2], bpf, l|ocal Gsc, Merge, decinator);

Figure 6.6: Partial DIF specification +opol ogy block — for the TDD
application graph using topological patterns.

memory (RAM) blocks in the targeted FPGA device, but tunimg sizes of such blocks
is not possible during run-time. The ADC output is of a streggmature (data is pro-
duced or consumed at every clock cycle without any synchetion signal), as is the
DSP subsystem downstream of the TDD.

In order to achieve the throughput constraint imposed byntagimum data rate
of the ADC output stream, SDF buffers need to be pipelined¢hvis not efficient using

RAM blocks. Thus, we use the CSDF model, which does not requiming of dataflow
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Figure 6.7: PLSs for the TDD application configured for a deation fac-
tor of 11, anddeci mat or actor employing the (a) PSDF and (b) PCSDF
models of computation.
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Table 6.1: Total buffer requirements from a DIF prototypedifferent decimation factors
using parameterized looped schedules.

Decimation Factor 5 6 7 8 9 10 | 11 | 12

Total buffer requirements SDF | 132 | 140| 148 | 156 | 164 | 172 | 180 | 188
(Number of tokens) CSDF| 100| 100| 100 | 100 | 100| 100 | 100| 100

buffer sizes to achieve the maximum throughput constrasmibserved from our DIF-
based prototype. A synchronization or enable signal dérivem the TDD is used as
a clock to drive the downstream DSP system. This signal iscavdged version of the
clock signal.

We use our DIF prototype as a reference while integratingidsegn with the cur-
rent CASPER tool flow for the target implementation on the BGection 6.4.2 further

elaborates on this approach along with implementationtesu

6.4.2 Integration with the CASPER Tool Flow

The CASPER tool flow is based on the BE&PS tool flow [56]. This tool flow
requires that an application be specified as a Simulink mosielg XSG [56]. Since
we do not have an automated tool for transforming a DIF regmadion into an equiv-
alent Simulink model, porting the DIF specification to SimkIXSG requires manual
transcoding of the DIF specification. This also requireslementing parameterizable
actor blocks that are currently not supported in the XSG, BBR, or BEEXPS libraries.

Each actor gets transformed into an equivalent functior@&B>lock. For each of
the Simulink actor blocks, we provide a pre-synthesis patanration that allows chang-

ing block parameters before hardware synthesis (see [5thé&oe details on Simulink
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scripting). In order to implement our objective of tunatyii— post-synthesis parame-
terization — we use thsoftware registemechanism in the BEKXPS library to specify
parameters that change during run-time (that is, aftervirarel code is generated, and
depending upon user requirements.)

Software registers can be accessed and set during runromelie TinyShell inter-
face available for IBOB. This allows tuning TDD parameteithaut re-synthesizing the
hardware each time the parameters change from the preettirsgs Each block has an
enable input signal. Through systematic transformatianspplication graph in DIF can
be converted into an equivalent Simulink/ XSG model. We hdereloped an interface
software package using C programs, and Bash and Pythornsstipompute software
register values for the required TDD configuration, andises¢ values on the IBOB over
a telnet connection, which is used for remote access to titbvaae platform at NRAO.

On the targeted FPGA device, we have employed dual-port RAIdK that are
loaded with pre-computed sinusoidal signal values of tlygiired precision. Each of
these dual-port RAM blocks is used to simultaneously read and cosine values from
both of its ports. The oscillator frequency is set using dvearfe register, and depends
upon the desired output signal band.

The FIR filter associated with the TDF block can have up@taps. Currently, the
generic FIR filter without any decimation (used, for exampkea BPF in the design) can
have up ts taps. These, again, are set using software registers. Véeemaployed two
filter banks in our design of a TDF that operate in tandem mathaximum throughput.
Hence, our TDF block ha%2 multiplication operations. As mentioned earlier, our TDF
design employs a polyphase implementation as describ&]n [
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Table 6.2: Implementation summary for TDD designs.

Parameter Design 1 Design 2 Design 3 Design 4
Mixer No Yes No Yes
Input bandwidth (MHz) 800 800 800 800
Decimation factorD 5<D<12 |5<D<12|5<D<12|5<D<K12
Latency (ns) 65 150 85 190
FPGA slices 12234 (52%)| 13315 (56%) 12322 (52%) 14232 (60%)
(Out of 23616)

4 input LUTs 14139 (29%)| 16123 (34%) 12123 (25%) 15035 (31%)
(Out of 47232)

Block RAMs 41 (17%) 48 (20%) 41 (17%) 48 (20%)
(Out of 232)

18 x 18 Multipliers — — 32 (13%) 95 (40%)
(Out of 232)

Table 6.4.2 shows results for the TDD implementation onB@B using the Xilinx
EDK 7.1.2. We have used this hardware platform and tool fbofathe experiments
reported on in the remainder of this chapter. Degighows some of the device utilization
parameters for a TDD that supports only baseband modes.dékign does not include
the tunable FIR filter, NCO, and mixer blocks shown in Fig. ®#&sign2 is based on the
block diagram of a TDD shown in Fig. 6.1. As evaluation metfiar hardware cost, we
have used the utilization of FPGA slicesinput look-up tables (LUTSs), and block RAM
units, and the number of embedded multipliers. Note thahaeiof these two designs
use any of the available embedded multipliers for multgtimn. Designs3 and4 are
modified versions of desigrisand2, respectively, in that they employ embedd&dx 18
multipliers. It can be seen that using embedded multiplierss not provide significant
improvements in hardware cost. We observe that use of eredeadiltipliers, in fact,

needs to be accompanied by addition of extra latency in tkgddo achieve timing

127



closure. We have been able to achieve maximal throughpog s implementation

based on the PCSDF model as explained in Section 6.4.1.

6.4.3 Platform-specific Analysis using DIF

Itis common to go back and forth between a high-level prqtetgnd a correspond-
ing platform-specific implementation while designing anbemided DSP system. Such
alternation in design phases is common, for example, whensotleveloping a platform-
specific library or tool flow. In support of such a design melblogy, it is desirable
for a high level design tool to support platform-specific lgges. This can be achieved
by annotating the high-level application specificationhwatatform-specific implementa-
tion parameters, which are derived through device datashegerimentation or some
combination of both.

DIF supports specifying user-defined actor parameters. 3&¥dhis feature in DIF
to annotate actors with two relevant implementation patarse— the latency constraint,
and number of embedded multipliers. This allows estimatesylts based on the DIF
prototype itself instead of determining them from the canged design, which is gen-
erally time consuming. We have verified the accuracy of rogteistimated by our DIF
model compared with actual hardware synthesis resultty@agrsin Table 6.4.2.

Developers of tool flows and DSP libraries can profile théirdry blocks to deter-
mine a wide variety of platform-specific implementationgraeters. DIF can use such
information to estimate implementation parameters at b leigel of abstraction, and ear-

lier in the design cycle to help efficiently prune segmentghefdesign space. Support
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Figure 6.8: TDD System overview.

for estimation of various platform-specific resources fiffiedent platforms is beyond the
scope of this thesis. It is, however, an important directamiard developing alternative

model based design flows and open access tool flows for astioaldDSP solutions.

6.4.4 Software Interface for the Tunable Digital Downcdeve

As mentioned earlier, parameterization associated wéhrtbD blocks is handled
through the use afoftware registersWe have developed a TDD interface that computes
various programmable TDD parameters, and sets the corrdspsoftware registers by
communicating with the IBOB board using ttednetutility depending upon the narrow-
band mode chosen by the user.

Fig. 6.8 shows an overview of the system organization. A naarspecify a valid
narrow-band mode throughuser interface This information is then provided to the un-
derlying TDD interfaceby acontroller. The TDD interface uses this information (band-

width, and center frequency of the narrow-band), along Wighdecimation factor (either
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derived from the input bandwidth or set explicitly), and figares the corresponding
TDD block. It then communicates this TDD configuration witle thardware. The TDD
interface is implemented as a collection of utilities in fleem of C programs, Bash
scripts, and Python scripts.

One important aspect in our development of this TDD intexfaas been our em-
phasis on unit testing. We have used the unit testing featorde DICE framework (see
Section 2.5) to develop an extensive unit test suite, whachie applied for rigorous val-
idation of system functionality, and can be retargetediefiiity across different levels of
abstraction (e.g., simulation versus implementation)difidrent design languages (e.g.,

C, Verilog and VHDL).

6.5 Exploring Implementation Trade-off with TDD and FDD Blks

One of the motivations for the work presented in this chapter been to develop
library blocks needed for a TDD using Xilinx LogicCore and SRER library blocks.
The current CASPER DSP library provides a decimator thapsrp decimation factors
that are powers o2. The decimation factor as well as the filter coefficients & FHR
filter are not tunable after the hardware code is generated.d€sign provides flexibil-
ity with not only the decimation factor but also the filter &a@ents through the use of
software registers, as explained earlier. The FDD destgnsgh not tunable, have lower
hardware cost in terms of device utilization. Table 6.5 ptes a summary of some of the
hardware utilization parameters for the FDD designs. Thlesgyns have also been im-

plemented on a CASPER IBOB. Note that the decimation fadtaf tvas been achieved
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Table 6.3: Implementation summary for FDD designs.

Parameter Design 1 Design 2 Design 3 Design 4
Mixer No No Yes Yes
Input bandwidth (MHz) 800 800 800 800
Decimation factor 8 10 8 10

B, (MHz) 100 80 100 80

Cy (MHz) 50 40 400 400
Latency (ns) 35 440 50 455
FPGA slices 4175 (17%)| 6142 (26%)| 5690 (24%)| 6439 (27%)
(Out of 23616)

4 input LUTs 5153 (10%)| 5216 (11%)| 5984 (12%)| 6003 (12%)
(Out of 47232)

Block RAMs 41 (17%) | 41 (17%) | 49 (21%) | 49 (21%)
(Out of 232)

18 x 18 Multipliers 8 (3%) 8 (3%) 32 (13%) | 32 (13%)
(Out of 232)

by first interpolating the input by a factor 86, and then decimating it by a factor &f
Comparison between the results in this table and those ile Gad.2 clearly highlights the
trade-off between design flexibility and hardware cost.ngshe model-based approach
presented in Section 6.4, the designer can effectivelyoegphis trade-off based on the

given design requirements.

6.5.1 TDD and FDD for Multistage Downconversion

Though our TDD design supports limited decimation factamge@er factors be-
tween5 and12), its usage is not limited to these factors. It can be reastiled and
applied to achieve other decimation factors by cascadinigptes TDF blocks. Fig. 6.9
shows some of the possible input/output sampling rateioglstthat can be achieved

by such use of cascaded TDF blocks. Design Table 6.5.1 employs cascaded TDF
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Input - - Output
Sample Rate De(t:;m.'ilt(;on Dect|)mz:15t|0n Sample Rate
1600 MS/s y y 32 MS/s
Input - - Output
Sample Rate Decl;maglon Deci)mas'uon Sample Rate
1600 MS/s y y 40 MS/s
Input - - Output
Sample Rate Dec;)maztlon De(;mﬂon Sample Rate|
1600 MS/s y y 72.72 MS/s

Figure 6.9: Two-stage digital downconversion.

blocks, while desigre in Table 6.5.1 employs cascaded fixed-configuration decomat
filter (FDF) blocks. Both of these designs have been develapdemonstrate multistage
downconversion for a baseband signal and neither of thenhogisia mixer. It is possible
to extend these designs to include a mixer to allow all péssibrrow band outputs and
not just the baseband output. For all of the designs in thig that use one or more TDF
blocks, the TDF block employs dedicated embedded multglie

In this light, we further explore the trade-off between ttv hardware cost of FDD
designs and flexibility offered by TDD designs by examinindesign consisting of an
FDF block followed by a TDF block (desigrisand4 in Table 6.5.1). These designs
provide limited tunable decimation factors compared tagfe$, but also have lower

hardware cost in terms of device utilization.

6.6 Summary

We have proposed a dataflow-based approach for prototyathg astronomy DSP

systems. We have used a dataflow-based high-level apphcatodel that provides a
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Table 6.4: Implementation summary for designs employing-$tage downconversion
using cascaded FDF or TDF blocks,,, if tunable, can be tuned to frequencies consistent
with decimation factors supported by the TDD block.

FPGA slices

(Out of 23616)

4 input LUTs

(Out of 47232)
Block RAMs

(Out of 232)

18 x 18 Multipliers
(Out of 232)

17141 (72%)
19718 (41%)
41 (17%)

64 (27%)

5765 (24%)
5506 (11%)
41 (17%)

16 (6%)

Parameter Design 1 Design 2 Design 3 Design 4
Mixer No No No No
Input bandwidth (MHz) 800 800 800 800
No. of FDD blocks 0 2 1 1

No. of TDD blocks 2 0 1 1
FDD Decimation factor(s — 8, 10 8 10
B, (MHz) Tunable 10 Tunable Tunable

(< 800) (< 100) (< 80)

Latency (ns) 170 475 120 505

11073 (46%)
12245 (25%)
41 (17%)

40 (17%)

12641 (53%)
12310 (26%)
41 (17%)

40 (17%)

platform-independent specification, and assistance iatimal verification and impor-

tant resource estimation tasks. This can prove effectivedocing the development cycle

and faster deployment of DSP systems across various tdagitrms. We have employed

this approach to methodically develop a TDD based DSP bakc#tesign. Our TDD im-

plementation is targeted to the CASPER FPGA board, call@BBand supports tuning

narrow band modes without the need for regenerating hasde@ade. We have also ex-

plored the trade-off between the low hardware cost for FDBigtes and the flexibility

offered by TDD designs. This trade-off has also been hidtdid in the context of de-

signs employing a two-stage downconversion scheme. A desaan explore this design

space to best meet the application requirements.
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Chapter 7

Summary and Conclusions

In this thesis, we have addressed various aspects of desggdimployed by model
based design tools for embedded systems in the context mf paptotyping of high
performance signal processing applications. We summahnigge contributions along

with our conclusions as follows:

1. We have introduced the concept of topological patterrsichvcan be used in
dataflow modeling languages to identify and concisely teeaaross arbitrary struc-
tures in a dataflow application graph. We have shown how thestyf flowgraph
substructures that are pervasive in the digital signalgssicg (DSP) application
domain can be effectively represented in terms of topokdgiatterns, and thereby
used to generate compact, scalable application repré¢sgrstaVe have also shown
how an underlying design tool can exploit a high-level aggdion specification
consisting of topological patterns in various aspectsetisign flow. In particular,
we have demonstrated the efficacy of topological pattermataflow graph anal-
ysis, concise and scalable representation of homogengogtrenous dataflow
(HSDF) graphs, and exploring implementation-specificaratfs. We have also
demonstrated the use of topological patterns in graph sisalind extraction of
implementation-specific features. We have applied the etnaf topological pat-

terns to represent schedules for application graphs. Spresentations are use-
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ful, for example, when porting schedules generated usimgdasign tool to other
platform-specific tools or design languages. We have detraied the utility of
experimentation with pattern-specific scheduling tramefions, and how topo-

logical patterns facilitate such experimentation.

. We have formulated the core functional dataflow (CFDF) eh@d computation,
which can be used to model a wide variety of deterministicaghyic dataflow be-
haviors, and used to capture various well known forms offétatain a single,
unified formulation. We have also presented features of #2FCmodel and tools
based on it, such as support for 1) heterogeneous dataflcavioe$, 2) intuitive
functional specification, 3) functional simulation thaloals designers to model
and verify interactions among various forms of dataflow, djtgbility from ex-
isting dataflow models, 5) minimally-restricted specificatof actor functionality,
and 6) efficient static, quasi-static, and dynamic schadukchniques. With the
CFDF modeling approach integrated into dataflow interckaiogmat (DIF), we
have demonstrated the use of CFDF concretely on variouscaiphs. Such an
approach has allowed us to functionally simulate desigm® fearly stages of de-
sign, and then focus on experimenting with schedules aradldattransformations

to improve performance.

. We have presented a new scheduling technique for dynaatafl@wy applications.
This technique leverages the CFDF model, and operates loymgexsing dynamic
dataflow graphs into sets of dynamically interacting st@ddiaflow graphs. We have

demonstrated this scheduling technique on mixed-moddicapipns with existing
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schedulers, which has given a positive indication of thityif the approach for
software implementations of such dynamic dataflow appboat By identifying

static groups of “modes” inside actors, we have exposed miotiee static nature
of applications, allowing traditional scheduling techunég to improve on memory

requirements by up to 37%.

We have further used CFDF semantics to model a class of siigmatopologies
that is important for modern communication systems. Our@gugh identifies the
underlying static components in the application, systerally integrates well-
established compile-time scheduling techniques for ssorabus dataflow (SDF)
graphs with more flexible CFDF semantics, and uses combif@FSDF anal-
ysis to generate parameterized looped schedules (PL3d)aba significantly re-
duced run-time overhead, guaranteed memory bounds, andegdnemory re-
guirements. Our approach therefore provides robust stinalaf dynamic com-
munication applications without major limitations on catagtime predictability

and efficient scheduling.

. We have demonstrated the use of a dataflow-based appaaragtofotyping radio
astronomy DSP systems. We have used a dataflow-based kighajgplication
specification format that provides a platform-independpetcification, and assis-
tance in functional verification and useful kinds of reseuestimation. Such an
approach is useful in improving designer productivity aadilitating faster de-
ployment of DSP systems across various target platformshaVe employed this

approach to methodically develop a tunable digital dowmeaer (TDD) based
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DSP backend design. Our TDD implementation, which is tadjgtward an FPGA
board, called the interconnect break-out board (IBOB)nftbe collaboration for
astronomical signal processing and electronics rese@BBPER), supports tun-
ing narrow band modes without the need for regeneratinghelcode. We have
also explored the trade-off between low hardware cost fedfigzonfiguration digi-
tal downconverter (FDD) designs and the flexibility offetsdTDD designs. This
trade-off has also been highlighted in the context of desgmnploying multistage
downconversion schemes. Using our approach for tradexpfbeation between
hardware cost and flexibility, a designer can efficientlylesg@pthe associated de-
sign space to help optimize an implementation in terms ofgikken application

requirements.

5. This thesis has contributed significantly to the develepnand release of the latest
version of a graph package, called MoCGraph, that is orktdeard providing
fundamental graphical data structures and implemensbbgraph algorithms to
support analysis and manipulation of models of computati@umr contributions to
this graph package include support for tree data structaresgeneralized sched-
ule trees (GSTSs), in particular. Our extensions to the MapBipackage have sup-
ported important features for the CFDF model, and for nevetional simulation

capabilities in the DIF package.

The work presented in this thesis, though demonstrated ggiecific design tools,
is not restricted to those tools, and hence, can be appliaditiole variety of dataflow-

based environments. Also, the applications presentedgthmstrumental in driving this
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research, are demonstrative, and the prototyping metlasdseextended readily to other

relevant DSP applications.
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Chapter 8

Future Work

We believe that pattern-specific scheduling techniqguepande improved schedul-
ing capabilities for dataflow-based design environmeraseémploy topological patterns.
In our work on topological patterns in this thesis, we hav@lkasized the same by pro-
viding a facility that allows a user to experiment with varsoschedules in a systematic
manner. The development of pattern-specific schedulingstes and support of those
in design tools has been, however, beyond the scope of thsisth Such exploration
along with automating the application and integration gfdiogical patterns are useful
directions for further investigation.

For scheduling generabre functional datafloWCFDF) graphs, it would be useful
to look into an approach that involves identifying staticlaynamic components of het-
erogeneous dataflow graphs, generating two-actor schefitwlelusters of two CFDF ac-
tors in the graphs, and merging those into nested schedhateare optimized for selected
performance cost metrics based on probabilistic analy€i$®F graphs. The motivation
here is to build on the pairwise grouping methodology foaflatv graph clustering [12],
which is a useful and flexible scheduling framework for syodous dataflow graphs,
and develop efficient simulation and synthesis capatsliiie dynamic dataflow graphs.
In this regard, it would be also useful to explore general ER@pologies as targets for

parameterized looped schedfLS construction, and apply our methods to optimized
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hardware and software synthesis.

Expanding on our work to integratanable digital downconvertefTDD) design
with ongoing development of spectrometer designs at thehgtRadio Astronomy Ob-
servatory (NRAO) on the latest hardware from the Collaborgior Astronomical Signal
Processing and Electronics Research (CASPER) group isieahaktension of the work
presented in this thesis. There is growing interest in td@rastronomy community to
have open-access and portable astronomical signal progessutions. Currently, this
is constrained by proprietary commercial tools targetedsfecific platforms. We have
also relied on these tools, mainly for hardware synthesis @de generation, in our
work. In this context, it is of interest to have high-levepéipation description languages
with semantic foundations in models of computation and tireesponding design tools
for efficient specification, simulation, functional verditon, and synthesis. Develop-
ing model based platform-specific libraries, and deviseahhiques for automatic code
generation from high-level representations, such as timodataflow interchange format
(DIF), specifically for the radio astronomy domain is an impari@inection for future
research.

There have been some other directions that we have expldnéd working on
the core aspects of this thesis. We have contributed to thelafament of a dataflow-
based design tool, calledrgeted DIF(TDIF), which extends the capabilities of DIF with
dynamic dataflow software synthesis, cross-platform aésign support, and dataflow-
integrated features for instrumenting and tuning impletagons [74]. The dataflow-
based approach used in TDIF is unique in that it leveragesdiver of dynamic dataflow
models, and provides integration of automatic code geioerdr programming inter-
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faces and low level customizations for implementationgdted to heterogeneous plat-
forms. Also, a new model based schedule representatioadctdedataflow schedule
graph (DSQ representation has been recently introduced [84]. lateyy prototyping
features and techniques presented in this thesis with ti@sdools and models is also

an important direction for future work.
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