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Vaccine-preventable diseases are responsible for about 25% of the 10 million deaths 

occurring annually for children under five years of age. The World Health 

standardized guidelines for vaccine storage and distribution, but often fail to 

accommodate the unique infrastructure between and within countries. In order to 

better regulate the temperature of vaccines as they travel through countries, we have 

selected and characterized an appropriate phase change material (PCM) that will 

resist temperature fluctuations outside of a range of 2-8 °C, based on appropriate 

thermophysical properties. Additionally, we have integrated the selected PCM within 

a geometrically and thermally optimized cold box, maintaining long-term 

stabilization of temperatures within a range of 2-8 °C. In meeting these objectives, we 

have demonstrated the feasibility of a technological solution that may be readily 

implemented in the existing vaccine distribution supply chain, or that holds potential 

to be the centerpiece for new, more efficient vaccine distribution strategies. 



 iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 
 

 
 

 
 

FIXING REFRIGERATION EFFICIENCY TO SUSTAIN HEALTH 
 

 
 
 

By 
 
 

Team FRESH at UMD 
 

Matthew Conway, Kelly Daniluk, Jason Felder, Andrew Foo, Amina Goheer, Veena 
Katikineni, Anthony Mazzella, Young Jae Park, George Peabody V, Amanda Pereira, 

Divya Raghavachari, Sahil Shah, Ravi Vaswani  
 
 
 
 
 
 

Thesis submitted in partial fulfillment of the requirements of the Gemstone Program, 
University of Maryland, 2012.  

 
 
 
 
 
 
 
Advisory Committee: 
Dr. Sameer Shah, Mentor 
Gunja Dave, Mentor 
Dr. Victoria Gammino 
Dr. Muhiuddin Haider 
Dr. Yunho Hwang 
Dr. Anwar Huq 
Mr. Ben Woodward 
 
 
 
 
 
 



 v 
 

 
 
 
 
 
 
 
 
 

© Copyright by  
Team FRESH at UMD  

 
Matthew Conway 

Kelly Daniluk 
Jason Felder 
 Andrew Foo 

Amina Goheer 
 Veena Katikineni 
Anthony Mazzella 

Young Jae Park 
George Peabody V 

Amanda Pereira 
Divya Raghavachari 

Sahil Shah 
Ravi Vaswani  

 
2012 

 

 

 
 
 
 
 
 
 
 
 
 
 



 vi 
 

 

 

 

 

Dedication 

The cold chain is only as strong as its weakest link.  

We dedicate this research to reaching the goal of universal vaccination. 
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Chapter 1: Introduction 

Research Objectives 

Today, vaccine-preventable diseases are responsible for about 25% of the 10 

million deaths occurring annually for children under five years of age (WHO & 

UNICEF)

Immunization (EPI) succeed in providing standardized guidelines for vaccine storage 

and distribution, but often fail to accommodate the unique infrastructure between and 

temperature stabilization relies on insulated vaccine carriers storing ice packs, or cold 

boxes, but poor design often renders vaccines impotent due to freeze damage (T. 

Wirkas, Toikilik, S., Miller, N., Morgan, C., & Clements, C.J., 2007). 

In order to better regulate the temperature and preserve a greater percentage of 

vaccines as they are shipped through lower-middle income countries (LMICs), 

significant improvements are required in our fundamental understanding of passive 

refrigeration technology  ways of cooling cargo without an active power source 

 and the integration of such knowledge into design strategies for more efficient 

passive temperature stabilization. 

Towards this end, we propose the following specific objectives: 

Objective 1:  To survey problems in the existing cold chain including technical and 

human errors to develop a clear set of design criteria for our project 

and for the benefit of other researchers.  
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Objective 2: To select and comprehensively characterize an appropriate phase 

change material (PCM) that will resist temperature fluctuations outside 

of a range of 2-8 °C , based on appropriate thermophysical properties. 

Objective 3: To examine the influence of PCM geometry and organization on 

temperature stabilization by theoretically and experimentally 

incorporating the selected PCM within a cold box in a variety of 

configurations and evaluating temperature stability. 

Objective 4:  To use the data generated in objectives 2 and 3 to create an effective 

thermally-optimized prototype cold box that meets the design criteria 

from objective 1. 

Objective 5: To develop a clear and concise plan for the implementation of the 

aforementioned prototype into the existing cold chain.  

By meeting these objectives, we will prototype thermal innovations that may 

be readily incorporated both specifically into the existing vaccine distribution supply 

chain, and also into temperature stabilization systems in general. 

Scientific Significance 

Our research will combine lab bench measurements and numerical 

simulations towards the optimization of temperature stability for vaccines as they 

move through the cold chain. Characterization of several PCMs will use well-

established experimental techniques in materials characterization to obtain data. This 

ired 

for accurate simulation, prediction, and validation of temperature stability. The 
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greatest impact of our proposed work is the development of novel strategies for more 

efficient integration of PCM technology into engineering design. The majority of 

current strategies that incorporate PCMs into passive refrigeration systems simply use 

more PCM to deliver temperature stability for a longer duration. The innovation of 

our approach is actually quite intuitive; we hypothesize that it is not just the quantity 

of a PCM, but the arrangement, or configuration, of PCMs with respect to heat 

sources, heat sinks, and the environment that will optimize temperature stability at 

multiple temporal and spatial scales. Our design criteria for the proposed project are 

guided by the necessity to decrease freeze damage to vaccines and increase payload 

volume, as well as considering ease of use for operators to minimize human errors, 

thereby increasing efficiency of vaccine delivery. However, through comprehensive 

materials characterization, novel and more accurate predictive simulation approaches 

that build on such characterization and experimental validation of these theoretical 

models, fundamental principles elucidated through our work should broadly 

transform the engineering of passive refrigeration systems. This can lead to further 

innovations by allowing for a series of experiments that can develop a thermally 

optimized system, a unique approach to the use of modeling programs. 

Significance of F indings 

Our literature review of studies documenting vaccine freezing and general 

deficiencies in the existing cold chain provides a comprehensive summary of 

scientific evidence in the field. We have consolidated these studies in a visual, open-

source Google Map, equipped with hyperlinks and many avenues for online 
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collaboration, with hope that it may be utilized by investigators in the field. 

Furthermore, our team translated the findings from these studies to a two-minute 

online motion graphics animation, which depicts the challenges in the cold chain for 

the viewer (See Appendix H).  

The concept behind our prototype, a traveling vaccine container, offers several 

opportunities for preventing error in vaccine storage and handling throughout the cold 

chain. Since vaccines are kept in the internal storage compartment within our PCM 

cold box throughout the cold chain, there is no exposure to sunlight or fluorescent 

light for select vaccines that are susceptible to light-related damage (BCG, Measles, 

MR, MMR and rubella vaccines). Furthermore, healthcare workers no longer need to 

be trained for placing vaccines in the proper orientation within refrigerators or cold 

rooms to reduce risk of damage. Temperature stability of vaccines is position-

independent and vaccines can simply remain in any part of the internal storage 

compartment. Our design utilizes existing cold chain infrastructure and accessories, 

including transport routes, freezers, and ice packs. There is only one scenario in 

which our cold box requires expert repair: if PCM panels break, the PCM cold box 

will be sent back to origin. By incorporating a culturally-relevant country sticker or 

slogan on the box, healthcare workers may handle our cold box with more care. 

Furthermore, the Instruction Manual (See Appendix E) includes a detailed decision-

making flow chart that may be adapted to simpler language for future use in the field. 

All of our findings and tools are timely and relevant to the rapidly-evolving field.  
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Limitations 

Even though our team had a structured plan for approaching the problem of 

vaccine freezing, we realized that there are certain factors that could have been 

limiting to our success. The largest limitation we faced was our lack of field 

experience. While our members come from diverse fields of study and have studied 

the cold chain extensively, there is no substitution for having experienced the cold 

chain in the local health centers. With the exception of one member, no one on our 

team has seen how vaccines are delivered in developing regions of the world. This 

lack of experience could have affected our ability to predict practical considerations 

for our cold box. 

 Another limitation is that we did not have the time or resources to test our 

cold box in a cold chain setting. Through our extensive physical experiments, we 

temperature for a long duration; however, we were not able to send our box through 

the cold chain, which would be the definitive test to determine whether our concept 

was valid. With the aforementioned lack of field experience as well as our inability to 

test our cold box in the cold chain, we were limited in the real life application of our 

cold box. 
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Chapter 2: L iterature Review 

Background 

In 2003 alone, vaccines are estimated to have prevented two million diseases 

and 600,000 deaths. However, at the same time, it is estimated that 27 million 

children and 40 million women were not vaccinated (Wolfson et al., 2008). As the 

public health impact of vaccines has become increasingly clear, interest in and 

funding for new vaccine development and improvements in the refrigerated vaccine 

distribution system (cold chain) has surged.  

Since the World Health Organization (WHO) launched the Expanded 

Programme on Immunization (EPI) worldwide in the mid-1970s, most countries have 

been using a standard package of six vaccines measles, tetanus, diphtheria, 

pertussis, tuberculosis, and polio in their national immunization schedule. As part of 

the  strategy to achieve  for  by 2000, it set a goal in 1977 to 

provide universal immunization to all children by 1990. Since then, many low- and 

middle-income countries have modified their vaccination package to include hepatitis 

B (HepB) and Haemophilus influenza type b (Hib) for routine infant immunization 

schedules, and many are in the process of adding pneumococcal conjugate vaccine 

and rotavirus vaccines to their schedules. The WHO  remains committed to 

expanding the  targeted groups to include older children, adolescents, and 

adults, and to working in synergy with other public health initiatives (WHO, 2012).  
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Immunization is a proven tool for controlling and even eradicating infectious 

diseases, as proven by the examples of smallpox, polio, and measles. Before the 

1967-1977 WHO campaign that resulted in the eradication of smallpox, the disease 

threatened 60% of the world's population and killed every fourth victim. Since the 

Global Polio Eradication Initiative in 1988, polio infections have fallen by 99% and 

polio is on the brink of eradication. Between 2000 and 2008, measles deaths dropped 

worldwide by over 78%, and some regions have since focused on eliminating the 

disease. Maternal and neonatal tetanus have been eliminated in 20 of the 58 high-risk 

countries, a feat that has saved millions of lives (WHO, 2012). 

A Global E ffort 

As an in

since it protects individuals and populations at low cost, but also provides a platform 

for delivering other health interventions, such as vitamin A supplementation 

(Stephenne, 2011). The primary responsibility for ensuring sufficient financing for 

immunization services rests with governments of LMICs (Low and Middle-Income 

Countries, as recognized by WHO); however, since national governments alone may 

not be able to provide all of the required funding, it is a shared responsibility of the 

central government, district governments, and communities to identify and mobilize 

the necessary resources to sustain safe and effective immunization services (USAID, 

2003).  

In many instances, the efforts of LMIC governments are not sufficient in 

providing vaccine coverage. Hence, external partners currently play a major role in 
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improving immunization services. International partners like USAID, PATH, 

UNICEF, GAVI, and WHO have recognized that campaigns conducted in a 

pooled together are more effective than campaigns directed by just one organization. 

WHO and at future vaccine supply 

chains can safely and routinely handle rapidly changing vaccine and delivery 

technologies while maintaining the ability to adapt to unexpected challenges, such as 

global pandemics (Milstien, 2002). Project Optimize continues to survey existing 

systems, test new processes and technologies, work with the pharmaceutical industry 

to innovate the presentation and packaging of vaccine products, and integrate their 

efforts with other health campaigns (PATH, 2009).  

While these immunization campaigns are being conducted, the vaccine 

landscape is changing dramatically. The 2006-2015 Global Immunization Vision and 

Strategy (GIVS) points to a dramatic scale-up of new lifesaving vaccines for standard 

immunization programs (Wolfson et al., 2008). Furthermore, an extensive analysis by 

PATH notes that more vaccines are becoming widely available and more money is 

being invested in research and development of vaccines than ever before (PATH, 

2009). However, the new vaccines that are being developed are much more costly 

than traditional vaccines. For example, there are several producers of traditional 

vaccines, such as measles, diptheria-tetanus-pertussis (DTP), leading to low unit cost 

for vaccines, often between US$0.10 and US$0.25 per dose. The cost of newer 

vaccines is significantly higher, typically between US$3.65 and US$15.00 per dose. 

Although prices are expected to drop over time, experts report that new vaccines may 
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never reach the low prices of traditional vaccines (PATH, 2009). Many experts and 

policy-makers are now investigating ways to finance the new vaccines. One way of 

ensuring access to vaccines in LMICs is to match the price to the level of economic 

development of the target country. tiered pricing,  this system allows for 

innovative financing mechanisms such as advance market commitments or offers of 

long-term and high-volume contracts to vaccine producers (Stephenne, 2011). 

Vaccine Delivery 

Despite tremendous efforts over the past few decades to provide access to 

vaccines to as many people as possible, many technical, social, and programmatic 

obstacles remain. Vaccines are temperature-sensitive biological substances that must 

be carefully regulated to maintain potency (Craig, 2008). There are a wide variety of 

obstacles in the way of effective delivery which can depend on transportation routes 

and the final destination, such as a remote village with no electricity. Although it is 

nearly impossible to develop a specific protocol for each region, there exists a global 

distribution network of refrigeration equipment and procedures for maintaining 

vaccine quality during transport and storage (PATH, 2008). This supply network 

dedicated to delivering vaccines is called the cold chain.  

Protecting Vaccines 

Because vaccines contain temperature-sensitive biological substances, they 

must be kept cool from the time of production until usage to maintain efficacy and 

prolong shelf life (Craig, 2008). If subjected to improper refrigeration (overheating or 
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freezing), vaccines are rendered ineffective. DTP, TT, DT, DPT combinations, liquid 

Hib, HepB and any HepB combinations may have freeze damage if not properly 

stored (PATH, 2003a). Furthermore, not all vaccines require the same temperature 

range. While freezing destroys some vaccines, it extends the shelf life of others. 

Those that are damaged by freezing temperatures must, in general, be stored between 

2-8 °C (Craig, 2008). 

Literature has shown that freezing is a larger problem in the cold chain than 

overheating. While vaccine damage due to overheating is gradual, freeze damage is 

nearly instantaneous (U. PATH, 2006). Tailored packing, transportation and storage 

arrangements for different types of vaccines are required to provide protection from 

temperatures outside of specified ranges by the WHO (WHO, 1999).  

In a typical cold chain, large shipments of up to 150,000 vials of vaccines are 

shipped or flown in refrigerated containers from the manufacturer to the national 

airport of the destination country (UNICEF, 2004). The vaccines are stored in a cold 

room at the airport until a refrigerated truck delivers them to the primary vaccine 

delivered periodically to regional centers, provincial health centers, local health 

centers, and eventually individual outreach clinics (WHO, 2002). The length of the 

entire delivery process depends on demand and can be as short as a month or as long 

as three months (UNICEF, 2004). The broad range stems from many factors that play 

a role in the efficacy of the cold chain in distributing viable vaccines. Though a 

typical cold chain routine was outlined above, customs clearance, inspection, 

inventory control, storage, transportation and delivery vary widely from country to 
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country, and even within a country between geographic and socioeconomic areas 

(Frost, Reich, & Harvard Center for Population and Development Studies., 2008).  

Stages of the Cold Chain 

The cold chain begins at the vaccine manufacturer and ends once the vaccine 

is administered. Along the way, the vaccines pass through international airports, 

vaccine stores, and local dispensaries.  

When vaccines are shipped by air, the shipping cost is proportional to the 

weight of the package. During 1997, UNICEF and WHO reviewed actual vaccine 

packing practices in order to begin eliminating non-essential packing and devised a 

standardized vaccine arrival report, which simulates ongoing documentation and 

analysis on international vaccine shipments (WHO, 1999, 2005). This form also acts 

as a feedback mechanism for countries to correct problems in vaccine handling during 

international transport. The vaccine arrival report provides assurance for donors who 

want to track how their financial investments are being used, and for the Ministries of 

Health who are responsible for protecting their populations. 

Vaccine manufacturers sometimes do not comply with international standards 

and procedures related to vaccine shipment. Documented problems include vaccines 

arriving without advance notification, ice packs, cold chain monitors, proper 

documentation/ labeling, or requested vial sizes. Furthermore, vaccines may arrive 

with short expiration dates without regard for black-out dates, be trans-shipped via 

cities lacking proper cold rooms, or be consigned to the wrong party (WHO, 1999). 
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For each country, the Ministry of Health and vaccine suppliers work together 

to specify procedures for receiving international vaccines and delegating 

responsibility for each step in the process of ordering, receiving, and documenting 

vaccine shipments. For each international shipment of vaccines, the recipient 

completes the vaccine arrival report and officially submits it to the supplier or, in the 

case of vaccines supplied through UNICEF, to UNICEF and WHO (WHO, 1999). A 

recent analysis suggests that the international community is pursuing improved 

coordination between organizations that donate and ship vaccines and the host-

country officials who receive and distribute the vaccines, as well as better training for 

supply-chain managers (Kaufmann, Miller, & Cheyne, 2011). 

After vaccines leave the international airport, they are stocked at primary 

vaccine stores. These stores typically contain cold rooms (insulated, refrigerated 

enclosures that maintain a temperature above 0 °C), freezer rooms (insulated, 

refrigerated enclosures that maintain temperatures below 0 °C), iced-lined 

refrigerators, or a packaging area ("Guidelines for Establishing or Improving Primary 

and Intermediate Vaccine Stores," 2002). Primary vaccine stores exist at both the 

provincial and district levels with the number of primary vaccine stores varying by 

country. Larger vaccine stores are typically found at the provincial level, while at the 

district level, stores usually consist of smaller storage devices such as iced lined 

refrigerators (ILRs). Operations within the cold stores typically involve the constant 

monitoring of internal temperatures of storage facilities by personnel. The principle 

problem that arises at this stage of the cold chain is temperature instability within cold 

rooms. This could be due to many problems including, but not limited to, the 
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improper placement of vaccines around the cold rooms and ILRs or malfunctioning, 

outdated or poorly maintained equipment (WHO, 1999). 

From the primary store, the vaccine shipment is then taken to the next 

intermediate storage facility, which also uses cold rooms and freezer rooms. This 

stage is altogether omitted if the country delivers vaccines directly from the primary 

store to the health facility where vaccines will be transported. As such, every country 

has its own unique cold chain and associated problems from this point 

onward. Freezing during transport is attributed to the storage method en route, which 

generally consists of boxes lined with ice packs. Vaccines that come in direct contact 

with the ice packs will likely freeze. However, placing a buffer region in between the 

vaccines and ice requires larger transport containers and greater transport capacity, 

thus increasing costs. Furthermore, trucks carrying 

vaccines often struggle to transport them due to poor 

roads or lack of roads in remote areas (Hopkins, 

1985). 

A number of studies have documented freezing 

in the cold chain. A study of the cold chain in Papua 

New Guinea showed that, on average, the only steps of 

the cold chain that did not report freezing temperatures 

were storage sites at the Ministry of Health and 

provincial vaccine stores. During transport from the 

provincial vaccine stores to local health centers and 

subsequent outreach clinics, vaccine loads were partially 

Vaccine  manufacturer  

Primary  Vaccine  Store  
(Ministry  of    Health)  

Intermediate  Vaccine  
Store  (Regional)  

Intermediate  Vaccine  
Store  (Provincial)  

Intermediate  Vaccine  
Store  (District)  

Hospital/health  
centers  

Cold  box/vaccine  
carriers    

Figure 1: Path of 
vaccines through a 
standard cold chain 



29 
 
 

freeze-damaged, reaching an average temperature of -3 °C (T. Wirkas, Toikilik, S., 

Miller, N., Morgan, C., & Clements, C.J., 2007). In contrast, a study of vaccine 

freezing in the Indonesian cold chain found freezing at higher rates in storage than in 

transport (C. M. Nelson, Wibisono, H., Purwanto, H., Mansyur, I., Moniaga, V., & 

Widjaya, A., 2004). It appears that freezing is not just a problem at a single stage, but 

rather is manifested throughout the cold chain. 

Once the vaccines reach the villages, the most basic refrigeration technology 

and transportation methods are used to deliver and store the vaccines. The power 

supply becomes increasingly intermittent and transportation becomes more difficult. 

This problem manifests throughout the local level of the cold chain, resulting in 

inefficient and unsafe delivery of vaccines. At this stage, many vaccines are kept in 

ice-lined boxes which can cause the vaccines to freeze, rendering them useless (T. 

Wirkas, Toikilik, Miller, Morgan, & Clements, 2007). Figure 1 documents the path 

vaccines travel in reaching their destination.  

Evidence of F reezing in Vaccine Delivery 

A multitude of studies have shown that vaccines in the cold chain within a 

wide range of countries including Thailand, India, Malaysia, Indonesia, Papua New-

Guinea, Vietnam, New Zealand, Australia, Bolivia, Ethiopia, and even the United 

Kingdom and the United States are often exposed to freezing (<0 °C) temperatures, 

likely causing them to lose their potency due to the inactivation of key organic 

components (D. M. Matthias, Robertson, Garrison, Newland, & Nelson, 2007; C. M. 

Nelson, Wibisono, H., Purwanto, H., Mansyur, I., Moniaga, V., & Widjaya, A., 2004; 
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Techathawat, 2007; T. Wirkas, Toikilik, S., Miller, N., Morgan, C., & Clements, C.J., 

2007). Such vaccine losses result in financial loss for immunization programs, as well 

as potential danger to the patient. One of the most prevalent factors attributed to 

vaccine freezing is the lack of stable temperatures in the cold boxes, which contain 

ice packs at 0 °C (PATH, 2008).  

Unstable internal temperatures in cold boxes have made overheating and 

freezing the primary threats to vaccine potency. In a study of the vaccine cold chain 

in Thailand, 31 out of 42 routes experienced freezing temperatures for periods long 

enough to render the vaccines impotent. Researchers estimated that 70% of vaccines 

were tossed away upon delivery, mostly because they were unusable due to freeze-

damage (Techathawat, 2007)

transporting HepB vaccines to eight health centers in Indonesia, similarly found 

instances of frozen vaccines in 75% of the shipments (C. M. Nelson et al., 2004).  

In 2007 Matthias et al. conducted a systematic literature review on studies 

from January 1985 to June 2006 demonstrating vaccine freezing in the cold chain. 

The authors recommended that more rigorous and comprehensive studies be done to 

examine the exposure of vaccines to freezing temperatures through all transport and 

storage segments of the cold chain. The image below (Figure 2) is a snapshot of an 

open-source Google Map our team has created to visually demonstrate the literature 

on vaccine freezing in the cold chain. Each marker is accompanied by the percentage 

of freezing in transport/storage found and the sample size used. An abstract, citation, 
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and link to the article were included, if available. Placement of the marker is only 

accurate to the country level; the locations are not precise within each country.  

 

Figure 2: Open-source Google Map depicting literature on vaccine freezing in the 
cold chain 

Since 2006, more data has emerged documenting challenges and opportunities 

to prevent vaccine damage in the areas of improved management, monitored 

mechanisms, and the structure of the cold chain. If vaccines are improperly handled 

so that they are damaged by incorrect temperature maintenance, the tremendous effort 

to scale up vaccinations will be wasted. The major problem areas continue to be: 

improperly maintained or outdated refrigeration equipment, poor compliance with 

cold chain procedures, inadequate monitoring, and poor understanding of the dangers 

of vaccine spoiling (PATH, 2003b). 
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Sociopolitical Challenges in Vaccine Delivery 

 As Frost et al. point out in their report on increasing access to healthcare, 

used, or achieve its potential to bring good health, especially for poor people in poor 

coun (Frost et al., 2008). Technologies can be used in many ways, but can also 

be mishandled and misappropriated in manners that nullify their potential. Despite the 

immense effort and resources WHO expends on both technology and methodology of 

delivering health care, it cannot control what happens on the ground in LMICs whose 

governments are newly developed, infrastructure is young and cultures are unique 

(Vickers, 2005).  

Some technologies are not accepted because they contradict cultural norms 

and are associated with negative social stigmas. In addition, in some countries, rival 

warfare and government instability can be a major roadblock towards vaccine 

delivery and healthcare in general (GAVI, 2008); therefore, WHO and other 

international organizations can be international regulators of health, but cannot be 

intranational overseers (WHO, 1985). 

In certain areas, the local level has no power supply at all and, as such, 

their own homes  such as a 

motorbike, to replenish the supply of vaccines. In the Peruvian Amazon, it is a two-

day riverboat ride to the nearest hospital where 

river villages are staffed by doctors assigned to work there as part of a year of service 

(Fraser, 2006). In Peru, vaccines are floated down river to villages, while in the 
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Himalayas, donkey caravans carrying vaccines are used to reach secluded Afghan 

tribes (GAVI, 2008). 

 Freezing has also been demonstrated in the cold chains of developed 

countries with modern technology and reliable power supplies. General practitioner 

vaccine providers in Australia (Wawryk, Mavromatis, & Gold, 1997) and the United 

Kingdom both recorded freezing temperatures in vaccine storage (Thakker Y & 

Woods, 1992). Similarly, physicians  offices in Georgia, United States, reported 

frozen vaccines 11.4% of the time (Bell, Hogue, Manning, & Kendal, 2001), and 

researchers in Colorado, United States, concluded that a majority of vaccines in the 

community have been exposed to conditions that could reduce or destroy their 

(Woodyard, Woodyard, & Alto, 1995).  

Weaknesses in the Cold Chain 

Cold Chain Equipment and Maintenance 

Much of the cold chain in LMICs is outdated and in disrepair, or must be 

replaced due to new environmental regulations, which further complicates 

immunization processes (Levin, Levin, Kristensen, & Matthias, 2007). 

     
A typical cold chain has a diverse set of equipment and provisions for staff to 

operate (C. M. Nelson, Wibisono, H., Purwanto, H., Mansyur, I., Moniaga, V., & 

Widjaya, A., 2004). These include ice-lined refrigerators, cold boxes (E rror! 

Reference source not found.3), cold rooms, data loggers, pre-filled injection devices 

(Uniject), vaccine vial monitors (VVM), and freeze indicators (Freeze Watch, E rror! 

Reference source not found.4). All of these are used to adequately store vaccines of 



34 
 
 

assured quality, defined by WHO as one[s] that consistently meets appropriate levels 

of purity, potency, safety and efficacy (Knezevic, 2009). Table 1 describes the 

functionality and cold chain equipment used to check for frozen vaccines. 

Table 1: Some cold chain devices used to prevent vaccine freezing. 

Product Description Use in Cold Chain 

Vaccine Vial 
Monitor 
(VVM) 

 Heat-sensitive label 
 Time and temperature cause inner 
square to darken 

 Higher temperature, faster color 
change 

 Indicates to a health 
worker when a vaccine 
can be used/should be 
discarded 

 Either on vaccine label 
or cap 

Shake Test 

 Freeze a vaccine as the frozen 
control 

 Let frozen vaccine thaw 
 Shake vaccine from batch and 
control together vigorously 10-15 
seconds 

 If sedimentation (formation of large 
particles) occurs faster in the test 
vaccine, it is not damaged 

 If sedimentation occurs equally fast 
in the test and control vaccines, the 
test one is damaged and should be 
discarded 

 Determines whether a 
vaccine should be 
discarded or not 

 Should be done 
independently with all 
batches that are 
suspected for freezing 

 For use with adsorbed 
vaccines (DPT, DT, 
Td, TT, hepatitis B, 
Hib liquid, and 
combinations of these) 

FreezeWatch 
stickers 

 Placed in refrigerators to warn of 
freezing temperatures 

 Dark ink stains paper when freezing 
temperatures are reached 

 Can signal that further 
freeze inspection 
should be done on 
stored vaccines 
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In Nelson et al. (2004), monitoring packets were prepared by combining a 

data logger, a VVM on a card, and a freeze indicator in a sealed plastic bag. These 

packets were placed inside boxes containing 100 Uniject devices. Boxes that 

contained monitoring packets were marked to indicate the site for delivery. 

Monitoring packets were prepared immediately before the vaccines were packed into 

shipping containers. At each stage of the cold chain, staff from the Ministry of Health 

recorded the time and date of arrival and departure of the vaccine shipments, as well 

as the status of the vaccine vial monitor and the condition of the Freeze Watch device. 

Staff at each level received training on completion of forms and study procedures (C. 

M. Nelson et al., 2004). 

The WHO mandates that all vaccines have VVMs, which will indicate heat 

exposure that may negatively affect vaccine potency (WHO, 1999). Oral Polio 

Vaccines (OPV) are considered one of the most unstable vaccines, with an ideal 

storage temperature of -20 °C, but can be kept between 2-8 °C for 6 months, or for 

(http://apexinternational.tradeindia.com/E
xporters_Suppliers/Exporter15484.36165
8/Cold-Box.html) 

Figure 4: A typical cold chain cold box Figure 3: FreezeWatch indicator 
with instructions for recognizing 
frozen vaccines 
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-

wide immunization campaign in order to ascertain how long an especially sensitive 

vaccine would remain potent in ambient temperatures. As vaccines were exposed to 

maximum temperature of 47.1°C and lasted a maximum of 86.9 hours in ambient 

temperatures, the authors looked at the VVMs to determine potency. Laboratory 

testing was conducted to confirm VVM results, and the authors concluded that the 

VVM served as an accurate indicator of heat exposure (Zipursky et al., 2011). 

 In another study in India, cold chain equipment and VVMs were evaluated 

at 46 health centers in a rural district to see if they met WHO guidelines. Nine percent 

had indicated that vaccines had been 

spoiled and should be discarded. The authors concluded that the cold chain was not 

adequately maintained at the primary and sub-health centers, and recommended that 

well-maintained ice packs and vaccine carriers be added (Samant et al., 2007). 

local vaccine stores in Ethiopia showed that the intermittent power supply 

necessitated the use of back-up power sources which are often not reliably in place. In 

theory, the back-up power sources are designed to safely power down the equipment 

when the main power supply cuts off, but improper wiring of these sources leads to 

unstable conditions for the vaccines. The evaluation concluded that electricity needs 

are not integrated in health center planning (USAID, 2008).  

Data loggers present hope for detecting temperature throughout the cold 

chain. Kartoglu, et. al. published an article recently that discussed their invention, the 

Fridge-tag temperature sensor (Kartoglu, Nelaj, & Maire, 2010). This sensor records 
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data from various points inside a closed space and can signal to the user when the 

temperature has gone outside the desired 2-8 °C range. One study evaluated the use of 

data loggers in quantifying the cold chain failure rate within the Texas Harris County 

Hospital District community health center network. The researchers used Extech 

TH10 digital data loggers to study 54 refrigerators at 13 community health centers, 

and took a close look at storage of acellular pertussis vaccines, which must not be 

stored at less than 0 °C. Approximately 24% of the refrigerators studied exposed 

vaccines to considerable durations of subzero temperatures. The inadequate storage 

would not have been detected or quantified without the use of the digital temperature 

data loggers, and the authors conclude that adopting digital data loggers may be more 

effective than continuing the standard practice of twice-daily readings from 

thermometers (McColloster & Vallbona, 2011). 

Health information systems may also significantly bolster cold chain 

management. One of the best tools utilized in the United States to ensure vaccine 

safety is the Vaccine Safety Datalink, which attempts to find associations between 

vaccines and potential health outcomes and provide signals for when a vaccine may 

be unsafe (Salmon, Pavia, & Gellin, 2011). In a case study on the vaccine supply 

chain in Ethiopia, the authors analyzed needs and offered recommendations for 

improving health information systems through the use of mobile and software 

technology. The authors noted that health centers are predominantly paper-based and 

includes the use of stock cards, which are both inefficient and prone to errors, 

specifically in transcription. This cannot forecast demand of inventory and makes it 
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tedious to extract useful information for decision-making at any level of the supply 

chain (Sabtala, Anene, Owoluganda, & Nanteza Walusimb, 2011). 

The authors recommended that a pilot study be undertaken to test mobile 

tracking technology, such as the one provided by Logistimo, in the field. In order to 

evaluate this intervention, the team could measure outcomes such as (1) the number 

of children under five that have been immunized, (2) the quantity of consignment 

dispatched that has been utilized, and (3) the quality of service of a health center 

through prompt transfer of information. Another promising technology is 

CoolComply, a solar-powered wireless detection system, which monitors the doses 

and the temperature of the medication, relaying readings wirelessly to the local 

healthcare workers to track temperature and intervene when necessary. CoolComply 

is currently employed for drug treatment for Multiple Drug Resistant Tuberculosis 

(MDR-TB). Finally the authors recommended that more technology and best 

practices, including the use of microchips from radio-frequency identification 

(RFID), be strengthened (Sabtala et al., 2011). 

Mismanagement of the Cold Chain 

The problem of vaccine wastage is often attributed to a lack of temperature 

control infrastructure in LMICs; however studies have shown that vaccine packaging 

and administration can also cause wastage. The WHO estimates that 50% of all 

vaccines produced globally are not appropriately administered, and therefore wasted 

(Guichard & Hymbaugh, 2008). Matthias, et al., alluded to the importance of 

increasing training and supervision for vaccine handling throughout the cold chain 
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(2007). Several studies have focused on further assessing the need, and testing 

tailored strategies to improve cold chain management in their communities. 

Using a temperature data logger, researchers in Papua New Guinea attempted 

to identify and locate if and where vaccines destined for use in peripheral health units 

were subject to freezing temperatures. Findings demonstrated that freeze damage was 

often a consequence of incorrect packing of vaccines in vaccine carriers for transport 

between stores and the field (T. Wirkas et al., 2007). 

One retrospective study conducted by WHO and the Bangladashi government 

examined the immunization system in Bangladesh, a country that boasts an excellent 

record for administrating vaccines to children. The study employed a standard two-

stage cluster sampling technique for assessing injection safety at the local level. Data 

on quantity of vaccine vials provided, distributed, used, and returned 

opened/unopened at the service delivery levels was collected by WHO surveyors. 

Vaccine receipts and distributions were recorded in the Daily Vaccine Distribution 

Register and the Upazila Vaccine Stock Register. Vaccination Tally Sheets were used 

for each immunization session. While there were many causes for wastage, the study 

highlighted a few key areas that require supervision or increased training for 

healthcare workers. For example, field workers had difficulty drawing out the 

submerged in the water of the vaccine carrier, destroying their potency (Guichard & 

Hymbaugh, 2008). 

In another recent article published by Lee et al., in 2011, the authors replaced 

the traditional ten dose vials with one dose vials in an effort to reduce the amount of 
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wasted vaccines in the Trang Province of Thailand. Healthcare workers generally had 

to open vials to use a few doses, but discarded remaining unused doses. This also led 

to risk of contamination from having repeatedly drawn vaccine doses from one ten-

dose vial. However, the increased number of vials proved problematic, as it presented 

space issues in the refrigerators, and the doctors noticed more vials were broken as a 

result of mishandling (Lee et al., 2011). 

In a 2004 study of the Bolivian Cold Chain, each of twelve vaccine storage 

centers monitored recorded temperatures below 0 °C (C. Nelson et al., 2007). Two of 

the health centers recorded freezing temperatures 50% of the time. Ice-lined 

refrigerators  and domestic front-end refrigerators were predominantly used in 

all levels of storage, and all recorded freezing temperatures; freezing was even found 

in district level stores that housed vaccines for up to 22 days. Additionally, freezing 

was widespread in transport, particularly where freezer rooms are used to freeze ice 

packs that will line vaccine shipments in insulated boxes. The authors of this study 

attributed the prevalent freezing of vaccines to poor healthcare worker awareness and 

understanding of vaccine freezing. Only 15 out of 34 workers were able to correctly 

identify which vaccines are damaged through freezing, and only half could 

distinguish a freeze-damaged vaccine from a potent and undamaged one. Regular 

staff turnover led to healthcare workers who were not adequately educated regarding 

vaccine shipments and storage. Hence, in addition to the healthcare workers  lack of 

awareness mentioned above, they also frequently changed the adjustable thermostat, 

often times resulting in freezing temperatures (C. Nelson et al., 2007).  
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Similarly, in a study of the Mongolian cold chain, vaccine freezing was also 

attributed to the actions of healthcare workers. The once-a-month trip into the 

regional vaccine store takes hours of driving through the rugged countryside, and 

though the store personnel know a shipment is due to leave, the timing is often 

erratic. As a result, upon arrival, vaccines are hastily loaded onto the truck in an effort 

to minimize the time spent traveling, resulting in negligence of the crucial step that 

brings the deeply frozen ice packs up to 0 °C (Edstam, Dulmaa, Tsendjav, 

Dambasuren, & Densmaa, 2004). 

One study collected information regarding the state of the cold chain among 

public, private, and community hospitals in Thailand, where there is little regulatory 

control over drug distribution and transportation. Each distributor is thus responsible 

for the quality of vaccine shipments. One notable finding was that temperature-

sensitive drugs were without controlled temperature boxes to private, public and 

community hospitals at the rates of 46.7%, 48.3% and 72.9%, respectively. The rate 

of cold storage drugs (-20 °C,) i.e. polio vaccine arriving with a temperature higher 

than 8 °C or ice melting in the box, was 22.9%, 12.7% and 35.0% at the private, 

public and community hospitals, respectively. The authors recommended more 

regulations across all hospitals for cold chain management (Sooksriwong & 

Bussaparoek, 2009). 

Improving Management 

Delegating responsibility is critical to manage the many moving parts of the 

cold chain. In Chandigarh, India, an evaluation study for the Intensive Pulse Polio 
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Immunization (IPPI) campaign demonstrated that management of equipment was 

desperately needed. For example, the authors recommended ensuring an adequate 

number of certain equipment, such as exhaust fans and voltage stabilizers, and 

providing an uninterrupted power supply, since power outages reportedly occurred 2-

4 hours a day. Reorientation of the training program of all health functionaries was 

recommended (Galhotra, Goel, Pathak, Kumar, & Swami, 2007).  

 Performance of trainers and training content are important parameters that 

can influence the effectiveness of training. One effective immunization intervention 

in Turkey included vaccines, national vaccination schedule, cold chain and 

management, planning and regulation of immunization, tracking the trends and 

increase in vaccination coverage, and immunization recording. Eighteen intensive 

immunization workshops were held between January and March 2004, lasting for 

about 54 weekdays in total. The intervention increased both the knowledge of 

primary healthcare workers and the rate of vaccination coverage in the study region 

(Uskun, Uskun, Uysalgenc, & Yagiz, 2008).  

After conducting a baseline survey of cold chain equipment in 2008, the 

authors identified key areas to intervene within the Kolkata cold chain system. Using 

evidence-based training techniques, the research team delegated responsibility to 

nized the different points at which the vaccines were 

handled. The success achieved after intervention included significant improvement of 

interior condition of cold chain equipment, placement of vaccines, temperature 

maintenance and creation of a designated cold chain handler in each cold chain point. 

Persistent gaps included non-availability of cold chain equipment like voltage 
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stabilizers, backup generator services and separate and adequate cold chain room, 

which mainly depended on policy makers and funding. Preventive maintenance of 

cold chain equipment on a fixed day monthly, temperature maintenance on holidays 

and  formulating a proper emergency contingency plan were also unsatisfactory 

(Mallik et al., 2011). 

There are several programs that have been developed to strengthen training 

for healthcare workers responsible for different segments of the cold chain. The 

Centers for Disease Control and Prevention (CDC) has provided extensive materials 

for cold chain management, including tips on administering and timing immunization, 

keeping records, and maintaining general guidelines for all immunization procedures 

(Kroger, Atkinson, Marcuse, & Pickering, 2006) (Middleton, Zimmerman, & 

Mitchell, 2007). Some research teams have implemented structured methods in the 

field. In their 2010 article, Roger, et al., emphasized the responsibility of the US 

government to provide the resources needed to effectively train US cold chain 

employees, and the obligation of companies to ensure that employees are utilizing 

them once available (Rogers, Dennison, Adepoju, Dowd, & Uedoi, 2010). 

Outside of the United States, countries are taking steps to improve cold chain 

management at several levels. In Kenya, the Merck Vaccine Network  Africa (MVA 

 A) is an educational program to improve the managerial and analytical skills of the 

mid-level managers of Kenya Expanded Programme on Immunisation (KEPI), 

utilizing the WHO EPI Mid-level Management Course for EPI Managers (Ayaya, 

Liechty, Conway, Kamau, & Esamai, 2007). This serves as an example of a targeted 

approach to cold chain management improvement. 



44 
 
 

Alternatives to Cold Chain 

Alternative vaccines 

Considering the great number of factors that contribute to improper vaccine 

storage and handling, thermostable vaccine products may greatly improve the safety 

of immunization (Levin et al., 2007).  

Many areas in LMICs are plagued with unreliable power supplies, civil wars, 

cultural taboos, untrained workers, and rugged terrain; it is not surprising that it is 

thus difficult for the cold chain to successfully deliver viable vaccines. Rather than 

spending significant time and money on overcoming these challenges, some of which 

are insurmountable, the simple solution is to spend time and money developing 

vaccines that are durable enough to endure harsh environmental conditions, and may 

be easily handled by untrained workers. 

Thermostable measles, DTP-hep B, BCG, and YF vaccines in single-dose 

presentations are potentially cost-effective interventions to reduce childhood deaths 

and disability in low-resource settings in Asia and Africa. These programs could save 

money due to reduced vaccine wastage and improved efficiency in delivery. There 

would also no longer be a need to invest in temperature infrastructure, such as cold 

rooms or refrigerators. In complex emergency situations, when the cold chain is likely 

to break down, the benefit is also very clear (Levin et al., 2007). 

Alternatives to traditional injected liquid vaccines are being developed in the 

form of dry-powder and liquid that can be administered orally. Dry powder vaccines 

are typically freeze-dried so that vaccine proteins can be stabilized by 

polysaccharides. Freeze-drying vaccines formulated with Aluminum-containing 
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adjuvants has proven to improve the thermal stability of the vaccine compared to the 

liquid form (Hirschberg, van de Wijdeven, Kraan, Amorij, & Kersten, 2010). The 

ideal inhaled dry powder vaccine would have a small enough particle size for deep 

lung delivery, be able to aerosolize upon inhalation, and be simple to administer. It 

should also be engineered with compounds that stimulate innate immunity to improve 

the vaccine  immune response at a low cost with a shelf-life of 0.5-2 years without 

refrigeration (Sou et al., 2011). Various proteins and peptides (main antigenic 

biomacromolecules used in vaccines) have already been developed in the form of dry 

inhaled powders (Sou et al., 2011).  

The best method for creating dry powder vaccines requires further 

investigation. Even following the identification of the appropriate method for 

developing dry powder vaccines, pre-clinical and clinical trials still need to be 

conducted (Amorij, Huckriede, Wilschut, Frijlink, & Hinrichs, 2008). The most 

recent developments, a dry powder vaccine for measles and tuberculosis, are not 

expected to undergo clinical trials for another two years in India and South Africa, 

respectively (Sou et al., 2011). Needle-free injection still awaits clinical testing using 

freeze-dried formulations of vaccine. A freeze-dried Hepatitis B vaccine recently 

underwent in vivo testing in mice. The objective of the testing was to observe vaccine 

efficacy following subcutaneous vaccine delivery through an implant made of 

biodegradable polymers (Sou et al., 2011).  
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Vaccine T ransport outside the Cold Chain  

Healthcare workers have also begun to take simple but creative approaches to 

reformulate the cold chain. The main method that researchers are investigating is the 

transportation and storage of vaccines out of the cold chain (OCC). According to 

Halm, et al., OCC transport can be defined as the absence of ice packs in the vaccine 

 (Halm et al., 2010). Many vaccine 

transportation routes already use OCC methods, especially as the vaccines get closer 

to the local dispensaries, quite simply because they do not have the appropriate 

equipment (ice boxes, vaccine carriers) to store the vaccines in. As such, OCC 

methods are often used out of necessity. 

As OCC methods continue to be used by healthcare workers, researchers have 

studied the effects of ambient temperature transportation on vaccine efficacy. A 

comprehensive literature review carried out by PATH found that Hepatitis B, a 

freeze-sensitive vaccine, is serologically effective even vaccines have been stored by 

OCC methods prior to administration. The review covered OCC methods in China, 

Indonesia, and Vietnam, among other countries. The authors found no difference in 

the immune response between children who received vaccines stored in the cold chain 

and children who received vaccines stored outside the cold chain. The study 

concluded that allowing storage through OCC methods would permit more children 

to be immunized in rural areas (Villadiego, 2008). 

Halm, et al. conducted a comprehensive study of the oral polio vaccine (OPV) 

in national immunization campaigns in Mali. This study aimed to show that storing 

OPV outside of the cold chain during a campaign is feasible, advantageous, and poses 
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no additional risk to the potency of the vaccine. The study was done in Mali during 

the third round of the 2009 inter-country West African National Immunization Days. 

Trivalent OPV, in a twenty dose vial presentation, was used to vaccinate the 

estimated target population of children under five years of age. All of the teams 

followed the same procedures by using the ice packs on two of the four days. On the 

remaining two days, OCC procedures were followed and ice packs were not used 

(Halm et al., 2010). 

As expected, the vaccine vial monitors (VVM) progressed through its stages 

slightly faster during OCC days, in which VVMs were exposed to a higher 

cumulative temperature. At the time the last dose was administered, however, no 

VVM had surpassed the VVM stage of 60% (90% is the point at which vaccines must 

be discarded) despite exposure to external temperatures between 25 °C and 40 °C 

during vaccination activities that lasted nearly seven hours on average. The OCC 

procedure demonstrated that it led to no vaccine wastage, and was easily understood 

by all vaccination teams that participated in the National Immunization Day. A study 

(L. Wang et al., 

2007). Overall, OCC methods worked in Mali because of the availability of VVMs 

and well-trained healthcare workers (Halm et al., 2010).  

A study by Ren, et al. investigated the effects of an inadequately trained 

healthcare workforce on success of OCC methods during a campaign for Hepatitis B 

and measles vaccines in rural Western China (Ren, Xiong, Li, Xu, & Zhu, 2009). 

Hepatitis B was chosen as a representative cold-sensitive vaccine, and measles as a 

representative heat-sensitive vaccine. They studied seven delivery routes, and found 
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two unsettling results: first, that consistent temperatures were not maintained, and 

second, that healthcare workers were uninformed about proper storage and delivery 

techniques. As a result, the efficacy of the vaccines was compromised. 

Ren et al., found that seven routes maintained a temperature above 8 ºC 18.5  

26.7% of time. In three of these routes, the temperature was above 8 ºC for more than 

80 hours. As a result, 3 out of 48 measles vaccines showed vaccine failure. The 

temperature was below -0.5 ºC for 2.9  12.9% of the time during OCC storage. 

Despite these temperatures, the hepatitis-B vaccines all passed the shake test. This 

discrepancy could be explained by vaccines being tested before they froze overnight, 

or by improper execution of the shake test (Ren et al., 2009). 

Using a survey to investigate the procedural knowledge of the healthcare 

workers, Ren et al. found that many healthcare workers at the district and local levels 

did not know that freezing temperatures were harmful for vaccines. The workers also 

had limited knowledge about the proper processes and techniques for keeping 

vaccines in the correct temperature range (Ren et al., 2009). 

As identified by Halm et al., as the number of vaccines administered through 

the EPI increases, and as the relative capacity of the cold chain decreases, OCC 

approaches may offer a promising alternative (Halm et al., 2010); however, it is 

essential to note that using vaccines outside of the cold chain can only be considered 

with the availability of VVMs as well as adequate OCC training protocols for 

healthcare workers. 

Another study by Nelson et al., 2004, demonstrated that an Indonesian cold 

chain for Uniject HepB vaccine (HB-Uniject) used OCC practices. To facilitate the 
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delivery of HepB vaccine to infants born at home, midwives were permitted to store 

HB-Unijects without refrigeration in their homes until the endpoint of the vaccine vial 

monitor or expiry date was reached (C. M. Nelson, Wibisono, H., Purwanto, H., 

Mansyur, I., Moniaga, V., & Widjaya, A., 2004). The authors found that 75% of the 

shipments were exposed to freezing temperatures.  

The authors then led three interventions to observe the impact of taking away 

different aspects of the cold chain. During the first phase -

introduced in all transportation stages. HB-Unijects were transported in standard cold 

boxes and vaccine carriers but without any ice or ice packs. During the second phase, 

no-ice transport continued, and HB-Unijects were stored in air-conditioned rooms at 

the district level. During the third phase, in addition to no-ice transport and air-

conditioned district storage, HB-Unijects were stored at ambient temperatures in the 

health centers. Table 2 summarizes distribution conditions, and Table 3 states the 

Table 3: Freezing rates observed for interventions in Nelson, et al. 2004 study 

Table 2: Interventions in Nelson, et al. 2004 study 
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freezing rates observed (C. M. Nelson et al., 2004). 

The authors concluded that selective transport and storage of vaccines at 

ambient temperature would significantly reduce rates of vaccine freezing. Similar to 

previous studies, they also mentioned that policy changes that allow for limited 

storage of freeze-sensitive vaccines at temperatures outside of the 2 8 °C temperature 

range would enable flexible vaccine distribution strategies that could reduce overall 

vaccine freezing, reduce costs, and increase immunization capacity (C. M. Nelson, 

Wibisono, H., Purwanto, H., Mansyur, I., Moniaga, V., & Widjaya, A., 2004). 

Alternative Refr igeration T echnologies 

There are several promising refrigeration technologies that are currently in use 

or have potential to be used within the cold chain. Many are specific to particularly 

destinations with defined levels of resources that enable users to benefit from these 

technologies. Overall, however, refrigeration is not practical for the main method of 

transport and storage of temperature-sensitive vaccines through the cold chain. Here 

we examine compression, adsorption, and absorption refrigeration methods. 

Refrigeration: Vapor Compression Cycle 

Vapor compression cycle is the most widespread method for refrigeration and 

air conditioning. This technology is a system in which a liquid refrigerant undergoes 

numerous phase changes and processes in order to cool the items stored within the 

refrigeration compartment (Matsuoka, 2005). As the refrigerant passes through an 

expansion valve, the pressure is quickly dropped. As a result, the temperature of the 

refrigerant drops and a small portion of the refrigerant is evaporated. The liquid-gas 
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mixture passes through an evaporator coil where it absorbs the heat in the air 

surrounding the coils. The warmed refrigerant gas then passes through a compressor 

in which it is bought back to a high pressure and temperature. After being 

compressed, the highly pressurized gas passes through a condenser where it is cooled 

back to its liquid form. The air in the condenser that absorbs the heat given up by the 

condensed liquid is discharged from the refrigerator at this stage. In an ideal system, 

the amount of heat energy absorbed by the system in the evaporator will equal both 

the amount of energy used to supply the compressor and the amount of waste heat 

energy discharged from the refrigerator in the condenser (Felder & Rousseau, 2005). 

 

Adsorption Refrigeration 

Adsorption refrigeration is a technology that provides active cooling of a 

refrigeration compartment with no mechanical or electrical energy required. This 

property has made adsorption a promising alternative to vapor compression 

refrigeration. The adsorption refrigeration cycle is similar to the common vapor 

compression refrigeration cycle with one key difference. Whereas the vapor 

compression cycle utilizes a compressor to cool the vapor refrigerant, the adsorption 

cycle uses the properties of adsorption/desorption (R. Z. Wang & Oliveira, 2005). 

The adsorbent bed, which is the main facet of any adsorption refrigerator, is 

composed of a solid material, such as activated carbon, which adsorbs the vapor 

refrigerant. Then, as an external heat source warms the adsorbent bed, desorption 

occurs, releasing the cooled vapor refrigerant into the condenser, where it reverts into 

a liquid for continual use (Yong & Wang, 2007). The external heat source can be any 
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available source, such as solar energy or waste heat from a nearby machine, making 

the adsorption refrigeration cycle attractive in situations where electricity is not 

readily available (R.Z. Wang, Ge, Chen, Ma, & Xiong, 2009). Furthermore, the 

liquids used as refrigerants are typically ammonia and water, which have zero ozone 

depletion potential (Yong & Wang, 2007). 

Unfortunately, adsorption refrigeration is rarely used as a primary cooling 

source due to its disadvantages. The main drawback of this system is the 

adsorption/desorption time (Yong & Wang, 2007). As the adsorbent bed requires a 

significant amount of time to heat up, the cooling cycle of these refrigerators is often 

not quickly available, making it an intermittent cooling source only. Furthermore, its 

specific cooling power (SCP) is lower compared to other refrigeration systems. SCP 

is a measure of the ratio between cooling production and cycle time per unit of 

adsorbent weight, showing that the required adsorbent bed significantly increases the 

size and weight of these refrigerators, while only providing a modest refrigerated 

storage compartment (Yong & Wang, 2007). Adsorption refrigerators also have a low 

coefficient of performance (COP), which is the main indicator of cooling efficiency 

of any refrigeration system (Li, Wang, & Wang, 2009). 

In their review of adsorption refrigeration technologies, Fan et al. (2009) note 

that adsorption refrigeration would be an attractive solution to current demands for 

less energy usage, as current compression refrigeration and air conditioning systems 

(Fan, Luo, & Souyri, 2007). 

Furthermore, adsorption technology is ideal for areas in LMICs that have limited or 

no access to electricity (Rahmana, Akhandaa, & Sadrul Islama, 2006). Researchers 
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are pursuing many avenues to improve the cooling efficiency and address other 

disadvantages of adsorption refrigeration to meet these needs. Some areas include 

testing different adsorbent bed materials, using two or more adsorbent beds, and 

creating hybrid systems of compression and adsorption technologies (Yong & Wang, 

2007). 

While there are promising future directions for adsorption refrigeration, we 

determined that adsorption refrigeration would be impractical for transportation in the 

cold chain, as the adsorbent bed requires an external heat source and the SCP is 

relatively small. 

O ther Refrigeration Methods 

 Absorption refrigeration is very similar to adsorption refrigeration. The slight 

difference between these two technologies is in the conversion of the gas refrigerant 

back into a liquid. In absorption, the vapor refrigerant is absorbed, or dissolved into 

another liquid, usually a water and salt mixture (Fan et al., 2007). In adsorption, the 

vapor is adsorbed, meaning it does not completely dissolve in the adsorbent bed, but 

rather clings on to its surface. This difference means that absorption requires much 

more heat to release the refrigerant from the liquid. The main advantage of this type 

of system is that the liquid mixture is lighter and more portable than the adsorbent 

bed (Fan et al., 2007). 

The Score project, developed at the University of Nottingham in the United 

Kingdom, is working on a biomass-powered generator that could make electricity for 

health centers using just waste products as the fuel. The key technology in this device 
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is a Linear Alternator, which converts sound energy into electrical energy. It uses 

special configurations of magnets to convert sound into electricity (Rossi, Immovilli, 

Bianchini, Bellini, & Serra, 2009). The researchers say that the generator is very 

versatile in the type of fuel that it can burn to be used as heat energy for the Linear 

Alternator, making it attractive in a wide variety of developing areas. Their target is 

to make a device that costs about $20 and weighs between 10-20 kg (Rossi et al., 

2009). This generator could be an important source of electricity for health centers in 

LMIC regions of the world. 

 Another type of energy source used for powering refrigeration compressors is 

geothermal heat. Normally, compression refrigerators exchange heat with the 

surrounding air in order to remove heat from the interior compartment. However, this 

process is relatively inefficient, as the air changes temperature quickly and by a large 

amount with the seasons. In contrast, by exchanging heat with the surface of the 

earth, compressors can be made much more efficient, as the earth does not change 

temperature as quickly and stays about the same temperature all year round. The 

disadvantages to this system are that the refrigeration compartment cannot be 

transported and it must be rather large to accommodate the surface area needed for 

adequate heat exchange (Hepbasli & Akdemir, 2004). 

PC M T echnology  A Promising A lternative 

A phase change material (PCM) is a very effective means of temperature 

regulation. It has the ability to maintain a constant temperature while absorbing 
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ambient heat energy, and as such has become used as a means of latent heat storage in 

a variety of different applications.  

One of the main features of PCM is its high heat of fusion (Pasupathy, Velraj, 

& Seeniraj, 2008). PCM is a passive cooling method, meaning that there is no power 

required for it to function. Each PCM melts and becomes solid at different 

temperatures, either absorbing or releasing heat when switching phases from solid to 

liquid, or vice versa. While there are other phase changes, such as liquid to gas, the 

phase change from solid to liquid are of interest because it is the most practical and 

widely available phase change (Pasupathy et al., 2008). This effect is best 

demonstrated by one of the most readily available PCMs - water. When changing 

from ice at 0 °C to liquid at 0 °C, water is absorbing heat from its surroundings. An 

example is ice cooling a drink. When the ice begins to melt, it absorbs the heat from 

the beverage, making it cold, while still maintaining its temperature. A PCM will 

continue to store heat at a consistent rate until completely turning into liquid form 

(Pasupathy et al., 2008). This gives PCM the ability to store and release large 

amounts of energy and giving it many thermodynamic applications.  

Since PCMs all have different melting points, a suitable PCM can be found to 

match a specific purpose. Thus, since most vaccines must be stored at 2-8 °C, PCMs 

that melt in this range would be able to keep the vaccines cool at a stable temperature. 

Therefore if a suitable PCM is used, the vaccines will stay in the desired temperature 

range, preventing them from losing potency. 

Other common applications include the cooling of homes, buildings, heat and 

electrical engines, food, wine, and milk. PCMs can also be used in the transportation 



56 
 
 

of blood and other medical supplies, operating tables, and hot-cold therapies. PCMs 

are also used in many less common ways, such as the thermal storage of solar energy 

and in spacecraft thermal systems (Kenisarin & Mahkamov, 2007).  

Many PCMs are naturally occurring, and thus readily available at a low 

economic cost (Kenisarin & Mahkamov, 2007). This also means that a lot of PCMs 

are environmentally friendly and are safe to use (Pasupathy et al., 2008). 

There are a few different categories of PCM. Organic PCMs include paraffin 

and fatty acids. They are available in a large temperature range, melt congruently, are 

chemically stable, have a high heat of fusion, are safe, and are recyclable. However, 

they also have low thermal conductivity in their solid state and are flammable 

(Pasupathy et al., 2008). Inorganic PCMs are usually salt hydrates, and they are easily 

available at a low cost, with sharp melting points, high conductivity, high heat of 

fusion, and inflammability. Some disadvantages of inorganic PCMs are that their 

change in volume is high and that they need nucleating agents, especially after 

repeated use (Pasupathy et al., 2008). 

A third kind of PCM called eutectics is a mixture of organic and inorganic 

PCMs. They have a sharp melting point and a slightly higher storage than organic. 

Eutectics are relatively new to the field, and thus little information is known on their 

performance and characteristics (Pasupathy et al., 2008). 

For all the reasons listed above, we decided to use this technology in 

designing our innovative cold chain box. 
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Conclusion 

As can be seen throughout the exhaustive literature review, many gaps and 

weaknesses are present at every stage of the cold chain such as improperly trained 

health workers, frequent electricity outages, and mismanaged equipment.  Studies 

from across the field also bring to light region- and disease-specific issues, such as 

non-existent transportation infrastructure in the Peruvian Amazon. Despite these 

pitfalls, the cold chain is strengthening due to an increased focus on immunization 

programs and due to the diligence of public-private partnerships across the world.  

Should the momentum from these partnerships and programs continue, immunization 

rates will continue to increase.  

The goal of this literature review was to provide our team with a foundation of 

cold chain knowledge and a focus to our multi-year research problem.  As such, while 

problems manifest the cold chain, every issue could not be addressed by our team.  

As we tried to formulate responses to weaknesses in the cold chain, the issues that 

stood out to us the most were the prevalence of vaccine-freezing, mismanagement of 

current complicated equipment, and the promise of simpler technologies like PCM. 

 As can be seen through our research objectives and methods, we used the 

conclusions drawn from our literature review to create the basis of our project.
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Chapter 3: Methodology 

Characterization of Phase Change Materials 

PCMs are highly relevant solutions to vaccine storage problems with an 

ability to act as thermal buffers and stabilizers. Therefore, one of the goals of our 

methodology was to select, characterize, and implement the most applicable and high 

performing PCM into our prototype design. The first step in preliminary 

characterization was to select candidate PCMs for by examining the exact melting 

point and heats of fusion and costs associated with each. PCMs listed in the literature 

with relevant melting points are included in Table 4, along with pricing information, 

heat of fusion data, and densities.  
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Table 4: PCM names and characteristics 

PC M Name 
T emp 
(°C) 

H eat of 
Fusion 

(kJ/ Kg) 
Density 
(kg/m3) Type Price 

Water 0 333 
1000 (l), 
917 (s) N/A N/A 

Climsel C7 7 130 N/A Eutectic N/A 

RT5 b9 205 N/A Paraffin $25/L 

RT6 6 175 N/A Paraffin $25/L 

Propyl Palmitate 11 186 N/A 
Fatty 
Acid $10/L 

Paraffin C14 4.5 165 N/A Paraffin $25/L 

Paraffin C15-16 8 153 N/A Paraffin $30/L 

Lithium Chlorate 
Trihydrate 8.1 253 1720 

Salt 
Hydrate $17/L 

Tetrohydrofuran 
Clathrate (Tombari et. 

al. 2006) 5 280 970 Clathrate $110/L 

Polyethylene Glycol 
MW400 8 100 N/A Glycol $130/L 

 5 unknown N/A organic  

AcuTemp unknown unknown N/A organic  

PureTemp4 unknown unknown N/A organic  
 

          The variance between candidate PCMs suggested that an optimal PCM could 

be found based on a specific selection criteria. Of the above PCMs, the following 

were deemed unattainable due to manufacturing issues: Climsel 7, Lithium Chlorate 

Trihydrate and both RT5 and RT6 substances. These PCMs were not tested and 

excluded from selection. The PCMs with very high prices, such as Polyethylene 

Glycol, were excluded from evaluation; although their physical applicability was 
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strong, their economic viability was too low to consider for measurement.  Beyond 

PCMs reported in the literature, we also evaluated several commercially available 

PCMs. For most of these materials, the heat of fusion was inaccessible in the 

scientific or company literature. One of these PCMs was (TCP Reliable, 

to test it for melting temperature and heat of fusion. We also characterized PureTemp 

4 (Entropy Solutions, Minneapolis, MN), which is a biologically produced paraffin 

and was therefore more economical than the paraffins in Table 4 (Rodie, 2009) and 

AcuTemp, another commercial PCM with minimal existing literature. 

 Characterization was performed using a Differential Scanning Calorimeter 

(DSC), and analysis was performed with the program Universal Analysis V4.7A by 

TA instruments for use in conjunction with a DSC. The goals of characterization and 

analysis were to determine the heat of fusion and melting temperature of each PCM. 

The heat of fusion is the energy storage capacity of the crystallized solid structure 

while the melting temperature can be considered the peak of energy storage. The DSC 

utilized was a TA instruments q100 V9.9 build 303 system certified from -80 ºC to 

300 ºC (Figure 5).  

Characterization involved isolating small samples of a well shaken mixture of 

PCM provided by the company and placing it in a small vial. Hermetically sealed 

alodized aluminum pans served as the nonreactive containment vessel during 

measurement. The mass of each pan was measured on a balance accurate to a tenth of 

a µg. The sample was loaded and sealed using a pneumatic press. To ensure a proper 
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seal, each sample was massed again and then stored in a highly ventilated fume hood 

for half an hour. Each sample was massed once again and the process was repeated if 

the sample mass changed by more than 3-4 µg. Once the sample was prepared, the 

instrument was turned on and allowed to reach the operating flange temperature of -

80ºC. The sample was placed on one of the heating sources as seen below. On the 

other source a comparison pan (an empty pan) was placed. 

 

Figure 5: Image of sample containment in q100 series DSC 

The instrument was instructed to seal the sampling stage and begin the 

inputted experimental procedure. The procedure consisted of three steps: step one was 

to cool to -10 ºC, isothermal for two minutes to ensure the sample is frozen, followed 

by heating it at a specified ramp rate to room temperature. Different ramp rates will 

be utilized. Although more accurate measurements could have been garnered from 

slower ramp rates, system constraints limited the usable rates, thus a series of rate 

were used. Water served as a standard for these rates to determine if measures were 

accurate when compared to the literature value for the heat of fusion. As the system 

heated up, given the relative stability of the heat capacities of solid and liquids, it was 

reasonable to take a reading of input Watt/mass over time and construct a curve. The 
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curve was theoretically assumed to be linear until the melting point was reached. At 

the melting point, the deviation of the system from the extrapolated line represented 

energy input used to melt the sample at a constant temperature. The energy absorbed 

by the system was geared towards melting from solid to liquid, as opposed to raising 

the temperature of the sample. The program TA universal analysis was able to 

integrate the area where the limits of the deviation of the curve were inputted. The 

result was a series of measurements of the freezing point and heat of fusion for each 

sample. 

CAD and F E A Theoretical Modeling 

           The goal of the modeling team was to simulate the heat transfer phenomenon 

in passively refrigerated containers in order to gain a sense of how to design an 

optimally shaped cold box. The starting point for any analysis of heat transfer is the 

heat equation, equation 1.  

 

  
(1) 

The first term of this equation is the partial derivative with respect to time. The 

second term represents convective heat transfer, with u representing a velocity vector 

which is multiplied by the temperature gradient ( ). ,  are the density, 

mass heat capacity and thermal conductivity of the fluid under consideration 

respectively. The first term on the right side of the equals sign is the conductivity 

. The final term is a volumetric heat source 

+ = 2 +  
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generation term which can represent electrical heating or heat generated from 

radioactive decay.  

 For our analysis of phase change, we ignore the convection and generation 

terms. (Though the temperature inside the box will probably exhibit natural 

convection, this requires coupling the heat equation with partial differential equations 

for fluid flow.)  

 A computer model was generated to serve as a theoretical control for our 

experiments using Finite Element Analysis (FEA) software. In this type of program, a 

geometric model may be created with defined material properties and then stressed 

with physical conditions, like forced loads or thermal conditions. This is done by 

meshing the modeled geometry, i.e., dividing the model into a grid of polygons, 

where the points of intersection between the polygons are called nodes. The size of 

the mesh regulates the node density (coarse to fine). The program solves a series of 

partial differential equations, dependent on what loading conditions were applied, at 

each node in the defined mesh. The solution is generated through iterations over a 

user-specified time increment and duration.  

   

Figure 6: Example of a meshed model 
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 Using an FEA program, simulation of any physical experiments was possible 

by adding thermodynamic conditions as the model physics. After running the 

simulation, the program may output a variety of useful information, including a time-

temperature graph. This data was compared with those taken from the thermocouples 

in the icebox experiments to determine errors and accuracy in our findings. 

 At first, we were able to generate a preliminary thermal model without phase 

change to demonstrate the use of the FEA software COMSOL Multiphysics. We 

simulated a three-dimensional cubic cold box, encompassing an outside layer of 

insulation, a plastic-bounded layer of PCM, and an air-filled vaccine storage 

compartment at the core. The dimensions were arbitrarily chosen. A thermodynamic 

condition was placed on the boundary of the box to keep it at a constant ambient 

temperature. Thus, the insulation and vaccine storage compartment are initially at the 

ambient temperature, while the PCM begins at its freezing point. 



65 
 
 

           

 

Figure 7: COMSOL model demonstrating the initial heat transfer at the onset of the 
melting. Output of temperature within horizontal and vertical sectional cut of model, 

showing the melted phase change material rising in temperature. The images are 
taken at times: a) 0, b) 5 hours, c) 10 hours, d) 1 day, and e) 2 days. The temperature 
scale is given in Kelvin, with blue signifying the freezing point and the red signifying 

the ambient temperature. Figure 7f displays the Time-Temperature graph at a point 
within the vaccine storage compartment of the model.  

a) b) 

c) d) 

e) 
f) 
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The model was run in two stages: the first, demonstrating the initial heat transfer at 

the onset of the melting period (Figure 7), and the second, demonstrating the box 

heating up after the melting phase (Figure 8). In this simulation, ice/water was used 

for the PCM, and the ambient temperature was set at 30 °C.  

 

Figure 8: COMSOL model of the box heating up after the melting phase. 
Output of temperature within horizontal and vertical sectional cut of model, showing 
the melted phase change material rising in temperature. The images are taken at 
times: a) 0, b) 5 hours, c) 10 hours, d) 1 day, and e) 2 days. The temperature scale is 
given in Kelvin, with blue signifying the freezing point and the red signifying the 
ambient temperature. Figure 8f displays the Time-Temperature graph at a point 
within the vaccine storage compartment of the model.  

a) b) 

c) d) 

e) 
f) 
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           One difficulty we experienced was that the COMSOL software (and other 

Finite Element Analysis programs) does not have an inherent function to address the 

discontinuous but natural behavior of the melting and freezing of substances. To 

accommodate this, we implemented the effective heat capacity method as suggested 

by the COMSOL documentation (Phase Change: Solved with COMSOL 

Multiphysics 3.5a, 2008). The program ran but gave inaccurate results. A simple 

implementation of the level set method also ran in 2-D axisymmetric coordinates, but 

was not easily adaptable to a 2-D rectangular PCM- panel geometry (Zimmerman, 

2006). We also tried to implement the effective heat-capacity method in another FEM 

software suite, Elmer, as well as the enthalpy method using data from the DSC 

curves. 

           We finally settled upon a method of approximation for the phase change 

simulation. Although the real process occurs over a constant temperature, it may be 

approximated to occur over a very small temperature range (~0.5 °C) about the 

material's melting point. The energy required to change phase may then be 

approximated using the specific heat capacity over this small temperature range. The 

relation is outlined in Equations 1-3. 

For a known mass (m) and material with latent heat of fusion, L, and specific heat 

capacity (at constant pressure), cp, the energy (E) required to change phase is given 

by: 

 

 

  

 (for constant temperature Tmelting) 
(2) 
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material is given 

by: 

  (3) 

G 0), an setting the energies in equations (2) and (3) equal 

to each other yields the relation:  

  (4) 

This concept of approximated phase change is graphically illustrated in Figure 9 

below. 

 
Figure 9: Graphical illustration of the approximated phase change material behavior, 
in taking the melting regime to occur over a very small change in temperature (slope 

is exaggerated for visual aid). In the true behavior, this occurs at a constant 
temperature for the duration of melting. 

 Using this relationship, we defined the specific heat coefficient of the phase 

change material for the melting transition (Tmelting 

properties were defined: one for temperatures below the material's melting point, and 

one above. The model would then give an estimated simulation of the phase change 

process.  

 We began to implement this method in COMSOL Multiphysics with limited 

success. Many of the models resulted in failed computing executions or in 

questionable data, attributed to our inexperience with the program in hindsight. After 

cp
L
T



69 
 
 

receiving formal course instruction in FEA software, we began to use the program 

ANSYS 13.0 to run our simulations because of its wide application and advanced 

capabilities. 

 To verify an accurate execution of the phase change simulation, we began 

with a simple model of a melting cube of ice (side dimensions of 10 cm). The block 

started at a temperature of -5 °C and was subjected to a constant boundary 

temperature of 40 °C to imitate an ambient environment. Conventional material 

values for water and ice were used, and the melting temperature range was set 

between -0.50 and 0.50 °C. For this range, the specific heat capacity was given to be 

334000 J/K (=334 kJ / 1K). A transient analysis yielded the following results in 

Figure 10 below. 

 
Figure 10: Contour plot of the thermal gradient vector sum at time of 300 s. 
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Figure 11: Time history plot of a nodal temperature within a melting ice cube. The 

time is given in seconds and the temperature in °C. 

 As demonstrated in the time-temperature graph in Figure 11, the model does 

exhibits phase change behavior. The temperature rises from its initial temperature for 

about 125 seconds until it reaches the minimum end of the melting regime (-0.5 °C). 

The temperature rises minimally for the melting regime, where a change in the slope 

is observed around 0 °C, when the material properties change from water to ice. The 

temperature then rises as normal for the fully melted volume, when the water absorbs 

heat through its natural specific heat capacity.  

 Given this proof of modeling concept, we then wanted to use this method to 

simulate the ice box experiments and other models to verify our experimental 

findings and to determine the optimal configuration of PCM geometry. This was also 

done in the ANSYS finite element analysis software. 

 To begin this, we created a base file to store the fundamental model settings 

for uniformity through all variations of the model. The model preference was set to 

thermal analyses, and units were accepted in the standard SI format, while specifying 
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Celsius temperature units. The element used was SOLID70, an 8-node element with 

temperature degree of freedom, given application in 3-D steady state or transient 

thermal conduction analyses.  

 Next the material properties were to be defined. The manufacturer 

specifications for the polystyrene insulation from the icebox experiments were 

translated into SI values, while a conventional value for the specific heat capacity of 

polystyrene was not manufacturer-defined and thus chosen from outside literature. 

 Given the weight and volume of the insulation product, the density was found 

by: 

 

    
 

The insulating property was given at R5. This is related to the thermal conductivity 

property, k, by its thickness, L. The units were further converted to the SI system. 

 

 The materials for the PCM (ice) were defined using a piecewise functionality, 

where different values could be assigned to different temperatures. Specifically, two 

different densities and thermal conductivities were defined for ice (when the 

substance was at 0 C or below), and one for water (when the substance was above 0 

C). The specific heat capacity was further defined in three segments - one for ice 

(less than -0.25 C), one for the melting regime (between -2.5 and 2.5 C), and one 

for water (greater than 0.25 C). As can be inferred, the melting period was defined 
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through a 0.5 C temperature change about the melting temperature of 0 C. It was 

reasoned that this temperature change was small enough to ensure relative model 

accuracy but large enough for the program to solve the system of equations 

throughout the model without error or storing huge amounts of data. 

 It is worth noting why air was selected to fill the vaccine storage compartment 

at the center, instead of a denser substance like water that is comparable to actual 

vaccine vials or fluids. First, using an air-filled ice box was also done in our 

experiments, and we wanted to match the data between the physical experiment and 

the theoretical model. Second, the solving time would be significantly decreased, and 

the output data would be minimized, if the inside was filled with a negligible 

substance. We could thus use a coarser mesh on the air volume to reduce node 

density. Finally, we reasoned that using air would be the worst-case scenario for 

temperature distribution, in that in this case, any thermal load placed on the box 

would quickly affect the vaccine volume and cause a significant temperature gradient. 

If filled with a more dense material, the vaccine compartment would better resist a 

change in temperature at the onset, but would likely still eventually develop the 

temperature gradient observed in the air-filled case.  

 Although in reality air would be subject to some convective conditions within 

the box, it was instead treated as a conducting material for simplicity of the model. 

This would also coincide with the conditions for when the vaccine compartment was 

fully loaded, where the vials and liquids within would disrupt any form of circulation 

within the box and thus make any convection condition negligible or nonexistent.  
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Table 5: Default Material Properties for FEA ice box model 

Ice/Water Temperature ( C) 
 
 -100 0 0.001 100 

  Density (kg/m3) 916.2 916.2 1000 1000 

  Thermal Conductivity (W/m-K) 2.22 2.22 0.58 0.58 

 -100 -0.251 -0.25 0.25 0.251 100 

  Specific Heat Capacity (J/ C) 2050 2050 6.68E5 6.68E5 4210 4210 

 Polystyrene A ir 

  Density (kg/m3)  37.24   1.293  

  Thermal Conductivity (W/m-K)  0.0288   0.0243  

  Specific Heat Capacity (J/ C)  1300   1005  
 
 Assigning these values to set material profiles completed the base settings file. 

A log file was then created so that input from these base settings could be read 

directly into any new model file, saving the effort required to set up each different 

model geometry. The code for this log file may be found at the end of this volume in 

Appendix A. 

 Two sets of models were then created. One set mimicked one size box of the 

physical experiments with outside dimensions of 9.5 in. The other set followed the 

larger sized box with 13-in dimensions. Each ice box experiment (ice geometry on all 

sides, with a horizontal shelf, and with a vertical shelf) for both sized boxes was to be 

executed as an FEA model. Furthermore, other geometries not physically tested were 

also investigated with the FEA models, as it was easier, faster, and more efficient to 

create a computer model, in comparison to setting up, running, and analyzing 

experiments. The same volume of ice was used within each set of box sizes. 



74 
 
 

 The geometry for each model variation was drawn out on paper and inputted 

into the software. Separate volumes were created for each differing material in the 

icebox - the insulation layer, ice, and air at the vaccine storage compartment. Simple 

rectangular geometry was used to construct the model, where subtracting volumes 

was utilized to create each layer or unique geometry. To complete the model, all 

volumes were glued together to ensure that the areas between volumes were joined as 

one. Failing to do so resulted in no interaction between the volumes when solved, as 

each was considered its own entity without cross-interaction. 

 Each volume was then meshed using the smart size option with tetrahedral 

polygons. The appropriate material was assigned to each volume, and the mesh size 

for each volume was varied between 3 and 8 (on a scale of 1-12 [Fine to Coarse]), 

depending on the size constraints and maximum number of elements allowed in the 

model. In most instances, size 3 was considered the default value, having enough 

nodes to satisfy requirements and to be relatively fine without extending solving time. 

In some instances, volumes had to be assigned coarser meshes to cut down on the 

number of elements. 

 Following the mesh, thermal loading conditions were then applied to the 

model. First, a new transient analysis was created, where these loading conditions 

would apply. Second, the initial temperature conditions for all of the nodes were 

assigned. The ice layer temperature was set at an initial -10 C to ensure proper phase 

change behavior prior to reaching the melting regime at -0.25 C. All other nodes, in 

both the insulation and air volumes, were given an initial temperature of 22.5 C. This 

was considered to be an average ambient temperature and reflected the conditions in 



75 
 
 

the ice box experiments. Instead of adding active heat loads like conduction or 

convection to the outside areas of the box, a temperature condition of this ambient 

22.5 C was applied on all six outside areas of the box. This was deemed a reasonable 

estimate of the loading condition, in considering that the box would not likely be 

subject to fluctuating conditions. We considered using a convection condition but 

decided that a constant temperature was easier to manage in the model and that it 

would be difficult to find the convection coefficient for the insulation used that would 

fit all scenarios. 

 Solving constraints were then defined. Data was restricted to nodal degree of 

freedom data, i.e., recording the temperature data from the model. A time duration of 

300,000 seconds (about 3.5 days) was sufficient for most models to go through the 

melting phase and reach the equilibrium ambient temperature, though some required 

adjustment for a longer time. The time step size was set to 60 seconds, with a 

minimum of 0.01 seconds and maximum of 300 seconds. Temperature solutions were 

recorded at every three or five sub steps to cut down on the amount of data, and 

automatic time increments was enabled to be chosen by the program. That is, if the 

differential equations could not be solved at a higher time increment, then the 

program would try to solve for smaller time increases, and vice versa if the 

differential equations converged to a solution at larger time increments. Average 

solving time was about two to three hours for each model, depending on the element 

density. Sample code for this simulation log file may be found in Appendix B. 

 After running a few models, we began to compare the data to the ice box 

experiment results. Model data was pulled from nodes that mimicked the locations of 
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the thermal couples in the ice box experiments. In an ideal case, the time-temperature 

graphs from the experimental and theoretical would be near identical. In analyzing 

the data, we noticed similar patterns of temperature distribution. Then, to determine 

some quantitative analysis for duration of cold storage, we then considered the 

average time for the temperature probes to go from the melting state (-0.25 C) up to 

the high end of the optimal vaccine temperature zone of 8 C.  

 We noticed that this duration in the ice box experiments was significantly 

longer than the time seen in the model - the heat transfer in the model was greater 

than in real life. We reasoned that this might have been because of the unrealistic 

temperature loading condition subject to the model, where we defined the outside of 

the box as being subject to one constant ambient temperature. In reality, the air 

surrounding the box would be cooler than the ambient temperature if the box itself 

were colder. The box would also be subject instead to convection effects, which 

would lend to a slower rate of heat transfer. Another factor could have been that the 

experimental ice box was resting on some surface, making the bottom additionally 

insulated and not subject to any particular heat load. The grounding surface and the 

box would have come to an equilibrium temperature lower than the ambient 

temperature, thus having a lower heat flux. There would also be no heat loss to 

convection conditions along the bottom, unexposed surface. 

 In order to counter this disconnect between the model and the ice box 

experimental findings, we considered adjusting the thermal conductivity of the 

insulation layer to better match the model data to the experimental data. The thermal 

conductivity reflects a material's ability to absorb heat and change in temperature; 
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more specifically, a higher insulation thermal conductivity increases the rate at which 

heat can enter the system, where the ice is to be melted. By lowering the thermal 

conductivity of the insulation from its manufacturer-claimed value, we could decrease 

the heat flux into the box, and increase the time of the melting period. Thus we could 

create a more accurate model to the physical experiments, while using the same 

loading conditions and other material properties already defined. 

 To go about this, we analyzed the data from two distinctly different models. 

The first was the 9.5-in sided model with ice surrounding all sides of the box interior 

and a horizontal shelf. We then chose the 13-in sided model with ice surrounding all 

sides of the box interior (no shelf) as a comparative set of data. The objective was to 

find a value of insulation conductivity to match both sets of data to their respective 

counterpart data set from the physical experiments. 

 Initial conductivity variations for each model were calculated through a 

simple ratio of the measured time over the model time. The conductivity was further 

adjusted to attempt to pinpoint a matching conductivity. After three different 

variations, a mutual conductivity value of 0.0227 W/m-K was determined to be an 

accurate adjustment. This matched the 9.5-in side horizontal shelf model to 99.14% 

of the measured physical value, while the 13-in side all sides model was 100.25% of 

the measured physical value. Given this highly accurate correlation, we determined 

that this was a valid means to adjust the model. Graphical findings may be found in 

the later results section. 
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Table 6: Summary of results in finding the insulation thermal conductivity (W/m-K) 
for the FEA model. 

 9.5-in horizontal  13-in all sides 
measure 1647  3473.1 
original model 1270  2624.8 
% difference 77.1   132.3 
k=0.0210 1856.0 k=0.0207 3816.3 
% difference 88.7   91.0 
k=0.0236 1584.6 k=0.0215 3673 
% difference 103.9   94.6 
k=0.0227 1632.9 k=0.0227 3481.778571 
% difference 99.1   100.2 

  

Given this verification of method and matched correlation between physical 

and theoretical data, the models were then completed using the newly found value of 

thermal conductivity. Models were created for both sets of box sizes, including an all 

sides model, a horizontal shelf model, a vertical shelf model, a top and bottom slabs 

model, a bottom slab only model, and an all sides model without a bottom slab (not 

solved for the 13-in model). In total, this became eleven different FEA models to 

compare and analyze. 

Ice Box Experiments 

In accordance with our experimental plan  

how the PCM acts inside of a vaccine box over time. This ice box is a simplified 

model, constructed out of 6 sides of polystyrene, and replacing PCM with ice packs. 

Using an 8-lead thermocouple data logger, we obtained experimental results detailing 

how the internal temperature gradient shifts over time. This experimental model 

should be matched to a theoretical computer simulation of the same materials and 

geometry. If we are able to successfully match our experimental and theoretical 
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results, we will be able to run an optimization algorithm to determine the geometry 

that best matches our priorities.  

In a typical cold box, there are many possible ways to distribute the same 

volume of ice. While panels on one or two sides are the simplest designs, it is likely 

that the efficacy of our box can be improved with minimal increases in complexity of 

panel placement. For our design, we must consider the effects of gravity, direction of 

heat source, the distance of the vaccines from the PCM panels, and the total volume 

of PCM in each panel. As ice floats, a melting ice panel will form an internal gradient 

with the coldest portion being the highest point. Additionally, heat rises inside of a 

cold box, so a good design should take advantage of these nuances created by 

gravitation. As the ice box travels, the sun typically will affect the top side the most 

and the bottom side the least. As the distance from the vaccines to the ice pack 

increases, there is a higher likelihood that the effective phase change temperature may 

be above 8 C, especially for larger boxes. To this end, we will investigate if 

rearranging some of the PCM to the center of the box can counteract this effect. 

Finally, as rearranging the PCM distribution changes the thickness of the panels, we 

must investigate how much PCM is necessary to ensure the longest effective phase 

change time.  

We predict that for same total volume of PCM, the smaller size box will be 

able to hold the temperature for longer, but have less storage volume than the larger 

box. The 6 -sided box will have the longer average time, but the center temperatures 

will pass 8 C much sooner than the edges. For the geometries with shelves, the total 

time will have two phases: one for the panels on the edge to melt, then for the central 
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panel to melt. Consequently, the temperatures should be more evenly balanced 

throughout the total time span.  

To design the experimental setup, we wanted to create a simplified model of 

the PCM-cold box interaction. To this end, we created polystyrene boxes of varying 

sizes. We used ice as a PCM due to its ubiquity and safety in case of spills and 

leakages during testing. We also created different configurations of PCM placement 

to explore possible geometries. Using an 8-lead thermocouple, we can measure 

various important points inside and outside of the box to monitor the temperature 

changes over time. The data collection mechanism in the laboratory was a 

thermocouple operating with the DT300 collection software, accurate to 0.1 °C 

(Apollo IV DT300 Multi-component Thermocouple, 2010). The locations of 

important leads include a lead outside of the box to monitor the ambient air 

temperature of the room, a lead in the center of box, a lead in the center of bottom 

panel, a lead in the center of the top panel, a lead in the center of top corner quadrant, 

a lead in the very top corner, a lead between the panel and the polystyrene, and a lead 

halfway between center of box and center of side panel. The placement was created to 

measure gradient lines extending from the center of the box to the center of the side, 

the center of the box to the corner, and the bottom of the box to the top of the box. 

We planned a total of 6 full box experiments and 1 gradient measurement experiment. 

Our six tests consisted of three geometries and two box sizes. We used an 8 in.3 box 

and a 13 in.3 box, with a 6 panel setup, a 6 panel and horizontal shelf setup, and a 6 

panel vertical shelf setup.  
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To conduct the gradient measurement, we kept one panel on the bottom of the 

box, and equally spaced leads vertically through the box to measure the formation of 

a temperature gradient over time. This allows us to understand how close to the 

panels the vaccines can stay, as well if we can create a geometry that extends the 

lifetime of the most distant point from all sides (center).  

All experiments were conducted in a temperature-stabilized room held at 24 

ºC. For ease of matching theoretical results, there was no external heat source and no 

extra layers of insulation or support besides the polystyrene box. All thermocouple 

leads were arranged as identically as possible between trials, with obvious 

accommodations for trials with shelves. In order to create our ice packs, we created 6 

packets with identical volumes of water and froze them flat. These were placed inside 

metal holders to maintain the shape of the pack once melting started. For geometries 

with a shelf, 7 packets were created with the same volume of water, with the total 

sum of individual volumes equaling the total of the six packets from the previous 

arrangement. The thermocouple leads were held in place with masking tape, and the 

lid was closed as tightly as possible. Since the presence of the thermocouple wires 

offset the lid slightly, additional weight was added on top of the box to ensure a tight 

seal with minimal air leakage.  

The ice packs were taken from a freezer at -10 ºC and, correspondingly, this 

was the starting point of the temperature graph. After the ice box stabilized at ~0 ºC, 

the phase change period began, and was considered reasonable for transport until the 

average temperature reached 8 ºC. The box was allowed to stabilize with the ambient 

air temperature before the experiment was concluded.  
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The data strongly supports the concept that the latent heat of the PCM is the 

key factor in the longevity of cool temperatures within the cold box. The curves also 

indicate that a temperature gradient exists within the system. The internal temperature 

of the box settles at 0 °C for a very short duration before gradually increasing towards 

room temperature. In contrast, the temperature at the periphery of the box is stable for 

a longer time before approaching ambient temperature following the phase change. 

From a methodological standpoint, the consistency in the length of time each 

experiment took to reach two important points across all experiments (the equilibrium 

temperature and the point at which the ice is melted) all lend support for the 

repeatability of the experiment. 

Prototyping and F abrication 

Prototype 1.0 

In order to test our concept, the team designed a prototype using durable, 

inexpensive materials. The materials used for the prototype were decided upon based 

on their ability to insulate the cold box as best as possible. Five materials are 

necessary for our design. The outer shell will be constructed out of corrugated plastic. 

Corrugated plastic is a heavy-duty material that will provide stability and endurance 

to the prototype. These properties are necessary for the outer shell of the box. 

Corrugated plastic, although heavy-duty and stable, is actually quite light and 

relatively cheap. This helps the appeal to the ease of use and handling of the box, as 

well as the overall cost. 
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The next layer inside the outer shell is a one inch layer of foam insulation. 

There were two types of foam insulation used for this layer. Extruded polystyrene is 

the foam insulation that is used to cover all four walls and the top lid. It has a lower 

R-value than Polyisocyanurate, which is the foam insulation used for the base of the 

box. It was believed that the bottom of the box would be exposed to warmer 

temperatures than the rest of the walls, and thus demanded stronger foam insulation. 

As stated earlier, Polyisocyanurate was used as the insulation for the bottom panel. 

The bottom panel also doubles as a mount, to which the side panels and other features 

of the prototype are fixed. Polyisocyanurate provides the necessary insulation and 

thickness to serve this dual function. 

Inside of the foam insulation is an inner box made of polycarbonate. We used 

a brand called Lexan, which is shatter resistant. The payload of vaccines rests within 

this box, allowing the polycarbonate to act as a thin buffer between the PCM slabs 

and the vaccines. The layer of polycarbonate is placed along four walls and the top lid 

of the box. A small gap was left between the polycarbonate and foam insulation in 

order for the PCM slabs to be strategically placed. The PCM slabs are the third layer 

of the cold box. There are five panels of PCM. A panel of PCM is used to cover each 

of the four walls as well as the lid of the box. These slabs are removable, and contain 

2 sections: an outer panel of water, and an inner panel of our chosen PCM. This 

allows the cheaper, colder water to be used as a cold source, while our 5 °C PCM is 

used as a buffer to ensure the vaccines themselves never reach freezing temperatures. 

As described earlier in the methodology section, the cold box functions through the 

PCM melting. Once they have melted completely, and can offer no more cold storage 
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capability, the lid of the box is opened and the panels are removed and refrozen. The 

inner separate compartments for PCM and the payload allow the payload to remain in 

the box while the PCM slabs are recharged. 

The structural integrity and thermal capacity of the box will be insured 

through the use of thermal adhesive. Joints between the polystyrene panels are sealed 

with a specialized adhesive that prevents heat from entering as well as provide 

structural strength. The inner polycarbonate and insulation panels will be glued in 

place, and then surrounded on all sides by the corrugated plastic. Figure 12 below is a 

CAD drawing of the prototype box, while Figure 13 demonstrates the three major 

structural components of the box: a) Inner Lexan layer b) middle polystyrene layer 

and c) outer corrugated plastic layer. 

  

Figure 12: CAD drawing of Prototype 1.0 

 

development process. This caused the team to design a user-friendly cold box that 
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was inexpensive, yet durable. The separated design will allow for easy operating 

procedures, and will prevent significant damage to the actual vaccines. Our PCM 

slabs will have a simple color change temperature sensor attached, which allows the 

user to check if the slabs are completely melted. If the PCM slabs are completely 

melted, the temperature will start to rise, the color will change, and the sensor will 

read 6 °C or higher (Figure 14). This notifies the user that 

the slab must be recharged in the freezer. While the PCM 

only requires around 6 hours to fully freeze, there is no 

harm if the panel is left in longer. If the PCM is removed 

after 24 hours, it will likely be the temperature of the 

freezer, which is usually around -10 °C. This is shown on 

the sensor, which will read temperatures below 5 °C. 

Since our material has a high heat of fusion, but not high 

heat capacity, leaving the PCM slabs in room 

temperature for 10 minutes will raise the temperature of 

the solid PCM to 5 °C, which is the phase change point. 

Using the sensors, the user will be able to insert the PCM 
Figure 14: Color change 

temperature sensor 

Figure 13: a) Inner Lexan b) middle polystyrene and c) outer corrugated plastic 
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slabs are the correct temperature. Ideally, this could be 2 °C. This design will prevent 

any exposure to freezing temperatures as well provide simple operating instructions 

for the users. 

Every layer used to construct the prototype was focused around the goal of 

maintaining a constant, cool temperature for the vaccines contained within the box. 

Each material used acts as some form of insulation that will reduce the rise of the 

internal temperature of the box, allowing for maximum use of the PCM panels before 

they have to be removed and refrozen. The exterior shell of corrugated plastic 

provides the cheap, durable material necessary for the prototype, while the remaining 

materials provide significant insulation for an inexpensive price. With regards to a 

user-friendly device, the easy removal of PCM panels and the sensors add value to 

 

Prototype 1.0 construction parameters were chosen relatively blindly. That is, 

the dimensions of the box, thickness of insulation and other design parameters were 

chose intelligently, yet ultimately arbitrarily. The methodology consisted of matching 

CAD and FEA results with observable results from something more complex than a 

simple ice box and closer to a working prototype. The compiled results of the many 

ice box experiments, CAD and FEA modeling, and prototype testing were then used 

to influence and define the design parameters of Prototype 2.0, detailed later within 

the RESULTS section. 
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Construction of Prototype 1.0 

Before construction of the original prototype began, the following materials 

were purchased online and from the Home Depot: 

Table 7: Bill of Materials for Prototype 1.0 

Part Descr iption    Cost Qty Total 
     $9.90 2 $19.80 
    $29.60 1 $29.60 
 Corrugated Plastic (size??)    $36.90 1 $36.90 
 Lexan (Polycarbonate -   $19.98 2 $19.98 

 - Lexan is shatter resistant Brand of Polycarbonate. We cut the sheets with a jigsaw, hence shatter 
resistance was necessary. Also, it adds resiliency to the box. 

 Construction Strength Liquid Nails   $4.97 1 $4.97 
 Caulk Gun     $13.97 1 $13.97 

 
      $115.32  $145.20 

 

The construction proceeded as follows (Images of the team constructing prototype 1.0 

can be seen in Appendix C at the end of this volume):  

1. A corded jig-saw (Black and Decker 4.5 amp, variable speed) was used to cut the 

Lexan into the panels that would comprise the inner payload chamber. Panels 

as cut at the lower left of each 

panel. Four panels were cut as such and then fitted together by placing one 

panel s notch into an adjacent panels slot at right angles. As such, the four panels 

 

2. 

 

3. The Lexan cube was then centered on the Polyisocyanurate square, and pressure 

was applied to cause the cube to sink into the Polyisocyanurate. The total 
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Polyisocyanurate on each side of the cube. This formed the main frame of the 

prototype. 

4. 

sheets. The sheets, each an inch in width, were then glued vertically along the one 

(1) inch border on the base Polyisocyanurate, to create walls. 

5. At this point, all inner and outer joints of the box were sealed with a bead of glue 

smoothed by a finger. This created a thermal seal in each joint gap and also added 

structural integrity to the box. 

6. The lid was created from a second similarly dimensioned piece of 

The chamber was closed on five sides; one side was left open to be able to slot 

PCM slabs in and out. When inverted, this lid fit snugly into the top of the box 

created in steps 1-4. 

7. Lastly, the corrugated plastic was cut and folded to encompass the box. The 

plastic was glued onto the box, and held in place through a combination of 

butterfly clips, and mechanical clamps until dry. The finished box (lid in bottom 

left) can be seen below in Figure 15.  

Figure 15: Finalize Prototype 1.0 
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Chapter 4: Results 

Characterization of Phase Change Materials 

The analysis was performed with high initial ramp rates on water. The high 

ramp rates led to large initial values of error for the measured melting temperature. 

To investigate the discrepancy between the literature value of 0 ºC and the measured 

values, slower ramp rates were used. A similar analysis technique was used to 

elucidate the melting temperature of , cited as 5 ºC. Data describing our 

characterization of and deionized water is displayed below in Figure 16. 

The results indicated that the melting temperature accuracy was significantly affected 

by the rate at which the material was heated (ramp rate). The temperature readouts for 

the melting point were plotted against the ramp rate to predict the melting 

temperature; it appears that the regression lines fit this data (R2 values of 0.79 and 

0.77 for and water, respectively), and the y-intercepts of regression lines 

accurately predict the theoretical melting temperature, based on comparison with 

literature values of ~5 ºC for and 0 ºC for water. 



90 
 
 

 

Figure 16: Characterization of water and . Melting temperatures vs. heating 
rate for water (blue diamonds) and (red squares). Lower heating rates 

resulted in more accurate melting temperatures compared to literature values of 0 ºC 
and 5 ºC for water and Phas , respectively. 

 
The insights into the higher accuracy at lower ramp rates guided our proposed 

characterization of new materials. Other materials that were characterized include: 

Pure temp, AcuTemp and Tetrahydrofuran clathrate of various concentrations. 

Tetrahydrofuran clathrate showed promise in the literature as it is mixed into 1:17 

molar ratio with water (Tombari, 2006). However, when prepared as prescribed in the 

literature, and additional solutions of 1:17.5 and 1:16.5, the resulting solution 

exhibited none of the predicted phase change properties observed in the literature 

values as evident by Figure 17 through Figure 19. The peak energy inputs were at 

temperatures close to zero instead of the cited 2-8 ºC; thus, it was disregarded as a 

candidate.  
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Figure 17: Tetrahydrofuran clathrate 17:1 ramp rate versus temperature 

 

Figure 18: Tetrahydrofuran clathrate 17.5:1 ramp rate versus temperature 
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Figure 19: Tetrahydrofuran clathrate 16.5:1 ramp rate versus temperature 

Heats of fusion were calculated to be 333 J/g for water and 178 J/g for Phase 5 

, not taking into account the incomplete 20 ºC/min runs. The experimental 

procedure was applied to Pure temp and AcuTemp to calculate the heats of fusion as 

well. PureTemp was measured to be 154 J/g with a melting temperature of 2.1 ºC. 

AcuTemp however was discovered to be a pulp substance soaked in a fluid. When the 

fluid was tested for thermal properties the resulting curve was detected, Figure 20. 

The data indicates a strange melting profile in which there is one large peak at 7 ºC 

and two smaller shoulders at -5 ºC and 9 ºC. 
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Figure 20: AcuTemp ramp rate versus temperature 

The calculated latent heat for the entire melting curve was 124 J/g. Melting 

temperatures and heats of fusion calculated from these experiments were then input 

into theoretical models described below. This indicates that water as expected has the 

highest latent heat, followed by  then PureTemp and finally AcuTemp. The 

results show that  is the most desirable PCM because it has a high enough 

melting point 5 ºC and the highest heat of fusion of the PCMs tested as seen in Table 

8. 

Table 8: Table of measured PCMs 

PCM measured Latent heat (J/g) Melting Temperature (ºC) 
Tetrahydrofuran clathrate No Result No Result 

Water 333 0 
 178 5 

PureTemp 154 2.1 
AcuTemp 124 -2 -- 7 

-­‐3  

-­‐2.5  

-­‐2  

-­‐1.5  

-­‐1  

-­‐0.5  

0  

0.5  

-­‐20   -­‐15   -­‐10   -­‐5   0   5   10   15   20  

H
ea
t  F

lo
w
  (m

W
)  

Temperature  (°C)  

Acutemp  



94 
 
 

Ice Box Experiments 

The first six sets of measurements for the ice box system are displayed in the 

following series of figures ( 

 Figure 21 through Figure 26). The data represents two cubes sizes with side 

lengths of ith 1.4 kg and 6 kg respectively of ice as the PCM. The 

three experiments performed on each are the ones in which all sides are evenly 

covered in ice or evenly covered in ice with a PCM shelf that is either horizontal or 

vertical. The following diagrams illustrate the probe and PCM configurations. The 

 shown in Table 9: 

Table 9: Probe and PCM configurations for ice box experiments 

 

 

Data Set Label Location in Ice Box Model 
Channel 1 Center of bottom of storage, above the ice layer (next to shelf if present) 
Channel 2 Center of top, between the insulation and ice layers 
Channel 3 Top corner of storage 
Channel 4 Center of storage space (air), (on top of ice she lf if present) 
Channel 5 Center of upper quadrant of storage 
Channel 6 Midpoint of side along bottom of storage, above the ice layer 
Channel 7 Center of side panel, between the insulation and ice layers 
Channel 8 External Probe 

Data Set Label Location in Ice Box Model 
Channel 1 Center of bottom of storage, above the ice layer (next to shelf if present) 
Channel 2 Center of top, between the insulation and ice layers 
Channel 3 Top corner of storage 
Channel 4 Center of storage space (air), (on top of ice she lf if present) 
Channel 5 Center of upper quadrant of storage 
Channel 6 Midpoint of side along bottom of storage, above the ice layer 
Channel 7 Center of side panel, between the insulation and ice layers 
Channel 8 External Probe 
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Figure 21: Ice Box Experiments  All sides with even layer of ice

 
Figure 22: Ice Box Experiments - All sides with even layer of ice and vertical shelf  
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Figure 23: Ice Box Experiments - All sides with even layer of ice and horizontal shelf  

 
Figure 24: Ice Box Experiments - All sides with even layer of ice 

0 12 24 36 48 60
-5

0

5

10

15

20

25

Time (Hours)

Te
m

pe
ra

tu
re

 ( 
C)

9.5 inch Horizontal Exp

0 12 24 36 48 60 72 84 96
-5

0

5

10

15

20

25

Time (Hours)

Te
m

pe
ra

tu
re

 ( 
C)

13 inch All Sides Exp



97 
 
 

Figure 25: Ice Box Experiments - All sides with even layer of ice and vertical shelf 

 
Figure 26: Ice Box Experiments - All sides with even layer of ice and vertical shelf 
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Although it is difficult to follow the results initially, a few key pieces of 

physical insight can be extracted from the data. Each graph exhibits some of the 

expected behaviors. The room temperature probes (Channel 8) were similar in 

behavior, holding steady at temperatures ranging from 24-27 C. For all of the 

hannels 1-7), the data recording began at a 

temperature below zero. Initial sampling indicates a rapid increase in temperature 

represented by a steep curve on the graph. Each probe then settles at a quasi-steady 

state value for an extended period of time. In some of the experiments, the 

temperature rises more quickly to reach a second quasi-steady state value. Finally, all 

of the internal probes rise in temperature towards the ambient value. The steepness of 

the approach varies, but it is flatter than the slope of the early temperature increase.  

 The first major feature in the graph is the rise to the initial steady state. The 

slope is steep and levels rapidly as evident by the graphs. This validates several 

theories regarding the operation of an icebox system. The steepness indicates that the 

driving force, the higher ambient temperature, is far away. Additionally, this signals 

that the physical properties which make energy storage per degree change of ice is 

low compared to the energy of storage for melting the same mass of ice or heating the 

same mass of ice once in liquid form may play a role in the rapid heating. This is 

illustrated with Figure 27.  
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Figure 27: Energy Comparison for H2O as PCM 

 It is very clear that the energy adsorption for changing similar temperatures 

quantities varies vastly between a sample of ice and sample of water. It takes 

significantly more energy to heat the water from 0 C to 25 C than ice from -20 C to 

0 C. The chart shows that the temperature flattens out for a significant time period, 

during which we predict that the ice is melting. The energy to melt the ice is much 

greater than the energy to change the temperature of the system. Ice melts at a 

constant temperature of 0 C, which would show up on the data as prolonged flat 

portions at or near 0 C. We believe that the system is of the following pattern; 

initially rapid heat exchange as the inserted ice moves to its melting temperature, a 

melting phase during which the temperature holds near 0 ºC, and finally a heating 

phase as the system climbs towards room temperature.  

With the basic form of the probe measurements understood, an analysis 

between individual and group trends can be performed. The most obvious difference 

is in the 0.241 meter box versus 0.330 meter operating conditions. The smaller size 

PCM  Energy  (H2O)  

Energy  to  heat  liquid  water  from  
0°C  to  25°C  

Energy  to  heat  ice  from  -­‐20°C  to  
0°C  

Energy  to  melt  Ice  at  0°C  to  
water  at  0°C  
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lasted a considerably shorter time period where approximately 2000 minutes elapsed 

before the system was above 8 ºC, whereas for the 0.330 meter box, nearly 4000 

minutes on average elapsed before all the probes were above 8 C. Because the 

systems are different sizes and different relative compositions by volume of 

insulation storage space and water, we cannot use relative values to compare the 

results. Qualitative differences are the only data that can be extracted directly. 

However the two box systems behave almost entirely the same with similar trends 

developing in each. This is likely due to the extent of the similarity between the two. 

Within the sets of different geometries, overall certain trends can be observed. 

The external probe, channel 8, measured temperature consistently within a 0.2 C 

range with few major fluctuations; this allows for a simple assumption to be made, 

that the driving force was relatively constant throughout experimentation. The 

remaining probes show typical trends throughout different geometries and box sizes. 

Channel 2, the probe outside of the topmost ice pack, was consistently higher in 

temperature than the other probes, rising more quickly during the phase transition. It 

mirrored the other probes  temperature profiles but was a few degrees higher in 

temperature. This is likely due to its placement outside the ice surrounding the storage 

area. Outside was only shielded by insulation, and thus at the edge of the temperature 

gradient developed between the ice and the air. Channel 7, the probe which was 

placed on a side ice pack, represents a good gauge of how quickly the side ice packs 

have fully melted. It should therefore be noted that the probe typically lasted longer at 

low temperatures than the other probes on all sides of the experiments. In the 

experiments with the vertical and horizontal ice pack, the probe increased in 
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temperature more closely to the other probes located in the storage chamber and 

elsewhere, indicating the center ice pack plays a role in cooling the system after the 

outside ice packs have fully or partially melted. The probes located in the storage 

chamber, channels 6, 5, 1, and 3, all exhibited similar behavior. Their temperatures 

were typically within a few degrees of each other, dictated by the proximity to an ice 

pack, and followed identical trends. It should be noted that the warmest one, channel 

3, is located in the top corner of the vaccine storage chamber. The temperature 

separation from other similar probes was larger in the experiments with a shelf. This 

is most likely generated because it is the furthest probe from the shelf in either 

configuration and is thus the warmest of the probes once the outer shell of ice has 

melted.  

Geometry plays a key role in creating the largest differences from prediction. 

These can be observed when the steady state temperature is above 0 C and the 

smaller shorter quasi-steady states occurring at even higher temperatures. This can be 

seen in the differences between the even covering of ice and the horizontal and 

vertical shelf configurations. The comparison is consistent for both small and large 

box sizes. All sides of the experiment acted as expected. The vertical shelf, however, 

leaves the steady state quickly to reach a second quasi-steady state which can be 

observed as the large shoulder on the graph. After this short halt, the temperature 

begins to rise again. However, the probe corresponding to the side locations away 

from the vertical ice pack begins to rise in temperature faster. Probes 4 and 5 become 

the coolest in the system as they are closest to the center ice pack. For the horizontal 

setups, a similar phenomenon is observed, though the temperature difference between 
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the probes is less pronounced. The system experiences two quasi-steady states instead 

of the one observed with the vertical configuration. The result of these differences is 

that although the time spent from 0-8 C on average is the same between each 

configuration, the average temperature experienced is much higher for the systems 

with shelves. This is due to the prolonged rise in temperature caused by the shoulders, 

which cut short the main steady state near 0 C. These differences are key features to 

try to capture with the model: the similar time of steady state between configurations, 

the time spent from 0-8 C, and the different rate or times at which various probes 

leave the steady state to rise towards room temperature. 

CAD and F E A Modeling 

3-Dimensial Modeling 

Upon solving each FEA model, time-temperature data was generated using 

time-history post processing. For select nodes that corresponded to thermocouple lead 

locations in the ice box experiments, we could extract the degree of freedom solution 

and the nodal temperature, at each recorded sub step. From this, we could either 

graph the data directly in the FEA software, or export the data into a text file to be 

converted into an Excel spreadsheet and graph.  

In attempting to refine the thermal conductivity (k) value for the models, 

Figure 28 through Figure 31 were generated from the 9.5-in sided box with horizontal 

ice shelf, and Figure 32 through Figure 35 were generated from the 13-in sided box 

with ice perimeter.  

  



103 
 
 

Table 10: Data set label denotation for the 9.5-in sided box with horizontal ice shelf 
model.  

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 
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Figure 28: k-value refinement: 9.5-in sided box, horizontal ice shelf, k = 0.0210 
W/m-K 
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Figure 29: k-value refinement: 9.5-in sided box, horizontal ice shelf, k = 0.0288 
W/m-K 

 

Figure 30: k-value refinement: 9.5-in sided box, horizontal ice shelf, k = 0.0227 
W/m-K 
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Figure 31: k-value refinement: 9.5-in sided box, horizontal ice shelf, k = 0.0236 
W/m-K 
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Table 11: Data set label denotation for the 13-in sided box with ice perimeter model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 
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Figure 32: k-value refinement: 13-in sided box, all sides ice, k = 0.0288 W/m-K 
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Figure 33: k-value refinement: 13-in sided box, all sides ice, k = 0.0207 W/m-K 

 

Figure 34: k-value refinement: 13-in sided box, all sides ice, k = 0.0227 W/m-K 
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As can be seen from each graph set of varying thermal conductivity, the 

temperature distribution through the box remains the same, but the duration of cold 

storage decreased as the k-value increased.  

The following pages detail the results from the various PCM geometries in the 

9.5-in and 13-in sided ice box models with the modified thermal conductivity, k = 

0.0227 W/m-K. The volume of ice for the 9.5-in models was 85.8 in3 (0.001406 m3) 

with vaccine compartment side length of 7.5 in (0.1905 m). The volume of ice for the 

13-in models was 393.4 in3 (0.006447 m3) with vaccine compartment side length of 

11 in (0.2794 m). The cold duration of storage was defined as the average amount of 

time from the data sets for temperature to go from the lower bound of melting (-0.25 

C) to the upper bound of ideal vaccine storage (8 C). 
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Figure 35: k-value refinement: 13-in sided box, all sides ice, k = 0.0215 W/m-K 
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 9.5-in Sided Model: All Sides 

Table 12: Data set label denotation for the 9.5-in sided box with ice perimeter model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 36: 9.5-in sided box, all sides ice. Inset: Cutaway of experiment (blue = ice 

locations) 

Ice thickness: 

 

Cold duration of storage: 1640 min  27.33 hr 
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Analysis: This model maintained an even temperature distribution throughout the box 

for the duration of melting, while the box was quickly brought to thermal equilibrium 

after the melting. The first point to reach 8 C was the corner probe, which was the 

furthest away from the center of the compartment.  
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 9.5-in Sided Model: All Sides, No Bottom 

Table 13: Data set label denotation for the 9.5-in sided box with all sides ice except 
the bottom model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 

 
Figure 37: 9.5-in sided box, all sides ice except bottom. Inset: Cutaway of experiment 

(blue = ice locations) 

Ice thickness:  

 

Cold duration of storage: 1397 min  23.3 hr 
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Analysis: The points not along the bottom maintained temperature stability for the 

relatively same duration as the all sides model. There is a drastic difference in 

temperature for the points along the bottom, though this is assumed to be an extreme 

case given that the inner compartment is filled with a low-density substance.  
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 9.5-in Sided Model: Horizontal Shelf 

Table 14: Data set label denotation for the 9.5-in sided box with horizontal ice shelf 
model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 

 
Figure 38: 9.5-in sided box, all sides ice with horizontal shelf. Inset: Cutaway of 

experiment (blue = ice locations) 

Ice thickness:  

 

Cold duration of storage: 1633 min  27.2 hr 
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Analysis: An uneven duration of melting is observed in this model, where the outer 

ice panels melt much faster than the central shelf (skewing the cold duration to be 

longer). The cold duration for the outside panels is less than in the previous two 

models.  
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 9.5-in Sided Model: Vertical Shelf 

Table 15: Data set label denotation for the 9.5-in sided box with all sides and vertical 
ice shelf model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 39: 9.5-in sided box, all sides ice w/ vertical shelf. Inset: Cutaway of 

experiment (blue = ice locations) 

Ice thickness: 

 

Cold duration of storage: 1697 min  28.3 hr 
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Analysis: Parallels are drawn between this model and the horizontal shelf model. The 

same uneven duration of cold storage is observed throughout the box, with the 

average here being slightly longer than in the horizontal shelf model. The vertical 

shelf fully melts much quicker (data set T1), but it does not increase in temperature as 

quickly as in the horizontal shelf.  
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 9.5-in Sided Model: Bottom and Top Slabs 

Table 16: Data set label denotation for the 9.5-in sided box with bottom and top ice 
slabs model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 40: 9.5-in sided box, bottom and top ice slabs. Inset: Cutaway of experiment 
(blue = ice locations) 
Ice thickness:   

 

Cold duration of storage: 2308 min  38.5 hr 

Analysis: An obvious temperature distribution is observed in this model, though for 

the majority of the simulation, the temperature remains within the optimal vaccine 
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temperature conditions. The cold duration of storage here is by far the longest of all 

the models, given that the ice is concentrated into a larger block.  
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 9.5-in Sided Model: Bottom Slab 

Table 17: Data set label denotation for the 9.5-in sided box with bottom ice slab 
model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 41: 9.5-in sided box, bottom ice slab 

Ice thickness:  

 

Cold duration of storage: 1157 min  19.3 hrs 

Analysis: This model demonstrated the temperature distribution in a linear sense 

throughout the box. The ice takes the longest to melt here (  70 hrs), given that it is 

all concentrated in one block. However at halfway in the storage compartment, the 
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temperature is already above the desired mark through the whole melting duration. 

Above the central altitude, there is hardly any cooling in the box.   
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 13-in Sided Model: All Sides 

Table 18: Data set label denotation for the 13-in sided box with ice perimeter model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

Figure 42: k-value refinement: 13-in sided box, all sides ice, k = 0.0227 W/m-K 

Ice thickness:  

 

Cold duration of storage: 3816 min 63.6 hr 

Analysis: The temperature distribution in this model mirrors that of the 9.5-in sided 

model. The cold duration of storage was over twice as long as in the other model, 
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though the volume of ice was over four and a half times more than in the other model, 

verifying a nonlinear relationship between ice volume and duration of storage. 

 

 
 13-in Sided Model: Horizontal Shelf 

Table 19: Data set label denotation for the 13-in sided box with all sides and 
horizontal ice shelf model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 43: 13-in sided box, all sides ice with horizontal shelf 

Ice thickness:  

 

Cold duration of storage: 3572 min  59.5 hr 
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Analysis: This model exhibited the same findings as in the previous model, in that 

the temperature distribution was mirrored from the smaller box. The duration of 

storage was also over twice as long.  
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 13-in Sided Model: Vertical Shelf 

Table 20: Data set label denotation for the 9.5-in sided box with all sides and vertical 
ice shelf model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 
Figure 44: 13-in sided box, all sides ice with vertical shelf 

Ice thickness:   

 

Cold duration of storage: 3852 min  64.2 hr 

Analysis: This model differed from the 9-in sided counterpart in that the vertical slab 

exhibited an even melting regime and subsequent sharp temperature increase to 
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equilibrium, where previously the melted slab experienced a longer regime of cooling 

after melting. The overall cold duration of storage was still about twice as long, in 

line with the other 13-in sided models. 

 13-in Sided Model: Bottom and Top Slabs 

Table 21: Data set label denotation for the 13-in sided box with bottom and top ice 
slabs model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 

 

 
Figure 45: 13-in sided box, bottom and top ice slabs 

Ice thickness:     
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Cold duration of storage: 3049 min  50.8 hr 

Analysis: In comparison to the 9-in sided model, this temperature distribution is 

almost identical, in that the relative locations in the box were stabilized at the same 

temperature through the melting period. The cold duration of storage here is a bit less 

than half of the previous model (38.5 hrs), but the time for the actual slabs to melt 

here (about 3.5E6 sec.) is well over twice that of the other model (about 1.5E6 sec.). 

 13-in Sided Model: Bottom Slab 

Table 22: Data set label denotation for the 13-in sided box with bottom ice slab 
model. 

Data Set Label Location in Ice Box Model 
T1 Center of storage space (air), on top of ice shelf 
T2 Center of bottom of storage, above the ice layer 
T3 Center of top, between the insulation and ice layers 
T4 Center of upper quadrant of storage 
T5 Top corner of storage 
T6 Midpoint of side along bottom of storage, above the ice layer 
T7 Center of side panel, between the insulation and ice layers 
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Figure 46: 13-in sided box, bottom ice slab 

Ice thickness:  

 

Cold duration of storage: 3342 min  55.7 hrs 

Analysis: The temperature distribution seen here is slightly more spread than in the 

9.5-in model, but it is still far from ideal for cold storage. The time for the slab to 

melt here is over twice that of the smaller box model.  
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Each model exhibited distinctly different behavior in terms of temperature 

stratification and duration of melting. The all sides model had the most even 

temperature distribution and rate of melting in the box matching the experimental 

model. The five sides, no bottom model had a fairly even temperature distribution, 

except at the points along the bottom of the box where little cooling with prevalent. 

Both the horizontal and vertical shelf models exhibited longer melting times for the 

shelf slab, with the outer panels reaching warmer temperature much quicker. The 

bottom and top slab model showed an obvious temperature gradient throughout the 

box that mostly fell below the 8 C mark for the melting regime, and the duration of 

cold storage was also the longest here, in comparison to the ice perimeter models 

however, the location of measurement points may not have been conducive to 

accurate measurement. Finally, the single bottom slab model was ruled out as a viable 

geometry, given the gross temperature distribution in the box, where little to no 

cooling was observed at the extremities away from the ice. We concluded that the 

FEA modeling provides a good basis for eventual prototype construction and that the 

different geometries, typically not considered in design, play an important role in ice 

box performance. 

1-Dimensional Model Results 

In order to identify proper thicknesses for ice, insulation, and PCM a 1-

dimensional model was created in COMSOL as shown in Figure 47. This model had 

a run time of ~120s which allowed for rapid comparison of different combinations of 

ice and insulation thicknesses. 
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Figure 47: Comsol 1-D model 

Region 1 has the material properties of insulation, Region 2 is the ice, and region 3 is 

the air. In all of the 1-D experiments the size of the air region was the same. The left 

most boundary point is held at 22.5 °C and the right most boundary point is 

considered symmetric, which means the heat flux is equal to 0. The initial 

temperatures for regions 1 and 3 were 22.5 °C and the initial value for the ice was -10 

°C for all of the models.  

Model Validation 

The 1-D model with an insulation thickness of 1 inch and ice thickness of 0.56 

inches took 76 hours to reach 8 °C, which is within 10% of both the 3-D model and 

the ice box experiments. The temperature profile in time of a point in the air, as 
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Figure 48:  Dynamic temperature profile of a point in the air of the 1-D model. This 
profile matches qualitatively with the profiles as seen in the ice-box experiments 

(Fig. 22) and the 3-D model. (Fig. 29) 
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shown in Figure 48 had a similar shape to both of those experiments as well.  

A series of experiments was run with varying thicknesses of insulation and ice 

in the model. The results are shown below in Figure 49 below.  

 

Figure 49: The time in hours that it takes the air in the 1-D model to warm up to 8 ºC 
versus insulation thickness plotted for different series of ice thickness. 

For each thickness of ice, an increase in insulation thickness directly increases 

the amount of time until the temperature reaches 8 °C. For each series the residual 

squared is above 0.99 indicating that the data is in fact linear. The slopes and 

intercepts of the linear regressions were plotted against the ice thickness for each 

series resulting in the Figure 50 below.  
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Figure 50: For each thickness of ice, the slope of the time to warm to 8 °C vs. 

insulation thickness graph was determined. These slopes are plotted against ice 
thickness, again giving a linear series.  
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With these correlations, the time until the box is above 8 °C can be estimated 

generally for any combination of ice and insulation. This is shown below in the 

contour plot in Figure 51. 

Increasing the ice and insulation to 25 inches gives 1,900 hours of cold time, 

and this number increases indefinitely. The curve appears to be symmetric about the 

y=x line (white). This result means that if the interest is maximizing cold time while 

minimizing total size of the box use equal thicknesses of ice and PCM.  
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Figure 51: 2-D color contour plot of time until the air in the model is greater than 8 -
°C in hours shown as a function of ice thickness vs. insulation thickness. 

 

Cost Model  

To develop an optimized cold box, the cost of materials as well as the weight 

of the box needed to be considered to develop an idea of the cost efficiency of the 

design. A previous work on optimization of an insulated shipping container for use in 

the U.S. developed a cost model that accounted for the cost of materials and the cost 

of shipping, based on typical freight rates for shipping across the continental U.S. 
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(East & Smale, 2008)  The model requires volumetric costs for insulation and ice 

which were assumed to be $900/m3 for polystyrene insulation (East & Smale, 2008) 

and $0.50/gallon for deionized water. These costs were converted to dollars per cubic 

inch for use in the program. 

was adapted. The equations for the costing model are shown in equations 5 through 8. 

This shows that the boxes with more ice are more expensive, due to the ice adding 

weight to the design. The full cost model can be found at the end of this volume in 

Appendix G. 

  
   (5)  

  
   (6)  

      (7)  

      (8)  

 

Figure 52: Cost Estimate for Ice 
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To optimize the design, we divided the time to melt by the cost for the box, 

and found a global optimum. This is shown below in Figure 53. The optimum point, 

the center of the green ellipse, is 6 inches of ice and 11 inches of insulation. This box 

is much too large for a vaccine carrier and it would cost ~$1,000 to build and ship. 

However for every total box size below that there is an optimum distribution of ice 

and insulation that lies along the white power law curve. These optimums are 

relatively insenstive to the price per shipping. Increasing or decreasing the price of 

shipping by an order of magnitude results in 30% change in the optimum insulation 

and ice thicknesses.  

 
Figure 53: Optimum number of hours box is cold per dollar spent 
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Theoretical Integration of PCM as Buffer  

The novelty of our design is in the integration of PCM as a buffer to prevent 

the inner storage compartment of the vaccine carrier from ever dipping below zero.  

The quantitative question to answer is this: what is the proper ratio of PCM to ice? 

Consider the case in which there is exactly enough unfrozen phase change 

material inside of a shell of frozen ice such that the latent heat of the bulk PCM is 

exactly that of the latent heat of the ice, that is to say in 3-Dimensions: 

      (9)  

 

In one dimension, the cross sectional areas can cancel out on both sides out of the 

volumes, to give a critical thickness of PCM, x*, where the melting ice would exactly 

freeze the PCM slab while melting.  x* can be found quite simply by arranging 

equation (9).   

  
   (10)  

 

 Of course, using an x* thickness of PCM is too much buffer for the inner 

compartment, which 

then to consider what minimum fraction of x* gives the desired temperature stability, 

but minimizes the total volume of PCM in the system.  
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Prototyping and F abrication 

A variety of experimental results and practical constraints have influenced our 

final prototype design. These results were drawn from physical ice box 

experimentation, PCM characterization, 1-D modeling and 3-D modeling of boxes in 

cold chain conditions. The practical constraints stemmed from data unearthed while 

investigating the cold chain, such as desirable storage conditions and common 

equipment dimensions and practical constraints for building these cold boxes. 

Our research into the cold chain elucidated a variety of constraints for the 

design based on environmental conditions and human factors. The most obvious 

constraints stem from the purpose of a cold box. The goal is to keep vaccines in a 

temperature range of 2-8 ºC for the longest time possible; this was weighted to be the 

most important design parameters. Making this constraint, the priority of our design 

distinguishes us from previous research.  

Using WHO constraints of 5-25 liters and their suggestion that vaccine vials 

are stored in boxes of the size of 100mm x 100mm x 50mm, we determined the inside 

dimension of our prototype to be 250 mm (9.84 inches). This results in a storage 

volume of approximately 15 L, which is mid-range for a cold box and fits the vaccine 

boxes with minimal wasted space. 

 To alleviate freezing of vaccine vials, our prototype is designed to have no 

contact of the ice with vaccines and additionally designed to be simple and full proof 

from possible misuse. This may seem an extensive measure, but ice lined refrigerators 

have extensive manuals that indicate that the vaccines stored within should never 

touch the ice, and this has been observed to be rarely abided by. The cold box design 
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is aimed to be mass produced for distribution across the globe, so the box needs to be 

both simple to construct, and easy to use. Our final prototype design does not use 

nonstandard material sizes, and has a simple removable lid to allow access to the 

vaccines.  

Initial experimental investigations were into PCM characterization. The 

results indicate that Phase 5 would be the strongest performing material for energy 

storage within the ice box. However the results indicate even though the melting 

temperature is ideal at 5 ºC, the latent heat is significantly less than that of water. To 

store enough energy to keep 

be required than ice, adding volume, weight and expense to the design. There is also a 

possibility of the PCM s sensible heat freezing vaccines if it is placed directly in the 

box out of the freezer. We concluded that unfrozen PCM would best serve as a 

temperature stable barrier to keep vaccines at 5 ºC. External energy melts the ice at a 

temperature of 0 ºC, and the ice freezes the PCM at 5 ºC, which keeps the storage 

container at 5 ºC. When the ice is fully melted, the now frozen PCM melts at 5 ºC. 

This design has the disadvantage of being somewhat bulkier and heavier than current 

cold boxes, but it is not as expensive as solely using PCM as the refrigerant and does 

more to prevent freezing than current cold boxes. Additionally water in the form of 

ice packs is highly integrated into the current cold chain maximizing accessibility.  

The icebox experiments provided an excellent starting point for the eventual 

prototype design. The variety of designs allowed us to focus on the actual temperature 

profiles exhibited by different special arrangements of ice boxes. The experiments 

also allowed us to confirm several features cited in the literature such as the 
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prevalence of freezing close to ice (PATH, 2008). The two most influential features 

on final prototype design we found from the ice box experimentation are as follows:  

the internal temperature uniformity or extent of mixing within the air of the vaccine 

storage chamber, and the gradient formed moving away from an ice pack. The mixing 

of the air allows us to create a prototype without complete circulation of vaccine 

storage chamber in frozen materials. The gradient starting with 0 ºC on an ice pack 

confirms the research that vaccine containers need to be separated from direct contact 

from ice and can be shielded with a barrier such as air. Thus our final prototype was 

designed  with a barrier of PCM between the ice and the vaccines in the vaccine 

storage chamber, additionally concluded that at least one side of the vaccine storage 

chamber does not necessarily need to be covered with ice. 

FEA modeling was developed utilized on two scales, modeling of 1-D trends 

based on ratios of ice, PCM, vaccine storage and insulation thickness, and 3-D 

modeling which focus on the effects of different geometries and melting trends. The 

1-D model was first used to determine the optimum ice to insulation parameters. This 

relationship was used to map a 2-D space between increasing ice and increasing 

insulation, and coupled with a costing model that found an optimum thickness for the 

ice and insulation that maximizes hours the box is cold per dollar spent. The most 

feasible dimensions were carried on for further refinement. PCM was added into the 

model to see the optimum ratio of PCM to ice to insulation at which the internal 

temperature was maintained at 5 ºC was performed. However no direct pattern could 

be observed, so only the ratio of ice to PCM could be optimized and was assumed to 

not significantly change the ice to insulation ratio. Because prototyping different 
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amounts of insulation is not easy, 1.5 inches was chosen as the insulation size for the 

final prototype, and the ice and PCM thicknesses were derived backwards from that 

using the power law derived from an updated version of the optimal costing model. 

The final thicknesses for the prototype box were 1.5 inches of insulation, 0.45 inches 

of ice, and 0.42 inches of PCM.  

 The 3-D modeling helped develop the final constraints setting our boxes 

geometry, which when combined with the data gathered from a variety of other 

sources served as our prototype design. The model was used to generate a variety of 

3-D shapes with the hopes of finding a simple design. The geometry with five sides, 

everything except the bottom covered was discovered to be able to maintain low 

temperatures but above 0 ºC while providing a design that is simple to construct and 

refill with ice. This was translated to the final shape and structure of the box. 

Construction of Prototype 2.0 

The same materials used in prototype 1.0, detailed in Table 7, were used to 

construct prototype 2.0. Similarly, the general construction process and order of 

materials was similar to prototype 1.0. The exception is that in prototype 1.0 there 

was one inner slot along each wall for a slab of PCM. However, for reasons detailed 

above, we decided to incorporate a dual inner slot along each wall that would house 

slabs of PCM that would be sealed in a chamber and ice packs that could be easily 

removed. Hence in prototype 2.0 (Figure 54) the layers of the box moving from the 

 layer of sealed PCM and finally an inner vaccine 
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capacity of 15.625 liters (a cube with side length 9.84 inches). The inner 

resistant brand of polycarbonate (Plexiglas). 

 

Figure 54: CAD drawings and dimensions of prototype 2.0. 
a) Prototype 2.0 b) Birds-eye view with component dimensions c) 
plastic as outer layer d) e) 
slots f)  



141 
 
 

The box also features a removable lid of the same layer based dimensions. 

Details of the dimensions and fabrication of the individual parts are given below. 

One of the novel features of our box is that the vaccines are packed inside initially at 

the beginning of transport, and are not removed until the final destination. However, 

the lid of the box will need to be removed in order to swap out ice packs. Therefore, 

we fabricated a clear plastic lid that covers the vaccine compartment even when the 

lid of the box is removed (Figure 55). This serves the dual purpose of allowing the 

healthcare worker who is changing the ice packs to view the vaccine compartment 

and ensure that they are all intact, while maintaining a minimal barrier between the 

cool vaccines and the ambient air while the ice packs are changed.  

 

Figure 55: Clear plastic inner lid that covers vaccine payload compartment 
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The construction proceeded as follows (images of the construction of 

prototype 2.0 can be seen in Appendix D at the end of this volume): 

1. A corded jig-saw (Black and Decker 4.5 amp, variable speed) was used to cut 

the Lexan into the panels that would comprise the inner payload chamber. 

Four panels were cut to form the inner walls of the vaccine payload space, and 

an additional four panels were cut to form the walls of the PCM and ice slots. 

The panels were notched (Figure 56) so that they could be fitted together by 

anels slot at a right angle. The 

smaller panels were fitted together to form the inner payload chamber, and the 

outer panels were fitted around the chamber to form the walls of the PCM and 

ice slots. 

 

Figure 56: Lexan panels with notches and slots for assembly of a) the inner 
chamber and b) the PCM and ice slots. 

2. The jig-saw was used to cut the 

to serve as the insulation at the base of the box. The Lexan frame was centered 

on the Polyisocyanurate. 
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3. The jig-

vertically along the border on the base Polyisocyanurate, enclosing the Lexan 

frame, creating sturdy walls. 

4. At this point, all inner and outer joints of the box were sealed with a bead of 

glue smoothed by a finger. This created a thermal seal in each joint gap and 

also added structural integrity to the box. 

5. A rectangular annulus of Lexan was fabricated to sit atop the PCM slots, 

allowing the slots to be sealed once the PCM is added. The center of the 

annulus was saved and serves as the clear plastic lid to the vaccine 

compartment that will remain closed even when the lid of the box is removed. 

6. 

that, an 11

slot for ice packs on the top of the cold box. 

was fabricated from Lexan on top of the ice pack chamber to serve as the 

PCM chamber. When inverted, this lid fit snugly into the top of the box 

created in steps 1-4. 

7. Lastly, the corrugated plastic was cut and folded to encompass the box. The 

plastic was glued onto the box, and held in place through a combination of 

butterfly clips, and mechanical clamps until dry. 

The final prototype 2.0 can be seen below in Figure 57. 
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Figure 57: Prototype 2.0 fully assembled 

Instructions for Using the Cold Box 

In the current cold chain system, the cold box used for vaccine transport 

passes through country centers, regional centers, and local health centers 

continuously. Our box will replace the current cold box while maintaining a similar 

level of low-maintenance care. At the primary vaccine store, the vaccines can be 

placed in our PCM cold box when ready for transport. The interior section of our 

PCM cold box has a removable plastic lid, which covers the vaccine storage 

compartment. After the vaccines are stacked inside, the internal compartment is 

closed, and should not be opened until the shipment has reached the final destination. 

The ice packs should be removed from our PCM cold box and placed in the freezer 

until fully solid. When it is time for the shipment to leave, the frozen ice packs can be 
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placed in the appropriate slots and the lid closed. Our PCM cold box is now ready for 

deployment. 

 After a travel time of 48 hours, during which the PCM component of our 

system functions by absorbing heat from the internal environment and disposing it 

into the ice packs, keeping a steady temperature of 5 °C, the ice packs will have fully 

melted. After the trip, the cold chain worker can observe the state of the system by 

looking at the color temperature labels on the PCM panels. If the temperature is 

above 8 °C, then the system needs to be recharged by removing all the ice packs and 

placing them in a freezer, and reclosing the lid of the box. The box should be kept at 

room temperature; the insulation and the covered internal compartment will prevent 

high heat from destroying the vaccines. The ice packs should be in the freezer for 48 

hours to ensure they freeze thoroughly, at which time they can be replaced into the 

PCM cold box in their respective locations without risk of freeze damage. Because 

there is a layer of PCM between the ice pack and the vaccine compartment, the 0 °C 

ice packs never touch the vaccine compartment. This process of refreezing the ice 

packs can occur any time when the traveling delivery truck makes a stop at a center 

with a freezer. Additionally, as ice packs are very cheap and simple to make and 

store, health centers along the way may have extra frozen ice for a quick exchange 

during a short stop. This way, when a shipment comes along with long distance goals, 

the deliverer can stop, replace the ice packs with frozen ones, and continue on his 

way for another 48 hours.  

 At the final destination, the vaccines can be removed from the PCM cold box 

and stored in the local health center. The cold box is reusable, and can be sent back to 
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the provincial center through the same distributor that brought the box. Our box will 

allow for less vaccine freezing along the cold chain, and create a more systematic and 

reproducible chain of events for shipments. The materials of our box can vary 

depending on the specific resources available to each country, but the general design 

and integration of PCM and ice packs is vital for preventing both freezing and 

overheating. See Appendix E for a more detailed instruction manual. 
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Chapter 5:  Interpretation and Discussion 

What the Results Mean 

The main information that can be drawn from our research is as follows. A 

on with 

. Rapid prototyping of various box geometries 

illustrated difference in the time until the box was warm and the temperature 

distribution of the box. The method of FEA modeling with the phase change as a 

large energy heat capacity has been observed to be an effective tool for design of 

iceboxes or thermal systems provided unique geometries can be generated and 

convection is not the dominating factor in the thermal movement. Furthermore 

convection plays a small but noticeable role in cold box storage. A 1-D model 

illustrated the economic optimum ratio of ice to insulation and was further evaluated 

to find the required thickness of PCM needed to maintain the air above freezing 

temperature in a cold box. This data can play a role in future investigations into cold 

box technology. 

melting temperature and latent heat of substances. Our group used a DSC to 

determine both. We found a variety of latent heats and melting temperatures for 

proprietary PCMs such as  AcuTemp and PureTemp 4. Additionally we 

determined that the clathrate mixture of tetrahydrofuran and water proposed in the 

literature is very difficult to achieve and was not repeatable. Our conclusion indicates 

that  is the most desirable PCM for cold box storage because it has a high 
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enough melting point 5 ºC and the highest heat of fusion of the PCMs tested and 

easily attainable in the literature. 

The ice box experiments performed used a variety of designs at two different 

box sizes, 9.5 in and 13 in and one experiment with a large ice pack on the bottom. 

The results gave a few different physical understandings of the melting process within 

a cold box which can help future investigations and guided our prototype design. It 

was observed that although a gradient was developed moving away from an ice pack 

into air or foam, the gradient was less than predicted by the model. This is attributed 

to the lack of convection in the computational mode.  

The geometry of the ice packs affects the temperature distribution the air. For 

those designs with an ice pack in the middle, we observed the center icepack plays a 

role in cooling the system after the outside icepacks have partially melted at which 

point the outside packs act as secondary insulation. Furthermore the result of 

geometries with an icepack in the center is an average temperature of the system 

much higher when shelves are integrated. The higher average temperature can be 

used to the advantage of a cold box designer as PCM can be used as a sort of 

insulation by placing it inside the cooling source for the cold box, such as ice. 

We were able to further study geometry using 3-D FEA models by creating a 

theoretical simulation that accurately exhibited phase change behavior using the 

approximated specific heat method. Further refinement to the model, by adjusting the 

thermal conductivity of the insulation, yielded results more accurate to experimental 

and field conditions. Using this adjusted model, we were able to investigate the pros 
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and cons of different ice box geometries in terms of equal temperature distribution 

within the cold box and duration of cold storage and a variety of other factors.  

Six different geometries were simulated corresponding: all six sides of ice, 

five sides of ice (not the bottom), six sides of ice with a central, horizontal ice shelf, 

six sides of ice with a central, vertical ice shelf, two sides of ice at the top and bottom, 

and one side of ice at the bottom. The all sides model had the most even temperature 

distribution and rate of melting in the box matching the experimental model. The five 

sides, no bottom model had a fairly even temperature distribution, except at the points 

along the bottom of the box where little cooling with prevalent. Both the horizontal 

and vertical shelf models exhibited longer melting times for the shelf slab, with the 

outer panels reaching warmer temperature much quicker. The bottom and top slab 

model showed an obvious temperature gradient throughout the box that mostly fell 

below the 8 C mark for the melting regime, and the duration of cold storage was also 

the longest here, in comparison to the ice perimeter models however, the location of 

measurement points may not have been conducive to accurate measurement. Finally, 

the single bottom slab model was ruled out as a viable geometry, given the gross 

temperature distribution in the box, where little to no cooling was observed at the 

extremities away from the ice. We concluded that the FEA modeling provides a good 

basis for eventual prototype construction and that the different geometries, typically 

not considered in design, play an important role in ice box performance. 

We were also able to verify these results using two different size boxes - one 

with 9.5-in sides and one with 13-in sides. Similar temperature distributions were 

observed between each size of the same geometry. In most cases, the duration of cold 
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storage was about twice as long in the larger box models; however there was over 

four times the volume of ice in the larger box model. This verified that there was a 

nonlinear relationship between duration of cold storage and volume of PCM, and that 

other factors (overall size, insulation thickness, insulation quality, etc.) would need to 

be adjusted to find the optimal cold box and cooling conditions.  

Another FEA model was created in 1-D to study the thicknesses of ice and 

insulation and their effect on the cold time of the box. In the model, where ice, 

insulation and air were changed iteratively showed the relationship between changing 

the ice to insulation ratio, as well as increasing the amount of either. This relationship 

was used to map the relationship between increasing ice or increasing insulation the 

result is a curve which can determine the optimal ratio of ice to insulation given a 

designed box size. The true optimum was outside of a realistic box size. The problem 

with just using ice and insulation is that the air spends a significant time at 0 ºC and 

this presents an opportunity for vaccines to freeze. To alleviate freezing, P  

PCM was included in the model between the air and the ice. It was found that PCM 

needs to absorb roughly half of the latent heat of the ice to maintain the temperature 

of the air at 5 ºC, and that this causes a reduction in the time the box spends below 8 

ºC, but protects the vaccines from freezing which increases value. However, a pattern 

in how long the box would last was not immediately noticeable with the 1-D model 

with PCM. The model was still usable to find an economic optimum in the ratio of 

insulation to ice and PCM. 
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Contribution to World Vaccination 

The needs presented by the cold chain studies cited above represent an 

opportunity for a novel icebox design that would address these issues in a cost-

effective manner. There are a few possible refrigeration methods that can help 

minimize vaccine freezing. Vapor compression refrigeration, as is found in common 

household refrigerators, is the most used method of active cooling; however, it has 

significant drawbacks that prevent it from being practical for vaccine storage and 

transportation. Any active refrigeration device is energy intensive, so they may not be 

feasible in resource-poor areas where energy is not always reliable (Xinhua, 2009). In 

addition, refrigerators are heavy and relatively fragile, which precludes frequent 

transport in areas where conditions are less than ideal. Due to these considerations, 

we will deploy PCMs as a primary passive cooling source. A cold box incorporating 

PCM is ideal for transportation because it does not require external energy input and 

is relatively light and durable compared to a refrigerator ("Product Information 

Sheets", 2000). Furthermore, PCMs are generally less costly and have a longer 

lifespan than compression refrigeration systems ("Landscape Analysis: Cool Chain 

Technologies", 2008). 

Benchmarking 

In Table 23 we outline the refrigeration products that are similar to our 

prototype and commercially available. We characterize each product in terms of the 

the literature available by the manufacturers for each product we were able to 
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successfully detail each parameter. The first parameter reviewed was whether the 

product used active cooling by a compressor or another method of cooling, as this 

was one of our primary concerns when designing our prototype. We noticed that in 

general the active cooling devices, such as the CSafe, Waeco CF-11, Fridge Freeze, 

and SunFrost refrigerators were the most costly and least durable of the products we 

assessed. This finding confirmed our research that showed the impracticality of using 

compression refrigeration in a vaccine cold box. One device, the Envirotainer storage 

container, uses a unique active cooling method that utilizes dry ice. This product does 

not have a compressor, but it is designed for long-term storage rather than transport, 

making it different from our box.  

Next, we evaluated if the box or refrigerator could keep the inside 

compartment between the desired 2-8 ºC. The APEX cold box was the only product 

that could not maintain the desired temperature range because it uses ice packs in 

close proximity to the inte y to store vaccines 

between 2-8 ºC also shows that ice packs are not ideal for vaccine storage. 

durability, and ease of repair. We determined portability by considering the exterior 

dimensions and durability and we determined ease of repair by considering the 

materials used. Generally, we also considered any product that weighed over 50 lbs to 

not be portable. The only two products that were not portable were the CSafe 

refrigerator and the Envirotainer storage container, both of which are large, heavy 

boxes, designed for long-term or bulk storage, rather than transportation. The lightest 

products considered were the Antifreeze backpack at 17.4 lbs. and the Tempak Plus 
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cold box at 5.5 lbs. We used these as guidelines as to how much our product should 

weigh. 

` 

ctual 

storage compartment, which would give us an idea of how efficiently the product 

could store vaccines. The product with the least efficient storage capacity was the 

SunFrost refrigerator with the ratio of 0.070. As this is a solar-powered refrigerated 

box, it has many components, including the battery, solar cells, and compressor, all of 

which restricted the payload space available for vaccines. On the other hand, the 

Envirotainer had the most efficient storage capacity with the highest ratio of 0.739, 

primarily due to its unique cooling system that utilizes dry ice. 

Next, we determined whether each product had a reasonable cost, as this is a 

primary concern in developing regions. Among the products for which the pricing 

was available, the Fridge Freeze refrigerated boxes had the highest cost at $3995, 

while the Antifreeze Backpack had the lowest cost at $33.78. This data represents a 

possible, so our aim was to match or beat the price of the Antifreeze backpack. 

The penultimate parameter considered was maximum storage duration without 

any external energy source. The device with the shortest storage duration was the 

Tempak Plus box, which could keep its compartment cool for 24 hours. This shows 

that while its emphasis on mobility was effective, it sacrificed the ability to store 

vaccines for a sufficient amount of time. The product with the longest storage 
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duration was the CSafe refrigerator with a time of 100 hours, which was primarily 

achieved because it has a built in battery-powered compressor. 

The final parameter we considered was if there was any user input required. 

All of the products assessed required some level of user involvement, usually in the 

form of replacing melted ice/PCM packs or setting the temperature of the interior 

compartment. One of our main goals was to make our cold box user friendly and 

easily understood in different regions of the world. 

Table 23: Benchmarking of competitor products 
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Marketing Plan 

Team FRESH has produced a cold chain box that will be used in the cold 

chain system as the vaccine travels from a manufacturer in developed countries to the 

health organizations in the less developed countries.  

Although our product can be used in any places throughout the cold chain, we 

will be targeting the region between the intermediate vaccine storage and 

hospital/health centers.  

Presently, our product is in the introductory stage. We first developed our 

product in 2011 and have made continual improvements and redesigns after 

conducting more research.  

A complete marketing plan can be found in Appendix F. 

Suggestions for F uture Work 

Although our cold box design was optimized to the best of our working 

ability, many improvements can be made to bring it closer to real utility. The overall 

size and dimensions of the box could be adjusted for desired use; there was a large 

range of vaccine storage capacity (5-25L) given for working cold boxes. We merely 

chose a point within the range that fit our design consideration. In addition, other 

commercially available phase change materials could have been considered in the 

design. Unfortunately, funding and availability for small scale testing limited our 

choices. We did not extensively investigate the overall quality of the insulation, 

where more optimal density or thermal conductivity could allow for a lower thickness 

of the necessary insulation. Lastly, design for manufacturing and assembly was not 
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heavily considered in our design and fabrication processes, where some procedures or 

further optimization would need to be applied for real world mass production. 

 Moreover, a working cold box would have to be approved by the World 

Health Organization, complying with their Performance, Quality, and Safety (PQS) 

performance specifications for cold boxes. This would require a number of additional 

features that our current design lacks, including: an approved lid seal, hinges, lid stay, 

catches and carrying handles. The box must also be corrosion and chemical resistant. 

In addition, the box should be able to optimally accommodate the four specified types 

of ice packs used in the cold chain, with attention given to the WHO preferred type 

(Type 2: 163mm x 90mm x 34mm). Each ice pack type has its own denoted size 

regulations, and each cold box should be dimensioned to maximize the surface area 

covered by the ice packs, with minimal gaps. It is important to optimize the PCM-ice 

ratio for different types of ice pack thickness (Type 1 is 26 mm, and Types 2-4 are 34 

mm). Similarly, the vaccine storage compartment could be better dimensioned to 

accommodate the most vaccine packages. However, because there is no uniform 

secondary packaging for the vials, this was a difficult design constraint to follow. In 

the end, the final box should also meet the WHO testing standards for vaccine 

loading, cold life, and drop tests, as well as be tested under various thermal conditions 

and stresses that could occur in the large variable environment that is the cold chain. 

Conclusion 

We have developed a unique method for modeling the thermal characteristics 

of cold boxes, an innovation that has allowed us to conceptualize a vaccine cold box 
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that will keep vaccines cool but not freeze them. Our cold box employs the use ice as 

the cooling agent, and PCM as the stabilizing agent in an optimized geometry to 

maintain vaccines at 2-8 ºC for. As such, our findings can be used to build new and 

advanced cold chain transportation mediums that will eliminate vaccine freezing, a 

widespread issue in the current cold chain, ultimately saving money and lives.  

A unique aspect of our cold box is that the cooling agents, the ice packs, are 

the only parts that are ever stored in a freezer or refrigerator. The vaccines are packed 

in the box initially and are not removed until they are to be used at their destination. 

Rather the ice packs are continuously swapped for newly frozen packs. Moreover, 

since the PCM separates the ice from the vaccines, the vaccines will never freeze, 

even if a healthcare work

the only maintenance required of the vaccine cold box during transport is to make 

sure the ice packs are still frozen. As such, we have included sensors attached to the 

ice packs which change from green to red when the ice is no longer cold enough, 

indicating the need for new ice packs. In this way we provide protection from the 

three major causes (among others) that were mentioned above: 1) the vaccines are 

only packed once, not repacked numerous times, reducing the chance for error in 

improper packing, 2) the vaccines are never placed in any refrigerator or cold room, 

hence, adjustable thermostats on freezers and refrigerators are not an issue, and 

finally, 3) the PCM stabilizes the freezing temperature from the ice packs, and the 

color change sensors diminish the responsibility and room for error sue to inadequate 

healthcare training.  

 



158 
 
 

Appendices 

Appendix A: Base Setup Code for ANSYS Models 

The following ANSYS code contains all the basic model parameters that are 
constants throughout each model iteration. By maintaining this generic file called 

 
 
/BATCH   
! /COM,ANSYS RELEASE 13.0    UP20101012       18:47:13    02/19/2012               
/input,menust,tmp,'',,,,,,,,,,,,,,,,1    
! /GRA,POWER   
! /GST,ON  
! /PLO,INFO,3  
! /GRO,CURL,ON 
! /CPLANE,1    
! /REPLOT,RESIZE   
WPSTYLE,,,,,,,,0 
/PREP7   
!*   
/NOPR    
KEYW,PR_SET,1    
KEYW,PR_STRUC,0  
KEYW,PR_THERM,1  
KEYW,PR_FLUID,0  
KEYW,PR_ELMAG,0  
KEYW,MAGNOD,0    
KEYW,MAGEDG,0    
KEYW,MAGHFE,0    
KEYW,MAGELC,0    
KEYW,PR_MULTI,0  
KEYW,PR_CFD,0    
/GO  
!*   
! /COM,    
! /COM,Preferences for GUI filtering have been set to display: 
! /COM,  Thermal   
!*   
!*   
ET,1,SOLID70 
!*   
TOFFST,273   
!*   
MPTEMP,,,,,,,,   
MPTEMP,1,-100    
MPTEMP,2,0   
MPTEMP,3,0.001   
MPTEMP,4,100 
MPDATA,DENS,1,,916.2 
MPDATA,DENS,1,,916.2 
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MPDATA,DENS,1,,1000  
MPDATA,DENS,1,,1000  
MPTEMP,,,,,,,,   
MPTEMP,1,-100    
MPTEMP,2,0   
MPTEMP,3,0.001   
MPTEMP,4,100 
MPDATA,KXX,1,,2.22   
MPDATA,KXX,1,,2.22   
MPDATA,KXX,1,,.58    
MPDATA,KXX,1,,.58    
MPTEMP,,,,,,,,   
MPTEMP,1,-100    
MPTEMP,2,-.251   
MPTEMP,3,-.25    
MPTEMP,4,.25 
MPTEMP,5,.251    
MPTEMP,6,100 
MPDATA,C,1,,2050 
MPDATA,C,1,,2050 
MPDATA,C,1,,668000   
MPDATA,C,1,,668000   
MPDATA,C,1,,4210 
MPDATA,C,1,,4210 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,2,,37.24 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,C,2,,1300 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,KXX,2,,0.0227 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,3,,1.293 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,C,3,,1005 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,KXX,3,,0.0243 
! LGWRITE,'base_settings','lgw','H:\Desktop\GEMS\',COMMENT   
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Appendix B: Sample Code for one of the geometry models in ANSYS 

 /BATCH   
! /COM,ANSYS RELEASE 13.0    UP20101012       16:29:02    01/29/2012               
/input,menust,tmp,'',,,,,,,,,,,,,,,,1    
! /GRA,POWER   
! /GST,ON  
! /PLO,INFO,3  
! /GRO,CURL,ON 
! /CPLANE,1    
! /REPLOT,RESIZE   
WPSTYLE,,,,,,,,0 
! /REPLOT,RESIZE   
/INPUT,'base','lgw','H:\Desktop\GEMS\Prototype_1\',, 0   
!*   
MPDE,ALL,2   
TBDE,ALL,2   
MPTEMP,,,,,,,    
MPDE,ALL,4   
TBDE,ALL,4   
MPTEMP,,,,,,,    
MPTEMP,,,,,,,,   
MPTEMP,1,-100    
MPTEMP,2,-.251   
MPTEMP,3,-.25    
MPTEMP,4,.25 
MPTEMP,5,.251    
MPTEMP,6,100 
MPDE,C,1 
MPDATA,C,1,,2050 
MPDATA,C,1,,2050 
MPDATA,C,1,,668000   
MPDATA,C,1,,668000   
MPDATA,C,1,,4210 
MPDATA,C,1,,4210 
! LGWRITE,'base','lgw','H:\Desktop\GEMS\',COMMENT    
BLOCK,0,.3302,0,.3302,0,.3302,   
BLOCK,.0254,.3048,.0254,.3048,0.0254,.3048,  
BLOCK,0.0254,0.3048,0.0254,0.3048,0.0254,0.3048, 
BLOCK,.039605,.290595,.039605,.290595,.039605,.290595,   
BLOCK,0.039605,0.290595,0.039605,0.290595,0.039605,0.290595, 
! vlist, all   
VSBV,       1,       2   
! vlist, all   
! VPLOT    
VSBV,       3,       4   
! vlist, all   
FLST,2,3,6,ORDE,3    
FITEM,2,1    
FITEM,2,5    
FITEM,2,-6   
VGLUE,P51X   
! /VIEW,1,1,2,3    
! /ANG,1   
! /REP,FAST    
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! /VIEW,1,,,1  
! /ANG,1   
! /REP,FAST    
WPSTYLE,,,,,,,,0 
WPSTYLE,,,,,,,,0 
! LGWRITE,'geom','lgw','H:\Desktop\GEMS\13-IN~3W\ALL_S~5W\',COMMENT  
! vlist, all   
SMRT,6   
SMRT,7   
SMRT,8   
SMRT,7   
SMRT,6   
CM,_Y,VOLU   
VSEL, , , ,       1  
CM,_Y1,VOLU  
CMSEL,S,_Y   
!*   
CMSEL,S,_Y1  
VATT,       1, ,   1,       0    
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
!*   
MSHAPE,1,3-D  
MSHKEY,0 
!*   
CM,_Y,VOLU   
VSEL, , , ,       1  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   
!*   
VMESH,_Y1    
!*   
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
!*   
! NLIST,ALL, , , ,NODE,NODE,NODE   
! vlist, all   
! VPLOT    
WPSTYLE,,,,,,,,0 
WPSTYLE,,,,,,,,0 
CM,_Y,VOLU   
VSEL, , , ,       2  
CM,_Y1,VOLU  
CMSEL,S,_Y   
!*   
CMSEL,S,_Y1  
VATT,       5, ,   1,       0    
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
!*   
CM,_Y,VOLU   
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VSEL, , , ,       2  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   
!*   
VMESH,_Y1    
!*   
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
!*   
! VPLOT    
WPSTYLE,,,,,,,,0 
WPSTYLE,,,,,,,,0 
CM,_Y,VOLU   
VSEL, , , ,       3  
CM,_Y1,VOLU  
CMSEL,S,_Y   
!*   
CMSEL,S,_Y1  
VATT,       3, ,   1,       0    
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
!*   
CM,_Y,VOLU   
VSEL, , , ,       3  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   
!*   
VMESH,_Y1    
!*   
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
!*   
! LGWRITE,'meshed','lgw','H:\Desktop\GEMS\13-IN~3W\ALL_S~5W\',COMMENT    
!*   
ANTYPE,4 
!*   
TRNOPT,FULL  
LUMPM,0  
!*   
/UI,MESH,OFF 
! VPLOT    
WPSTYLE,,,,,,,,0 
WPSTYLE,,,,,,,,0 
! /VIEW,1,1,1,1    
! /ANG,1   
! /REP,FAST    
FLST,2,948,1,ORDE,2  
FITEM,2,1    
FITEM,2,-948 
IC,P51X,TEMP,-10,    
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FLST,2,3,1,ORDE,3    
FITEM,2,1    
FITEM,2,949  
FITEM,2,1418 
IC,P51X,TEMP,22.5,   
FLST,2,6,5,ORDE,2    
FITEM,2,1    
FITEM,2,-6   
!*   
/GO  
DA,P51X,TEMP,22.5    
FINISH   
/SOL 
DELTIM,60,0.01,300   
OUTRES,ERASE 
OUTRES,NSOL,5    
TIME,300000  
! LGWRITE,'ready','lgw','H:\Desktop\GEMS\13-IN~3W\ALL_S~5W\',COMMENT 
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Appendix C: Images of Construction of Prototype 1.0 

 
Figure 58: Cutting a sheet of Lexan using the Black and Deck jigsaw 

 

 

Figure 59: Assembling foam insulation around inner Lexan frame 
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Figure 60: Using glue to seal gaps between Lexan and Polyisocyanurate base 

 
Figure 61: Foreground - assembled box, background - construction of box cover 
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Figure 62: Team effort in assembling PCM slot on underside of box cover 

 
Figure 63: Finished PCM slot on underside of box cover 
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Figure 64: Box cover being placed on box 

 
Figure 65: Prototype 1.0 
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Appendix D: Images from Construction of Prototype 2.0 

 
Figure 66: Sahil Shah measuring the Polystyrene sheet for cutting 

 
Figure 67: Assembled outer Lexan frame atop the Polyisocyanurate base 
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Figure 68: Assembled Lexan frame comprising inner and outer panels atop the 

Polyisocyanurate base 

 

 
Figure 69: Inner Lexan frame surrounded by 1.5" thick insulation foam 
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Figure 70: Inside of foam box (with Lexan frame removed) while glue dries in the 

gaps 
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Figure 71: Lexan frame inside polystyrene frame. Spacers are used to ensure frame 

dries correctly 
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Figure 72: Corrugated plastic (white border) drying around box.  

Weights (power sander and circular saw) and C-clamps were used to apply pressure 
while drying. 

 

 
Figure 73: Prototype 2.0 
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Appendix E : Instruction Manual 

INSTRUCTIONS: Traveling Container 
 

Precautions 
 Take care when handling the PCM cold box. 
 Always make sure that the lid is tightly secured onto the PCM cold box. 
 Minimize time of exposure of inside of PCM cold box to external 

environment. 
 After leaving the central level, do not place the PCM cold box in a cold room 

or freezer. Only place ice packs in freezer. 
 
Emergency Scenarios 

 In the event of an emergency, adhere to the contingency plan prepared by 
responsible health officers at respective health centers. 

 Do not leave a cold box or vaccine carrier in a vehicle that is standing in the 
sun. Take it out of the vehicle and put it in the shade. 

 If there is no shade for PCM cold box when left outside, drape a material that 
reflects light over it. The ideal material is light-colored (preferably white) 
cloth or paper. 

 In case of power failure, place unfrozen ice packs in the bottom of a 
refrigerator to keep it cool, as indicated below. 

 

 
Figure 74: Standard refrigerator with freezer compartment. 
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Unfrozen ice packs should be stored in freezer compartment (top) unless there is a 
power failure, at which point unfrozen ice packs should be stored in the bottom of the 

refrigerator. 

 If constrained for time to refreeze ice packs, and pre-frozen ice packs are not 
available at health center, freeze the ice pack as long as possible and place it 
back in the PCM cold box. In transport, keep the PCM cold box in the shade, 
and make another stop as soon as possible to fully freeze ice packs. 

 In the following situations, the condition of the PCM cold box is 
compromised. Vaccines must immediately be taken out of the PCM cold box, 
and placed back into the existing cold chain transportation/storage 
infrastructure. The PCM cold box should then be sent back to origin, where 
the container will be repaired and working parts will be recycled. 

a. PCM breaks or leaks. If PCM does not fill approximately 90% of its 
packaging, this means that it has been compromised. 

b.  Corrugated plastic gets punctured 
 
Responsibility 

 In order to successfully execute this plan, every transporter and at least one 
responsible officer at each respective health center (as identified by the head 
of the MOH or institution) should follow this flow chart. 

 There is never a situation in which the PCM cold box will require expertise to 
 section for situations in which there 

are easy repairs; otherwise send the PCM cold box back to distributor. 
 Over time, integrate the time sheet into tailored checklists that healthcare 

workers currently use when transporting/storing vaccines throughout the cold 
chain. 

 Over time, responsible health officers must strive towards these goals 
(adapted from PATH, USA) 

o C reate awareness of the problem among staff. Always explain 
global evidence and dangers of freezing certain vaccines to healthcare 
workers involved in the vaccine supply chain. 

o Establish routine surveillance as a practice. Establish practices of 
continual monitoring, evaluating, and adapting programs to the local 
environment. Conduct local cold chain freezing studies regularly. 

o Push policy change. Establish new guidelines and procedures for 
preventing accidental freezing in the cold chain. Network with 
advocacy groups for targeted local action. 

o Promote public awareness of immunization. Retrain, supervise, and 
provide materials such as posters and stickers. 

 
Optional Design Additions 

 Include sticker of the target c PCM cold box to 
further protect from mishandling. Collaborate with PCM cold box distribution 
site to acquire stickers or labels. 
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 In collaboration with PCM cold box distribution site, ensure that all time 
sheets and instruction manuals are appropriately translated to local languages 
en route of cold chain. 
 

Note about F low Chart 
 Always start with the first problem shown in the problem-solving flow chart.  
 Make sure that a problem does not exist before moving on to the next step. 

Note all irregularities in IM E SH E E T: Traveling Container.  This sheet 
will be protected in a plastic sleeve attached to the outside of the PCM cold 
box. 

 Record all time/date values as indicated in 
Container.  

 
Assumptions 

 Vaccines have already undergone the usual procedures for checking potency 
under supervision at the central level before being placed for the first time into 
PCM cold box. 

 Traveling containers will be distributed from the central level. 
 Responsibility has been given to responsible officers at every point of the cold 

chain for adhering to this flow chart. 
 Upon delivery of the vaccines to the target community, standard procedures 

regarding testing vaccine potency (VVM, Shake Test) will be followed. 
 Traveling containers will be returned to the central level by whatever means 

appropriate in the target community. Traveling container will be handled with 
care. 

 
Instructions 
 

 
Figure 75: Cross-section of PCM cold box 



176 
 
 

 
Figure 76: Color sensor on PCM panels in PCM cold box 

 Is the PCM cold box in working condition (No broken PCM panels, no visible 
leaks inside/outside the container, PCM panels look 90% full)?  

o IF NO, send back to PCM cold box distribution site. 
o IF YES, continue to next step. 

 Place vaccines in internal compartment. Is the internal compartment fully 
closed (plastic lid is fully pressed down to make a tight fit)?  N O T E : Do not 
open this compartment until shipment reaches end of chain. 

o IF NO, close it completely, so that the plastic lid makes a tight fit. 
o IF YES, continue to next step. 

 Is PCM cold box in the cold room?  
o IF NO, place in cold room. 
o IF YES, continue to next step. 

 Are WHO PQS pre-qualified ice packs available?  
o IF NO, acquire ice packs by asking head of health center. 
o IF YES, continue to next step. 

 Observe ice packs. Are WHO PQS pre-qualified ice packs completely frozen 

splashing; make sure that the center is frozen as well as the outside)? 
o IF NO, keep the ice packs in the freezer compartment of 

refrigerator/cold room to freeze thoroughly. Check if completely 
frozen before proceeding to next step. 

o  IF YES, continue to next step. 
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 Insert the ice packs into the vaccine carrier. Have ice packs been properly 
oriented within PCM cold box (Figure 75)? 

o IF NO, use Figure 75 as a guide to ensure proper orientation. 
o  IF YES, continue to next step. 

 Has the current local time/date/location been written in the T OP B O X  on the 
TIM E SH E E T: Traveling Container N O T E : I r regularities in the 

journey (emergencies as noted above, changed time schedule) will be 
 

o IF NO, record the local time/date/location on the  
Traveling Container  

o  IF YES, continue to next step. 
 In B O L D letters, Mark time (48 hours later) that ice pack must be refrozen 

based on projected transport route. Write in the F IRST C O L U M N on 
 Has projected time/date been recorded in 

appropriate time zone/language for the next stop?  
o IF NO, record the projected local time/date/location on the 

 
o  IF YES, continue to next step. 

 Traveling container is ready to be transported. Has the PCM cold box been 
placed on a level surface? 

o IF NO, try to ensure the most level surface possible so that the PCM 
cold box may stay tightly closed for the duration of transport. 

o  IF YES, continue to next step. 
 Upon reaching the next stop-over (within 48 hours of loading ice packs), has 

the responsible health officer been contacted? 
o IF NO, contact the responsible officer immediately. 
o  IF YES, continue to next step. 

 Have there been any irregularities in the journey? 
o ove in 

INSTRUCTIONS, and make sure there have been no irregularities. 
Then proceed to next step. 

o IF YES, indicate these to the responsible health officer using the 
 Answer any questions, and 

ensure that the health officer knows that he/she must continue filling 
the  for the next leg of the 
journey. Proceed to next step. 

 (Next health officer) Is the PCM cold box in working condition (No broken 
PCM panels, no visible leaks inside/outside the container, PCM panels are 
90% full)?  

o IF NO, send back to PCM cold box distribution site. 
o IF YES, continue to next step. 

 Bring the PCM cold box to an area at room-temperature. Quickly open the 
container, and check the color sensor on the PCM panels (Figure 76). Is the 
sensor red? 

o IF NO, quickly take out ice packs, and place them in the freezer 
compartment of refrigerator/cold room to refreeze. 
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o IF YES, quickly take out ice packs, and place them in the freezer 
compartment of refrigerator/cold room to refreeze. 

 Has the current local time/date/location been written for SE C O ND 
C O L U M N TIM E SH E E T: Traveling Container  

o IF NO, record the local time/date/location on the 
Traveling Container  

o  IF YES, continue to next step. 
 Has the PCM cold box been placed in a safe location where it will not be 

touched by others? 
o IF NO, secure a safe location so that the PCM cold box remains in 

optimal condition for the remainder of the journey. 
o IF YES, continue to next step. 

**If there are completely frozen WHO PQS ice packs available in the health center, 
you may swap those into the PCM cold box directly before the shipment leaves for 
transport. The same ice packs from the beginning of the journey do not need to be 
used. 

 Are ice packs completely frozen (no liquid inside the rigid pack; shake to 
make sure that the center is 

frozen as well as the outside)? 
o IF NO, keep the ice packs in the freezer compartment of 

refrigerator/cold room to refreeze. Check if completely frozen before 
proceeding to next step. 

o  IF YES, continue to next step. 
 Insert the ice packs into the vaccine carrier. Have ice packs been properly 

oriented within PCM cold box (Figure 75)? 
o IF NO, use Figure 75 as a guide to ensure proper orientation. 
o  IF YES, continue to next step. 

 Has the current local time/date/location been written in the T H IRD 
C O L U M N TIM E SH E E T: Traveling Container N O T E : 
I r regularities in the journey (emergencies as noted above, changed time 

 
o IF NO, record the local time/date/location on the 

Traveling Container  
o  IF YES, continue to next step. 

 In B O L D letters, Mark time (48 hours later) that ice pack must be refrozen 
based on projected transport route. Write in the F IRST C O L U M N , 
SE C O ND R O W , on  Has projected 
time/date been recorded in appropriate time zone/language for the next stop?  

o IF NO, record the projected local time/date/location on the 
 

o  IF YES, continue to next step. 
 Traveling container is ready to be transported. Has the PCM cold box been 

placed on a level surface? 
o IF NO, try to ensure the most level surface possible so that the PCM 

cold box may stay tightly closed for the duration of transport. 
o  IF YES, continue to next step. 
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**Repeat above steps to load and refreeze ice packs, while recording indicated time 
points in the next row of  until you arrive at 
the target community. 

 Upon reaching the target community, has the responsible officer been 
notified? 

o IF NO, immediately notify the point health officer. If there is 
difficulty, inform health professionals on site, and suggest contacting 
the Ministry of Health. 

o IF YES, continue to next step. 
 (Next health officer) Is the PCM cold box in working condition (No broken 

PCM panels, no visible leaks inside/outside the container, PCM panels look 
90% full)?  

o IF NO, send back to PCM cold box distribution site. 
o IF YES, continue to next step. 

 Open internal storage compartment within PCM cold box, and take out 
vaccines in a safe, stable, and shaded area if possible. Defer to check vaccine 
potency by WHO procedures (Shake Test, VVM). Have vaccines been 
unloaded and passed on to health staff? 

o IF NO, unload the vaccines and notify responsible health officer. Then 
close PCM cold box, and send it back to central level distribution site. 

o IF YES, close PCM cold box and send it back to central level 
distribution site. 
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T I M E SH E E T : T raveling Container 
 
 
 
 

 
Estimated 
time/date/location 
for refreezing ice 
packs 

Time/date/location 
ice packs are placed 
into freezer 

Time/date/location ice 
packs are reloaded 
into PCM cold box 

Additional 
Comments 
(Note any 
ir regularities 
here) 

    

    

    

    

T ime/date/location ice packs initially loaded into traveling container : 
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Appendix F : Marketing Plan 

E X E C U T I V E  SU M M A R Y  

Mission 

freezing and can be used throughout the cold chain.  

Company 

Team FRESH was founded in 2009 and we are an innovator in the vaccine 

storage marketplace. We aspire to develop and deliver to our customers a cheaper and 

more efficient product to be used in the cold chain system.  

Business 

We are a service provider that is seeking to sell its prototype design to a 

manufacturer that will be able to mass-produce our product. Our company is at the 

seed stage of business, having just developed an initial prototype. We will conduct 

more field-testing, experimentations and lab testing to develop a better-designed 

prototype. 

Currently, our company has continued to perform more research to determine 

the optimal dimensions for our second prototype. We have sufficient funding to start 

the initial research and development; however, we need more funds to conduct field-

testing that will help better emulate the conditions of our marketplace.  

Product or Service 

Team FRESH will produce a vaccine cold box design that will be used in the 

cold chain system as the vaccine travels from a manufacturer in developed countries 

to the health organizations in the LMICs.  
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Our product is unique because it has a larger vaccine storage capacity and is 

more cost effective than the current products in the market. 

The Market 

The organizations that oversee the cold chain in LMICs are the World Health 

both part of the GAVI alliance, an initiative started to coordinate and collaborate 

between Non-Governmental Organizations (NGOs) and target countries. These 

organizations are the main buyers of vaccine cold boxes such as ours, and they have 

stringent requirements that every refrigerator and cold box must meet before it can be 

considered for implementation in the cold chain. Therefore, our primary concern 

during testing is to prove that our concept can meet these requirements. 

Competition 

We outlined the commercially available refrigeration and cold boxes that are 

similar to our prototype, and we characterized each product in terms of the parameters 

that show its ability to store vaccines effectively by examining the literature available 

by the manufacturers. The parameters examined were: Active cooling, temperature 

stability between 2-8 °C, portability/weight, durability, ease of reparability, storage 

capacity to net volume ratio, cost-effectiveness, storage duration and user input.  

Risk/ Opportunity 

The greatest risks we face are limited field experience, not meeting WHO 

standards, production, and competition. We know that we can overcome these risks 

by connecting with experts, completing proper testing, outsourcing our production, 
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and completing a thorough benchmarking of the competition and emerging 

technologies. The latter we have already completed.  

We have an exciting and promising future, with many substantial 

opportunities ahead of us. We have the opportunity to become the primary vaccine 

cold box in the cold chain for LMICs, if we can overcome the risks we have outlined.  

Management T eam 

Our team is composed of 13 undergraduate students who come from diverse 

backgrounds and academic pursuits. We have five women and eight men whose 

disciplines vary from business, Spanish, Arabic, engineering, government and politics 

to biology.  

Capital Requirements 

We seek additional funds that will enable us to conduct more testing. This is a 

necessary step as we hope to address the demands and requirements of the World 

Health Organizations and the health centers in the less developed countries.  

 

M ISSI O N 

Mission Statement 

Our goal is to develop a vaccine cold box that prevents vaccine freezing and 

can be used throughout the cold chain. We aspire to carry a reputation in the 

marketplace for developing and delivering a cheaper, more efficient product that is 

sold at an affordable price for the primary use in the vaccine storage market. We will 

achieve this through extensive research into the product design and specifications, as 

well as our thorough understanding of the marketplace and its demands. 
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To accomplish our goal, Team Fixing Refrigeration Efficiency to Sustain Health 

(FRESH) needs capital to continue improving our research and development, as well 

as expand our field-testing procedures to create an optimal prototype.  

In pursuit of our goal, we will treat customers and the community with the best 

customer service, answering any questions and concerns that they may have. The 

foundation of our relationship begins with a quality product; after developing a sound 

initial connection with the stakeholders, through first-class service, we hope to 

continue to work with our partners into the future.  

 

T H E C O M P A N Y 

Team FRESH was founded in 2009 under the Gemstone program, a unique 

multidisciplinary four-year research program for selected undergraduate honors 

students at the University of Maryland. Our company addresses the current need in 

the vaccine distribution m  

In addition to the effects on public health due to vaccine wastage, there is a 

significant loss of capital. We hope to design a cold box that will prevent freezing and 

reduce wasted capacity in vaccine carriers. We will develop a prototype that we can 

outsource to another company for mass-production.  

Strategic A lliances 

Team FRESH has developed important and profitable strategic alliance with 

the Centers for Disease Control (CDC). CDC is an organization under the Department 

and tools that people and communities need to protect their health  through health 
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promotion, prevention of disease, injury and disability, and preparedness for new 

health threats (Control, 2010). Through our partnership, we are able to receive 

current feedback about our findings concerning the cold chain. This partnership helps 

us understand what the optimal strategy is concerning our prototype design. 

 

T H E B USI N ESS 

Team FRESH is a service provider that seeks to sell its prototype to a 

manufacturer mass-production. Our company is at the seed stage of business, having 

just developed an initial prototype. We will conduct more field-testing, 

experimentations and lab testing to develop a better-designed prototype. 

Product or Service 

Team FRESH will produce a cold box that will 

be used in the cold chain system as the vaccine travels 

from a manufacturer in developed countries to the 

health organizations in the less developed countries 

(Figure 77). Although our product can be used at any 

stage throughout the cold chain, we will be targeting 

the region between the intermediate vaccine storage 

and hospital/health centers, as it is here where most of 

the deficiencies in vaccine transportation occur. 

Presently, our product is in the introductory stage. We first developed our 

product in 2011 and have made continual improvements and redesigns after 

conducting more research. 

Vaccine  manufacturer  

Primary  Vaccine  Store  
(Ministry  of  Public  Health)  

Intermediate  Vaccine  
Store  (Regional)  

Intermediate  Vaccine  
Store  (Provincial)  

Intermediate  Vaccine  
Store  (District)  

Hospital/health  centers  

Cold  box/vaccine  carriers    

Figure 77: The cold chain 
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Unique Features or Proprietary Aspects of Product 

Although there are similar products that address the same market, we are able 

to differentiate ourselves because of two specific reasons: affordability and vaccine 

storage capacity. We believe that the prices for similar products in the current 

marketplace are too high. By selecting optimal materials and design, we believe we 

have created a better cold box than those currently in existence. In addition, most of 

the current cold boxes have a relatively low vaccine storage capacity compared to 

their external dimensions. We have addressed that issue and have a greater effective 

storage capacity than other products.  

Research and Development 

Our research will combine lab bench measurements and numerical 

simulations towards the optimization of temperature stability for vaccines as they 

move through the cold chain. Characterization of several phase change materials 

(PCMs) will use well-established experimental techniques in materials 

characterization to obtain data. This data will fill existing inhibiting gaps in these 

red for accurate simulation, prediction, and 

validation of temperature stability. The greatest impact of our proposed work is the 

development of novel strategies for more efficient integration of PCM technology 

into engineering design. The majority of current strategies that incorporate PCMs into 

passive refrigeration systems simply use more PCM to deliver temperature stability 

for a longer duration. The novelty of our approach is that we consider the 

arrangement of PCMs with respect to heat sources, heat sinks, and the environment 

that will optimize temperature stability at multiple temporal and spatial scales in 
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addition to the quantity of PCM used. Our design criteria for the proposed project are 

guided by the necessity to decrease freeze damage to vaccines, increase payload 

volume, and maximize ease of use for operators in order to minimize human errors, 

thereby increasing efficiency of vaccine delivery. Through comprehensive materials 

characterization, novel and more accurate predictive simulation approaches, and 

experimental validation of these theoretical models, our work should broadly 

transform the engineering of passive refrigeration systems. This will lead to further 

innovations by allowing for a series of experiments that can develop a thermally 

optimized system, which is a unique approach to the use of modeling programs. 

New and Follow-up Products 

There are many alternative uses for our product. In addition to vaccines, our 

box can be adapted to be used in various other markets, such as blood, organs, food, 

insulin, and other pharmaceuticals.  

Production 

Our product will be subcontracted in order to mass-produce our prototype. We 

do not possess the resources necessary to produce a cold box in large quantities. 

Uniqueness 

Our product is unique because we will have an advantage in the marketplace 

through our patent and partnerships with various organizations.  
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T H E M A R K E T  

Market Definition 

Since vaccines contain temperature-sensitive biological substances, they must 

be kept between 2-8 °C from the time of production until usage to maintain efficacy 

and prolong shelf life (Craig, 2008). If subjected to improper refrigeration 

(overheating or freezing), vaccines are rendered ineffective. Conditions conducive to 

vaccine storage are achieved through the cold chain, which is the temperature-

regulated supply network for vaccine transport and storage. The cold chain equipment 

that keeps vaccines cool consists of various cooling systems including refrigerated 

vehicles, vaccine carriers, cold storage rooms, freezers, refrigerators, and cold boxes. 

In a typical cold chain, large shipments of up to 150,000 vials of vaccines are shipped 

or flown in refrigerated containers or compartments from the manufacturer to the 

national airport of the destination country (UNICEF, 2004). The vaccines are stored 

in a cold room at the airport until a refrigerated truck delivers them to the primary 

v om where 

vaccines are delivered periodically to regional centers, provincial health centers, local 

health centers, and eventually individual outreach clinics (Figure 77) ("Guidelin for 

Establishing or Improving Primary and Intermediate Vaccine Stores," 2002). 

The entire delivery process, depending on demand, can be as short as a month 

or as long as three months (UNICEF, 2004). Various studies have shown that 

vaccines in the cold chain within a wide range of countries including Thailand, India, 

Malaysia, Indonesia, Papua New-Guinea, Vietnam, New Zealand, Australia, Bolivia, 

Ethiopia, and even the United Kingdom and the United States are often exposed to 
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freezing (<0 °C) temperatures, likely rendering them impotent due to the inactivation 

of key organic components (D. M. Matthias, Robertson, J., Garrison, M. M., 

Newland, S., Nelson, C., 2007; C. M. Nelson, Wibisono, H., Purwanto, H., Mansyur, 

I., Moniaga, V., & Widjaya, A., 2004; Techathawat, 2007; T. Wirkas, Toikilik, S., 

Miller, N., Morgan, C., & Clements, C.J., 2007). Such vaccine losses result in great 

financial loss for immunization programs, as well as potential danger to patients. 

One of the most prevalent factors attributed to vaccine freezing is the lack of a 

stable temperatures in the cold boxes, which contain ice packs that freeze at 0 °C 

("Landscape Analysis: Cool Chain Technologies", 2008). In one study, a staggering 

70% of vaccines were discarded upon delivery, mostly due to freeze-damage 

(Techathawat, 2007). The widespread freezing of vaccines can be attributed to many 

factors, the most prevalent of which is the lack of stable temperatures in the 

refrigeration cell during transport and storage. A study of the cold chain in Papua 

New Guinea showed that during transport from the provincial vaccine stores (PVS) to 

local health centers and outreach clinics, vaccine loads were partially freeze-

damaged, reaching an average temperature of -3 °C (T. Wirkas, Toikilik, S., Miller, 

N., Morgan, C., & Clements, C.J., 2007). 

Freezing during transport is ascribed to the storage method en route, which 

generally consists of boxes lined with ice packs. Vaccines that come in direct contact 

with the ice packs will likely freeze; however, placing a buffer region in between the 

vaccines and ice requires larger transport containers and greater transport capacity, 

thus increasing costs and decreasing efficiency. There is also no regulation of 

temperature within the cold boxes ("Landscape Analysis: Cool Chain Technologies", 
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2008). In addition, trucks carrying vaccines often struggle to transport vaccines due to 

poor roads or lack of roads in remote areas (Hopkins, 1985). 

Once the vaccines reach the villages, the most basic refrigeration technology 

and transportation methods are used to deliver and store the vaccines. The power 

supply becomes increasingly intermittent and transportation becomes more 

difficult. These problems manifest themselves throughout the local level of the cold 

chain, resulting in inefficient and unsafe delivery of vaccines. In terms of 

refrigeration, it is at this stage that many vaccines are kept in ice-lined boxes, which 

can cause the vaccines to freeze, rendering them useless (WHO, 1999). A PEPFAR 

for AIDS Relief) evaluation of local vaccine stores 

in Ethiopia showed that the intermittent power supply there necessitated the use of 

back-up power sources that are often not reliably in place. In theory, the back-up 

power sources are designed to safely power down the equipment when the main 

power supply cuts off, but improper wiring of these sources leads to unstable 

conditions for the vaccines. The evaluation concluded that electricity needs are not 

integrated in health center planning (USAID, 2008). Furthermore, in many regions of 

South East Asia, particularly in Indonesia, local midwives are the intermediaries 

administering the vaccines. They often have to store vaccine vials in their households 

for the entire village. Standard refrigerators are cumbersome in size and energy 

demands (C. M. Nelson, Wibisono, H., Purwanto, H., Mansyur, I., Moniaga, V., & 

Widjaya, A., 2004). 

Other recent studies have also shown similar issues in relation to regional cold 

chains. Malik, et al. conducted a survey in Kolkata, India, through which they 
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identified issues such as cold chain maintenance, placement of vaccines, and 

availability of some equipment. The authors were able to address some of these 

problems, but the issue of long-term storage persisted (Dasgupta S, 2010). In another 

recent article published by Lee et al. in 2011, the authors replaced the traditional ten 

dose vials with one dose vials in an effort to reduce the amount of wasted 

vaccines. The increased number of vials proved problematic, however, as it presented 

space issues in the refrigerators, and the doctors noticed more broken vials as a result 

of mishandling (Lee et al., 2011). These studies show the importance of strengthening 

the cold chain infrastructure. 

In 2008, the WHO released an analysis of the current cold chain landscape 

and the main challenges and necessities for the future. The analysis notes that there 

will be a eight-fold increase in the number of vaccines distributed in the next few 

years, necessitating an increase in storage capacity. The landscape analysis also 

underscored the importance of developing passive cooling technologies and improved 

temperature monitoring devices ("Landscape Analysis: Cool Chain Technologies", 

2008). 

The needs presented by these studies represent an opportunity for a novel 

icebox design that would address these issues in a cost-effective manner. There are a 

number of possible refrigeration methods that can help minimize vaccine freezing. 

Compression refrigeration, as is used in common household refrigerators, is the most 

used method of active cooling, but it has significant drawbacks that prevent it from 

being practical for vaccine storage and transportation. Any active refrigeration device 

is energy intensive, so they may not be feasible in resource-poor areas where energy 
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is not always reliably available (Xinhua, 2009). In addition, refrigerators are heavy 

and relatively fragile, which precludes frequent transport in areas where conditions 

are less than ideal. 

Due to these considerations, we will deploy PCMs as a primary passive 

cooling source. A cold box incorporating PCM is ideal for transportation because it 

does not require external energy input and is relatively light and durable compared to 

a refrigerator ("Product Information Sheets", 2000). Furthermore, PCMs are generally 

less costly and have a longer lifespan than compression refrigeration systems 

("Landscape Analysis: Cool Chain Technologies", 2008). 

Market Segment 

The organizations that oversee the cold chain in LMICs are the World Health 

both part of the GAVI alliance, an initiative started to coordinate and collaborate 

between these NGOs and the target countries. These organizations are the main 

buyers of vaccine cold boxes such as ours, and they have stringent requirements that 

every refrigerator and cold box must meet before it can be considered for 

implementation in the cold chain. Therefore, our primary concern during testing is to 

prove that our concept can meet these requirements. The main standards have been 

compiled in the Performance and Quality Standards (PQS) published by the WHO. 

The different points relevant to our long-range vaccine cold box concept are 

summarized in the following table: 
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Table 24: WHO requirements ("PQS Performance Specification: Vaccine Cold Box", 
2008) 

Category Requirement Prototype Comments 
Performance 

Vaccine Storage 
Capacity 

5.0  25.0 Liters 8.4 L 

Cold Life 96 hours 96 hour cold life 
Shape Square or rectangular Square shaped payload 
Stacking Multiple units must be 

stackable 
Flat top, bottom, and 
sides 

Robustness Withstand a one meter 
drop on all sides/angles 

Testing pending 

Environmental Considerations 
Ambient Temperatures Usable in temperatures 

from -30 °C - +50 °C 
Testing Pending 

Physical Characteristics 
Weight Max: 50 kg. Weight: 

Interface Compatibility 
Ice Packs Must accommodate 

different types of 
approved ice packs 

PCM slots can 
accommodate ice 
packs 

Vaccine Packaging Must accommodate 
different vaccine 
packaging 

Versatile cube for 
vaccine payload space 

Transportation Mode Must fit in any transport 
vehicle used 

Small, rectangular 
package 

Materials 
Casing Resistant to UV 

degradations and must 
be water proof 

Corrugated plastic is 
rugged material 

Disposal All materials must be 
environment-friendly 

All materials can be 
disposed of safely 

 
Our final prototype has been designed specifically to follow the PQS 

requirements, and we have tested some properties to verify that they meet the 

standards. Our prototype still needs to be tested in the field in an actual cold chain 

setting in order for us to confirm its practical versatility, usability, and durability. 

After testing our cold box in a LMIC
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UNICEF that our concept can lead to an improved cold box design that can help 

decrease vaccine wastage by preventing freezing during transport. 

Marketing 

Our marketing plan is unorthodox in the sense that we hope to prove our 

concept so that we may contract our prototype to be mass-produced by a third party. 

If WHO approves our design, we will be able to distribute our product design. We 

hope to become the leading product in the cold chain system market. 

Position 

We will be position our product design as an exceptional product at an 

affordable cost. We have increased the vaccine storage capacity in our product, a 

characteristic that was not answered as best as possible by other products.  

Pricing 

Our pricing strategy is to price our prototype as a cheap, yet quality product. 

We want to have the highest market share in the marketplace. We are focused on 

becoming a market share leader because we believe our product will answer the 

problems in the cold chain the most efficiently. 

Distribution Channels 

Our distribution channel is the third-party that we contract to mass-produce 

our prototype. This makes sense because the manufacturers have more resources to 

distribute the products.  

C O M P E T I T I O N 

In Table 23 in the text (also reproduced below), we outlined the refrigeration 

products similar to our prototype that are commercially available. We characterized 
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vaccines effectively by examining the literature available from the manufacturers. 

The first parameter reviewed was if the product used active cooling by a compressor, 

as this was one of our primary concerns when designing our prototype. We noticed 

that in general, the active cooling devices, such as the CSafe, Waeco CF-11, Fridge 

Freeze, and SunFrost refrigerators were the most costly and least durable of the 

products we assessed. This finding confirmed our research that showed the 

impracticality of using compression refrigeration in a traveling vaccine cold box. One 

device, the Envirotainer uses a unique active cooling method that utilizes dry ice. 

This product does not have a compressor, but it is designed for long-term storage, 

rather than transport. 

Next, we evaluated if the box or refrigerator could keep the inside 

compartment between the desired 2-8 °C. The APEX cold box was the only product 

that cannot maintain the desired temperature range because it uses ice packs in close 

proximity to the internal compartment. This lack of ability to store vaccines between 

2-8 °C also shows that ice packs are not ideal for vaccine storage. 

The next parameters we 

durability, and ease of repair. We determined portability by considering the exterior 

dimensions, and durability and ease of repair by considering the materials used. 

Generally, we also considered any product that weighed over 50 lbs to be not 

portable. The only two products that were not portable were the CSafe refrigerator 

and the Envirotainer storage container, both of which are large, heavy boxes, 

designed for long-term or bulk storage, rather than transportation. The lightest 
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products considered were the Antifreeze backpack at 17.4 lbs. and the Tempak Plus 

cold box at 5.5 lbs. We used these as guidelines as to how much our product should 

weigh. 

ume ratio. This 

compartment, which would give us an idea of how efficiently the product stores 

vaccines. The product with the least efficient storage capacity was the SunFrost 

refrigerator with the lowest ratio of 0.070. As this is a solar-powered refrigerated box, 

it has many components, including the battery, solar cells, and compressor, all of 

which restrict the payload space available for vaccines. On the other hand, the 

Envirotainer had the most efficient storage capacity with the highest ratio of 0.739, 

primarily due to its unique cooling system that utilizes dry ice. 

Next, we determined whether each product had a reasonable cost, as this is a 

primary concern in developing regions. Among the products for which the pricing 

was available, the Fridge Freeze refrigerated boxes had the highest cost of $3995.00, 

while the Antifreeze Backpack had the lowest cost of $33.78. This data represents a 

large variable range of prices

possible, so our aim was to match or beat the price of the Antifreeze backpack. 

The penultimate parameter considered was maximum storage duration without 

any external energy source. The device with the shortest storage duration was the 

Tempak Plus box, which could keep its compartment cool for 24 hours. This shows 

that while its emphasis on mobility was effective, it sacrificed the ability to store 

vaccines for a sufficient amount of time. The product with the longest storage 
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duration was the CSafe refrigerator with a time of 100 hours, which was primarily 

achieved because it has a built-in battery-powered compressor. 

The final parameter we considered was if there was any user input required. 

All of the products assessed required some level of user involvement, usually in the 

form of replacing melted ice/PCM packs or setting the temperature of the interior 

compartment. One of our main goals was to make our cold box user friendly and 

easily understood in different regions of the world. 

 
Description of Competitors  
 
Table 25: Benchmarking of competitor products 

 

CSafe is an active cooling refrigerator that utilizes a compressor. Having a 

compressor makes this product heavy with many moving parts. While having the 
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compressor allows CSafe to effectively regulate temperature, it also restricts its 

portability. CSafe is too fragile and heavy to be used as a reasonable carrier for 

vaccines in the cold chain. 

APEX is a vaccine carrier box that uses ice packs to keep vaccines cool. This 

small box makes for a lightweight, portable box. However, as it is so small, its 

storage capacity to net volume ratio is very poor. Therefore, while it is portable, it 

does not provide an efficient means of transportation. Also, since it uses ice packs, 

the box does not keep vaccines between the desired range of 2-8 ºC. APEX is a 

product that has the advantage of having already passed the WHO testing protocols.  

Greenbox is another vaccine carrier that uses passive cooling. Instead of ice 

packs, however, it uses PCM. Greenbox is mobile and has a long storage duration 

time. Furthermore, its storage capacity to net volume ratio is relatively high. The 

downsides to Greenbox are that it is expensive and more focused on a developed 

market.  

 The Model Antifreeze Backpack is another product that has passed WHO 

testing. Similar to APEX, the backpack uses ice packs, however the goal with this 

carrier is to use proper insulation to prevent the ice packs from freezing the vaccines. 

This allows for a more stable temperature. Yet, while it is more reliable, the vaccines 

are not entirely protected from freezing since ice packs are used. The Model 

Antifreeze Backpack has a short storage duration and small storage to capacity ratio. 

It is cost effective, however, as it is a product already used by the WHO.  

 Envirotainer uses dry ice-based refrigeration. This provides a stable 

temperature for vaccines. This technology also allows for a large payload, and so is 
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very efficient in keeping vaccines at the proper temperature and for transporting a 

large quantity of vaccines. Envirotainer is very heavy and not feasible for mobile 

transport of vaccines. A container like this is more suited for the large-scale shipment 

of vaccines, rather than for use as a vaccine carrier. Envirotainer is also very 

expensive with a cost of $300 for every day it is recharged.  

 Waeco is a mobile vaccine carrier that also applies active cooling 

technologies. Since it uses a compressor, the Waeco cooler provides a very safe and 

stable environment for vaccines. It also has a very high payload space, relative to 

other coolers. Waeco has a high price tag, and is not intended for use in the cold chain 

of LMICs. The main issue with compression-based cooling, refrigerators and cold 

boxes are not easily repaired, especially in a developing region. 

 Fridge Freeze is a product similar to Waeco; however, it is designed more 

specifically for the transport of medical supplies, such as vaccines and organs. This 

product is targeted to developed countries, and its exorbitant cost is too high for use 

in the cold chain.  

 Tempak Plus is another vaccine carrier that, similar to Greenbox, uses PCM. 

Tempak Plus is small and lightweight, with a greater payload space ratio than 

Greenbox. The only negative is that it is designed for short transport and can only 

carry a limited quantity of vaccines. 

SunFrost is a different solution, as it uses solar energy to power its 

compressor. This provides a system that is not only temperature stable but also 

environmentally friendly. With this type of compressor vaccine carrier, a power 

source is not always necessary. However, solar power also has its drawbacks in that 
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the carrier is heavy and only semi-portable. With the solar panels and compressor, the 

system is also fragile and not easily repaired. It also has a very poor storage capacity 

to net volume ratio.  

When designing our own vaccine carrier we took into account all of the 

information we learned from our competitors. Our box uses PCM, so temperature 

remains at a stable and safe range. We designed our box to be lightweight and 

portable, while still being durable and able to pass WHO guidelines. The vaccine cold 

box we have designed has optimized geometries and the storage capacity to net 

volume is higher than our direct competitors. Our carrier also has the ability to last for 

long periods of time and still maintain vaccines safely. Finally, it is our goal to 

produce and sell this product at a low cost, thereby making it readily available to the 

cold chain market in LMICs.  

 

R IS K  

When starting any new business there are many different risks. As we are just 

starting in this industry, there are many problems we will face as newcomers. Many 

times when businesses fail it is because they do not make themselves aware of the 

risks their business faced. It is important to not shy away from risk but rather to 

define it as clearly as possible.  

We have limited field experience, so what we do know is based solely off of 

our extensive research. We do not know how things are in the actual cold chain, as we 

have not seen it or experienced it ourselves. When it comes to being around the 

problem first hand, our team lacks experience.  
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Another risk is that in order for a product to be used in the cold chain, it must 

pass certain tests defined by WHO in their Product, Quality, and Safety (PQS) 

guidelines. Therefore, we need to meet these PQS standards in order to be placed on 

chain suppliers. There is a risk that if we do not get on this list that our product will 

not be available to cold chains in LMICs and we will not meet our goal.  

Also, as a new, small project, the production of our project is a significant 

risk. Even if we have the best product, being able to produce enough of our product to 

meet demand is a real concern.  

A final risk involved with our business is that there are always new, 

innovative technologies being developed. The field of medicine is an ever-changing 

landscape, and there are vaccines currently being developed that are temperature 

stable, which would obviate the need for a temperature stable cold box.  

While these are some of the risks we face as a new entity, it is imperative that 

we not only understand these risks, but also have a plan for overcoming them. 

Defining our risks is one of the first steps on our road to success.  

 

O PP O R T U N I T Y  

We are very excited about our idea, and there are many different opportunities 

that we look forward to taking advantage of in the future. While our team does have 

very little field experience, this will not stop us from being successful. We have done 

the research to paint an accurate picture of what the cold chain currently looks like. 

We also have contact with experts who work in the field, so we will be able to receive 
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feedback on our product. Also, WHO clearly defines what a vaccine carrier should be 

able to do and what tests it must pass in the PQS document. If our carrier passes these 

tests, it will be competitive in the field.  

However, it is another concern of ours that we must pass these PQS 

guidelines. In order to pass PQS guidelines we must perform all of the testing 

outlined by WHO. Once we meet the PQS, it is our hope that we will be able to 

outsource the assembly of our vaccine carrier. 

As for the future of our product and the industry in general, the future is 

always hard to predict. During our research on the industry we learned of new 

temperature stable vaccines. While we are aware and do acknowledge that these other 

products do exist, we also know that these technologies are years away from the 

market, ensuring that our cold box will have a place in the cold chain at least for the 

near future. 

If our business can overcome the obstacles we face, we have the opportunity 

to be the primary vaccine cold box utilized in the cold chain. Our product has the 

chance to revolutionize the industry and save many lives. We will bring the most 

effective technologies to the developing world. Our product improves performance 

over what is in the field now and is the best choice in safe vaccine transportation. 

 The following SWOT analysis  
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Table 26: SWOT Analysis 

ST R E N G T HS 
 Cost-effective 
 Tailored geometry allowing optimal 

storage capacity 
 Capable of holding vaccines for 

entire duration of cold chain 
 No risk of exposure to sunlight or 

fluorescent light 
 Employs the same directions for the 

orientation of all vaccines in the box 
 Rarely requires expert repair 
 May be integrated into existing cold 

chain 
 Includes culturally relevant 

flag/logo to reduce risk of 
mishandling 

 Will be supplemented with time 
sheet and translated instructions to 
promote uniformity in use 

W E A K N ESSES 
 Does not currently meet WHO PQS 

standards 
 Requires more product 

development 
 Requires field testing 
 Management team has little field 

experience  

OPPO R T UNI T I ES 
 Increasing vaccine 

production/distribution 
 Alternative markets (food, 

pharmaceuticals, blood) 
 Contacts with existing organizations 

T H R E A TS 
 Competing products from 

established cold chain technology 
businesses 

 Switch to OCC (Out-of-cold-
chain) practices 

 Substitution of temperature-
sensitive vaccines  with 
thermostable alternatives  
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M A N A G E M E N T T E A M 

 
Our team is composed of thirteen undergraduate students that come from 

diverse backgrounds and academic pursuits. We have five women and eight men 

whose disciplines include business, Spanish, Arabic, engineering, government and 

politics, and biology. In addition, we have a mentor who is a bioengineering professor 

at the University of California, San Diego.  

T eammate    Major(s) 
Amanda Pereira   Spanish/Pre-Med 
Amina Goheer    Government and Politics/Arabic 
Andrew Foo    Mechanical Engineering 
Anthony Mazzella   Operations Management 
Divya Raghavachari   Neurobiology and Physiology/Spanish 
George Peabody V   Chemical Engineering 
Jason Felder    Mechanical Engineering 
Kelly Daniluk    Mechanical Engineering 
Matt Conway    Chemical Engineering 
Ravi Vaswani    Neurobiology and Physiology/Spanish 
Sahil Shah    Neuroscience 
Veena Katikineni   Biology 
Young Park    Accounting and Finance 
 

 
 
 
 

Capital Requirements 

We seek additional funding for our research and development. The initial stage of 

funding will be used to conduct more testing on our prototype so we can improve the 

dimensions. Here is a breakdown of how the funds will be spent: 

 
Complete development 

Purchase equipment 
Fund working capital 
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PR O F O R M A 

ERROR! NOT A VALID LINK. 

Appendix G: Costing Model MATLAB Code 

Cost Optimizing without PC M  
  
%%  Insulation  vs.  Ice  Thickness  Color  Plot    
    
%%  Assumptions  
%  We  wanted  a  20  liter  box  that  fit  a  real  number  of  50  mm  boxes  
%  250  mm  square  is  the  storage  area  side  length.  This  is  9.84  
inches.  
%  we  are  considering  half  of  a  box  so:    
s  =  9.84/2;;  %  storage  side  length  
    
%  The  maximum  possible  width  for  the  box  is  30  inches.  Then  it  
starts  not  
%  to  fit  through  doorways.    
    
maxL  =30/2;;    
    
L  =  maxL  -­  s;;    
    
%%  Costing  parameters  
    
ice.rho  =  62.4  ;;  %  lb/ft^3  
ice.rho  =  ice.rho*(1/12^3);;  %  lb/in^3  
ice.cost  =  5*0.25/231;;  %  25  c/gal  -­>  dollars/cubic  inch  
    
ins.rho  =    0.00134548874;;  %  37.24300  (kg  /  (m^3))  =  0.00134548874  
pound  /  (in^3)  
ins.cost  =  900*(1/  39.3700787^3);;  %  dollars/in^3  (East  &  Smale)    
    
weightcost  =@(mass)  2*4.75*mass/2.2  +  30;;  %  heavy  packages  ship  on  
weight  cost  
volumecost  =@(mass)  800*(1/  39.3700787^3)*mass  +  30;;  %  small  
packages  ship  on  volume  cost    
    
%%  Define  feasible  space  
    
%  We  could  have  no  ice,  all  insulation;;  all  ice,  no  insulation;;  or  
no  ice,  
%  no  insulation.  This  forms  a  right  triangle.    
    
%              |\    
%              |  \    
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%              |    \  
%              |      \  
%              |        \  
%th_ins  |          \  
%              |            \  
%              |              \  
%              |                \  
%              |_________\  
%                    th_ice  
    
n  =  1000;;  %  number  of  subdivisions  
    
Z  =  zeros(n,n);;    
C  =  zeros(n,n);;    
X  =  zeros(n,1);;  
Y  =  zeros(n,1);;  
T  =  zeros(n,n);;  
for  i  =  1:n  
        x  =  L/(n-­1)*(i-­1);;  
        X(i)  =  x;;  
        Y(i)  =  x;;  
        m  =  142.4*x+0.0016;;  
        for  j  =  1:n    
                y  =  L*(j-­1)/(n-­1);;    
                T(j,i)  =  x+y;;    
                Z(j,i)  =  m*y;;    
%                  if  x+y  >  L;;  
%                          Z(j,i)  =  NaN;;    
%                  end  
        end  
end  
figure  
    
colormap(winter)  
contourf(X,Y,Z./T,50)  
hold  on  
plot([0  10.08],[0  10.08],'w');;  
title('Time  in  hours  until  8  degrees');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
    
for  i  =  1:n  
        x  =  L/(n-­1)*(i-­1);;  
        X(i)  =  x;;  
        Y(i)  =  x;;  
        m  =  142.4*x+0.0016;;  
        v_ice  =  (x+s)^3-­s^3;;  
        C_ice  =  v_ice*ice.cost  ;;  
        
        for  j  =  1:n    
                y  =  L*(j-­1)/(n-­1);;    
                v_ins  =  (x+s+y)^3  -­  (x+s)^3;;    
                C_ins  =  v_ins*ins.cost  ;;  
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                if  
(v_ice*ice.rho+v_ins*ins.rho)>160/(2.2*39.3700787^3)*(v_ice+v_ins)+.
2/2.2  %  if  mass  box  >  some  factor  times  volume  of  box  
                        C_ship  =  weightcost(v_ice*ice.rho+v_ins*ins.rho);;  
                        %disp('costed  by  weight')  
                else  
                        C_ship  =  volumecost(v_ice*ice.rho+v_ins*ins.rho);;  
                  %      disp('costed  by  volume')  
                end  
                C(j,i)  =  C_ice  +  C_ins  +  C_ship;;    
                Z(j,i)  =  m*y;;    
%                  if  x+y  >  L;;  
%                          C(j,i)  =  NaN;;    
%                  end  
        end  
end  
figure  
    
colormap(winter)  
contourf(X,Y,C,50)  
hold  on  
plot([0  10.08],[0  10.08],'w');;  
title('Cost  estimate  for  ice  and  insulation');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
figure    
%%  optimize  time/$  
H  =  Z./C;;    
colormap(winter)  
[ch,ch]  =  contourf(X,Y,H,50);;  
%[ch,ch]  =  contourf(H,50);;  
  set(ch,'edgecolor','none');;  
hold  on  
title('Find  an  optimum  please?');;  
plot([0  10.08],[0  10.08],'w');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
%%  Regress  left-­lower  value  of  every  contour  
    
H  =  flipdim(H,1);;  
Y  =  flipdim(Y,1);;  
IND=find(H==max(max(H)));;  
[I,J]  =  ind2sub(size(H),IND);;  
%  Xs(1)  =  X(I);;  %x  values  corresponding  to  the  points  where  Z  is  
maximum  
%  Ys(1)  =  Y(J);;  %y  values  corresponding  to  the  points  where  Z  is  
maximum  
    
kinit  =  whichdiag(H,IND);;    
siz  =  size(H);;    
param  =  abs(abs(kinit)  -­  (siz(1)-­1))  ;;    
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clear  Xs  Ys  
    
for  i=1:param;;  
        k  =  kinit-­(i-­1);;  
        Hd  =  tril(H,k);;  
          
        IND=find(Hd==max(max(Hd)));;  
        [Jd,Id]  =  ind2sub(size(Hd),IND);;  
        if  length(Id)  >  1  
                Id  =  mean(Id);;  
        end  
        if  length(Jd)  >  1  
                Jd  =  mean(Jd);;  
        end  
        Xs(i)  =  Id;;  %x  values  corresponding  to  the  points  where  Z  is  
maximum  
        Ys(i)  =  n-­Jd+1;;  %y  values  corresponding  to  the  points  where  Z  is  
maximum  
end  
    
Xs  =  max(X)*Xs./(n);;  
Ys  =  max(Y)*Ys./(n);;  
    
plot(Xs,Ys,'w');;    
    
%%  Log  rules  
figure  
    
logx=log(Xs);;  
logy=log(Ys);;  
p=polyfit(logx,logy,1);;  
plot(logx,logy,'bo');;  
axis  equal  square  
grid  
xlabel('log(x)');;  
ylabel('log(y)');;  
k=p(1);;  
loga=p(2);;  
a=exp(loga);;  
hold  on;;  plot(logx,k*logx+loga,'g')  
legend('Data',sprintf('y=%.3f{}log(x)+log(%.3f)',k,a));;  
figure  
plot(Xs,Ys,'bo');;  
xlabel('x');;  
ylabel('y');;  
axis  equal  square  
grid  
hold  on;;  plot(Xs,a*Xs.^k,'g')  
legend('Data',sprintf('y=%.3f{}x^{%.3f}',a,k));;  
  
Cost optimizing with the PC M 
  
%%  Insulation  vs.  Ice  w/  PCM  Thickness  Color  Plot    
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%%  Assumptions  
%  We  wanted  a  20  liter  box  that  fit  a  real  number  of  50  mm  boxes  
%  250  mm  square  is  the  storage  area  side  length.  This  is  9.84  
inches.  
%  we  are  considering  half  of  a  box  so:    
s  =  9.84/2;;  %  storage  side  length  
    
maxL  =(9.84+6.4)/2;;    
    
L  =  maxL  -­  s;;    
    
%%  Costing  parameters  
    
ice.rho  =  62.4  ;;  %  lb/ft^3  
ice.rho  =  ice.rho*(1/12^3);;  %  lb/in^3  
ice.cost  =  5*0.25/231;;  %  25  c/gal  -­>  dollars/cubic  inch  
    
ins.rho  =    0.00134548874;;  %  37.24300  (kg  /  (m^3))  =  0.00134548874  
pound  /  (in^3)  
ins.cost  =  900*(1/  39.3700787^3);;  %  dollars/in^3  (East  &  Smale)    
    
pcm.rho  =  .9*62.4  ;;  %  lb/ft^3  
pcm.cost  =  0.0944510035    ;;  %  $/in^3  %  From  Mark  Barakat's  Email  
dated  16  Feb  12.    
    
weightcost  =@(mass)  4.75*mass/2.2  +  30;;  %  heavy  packages  ship  on  
weight  cost  
volumecost  =@(mass)  800*(1/  39.3700787^3)*mass  +  30;;  %  small  
packages  ship  on  volume  cost    
    
%%  Define  feasible  space  
    
%  We  could  have  no  ice,  all  insulation;;  all  ice,  no  insulation;;  or  
no  ice,  
%  no  insulation.  This  forms  a  right  triangle.    
    
%              |\    
%              |  \    
%              |    \  
%              |      \  
%              |        \  
%th_ins  |          \  
%              |            \  
%              |              \  
%              |                \  
%              |_________\  
%                    th_ice  
    
n  =  1000;;  %  number  of  subdivisions  
    
Z  =  zeros(n,n);;    
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C  =  zeros(n,n);;    
X  =  zeros(n,1);;  
Y  =  zeros(n,1);;  
T  =  zeros(n,n);;  
for  i  =  1:n  
        x  =  L/(n-­1)*(i-­1);;  
        X(i)  =  x;;  
        Y(i)  =  x;;  
        m  =  142.4*x+0.0016;;  
        for  j  =  1:n    
                y  =  L*(j-­1)/(n-­1);;    
                T(j,i)  =  x+y;;    
                Z(j,i)  =  m*y;;    
                if  x+y  >  L;;  
                        Z(j,i)  =  NaN;;    
                end  
        end  
end  
figure  
    
colormap(winter)  
contourf(X,Y,Z./T,50)  
hold  on  
plot([0  10.08],[0  10.08],'w');;  
title('Time  in  hours  until  8  degrees');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
    
for  i  =  1:n  
        x  =  L/(n-­1)*(i-­1);;  
        X(i)  =  x;;  
        Y(i)  =  x;;  
        p  =  x*334/178*1/2;;    %  pcm  thickness  (must  be  at  least  half  of  
the  length  where  PCM  and  ice  would  have  equal  latent  heats)  
        m  =  142.4*x+0.0016;;  
        v_pcm  =  (s+p)^3  -­  s^3;;    
        v_ice  =  (x+s+p)^3-­(s+p)^3;;  
        C_ice  =  v_ice*ice.cost  ;;  
        C_pcm  =  v_pcm*pcm.cost  ;;    
        for  j  =  1:n    
                y  =  L*(j-­1)/(n-­1);;    
                v_ins  =  (x+s+y+p)^3  -­  (x+s+p)^3;;    
                C_ins  =  v_ins*ins.cost  ;;  
                if  
((v_ice+v_pcm)*ice.rho+v_ins*ins.rho)>160/(2.2*39.3700787^3)*(v_ice+
v_ins+v_pcm)+.2/2.2  %  if  mass  box  >  some  factor  times  volume  of  box  
                        C_ship  =  
weightcost((v_ice+v_pcm)*ice.rho+v_ins*ins.rho);;  
                        %disp('costed  by  weight')  
                else  
                        C_ship  =  
volumecost((v_ice+v_pcm)*ice.rho+v_ins*ins.rho);;  
                  %      disp('costed  by  volume')  
                end  
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                C(j,i)  =  C_ice  +  C_ins  +  C_pcm  +  C_ship;;    
                Z(j,i)  =  m*y;;    
                if  x+y  >  L;;  
                        C(j,i)  =  NaN;;    
                end  
        end  
end  
figure  
    
colormap(winter)  
contourf(X,Y,C,50)  
hold  on  
plot([0  10.08],[0  10.08],'w');;  
title('Cost  estimate  for  ice  and  insulation');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
figure    
%%  optimize  time/$  
H  =  Z./C;;    
colormap(winter)  
[ch,ch]  =  contourf(X,Y,H,50);;  
%[ch,ch]  =  contourf(H,50);;  
  set(ch,'edgecolor','none');;  
hold  on  
title('Find  an  optimum  please?');;  
plot([0  10.08],[0  10.08],'w');;  
xlabel('Ice  Thickness  (inches)')  
ylabel('Insulation  Thickness  (inches)')  
axis  square  
    
%%  Regress  left-­lower  value  of  every  contour  
    
H  =  flipdim(H,1);;  
Y  =  flipdim(Y,1);;  
IND=find(H==max(max(H)));;  
[I,J]  =  ind2sub(size(H),IND);;  
%  Xs(1)  =  X(I);;  %x  values  corresponding  to  the  points  where  Z  is  
maximum  
%  Ys(1)  =  Y(J);;  %y  values  corresponding  to  the  points  where  Z  is  
maximum  
    
kinit  =  whichdiag(H,IND);;    
siz  =  size(H);;    
param  =  abs(abs(kinit)  -­  (siz(1)-­1))  ;;    
clear  Xs  Ys  
    
for  i=1:param;;  
        k  =  kinit-­(i-­1);;  
        Hd  =  tril(H,k);;  
          
        IND=find(Hd==max(max(Hd)));;  
        [Jd,Id]  =  ind2sub(size(Hd),IND);;  
        if  length(Id)  >  1  
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                Id  =  mean(Id);;  
        end  
        if  length(Jd)  >  1  
                Jd  =  mean(Jd);;  
        end  
        Xs(i)  =  Id;;  %x  values  corresponding  to  the  points  where  Z  is  
maximum  
        Ys(i)  =  n-­Jd+1;;  %y  values  corresponding  to  the  points  where  Z  is  
maximum  
end  
    
Xs  =  max(X)*Xs./(n);;  
Ys  =  max(Y)*Ys./(n);;  
    
plot(Xs,Ys,'w');;    
    
%%  Log  rules  
figure  
    
logx=log(Xs);;  
logy=log(Ys);;  
p=polyfit(logx,logy,1);;  
plot(logx,logy,'bo');;  
axis  equal  square  
grid  
xlabel('log(x)');;  
ylabel('log(y)');;  
k=p(1);;  
loga=p(2);;  
a=exp(loga);;  
hold  on;;  plot(logx,k*logx+loga,'g')  
legend('Data',sprintf('y=%.3f{}log(x)+log(%.3f)',k,a));;  
figure  
plot(Xs,Ys,'bo');;  
xlabel('x');;  
ylabel('y');;  
axis  equal  square  
grid  
hold  on;;  plot(Xs,a*Xs.^k,'g')  
legend('Data',sprintf('y=%.3f{}x^{%.3f}',a,k));;  
  
 
 
whichdiag.m 
  
function  [  k  ]  =  whichdiag(  X,  IND  )  
%  Find  which  diaganol  of  matrix  an  index  is  on  
%      Input  a  matrix,  and  the  index  of  an  element  either  as  a  linear  
indices  
%      (IND)  
%      or  coordinates  [I,J]  
    
%  Convert  coordinates  to  linear  indices  
if  length(IND)  >  1  
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        IND  =  sub2ind(size(X),  IND(2),  IND(1));;  
end  
    
%  Recreate  matrix  of  size  X  where  every  value  is  it's  linear  indices  
s  =  size(X);;  
l  =  s(1);;  
w  =  s(2);;    
n  =  numel(X);;    
for  i  =  1:n  
        X(i)  =  i;;  
end  
    
%  Find  total  number  of  diagonals  
nd  =  l  +  w  -­1;;    
%  X  has  w-­1  superdiaganol  diags,  l-­1  sub  diaganol  diags,  and  1  
diagonal  
%    
%  Create  a  matrix  where  the  diagonals  of  the  X  index  matrix  are  the  
columns  
    
%  preallocate  based  on  biggest  diagonal  
h  =  length(diag(X,0));;    
S  =  zeros(h,nd);;    
j  =  1;;  
for  i  =  (1-­l):(w-­1)  
        v  =  diag(X,i);;  
        S(1:length(v),j)  =  v;;    
        j=j+1;;  
end  
    
%  Search  for  which  column  of  S  has  the  desired  index  
q  =  find(IND==S);;  
    
[x,y]  =  ind2sub(size(S),q);;  
    
%  convert  index  to  k=0  being  the  diagonal.    
k  =  y-­l;;  
    
end  
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Appendix H : Animation: A Journey Through the Cold Chain 

In collaboration with Vishnu Priya Ganti, Motion Graphics Designer and 
student at the Maryland Institute College of Art, Team FRESH developed an 
animation illustrating the journey of a typical vaccine shipment through the cold 
chain. Vishnu Priya Ganti is a Bachelor in Fine Arts: Graphic Design candidate (May 
2012). She is pursuing a concentration in Animation, and she is also completing a 
minor in Culture and Politics (Literature). 
 

Below is the introductory excerpt, story-line, and screen-shots for the 
animation. The full two- imeo 
page, which can be found at the following URL: http://vimeo.com/16537015. By 
linking this animation to our open-source Google Map, blog, as well as external sites 
such as the Vimeo page, Team FRESH hopes viewers will be able to better 
understand the nature of the cold chain. Equipped with this understanding, our viewer 
base of students, professionals, and others may join the effort towards reaching the 
goal of universal immunization. 
 
Introduction 
 

Vaccines have earned a place among the best public health technologies and 
investments in the human history. They are currently estimated to prevent 2.5 million 
deaths per year. There are 28 vaccine-preventable diseases, which contribute to 1.76 
million deaths per year. In line with the Millennium Development Goals, the 
international community has devoted heavy resources and programming towards 
improving vaccine efficacy, ease of administration, and most recently, the 
infrastructure behind vaccine transport and distribution, otherwise known as the cold 
chain. Most vaccines require a 2-8 °C temperature range to remain potent. The cold 
chain strives to ensure these conditions but the current system falls short.  
 
Story-line 
 

pical route that lasts 
anywhere from 3-8 weeks. Please keep an eye on the dashboard below showing 
important parameters: the amount of time that has passed, current location, the 

el of 
confusion among healthcare workers. 

http://vimeo.com/16537015
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We start in the United States, and the vaccine shipment boards international air 
freight; here the crate moves around and are sometimes exposed to slight heating. 

  

 
Upon reaching the destination country, vaccines are often placed outside, where they 
are exposed to high temperatures. Vaccines may be neglected by staff that is unaware 

of the requirements for vaccine handling. 

Time passed 

Current Location 

Vaccine Power Lvl 

Cur rent temperature 

Confusion Lvl 
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In Customs, literature has demonstrated that vaccines may be stalled for as much as 
2-3 weeks due to confusion among staff or changing delivery schedules. They are 

again exposed to hot temperatures, and vaccine potency is waning. 
 

 
 

At the central level, often a government-run institution, there are warehouses with 
freezer rooms set to extremely low temperatures, often around -20 °C, resulting in 

freezing of vaccines if left unprotected. Since we are at the central level, and there are 
more trained personnel than at any other stage of the cold chain, improper storage or 
handling is unlikely. Still these locations are subject to electricity fluctuations, which 
create an unstable environment for vaccines. Precautions may not be systematically or 

uniformly taken to protect vaccines from freezing or overheating. 



217 
 
 

 
 

In transport to the health centers, vaccines are stored in Ice-lined Refrigerators or cold 
boxes, which are equipped with ice packs. The bulky refrigerators often bump into 

each other, and vaccine vials may break if packaging has not been properly installed. 
 

 
 

Other issues in transport include unscheduled stopovers that strand vaccines for 
indefinite period of time, as well as poor road conditions. The drivers and staff are 
often unaware of the careful conditions that vaccines require, or they may not have 
the time or delegated responsibility to ensure the appropriate precautions are taken. 
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At the provincial vaccine store, we see an ice-line refrigerator holding vaccines. They 
are filled in an organized fashion, and the position of each vaccine often corresponds 
to the sensitivity to temperature. For example, some are more susceptible to freezing 

or light exposure than others. 
Just like the freezer rooms, however, refrigerators may be plugged in, and therefore 
vulnerable to electricity fluctuations. This not only creates an unstable temperature 

environment for vaccines, but also can lead to damage to the equipment itself, which 
may halt temperature-controlled vaccine storage altogether. When equipment breaks, 

there is lag-time for a trained technical expert to help repair it; significant time, 
money, and effort are expended. 

 

 
 

Finally, these same shipments that are no longer useful are delivered by bus, 
scooter/motorcycle, foot, or sometimes with the help of domesticated animals, to the 
target community. Although there are color-ink sensors (Vaccine Vial Monitors) that 
indicate diminished potency of the vaccines, many staff in small health clinics are not 

trained to discard vaccines systematically due to the demand for vaccinations from 
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the public, who are desperate for protection from disease, as well as campaigns who 
seek to complete the work for which they have been funded. People are checked off 
as immunized by larger eradication campaigns when they are not always protected 

from disease. Furthermore, the spoiled vaccines can have adverse effects on the 
recipient. These realities lead to harsh consequences for meeting the greater goal of 
universal immunization. Failure of immunization reduces the trust of the public in 

vaccination, and fuels resistance against health campaigns. Some return to clinics and 
seek repeat vaccinations, which may not be available to them, while others revert to 

traditional healing methods. 
 

 
 

Learn more about reaching universal immunization at the GAVI Alliance web site 
(http://www.gavialliance.org/). 
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Glossary 

Absorption refr igeration: A refrigerator that uses an external heat source as the 
driving force for refrigeration. 

Adjuvant: An additive to a vaccine that can change its effect or potency. 

Adsorption refr igeration: A refrigerator that uses an external heat source as the 
driving force for refrigeration; the heat source releases an adsorbed fluid from an 
adsorbent bed, which replaces the conventional compressor. 

A NSYS: Finite Element Analysis software. 
 
C A D: Computer aided design; 3-D modeling software used for the visualization of 
concepts and in the process of designing prototypes. 

Convective heat transfer : Heat transfer through movement, similar to a fan. 

Cold Box: A portable storage container that utilizes a passive cooling system to store 
and transport vaccines. 

Cold chain: The distribution system of temperature-sensitive products, such as 
vaccines, from the manufacturer to the end user. 

Compression refr igeration: A refrigerator that operates on the compression and 
expansion of a substance, the same as a typical household refrigerator. 

C O MSO L : Multiphysics Finite Element Analysis software. 
 
Data Logger : A device that can record temperature at a specified location. 

Differential scanning calorimetry: A data collection method in which the heat input 
to change the temperature of a substance over time is recorded. 

EPI - Extended Program on Immunization; a WHO initiative started in the 1970s to 
expand vaccinations to children worldwide. 

Eutectic mixture: A mixture with a composition of materials that provides the lowest 
melting temperature, and for which upon cooling, no phase separation occurs. 

F E A : Finite Element Analysis. Creation of a geometric model with defined material 
properties that is then stressed with physical conditions, like forced loads or thermal 
conditions. 

F reeze Indicator: A device that can indicate whether a vaccine has frozen, usually 
through utilization of temperature-sensitive ink. 
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G A V I A lliance  Global Alliance for Vaccines and Immunisation; a partnership 
between the WHO, UNICEF, Bill and Melinda Gates Foundation, World Bank, and 
other public and private organizations dedicated to increasing immunizations rates in 
developing countries. 

H eat of Fusion-Latent H eat-Latent H eat of Fusion: The energy per mass or mole 
that is needed to convert a substance from a solid to a liquid. 

H ermetic seal: A vacuum seal. 

Ice-lined refr igerators: Refrigerators equipped with large amounts of ice lining the 
walls to help keep vaccines cool. They typically require the ice to be separated from 
the vaccines in order to prevent freezing. 

Immunization: The act of inoculating a patient with a vaccine. 

Impotent vaccines: Vaccines that will no longer provide immunity due to denatured 
proteins. Some of the causes of impotency include freezing, overheating, or extended 
duration of storage. 

Isothermal: A process in which the temperature of the system does not change. 

L ead (thermocouple): The location at which a thermocouple measures the 
temperature. 

Local health center: A small distribution center that is or is one step away from the 
actual inoculation stage.  

Mass heat capacity-Specific heat capacity: Energy to raise a unit mass of a 
substance one degree. 

Mesh: A series of locations at which a FEA program will solve the input data. 

Nucleating agents: Substances that trigger nucleation, typically in the form of 
crystallization. 

Outreach clinic: A clinic that provides health care free of charge. 

Passive refr igeration: Refrigeration that does not involve any electrical or 
mechanical movement of heat. 

PA T H  - Founded in 1977 by family planning researchers, PATH is an international 
non-profit organization dedicated to resolving public health issues such as 
immunization programs; PATH often works in conjunction with the WHO and 
UNICEF. 

PEPF A R -  Started by President 
George W. Bush in 2008, PEPFAR consists of a $50 million commitment to combat 
worldwide diseases, such as AIDS, malaria, and tuberculosis. 
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Phase change materials: Materials with a high latent heat, otherwise known as 
materials requiring a large amount of energy to change from solid to liquid. 

PQS specifications: Performance, Quality, and Safety standards established by 
WHO. All products must meet them before they can be used in the cold chain. 

Ramp rate (PC M testing): The rate at which temperature is changed by the DSC, a 
slower rate has higher accuracy. 

Refr igerant: A substance that can be used in a refrigerator as the cycling liquid. 

Regional center : A larger national distribution center that stores various resources 
ready for distribution. 

Steady state: The state at which a system is non-changing. 

Thermal conductivity: The relative ability of a substance to transfer heat through 
itself. 

Thermal equilibrium: The time at which a system is at a uniform temperature. 

Thermochromic ink : An ink that changes color based on the temperature. It is a 
technology utilized in various devices that monitor freezing. 

Thermocouple: A device with multiple leads that can be used to measure 
temperature in different locations inside a cold box. 

T ransient analysis: A solution that occurs over time. 

Vaccine V ial Monitor: A heat sensitive label that changes color according to 
changes in temperature and time. It can indicate to a healthcare worker if a vaccine 
has been exposed to freezing temperatures. 

Vaccine: a preparation of killed microorganisms, living attenuated organisms, or 
living fully virulent organisms that is administered to produce or artificially increase 
immunity to a particular disease. 
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