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Introduction* The equation of state of a gas whose flow is governed by 

Frankie e q u a t i o n * f *  K (^) P'&q ~ O is determined by the 
choice of the function /fit*-)* With the proper choice of units, for a 
polytropic gas

= r-'J-r-3- J ~ =

where *r is the adiabatic exponent#
By retaining only the first term in this expansion we obtain 

and Frankl’s equation becomes Tricomifs equation, used by various authors 
in the study of transonic flows* The gas determined by taking /<<*-) =<r is

called the Tricomi gas,^ or a T, -gas*
In section 2 we show that if two functions have the same expansions

in positive integral powers of v- up to and including the term in v'*' , 
the graphs in the (f -plane of the corresponding equations of state 
have contact of order at least/rt*+I at the sonic point (  ̂ ) • Thus
for example if we approximate above for a polytropic gas by retaining
only the first two terms in its expansion, the equation of state corres
ponding to = <r~ - Jr <rx can be made to have contact of the
third order at the sonic point % A  ). A gas with an equation of state 
corresponding to /(^) - <r- - Jr <rx is called a ~TX -gas and in
section U we study its equation of state. In the concluding section we 
study a particular example of transonic flow for a T^-gas in the physical 

plane*
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1. Preliminary Considerations♦ Employing the pressure p and the stream 
function ̂  as independent variables Martin^ has shown that, given a Bernoulli 
function q»q a direction function^ <y) which jointly
satisfy

(u ^(^4 + ( ^
a flow is presented in the physical plane 2 = spc, L ̂  by

«> * .  fc ‘* j - i q £ l f  h )  ¥ ;

The densityy  and Mach number M are given ̂  by

<5) , n ‘ ~  1 *  ftf. .

Irrotational flows are characterized by a Bernoulli function of the form 
q»q(p) and we see from (3) that q is a decreasing function of p for 
J*>o J |_7-o # Furthermore, the flow is subsonic, sonic, or supersonic 
according as ^  ^ • The sonic speed is given by k  -

where p , the sonic pressure, is defined by 2- (^ ) — 0 **'  * ' ”
If we introduce a new variable

in place' ' of p, and set

c o  K  = ~

the variable p being eliminated from the second member with the aid of (U), 
equation (l) is replaced by
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and (2) by

(7) * =  % C

where the function

(8) %  = X  (r) -  /

is obtained by eliminating p from q = q(p) again with the help of (U).
K(fl“) as defined by ($) and (U) is identical with K(v-) in Frankl's 

equation ̂  -h K(+) fQ Q -C>, equivalent to (6). It follows from 
(h)9 (5 ) 5 and (8) that

A solution £ - of (6) when inserted in (?) yields a
mapping ̂  = 2 (tr, y') of the ( y -plane upon the physical plane, 
which carries the straight lines <h =. const, into the isovels (isobars) 
and the straight lines ̂  » const* into the streamlines.

2. The equation of state. Order of contact* Alternatively, given K(<r ), 
corresponding to a solution (*-) of (9) we find from (8), (3), and (ij.) 
that

(9)

(10)

(11)
and

(12)
Prom (U) it is clear that r = « yields the sonic values
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When <r is eliminated from (10), (12) we obtain the Bernoulli function 
q sq(p). Equations (11) and (12) constitute parametric equations for the 
equation of state, the elimination of the parameter <r leading to the 
equation of state in the usual form p « p(J>)* For a given K( f) the 
equation of state (11) (12) is uniquely determined by the choice of
the initial values 7C ( 0 ) * 0 ) of the solution 76 - (<r-)
of (9)> and the constant C in (12)*
We now prove the

and if ^  (v-), %  ( <r-) are solutions of

respectively, meeting the same initial conditions

71 (?') - %  (o) - const., 74>\o) - ?£ * const.,

the curves

at least n + 1 at the pointhave contact of order
)-plane, where

) )

are the sonic densities and sonic pressures.
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Proof: Efy Maclaurin' s theorem the first n derivatives of K and K agree
(/*+•() — (m+\)

at <r a o but K &  ̂  K M  * By taking the r̂ *1 derivatives of the
differential equations satisfied by it is easy to see from Leibnitz's

nd _theorem that the (r + 2) derivative of each of %  (7£) can be expressed
in terms of at most the r ^  derivative of K(K) and ^  (5&). In particular,
since

(o) = «  io) J %  (o) - 7i ' Co) ,

v * —  .the differential equations assume %  (?) and by taking r 1
Ht MW _

we see that sC ■=• %  ip) . Continuing in this way we see that

M a)(°) = 5£A > (4> (<-= ->'»+£).

By differentiating the equations in C(, C1, n +1 times and evaluating 
for (r — o it follows that the (n*+-l)ŝ ’ derivatives of j> and
of p, "p agree for = o , to establish the theorem.

3. An approximation to a polytropic gas. For a polytropic gas

o ^ /yu — I i(13) ;

and

(lW /  £  Jt a-*-)

where k and q denote constants for irrotational flow, q being the maximum 
speed. For the acoustic pressure p^ we find

<«> a  -  ( a *  &  r )

j _/-/H-
*

from which we find
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If K(r) is expanded in a power series about <r = oy

(17) K  (<r-) -  a . <r~ -  J -c r -x' f- ... j

there being no constant term due to (U) and (5). Clearly

k'V’l
4- = K «  = /  £

We now employ (ll*) to find

(18) d  = ir +1
S J

By suitable choice of units we can realize

(19) = y + i /\ ̂  = /

For the first approximation K( <r-) = <T“ to (17) the program outlined 
in sections 1 and 2 for obtaining a flow in the physical plane was carried

/ON 3
out by Martin and Thicks tun ' for the particular solution d - *■* /■ +• 
of (6)♦ It is the purpose of this paper to carry out a similar investi
gation beginning with the second approximation

to (17)
Accordingly, we again employ (U) and (3>) to obtain 

1

which with (1U), (3)> (15)> (16), and (19) yields

(20) 2. r+s~ 
zf ir+r

For air V = -t (approx.) and b ̂ 2.9129 (approx.). It is convenient 
to set J 51 2b and from now on we shall take

(21)
As

/ ( ( r - l = <r~ — sC. ff~



By a Tpgas we understand a fluid whose equation of state p = p(j>) 
is defined by (ll) and (12) for K as given in (21), Equation (9) now 
becomes

(22) - 4* <r'X) ^  = *

and by suitably adjusting the two arbitrary constants in the general 
solution of (22) and taking C =p in (12) we can realize

(23) / «  * &  , f  > f  V  = f t

Thus the speed, density, and pressure of a T̂ -gas along the sonic 
line in the physical plane can be brought into agreement with the acoustic 
values of these quantities for a polytropic gas.

Using (17) and (21) as K and K in the theorem of section 2 it follows 
that the graphs of the equations of state for a T̂ -gas and for a polytropic 
gas have contact of order at least three at (J^,^) • Further computation 
shows that the contact is exactly or order 3*
k* The Equation of State for a Tp-Gas. To investigate the equation of
state for a Ta -gas we use (22) to study the manner in which %  varies

(9 )with . The existence theorem for linear equationsassures us of 
a unique solution %  = ^  (O* once we prescribe

-% (£>) = and (a) = j

As Figure 1 indicates and (22) implies the graph of 'P& ~ (<r-)
/ * \has an inflection point at ( O , "|T;, is concave downward for < o 9 and

cuts the -axis at an acute angle at a point ( 0s, o), where < ? < O,
xFor o < <r- < ~"jrr 9 the graph is concave upward with a second

xpoint of inflection at <r - " J~~ after which point the graph is 
concave downward.
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The graph has a horizontal tangent for <r where ^ .

To see this we write (22) in the form
£ -=  £  f  r- ( t l -*■) ^  ^  ■

Jyj-i z
We may assume that as o~ increases %  7- ^ —XJ , otherwise-2^
would vanish by Rolle!s theorem and the assertion is immediately true.
Under this assumption it is readily seen that the second member of the
above equation eventually becomes negative so that - 0 must hold
for some <T = f- as stated.

From (8 ) the speed of flow is infinite for <T-r and from (ll)
the density is infinite for «*■ * r . We shall accordingly restrict
ourselves to values of ^ between <r and 5“ .

To study as a function of <T“ in the interval ( <F, , we note
from (9) and (ll) that f satisfies the Riccati differential equation

(210 J>'= i - K j X - I *  *- ( ~ z r  - j }  f  .

As Figure 2 indicates j* increases monotonically from o to* «*» as r
ranges from 0- to v- . To verify that f'^o in the interval (^ , r )
we first observe from (2l|) that J - I for <r-0, Moreover J®' cannot
vanish in this interval. Indeed, if J  ’fa) = 0 we shall have from (2U)

(25) I  ^  " % ^1- C n)
This implies that & ̂  and since f ' < l  in the closed
interval ( 0 , -p. ) by (2h), the curve f  - f  ( O  lies below the
straight line f= + P in the interval under consideration. It is

 I -easy to show that the curve J <p̂  | _ r j lies entirely
above this same line which would contradict (25). Thus j> is an increasing 
function of r in ( <r, ̂ ) ♦
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From (12) and (23) the pressure p is given by
-** ct<r

J % %
It is clear that p is an increasing function of and from Figure 1

we see that as <r tends to P p tends to a finite value p . As <r tends
\

to IP , p tends to - «*-» since the expansion
■̂ (<r) - 4. (<r - ir) -V- *.. j ^  & ) 

is valid about cr = <r ? since the graph of ^  cuts the <r-axis
at an acute angle at (a1, o).

The graph p»p( j>) 0f the equation of state is shown in Figure 3 and
is obtained by a comparison of Figures 1 and 2*
5>« The Direction Function, We seek solutions to (6) with K defined by 
(21) of the form

(26) ^ + K  r f f 1 /

where , Tft, and denote unknown functions. Substituting from (26) 
into (6) and integrating with respect to p , we find

where the arbitrary function = ̂ ft( <r) is introduced by the integration.
We restrict ourselves to the special case z£0 - constant and set

+■ 1 ~fl ~ Yi to obtain

r -  £  «-* = ̂ 1^-' +1fV ^  - (V, + Vx‘ *)

which, on equating coefficients of like powers of <r , yields the following 

system of differential equations for %  , ~f\ * YL#
(27) (a) V.' X  - • * * = «

(b) V  X  ^  '

(o) x  x" -2- X  * “ -



FIGURE
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To integrate (27c) we set = 5  and this equation is replaced by
-■p.. " 'i ■" ^
5  - /  5  = 0

a first integral of which is

1 * / * nr ¥
5  ~ 5. - C C const.

If we set C - we find
dt
------------- J f r o

/

from which we see^^ that y  is the elliptic function
Ti_ ~ ĉ - <f f  j

with modulus A - —5—
^  TzT .

1To find T(̂  we multiply (27b) through by -y.a. and integrate, to obtain

3*<K » V /
T *

which, on substituting for and integrating, yields
i(jr -  - j -  /  / •  / /  ^

provided we assume -y ^  = q

From (27a) we find, on substituting for y  , y xas given above, that 
1 . /  ̂ . 3 r .. >

x  -- ' / yH-C </> - <0* ) ;
Zfx K

and this, with the aid of the formulas (H)

^Ck3« d k k  cUi k j u. d* = ilJi ^  ~

yields-,.r _ _ J   /  /?+•(*■ eUSg. _  fft M, fjt
~  a  j 3 ~rt c*. s y  % f 3 J

provided, we again assume ^  __ ^
On substituting for ~Y0, y, yi in (26) we find the solution

(2 8) 6 = _!-- -3
*  Z S



to (6) for K as given in (21),

It seems unlikely that this solution could be obtained from Frankl’s 
equation by any method which depends upon seeking for solutions explicitly 
of the form = ̂ ( ^ r ) ,

It is interesting to note that if we let /  approach O in (21), (28), 
we obtain 3

K  = <r , 8 = r y- + ^3 J
(3)i.e. the solution to Tricorrn̂ s equation treated by Martin and Thicks tun

6. The Mapping from the (<r, -plane to the Physical Plane. A computation 
based on (7) reveals that

_ _  - K  %  y&r
? (r>fi 9?

which for K as in (21), and for the special solution (28), reduces to

(2?) J- =

We study the mapping upon the physical plane of the region 

< 0- < W~ ̂  ^  < < /■ $S~yo7

where X  is the quarter-period of the elliptic function C*l. u with
modulus L - _i— . It is clear from (29) that O < T  < ■+■ o*>

Y"E
at every point of this region inasmuch as from section U, j> and remain 
finite and positive for <F < <r r* • Thus the mapping upon the 
physical plane is on-to-one locally although a region of the physical 
plane may be covered more than once. The streamlines and isovels in 
the physical plane are the transforms of the straight lines ^  » const.,
<r » const, in the (<r, ^)-plane.

The required mapping



where 9 is given by (28), is obtained by substituting for ^.from
(28), for K from (21), for ̂  from (10), and for i^rfrom (11) into (7)«

To obtain a streamline in the physical plane the line integral in 
(30) is evaluated along the path OAP in Figure U for fixed A and variable B 
to obtain an isovel the integration is carried out along the path OBP, with 
B fixed and A variable*

Since 5: ( <r~, ?  ((r~>^)j from (3 0), it is clear that the flow
is symmetric with respect to the x-axis and we accordingly restrict our 
attention to the upper half of the physical plane.

To obtain the sonic line in the physical plane we set <r - O in 
(30), and find

/
u.

£  ĵ 'Jr ̂  f c L h  </̂  -1- i -JT <zf

where, from (28),

z f 3  i -fl CM S ¥> ' x  J  *

Thus we obtain parametric equations for the sonic line with ̂ serving as 
parameter•

If we denote the inclination of the tangent to the sonic line by £
<jk ~ ~ & +■ /3

where /3 •= c** ,/>)
The derivatives of 9 and p with respect to are given by

a  . a  = -  / f c  _____
2 S x c*. Sf > / f ~ X<//  ^

When y, - o > /2> - ^  j & - £> and (fi - rr . As y* varies from o
to , 9 increases monotonely from O to + while y3 decreases/
monotone ly from ^  to the first quadrant angle arc cot

*• j n ■
It follows that t  must decrease
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until a point of inflection is reached and thereafter increases without 
limit# The length of the sonic line measured from the origin is given by

_j   r? __________________ ___
I  A  V t  + /*■ M  t

from which we conclude that the length of the curve cannot exceed

° I X, Hence the sonic line spirals into a finite
point as is shown in Figure

To obtain the streamline p  = o we set ^  - O in (30) to obtain 
-*■ = f HQ:) Mr <«r>

i.e., the segment ^  ^  ^  .of the x-axis where ^  ( JF-)
and ̂  =/7t(ff“) are finite points, since the corresponding areas under 
the curve ^  (0~) in Figure 1 are finite.

To obtain an isovel <r~ ~ a7 = constant we set r- = <77 in (30) 
and integrate along 01P in Figure U with OB = 07 and A variable. This 
yields

+Xb) f^<La[ir^' ^  L 7 w ]

Then ,
OSj iy. = » +/s = f

where

& - & On; > ft ' ^  L "eT ^  f dn ff (̂i - J 0/) |
By an argument similar to the one employed in studying the sonic line
we find that all the isovels are spiral in character and intersect the
x-axis at right angles. The isovel <r- - -̂ £, shown in Figure 5, is
orthogonal to all the streamlines since fb - ^  at every point of

this curve.
A streamline ^ - constant is found by setting y* ~ fa in

(30) and integrating along OAP in Figure U with 0A - fa and B variable.



y
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L* J
We find Q~

Z  =  Z, +  c*. J > ,  f  d(r
■*o

where & is obtained from (28) by setting p* - {£*, and where 2, is
the point on the sonic line corresponding to 

From (28) we find that
& c— — s&syi* (̂ / o/̂ 0 ̂  %

Thus along the streamline ^ = ^  ; * increases as <r~ varies
from v- to and then decreases until <r = 0- .

The arc length s along ^  ^  measured from 2  * 2-,
to an arbitrary isovel g— = <7  ̂ is given by

-4, = <?£.„ c*. <f ) 36 C*) Mr

where is the distance along the x-axis between the sonic line
and the isovel • It is apparent that, as ^

7Capproaches —j  , the two isovels approach each other and consequently 
all isovels spiral into the same point.

The flow begins at the ’'starting line” <r~ = 3̂  along which 
the speed is infinite. The flow particles move toward the sonic 
line at supersonic speed after which they move toward the isovel <r s 
at subsonic speed upon which the density becomes infinite in 
view of (11). The flow is illustrated in Figure 5*



APPENDIX

It is interesting to compare the graphs of the functions K=K(<r) 
for a T4 -gas and a -gas with the graph for a polytropic gas. For a 
T,-gas K(<r) «. <r and for a T̂ -gas K( <r) is given by (21). To graph 
K= K( *-) for a poly tropic gas we have from (2i|)

* • * ( / -  %)
and then employ (U), (13), and (lU) to obtain

u  _ (l-r*-) n - ( Z-/K-) ^  / , x
K  (,-*) Jk^

r  = »■ Ct)
%  1

These are parametric equations of the required curve with the pressure p 
serving as parameter. “When p - o* K =. - ©* and as p increases to p̂  
(stagnation pressure) K increases monotonely from

- —  .1 /  = -4 ; K  = °-
-* / •

Since —  - —  we see that as p increases from p * o to p * p , <r
^  i

increases monotonely from a negative constant to +■ ; when p^p^tr* o.
Therefore* as <r varies from a negative constant to + ©« , K( <t) for a

/
polytropic gas increases monotonely from - to ^  a The
graphs of the three functions K( O  are exhibited in Figure 6. The shape 
of the curve K sK(<r) for a polytropic gas may suggest other possible 
functions K( <r) as approximations.
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