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Abstract

A class of feedback systems for high-resolution optical
wave-front control (or adaptive optic wave-front distor-
tion suppression) is modeled and analyzed. Under cer-
tain conditions, the nonlinear dynamical system models
obtained are shown to be gradient systems, with en-
ergy functions that also serve as Lyapunov functions.
The approach taken here to a problem of nonlinear con-
trol system design and analysis might also be applicable
to other problems involving high-resolution control of
physical fields, particularly if the field sensing is per-
formed optically.

1 Introduction

The idea of using sensor and actuator arrays to manip-
ulate physical fields is most developed in the area of
adaptive optics (i.e., feedback control for optical wave-
front phase distortion suppression). Cameras serve as
sensor arrays, and spatial light modulators, such as
liquid-crystal or MEMS micro-mirror devices, provide
the actuation for manipulating optical beams. The con-
trol problem involves determining how the sensor and
actuator arrays should be deployed, in addition to co-
ordinating their activity. We consider the regime in
which there are enough actuators and sensors that cen-
tralized control laws are impractical, and parallel, dis-
tributed processing is the only feasible approach. In
high-resolution adaptive optic wave-front correction for
atmospheric turbulence, stronger turbulence demands
both higher actuator array resolution and faster speed
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of response. Therefore, centralized processing will al-
ways be ruled out at some strength of turbulence.

Correcting for the effects of atmospheric turbulence in
laser communications, laser radar, imaging systems,
and astronomy is one important application area for
high-resolution wave-front control systems. Such sys-
tems could also potentially be used to monitor airflow
and turbulence, e.g., for designing active aircraft sur-
faces. In addition, optical phase provides a mecha-
nism for observing transparent objects other than at-
mospheric turbulence: the phase-contrast microscope
is a well-known tool for imaging transparent biological
specimens. Optical phase measurement is also useful
for characterizing the surface topography of MEMS de-
vices, e.g., the flatness of micro-mirror elements [1].

From a design and analysis standpoint, the challenge
in using optical phase as a field quantity in a control
system is that it introduces nonlinearity. Furthermore,
even though the solution of interest is an equilibrium
for the dynamical systems we consider, we are mainly
interested in how the system behaves far from that equi-
librium. The goal of the analysis is to capture the
physics with sufficient fidelity, while keeping the non-
linear modeling simple enough to extract qualitative
insights beyond what a linearized approximation to the
dynamics can provide. This approach is prominent in
the literature on spatio-temporal pattern-forming sys-
tems [2]. The analytical results also show how to design
a wave-front control system which is actually a gradient
system.

In section 2, we review conventional phase-contrast
sensing, and describe Fourier phase filtering using
SLMs. A block diagram of the wave-front control sys-
tem is also presented. In section 3, we introduce the
basic mathematical models, and in section 4 we present
results for the model feedback system. The relationship
of the analytical results to recent experimental work is
discussed in section 5, with conclusions following in sec-
tion 6.



2 Phase-contrast wave-front sensing

Phase-contrast techniques date back to the Nobel-
Prize-winning work of Frits Zernike during the 1930s
[3]. The phase-contrast technique of Zernike can be
understood in terms of the Fourier-transforming prop-
erty of lenses, which is one manifestation of optical
diffraction [4]. Assume a monochromatic input beam,
so that it can be described using a complex envelope
representation. As shown in figure 1, one lens Fourier-
transforms the input beam, and the Zernike phase-
plate (a glass slide with a phase-shifting dot perfectly
centered on the optical axis) phase shifts the zero-
order Fourier component relative to the rest of the
Fourier spectrum. Another lens (or the same lens if
the Zernike phase plate is reflective) then performs an
inverse Fourier transform. The two parts of the beam
with different Fourier-domain phase shifts then inter-
fere to produce an intensity pattern which is a nonlin-
ear measurement of the input beam phase. The nonlin-
earity is analogous to the sinusoidal nonlinearity of an
interferometer, but in addition, there is nonlocal cou-
pling arising from the fact that the “reference beam” is
taken from the input beam. We refer to the system of
figure 1 as the “conventional Zernike filter.”

Figure 1: Zernike phase-contrast wave-front sensor.

A linearized description of (an idealized approxima-
tion to) the conventional Zernike filter, valid for small-
magnitude phase variations in the input beam, was used
by Zernike (in the context of microscopy) and by later
authors (in the context of adaptive optics for astron-
omy) [5, 6]. The advantages of replacing the Zernike
phase plate with an SLM have led to more recent inter-
est in phase-contrast wave-front sensing [7-11].

If the input beam has a uniform intensity distribu-
tion over its cross-section, the linearized conventional
Zernike filter output intensity distribution is the sum
of a constant term and a term proportional to the in-
put beam phase distribution. Although this suggests
that the conventional Zernike filter might be suitable
for parallel, distributed high-resolution feedback con-
trol, there are some practical difficulties. A block di-
agram of a wave-front corrector using a more general
Fourier phase filter to overcome the limitations of the

conventional Zernike filter is shown in figure 2, and it
is assumed that both cameras have the same resolution
and aspect ratio as their respective SLMs.

Figure 2: Feedback system with Fourier phase filter.

In figure 2, the input beam entering the system has an
arbitrary wave-front phase distribution over its cross-
section (which for simplicity we will assume to be static,
but in general would be time-varying). The purpose of
the phase-correcting SLM is to supply a complimentary
phase-shift distribution to the input beam so that the
corrected beam phase is spatially uniform. A portion
of the corrected beam is sent to the Fourier phase filter,
producing an intensity distribution which is recorded by
the camera interfaced to the wave-front correcting SLM.
Within the wave-front sensor, there is a second SLM
and camera, which serves as a time-varying Fourier
phase filter (with the Fourier-domain phase-shift distri-
bution dependent on the Fourier-domain intensity dis-
tribution of the corrected beam). The system of figure
2 is thus nonlinear, has hundreds of thousands (poten-
tially millions) of degrees of freedom, and has interac-
tions between the Fourier-filtering operation and the
phase-correction dynamics.

Analysis of the mathematical models described in the
next section for the system of figure 2 reveals that a
“differential” approach yields gradient dynamical sys-
tems. The differential approach involves alternating be-
tween one Fourier phase filter distribution, and the cor-
responding negative Fourier phase filter distribution.
The resulting Fourier-filter output intensity distribu-
tions are then differenced to produce the image which
is integrated with respect to time and fed back to the
phase-correcting SLM.

As phase-correction proceeds, and the Fourier filter
changes, the energy functional for gradient dynamics
may also change. By understanding the gradient dy-
namics behavior for a fixed Fourier filter, and under-
standing how the Fourier filter will evolve as phase-



correction proceeds, it should be possible to obtain con-
vergence results for specific choices of the Fourier filter
operator (i.e., the dependence of the Fourier phase fil-
ter upon the Fourier-domain intensity measurement).
For simplicity, and to bring out the main ideas, we fo-
cus here on the gradient dynamics behavior for fixed
choices of the Fourier phase filter, starting with the dif-
ferential version of the conventional Zernike filter.

3 Mathematical models

To describe the optical field (for a monochromatic
beam), we introduce a complex envelope A(x, y, z), de-
scribing a single component of the electric or mag-
netic field. We distinguish the z direction as the “op-
tical axis,” and denote the transverse coordinates as
r = (x, y). The underlying electromagnetic field com-
ponent that A(r, z) represents is then obtained by tak-
ing the real part of A(r, z)ei(ωt−kz), where k = 2π/λ
and ω = kc (with λ the optical wavelength, and c the
speed of light).

The complex envelope A(r, z) can be expressed in polar
form as

A(r, z) = a(r, z)eiu(r,z), (1)

where [a(r, z)]2 is the intensity and u(r, z) is the phase
(the quantity we are interested in measuring and con-
trolling). The intensity is what a camera would measure
at the point z along the optical axis.

In the wave-front control setting, we are interested in
how the phase at a particular point z0 along the optical
axis evolves in time. Therefore, we drop the argument z
from equation (1), and we allow u to depend on a time
variable t. (This time variable corresponds to quasi-
static changes in the complex envelope, not the time
scale of electromagnetic field oscillations.)

3.1 Wave-front sensor model
Our Zernike filter model should phase-shift the zero-
order Fourier component of the complex envelope
a(r)eiu(r,t) by θ (ideally, θ = π/2, but we only require
0 < θ < π), relative to the rest of the Fourier spectrum.
Therefore, we need to formulate mathematically what
we mean by the “zero-order Fourier component.” Be-
cause we assume that a(r) = 0 outside of a bounded
region, we can use a Fourier series representation:

A(r, t) =
∑
p

ap(t)ei
2π
γ p·r,

ap(t) =
1

γ2

∫
A(r, t)e−i

2π
γ p·rdr,

(2)

where p is a pair of integers (each ranging from −∞
to ∞), and γ is a parameter determining the spectral
resolution (assumed sufficiently large to avoid aliasing).

We model the conventional Zernike filter as an oper-
ator fconv(u) which takes a phase distribution u(r, t)
at the Zernike filter input and maps it to an intensity
distribution [fconv (u)](r, t) at the Zernike filter output.
This operator should correspond to phase-shifting the
zero-order Fourier series component by θ, and then tak-
ing the intensity (i.e., the magnitude) of the resulting
complex envelope. We thus obtain

[fconv(u)](r, t)

=

∣∣∣∣a(r)eiu(r,t) + (eiθ − 1)
1

γ2

∫
a(r)eiu(r,t)dr

∣∣∣∣
2

. (3)

(We have ignored finite aperature effects by failing to
truncate the Fourier series at some finite frequency.)
The corresponding differential Zernike filter model is

[fdiff (u)] (r, t)

=

∣∣∣∣a(r)eiu(r,t) + (eiθ − 1)
1

γ2

∫
a(r)eiu(r,t)dr

∣∣∣∣
2

−

∣∣∣∣a(r)eiu(r,t) + (e−iθ − 1)
1

γ2

∫
a(r)eiu(r,t)dr

∣∣∣∣
2

= −4 sinθ Im

{
a(r)e−iu(r,t)

1

γ2

∫
a(r)eiu(r,t)dr

}
. (4)

At each point r, the output intensity is a periodic
function of the input phase, but there is also global
coupling though the zero-order Fourier component
(1/γ2)

∫
aeiudr. Equation (4) also reveals that the

wave-front sensor image contrast depends on the zero-
order Fourier component, which has important practi-
cal implications.

3.2 Feedback system model
The feedback system using the differential Zernike filter
model given by equation (4) is

∂u

∂t
= −fdiff (u). (5)

Since the phase-correcting SLM has finite resolution,
we could instead consider a finite collection of ordinary
differential equations as our model. However, the con-
tinuous formulation is notationally simpler, and makes
it easier to add diffusion (or even diffraction) to the
model.

The dynamics given by equation (5) are (formally) gra-
dient dynamics with respect to the energy functional

[V (u)](t) = −2γ2 sin θ

∣∣∣∣ 1

γ2

∫
a(r)eiu(r,t)dr

∣∣∣∣
2

, (6)

which is proportional to (the negative of) the power
in the zero-order Fourier component. Using variational
calculus, we obtain

dV

dt
=
δV

δu
·
∂u

∂t
= −

∫ (
∂u

∂t

)2
dr, (7)



where (δV/δu) · v = limε→0[V (u + εv) − V (u)]/ε. The
feedback system using the differential version of the
conventional Zernike filter thus evolves to maximize the
power in the zero-order Fourier component of the cor-
rected beam. It is clear that u(r, t) = u0, a uniform
phase, minimizes V (u), so that phase correction corre-
sponds to energy functional minimization.

4 Results for the feedback system model

The gradient dynamics property of the differential
Zernike filter feedback system is retained even when we
add diffusion, phase-shift spectral components besides
the zero-order component, and discretize the phase-
correcting SLM. We will first explain each of these mod-
ifications individually, and then combine them into two
propositions summarizing the gradient-flow behavior of
these wave-front control systems. (The assumption of
a monochromatic beam can also be relaxed, but that
analysis is omitted here due to space constraints.)

4.1 Arbitrary Fourier phase filter
A feedback system based on the differential Zernike fil-
ter of equation (4) would suffer from the main practical
problem associated with the conventional Zernike filter:
too little power may fall on the pixel used for phase-
shifting the zero-order Fourier component, and there-
fore the initial wave-front sensor image contrast may
be too low for phase correction to begin. The point
of measuring the Fourier-domain intensity distribution
and using an SLM to implement the Fourier phase fil-
ter, as shown in figure 2, is to ensure that enough of
the spectral power is phase-shifted to produce an im-
age with sufficient contrast.

Consider first the case where an arbitrary collection
of Fourier series components of the input beam com-
plex envelope are phase shifted by the same amount θ.
Equation (4) is then replaced by

f(u)=

∣∣∣∣∣∣ae
iu+
(
eiθ−1

)∑
p∈I

(
1

γ2

∫
aeiue−i

2π
γ p·rdr

)
ei
2π
γ p·r

∣∣∣∣∣∣
2

−

∣∣∣∣∣∣ae
iu+
(
e−iθ−1

)∑
p∈I

(
1

γ2

∫
aeiue−i

2π
γ p·rdr

)
ei
2π
γ p·r

∣∣∣∣∣∣
2

= −4 sin θ
∑
p∈I

Im

{
ae−i(u−

2π
γ p·r)

1

γ2

∫
aei(u−

2π
γ p·r)dr

}
,

(8)

where I is a finite index set that may or may not contain
0. As we will show, the gradient dynamics property
holds for f(u) given by equation (8).

One consequence is that the model is unaffected by
which Fourier series component we consider to be the

“zero-order” component. Suppose I = {p0}, i.e., ex-
actly one arbitrarily chosen Fourier series component is
phase-shifted. If we define ũ = u − 2π

γ
p0 · r, then we

have

f(u) = fdiff (ũ). (9)

The dynamics then become

∂ũ

∂t
=
∂u

∂t
= −f(u) = −fdiff (ũ). (10)

Thus, ũ evolves according to equation (5), but the spa-
tially uniform equilibrium, ũo ≡ 0, actually corresponds
to uo(r) = 2π

γ
p0 ·r, a solution representing a pure wave-

front “tilt.” Equation (8) can also be used to study
what happens when the spectral phase-shifting SLM is
lower-resolution than the focused spot size of an un-
aberrated beam.

When the spectral phase shift distribution is arbitrary
(rather than constrained to take the values 0 or θ for all
Fourier series coefficients), the gradient dynamics prop-
erty no longer holds for the differential Zernike filter.
However, it is still instructive to examine the nonlinear
dynamics (see section 5).

4.2 Diffusion added to the dynamics
Adding diffusion to the dynamics may be useful for
penalizing phase jumps in the phase-correcting SLM.
To analyze the dynamics with the diffusion term, it is
necessary to distinguish between the input beam phase
φ(r) and the phase-correcting SLM phase distribution
u(r, t), since the diffusion term only involves the latter.
Equation (5) is thus replaced by

∂u

∂t
= l2∆u− f(u+ φ), (11)

where l > 0 is a diffusion length. Using standard meth-
ods from PDE theory (and assuming periodic boundary
conditions consistent with our Fourier series represen-
tation), it is possible to prove existence and uniqueness
of weak solutions for equation (11). The energy func-
tionals we write down are therefore well-defined.

4.3 Discretized phase-correcting SLM
So far we have assumed a phase-correcting SLM with
infinitely high resolution. It is useful to know what
hypotheses are needed to derive analogous results for
a more realistic model which assumes that the phase-
correcting SLM is spatially discretized.

Let the wavefront correction element be described by

u(r, t) = S(r, u11(t), u12(t)..., unn(t)), (12)

where the uij(t) are electrode voltages causing deforma-
tion of, say, a deformable mirror. A natural choice for a
discrete approximation to equation (11), corresponding



to principal component analysis, is

duij

dt
= l2
(
u(i−1)j + ui(j−1) + u(i+1)j + ui(j+1) − 4uij

δ2

)

−

∫
∂S

∂uij
f(S(r, u11, u12, ..., unn) + φ)dr. (13)

The parameter δ corresponds to the length scale of the
spatial discretization of the wave-front corrector. (In a
practical implementation, we would probably approxi-
mate the ∂S/∂uij as functions of r alone.)

From expression (13) for the dynamics, we see that it
is not necessary to measure f(u+ φ), only certain spa-
tially weighted functionals of f(u+φ). Thus, as long as
the response of an array of photodetectors is appropri-
ately matched to a finite degree-of-freedom wavefront
corrector, phase distortion suppression may be achiev-
able. Furthermore, the photodetector signals could be
directly fed back to the corresponding electrodes of the
phase-correcting SLM, with the only computation re-
quired being the subtraction needed for the differential
approach (and integration with respect to time).

4.4 Results for the differential Zernike filter
We present the main results for the differential Zernike
filter model as two propositions. One applies to the con-
tinuous (PDE) system, and the other applies to the cor-
responding spatially discretized system of ODEs. Al-
though the differential approach can only (practically)
be implemented in discrete time, we leave time as a
continuous variable in the propositions.

Proposition 1. Consider the dynamical system (11),
and let f(u) be given by equation (8). Assume the ini-
tial condition u(r, 0) ∈ L2(Ω) and φ(r) ∈ L2(Ω) (where
Ω is the bounded region corresponding to the periodic
boundary conditions). Assume further that I is a finite
set,
∫

[a(r)]2dr is bounded, and γ is sufficiently large to
avoid aliasing. Then the dynamical system is a gradient
system with respect to the energy functional

V =

∫
l2

2
|∇u|2dr

−2γ2 sin θ
∑
p∈I

∣∣∣∣ 1

γ2

∫
a(r)ei(u(r,t)+φ(r)−

2π
γ p·r)dr

∣∣∣∣
2

. (14)

Specifically, ∂u/∂t = −∇V (with respect to the usual
inner product for L2(Ω)), and

dV

dt
= −

∫ (
∂u

∂t

)2
dr. (15)

Thus, V also serves as a Lyapunov functional for the
dynamics; i.e., dV/dt ≤ 0, with dV/dt = 0 only at
equilibria.

Proof: From equation (8) and our assumptions on a

and I, we have

∫
[f(u)]2dr < c1 <∞, ∀u. (16)

Therefore, equation (11) has a unique solution with suf-
ficient regularity for the subsequent calculations [12].

Differentiating the energy functional V with respect to
time gives

dV

dt
=
δV

δu
·
∂u

∂t
= −

∫ (
∂u

∂t

)2
dr. (17)

This calculation shows that ∂u/∂t = −∇V , and that
dV/dt ≤ 0 with dV/dt = 0 only at equilibria. 2

Proposition 2. Let the driving voltages for an n2

degree-of-freedom phase-correcting SLM be denoted
uij(t), and let S(r, u11, u12, ..., unn) be a smooth func-
tion (representing the SLM influence function). Con-
sider the dynamical system given by equation (13),
where uij = 0 when either i or j is outside the range
from 1 to n. As before, we assume that I is a finite
set,
∫

[a(r)]2dr is bounded, and γ is sufficiently large to
avoid aliasing. We also assume that

∫ (
∂S

∂uij

)2
dr < c2 <∞, (18)

for each i, j between 1 and n, and that the right-hand-
side of equation (13) is continuously differentiable with
respect to u11, u12, ..., unn. Then the dynamical system
(13) is a gradient system with respect to the energy
function Vδ given by

Vδ =
l2

δ

n∑
i=1

n∑
j=1

(
2(uij)

2 − u(i−1)juij − ui(j−1)uij
)

−2γ2 sin θ
∑
p∈I

∣∣∣∣ 1

γ2

∫
a(r)ei(S(r,u11,...,unn)+φ−

2π
γ p·r)dr

∣∣∣∣
2

.

(19)

Specifically, duij/dt = −∂Vδ/∂uij, and

dVδ

dt
= −

n∑
i=1

n∑
j=1

(
duij

dt

)2
. (20)

Thus, Vδ also serves as a Lyapunov function for the
dynamics; i.e., dVδ/dt ≤ 0, with dVδ/dt = 0 only at
equilibria.

Proof: Equation (16) is valid, because f(u) is the same
as in Proposition 1. It then follows that for any initial
condition, equation (13) has a unique solution, defined
for t arbitrarily large (i.e., the necessary local Lipschitz
condition is satisfied, and finite escape times are ruled
out) [13].



Differentiating the energy function Vδ with respect to
time gives

dVδ

dt
=

n∑
i=1

n∑
j=1

∂Vδ

∂uij

duij

dt
= −

n∑
i=1

n∑
j=1

(
duij

dt

)2
. (21)

This calculation shows that duij/dt = −∂Vδ/∂uij, and
that dVδ/dt ≤ 0 with dVδ/dt = 0 only at equilibria. 2

5 Relationship to experimental work

The preceeding analysis shows how a wave-front control
system can be designed so as to be a gradient dynam-
ical system. What is required is to use the differential
approach for wave-front sensing, and have the Fourier
phase filter supply phase shifts of exactly 0 or θ. How-
ever, in numerical and experimental work, fairly robust
convergence has been observed, even when these con-
ditions are relaxed (provided the Fourier-domain phase
shifts remain between 0 and π) [11]. We can thus use
the gradient dynamical system as a nonlinear approx-
imation to these non-gradient systems, and this type
of approximation appears to have greater qualitative
value than a linearized approximation about the spa-
tially uniform equilibrium.

In recent experimental work, the system of figure 2 was
implemented with a liquid-crystal light valve (LCLV)
used as the Fourier phase filter [11]. The LCLV device
supplied a phase shift proportional to incident optical
intensity. For our Fourier series model, the operator
corresponding to the LCLV would have each Fourier
series component phase-shifted in proportion to its in-
tensity. The differential approach was not used, as the
LCLV could only supply phase shifts of one polarity.
For uniform-intensity input beams, the LCLV-based
system performed quite well (both in simulation and
experimentally), correcting input beams with highly-
aberrated phase distributions. Performance degraded
with increasing variation in the input beam intensity
distribution (which is reasonable, since in that case per-
fect phase correction no longer corresponds to an equi-
librium of the dynamics) [11].

6 Summary and conclusions

Large arrays of sensors and actuators are becoming fea-
sible to build. However, using such arrays for feedback
control of physical fields depends critically on our abil-
ity to devise control schemes for such systems. Optics
is a natural context in which to investigate such control
schemes, because there has been considerable work in
adaptive optics to draw upon, and because optics can be
useful for measurement in other engineering contexts,
as well.

However, in considering optical wave-front measure-
ment and control, nonlinearity enters in an intrinsic
way. We need to be able to deal with the nonlinearity,
as well as with the constraints arising from having to
use a parallel, distributed control scheme rather than
a centralized control law. The strategy of identifying
a nonlinear approximation to the dynamics which cap-
tures its essential features even far from equilibrium can
be simpler to carry out, and more revealing, than a lin-
earized analysis about the equilibrium. Furthermore,
the results can be used to guide design.
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