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the UltraLow Velocity Zones (ULVZ) in the Earth’s core-mantle boundary.
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Introduction
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Partial melting of rocks influences their elastic properties and rheological

behavior. As partial melting occurs, the melt pools along the grain edges, cor-

ners and boundaries. Along with the degree of melting, the geometry of this

melt distribution, or melt microstructure, plays an important role in determin-

ing the effective physical properties of the rock (Faul , 2001; Hier-Majumder ,

2008; Hier-Majumder and Abbott , 2010; Hustoft and Kohlstedt , 2006; Scott and

Kohlstedt , 2006; Takei , 1998, 2000, 2002; ten Grotenhuis et al., 2005; Yoshino

et al., 2005). As the volume fraction of melt in grain-edge tubules and pockets

increases, the fractional area of intergranular contact, contiguity, decreases.

Since the elastic strength of the load-bearing framework is controlled by con-

tiguity, the effective bulk and shear moduli of partially molten rocks decrease

with an increase in melt fraction. As the melt fraction reaches the threshold of

disaggregation, intergranular contact is lost, and the effective shear modulus

becomes zero (Takei , 2002). Thus, the velocity of shear waves is more sensi-

tive to partial melting than that of P waves. In interpreting the melt volume

fraction from observed differential reductions in seismic body wave velocities,

a parameterization of contiguity-melt fraction relation is thus necessary.

The relation between contiguity and melt fraction has been studied in a

number of theoretical and experimental studies. The seminal work of von Bar-

gen and Waff (1986) explored the influence of melt fraction and dihedral angle

on the three dimensional geometry of melt tubules and pockets for melt vol-

ume fractions up to 0.05. Experimental results, obtained from high resolution

micrographs of polished sections of synthetic and natural rocks, investigate the

relation between melt fraction and contiguity over a larger range of melt frac-

tion and various dihedral angles (see Yoshino et al. (2005) for a compilation

of data). Recently, X-ray microtomography has revealed direct visualization
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of three dimensional melt distribution in a partially molten aggregates (Zhu

et al., 2011). Contiguity, however, is yet to be measured directly using this

technique. Currently, the only measurement of contiguity at moderate to high

melt fractions arise from two dimensional measurements or extrapolation of

the three dimensional model of von Bargen and Waff (1986).

This work presents a new three dimensional dynamic model of melt mi-

crostructure that is able to predict contiguity for a given melt volume fraction.

This study hypothesizes that the true behavior of the melt microstructure is

best understood through a three dimensional study.

This chapter presents a brief background on the identified regions of melting

in the Earth’s interior, existing models of melt microstructure, the linkage

between melt microstructure and effective physical properties, and an overview

of the model used in this study.

1.1 Melting in the Earth’s interior

The presence of partial melt in the Earth’s deep interior is observed in

a number of melt-rich zones and regions of melt extraction. For example,

a patchwork of dense, melt-rich UltraLow Velocity Zones (ULVZ) have been

detected above the Core-Mantle Boundary (CMB) (Hutko et al., 2009; Rost

et al., 2005; Wen and Helmberger , 1998; Williams and Garnero, 1996). Seis-

mic studies also suggests a modest amount of partial melt occurring atop the

mantle transition zone in a Low Velocity Layer (LVL) (Courtier and Reve-

naugh, 2007; Revenaugh and Sipkin, 1994; Tauzin et al., 2010; Vinnik and

Farra, 2007) and possibly in a Low Velocity Zone (LVZ) at the Lithosphere-

Asthenosphere Boundary (LAB) (Fischer et al., 2010; Kawakatsu et al., 2009;

Rychert et al., 2007). In dynamic regions of melting and melt migration, such
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Figure 1.1: Cartoon depicting areas of melt within Earth’s interior. The brown
region corresponds to the lithosphere, the red region depicts the astheno-
sphere, the orange area gives the lower mantle, and the yellow region gives
the core. Partial melting occurs at the Lithosphere-Asthenosphere boundary
(Rychert et al., 2007), at the midmantle transition zone in a Low Velocity
Layer (Courtier and Revenaugh, 2007), and at ULVZ atop the CMB (Hier-
Majumder , 2008).

as subduction zones, midoceanic ridges, and plumes, the trajectory of melt is

transient and spatially variable.

The schematic diagram in Figure 1.1 summarizes some of these regions of

partial melting in the Earth’s interior. In the cartoon, the brown regions cor-

respond to the lithosphere and a subducting slab, and red corresponds to the

asthenosphere. Regions of partial melting in these areas are given by orange

patches. The green region corresponds to a Large Low-Shear-Velocity Province

(LLSVP). Two of these broad regions with lowered shear wave velocities and

increased density have been detected by seismic studies, and together cover

nearly half of the CMB (Garnero and McNamara, 2008). Along the edge of

the LLSVP, thin patches of ULVZs have been detected. In the cartoon, the

sizes of these structures are not to scale.

A number of studies identify regions with sharp drops of shear wave velocity

at the LAB (Kawakatsu et al., 2009; Rychert et al., 2007). The LVZ can be

explained by the presence of a modest amount of melt (Kawakatsu et al., 2009)
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which is dynamically stable at the LAB (Hirschmann, 2010). The presence

of melting not only affects the seismic velocities of the region, but also the

viscous coupling between the lithosphere and asthenosphere, which is essential

for plate tectonics (Fischer et al., 2010).

Drop in shear wave velocity and impedance indicates the likely presence

of a partially molten layer, varying in thickness between 30-90 km atop the

410 km discontinuity (Courtier and Revenaugh, 2007; Revenaugh and Sipkin,

1994; Vinnik and Farra, 2007), which may be global (Tauzin et al., 2010).

The nature of melting in this zone is still in unclear, although it is suggested

that the seismic signature can be explained by carbonate melting (Dasgupta

and Hirschmann, 2006, 2010). This layer has important consequences for the

storage of radiogenic elements and can hold distinct geochemical reservoirs,

which has implications to planetary evolution (Bercovici and Karato, 2003).

Sharp reductions of 10% and 30% in P and shear wave velocities, respec-

tively, mark the presence of the ULVZ at the CMB (Hutko et al., 2009; Rost and

Revenaugh, 2003; Rost et al., 2005; Wen and Helmberger , 1998; Williams and

Garnero, 1996). This region is also 10% denser and likely two orders of mag-

nitude weaker than the surrounding mantle (Hier-Majumder and Revenaugh,

2009; Rost and Revenaugh, 2003). The large drop in shear wave velocity in this

region implies a much larger melt volume fraction than at the two shallower

LVZ described above. Results from laboratory experiments indicate that iron-

rich high pressure phases can explain some of the observed velocity reductions

(Mao et al., 2006; Wicks et al., 2010). Explaining the seismic signature of the

ULVZ by only iron-rich solids, however, is difficult to reconcile with a few other

seismic and experimental observations. Occurrence of ULVZ beyond the sta-

bility field of iron-rich postperovskite (Garnero and McNamara, 2008), strong
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iron depletion in magnesiowüstite in contact with outer core liquid (Ozawa

et al., 2008, 2009), and iron enrichment in silicate melt under conditions sim-

ilar to the ULVZ (Nomura et al., 2011), indicate that some extent of melting

is likely to occur in the ULVZ.

A relatively large volume fraction of dense melt, however, is difficult to re-

tain uniformly distributed within the ULVZ (Hernlund and Tackley , 2007), as

the high density melt will tend to pool near the bottom of the ULVZ. Hernlund

and Jellinek (2010) suggested stirring of the mushy ULVZ can prevent such

a gravitational drainage. Hier-Majumder et al. (2006) suggest that capillary

tension at grain-grain contact can reduce the drainage efficiency of the melt.

Inferring the extent of melting from the seismic signature of the ULVZ, is thus

crucial in understanding the internal dynamics of these structure, as well as

the long term stability of mantle plumes (Jellinek and Manga, 2004) and the

dynamics of the two LLSVPs in the base of the mantle (McNamara et al.,

2010).

1.2 Microstructure in partially molten rocks

In equilibrated, partially molten materials, a combination of processes, col-

lectively termed ‘liquid phase sintering’, leads to the steady-state microstruc-

ture (German, 1985; Kang , 2005; Kingery , 1959). The process of liquid phase

sintering consists of three main steps. First, grains are rearranged giving a

denser packing arrangement. Next, flattening occurs at contact points be-

tween grains, which resulting in further densification. Finally, neighboring

grains weld at contact points and a solid skeltal framework is formed (Ju-

rewicz and Watson, 1985).

A number of theoretical models have investigated the microstructure in
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partially molten rocks and liquid phase sintered ceramic materials. These

models can be broadly classified into two groups. The first group focuses on

a robust description of the melt geometry, neglecting the dynamic balance

between surface tension, pressure, and viscous flow during liquid phase sinter-

ing (German, 1985; Kang , 2005; Kingery , 1959; von Bargen and Waff , 1986;

Wray , 1976). The second class of models incorporates the dynamics but has

a poor geometric resolution (Hopper , 1990, 1993a,b; Kuiken, 1993).

Geometric models assume that melt resides along either grain edge tubules,

grain corner pockets, or along grain boundaries (Wray , 1976). One of the

most comprehensive models by von Bargen and Waff (1986) assumes that

the steady-state shape of the melt is determined by minimization of a scalar

chemical potential, leading to a constant mean curvature. The dihedral angle,

θ, related to the grain-grain (γgg) and grain-melt (γgm) surface tensions via

Young-Dupré relation

cos
θ

2
=

γgg
2γgm

, (1.1)

is prescribed as a boundary condition in their model. As a result, the model

can be perfectly matched at the boundary with the experimentally observed

dihedral angles. However, the lack of stress, pressure, and variable curvature

in such formulations prevent these models to be applicable for regions under-

going deformation, where microstructure is dynamic and the Young Dupré

relation doesn’t hold (Hier-Majumder et al., 2004; Jansons , 1984). A number

of experimental and theoretical studies demonstrate that the microstructure of

melt can be altered by the application of stress (Daines and Kohlstedt , 1997;

Holtzman et al., 2003; Katz et al., 2006; Zimmerman et al., 1999) and the

seismic properties can be altered by the reorientation of melt by deformation

(Takei , 2005). In the lower mantle, ULVZ may experience stresses from an
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upwelling flow in the surrounding mantle (Rost et al., 2005).

In contrast, dynamic models involve one or two coalescing cylinders which

deform under the influence of surface tension (Hopper , 1990, 1993a,b; Kuiken,

1993). The surface tension along the grain-melt interface excites a viscous flow

within the grain, as well as within melt pockets, until a steady-state shape is

reached. While the surface tension across the grain may be used to mimic sur-

rounding grains, there is no imposed structure. In models which include more

than one grain, the area of intergranular contact, contiguity, is not tracked

because these models assume that all of the grains coalesce into one large

grain. Consequently, contiguity and dihedral angle cannot be calculated from

the steady-state grain-melt geometry. The inability to calculate these vari-

ables restricts the usefulness of these models in calculating effective physical

properties of the partially molten rock and the results are not testable against

laboratory measurements.

Unlike these previous models, this model describes the three dimensional,

steady-state microstructure by incorporating viscous flow to a realistic geomet-

rical model of an aggregate. Previous models which have used this method

(Hier-Majumder , 2008; Hier-Majumder and Abbott , 2010) have been restricted

to two dimensions. This thesis extends the scope of these models by incorpo-

rating three dimensional geometry.

1.3 Effective physical properties of partially

molten rocks

Traditionally, to measure the influence of melt geometry on the effec-

tive elastic properties of partially molten rocks, melt inclusions were modeled
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within a continuum solid phase. The inclusions used in these models range

from simple spherical inclusions (Berryman, 1980a) to interconnected tubes

(Mavko, 1980). While tube models may be able to approximately model the

interconnected regions along grain boundaries where melt resides, the actual

microstructure in partially molten rocks is much more complex.

The inclusion models solve for effective elastic moduli in various ways using

different parameters. The formulation by Berryman (1980a,b), for calculating

effective elastic moduli in an aggregate containing spherical and ellipsoidal

inclusions, combines continuum mechanics of elastic media with principles of

scattering theory. The results from Berryman (1980a,b) depend on the aspect

ratio of the inclusions and melt volume fraction. This model was able to predict

elastic moduli that fell within the theoretical Miller and Hashin-Shtrikman

bounds, but is limited in terms of the inherent melt geometry.

Solving for the effective elastic moduli for a rock with a network of cracks,

O’Connell and Budiansky (1974) use a self consistent energy approach. This

approach evaluates the effective elastic moduli by estimating the isothermal

potential energy for the uncracked rock, cracked body, and the potential energy

change due to the inclusion of the cracks. Since the melt fraction is related to

the size and number of cracks, the elastic moduli are only dependent on the

crack density. The results of the crack model agree with that of the ellipsoidal

inclusion model of Berryman (1980b) when the aspect ratio is small enough.

The actual microstructure in partially molten rocks, however, is much more

complex than simple inclusions. This prevents accurate comparisons between

these models and experimental results. The equilibrium geometry model of

Takei (1998, 2002), treats the partially molten rock as a granular aggregate

and describes the microstructure in terms of the contiguity of the rock. The
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contiguity of a partially molten rock is influenced by the melt volume fraction,

dihedral angle, and the state of deformation. Unlike the melt inclusion models,

therefore, the equilibrium geometry model is able to incorporate much more

information to calculate the effective elastic moduli.

The model in this study predicts the contiguity of a partially molten rock

in three dimensions as a function of melt volume fraction. Once the contiguity

is determined, the equilibrium geometry model of Takei (2002) is used to cal-

culate elastic moduli and seismic velocities. The calculated seismic velocities

are then compared with observations to consider the degree of melting in the

ULVZ.

1.4 Building the model

This model incorporates aspects from the previous models discussed in Sec-

tion 1.3. Figure 1.2 presents a flow chart describing the various aspects of the

model. The first box on top left contains the preliminary information needed

to construct the model. Preliminary information includes the symmetry of

the unit cell representing the partially molten aggregate. Data from mineral

physics on the physical properties of the solid and the melt are needed for

inputs to the model. Once this information is available, we derive a set of cou-

pled mass and momentum conservation equations to simulate the liquid phase

sintering process, described earlier. Finally, these conservation equations are

combined to yield a partial differential equation, linking the shape of a grain

to the dynamic forces of liquid phase sintering.

The third box describes the most significant component of this model. In

this stage, we solve the equation governing the shape of an individual grain.

Next, we calculate the resulting melt volume fraction and contiguity within
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von Bargen and Waff (1986)

Inclusion Models [Berryman (1980) and Mavko (1980)]

Dynamic Models [Hopper (1980) and Kuiken (1993)]

Equilibrium Model, Takei (1998, 2002)

This Model and Hier-Majumder and Abbott (2010)

Figure 1.2: Flow chart depicting aspects of previous models as well as this
model.

a unit cell consisting of grains of that shape. This stage is repeated multiple

times with different control parameters to generate a data set consisting of a

number of different melt volume fractions and the corresponding contiguities.

The fourth and fifth boxes illustrate the way the seismic signature of the

rock is determined, and compares the results of the model with observation.

We input the contiguity and melt fraction data generated in the previous step

into the equilibrium geometry model to obtain a set of resultant effective elastic

moduli and shear and P wave velocities. Comparing with the observed values,

we can constrain the melt volume fraction in the ULVZ.

This model expands on the model of Hier-Majumder (2008) in which all

of the six boxes in figure 1.2 were incorporated. The model of Hier-Majumder

(2008), however, was restricted to two dimensions. In this study, a fully dy-
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namic geometrical model is developed in three dimensions. Each grain is

modeled using the rhombic dodecahedral symmetry. In this configuration, a

grain is in contact with 12 other grains. From the steady-state grain shape,

the microstructural parameters can be calculated. With these parameters the

equilibrium geometry model of Takei (2002) is used to calculate seismic veloc-

ities which are used to quantify the extent of melting in the Earth’s interior.
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Chapter 2

Methods
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The semianalytical technique in this thesis models the melt volume frac-

tion, contiguity, and elastic properties averaged over a unit cell, consisting of

14 grains arranged in a face-centered-cubic (FCC) symmetry. Each grain in

the unit cell is contiguous to 12 other grains, while the interstitial volume is

saturated with melt. The surface tension on each grain varies spatially between

grain-grain and grain-melt contacts. The spatial gradient of surface tension

excites a response flow within the grains and the interstitial melt. When the

forces arising from pressure, surface tension, and viscous deformation balance

each other, steady-state geometry is attained. Once the steady-state shape

of each individual grain is derived from the governing equation, we populate

the unit cell with identical grains to calculate the melt volume fraction and

contiguity.

To systematically study the variation of contiguity with melt volume frac-

tion, we consider a reference unit cell. In this reference unit cell, each grain,

described by a unit sphere, makes only point contacts with its neighbors. In

this configuration, contiguity is zero, and the volume fraction of the interstitial

space is approximately 0.26, the porosity of FCC packed spheres. In partially

molten rocks, this melt fraction, termed the ‘disaggregation melt fraction’,

or the ‘rheologically critical melt fraction’, is marked by a sharp reduction

in viscosity (Scott and Kohlstedt , 2006). Next, we consider the influence of

neighboring grains on each grain, via surface tension, as a perturbation to

this reference state. As the perturbation increases, the grains become more

faceted, increasing the area of intergranular contact. Due to faceting, it is pos-

sible to pack the grains into a smaller unit cell, reducing the volume fraction

of interstitial space. We carried out a series of numerical experiments with

different extents of perturbation in each experiment. We then measured the

14



melt fraction and contiguity in each experiment. Finally, we fit the contiguity-

melt fraction data to obtain a relation between contiguity and melt volume

fraction. This work does not incorporate anisotropic grain boundary energy

and the influence of varying dihedral angle on contiguity.

The methods underlying each of these aspects of the model are discussed

in sections 2.1, 2.2, and 2.3. The method of analyzing errors in our model are

discussed in section 2.4.

2.1 Governing equations

A set of processes, collectively termed ‘liquid phase sintering’, leads to the

development of the steady-state microstructure in partially molten aggregates

(German, 1985; Kang , 2005). Typically, two classes of models describe the pro-

cesses involved during sintering. The first body of work models mass transfer

by diffusion dominated processes (German, 1985; Kang , 2005; Kingery , 1959).

The second suite of models treat the diffusive mass flux in an average sense,

and treats the motion excited within the grains and the melt during sinter-

ing via a set of mass and momentum conservation equations (Hopper , 1990,

1993a,b; Kuiken, 1993). The steady-state shape of the grains is thus a bal-

ance between surface tension forces and the viscous forces within the grain.

This work follows the second suite of models. Since this model incorporates

stresses, it can be easily extended to model anisotropic microstructure devel-

oped in the presence of an applied stress (Hier-Majumder , 2011), as expected

in the dynamic interior of the Earth.
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2.1.1 Steady-state grain shape

Consider a collection of grains in a partially molten unit cell. We express

the steady-state shape of a grain as a small perturbation from a sphere. The

shape function Fk describing the kth particle is given by,

Fk = r − a(1 + εfk) = 0, (2.1)

where fk is an unknown function arising from surface tension, a is the grain

size, and the coefficient of deformation, ε, is a constant. The variable r is the

radial distance from the center of the grain. We notice that the unit normal

to the grain n̂k is given by (Leal , 1992),

n̂k =
∇Fk
|∇Fk|

= r̂ − ε∇fk. (2.2)

where r̂ is the unit radial vector.

In the reference state or zeroth order, velocities within each grain and the

melt phase are considered zero. The pressure within each phase has a nonzero

zeroth order component. Within the kth grain (i = k) or melt (i = m), total

dynamic pressure ptotali , total velocity utotali , and stress tensors Ttotal
i are given

by,

utotali = εui, (2.3)

ptotali = p0i + εpi, (2.4)

Ttotal
i = −ptotali I + εµi

(
∇ui +∇uTi

)
, (2.5)

where µi is the viscosity and I is the identity matrix.

In the perturbed state, the coupled flow within each grain and the melt
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are governed by the conservation of mass and momentum within each particle

and the melt. Each particle and the melt are treated as incompressible viscous

fluids, leading to the first order equations,

0 = µi∇2ui −∇pi, (2.6)

and

0 =∇ · ui. (2.7)

To solve for the unknown velocities, pressures, and shape functions, we

need to impose two sets of boundary conditions. First, the velocity is assumed

to be continuous at the interface of the kth particle, implying no-slip at this

interface,

uk|Fk=0 = um|Fk=0 . (2.8)

Next, the continuity of traction across the interface Fk = 0 requires (Leal ,

1992, Ch. 5),

∆Tk · n̂k + ∇̃γ − γn̂k
(
∇ · n̂k

)
= 0, (2.9)

where ∆Tk is the stress drop on the surface of the k- th grain and γ is the

interfacial tension. The surface gradient operator ∇̃ is defined as (Manga and

Stone, 1995)

∇̃ =
[
I− n̂kn̂k

]
·∇, (2.10)

where n̂k is the unit normal vector and ∇ is the gradient operator. The first

term in the left hand side of the stress jump condition, equation (2.9), is the

differential traction across the interface, the second term arises from the varia-

tion of interfacial tension on a grain, and the third term arises from curvature
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driven surface tension force. The normal component of the stress jump condi-

tion is termed the Laplace condition while the tangential component is termed

as Marangoni condition (Hier-Majumder , 2008; Leal , 1992). The total surface

tension γ can also be expressed as a sum of the reference surface tension γ0

and a perturbation surface tension γ1,

γ = γ0 + εγ1. (2.11)

The perturbation γ1 arises from the alteration of the surface properties due to

contact with other grains. The nature of this function depends on the packing

geometry of the grains and is discussed in section 2.1.3. Finally, the evolution

of the shape of the kth grain is governed by the kinematic relation (Leal , 1992),

∂Fk
∂t

+ uk ·∇F = 0. (2.12)

Taken together, conservation equations (2.6) and (2.7), the no-slip bound-

ary condition (2.8), normal component of the stress jump condition (2.9), and

the kinematic condition (2.12) can be used to solve for the first order unknown

velocity ui, pressure pi, and shape perturbation of the kth particle fk. First,

analytical solutions to the velocity and pressure fields are obtained using the

technique of solid harmonics. Details of this technique is provided in Appendix

A. Once the velocity and pressure fields are obtained, those solutions are sub-

stituted into the normal component of the stress jump condition 2.9 to obtain

a second order partial differential equation in the unknown shape perturbation
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fk. The above equations were nondimensionalized by using,

pi =
µiu0
a
p′i, (2.13)

ui = u0u
′
i (2.14)

r = ar′ (2.15)

γ = γ0γ
′, (2.16)

where u0 is a reference velocity and γ0 is a reference value of grain-melt surface

tension. The primes for the nondimensionalized parameters have been dropped

for the following equations.

By analytically solving the above equations, explained in Appendix A, we

obtain the evolution equation for the perturbed shape function fk,

∂fk
∂t

=
2γ0

Ca(3 + 4λ)
∇2fk −

4γ1
Ca(3 + 4λ)

. (2.17)

where λ represents the viscosity ratio between the grain and the melt, µm/µk

,and Ca is the capillary number given by

Ca =
µku0
γ0

(2.18)

which gives the relative magnitude of viscous and capillary forces at the inter-

face. Once the steady-state is reached, the left hand side of equation (2.17)

becomes zero, leading to the steady-state equation,

∇2f =
2

γ0
γ1, (2.19)

where γ0 is constant. As evidenced by equation (2.19), in the steady-state,
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only perturbation in the surface tension controls the perturbed grain shape.

In the presence of an applied external stress, the grains and melt tubules

deform continually, and equation (2.17) describes the shape evolution in a

more appropriate manner. Notice, under such circumstances, the viscosity

contrast between the grain and the melt and the capillary number influence

the shape.

2.1.2 Packing arrangement

Two kinds of space-filling polyhedra are used to describe the grain shape in

dense, multiparticle aggregates (German, 1985; Lissant , 1966; Park and Yoon,

1985; von Bargen and Waff , 1986). While von Bargen and Waff (1986) em-

ployed a truncated octahedral or tetrakaidecahedral geometry, Park and Yoon

(1985) argued that a rhombic dodecahedron geometry is equally applicable for

sintering models of multiphase materials. The work of Lissant (1966) argues

that tetrakaidecahedral geometry is preferred for melt fractions below 0.06,

and that the geometry of the rhombic dodecahedron is preferred for higher

melt fractions. Later work of Takei (1998) also argues in favor of the rhombic

dodecahedron geometry. This work explores the contiguity-melt fraction rela-

tion beyond the narrow range between 0 to 0.05 studied by von Bargen and

Waff (1986). In addition, the equilibrium geometry model of Takei (2002)

used to process the output of this model, is ideally suited for rhombic do-

decahedral grains. Therefore, we selected rhombic dodecahedral symmetry to

describe perturbed grains.

In the rhombic dodecahedron geometry, each grain has a coordination num-

ber of 12. The grain is surrounded by six other grains in its equatorial plane

and three grains, offset from each other, each on the layer above and below

20



the equatorial layer, leading to an A-B-C packing arrangement. The diagram

in Figure 2.1 outlines the coordination symmetry of a rhombic dodecahedral

grain. This packing arrangement is used in the next section to prescribe the

surface tension distribution of each grain.

(a) (b) (c)

Figure 2.1: Packing arrangement of the grains. (a) An individual grain, with
the areas of contact with other grains in dark color. The central grain in red
is contiguous to 12 other grains, (b) six along the θ = π/2 plane (shown in
red), (c) three above at θ = sin−1(

√
1/3) (shown in blue), and three below at

an angle of θ = π − sin−1(
√

1/3) (shown in green).

2.1.3 Prescription of surface tension

Following Takei (1998), we identify 12 contact patches on each rhombic

dodecahedral grain, where the perturbed surface tension is equal to γ′gg, the

grain-grain surface tension, and is equal to γ′gm everywhere else:

γ1(θ, φ) = (γ′gg − γ′gm)
12∑
i=1

hi(θ)gi(φ) (2.20)

where hi(θ) and gi(φ) are combinations of step functions in θ and φ, the

colatitude and the azimuthal angle, respectively. The schematic diagram in

Figure 2.2 outlines the angles in the spherical coordinates. The difference in

the two values of surface tension is used for the perturbation surface tension

because γ1 is being added to the reference value of surface tension. The step
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functions are used to model contact patches on the grain surface. This allows

for equation (2.20) to be separated into its θ and φ components. Multiple step

functions are used for each contact face to create the shape of a rhombus, see

Figure 2.3 and Appendix B.

Figure 2.2: A schematic diagram of the colatitude θ and azimuthal angle φ
defined with respect to Cartesian coordinates.

2.2 Solution techniques

This model provides solutions for perturbed pressure and velocity within

each grain and the melt as well as the perturbed shape of the grains. Solution

to the velocity and pressure fields were obtained analytically using the method

of solid harmonics. Analytical solution building technique for these fields are

described in Appendix A. Due to the nature of the perturbed surface ten-

sion, γ1 described in equation (2.20), equation (2.19) was solved numerically

by using a spherical harmonic transform. The following subsections derive

the solution building method for the perturbed shape function fk of the kth

particle, outlines the numerical methods, and discusses the errors associated.
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θ=0  θ'         π/2     π-θ'  π        
φ=0

π/2

π

3π/2

2π

Figure 2.3: Map of the varying surface tension prescribed across the grain.
The horizontal axis represents the colatitude θ and the vertical axis represents
the azimuthal angle φ. The surface tension is prescribed with double step
functions given by equation (2.20) and the value of surface tension at the white
regions is equal γ′gg and black regions equal γ′gm. The grain-grain contacts are
prescribed following the symmetry of a rhombic dodecahedron. The shapes of
the grain-grain contacts are used to mimic the shape of rhombi on the surface
of a rhombic dodecahedron. The value of θ′ gives the center of contact patches
above the equatorial plane, where sinθ′ =

√
(1/3).

2.2.1 Expansion in spherical harmonics

The perturbed shape of the kth particle fk is forced by the perturbed sur-

face tension γ1 in the governing equation (2.19). We can express the unknown

function fk and the known function γ1 as a sum of spherical harmonic func-

tions, given by,

fk =
∞∑
m=0

m∑
l=−m

fl,mY
m
l (θ, φ) (2.21)

and

γ1 =
∞∑
m=0

m∑
l=−m

γl,mY
m
l (θ, φ) (2.22)
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where the spherical harmonic function Y m
l is given by

Y m
l (θ, φ) = (−1)m

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ) exp(imφ), (2.23)

where Pm
l (cos θ) is the associated Legendre polynomial. To solve for the co-

efficient fl,m, first we substitute the right hand sides of equations (2.21) and

(2.22) into equation (2.19). The relationship,

r2∇2Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ) (2.24)

is then used to relate the unknown coefficient flm to γlm by

fl,m = − 2

γ0l(1 + l)
γl,m. (2.25)

By expanding the surface tension given by equation (2.20) into a spheri-

cal harmonic series (2.22), the steady-state shape function can be solved. As

described in the following subsection, the coefficients in the expansion of sur-

face tension γl,m are obtained numerically by taking the spherical harmonic

transform of the expansion given in equation (2.22). From the dodecahedral

symmetry of the contact function, the coefficients of the spherical harmonic

expansion are non-zero only when l is even and m is a multiple of 3 (Takei ,

1998). In the following subsection we discuss the numerical techniques used

to evaluate these coefficients.

2.2.2 Numerical integration

Coefficients in the expansion of the prescribed surface tension, γ1 are ob-

tained by taking the spherical harmonic transform of equation (2.22). First
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we equate the right hand sides of equations (2.20) and (2.22) to get

∞∑
m=0

m∑
l=−m

γl,mY
m
l (θ, φ) = (γ′gg − γ′gm)

12∑
i=1

hi(θ)gi(φ). (2.26)

To solve for the γl,m coefficients, the orthonormality condition of the spherical

harmonic function is used,

∫ 2π

θ=0

∫ π

φ=0

Y m1
l1

(θ, φ)Y m2∗
l2

(θ, φ) sin(θ)dθdφ = δl1l2δm1m2 , (2.27)

where Y m∗
l is the complex conjugate of the spherical harmonic function and δi,j

is the Kronecker delta function. Multiplying both sides of equation (2.26) by

Y m∗
l (θ, φ), integrating over the surface, and applying the orthonormality con-

dition (2.27), we get the following equation for the coefficients in the spherical

harmonic expansion of the perturbation in surface tension:

γl,m = (γ′gg − γ′gm)
12∑
i=1

∫
θ

∫
φ

hi(θ)gi(φ)Y m∗
l (θ, φ) sin(θ)dθdφ. (2.28)

Since the integrand in equation (2.28) is separable in θ and φ, the final

integral can be evaluated as the product of two line integrals, one in θ and one

in φ. Two separate numerical integration techniques, trapezoidal and spline

integration, were used to evaluate the line integrals (Press et al., 1992).

In the trapezoidal integration routine, the domain is divided in a number

of equidistant elements. The resulting integral is then evaluated assuming a

linear variation of the integrand within each element. In contrast, the spline

integral, the domain was divided in a number of not necessarily equally spaced

elements. Integration within each element was carried out using the Gaussian

quadrature rule, distributed over 8 points. The value of the integrand, as well

as the integration variable was interpolated to the quadrature points using a
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Integral Exact Trapezoidal Spline

∫
x2dx, x = 0, 2 2.667 2.415 2.667

∫
x3dx, x = 0, 2 4.000 3.644 4.000

∫
exp(ix) dx, x = 0, π 0.000 + 2.000 i 0.000 + 1.782i 0.000 + 2.001i

Table 2.1: Comparison of standard integrals between exact solutions, trape-
zoidal integral, and spline integral.

second order spline interpolation. All numerical calculations were performed

in double precision, using Intel FORTRAN 90 compilers in an SGI Altix 1300

cluster. Both integration routines were benchmarked for purely real as well as

imaginary integrands. The results from some standard integrals are listed in

table 2.1. We chose to employ the higher accuracy, spline integral routine to

evaluate the integrations in θ and φ.

2.3 Microstructural and mechanical properties

2.3.1 Quantitative parameters describing the melt
geometry

The melt volume fraction for the model was calculated from the geometry

of the unit cell. As explained in section 2.1.2 each grain is surrounded by six

grains in the equatorial plane (θ = π/2), three grains above the equatorial

plane, and three grains below the equatorial plane. Each layer of grains above

and below the equatorial plane is offset from each other, leading to a face
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a

b

c

Figure 2.4: A schematic diagram depicting the unit cell in face-centered-cubic
packing. Two sets of axes are marked in the diagram. The set x, y, z refers to
the local Cartesian reference frame whose x− y plane is parallel to one of the
stacking planes. The lattice parameters a, b, and c of the unit FCC cell are
also marked in the plot. Indices on the grain center (in no particular order)
depict the arrangement used in the code.

centered cubic (FCC) packing symmetry. The arrangement of the grains,

including their indices (in no particular order), in an FCC lattice are depicted

in Figures 2.4. The FCC packing arrangement is given in Figure 2.5 for full

grains. If each grain was a perfect, unit sphere, similar to the unperturbed

state, cell parameters a, b, and c of this unit cell would be equal to 2
√

2.

Assuming the empty space between the grains is saturated by melt, the melt

volume fraction in this case would be 0.26.

We calculated the area of nearly circular grain-grain contact by measuring

the radius of the contact. The radius, w, and the shortening δ, displayed in

Figure 2.6, vary linearly with the magnitude of the perturbation coefficient ε,

δ = ε

(
1− cos

θ∗

2

)
, (2.29)

w = ε sin
θ∗

2
, (2.30)

where θ∗ is the angle subtended by an arc of contact in the cross section
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(b)
(a)

Figure 2.5: Packing arrangement of the grains in an FCC unit cell. Each color
represents a different packing plane. Blue arrows indicate the unit cell vectors
along the cube edges, while the green arrow is the normal to the planes.

displayed in Figure 2.6. In the absence of perturbation (ε = 0) both w and δ

are zero, rendering zero contiguity at the disaggregation melt fraction. From

the numerical solution of varying fk on the surface of the kth particle, the

boundary of this circle is marked by the contour of fk = 0, the line of zero

perturbation.

If the radius of the unperturbed sphere is shortened by an amount δ at

the center of a contact face, then the distance between the centers of two unit

spheres is reduced to 2(1 − δ). Knowing the location of the centers of the

touching, flattened grains, we calculate the volume of the unit cell. Next, we

calculate the volume of each grain numerically by using the software ParaView.

The total volume of solids in each FCC unit cell is equal to 4 times the volume

of one individual grain (8 ×1
8
corner grains + 6 ×1

2
face centered grains =

4 grains). Thus, the melt fraction is calculated assuming the void within the

unit cell is completely saturated by melt.

In successive numerical experiments, we varied the parameter ε between

0.1 and 1. For each of the runs, we set the nondimensional surface tension
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Figure 2.6: A cross-section in the x − y plane, displaying the relationship
between the radius of the contact face and the decrease in distance between
grain centers due to flattening. By measuring θ∗ the value of δ and w are
found using equations (2.29) and (2.30),respectively.

parameters, γ′gm = 0.1 and γ′gg = 0.5. We carried out a total of 20 numerical

experiments. In all simulations, the magnitude of the maximum perturbation

to the shape, was always O(10−2). These maximum values of perturbations

were associated with flattened intergranular contacts and bulged melt-grain

contacts. The small values of perturbation justify the underlying linear analy-

sis, in which term O(ε2) or higher were neglected. The data on contiguity and

melt fraction from these experiments were then fit with a polynomial function

to obtain a melt fraction-contiguity relation between melt fractions of 0 and

the disaggregation melt fraction.

Once the numerical solution for the perturbed shape functions are obtained,

we calculated contiguity, ψ, of the faceted grain as the sum of area fraction of

the 12 contact patches,

ψ =
1

4π

12∑
i=1

Ai, (2.31)

where Ai is the area of an individual patch.
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2.3.2 Calculation of seismic velocities

Seismic signature and the effective bulk and shear moduli of a partially

molten aggregate is controlled by the contiguity, ψ, and melt volume fraction

φ. Velocity of seismic waves traveling through the aggregate is controlled by

the effective elastic moduli, as well as the liquid volume fraction, φ. In this

study, the equilibrium geometry model, proposed by Takei (2002) is used to

calculate the effective elastic moduli and seismic velocities of a partially molten

rock. The ratio between the shear and P wave velocities through the partially

molten aggregate, Vs and VP , to the velocities in the solid VS0 and VP0 are

given by,

VS
VS0

=

√
(N/µ)

(ρ̄/ρ)
, (2.32)

and

VP
VP0

=

√
Keff/K + 4β/3 (N/µ)

(1 + 4β/3) (ρ̄/ρ)
, (2.33)

where K,µ and ρ are the bulk modulus, shear modulus, and density of the

solid, and β = µ/K. The quantity ρ̄ and Keff is the volume averaged density

and effective bulk modulus of the grain-melt aggregate, and N is the shear

modulus of the intergranular skeletal framework. The skeletal framework rep-

resents the solid framework with vacuum pores. To evaluate the effective

elastic moduli at core-mantle boundary conditions, the bulk modulus, shear

modulus, and density of the solids were obtained from the Preliminary Ref-

erence Earth Model (PREM). We also assumed that the density of the melt

is equal to that of the solid under this condition (Mosenfelder et al., 2007;

Stixrude and Karki , 2005).

The presence of melt affects VP and VS differently. This results in changes of
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VP/VS ratio for seismic signals passing through a system containing melt. If the

elasticity of the solid phase are known, VS can be determined by melt volume

fraction φ and contiguity ψ. To determine VP , however, the compressibility

of the liquid phase must be taken into account (Takei , 2000). The VP/VS is

given by combining (2.32) and (2.33)

VS/VS0
VP/VP0

=

√
N/µ

√
(1 + 4β/3)√

Keff/K + 4β/3(N/µ)
(2.34)

The elastic moduli can be expressed in terms of melt volume fraction φ and

contiguity ψ as

N = µ (1− φ) g(ψ) (2.35)

Keff = K

[
(1− φ)h(ψ) +

(1− (1− φ)h(ψ))2

(1− φ)(1− h(ψ)) + φK/Km

]
, (2.36)

where Km is the bulk modulus of the melt, which gives the compressibility of

the melt needed to calculate VP . The functions g(ψ) and h(ψ) are given by,

g(ψ) = 1− (1− ψ)n, (2.37)

h(ψ) = 1− (1− ψ)m, (2.38)

where n and m are also dependent on contiguity ψ (Takei , 2002, Appendix A).

It can be seen that in a system with zero melt, φ = 0, and complete contact

between grains, ψ = 1, the shear and bulk moduli of the aggregate become

the same as the moduli of the solid phase.

Finally, the bulk modulus of the melt under the core-mantle boundary
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condition were evaluated using a linear equation of state,

Km = K0
m +K ′P, (2.39)

where values of the bulk modulus at the surface, K0
m = 114.8 GPa, and the

pressure derivative K ′ = 2.9 (GPa/GPa) were obtained for HPP melt data

reported by Mosenfelder et al. (2007). Using a pressure of 136 GPa, the liquid

bulk modulus of 509.2 GPa was obtained for the core-mantle boundary. Since

the solid values are estimated from the PREM model, all calculated seismic

anomalies are in reference to the PREM model.

2.4 Error analysis and data modeling

In this section, we discuss various sources of error and the analysis of these

errors. Three major sources of error exist in the current analysis. First, the in-

finite series expansion in spherical harmonics is truncated to a finite number of

terms, leading to some error in the approximated function. Second, in the nu-

merical code, total volume and surface area of each grain is considered equal to

that of a unit sphere, also leading to some error in the measurements. Finally,

the data set of melt volume fraction and contiguity was fit to a polynomial

function. The goodness of fit and associated errors need to be considered.

2.4.1 Power spectrum

A power spectrum is constructed for the coefficients in the spherical har-

monic expansion of the surface tension. Theoretically, this expansion is done

on an infinite series. Truncation to finite terms introduces errors in the ap-

proximation made by the spherical harmonic expansion. We controlled the
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magnitude of this error by calculating the power spectrum of the expansion.

The power spectrum is created by taking the sum of the squares of the coeffi-

cients for each degree l:

Sff (l) =
l∑

m=−l

γ2lm. (2.40)

Since high orders of l are used to investigate small-scale structures, it is ex-

pected that Sff (l) will decrease as l is increased. To save computational time,

we can use the power spectrum to find a value for l at which we can truncate

the infinite series used in the spherical harmonic transform. We choose to

truncate the series when Sff falls below 10−5.

2.4.2 Error in grain volume and surface area
measurement

Calculating the contiguity and melt volume fraction of the aggregate, the

surface area and volume of the grain are needed. In our calculations, it is

assumed that the surface area and volume of the grain are the same as that

of a unit sphere, an unperturbed grain. As the grains become closer, however,

the surface of the grain flattens at grain-grain contacts and bulges out at

grain-melt contacts. This changes the surface area and the volume of the

grain. The software ParaView is used to numerically calculate the surface

area and the volume. The errors in measuring grain volume and surface area

are extrapolated to calculate our uncertainty in melt volume fraction and

contiguity and are given in Appendix C.
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2.4.3 Goodness of fit measurement

To fit our results to a curve of contiguity as a function of melt volume

fraction, MATLABs curve fitting tool box is used. The toolbox supplies mul-

tiple formulas to be used to fit data and allows for the coefficients in the fit

to be bounded. A 5th order polynomial of the form ψ = p1φ
5 + p2φ

4 + p3φ
3 +

p4φ
2 + p5φ + p6 is chosen for our data set. The coefficient p6 is set to 1.0

so that when there is zero melt in the system, the contiguity of the grains is

equal to one. On output of the fit, the toolbox also supplies goodness of fit

measurements. This includes the 95% confidence bounds for each coefficient,

the sum of squared errors (SSE), and the values of R2. SSE is given by:

SSE =
n∑
i=1

(yi − f(xi))
2, (2.41)

where n is the number of measurements, yi is ith value of the measured con-

tiguity, xi is ith value of measured melt fraction, and f(xi) is the predicted

value of yi. To calculate the values of R2 for the fit, the total sum of squares

(SST ) is needed:

SST =
n∑
i=1

(yi − ȳi)2, (2.42)

where ȳi is the mean of the measured values of contiguity. The value of R2 is

given by

R2 = 1− SSE

SST
. (2.43)
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This section outlines the model results. First, the solution to the shape

perturbation function under an applied surface tension is discussed. Next, the

results for the melt volume fraction and contiguity in a unit cell are discussed.

Finally, we compare the melt fraction-contiguity relation from our results with

the results of three dimensional numerical simulation from von Bargen and

Waff (1986).

3.1 Solutions for grain shape and melt

geometry

In the multiparticle aggregate, spatially varying surface tension leads to

the flattening of the grain at intergranular contacts and bulging out at grain-

melt contacts. The surface of a single grain, colored by the magnitude of

the perturbed shape function εf , is visualized in Figure 3.1. Dark values

indicate regions of flattening. Bright patches on the surface of each grain

represent contact with three different kinds of melt units. Tubules are linear

grain-melt contacts, located between two dark intergranular contacts. Pockets

are situated between four contiguous dark intergranular contacts and at the

intersection of four tubules. Finally, three tubules meet each other at junctions,

which are situated at the intersection of three grain-grain contact patches. In

this geometry, each grain has a total of 6 pockets, 8 junctions, and 24 tubules

along the 24 edges of the rhombic dodecahedron.

Surface tension forces perturbation of the grain shape. The colormap in

Figure 3.2 depicts the prescribed surface tension and the resulting perturba-

tion of the reference shape in the θ − φ space. The accompanying colorbars

indicate the magnitude of the perturbation to both the prescribed surface ten-
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Pocket

Pocket

Tubule

Junction

Junction

Figure 3.1: Shape of a single grain, calculated from equation (2.19), and col-
ored by the value of f . A positive f value, yellow and white, perturb the
initial sphere by pushing out while a negative f value, red and black, deform
the sphere by pushing in and flattening the grain surface. The color scale is
the same as given in Figure 3.2. Contacts with melt pockets, tubules, and
junctions are marked on the grain.

sion and the shape. Since the prescribed surface tension assumes only two

values, the color on Figure 3.2(a) is binary. As indicated by the surface plot

in Figure 3.1, negative relief corresponds to regions of flattening. Tension on

the intergranular contact flexes the grain surface inwards while slight bulges

are produced at the grain-melt contact. It can also be seen from figures 3.1

and 3.2 that the contact patches given by the shape function f are more circu-

lar compared to the rhombus shaped patches of surface tension prescribed by

equation (2.20). These contact patches are similar to the direct prescription

of the patch geometry by Takei (1998).

Figure 3.3 shows melt tubules, junctions, and pockets that form around an

individual grain for systems with different melt volume fractions. The melt

volume fraction increases from Figure 3.3(a) to Figure 3.3(d) from 0.06 to 0.22.

For clarity, two junctions and pockets are identified on Figure 3.3(a). The

figures illustrate that as the melt volume fraction increases, the melt tubules

and pockets grow larger, and the area of the circular grain-grain contacts

decreases. The contiguity in the figures decrease from 0.38 in Figure 3.3(a) to
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Figure 3.2: Surface map of (a) the prescribed surface tension, and (b) per-
turbed shape of the grain. The two surface maps are related by equations
(2.19) and (2.25). Higher values of surface tension correspond to negative val-
ues of f , and perturb the initial sphere by flattening the grain surface, while a
lower values of surface tension correspond to positive values of f and deform
the sphere by pushing out the grain surface, see Figure 3.1.

(d)(c)

(a) (b)Pocket

Pocket

Junction

Junction

Figure 3.3: Melt tubules and pockets surrounding an individual grain for four
different melt fractions. Red coloring represents grain-melt contact and green
represents grain-grain contact. The melt volume fractions for the given con-
figurations are (a) φ = 0.06, (b) φ = 0.11, (c) φ = 0.14, (d) φ = 0.22.
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0.02 in Figure 3.3(d). The values of melt volume fractions and contiguity for

all numerical experiments are described in the table in Appendix C.

We also compare the change in shapes of grains and tubules as the melt

volume fraction increases, in Figures 3.4 and 3.5, depicting a melt tubule

along with three grains from two different orientations. The melt volume

fraction also increases from 0.06 to 0.22 in these figures. The colormap on the

surface of the grains represent the magnitude of the perturbed shape function.

Two features of the microstructure become clear as the melt volume fraction

increases. First, the area of tubule cross-section increases with an increase

in melt volume fraction. Second, the grains become less faceted and more

round-shaped. The colormap on the grain surface, corresponding to the shape

perturbation, becomes even as the melt fraction increases.

By numerically solving the coefficients in the spherical harmonic expan-

sion of the surface tension, γl,m with equation (2.28), equation (2.25) may be

solved. The infinite spherical harmonic series is truncated at l = 50. As the

plot of power spectrum in Figure 3.6 suggests, contributions from higher or-

der harmonics are negligible and increases the computational expense of the

simulations.

3.2 Melt fraction and contiguity in the unit

cell

In the perturbed state, the unit cell of the rhombic dodecahedron is sub-

stantially smaller when compared to a FCC packed unit cell of spheres. The

surface plots in Figure 3.7 visualizes a unit cell from two different orientations.

In Figure 3.7(a) blue arrows indicate the unit cell vectors in the FCC lattice.

For a unit sphere, all three lattice parameters are equal to a uniform value of

2.82. In the perturbed state, the distance between the centers of the contigu-
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(a)

(d)

(b)
0.04

0.0

-0.04

-0.064

(c)

f
0.08

Figure 3.4: Melt tubule and three grains for four different melt fractions.
From this view, the cross section of a melt tubule leading into a melt pocket is
visualized. The color scale represents the value of f , the perturbation in shape
function. As the melt volume fraction increases, the channel grows larger, and
the area of grain-grain contact decreases. The melt fractions for the given
configurations are φ = 0.06, (b) φ = 0.11, (c) φ = 0.14, (d) φ = 0.22.
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(a)

(d)

(b) 0.04
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0.08

Figure 3.5: Melt tubule and three grains for four different melt fractions. From
this view, the side of a melt tubule leading into a melt pocket is visualized.
The color scale represents the value of f , the perturbation in shape function.
As the melt volume fraction increases, the tubule grows from a small tubule
into a large pocket of melt. The melt fractions for the given configurations are
φ = 0.06, (b) φ = 0.11, (c) φ = 0.14, (d) φ = 0.22.
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Figure 3.6: Power spectrum of the norm squared of γl,m
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ous grains is reduced. In the case depicted in Figure 3.7, each unit cell vector

is reduced to a length of 2.61, indicating an approximately 8% shortening in

each direction. Such a shortening leads to a denser packing of the unit cell.

The volume of the cell depicted in Figure 3.7 is 17.78, about 21% smaller

than a unit cell produced by touching spheres, whose volume is 22.43, while

the volume of each grain is about 4.19, the volume of a unit sphere. Since

the volumes of the grains remain nearly unchanged, flattening at intergranular

contacts reduces the available interstitial space. The volume fraction of melt,

assuming the void space is completely saturated with melt, is 0.05, substan-

tially smaller than the interstitial melt volume fraction of 0.26 in the reference

unit cell.

Both the melt volume fraction and contiguity varied with a variation in ε.

Figure 3.8 illustrates the relationships between ε and melt volume fraction and

contiguity. Melt volume fraction varies nearly linearly with ε, while contiguity

varies with ε in a nonlinear manner.

The surface area and volume of the grain are measured for the different

values of ε. We found that the surface area and volume vary little from that of

the unit sphere, which is used in the calculation of contiguity and melt volume

fraction. The uncertainties in our data from these measurements are reported

in the data table in Appendix C.

To fit our contiguity data and melt fraction data to a function, we used

the MATLAB Curve Fitting Toolbox. We chose a 5th order polynomial of the

form

ψ = p1φ
5 + p2φ

4 + p3φ
3 + p4φ

2 + p5φ+ p6, (3.1)

to fit the data. To ensure that contiguity tends to unity at zero melt volume

fraction, we fixed p6 = 1 in equation (3.1). The coefficients obtained from the
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a = b = c = 2.61

(b)
(a)

Figure 3.7: A calculated multiparticle unit cell with an FCC geometry. The
dimension of each unit cell parameters a, b, and c are equal to 2.61, ap-
proximately 8% shorter than an FCC packed with solid spheres, for which,
a = b = c = 2.82. The volume of the unit cell is 17.72, while the volume of
each grain is 4.19, leading to a melt volume fraction of 0.05. (a) The FCC unit
cell with blue arrows indicating the edges of the cubic unit cell. The green
arrow points in the direction of the normal to each close packed plane. (b) A
view of the unit cell along the close packed planes.
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Figure 3.8: Plots showing the effect ε has on (a) melt volume fraction and (b)
contiguity. Increasing ε results in greater grain-grain contact area and a denser
packing arrangement. Notice how the relationship between ε and melt volume
fraction is nearly linear, while the relationship between ε and contiguity is
nonlinear.
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p1 p2 p3 p4 p5 p6

-8065.00 6149.00 -1778.00 249.00 -19.77 1.00

-9844.00 5022.00 -2033.00 224.50 -20.59 0.00

-6287.00 7275.00 -1522.00 273.50 -18.94 0.00

Table 3.1: Parameters for fit to the contiguity (ψ) as a function of melt fraction
(phi). The fit is given by ψ = p1φ

5 +p2φ
4 +p3φ

3 +p4φ
2 +p5φ+p6. The entries

in the second and third row indicate the error bounds to the parameters within
95% confidence bound. For the fit the value of the sum of squared errors and
R2 are 1.67× 10−4 and 0.9995, respectively.

fitting function are given in Table 3.1. Measures for the goodness of the fit,

sum of squared errors and R2 are given by 1.67×10−4 and 0.9995, respectively.

3.3 Comparison with previous studies

The results from this work are compared with the results from von Bargen

and Waff (1986). The plot in Figure 3.9 compares our results and the fit to

our data to the results from the model of von Bargen and Waff (1986) for a

dihedral angle of ∼ 30o. Notice that the formula for solid-solid surface area in

equation (8) of von Bargen and Waff (1986) needs to be corrected by adding

a constant approximately equal to π, such that the plot of their equation

(8) matches their Figure (7). In the article, their equation (8) erroneously

indicates that the area of grain-grain contact decreases to zero at zero melt

fractions. The results of von Bargen and Waff (1986) are only applicable for

small melt fractions (less than 0.05 melt volume fraction) but the fit of the

results are extrapolated with a dotted line for higher melt fractions in the plot.

In the same plot, our fit is extrapolated to zero melt fraction with a broken

curve. As the curves indicate, between melt volume fractions of 0 and 0.02,
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Figure 3.9: Comparison between contiguity from this work and the results of
von Bargen and Waff (1986). The lines marked vBW86 and WHMfit corre-
sponds to the model of von Bargen and Waff (1986) and the fit of our results,
respectively. The results of von Bargen and Waff (1986) are limited to melt
volume fractions below 0.05, but the fit is continued to higher melt fractions
(dashed line). The red data points correspond to the results from this study.

our fit predicts a contiguity slightly lower than that of von Bargen and Waff

(1986). Between melt volume fractions of 0.02 and 0.12, our model predicts

a slightly higher value of contiguity than von Bargen and Waff (1986). The

curves intersect at a melt volume fraction of 0.12 because of the flatness of our

data with respect to that of von Bargen and Waff (1986) for the melt fractions

investigated in this study. The curves intersect at a melt volume fraction of

0.02 because our contiguity is fixed at unity for a zero melt fraction, leading to

a steeper curve for low melt fractions than the curve from von Bargen and Waff

(1986). Finally, our model predicts that contiguity becomes zero at a disag-

gregation melt fraction of 0.26, while von Bargen and Waff (1986) predicts a

disaggregation melt fraction of 0.19. Our slightly higher estimate of the dis-

aggregation melt fraction agrees better with the results of Scott and Kohlstedt

(2006), who report a rheological transition coincident with loss of contiguity,
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that takes place between melt volume fractions of 0.25 and 0.3. Overall, the

results from our model and that of von Bargen and Waff (1986), are in good

agreement. The similarity between these two models become clearer when

compared with two dimensional models and measurements, discussed in the

next section.

One source of variation between our work and von Bargen and Waff (1986)

arises from the different packing symmetry between the two models. The work

of von Bargen and Waff (1986) assumes tetrakaidecahedral geometry with a

coordination number of 14 for each grain. As discussed before, our unit cell

assumes rhombic dodecahedral geometry with a coordination number of 12.

This study also investigated higher volume fractions while von Bargen and

Waff (1986) looked only at low melt volume fractions.
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Discussion
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The result from this work bears a number of implications for the broader

field of geophysics. First, our results demonstrate that contiguity measure-

ments from three dimensional structures are different from those obtained

from two dimensional sections. Second, using our contiguity-melt fraction

data, we demonstrate that the seismic signature of the ULVZ at the core-

mantle boundary can be explained by a smaller extent of melting than a two

dimensional microstructure would predict. These topics are discussed in the

following subsections.

4.1 Comparison with experimental data

The results from this work are compared with experimental measurements

of contiguity. The plot in Figure 4.1 compares the results of our three dimen-

sional study to the measurements of Yoshino et al. (2005).Yoshino et al. (2005)

compiled a large database consisting of measurements of contiguity from var-

ious partially molten aggregates. In this database, the authors reported con-

tiguity measurements from synthetic mid-oceanic ridge basalt (MORB) and

olivine bearing aggregate and a fertile spinel lherzolite rock from Killbourne

Hole, New Mexico. Also plotted in Figure 4.1 are the results of the two dimen-

sional study of Hier-Majumder et al. (2006), and the results from the model

of von Bargen and Waff (1986).

Both the results of this study and that from von Bargen and Waff (1986)

predict lower contiguity values than the two dimensional study of Hier-Majumder

et al. (2006) and experimental measurements of Yoshino et al. (2005), as de-

picted in Figure 4.1. The contrast increases at higher melt fractions. This

shows that two dimensional studies may be limited at predicting contiguity

for a given melt volume fraction, especially at higher melt fractions.
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Figure 4.1: Comparison between contiguity from this work, the results of von
Bargen and Waff (1986), the experimental measurements of of Yoshino et al.
(2005), and the two dimensional model of Hier-Majumder et al. (2006). The
results of von Bargen and Waff (1986) are limited to melt volume fractions
below 0.05, but the fit is continued to higher melt fractions (dashed line). Ex-
trapolation of the fit to our data is also plotted as a broken line. The circular
data points and the triangular data points indicate measurements by Yoshino
et al. (2005) of Olivine-MORB and KLB, respectively. The orange and blue
curves represent the contiguity-melt fraction relationships determined by the
study of Hier-Majumder et al. (2006) and von Bargen and Waff (1986), re-
spectively. The red data points are results found in this study. The plot
shows that two dimensional models, and experimental measurements depen-
dent on two dimensional slices, result in higher values of contiguity than three
dimensional models.
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The discrepancy between the experimental results and three dimensional

numerical models can arise from two likely sources. First, the synthetic and

natural partially molten rocks exhibit a variation in grain size, while all grains

in our unit cell are identical. As the surface to volume ratio of grains change

with their diameters, variation in grain size can cause some difference be-

tween the two data sets. The second factor arises simply from the fact that

two dimensional sections can underestimate the melt volume fraction. Hier-

Majumder and Abbott (2010) demonstrate that for a cubic grain with cylin-

drical tubules along edges, a two dimensional cross section underestimates the

volume fraction of melt by a factor of 3. As a result, when the two dimen-

sional data from their model was corrected to three dimensions, the contiguity

decreased. Such correction were not applied to the two dimensional geometric

model of Hier-Majumder and Abbott (2010) or the experimental measurements

of Yoshino et al. (2005, Section 2.3).

4.2 Seismic properties

The value of contiguity at a given melt volume fraction is crucial in de-

termining the physical properties of the rock. A large value of contiguity

indicates a high fraction of grain-grain contact, which establishes a stronger

skeletal network than for a partially molten rock with a lower contiguity. This

indicates that the contiguity of the system, along with the melt volume frac-

tion, strongly influences the effective elastic moduli of the system. Figure 4.2

shows the variation of the normalized shear and bulk modulus and the drop of

seismic velocity of the partially molten rock as a function of melt volume frac-

tion and contiguity. As expected, only the normalized shear modulus displays

significant variation. The response of the bulk modulus to melting, in general,
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Figure 4.2: Plots of the changes in normalized shear and bulk modulus and
the drop of seismic velocity of the partially molten rock as a function of melt
volume fraction and contiguity. Plots (a) and (b) give the ratio between the
effective bulk (Keff ) and shear (N) moduli and solid bulk (K) and shear (µ)
moduli in a partially molten aggregate as a function of melt volume fraction
and contiguity, respectively. Plots (c) and (d) give the ratio of seismic velocities
of a partially molten rock to the seismic velocities in the absence of melting
as a function of melt volume and contiguity, respectively. The red and blue
boxes in plot (c) give the range of observed velocity drops at the UltraLow
Velocity Zone.

and contiguity in specific, is caused by the more modest contrast between the

bulk moduli of the solid and the melt compared to the contrast between their

respective shear moduli. As the contiguity decreases, grain surfaces become

more wet and the strength of the skeletal framework decreases. This results

in lower values of the shear modulus.

Figure 4.2 also shows the variation of normalized shear and P wave veloc-

ities as a function of melt volume fraction and contiguity. From the plot it

can be seen that the shear wave velocity is much more sensitive to changes

in contiguity and melt volume fraction then are P waves. When increasing
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Figure 4.3: Ratio of seismic velocities of a partially molten rock to the seismic
velocities in the absence of melting as a function of melt volume fraction.
The seismic velocities from this study (solid lines) are compared to seismic
velocities predicted by the two dimensional study of Hier-Majumder et al.
(2006) (dotted lines). The horizontal red and blue boxes indicate the range of
observed velocity drops at the Ultra-Low Velocity Zone. The vertical, shaded
box is our predicted range of melt volume fraction, necessary to explain the
observed seismic signature.

melt fraction from 0.10 to 0.20, the normalized shear wave velocity displays a

reduction between 0.75 and 0.40, while the normalized P wave velocity expe-

rience a reduction between 0.90 and 0.80. For high values of melt fraction, the

contiguity goes to near zero and shear wave velocity drops to zero, as expected.

The drop in seismic velocities, and the ratio of P and shear wave velocity drop,

provides a distinct seismic signature which will help constrain melting in the

Earth’s interior.

Our three dimensional model predicts a sharper reduction in shear and P

wave velocities compared to the two dimensional, geometric model of Hier-

Majumder et al. (2006). The plots in Figure 4.3 compares the seismic velocity

reduction between these two cases. As the intersection between the horizontal

boxes and the solid curves indicate, the observed shear and P wave velocity

reductions between 0.70 to 0.75 and 0.90 to 0.92 can be explained by a range

52



of melt volume fractions between 0.08 and 0.12 using the three dimensional

model. The two-dimensional model of Hier-Majumder et al. (2006) predicts

similar velocity drops for much larger melt volume fractions. For example, a

melt volume fraction as high as 0.23 can be used to explain the observed shear

wave velocity reduction. As discussed earlier, the discrepancy between the two

estimates arises from the overestimation of contiguity from two-dimensional

models.

4.3 Implications for ULVZ

As discussed in section 1.1, Earth’s core-mantle boundary is characterized

by a patchwork of thin, dense ULVZ. Estimates for the extent of melting in

these regions vary widely. Initial investigation of the seismic signal of this

region was explained by Williams and Garnero (1996). Using a model of

cylindrical melt inclusion along grain edges, they estimated a melt volume

fraction of 0.3 was necessary to explain the nearly 30% drop in shear wave

velocity and 10% drop in P wave velocity. One problem with this interpre-

tation arises from the work of Scott and Kohlstedt (2006), who demonstrate

that the partially molten aggregate becomes disaggregated at melt fractions

of 0.25. At such high melt fractions, grain surfaces are completely coated by

melt, leading to zero contiguity, as predicted by this model. Consequently,

the inherent assumption regarding melt tubules along grain edges becomes

physically untenable at such high melt fractions.

More recent estimates based on microstructural models of contiguity lead to

the conclusion that a more modest amount of melt fraction, between 0.10 and

0.15 likely causes the observed seismic signature (Hier-Majumder , 2008). The

plot of seismic velocity reduction based on the current work indicates that up to
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20% reduction of shear wave velocity can be obtained at a melt volume fraction

of 0.08, consistent with the recent estimates. One important consequence of

melting far below the disaggregation melt fraction involves the viscosity of

the ULVZ. Scott and Kohlstedt (2006) indicate that the viscosity of a partially

molten aggregate is reduced by melting following the relation η/η0 = exp−αφ,

where η is the viscosity of the partially, molten rock, η0 is the viscosity of

the solid, φ is the melt volume fraction, and α is a dihedral angle dependent

coefficient which assumes the value of 25 for an olivine-MORB aggregate. If the

seismic signature of the ULVZ is explained by the relatively modest amount

of melting, the viscosity of this region is reduced by approximately one to

two orders of magnitude. Laboratory experiments on the stability of plumes

(Jellinek and Manga, 2004) and a gravity current model of ULVZ spreading

(Hier-Majumder and Revenaugh, 2009) predict that the ULVZ is likely two

orders of magnitude weaker than the ambient mantle. The large degree of

melting predicted by the two dimensional model of contiguity, however, will

reduce the effective viscosity to values much lower than these estimates.
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Conclusion
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The model described here provides a new three dimensional, microgeody-

namic model of contiguity in partially molten rocks. This model incorporates

aspects of both geometric models and dynamic models to fully describe how the

microstructure behaves. In our model, the FCC unit cell contains 14 rhombic

dodecahedral grains. Our results extend the range of available contiguity-melt

fraction model from a melt fraction of 0.05 to the disaggregation fraction of

0.26.

The values of contiguity are found to agree well with the model of von

Bargen and Waff (1986), when extrapolating the studies to fit the appropriate

range of melt fractions. Our results predict lower values of contiguity than the

experimental results of Yoshino et al. (2005) and the two dimensional study of

Hier-Majumder et al. (2006), for a given melt volume fraction. Consequently,

the three dimensional model predicts a larger drop in seismic velocities for

a given melt fraction than two dimensional models. When applied to the

Earth’s core mantle boundary, if the solid phase has properties similar to that

predicted by the PREM model, the observed ULVZ can be explained by a melt

volume fraction between 0.08 and 0.12.
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Appendix A

Analytical solution for the flow
field

-
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This thesis employs the method of vector solid harmonics to obtain ana-

lytical solutions for the velocity and pressure fields within each grain and the

melt phase. A detailed description of this method is given by (Leal , 1992, Ch.

4). This technique is useful to construct solutions from a characteristic vector

or tensorial quantity. First, we notice that the velocity of the melt phase,

um can be expressed as a function of dynamic pressure Pm and a yet to be

determined harmonic function vm (∇2vm = 0) as

um =
1

2
xPm + vm, (A.1)

where x is the position vector. Such a prescription of velocity guarantees that

the momentum conservation equation, (2.6), is automatically satisfied. Next,

we substitute this velocity into the equation for mass conservation, (2.7), to

obtain an additional constraint on the harmonic function vm,

∇ · vm = −1

2

(
x ·∇Pm + 3Pm

)
. (A.2)

With the decomposition of the velocity field, given by equation (A.1) and

the additional constraint (A.2), the solutions automatically satisfy the mass

and momentum conservation equations. The next step is to build the harmonic

function vm from a characteristic vector d relevant to the system. This vector

should be constant, but, as we demonstrate, this vector does not appear in the

steady state equation for shape function. The vector d needs to be constant

over the length scales and time scales of the sintering process. One possible

choice of this vector can be the displacement vector between the centers of two

particles. Finally, two additional constraints must be observed while building

the solutions. Since the origin is fixed within the center of the grain, the flow
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fields within the grains must be well behaved at the origin. Similarly, the

solutions for the melt phase must tend to zero at infinite distance as the melt

phase is considered surrounding the solid grain. The standard procedure in

drop dynamics is to build the solution vector within the grain using growing

harmonics (only positive powers of r, the distance from the center); while using

decaying harmonics (negative powers of r) to build the solution outside the

grain. With these considerations in mind, we select the test solution for the

harmonic function vm as

vm = α1

(
x(d · x)

r5
− d

3r3

)
+ β1

d

r
(A.3)

where α1 and β1 are constant coefficients that are yet to be determined. Next,

we notice that the pressure field within a constant viscosity fluid is always a

scalar harmonic function (Leal , 1992). Thus, we select the trial function for

the pressure field inside the melt, Pm, as

Pm = c1
x · d
r3

(A.4)

Similarly, we build the trial solutions for pressure and the harmonic component

of velocity within the grain, subscript g, as

Pg = c2d · x, (A.5)

and,

vg = α2

(
x(d · x)− r2d

)
, (A.6)

where c2 and α2 are constants that are yet to be determined.

Next, we proceed to evaluate the four unknown constants. First, we sub-
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stitute the trial solutions for melt pressure Pm and the harmonic component

vm into equation (A.2) to yield, the relation,

β1 =
c1
2
. (A.7)

Equation (A.7) is obtained by observing,

x ·∇Pm = −2c1
d · x
r3

(A.8)

which can be rewritten as

3Pm + x ·∇Pm = c1
d · x
r3

(A.9)

and can be combined with (A.2) and

∇ · vm = −β1
d · x
r3

(A.10)

to yield equation (A.7). From (A.1), (A.4), (A.3), and (A.7), the velocity

profile for the melt simplifies to

um =

(
c1
2r3

+
α1

r5

)
x(d · x) +

(
c1
2r
− α1

3r3

)
d (A.11)

In a similar manner, we can establish a relationship between c2 and α2 by

noticing

3Pg + x · ∇Pg = 4c2d · x, (A.12)

and

∇ · vg = 2α2d · x. (A.13)

60



Similar to the constraint on vm provided, by equation (A.2), we can also write,

∇ · vg = −1

2
(3Pg + x · ∇Pg). (A.14)

Substituting the terms from equations (A.12) and (A.13) into equation (A.14),

we arrive at,

α2 = −c2. (A.15)

This simplifies (A.6) to

um = α2

(
1

2
x(d · x)− r2d

)
(A.16)

We use mass conservation equation for both phases, the normal, and tangential

components of the no-slip boundary condition to obtain the relations,

α1 =
9α2

8
, (A.17)

β1 = −5α2

8
, (A.18)

c1 = −5α2

4
, (A.19)

c2 = −α2. (A.20)

We plug in the solutions for the velocity and pressures at r = 1 into the

normal compontent of the stress jump boundary condition, equation (2.9),

which, after some algebra, yields,

(
3

4
+ λ

)
α2d · x =

2γ1 − γ0∇2f

Ca
(A.21)
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which can be simplified to

d · x =
8γ1 − 4γ0∇2f

α2Ca(3 + 4λ)
(A.22)

where Ca is given by equation (2.18).

The kinematic condition (2.12) is simplified to

∂f

∂t
= um · x (A.23)

which is solved using (A.16)

∂f

∂t
= −α2

2
d · x (A.24)

Combining equation (A.22) and (A.24), and eliminating d · x and α2 gives

equation (2.17).
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Appendix B

Prescription of contact faces
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Grain-grain contact patches are prescribed using step functions in θ and

φ. To build rhombus shaped contact faces, multiple rectangular patches are

built using step functions for each face. For the equatorial contact faces, 5

rectangular patches in θ-φ are needed, while only 4 are needed for the contact

faces above and below the equatorial contacts, see Figure 2.3. The shortening

of the strips in φ was necessary to prevent overlapping of the contact faces

near poles.

To control the size of these contact faces, five parameters were introduced:

wt, wp, wtpole, wte, and wpe, see Figure B.1. The parameters wt and wp

shift the contact faces above and below the equator away from the neighboring

contact faces in the θ and φ direction, respectively. Increasing the parameter

wtpole shifts the same contact faces away from the pole. The parameters wte

and wpe shift the contact faces along the equator away from the neighboring

contact faces in the θ and φ direction, respectively. The lengths of these

parameters are measured from the center of the corresponding melt channel,

so that increased values of these parameters produce smaller contact faces.

This means that the distance between two contact faces is 2 times that of the

w parameter, excluding wtpole. In this study the following parameters were

used: wt = 0.11, wp = 0.17, wtpole = 0.03, wte = −0.02, wpe = 0.09.

For smaller contact faces, rectangular patches may be used. The size and

shape of these rectangular patches are controlled by four parameters: stp, spp,

ste, and spe, see Figure B.1. The rectangular patches take the size and shape

given by these parameter when they are within the rhombus shape provided by

the w parameters. For larger areas of contact, the rectangular patches increase

in size until they reach the edge of the rhombus, corresponding to the face of

a rhombic dodecahedron, see (Lissant , 1966, Figure 2). Thus for large values
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wpe

wp

wte

wt

wtpole

ste

spe

stp

spp

φ

θ

Figure B.1: Parameters used to prescribe the size and shape of contact patches.

of stp, spp, ste, and spe the shape of the contact patch will be a rhombus. It

was found that smaller contact faces did not significantly affect the contiguity

of the system. Because of this we used the full rhombus shape described by

the w parameters, and varied the contiguity using ε.
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Appendix C

Data table
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Table C.1: Contiguity and melt fraction measurements

ε Melt Volume % Contiguity

1.000 5.45 ± 0.27 % 0.418 ± 0.009

0.953 6.58 ± 0.24 % 0.379 ± 0.007

0.905 7.69 ± 0.21 % 0.342 ± 0.006

0.858 8.79 ± 0.18 % 0.307 ± 0.005

0.811 9.86 ± 0.16 % 0.274 ± 0.004

0.763 10.92 ± 0.13 % 0.243 ± 0.003

0.716 11.97 ± 0.11 % 0.214 ± 0.002

0.668 12.99 ± 0.09 % 0.187 ± 0.002

0.621 14.01 ± 0.07 % 0.161 ± 0.001

0.574 15.01 ± 0.06 % 0.137 ± 0.001
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Table C.1: continued...

ε Melt Volume % Contiguity

0.526 15.99 ± 0.04 % 0.116 ± 0.001

0.479 16.95 ± 0.03 % 0.096 ± 0.001

0.432 17.91 ± 0.02 % 0.078 ± 0.000

0.384 18.84 ± 0.01 % 0.062 ± 0.000

0.337 19.77 ± 0.00 % 0.047 ± 0.000

0.289 20.68 ± 0.18 % 0.035 ± 0.000

0.242 21.57 ± 0.02 % 0.024 ± 0.000

0.195 22.46 ± 0.02 % 0.016 ± 0.000

0.147 23.33 ± 0.03 % 0.009 ± 0.000

0.100 24.18 ± 0.03 % 0.004 ± 0.000
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