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A survey is given of some crucial concepts in chemical process modeling. Those
are the concepts of physical unit invariance, of reaction invariance and stoichi-
ometry. the chromatographic effect in heterogeneous systems, the conservation
and balance principles and the fundamental structures of cause and effect
relationships. As an example. it is shown how the concept of reaction invariance
may simplify the homogeneous reactor modeling to a large extent by an orthog-
onal decomposition of the process variables. This allows residence time distribu-
tion function parameters to be estimated with the reaction in situ, but without
any correlation between the estimated residence time distribution parameters
and the estimated reaction kinetic parameters. A general word of warning is
given to the choice of wrong mathematical structure of models.

1. Introduction

Mathematical modeling in chemical engineering has a very long tradition, prac-
tically speaking from the establishment of the profession. As in many other fields,
there are two different approaches to modeling, one is based on a simple empirical
{black box) approach-to the analysis of observations (empirical regression analysis),
and the other is based on a systematic and careful definition of the physical charac-
terization of the process and a subsequent application of general basic principles.

In view of the fact that chemical engineering processes involve a very large
number of interacting mechanisms, it is understandable that process technology
applies a high degree of empiricism in its models and modeling techniques.
However, this condition is gradually changing because modern computing tech-
niques make it possible to add more sophisticated models to the empirical interpre-
tation of data.

Furthermore, the empirical approach is more dangerous and far less general
than the basic principle approach, because the structure of the empirical model may
not comply with the structure and constraints of a mode! based on physical prin-
ciples. A wrong model may very well be fitted to experimental data resulting in
catastrophic extrapolations. A good example here is the modeling of binary vapour—
liquid equilibrium data. A purely empirical approach would probably assume an nth
order polynomial (Ohno and Nakanishi 1985) which will not satisfy the absolute
constraints (Asbjernsen and Hertzberg 1974):

y: Z al.xi (1)

Recetved 15 August, 1985.

t This paper was presented at the International Seminar on Modern Methods in
Dynamic Simulation of Industrial Processes, Trondheim, Norway, May 1985
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While the theoretical and ideal relationship with constant relative volatility is a
hyperbola which automatically satisfies the constraints (0, 0) and (1, 1):

y = ax)x/(1 + (2(x) — 1)x). (2)

If a polynomial should be used, it might be used to express the relative volatility
and as a function of the liquid mole fraction x, while the main structure of the
relationship is kept as a hyperbola.

It is amazing how ignorant many papers are of such simple conditions in mathe-
matical modeling and how often basic phenomena in modeling are neglected. One
such phenomenon is the highly oscillating coefficient values one gets when a poly-
nomial is attempted to fit a non-polynomial function. This is an indication that the
polynomial is the wrong type of functional model. In the example shown, the poly-
nomial will show coefficients with very high magnitudes but with oscillating signs,
because a hyperbola is being modeled with an integer exponent polynomial, which
may be a divergent series.

Similar observations may be made in the analysis and modeling of chemical
reactors. The stoichiometry of reactions always give linear combinations between
some of the process variables, which are insensitive to the reactions. In fact, if those
variables happened to be chosen as the observations for empirical models, one can
see very clearly that the modeling of the reaction kinetic phenomena will not be
possible through those variables, because they are reaction invariant.

Physical units, variable dimensions and dimensionless groups of variables are
other conditions for mathematical modeling where several applications ignore the
fact that most of the mathematical models used in chemical engineering are unit
invariant. If a system is dimensionally correctly modeled, the system behaviour is
uniquely defined by a set of combined physical variables which are unit invariant.
Those combined variables may appear only in such combinations, and are usually
referred to as dimensionless groups. In such a combination where only the com-
bined variable may be observed, it is impossible to observe or separate one variable
from the others simply by observation of the combined group. Therefore, the com-
bined variables, or the dimensionless groups, are the only variables that should form
the basis for mathematical modeling and variable correlations. If this is not done
properly, one dimensionless variable may be correlated against another, where the
correlation is simply a result of the unit invariance of the problem. The correlation
does not reveal any phenomenological information about the process at all.

Many of the basic principles used in the mathematical modeling of chemical
processes are universal, non-specific to chemical engineering. One example is the
conservation principle which applies equally well to, for example, economics as to
chemical engineering. Another example is the feedback principle and its stability
analysis, which applies equally well to the solution of systems of semi-implicit equa-
tions as to recycle processes, as to process control, as to control engineering and
cybernetics in general, as to social structures and human behaviour, etc. Again, it is
astonishing to see how many papers and works in the various engineering disci-
plines consider the conservation principle and the feedback principle as unique to a
special application, while indeed they are not.

It is therefore clear, that chemical engineering and process technology should be
approached, taught and practised with a much stronger emphasis on phenomeno-
logical systems’ engineering than is the case today. In current courses in chemical
engineering, general principles are presented and used in such a large variety of




Modeling techniques: theory and practice 107

disguises and transcriptions that they almost appear as new individual general prin-
ciples. This is unfortunate, because a lot of rationalization and simplification of
concepts could save time, effort and resources if used in the correct way.

In view of all the similarities and the general applicability of concepts thought of
as being unique to chemical engineering, this paper tries to take the systems’ engin-
eering approach to process technology and chemical engineering. In this way, an
attempt is made to focus the readers’ attention to some forgotten, but nevertheless
important generalities which may save time and mental effort for many practising
engineers, for the teaching profession and the art of application.

1.1. Analysis of process variables

The first step in modeling is always associated with proper examination and
understanding of the physical and chemical variables involved. This requires good
insight, experience and education.

The process variables appear in different classes and definitions. They are basi-
cally thermodynamic state variables, physical properties and design variables for
unit operations and apparati. A small fragment of these variables are measured
directly, others may be inferred from these measurements. Modern on-line computa-
tion and statistical analysis have given the whole area of intelligent instrumentation
and estimation of variables and parameters a strong push forwards. But, for a suc-
cessful estimation, it is necessary to have a good and structurally correct model
which can relate the variables and parameters in a proper way. Polynomials and
linear relationships are not enough.

Process variables may be classified according to their appearance in the physical
and mathematical model, in a process engineering context; a systems engineering
context or a mathematical context. Table 1 shows a typical classification of this
nature (Asbjornsen, 1974).

Of special interest here is the classification of variables in the process engineering
context as extensive and intensive variables. This has no direct parallel in systems’
engineering as the extensive and intensive variables are thought of as having an
apparently clear connection to thermodynamics. However, this is not exactly true,
because specific quantities in general physics play the role of intensive variables in a
more general sense. Intensive variables are point variables in mathematics and ther-
modynamics, while extensive variables are proportional to the extension of a ther-
modynamic system under consideration. Thermodynamics is indeed the crucial and
fundamental science for process engineering, and forms the basis for all the mathe-
matical modeling applied to this field of engineering,

Process engineering Systems’ engineering Mathematics
Disturbance Input Free, independent
Manipulator Input Free, independent
Response Output Dependent
Parameter Parameter Parameter
State State Dependent
Extensive Volume related
Intensive Point variable

Table 1. Classification of variables.
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Process engineering Systems’ engineering Mathematics

Single variable Single input Scalar
Single output
Multi-component Multiple input Vector
Multi-variable Multiple output
Single array
Table Multiple array Matrix

Table 2. Types of process variables.

At first sight, it may seem that the concepts of extensive and intensive variables
are specific to process engineering, but indeed they are not. They are general con-
cepts in physics and mathematics. Even in economics the production rate or the
volume of sales are extensive variables and unit price is an intensive or specific
variable.

Furthermore, if one considers the concepts of state variables, they have a much
wider definition and application than in thermodynamics. The equations of state in
thermodynamics are traditionally confined to thermodynamic variables, and do not
- usually include states like velocity, acceleration, momentum, direction, etc. The
process variables also appear in different types as for example, logical or boolean,
natural or integer, floating point or real and even alphanumerical, string or text.
They may also be classified according to the structure of groups of variables as in
Table 2.

In process engineering, a multi-component mixture is characterized by a com-
plete and unique set of thermodynamic states, like composition and energy, and
these states are grouped into a vector. The sensitivities of the process responses to
changes in the input, may be grouped into a table or a matrix, as shown later.
Simple, single function relations between one variable and a lot of others may be
described as a relation:

x=f(w,v) 3)
A vector of functions is then logically
x = f(u, v) 4)

And the sensitivity in x to changes in u and v is equally logically, described by the
Jacobian matrix:

.= 0f/du and J, = of/ov (5)

Even if a simple analysis of variables seems trivial, it is nevertheless of great impor-
tance to keep the simple classification of the appearance and type of the variables in
mind. The form of the appearance of variables is important information in order to
evaluate in which equation of the model structure the variables may appear, and
then in what form (input, output or parameter). This again is useful information for
the choice of the solution algorithm of the model equations. The type of the variable
(scalar, vector or matrix) is important information for the structuring of the data-
base system into which the numerical values of all the variables are supposed to
enter during a calculation and solution of the model equations, or a general simula-
tion.
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2. Dimensional analysis and unit invariance

All process variables are given physical units and dimensions, based on a set of
elementary physical units. These may be basic units, for example for mass, length
and time. If there are n physical variables and m basic units, it is clear that n — m
dimensionless, unit invariant groups or transformed variables may be formed. The
relationship between all the basic units, the physical variables and the unit invariant
groups, may be analysed very simply by taking the formal logarithm of all variable
units. Define:

u = vector of logarithms of the basic physical units.

x = vector of logarithms of the physical variable units.

A = matrix of exponents of the basic units in the physical variable units.

N = matrix of exponents of the physical variables in the dimensionless variables.

The physical variable units are written in terms of the basic units:
X = Au; dim (A)=nxm (6)
and the dimensionless groups in terms of the physical variables:
Nx=NAu=0; dim(N)=(n—m) x n (7)

If the basic units are properly selected, the matrix 4 has full rank m. Then, this
matrix may be partitioned into an invertible part, 4,, and the 4,. Consequently, the
matrix N is partitioned accordingly:

NA=N,A4, + N, 4, (8)

Since equation (7) must be satisfied for all u, this means that the matrix N and A
must be orthogonal, which again leads to the relationship:

NA=0 or N,=—N,A4,A;! 9)

This shows that the matrix N, may be chosen arbitrarily, which is equivalent to
selecting a set of n — m of the basic dimensionless groups. Let N, = I, then:

Ny=A4,A7" (10)

Take as an example, the turbulent pressure drop in pipes, where it may be assumed
that six variables are important, p = pressure drop, v = velocity, d = diameter,
! = length, p = density, g = local acceleration of gravity. The basic units are
M = mass, T = time and L = length. Then the matrices are:

1 =2 1 0 0 1
A, =]0 -1 1]; A, =1 0 -3 (1)
0 0 1 Lo =2 1
and:
0 0 -1 1 0 0
N=1]-1 2 0 0 1 0 (12)

0 -2 1 0 o0 1
which gives the dimensionless variables:
zy=1ld  z;=0vp/p, z3=dg/v’ (13)

well known as a geometrical ratio, a momentum ratio and a velocity ratio.
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Assume now that the viscosity is included as a physical variable of significance.
Then:

0 0 1 0 0 -1 1 0 0 0
1 0 -3 1 2 0o 0 1 0 0
A, = N =
2=ty _, qf o -2 1 o o 1 of ‘¥
1 o—1 -1 1 1 =1 0 0 0 1

which gives the additional dimensionless variable:
24 = pv/(p - d) (15)

a viscous shear stress to pressure ratio. By comparing the dimensionless variables, it
is clearly seen that the ratio: z,/z, = Re s the traditional Reynolds number.

This analysis and the example show in general, that a systern may be modeled by
n — m variables z of dimensionless units where » is the number of physical variables,
and m the number of basic units. The relationship between the dimensionless vari-
ables z and the physical variables y is such that:

In(z) =[—A,A7" { I]In(y) (16)

where A4 is the matrix of exponents of basic units defining the units of the physical
variables. The unit invariance is an absolute equality constraint on the variables.

3. A qualitative modeling of cause and effect

The traditional industrial analysis of process control systems on the design stage
was based on a fairly simple analysis and classification of process variables, followed
by a qualitative examination of the cause and effect relationship. This analysis and
examination used qualitative statements from expert insights into process behav-
iour. This is in fact analogous to the modern concepts of expert systems, and was
the first application of expert systems in process control system design about 25
years ago. Some of the early and systematic uses of this concept are found in a
UNESCO report from the University of the West Indies at St. Augustine
(Asbjernsen, 1966) and in a textbook by Shinskey (Shinskey, 1967).

The expert statements are classified as if then statements of a qualitative nature,
followed by qualitative statements on the speed of response of the process. The
information gathered from such statements were concentrated and systematized ina
table or a matrix, (Himmelblau 1978) the process matrix, which could be used as a
guideline for single loop control, cascade and ratio control etc. The qualitative state-
ments were as follows:

(1) If variable u increases then variable x will increase( + )

(2) If variable u increases then variable x will decrease ()

(3) If variable u changes then variable x is unaffected(0)

(4) If variable u changes then the effect on x is unknown(?)
(5) The speed of response is known to be slow, normal or fast

With these statements, the process reactions are mapped in a table, or matrix,
expressing the input output relationships qualitatively:
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X, X, X5 X4
u, + 0 - ?
fast slow
U, + -~ + 0
normal slow normal
Uy 0 ? + ?

fast
U, - + 0 0
slow normal

This matrix was used to pair variables in single feedback loops, according to a few
rather simple rules

(1) Each controller introduced a new input, the set-point. This was then subject
to similar expert statements, and regarded as a manipulator. It could be used
further in cascaded loops.

(2) When pairing variables for control the sign of the controller should be the
opposite of the corresponding sign in the process matrix for negative feed-
back control. ~

{3) Always pair fast variables as inner foops.

{4) Avoid pairing loops with question marks. If this is desirable, get additional
expert advice.

Clearly, this qualitative approach to process modeling is not sufficient today, more
guantitative information and process description will be required. However, as a
first hand tool, this simple approach has solved many practical industrial control
problems, and the solution has been very effective (Norsk Hydro, 1980).

4. The structure of mathematical models

The introductory remarks stressed the importance of choosing the right struc-
ture of mathematical models, and this can hardly be overemphasized. It is absolu-
tely essential to identify the right structure of a model, so that it is not left to the
parameter estimation in a model to try to cover up for the wrong structure.

Another classical example which is often mistreated is the single component
vapour pressure, which at very low pressures is modeled very close to the ideal
Clausius-Clapeyron equation:

p=-expla+b/T) (17)

The applicability of this model deteriorates as the pressure and temperature
increases (b is always negative) and the deviation from the Clausius—Clapeyron
equation is modified by the Antoine’s model, which introduces another parameter ¢
and uses the temperature ¢ in degrees centigrade:

p=-exp{a+ b/lc +1) (18)

This mathematical form shows that the structure of the logarithm to the vapour
pressure is basically a constant, then a proportionality to ¢ and then finally a slight

1
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hyperbolic curvature. The parameters may be transformed accordingly:
p=exp(d + b't/(1 + c't)

(19)
a =a+ b/, b = —bjc?, = 1/c

This transformation removes as much as possible of the undesirable correlation
between the parameters in the model, and lets each term in the exponent be
explained by a constant, a linear slope and a hyperbolic curvature. The modeling of
the exponent as a polynomial is certainly not correct, but it is also clearly seen that
it will be very hard to distinguish between a hyperbola and a second order term in
the polynomial for a limited range of observation in t. The two forms:

exp (@ + b't/1 +c't) and exp(a + bt —c"t}), " =c'b (20)

are hardly distinguishable over a limited range in temperature, but they become
dramatically different outside the region of ¢ used for the determination of a’, »" and
¢’. Hence, it is important to select the right mathematical structure, which is usually
derived from the basic physical principles.

It is not only the single variable mathematical structure which is important, it is
certainly equally important to consider the network structure of the cause and effect
relationships. In process engineering, there are five very essential structures which
will cover the majority of process networks and flow-sheets. Those are:

(1) The sequential or serial structure.

(2) The feed forward or the parallel structure.
(3) The feed back or recycle structure.

{4) The co-current structure.

(5) The counter-current structure.

The block diagram representation of these structures are shown in figures 1, 2 and 3.
These block diagrams have an analogous mathematical formulation, which has
orders of magnitude difference in difficulty of solution and simulation. Typically, the
mathematical formulation for the five different structures are of an explicit, semi-
implicit and two-point boundary value nature.

Serial (sequential) structure

Combination of Serial and Paralle! (feed—forward) structure

—

o [
et

Figure 1. The serial and parallel (feed-forward) structure.
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This structure is crucial to the fellowing situations:

1. Feed—back Control

2. Recycles and Recovery

3. Physical and Process Variable interactions
4. f{terative Solution of Equations

s - B

|
Figure 2. The feed-back structure.

The serial structure is explicit, solved by direct substitution or Picard iteration:
x; = fi(x;_ ) (21)

The parallel structure is aiso explicit, but solved by direct substitution in two
parallel operations:

x; = fi(x;_))
e x; = fi(x;_ ) (22)
Xi+1 = fi (X, X))

The feedback structure is always of a semi-implicit nature, as the output is a
function of itself:

x; = fi{x;_, x;)

(23)
x; = fi(x})

A Co—Current problem is an initial boundary value problem.
‘—J——‘ "—9 — >

— — — >
;‘_— .

A Counter—Current problem is a two point boundary value
problem which has a very large number of feed—back loops.

<] F——l_ - <

Figure 3. The co-current and counter-current structure.

o A
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This structure must always be solved by interation, and the analogy between feed-
back control and a feedback or semi-implicit mathematical structure is obvious, as
it has been recognized in numerical analysis for a long time.

It should be noted, however, that the feedback structure may be calculated
without any iterations, if some conditions are met. Suppose the input may be calcu-
lated from the output, which is the same as reversing the flow of information in the
network. Then the whole calculation may be reversed:

X; = gi(x;)
(24)
Xy = gix;, x3)
which has converted the feedback structure to a non-iterative parallel structure of
explicit form. There are several examples from reactor simulation of cascaded tanks
where this principle is applied with great ease and success {Asbjarnsen, 1974).

The co-current principle is really a serial structure with two parallel stream vari-

ables, but each stage is intermingling the two phase variables in a semi-implicit way:
xl,z fl,x(xl,n x2.1’x1‘1—1) (25)
Xy, ;=15 X1 0 X2, X2,5-1)

Hence, each stage may be simulated or calculated by local iteration if one proceeds
from the start where x,, and x,, are given. This structure may also benefit from a
reverse calculation, if the input may be calculated from the outputs.

The counter-current structure is by far the most complicated in process engineer-
ing, as it involves the solution of a two point boundary problem. The mathematical
relations are now:

Xy = fdXg 0 Xa0 Xy o) 26)
Xa, 0= fa Xy, 0 X200 X2,541)

and a reverse information processing does not help because x,, is given at i = 1 and
X, n+1 I8 given at i = n. This problem is therefore solved as a general two-point
boundary value problem, where one iterates on the boundary conditions or on the
size of the apparatus (invariant imbedding) or both.

In practically all exchange operations, it turns out that the counter-current mode
is the optimal and hence the most attractive. The counter-current structure is there-
fore very essential and should be formulated and studied as such. A closer compari-
son, shows that the counter-current structure is really a feed-back structure also
with very many recycle loops connected together. That is the reason why all tubular
reactors modeled as stirred tanks with back-mixing will be recognized as a counter-
current structure. This back-mixing acts as a counter-current flow to the main flow,
but also as a recycle stream. That is also the reason why distillation columns may be
treated as a counter-current operation (Holland, 1963), but also as a recycle process
with very many recycle loops (Kapoor, McAvoy and Marlin, 1985).

5. The conservation principle for scalar variables

The conservation principle is a general basis for all process modeling, and may
be extended to any system where a balance calculation of rates is made. In its most
general form, the conservation principle is applied as a balance of rates for a given
system with defined boundaries. Define the rates:
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r, = Rate of total accumulation within the system
r; = Rate of total inflow to the system

r, = Rate of total effluent flow from the system
r, = Net rate of production within the system

Then the conservation principle is simply a balance of rates:
Fa=t—T,+71, 27

always expressed as extensive variables per unit time, like component materials,
energy, mass, cash, etc.

Scalar quantities like component materials and energy may be expressed as
extensive variable in terms of a product of a basic extensive variable like mass,
volume or total moles, and an intensive variable. As the basis for the intensive
variables, volume, mass or mole may be chosen. The mass basis is the most general
one and usually invariant to intensive variables, like pressure, temperature and con-
centrations. Even if it does not comply with some of the older conventions in chemi-
cal engineering, a mass basis is chosen throughout. This is in line with modern
fundamental textbooks (Aris, 1965).

For a given system volume, or enclosure, the conservation principle may be
written for a general, scalar extensive variable, expressed as a product of a basic
extensive variable and an intensive variable:

4 [ f i dMJ = (mi); — (mi), + [ f r dM:I (28)
dt M a M r

where the intensive net rate of production r is taken on a mass basis.

If the rate of production is a first order process, regardless of chemical process or
otherwise, where r is proportional to i, i.e. r = k() i (t), at any point within the
system, the total production and accumulation rate may be introduced as a new
variable, by the use of a Lagrange multiplier:

d

— =4 i = (mi); — (mi 29
0 dr [/(t) Lt dM] (mi); — (mi), (29)
where the Lagrange multiplier is the function A(t) in general defined as the exponten-
tial function:

At) = exp (— J" < j r dM/ J idM) d@) = exp <—— J:k(@) d9> (30
0\ JM M

This allows a solution of the total accumulation of the property in question and
within the total system mass:

t
f ity dM = —1~ [ f i0) dM + J/Z(O)((mi),- — (mi),) d()} (31
M AL Im o

A useful and general conclusion from this observation, is that if the inlet and
outlet extensive flows are measured, and the rate constant is given as a function of
time, it is possible to calculate the amount of accumulation within the system at any
time, and regardless of the system extension. This is exactly analogous to the obser-
vation in reaction engineering, that the residence time distribution is sufficient infor-
mation for the calculation of total conversion for first order processes (Denbigh
1964).

N |
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If the rate process is of first order and with known rate constant, the total accu-
mulation of a property within the system is determined uniquely by the input and
output extensive flows.

The input feed rate to the system is usually known, but the total outlet effluent
rate is dependent on the intensive variable within the system. If eqn. (31) is used for
a design purpose where measurements of the outlet are not available, it is necessary
to know the flow pattern within the system to be able to solve the overall, dynamic
conservation principle. Some of the less common examples of application are given
below.

5.1 The conservation principle applied to cash flow

If the extensive quantity is considered to be cash within a company (the total
system), the distribution of cash within the company is immaterial. Assume that the
cash is always invested such that it carries interest, which may be time varying, but
which is the same for all cash. Then the conservation principle for cash is simply:

dC/dt = (mi); — (mi), + rC = c(t) + rC (32)

where the extensive cash inflow is a product of sales volume m (extensive flow) and
unit price i (intensive) and the cash outflow is a product of purchase volume of
products, utilities or services (extensive flow) and their unit prices (intensive). The
difference between those constitutes the net cash flow ¢(t).

The interest rate r is the real interest rate, which is the difference between capital
gains by bank interest compounding and capital loss by inflation. The conservation
principle for cash is seen to be easily solved in this case, as an integration gives the
company cash at any time:

i) = [C(O) + J’A(é))c(()) d()] /A(t) (33)
0

where the Lagrange multiplier is equivalent to a discount factor which again is seen
to be related to the average real interest rate:

At) = exp < - J ,r(B) dﬂ) (34)
0

as in the general case of conservation. The application of a differential cash conser-
vation implies continuous compounding.

When this result is inserted into the solution, eqn. (33) expresses the general
discounted cash flow formula with continuous compounding of the real interest
giving the company cash at any time:

C(t) = C(0) exp ( ﬁr(@) dﬂ) + j’c(ﬁ) exp ( ~rr(é)) d9> do (35)
0 (4] U]

The analogy between the economics example and the physical example in (egn. (31)
with distributed rate of production, would be a portfolio of investments where the
net interest rate will be different for the different investments. In both cases, the
distribution of accumulation and production rates within the system is necessary.
However, the example shows a direct and well known applicability of the physical
conservation principle to the dynamics of economics. As such, the example serves
the purpose at demonstrating the usefulness of general principles and the applicabil-
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ity of a systems’ engineering approach to modeling. Dynamic modeling tools for the
conservation in physical systems may therefore be applied to economics with ease.

5.2 The ideal mixing stage for single phases

The flow pattern within a completely mixed tank is that of a total isotropy and
homogeneity. In this case, the intensive properties are the same within the total
system, independent of position. The conservation and production within the system
may then be integrated easily. This gives:

d
2 PVide = (mi); = (mi), + (rVp). (36)
where p is the homogeneous density and V' the system volume, which may very well
vary with time.

An often overlooked and general identity which simplifies the equation above, is
the total mass balance:

d
7 WYy =m—m, (38)

which gives a general equation for the dynamics of the intensive properties of a
mixing stage:
A si— )+ (39)

—=si;—0)+r
dt '
where s; is the feed space velocity on a mass basis.

For all first order production processes, where r is proportional to i, eqn. (39) is
readily solvable by integration:

i(r) = l:i(O) + f t/l(())si(())i;(()) de] / A1) (40)
0

where the Lagrange multiplier is related to the production rate constant as well as
the space velocity:

At) = exp ( j (k(0) — s{0)) de) (1)

in a way very similar to the cash flow analysis and dynamics. The rate constant k(z)
is analogous to the compound interest rate in eqn. (32).

5.3 A single tank with multi-component, multiple feed streams

Simple mixing stages, where intensive variables are to be maintained at a desired
level, occur frequently. For simplicity, the production rate is assumed zero, and the
dynamics of the intensive variables are described by:

d. . .

=Y st - 1) “2)
dt

where i} ; is the intensive variable number k of the input feed stream number j. All
these inlet variables form a matrix S of dimension n x m where n is the number of

=
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intensive variables and m is the number of input streams. Hence, one may write eqn.
(42) in integrated form with a compact vector notation:

i(t) = I:i(O) + Jr).(G)S(B)si(B) dB} //l(t) 43)
0

where s,(6) is the vector of space velocities, and the Lagrange multiplier A(6) is as

traditional:
At) = exp (— Jl i si(0) dH) = exp <— ~[\ts(ﬁl) d0> 44)
0 j=1 0

and s(6) is the sum of all space velocities.

If it is desirable to keep the intensive variables at a given level, say a set-point,
the conservation principle gives the ideal balance control of the space velocities of
the various inlet streams. The simple differential equation expressing the conserva-
tion principle may be written in vector form:

difdt = (S —ie")s (45)

This equation suggests a simple balance control of the space velocities which would
make the rate of change of the intensive variable theoretically zero. This leads to a
general algorithm which is referred to as extensive variable balance control:

(S—ieT)s =0 (46)

One of the space velocities will have to be specified, and this is normally done by
specifying the sum of the inlet space velocities equal to the outlet space velocity.
This attempts to satisfy the total mass balance:

e’s = m/(pV) =5, 47)

Hence, in order for eqn. (45) to be non-singular together with eqn. (45), one would
require that m > n + 1 and the total matrix S’ to be non-singular.

—_— 1 T
5 = F __T'_e_} 48)

The space velocities are then computed according to the simple formula:

s= (8" E—)} . (49)

€

This result is somewhat theoretical, because the practical application may be ques-
tionable. It requires knowledge or estimation of the matrix S and the vector i. In
some cases this may be obtained by measurements and some assumptions of
absence of a component in a feedstream (corresponding element in § equal to zero).
In practice, however, estimation or measurement of the coefficients in the matrix, i.e.
the intensive properties of the feeds, may not be justified from an economic point of
view.

If the material balance is insufficient or the coefficients given with errors, the
simple feed forward control law in eqn (48) will not give di/dt = 0, but a slow drift in
the states i. Therefore, the extensive variable balance control is usually modified by
an additive term from a feed back of the intensive variable i in the tank effluent. If a
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simple proportional feed back control is suggested, in addition to the feed forward
control, the total model for the closed loop control will be:

d = (S —ie") |:(S1)‘1 [0] + K(i,, — i)] (50)
dt S, 4

which turns out to be a non-linear (quadratic or bi-linear) differential equation in
the inputs and outputs. This feed forward control is perfect for disturbance rejection,
but requires an investment in instrumentation of the inputs. The quality of this
control, its stability, regulator performance and disturbance rejection ability may be
investigated by a linearization or a full simulation, but it would be much more
appropriate to formulate an economic objective function for the control including
the process constraints and perform optimal control.

6. Conservation principle and stoichiometry

The Avogadro’s discovery of the stoichiometric numbers of chemical reactions
was only another example on the general conservation principle, this time applied to
atoms and molecular structures. In an extention of linear algebra to incorporate
letters and integers, the atomic formula for a molecule may be written:

m = Aa (S1)

where A is a matrix of the number of atoms required to build a molecule, the vector
m a vector of chemical species formulae and the vector a the letter symbols of the
atomic elements. Consider alcohol as an example:
m=C,H;OH =2C + 6H + 10 52)
aT = [C, H, O]; A = [25 6’ l]

The stoichiometry turns out to be a conservation principle for atoms, as the conser-
vation of atoms is totally independent of the extent of reactions. In matrix form, this
is written:

N'm=0 and N74a=0 (53)

which means that the atomic matrix A and the stoichiometric matrix N are always
orthogonal. Take as an example, steam reforming of methane:

—CH, - H,0 + 3H, + CO =0

O e e I B
Lo -1t 1 -1 1

(54)
m’ = [CH,, H,0, H,, CO, CO,]

(1 0 0 1 1
AT=14 2 2 0 0O}; NTA =0; ATN =0
[0 1 0 1 2

a’=[C, H, O]
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The general conclusion that may be drawn from this observation, is that the
rank of the stoichiometric matrix is sufficient to determine the number of reactions
with independent stoichiometries, an observation often neglected in process model-
ing. Let this number be m and let the number of components be n. Then a number
of n — m reaction invariant relations may be written, expressing n — m reaction
invariant conservations. The conservations of atoms are examples on such invariant
relations.

As it may become apparent, the concepts of stoichiometry and reaction invari-
ance and the concepts of dimensional analysis and unit invariance are practically
identical, they are just applications of general vector decomposition in linear
algebra.

7. Stoichiometry and the reaction rate

The chemical reactions are the heart of process engincering as they affect the
composition of the product streams which are the basis for the production net cash
flow. The chemical reactions define a reaction scheme or stoichiometry of com-
ponents and the reaction rates define the rate at which the reactions proceed. If such
rates are defined per unit of mass of the fluid moving through the reactor, let those
reaction rates be grouped into a vector r. Then the chemical component production
rates are:

r,= Nr (55)

p
Premultiplying with a matrix A7, 4 being a full rank matrix of dimension
n x (n — m) where m is the rank of the matrix N, A4 is chosen such that N74 = 0.
This means that a subset of linear combinations of the production rates r,, are zero,
and behave as if no reaction took place, they are reaction invariant.
Ar,=A"Nr=0 (56)

If the matrices 4 and N are partitioned as:

N, | N A
NT=E__11_:__12_:!; A=[-l} (57)
Njy i Ny 4z

where N, is the square, non-singular part of N of dimension m x m and 4, a
square, non-singular part of A of dimension (n — m) x (n — m). Then, the matrix 4,
is simply:
A= =N{'N;,4;, or A, =-N{'Ny, if 4= (58)
since:
N22—N21N1_11N12=0 (59)
if N has reduced rank. A good example of stoichiometry with reduced rank is in the

pyrolysis of an ethane mixture (Villadsen et al., 1977). The stoichiometric matrix
may then be written as a product of two full rank matrices (of rank m}):

B,

NT=BC=P-} [Ci: C,] (60)
B,

where:
B, = Ny,, B, =N,,, C,=1 and C,=Ni/N,, (61)
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Then, some of the reaction rates in ¥ may be written as linear combinations of a set
of basic reaction rates r,, ¥ = Lr,. The matrix L is then the left pseudo-inverse of C:
NT, T -1 T \7-1
L={"T‘}[N11+N11(N12N12)] (62)

and the reaction rates and the production rates may be written in terms of this basic
reaction rate:
r= Ll’b

(63)

If the matrix N has full rank, then the matrices are B = N, C =] and L = I and the
reaction rates r are the true basic reaction rates r,, which is obvious and well known
(Levenspiel, 1964).

8. Reaction variants and invariants in chemical reactor modeling

The chemical reactor is modeled as a combination of flow pattern models and
reaction kinetic models. The flow pattern models comprise convective, conductive
and radiation transport phenomena and describe the behaviour of the overall trans-
port of extensive properties throughout the reactor. Since the chemical reactions are
totally dependent on the presence of molecules at the sites of reaction, it is obvious
that the transport phenomena and the flow patterns through the reactor are of the
greatest importance. Flow patterns through a reactor are described on a molecular
basis as residence time distributions or on a hydrodynamic basis as velocity dis-
tributions. Chemical reactor modeling logically starts with homogeneous reactors,
which are the simplest, and where the reactions take place throughout every fluid
element of the reactor.

8.1 The homogeneous reactor

The conservation principle may be written as a general operator on an intensive
property, first without chemical reactions and then with chemical reactions. Such a
general operator may be written (Asbjernsen, 1972):

LG) =f (64)

where f'is zero or a forcing function.
For a stirred tank, the operator is shown to be:

L= [% + s(t)] and f= s(t)i (r) 65)

For a tubular reactor without any exchange of heat or materials with the
environment, the operator is expressed as a partial differential operator in terms of
fractions of the total volume x:

¢ 0 0
L= [:5; + s{x,t) P ( 1 — E(x,1) a)] (66)

/=0 (67)

and:
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where the apparent dimensionless axial dispension E may be different for the
various intensive variables. The forcing functions in this particular case are entering
as boundary conditions at both ends of the tube:

0
s(x, 1) [1 — E(x,1) —a—x:l i=s(0i (1), x=0 (68)
at the entrance of the reactor and:
Ex,f)—i=0; x=1 (69)
0x

at the exit of the reactor.

The solution of the conservation operator without chemical reactions shows
how the various intensive properties propagate through the reactor without any
chemical reactions. The propagation of the same properties with chemical reactions,
requires another term for its solution, the net production term. As shown for a
special case of the stirred tank, the conservation principle for a stirred tank reactor
may be written:

d, _—
P s(t(i, — i) + Nr (70)

or in terms of a general differential operator:
e Li)=f{+ Nr
Multiplying with the orthogonal matrix A7, shows that A”i propagate through the

reactor as a true reaction invariant, since 4’N = 0 and the differential operator L is
assumed to be linear:

L(ATY) = AT{ (1)

However, the variable n = (BTB)"'B”i = B”i propagates through the reactor as a
true reaction variant, as now:

Ly =B*f+r, (72)

The variable n is usually referred to as an extent of the reactions, as it is seen to be
controlled entirely by the basic reaction rate r,,.

The logical extension of these modeling ideas, to a general linear operator for
homogeneous reactors, shows how valuable a more general systematic approach to
modeling is. Since the conservation operator for the fluid flow through the reactor is
a differential operator operating on a vector of intensive properties, an orthogonal
decomposition of the variables is useful both for modeling and for parameter esti-
mation. For example, the tubular reactor with axial dispersion will have a general
structure of its decomposed model:

L(AT) =0 (73)
and:
LB =1, (74)

Consequently, the model for the reaction invariants ATi may be used for an inde-
pendent estimation of the flow pattern through the reactor at the time of the reac-
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tions, while the extents of the reactions B*i may be used for the estimation of the
reaction kinetic parameters. In view of the complications usually encountered in
parameter estimation of chemical reactors, orthogonal decompositions of the vari-
ables as indicated here, should indeed be applied to a greater extent than is normal
practice today.

Orthogonal decomposition and general simplifications of reactor modeling have
been known and applied in certain simulation studies (Asbjernsen, 1982), but it is
surprising to see how little emphasis has been given to these facts in reaction engin-
eering books and papers. As it is shown here, it all relates to fundamental properties
of linear algebra, concerning base decomposition, and ranks of matrices.

8.2 The heterogeneous reactor

Fixed bed catalytic reactors differ significantly from homogeneous reactors, and
still, they are the simplest possible extensions of a homogeneous reactor model. the
fluid is treated as a single homogeneous phase, with an interface to the catalyst. At
this interface, there are transports of extensive properties from the fluid to the solid
surface of the catalyst. To a certain extent, the catalyst phase has an ability to
accumulate the extensive properties, particularly heat. The modeling of the reactor
usually distinguishes between the two phases, where the link between the phases are
the transport phenomena on the fluid-solid interface.

The homogeneous phase is modeled as a homogeneous reactor, but the interface
transport takes the place of the homogeneous reaction rate. As an example, consider
the tubular reactor (the packed bed reactor):

L(i) = ar, (75)

where the rate vector r, is the transport flux of extensive properties across the inter-
face and a is a parameter expressing interfacial area per unit of volume of the
reactor. The transport flux is usually modeled by a simple boundary layer model
with an intensive property difference as a driving force and an empirical transport
or transfer coefficient, which are different for the different properties:

I, = K Ai (76)

The driving force Ai is a difference of an intensive variable in the bulk of the fluid
and the catalyst interface, and K is a matrix {(usually diagonal) of transport numbers
for the interface boundary layer.

If the catalyst particles have the ability to accumulate the extensive properties,
this must be taken into account. The simplest possible model for such a phenome-
non, would be to consider the particle as a perfect conductor of the property in
question (no gradients inside the catalyst particle). The actual transport flux will
now be the input variable to a simple ‘stirred tank’ modeling approach to the

catalyst particle:
d . .
@ (i,) = S(—1i,)+ Nr o))

where the matrix S is a matrix of transport properties per unit weight of the catalyst.
This matrix is usually considered to be a diagonal.
Multiplying this equation again with 47, removes the dependence on the cata-

I
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lytic reaction rate r, as one may now write the model relations for the reaction
invariant part of the state variables in the catalyst particle:

% (4Ti,) = ATS(i - i,) (78)
but it is quite clear that the variable A”i in the homogeneous reactor or ATip at the
catalyst surface are no longer reaction invariants.

However, there is a special case where the concept of reaction invariance applies
equally well to heterogeneous reactors, and that is when S has reduced rank equal
to the rank of, (n — m). In that case, one may write S = BA” and compute the

matrix B:
S
B l;—l—lzlA{‘ (19)
SZI

but the two remaining matrices in S must obey the relationship:
S;2=811A7'4, and S, =8;,4;'4, (80)

where it is seen that the last condition is automatically satisfied if the rank of the
matrix S is m, since then:

522 = 32151—1‘512 (81)

In this particular case, a reduced set of the transport phenomena are indeed reaction
invariant, since:

% (ATi) = (ATBYATi — A"i) (81)
but this situation is very unlikely in practice.

The general conclusion is therefore, that heterogeneity and transport phenomena
ruin the concept of reaction invariance or the general concepts of assymptotic
invariance. (Fjeld, Asbjernsen and Astrem, 1974). For a simulation of a heter-
ogeneous reactor, it is not possible to decompose the state variables in the reaction
variant and invariant sets, the transport phenomena introduce other types of coup-
lings and relations between the variables, recognized as the chromatographic effects
(Amundsen and Aris, 1973). These effects make the residence time distributions dif-
ferent for the various components as utilized in chromatographic separation. As it
may have been noticed from the operator eqn.(71) on the reactor invariants, that
was one of the conditions why the concept of reaction invariance applied to homo-
geneous systems. The residence time distribution was the same for all reaction
invariant variables. An even more general conclusion is therefore that the concepts
of reaction invariance are inapplicable when the residence time distributions are
different for the various components participating in the reactions.
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