
Abstract

Title of Document: QUANTIFICATION OF PERMEABILITY- POROSITY RELATIONSHIPS IN SEAFLOOR VENT DEPOSITS: DEPENDENCE ON PORE EVOLUTION PROCESSES

Jill Leann Gribbin
Master of Science - 2011

\section*{Directed By:}

Associate Professor Wenlu Zhu Department of Geology

Hydrothermal mineral deposits formed along seafloor spreading centers help regulate the transfer of heat and mass from Earth's interior to the oceans. Aqueous fluids circulate within the seafloor and are emitted through vent deposits, formed from interaction between vent fluids and seawater. These deposits evolve as they react physically and chemically with venting fluids and seawater, therefore changing transport properties, such as permeability and porosity. In this study, measurements of permeability (k) and porosity (ϕ) were used in conjunction with microstructural observations to identify evolution of permeability-porosity relationships (EPPRs) for vent deposits. EPPRs are power-law relationships relating permeability and porosity through an exponent, α, which is sensitive to changes in these properties. These relationships are important for understanding pore evolution processes and fluid distribution, in addition to their effects on environmental conditions within vent deposits.

QUANTIFICATION OF PERMEABILITY-POROSITY

 RELATIONSHIPS IN SEAFLOOR VENT DEPOSITS: DEPENDENCE ON PORE EVOLUTION PROCESSESBy
Jill Leann Gribbin

Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of
Master of Science
2011

Advisory Committee:
Associate Professor Wenlu Zhu, Chair
Professor Philip Candela
Assistant Professor Saswata Hier-Majumder
© Copyright by Jill Leann Gribbin 2011

Acknowledgements

I want to thank my advisor, Wenlu Zhu, for her support and guidance while working on this project. I also want to thank Meg Tivey of Woods Hole Oceanographic Institution with whom we have collaborated on this project. I also want to acknowledge Sarah Penniston-Dorland (UMD) for access to and help in the microscope lab; Margaret Sulanowska (WHOI) for coring our deposit samples; my thesis committee for their valuable feedback on this project; and the UMD Geology Department. Additionally, I want to thank my family, especially my mom, for their continued love and support.

I also want to acknowledge NSF grants EAR-0741339 and OCE-0648337, both of which funded this project.

Table of Contents

Acknowledgments ii
Table of Contents iii
List of Tables V
List of Figures vi
Chapter 1: Introduction 1
1.1 Samples Measured in Study 4
1.2 Geologic Setting 8
Chapter 2: Pore Evolution Processes and Permeability Change 13
2.1 Mechanical Compaction 15
2.2 Hot Isostatic Pressing (HIP) 17
2.3 Thermal Cracking 18
2.4 Precipitation 20
2.5 Dissolution 22
Chapter 3: Experimental Methods 25
3.1 Probe Permeability 25
3.2 Core Permeability 26
3.3 Porosity. 28
3.4 Petrography 31
Chapter 4: Massive Anhydrite 33
4.1 Permeability and Porosity 33
4.2 Microstructural Analyses 37
4.2.1 High k and ϕ Cores 37
4.2.2 Low k and ϕ Cores 41
4.3 Discussion 44
Chapter 5: Flanges, Slabs and Crust 47
5.1 Geologic Descriptions 47
5.2 Permeability and Porosity 50
5.3 Microstructural Analyses 55
5.3.1 Guaymas Flanges 55
5.3.2 MEF Flanges 59
5.3.3 Lucky Strike Slabs 63
5.3.4 TAG Crust 67
5.4 Discussion 68
Chapter 6: Spire Deposits 72
6.1 Permeability and Porosity 72
6.2 Microstructural Analyses 81
6.2.1 Zn-rich Actively Diffusing Spires 81
6.2.2 Black Smoker Chimneys 85
6.2.3 Relict Spires 88
6.3 Discussion 94
Chapter 7: Conclusions 99
Appendix 1: Probe Permeability Data 102
A1.1 Massive Anhydrite Data 102
A1.2 Flange, Slab and Crust Data 103
A1.3 Zn-rich Actively Diffusing Spire Data 104
A1.4 Black Smoker Chimney Data 105
A1.5 Relict Spire Data 107
Appendix 2: Core Permeability Data 108
A2.1 Massive Anhydrite Data 108
A2.2 Flange, Slab and Crust Data 112
A2.3 Zn-rich Actively Diffusing Spire Data 120
A2.4 Black Smoker Chimney Data 125
A2.5 Relict Spire Data 128
Appendix 3: Porosity Data 137
A3.1 Massive Anhydrite Data 137
A3.2 Flange, Slab and Crust Data 138
A3.3 Zn-rich Actively Diffusing Spire Data 140
A3.4 Black Smoker Chimney Data 141
A3.5 Relict Spire Data 142
Appendix 4: Microstructure Tables 144
A4.1 Massive Anhydrite Data 145
A4.2 Flange, Slab and Crust Data 146
A4.3 Zn-rich Actively Diffusing Spire Data 148
A4.4 Black Smoker Chimney Data 149
A4.5 Relict Spire Data 150
References 152

List of Tables

Chapter 2:
2.1. 15
Chapter 4: 4.1 36
Chapter 5:
5.1 52
5.2. 57
Chapter 6:
6.1 75
6.2. 75
6.3 76

List of Figures

Chapter 1:
1.1 Focused vs. diffuse flow 2
1.2 Permeability vs. porosity 3
1.3 Sample types 7
1.4 Vent field locations 8
Chapter 2:
2.1 Simple cubic matrix 14
2.2 Mechanical compaction 17
2.3 Hot isostatic pressing (HIP) 18
2.4 Thermal cracking 19
2.5 Precipitation 22
2.6 Dissolution 24
Chapter 3:
3.1 Probe permeameter 26
3.2 Nitrogen permeameter and helium porosimeter 28
3.3 Porosimeter setup 30
3.4 Thin section orientations 32
Chapter 4:
4.1 Anhydrite probe permeability histograms 33
4.2 Sample surface roughness 34
4.3 Anhydrite permeability vs. pressure plots 35
4.4 Anhydrite permeability vs. porosity plot. 36
4.5 Data for cores from which thin sections were made 37
4.6 High k and ϕ microstructures 39
4.7 Evidence for anhydrite dissolution 40
4.8 Low k and ϕ microstructures 42
4.9 Anhydrite EPPR comparison 46
Chapter 5:
5.1 Layered flange and slab cores 47
5.2 Flange, slab and crust diagrams 48
5.3 Flange, slab and crust probe permeability histograms 50
5.4 Flange, slab and crust permeability vs. pressure plots 51
5.5 Flange, slab and crust permeability vs. porosity plot 54
5.6 Data for cores from which thin sections were made 56
5.7 Calcite crystal packing in Guaymas cores 58
5.8 Effects of amorphous silica on flange pore structure 60
5.9 Layering within slab cores 65
5.10 Layering within crust core 67
Chapter 6:
6.1 Zn -rich actively diffusing spire probe permeability histogram 72
6.2 Black smoker chimney probe permeability histogram 73
6.3 Relict spire probe permeability histogram 73
6.4 Zn -rich diffusing spire permeability vs. pressure plots 77
6.5 Black smoker chimney permeability vs. pressure plots 77
6.6 Relict spire permeability vs. pressure plots 78
6.7 Zn -rich actively diffusing spire permeability vs. porosity plot 79
6.8 Black smoker chimney permeability vs. porosity plot 80
6.9 Relict spire permeability vs. porosity plot 80
6.10 Zn -rich actively diffusing spire microstructures 83
6.11 Black smoker chimney layers 86
6.12 Relict spire microstructures 92
6.13 Pore space 'pinch-off' 98

Chapter 1: Introduction

Seafloor hydrothermal vents provide a gateway between the Earth's interior and the oceans, regulating the flow of heat and mass between them. Vents facilitate both conductive and convective heat transport, making them important for maintaining environmental conditions within the oceans [Lowell, 1991; Wilcock and Delaney, 1996]. Heat from magma chambers associated with seafloor spreading centers is easily conducted through seafloor rock [Lowell et al., 1995]. The convective transfer of heat, however, is dependent on the flow of hydrothermal fluids and the circulation of seawater from the seafloor to deep within the crust. This process relies on the percolation of cold seawater down into the crust through broad recharge zones in forms of seafloor faults, dikes, fissures, and natural basaltic pore spaces [Sleep, 1991; Tivey et al., 1995]. As the water travels downward possibly reaching Moho depths [Lowell and Germanovich, 2004], it becomes hotter and loses many of its original dissolved ions, such as Mg^{2+} and $\mathrm{SO}_{4}{ }^{2-}$, while gaining various sulfides and oxides (i.e. Fe and Mn oxides). This chemically altered fluid becomes increasingly hot and buoyant at which point it begins to ascend to the seafloor [Von Damm et al., 1998; Henderson et al., 2005]. As the fluid rises through the subsurface and then to the seafloor, interactions with cold seawater will lower fluid temperatures. Changes in temperature, in addition to a change in fluid pressure, result in mineral precipitation and the formation of hydrothermal vent deposits.

Vent fields are found on the seafloor along mid-ocean ridges and back-arc basins; however, environmental conditions present at vent fields can vary. Despite
differences between many vent fields, they each generally have regions of both high-temperature and lower-temperature deposits [Elderfield and Schultz, 1996]. High-temperature areas (Figure 1.1a) are generally characterized by large black smoker chimneys, which form from the rapid ascension (1-5 m/s) of $350-400^{\circ} \mathrm{C}$ fluid emission [Haymon, 1983; Delaney et al., 1992; Tivey et al., 1995]. The extreme thermal gradient existing between this fluid and the $2^{\circ} \mathrm{C}$ seawater it enters causes the precipitation of sulfides, anhydrite, and amorphous silica that build upwards creating the chimney structure [Haymon, 1983; Tivey and McDuff, 1990]. Black smokers tend to be situated closer to the ridge axis [German and Parson, 1998], where fluids can be subjected to higher temperatures within the crust and also have greater channelization due to near axis faults, which can accommodate the fluid's high speed.

Figure 1.1: Schematic diagrams of seafloor vent deposits. a) Black smoker. High-temperature fluid emits through central chimney conduit with fluid diffusely transferred from structure sides; b) White smoker. Low-temperature fluid percolates through small branching channels. Vent deposits usually lack a welldefined central conduit.

Lower temperature diffuse vents (Figure 1.1b) are also very common at vent fields and possibly elsewhere throughout the seafloor [Delaney et al., 1992;

Scheirer et al., 2006]. These deposits form in areas where fluid within the seafloor is only weakly channeled. Consequently, the hydrothermal fluid will entrain, and mix with colder seawater, resulting in precipitation of metal sulfides and anhydrite [Tivey et al., 1995; Mills et al., 1996]. Fluid that is diffusively expelled will generally have a temperature less than $150^{\circ} \mathrm{C}$ [Pester et al., 2008]. Although the fluid temperature is lower than that of black smokers, diffuse deposits are believed to transfer several times more heat to the oceans than chimney deposits due to their expansiveness on the seafloor [Rona et al., 1993; Elderfield and Schultz, 1996; Juteau and Maury, 1999]. The amount of flow exiting through these deposits, however, is poorly constrained, making it important to study parameters that impact this flow.

Physical properties that influence the evolution of both high- and lowtemperature vent deposits include permeability and porosity. Permeability (k) is the ability of a material to transmit fluid, while porosity (ϕ) is the volume fraction of void space in a material (Figure 1.2) [Norton and Knapp, 1977]. Permeability is dependent upon porosity, as well as pore geometry and connectivity.

Figure 1.2: Permeability and porosity are properties that vary in materials - differences between the two properties for the same medium are illustrated, a) permeability is indicated by green arrows representing available flow pathways through connected pores, b) the medium's porosity, shaded in green, includes all void space regardless of connectivity.

Depending on the location of a vent deposit and its exposure to hydrothermal fluids, permeability and porosity of a deposit will vary. Fluid interactions can lead to a number of processes, such as mineral dissolution, precipitation, and thermal cracking, which can significantly alter pore space and thus affect permeability. Conversely, changes in permeability and porosity will affect the mixing and distribution of vent fluids. The extent to which chemical processes resulting from fluid interactions alter permeability and porosity and thereby impact fluid flow within vent deposits is not fully understood.

In this project, permeability and porosity of vent deposit samples were measured to determine the relationships between permeability and porosity in vent deposits. Various types of vent deposits from many different vent sites were studied. Such data for the same type of vent deposits at different stages provide an evolution of permeability-porosity relationships (EPPRs) [Zhu et al., 2007]. Identified EPPRs can be used to constrain flow properties of vent deposits, which are crucial in modeling how vents evolve over time.

1.1 Samples Measured in Study

The seafloor vent deposits were divided into five groups based on sample type. The first sample group was composed of massive anhydrite deposits (Figure 1.3a). Anhydrite $\left(\mathrm{CaSO}_{4}\right)$ forms as a result of increasing seawater temperature. As the seawater is heated above $\sim 150^{\circ} \mathrm{C}$ by hot rock and fluid, dissolved CaSO_{4} becomes less soluble and begins to precipitate as anhydrite (at depths near 3000 m) [Tivey et al., 1995; Kuhn et al., 2003]. It commonly forms within seafloor cracks and on the seafloor where it forms as massive deposits or develops as the
framework structure necessary for the development of metal-rich chimney structures [Haymon, 1983; Tivey and McDuff, 1990].

The second group of samples consists of portions of flanges, slabs, and crust. Flanges (Figure 1.3b) are deposits that form horizontally like tiers or ledges off the sides of larger vent structures from the precipitation of sulfides, sulfates, and possibly carbonates. Vent fluid that is emitted radially from a primary chimney structure [Goldfarb, 1988; Tivey et al., 1999] will pool under the flange until it gradually flows out from under the flange or is diffused upwards through the flange [Kerr, 1997]. Conductive cooling of fluids flowing through flanges results in the precipitation of amorphous silica along grain edges [Tivey et al., 1999]. Hydrothermal slabs (Figure 1.3c) are found at the Lucky Strike Vent Field along the Mid-Atlantic Ridge (MAR). They are layered silicified volcanic deposits (i.e. hydrothermally cemented breccias) rich in sulfides, barite, silica and basalt fragments [Langmuir et al., 1997; Rouxel et al., 2004]. Fluid trapped beneath slabs will circulate and gradually diffuse through cracks in the slab. A crust deposit from the Trans-Atlantic Geotraverse (TAG) field active mound along the MAR will also be included in this group (Figure 1.3d). TAG crust is notable for its brecciation and incorporation of re-cemented vent debris [Thompson et al., 1985; Humphris et al., 1995].

The remaining three groups are composed of Zn -rich actively diffusing spires, black smoker chimneys and relict spires, respectively. The group of Zn rich actively diffusing spires (Figure 1.3e), which includes white smoker chimneys, consists of spires that form from the emission of roughly $250-300^{\circ} \mathrm{C}$
fluid. This fluid is conductively cooled at depth where it will precipitate much of its sulfide components [Hannington et al., 1995; Humphris et al., 1995]. Fluids from these spires are depleted in sulfur, but enriched in zinc compared to fluids from higher temperature deposits. The zinc abundance is due to both the dissolution of sphalerite and remobilization of zinc at depth, which increases the fluid's zinc concentration. As the fluid is emitted the zinc is re-precipitated as sphalerite in the deposit [Humphris et al., 1995]. These Zn -rich diffusing spires lack a central conduit, but instead contain numerous small channels through which fluid can be passed. In contrast, the black smoker chimneys, discussed earlier in the paper, (Figure 1.3f) rely on the precipitation of anhydrite, sulfides, and silica resulting from the interaction of high-temperature fluid $\left(350-400^{\circ} \mathrm{C}\right)$ with seawater on the seafloor. For these structures to develop, an initial ring of anhydrite must first precipitate on the seafloor. As fluid is channeled through the anhydrite structure, sulfide minerals precipitate along the inner walls, forming a well-defined central conduit [Haymon, 1983; Tivey and McDuff, 1990]. Additionally, pore spaces within the outer anhydrite layers gradually infill due to this sulfide precipitation. Relict spires (Figure 1.3 g) are spires that were not actively venting when they were recovered from the seafloor. Their inactivity presumably results from pathways becoming blocked by mineral precipitation over time. Because there are many different types of samples being measured in this study, a large range of both permeability and porosity values is expected.

1.2 Geologic setting

In this study, permeability and porosity of vent samples recovered from ten different vent fields have been measured (Figure 1.4). Each location has variations in environmental conditions that are important to consider when linking the effects of pore evolution processes on the evolution of permeability and porosity within the deposits.

Figure 1.4: Vent field locations (red circles) from which deposit samples were recovered. From left to right: Fenway, Kilo Moana \& ABE, Juan de Fuca (includes Main Endeavour Field and Cleft), Guaymas Basin, Trans-Atlantic Geotraverse (TAG), Lucky Strike, and Central Indian Ridge (CIR).

A few samples have been collected from the Fenway vent field in the Manus back-arc basin in the Bismarck Sea near Papua New Guinea. The vent field is dominated by a large two-tiered mound upon which several hightemperature black smoker chimneys have developed [Craddock and Bach, 2010]. Outer portions of the mound are covered in sulfide chimney debris, massive anhydrite outcrops, and hydrothermal sediment, which accommodate lower temperature diffuse flow [Craddock and Bach, 2010]. Recovered anhydrite from

Fenway tends to be coarse-grained, suggesting that the anhydrite likely precipitates within cavities accessible to fluid flow that are capped by a less permeable sulfide-rich layer. Over time, these sulfide layers collapse, exposing the anhydrite deposits [Craddock and Bach, 2010].

There is one sample that has been recovered from the Edmond vent field along the Central Indian Ridge (CIR) nearby the Rodriguez Triple Junction. The vent field is partially covered by lava flows, pillow basalts, and sediment and is believed to have experienced robust magmatism for about 2 Myr [Kumagai et al., 2008]. Vent fluids sampled from the Edmond field show low $\mathrm{Na} / \mathrm{Cl}$ ratios (though fluid is enriched in both Na and Cl) and high $\mathrm{Ca} / \mathrm{Cl}$ ratios, which can be explained by ongoing albitization of subseafloor rocks [Gallant and Von Damm, 2006]. Measured temperatures from spires show typical values, with high temperatures around $380^{\circ} \mathrm{C}$ [Kumagai et al., 2008].

Two carbonate-rich vent samples have been recovered from the Guaymas Basin vent field in the Gulf of California. Guaymas Basin is notable for its rapid rate of sediment deposition and high concentrations of dissolved carbon compounds that result from the interaction of fluids with organic-rich sediments [Pearson et al., 2005]. Previous work has shown that both sulfides and calcite/barite are large constituents of hydrothermal deposits at Guaymas [Koski et al., 1985]. Sampled vent fluids are depleted in Zn, Cu, and Fe due to sediment and subsurface reactions, which is unusual for sulfide deposits [Koski et al., 1985]. Fluid temperatures and alkalinity are largely consistent with other vent fields.

Four samples will be measured from the Lucky Strike hydrothermal field along the MAR. Lucky Strike is dominated by a large volcanic seamount that has deposited multiple lava flows across the area. Many different vent structures are present at Lucky Strike: high- and low-temperature chimneys, relict spires, flanges, anhydrite deposits, and slabs [Langmuir et al., 1997]. Sampled vent fluids exhibit slightly lower silica concentrations than found in most mid-ocean ridge vent fields and also lower hydrogen sulfide contents [Langmuir et al., 1997]. Fluid temperatures depend on location within the vent field and appear to change over time-scales as short as a few days, suggesting influences from seafloor eruptions.

Moving further south along the MAR, the TAG vent field has a large central mound constructed from the build-up and collapse of hydrothermal material situated atop an area of brecciated seafloor [Humphris et al., 1995]. Strong mineralogical zoning is present on the TAG mound, with hightemperature, chalcopyrite-anhydrite rich chimneys clustered predominantly at the top of the mound. Lower-temperature Zn -rich diffusing spires are common lower down on the sides of the mound [Humphris et al., 1995]. Extensive anhydrite veining is also present at TAG as a result of seafloor crack infill. The anhydrite abundance indicates that the TAG mound environment regularly maintains seawater temperatures $>150^{\circ} \mathrm{C}$ to allow for retrograde anhydrite precipitation [Humphris et al., 1995]. Multiple samples from the TAG field have been measured in this study.

Along the Juan de Fuca Ridge (JFR), several vent fields have been discovered from which vent samples have been included in this study. A few vent samples have been collected from the Main Endeavour Field (MEF) located along the northern portion of the JFR. The MEF is characterized by large sulfide chimneys, areas of diffuse flow, and many inactive spires and flanges [Tivey et al., 1999]. Vent fluids from MEF are unusual in that they have a high pH (4.24.5), exhibit a strong temperature and chlorinity gradient across the field, and have high concentrations of methane and ammonia [Tivey et al., 1999]. Samples from the Cleft segment of the southern JFR have also been measured. The Cleft segment is focused around an untectonized lava plain that houses three major areas of high temperature vents [Embley and Chadwick, 1994]. Both hightemperature and diffuse deposits have been detected along the segment, with most found along seafloor fissures. A large majority of the vents along the Cleft segment are not actively venting; it is believed that many of them vented in accordance with lava producing seafloor eruptions [Embley and Chadwick, 1994]. These older deposits have high silica content and pyritic mineralogy [Embley and Chadwick, 1994].

Samples have also been recovered from both the Kilo Moana and ABE vent fields located along the Eastern Lau Spreading Center, located near the islands of Fiji and Tonga. Seafloor bathymetry of Kilo Moana shows two broad low relief volcanic domes cross-cut by fissures where vent structures have formed [Ferrini et al., 2008]. Both high-temperature and diffuse vent structures have been detected there. The ABE vent field is highly faulted with evidence for several lava
flows and heavy sedimentation [Ferrini et al., 2008]. Most venting spires are surrounded by diffusely venting structures. Flanges forming off the sides of spires and occasionally off of lava flows are common. Between the two vents fields, ABE is slightly shallower and less acidic (4.3-4.9) than Kilo Moana [Ferrini et al., 2008].

Chapter 2: Pore Evolution Processes and Permeability Change

There exists no single relationship between permeability and porosity that is applicable to all materials. However, correlations can be made for materials under specific conditions. Permeability (k) can be related to porosity (ϕ) through a power-law relationship (Equation 2.1) whereby the exponent, α, is sensitive to changes in a material's pore structure [e.g., Turcotte and Schubert, 1982; Zhu et al., 1999; 2007; Bernabé et al., 2003]. The value k_{0} is the permeability at a reference porosity ϕ_{0} [Zhu et al., 1995].

$$
\begin{equation*}
\left(\frac{k}{k_{0}}\right) \propto\left(\frac{\phi}{\phi_{0}}\right)^{\alpha} \tag{2.1}
\end{equation*}
$$

This relationship can be depicted as a line in $\log (k)$ vs. $\log (\phi)$ plot where α is the slope of this line [Bernabé et al., 2003]. Higher α values (i.e., steeper slopes) represent greater changes in permeability with respect to changes in porosity.

A number of diagenetic processes (e.g. compaction, dissolution) can alter a materials pore structure; these processes define the evolution of permeabilityporosity relationships (EPPRs). EPPRs can be used to provide a convenient description of how transport properties evolve during a specific diagenetic process.

A variety of theoretical [e.g., Paterson, 1983; Walsh and Brace, 1984], numerical [e.g., Steefel and Lasaga, 1994; Quispe et al., 1995; Zhu et al., 1995, 1999], and experimental studies [Bernabé et al., 1982; Bourbie and Zinszner, 1985; Zhang et al., 1994] have examined permeability and porosity under
different conditions and have found a range of EPPRs [Guéguen and Palciauskas, 1994; Bernabé et al., 2003]. Deep sea hydrothermal vent deposits are products of the interaction between aqueous fluids and sea water. The vent structures, in turn, exert important control of fluid flow distribution. To understand this coupled system, it is important to quantitatively characterize EPPRs of vent deposits from various sites. Several physical and chemical processes that can significantly alter pore structures have been described in previous studies on sedimentary rocks. These processes are pertinent to vent formation and thus will be summarized here.

A simple analog of a porous material is a cubic matrix embedded with identical tubes (Figure 2.1). In this analog the tubes constitute all of the material's pore space. Assuming laminar flow conditions, permeability can be related to porosity with an α value of 2 [Turcotte and Schubert, 1982]. If the tubes are replaced by cracks where the apertures of the tubes differ from their diameters, then permeability and porosity can be related with an α value of 3 [Guéguen and Palciauskas, 1994]. While the isotropic and homogeneous tube model is idealized

Figure 2.1: Diagram of a simple cubic matrix of circular tubes. This pore geometry yields a permeability-porosity relationship with an α value of 2 . This relationship is a good reference for considering more complex EPPRs.
compared to those of true materials, it provides a good frame of reference from which permeabilityporosity relationships of more complex pore networks can be estimated. Understanding these basic EPPRs provide a good foundation for exploring the effects of different pore evolution processes. Next, the effects of mechanical compaction, hot isostatic pressing, thermal
cracking, precipitation, and dissolution, all of which are processes pertinent to the formation of vent deposits, on pore structure are discussed, in addition to how they result in permeability-porosity relationships significantly deviating from the simple tube model (Table 2.1).

Processes	Materials	α
Plastic compaction	Synthetic aggregates	increasing with decreasing ϕ if disconnection occurs
Sintering		4.5 for $\phi<0.10$
	Porous glass	disconnection at $\phi \approx 0.04$
Semi-brittle compaction	Salt aggregates	$5-7$
Elastic compaction	Sandstones	$1-25$
		depending on microstructure
Cataclastic compaction	Sandstones	≈ 20
(hydrostatic)	$\phi>0.30$	
	$0.15>\phi>0.30$	$10-20$
Cataclastic compaction	$\phi<0.15$	≈ 10
(triaxial)	Sandstones	$5-10$
	$\phi>0.30$	$10-20$
Dilatant microcracking	$0.15>\phi>0.30$	≈ 20
	$\phi<0.15$	$7-8$
Thermal microcracking	Dense rocks	α decreasing with increasing ϕ
	Dense rocks	$5-7$
Dissolution		$\alpha \approx 1$ at very low ϕ
Precipitation	Sedimentary rocks	>20
Chemical alteration	Sedimentary rocks	Porous glass
(roughening)	Sedimentary rocks	α decreasing with decreasing ϕ
Diagenesis		$\alpha \approx 2$ at $\phi<0.10$

Table 2.1: Chart listing compiled α values for multiple pore evolution processes obtained from experimental studies on a variety of natural and synthetic rock types. Chart taken from Bernabé et al. [2003].

2.1 Mechanical Compaction

If pressure is applied to a porous material, its granular structure and pore space will be compacted. This compaction will result in tighter grain packing, which will limit the amount of space available between grains (Figure 2.2). This reduction in pore space, in addition to the changes in pore geometry, will result in a permeability decrease within the material. The magnitude of the permeability
reduction will depend on many factors, including the initial pore geometry of the material and the magnitude of the pressure applied.

Previous studies identified two different regimes of mechanical compaction on porous sandstones [e.g., Zhang et al., 1990; Zhu and Wong., 1996]. When the applied pressure is relatively low, resultant changes in pore space are mostly reversible. Many studies analyzed suites of elastically deformed sandstones and found a large range of observed EPPRs with α values spanning roughly 1-21 [Bernabé et al., 1991; Fredrich et al., 1993; David et al., 1994]. However, when the pressure applied exceeds a given threshold, grain crushing and pore collapse occur, where resultant changes in pore space of previously pressure-insensitive pores are non-reversible (Figure 2.2c). The extent to which k will change as a result of changes in ϕ depends highly on the initial pore geometry of the sample. Samples having a high initial ϕ show a steeper trend as they move into the brittle regime, whereas samples with a low initial ϕ experience a decrease in trend during this transition [Bernabé et al., 2003].

These correlations determined from porous sandstones may be applicable to vent deposits. Many vent deposits have structures consisting of interlocking crystals; however, some have a granular structure with pore space distributed somewhat similarly to that of sandstone. In deposits that exhibit this structure it is important to look for evidence of mechanical compaction. Larger isolated pores located at grain junctions may be indicative of elastic compaction, whereas crushed grains may provide evidence for brittle compaction.

Figure 2.2: Diagrams illustrating the effects mechanical compaction on pore structure. a) Initial pore structure prior to compaction. b) Uniform application of pressure (green arrows) on pore structure from a) results in tighter grain packing and a reduction in k and ϕ. Dashed box represents initial sample size. c) When the applied pressure exceeds the threshold pressure, non-reversible grain crushing and pore collapse occur further decreasing k and ϕ.

2.2 Hot Isostatic Pressing (HIP)

A porous material subjected to high temperatures and pressures will densify during the process of hot isostatic pressing (HIP) (Figure 2.3). As a result of the high temperature conditions, HIP is a plastic pore evolution process. Experiments on synthetic rock aggregates are conducted under both dry and wet conditions [e.g., Bernabé et al., 1982, 2003; Zhang et al., 1994; Wark and Watson, 1998], similar to environmental conditions during diagenesis.

Previous studies show that there is a critical porosity during HIP of calcite aggregates and carbonate rocks. In rocks with porosity greater than the critical porosity, the exponent α value is approximately 3 , whereas below the critical porosity higher α values are observed [Bernabé et al., 1982, 2003; Zhang et al., 1994]. Zhu et al. [1999] show that the interplay between pore space shrinking due to plastic deformation of grains and isolation of pores at grain junctions from the pinching off of connecting tubes is responsible for the change in EPPRs above and below the critical porosity.

Unlike in calcite, HIP of wet quartz does not produce major changes in EPPR, which suggests that pore disconnection through tube pinch off does not regularly occur within these rocks [Wark and Watson, 1998].

HIP experiments are good analogs to natural pore evolution processes and allow us to investigate the mechanisms that operative during plastic compaction and how they affect EPPRs. Although pressures and temperatures exerted on vent deposits are lower than those in most HIP experiments, seafloor hydrothermal deposits may experience deformation similar to that seen during HIP.

Figure 2.3: Diagrams illustrating the effects of hot isostatic pressing (HIP) on pore structure. a) Initial pore structure prior to HIP. b) Uniform application of pressure (green arrows) and heat on pore structure from a). Dashed box represents initial sample size. Pressure compacts the grains, reducing pore space, while the heat causes the grains to expand outward into pore space. Dotted lines show initial grain sizes and darker shaded areas around grains represent thermally expanded portions of the grains. Together the compaction and thermal expansion create a dense material with limited permeability and porosity.

2.3 Thermal Cracking

Stresses caused by large changes in temperature can produce isotropic microcracks throughout a porous material (Figure 2.4). Internal stresses are caused by the thermal expansion of grains, which can create grain size mismatches and anisotropy within a material [LeRavalec et al., 1996]. Therefore,
the magnitude of these stresses is controlled by the thermoelastic properties of the mineral grains within the material [deMartin et al., 2004]. The development of thermal cracks can potentially have a significant impact on the permeability of a material.

Figure 2.4: Diagrams illustrating the effects of thermal cracking on pore structure. a) Initial pore structure prior to heat application and cracking. b) Application of heat on pore structure from a) causing the grains to expand outward into pore space and develop isotropic cracks. Dotted lines show initial grain sizes with darker shaded areas around grains representing thermally expanded portions of the grains. Thermal cracks produced during grain expansion can potentially increase permeability despite pore space loss to grain expansion.

Studies investigating the effects of thermal cracking on permeability involve the controlled heating of rocks, in some instances via HIP, for extended periods of time followed by a period of controlled cooling. Depending on the techniques employed, the nature of thermal cracking varies within samples, which leads to some differences in how the cracks influence permeability. In mylonite samples that were exposed to a simple thermal treatment (no HIP), increasing temperatures resulted in increased porosity in the form of well-connected cracks [LeRavalec et al., 1996]. The increased connectivity in these samples yielded higher permeability values; however, these permeabilities are sensitive to changes
in pressure. A small increase in confining pressure on the samples would close the microcracks and decrease the permeability [LeRavalec et al., 1996].

With experiments using HIP, samples are heated and pressurized to create a relatively impermeable sample with few cracks. A study with olivine aggregates used the HIP technique and then evaluated crack growth and permeability development during cooling and depressurization [deMartin et al., 2004]. This study found that longer HIP durations inhibited the development of large crack networks, because pressing reduced the number of potential initiation sites. Also, larger grains were more prone to developing cracks because of increased stresses [deMartin et al., 2004]. As a result porosity would somewhat increase in these samples due to crack formation without significantly enhancing permeability. On average, Bernabé et al. [2003] notes α values ranging from 5-7 for samples having experienced thermal cracking (Table 2.1).

The contrasting temperatures of hot hydrothermal fluids and cold seawater present at seafloor vent fields may make vent deposits susceptible to pore structure changes resulting from thermal cracking. Cracking, if present, may increase deposit permeability and potentially channel fluids moving through the deposits. Most vent deposits are initially quite porous, so the effects of thermal cracking may be expected to be more similar to those obtained without HIP.

2.4 Precipitation

Although the processes discussed thus far have been physical processes, chemical processes can also produce large changes in permeability. Precipitation occurs as fluids saturated in various ions pass through a material and react to
produce solid mineral phases. Because the fluids must pass through pore space, precipitates formed during the chemical reactions will be deposited within the pore space. This precipitation can lead to a narrowing of channels and pores, thereby decreasing permeability and restricting the overall flow of fluid.

A good example on how precipitation affects EPPRs is Fontainebleau sandstone from Paris basin. This well-sorted sandstone is monomineralic (99.9\% quartz) with a wide range of porosity due to different degrees of cementation resulted from groundwater oversaturated with quartz. Bourbie and Zinszner [1985] conducted permeability measurements on a suite of Fontainebleau sandstone samples with initial porosity from 3-28\%. They found that for samples with porosity greater than 7%, the exponent α value is approximately 3 , whereas below the 7\%, α value increases to ~ 7 (Table 2.1). Zhu et al. [1995] show that the increase in the α value can be explained by pore connectivity loss in low porosity samples.

Experiments transmitting fluids through sandstones [Reis and Acock, 1994; Todd and Yuan, 1992] have shown that mineral precipitation, as expected, produces a loss of both permeability and porosity. These studies found that precipitation within pore space produces roughness along pore walls (Figure 2.5). Roughness creates irregularities along pore walls with small pockets that cannot effectively transmit flow [Bernabé et al., 2003]. Although the precipitated roughness may contain pores, lessening the net loss of porosity, permeability is greatly restricted by the roughness, particularly because the pore wall topography will narrow or even pinch off pore channels limited connectivity. Because of this
large decrease in permeability with respect to minor reductions in porosity, samples experiencing precipitation will have high α values, averaging about 8 (Table 2.1) [Bernabé et al., 2003].

Seafloor vent deposits regularly transmit fluids rich in a range of ions, many of which begin to precipitate upon emission to the seafloor. It has been previously shown [Zhu et al., 2007] that precipitation can dramatically impact the permeability and porosity of vent deposits, such as relict spires. High degrees of precipitation with spires lead to a loss of connectivity and an inability to continue transmitting fluids. Therefore, it is important to identify occurrences of late-stage precipitation within the deposits included in this study.

Figure 2.5: Diagrams illustrating the effects of precipitation on pore structure. a) Initial pore structure prior to precipitation. b) Late-stage mineral precipitation (green areas) within the pore structure of a) creating roughness along pore walls. Roughness narrows pore channels and in some cases pinches off channels. These effects decrease the porosity and restrict the permeability of the material.

2.5 Dissolution

Much like precipitation, dissolution is a chemical process that can produce large changes in a material's pore structure. Dissolution occurs when the chemical components of a fluid react with and breakdown the surrounding grain/crystal host structure. The dissolved components of the material become entrained in the
fluid and get carried away or potentially re-precipitated as the fluid passes through the host structure. As a result, mineral dissolution increases the porosity of a material, while typically also enhancing the permeability.

The extent of dissolution a material experiences depends highly on the chemical composition of the fluid, particularly its acidity, and the composition of the host material. For example, studies have been conducted on sandstones and carbonate rocks whereby acidic fluid is passed through the rocks and changes in k and ϕ are then observed [McCune et al., 1979; Luquot and Gouze, 2009]. Dissolution was shown to enhance permeability in both cases; however, the increase in permeability in the carbonate rocks was several orders of magnitude higher than the increase seen in the sandstones. The dissolution along grain edges helps create wider and more connected flow channels, particularly in areas of the pore network that were initially well-conducting pores (Figure 2.6) [Bernabé et al., 2003]. The differences in the extent of dissolution between the two rock types is confirmed by their respective α values, with the sandstones have α values from 8-10 and the carbonate rocks having much higher α values ~ 20 (Table 2.1) [Bernabé et al., 2003].

The majority of analyzed hydrothermal fluids have been found to be acidic, making dissolution reactions common during fluid migration. Certain vent deposits that contain higher abundances of carbonate minerals may be more susceptible to dissolution. Given the large impact dissolution can have on the pore structure and permeability of any material, it is important to identify whether dissolution has occurred within the vent deposit samples.

Figure 2.6: Diagrams illustrating the effects of dissolution on pore structure. a) Initial pore structure prior to dissolution. b) Fluid reacts with and dissolves grains, removing material (green regions) and decreasing grain size, thereby increasing pore space and significantly enhancing permeability.

Chapter 3: Experimental Methods

3.1 Probe permeability

Vent deposits are heterogeneous. The permeability of vent deposits is generally heterogeneous and anisotropic. To assess the heterogeneity and anisotropy of the various deposits, permeability measurements were taken at multiple sites from multiple facets of each deposit sample using a probe permeameter. Variations in probe permeability values provide a measure of sample heterogeneity [Zhu et al., 2007].

Permeability measurements on vent deposits were conducted by using a portable probe permeameter, the NER TinyPerm $\mathrm{II}^{\mathrm{TM}}$ (Figure 3.1a). The probe permeameter measurements provide a quantitative measurement of permeability heterogeneity within the samples. Comparison of permeability values obtained from different facets of a vent sample can be used to identify existing anisotropy.

The probe permeameter is a syringe-like device that pulls air out of a sample through a compressible rubber tip (Figure 3.1b). The compressible tip is held firmly against the sample surface to reduce the possibility of leaked air (Figure 3.1c). A micro-controller unit within the permeameter monitors the syringe volume as air is pulled from the sample. While air is pumped from the vicinity of the sample surface, transient vacuum pulses are created. Air is pulled from the near-surface region around the measurement site, where it is not directionally restricted. A signal processing algorithm determines the permeability using the vacuum pulses and syringe volume.

To assess the permeability anisotropy of each sample, permeability values along different orientations were compared by conducting measurements on multiple facets of the sample. Along each facet, permeability was measured at several different sites. At each measurement site, five permeability measurements were collected (Figure 3.1c). Permeability values provided for each site are given by the geometrical mean of the 5 measurements.

Figure 3.1: a) NER TinyPerm II ${ }^{\mathrm{TM}}$ probe permeameter. b) Operation of a probe permeameter-the probe tip seal against a sample surface and air being pumped from the sample. c) A probe permeameter in usemultiple measurement sites along the sample surface are shown by the black labels. At each site, 5 measurements were conducted.

3.2 Core permeability

Because the flow pattern around the probe tip is unknown (Figure 3.1b), the probe permeability are not unidirectional. Furthermore, there are no porosity data available for the vent samples. To quantify the permeability-porosity relationships in vent deposits, right-cylindrical cores were then taken near the selected probe permeameter measurement sites so that core permeability data can be compared to the probe permeability data obtained. The cores are 2.54 cm (1 inch) in diameter and their lengths vary from $\sim 1-6 \mathrm{~cm}$.

Using these cylindrical cores, permeability was measured along the axial direction with a nitrogen permeameter, the UltraPerm ${ }^{\mathrm{TM}} 400$. The permeameter
uses Darcy's law, whereby fluid flow is proportional to a differential pressure over a given length, to determine sample permeability. This relationship can be rearranged to solve for permeability, assuming a number of flow properties are known (Equation 3.1). This expression requires a well constrained flow of nitrogen through the sample that can then be used in conjunction with recorded upstream and downstream pressures to determine the permeability of the core. The sample length (L) and cross-sectional area (A) are input for each core, while the nitrogen flow rate (Q), upstream pressure $\left(P_{1}\right)$, downstream pressure $\left(P_{2}\right)$, and flow viscosity (μ) are measured by the permeameter. Since the permeameter uses Darcy's law, it is critical that the flow rate is low ($\sim 3 \mathrm{~cm}^{3} / \mathrm{min}$), because Darcy's law only holds true for linear laminar fluid flow.

$$
\begin{equation*}
k=\frac{Q L \mu}{\left(P_{1}-P_{2}\right) A} \tag{3.1}
\end{equation*}
$$

Unlike with the probe permeameter, fluid flow through the sample is restricted along the axial direction by the application of impermeable jackets against the cylindrical surface. To circumvent problems caused by surface roughness, such as large voids positioned along the sample surface, plastic wrap was also applied around the sample. To prevent by-flow between the sample and the impermeable jacket, higher confining pressure was applied. Additionally, to account for gas slippage within pore space that can occur during measurement, a Klinkenberg correction has been applied to the permeability data.

Higher confinement could cause mechanical compaction of the sample and consequently alter sample porosity and permeability. To address this problem, permeability measurements were taken at multiple confining pressures, increasing
incrementally from $0.5-2.7 \mathrm{MPa}$ ($\sim 70-400 \mathrm{psi}$). After completing measurements taken at each incremental confining pressure (loading cycle), measurements were then taken with confining pressure decreasing from the peak pressure (unloading cycle) to 0.5 MPa . The permeability data obtained during the loading and unloading cycles can be used to gauge the effect of confining pressure on the core's permeability. Five permeability measurements were made at each confining pressure. Geometrical mean and the standard deviation of these values were determined.

Figure 3.2: a) UltraPerm ${ }^{\mathrm{TM}} 400$ nitrogen permeameter (bottom) and UltraPore ${ }^{\mathrm{TM}} 300$ helium porosimeter (top). b) Pressure chamber used with the nitrogen permeameter and helium porosimeter. 2.54 cm diameter cores were measured in the left chamber.

3.3 Porosity

Porosity measurements have been made on the sample cores using a helium porosimeter, the UltraPore ${ }^{\mathrm{TM}} 300$. The operation principal of the porosimeter is based on Boyle's law (Equation 3.2), where pressure and volume are inversely proportional at a constant temperature.

To obtain the porosity, it is first necessary to measure the sample pore volume. Measuring the pore volume requires the porosimeter to use a reference volume. In this case, a known volume of helium is held in a reference cell under a known pressure of 1.4 MPa . These values will serve as the initial conditions V_{l} and P_{1}, respectively. As measurement begins, helium from the reference tank is directed into the sample core resulting in a pressure drop within the reference tank. Once the helium fills the sample's available pore space, the decreased pressure in the reference tank is recorded as P_{2}. The remaining volume of helium within the tank is recorded as the dead volume $\left(V_{\text {dead }}\right)$, with V_{2} equaling the sum of the sample's pore volume $\left(V_{\text {pore }}\right)$ and $V_{\text {dead }}$ (Equation 3.3). Using these values, $V_{\text {pore }}$ can be solved for (Equation 3.4).

$$
\begin{gather*}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \text { where } T_{1}=T_{2} \tag{3.2}\\
P_{1} V_{1}=P_{2}\left(V_{\text {dead }}+V_{\text {pore }}\right) \tag{3.3}\\
V_{\text {pore }}=\frac{P_{1}}{P_{2}}\left(V_{1}-V_{\text {dead }}\right) \tag{3.4}
\end{gather*}
$$

To determine the sample porosity, the core's bulk volume $\left(V_{b u l k}\right)$ is needed, which can be found using measured values of the core's length (l) and diameter (d) (Equation 3.5). The porosity is then calculated by dividing the pore volume by the bulk volume (Equation 3.6).

$$
\begin{align*}
& V_{\text {bulk }}=\left(\frac{d}{2}\right)^{2} l \pi \tag{3.5}\\
& \phi=\frac{V_{\text {pore }}}{V_{\text {bulk }}} \times 100 \tag{3.6}
\end{align*}
$$

The procedure for sample preparation is similar to that described for permeability measurements. Because using helium makes the experimental setup more susceptible to by-flow, higher confinements are applied for porosity measurements. Five pore volume measurements are made at confining pressures of 2.1-3.1 MPa. Cores having a length $\leq 2.54 \mathrm{~cm}$ were measured with a steel core (with a known volume of $14.8 \mathrm{~cm}^{3}$) so that the measurement is conducted on a more substantial bulk volume that yielded more accurate pore volume measurements. In these cases, the total calculated pore volume for the combined cores was accepted as the pore volume for the vent core, assuming negligible pore volume for the steel core. The porosities were then determined using this calculated pore volume and the bulk volume of the sample core.

Figure 3.3: Experimental setup for porosity measurements using a helium porosimeter. a) A core sample with plastic wrap along its side is placed within the pressure chamber. b) Core shorter than 2.54 cm together with a steel core within the pressure chamber. The steel core helps to create a better seal around the sample thus increasing the accuracy of the porosity measurements. In both cases a confining pressure is applied along the radial directions, while helium is flowing through the core along the axial direction.

Permeability-porosity relationships of vent deposits can be obtained. Compiling the porosity and permeability values collected on vent samples at different formation stages provides the evolution of permeability and porosity of seafloor hydrothermal vents.

3.4 Petrography

After completing the permeability and porosity measurements, thin sections were made from a large subset of the cores. Thin sections were $30 \mu \mathrm{~m}$ thick and were impregnated with epoxy. Sections were cut both radially (Figure 3.4a) and axially (Figure 3.4b) through the cores. Microstructural analyses using reflected and refracted light petrography were then conducted on thin sections to identify pore evolution processes. These analyses are necessary in order to interpret the EPPRs observed for the different samples. Evidence for processes, such as mineral dissolution or precipitation, were recorded in addition to other sample characteristics, including grain size, sorting, and packing. The overall mineralogy of the samples was also noted. While these sections only represent a 2-D cross-section through the sample, in many cases, different orientations of sections from the same sample could be compared and used to make inferences regarding the 3-D structure of the sample (Figure 3.4c).

Figure 3.4: Diagrams showing orientation of thin sections cut from cores and their relation to the 3-D structure of the sample. a) A radial cut through a core. b) An axial cut through a core. c) How radial and axial thin sections for the same sample can be used to make inferences about the 3-D structure.

Chapter 4: Massive Anhydrite

Measured anhydrite samples were recovered from three different vent fields: the Fenway vent field within the Manus Basin, the Edmond vent field along the Central Indian Ridge (CIR), and the Trans-Atlantic Geotraverse (TAG) along the Mid-Atlantic Ridge. For this study, there were a total of 8 samples measured: 3 from Fenway, 1 from CIR, and 4 from TAG.

4.1 Permeability and Porosity

Probe permeability measurements were made along the surface of each of the samples; these data are plotted in Figure 4.1. The permeability data ranged from $\sim 1 \times 10^{-14}$ to $6 \times 10^{-12} \mathrm{~m}^{2}$. These data represent permeability measurements made along the various sides of the samples, and no systematic difference in permeability values was observed. This suggests that there is not significant permeability anisotropy within these samples. In a few samples, such as J2-216-5-R1, the degree of the surface roughness varies considerably (Figure 4.2). For these samples, permeability

Figure 4.1: Histograms showing probe permeability data for massive anhydrite samples. Plots show frequency of measurements at a given permeability. Colors indicate sample locations: Fenway $=$ purple, CIR $=$ red, and TAG $=$ green . a) Data for three Fenway samples. b) Data for one CIR sample. c) Data for four TAG samples.
values obtained along the cut surfaces (Figure 4.2) are generally smaller than the ones obtained along the rough surfaces. Greater permeability values are likely consequences of the imperfect seal between the probe tip and the rough surfaces, thus does not represent actual anisotropy.

Figure 4.2: Anhydrite sample J2-216-5-R1 with one cut side (highlighted in green). A cut surface has significantly reduced surface roughness. Measurements along this surface would have lower permeability values, since the probe permeameter is able to form a tighter seal against the sample.

Cylindrical cores were taken from selected sites where probe permeability measurements were taken. Permeability and porosity along axial direction of a total of 17 anhydrite cores were measured using the nitrogen permeameter and helium porosimeter, respectively.

During permeability measurements, cores were subjected to different confining pressures of $\sim 0.5-2.7 \mathrm{MPa}$. The incremental application and removal of confining pressure allowed us to gauge the effects of pressure on anhydrite permeability. Permeability data of all the cores is compiled in Table 4.1. As confining pressure increases, a slight reduction in permeability is observed (Figure 4.3). This permeability reduction is more pronounced at relatively low confining pressures, which is generally attributed to crack closure [Walsh, 1965]. Data during the removal of confining pressure (unloading) show that this crack

Figure 4.3: Plots showing pressure profiles for select samples during permeability measurement. Colors indicate sample location: Fenway $=$ purple, $\mathrm{CIR}=$ red and $\mathrm{TAG}=$ green. Symbol shapes represent different sample cores. Solid symbols for pressure loading and empty symbols for unloading cycles. Generally minor changes in permeability with pressure. a) Pressure profiles for Fenway sample J2-216-14-R1 cores. b) Pressure profiles for CIR sample J301-3 cores. c) Pressure profiles for TAG sample MIR-1 2/78, Sta 2417 cores.
closure is predominantly reversible and therefore has little effect on the permeability of the cores.

Permeability values for the cores range from $\sim 10^{-16}$ $6 \times 10^{-13} \mathrm{~m}^{2}$, while porosity values range from 2-15\%. Permeability vs. porosity obtained at a confining pressure of 2.1 MPa is plotted in Figure 4.4. The EPPR best fitting the data has a trend with an α value of 4 . From this plot, it is clear that the data fall into roughly two groups: one with high k and ϕ values and another with low k and ϕ. To understand the differences between the two groups and the variation within the data, it is necessary to identify the elements of the pore structure and evidence for pore evolution processes controlling k and ϕ.

Sample	Core	$\begin{gathered} \text { Probe } k \\ \left(\times \mathbf{1 0}^{-15} \mathbf{m}^{2}\right) \end{gathered}$	Core $k\left(\times 10^{-15} \mathrm{~m}^{2}\right)$			Core ϕ (\%)	
		$k \quad 2 \sigma$	$\phi \quad 2 \sigma$	$\phi \quad 2 \sigma$			
Fenway:							
J2-210-8-R2	A-1	39.0 ± 0.4	0.3 ± 0.02	0.3 ± 0.01	0.3 ± 0.01	2.3 ± 1.1	2.7 ± 1.7
	A-2	--	0.1 ± 0.01	0.1 ± 0.01	0.1 ± 0.01	1.9 ± 2.7	2.0 ± 2.2
	A-3	--	0.2 ± 0.01	0.1 ± 0.01	0.1 ± 0.01	2.8 ± 4.6	2.1 ± 4.6
J2-216-5-R1	A2	402.8 ± 1.9	237.9 ± 0.7	230.4 ± 0.5	225.2 ± 0.2	11.5 ± 4.8	11.8 ± 4.0
J2-216-14-R1	A	2268.4 ± 2.9	0.3 ± 0.02	0.3 ± 0.01	0.3 ± 0.01	2.1 ± 2.2	3.1 ± 1.1
	B	2144.6 ± 3.2	0.4 ± 0.04	0.3 ± 0.01	0.3 ± 0.01	5.6 ± 0.1	5.5 ± 0.1
CIR:							
J301-3	A	1938.5 ± 1.1	39.8 ± 0.3	38.5 ± 0.4	38.0 ± 0.3	14.8 ± 0.1	14.7 ± 0.1
	B	1694.3 ± 1.3	1.1 ± 0.04	0.7 ± 0.04	0.6 ± 0.05	7.9 ± 0.1	7.8 ± 0.1
TAG:							
ALV 2581-8	A	1713.4 ± 1.6	357.8 ± 2.0	352.6 ± 2.1	349.2 ± 1.8	12.7 ± 0.1	12.6 ± 0.1
MIR 1 1/74	A-1	29.0 ± 0.4	125.3 ± 0.7	123.2 ± 0.9	121.4 ± 0.4	10.9 ± 0.2	10.8 ± 0.1
Sta 2403	A-2	--	340.4 ± 2.2	336.7 ± 1.9	335.1 ± 2.1	12.2 ± 0.2	12.0 ± 0.2
	B	509.8 ± 2.2	79.3 ± 0.6	77.1 ± 0.7	75.7 ± 0.3	9.0 ± 0.1	8.9 ± 0.1
MIR 1 2/78	A	106.5 ± 3.0	497.3 ± 1.2	477.9 ± 1.0	473.0 ± 1.1	15.0 ± 0.1	14.8 ± 0.1
Sta 2417	B	1043.7 ± 3.9	607.4 ± 1.5	595.9 ± 0.7	590.9 ± 0.4	13.5 ± 0.2	13.3 ± 0.1
ALV 21837-0	2	--	$1.0 \pm$---	$0.4 \pm$---	$0.1 \pm$---	$5.0 \pm$---	$3.6 \pm$---
	3	--	$0.4 \pm$---	$0.4 \pm$---	$0.3 \pm$---	$6.1 \pm$---	$2.4 \pm$---
	B	674.9 ± 3.9	$0.6 \pm$---	$0.3 \pm$---	$0.2 \pm--$	$6.6 \pm$---	$4.0 \pm$---

Table 4.1: Permeability and porosity data for anhydrite cores.

Figure 4.4: Permeability and porosity data plotted for each of the anhydrite cores. Symbol colors consistent with Figure 4.3. Dashed line indicates trend of EPPR with $\alpha \sim 4$. Data are divided into roughly two groups high k and ϕ and low k and ϕ.

4.2 Microstructural Analyses

Twelve thin sections were made from a subset of the measured anhydrite cores. Permeability and porosity data of cores from which thin sections were taken are plotted in Figure 4.5. Thin section descriptions have been organized into two groups, high k and ϕ and low k and ϕ, consistent with the permeability and porosity data.

Figure 4.5: Permeability and porosity data plotted for each of the anhydrite cores from which thin sections were made. Symbol colors consistent with Figure 4.3. Symbol shape represents sample and symbol labels indicate respective core. Data are divided into roughly two groups: high k and ϕ and low k and ϕ.

4.2.1 High k and ϕ cores

There were six thin sections taken from the high k and ϕ cores: MIR 1 2/78, Sta 2417 (Cores A and B), ALV 2581-8 (Core A), MIR 1 1/74, Sta 2403 (Cores A-1 and B), and J301-3 (Core A). Each section predominantly contains anhydrite with minor amounts of sulfides (i.e. chalcopyrite, pyrite, and
sphalerite). Anhydrite crystals are typically tabular with well defined cleavage planes. They initially form in a tightly interlocked grain structure with little space between crystals. All of the thin sections in this group have, however, experienced dissolution, which has created pore space and channels between crystals (Figures 2.6 and 4.6). Dissolution has weathered crystal edges causing many of the crystals to lose their tabular shape and also develop cracks. Pore spaces are irregularly shaped and well-connected likely due to dissolution. This can account for the higher permeability and porosity values measured for these samples.

The thin sections for the cores (A and B) from the MIR 1 2/78, Sta 2417 sample are very similar. They both show blocky anhydrite crystals, ranging in size from about 40-1200 $\mu \mathrm{m}$, with smaller crystals generally appearing to be broken portions of larger crystals (Figure 4.6a). Most crystals adjacent to larger pores and channels have rough edges indicative of crystal breakdown via dissolution. Additionally, dissolution has produced narrow cracks along anhydrite cleavage planes, which in some cases appears to have lead to the division and eventual breakdown of large crystals into several smaller crystals. Very small amounts of chalcopyrite have begun to precipitate within some of the newly created pore space, though these crystals do not sufficiently block any pore space between the anhydrite crystals.

The thin section for ALV 2581-8, Core A is also very similar to those of MIR 1 2/78, Sta 2417. The section contains anhydrite crystals that have been dissolved along crystal edges and internally along cleavages. The dissolution has also created broad channels between crystals, in some cases as wide as $100 \mu \mathrm{~m}$
(Figure 4.6b). This section does exhibit a greater abundance of chalcopyrite that has precipitated within the pore space. The chalcopyrite crystals are typically small $(10-40 \mu \mathrm{~m})$ and do not appear to effectively block much of the pore space.

Figure 4.6: Reflected light (5x) images of thin sections from high k and ϕ cores. Width of images is approximately 2.7 mm . a) MIR $12 / 78$, Sta 2417, core A. Large anh grains with dissolved edges, minor amounts of cp. b) ALV 2581-8, core A. Broad channels between anh grains, some cp and py. c) MIR $11 / 74$, Sta 2403, core A-1. Broad pore space around grains, small clusters of cp and py. d) MIR 1 1/74, Sta 2403, core B. Anh grains with dissolved edges. Multiple cp/py clusters in pore space. e) J301-3, core A. Highly fragmented anh grains with a few py grains surrounded by smaller grain fragments.

Thin sections for cores A-1 and B of sample MIR 1 1/74, Sta 2403 are consistent with those discussed above. Both cores have clearly experienced a significant about of dissolution, which has created significant pore space within the initially close-packed anhydrite structure (Figures 4.6c,d). These sections
differ slightly from those previously discussed in that they both show precipitation of chalcopyrite and some pyrite, which appear to cluster within larger pores. While this precipitation does not fully block most of the pore channels between crystals, it is clearly restrictive. The greater proportion of sulfides within these two cores can likely account for the somewhat lower permeability and porosity values measured compared to those of the previous cores discussed.

Lastly, core A from sample J301-3 also plots within the high k and ϕ group of samples, though it plots slightly off from the EPPR trend. The thin section for this core is structurally quite different from those of the previously discussed cores (Figure 4.6e). There is evidence for extensive anhydrite dissolution, perhaps multiple dissolution events, that have severely cracked and broken down many of the crystals (Figure 4.7a). Large anhydrite crystals that have remained intact are heavily weathered. The dissolution has created more pore space around and within crystals, though the development of broad channels as seen in the previous

Figure 4.7: Cross-polarized images (5x) of sample J301-3. Sample has experienced severe dissolution, which has cracked and broken anh grains. Pore space has been created within and around grains. Width of images is $\sim 2.7 \mathrm{~mm}$. a) Core A. b) Core B. thin sections appears inhibited by the packing of many of the small, anhydrite
crystal fragments. The tight packing of these anhydrite fragments likely somewhat limits the permeability of the core, which is why this core plots below the high $k /$ high ϕ trend. Late-stage sulfide precipitation is less pronounced within this thin section. A few pyrite crystals have developed within the section and are surrounded by anhydrite fragments. It is possible that the pyrite precipitated in pore space created by early dissolution, and that further precipitation was impeded by the infill of anhydrite fragments within the pore space during subsequent dissolution events.

4.2.2 Low k and ϕ cores

Six thin sections were made from cores that plotted in the low $k /$ low ϕ group: J301-3 (Core B), ALV 21837-0 (Core B), J2-216-14-R1 (Cores A and B) and J2-210-8-R2 (Core A-1). Similar to the previous cores, these all show evidence for having experienced anhydrite dissolution. Anhydrite edges are weathered and rough, while the crystals themselves are heavily cracked. These cores, however, appear to have undergone secondary processes that reduced the pore space created by dissolution.

Much like sample J301-3 core A, J301-3 core B exhibits evidence for extensive amounts of anhydrite dissolution. Anhydrite crystals have been thoroughly cracked and fragmented with few large crystals remaining (Figure 4.7b). The majority of the anhydrite is present as small crystal fragments that have been tightly packed. The close packing of these crystals has clearly limited the availability of pore space between the crystals, more so than in core A. Core B also contains more pyrite crystals than core A , which probably helped fill pore
spaces created during an early dissolution event (Figure 4.8a). These pyrite crystals have also been tightly packed with the anhydrite fragments, suggesting that they precipitated prior to some of the more intense dissolution events. The

Figure 4.8: Reflected light (5x) images of thin sections from low k and ϕ cores. Width of images is approximately 2.7 mm . a) J301-3, core B. Tightly packed anh grain fragments surrounding py grains. b) ALV 21837-0, core B. Vugs created from dissolution have been infilled by newly precipitated smaller anh grains. c) J2-216-14-R1, core B. Precipitation of sulfides and anh fill in pore space. d) J2-216-14-R1, core A. Precipitation of sulfides and anh fill pore space created during dissolution. Precipitated anh grains are large and add significant surface roughness along pore walls. e) J2-216-14R1, core A. Fragmented anh grain surrounded by cp. Cp precipitated later and will prevent further dissolution of the anh grain. f) J2-210-18-R2, core A-1. Dissolution to a lesser extent produces narrow channels between grains that can be easily restricted or blocked by sulfide precipitation.
tightly packed structure and greater abundance of pyrite within core B likely accounts for the variation observed between the two J301-3 cores.

Core B from sample ALV 21837-0 has also experienced considerable dissolution which has created broad channels between anhydrite crystals and cracks within crystals. Some crystals have been fragmented following severe cracking, though not nearly to the extent as seen in sample J301-3. Small amounts of both chalcopyrite and pyrite have precipitated in the pore space without creating much restriction. These sulfide crystals are dispersed widely and seldom form clusters. This core does, however, contain large patches of more recently precipitated interlocking anhydrite crystals. These crystals are well-formed, but much smaller (5-30 $\mu \mathrm{m}$) than the original crystals. They appear to have precipitated within vugs (large pore spaces), where they protrude outwards into remaining pore space, creating significant roughness along the pore channels (Figure 4.8 b). Permeability and porosity enhancements resulting from anhydrite dissolution are reduced due to this late-stage precipitation of smaller anhydrite crystals.

Sample J2-216-14-R1 has three thin sections, two for core B and one for core A. The core B thin sections show that pore space created by dissolution has been restricted by the precipitation of sulfides and small anhydrite crystals (Figure 4.8c). These new crystals block pore space between crystals and created added roughness along channel walls, which decrease the permeability of the core. Core A shows evidence for similar precipitation of sulfides and newer anhydrite. The precipitated anhydrite crystals in core A are well-formed and larger ($30-400 \mu \mathrm{~m}$)
than those seen in core B (Figure 4.8d). These crystals extend into pore spaces, often blocking flow channels. Sulfide precipitation is also more pronounced in core A with chalcopyrite and pyrite filling pore space around crystal edges (Figure 4.8e).

Lastly, core A-1 from sample J2-210-8-R2 also plots in the low $k /$ low ϕ group. While this core shows signs of dissolution, the extent of dissolution is less than in the other samples. Pore space has been created around crystals, but is narrower than as seen in other sample thin sections (Figure 4.8f). Small amounts of chalcopyrite and pyrite have precipitated within some of the pore space, and in most cases because the pore space is narrow, it blocks flow channels. The lesser amounts of initial anhydrite dissolution in conjunction with the sulfide precipitation restrict the permeability of the core.

4.3 Discussion

Seafloor massive anhydrite deposits form by the mixing of hot fluids with seawater, and likely behave similarly to subsurface deposits. Although anhydrite precipitation is recognized as being a key constraint on the flow of hydrothermal fluids, effects of anhydrite precipitation on transport properties of the seafloor and its subsurface structures are not well quantified [Mills and Tivey, 1999; Lowell et al., 2003].

Microstructural analyses show that the pore geometry of anhydrite deposits is controlled by both dissolution and precipitation. As fluids pass through the deposits, environmental conditions such as temperature and pH are altered, which may cause anhydrite deposits to become unstable and dissolution to
occur. In general, dissolution creates pore space and enhances permeability. The anhydrite samples investigated in this study all show evidence for dissolution.

Precipitation is sensitive to environmental conditions and pore size [Aquilano et al., 1992; Pape et al., 2005]. In a study of anhydrite cementation in sandstones, Pape et al. [2005] found that anhydrite preferentially precipitates in larger pore spaces, such as in wide flow channels, as opposed to smaller spaces that could be more easily infilled. It is observed that anhydrite precipitation in smaller pores quickly becomes unstable with drops in the calcium sulfate concentration [Pape et al., 2005]. Anhydrite crystal growth is shown to begin with the nucleation of a single crystal within a large pore, not through growth along the edges of pre-existing crystals as is common with other minerals such as quartz. Thus anhydrite precipitation creates highly efficient blockages that impede fluid transmission, and as such results in large permeability reduction.

This mode of crystal growth may explain the difference between the two observed sample groups. In high k and ϕ samples, pore space consists primarily of channels along crystal edges. In low k and ϕ samples, abundant vugs are observed. The vugs are ideal for the growth of secondary anhydrite that results in low permeability. In contrast, channels are less conducive to anhydrite growth.

The precipitation of sulfides, such as chalcopyrite and pyrite, is also observed within many of the anhydrite samples. Precipitation of such minerals requires higher temperatures [Fontaine et al., 2001]. Sulfides preferentially precipitate within constrictive spaces making them more likely to restrict pore spaces and decrease permeability [Fontaine et al., 2001].

The effects of both dissolution and precipitation of secondary anhydrite or sulfides within the anhydrite deposits depend highly on their initial crystal structures and environmental conditions. Vugs within the anhydrite pore structure are not necessarily caused by dissolution and can be original to the grain structure. Vug-rich anhydrite deposits are predisposed to secondary anhydrite precipitation. Additionally, late-stage precipitation can occur at any time, regardless of the timing of dissolution events. Precipitation can occur within pore space original to the grain structure, as well as in pores created through dissolution. The extent and timing of these processes is controlled by the chemistry of the vent fluids.

The $\alpha \sim 4$ trend identified for the anhydrite deposits reflects this interplay between dissolution and precipitation. As previously discussed, dissolution, a permeability and porosity enhancing process, has been shown to produce α values as high as 20 [Bernabé et al., 2003]. Precipitation, which results in lower permeability and porosity, generally has α values around 8 [Bernabé et al., 2003]. Because both of these processes occur in anhydrite deposits, the α value will reflect a balance of their effects on pore structure (Figure 4.9). By selecting a starting k and ϕ and then imposing either process, the pore structure of the material will change. If this altered composition then experiences the opposing process, the trend from the starting structure to the final structure will be similar to that of $\alpha \sim 4$.

Figure 4.9: $\alpha \sim 4$ trend reflects interplay between dissolution and precipitation.

Chapter 5: Flanges, Slabs, and Crust

Flanges, slabs and crust are diffusive vent deposits that facilitate fluid transport laterally as well as upwards through deposit cracks, which results in a layered structure (Figure 5.1). This structural characteristic indicates that the processes controlling the formation of their layers, such as mineral precipitation or dissolution, may be similar in these vents [Delaney et al., 1992; Tivey et al., 1995; Cooper et al., 2000]. Ten deposit samples were included in this group: 5 flanges, 4 slabs, and 1 crust. Prior to discussing the results, it is first necessary to understand variations between the deposits, such as how and where they develop.

5.1: Two sets of cores illustrating the prominent structural layering throughout the samples. a) Slab sample ALV 2608-4-1, Pc 1. Left core was taken perpendicular to layering and right core was taken parallel to layering. b) Flange sample ALV 2415-1B. Top core was cut perpendicular to layering, while the bottom core was taken parallel to layering.

5.1 Geologic Descriptions

The most widespread of these sample types are the flanges (Figure 5.2a), which have been identified at multiple vent sites. Flanges are deposits that extrude horizontally from the sides of larger chimney structures, like a ledge or tier, where fluid will pool and form layers within the flange parallel to the surface of the fluid [Delaney et al., 1992; Woods and Delaney, 1992]. Fluids pooled beneath a flange
will percolate upwards through the flange, or in the case where the fluid flux from the adjacent chimney structure exceeds the maximum amount able to percolate, the fluid will overflow around the edge of the flange [Kerr, 1997; Tivey et al., 1999]. As fluid overflows, mineral precipitation along the flange edge occurs. This precipitation, particularly that of silica, results in the lateral growth of the flange [Turner, 1995; Kerr, 1997; Tivey et al., 1999]. In general, flanges are compositionally abundant in sulfides, sulfates, and silica \pm carbonates [Lonsdale and Becker, 1985; Delaney et al., 1992; Tivey et al., 1999]. Flange samples for this study are from the Guaymas Basin in the Gulf of California and also the Main Endeavour Field (MEF) located along the northern portion of the Juan de Fuca Ridge. Guaymas Basin is notable for its rapid rate of sediment deposition and hydrothermal

Figure 5.2: Diagrams illustrating the general structure and flow pathways within flanges, slabs, and crust with insets showing samples used in this study. a) Flange extending from the side of a larger chimney structure. Fluid emitted from the side of the chimney will pool under the flange and percolate upwards through the flange. b) Slab with circulating fluids. c) Crust with fingerlike protrusions at the base of the TAG black smoker edifice.
reactions between fluids and organic-rich sediments [Pearson et al., 2005]. As a result, calcite and barite are common constituents of vent deposits from this region [Koski et al., 1985]. The MEF is atypical in that it has unusually high fluid pH and high concentrations of methane and ammonia, which likely influence vent fluid reactions [Tivey et al., 1999].

Hydrothermal slabs (Figure 5.2b) are found at the Lucky Strike vent field along the Mid-Atlantic Ridge (MAR). The Lucky Strike vent field is unique in that it is situated adjacent to a large seamount that periodically produced lava flows that extend across the vent field [Langmuir et al., 1997]. Fluid temperature and chemistry at the vent field are highly controlled by the frequent volcanic eruptions, which have been found to change environmental conditions as often as every few days [Langmuir et al., 1997]. Slabs from Lucky Strike are hydrothermally silicified breccias composed of amorphous silica rimmed volcanic fragments (basaltic glass and plagioclase), barite, and sulfides [Cooper et al., 2000; Rouxel et al., 2004]. Slabs also exhibit layering parallel to the slab surface, likely developed in part to the ongoing volcanic activity. Research on the composition of fluid emitted from slabs suggests that seawater enters and circulates within the slab [Cooper et al., 2000; Rouxel et al., 2004]. This fluid will convect through the slab and eventually exit diffusely from cracks within the slab.

Crust samples (Figure 5.2c) are from the TAG vent field, also located along the MAR. This vent field is focused around a large central mound consisting of collapsed vent fragments [Thompson et al., 1985; Humphris et al., 1995]. Situated atop the center of the mound is a high-temperature black smoker
edifice. Hydrothermal crust forms a platelike, massive-sulfide layered surface that surrounds the TAG active mound upon which the black smoker edifice sits
[Humphris et al., 1995; Tivey et al., 1995]. The crust is formed through the gradual deposition and recementation of older vent debris and because of this, crust is highly cracked [Humphris et al., 1995; Tivey et al., 1995]. Crust also characteristically forms fingerlike protrusions [Tivey et al., 1995]. Fluid that has pulled within the black smoker edifice will seep out from these cracks and protrusions and rise, where it will become entrained within the black smoker plume [Tivey et al., 1995].

5.2 Permeability and Porosity

Probe permeability data provide a quantitative measure of permeability heterogeneity within the samples (Figure 5.3). Comparison of

Figure 5.3: Histograms of probe permeability data for flange, slab, and crust samples. Plots show frequency of measurements at a given permeability. Colors indicate sample locations: Guaymas $=$ purple, MEF = blue, Lucky Strike = gold and TAG $=$ green. a) Data for two Guaymas samples. b) Data for three MEF samples. c) Data for four Lucky Strike samples. d) Data for one TAG sample.
permeability values obtained from different sides of each sample show that measurements oriented parallel to the layering within the samples were predominantly on the order of $10^{-12} \mathrm{~m}^{2}$. Measurements taken perpendicular to the layering yielded a much broader range of values.

Cores were taken both parallel and perpendicular to layering from each of the samples in order to better quantify permeability anisotropy using the nitrogen permeameter. In total, 40 cores were obtained with 9 cores oriented parallel and 31 cores perpendicular to layering.

Pressure profiles from select cores showing the effects of confining pressure on permeability are shown in Figure 5.4. In general, the permeability decreased slightly with increases in confining pressure - likely due to crack

Figure 5.4: Plots showing pressure profiles for select samples during permeability measurement. Colors consistent with Fig. 4.3. Symbol shapes represent different sample cores (solid = pressure loading, empty = unloading) and asterisk indicates parallel-to-layering core. Generally negligible changes in permeability with pressure. a) Guaymas flange sample ALV 3517-R1 cores. b) MEF flange sample ALV 2415-1B cores. c) Lucky Strike slab sample ALV 2608-4-1, Pc 1cores. d) TAG crust sample ALV 2179-1-1 cores.
closure [e.g., Walsh, 1965]. Permeability values obtained during unloading agree
well with the values obtained during loading, indicating that the pressure effect is
mostly reversible with no permanent damage introduced during pressurization.

Sample	Core	$\begin{gathered} \text { Probe } k \\ \left(\times 10^{-15} \mathrm{~m}^{2}\right) \end{gathered}$	Core $k\left(\times 10^{-15} \mathrm{~m}^{\mathbf{2}}\right)$		2.7 MPa	Core ϕ (\%)	
		$k \quad 2 \sigma$	$\phi \quad 2 \sigma$	$\phi 2 \sigma$			
Guaymas Flange:							
ALV 3517-R1	D1	3230.4 ± 3.6	59.1 ± 0.3	55.1 ± 0.3	52.9 ± 0.4	2.3 ± 3.3	21.6 ± 3.1
	D3	1884.9 ± 4.5	32.0 ± 0.3	29.5 ± 0.2	28.0 ± 0.2	2.8 ± 4.4	19.8 ± 4.0
ALV 3521-R2	A2	29981.0 ± 4.5	1425.8 ± 3.2	1420.6 ± 3.3	1414.2 ± 13.0	11.5 ± 0.1	40.5 ± 0.2
	Ex 1	--	1311.7 ± 3.3	1243.4 ± 3.8	1213.1 ± 8.5	2.1 ± 0.4	44.8 ± 0.2
	Ex 2	--	969.7 ± 4.2	954.7 ± 5.4	953.8 ± 2.0	5.6 ± 0.4	44.7 ± 0.3
MEF Flange:							
ALV 2415-1B	A1	1694.3 ± 3.8	56.5 ± 0.3	55.4 ± 0.4	54.7 ± 0.5	20.2 ± 1.2	20.5 ± 0.4
	B1	9704.2 ± 3.3	1594.6 ± 4.8	1552.3 ± 3.4	1514.3 ± 4.7	31.2 ± 0.3	30.9 ± 0.4
	1	--	$46.1 \pm$---	$40.5 \pm$---	$36.5 \pm$---	$17.1 \pm$---	$15.3 \pm$---
	2	--	$5.3 \pm$---	$3.5 \pm$---	$2.6 \pm$---	$19.2 \pm$---	$17.2 \pm$---
ALV 2927-3	B1	2193.3 ± 2.5	1930.6 ± 10.8	1889.1 ± 12.7	1863.5 ± 6.2	38.2 ± 0.1	37.9 ± 0.1
	1	--	$1950.2 \pm$---	$1717.7 \pm$---	$1595.6 \pm$---	$41.8 \pm$---	$39.6 \pm$---
	2	--	$155.6 \pm$---	$148.7 \pm$---	$145.0 \pm$---	$32.7 \pm$---	$29.5 \pm$---
	3	--	$994.2 \pm$---	$967.3 \pm$---	$948.7 \pm$---	$40.7 \pm$---	$38.2 \pm$---
J2-286	A1	2062.0 ± 3.7	1.3 ± 0.1	0.5 ± 0.02	0.2 ± 0.02	20.7 ± 0.1	20.5 ± 0.3
	A3	4181.9 ± 4.3	279.4 ± 1.3	233.1 ± 1.3	196.0 ± 1.6	25.3 ± 1.6	25.3 ± 0.9
	C2-1	46446.3 ± 3.8	0.8 ± 0.04	0.8 ± 0.02	0.7 ± 0.03	27.2 ± 0.5	27.3 ± 0.3
	C2-2	--	1.3 ± 0.04	1.2 ± 0.02	1.2 ± 0.1	24.1 ± 0.2	24.2 ± 0.4
	C3-1	79602.4 ± 3.2	162.9 ± 0.4	146.0 ± 1.3	138.3 ± 1.4	27.6 ± 4.5	27.8 ± 3.4
	C3-2	--	49.9 ± 0.5	48.7 ± 0.2	48.3 ± 0.3	21.2 ± 1.1	20.7 ± 1.5
	C4	94066.3 ± 2.8	18.7 ± 0.1	17.7 ± 0.2	17.0 ± 0.1	17.7 ± 2.4	19.9 ± 2.1
Lucky Strike Slab:							
ALV 2608-3-3	B2	1960.4 ± 4.4	2744.7 ± 13.5	2737.1 ± 11.9	2746.1 ± 5.6	42.9 ± 0.4	42.5 ± 0.3
	C1	1051.5 ± 4.5	1445.3 ± 5.9	1447.1 ± 3.1	1436.6 ± 3.5	29.2 ± 0.3	28.8 ± 0.3
ALV 2608-4-1	A1	816.8 ± 3.9	787.8 ± 2.7	740.6 ± 3.4	706.5 ± 1.1	34.9 ± 0.2	34.8 ± 0.3
Pc 1	C1-1	428.4 ± 3.9	530.0 ± 1.9	486.7 ± 0.4	461.0 ± 2.3	37.2 ± 1.0	36.5 ± 1.3
	C1-2	--	757.9 ± 8.2	655.1 ± 5.1	604.9 ± 4.0	46.4 ± 0.8	46.3 ± 0.4
	C3-1	1196.4 ± 3.8	28.1 ± 0.2	24.1 ± 0.2	22.2 ± 0.2	35.0 ± 0.9	34.8 ± 0.3
	C3-2	--	120.3 ± 1.2	111.7 ± 1.1	106.9 ± 0.8	37.2 ± 0.8	37.1 ± 0.6
ALV 2608-4-1	A3	2319.9 ± 4.6	2056.1 ± 4.5	2016.9 ± 6.5	1994.5 ± 5.5	39.8 ± 0.3	39.6 ± 0.1
Pc 2	B3	1176.4 ± 4.0	561.6 ± 2.2	538.3 ± 2.8	523.0 ± 0.9	43.1 ± 0.1	42.8 ± 0.2
	1	--	$5475.2 \pm$---	$5023.6 \pm$---	$4885.3 \pm$---	$45.6 \pm$---	$44.1 \pm$---
	2	--	$661.4 \pm$---	$574.6 \pm$---	$534.1 \pm$---	$48.0 \pm$---	$46.3 \pm$---
	4	--	$962.2 \pm$---	$695.1 \pm$---	$528.8 \pm$---	$44.0 \pm$---	$42.4 \pm$---
JAS 177-2-1	A2	3975.9 ± 4.1	198.5 ± 1.8	170.4 ± 2.1	152.1 ± 1.5	46.1 ± 0.4	45.7 ± 0.4
	B1	2729.9 ± 3.5	1827.7 ± 3.8	1774.8 ± 2.9	1745.9 ± 4.5	38.8 ± 1.5	38.9 ± 1.2
	B2	9435.7 ± 3.2	2998.6 ± 13.7	2954.2 ± 11.8	2898.5 ± 4.1	41.2 ± 1.8	41.0 ± 1.7
	C2	69963.2 ± 3.9	194.1 ± 0.5	192.1 ± 0.6	191.9 ± 0.2	41.2 ± 3.7	39.5 ± 3.4
TAG Crust:							
ALV 2179-1-1	A1	13897.7 ± 3.0	605.0 ± 2.8	575.9 ± 0.7	560.7 ± 1.2	36.9 ± 3.1	35.3 ± 4.3
	A2	5234.4 ± 3.6	1106.7 ± 6.9	1079.1 ± 5.5	1062.7 ± 2.9	37.9 ± 5.0	37.8 ± 3.2
	A3	23030.1 ± 1.4	927.9 ± 4.4	887.3 ± 4.7	863.2 ± 4.7	38.4 ± 4.5	37.2 ± 2.5
	B2	1464.2 ± 3.4	1487.5 ± 5.0	1476.5 ± 9.7	1462.7 ± 4.6	43.2 ± 0.2	42.4 ± 0.4

Table 5.1: Average probe permeability, core permeability, and porosity and 2σ values for flange, slab, and crust samples. Additional data for analyses was taken from cores without corresponding probe permeability measurements. Text in blue represents data for measurements taken parallel to layering.

The permeability reduction in all cores became negligible as the applied confining pressure increased from 2.1 MPa to 3.1 MPa . Thus, the measurements taken at 2.1 MPa were used for analyses. Table 5.1 shows the average permeability and porosity values at 2.1 MPa alongside the respective average probe permeability measurements. The majority of the cores measured had corresponding probe measurements, but additional measurements were also conducted on several cores taken where no probe permeameter measurements were made. Comparison between the permeability values obtained by the probe permeameter and those obtained by the nitrogen permeameter indicate that for the same sample, probe permeability is consistently higher. Part of the difference is due to the application of the confining pressure during core permeability measurements. Another reason is that flow measured by the probe permeameter is not directionally restricted, so the values obtained are a representation of a near surface volume average, whereas the nitrogen permeameter gives an axial permeability of a cylindrical core [Zhu et al., 2007]. In addition, probe measurements were sometimes made on surfaces that were trimmed off of cores (because the core measurements need to be made on cylindrical cores with parallel upper and lower surfaces). Notwithstanding these differences, data of the core samples reinforce the observation that within each sample, the parallel-tolayering permeability values do not show a lot of variability and are high, on the order of $10^{-12} \mathrm{~m}^{2}$, compared to the perpendicular-to-layering permeability values, which range over several orders of magnitude.

Permeability and porosity values obtained from these cylindrical cores can be divided into two groups: cores with axes oriented parallel-to-layering and cores with axes oriented perpendicular-to-layering (Figure 5.5). The parallel-to-layering cores all had relatively high permeabilities on the order of $10^{-12} \mathrm{~m}^{2}$ and porosities ranging from $\sim 30-40 \%$. For the perpendicular-to-layering cores, permeability values ranged from $10^{-16}-10^{-12} \mathrm{~m}^{2}$ and porosities ranged from $\sim 20-40 \%$, indicating larger variabilities compared to the parallel-to-layering cores.

Figure 5.5: a) Permeability versus porosity data for all of the cores. In general, permeability values for cores taken parallel-to-layering, symbols outlined in black, are higher $\left(\sim 10^{-12} \mathrm{~m}^{2}\right)$ than for cores taken perpendicular-to-layering $\left(10^{-16}-10^{-12}\right.$ m^{2}). Differences in permeability as a function of porosity can be best fit by power-law relationships (black dashed lines), with a power-law exponent of $\alpha \sim 1$ (or 2) for the parallel-to-layering cores and $\alpha \sim 5$ (or 8) for the perpendicular-tolayering cores. Symbol color denotes location of sample origin: purple $=$ Guaymas Basin, blue $=$ MEF, yellow $=$ Lucky Strike, and green = TAG. b) Permeability versus porosity for only Lucky Strike cores with power-law relationships identified. c) Permeability versus porosity for MEF cores with power-law relationships labeled.

From Figure 5.5, two distinct trends of EPPRs are evident for the parallel-to-layering and perpendicular-to-layering cores. The exponent $\alpha \sim 1$ is for the
parallel-to-layering cores, whereas for the perpendicular-to-layering cores $\alpha \sim 5$. To correctly interpret the observed EPPRs, it is critical to relate the power-law relationships to the actual pore evolution processes using sample thin sections. Thin sections were made from a large subset of the cores, both parallel and perpendicular to the layers within the samples.

5.3. Microstructural Analyses

Microstructural analyses using reflected and transmitted light petrography were conducted on thin sections to identify pore evolution processes. Permeability-porosity data for samples from which thin sections were obtained are plotted in Figure 5.6. Data are grouped according to vent field and sample type: Guaymas flanges, MEF flanges, Lucky Strike slabs, and TAG crust. A summary of observations for each thin section is provided in Table 5.2.

5.3.1 Guaymas Flanges

The flanges have been separated into two groups, carbonate-dominated samples from the Guaymas, and sulfide-dominated samples from the MEF. The permeability and porosity values of two flange samples from Guaymas, ALV 3517-R1 and ALV 3521-R2, differ considerably (Figure 5.6a). For each sample, one thin section was cut axially through one core, and a second was cut transversely through another core (Table 5.2). For sample ALV 3517-R1, the axial cut (core D1) exposes a moderately layered structure with large calcite crystals $(\sim 250 \mu \mathrm{~m})$ at the base of the core, adjacent to where hot fluid was pooled. Smaller calcite crystals $(\sim 50 \mu \mathrm{~m})$ are present above these larger crystals, and

Figure 5.6: Permeability and porosity data for cores from which thin sections were obtained for microstructural analyses. Symbol colors are consistent with Figure 2 and are indicative of sample location: purple $=$ Guaymas Basin, blue $=$ MEF, yellow $=$ Lucky Strike, and green $=$ TAG. Different samples from each group are marked by differently shaped symbols, with black-rimmed symbols denoting parallel-to-layering cores. a) Guaymas flange data, b) MEF flange data, c) Lucky Strike slab data, and d) TAG crust data.

Sample / Section	Mineral Present	Grain Packing	Grain Size ($\mu \mathrm{m}$)	Pore Size ($\mu \mathrm{m}$)	Pore Connectivity	Channel Width ($\mu \mathrm{m}$)	Section Orientation
$\begin{gathered} A L V 3517-R 1 \\ \text { D1 } \\ \text { D3 } \end{gathered}$	$\begin{aligned} & \mathrm{ca}, \mathrm{st}(\mathrm{cp}, \mathrm{sp}) \\ & \mathrm{ca}, \mathrm{st}(\mathrm{cp}, \mathrm{sp}) \end{aligned}$	tight tight	$\begin{aligned} & 250 ; 50 \\ & 250 ; 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 ; 60 \\ & 350 ; 60 \end{aligned}$	$\begin{aligned} & \text { low } \\ & \text { low } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} (2) \\ (3) \\ \hline \end{array}$
$\begin{gathered} \text { ALV } 3521-R 2 \\ \text { Ex } 1 \\ \text { Ex } 2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ca, st (brt, cp, sp) } \\ & \text { ca, st (brt, cp, sp) } \end{aligned}$	$\begin{aligned} & \text { tight } \\ & \text { tight } \\ & \hline \end{aligned}$	$\begin{aligned} & 100 ; 50 \\ & 100 ; 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 ; 70 \\ & 300 ; 70 \\ & \hline \end{aligned}$	moderate moderate	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} (2) \\ (3) \\ \hline \end{array}$
ALV 2927-3 2 3 B1 2	py, wz (po, cp, am Si) py, wz (po, cp, am Si) py, wz (po, cp, am Si)	tight moderate loose	$\begin{aligned} & 45 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 50 \\ 80 \\ 30 \\ \hline \end{array}$	moderate high high	$\begin{array}{r} 20 \\ 40 \\ 20 \\ \hline \end{array}$	(2) (3) (1)
J2-286 A1 C2-1 C3-1 C3-2	$\begin{aligned} & \text { py, po, am Si (wz) } \\ & \text { py, wz (po) } \\ & \text { py, wz, po (am Si) } \\ & \text { py, am Si (wz, cp) } \\ & \hline \end{aligned}$	moderate moderate tight tight	$\begin{gathered} 50 \\ 35 \\ 30 ; 150 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 75 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	low moderate low low	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} (2) \\ (3) \\ (2) \\ (2) \\ \hline \end{array}$
$\begin{gathered} A L V 2415-1 B \\ \text { A1 } \\ \text { B1 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { py, po, am Si (cp, wz) } \\ & \text { py, po, am Si (cp, wz) } \end{aligned}$	tight-mod moderate	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { low } \\ & \text { moderate } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & (2) \\ & (1) \end{aligned}$
$\begin{gathered} \text { ALV 2608-3-3 } \\ \text { B2 } \\ \text { C1 } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{gl}(\mathrm{pl}, \mathrm{am} \mathrm{Si}, \mathrm{py}) \\ & \mathrm{gl}, \mathrm{am} \mathrm{Si}(\mathrm{pl}, \mathrm{py}) \end{aligned}$	loose moderate	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} \text { high } \\ \text { moderate } \end{gathered}$	$\begin{aligned} & 40 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} (1) \\ (1) \\ \hline \end{array}$
$\begin{gathered} \text { ALV 2608-4-1, Pc } 1 \\ \text { A1 } \\ \text { C3 (top) } \\ \text { C3 (bottom) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl}) \\ & \mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl}) \\ & \mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl}) \end{aligned}$	tight moderate tight	$\begin{gathered} 80 \\ 100 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ 100 \\ 60 \\ \hline \end{gathered}$	low moderate moderate	$\begin{aligned} & 15 \\ & 50 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} (1) \\ (2) \\ (2) \\ \hline \end{array}$
ALV 2608-4-1, Pc 2 A3 B3 2	$\begin{aligned} & \mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl}) \\ & \mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl}) \\ & \mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl}) \end{aligned}$	moderate tight tight	$\begin{aligned} & 200 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 175 \\ & \hline \end{aligned}$	high high high	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & (1) \\ & (2) \\ & (2) \\ & \hline \end{aligned}$
$\begin{array}{r} \text { JAS } 177-2-1 \\ \text { A2 } \\ \text { B1 } \\ \text { B2 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{gl}, \mathrm{pl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}) \\ & \mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl}) \\ & \mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl}) \end{aligned}$	loose loose loose	$\begin{aligned} & 140 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \\ & 175 \end{aligned}$	high high high	$\begin{aligned} & 40 \\ & 50 \\ & 50 \end{aligned}$	(2) (1) (1)
$\begin{gathered} \hline \text { ALV 2179-1-1 } \\ \text { A1 } \\ \text { B2 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { cp, py, sp } \\ & \text { cp, py, sp } \end{aligned}$	moderate moderate	$\begin{array}{r} 30 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { high } \\ & \text { high } \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 60 \\ \hline \end{array}$	$\begin{array}{r} (3) \\ (1) \\ \hline \end{array}$
${ }^{(1)}$ parallel-to-layering core thin section cut radially transects different layers		${ }^{(2)}$ perpendicular-to-layering core ${ }^{(3)}$ perpendicular-to-layering core thin section cut axially thin section cut radially transects different layers consists of a single layer					
$\begin{aligned} \mathrm{am} \mathrm{Si} & =\text { amorphous } \\ \mathrm{pl} & =\text { plagioclase } \end{aligned}$	$\text { ica } \quad \begin{array}{ll} \text { brt } & =\text { barite } \\ \text { po } & =\text { pyrrhotite } \end{array}$	= calcite $=$ pyrite	$\begin{aligned} & \mathrm{cp}=\mathrm{ch} \\ & \text { sp }=\text { sp } \end{aligned}$	yrite ite	$\begin{aligned} & =\text { clay } \\ & =\text { stevensite } \end{aligned}$	$\begin{aligned} \mathrm{gl} & =\mathrm{palag} \\ \mathrm{wu} & =\text { wurtz } \end{aligned}$	zed glass

Table 5.2: Summary of microstructural observations for each thin section.
filling pore space between the larger crystals. Pore space is limited, occurring between clusters of calcite crystals, and there is little to no pore connectivity. The transverse section (core D3), taken through a region of the core near the transition from larger to smaller crystals, also reveals limited pore space and a lack of pore
connectivity (Figure 5.7a). Tight packing of calcite crystals limits pore space, pore connectivity, and likely inhibits flow and accounts for the low permeability values measured.

Figure 5.7: Cross polarized images of Guaymas flange cores. Width of each image $\sim 2.7 \mathrm{~mm}$. Larger blocky grains are calcite crystals; dark, elongated and grungy looking crystals are stevensite; white space is pore space. a) Section D3 is from sample ALV 3517-R1. Calcite crystals are very tightly packed. b) Section Ex 2 from sample ALV 3521-R2. Crystals structure contains larger pores.

For sample ALV 3521-R2, which has much higher permeability and porosity values, the axial cut (core Ex 1) is composed of large calcite crystals at the base of the core, adjacent to where hot fluid was pooled, and there are also patches of large crystals throughout the core. Calcite crystal size and packing is more variable in this sample, and there is more pore space (Figure 5.7b), than in sample ALV 3517-R1. Greater pore connectivity is observed in addition to greater porosity.

The distribution of calcite crystals observed in the Guaymas samples suggests that as CO_{2}-rich fluids pool under the flange large calcite crystals precipitate along this surface under relatively constant conditions and high temperatures. Fluid that percolates upwards across a steep thermal gradient cools, and more variable conditions result in precipitation of smaller calcite crystals, stevensite, and sulfide minerals within pore space of upper parts of the flange.

5.3.2 MEF Flanges

The MEF flange samples are composed dominantly of sulfide minerals, not carbonate. Nine thin sections were made from three samples: ALV 2927-3 (3 thin sections), ALV 2415-1B (2 thin sections), and J2-286 (4 thin sections) (Figure 5.6b). Seven of the nine thin sections are from cores oriented perpendicular to layering, with five of these sections cut vertically to cross the different layers, and two cut horizontally, parallel to layering; the other two thin sections are from cores oriented parallel to layering, and were cut horizontally to cross the different layers. The thin sections oriented perpendicular-to-layering exhibit the full range of textures in each sample.

The thin section from the highest permeability core, ALV 2927-3 core B1, reveals layers composed of small to moderate sized crystals of wurtzite and pyrite (20 to $125 \mu \mathrm{~m}$, average $40 \mu \mathrm{~m}$), with minor amounts of similarly sized chalcopyrite and pyrrhotite and trace clay. Differences in crystal size and packing distinguish one layer from another, with different crystal packing resulting in a range of pore connectivity throughout the sample. For instance, one layer is particularly porous and well connected with channels averaging $\sim 80-100 \mu \mathrm{~m}$ in width; pore connectivity in other layers is not as high, though crystal packing is still loose. The thin section from core 3 of the same sample, a core with lower permeability but higher porosity, reveals only one layer (because it was cut parallel to layering), and thus likely is not representative of the entire core. The layer is similar in mineral content, texture, crystal size, packing, and pore connectivity to the layer of core B1 that exhibits the highest pore connectivity,
though in patches a very thin layer of amorphous silica is present (Figure 5.8a). The thin section from ALV 2927-3 core 2 reveals layers and textures very similar to those in the thin section from core $3, B 1$ of the same sample. Pore connectivity in some layers of core 2 is very low, with sulfide crystals more tightly packed, and some pore connectivity decreased and channels blocked by small amounts of late amorphous silica, particularly at the top of the core, nearest the upper flange surface.

Figure 5.8: Reflected light images. a) Section 3 is from sample ALV 2927-3. The grains are loosely packed. Large well-connected, equant void space is observed, which is usually an indication of high-connectivity and high permeability. b) Section A1 from sample ALV 2415-1B. Precipitation of amorphous silica causes void space reduction and likely causes a loss of pore connectivity, thus reducing permeability.

Thin sections from sample ALV 2415-1B cores B1 and A1 similarly reveal textures of several layers. The thin section from core A1 is composed of pyrite, with minor wurtzite, marcasite, trace pyrrhotite and chalcopyrite, and variable amounts of amorphous silica (Figure 5.8b). Fossil worm tube casts and clasts of outermost marcasite-rich upper flange layers that collected on the upper flange surface as debris are present near the top of the core, coated with a layer of late amorphous silica. Large isolated pores are present in this uppermost layer. Amounts of amorphous silica are least at the base of the core, closest to where hot fluid was pooled, and greatest near the top of the flange. Pore connectivity is only
present in layers where the sulfide crystals were initially widely spaced (loosely packed). The thin section from ALV 2415-1B core B1 also shows variable amounts of late stage amorphous silica, with greater amounts nearer the top of the flange. Due to the broad spacing of the initial sulfide crystals, pore connectivity and channel width have been retained in some of the layers. As with ALV 2927-3 core B1, the highest permeability layer of ALV 2415-1B core B1 should exert the greatest control on the overall permeability of the core.

For sample J2-286, four thin sections were made from cores oriented perpendicular to layering. The thin section from core C3-1 reveals layers of different mineral composition, crystal shape and size, porosity, and packing. The layer at the base of the core is composed of large pyrrhotite (blades $\sim 550 \mu \mathrm{~m}$ long) and cubanite, with large pore spaces adjacent to large crystals. Mid-layers of the core are composed of finer-grained resorbed pyrrhotite, pyrite and wurtzite, with the uppermost layer composed of mixed pyrite and wurtzite (crystals 10-50 $\mu \mathrm{m}$ in size). Cracks are present, with textures consistent with the cracks having been conduits for fluid in the past: one crack is lined with pyrite, and another filled with amorphous silica, and amorphous silica fills pore spaces adjacent to the crack. The thin section from core also reveals a large range in crystal sizes through the layers. The layers are composed primarily of pyrite crystals with minor amounts of wurtzite and marcasite, and nearly all crystals are heavily coated with amorphous silica. The precipitation of amorphous silica in many of the layers appears to have severely restricted and in some cases blocked flow channels between crystals. Although, in one of the layers the crystals were
initially widely spaced, so that even with the later precipitation of the amorphous silica coating there was still ample space between crystals to accommodate flow. Fossil tube worm casts are present in one layer, with the tubes 50% filled by later precipitated pyrite and amorphous silica spherules. The thin section from core A1 is similar compositionally to that from core C3-2, with the exception that abundant amorphous silica is present coating crystals and filling what was pore space in the majority of the layers in core A 1 , resulting in little to no pore connectivity. There are layers present that do still contain pore space, but these pores are isolated. The thin section from core $\mathrm{C} 2-1$ is different from the other thin sections in that it was taken through one of the core's layers rather than through the whole core. The layer exhibits narrow channels that are moderately well connected. Amorphous silica is absent, some Fe-oxide is present at crystal boundaries, and the fossil worm tube casts present are much smaller in size than in other parts of this sample. It is likely that the low permeability measured for this core may be indicative of the presence of substantial amorphous silica elsewhere in the core, in a layer that was not transected by the thin section.

Flange growth can be closely linked to the microstructures observed in the thin sections, as was true for the Guaymas flanges. Larger sulfide crystals develop along the base of the flange overlying the pooled fluid, under relatively constant conditions. Pore space between these large sulfide crystals accommodates the upward migration of hot fluids. As the fluids cool, smaller sulfide crystals precipitate throughout the flange under more variable conditions. Conductive cooling of vent fluid or vent fluid/seawater mixtures result in
saturation and deposition of amorphous silica on existing surfaces as a thin layer. Over time the precipitation of angular sulfide crystals and coatings of silica will block flow pathways and limit the permeability through the flange.

5.3.3 Lucky Strike Slabs

The slab samples are composed of shards of palagonitized glass \pm plagioclase shards and later stage amorphous silica and clay. Eleven thin sections were made from four slab samples: ALV 2608-3-3 (2 sections), ALV 2608-4-1, Pc 1 (3 sections), ALV 2608-4-1, Pc 2 (3 sections), and JAS-177-2-1 (3 sections) (Figure 5.6c), all cut through the cores such that the samples' layers were present in each section. Layers were delineated by changes in grain packing and often grain size. Thin sections from five perpendicular-to-layering cores were examined to identify microstructural features that might explain the relatively steep ($\alpha \sim 8$) permeability-porosity trend for these cores. The thin section from the most permeable core (ALV 2608-4-1, Pc 2 core 2) reveals moderately sorted, highly fragmented shards of palagonitized glass $(\sim 100 \mu \mathrm{~m})$, in each of its layers, and amorphous silica and clay coat many of the glass grains; however, pore connectivity remains intact through each of the layers. The thin section from core B3 of the same sample is very similar and contains layers of highly fragmented glass shards, although within this section greater variability in the structure of the layers is apparent. There are two layers visible within this section that can account for the somewhat lower measured permeability and porosity values: a layer of slightly smaller and more tightly packed grains, and a layer where pore space between grains has been almost entirely filled with amorphous silica and clay.

These restrictive features were not observed in the thin section from core 2 . The thin section from sample JAS 177-2-1 core A2 is also composed of palagonitized glass shards, though shard size varies considerably through the different layers. There is a greater abundance of plagioclase shards than in the previously described thin sections, although they too vary in size and shape. The shards are widely spaced, but in several of the layers there is a thick amorphous silica and clay coating that fills previous pore space and blocks flow channels between shards. The lower permeability values can be attributed to this high degree of channel restriction. Thin sections from cores C3-1 and C3-2 of sample ALV 2608-4-1, Pc 1 exhibit similar textures - a mixture of large and small palagonitized glass shards coated in amorphous silica. Much of the space between shards has been infilled with clay that blocks channels and isolates many of the pores. Microstructural observations are consistent with core C3-1 being least permeable because it includes a layer that has been severely infilled by clay and amorphous silica precipitation.

Thin sections from parallel-to-layering slab cores reinforce the observations from the previously described slab thin sections. The most and least permeable of these cores are from sample ALV 2608-3-3. Thin sections from both cores B2 and C1 reveal poorly sorted palagonitized glass shards (and a few plagioclase shards) coated with amorphous silica and minor clay. In the thin section from core B2, grains are loosely packed, and the coating of amorphous silica narrows, but seldom blocks channels (Figure 5.9a, b). In the thin section from core C 1 , glass shards are more densely packed than in core B 1 , and coatings

Figure 5.9: Cross polarized slab images showing variation in grain packing and precipitation between sample layers. Width of images is 2.7 mm . a and b) Section B2 from sample ALV 2608-3-3. A layer with large, broadly spaced glass shards is shown in a), while a more tightly packed layer with highly fragmented grains is shown in b). Close packing of angular grains can cause pinch-offs in void space around grains that can typically lead to limited pore connectivity and a lower permeability. c and d) Section B2 from sample JAS 177-2-1. A well connected, high permeability layer is shown in c), whereas a layer with pore space that had been densely infilled by the precipitation of amorphous silica and clay is shown in d). The precipitation of amorphous silica and clay results in void space reduction, which generally leads to a loss of pore connectivity, thereby reducing permeability.
of amorphous silica and clay are thicker, resulting in less pore connectivity. However grain packing is less dense, and pore connectivity greater, in the layer of core C 1 nearest the top of the slab; this layer likely explains why the permeability of this core (made parallel to layering) has a high permeability despite a low porosity. Textures observed in the thin section from sample JAS 177-2-1 cores B2 and B1 are very similar to those from core A2 from that sample. As with core A2, there is considerable variability between the structure and packing, with both highly porous and well connected layers alternating with a layer that has been heavily coated with amorphous silica and clay (Figure 5.9c, d). Permeability of the cores oriented parallel to layering is likely controlled by the layer with the
highest pore connectivity. The thin section from sample ALV 2608-4-1, Pc 2 core A3 reveals both amorphous silica and clay precipitated throughout the various layers, but pore space and pore connectivity are still both high, as in this sample's core 2 . The core with the lowest permeability of the parallel-to-layering cores is ALV 2608-4-1, Pc 1 core A1. The thin section from this core exhibits abundant amorphous silica and clay, and pore connectivity appears lower than in the other parallel-to-layering cores.

From a mineralogical and textural perspective, seafloor hydrothermal slabs can be classified as hyaloclastites that form from the interaction of hot magma with seawater. Hyaloclastites contain glass shards, as seen in the slab thin sections, which form as thermal stresses break apart large pieces of volcanic glass. The orientation of the slab layers and the grain size within each layer suggests that smaller shards settle to the bottom of the slab while larger fresher grains are found predominantly along the slab surface. Layers are delineated by differences in shard size, initial packing density, and late stage amorphous silica and clay deposition. The presence of amorphous silica indicates that silica-rich vent fluids, or mixtures of vent fluids and seawater, have percolated through the slabs with cooling of the fluids resulting in amorphous silica and clay saturations [e.g., Tivey et al., 1999) and deposition along grain edges, resulting in cementation of some slab layers.

The slab samples are notable in that the perpendicular-to-layering cores plot at a slightly steeper trend than the other vent deposit sample groups (Figure $5.5 b$), which may be due to the high angularity of the glass grains. Angular grains
create roughness along flow pathways that can significantly impact the deposit's permeability. Any changes in grain shape over time can have a large effect on permeability while not producing major changes in the overall porosity, resulting in a steeper trend.

5.3.4 TAG Crust

Measurements were made on only one crust sample, ALV 2179-1-1. Thin sections were made form core A1 (from a perpendicular-to-layering core) and core B2 (from a parallel-to-layering core) (Figure 5.6d). The thin section from core A1 was cut horizontally through just one of the sample's layers. The layer is composed dominantly of fine-grained chalcopyrite and pyrite $(\sim 30 \mu \mathrm{~m})$ with pore space $(\sim 60 \mu \mathrm{~m})$ along crystal edges. Pore connectivity in this layer is high, but through narrow ($\sim 10 \mu \mathrm{~m}$) channels. Unfortunately no information on pore connectivity in other layers of this sample is available. The thin section from core B2 was cut

Figure 5.10: Reflected light images of layering through crust sample ALV 2179-1-1, core B2. Sulfide-rich layers grade from loosely packed crystals (high connectivity) to more closely packed crystals (lower connectivity). Images are each $\sim 2.7 \mathrm{~mm}$ wide.
across the layering (Figure 5.10). Textures and mineral contents are similar to
those in core A1. Layering was apparent only through changes in crystal size. High pore connectivity is consistent through most of the layers and can explain the high permeability value.

Because crust deposits on the TAG active mound are situated adjacent to high-temperature black smokers, fluids beneath the crust are likely hot (around $300^{\circ} \mathrm{C}$). The crust sample appears to have developed much like sulfide flange deposits, with hot fluid percolating upwards from the base of the sample [Tivey et al., 1995]. Textures are consistent with this, with large sulfide crystals at the bottom of the crust where conditions are likely relatively constant. Packing of the crystals is loose, providing space at crystal boundaries to accommodate fluids moving up through the deposit. As the fluid travels upwards it cools, resulting in precipitation of smaller more closely packed crystals under more variable conditions.

5.4. Discussion

In this study, permeability and porosity measurements were conducted on flange, slab, and crust samples, each of which exhibit layering that parallels upper and lower surfaces of the deposits. The data document that permeability values in the direction parallel to layering are considerably less variable and higher than permeability values in the direction perpendicular to layering. These differences in permeability suggest different flow behaviors caused by layering, and have broad implications for the overall fluid flux accommodated by flange, slab, and crust seafloor deposits. Given observed permeabilities, fluid will travel horizontally through these deposits, within prominent highest permeability
deposit layers. This layer will be able to continually facilitate the lateral flow of fluid through the deposits, because permeability decreases little as porosity decreases (trend of $\alpha \sim 1$).

The difference in magnitude as well as in variation of permeability values of cores taken parallel-to-layering versus perpendicular-to-layering in all samples can be quantified using an effective permeability model. Because the total volume flux parallel to layering is equal to the sum of the volume flux through each layer, the effective permeability $\left(k_{p a l}\right)$ in this case is the sum of each layer's permeability $\left(k_{i}\right)$ multiplied by the fraction of the total thickness that layer constitutes $\left(h_{i} / H\right)$ (5.1), where h_{i} and H are the thickness of each layer and the total thickness of the sample, respectively (e.g., Freeze and Cherry, 1978):

$$
\begin{equation*}
k_{p a l}=\sum_{i=1}^{n} k_{i} \frac{h_{i}}{H} \tag{5.1}
\end{equation*}
$$

In comparison, the fluid flux perpendicular to layering must obey mass conservation while crossing several layers of varying permeabilities. The effective permeability $\left(k_{p e p}\right)$ perpendicular-to-layering equals the total deposit thickness (H) divided by the sum of the ratios between layer thicknesses $\left(h_{i}\right)$ to their respective permeabilities $\left(k_{i}\right)$:

$$
\begin{equation*}
k_{p e p}=H / \sum_{i=1}^{n} \frac{h_{i}}{k_{i}} \tag{5.2}
\end{equation*}
$$

From eqn. (5.1) and (5.2), it is easy to see that permeability of a layered vent deposit is generally anisotropic, with the parallel-to-layering effective permeability $k_{p a l}$ greater than the perpendicular-to-layering effective permeability $k_{p e p}$.

The parallel versus serial flow patterns within the deposit cores are supported by microstructural observations from sample thin sections. Petrographic examination shows that the flange, slab, and crust deposits generally consist of layers with large contrasts in crystal packing, void space, and pore connectivity (Figures 5.8-5.10). Low-permeability layers, resulting from initial differences in crystal packing, and/or subsequent deposition of crystals in pore space, and/or late stage precipitation of amorphous silica \pm clay, are observed in both the parallel- and perpendicular-to-layering cores. These low permeability layers restrict the overall flux perpendicular to layering thus exerting primary control on $k_{\text {pep }}$, whereas the flux parallel to layering and thus $k_{p a l}$ is affected primarily by the highest permeability layer. This explains why the permeability values in the parallel-to-layering cores are consistently higher than those in the perpendicular-to-layering cores and why the perpendicular-to-layering cores exhibit much greater permeability variations.

This difference in parallel flow and serial flow is best seen by comparing textures observed in thin sections from cores B1 and 2 of sample ALV 2927-3. Both of these thin sections clearly show the same sequence of sample layering with some layers of relatively high pore connectivity, and thus likely permeability, and some with lower pore connectivity and thus likely permeability. Although they are similar, core B1, oriented parallel-to-layering, has a measured permeability over an order of magnitude greater than that of core 2 , which was oriented perpendicular-to-layering.

The microstructural observations provide explanations for the two EPPRs identified for these deposits. For the parallel-to-layering cores, with an EPPR with an exponent of $\alpha \sim 1$, the change in the effective permeability of the samples are relatively small, even for large changes in porosity. The thin sections taken from all of the cores show that the layers within these cores have undergone pore evolution processes, such as late-stage precipitation of amorphous silica or clays or thermal cracking of crystals. Textures resulting from these processes have been observed in the sample thin sections to significantly change the porosity of the layers. With late-stage amorphous silica precipitation, precipitation can initially result in smoothing of crystal edges, but after larger amounts of precipitation these mineral coatings can pinch-off, block, or completely infill pore space and channels along crystal edges. The parallel-to-layering cores have experienced a loss of porosity as a result of these processes; however, layers of high permeability which were retained during these processes will still allow the deposit to accommodate a high flux of fluid.

Data from the perpendicular-to-layering cores reveal an EPPR with an exponent of $\alpha \sim 5$, and pore evolution processes that are significantly more effective in changing the overall permeability. Flow through these samples, perpendicular to layering, is serial. Changes in pore space of least permeable layers will restrict this serial flow and lower the effective permeability of the sample. These effects of pore evolution processes on the sample layers and the effective permeability of the deposits are important for modeling their fluid fluxes.

Chapter 6: Spire Deposits

Hydrothermal spires are tower-like deposits that grow vertically upwards from the seafloor. Zn -rich actively diffusing spires, black smoker chimneys, and relict spires are all spires deposits. These deposits were grouped together following data collection and analyses, because they have similar structural features and likely experience similar evolution processes. In total the spire sample set includes 9 actively diffusing spires, 6 black smoker chimneys, and 8 relict spires. These spires come from several different vent fields: ABE, MEF, TAG, Cleft, and Kilo Moana.

6.1 Permeability and Porosity

Probe permeability measurements for the Zn -rich actively diffusing spires, black smoker chimneys and relict spires are plotted in Figures 6.1, 6.2, and 6.3 respectively. The Zn -rich actively diffusing spires were the most permeable with values ranging from $\sim 6 \times 10^{-13}-8 \times 10^{-10} \mathrm{~m}^{2}$. Permeability anisotropy is observed in most of

Figure 6.1: Histograms showing probe permeability data for Zn -rich diffusing spire samples. Plots show frequency of measurements at a given permeability. Colors represent individual samples. b) Data for four ALV samples. b) Data for three J 2 samples. these samples. In general, permeability measurements made near the center of the spire are lower than those made along the outer rim of the sample. The black

Figure 6.2 (above): Histograms showing probe permeability data for black smoker chimney samples. Plots show frequency of measurements at a given permeability. Colors represent individual samples. a) Data for three ALV samples. b) Data for three J2 samples.

Figure 6.3 (right): Histograms showing probe permeability data for relict spire samples. Plots show frequency of measurements at a given permeability. Colors represent sample locations: $\mathrm{ABE}=$ purple, $\mathrm{Cleft}=$ gold, Kilo Moana $=$ blue and TAG $=$ green. a) Data for two ABE samples. b) Data for two Cleft samples. c) Data for one Kilo Moana sample. d) Data for one TAG sample.

smoker chimneys, which had permeability values ranging from $\sim 2 \times 10^{-14}-8 \times 10^{-11}$ m^{2}, also showed permeability variations within samples. Permeability measurements made along the inner chalcopyrite lining were lower than those made along the outer, more anhydrite-rich layers. For the relict spires, probe permeability values ranged between $\sim 4 \times 10^{-14}-2 \times 10^{-10} \mathrm{~m}^{2}$. The relict spires had
more pronounced variability in measurements made along the same direction, suggesting that these samples may have a higher degree of surface roughness than the other spire samples. The few measurements that were obtained axially along spires have slightly lower permeability values than those made radially for the same sample.

Similar to the other discussed sample types, varying degrees of surface roughness can account for some of the observed variability in the probe permeability data. High degrees of surface roughness can lead to an insufficient permeameter seal against the sample surface, which can increase the potential for air to be leaked during measurement. An improper seal can lead to variations in the data that are not representative of the samples' true permeability anisotropy.

After completing probe permeability measurements, cylindrical cores were taken from select probe measurement sites for axial permeability and porosity measurement. In total, 22 Zn -rich diffusing spire cores, 11 black smoker chimney cores, and 34 relict spire cores were made taken from the deposit samples. Permeability and porosity data for the Zn -rich diffusing spires, black smoker chimneys and relict spires are listed in Tables 6.1, 6.2, and 6.3, respectively. Confining pressure from approximately $0.5-2.7 \mathrm{MPa}$ was incrementally applied to the cores during measurement. Pressure profiles for the Zn -rich diffusing spires, black smoker chimneys and relict spires are shown in Figures 6.4, 6.5, and 6.6, respectively.

Sample	Core	$\begin{gathered} \text { Probe } k \\ \left(\times \mathbf{1 0}^{-15} \mathbf{m}^{2}\right) \end{gathered}$	Core $k \quad\left(\times 10^{-15} \mathrm{~m}^{2}\right)$			Core ϕ (\%)	
		$k \quad 2 \sigma$	$\phi \quad 2 \sigma$	$\phi \quad 2 \sigma$			
$\begin{aligned} & \text { ALV 2187-1-1 } \\ & \text { (top) } \end{aligned}$	A2	8339.8 ± 3.6	6111.0 ± 42.5	5462.3 ± 35.7	4847.3 ± 30.4	45.5 ± 0.3	44.1 ± 0.2
	A4	8386.7 ± 4.1	4013.4 ± 17.4	3433.7 ± 24.3	3038.1 ± 14.8	36.5 ± 0.2	35.8 ± 0.2
	B1	27560.5 ± 4.1	613.1 ± 1.1	596.3 ± 2.5	578.6 ± 1.1	45.5 ± 0.6	44.2 ± 0.7
ALV 2187-1-1 (bottom)	A2	25910.6 ± 2.0	340.2 ± 1.2	332.9 ± 1.1	322.6 ± 0.9	38.9 ± 0.5	38.4 ± 0.3
	B1	31357.7 ± 3.3	590.4 ± 1.3	581.7 ± 4.5	557.6 ± 2.1	42.1 ± 0.2	41.8 ± 0.3
	C2	1137.5 ± 3.9	618.9 ± 2.8	551.0 ± 2.3	523.8 ± 1.3	41.0 ± 0.2	40.5 ± 0.3
	C3	641.7 ± 4.1	1709.6 ± 10.0	1467.9 ± 6.7	1306.2 ± 5.4	40.6 ± 0.4	40.0 ± 0.4
ALV 2187-1-2	B2-2	--	1817.8 ± 5.7	1748.7 ± 2.8	1704.0 ± 5.3	41.8 ± 0.2	41.3 ± 0.2
	C1/C2	216149.9 ± 1.4	1813.7 ± 17.6	1619.4 ± 14.4	1476.5 ± 9.0	39.4 ± 0.1	38.7 ± 0.2
	C3-1	2372.5 ± 3.3	2657.3 ± 11.0	2602.0 ± 11.2	2534.5 ± 3.6	41.3 ± 0.3	40.9 ± 0.2
	C3-2	--	2809.0 ± 15.5	2670.0 ± 7.1	2501.7 ± 9.2	42.4 ± 0.3	41.5 ± 0.5
	C5	7580.9 ± 4.0	1460.9 ± 5.5	1426.3 ± 3.3	1400.6 ± 5.4	42.9 ± 0.2	42.2 ± 0.1
ALV 2190-14-1	1 A1	4066.2 ± 4.5	2802.2 ± 25.4	2726.3 ± 9.8	2661.7 ± 7.4	47.5 ± 0.2	46.7 ± 0.2
	B1	12847.6 ± 3.1	1195.5 ± 3.1	1140.0 ± 2.6	1073.3 ± 6.1	47.6 ± 0.6	46.1 ± 0.6
	B2	8541.1 ± 3.7	797.7 ± 3.2	775.1 ± 3.0	761.1 ± 1.9	41.3 ± 0.5	41.0 ± 0.5
J2-128-8-R1	Ex	--	29.0 ± 0.5	22.2 ± 0.3	18.2 ± 0.1	28.0 ± 0.2	27.4 ± 0.5
J2-137-7-R1	B1	239125.2 ± 2.5	1181.7 ± 6.0	1068.4 ± 5.8	994.2 ± 3.2	47.8 ± 1.0	44.3 ± 0.7
J2-222-1-R1	A1	--	367.8 ± 2.6	327.3 ± 1.0	305.8 ± 1.2	35.0 ± 0.3	34.1 ± 0.3
	A2	--	231.3 ± 0.3	227.7 ± 0.5	225.9 ± 0.6	36.0 ± 0.5	35.6 ± 0.7
	Ex	--	220.8 ± 1.6	202.9 ± 1.0	190.8 ± 0.8	29.8 ± 0.8	29.4 ± 0.5
J2-127-1-R2	B2	--	379.2 ± 0.4	371.1 ± 0.6	366.1 ± 1.1	37.4 ± 0.5	37.1 ± 0.5
	B3	--	444.1 ± 1.2	438.2 ± 1.0	432.3 ± 1.2	36.2 ± 0.2	35.7 ± 0.3

Table 6.1: Average probe permeability, core permeability, and porosity and 2σ values for Zn -rich actively diffusing spires.

Sample	Core	$\begin{gathered} \text { Probe } k \\ \left(\times 10^{-15} \mathbf{m}^{2}\right) \end{gathered}$	Core $k \quad\left(\times 10^{-15} \mathrm{~m}^{2}\right)$			Core ϕ (\%)	
			1.4 MPa	2.1 MPa	2.7 MPa	2.1 MPa	2.7 MPa
		$k \quad 2 \sigma$	$\phi \quad 2 \sigma$	$\phi \quad 2 \sigma$			
ALV 1445-3	C1	129.6 ± 1.7	21.5 ± 0.3	16.1 ± 0.2	13.5 ± 0.2	24.9 ± 0.3	24.0 ± 0.8
ALV 2179-4-1	A1	1230.4 ± 2.9	167.6 ± 0.6	135.6 ± 0.4	113.7 ± 0.5	42.7 ± 1.0	41.4 ± 0.7
	B1	309.4 ± 2.4	27.0 ± 0.7	17.7 ± 0.4	12.9 ± 0.2	36.6 ± 0.4	35.0 ± 0.6
	C1	3675.5 ± 2.4	132.1 ± 0.8	124.1 ± 0.3	122.1 ± 0.2	42.2 ± 0.4	41.4 ± 0.5
J2-137-1-R1	D1	111.6 ± 0.1	0.7 ± 0.02	0.6 ± 0.03	0.6 ± 0.02	16.9 ± 0.5	16.7 ± 0.5
	D2	61.3 ± 0.2	0.4 ± 0.03	0.4 ± 0.02	0.4 ± 0.02	13.9 ± 0.4	13.8 ± 0.5
	D3	223.0 ± 0.1	0.8 ± 0.1	0.7 ± 0.02	0.7 ± 0.02	18.0 ± 0.4	17.8 ± 0.3
	D4	90.0 ± 0.3	0.6 ± 0.02	0.6 ± 0.01	0.6 ± 0.02	17.7 ± 0.3	17.4 ± 0.5
J2-213-3-R1	A1	12146.5 ± 2.9	20.3 ± 0.1	18.4 ± 0.1	17.5 ± 0.2	28.9 ± 0.5	28.6 ± 0.8
	B1	309.4 ± 3.2	40.5 ± 0.4	37.7 ± 0.3	34.9 ± 0.3	30.6 ± 0.1	30.1 ± 0.4
	D1	3675.5 ± 3.7	115.2 ± 0.6	99.5 ± 1.4	86.6 ± 0.6	39.0 ± 0.6	38.6 ± 0.8

Table 6.2: Average probe permeability, core permeability, and porosity and 2σ values for black smoker chimneys.

Sample Core	$\begin{gathered} \text { Probe } k \\ \left(\times \mathbf{1 0}^{-15} \mathbf{m}^{2}\right) \end{gathered}$	Core $k\left(\times 10^{-15} \mathrm{~m}^{2}\right)$			Core ϕ (\%)	
		1.4 MPa	2.1 MPa	$\underline{\text { 2.7 MPa }}$	$\underline{2.1 ~ M P a}$	2.7 MPa
	$k \quad 2 \sigma$	$\phi \quad 2 \sigma$	$\phi \quad 2 \sigma$			
ABE:						
J2-129-1-R3 B2	88.0 ± 2.9	751.8 ± 5.9	740.4 ± 3.0	731.8 ± 2.7	41.0 ± 0.2	40.2 ± 0.1
J2-136-6-R1 A1-1	152.5 ± 3.7	155.0 ± 1.3	140.1 ± 1.0	133.5 ± 1.0	31.3 ± 7.8	30.0 ± 4.7
A1-2	--	194.5 ± 1.2	190.8 ± 1.4	188.8 ± 1.6	30.2 ± 1.1	29.8 ± 1.3
C2	448.1 ± 2.3	22.6 ± 0.4	19.4 ± 0.3	17.5 ± 0.2	25.4 ± 2.4	24.8 ± 2.0
Cleft:						
ALV 2944-3-S1 A1	51095.7 ± 3.8	633.1 ± 3.4	626.4 ± 4.8	624.2 ± 3.1	37.6 ± 10.0	36.3 ± 6.2
Pc 1 A3	41748.7 ± 3.6	43.0 ± 0.3	40.9 ± 0.3	39.7 ± 0.2	30.9 ± 5.7	31.2 ± 4.5
B1	27100.4 ± 4.2	859.4 ± 5.9	825.7 ± 8.8	712.9 ± 7.1	36.0 ± 8.5	34.6 ± 5.0
ALV 2944-3-S1 A1	--	331.4 ± 0.7	327.2 ± 1.1	325.6 ± 0.4	33.5 ± 5.8	31.1 ± 10.1
Pc 2 A2	--	651.9 ± 1.3	645.8 ± 2.5	639.6 ± 1.4	42.6 ± 4.5	42.1 ± 3.3
A3	--	566.8 ± 3.2	562.9 ± 1.1	560.7 ± 1.0	40.6 ± 6.5	41.9 ± 6.2
A4	--	426.5 ± 1.5	404.5 ± 1.0	392.7 ± 0.8	31.6 ± 4.7	29.8 ± 5.9
ALV 2941-6-S1 A1	126826.6 ± 2.5	194.5 ± 0.4	140.6 ± 0.3	117.4 ± 0.1	32.5 ± 4.4	32.6 ± 5.1
Kilo Moana:						
J2-125-3-B1 B2-1	3953.7 ± 3.3	440.7 ± 1.5	356.3 ± 1.6	312.2 ± 1.4	34.7 ± 3.5	34.9 ± 2.3
B2-2	--	156.6 ± 0.7	149.4 ± 0.3	146.6 ± 0.4	35.4 ± 5.1	32.7 ± 5.7
B3-1	1189.7 ± 4.1	98.6 ± 0.7	97.0 ± 0.6	96.3 ± 0.9	32.6 ± 4.0	32.5 ± 3.3
B3-2	--	235.4 ± 0.6	227.5 ± 0.6	221.9 ± 0.8	34.6 ± 2.7	32.1 ± 4.7
Ex B2	--	509.6 ± 2.5	502.5 ± 2.6	499.5 ± 1.8	37.8 ± 2.7	37.1 ± 3.4
TAG:						
ALV 2178-4-1 4	--	2306.0 ± 4.6	2224.3 ± 8.5	2127.5 ± 10.0	49.3 ± 0.5	47.5 ± 0.2
5	--	1595.5 ± 10.9	1556.6 ± 4.7	1525.6 ± 7.9	45.6 ± 0.1	44.8 ± 0.2
A4	7207.5 ± 4.0	628.8 ± 1.6	592.8 ± 4.5	581.5 ± 2.2	39.6 ± 0.4	38.9 ± 0.4
A5	30661.6 ± 3.1	784.3 ± 3.1	766.9 ± 2.5	754.7 ± 4.3	44.9 ± 0.5	44.2 ± 0.3
MEF:						
ALV 2461-R13 1-1	--	837.4 ± 2.9	822.4 ± 2.4	813.7 ± 1.7	26.7 ± 0.1	26.6 ± 0.1
1-2	--	1168.1 ± 3.1	1142.5 ± 0.7	1118.2 ± 3.0	22.2 ± 0.1	22.1 ± 0.1
2	--	740.3 ± 2.3	733.8 ± 2.0	731.1 ± 2.3	28.9 ± 0.2	28.7 ± 0.3
3-1	--	0.8 ± 0.01	0.8 ± 0.03	0.8 ± 0.02	17.3 ± 0.4	16.9 ± 0.3
3-2(1-1)	--	0.2 ± 0.04	0.2 ± 0.01	0.2 ± 0.01	5.0 ± 2.5	8.1 ± 5.7
3-2(1-2)	--	0.3 ± 0.01	0.3 ± 0.02	0.3 ± 0.03	10.4 ± 3.4	10.4 ± 3.3
3-2(2)	--	7.7 ± 0.01	6.4 ± 0.1	5.9 ± 0.03	12.2 ± 0.6	11.0 ± 2.5
4-1	--	9.7 ± 0.1	6.6 ± 0.1	4.1 ± 0.2	18.7 ± 1.6	18.5 ± 1.8
4-2	--	5.9 ± 0.1	4.4 ± 0.1	3.6 ± 1.0	22.0 ± 1.8	21.4 ± 2.3
6	--	1.8 ± 0.01	1.4 ± 0.02	1.1 ± 0.04	17.5 ± 0.2	17.3 ± 0.2
7	--	49.7 ± 0.3	48.3 ± 0.4	46.8 ± 0.4	24.4 ± 1.2	24.7 ± 0.1
8-1	--	118.8 ± 0.7	115.2 ± 0.4	113.3 ± 0.3	20.7 ± 0.2	20.6 ± 0.1
8-2	--	119.9 ± 0.5	112.6 ± 0.6	107.6 ± 0.3	20.7 ± 0.1	20.5 ± 0.04

Table 6.3: Average probe permeability, core permeability, and porosity and 2σ values for the relict spires.

Figure 6.4: Plots showing pressure profiles for select Zn -rich diffusing spire samples during permeability measurement. Colors represent sample: ALV 2187-1-1 (top) = purple, ALV 2190-14-1 = orange, J2-122-$1-\mathrm{R} 1=$ green and J2-127-1-R2 = blue. Symbol shapes represent different sample cores (solid = pressure loading, empty $=$ unloading). Changes in permeability with pressure are minor. a) ALV 2187-1-1 (top) cores. b) ALV 2190-14-1 cores. c) J2-122-1-R1 cores d) J2-127-1-R2 cores.

Figure 6.5: Plots showing pressure profiles for select black smoker chimneys during permeability measurement. Colors represent sample: J2-137-1-R1 = red, J2-213-3-R1 = navy, ALV 2179-4-1 = green and ALV 1445-3 = purple. Symbol shapes represent different sample cores (solid = pressure loading, empty $=$ unloading). Changes in permeability with pressure are minor. a) J2-137-1-R1 cores. b) J2-213-3R1 cores. c) ALV 2179-4-1 cores d) ALV 1445-3 core.

Figure 6.6: Plots showing pressure profiles for select relict spires during permeability measurement. Colors are consistent with Figure 6.3. Symbol shapes represent different sample cores (solid = pressure loading, empty $=$ unloading). Changes in permeability with pressure are minor. a) J2-136-6-R1 cores. b) J2-125-3-B1 cores. c) ALV 2944-3-S1, Pc 1 cores d) ALV 2461-R13 core.

During the initial application of pressure, many of the samples experienced a reversible decrease in permeability that can be attributed to the closure of microcracks within the cores [Walsh, 1965]. This permeability decrease may be reversible, because lowering the confining pressure would allow the cracks to re-open, therefore increasing permeability. Overall, permeability values measured during pressure unloading are consistent with the values measured during pressure loading. A few cores had permeability values from the unloading cycle that were lower than those of the loading cycle. In these cases the confining pressure may have slightly compacted the structure of the cores, thereby resulting in slightly lower permeability values during the unloading cycle.

Permeability and porosity for the Zn -rich diffusing spires, black smoker chimneys and relict spires are plotted in Figures 6.7, 6.8, and 6.9. Permeability values for the Zn -rich diffusing spires range from $\sim 2 \times 10^{-14}-5 \times 10^{-12} \mathrm{~m}^{2}$ and
porosity values are between approximately $30-45 \%$. An EPPR trend of $\alpha \sim 6$ best fits the data for these spires. The black smoker chimneys have permeability values between $\sim 3 \times 10^{-16}-3 \times 10^{-13} \mathrm{~m}^{2}$ with porosity values around $15-40 \%$. These data plot along an EPPR trending $\alpha \sim 5$. Lastly, the relict spires have permeability values from $\sim 7 \times 10^{-16}-2 \times 10^{-12} \mathrm{~m}^{2}$ and porosity values from $5-45 \%$. The EPPR trend for the relict spires is $\alpha \sim 5$. Characteristics of the cores' pore structure identified through microstructural analyses helps explain the determined EPPRs, therefore providing a better understanding of how these spires evolve.

Figure 6.7: Permeability versus porosity data for the Zn -rich actively diffusing spires. Differences in permeability as a function of porosity can be best fit by power-law relationships (black dashed line), with a power-law exponent of $\alpha \sim 6$. Symbol color denotes sample. Circles around symbols indicate that a thin section was taken from that core. All circled cores are labeled with the core number.

Figure 6.8: Permeability versus porosity data for the black smoker chimneys. Trend of EPPR (black dashed line), is α ~ 5. Symbol color denotes sample. Circles around symbols indicate that a thin section was taken from that core. All circled cores are labeled with the core number.

Figure 6.9: Permeability versus porosity data for the relict spires. Trend of EPPR (black dashed line), is $\alpha \sim 5$. Symbol color/ shape denotes sample. Circles around symbols indicate that a thin section was taken from that core. All circled cores are labeled with the core number.

6.2 Microstructural Analyses

Thin sections were taken from select spire deposits: 10 sections from the Zn -rich actively diffusing spires, 4 from the black smoker chimneys and 20 from the relict spires. Figures 6.7-6-9 show the cores from which these sections were taken.

6.2.1 Actively Diffusing Spires

The Zn-rich actively diffusing spires, which included white smoker chimneys, were the most permeable of the spires. The group of white smoker chimneys consisted of thin sections from sample ALV 2187-1-1 (top) cores A2, A4, and B1 and sample ALV 2187-1-2 cores C1/2 and C5. The remaining thin sections were taken from Zn -rich diffusing spire samples ALV 2190-14-1 core A1, J2-137-7-R1 core B3, J2-222-1-R1 cores A2 and Ex, and J2-128-8-R1 core Ex.

Thin sections from the white smoker sample ALV 2187-1-1 (top) are compositionally similar, being composed almost entirely of sphalerite with only trace amounts of chalcopyrite. Core A2, taken axially from the deposit sample, has the highest permeability and has a thin section characterized by broadly spaced sphalerite crystals (Figure 10a). Crystals are small to moderate sized (30$100 \mu \mathrm{~m})$ and are surrounded by wide, well-connected pore channels $(70-150 \mu \mathrm{~m})$. Core A4, also taken axially from the sample, has a similar permeability to that of A2, but with a lower porosity. Sphalerite crystals are similar in size to that of core A2 with crystals ranging from 30-100 $\mu \mathrm{m}$. Pore channels are well-connected, but
narrower $(30-60 \mu \mathrm{~m})$ than in A2 due to a tighter packing of crystals. Core B1 has a similar porosity to A2, but a lower permeability and was made radially from the deposit sample. The section for core B1 reveals layering through a prominent change in crystal size and packing. The layer oriented towards the original center of the spire deposit contains small sphalerite crystals $(10-40 \mu \mathrm{~m})$ that are widely spaced. This layer grades into an outer layer consisting of larger $(50-100 \mu \mathrm{~m})$, more closely packed crystals. Pore space within this layer appears predominantly connected through narrow channels and, in some of the more tightly packed areas, pore spaces are isolated by larger sphalerite crystals.

The thin sections from sample ALV 2187-1-2 are similar to those of ALV 2187-1-1 (top). Both ALV 2187-1-2 sections are primarily composed of sphalerite crystals with minor amounts of chalcopyrite and pyrite. The two cores have comparable permeabilities, though core C 5 has a higher porosity. Core C 5 has small to moderately sized $(30-100 \mu \mathrm{~m})$ sphalerite crystals that are loosely packed (Figure 10b). Pore space between crystals appears well-connected throughout the section. For core $\mathrm{C} 1 / 2$ the crystal size is similar to that of C 5 ; however, $\mathrm{C} 1 / 2$ has some patches of tightly packed crystals. There are no areas of very broadly spaced crystals, though there are a few prominent flow channels through the section. The tighter packing in core $\mathrm{C} 1 / 2$ is likely why it has a lower porosity than core C 5 .

The remaining Zn -rich diffusing spire cores have structures similar to those of the white smokers. Core A1 of sample ALV 2190-14-1 has the highest permeability of the remaining cores. It comprises small to moderate sized (30-100 $\mu \mathrm{m})$ sphalerite crystals with trace amounts of both chalcopyrite and

Figure 6.10: Reflected light (5x) images of Zn rich actively diffusing spires. Width of images is ~ 2.7 mm . a) ALV 2187-1-1 (top), core A2. Broadly space sphalerite crystals. b) ALV 2187-$1-2$, core C5. Loosely packed, moderate sized crystals. c) J2-127-1-R2, core B3. Small crystals with well-connected pore space. d) J2-127-1-R2, core B3. Crystals with weathered edges, likely from dissolution. e) J2-222-1-R2, core A2. Moderately packed sulfides + anhydrite. f) J2-222-1-R2, core Ex. Tightly packed sulfides + anhydrite. g) J2-128-8-R2, core Ex. Clusters of sulfide crystals have been coated in am Si.
pyrite. Sphalerite crystals are moderately packed and surrounded by wellconnected pore space. Channel width varies through different portions of the section but on average is $\sim 70-100 \mu \mathrm{~m}$. This section is similar to ALV 2187-1-1 (top) core A2, but its slightly tighter crystal packing likely makes it a little less permeable.

Core B3 from sample J2-127-1-R2 has a lower permeability and porosity than that of ALV 2190-14-1, core A1. Core B3 is dominated by wurtzite crystals ranging in size from 20-200 $\mu \mathrm{m}$ and lesser amounts of pyrite. The wurtzite crystals are well-formed and equant (Figure 10c). There are clear well-sorted areas of small crystals and of large crystals likely indicating somewhat variable environmental conditions. Wurtzite crystals are moderately to tightly packed, though pore connectivity is maintained through many narrow channels (10-40 $\mu \mathrm{m})$. A few areas within the thin section appear to have experienced some dissolution. Crystals in these areas are more irregularly shaped with rough, weathered edges (Figure 10d). Pore connectivity appears enhanced in these regions by the presence of slightly broader pore channels. The tighter crystal packing observed may account for the decrease in porosity observed between this core and ALV 2190-14-1 core A1.

While core A2 of sample J2-222-1-R2 plots very close to J2-127-1-R2 core B3, the two cores are compositionally and structurally quite different. Core A2 contains an assortment of sulfide minerals including wurtzite, pyrite, chalcopyrite, pyrrhotite, and chalcocite. The core also contains many small, tabular anhydrite crystals $(50-150 \mu \mathrm{~m})$. The section reveals layering within the
core whereby a layer containing broadly packed crystals transitions into a more tightly packed layer. Sulfide crystal sizes vary from $40-180 \mu \mathrm{~m}$ and are moderately sorted throughout the core (Figure 10e). In both the layers the anhydrite crystals create considerable roughness along the pore space edges. In the more closely packed layer these crystals restrict pore channel width. The layer of tight crystals will limit the core's permeability and porosity. Core Ex of the same sample is compositionally and texturally consistent with core A2, but has significantly tighter crystal packing within the core (Figure 10f).

Sample J2-128-8-R1 core Ex is composed primarily of wurtzite with lesser amounts of pyrite. This core shows a large range in wurtzite crystal sizes (10-300 $\mu \mathrm{m}$, with similarly sized crystals clustered together. Both large and small crystals are closely packed throughout the core, limiting pore connectivity. Additionally, most clusters of small crystals have been coated in amorphous silica, further restricting connectivity (Figure 10 g). As with J2-127-1-R2 there are a few areas of moderate sized crystals that appear to have experienced dissolution. These crystals have weathered edges with no amorphous silica and are surrounded by highly connected pore space. This core has the lowest permeability and porosity of the Zn -rich diffusing spires and likely because of the close packed grain structure and abundance of amorphous silica clogging pore space.

6.2.2 Black Smoker Chimneys

Four thin sections were made from the black smoker chimney cores: J2-213-3-R1, cores A1 and D1; ALV 1445-3 core C1; and J2-137-1-R1 core D1. Both thin sections for sample J2-213-3-R1 reveal a layered structure that consists

Figure 6.11: Reflected light (5x) images of black smoker chimneys. Image width $\sim 2.7 \mathrm{~mm}$. Images show prominent layering within the samples. Densely packed chalcopyrite layers (lower images) grade into an anhydrite-rich layer (upper images) that has experienced some pore space infill by assorted sulfide crystals. a) J2-213-3-R1, core D1. b) J2-137-1-R1, core D1.
of a chalcopyrite-rich layer that gradually transitions to a more anhydrite dominated layer (Figure 11a). Core D1, the more permeable of the two, contains a
layer of moderately packed chalcopyrite crystals that range in size between 40-
$100 \mu \mathrm{~m}$. This layer is followed by a layer consisting on an assortment of sulfide
minerals including wurtzite, pyrrhotite, marcasite, and covellite, which are sized similarly to the chalcopyrite crystals. The crystals in this layer are slightly more broadly spaced than in the chalcopyrite layer. This sulfide layer grades into the anhydrite-rich layer, where anhydrite crystals are large (200-350 $\mu \mathrm{m}$) and interspersed with smaller sulfide crystals. Pore space is connected through narrow channels $(5-20 \mu \mathrm{~m})$ within the different layers; however, in areas where the sulfide crystal packing is somewhat dense, pores tend to be more isolated. These observations are consistent with core A1. Core A1 has a lower permeability and porosity - a difference that can be attributed to A1 having a tighter grain structure.

Core C1 for sample ALV 1445-3 also exhibits a layered structure. Densely packed chalcopyrite crystals form a chalcopyrite layer similar to that observed in J2-213-3-R1. This layer contains small ($10-20 \mu \mathrm{~m}$), isolated pores and also a few thin cracks that likely formed as a result of pressure application during the measurements. The chalcopyrite layer is bordered by a slightly more porous layer of both pyrite and chalcopyrite, in addition to some anhydrite with crystals between $60-120 \mu \mathrm{~m}$. This layer then transitions into an anhydrite-rich layer characterized by $100-200 \mu \mathrm{~m}$ anhydrite crystals with traces of sulfides. The anhydrite layer is also densely packed with crystals, though narrow channels between crystals are present. Like J2-213-3-R1 core A1, the tight packing of the grain structure likely controls the permeability and porosity of ALV 1445-3 core C1.

As with the previously discussed black smoker chimney cores, J2-137-1R1 core D1 also has a layered structure consisting of a chalcopyrite-rich layer, an intermediate sulfide and anhydrite layer, and a layer that is mostly anhydrite crystals. Most of the pore space within these layers is isolated due to close crystal packing or is simply poorly connected through narrow channels between crystals. Unlike with the other cores the anhydrite layer here is relatively thin, such that the bulk of the core contains sulfides (Figure 11b). Because sulfides tend to form in clusters, crystals become close-packed, therefore restricting pore connectivity. It is the prominence of tightly packed sulfide crystals within this core which causes it to have a significantly lower permeability and porosity.

6.2.3 Relict Spires

The relict spire samples represent a large range of permeability and porosity values. Because of this, variations in pore structure across the different samples are to be expected. Twenty thin sections have been made from the relict spire cores in order to provide a better understanding of the processes influencing their EPPR.

The most permeable and porous of the relict spire samples is ALV 2178-41 from which two thin sections were made. The first thin section, core 4 , is the more permeable of the two and is composed primarily of pyrite and chalcopyrite. Pyrite crystals range in size between $50-120 \mu \mathrm{~m}$, while the chalcopyrite crystals are a bit smaller 30-70 $\mu \mathrm{m}$. The crystals are fairly equally distributed throughout the core; however, the crystals are very widely spaced with pore channel width averaging around $100 \mu \mathrm{~m}$ (Figure 12a). The loose crystal packing within this core
allows for high pore connectivity and thus high permeability. The second section, core A5, is composed of almost all chalcopyrite with small amounts of pyrite present. Chalcopyrite crystal size varies considerably from about 20-200 $\mu \mathrm{m}$. These crystals are poorly sorted with spacing between crystals highly variable. Pore connectivity appears high in most areas with the exception of a few tightly packed crystal clusters. The permeability is clearly high due to this pore connectivity, although not quite as high as seen in core 4 .

Sample ALV 2944-3-S1, Pc 2 also has two thin sections: core A1 and A2. Both cores are compositionally similar and are constituted largely of wurtzite and chalcopyrite with minor amounts of pyrite. Small to moderate $(20-100 \mu \mathrm{~m})$ sized chalcopyrite and wurtzite crystals are present and range from loosely packed to more moderately packed grain structure in both cores (Figure 12b). Pore connectivity appears high in both cores with abundant narrow channels ($\sim 20 \mu \mathrm{~m}$) and several wider channels ($80-100 \mu \mathrm{~m}$) surrounding the sulfide crystals. Core A1 has a few large patches of small, tightly packed crystals that lack well-connected channels and are therefore likely restrictive to flow. This may explain why core A1 has a lower permeability and porosity than core A2.

The one thin section from sample J2-129-1-R3 comes from core B2. This core is compositionally comparable to the two ALV 2944-3-S1, Pc 2 cores. It is composed of mostly wurtzite and chalcopyrite crystals with similar size and crystal packing as ALV 2944-3-S1, Pc 2 core A2. The availability of pore space is not consistent throughout the section. There are areas that have broadly spaced crystals, some of which may have been enhanced by dissolution, since crystals
appear irregularly shaped and with tattered edges. The core also has areas where the widely spaced crystals have been heavily coated in amorphous silica, blocking pore space around the crystals. It is possible that both dissolution and precipitation of amorphous silica have been occurring concurrently within the core. There are also a few patches of crystals that appear dissolved and then coated in amorphous silica, suggesting that in some cases dissolution may have preceded the silica precipitation (Figure 12c). Despite the crystal patches that are heavily coated in amorphous silica, the well-connected areas of crystals, including some areas of apparent dissolution, give the core a high permeability.

Sample ALV 2944-3-S1, Pc 1 has thin sections for core A1 and core A3. Core A1 is very similar to ALV 2944-3-S1, Pc 2 core A2. It is abundant in wurtzite and chalcopyrite with both small and moderate sized crystals (30-120 $\mu \mathrm{m})$ throughout the core. There are areas of very loosely packed crystals and also of moderately packed crystals. The more tightly packed crystals have narrower pore channels $(\sim 10-20 \mu \mathrm{~m})$, though the pore space still appears well connected. Core A3 has a lower permeability and porosity than core A1 and is structurally quite different. This core was the only core to have its thin section made axially, which may explain some of the variation between it and core A1. Core A3 appears to have a layered structure with a sulfide-rich layer of mainly wurtzite and chalcopyrite adjacent to a layer of anhydrite, similar to what was observed in the black smoker chimney cores (Figure 12d). The sulfide-rich layer is structurally analogous to core A1, but with more tightly packed crystals. Interestingly, the transition between the two layers has many small sulfide crystals
that have been coated with amorphous silica. This coating appears to greatly restrict pore space between the sulfide crystals and limit pore connectivity. Within the anhydrite layer, anhydrite crystals $(50-100 \mu \mathrm{~m})$ are closely packed with pore space seemingly filled by late stage sulfide crystals. This core clearly has a tightly packed grain structure due to sulfide infill and amorphous silica precipitation that are consistent with it having a lower permeability and porosity than core A1.

Three sections were made from the J2-125-3-B1 sample: core Ex, core B2-1, and core B3-1. Cores Ex and B3-1 are principally composed of wurtzite and chalcopyrite, whereas core B2-1 is nearly all chalcopyrite. Core Ex has the higher permeability of the three cores and has both large and small crystals $(40-250 \mu \mathrm{~m})$. It has patches of very tightly packed crystals and also areas with very broad spaces between crystals. The high connectivity areas of this core are likely enhancing its permeability compared with the other J2-125-3-B1 cores. Core B2-1 mainly has small to moderate sized chalcopyrite crystals that are very rounded. The crystals are closely packed, but many narrow channels are present between crystals to accommodate flow. Core B3-1 is very similar to core A1 from ALV 2944-3-S1, Pc 2 with permeability and porosity only being limited by the tightly packed wurtzite and chalcopyrite grain structure. Sample ALV 2941-6-S1 core A1, which plots adjacent to the J2-125-3-B1 cores, is compositionally and structurally consistent with core B3-1.

Core A1-2 and C2 of sample J2-136-6-R1 are both largely made of wurtzite and chalcopyrite, similar to many of the other relict spire cores. Having a higher permeability, core A1-2 is characterized by small to moderately sized

Figure 6.12: Reflected light (5x) images of thin sections from relict spire cores. Width of images is $\sim 2.7 \mathrm{~mm}$. a) ALV 2178-4-1, core 4. Loose crystal packing. b) ALV 2944-3-S1, Pc 2, core A2. Moderate crystal packing. c) J2-129-1-R3, core B2. Dissolved crystals with am Si coating. d) ALV 2944-3-S1, Pc 1, core A3. Anhydriterich layer adjacent to sulfide-rich layer. e) J2-136-6-R1, core C2. Patchy distribution of am Si. f) ALV 2461-R13, core C1-2. Sulfide grain structure with minimal am Si. g) ALV 2461-R13, core C4-2. Thick am Si coating along sulfide crystals.
crystals $(30-100 \mu \mathrm{~m})$ that range in crystal packing. Pore space around these crystals appears generally well connected, except in more densely packed areas. Core C 2 is very similar to $\mathrm{A} 1-2$, but it has a more tightly packed grain structure and also patches of amorphous silica that block pore space (Figure 12e). These features can explain why core C 2 has a lower permeability and porosity than core A1-2.

The seven thin sections made from the ALV 2461-R13 illustrate a clear progression from a high permeability and porosity structure to one that is heavily restricted by the precipitation of amorphous silica. Core C1-1, C1-2, and C8-2 have high permeability values for this sample. They have moderately packed crystal structures abundant in wurtzite and chalcopyrite with lesser amounts of pyrrhotite (Figure 12f). Pore space exists as narrow channels along crystal edges and as larger isolated pores; however, in some small patches channel connectivity is lost from amorphous silica precipitation (more so in C1-2). Cores C4-1 and C42 have initial crystal structures much more broadly spaced than the previous three cores. Small to moderate sized crystals of chalcopyrite, wurtzite, pyrite and pyrrhotite are present, although a high degree of amorphous silica precipitation has occurred. Amorphous silica forms a thick coating around most of the crystals, yet because the initial grain structure was loosely packed, pore channels and still intact (Figure 12g). Core C3-2(2) is very similar to these two cores, but has a slightly denser initial grain structure and a thicker amorphous silica coating. Lastly, C3-2(1-2), which has a very low permeability and porosity, appears to have had a more tightly packed grain structure than the previous cores that has
since been densely coated with amorphous silica. Pore space between crystals has been blocked by amorphous silica resulting in minimal pore connectivity. The combined abundance of both sulfide crystals and amorphous silica can account for the low permeability and porosity of this core.

6.3 Discussion

Each of the spire samples is dominated by a sulfide crystals. As observed through deposit microstructures, the tightness or packing of this grain structure strongly influences permeability and porosity. The initial mineral assemblage and grain structure of the spires will depend on the chemistry and temperature of emitted vent fluids. As fluid flow progresses, pore evolution processes will occur and change the initial grain structure. From the microstructural observations, spire deposits appear to commonly experience late stage precipitation of additional sulfides or amorphous silica, both of which can decrease the permeability and porosity of the spires. In some of the spire cores, weathered crystals with rough edges indicate that dissolution has also occurred.

The pronounced effects of both the precipitation of sulfides and also of amorphous silica on hydrothermal spires were recognized [Zhu et al., 2007]. Using techniques synonymous to those employed in this study, Zhu et al. [2007] identified two EPPRs for spire deposits having experienced precipitation. For deposits that primarily exhibited the precipitation of late stage sulfide crystals they found an $\alpha \sim 9$. Deposits having crystals that had been largely coated by amorphous silica were found to have an EPPR trend of $\alpha \sim 3$. The α value associated with sulfide precipitation is higher, because sulfide crystals are
naturally quite angular making them effective at blocking pore space. Conversely, amorphous silica has a lower α value because it precipitates as a thin, rounded coating along crystal edges that builds up over time gradually decreasing permeability.

Correlating the trends determined by Zhu et al. [2007] to the Zn -rich diffusing spire data is simply not feasible, because there is not clear evidence for either precipitation process having occurred in the cores. Only one of the cores showed precipitation of amorphous silica. Comparing data for this core with measurements from Zhu et al. [2007] places it at the high k and ϕ end of the $\alpha \sim 3$ trend, suggesting that it may evolve along this trend. In general, cores measured in the Zhu et al. [2007] study showed a greater range in both permeability and porosity values from which interpretations of pore evolution could be made.

The black smoker chimneys did not show precipitation of amorphous silica (consistent with black smoker observations from Zhu et al. [2007]), but had a close-packed sulfide grain structure. From this grain structure and observations of sulfide infill within anhydrite dominated layers, it can be inferred that late stage precipitation of sulfides had occurred. The data clearly plot along a trend of $\alpha \sim 5$, whereas the cores from Zhu et al. [2007], which are similar compositionally, plot along the $\alpha \sim 9$ trend. The data for the lower k and ϕ cores are comparable to those of the lower k and ϕ cores from Zhu et al. [2007]; however, the same is not true for the high k and ϕ cores. Zhu et al. [2007] do not detail the structure of their black smoker samples, but do state that the cores, of which there were only four, cracked during the coring process. It is possible that these cracks may have
enhanced the permeability values without significantly affecting their porosity, which is consistent with the samples.

The α value of 5 to some extent likely reflects the precipitation of sulfides. Black smoker chimneys should not, however, necessarily follow the $\alpha \sim 9$ trend observed by Zhu et al. [2007] in actively diffusing spires and relict spires. Black smoker chimneys have a distinct layered structure with a high abundance of anhydrite that the other spire types generally lack. The presence of significant anhydrite within black smokers should influence how the pore structure evolves. Anhydrite naturally has a close-packed grain structure, which a sulfide-rich layer does not necessarily have initially. Sulfides will infill pore spaces within the anhydrite, but the effects of this precipitation will be less pronounced compared to sulfide precipitation within an initially widely-spaced, sulfide-rich grain structure. Because of this, anhydrite should dilute or lessen the effects of sulfide precipitation on black smoker chimneys, potentially explaining why the data have an EPPR of $\alpha \sim 5$, as opposed to $\alpha \sim 9$.

For the relict spire samples, both late stage precipitation of sulfides and amorphous silica precipitation were observed in several of the cores - consistent with relict spires observations from Zhu et al. [2007]. As with the Zn-rich diffusing spires correlating the set of relict spires data to theirs is challenging, because many of the cores had permeability and porosity values higher than those of Zhu et al. [2007]. For the cores with porosities higher than $\sim 30 \%$, it is difficult to evaluate the effects of precipitation. Many of the high porosity samples did not have amorphous silica, but some samples did have tightly packed crystal
structures, which can be an indicator of later sulfide precipitation. However, given the generally high permeability values for these samples, it seems unlikely that their initial crystal structures have experienced sulfide precipitation, seeing as they exhibit well-connected pore networks.

The relict spire samples with amorphous silica present compare well with the $\alpha \sim 3$ data of Zhu et al. [2007]. It seems likely that with continued precipitation of amorphous silica these samples would evolve along the $\alpha \sim 3$ trend. Sample ALV 2461-R13 is interesting because it has a large range of permeability and porosity values. Microstructural observations from this sample suggest that precipitation of both sulfides and amorphous silica contributed to the reduction in permeability. At some point sulfide crystal packing became denser and amorphous silica coatings became thicker. This may explain why these cores plot more steeply than the others. The overall $\alpha \sim 5$ trend determined for the relict spires is probably best applicable to samples which have not experienced large amounts of change to their initial pore structures.

The group of spire deposits as a whole follows a trend whereby as the deposits change over time, they lose pore space and connectivity. Spire samples initially have high k and ϕ, but gradually evolve to lower k and ϕ primarily as a result of precipitation. Spires will continue to evolve in this manner until they 'pinch-off'; a point at which precipitation has sufficiently clogged pore channels causing significant permeability reduction. This pinch-off is exemplified by the relict spire sample ALV 2461-R13 (Figure 13).

Figure 6.13 Reflected light (5x) images of relict spire ALV 2461-R13 core C3-2(1-2). Width of images is $\sim 2.7 \mathrm{~mm}$. Core has experience heavy precipitation of amorphous silica (dark gray, rounded coating) along sulfide crystal edges. Most of the pore space between crystals has been blocked by the amorphous silica, thus the precipitation is causing the 'pinch-off' of pore space and a large reduction in permeability.

Chapter 7: Conclusions

The interaction of hot hydrothermal fluids with seawater controls both chemical and physical processes that can change the structure of various seafloor vents. Much work has been done to identify the composition, structure, and evolution of hydrothermal vents from a range of vent fields. Early studies conducted on deposits from the East Pacific Rise, such as those by Haymon [1983] and Goldfarb et al. [1983], analyzed the most prominent of these vent structures, the black smoker chimneys. The rapid, high-temperature focused fluid emission of these chimneys is in stark contrast to the majority of vent structures through which fluid diffuses out to the seafloor. Diffuse hydrothermal vents accommodate much of the ongoing transfer of fluids between the subsurface and seafloor, yet little information is known about the feedback between the fluid, the vent structures, and the surrounding environmental conditions [Delaney et al., 1992; Lowell et al., 1995].

The formation and evolution of all vent structures, both focused and diffuse, are closely dependent upon their physical and chemical environment. Changes in environmental conditions, such as temperature, flow rate, and the degree of mixing, can significantly impact how vents evolve over time [Tivey and McDuff, 1990; Tivey, 1995]. Conversely, changes in vent structures affect the ability of vents to transfer fluids. Many studies have collected data from vent fluids and deposit samples, and through models have been able to better understand how the fluid feedback within vents works and contributes to vent growth [Lowell et al., 1995]. However, well-constrained transport property data,
such as vent deposit permeability and porosity, are needed to improve these models. Despite its importance, systematic characterization of evolution permeability and porosity relationships (EPPRs) of vent deposits is scarce, with the exception of Zhu et al. [2007].

This study has provided the first set of systematic permeability and porosity data for many different vent deposit types from a large range of vent field locations. From these data and microstructural observations vent deposit permeability-porosity relationships and anisotropy have been identified. Deposit evolution is reflected by the different α values determined for each permeabilityporosity power law relationship. Evidence for pore alteration processes was observed through quantitative microstructural analyses. Some deposits show interplay between these processes, which is reflected in the α values determined. These results can be used to accurately evaluate vent fluid distribution in order to gain a better understanding of mineralogical and biological processes.

The results of this study show that different deposits undergo similar evolutionary processes. Microstructural observations indicate that precipitation is dominant within each of the deposit types, and that other processes, such as dissolution or compaction, are common as well. Precipitation of minerals within the initial grain structure of a deposit has large implications on the pore structure of deposits. Precipitation limits pore space and connectivity, therefore lowering a deposit's permeability. The rate and degree to which precipitation reduces permeability will depend highly on the mineral precipitating, as different minerals have varying effects on permeability. It is important to understand that the pore
structure observed in the deposits is not simply the product of one pore altering process, but rather a result of the interplay between multiple processes, whose timing or sequence is difficult to determine.

Measurements of vent deposit permeability and porosity conducted in this study can be used to identify permeability-porosity relationships and deposit characteristics, such as anisotropy. Microstructural observations provide evidence for pore evolution processes that can be used to explain the permeability-porosity relationships. Pore evolution processes are fundamental to the development of vent deposits, and recognizing key processes in this evolution reinforces the valuable role these deposits play in mass transport between the Earth's subsurface and oceans. Identified anisotropy or a susceptibility of a deposit to a given pore evolution process are characteristics that have important implications for future efforts to model and constrain fluid fluxes from these vent structures. Ongoing modeling efforts emphasize the need for detailing factors that control the evolution of vent deposits. It is clear that the growth of these deposits is dependent on the interplay between fluids and the vent deposits themselves. These interactions influence local flow rates, temperatures, and chemistry, and affect heat and mass flux through different parts of the vent deposits, and the availability of nutrients to organisms living on deposit interiors and exteriors. As such, having flow property data for vent samples is imperative for refining our understanding of hydrothermal processes.

Appendix 1: Probe Permeability Data

A1.1 Massive Anhydrite Data

Sample	Site	Permeability (mD)						Mean (mD)	Mean (m^{2})
		1	2	3		4	5		
J301-3	A1	2332.9	4325.1	$1 \quad 1331.0$		678.7	3003.2	1938.5	$1.94 \mathrm{E}-12$
	A2	624.0	589.9	- 512.7		336.6	717.9	539.2	$5.39 \mathrm{E}-13$
	B1	2610.0	542.3	- 2205.6		2839.3	1575.1	1694.3	$1.69 \mathrm{E}-12$
J2-210-8-R2	A1	78.2	10.1	181.5		47.2	13.4	39.0	$3.90 \mathrm{E}-14$
	A2	11.9	7.6	54.3		29.3	15.8	18.7	$1.87 \mathrm{E}-14$
	B1	34.7	26.9	23.4		3.3	20.3	17.1	$1.71 \mathrm{E}-14$
	C1	35.7	13.0	30.1		45.9	26.2	27.9	$2.79 \mathrm{E}-14$
J2-216-5-R1	A1	542.3	1189.7	$7 \quad 606.7$		433.2	557.7	624.0	$6.24 \mathrm{E}-13$
	A2	387.2	717.9	- 247.2		589.9	261.4	402.8	$4.03 \mathrm{E}-13$
	B1	4205.4	4838.9	$9 \quad 4089.1$		3759.0	3088.6	3953.7	$3.95 \mathrm{E}-12$
	B2	6776.1	5413.6	64838.9		6406.3	4705.0	5567.7	$5.57 \mathrm{E}-12$
	C1	5263.8	4574.8	$8 \quad 3654.9$		3553.8	3865.9	4135.2	$4.14 \mathrm{E}-12$
J2-216-14-R1	A1	624.0	826.1	573.6		826.1	678.7	698.1	$6.98 \mathrm{E}-13$
	A2	3003.2	1489.1	12332.9		2610.0	2205.6	2268.4	$2.27 \mathrm{E}-12$
	B1	2332.9	2205.6	$6 \quad 1971.4$		2839.3	1575.1	2144.6	$2.14 \mathrm{E}-12$
	B2	3003.2	2399.3	32399.3		2839.3	3865.9	2855.2	$2.86 \mathrm{E}-12$
	C1	6776.1	6776.1	$1 \quad 5567.7$		6776.1	6056.7	6370.4	$6.37 \mathrm{E}-12$
ALV 2581-8	A1	3088.6	2760.7	$7 \quad 1156.8$		849.6	1762.1	1713.4	$1.71 \mathrm{E}-12$
	A2	3759.0	5567.7	$7 \quad 5413.6$		6229.0	4574.8	5032.7	$5.03 \mathrm{E}-12$
	B1	1407.8	2144.6	$6 \quad 2610.0$		1713.4	924.2	1656.6	$1.66 \mathrm{E}-12$
	C1	2920.1	2684.3	$3 \quad 3455.5$		3865.9	3759.0	3303.8	$3.30 \mathrm{E}-12$
$\begin{gathered} \text { MIR } 1,1 / 74 \\ \text { Sta } 2403 \end{gathered}$	A1	85.1	80.5	57.5		71.9	74.0	73.1	$7.31 \mathrm{E}-14$
	A2	31.9	44.6	39.9		44.6	48.6	41.5	$4.15 \mathrm{E}-14$
	A3	115.9	13.7	6.6		106.5	18.2	29.0	$2.90 \mathrm{E}-14$
	A4	14.9	19.8	26.2		7.4	9.8	14.1	$1.41 \mathrm{E}-14$
	A5	33.7	112.7	- 16.7		17.7	48.6	35.3	$3.53 \mathrm{E}-14$
	A6	137.1	5.8	55.9		10.1	8.8	20.8	$2.08 \mathrm{E}-14$
	B1	240.3	309.4	4181.5		186.7	227.2	224.7	$2.25 \mathrm{E}-13$
	B2	849.6	356.0	498.5		678.7	336.6	509.8	5.10E-13
	B3	678.7	781.0	- 641.7		781.0	950.5	759.4	$7.59 \mathrm{E}-13$
	B4	387.2	300.8	- 292.5		433.2	276.5	332.8	$3.33 \mathrm{E}-13$
	B5	557.7	624.0	- 557.7		484.7	433.2	527.3	$5.27 \mathrm{E}-13$
	B6	527.3	458.2	2398.3		318.2	398.3	414.2	$4.14 \mathrm{E}-13$
	C1	376.5	318.2	- 346.1		589.9	214.8	350.0	$3.50 \mathrm{E}-13$
	C2	898.6	1331.0	0 924.2		1005.3	1124.8	1045.6	$1.05 \mathrm{E}-12$
$\begin{gathered} \text { MIR } 1,2 / 78 \\ \text { Sta } 2417 \end{gathered}$	A1	145.0	122.6	233.7	103.6	60.8	68.0	145.0	$1.10 \mathrm{E}-13$
	A2	106.5	62.5	51.4	42.2	34.7	32.8	106.5	$5.04 \mathrm{E}-14$
	A3	126.0	95.2	71.9	119.2	141.0	100.7	126.0	$1.07 \mathrm{E}-13$
	A4	133.3	112.7	95.2	82.7	122.6	141.0	133.3	$1.13 \mathrm{E}-13$
	A5	85.1	119.2	100.7	122.6	126.0	47.2	85.1	$9.52 \mathrm{E}-14$
	A6	103.6	97.9	166.9	112.7	133.3	106.5	103.6	$1.18 \mathrm{E}-13$
	B1	1223.5	1575.1	346.1	409.6	717.9	849.6	741.8	$7.42 \mathrm{E}-13$
	B2	1189.7	1093.6	1093.68	873.7	977.5	1063.4	1043.7	$1.04 \mathrm{E}-12$
ALV 2183-7-0	A1	2467.6	1916.9	9924.2		950.5	1034.0	1338.5	$1.34 \mathrm{E}-12$
	A2	1666.0	2332.9	91666.0		2399.3	2839.3	2132.6	$2.13 \mathrm{E}-12$
	B1	606.7	803.2	- 606.7		698.1	678.7	674.9	$6.75 \mathrm{E}-13$
	B2	1971.4	1916.9	$9 \quad 950.5$		1368.9	1531.5	1497.5	$1.50 \mathrm{E}-12$

A1.2 Flange, Slab and Crust Data

Sample	Site	Permeability (mD)					Mean (mD)	Mean (m^{2})
		1	2	3	4	5		
ALV 3517-R1	A1	15288.9	12562.4	15724.0	19136.7	7580.9	13437.6	1.34E-11
	D1	4705.0	2537.8	3865.9	3455.5	2205.6	3230.4	$3.23 \mathrm{E}-12$
	D2	20241.3	17105.0	12562.4	20241.3	18607.2	17493.3	$1.75 \mathrm{E}-11$
	D3	1863.9	1762.1	1762.1	1916.9	2144.6	1884.9	$1.88 \mathrm{E}-12$
	D4	2027.5	1223.5	1531.5	1331.0	1971.4	1583.9	$1.58 \mathrm{E}-12$
ALV 3521-R2	A1	65774.9	46970.5	87080.7	92107.4	108996.3	76966.7	$7.70 \mathrm{E}-11$
	A2	29981.0	26797.9	29981.0	32614.1	30834.2	29981.0	$3.00 \mathrm{E}-11$
	B1	10615.9	9226.3	12214.8	19136.7	18607.2	13362.4	$1.34 \mathrm{E}-11$
	B2	28344.8	41983.7	34496.7	22019.0	23290.0	29151.4	$2.92 \mathrm{E}-11$
ALV 2415-1B	A1	1863.9	1619.9	2205.6	1156.8	1812.3	1694.3	$1.69 \mathrm{E}-12$
	B1	8018.5	14865.9	10322.2	5413.6	12919.9	9704.2	$9.70 \mathrm{E}-12$
	C1	3266.9	10322.2	5263.8	8018.5	10918.0	6891.1	$6.89 \mathrm{E}-12$
ALV 2927-3	A1	1294.2	1156.8	1368.9	2332.9	606.7	1237.4	$1.24 \mathrm{E}-12$
	A2	37.7	42.2	109.5	82.7	71.9	63.6	$6.36 \mathrm{E}-14$
	B1	1005.3	1258.4	2684.3	5567.7	2684.3	2193.3	$2.19 \mathrm{E}-12$
J2-286	A1	1294.2	2205.6	2760.7	2268.4	2085.2	2062.0	$2.06 \mathrm{E}-12$
	A2	2684.3	2610.0	4976.6	2610.0	2027.5	2839.3	$2.84 \mathrm{E}-12$
	A3	3975.9	5118.2	3654.9	4325.1	3975.9	4181.9	$4.18 \mathrm{E}-12$
	A4	7796.7	7371.2	8722.7	4574.8	6406.3	6814.2	$6.81 \mathrm{E}-12$
	A5	8722.7	8018.5	7167.2	8246.7	7796.7	7973.7	$7.97 \mathrm{E}-12$
	A6	5413.6	4838.9	3759.0	5118.2	4448.2	4678.6	$4.68 \mathrm{E}-12$
	B1	1368.9	119.2	421.3	366.1	445.6	407.3	$4.07 \mathrm{E}-13$
	B2	458.2	327.2	37.7	356.0	433.2	244.4	$2.44 \mathrm{E}-13$
	B3	2144.6	738.4	1368.9	1619.9	1575.1	1407.8	$1.41 \mathrm{E}-12$
	C1	6588.6	7167.2	6776.1	8246.7	6968.9	7127.1	$7.13 \mathrm{E}-12$
	C2	43178.4	33542.2	40822.0	62185.3	58791.6	46446.3	$4.64 \mathrm{E}-11$
	C3	128981.9	80050.4	115288.0	52549.7	51095.7	79602.4	$7.96 \mathrm{E}-11$
	C4	87080.7	103047.9	67646.6	128981.9	152632.2	103627.8	$1.04 \mathrm{E}-10$
	C5	82328.4	75681.7	144302.4	54045.1	57164.8	77399.8	$7.74 \mathrm{E}-11$
	C6	202072.9	275141.7	180619.0	148408.9	213737.4	199817.6	$2.00 \mathrm{E}-10$
J2-286	A1	3088.6	2760.7	1156.8	849.6	1762.1	1713.4	$1.71 \mathrm{E}-12$
	A2	3759.0	5567.7	5413.6	6229.0	4574.8	5032.7	$5.03 \mathrm{E}-12$
	B1	1407.8	2144.6	2610.0	1713.4	924.2	1656.6	$1.66 \mathrm{E}-12$
	C1	2920.1	2684.3	3455.5	3865.9	3759.0	3303.8	$3.30 \mathrm{E}-12$
ALV 2608-3-3	A1	18092.3	22019.0	23290.0	19136.7	15288.9	19352.7	$1.94 \mathrm{E}-11$
	A2	1916.9	2205.6	2027.5	1713.4	1971.4	1960.4	$1.96 \mathrm{E}-12$
	A3	4205.4	4705.0	4976.6	4205.4	4574.8	4523.7	$4.52 \mathrm{E}-12$
	B1	8018.5	11876.9	13287.6	18607.2	17105.0	13213.2	$1.32 \mathrm{E}-11$
	B2	4705.0	10322.2	7796.7	6776.1	8722.7	7412.6	$7.41 \mathrm{E}-12$
	B3	3088.6	2537.8	1762.1	1575.1	2027.5	2132.6	$2.13 \mathrm{E}-12$
	C1	1124.8	1124.8	1034.0	950.5	1034.0	1051.5	$1.05 \mathrm{E}-12$
	C2	12919.9	9758.8	6056.7	8971.0	4705.0	7973.7	$7.97 \mathrm{E}-12$
	C3	4205.4	4574.8	4574.8	4448.2	3003.2	4112.1	$4.11 \mathrm{E}-12$
	C4	409.6	336.6	409.6	318.2	376.5	368.2	$3.68 \mathrm{E}-13$
	D1	1916.9	2144.6	2027.5	1575.1	1489.1	1812.3	$1.81 \mathrm{E}-12$
	D2	1713.4	2467.6	924.2	803.2	873.7	1223.5	$1.22 \mathrm{E}-12$
	D3	717.9	589.9	458.2	346.1	606.7	527.3	$5.27 \mathrm{E}-13$
	D4	2144.6	2144.6	--	--	--	2144.6	$2.14 \mathrm{E}-12$

$\begin{aligned} & \text { ALV 2608-4-1 } \\ & \quad \text { Pc } 1 \end{aligned}$	A1	1063.4	698.1	803.2	624.0	977.5	816.8	$8.17 \mathrm{E}-13$
	A2	10615.9	10322.2	9758.8	11876.9	12562.4	10979.4	$1.10 \mathrm{E}-11$
	A3	17591.7	14865.9	19136.7	18092.3	15288.9	16914.1	$1.69 \mathrm{E}-11$
	A4	3553.8	2085.2	3455.5	3359.9	3553.8	3141.1	$3.14 \mathrm{E}-12$
	B1	33542.2	52549.7	44407.2	31711.6	25335.5	36283.8	$3.63 \mathrm{E}-11$
	C1	512.7	458.2	484.7	433.2	292.5	428.4	$4.28 \mathrm{E}-13$
	C2	2332.9	2144.6	1971.4	2205.6	1812.3	2085.2	$2.09 \mathrm{E}-12$
	C3	1034.0	1093.6	924.2	1531.5	1531.5	1196.4	$1.20 \mathrm{E}-12$
$\begin{gathered} \text { ALV 2608-4-1 } \\ \text { Pc } 2 \end{gathered}$	A1	8722.7	26056.4	32614.1	5726.1	12919.9	14054.6	$1.41 \mathrm{E}-11$
	A2	292.5	641.7	498.5	421.3	717.9	490.2	$4.90 \mathrm{E}-13$
	A3	2205.6	2332.9	2399.3	2467.6	2205.6	2319.9	$2.32 \mathrm{E}-12$
	B1	717.9	873.7	803.2	803.2	781.0	794.2	7.94E-13
	B2	3003.2	1093.6	1407.8	1368.9	977.5	1439.8	$1.44 \mathrm{E}-12$
	B3	1156.8	1489.1	1407.8	924.2	1005.3	1176.4	$1.18 \mathrm{E}-12$
JAS 177-2-1	A1	512.7	471.3	458.2	398.3	573.6	479.3	$4.79 \mathrm{E}-13$
	A2	3176.5	3759.0	3865.9	4448.2	4838.9	3975.9	$3.98 \mathrm{E}-12$
	A3	1575.1	1863.9	1331.0	950.5	1407.8	1392.1	$1.39 \mathrm{E}-12$
	B1	2144.6	3865.9	1916.9	2537.8	3759.0	2729.9	$2.73 \mathrm{E}-12$
	B2	14454.6	5118.2	7796.7	12919.9	10036.5	9435.7	$9.44 \mathrm{E}-12$
	B3	6229.0	22645.6	11228.7	5726.1	8481.4	9488.8	$9.49 \mathrm{E}-12$
	C1	4574.8	6968.9	4325.1	6588.6	8246.7	5955.5	$5.96 \mathrm{E}-12$
	C2	54045.1	89558.8	60464.6	87080.7	65774.9	69963.2	$7.00 \mathrm{E}-11$
	C3	4574.8	4574.8	6406.3	5263.8	6056.7	5323.2	$5.32 \mathrm{E}-12$
ALV 2179-1-1	A1	15288.9	23952.8	16631.7	6588.6	12919.9	13897.7	$1.39 \mathrm{E}-11$
	A2	4838.9	5118.2	8481.4	3975.9	4705.0	5234.4	$5.23 \mathrm{E}-12$
	A3	18607.2	11228.7	12214.8	11876.9	213737.4	23030.1	$2.30 \mathrm{E}-11$
	B1	738.4	458.2	924.2	376.5	542.3	576.8	$5.77 \mathrm{E}-13$
	B2	1156.8	1575.1	1005.3	2467.6	1489.1	1464.2	$1.46 \mathrm{E}-12$

A1.3 Zn-Rich Actively Diffusing Spire Data

Sample	Site	Permeability (mD)					Mean (mD)	Mean (m2)
		1	2	3	4	5		
$\begin{aligned} & \text { ALV 2187-1-1 } \\ & \text { top } \end{aligned}$	A1	2920.1	2839.3	3003.2	2268.4	2537.8	2699.4	$2.70 \mathrm{E}-12$
	A2	8971.0	8246.7	10322.2	7167.2	7371.2	8339.8	$8.34 \mathrm{E}-12$
	A3	6968.9	8246.7	10036.5	6776.1	5118.2	7248.1	$7.25 \mathrm{E}-12$
	A4	7796.7	8971.0	8722.7	8971.0	7580.9	8386.7	$8.39 \mathrm{E}-12$
	B1	24634.4	28344.8	28344.8	26056.4	30834.2	27560.5	$2.76 \mathrm{E}-11$
	B2	22019.0	22019.0	19136.7	29151.4	23952.8	23030.1	$2.30 \mathrm{E}-11$
	B3	12562.4	22019.0	5118.2	23952.8	18607.2	14454.6	$1.45 \mathrm{E}-11$
$\begin{aligned} & \text { ALV 2187-1-1 } \\ & \text { bottom } \end{aligned}$	A1	180619.0	202072.9	121942.9	69571.7	180619.0	141099.3	$1.41 \mathrm{E}-10$
	A2	28344.8	28344.8	23952.8	26797.9	22645.6	25910.6	$2.59 \mathrm{E}-11$
	A3	10322.2	12919.9	8018.5	8018.5	6968.9	9021.5	$9.02 \mathrm{E}-12$
	A4	7580.9	3759.0	2920.1	3359.9	4574.8	4181.9	$4.18 \mathrm{E}-12$
	B1	25335.5	39692.5	26056.4	32614.1	35478.4	31357.7	$3.14 \mathrm{E}-11$
	B2	14454.6	16631.7	11876.9	8481.4	17591.7	13362.4	$1.34 \mathrm{E}-11$
	B3	3176.5	6968.9	4976.6	7167.2	7580.9	5694.1	$5.69 \mathrm{E}-12$
	C1	3553.8	2760.7	2684.3	2839.3	2399.3	2823.4	$2.82 \mathrm{E}-12$
	C2	1063.4	1093.6	1223.5	1005.3	1331.0	1137.5	$1.14 \mathrm{E}-12$
	C3	738.4	641.7	606.7	624.0	606.7	641.7	$6.42 \mathrm{E}-13$
	C4	18092.3	23952.8	25335.5	20817.4	16631.7	20700.9	$2.07 \mathrm{E}-11$

ALV 2187-1-2	A1	77835.4	48307.2	80050.4	28344.8	20817.4	44657.1	$4.47 \mathrm{E}-11$
	A2	19136.7	21409.8	57164.8	60464.6	35478.4	34690.8	$3.47 \mathrm{E}-11$
	B1	4838.9	4574.8	5118.2	4448.2	15288.9	5989.1	$5.99 \mathrm{E}-12$
	B2	4838.9	7167.2	7580.9	5263.8	2332.9	5032.7	$5.03 \mathrm{E}-12$
	B3	2268.4	1971.4	2537.8	2399.3	2399.3	2306.9	$2.31 \mathrm{E}-12$
	C1	291024.0	291024.0	232508.7	245930.1	307823.1	272070.8	$2.72 \mathrm{E}-10$
	C2	213737.4	84671.2	495982.9	219819.8	239125.2	216149.9	$2.16 \mathrm{E}-10$
	C3	2537.8	2205.6	1916.9	3176.5	2205.6	2372.5	$2.37 \mathrm{E}-12$
	C4	2610.0	2537.8	2920.1	3088.6	3455.5	2903.7	$2.90 \mathrm{E}-12$
	C5	8018.5	6776.1	8246.7	8246.7	6776.1	7580.9	7.58E-12
ALV 2190-14-1	A1	3975.9	4205.4	3865.9	4205.4	4089.1	4066.2	$4.07 \mathrm{E}-12$
	A2	10322.2	10615.9	13287.6	8246.7	7580.9	9813.8	$9.81 \mathrm{E}-12$
	A3	4089.1	3865.9	4574.8	3359.9	3654.9	3887.7	$3.89 \mathrm{E}-12$
	A4	9758.8	14054.6	14454.6	15288.9	14454.6	13437.6	$1.34 \mathrm{E}-11$
	A5	39692.5	49681.9	100196.6	73587.6	316582.9	85626.9	$8.56 \mathrm{E}-11$
	A6	919524.4	1704746.3	539542.1	799157.2	364265.9	755544.1	$7.56 \mathrm{E}-10$
	B1	11876.9	11548.2	10918.0	12214.8	19136.7	12847.6	$1.28 \mathrm{E}-11$
	B2	8722.7	7796.7	7580.9	10322.2	--	8541.1	$8.54 \mathrm{E}-12$
$\begin{gathered} \mathrm{J} 2-137-7-\mathrm{R} 1 \\ \mathrm{Pc} 1 \end{gathered}$	A1	275141.7	495982.9	156975.7	385292.8	232508.7	286165.4	$2.86 \mathrm{E}-10$
	A2	374631.8	694546.3	354186.7	603629.1	570686.7	501581.2	$5.02 \mathrm{E}-10$
	B1	170761.9	325591.9	354186.7	219819.8	180619.0	239125.2	$2.39 \mathrm{E}-10$
	B2	374631.8	226075.2	316582.9	275141.7	191045.0	269034.2	$2.69 \mathrm{E}-10$
	C1	65774.9	144302.4	92107.4	161442.7	191045.0	121942.9	$1.22 \mathrm{E}-10$
	C2	919524.4	972603.1	468915.2	734638.4	419130.7	664053.8	$6.64 \mathrm{E}-10$
	D1	226075.2	291024.0	175621.3	455940.4	307823.1	276690.1	$2.77 \mathrm{E}-10$
	E1	156975.7	275141.7	374631.8	334857.4	115288.0	228627.0	$2.29 \mathrm{E}-10$
J2-139-2-R1	A1	140309.6	63954.9	175621.3	87080.7	58791.6	95797.7	$9.58 \mathrm{E}-11$
	B1	115288.0	115288.0	132652.4	191045.0	121942.9	132652.4	$1.33 \mathrm{E}-10$
J2-128-8-R1	A1	11228.7	11876.9	29151.4	46970.5	67646.6	26203.1	$2.62 \mathrm{E}-11$
	A2	20241.3	12562.4	11228.7	9758.8	16631.7	13589.2	$1.36 \mathrm{E}-11$
	B1	125413.0	175621.3	396257.1	144302.4	170761.9	184719.3	$1.85 \mathrm{E}-10$

A1.4 Black Smoker Chimney Data

Sample	Site	Permeability (mD)					Mean (mD)	Mean (m^{2})
		1	2	3	4	5		
ALV 2462-R2	A1	122.6	82.7	85.1	71.9	27.7	70.3	$7.03 \mathrm{E}-14$
	A2	69.9	47.2	14.1	19.8	20.3	28.5	$2.85 \mathrm{E}-14$
	A3	141.0	33.7	25.5	82.7	55.9	56.2	$5.62 \mathrm{E}-14$
	A4	103.6	103.6	71.9	100.7	64.3	87.0	$8.70 \mathrm{E}-14$
	B1	24.1	16.3	16.3	15.8	15.4	17.3	$1.73 \mathrm{E}-14$
	B2	25.5	17.7	38.8	15.8	27.7	23.8	$2.38 \mathrm{E}-14$
ALV 1445-3	A1	109.5	186.7	254.2	292.5	292.5	213.6	$2.14 \mathrm{E}-13$
	B1	346.1	318.2	327.2	214.8	153.4	260.0	$2.60 \mathrm{E}-13$
	C1	192.0	119.2	60.8	109.5	240.3	129.6	$1.30 \mathrm{E}-13$
ALV 2179-4-1	A1	1447.9	950.5	1063.4	1063.4	1812.3	1230.4	$1.23 \mathrm{E}-12$
	B1	398.3	376.5	421.3	208.9	214.8	309.4	$3.09 \mathrm{E}-13$
	C1	2085.2	3759.0	3975.9	3975.9	5413.6	3675.5	$3.68 \mathrm{E}-12$

J2-213-2-R1	A1	803.2	1005.3	698.1	678.7	898.6	807.7	8.08E-13
	B1	80.5	176.5	62.5	162.3	186.7	121.9	$1.22 \mathrm{E}-13$
	B2	458.2	458.2	318.2	512.7	--	430.2	$4.30 \mathrm{E}-13$
	B3	327.2	300.8	261.4	--	--	295.2	$2.95 \mathrm{E}-13$
	C1	27.7	34.7	35.7	--	--	32.5	$3.25 \mathrm{E}-14$
	D1	1407.8	1713.4	3553.8	1916.9	1063.4	1772.1	1.77E-12
	D2	3759.0	4976.6	4205.4	3088.6	2760.7	3675.5	$3.68 \mathrm{E}-12$
J2-213-3-R1	A1	13665.7	10322.2	18092.3	10036.5	10322.2	12146.5	$1.21 \mathrm{E}-11$
	B1	4705.0	4089.1	5726.1	4838.9	7167.2	5205.1	$5.21 \mathrm{E}-12$
	B2	3553.8	4838.9	4574.8	4705.0	4838.9	4473.2	$4.47 \mathrm{E}-12$
	B3	5726.1	4838.9	4205.4	5567.7	4574.8	4948.7	$4.95 \mathrm{E}-12$
	C1	471.3	433.2	387.2	421.3	356.0	411.9	$4.12 \mathrm{E}-13$
	C2	781.0	950.5	898.6	1063.4	1189.7	966.6	$9.67 \mathrm{E}-13$
	C3	112.7	149.2	137.1	--	--	132.1	$1.32 \mathrm{E}-13$
	D1	22.8	27.7	--	--	--	25.1	$2.51 \mathrm{E}-14$
	E1	5889.1	5413.6	7167.2	4089.1	--	5528.8	$5.53 \mathrm{E}-12$
	F1	624.0	1124.8	803.2	366.1	527.3	641.7	$6.42 \mathrm{E}-13$
J2-137-3-R1	A1	13665.7	8722.7	9758.8	6229.0	5726.1	8386.7	$8.39 \mathrm{E}-12$
	A2	13287.6	9758.8	5118.2	5413.6	5118.2	7127.1	$7.13 \mathrm{E}-12$
	A3	44407.2	108996.3	87080.7	71551.5	118568.8	81409.5	8.14E-11
	A4	22645.6	21409.8	15724.0	--	--	19681.3	$1.97 \mathrm{E}-11$
	B1	387.2	214.8	197.5	--	--	254.2	$2.54 \mathrm{E}-13$
	C1	7371.2	3266.9	6229.0	4325.1	4205.4	4866.1	$4.87 \mathrm{E}-12$
	C2	3759.0	3975.9	4205.4	4205.4	3266.9	3865.9	$3.87 \mathrm{E}-12$
	D1	115.9	100.7	119.2	--	--	111.6	$1.12 \mathrm{E}-13$
	D2	48.6	87.5	54.3	--	--	61.3	$6.13 \mathrm{E}-14$
	D3	268.9	203.1	203.1	--	--	223.0	$2.23 \mathrm{E}-13$
	D4	126.0	62.5	92.6	--	--	90.0	$9.00 \mathrm{E}-14$
	E1	45670.9	36488.0	48307.2	--	--	43178.4	$4.32 \mathrm{E}-11$
	E2	2839.3	2610.0	2467.6	--	--	2634.6	$2.63 \mathrm{E}-12$
	E3	115.9	171.6	112.7	106.5	103.6	119.8	$1.20 \mathrm{E}-13$
	E4	8971.0	11228.7	10322.2	--	--	10130.9	$1.01 \mathrm{E}-11$
	F1	2144.6	1863.9	2268.4	--	--	2085.2	$2.09 \mathrm{E}-12$
	F2	192.0	171.6	220.9	--	--	193.8	$1.94 \mathrm{E}-13$
	G1	300.8	336.6	233.7	--	--	287.1	$2.87 \mathrm{E}-13$
	G2	57.5	41.0	51.4	--	--	49.5	$4.95 \mathrm{E}-14$
	H1	327.2	387.2	366.1	--	--	359.3	$3.59 \mathrm{E}-13$
	H2	1971.4	803.2	398.3	484.7	--	743.6	7.44E-13

A1.5 Relict Spire Data

Sample	Site	Permeability (mD)					Mean (mD)	Mean ($\mathrm{m}^{\mathbf{2}}$)
		1	2	3	4	5		
J2-129-1-R3	A1	292.5	122.6	376.5	32.8	129.6	141.8	$1.42 \mathrm{E}-13$
	A2	157.8	233.7	203.1	214.8	192.0	198.6	$1.99 \mathrm{E}-13$
	A3	268.9	186.7	227.2	149.2	220.9	206.5	$2.07 \mathrm{E}-13$
	B1	276.5	157.8	284.4	284.4	186.7	231.1	$2.31 \mathrm{E}-13$
	B2	137.1	74.0	103.6	74.0	68.0	88.0	$8.80 \mathrm{E}-14$
	B3	51.4	68.0	47.2	38.8	25.5	43.9	$4.39 \mathrm{E}-14$
	C1	144302.4	112098.0	239125.2	170761.9	267528.6	177603.5	$1.78 \mathrm{E}-10$
	C2	121942.9	92107.4	166036.9	89558.8	100196.6	110846.9	$1.11 \mathrm{E}-10$
J2-136-6-R1	A1	181.5	171.6	133.3	129.6	153.4	152.5	$1.53 \mathrm{E}-13$
	A2	122.6	95.2	92.6	106.5	80.5	98.5	$9.85 \mathrm{E}-14$
	A3	2085.2	3088.6	1916.9	1971.4	1156.8	1949.4	$1.95 \mathrm{E}-12$
	A4	1005.3	498.5	233.7	409.6	660.0	501.3	$5.01 \mathrm{E}-13$
	B1	162.3	126.0	133.3	57.5	74.0	103.0	$1.03 \mathrm{E}-13$
	B2	247.2	300.8	261.4	220.9	318.2	267.4	$2.67 \mathrm{E}-13$
	B3	6776.1	4205.4	5889.1	8018.5	7167.2	6264.1	$6.26 \mathrm{E}-12$
	C1	387.2	421.3	606.7	471.3	542.3	479.3	$4.79 \mathrm{E}-13$
	C2	589.9	220.9	498.5	641.7	433.2	448.1	$4.48 \mathrm{E}-13$
	C3	119.2	62.5	74.0	64.3	69.9	75.6	$7.56 \mathrm{E}-14$
$\begin{gathered} \text { ALV 2944-3-S1 } \\ \text { Pc } 1 \end{gathered}$	A1	63954.9	49681.9	43178.4	48307.2	52549.7	51095.7	$5.11 \mathrm{E}-11$
	A2	44407.2	57164.8	49681.9	45670.9	54045.1	49961.5	$5.00 \mathrm{E}-11$
	A3	44407.2	43178.4	36488.0	52549.7	34496.7	41748.7	$4.17 \mathrm{E}-11$
	A4	37526.3	57164.8	46970.5	25335.5	46970.5	41282.8	$4.13 \mathrm{E}-11$
	B1	292.5	214.8	176.5	247.2	227.2	228.5	$2.28 \mathrm{E}-13$
	B2	781.0	268.9	1156.8	898.6	387.2	610.1	$6.10 \mathrm{E}-13$
	B3	29151.4	25335.5	24634.4	29151.4	27560.5	27100.4	$2.71 \mathrm{E}-11$
ALV 2941-6-S1	A1	144302.4	191045.0	75681.7	152632.2	103047.9	126828.6	$1.27 \mathrm{E}-10$
	A2	38594.2	22019.0	63954.9	29981.0	34496.7	35478.4	$3.55 \mathrm{E}-11$
	B1	21409.8	16171.5	41983.7	15724.0	21409.8	21773.3	$2.18 \mathrm{E}-11$
	B2	25335.5	26797.9	18607.2	19681.3	27560.5	23290.0	$2.33 \mathrm{E}-11$
	C1	11228.7	12919.9	4574.8	5726.1	5726.1	7371.2	$7.37 \mathrm{E}-12$
J2-125-3-B1	A1	4325.1	6229.0	5889.1	3266.9	6776.1	5118.2	$5.12 \mathrm{E}-12$
	A2	220.9	284.4	309.4	261.4	149.2	237.7	$2.38 \mathrm{E}-13$
	A3	1223.5	1575.1	1447.9	1863.9	1124.8	1423.7	$1.42 \mathrm{E}-12$
	A4	1812.3	1863.9	1812.3	717.9	1447.9	1447.9	$1.45 \mathrm{E}-12$
	B1	18607.2	18092.3	11228.7	8018.5	14865.9	13513.2	$1.35 \mathrm{E}-11$
	B2	3003.2	4838.9	3654.9	5118.2	3553.8	3953.7	$3.95 \mathrm{E}-12$
	B3	1223.5	1368.9	1189.7	1034.0	1156.8	1189.7	$1.19 \mathrm{E}-12$
	C1	115.9	145.0	97.9	176.5	90.0	121.2	$1.21 \mathrm{E}-13$
	C2	87.5	55.9	28.5	45.9	35.7	46.9	$4.69 \mathrm{E}-14$
	C3	87.5	49.9	64.3	71.9	49.9	63.2	$6.32 \mathrm{E}-14$
ALV 2178-4-1	A1	14.9	15.8	119.2	122.6	78.2	48.6	$4.86 \mathrm{E}-14$
	A2	1619.9	1368.9	1005.3	1034.0	1093.6	1203.1	$1.20 \mathrm{E}-12$
	A3	557.7	1005.3	826.1	898.6	977.5	835.4	$8.35 \mathrm{E}-13$
	A4	7580.9	8018.5	6056.7	7796.7	6776.1	7207.5	$7.21 \mathrm{E}-12$
	A5	30834.2	20817.4	39692.5	29151.4	36488.0	30661.6	$3.07 \mathrm{E}-11$
	B1	18607.2	11228.7	15724.0	17591.7	21409.8	16538.6	$1.65 \mathrm{E}-11$
	B2	3654.9	3865.9	3654.9	2839.3	3553.8	3494.5	$3.49 \mathrm{E}-12$
	B3	498.5	356.0	247.2	268.9	247.2	311.1	$3.11 \mathrm{E}-13$
	B4	2027.5	1447.9	924.2	1531.5	1189.7	1376.6	$1.38 \mathrm{E}-12$

Appendix 2: Core Permeability Data

A2.1 Massive Anhydrite Data

length: 1.142 cm width: 2.533 cm	250	227.757	227.715	227.538	228.202	227.604	227.76
	200	230.622	230.223	230.201	230.386	230.315	230.35
	150	233.764	233.847	234.236	234.051	233.975	233.97
	100	239.299	239.613	239.999	240.511	240.297	239.94
	70	246.349	246.666	247.122	247.279	247.447	246.97
$\begin{gathered} \text { J2-216-14-R1 } \\ \text { Core A } \end{gathered}$	70	0.365	0.324	0.343	0.349	0.352	0.35
	100	0.329	0.334	0.336	0.340	0.333	0.33
	150	0.334	0.326	0.325	0.344	0.326	0.33
	200	0.310	0.333	0.333	0.334	0.325	0.33
	250	0.332	0.338	0.331	0.315	0.324	0.33
	300	0.331	0.323	0.316	0.323	0.329	0.32
	350	0.329	0.330	0.322	0.330	0.323	0.33
	400	0.323	0.321	0.322	0.315	0.322	0.32
	350	0.306	0.323	0.323	0.324	0.324	0.32
	300	0.314	0.323	0.333	0.322	0.324	0.32
	250	0.332	0.341	0.333	0.324	0.332	0.33
	200	0.349	0.340	0.331	0.350	0.335	0.34
	150	0.332	0.342	0.350	0.335	0.350	0.34
length: 1.841 cm width: 2.530 cm	100	0.341	0.351	0.349	0.351	0.342	0.35
	70	0.343	0.351	0.353	0.359	0.353	0.35
$\begin{gathered} \mathrm{J} 2-216-14-\mathrm{R} 1 \\ \text { Core B } \end{gathered}$	70	0.380	0.392	0.371	0.390	0.376	0.38
	100	0.389	0.378	0.388	0.361	0.373	0.38
	150	0.371	0.377	0.386	0.386	0.364	0.38
	200	0.365	0.391	0.371	0.355	0.344	0.37
	250	0.331	0.347	0.330	0.354	0.336	0.34
	300	0.343	0.342	0.336	0.341	0.333	0.34
	350	0.324	0.324	0.316	0.332	0.336	0.33
	400	0.328	0.335	0.329	0.326	0.330	0.33
	350	0.342	0.335	0.326	0.345	0.347	0.34
	300	0.341	0.348	0.348	0.348	0.345	0.35
	250	0.365	0.355	0.363	0.363	0.355	0.36
	200	0.374	0.365	0.367	0.375	0.366	0.37
	150	0.373	0.362	0.384	0.374	0.375	0.37
length: 2.243 cm width: 2.536 cm	100	0.386	0.386	0.396	0.380	0.380	0.39
	70	0.398	0.388	0.370	0.389	0.388	0.39
J301-3 Core A length: 3.205 cm width: 2.546 cm	70	44.519	44.719	44.820	44.789	44.714	44.71
	100	43.244	42.910	42.915	42.990	42.865	42.99
	150	40.907	40.837	40.942	40.751	40.928	40.87
	200	39.711	39.921	39.959	39.651	39.784	39.81
	250	38.926	38.955	39.029	38.942	38.913	38.95
	300	38.632	38.308	38.730	38.592	38.377	38.53
	350	38.093	38.303	37.967	38.138	37.996	38.10
	400	37.959	37.832	37.962	38.224	37.860	37.97
	350	37.888	37.916	38.050	37.933	37.989	37.96
	300	38.558	38.089	38.118	38.249	38.469	38.30
	250	38.303	38.524	38.362	38.304	38.361	38.37
	200	38.765	38.720	38.765	38.939	39.177	38.87
	150	39.377	39.376	39.497	39.450	39.254	39.39
	100	40.232	40.297	40.411	40.267	40.207	40.28
	70	41.201	41.325	41.416	41.435	41.547	41.39
J301-3 Core B	70	3.089	3.066	3.026	3.024	2.968	3.03
	100	2.150	2.146	2.135	2.109	2.115	2.13
	150	1.455	1.449	1.430	1.458	1.424	1.44
	200	1.136	1.110	1.139	1.101	1.106	1.12
	250	0.896	0.865	0.861	0.831	0.844	0.86
	300	0.749	0.744	0.702	0.730	0.710	0.73
	350	0.647	0.614	0.630	0.598	0.613	0.62
	400	0.585	0.540	0.519	0.570	0.543	0.55
	350	0.536	0.545	0.545	0.526	0.552	0.54
	300	0.603	0.581	0.617	0.594	0.609	0.60
	250	0.616	0.639	0.619	0.639	0.620	0.63
	200	0.711	0.710	0.694	0.700	0.699	0.70
	150	0.785	0.830	0.843	0.815	0.839	0.82
length: 5.196 cm width: 2.530 cm	100	1.090	1.078	1.113	1.089	1.113	1.10
	70	1.503	1.495	1.531	1.506	1.520	1.51

A2.2 Flange, Slab and Crust Data

length: 1.549 cm width: 2.506 cm	100	1302.646	1303.591	1304.986	1316.100	1312.943	1308.04
	70	1338.587	1341.667	1335.947	1336.308	1335.224	1337.54
ALV 3521-R2 Core Ex 2	70	1013.176	1012.378	1022.284	1011.949	1017.531	1015.46
	100	1006.855	1004.269	1001.139	1004.820	1000.574	1003.53
	150	974.762	981.290	981.475	979.969	984.304	980.35
	200	971.354	969.261	966.181	971.116	970.228	969.63
	250	958.035	958.814	960.185	961.126	960.605	959.75
	300	954.072	957.787	956.848	950.985	953.788	954.69
	350	953.184	954.635	952.004	954.165	954.336	953.66
	400	954.974	952.534	953.422	954.716	953.275	953.78
	350	952.618	955.944	952.412	955.546	956.446	954.59
	300	950.459	949.099	954.063	954.352	956.801	952.95
	250	954.661	955.023	955.972	952.357	956.625	954.93
	200	955.066	955.984	956.841	954.333	956.917	955.83
	150	971.874	970.979	963.867	967.613	968.145	968.49
length: 1.014 cm width: 2.517 cm	100	974.243	972.702	977.035	979.075	979.594	976.53
	70	984.051	984.049	988.846	984.498	989.657	986.22
$\begin{aligned} & \text { ALV 2415-1B } \\ & \text { Core A1 } \end{aligned}$	70	68.571	68.423	68.871	68.180	68.119	68.43
	100	63.621	63.567	63.575	63.585	63.501	63.57
	150	57.862	58.024	57.944	57.796	57.926	57.91
	200	56.608	56.730	56.434	56.485	56.399	56.53
	250	55.865	55.821	55.957	55.731	55.799	55.83
	300	55.432	55.202	55.374	55.306	55.675	55.40
	350	55.240	55.095	55.064	54.881	54.913	55.04
	400	54.756	54.597	54.604	54.411	55.120	54.70
	350	54.742	54.755	54.877	54.928	54.797	54.82
	300	54.926	55.479	55.094	55.313	55.169	55.20
	250	55.701	55.558	55.400	55.541	55.690	55.58
	200	55.686	55.673	55.728	55.755	55.872	55.74
	150	56.401	56.215	56.317	56.300	56.195	56.29
length: 2.084 cm width: 2.480 cm	100	57.992	57.659	57.656	57.678	57.699	57.74
	70	62.883	62.735	62.855	62.786	62.703	62.79
ALV 2415-1BCore B1	70	1731.305	1727.945	1726.755	1720.326	1726.610	1726.58
	100	1661.130	1662.277	1659.746	1656.780	1661.611	1660.31
	150	1621.342	1621.304	1620.372	1619.277	1617.850	1620.03
	200	1598.285	1593.126	1595.238	1594.572	1591.969	1594.64
	250	1572.853	1573.635	1570.254	1570.673	1573.056	1572.09
	300	1551.429	1555.157	1550.990	1551.450	1552.245	1552.25
	350	1534.874	1533.078	1535.014	1534.458	1533.041	1534.09
	400	1517.890	1513.684	1512.048	1515.330	1512.577	1514.30
	350	1517.067	1519.251	1517.333	1518.957	1517.523	1518.03
	300	1522.546	1525.321	1525.635	1525.267	1521.020	1523.96
	250	1531.960	1532.006	1533.799	1531.695	1527.531	1531.40
	200	1545.121	1547.289	1545.072	1547.390	1545.990	1546.17
	150	1559.269	1561.854	1562.734	1562.881	1562.708	1561.89
length: 5.838 cm width: 2.490 cm	100	1577.023	1576.552	1580.638	1578.798	1580.188	1578.64
	70	1595.937	1593.497	1596.318	1592.738	1598.929	1595.48
$\begin{aligned} & \text { ALV 2415-1B } \\ & \text { Core } 1 \end{aligned}$	70	66.8	--	--	--	--	66.8
	100	59.3	--	--	--	--	59.3
	150	52.0	--	--	--	--	52.0
	200	46.1	--	--	--	--	46.1
	250	41.6	--	--	--	--	41.6
	300	39.2	--	--	--	--	39.2
	350	37.3	--	--	--	--	37.3
	400	36.0	--	--	--	--	36.0
ALV 2415-1B Core 2	70	11.8	--	--	--	--	11.8
	100	9.8	--	--	--	--	9.8
	150	7.1	--	--	--	--	7.1
	200	5.3	--	--	--	--	5.3
	250	4.5	--	--	--	--	4.5
	300	3.5	--	--	--	--	3.5
	350	2.9	--	--	--	--	2.9
	400	2.5	--	--	--	--	2.5
$\begin{gathered} \text { ALV } 2727-3 \\ \text { Core B1 } \end{gathered}$	70	1998.995	1995.040	1989.075	1994.736	1993.444	1994.26
	100	1973.888	1979.961	1979.924	1981.849	1977.613	1978.65
	150	1956.234	1955.954	1948.347	1956.622	1958.593	1955.15

length: 2.658 cm width: 2.485 cm	200	1931.790	1935.533	1928.452	1934.961	1922.350	1930.61
	250	1902.452	1904.822	1902.014	1898.109	1906.368	1902.75
	300	1887.248	1894.701	1896.360	1881.084	1885.969	1889.06
	350	1872.134	1874.619	1871.287	1872.729	1875.124	1873.18
	400	1862.190	1866.476	1866.930	1862.102	1859.724	1863.48
	350	1860.102	1877.249	1860.662	1863.453	1867.762	1865.83
	300	1867.857	1867.034	1863.636	1870.709	1873.502	1868.54
	250	1874.716	1876.572	1878.228	1883.035	1881.153	1878.74
	200	1892.253	1893.593	1895.523	1897.051	1887.724	1893.23
	150	1905.288	1906.861	1908.943	1906.681	1905.719	1906.70
	100	1929.958	1920.503	1927.836	1929.570	1932.740	1928.12
	70	1951.330	1943.875	1939.239	1947.789	1950.196	1946.48
ALV 2927-3 Core 1	70	2631.6	--	--	--	--	2631.6
	100	2601.1	--	--	--	--	2601.1
	150	2295.1	--	--	--	--	2295.1
	200	1950.2	--	--	--	--	1950.2
	250	1816.9	--	--	--	--	1816.9
	300	1715.5	--	--	--	--	1715.5
	350	1653.1	--	--	--	--	1653.1
	400	1613.7	--	--	--	--	1613.7
$\begin{gathered} \text { ALV 2927-3 } \\ \text { Core } 2 \end{gathered}$	70	182.4	--	--	--	--	182.4
	100	172.8	--	--	--	--	172.8
	150	161.8	--	--	--	--	161.8
	200	155.6	--	--	--	--	155.6
	250	151.5	--	--	--	--	151.5
	300	148.7	--	--	--	--	148.7
	350	146.1	--	--	--	--	146.1
	400	145.3	--	--	--	--	145.3
ALV 2927-3 Core 3	70	1081.4	--	--	--	--	1081.4
	100	1062.7	--	--	--	--	1062.7
	150	1010.0	--	--	--	--	1010.0
	200	994.2	--	--	--	--	994.2
	250	966.1	--	--	--	--	966.1
	300	968.9	--	--	--	--	968.9
	350	955.6	--	--	--	--	955.6
	400	948.7	--	--	--	--	948.7
J2-286Core A1	70	5.003	4.930	4.920	4.856	4.852	4.91
	100	3.726	3.716	3.686	3.681	3.696	3.70
	150	2.215	2.204	2.183	2.145	2.144	2.18
	200	1.375	1.346	1.322	1.295	1.274	1.32
	250	0.879	0.845	0.839	0.824	0.811	0.84
	300	0.573	0.553	0.545	0.543	0.532	0.55
	350	0.372	0.364	0.363	0.347	0.347	0.36
	400	0.230	0.205	0.222	0.211	0.228	0.22
	350	0.251	0.243	0.252	0.245	0.242	0.25
	300	0.309	0.313	0.318	0.317	0.314	0.31
	250	0.373	0.386	0.390	0.388	0.384	0.38
	200	0.505	0.502	0.526	0.525	0.530	0.52
	150	0.770	0.795	0.799	0.808	0.816	0.80
	100	1.432	1.469	1.459	1.493	1.504	1.47
	70	2.059	2.117	2.142	2.152	2.197	2.13
$\begin{gathered} \text { J2-286 } \\ \text { Core A3 } \end{gathered}$	70	439.838	438.832	438.354	438.718	437.868	438.72
	100	368.859	368.805	370.881	371.413	369.797	369.95
	150	322.158	322.574	317.979	319.613	319.194	320.30
	200	279.324	280.227	279.470	279.646	278.441	279.42
	250	255.609	254.216	251.834	254.330	251.736	253.54
	300	233.886	233.420	232.187	233.161	232.871	233.10
	350	213.140	211.920	212.417	211.869	214.545	212.78
	400	196.954	196.538	195.662	195.956	194.888	196.00
	350	203.158	203.336	202.614	202.411	203.359	202.98
	300	215.031	215.563	214.968	215.484	214.721	215.15
	250	230.742	232.038	230.680	231.189	230.912	231.11
	200	249.850	248.087	249.670	249.983	250.200	249.56
	150	274.082	272.449	273.810	273.139	274.139	273.52
length: 5.280 cm width: 2.525 cm	100	302.767	302.318	304.170	307.748	303.678	304.13
	70	325.777	326.183	326.831	328.068	331.561	327.68

$\begin{gathered} \text { J2-286 } \\ \text { Core C2-1 } \end{gathered}$	70	0.917	0.896	0.865	0.862	0.916	0.89
	100	0.910	0.906	0.869	0.864	0.882	0.89
	150	0.853	0.808	0.839	0.882	0.889	0.85
	200	0.807	0.858	0.851	0.834	0.818	0.83
	250	0.880	0.827	0.859	0.839	0.811	0.84
	300	0.814	0.820	0.829	0.793	0.817	0.81
	350	0.783	0.778	0.754	0.786	0.791	0.78
	400	0.766	0.769	0.789	0.774	0.743	0.77
	350	0.786	0.753	0.797	0.785	0.761	0.78
	300	0.789	0.819	0.793	0.803	0.822	0.81
	250	0.781	0.773	0.824	0.811	0.836	0.80
	200	0.823	0.777	0.789	0.810	0.825	0.80
	150	0.855	0.847	0.833	0.783	0.852	0.83
length: 1.960 cm width: 2.520 cm	100	0.878	0.828	0.826	0.844	0.830	0.84
	70	0.915	0.863	0.865	0.902	0.890	0.89
$\begin{gathered} \text { J2-286 } \\ \text { Core C2-2 } \end{gathered}$	70	1.376	1.316	1.320	1.341	1.398	1.35
	100	1.385	1.308	1.357	1.322	1.335	1.34
	150	1.258	1.268	1.254	1.228	1.278	1.26
	200	1.243	1.280	1.242	1.282	1.250	1.26
	250	1.211	1.218	1.202	1.209	1.227	1.21
	300	1.198	1.172	1.216	1.178	1.198	1.19
	350	1.215	1.167	1.222	1.170	1.189	1.19
	400	1.140	1.179	1.218	1.139	1.199	1.17
	350	1.236	1.204	1.220	1.244	1.222	1.23
	300	1.252	1.228	1.224	1.254	1.258	1.24
	250	1.355	1.308	1.356	1.335	1.368	1.34
	200	1.326	1.353	1.358	1.366	1.389	1.36
	150	1.394	1.360	1.357	1.342	1.356	1.36
length: 3.137 cm width: 2.530 cm	100	1.372	1.391	1.390	1.341	1.354	1.37
	70	1.391	1.372	1.392	1.380	1.396	1.39
$\begin{gathered} \text { J2-286 } \\ \text { Core C3-1 } \end{gathered}$	70	185.271	185.176	184.815	184.534	185.821	185.12
	100	175.694	176.695	177.123	177.993	177.633	177.03
	150	170.851	170.930	171.989	171.571	171.891	171.45
	200	163.143	162.622	162.664	162.877	163.017	162.86
	250	152.794	153.467	153.257	152.485	152.454	152.89
	300	145.672	145.911	145.358	147.131	145.947	146.00
	350	141.506	142.266	141.051	140.182	141.250	141.25
	400	139.136	138.557	138.575	137.348	137.831	138.29
	350	139.164	138.605	138.142	139.521	138.503	138.79
	300	140.467	141.136	140.875	139.761	141.474	140.74
	250	143.716	142.803	142.978	143.609	143.316	143.28
	200	148.219	147.587	149.246	148.690	148.001	148.35
	150	157.364	157.677	158.338	156.804	157.850	157.61
length: 1.320 cm width: 2.517 cm	100	172.424	173.504	171.991	174.596	173.699	173.24
	70	179.532	180.064	178.833	179.368	179.895	179.54
$\begin{gathered} \text { J2-286 } \\ \text { Core C3-2 } \end{gathered}$	70	57.872	58.003	58.184	57.857	58.008	57.98
	100	54.417	54.526	54.147	54.344	54.146	54.32
	150	51.471	51.068	51.131	51.274	51.009	51.19
	200	49.982	49.641	50.102	50.041	49.565	49.87
	250	48.993	49.000	49.006	48.933	48.843	48.95
	300	48.733	48.869	48.828	48.586	48.664	48.74
	350	48.353	48.706	48.272	48.409	48.049	48.36
	400	48.325	48.453	48.062	48.091	48.338	48.25
	350	48.485	48.209	48.405	48.261	48.379	48.35
	300	48.409	48.490	48.171	48.187	48.509	48.35
	250	48.651	48.433	48.269	48.533	48.379	48.45
	200	48.541	48.464	48.362	48.587	48.740	48.54
length: 2.166 cm width: 2.530 cm	150	48.790	48.988	48.960	48.943	48.764	48.89
	100	49.496	49.097	49.544	49.443	49.586	49.43
	70	50.230	50.391	50.858	50.457	50.515	50.49
$\begin{gathered} \mathrm{J} 2-286 \\ \text { Core C4 } \end{gathered}$	70	22.544	22.713	22.845	22.920	22.557	22.72
	100	21.136	21.159	21.172	21.031	21.045	21.11
	150	19.479	19.738	19.524	19.533	19.430	19.54
	200	18.737	18.829	18.635	18.738	18.771	18.74
	250	18.234	18.215	18.267	18.179	18.180	18.21
	300	17.665	17.724	17.912	17.633	17.797	17.75

	350	17.335	17.286	17.239	17.272	17.215	17.27
	400	16.973	16.987	16.979	17.125	17.064	17.03
	350	17.282	17.309	17.257	17.237	17.223	17.26
	300	17.364	17.347	17.315	17.350	17.350	17.35
	250	17.551	17.581	17.392	17.502	17.455	17.50
	200	17.513	17.635	17.770	17.751	17.659	17.67
	150	18.164	18.117	18.011	18.113	18.096	18.10
length: 2.242 cm	100	18.457	18.419	18.517	18.750	18.636	18.56
width: 2.534 cm	70	19.155	19.191	19.282	19.340	19.185	19.23
	70	2775.457	2753.390	2750.327	2750.043	2751.290	2756.08
ALV 2608-3-3	100	2731.965	2741.756	2748.601	2744.529	2743.458	2742.06
Core B2	150	2737.428	2746.376	2745.481	2743.131	2740.446	2742.57
	200	2739.747	2742.163	2747.917	2754.997	2738.889	2744.74
	250	2738.028	2745.671	2739.575	2742.961	2739.434	2741.13
	300	2731.569	2730.212	2744.337	2739.639	2739.495	2737.05
	350	2742.793	2747.108	2741.122	2746.627	2745.311	2744.59
	400	2743.230	2749.732	2743.436	2747.952	2746.149	2746.10
	350	2751.994	2753.703	2750.475	2750.154	2745.641	2750.39
	300	2748.038	2748.589	2752.861	2748.051	2753.687	2750.24
	250	2752.909	2757.370	2756.729	2754.918	2752.377	2754.86
	200	2752.351	2752.451	2759.157	2759.967	2753.436	2755.47
	150	2760.591	2762.581	2754.112	2754.220	2762.390	2758.78
length: 3.127 cm	100	2765.729	2766.051	2765.017	2764.154	2768.542	2765.90
width: 2.500 cm	70	2774.483	2772.973	2767.481	2773.497	2771.457	2771.98
	70	1463.134	1458.002	1452.060	1453.063	1455.805	1456.41
ALV 2608-3-3	100	1445.711	1447.873	1450.619	1446.636	1448.560	1447.88
Core C1	150	1442.011	1447.001	1448.876	1445.477	1447.688	1446.21
	200	1441.697	1444.850	1449.962	1444.873	1444.956	1445.27
	250	1443.511	1446.972	1446.920	1447.800	1446.114	1446.26
	300	1447.954	1446.510	1446.235	1445.371	1449.270	1447.07
	350	1438.684	1433.104	1441.381	1435.182	1436.227	1436.91
	400	1435.555	1439.549	1436.163	1435.085	1436.500	1436.57
	350	1438.654	1441.551	1435.478	1439.569	1440.906	1439.23
	300	1443.227	1443.663	1441.331	1439.345	1443.221	1442.16
	250	1444.857	1444.730	1445.591	1448.387	1446.511	1446.01
	200	1442.243	1451.638	1451.012	1449.685	1446.193	1448.15
	150	1450.345	1443.050	1448.496	1450.353	1455.514	1449.55
length: 2.092 cm	100	1457.652	1456.714	1456.325	1456.357	1454.295	1456.27
width: 2.496 cm	70	1456.331	1458.631	1458.978	1453.156	1459.316	1457.28
	70	896.556	896.976	898.147	898.717	899.208	897.92
ALV 2608-4-1	100	867.383	866.905	866.397	865.442	865.227	866.27
Pc 1	150	817.947	818.801	817.289	816.501	817.137	817.53
Core A1	200	789.223	789.364	786.787	787.071	786.689	787.83
	250	764.867	763.899	762.535	761.835	761.444	762.91
	300	742.977	741.256	740.065	740.453	738.363	740.62
	350	724.113	723.107	722.998	722.381	720.703	722.66
	400	707.246	706.542	705.728	706.282	706.539	706.47
	350	727.239	726.888	727.994	726.880	727.698	727.34
	300	729.733	728.912	729.021	728.698	729.093	729.09
	250	731.548	732.563	731.056	731.892	732.966	732.00
	200	738.577	738.613	741.350	740.166	741.369	740.01
	150	753.186	755.743	754.947	756.566	756.635	755.41
length: 5.837 cm	100	775.990	778.436	779.024	780.261	782.365	779.21
width: 2.525 cm	70	806.146	805.729	806.593	807.904	806.143	806.59
	70	688.516	687.165	687.920	687.060	687.454	687.62
ALV 2608-4-1	100	626.401	625.620	626.065	625.729	626.057	625.97
Pc 1	150	565.271	563.772	564.854	564.410	563.430	564.35
Core C1-1	200	531.547	529.972	529.863	529.831	528.912	530.02
	250	507.096	505.348	505.012	504.579	505.245	505.46
	300	486.959	486.771	486.493	486.415	486.727	486.67
	350	472.222	472.311	471.721	471.045	471.964	471.85
	400	462.210	461.304	461.877	459.981	459.623	461.00
	350	461.322	462.435	460.961	461.092	461.560	461.47
	300	465.128	464.707	465.331	464.802	465.701	465.13
	250	471.508	471.021	471.629	472.336	471.264	471.55
	200	482.808	483.077	482.236	483.054	482.665	482.77

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{Core B3} \& 200 \& 562.977 \& 561.826 \& 562.064 \& 560.452 \& 560.423 \& 561.55

\hline \& 250 \& 549.962 \& 549.006 \& 547.481 \& 549.622 \& 547.318 \& 548.68

\hline \& 300 \& 539.826 \& 539.616 \& 537.957 \& 537.254 \& 536.649 \& 538.26

\hline \& 350 \& 531.319 \& 530.001 \& 530.137 \& 529.579 \& 528.636 \& 529.93

\hline \& 400 \& 523.424 \& 523.514 \& 522.722 \& 522.516 \& 522.860 \& 523.01

\hline \& 350 \& 523.633 \& 524.508 \& 523.441 \& 523.700 \& 523.315 \& 523.72

\hline \& 300 \& 525.251 \& 524.845 \& 525.165 \& 525.892 \& 525.743 \& 525.38

\hline \& 250 \& 529.684 \& 529.349 \& 529.007 \& 529.828 \& 529.732 \& 529.52

\hline \& 200 \& 534.243 \& 533.983 \& 534.272 \& 533.413 \& 533.591 \& 533.90

\hline \& 150 \& 542.806 \& 543.046 \& 544.963 \& 544.414 \& 543.595 \& 543.76

\hline \multirow[t]{2}{*}{length: 2.768 cm width: 2.513 cm} \& 100 \& 557.040 \& 562.183 \& 560.094 \& 563.664 \& 563.511 \& 561.29

\hline \& 70 \& 577.601 \& 577.669 \& 577.834 \& 577.198 \& 578.211 \& 577.70

\hline \multirow{8}{*}{$$
\begin{gathered}
\text { ALV } 2608 \\
\operatorname{Pc} 2 \\
\text { Core } 1
\end{gathered}
$$} \& 70 \& 6366.8 \& -- \& -- \& -- \& -- \& 6366.8

\hline \& 100 \& 5838.7 \& -- \& -- \& -- \& -- \& 5838.7

\hline \& 150 \& 5607.6 \& -- \& -- \& -- \& -- \& 5607.6

\hline \& 200 \& 5475.2 \& -- \& -- \& -- \& -- \& 5475.2

\hline \& 250 \& 5216.6 \& -- \& -- \& -- \& -- \& 5216.6

\hline \& 300 \& 5051.5 \& -- \& -- \& -- \& -- \& 5051.5

\hline \& 350 \& 5000.4 \& -- \& -- \& -- \& -- \& 5000.4

\hline \& 400 \& 4953.8 \& -- \& -- \& -- \& -- \& 4953.8

\hline \multirow{8}{*}{$$
\begin{gathered}
\text { ALV } 2608-4-1 \\
\text { Pc } 2 \\
\text { Core } 2
\end{gathered}
$$} \& 70 \& 927.5 \& -- \& -- \& -- \& -- \& 927.5

\hline \& 100 \& 862.5 \& -- \& -- \& -- \& -- \& 862.5

\hline \& 150 \& 768.4 \& -- \& -- \& -- \& -- \& 768.4

\hline \& 200 \& 661.4 \& -- \& -- \& -- \& -- \& 661.4

\hline \& 250 \& 620.5 \& -- \& -- \& -- \& -- \& 620.5

\hline \& 300 \& 578.5 \& -- \& -- \& -- \& -- \& 578.5

\hline \& 350 \& 546.8 \& -- \& -- \& -- \& -- \& 546.8

\hline \& 400 \& 519.7 \& -- \& -- \& -- \& -- \& 519.7

\hline \multirow{8}{*}{$$
\begin{gathered}
\text { ALV 2608-4-1 } \\
\text { Pc } 2 \\
\text { Core } 4
\end{gathered}
$$} \& 70 \& 2989.3 \& -- \& -- \& -- \& -- \& 2989.3

\hline \& 100 \& 2522.4 \& -- \& -- \& -- \& -- \& 2522.4

\hline \& 150 \& 1329.1 \& -- \& -- \& -- \& -- \& 1329.1

\hline \& 200 \& 962.2 \& -- \& -- \& -- \& -- \& 962.2

\hline \& 250 \& 824.0 \& -- \& -- \& -- \& -- \& 824.0

\hline \& 300 \& 686.7 \& -- \& -- \& -- \& -- \& 686.7

\hline \& 350 \& 600.3 \& -- \& -- \& -- \& -- \& 600.3

\hline \& 400 \& 516.4 \& -- \& -- \& -- \& -- \& 516.4

\hline \multirow[b]{15}{*}{JAS 177-2-1
Core A2

length: 2.218 cm
width: 2.514 cm} \& 70 \& 314.626 \& 313.346 \& 312.126 \& 310.303 \& 309.883 \& 312.05

\hline \& 100 \& 243.739 \& 243.397 \& 243.349 \& 243.099 \& 243.725 \& 243.46

\hline \& 150 \& 215.481 \& 214.521 \& 214.077 \& 213.719 \& 213.385 \& 214.24

\hline \& 200 \& 199.998 \& 198.496 \& 198.091 \& 198.303 \& 197.660 \& 198.51

\hline \& 250 \& 187.728 \& 186.088 \& 184.883 \& 184.316 \& 184.134 \& 185.42

\hline \& 300 \& 171.939 \& 170.666 \& 170.140 \& 169.900 \& 169.130 \& 170.35

\hline \& 350 \& 160.626 \& 159.590 \& 159.027 \& 159.089 \& 157.934 \& 159.25

\hline \& 400 \& 153.294 \& 152.328 \& 152.055 \& 151.545 \& 151.417 \& 152.13

\hline \& 350 \& 152.204 \& 152.165 \& 152.138 \& 152.092 \& 151.725 \& 152.06

\hline \& 300 \& 154.280 \& 154.130 \& 153.832 \& 154.500 \& 153.939 \& 154.14

\hline \& 250 \& 160.107 \& 160.671 \& 160.192 \& 160.762 \& 160.773 \& 160.50

\hline \& 200 \& 168.698 \& 170.030 \& 169.869 \& 170.306 \& 170.118 \& 169.80

\hline \& 150 \& 185.603 \& 187.132 \& 187.371 \& 187.428 \& 187.657 \& 187.04

\hline \& 100 \& 199.953 \& 200.603 \& 200.621 \& 201.397 \& 200.972 \& 200.71

\hline \& 70 \& 218.030 \& 218.950 \& 220.015 \& 220.015 \& 220.404 \& 219.48

\hline \multirow{13}{*}{$$
\begin{gathered}
\text { JAS } 177-2-1 \\
\text { Core B1 }
\end{gathered}
$$} \& 70 \& 1970.679 \& 1967.907 \& 1952.082 \& 1946.331 \& 1966.707 \& 1960.72

\hline \& 100 \& 1938.225 \& 1938.673 \& 1933.839 \& 1934.105 \& 1937.615 \& 1936.49

\hline \& 150 \& 1870.491 \& 1868.112 \& 1866.645 \& 1863.640 \& 1864.134 \& 1866.60

\hline \& 200 \& 1829.610 \& 1826.120 \& 1826.484 \& 1826.328 \& 1829.966 \& 1827.70

\hline \& 250 \& 1798.435 \& 1794.460 \& 1794.601 \& 1797.557 \& 1793.888 \& 1795.79

\hline \& 300 \& 1775.321 \& 1774.622 \& 1775.426 \& 1776.324 \& 1772.495 \& 1774.84

\hline \& 350 \& 1756.224 \& 1755.267 \& 1755.827 \& 1757.025 \& 1759.920 \& 1756.85

\hline \& 400 \& 1746.502 \& -- \& 1748.644 \& 1745.181 \& 1743.343 \& 1745.92

\hline \& 350 \& 1745.179 \& 1751.080 \& 1751.198 \& 1751.386 \& 1752.148 \& 1750.20

\hline \& 300 \& 1759.851 \& 1754.367 \& 1758.087 \& 1756.928 \& 1754.947 \& 1756.83

\hline \& 250 \& 1767.359 \& 1765.442 \& 1770.256 \& 1770.705 \& 1768.686 \& 1768.49

\hline \& 200 \& 1784.591 \& 1789.792 \& 1783.725 \& 1785.145 \& 1790.641 \& 1786.78

\hline \& 150 \& 1809.819 \& 1811.795 \& 1807.653 \& 1810.306 \& 1808.277 \& 1809.57

\hline \multirow[t]{2}{*}{length: 4.716 cm width: 2.530 cm} \& 100 \& 1844.081 \& 1850.868 \& 1848.891 \& 1847.695 \& 1850.864 \& 1848.48

\hline \& 70 \& 1890.155 \& 1892.118 \& 1896.345 \& 1890.910 \& 1895.441 \& 1892.99

\hline
\end{tabular}

	70	3091.102	3084.953	3090.156	3075.858	3079.055	3084.22
JAS 177-2-1	100	3061.865	3053.692	3064.990	3061.396	3060.384	3060.46
Core B2	150	3025.202	3031.239	3015.798	3036.012	3017.584	3025.16
	200	3009.429	2990.444	2997.535	2998.335	2997.086	2998.56
	250	2972.199	2972.043	2975.953	2970.287	2973.411	2972.78
	300	2963.910	2950.067	2955.262	2949.312	2952.282	2954.16
	350	2946.318	2924.595	2944.733	2941.581	2927.182	2936.87
	400	2895.997	2900.238	2900.880	2898.089	2897.285	2898.50
	350	2895.263	2896.184	2896.945	2900.734	2901.119	2898.05
	300	2890.881	2894.065	2901.886	2895.291	2897.104	2895.84
	250	2900.340	2914.090	2904.944	2903.531	2903.011	2905.18
	200	2900.255	2902.641	2910.156	2904.491	2904.085	2904.32
	150	2910.503	2900.946	2915.379	2908.103	2909.121	2908.81
length: 3.940 cm width: 2.490 cm	100	2908.726	2911.321	2904.708	2910.646	2913.575	2909.79
	70	2915.579	2907.889	2912.434	2912.921	2914.079	2912.58
$\begin{gathered} \text { JAS } 177-2-1 \\ \text { Core C2 } \end{gathered}$	70	227.249	226.566	226.662	226.368	226.327	226.63
	100	217.294	217.596	217.714	216.642	217.136	217.28
	150	203.239	202.206	202.509	202.303	201.895	202.43
	200	194.519	193.915	194.100	193.986	194.010	194.11
	250	192.707	192.840	192.731	192.418	192.439	192.63
	300	191.615	192.347	192.282	192.324	192.058	192.13
	350	191.594	191.662	191.394	191.861	191.618	191.63
	400	191.821	191.713	191.999	191.959	191.851	191.87
	350	192.400	192.625	192.448	192.009	191.940	192.28
	300	192.295	192.829	192.629	192.629	192.562	192.59
	250	192.588	192.607	192.874	193.428	192.696	192.84
	200	193.275	193.233	193.118	192.832	193.428	193.18
	150	194.036	194.147	194.058	193.834	194.526	194.12
length: 1.684 cm width: 2.494 cm	100	198.135	198.350	198.803	198.659	198.840	198.56
	70	204.538	205.062	205.519	206.114	205.927	205.43
$\begin{gathered} \text { ALV 2179-1-1 } \\ \text { Core A1 } \end{gathered}$	70	705.981	700.726	699.559	700.027	702.002	701.66
	100	668.923	669.453	667.615	668.482	667.635	668.42
	150	632.466	631.657	628.528	631.155	628.174	630.39
	200	607.264	604.945	604.588	604.883	603.348	605.00
	250	588.086	588.087	589.624	585.678	586.983	587.69
	300	575.528	576.449	575.717	575.843	576.054	575.92
	350	565.491	565.159	566.121	564.705	566.500	565.59
	400	560.223	561.459	560.019	561.083	560.965	560.75
	350	560.110	561.736	561.288	560.340	562.180	561.13
	300	563.446	565.603	566.188	565.287	565.028	565.11
	250	569.144	568.900	569.277	569.405	569.993	569.34
	200	576.223	576.950	576.691	576.831	576.685	576.68
	150	589.704	586.060	588.477	590.419	588.755	588.68
length: 1.227 cm width: 2.500 cm	100	610.599	610.206	610.488	608.705	609.243	609.85
	70	636.543	633.144	637.494	637.501	638.534	636.64
$\begin{gathered} \text { ALV 2179-1-1 } \\ \text { Core A2 } \end{gathered}$	70	1174.117	1170.142	1168.271	1159.571	1163.192	1167.05
	100	1151.085	1143.705	1144.000	1151.837	1152.335	1148.59
	150	1130.405	1127.753	1126.114	1119.097	1126.485	1125.96
	200	1111.778	1103.340	1104.392	1105.404	1108.562	1106.69
	250	1092.732	1095.101	1091.446	1093.232	1096.337	1093.77
	300	1079.162	1075.249	1080.424	1077.993	1082.638	1079.09
	350	1069.860	1070.511	1070.050	1065.363	1066.531	1068.46
	400	1060.841	1063.095	1064.589	1063.225	1061.767	1062.70
	350	1067.572	1065.166	1063.086	1063.529	1065.070	1064.88
	300	1067.695	1069.764	1071.156	1064.323	1070.163	1068.62
	250	1073.940	1074.398	1079.232	1073.927	1078.135	1075.92
	200	1081.777	1087.969	1085.055	1085.629	1078.521	1083.79
	150	1094.489	1093.103	1096.476	1095.134	1097.036	1095.25
length: 1.512 cm width: 2.477 cm	100	1118.171	1111.254	1116.128	1113.354	1117.432	1115.26
	70	1129.681	1126.553	1127.663	1136.349	1136.837	1131.41
$\begin{gathered} \text { ALV 2179-1-1 } \\ \text { Core A3 } \end{gathered}$	70	1068.020	1058.076	1045.073	1038.420	1041.216	1050.10
	100	1001.936	1004.255	1003.405	1002.527	1002.657	1002.96
	150	955.274	954.003	961.515	956.513	955.928	956.64
	200	926.327	928.599	930.027	924.891	929.664	927.90
	250	907.391	907.141	904.837	904.037	904.137	905.51
	300	890.551	887.398	888.108	884.158	886.297	887.30

	350	876.486	879.913	874.105	872.965	873.598	875.41
	400	866.835	861.410	860.928	863.097	863.697	863.19
	350	862.285	861.886	862.434	863.646	863.059	862.66
	300	864.469	862.581	861.663	864.585	864.191	863.50
	250	867.398	864.946	869.532	867.521	868.132	867.50
	200	871.760	875.320	873.618	876.510	875.317	874.50
	150	884.081	883.647	881.405	887.031	883.500	883.93
	100	901.256	902.294	905.432	904.437	909.051	904.49
	70	926.343	927.987	927.487	928.065	924.423	926.86
$\begin{aligned} & \text { ALV 2179-1-1 } \\ & \text { Core B2 } \end{aligned}$	70	1525.934	1514.922	1517.709	1510.970	1513.303	1516.56
	100	1514.446	1509.204	1512.182	1510.386	1512.859	1511.81
	150	1496.321	1496.147	1505.554	1504.492	1502.829	1501.06
	200	1486.043	1486.640	1484.575	1490.167	1489.973	1487.48
	250	1486.181	1487.855	1488.447	1480.940	1481.430	1484.97
	300	1480.368	1469.180	1479.771	1479.525	1473.946	1476.55
	350	1473.449	1474.968	1471.480	1462.585	1465.123	1469.51
	400	1461.807	1465.717	1461.805	1464.275	1459.899	1462.70
	350	1463.376	1465.393	1467.523	1470.742	1464.395	1466.28
	300	1467.562	1468.938	1471.480	1472.988	1465.040	1469.20
	250	1466.576	1475.790	1470.244	1470.892	1475.539	1471.80
	200	1475.733	1480.648	1481.299	1480.353	1475.737	1478.75
length: 1.745 cm width: 2.462 cm	150	1482.246	1492.937	1488.151	1484.985	1492.164	1488.09
	100	1502.738	1500.069	1502.000	1500.531	1507.536	1502.57
	70	1506.464	1504.310	1513.987	1511.296	1507.031	1508.61

A2.3 Zn-Rich Actively Diffusing Spire Data

A2.4 Black Smoker Chimney Data

length: 1.889 cm width: 2.534 cm	100 70	$\begin{aligned} & 0.494 \\ & 0.573 \end{aligned}$	$\begin{aligned} & 0.486 \\ & 0.562 \end{aligned}$	0.495 0.574	0.503 0.549	0.516 0.570	$\begin{aligned} & 0.50 \\ & 0.57 \end{aligned}$
	70	0.970	1.033	0.973	1.011	0.989	1.00
J2-137-1-R1	100	0.941	0.935	0.901	0.934	0.871	0.92
Core D3	150	0.763	0.803	0.783	0.767	0.817	0.79
	200	0.774	0.722	0.775	0.742	0.775	0.76
	250	0.744	0.753	0.764	0.740	0.754	0.75
	300	0.722	0.711	0.722	0.715	0.702	0.71
	350	0.676	0.691	0.696	0.704	0.699	0.69
	400	0.670	0.701	0.684	0.692	0.684	0.69
	350	0.696	0.713	0.683	0.695	0.715	0.70
	300	0.701	0.714	0.736	0.716	0.718	0.72
	250	0.750	0.726	0.727	0.731	0.730	0.73
	200	0.764	0.714	0.724	0.745	0.757	0.74
	150	0.755	0.766	0.788	0.784	0.772	0.77
length: 2.123 cm width: 2.533 cm	100	0.781	0.790	0.778	0.801	0.789	0.79
	70	0.802	0.810	0.835	0.810	0.794	0.81
$\begin{gathered} \mathrm{J} 2-137-1-\mathrm{R} 1 \\ \text { Core D4 } \end{gathered}$	70	0.894	0.908	0.869	0.918	0.905	0.90
	100	0.755	0.732	0.758	0.736	0.758	0.75
	150	0.689	0.667	0.658	0.637	0.661	0.66
	200	0.641	0.611	0.612	0.632	0.622	0.62
	250	0.615	0.663	0.612	0.605	0.641	0.63
	300	0.604	0.613	0.607	0.618	0.593	0.61
	350	0.593	0.593	0.605	0.599	0.604	0.60
	400	0.599	0.607	0.590	0.587	0.600	0.60
	350	0.603	0.578	0.610	0.600	0.622	0.60
	300	0.624	0.612	0.613	0.593	0.615	0.61
	250	0.617	0.614	0.636	0.626	0.615	0.62
	200	0.651	0.617	0.628	0.626	0.636	0.63
	150	0.630	0.652	0.652	0.632	0.657	0.65
length: 2.139 cm width: 2.526 cm	100	0.660	0.665	0.671	0.642	0.654	0.66
	70	0.686	0.697	0.687	0.697	0.679	0.69
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core A1 } \end{gathered}$	70	29.573	29.698	30.018	29.730	29.741	29.75
	100	25.614	25.203	25.234	25.114	25.153	25.26
	150	21.951	21.891	21.836	22.030	21.795	21.90
	200	20.371	20.347	20.248	20.217	20.221	20.28
	250	19.196	19.305	19.472	19.242	19.212	19.29
	300	18.536	18.428	18.376	18.471	18.434	18.45
	350	17.922	17.957	17.873	17.813	17.939	17.90
	400	17.537	17.563	17.454	17.359	17.440	17.47
	350	17.447	17.485	17.539	17.439	17.507	17.48
	300	17.575	17.604	17.761	17.672	17.640	17.65
	250	17.956	17.833	17.860	17.907	17.884	17.89
	200	18.251	18.100	18.301	18.219	18.325	18.24
	150	18.864	18.728	18.713	18.744	18.837	18.78
length: 2.287 cm width: 2.492 cm	100	19.674	19.852	19.752	19.930	19.908	19.82
	70	21.015	21.125	21.184	21.142	21.231	21.14
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core B1 } \end{gathered}$	70	48.768	48.880	48.898	49.026	48.972	48.91
	100	45.986	45.305	45.418	45.442	45.399	45.51
	150	42.314	42.275	42.364	42.090	42.166	42.24
	200	40.704	40.712	40.296	40.307	40.334	40.47
	250	39.230	38.910	39.001	38.968	39.086	39.04
	300	37.503	37.663	37.684	37.603	37.940	37.68
	350	36.207	36.242	36.348	36.000	36.002	36.16
	400	35.086	35.063	34.779	34.917	34.839	34.94
	350	35.011	35.157	35.150	35.242	35.331	35.18
	300	35.806	35.684	35.989	35.769	35.889	35.83
	250	36.595	36.466	36.581	36.524	36.601	36.55
	200	37.253	37.486	37.189	37.520	37.184	37.33
	150	38.419	38.277	38.343	38.123	38.233	38.28
length: 1.526 cm width: 2.485 cm	100	39.686	39.518	39.546	39.545	39.695	39.60
	70	41.330	41.643	41.507	41.470	41.591	41.51
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core D1 } \end{gathered}$	70	145.398	144.73	146.158	145.144	144.465	145.18
	100	135.884	135.292	135.557	134.619	136.561	135.58
	150	123.745	122.970	123.249	121.982	122.768	122.94
	200	115.644	115.183	115.355	114.749	115.242	115.23

	250	106.472	106.354	106.853	106.308	105.595	105.60
	300	99.981	100.422	99.220	99.071	98.800	99.50
	350	92.481	92.160	91.900	92.009	91.986	92.11
	400	87.036	86.522	86.651	86.247	86.657	86.62
	350	87.533	87.292	87.312	87.492	87.623	87.45
	300	89.576	89.806	89.764	90.623	89.867	89.93
	250	94.961	95.042	95.249	95.322	95.471	95.21
length: 2.140 cm	150	110.934	110.159	109.454	110.320	110.540	101.86
width: 2.534 cm	100	118.407	119.333	118.587	118.251	119.122	110.28
	70	125.588	126.324	125.950	124.985	125.134	118.74
		200	101.409	101.525	101.889	102.534	101.938

A2.5 Relict Spire Data

| | 150 | 113.721 | 113.565 | 114.081 | 114.629 | 113.879 | 113.97 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| length: 3.389 cm
 width: 2.564 cm | 100 | 116.575 | 116.777 | 116.954 | 116.368 | 116.928 | 116.72 |
| | 70 | 120.350 | 120.522 | 120.478 | 120.523 | 121.252 | 120.62 |

Appendix 3: Porosity Data

A3.1 Massive Anhydrite Data

Sample	Confining Pressure (psi)	1	2	rosity 3	4	5	Mean ϕ (\%)
$\begin{gathered} \text { J2-210-8-R2 } \\ \text { Core A-1 } \end{gathered}$	300	2.964	2.173	1.540	2.426	2.807	2.32
	400	3.315	1.287	3.062	3.062	3.347	2.66
	450	3.570	0.404	2.046	2.299	3.473	1.88
$\begin{gathered} \text { J2-210-8-R2 } \\ \text { Core A-2 } \end{gathered}$	300	3.125	3.742	2.198	3.125	0.276	1.86
	400	3.051	0.583	2.198	2.508	3.361	2.01
	450	4.288	2.198	3.125	3.125	0.276	1.91
$\begin{gathered} \text { J2-210-8-R2 } \\ \text { Core A-3 } \end{gathered}$	300	5.945	5.945	0.847	2.537	2.203	2.78
	400	5.737	0.100	3.079	5.527	4.645	2.14
	450	5.527	2.203	3.893	5.465	1.723	3.39
$\begin{gathered} \mathrm{J} 2-216-5-\mathrm{R} 1 \\ \text { Core A2 } \end{gathered}$	300	9.147	12.644	13.754	9.106	13.933	11.51
	400	13.933	8.795	12.153	13.399	11.445	11.80
	450	13.221	10.383	14.070	10.559	9.063	11.31
$\begin{gathered} \text { J2-216-14-R1 } \\ \text { Core A } \end{gathered}$	300	3.643	3.191	1.317	1.194	2.009	2.06
	400	3.316	2.537	3.807	3.480	2.537	3.09
	450	3.519	3.972	1.557	3.846	3.480	3.11
$\begin{gathered} \mathrm{J} 2-216-14-\mathrm{R} 1 \\ \text { Core B } \end{gathered}$	300	5.624	5.606	5.684	5.624	5.624	5.63
	400	5.527	5.527	5.389	5.467	5.389	5.46
	450	5.467	5.467	5.389	5.467	5.546	5.47
$\begin{aligned} & \text { J301-3 } \\ & \text { Core A } \end{aligned}$	300	14.795	14.795	14.846	14.846	14.846	14.83
	400	14.757	14.757	14.706	14.757	14.846	14.77
	450	14.757	14.757	14.666	14.666	14.717	14.71
$\begin{aligned} & \text { J301-3 } \\ & \text { Core B } \end{aligned}$	300	8.001	7.861	7.892	7.946	7.892	7.92
	400	7.837	7.752	7.837	7.892	7.783	7.82
	450	7.837	7.892	7.868	7.783	7.892	7.85
$\begin{gathered} \text { ALV 2581-8 } \\ \text { Core A } \end{gathered}$	300	12.696	12.734	12.630	12.668	12.630	12.67
	400	12.630	12.601	12.564	12.564	12.601	12.59
	450	12.497	12.535	12.535	12.601	12.535	12.54
MIR 1, 1/74	300	11.017	11.017	10.876	10.806	10.876	10.92
Sta 2403	400	10.876	10.806	10.806	10.806	10.876	10.83
Core A-1	450	10.946	10.946	10.876	10.876	10.806	10.89
MIR 1, 1/74	300	12.322	12.173	12.173	12.130	12.023	12.16
Sta 2403	400	12.023	12.066	12.023	11.949	11.800	11.97
Core A-2	450	12.023	11.949	11.875	11.875	11.949	11.93
MIR 1, 1/74	300	9.073	9.007	8.942	9.045	9.007	9.02
Sta 2403	400	8.942	8.914	8.914	8.914	8.877	8.91
Core B	450	8.914	8.783	8.783	8.783	8.914	8.84
MIR 1, 2/78	300	15.105	14.960	14.992	14.919	14.992	14.99
Sta 2417	400	14.774	14.743	14.847	14.774	14.702	14.77
Core A	450	14.670	14.670	14.670	14.630	14.670	14.66
MIR 1, 2/78	300	13.497	13.587	13.416	13.416	13.416	13.47
Sta 2417	400	13.358	13.244	13.301	13.301	13.244	13.29
Core B	450	13.188	13.188	13.277	13.188	13.220	13.21
ALV 21837-0 Core 2	300	5.020	--	--	--	--	5.02
	400	3.641	--	--	--	--	3.64
	450	--	--	--	--	--	--
ALV 21837-0 Core 3	300	6.115	--	--	--	--	6.12
	400	2.395	--	--	--	--	2.40
	450	--	--	--	--	--	--
ALV 21837-0 Core B	300	6.633	--	--	--	--	6.63
	400	4.022	--	--	--	--	4.02
	450	--	--	--	--	--	--

A3.2 Flange, Slab and Crust Data

Sample	Confining Pressure (psi)	1	2	rosity	4	5	Mean ϕ (\%)
$\begin{aligned} & \text { ALV } 3517-\mathrm{R} 1 \\ & \text { Core D1 } \end{aligned}$	300	25.098	21.125	21.801	21.171	21.664	22.12
	400	24.330	21.486	21.084	21.084	20.409	21.64
	450	24.147	20.768	20.587	20.368	19.295	20.97
$\begin{gathered} \text { ALV 3517-R1 } \\ \text { Core D3 } \end{gathered}$	300	23.724	18.833	19.017	21.247	18.508	20.17
	400	23.119	19.202	20.318	18.094	18.461	19.76
	450	22.928	18.603	19.387	18.461	19.344	19.68
$\begin{gathered} \text { ALV } 3521-\mathrm{R} 2 \\ \text { Core A2 } \end{gathered}$	300	42.067	41.983	41.983	41.983	41.983	42.00
	400	40.570	40.570	40.570	40.570	40.369	40.53
	450	39.968	39.968	40.079	40.079	40.079	40.03
$\begin{aligned} & \text { ALV 3521-R2 } \\ & \text { Core Ex } 1 \end{aligned}$	300	45.559	45.470	45.074	45.272	45.272	45.33
	400	44.671	44.671	44.671	44.869	44.869	44.75
	450	44.296	44.160	44.473	44.473	44.269	44.33
$\begin{gathered} \text { ALV 3521-R2 } \\ \text { Core Ex } 2 \end{gathered}$	300	46.020	45.803	46.239	45.747	45.747	45.91
	400	44.878	44.659	44.659	44.451	44.659	44.66
	450	44.017	43.800	44.396	43.745	43.800	43.95
$\begin{aligned} & \text { ALV 2415-1B } \\ & \text { Core A1 } \end{aligned}$	300	19.230	20.608	20.529	19.977	20.667	20.20
	400	20.806	20.390	20.667	20.390	20.390	20.53
	450	20.390	20.943	20.529	20.529	20.667	20.61
$\begin{aligned} & \text { ALV 2415-1B } \\ & \text { Core B1 } \end{aligned}$	300	31.238	31.141	31.372	31.105	31.008	31.17
	400	31.105	30.971	30.971	30.971	30.638	30.93
	450	30.807	30.874	30.771	30.673	30.638	30.75
ALV 2415-1B Core 1	300	17.110	--	--	--	--	17.110
	400	15.271	--	--	--	--	15.271
	450	--	--	--	--	--	--
ALV 2415-1B Core 2	300	19.164	--	--	--	--	19.164
	400	17.216	--	--	--	--	17.216
	450	--	--	--	--	--	--
$\begin{gathered} \text { ALV 2927-3 } \\ \text { Core B1 } \end{gathered}$	300	38.150	38.219	38.219	38.277	38.219	38.22
	400	37.899	37.969	37.969	37.899	37.969	37.94
	450	37.775	37.845	37.845	37.969	37.845	37.86
ALV 2927-3 Core 1	300	41.806	--	--	--	--	41.806
	400	39.623	--	--	--	--	39.623
	450	--	--	--	--	--	--
ALV 2927-3 Core 2	300	32.669	--	--	--	--	32.669
	400	29.474	--	--	--	--	29.474
	450	--	--	--	--	--	--
ALV 2927-3 Core 3	300	40.726	--	--	--	--	40.726
	400	38.191	--	--	--	--	38.191
	450	--	--	--	--	--	--
$\begin{gathered} \text { J2-286 } \\ \text { Core A1 } \end{gathered}$	300	20.686	20.686	20.686	20.581	20.686	20.66
	400	20.686	20.371	20.371	20.476	20.476	20.48
	450	20.476	20.371	20.371	20.371	20.208	20.36
$\begin{gathered} \mathrm{J} 2-286 \\ \text { Core A3 } \end{gathered}$	300	24.025	25.195	25.225	25.860	26.063	25.26
	400	26.100	25.255	25.023	24.957	25.225	25.31
	450	26.131	25.225	25.121	25.225	25.157	25.37
$\begin{gathered} \text { J2-286 } \\ \text { Core C2-1 } \end{gathered}$	300	27.407	27.494	26.959	27.043	27.257	27.23
	400	27.494	27.107	27.343	27.193	27.193	27.27
	450	27.193	27.043	27.193	27.127	27.043	27.12
$\begin{gathered} \text { J2-286 } \\ \text { Core C2-2 } \end{gathered}$	300	24.243	23.990	24.143	24.089	24.143	24.12
	400	24.539	24.143	24.102	24.143	23.947	24.17
	450	24.341	24.200	24.046	24.200	24.200	24.20
$\begin{gathered} \text { J2-286 } \\ \text { Core C3-1 } \end{gathered}$	300	31.056	28.503	27.191	25.301	26.118	27.56
	400	30.168	28.945	26.879	27.097	25.989	27.77
	450	30.263	27.532	26.443	28.945	29.731	28.55
$\begin{gathered} \text { J2-286 } \\ \text { Core C3-2 } \end{gathered}$	300	22.005	20.927	20.523	21.466	21.272	21.23
	400	21.677	20.466	19.929	20.122	21.330	20.69
	450	21.523	19.929	21.196	19.854	20.332	20.56
$\begin{gathered} \mathrm{J} 2-286 \\ \text { Core C4 } \end{gathered}$	300	22.267	20.833	20.443	19.152	19.667	20.44
	400	21.688	19.797	20.056	18.951	19.281	19.93
	450	21.484	19.152	19.355	18.839	19.409	19.63

ALV 2608-3-3 Core B2	300	43.155	42.980	42.760	42.760	43.143	42.96
	400	42.599	42.647	42.314	42.426	42.709	42.54
	450	42.426	42.647	41.872	42.154	42.204	42.26
$\begin{gathered} \text { ALV 2608-3-3 } \\ \text { Core C1 } \end{gathered}$	300	29.401	29.252	28.955	29.103	29.103	29.16
	400	28.870	28.658	28.955	28.870	28.573	28.79
	450	28.807	28.573	28.573	28.510	28.807	28.65
$\begin{gathered} \hline \text { ALV } 2608-4-1 \\ \text { Pc } 1 \\ \text { Core A1 } \\ \hline \end{gathered}$	300	35.109	34.934	34.865	34.934	34.865	34.94
	400	34.971	34.794	34.865	34.587	34.725	34.79
	450	34.832	34.556	34.656	34.794	34.794	34.73
$\begin{gathered} \hline \text { ALV 2608-4-1 } \\ \text { Pc } 1 \\ \text { Core C1-1 } \\ \hline \end{gathered}$	300	37.501	37.326	36.938	37.840	36.538	37.23
	400	37.050	36.650	36.825	36.663	35.370	36.51
	450	37.275	35.816	35.705	34.876	35.147	35.75
$\begin{gathered} \hline \text { ALV 2608-4-1 } \\ \text { Pc } 1 \\ \text { Core C1-2 } \\ \hline \end{gathered}$	300	46.627	46.561	45.672	46.413	46.644	46.38
	400	46.561	46.116	46.495	46.264	46.199	46.33
	450	45.902	45.968	46.199	45.672	45.754	45.90
$\begin{gathered} \hline \text { ALV 2608-4-1 } \\ \text { Pc } 1 \\ \text { Core C3-1 } \\ \hline \end{gathered}$	300	35.624	34.357	34.902	35.093	35.226	35.04
	400	35.093	34.828	34.828	34.638	34.770	34.77
	450	35.035	35.300	34.373	35.300	35.300	35.06
$\begin{gathered} \hline \text { ALV 2608-4-1 } \\ \text { Pc } 1 \\ \text { Core C3-2 } \end{gathered}$	300	37.516	36.459	37.255	37.516	37.182	37.18
	400	37.124	37.573	36.995	36.735	37.124	37.11
	450	37.182	36.662	36.402	35.827	36.995	36.61
$\begin{gathered} \text { ALV 2608-4-1 } \\ \text { Pc } 2 \\ \text { Core A3 } \\ \hline \end{gathered}$	300	39.877	39.660	40.022	39.877	39.733	39.83
	400	39.699	39.626	39.589	39.660	39.555	39.63
	450	39.771	39.660	39.555	39.555	39.555	39.62
$\begin{gathered} \hline \text { ALV } 2608-4-1 \\ \text { Pc } 2 \\ \text { Core B3 } \\ \hline \end{gathered}$	300	43.230	43.159	43.105	43.105	43.105	43.14
	400	42.923	42.727	42.980	42.852	42.727	42.84
	450	42.727	42.478	42.673	42.798	42.798	42.69
ALV 2608-4-1	300	45.569	--	--	--	--	45.569
Pc 2 Core 1	400	44.132	--	--	--	--	44.132
	450	--	--	--	--	--	--
ALV 2608-4-1	300	47.969	--	--	--	--	47.969
Pc 2 Core 2	400	46.249	--	--	--	--	46.249
	450	--	--	--	--	--	--
$\begin{gathered} \text { ALV 2608-4-1 } \\ \text { Pc } 2 \\ \text { Core } 4 \\ \hline \end{gathered}$	300	44.009	--	--	--	--	44.009
	400	42.376	--	--	--	--	42.376
	450	--	--	--	--	--	--
$\begin{gathered} \text { JAS } 177-2-1 \\ \text { Core A2 } \end{gathered}$	300	46.347	46.218	46.071	46.071	45.754	46.09
	400	45.924	45.772	45.543	45.772	45.478	45.70
	450	45.395	45.772	45.327	45.395	45.327	45.44
$\begin{gathered} \text { JAS 177-2-1 } \\ \text { Core B1 } \end{gathered}$	300	39.921	38.307	38.472	39.337	38.179	38.84
	400	39.383	38.390	38.472	38.472	39.588	38.86
	450	39.217	37.935	38.472	38.263	38.060	38.39
$\begin{gathered} \text { JAS 177-2-1 } \\ \text { Core B2 } \end{gathered}$	300	42.600	40.598	40.167	41.171	41.267	41.15
	400	42.128	40.547	40.315	41.789	40.453	41.04
	450	41.692	40.505	40.409	40.598	39.789	40.59
$\begin{gathered} \text { JAS } 177-2-1 \\ \text { Core C2 } \end{gathered}$	300	37.972	41.246	42.354	42.354	42.088	41.17
	400	41.615	41.062	38.781	38.051	38.051	39.48
	450	41.062	38.051	38.051	39.147	36.959	38.63
$\begin{gathered} \text { ALV 2179-4-1 } \\ \text { Core A1 } \end{gathered}$	300	38.877	38.396	35.518	35.892	36.131	36.94
	400	38.052	34.800	37.090	34.358	32.661	35.34
	450	36.475	32.322	34.358	29.859	32.456	33.02
$\begin{gathered} \text { ALV 2179-4-1 } \\ \text { Core A2 } \end{gathered}$	300	41.325	36.814	35.705	39.910	36.102	37.91
	400	39.507	35.817	37.014	37.414	39.419	37.81
	450	38.816	37.100	36.216	37.100	36.814	37.20
$\begin{gathered} \text { ALV 2179-4-1 } \\ \text { Core A3 } \end{gathered}$	300	40.768	39.392	39.981	36.275	35.887	38.41
	400	39.392	36.662	36.468	37.161	36.275	37.17
	450	38.805	36.857	34.837	36.578	37.356	36.86
$\begin{gathered} \text { ALV 2179-4-1 } \\ \text { Core B2 } \end{gathered}$	300	43.273	43.191	43.191	43.011	43.273	43.19
	400	42.622	42.256	42.256	42.176	42.541	42.37
	450	42.256	42.071	42.071	41.996	42.176	42.11

A3.3 Zn-Rich Actively Diffusing Spire Data

	Confining	Porosity (\%)					$\begin{gathered} \text { Mean } \phi \\ (\%) \end{gathered}$
Sample	Pressure (psi)	1	2	3	4	5	
ALV 2187-1-1	300	45.72	45.57	45.41	45.57	45.37	45.53
top	400	44.20	44.00	44.01	44.11	44.11	44.08
Core A2	450	43.60	43.35	43.30	43.60	43.40	43.45
ALV 2187-1-1	300	36.72	36.51	36.40	36.56	36.51	36.54
top	400	35.93	35.93	35.87	35.77	35.72	35.84
Core A4	450	35.62	35.56	35.66	35.45	35.66	35.59
ALV 2187-1-1	300	45.93	45.48	45.48	45.02	45.38	45.46
top	400	44.80	43.89	44.12	44.12	44.02	44.19
Core B1	450	43.89	43.67	43.44	43.67	43.44	43.62
ALV 2187-1-1	300	39.15	38.87	38.61	38.79	39.15	38.92
bottom	400	38.44	38.44	38.51	38.16	38.26	38.36
Core A2	450	37.98	38.08	38.08	38.08	38.08	38.06
ALV 2187-1-1	300	42.28	42.12	42.12	41.95	42.03	42.10
bottom	400	41.63	41.79	41.70	42.03	41.79	41.79
Core B1	450	41.21	41.04	41.04	41.21	40.79	41.06
ALV 2187-1-1	300	41.04	41.11	40.91	40.98	41.09	41.03
bottom	400	40.80	40.44	40.44	40.44	40.44	40.51
Core C2	450	40.34	40.34	40.34	40.44	40.52	40.39
ALV 2187-1-1	300	40.81	40.81	40.59	40.59	40.37	40.63
bottom	400	40.25	40.00	40.03	40.03	39.71	40.00
Core C3	450	40.09	39.71	40.03	39.15	39.81	39.76
	300	41.88	41.63	41.82	41.78	41.78	41.78
ALV 2187-1-2	400	41.39	41.39	41.29	41.19	41.19	41.29
Core B2-2	450	41.00	40.90	40.80	40.86	40.96	40.90
	300	39.47	39.33	39.33	39.29	39.42	39.37
ALV 2187-1	400	38.84	38.66	38.75	38.70	38.66	38.72
Core C1/C2	450	38.57	38.48	38.39	38.39	38.34	38.43
	300	41.41	41.53	41.21	41.16	41.23	41.31
ALV 2187-1-2	400	40.98	40.78	40.85	40.85	40.98	40.89
	450	40.73	40.60	40.48	40.48	40.35	40.53
	300	42.59	42.41	42.21	42.34	42.34	42.38
ALV 2187-1-2	400	41.66	41.72	41.35	41.17	41.42	41.46
Core C3-2	450	40.61	40.55	40.43	40.68	40.68	40.59
	300	43.03	42.89	42.83	42.89	42.69	42.87
	400	42.30	42.30	42.16	42.20	42.20	42.23
	450	42.10	41.96	41.81	41.96	42.20	42.00
	300	47.52	47.39	47.64	47.45	47.39	47.48
	400	47.02	46.78	46.84	46.90	46.78	46.86
	450	46.65	46.84	46.41	46.60	46.97	46.69
	300	48.06	47.56	47.56	47.76	47.17	47.62
	400	46.59	45.81	45.92	46.00	46.00	46.06
	450	45.42	45.04	45.15	45.34	45.34	45.26
	300	41.54	40.96	41.34	41.34	41.54	41.34
2190-14-1	400	41.34	40.77	40.77	41.26	40.96	41.02
	450	41.15	40.77	40.96	40.96	41.15	41.00
	300	27.98	27.94	28.15	28.11	27.98	28.03
	400	27.52	27.64	27.14	27.48	27.14	27.38
	450	27.31	26.98	27.14	26.68	26.94	27.01
	300	48.02	47.42	47.12	48.19	48.32	47.81
-137-7-R1	400	44.75	44.16	43.86	44.16	44.45	44.27
	450	43.86	43.99	43.40	43.57	43.40	43.64
	300	34.99	34.75	34.99	34.99	35.23	34.99
J2-222-1-R1	400	34.22	34.04	34.22	33.87	34.00	34.07
Core A1	450	34.04	33.69	33.33	33.69	33.82	33.72
	300	36.35	35.87	35.87	36.01	35.77	35.97
	400	36.25	35.52	35.39	35.63	35.34	35.63
Core A2	450	36.15	35.21	35.39	35.39	35.87	35.60
	300	30.01	30.26	29.51	29.76	29.26	29.76
	400	29.76	29.26	29.51	29.26	29.07	29.37
Core Ex	450	29.76	29.26	29.01	29.07	29.26	29.27

| J2-127-1-R2 | 300 | 37.85 | 37.53 | 37.31 | 37.31 | 37.19 | 37.44 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 400 | 37.22 | 36.87 | 36.87 | 37.44 | 36.87 | 37.05 |
| | 450 | 37.09 | 36.43 | 36.65 | 36.87 | 36.78 | 36.76 |
| J2-127-1-R2 | 300 | 36.25 | 36.16 | 36.09 | 36.09 | 36.25 | 36.16 |
| | 400 | 35.67 | 35.60 | 35.50 | 35.57 | 35.92 | 35.65 |
| | 450 | 35.43 | 35.60 | 35.50 | 35.50 | 35.50 | 35.51 |

A3.4 Black Smoker Chimney Data

Sample	Confining Pressure (psi)	1	2	rosity (\%) 3	4	5	Mean ϕ (\%)
$\begin{aligned} & \text { ALV 1445-3 } \\ & \text { Core C1 } \end{aligned}$	300	24.839	24.882	25.223	24.882	24.882	24.94
	400	24.070	24.691	23.537	23.876	23.876	24.01
	450	23.493	22.918	23.494	22.581	23.494	23.19
$\begin{gathered} \text { ALV 2179-4-1 } \\ \text { Core A1 } \end{gathered}$	300	42.799	43.004	43.336	41.995	42.594	42.74
	400	41.933	41.728	41.256	41.194	41.131	41.45
	450	40.722	41.194	40.722	40.926	41.461	41.00
$\begin{aligned} & \text { ALV 2179-4-1 } \\ & \text { Core B1 } \end{aligned}$	300	36.794	36.746	36.488	36.376	36.536	36.59
	400	35.288	34.872	35.080	34.458	35.080	34.95
	450	34.408	34.042	34.042	34.408	34.250	34.23
$\begin{aligned} & \text { ALV 2179-4-1 } \\ & \text { Core C1 } \end{aligned}$	300	42.171	42.338	41.902	42.338	42.338	42.22
	400	41.416	41.468	41.685	41.251	41.034	41.37
	450	40.599	40.817	40.217	40.432	40.599	40.53
$\begin{gathered} \text { J2-137-1-R1 } \\ \text { Core D1 } \end{gathered}$	300	17.085	16.700	16.827	17.085	16.926	16.92
	400	16.926	16.669	16.542	16.926	16.315	16.67
	450	16.542	16.700	16.542	16.444	16.413	16.53
$\begin{gathered} \text { J2-137-1-R1 } \\ \text { Core D2 } \end{gathered}$	300	14.025	13.871	13.650	13.996	14.150	13.94
	400	14.025	14.120	13.899	13.431	13.775	13.85
	450	13.899	13.526	13.526	13.526	13.526	13.60
$\begin{gathered} \text { J2-137-1-R1 } \\ \text { Core D3 } \end{gathered}$	300	18.255	18.000	18.127	18.098	17.746	18.04
	400	17.873	17.970	17.619	17.843	17.716	17.80
	450	17.843	17.716	17.619	17.619	17.619	17.68
$\begin{gathered} \text { J2-137-1-R1 } \\ \text { Core D4 } \end{gathered}$	300	17.749	17.621	17.749	17.621	18.005	17.75
	400	17.877	17.237	17.237	17.364	17.364	17.41
	450	17.621	17.109	17.109	17.335	17.237	17.28
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core A1 } \end{gathered}$	300	29.020	29.337	28.755	28.755	28.797	28.93
	400	29.295	28.396	28.438	28.618	28.438	28.64
	450	28.576	28.618	28.438	28.438	28.438	28.50
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core B1 } \end{gathered}$	300	30.507	30.549	30.507	30.689	30.549	30.56
	400	30.369	30.005	30.005	30.005	30.369	30.15
	450	29.825	30.145	30.145	30.187	30.005	30.06
$\begin{gathered} \text { J2-213-3-R1 } \\ \text { Core D1 } \end{gathered}$	300	39.484	38.969	38.969	38.713	38.969	39.02
	400	39.117	38.713	38.199	38.199	38.861	38.62
	450	38.713	38.457	38.603	37.942	38.861	38.51

A3.5 Relict Spire Data

	Confining Pressure (psi)	Porosity (\%)					
ple		1	2	3	4	5	(\%)
J2-129-1-R3	300	41.124	41.128	40.946	40.946	40.946	41.02
J-129-1-R3 Core B 2	400	40.227	40.156	40.227	40.227	40.156	40.20
Core B2	450	39.941	39.941	39.903	39.870	40.013	39.93
$\begin{gathered} \text { J2-136-6-R1 } \\ \text { Core A1-1 } \end{gathered}$	300	34.964	30.802	25.403	31.456	34.744	31.27
	400	33.644	29.065	27.336	29.715	30.802	30.04
	450	33.329	29.621	31.579	28.755	29.498	30.51
J2-136-6-R1Core A1-2	300	30.960	30.433	30.257	29.480	30.006	30.22
	400	30.359	30.359	29.480	28.858	30.183	29.84
	450	30.006	28.432	29.132	29.308	30.006	29.37
$\begin{gathered} \text { J2-136-6-R1 } \\ \text { Core C2 } \end{gathered}$	300	27.547	24.719	25.103	24.847	24.975	25.42
	400	26.514	23.827	24.464	24.591	24.791	24.82
	450	26.771	24.663	24.591	25.103	24.719	25.16
$\begin{gathered} \hline \text { ALV 2944-3-S1 } \\ \text { Pc } 1 \\ \text { Core A1 } \\ \hline \end{gathered}$	300	43.153	43.513	33.599	34.720	34.390	37.62
	400	41.929	35.448	34.720	34.982	34.920	36.30
	450	41.570	36.774	30.705	32.544	31.555	34.40
$\begin{gathered} \text { ALV 2944-3-S1 } \\ \text { Pc } 1 \\ \text { Core A3 } \\ \hline \end{gathered}$	300	29.564	34.089	34.089	28.905	28.340	30.89
	400	33.547	33.547	29.439	28.684	30.886	31.16
	450	32.658	30.224	28.684	28.905	29.439	29.95
$\begin{gathered} \text { ALV 2944-3-S1 } \\ \text { Pc } 1 \\ \text { Core B1 } \end{gathered}$	300	40.307	39.444	37.771	31.292	31.978	35.96
	400	36.769	33.338	31.729	37.771	33.775	34.60
	450	36.769	26.120	27.592	27.101	30.493	29.38
$\begin{gathered} \text { ALV 2944-3-S1 } \\ \text { Pc } 2 \\ \text { Core A1 } \end{gathered}$	300	32.519	32.250	38.747	31.981	32.455	33.50
	400	39.836	28.430	32.519	27.895	28.430	31.12
	450	38.138	29.232	30.778	32.519	33.737	32.74
$\begin{gathered} \text { ALV } 2944-3-\mathrm{S} 1 \\ \text { Pc } 2 \\ \text { Core A2 } \end{gathered}$	300	42.181	42.083	43.220	39.818	45.966	42.61
	400	44.589	42.310	42.439	40.624	40.496	42.07
	450	43.805	38.594	39.495	38.370	40.624	40.13
$\begin{gathered} \text { ALV 2944-3-S1 } \\ \text { Pc } 2 \\ \text { Core A3 } \end{gathered}$	300	39.539	41.847	40.197	45.493	36.588	40.63
	400	47.494	40.384	41.517	40.384	40.384	41.95
	450	47.351	41.517	41.186	44.498	38.882	42.59
$\begin{gathered} \hline \text { ALV } 2944-3-\mathrm{S} 1 \\ \text { Pc } 2 \\ \text { Core A4 } \\ \hline \end{gathered}$	300	35.785	30.412	31.574	29.891	30.876	31.64
	400	35.025	29.661	27.863	28.732	28.270	29.80
	450	36.278	32.918	30.356	30.589	31.053	32.17
$\begin{gathered} \text { ALV 2941-6-S1 } \\ \text { Core A1 } \end{gathered}$	300	34.089	29.885	32.331	30.972	35.340	32.46
	400	35.890	32.176	29.208	31.786	34.244	32.58
	450	34.518	31.397	27.992	28.599	28.754	30.16
$\begin{gathered} \mathrm{J} 2-125-3-\mathrm{B} 1 \\ \text { Core B2-1 } \end{gathered}$	300	36.834	33.842	33.416	36.498	33.295	34.74
	400	35.641	36.069	33.842	35.641	33.628	34.95
	450	36.405	33.508	32.659	35.426	33.203	34.21
$\begin{gathered} \text { J2-125-3-B1 } \\ \text { Core B2-2 } \end{gathered}$	300	36.501	36.245	31.005	36.612	37.126	35.42
	400	35.843	29.993	29.633	34.964	33.688	32.72
	450	35.074	33.290	35.221	35.221	34.199	34.59
$\begin{gathered} \text { J2-125-3-B1 } \\ \text { Core B3-1 } \end{gathered}$	300	36.058	31.102	31.405	32.864	31.982	32.64
	400	35.194	31.514	32.092	31.020	33.058	32.54
	450	34.610	34.500	32.755	34.221	35.279	34.26
$\begin{gathered} \text { J2-125-3-B1 } \\ \text { Core B3-2 } \end{gathered}$	300	35.960	34.149	32.618	35.002	35.583	34.64
	400	34.285	33.808	29.308	30.015	33.569	32.13
	450	34.149	32.144	29.308	30.250	34.659	32.03
$\begin{aligned} & \text { J2-125-3-B1 } \\ & \text { Core Ex B2 } \end{aligned}$	300	39.833	36.423	38.571	37.272	36.990	37.80
	400	39.139	38.287	37.151	36.141	34.889	37.09
	450	38.287	36.301	37.841	29.910	34.044	35.14
$\begin{aligned} & \text { ALV 2178-4-1 } \\ & \text { Core } 4 \end{aligned}$	300	49.742	49.339	49.206	49.206	49.206	49.34
	400	47.613	47.685	47.480	47.420	47.420	47.52
	450	46.894	46.894	46.762	46.894	46.894	46.87
$\begin{aligned} & \text { ALV 2178-4-1 } \\ & \quad \text { Core } 5 \end{aligned}$	300	45.628	45.706	45.706	45.569	45.628	45.65
	400	44.886	44.886	44.749	44.964	44.749	44.85
	450	44.344	44.418	44.208	44.149	44.149	44.25
$\begin{gathered} \text { ALV 2178-4-1 } \\ \text { Core A4 } \end{gathered}$	300	39.885	39.620	39.620	39.620	39.346	39.62
	400	39.081	38.815	38.665	38.665	39.081	38.86
	450	38.815	39.081	38.392	38.542	38.665	38.70

$\begin{gathered} \text { ALV 2178-4-1 } \\ \text { Core A5 } \end{gathered}$	300	45.057	44.940	45.057	44.784	44.504	44.87
	400	44.386	44.105	44.105	44.105	44.105	44.16
	450	43.831	44.105	43.831	43.551	43.551	43.77
ALV 2461-R13 Core 1-1	300	26.730	26.664	26.767	26.767	26.700	26.73
	400	26.531	26.700	26.567	26.567	26.634	26.60
	450	26.567	26.737	26.567	26.435	--	26.58
ALV 2461-R13 Core 1-2	300	22.163	22.233	22.233	22.201	22.092	22.18
	400	22.131	22.061	22.061	22.030	21.991	22.06
	450	22.131	21.991	21.921	22.061	22.100	22.04
$\begin{gathered} \text { ALV 2461-R13 } \\ \text { Core } 2 \end{gathered}$	300	28.991	28.962	28.835	28.801	28.898	28.90
	400	28.835	28.611	28.898	28.582	28.645	28.71
	450	--	--	--	--	--	--
ALV 2461-R13 Core 3-1	300	17.353	17.528	17.403	17.003	17.353	17.33
	400	17.178	16.828	16.916	16.741	17.003	16.93
	450	16.916	16.741	16.878	16.703	16.578	16.76
ALV 2461-R13 Core 3-2(1-1)	300	6.476	4.809	4.484	3.609	6.367	5.03
	400	10.405	4.894	5.999	11.196	10.077	8.08
	450	10.866	8.589	8.961	7.520	6.738	8.42
ALV 2461-R13 Core 3-2(1-2)	300	12.820	9.885	8.243	11.166	9.842	10.23
	400	12.820	11.124	9.294	10.390	8.607	10.35
	450	14.296	11.716	10.068	9.477	8.971	10.75
ALV 2461-R13 Core 3-2(2)	300	12.527	12.404	12.280	12.086	11.755	12.21
	400	12.651	11.940	9.916	10.925	9.732	10.98
	450	12.033	11.571	12.227	10.374	11.848	11.59
$\begin{aligned} & \text { ALV 2461-R13 } \\ & \text { Core 4-1 } \end{aligned}$	300	19.582	18.698	17.729	19.526	18.185	18.73
	400	19.471	18.698	17.673	17.418	19.084	18.45
	450	19.212	17.929	18.642	18.827	18.185	18.55
$\begin{aligned} & \text { ALV 2461-R13 } \\ & \text { Core 4-2 } \end{aligned}$	300	22.637	22.637	22.445	21.971	20.458	22.01
	400	22.237	20.854	19.668	22.237	22.179	21.41
	450	22.503	21.118	20.326	21.971	22.445	21.66
ALV 2461-R13 Core 6	300	17.543	17.335	17.624	17.497	17.452	17.49
	400	17.497	17.254	17.335	17.254	17.254	17.32
	450	17.579	17.173	17.254	17.497	17.012	17.30
ALV 2461-R13Core 7	300	23.383	24.596	24.692	24.692	24.692	24.41
	400	24.692	24.692	24.747	24.692	24.596	24.68
	450	24.498	24.692	24.596	24.596	24.498	24.58
ALV 2461-R13 Core 8-1	300	20.783	20.606	20.645	20.783	20.683	20.70
	400	20.556	20.606	20.606	20.645	20.618	20.61
	450	20.783	20.694	20.556	20.694	20.468	20.64
ALV 2461-R13 Core 8-2	300	20.701	20.663	20.663	20.663	20.750	20.69
	400	20.528	20.490	20.528	20.490	20.501	20.51
	450	20.490	20.317	20.403	20.403	20.403	20.40

Appendix 4: Microstructure Tables

Mineral abbreviations used in microstructure tables:

Mineral	Abbreviation
amorphous silica	am Si
anhydrite	anh
barite	brt
calcite	ca
chalcocite	ch
chalcopyrite	cp
clay	cl
covellite	co
plagioclase	pl
palagonatized glass	gl
pyrite	py
pyrrhotite	po
sphalerite	sp
stevensite	st
wurtzite	wz

A4.1 Massive Anhydrite Data

Sample / Section	$\underset{\left(\times 10^{-15} \mathrm{~m}^{2}\right)}{k}$	$\begin{gathered} \phi \\ (\%) \end{gathered}$	Minerals Present	Grain Packing \& Size	Pore Size	Pore Connectivity	Channel Width min-max (avg)
$\begin{gathered} J 2-210-8-R 2 \\ \mathrm{~A}-1 \end{gathered}$	0.3	2.3	anh (py, cp)	tight; 150-1500 $\mu \mathrm{m}$ (avg: $1000 \mu \mathrm{~m}$) sized anh crystals; sulfides 20-150 $\mu \mathrm{m}$	most pores $60-150 \mu \mathrm{~m}$ (avg: $90 \mu \mathrm{~m}$); sulfide crystals precipitated in pore space	low	$10-80 \mu \mathrm{~m}(20 \mu \mathrm{~m})$
$\begin{gathered} J 2-216-14-R 1 \\ \text { A } \\ \text { B (top) } \\ \text { B (bottom) } \end{gathered}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	2.1 5.6 5.6	anh, cp (py, sp) anh, cp (py, sp) anh, cp (py, sp)	tight; areas of large anh 20-2500 $\mu \mathrm{m}$ (avg: $450 \mu \mathrm{~m}$); patches of small, euhedral anh crystals $\sim 150 \mu \mathrm{~m}$ tight; areas of large anh $20-1500 \mu \mathrm{~m}$ (avg: $400 \mu \mathrm{~m}$); patches of small euhedral anh crystals $\sim 150 \mu \mathrm{~m}$ tight; areas of large anh $20-1600 \mu \mathrm{~m}$ (avg: $400 \mu \mathrm{~m}$); patches of small euhedral anh crystals $\sim 100 \mu \mathrm{~m}$	pores ranging 10-200 $\mu \mathrm{m}$ (avg: $60 \mu \mathrm{~m}$) pores ranging 10-200 $\mu \mathrm{m}$ (avg: $60 \mu \mathrm{~m}$) pores ranging $10-250 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	low low low	$<40 \mu \mathrm{~m}(10 \mu \mathrm{~m})$ $<40 \mu \mathrm{~m}(10 \mu \mathrm{~m})$ $<40 \mu \mathrm{~m}(10 \mu \mathrm{~m})$
$\begin{gathered} \text { J301-3 } \\ \text { A } \\ \text { B } \end{gathered}$	$\begin{gathered} 38.5 \\ 0.7 \end{gathered}$	$\begin{gathered} 14.8 \\ 7.9 \end{gathered}$	anh (py) anh (py)	moderate; anh (100-1300 $\mu \mathrm{m}$) with minor py crystals $20-80 \mu \mathrm{~m}$; anh crystals highly fragmented tight; anh $100-1400 \mu \mathrm{~m}$ (avg: $400 \mu \mathrm{~m}$); py crystals $20-150 \mu \mathrm{~m}$; anh crystals highly fragmented	pores ranging $50-500 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) pores ranging $50-500 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$)	moderate low	$\begin{aligned} & 10-80 \mu \mathrm{~m}(25 \mu \mathrm{~m}) \\ & 10-50 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \end{aligned}$
$\begin{gathered} \text { ALV } 21837-0 \\ \text { B } \end{gathered}$	0.3	6.6	anh (py)	tight; anh $50-1400 \mu \mathrm{~m}$ (avg: $900 \mu \mathrm{~m}$); also patches of small euhedral anh crystals $\sim 50-100 \mu \mathrm{~m}$	pores range from 30-200 $\mu \mathrm{m}$ (avg: $50 \mu \mathrm{~m}$); most pores isolated	low	10-60 $\mu \mathrm{m}(20 \mu \mathrm{~m})$
$\begin{gathered} \text { ALV 2581-8 } \\ \mathrm{A} \end{gathered}$	352.6	12.7	anh (py, cp)	moderate; 200-1300 $\mu \mathrm{m}$ sized anh crystals; sulfide crystals $<50 \mu \mathrm{~m}$	most pores $60-150 \mu \mathrm{~m}$ (avg: $90 \mu \mathrm{~m}$); small sulfide crystals precipitated in pore space	high	20-120 $\mu \mathrm{m}(60 \mu \mathrm{~m})$
MIR 1, 1/74, Sta 2403 A-1 B	$\begin{array}{r} 123.2 \\ 77.1 \end{array}$	$\begin{aligned} & 10.9 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { anh, py, cp } \\ & \text { anh, py, cp } \end{aligned}$	loose; anh crystals $100-1700 \mu \mathrm{~m}$ (avg: $500 \mu \mathrm{~m}$); py and cp grains < $100 \mu \mathrm{~m}$ moderate; anh crystals $100-1400 \mu \mathrm{~m}$ (avg: $400 \mu \mathrm{~m}$); py and cp < $100 \mu \mathrm{~m}$	most pores $50-300 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$); some sulfide clusters in pore space most pores $20-300 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$); some sulfide clusters in pore space	$\begin{gathered} \text { high } \\ \text { moderate } \end{gathered}$	$\begin{aligned} & 20-100 \mu \mathrm{~m}(70 \mu \mathrm{~m}) \\ & 10-100 \mu \mathrm{~m}(40 \mu \mathrm{~m}) \end{aligned}$
$\begin{aligned} & \text { MIR 1, 2/78, Sta } 2417 \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 477.9 \\ & 595.9 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.5 \end{aligned}$	anh (cp) anh (cp)	loose; anh crystals $100-1200 \mu \mathrm{~m}$ (avg: $500 \mu \mathrm{~m}$); cp grains $<80 \mu \mathrm{~m}$ loose; anh crystals 100-1200 $\mu \mathrm{m}$ (avg: $400 \mu \mathrm{~m}$); cp < $100 \mu \mathrm{~m}$	pores ranging $50-300 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$) pores ranging $50-300 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	high high	$\begin{aligned} & 10-150 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \\ & 10-150 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \end{aligned}$

A4.2 Flange, Slab and Crust Data

Sample / Section	$\begin{gathered} k \\ \left(\times 10^{-15} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \phi \\ (\%) \end{gathered}$	Minerals Present	Grain Packing \& Size	Pore Size	Pore Connectivity	Channel Width min-max (avg)	Section Cut
$\begin{gathered} \text { ALV 3517-R1 } \\ \text { D1 } \\ \text { D3 } \end{gathered}$	$\begin{aligned} & 55.1 \\ & 29.5 \end{aligned}$	22.1 20.2	$\mathrm{ca}, \mathrm{st}(\mathrm{cp}, \mathrm{sp})$ $\mathrm{ca}, \mathrm{st}(\mathrm{cp}, \mathrm{sp})$	tight; patches of large ca crystals (250 $\mu \mathrm{m}$), but mostly $\sim 50 \mu \mathrm{~m}$ crystals tight; patches of large ca crystals (250 $\mu \mathrm{m}$), but mostly $\sim 50 \mu \mathrm{~m}$ crystals	some $\sim 350 \mu \mathrm{~m}$ pores around smaller crystals; mostly $\sim 60 \mu \mathrm{~m}$ some $\sim 350 \mu \mathrm{~m}$ pores around smaller crystals; mostly $\sim 60 \mu \mathrm{~m}$	low low	$\begin{aligned} & <20 \mu \mathrm{~m}(10 \mu \mathrm{~m}) \\ & <20 \mu \mathrm{~m}(10 \mu \mathrm{~m}) \end{aligned}$	(2) (3)
$\begin{gathered} \text { ALV 3521-R2 } \\ \text { Ex } 1 \\ \text { Ex } 2 \end{gathered}$	$\begin{gathered} 1243.4 \\ 954.7 \end{gathered}$	45.3 45.9	ca, st (brt, cp, sp) ca, st (brt, cp, sp)	tight; large areas of small $(\sim 50 \mu \mathrm{~m})$ ca crystals, few patches of larger $\sim 100 \mu \mathrm{~m}$ tight; large areas of small $(\sim 50 \mu \mathrm{~m}) \mathrm{ca}$ crystals, few patches of larger $\sim 100 \mu \mathrm{~m}$	most pores $20-150 \mu \mathrm{~m}$ regularly distributed, some larger $\sim 300 \mu \mathrm{~m}$ pores most pores $20-150 \mu \mathrm{~m}$ regularly distributed, some larger $\sim 300 \mu \mathrm{~m}$ pores	moderate moderate	$<40 \mu \mathrm{~m}(10 \mu \mathrm{~m})$ $<40 \mu \mathrm{~m}(10 \mu \mathrm{~m})$	(2) (3)
$\begin{gathered} \hline A L V 2927-3 \\ \text { B1 } \\ 3 \\ 2 \end{gathered}$	$\begin{gathered} 1889.1 \\ 967.3 \\ 148.7 \end{gathered}$	$\begin{aligned} & 38.2 \\ & 40.7 \\ & 32.7 \end{aligned}$	$\begin{aligned} & \text { py, wz (po, cp, cl) } \\ & \text { py, wz (po, cp, cl) } \\ & \text { py, wz (po, cp, cl) } \end{aligned}$	loose; small ($20-125 \mu \mathrm{~m}$) sulfide crystals with small amounts of clay moderate; small (20-125 $\mu \mathrm{m}$) sulfide crystals with small amounts of clay tight-moderate; small $(5-130 \mu \mathrm{~m})$ sulfide crystals with small amounts of clay	irregularly shaped pores ranging $40-350 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$); smaller isolated pores irregularly shaped pores ranging 40-200 $\mu \mathrm{m}$ (avg: $80 \mu \mathrm{~m}$); minor isolated pores irregularly shaped pores ranging $30-250 \mu \mathrm{~m}$ (avg: $50 \mu \mathrm{~m}$); minor isolated pores	high high moderate	$\begin{aligned} & 10-75 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & 10-180 \mu \mathrm{~m}(40 \mu \mathrm{~m}) \\ & 10-70 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \end{aligned}$	(1) (3) (2)
$\begin{gathered} A L V 2415-1 B \\ \text { B1 } \\ \text { A1 } \end{gathered}$	$\begin{array}{r} 1552.3 \\ 55.4 \end{array}$	31.2 20.2	$\begin{aligned} & \text { py, po (am Si, cp, wz) } \\ & \text { py, po, am Si (cp, wz) } \end{aligned}$	moderate; $10-300 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m}$) sized, poorly sorted sulfide crystals tight; $10-280 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m}$) sized sulfide crystals; lots of am Si	pores ranging from $30-250 \mu \mathrm{~m}$ (avg: $50 \mu \mathrm{~m}$); some am Si restricting pore channels pores ranging from 30-200 $\mu \mathrm{m}$ (avg: $75 \mu \mathrm{~m}$); abundant am Si restricting pore channels	moderate (high in 1 layer) low	$\begin{aligned} & 10-50 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & (20-130 \mu \mathrm{~m}(30 \mu \mathrm{~m})) \\ & 10-50 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \end{aligned}$	(1) (2)
$J 2-286$ C3-1 C3-2 C2-1 A1	$\begin{array}{r} 146.0 \\ 48.7 \\ 0.8 \\ 0.5 \end{array}$	$\begin{aligned} & 27.6 \\ & 21.2 \\ & 27.2 \\ & 20.7 \end{aligned}$	$\begin{aligned} & \text { py, wz, po (am Si) } \\ & \text { py, am Si (wz, cp) } \\ & \text { py, wz (po) } \\ & \text { py, po, am Si (wz) } \end{aligned}$	tight; $10-50 \mu \mathrm{~m}$ sized sulfide crystals; large bladed po crystals ($200-3000 \mu \mathrm{~m}$) tight; 20-200 $\mu \mathrm{m}$ sized sulfide crystals with lots of am Si around crystals moderate; $10-175 \mu \mathrm{~m}$ sulfide crystals moderate; $20-200 \mu \mathrm{~m}$ (avg: $50 \mu \mathrm{~m}$) sized sulfide crystals; lots of am Si	pores ranging from $20-300 \mu \mathrm{~m}$ (avg: $20 \mu \mathrm{~m}$); remnant worm tubes and possible flange edge pores ranging from $10-400 \mu \mathrm{~m}$ (avg: $20 \mu \mathrm{~m}$); lots of remnant worm tubes pores ranging from $10-250 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m}$); remnant worm tubes pores ranging from $10-300 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m}$); remnant worm tubes		$\begin{aligned} & 10-50 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & 10-50 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & 10-100 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & 10-100 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \end{aligned}$	(2) (2) (3) (2)

$\begin{gathered} \hline A L V 2608-3-3 \\ \text { B2 } \\ \text { C1 } \end{gathered}$	2737.1 1447.1	$\begin{aligned} & 42.9 \\ & 29.2 \end{aligned}$	$\mathrm{gl}(\mathrm{pl}, \mathrm{am} \mathrm{Si}, \mathrm{py})$ gl, am Si (pl, py)	loose but variable packing; poorly sorted gl shards $50-1400 \mu \mathrm{~m}$ (avg: $300 \mu \mathrm{~m}$) moderate, but variable; poorly sorted gl shards $30-1000 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$)	very porous; pores ranging from $50-800 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$) very porous, but connectivity lost to am Si; pores range from $50-600 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	high moderate	$10-200 \mu \mathrm{~m}(40 \mu \mathrm{~m})$ $10-50 \mu \mathrm{~m}(10 \mu \mathrm{~m})$	(1) (1)
$\begin{aligned} & \text { ALV 2608-4-1, Pc 1 } \\ & \text { A1 } \\ & \text { C3-2 } \\ & \text { C3-1 } \end{aligned}$	$\begin{array}{r} 740.6 \\ 111.7 \\ 24.1 \end{array}$	$\begin{aligned} & 34.9 \\ & 37.2 \\ & 35.0 \end{aligned}$	$\mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl})$ $\mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl})$ $\mathrm{gl}, \mathrm{am} \mathrm{Si}, \mathrm{cl}(\mathrm{pl})$	tight; poorly sorted, angular gl shards 50-200 $\mu \mathrm{m}$ (avg: $80 \mu \mathrm{~m}$) and am Si $\pm \mathrm{cl}$ tight; poorly sorted, angular gl shards $50-200 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$) and am Si $\pm \mathrm{cl}$ moderate; poorly sorted, angular gl shards $50-300 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	pores range from $10-400 \mu \mathrm{~m}$ (avg: $30 \mu \mathrm{~m}$); some channels blocked by am Si $\pm \mathrm{cl}$ pores range from 20-500 $\mu \mathrm{m}$ (avg: $60 \mu \mathrm{~m}$); few channels blocked by am Si \pm cl pores range from $20-500 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$); few channels blocked by am $\mathrm{Si} \pm \mathrm{cl}$	$\begin{gathered} \text { low } \\ \text { moderate } \\ \substack{\text { moderate } \\ \text { (very low in } \\ 1 \text { layer) }} \end{gathered}$	$\begin{aligned} & 10-40 \mu \mathrm{~m}(15 \mu \mathrm{~m}) \\ & 10-80 \mu \mathrm{~m}(20 \mu \mathrm{~m}) \\ & \begin{array}{c} 10-200 \mu \mathrm{~m}(50 \mu \mathrm{~m}) \\ (<30 \mu \mathrm{~m}(5 \mathrm{~m})) \end{array} \end{aligned}$	(1) (2) (2)
$\begin{aligned} & \text { ALV 2608-4-1, Pc } 2 \\ & \text { A3 } \\ & 2 \\ & \text { B3 } \end{aligned}$	$\begin{array}{r} 2016.9 \\ 574.6 \\ 538.3 \end{array}$	$\begin{aligned} & 39.8 \\ & 48.0 \\ & 43.1 \end{aligned}$	$\mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl})$ $\mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl})$ $\mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl})$	moderate; angular gl shards $30-400 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) with am Si coating tight; angular gl shards $50-200 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m})$ with am Si coating tight; gl shards $50-200 \mu \mathrm{~m}$ (avg: 100 $\mu \mathrm{m})$ and $2000-3000 \mu \mathrm{~m}$ in some areas	very porous; pores ranging from $50-1000 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$) very porous; pores ranging from $50-1000 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$); minor am Si $\pm \mathrm{cl}$ very porous; pores ranging from $50-1000 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$); minor am Si $\pm \mathrm{cl}$	high high high	10-200 $\mu \mathrm{m}(40 \mu \mathrm{~m})$ $10-200 \mu \mathrm{~m}(40 \mu \mathrm{~m})$ $10-200 \mu \mathrm{~m}(40 \mu \mathrm{~m})$	(1) (2) (2)
JAS 177-2-1 B2 B1 A2	$\begin{array}{r} 2954.2 \\ 1774.8 \\ 170.4 \end{array}$	$\begin{aligned} & 41.2 \\ & 38.8 \\ & 46.1 \end{aligned}$	$\mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl})$ $\mathrm{gl}(\mathrm{am} \mathrm{Si}, \mathrm{cl}, \mathrm{pl})$ $\mathrm{gl}, \mathrm{pl}(\mathrm{am} \mathrm{Si}, \mathrm{cl})$	loose; angular gl shards $30-900 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) with am Si coating loose; angular gl shards $30-900 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) with am Si coating loose; angular gl shards $30-900 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) with am Si coating	very porous; pores ranging from $50-800 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$); minor am Si $\pm \mathrm{cl}$ very porous; pores ranging from $50-800 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$); minor am Si $\pm \mathrm{cl}$ very porous; pores ranging from $20-650 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$); areas of high am $\mathrm{Si} \pm \mathrm{cl}$	high high high	$10-1000 \mu \mathrm{~m}(50 \mu \mathrm{~m})$ $10-1000 \mu \mathrm{~m}(50 \mu \mathrm{~m})$ $20-350 \mu \mathrm{~m}(40 \mu \mathrm{~m})$	(1) (1) (2)
$\begin{gathered} \hline A L V 2179-1-1 \\ \text { B2 } \\ \text { A1 } \end{gathered}$	$\begin{array}{r} 1476.5 \\ 575.9 \end{array}$	$\begin{aligned} & 43.2 \\ & 36.9 \end{aligned}$	$\begin{aligned} & \mathrm{cp}, \mathrm{py}, \mathrm{sp} \\ & \mathrm{cp}, \mathrm{py}, \mathrm{sp} \end{aligned}$	moderate; $10-100 \mu \mathrm{~m}$ (avg: $50 \mu \mathrm{~m}$) sized sulfide crystals moderate; $<50 \mu \mathrm{~m}$ (avg: $30 \mu \mathrm{~m}$) sized sulfide crystals; well sorted	pores ranging from 30-200 $\mu \mathrm{m}$ (avg: $60 \mu \mathrm{~m}$); remnant worm tubes pores ranging from 30-200 $\mu \mathrm{m}$ (avg: $60 \mu \mathrm{~m}$); remnant worm tubes	high high	$10-150 \mu \mathrm{~m}(60 \mu \mathrm{~m})$ $<30 \mu \mathrm{~m}(10 \mu \mathrm{~m})$	(1) (3)
${ }^{(1)}$ parallel-to-layering core thin section cut radially transects different layers				(3) perpendicular-to-layering core thin section cut radially transects different layers consists of a single layer				

A4.3 Zn-Rich Actively Diffusing Spire Data

Sample / Section	$\begin{gathered} k \\ \left(\times 10^{-15} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \phi \\ (\%) \end{gathered}$	Minerals Present	Grain Packing \& Size	Pore Size	Pore Connectivity	Channel Width min-max (avg)
$\begin{aligned} & \text { ALV } 2187-1-1 \text { (top) } \\ & \text { A2 } \\ & \text { A4 } \\ & \text { B1 } \end{aligned}$	$\begin{gathered} 5462.3 \\ 3433.7 \\ 596.3 \end{gathered}$	$\begin{aligned} & 45.5 \\ & 36.5 \\ & 45.5 \end{aligned}$	sp (cp, co) sp (cp) sp (cp)	loose; sulfide crystals $10-300 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$) loose; sulfide crystals $10-250 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$) loose; sulfide crystals $10-200 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m})$	pores $10-600 \mu \mathrm{~m}$ (avg: $140 \mu \mathrm{~m}$) pores $10-600 \mu \mathrm{~m}$ (avg: $140 \mu \mathrm{~m}$) pores $10-600 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$)	high high high	$10-300 \mu \mathrm{~m}(100 \mu \mathrm{~m})$ $10-250 \mu \mathrm{~m}(100 \mu \mathrm{~m})$ $10-150 \mu \mathrm{~m}(80 \mu \mathrm{~m})$
$\begin{gathered} A L V 2187-1-2 \\ \mathrm{C} 1 / \mathrm{C} 2 \\ \\ \mathrm{C} 5 \end{gathered}$	$\begin{aligned} & 1619.4 \\ & 1426.3 \end{aligned}$	$\begin{aligned} & 39.4 \\ & 42.9 \end{aligned}$	$\begin{aligned} & \mathrm{sp}(\mathrm{cp}) \\ & \mathrm{sp}(\mathrm{cp}) \end{aligned}$	loose; sulfide crystals $10-200 \mu \mathrm{~m}$ (avg: $130 \mu \mathrm{~m})$ loose; sulfide crystals $10-200 \mu \mathrm{~m}$ (avg: $130 \mu \mathrm{~m})$	pores $10-650 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$) pores $10-650 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	high high	$\begin{aligned} & 10-150 \mu \mathrm{~m}(70 \mu \mathrm{~m}) \\ & 10-150 \mu \mathrm{~m}(70 \mu \mathrm{~m}) \end{aligned}$
$\begin{gathered} A L V 2190-14-1 \\ \text { A1 } \end{gathered}$	2726.3	47.5	cp, sp	loose; sulfide crystals $10-120 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m})$	pores $10-450 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	high	10-140 $\mu \mathrm{m}(70 \mu \mathrm{~m})$
$\begin{gathered} J 2-128-8-R 1 \\ E x \end{gathered}$	22.2	28.0	cp, wz, am Si	mod-tight; sulfide crystals 5-300 $\mu \mathrm{m}$ (avg: $100 \mu \mathrm{~m}$); 1 layer with lots of am Si	pores 10-450 $\mu \mathrm{m}$ (avg: $120 \mu \mathrm{~m}$)	moderate (low in 1 layer)	$\begin{aligned} & 10-150 \mu \mathrm{~m} \\ & (10-40 \mu \mathrm{~m}) \end{aligned}$
$\begin{gathered} J 2-222-1-R 1 \\ \mathrm{~A} 2 \\ \mathrm{Ex} \end{gathered}$	$\begin{array}{r} 327.3 \\ 202.9 \end{array}$	$\begin{aligned} & 35.0 \\ & 29.8 \end{aligned}$	$\mathrm{sp}, \mathrm{anh}, \mathrm{cp}, \mathrm{ch}(\mathrm{co})$ $\mathrm{sp}, \mathrm{anh}, \mathrm{cp}, \mathrm{ch}(\mathrm{co})$	moderate; sulfides $10-300 \mu \mathrm{~m}$ (avg: 100 $\mu \mathrm{m}$); anh $\sim 150 \mu \mathrm{~m}$ moderate; sulfides $10-400 \mu \mathrm{~m}$ (avg: 150 $\mu \mathrm{m}$); anh $\sim 200 \mu \mathrm{~m}$	pores $10-550 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$) pores $10-600 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	moderate moderate	$\begin{aligned} & 10-120 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \\ & 10-120 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \end{aligned}$
$\begin{gathered} J 2-127-1-R 2 \\ \text { B3 } \end{gathered}$	438.2	36.2	cp, wz	moderate; sulfide crystals $10-300 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	pores 10-350 $\mu \mathrm{m}$ (avg: $120 \mu \mathrm{~m}$)	moderate	10-150 $\mu \mathrm{m}(45 \mu \mathrm{~m})$

A4.4 Black Smoker Chimney Data

Sample / Section	$\stackrel{k}{\left(\times 10^{-15} \mathrm{~m}^{2}\right)}$	$\begin{gathered} \phi \\ (\%) \end{gathered}$	Minerals Present	Grain Packing \& Size	Pore Size	Pore Connectivity	Channel Width min-max (avg)
$\begin{gathered} J 2-137-1-R 1 \\ \text { D1 } \end{gathered}$	0.6	16.9	cp, anh, wz, py	tight; sulfide crystals $10-200 \mu \mathrm{~m}$ (avg: $90 \mu \mathrm{~m}$); anh $50-300 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$)	pores 10-200 $\mu \mathrm{m}$ (avg: $75 \mu \mathrm{~m}$)	low	$<20 \mu \mathrm{~m}(10 \mu \mathrm{~m})$
$\begin{gathered} \hline J 2-213-3-R 1 \\ \text { A1 } \\ \text { D1 } \end{gathered}$	18.4 99.5	$\begin{aligned} & 28.9 \\ & 39.0 \end{aligned}$	cp, anh, wz (py) cp, anh, wz (co, py)	tight; sulfide crystals $10-150 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$); anh $50-350 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$) moderate; sulfides $10-250 \mu \mathrm{~m}$ (avg: 120 $\mu \mathrm{m}$); anh $50-350 \mu \mathrm{~m}$ (avg: $200 \mu \mathrm{~m}$)	pores $10-150 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$) pores $10-300 \mu \mathrm{~m}$ (avg: $175 \mu \mathrm{~m}$)	low moderate	$10-30 \mu \mathrm{~m}(10 \mu \mathrm{~m})$ $10-150 \mu \mathrm{~m}(40 \mu \mathrm{~m})$
$\begin{gathered} \text { ALV 1445-3 } \\ \mathrm{C} 1 \end{gathered}$	16.1	24.9	cp, anh, py	tight; sulfide crystals $10-150 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$); anh $50-300 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$)	pores 10-200 $\mu \mathrm{m}$ (avg: $75 \mu \mathrm{~m}$)	low	$<20 \mu \mathrm{~m}$ (10 $\mu \mathrm{m}$)

A4.5 Relict Spire Data

Sample / Section	$\begin{gathered} k \\ \left(\times 10^{-15} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \phi \\ (\%) \\ \hline \end{gathered}$	Minerals Present	Grain Packing \& Size	Pore Size	Pore Connectivity	Channel Width min-max (avg)
$\begin{gathered} J 2-129-1-R 3 \\ \mathrm{~B} 2 \end{gathered}$	740.4	41.0	$\mathrm{wz}, \mathrm{cp}, \mathrm{am} \mathrm{Si}, \mathrm{anh}$ (py)	loose-mod; most sulfide crystals between $5-200 \mu \mathrm{~m}$ (avg: $60 \mu \mathrm{~m}$)	most pores $10-350 \mu \mathrm{~m}$ (avg: $130 \mu \mathrm{~m}$); lots of am Si in pore space around smaller grains	moderate	10-120 $\mu \mathrm{m}(50 \mu \mathrm{~m})$
$\begin{gathered} \hline \begin{array}{c} J 2-136-6-R 1 \\ \mathrm{~A} 1-2 \end{array} \\ \mathrm{C} 2 \end{gathered}$	$\begin{array}{r} 190.8 \\ 19.4 \end{array}$	$\begin{aligned} & 30.2 \\ & 25.4 \end{aligned}$	$\mathrm{wz}, \mathrm{cp}, \mathrm{py}$ wz, cp (py)	moderate; sulfide crystals $10-125 \mu \mathrm{~m}$ (avg: $70 \mu \mathrm{~m}$) mod-tight; sulfide crystals $10-120 \mu \mathrm{~m}$ (avg: $70 \mu \mathrm{~m}$)	pores $10-350 \mu \mathrm{~m}$ (avg: $130 \mu \mathrm{~m}$) pores $10-240 \mu \mathrm{~m}$ (avg: $60 \mu \mathrm{~m}$); lots of am Si in pore space around smaller grains	moderate low	$\begin{aligned} & 10-100 \mu \mathrm{~m}(50 \mu \mathrm{~m}) \\ & 10-80 \mu \mathrm{~m}(30 \mu \mathrm{~m}) \end{aligned}$
$\begin{aligned} & \text { ALV 2944-3-Sl, Pc } 1 \\ & \text { A1 } \\ & \text { A3 } \end{aligned}$	$\begin{array}{r} 626.4 \\ 40.9 \end{array}$	37.6 30.9	$\mathrm{cp}, \mathrm{wz}, \mathrm{py}(\mathrm{am} \mathrm{Si})$ cp, wz, py, am Si, anh	moderate; sulfide crystals $5-130 \mu \mathrm{~m}$ (avg: $40 \mu \mathrm{~m}$) tight; sulfide crystals $10-100 \mu \mathrm{~m}$ (avg: $50 \mu \mathrm{~m}$)	pores $10-400 \mu \mathrm{~m}$ (avg: $150 \mu \mathrm{~m}$) pores $10-350 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	high low	$10-120 \mu \mathrm{~m}(50 \mu \mathrm{~m})$ $10-100 \mu \mathrm{~m}(30 \mu \mathrm{~m})$
$\begin{aligned} & \text { ALV 2944-3-S1, Pc } 2 \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & 327.2 \\ & 645.8 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 42.6 \end{aligned}$	$\begin{aligned} & \text { cp, wz, py } \\ & \text { cp, wz, py } \end{aligned}$	loose; sulfide crystals $10-180 \mu \mathrm{~m}$ (avg: $90 \mu \mathrm{~m})$ loose; sulfide crystals $10-130 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m})$	pores $10-600 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$) pores $10-250 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	high high	$\begin{aligned} & 10-200 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \\ & 10-80 \mu \mathrm{~m}(60 \mu \mathrm{~m}) \end{aligned}$
$\begin{aligned} & \text { ALV 2941-6-S1 } \\ & \quad \text { A1 } \end{aligned}$	140.6	32.5	cp, wz (py)	loose; sulfide crystals $10-275 \mu \mathrm{~m}$ (avg: $125 \mu \mathrm{~m})$	pores $10-550 \mu \mathrm{~m}$ (avg: $140 \mu \mathrm{~m}$)	high	10-150 $\mu \mathrm{m}$ (40 $\mu \mathrm{m}$)
$\begin{gathered} J 2-125-3-B 1 \\ \text { B2-1 } \\ \text { B3-1 } \\ \text { Ex } \end{gathered}$	$\begin{array}{r} 356.3 \\ 97.0 \\ 502.5 \end{array}$	34.7 32.6 37.8	cp (wz, py) $\mathrm{cp}, \mathrm{wz}, \mathrm{py}$ cp, wz, py	loose; sulfide crystals $10-175 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m})$ loose-mod; sulfide crystals 5-150 $\mu \mathrm{m}$ (avg: $70 \mu \mathrm{~m}$) loose-mod; sulfide crystals $10-150 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	pores $10-350 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$) pores $10-450 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$) pores $10-500 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	high moderate mod -high	$10-175 \mu \mathrm{~m}(60 \mu \mathrm{~m})$ $10-125 \mu \mathrm{~m}(40 \mu \mathrm{~m})$ $10-250 \mu \mathrm{~m}(40 \mu \mathrm{~m})$

$\begin{gathered} \text { ALV } 2178-4-1 \\ 4 \\ \text { A5 } \end{gathered}$	$\begin{gathered} 2224.3 \\ 766.9 \end{gathered}$	$\begin{aligned} & 49.3 \\ & 44.9 \end{aligned}$	$\begin{aligned} & \text { py, cp (wz) } \\ & \text { py, cp (wz) } \end{aligned}$	loose; sulfide crystals $10-250 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m})$ loose; sulfide crystals $10-350 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m})$	pores $10-600 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$) pores $10-400 \mu \mathrm{~m}$ (avg: $70 \mu \mathrm{~m}$)	high high	$\begin{aligned} & 10-250 \mu \mathrm{~m}(70 \mu \mathrm{~m}) \\ & 10-130 \mu \mathrm{~m}(70 \mu \mathrm{~m}) \end{aligned}$
$\begin{gathered} \text { ALV } 2461-R 13 \\ \text { C1-1 } \end{gathered}$	822.4	26.7	cp, wz, py (am Si)	moderate; sulfide crystals $10-150 \mu \mathrm{~m}$ (avg: $70 \mu \mathrm{~m}$)	pores 10-350 $\mu \mathrm{m}$ (avg: $120 \mu \mathrm{~m}$)	moderate	10-160 $\mu \mathrm{m}(40 \mu \mathrm{~m})$
C1-2	1142.5	22.2	cp, wz, py, po, am Si	moderate; sulfide crystals $10-300 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	pores $10-450 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$)	moderate	$10-140 \mu \mathrm{~m}(50 \mu \mathrm{~m})$
C3-2(1-2)	0.3	10.4	cp, wz, py, po, am Si	tight; sulfide crystals $10-320 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m})$	pores $10-400 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	low	$10-50 \mu \mathrm{~m}(10 \mu \mathrm{~m})$
C3-2(2)	6.4	12.2	cp, wz, po, am Si (py)	tight; sulfide crystals 10-275 $\mu \mathrm{m}$ (avg: $80 \mu \mathrm{~m}$)	pores $10-400 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	low	$10-50 \mu \mathrm{~m}(10 \mu \mathrm{~m})$
C4-1	6.6	18.7	cp, wz, am Si (py, po)	tight; sulfide crystals $10-150 \mu \mathrm{~m}$ (avg: $75 \mu \mathrm{~m}$)	pores $10-500 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	low	$10-60 \mu \mathrm{~m}(15 \mu \mathrm{~m})$
C4-2	4.4	22.0	cp, wz, py, am Si (po)	tight; sulfide crystals $10-120 \mu \mathrm{~m}$ (avg: $70 \mu \mathrm{~m})$	pores $10-500 \mu \mathrm{~m}$ (avg: $80 \mu \mathrm{~m}$)	low	$10-60 \mu \mathrm{~m}(15 \mu \mathrm{~m})$
C8-2	112.6	20.7	cp, wz, po,(py, am Si)	moderate; sulfide crystals $10-175 \mu \mathrm{~m}$ (avg: $100 \mu \mathrm{~m}$)	pores $10-550 \mu \mathrm{~m}$ (avg: $120 \mu \mathrm{~m}$)	moderate	10-250 $\mu \mathrm{m}(20 \mu \mathrm{~m})$

References

Aquilano, D., M. Rubbo, M. Catti, A. Pavese, and P. Ugliengo (1992), Theoretical equilibrium and growth-morphology of anhydrite $\left(\mathrm{CaSO}_{4}\right)$ crystals, J. Crystal Growth, 125 (3-4), 519-532.

Bernabé, Y., W. F. Brace, and B. Evans (1982), Permeability, porosity, and pore geometry of hot-pressed calcite, Mech. Mater., l (3), 173-183.

Bernabé, Y. (1991), Pore Geometry and Pressure Dependence of the Transport Properties in Sandstones, Geophysics, 56, 436-446.

Bernabé, Y., U. Mok, and B. Evans (2003), Permeability-porosity Relationships in Rocks Subjected to Various Evolution Processes, Pure Appl. Geophys., 160, 937-960.

Bourbie, T., and B. Zinszner (1985), Hydraulic and Acoustic Properties as a Function of Porosity in Fontainebleau Sandstone, J. Geophys. Res., 90 (B13), 524-532.

Cooper, M.J., H. Elderfield, and A. Schultz (2000), Diffuse hydrothermal fluids from Lucky Strike hydrothermal vent field: Evidence for a shallow conductively heated system, J. Geophys. Res., 105 (B8), 19,369-19,375.

Craddock, P. R., and W. Bach (2010), Insights to Magmatic-Hydrothermal Processes in the Manus back-arc Basin as Recorded by Anhydrite, Geochim. Cosmochim. Acta, doi: 10.1016/j.gca.2110.07.004.

David, C., T. F. Wong, W. L. Zhu, J. X. Zhang (1994), Laboratory measurement of compaction-induced permeability change in porous rocks - Implications for the generation and maintenance of pore pressure excess in the crust, Pure App. Geophys., 143 (1-3), 425-456.

Delaney, J. R., V. Robigou, R. McDuff, and M. K. Tivey (1992), Geology of a Vigorous Hydrothermal System on the Endeavor Segment, Juan de Fuca Ridge, J. Geophys. Res., 97 (B13), 19663-19682.
deMartin, B., G. Hirth, and B. Evans (2004), Experimental Constraints on Thermal Cracking of Peridotite at Oceanic Spreading Centers, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German et al., pp. 219-244, AGU, Washington, D.C.

Elderfield, H., and A. Schultz (1996), Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Ann. Rev. Earth Planet. Sci., 24, 191224.

Embley, R. W., and W. W. Chadwick, Jr. (1994), Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft segment: Juan de Fuca Ridge, J. Geophys. Res., 99 (B3), 4741-4760.

Ferrini, V. L., M. K. Tivey, S. M. Carbotte, F. Martinez, and C. Roman (2008), Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin, Geochem. Geophys. Geosyst., 9, Q07022.

Fontaine, F. J., M. Rabinowicz, and J. Boulégue (2001), Permeability changes due to mineral diagenesis in fractured crust: Implications for hydrothermal circulation at mid-ocean ridges, Earth Planet. Sci. Lett., 184, 407-425.

Fredrich, J. T., K. H. Greaves, and J. W. Martin (1993), Pore geometry and transport properties of Fontainebleau Sandstone, Int. J. Rock Mech. Min. Sci., 30, 691-697.

Freeze, R. A. and J. A. Cherry (1979), Groundwater, Prentice Hall, Inc: Upper Saddle River, NJ, 30-38.

Gallant, R. M., and K. L. Von Damm (2006), Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23 degrees-25 degrees S, Central Indian Ridge, Geochem. Geophys. Geosyst., 7, doi:10.1029/2005GC001067.

German, C. R., and L. M. Parson (1998), Distributions of hydrothermal activity along the Mid-Atlantic Ridge: Interplay of magmatic and tectonic controls, Earth Plan. Sci. Lett., 160 (3-4), 327-341.

Goldfarb, M. S., D. R. Converse, H. D. Holland, and J. M. Edmond (1983), The genesis of hot spring deposits on the East Pacific Rise, $21^{\circ} \mathrm{N}$, in Econ. Geol. Monogr., 5, ed. H. Ohmoto and B. J. Skinner, Economic Geology Publishing Co., Lancaster, Penn., 184-197.

Goldfarb, M. S. (1988), Flanges and the formation of hydrothermal edifices, Endeavor segment, Juan de Fuca Ridge (abstract), Eos Trans. AGU, 69 (44), Fall Meeting Suppl., 1484.

Guéguen, Y. and V. Palciauskas (1994), Introduction to the Physics of Rocks, Princeton University Press: Princeton, NJ, 117-134.

Haymon, R. M. (1983), Growth history of hydrothermal black smoker chimneys, Nature, 301, 695-698.

Hannington, M. D., M. K. Tivey, A. C. Larocque, S. Petersen, P. A. Rona (1995), The occurrence of gold in sulfide deposits of the TAG Hydrothermal Field, Mid-Atlantic Ridge, The Canadian Mineralogist, 33, 1285-1310.

Henderson, N., E. Flores, M. Sampaio, L. Freitas, and G. M. Platt (2005), Supercritical fluid flow in porous media: modeling and simulation, Chem. Eng. Sci., 60 (7), 1797-1808.

Humphris, S. E., P. M. Herzig, D. J. Miller, J. C. Alt, K. Becker, D. Brown, G. Brügmann, H. Chiba, Y. Fouquet, J. B. Gemmell, et al. (1995), The internal structure of an active sea-floor massive sulphide deposit, Nature, 377, 713716, doi: 10.1038/377713a0.

Juteau, T., and R. Maury (1999), The oceanic crust: from accretion to mantle recycling. Springer, New York, pp. 247-271.

Kerr, R. C. (1997), Heat transfer and hydrothermal fluid flow at flanges on large seafloor sulphide structures, Earth. Plan. Sci. Lett., 152, 93-99.

Koski, R. A., P. F. Lonsdale, W. C. Shanks, M. E. Berndt, and S. S. Howe (1985), Mineralogy and Geochemistry of a Sediment-Hosted Hydrothermal Sulfide Deposit From the Southern Trough of Guaymas Basin, Gulf of California, J. Geophys. Res., 90 (B8), 6695-6707.

Kuhn, T., P. M. Herzig, M. D. Hannington, D. Garbe-Schönberg, and P. Stoffers (2003), Origin of fluids and anhydrite precipitation in the sediment-hosted Grimsey hydrothermal field north of Iceland, Chem. Geol., 202 (1-2), 5-21.

Kumagai, H., K. Nakamura, T. Toki, T. Morishita, K. Okino, J. Ishibashi, U. Tsunogai, S. Kawagucci, T. Gamo, T. Shibuya, T. Sawaguchi, N. Neo, M. Joshima, T. Sato, and K. Takai (2008), Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: Implications of their vent fluids' distinct chemistry, Geofluids, 8, 239-251.

Langmuir, C., S. Humphris, D. Fornari, C. Van Dover, K. Von Damm, M. K. Tivey, D. Colodner, J. L. Charlou, D. Desonie, C. Wilson, Y. Fouquet, G. Klinkhammer, and H. Bougault (1997), Hydrothermal vents near a mantle hot spot: The Lucky Strike vent field at 37 degrees N on the Mid-Atlantic Ridge, Earth Plan. Sci. Lett., 148 (1-2), 69-91.

Le Ravalec, M., M. Darot, T. Reuschlé, and Y. Guéguen (1996), Transport Properties and Microstructural Characteristics of a Thermally Cracked Mylonite, Pure Appl. Geophys., 146, 207-227.

Lonsdale, P. and K. Becker (1985), Hydrothermal plumes, hot springs, and conductive heat-flow in the southern trough of Guaymas Basin, Earth Planet. Sci. Lett., 73 (2-4), 211-225.

Lowell, R. P. (1991), Modeling continental and submarine hydrothermal systems, Rev. Geophys., 29 (3), 457-476.

Lowell, R. P., and L. N. Germanovich (2004), Hydrothermal Processes at MidOcean Ridges: Results From Scale Analysis and Single-Pass Models, in MidOcean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German et al., pp. 219-244, AGU, Washington, D.C.

Lowell, R. P., P. A. Rona, and R. P. Von Herzen (1995), Seafloor hydrothermal systems. J. Geophys. Res., 100 (B1), 327-352.

Lowell, R. P., Y. Yao, and L. N. Germanovich (2003), Anhydrite precipitation and the relationship between focused and diffuse flow in seafloor hydrothermal systems, J. Geophys. Res., 108 (B9), 2424, doi:10.1029/2002JB002371.

Luquot, L. and P. Gouze (2009), Experimental determination of porosity and permeability changes induced by injection of CO_{2} into carbonate rocks, Chem. Geol., 265 (1-2), 148-159.

McCune, C. C., H. S. Fogler, and W. E. Kline (1979), An Experimental Technique for Obtaining Permeability-Porosity Relationships in Acidized Porous Media, Ind. Eng. Chem. Fundam., 18, 188-191.

Mills, R. A., T. Clayton, and J. C. Alt (1996), Low-temperature fluid flow through sulfidic sediments from TAG: Modification of fluid chemistry and alteration of mineral deposits, Geophys. Res. Lett., 23 (23), 3495-3498.

Mills, R. A. and M. K. Tivey (1999), Seawater entrainment and fluid evolution within the TAG hydrothermal mound: Evidence from analyses of anhydrite, In: Cann, J. H. Elderfield, and A. Laughton (eds.), Dynamics of Processes Associated with New Ocean Crust, Cambridge University Press, Cambridge, U. K., 225-248.

Norton, D., and R. Knapp (1977), Transport Phenomena in Hydrothermal Systems: The Nature of Porosity, Amer. Jour. Sci., 277, 913-936.

Quispe, J. R., R. E. Rozas, and P. G. Toledo (2005), Permeability-porosity relationship from a geometrical model of shrinking and lattice Boltzmann and

Monte Carlo simulations of flow in two-dimensional pore networks, Chem. Eng. Jour., 111 (2-3), 225-236.

Pape, H., C. Clauser, J. Iffland, R. Krug, and R. Wagner (2005), Anhydrite cementation and compaction in geothermal reservoirs: Interaction of porespace with flow, transport, P-T conditions, and chemical reactions, Int. J. Rock Mech. Mining Sci., 42, 1056-1069.

Paterson, M. S. (1983), The equivalent channel model for permeability and resistivity in fluid-saturated rock - A re-appraisal, Mech. Mater., 345-352.

Pearson, A., J. S. Seewald, and T. I. Eglinton (2005), Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin, Geochim. Cosmochim. Acta, 69 (23), 5477-5486.

Pester, N. J., D. A. Butterfield, D. I. Foustoukos, K. K. Roe, K. Ding, T. M. Shank, and W. E. Seyfried Jr. (2008), The Chemistry of Diffuse-Flow Vent Fluids on the Galapagos Rift $\left(86^{\circ} \mathrm{W}\right)$: Temporal Variability and Subseafloor Phase Equilibria Controls, in Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers, Geophys. Monogr. Ser., vol. 178, edited by R. P. Lowell et al., pp. 123-144, AGU, Washington, D.C.

Reis, J. C. and A. M. Acock (1994), Permeability Reduction Models for the Precipitation of Inorganic Solids in Berea Sanstone, J. Geophys. Res., 18, 347368.

Rona, P. A., M. D. Hannington, C. V. Raman, G. Thompson, M. K. Tivey, S. E. Humphris, C. Lalou, and S. Petersen (1993), Active and relict sea-floor hydrothermal mineralization at the TAG Hydrothermal Field, Mid-Atlantic Ridge, Econ. Geol. and the Bull. Soc. Econ. Geol., 88 (8), 1989-2017.

Rouxel, O., Y. Fouquet, and J. N. Ludden (2004), Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes, Geochim. Cosmochim. Acta, 68, 2295-2311.

Scheirer, D. S., T. M. Shank, and D. J. Fornari (2006), Termperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise, Geochem. Geophys. Geosyst., 7, Q03002, doi:10.1029/2005GC001094.

Sleep, N. H. (1991), Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axis. J. Geophys. Res., 96 (B2), 2375-2387.

Steefel, C. I., and A. C. Lasaga (1994), A coupled model for transport of multiple chemical-species and kinetic precipitation dissolution reactions with
application to reactive flow in single-phase hydrothermal systems, Amer. Jour. Sci., 294 (5), 529-592.

Thompson, G., M. J. Mottl, and P. A. Rona (1985), Morphology, mineralogy and chemistry of hydrothermal deposits from the TAG area, $26^{\circ} \mathrm{N}$ Mid-Atlantic ridge, Chem. Geol., 49, 243-257.

Tivey, M. K., S. Humphris, G. Thompson, M. Hannington, and P. Rona (1995), Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data, J. Geophys. Res., 100 (B7), 12527-12555.

Tivey, M. K., and R. E. McDuff (1990), Mineral Precipitation in the Walls of Black Smoker Chimneys: A Quantitative Model of Transport and Chemical Reaction, J. Geophys. Res., 95 (B8), 12617-12637.

Tivey, M. K., D. S. Stakes, T. L. Cook, M. D. Hannington, and S. Petersen (1999), A model for growth of steep-sided vent structures on the Endeavor Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study, J. Geophys. Res., 104 (B10), 22859-22883.

Todd, A. C. and M. D. Yuan (1992), Barium and Strontium Sulfate Solid Solution Scale Formation at Elevated Temperatures, SPE Prod. Eng., 7, 85-92.

Turcotte, D.L. and G. Schubert (1982), Geodynamics: Applications of Continuum Physics to Geological Problems, Cambridge University Press: New York, NY.

Turner, J. S. (1995), Laboratory models of growing flanges, and a comparison with other growth mechanisms of "black smoker" chimneys, Earth Plan. Sci. Lett., 134 (3-4), 491-499.

Von Damm, K. L., A. M. Bray, L. G. Buttermore, and S. E. Oosting (1998), The geochemical controls on vent fluids from the Lucky Strike vent field, MidAtlantic Ridge. Earth Plan. Sci. Lett., 160 (3-4), 521-536.

Walsh, J. B. (1965), The Effect of Cracks on the Compressibility of Rock, J. Geophys. Res., 70 (2), 381-389.

Walsh, J. B., and W. F. Brace (1984), The Effect of Pressure on Porosity and the Transport Properties of Rocks, J. Geophys. Res., 89, 9425-9431.

Wark, D. A. and E. B. Watson (1998), Grain-scale permeabilities of texturally equilibrated, monomineralic rocks, Earth Planet. Sci. Lett., 164, 591-605.

Wilcock, W. S. D., and J. R. Delaney (1996), Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts? Earth Plan. Sci. Lett., 145 (1-4), 49-64.

Woods, A. W. and J. R. Delaney (1992), The heat and fluid transfer associated with the flanges on hydrothermal venting structures, Earth Planet. Sci. Lett., 112, 117-129.

Zhang, S., M. S. Paterson, and S. F. Cox (1994), Porosity and permeability evolution during hot isostatic pressing of calcite aggregates, J. Geophys. Res., 99 (B8), 15741-15760.

Zhang, J. X., T. F. Wong, T. Yanagidani, and D. M. Davis (1990), PressureInduced Microcracking and GrainCrushing in Berea and Boise Sandstones -Acoustic-Emission and Quantitative Microscopy Measurements, Mechanics of Materials, 9 (1), 1-15.

Zhu, W., B. Evans, and Y. Bernabé (1999), Densification and permeability reduction in hot-pressed calcite: A kinetic model, J. Geophys. Res., 104, 25,501-25,511.

Zhu, W., C. David, and T .Wong (1995), Network models of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res., 100 (B8), 15451-15464.

Zhu, W., M. K. Tivey, H. Gittings, and P. R. Craddock (2007), Permeabilityporosity relationships in seafloor vent deposits: Dependence on pore evolution processes, J. Geophys. Res., 112, B05208, doi: 10.1029/2006JB004716.

Zhu, W. and T. F. Wong (1996), Permeability reduction in a dilating rock: Network modeling of damage and tortuosity, Geophys. Res. Lett, 23 (22), 3099-3102.

