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Let GpRq be a real reductive group. In this thesis we study the unitary repre-

sentations of GpRq. In particular, we study the special Arthur unipotent parameters

and the associated packets of irreducible representations of GpRq. It is conjectured

that these unipotent representations form the building blocks for all unitary repre-

sentations of GpRq.

To understand unipotent representations, we will need to compute the following

invariants of irreducible representations of GpRq: complex associated variety and the

theta associated variety. Even though these invariants are theoretically understood,

there are no known (at least to this author) results/algorithms to compute them ex-

plicitly.

The primary results of this thesis provide algorithms to compute these invariants ex-

plicitly in many cases. We then use these invariants to compute information about

unipotent Arthur packets, and in favorable cases, their entire contents explicitly. In



unfavorable cases, we show how to extract more information from our results by using

the stable sum formula.

We have implemented these algorithms into the Atlas of Lie Groups software,

available at www.liegroups.org. We also provide some tables of data compiled using

the output from Atlas.
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Chapter 1: Introduction

Suppose G is a complex connected reductive algebraic Lie group and let g be

its Lie algebra. Studying the representation theory of the real forms of G has been a

major focus over past few decades. Fix a real form GpRq of G and let KpRq be the

maximal compact subgroup in GpRq with complexification K. Let Πpg,Kq be the

set of irreducible pg,Kq-modules of GpRq. This set has been completely classified by

results of Langlands, Harish-Chandra, Vogan, Knapp, Zuckerman et al. Let Πhpg,Kq

be the set of irreducible pg,Kq-modules of GpRq equipped with an pg,Kq-invariant

hermitian form. The results of Knapp and Zuckerman completely classify this set

as a subset of Πpg,Kq. Finally, let Πupg,Kq be the set irreducible pg,Kq-modules

in Πhpg,Kq such that the invariant pg,Kq-hermitian form is positive definite. The

classification of Πupg, KCq is a challenging and an important problem. The Atlas of

Lie Groups Project - a collaboration between a wide network of mathematicians led

by Jeffrey Adams, David Vogan, Marc Van Leuven, etc. - has been able to identify

Πupg,Kq as a subset of Πhpg,Kq using computer software computations implemented

in the Atlas Software. More information about this project can be found at [Ada14].

The goal of this thesis is to understand unitary representations of GpRq, that
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is, the set Πupg,Kq. Specifically, we want to study certain representations that are

conjectured to be the building blocks for the set Πupg,Kq, these representations are

called “unipotent representations”. The notion of unipotent representations is not

standard. Defining and exploring the properties of unipotent representations has

been an area of active research in the field. We primarily follow the work of Arthur,

Vogan, Adams, Barbasch, et al in development of these ideas.

In [Vog87], Vogan lays out a program to possibly classify Πupg,Kq along with ideas

to suggest what properties might be expected of unipotent representations. He ends

his introduction to [Vog87] as follows “Implicit in this discussion is the hope that the

ideas described here suffice to produce all the irreducible unitary representations of

any reductive group GpRq. Because the constructions of complementary series and

unipotent representations are still undergoing improvement, this hope is as yet not

precisely defined, much less realized . . . . . . I hope that the reader will be not disap-

pointed by this imcompleteness, but enticed by the work still to be done.” This was

written in 1987, much progress has been achieved since then.

In the early 2000’s the Atlas of Lie Groups project was initiated by Adams, Vogan,

du Cloux, et al, to use computers “to make available information about representa-

tions of reductive Lie groups. Of particular importance is the problem of the unitary

dual: classifying all of the irreducible unitary representations of a given Lie group”.

The Atlas Software is a powerful computational tool, that can be used to compute a

variety of information about the structure of Lie groups and their representations.

The primary contribution of this thesis is in the understanding of the representation

theory of GpRq and the notions of unipotent representations developed by Arthur
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and Vogan in [Vog87], and formalized by Adams, Barbasch, and Vogan in [ABV92],

and to put these ideas in the computational context of the Atlas Software.

We now proceed to describing the results of this paper in a bit more detail. We

start with the following definition of Arthur parameters, first defined in [ABV92] as

follows, and can be found in Chapter 3 of this thesis (Definition 3.3):

Definition 1.1 (Arthur Parameter). An Arthur parameter for G is a homomorphism

ψ : WR ˆ SLp2,Cq ÝÑΓG_ satisfying

1. the restriction of ψ to WR is a tempered (Definition 22.3, [ABV92]) Langlands

parameter,

2. the restriction of ψ to SLp2,Cq is holomorphic.

We say that ψ is a unipotent Arthur parameter if ψ restricted to the identity

component of WR is trivial.

Given a unipotent Arthur parameter, we can attach to it two algebraic objects:

1) a “theta form” (Definition 2.4)of a complex nilpotent orbit O_ for the dual group

G_, and 2) a Langlands parameter φψ for GpRq.

As a result, the study unipotent Arthur parameters and packets is deeply interwoven

with the study of nilpotent orbits. Complex nilpotent orbits of G are well studied

objects, when G is of classical type, there is well known classification in terms of

certain integer partitions of n` 1, 2n, or 2n` 1 where n is the rank of G.

A classification of the theta forms of O_ is not known. As a first step, we address

this problem in Theorem ??, under the assumption that O_ is even (Definition 2.2).
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We can now use this classification to compute complex associated varieties and theta

associated varieties (see Chapter 5 for background on associated varieties).

In Theorem 6.2 we show one can compute the complex associated variety AVCpπq for

any irreducible representation π of GpRq. Furthermore, under certain good condi-

tions, we can compute the theta-associated variety AVθpπq of GpRq.

To a unipotent Arthur parameter, one can attach two types of packets as follows

(Definition 7.2 and Definition 7.3 respectively):

Definition 1.2 (Weak Unipotent Arthur Packet). Let O_ be a dual even complex

nilpotent orbit. Choose δ such that λpO_q P δ `X˚pHq. The weak unipotent packet

corresponding to the triple pξ, η_,O_q is the set

Πu
weakpξ, η

_,O_q :“ tπ P BpλpO_qq :“ T
λpO_q
δ pBpδqq | AVCpπ_q “ O_u. (1.1)

Definition 1.3 (Special Unipotent Arthur Packet). The special unipotent Arthur

packet corresponding to the tuple pξ, η_,O_K_q is the set

Πu
pξ, η_,O_K_q :“ tπ P Πu

weakpξ, η
_,O_q | O_K_ Ă AVθpπ

_
qu. (1.2)

Note that these definitions rely on the formalism of strong real forms ξ and η_,

and the notion of blocks of representations. The basic gist of these definitions is that

the ability to compute complex associated varieties and theta associated varieties,

completely determines the ability to compute unipotent packets. Theorem 7.2 sum-
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marizes our main contributions to the computation of unipotent Arthur packets.

This paper is organized as follows:

1. Chapter 2 - Chapter 5: we setup the background and basic framework:

(a) Chapter 2: basic definitions and results about nilpotent orbits that are rel-

evant to our results. We recall the Springer correspondence and description

of Weyl group representations.

(b) Chapter 3: we describe the Langlands and Arthur parameters, following

[ABV92].

(c) Chapter 4: we introduce the Atlas setting, describe how representations are

classified in this setting. We also introduce structure theory of parabolics

in Atlas.

(d) Chapter 5: we introduce associated varieties for GpRq. We also explore

some of their important properties.

2. Chapter 6: we give an algorithm for computing the real forms of an even nilpo-

tent orbit.

3. Chapter 7: we introduce unipotent Arthur parameters and the corresponding

special packets of unipotent representations, it ends with an algorithm to com-

pute these packets in certain cases.

4. Chapter 8: we provide an application of results proved in Section 6 and 7.
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5. Chapter 9: we provide tables of data. To work out the examples and to get the

information displayed in the tables, you will need to load the script file Arthur

Packets.at ( .at is the standard extension of Atlas script files) available in the

atlas scripts folder when you install the Atlas Software.

The expert reader can safely jump right to Section 6 through 8, where lies bulk of

the novelty and the main results and arguments of this thesis.
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Chapter 2: Nilpotent Orbits

Let G be a complex reductive group, with complex Lie algebra g. Fix a real

form GpRq of G and let gR be the corresponding real Lie algebra. Let K be the

complexfication of a maximal compact subgroup of GpRq and let θ be the Cartan

involution so that Gθ
“ K. Fix H Ă G, a Cartan subgroup and let

X˚
pHq “ tThe lattice of rational characters (into Cˆ) of Hu (2.1)

X˚pHq “ tThe lattice of one parameter subgroups of Hu

so there is a natural pairing

x , y : X˚
pHq ˆX˚pHq ÝÑ Z. (2.2)

Using the following natural isomorphisms,

h » X˚pHq bZ C, h˚ » X˚
pHq bZ C, (2.3)
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where h˚ is the vector space dual of h, we can extend the pairing to

x , y : h˚ ˆ h ÝÑ C. (2.4)

Now, fix a set of roots ∆pg, hq for g and let Πpg, hq be a choice of simple positive

roots. Let ∆_pg, hq and Π_pg, hq be the corresponding set of coroots and simple

coroots. The set of weights for G is defined as

P pGq :“ tλ P X˚
pHq bZ C : xλ, α_y P Z for all α P ∆u. (2.5)

Also, the co-weights for G are defined as

P_pGq :“ tλ_ P X˚pHq bZ C : xα, λ_y P Z for all α P ∆u. (2.6)

We can identify 2πi X˚pHq with the kernel of the exponential map exp : h ÝÑ

H, under this identification we have

P_pGq “ tλ_ P h : expp2πi λ_q P ZpGqu, (2.7)

where ZpGq is the center of G. Also,

P pGq “ tλ P h˚ : expp2πi λq P ZpG_
qu, (2.8)

where ZpG_
q is the center of the complex connected dual group G_.
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We outline some facts about nilpotent adjoint and coadjoint orbits for G, ad-

ditional details can be found in [CM93]. The group G acts on g via the adjoint

action

Ad : G ÝÑ Endpgq, g ÞÑ Adpgq. (2.9)

An element X P g is called nilpotent if there exist a k P N such that adpXqk “ 0.

The set of all nilpotent elements in g is called the nilpotent cone and is denoted as

N .

Definition 2.1 (Nilpotent Orbit). A nilpotent orbit in g is an orbit in N under the

Ad action of G.

If X P g is a nilpotent element, then we write OX :“ AdpGq ¨X for the nilpotent

orbit in g.

Theorem 2.1 (Jacobson-Morozov). Suppose g is a complex reductive Lie algebra.

Let X be a non-zero nilpotent element in g. Then, there exist H P h (semisimple)

and Y P g (nilpotent) such that

rH,Xs “ 2X , rH, Y s “ ´2Y and rX, Y s “ H, (2.10)

where the bracket is the Lie algebra bracket in g.

The set tX,H, Y u is called a standard slp2q-triple, and X is called its nilpositive

element. Suppose A is the set of AdpGq-conjugacy classes of slp2q-triples in g, then,

9



we can define a map

Ω : A ÝÑ tnilpotent orbitsu ; ΩptX,H, Y uq “ OX . (2.11)

The map Ω is bijective. We will conjugate the triple so that the semisimple element H

of the triple is dominant with respect to Πpg, hq. Furthermore, H belongs to P_pGq.

Using the bilinear pairing in Equation 2.4 we can label the nodes of the Dynkin

diagram for g by the integer xα,Hy. Such a diagram is called a labeled Dynkin

diagram and we denote it by DH . If H is the semisimple element of a standard

slp2q-triple, then, using slp2q-representation theory one can show that labels for the

Dynkin diagram can only be one of either 0, 1 or 2. Let D be the set of labelled

Dynkin diagrams corresponding to standard slp2q-triples.

Definition 2.2 (Even Nilpotent Orbits). Let O be a nilpotent orbit for G and let

tX, Y,Hu be the corresponding Jacobson-Morozov triple. We say O is an even nilpo-

tent orbit if any one of the following equivalent conditions hold.

1. all the nodes of the labelled Dynkin diagram DH are even (i.e. either 0 or 2).

2. 1
2
H P P_pGq.

When g is reductive Lie algebra of classical type, there is a classification of

nilpotent orbits in terms of partitions. We refer the reader to [[CM93], Theorem

5.1.1-5.1.4] for details of this classification.
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2.1 Induction of Nilpotent Orbits

Many nilpotent orbits in g can be induced from nilpotent orbits on subalgebras

of g. We introduce some ideas (relevant to us) regarding induction of nilpotent orbits.

Most of the details can be found in Chapter 7 of [CM93].

Let p “ l ` n be a parabolic subalgebra in g. Let P be the corresponding

parabolic subgroup in G. Suppose Ol is a nilpotent orbit in l. We have the following

result.

Theorem 2.2 ([CM93], Theorem 7.1.1). As in the notation above, recall that, AdpPq

is a connected subgroup of AdpGq with Lie algebra p. There is a unique nilpotent orbit

Og in g meeting Ol` n in an open dense set. The intersection OgX pOl` nq consists

of a single AdpPq-orbit. The orbit Og above will called the induced orbit from Ol and

will be denoted as

Og “ Indg
ppOlq.

The induced orbit only depends on the Levi factor l of p:

Theorem 2.3 ([CM93], Theorem 7.1.3). Let p “ l`n and p1 “ l`n1 be two parabolic

subalgebras in g have the same Levi subalgebra l and let Ol be a nilpotent orbit in l.

Then

Indg
ppOlq “ Indg

p1pOlq.

We say a nilpotent orbit is a Richardson orbit if it is induced from the trivial
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orbit on some parabolic subalgebra in g. Suppose O is a nilpotent orbit with slp2q-

triple tX,H, Y u and let DH be the labelled Dynkin diagram for O. Let ∆pOq be the

complement set of vertices labelled 2 in DH . Let l be the Levi subalgebra generated

by the roots in ∆pOq.

Theorem 2.4 ([CM93], Theorem 7.1.6). Let D1pOq be the labeled sub-diagram of

DpOq consisting of vertices labeled 0 or 1. If D1 is the labeled Dynkin diagram of a

nilpotent orbit Ol in l, then, O “ Indg
l pOlq.

Recall that even nilpotent orbits have the nodes of their Dynkin diagram la-

belled either 0 or 2. If O is even, l “ CentgpHq and, D1pOq defined in the theorem

corresponds to the trivial orbit 0l in l. Therefore, we have

Corollary 2.1. Suppose O is an even nilpotent orbit in g. Then, O is a Richardson

orbit; induced from the trivial orbit on the Levi subalgebra l of g generated by the

nodes labelled 0 in DpOq.

2.2 Real Nilpotent Orbits

Recall that N was defined to be the cone of nilpotent elements in g. The real

nilpotent cone is defined to be the nilpotents in gR:

NR :“ N X gR. (2.12)

The real nilpotent cone NR is a finite union of AdpGpRqq-conjugacy classes.

When g is of classical type, the conjugacy classes are parameterized by signed Young
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tableau, for more details about this classification and its explicit realization we refer

the reader to ([CM93], Chapter 9).

Definition 2.3 (Real form of a complex nilpotent orbit). Let O be a complex nilpotent

orbit for G. Let GpRq be a real form of G. By a real form of O we mean a GpRq-

conjugacy class of nilpotent elements in O X gR.

We use an alternate description of NR based on the Cartan involution θ. Let

g “ k ‘ s be the Cartan decomposition of g with respect to θ, that is k “ gθ and

s “ g´θ.

Let

Nθ :“ t Nilpotent elements in su. (2.13)

Since K preserves s “ g{k, K acts on acts on s and this action partitions Nθ

into finitely many orbits.

Theorem 2.5 (Kostant-Sekiguchi). There is a natural bijective correspondence be-

tween nilpotent GpRq-orbits in gR and the nilpotent K-orbits in s.

We now define,

Definition 2.4 (θ-form of a complex nilpotent orbit). Let O be a complex nilpotent

orbit for G. Let θ be the Cartan involution defining the real form GpRq of G. By

a θ-form of O we mean a K-conjugacy class of nilpotent elements in O X s, where

K “ Gθ and g “ k‘ s is the Cartan decomposition of g with respect to θ.

Since θ-forms are defined using Cartan involutions, they are better suited for

our applications.
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2.3 Coadjoint Nilpotent Orbits

In applications, nilpotent orbits arise in the dual vector space g˚ of g. Note

that g˚ does not have a Lie algebra structure, and as such, there is no direct way of

making sense of nilpotent elements in g˚. If g is a complex reductive Lie algebra, one

can define an invariant non-degenerate symmetric bilinear form on g:

x¨, ¨yg : gˆ g ÝÑ C (2.14)

such that x¨, ¨yg restricted to rg, gs is a nonzero constant multiple of the Killing form

on rg, gs.

The fact that x¨, ¨yg is non-degenerate implies that the map φ : g ÝÑ g˚ defined

by

X ÞÑ φX :“ xX, ¨yg P g
˚, (2.15)

is an isomorphism of vector spaces. Define the nilpotent cone in g˚ as N ˚ :“ φpN q.

Suppose O is a nilpotent orbit in g with nilpositive element X P O (so that

O “ AdpGq ¨X), then, we define the corresponding coadjoint orbit to be

O˚ :“ AdpGq ¨ φX Ă N ˚. (2.16)

We can use the map φ to identify the other coadjoint cones of nilpotent elements

with respect to a real form GpRq of G corresponding to a Cartan involution θ as
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follows:

N ˚
R :“ φpNRq, N ˚

θ :“ φpNθq. (2.17)

In this setting we have bijections:

1. N {G and N ˚{G.

2. Nθ{K and N ˚
θ {K.

3. NR{GpRq and N ˚
R{GpRq.

Therefore using the Kostant-Sekiguchi correspondence Nθ{K,N ˚
θ {K,NR{GpRq and

N ˚
R{GpRq are all in bijective correspondence.

2.4 Duality of Nilpotent Orbits

Let G be a complex connected reductive group and G_ be the corresponding

complex connected reductive dual group.

There is a basic duality due to Spaltenstein defined as a map d : N pGq ÝÑ N pG_
q,

called the duality map. We refer the reader to Section 6.3 in [CM93] for explicit

description in terms of partitions when G is of classical type.

2.5 The Springer Correspondence

We recall the Springer correspondence. Define B to be set of Borel subalgebras

in g.Given a nilpotent element X, the variety BX is the set of Borel subalgebras

containing X. The group GX :“ CentGpXq acts on BX via the adjoint action. The

induced action of this action on the cohomology H˚pBX ,Cq is trivial on GX
0 so that
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ApOXq :“ GX
{GX

0 acts on H˚pBX ,Cq.

For an irreducible representation pπ, Vπq of ApOXq define

H˚
pBX ,Cqπ :“ HomApOXqpVπ, H

˚
pBX ,Cqq. (2.18)

We are now ready to state the Springer correspondence:

Theorem 2.6 (Springer). For any nilpotent element X, there is a natural action of

W on H˚pBX ,Cq.

1. The actions of W and ApOXq commute; so W acts on H˚pBX ,Cqπ for π P

{ApOXq.

2. The natural maps

H˚
pB,Cq ÝÑ H˚

pBX ,Cq,

induced by H˚pBX ,Bq, are W - equivariant.

3. For π P {ApOXq, the representation σpX, πq of W on HdimRpBXqpBX ,Cqπ is irre-

ducible or zero.

4. If π is trivial, σpX, πq ‰ 0.

5. Suppose σ P xW . Then there are: a nilpotent element X P g, unique upto AdpGq;

and a unique π P {ApOXq, such that

σ “ σpX, πq.
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The correspondence

pG ¨X, πq ÝÑ σpX, πq (2.19)

is called the Springer correspondence. We write

σpOXq “ σpOX , 1q. (2.20)

The Springer correspondence provides a way of attaching to each nilpotent orbit

O a finite set of W-representations, having a distinguished element σpOq.

2.6 Weyl Group Representations in Classical Type

We go over some facts about Weyl group representations in types Bl and Cl,

details of the general situation can be found in [Car93].

Theorem 2.7 (Irreducible Weyl group representations of Type Bl and Cl). The irre-

ducible representations of the Weyl group WpBlq (and Cl) are in bijection with pairs

of partitions pα, βq such that |α| ` |β| “ l. We write σpα,βq for the W-representation

corresponding to pα, βq.

Suppose α “ pα0, α1, . . . , αmq and β “ pβ0, β1, . . . , βm´1q (we allow for the parts

to be zero, requiring that α has one more part that β) such that

0 ď α0 ď α1 ď ¨ ¨ ¨ ď αm and 0 ď β0 ď β1 ď ¨ ¨ ¨ ď βm´1 (2.21)

Lusztig attaches to pα, βq the following symbol:
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¨

˚

˚

˝

λ

µ

˛

‹

‹

‚

:“

¨

˚

˚

˝

λ0 λ1 . . . λm´1 λm

µ0 µ1 . . . µm´1

˛

‹

‹

‚

where λi “ αi ` i and µj “ βi ` i for i “ 0, 1, 2, . . . .

Definition 2.5 (Special W-representation). Let σpα,βq be a irreducible representation

of W with corresponding symbol

¨

˚

˚

˝

λ

µ

˛

‹

‹

‚

. We say σpα,βq is special if

λ0 ď µ0 ď λ1 ď µ1 ď λ2 ď µ2 ď ¨ ¨ ¨ ď λm`1. (2.22)

Definition 2.6 (Special Nilpotent Orbit). Let O be a nilpotent orbit in g. We say

O is special if the Weyl group representation σpOq associated to O via the Springer

correspondence is a special W-representation.

The Springer correspondence is explicitly realized when G is of classical type, we

make use of this realization in our computations and to this end has been implemented

into Atlas. For the interested reader, the algorithm can be found in ([Car93], pages

419-423).
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Chapter 3: An Overview of the setting

We outline the basic setting that we use for rest of this paper. Let G be a

complex connected reductive algebraic group. Let IntpGq,AutpGq and OutpGq be

the groups of inner automorphisms, automorphisms and outer automorphisms re-

spectively of G. We have the following exact sequence

1 IntpGq AutpGq OutpGq 1,
p

so that OutpGq » AutpGq{IntpGq.

A splitting datum for G is a tuple pB,H, tXαuq, where B is a Borel subgroup of G,

H a Cartan subgroup and tXαu is the set of root vectors for the of simple roots of H

in B. An involution of G is said to be distinguished if it preserves a splitting datum.

Let G_ be the dual group of G. There is a bijection between OutpGq and OutpG_
q

(Definition 2.11, [AdC09]) and we denote it by γ P OutpGq ÞÑ γ_ P OutpG_
q.

Fix γ P OutpGq an element of order two. An involution θ P AutpGq is said to be in

the inner class of γ if ppθq “ γ. We will say that two involutions θ and θ1 are inner to

each other if they have the same image in OutpGq under the map p. We call the pair

pG, γq a basic datum, and the corresponding dual basic datum is given by pG_, γ_q.

Let Γ “ GalpC{Rq “ t1, σu, then in this setting,
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Definition 3.1 (Extended group, L-group). The extended group for the pair pG, γq is

the semidirect product ΓG :“ G¸ Γ, where σ P Γ acts by the distinguished involution

in p´1pγq. The L-group for the pair pG, γq is defined to be the extended group for the

pair pG_, γ_q, often denoted as LG or ΓG_.

A real form of G is an antiholomorphic involutive automorphism σ : G ÝÑ G.

Let σc be a compact real form of G chosen such that it commutes with σ, then

θ “ σ ˝ σc is a holomorphic involution of G. We prefer to work with holomorphic

maps, and, to this end we need the following, (Theorem 3.2, [AdC09]),

Theorem 3.1. The map σ ÞÑ θ gives a bijection between G-conjugacy classes of

antiholomorphic involutions and G-conjugacy classes of holomorphic involutions of

G.

A Cartan involution of G is a holomorphic involution of G. Henceforth, by a

real form of G we will mean a G-conjugacy class of Cartan involutions.

Definition 3.2 (Strong real form). A strong involution of G in the inner class defined

by γ is an element ξ PΓG´G satisfying ξ2 P ZpGq. The set of strong involutions is

denoted by IpG, γq.

A strong real form of G in the inner class of γ is the G-conjugacy class of a strong

involution.

Given a strong real form ξ P IpG, γq, we can define a Cartan involution of G

as θξ “ Intpξq, Kξ “ StabGpθξq “ Gθξ . There is a surjective map from IpG, γq{G

onto the set of all real forms of G in the class defined by γ, this map is bijective if G

is adjoint.
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3.1 Langlands and Arthur Parameters

Let WR be the Weil group of R. A Langlands parameter is a homomorphism

φ : WR ÝÑ
ΓG_ such that the following diagram of L-morphisms commutes

WR
ΓG_

Γ

φ

and, φpCˆq is contained in the set of semisimple elements of G_. The group G_ acts

on such parameters by conjugation. To any G_ conjugacy class of such parameters

is attached a L-packet of representations of real forms in the inner class defined by γ.

Using ([ABV92], Proposition 5.6), one can identify the set of Langlands parameters

with pairs py, λ_q satisfying the conditions

1. y PΓ G_
´G_ and λ_ P h_ is a semisimple element,

2. y2 “ expp2πiλ_q, and

3. rλ_, Adpyqλ_s “ 0.

Definition 3.3 (Arthur Parameter). An Arthur parameter for G is a homomorphism

ψ : WR ˆ SLp2,Cq ÝÑΓG_ satisfying

1. the restriction of ψ to WR is a tempered (Definition 22.3, [ABV92]) Langlands

parameter,

2. the restriction of ψ to SLp2,Cq is holomorphic.

The group G_ acts on such parameters by conjugation.

We say that ψ is a unipotent Arthur parameter if ψ restricted to the identity compo-
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nent of WR is trivial. Given an Arthur parameter ψ, define the Langlands parameter

φψ to be

φψ : WR ÝÑ G_ φψpwq :“ ψpw,

¨

˚

˚

˝

|w|1{2 0

0 |w|´1{2

˛

‹

‹

‚

. (3.1)

Associated to ψ is an Arthur Packet of representations of real forms in the inner class

given be γ (Definition 22.6, [ABV92]) containing the L-packet corresponding to φψ

and at most finitely many additional representations of of strong real forms in the

given inner class. One of the main results of this paper is to devise and implement

an algorithm to compute these packets, not always completely, when ψ is assumed to

be unipotent.
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Chapter 4: Atlas of Lie groups requisites

We will make use of the Atlas of Lie groups setting. More details can be found

in [AdC09] and in resources available at www.liegroups.org.

We continue in the setting of the previous section. We fix a real form GpRq of G,

with corresponding Cartan involution θ, so that K “ Gθ. Furthermore, fix a pinning

pB,H, tXαu for G. We use the Harish-Chandra homorphism to associate to λ P h˚,

an infinitesimal character which we will also denote by λ, which only depends on the

Weyl group orbit W ¨λ and is unique if we require it to be dominant with respect to a

fixed choice of simple positive roots Πpg, hq. We say that λ is regular (resp. integral)

if xλ, α_y ‰ 0 (resp. P Z) for roots α P Πpg, hq.

It is well known that irreducible admissible representations of GpRq are parameterized

by irreducible admissible pg,Kq-modules. We define the following sets:

Mpg,Kq “ Category of finite length pg,Kq-modules.

KMpg,Kq “ Grothendieck group of Mpg,Kq.

Mpg,K, λq “ Category of finite length pg,Kq-modules with inf char λ.

KMpg,K, λq “ Grothendieck group of Mpg,K, λq.

Πpg,Kq “ tEquiv classes of irred admissible pg,Kq-modules.u

Πpg,K, λq “ tJ P Πpg,Kq such that inf char of J is λ.u
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By results of Harish-Chandra, the set Πpg,K, λq is a finite set although there

is no closed form formula for its cardinality. It is desirable to find a combinatorial

description of Πpg,K, λq, and the results in [AdC09] do exactly that. We now outline

the basic components of this description.

Recall that IpG, γq is the set of strong real forms for the basic data pG, γq, we

will denote it as I when there is no confusion about the basic data in question. The

one-sided parameter space is the set

X pG, γq :“ tξ P I | ξ P NormGΓ´GpHqu{H, (4.1)

the equivalence is via conjugation. The set X pG, γq is finite when G is semisimple,

and its elements are explicitly computed by the Atlas Software and are called KGB-

elements. When there is no confusion about the basic data, we will denote X pG, γq

by just X . Given a dual basic data pG_, γ_q, we will denote X pG_, γ_q as just X_.

Furthermore, given x P X , we denote the fiber of x to be

X rxs :“ tx1 P X | q´1
pxq is G-conjugate to q´1

px1qu, (4.2)

where q is the natural projection map. Fix x P X and suppose ξ P I is such that

qpξq “ x, we will denote θx,H to be the Cartan involution θξ restricted to H. The
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two-sided parameter space is defined as

ZpG, γq :“ tpx, yq P X ˆ X_ | pθx,Hqt “ ´θy,H_u Ă X ˆ X_. (4.3)

The following theorem provides the combinatorial setup that we want,

Theorem 4.1 (Adams-DuCloux, [AdC09], Thm 10.3). Fix a set Λ Ă PregpG,Hq

of representatives of P pGq{X˚pHq. Let I “ I{G be a set of representatives for the

strong real forms of ΓG_. For each ξi P I let θξi be the Cartan involution corresponding

to conjugation by ξi and let Kξi be the fixed points of θξi. There is a natural bijection

ZpΓG_
q Ø

ž

ξiPI

ž

λjPΛ

Πpg,Kξi , λjq. (4.4)

By (Corollary 9.9 [AdC09]), the set X is in bijection with the disjoint union of

Kξ-orbits on G{B (denoted as KξzG{B) as ξ varies over I. If we fix a strong real

form ξ such that qpξq “ x, then there is a bijection between X rxs and KξzG{B. Fix

an infinitesimal character λ for G then the set Πpg,Kξ, λq satisfies

Πpg,Kξ, λq Ă ZpG, γq Ă X rxs ˆ X_ » KξzG{Bˆ

¨

˝

ž

η_j PI_
K_
η_j
zG_

{B_

˛

‚, (4.5)

where I_ is a set of representatives for the strong real forms of ΓG_.

Now fix η_ P I_ and let y “ qpη_q P X_. We assume that λ satisfies pη_q2 “

expp2πiλq, then we recall the following definition of a block of representations:
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Definition 4.1 ([DAV81], Definition 9.2.1). The block equivalence of pg,Kq-modules

is the equivalence relation generated by

X „ Y if Ext1
pg,KqpX, Y q ‰ 0. (4.6)

The equivalence classes for this relation are called blocks.

Every block contains irreducible modules with a fixed infinitesimal character,

hence a the cardinality of a block is finite.

Let λ satisfy pη_q2 “ expp2πiλ_q. Consider the set (denoted by Bpξ, η_, λ_q)

of irreducible pg,Kξq-modules corresponding to the combinatorial data given by:

Bpξ, η_, λ_q “ pX rxs ˆ X_rysq X ZpG, γq (4.7)

“
`

KξzG{BˆK_
η_zG

_
{B_

˘

X ZpG, γq,

In this setting, Bpξ, η_, λ_q corresponds to an equivalence class of a block of rep-

resentations as defined by Definition 4.1. If we choose λ_ P Λ_ Ă P_pG,Hq such

that ξ2 “ expp2πiλq, we can define the dual block of Bpξ, η_, λ_q, as the block of

irreducible pg_,K_
η_q-modules at infinitesimal character λ_, as follows
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B_pξ, η_, λq “ Bpη_, ξ, λ_q (4.8)

“ pX rys ˆ X_rxsq X ZpG_, γ_q

“
`

K_
η_zG

_
{B_

ˆKξzG{B
˘

X ZpG_, γ_q,

with the same compatibility condition as in the definition of B.

In this setting, we can realize Vogan duality as follows:

Definition 4.2 (Vogan Duality). Vogan duality is the natural bijection between the

sets Bpξ, η_, λ_q and B_pξ, η_, λ_q obtained by the map px, yq ÞÑ py, xq.

Vogan duality provides a bijection π Ø π_ between irreducible representations

in blocks B and B_, this plays a crucial role in our computations.

We end this section with a brief description of L-packets for G. The L-packets

for G are parameterized by KGB-elements for G_. If we fix a KGB-element y0 “ ppη_q

for G_, the corresponding L-packet containing representations of real forms of G is

given by

ΠpG, y0q :“ tpx, yq P X rxs ˆ X_ry0s | pθx|hq
T
“ ´pθy0 |h_qu. (4.9)
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Let x0 :“ ppξq, then L-packet of pg,Kξq-modules corresponding to the strong real

form ξ of G and a fixed y0 is given as

Πpg,Kξ, y0q :“ tpx, yq P ΠpG, y0q; | x „ x0u. (4.10)

4.1 Parabolic Subgroups in Atlas

The Atlas of Lie groups software computes the set X rxs on computer. We now

explain how Atlas computes K-conjugacy classes of Borel and parabolic subgroups.

Given ξ P I, a strong involution of G such that qpξq “ x, the map KξgB ÞÑ

bBg´1 is a bijection between KξzG{B and the Kξ :“ Gθξ conjugacy classes of Borel

subgroups. Consider the set J :“ tpξ,B1
q | qpξq “ x,B1 a Borel subgroup of Gu.

Now fix ξ0 such that qpξ0q P X rxs

Consider the following maps:

J X rxs

KξzG{B

φ1

φ2
ψ

where for pξ,B1
q P J , we define φ1 as follows: choose g P G such that gB1g´1 “ B

and gξg´1 P NormpHq, and define φ1pξ,B
1
q “ qpgξg´1q P X rxs.

Define φ2 as follows: choose g P G such that gξg´1 “ ξ0 and define φ2pξ,B
1
q to be

the Kξ-conjugacy class of gB1g´1.
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Both φ1 and φ2 are bijections and hence induce a bijection

ψ “ φ2 ˝ φ
´1
1 : X rxs ÝÑ KξzG{B (4.11)

We can generalize the above construction to parabolic subgroups. Let S Ă

Πpg, hq, and let PS be the standard parabolic in G defined by S. All parabolics

conjugate to PS will be called parabolics of type S. Furthermore, the Weyl group W

acts naturally on X rxs and so does the group WS generated by the simple roots in

S. In this setting, we have the following picture:

tpξ,Pq | qpξq P X rxs,P parabolic of type-Su X rxs{WS

KξzG{PS

φ1

φ2 ψ

where given pξ,Pq, we define φ1 as follows: choose g P G such that gPg´1 “ PS and

gξg´1 P NormpHq, and define φ1pξ,Pq “ qpgξg´1q P X rxs.

Define φ2 as follows: choose g P G such that gξg´1 “ ξ0 and define φ2pξ,Pq to be the

Kξ-conjugacy class of gPg´1.

Both φ1 and φ2 are bijections and hence induce a bijection

ψ “ φ2 ˝ φ
´1
1 : X rxs{WS ÝÑ KξzG{PS (4.12)

The main results of this paper use the explicit computation of Kξ conjugacy

classes of parabolic subgroups, which can now be done using X rxs{ „S, the latter

computation being implemented in the Atlas software.
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Define a finite set P as follows

P “ tpS, yq | S Ă Πpg, hq, y P X rxsu{ „, (4.13)

where pS, yq „ pS 1, y1q if and only if S “ S 1 and y „S y
1.

For pS, yq P P , let rQpS, yqs be the Kξ0-conjugacy class of parabolic subgroups defined

by ψpyq, and let QpS, yq be a representative parabolic of type S in this class.

Proposition 4.1. The parabolic QpS, yq is θx-stable if and only if θxpSq “ S.

Recall that given a semisimple element λ P h, let Spλq Ă Πpg, hq be the set of

simple roots vanishing on λ. One can construct a parabolic subalgebra in g as follows:

gα “ tX P g | adpXqpY q “ αpXqY, for all Y P g.u

npλq “
ÿ

αP∆pg,hq,xα,λyą0

gα

lpλq “ Centhpλq “ h`
ÿ

αP∆pg,hq,xα,λy“0

gα

ppλq “ lpλq ` npλq.

Let Ppλq be the parabolic subgroup in G corresponding to pλ, then Ppλq is a parabolic

subgroup of type S. Therefore there exists a y P X rxs such that the parabolic

pξ,Ppλqq Ø QpSpλq, yq :“ ψpyq. Let rQpSpλq, yqs be the Kξ-conjugacy class of

parabolic subgroups, and QpS, yq a representative parabolic of type S in this class.

Proposition 4.2. The parabolic QpSpλq, yq is θx-stable if and only if θxpλq “ λ.
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For more details, the interested reader can visit www.liegroups.org/Papers. In

the later parts of the paper we will be in the “Atlas Setting” as follows:

Definition 4.3 (Atlas Setting). Let pG, γq be a basic data and pG_, γ_q be the cor-

responding dual basic data. Let pB,H, tXαuq be a fixed pinning for G. Let ξ be a

strong real form of G in the inner class of γ and let η_ be a strong real form for G_

in the dual inner class given by γ_. Corresponding to ξ and η_, let θξ “ Intpξq, and

θη_ “ Intpη_q be Cartan involutions of G and G_ respectively with maximal complex

subgroups Kξ and K_
η_ respectively. Finally, let λ be an integral infinitesimal charac-

ter for G and let Bpξ, η_, λq be the block of irreducible pg,Kξq-modules at infinitesimal

character λ specified by the pair of strong real forms pξ, η_q. Also, B_ “ Bpη_, ξ, λ_q

is the corresponding dual block of irreducible pg_,K_
η_q-modules.
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Chapter 5: Associated Varieties

5.1 The Complex Associated Variety

Let pπ, V q be an irreducible pg,Kq-module. Using the universal property of

Upgq, the universal enveloping algebra of g, we can think of pπ, V q as a pUpgq,Kq

module. Let Ipπq be the annihilator of π in Upgq, that is

Ipπq “ tX P Upgq : πpXqpvq “ 0 for all v P V u. (5.1)

The ideal Ipπq is a primitive ideal in Upgq, and one can construct a filtration

tInpπq :“ UnpgqIpπqu, where tUnpgqu is the standard filtration for Upgq, and, use it

to define the associated graded module:

grIpπq “
8
à

n“0

Inpπq{In´1pπq. (5.2)

Since UmpgqInpπq Ă Um`npgq, grpπq is a graded ideal in grUpgq » Spgq. Using

the Poincare-Birkoff-Witt theorem, grUpgq » Spgq, and hence we can compute the

support of grIpπq. We call the latter the complex associated variety, AVCpπq, of π,
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that is:

AVCpπq “ SupppgrIpπqq “ tλ P g˚ : Xpλq “ 0 for all X P grIpπqu. (5.3)

Since grIpπq is a graded ideal in Spgq, AVCpπq is a cone in g˚. Furthermore, it

can be shown that grIpπq must contain some power of the augmentation ideal J of

Spgq, which is the collection of AdpGq- invariant polynomials without constant term.

Let Jk Ă grIpπq for some k P N. This immediately implies that

AVC Ă SupppJkq “ SupppJq. (5.4)

The following theorem due to Kostant describes SupppJq in g˚,

Theorem 5.1 ([Vog91], Theorem 5.7). Suppose G is a reductive Lie group, and

J Ă Spgq, the augmentation ideal. Then the associated variety of J is the cone N ˚

of nilpotent elements in g˚.

An application of the above theorem shows that AVCpπq Ă N ˚, the nilpotent

cone in g˚. Therefore AVCpπq must be the closure of a finite union of nilpotent orbits

in g˚, since N has finite number of orbits. In fact, a much stronger statement is true,

Theorem 5.2 (Borho, Brylinski, Joseph). Let G be a complex connected reductive

Lie group and let GpRq be a real form of G. Suppose pπ, V q is an irreducible pg,Kq-

module, then AVCpπq is the closure of a single nilpotent orbit O in g˚.

Given pπ, V q, an admissible irreducible pg,Kq-module of GpRq, it is desirable to

know if one can compute the invariant AVCpπq. In the case when GpRq is a classical
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connected reductive Lie group, we use an algorithm due to Noel and Jackson coupled

with the Springer correspondence. These computations have been implemented in

the Atlas software.

5.2 The Real and the Theta Associated Variety

We assume that pπ, V q is a finite length pg,Kq-module, in this case one can show

that V is generated by a finite-dimensional subspace S as a pg,Kq-module. Using

the universal property of Upgq we can show that pπ, V q is a pUpgq,Kq - module.

Furthermore, for v P V , π satisfies the following conditions:

1. dπpZqv “ Z ¨ v for all Z P k.

2. πpkqpX ¨ vq “ pAdpkqXq ¨ πpkqv for all k P K and X P Upgq.

Using the local finiteness of the action of K we can find a finite-dimensional

K-invariant subspace V0 of V that contains S. An easy argument shows that V “

UpgqV0. Therefore, we can construct a filtration tVnpπq :“ UnpgqV0u for V . Since, V0

was K invariant, and the fact that the action of K is compatible with the action of

Upgq, we note that Vnpπq is K-invariant for all n.

Note that UnpgqVmpπq Ă Vm`npπq. Therefore, this gives us a K-invariant graded

submodule of grUpgq given by:

gr V “
8
à

n“0

Vnpπq{Vn´1pπq. (5.5)
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A consequence of the PBW-Theorem is that grV is a pSpgq,Kq module so that

the Spgq and the K action satisfy the following:

πpkqpX ¨ vq “ pAdpkqXq ¨ πpkqv for all k P K, v P grV, and X P Spgq. (5.6)

Differentiating the above equation and noting that Spgq is an abelian Lie alge-

bra, we see that

Z ¨ v “ 0, for all X P k and v P grV. (5.7)

As a result, the action pSpgq,Kq action on grV descends to a pSpg{kq,Kq action.

We define

AVθpπq “ SupppgrV q (5.8)

“ tλ P pg{kq˚ : v ¨ pλq “ 0 for all v P grV u Ă pg{kq˚.

As in the case of AVCpπq, we can show that AVθpπq is closed under dilations,

which implies that AVθpπq lies in a cone in pg{kq˚. Furthermore, the fact that the mod-

ule pπ, V q is quasisimple implies that grV contains some power of the augmentation

ideal J of Spg{kq, therefore

AVθpπq Ă SupppJq. (5.9)

As in the case of AVCpπq, we can show that SupppJq is in fact the nilpotent

cone N ˚
θ in pg{kq˚. Hence AVθpπq must be a union of finitely many K-orbits in pg{kq˚.

Using the Kostant-Sekiguchi correspondence, to the K-orbits in AVθpπq one can find

35



the corresponding GpRq orbits in N ˚
R and the union of these orbits is called the real

associated variety of π, denoted as AVRpπq.

To summarize the above discussion, AVθpπq satisfies:

AVθpπq “ O1
K YO2

K Y ¨ ¨ ¨ YOrK , (5.10)

where OiK are nilpotent K-orbits on pg{kq˚. For i “ 1, 2, . . . , r, if OiR is the GpRq orbit

corresponding to OiK under the Kostant-Sekiguchi correspondence then we define the

real associated variety to be

AVRpπq “ O1
R YO2

R Y ¨ ¨ ¨ YOrR. (5.11)

The two invariants AVCpπq and AVθpπq attached to pπ, V q are related as follows:

1. AVCpπq Ă N ˚.

2. AVθpπq Ă N ˚
θ .

3. AVRpπq Ă N ˚
R .

4. If AVθpπq “ O1
K YO2

K Y ¨ ¨ ¨ YOrK , then

AVCpπq “ AdpGq ¨OiK .
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5. If AVRpπq “ O1
R YO2

R Y ¨ ¨ ¨ YOrR, then

AVCpπq “ AdpGq ¨OiR.

We end this section with a brief description of cohomologically induced modules

and their associated varieties. Fix a Cartan involution θ for G. Let p “ l ` n be

a theta-stable parabolic subalgebra of g, so that p, l and n are preserved by θ. Let

g “ k ‘ s, be the Cartan decomposition of g and s “ dimps X nq. We start with a

pl,L XKq- module and construct a pg,Kq-module using Zuckerman’s cohomological

induction functor.

Suppose Z is a one dimensional pl, pLXKqq-module with infinitesimal character

γL. We can extend Z to a pp,L X Kq-module by making n act trivially. Then

Zuckerman defines the following produced module

X “ pro
pg,LXKq
pp,LXKqpZq, (5.12)

and a functor

pRp,Lq
0
pZq “ Γ

pg,Kq
pg,LXKqpXq. (5.13)

R0 is a left exact functor and because the category of pl, pLXKqq-modules has enough

injectives, one can define

pRp,Lq
i
“ ith right derived functor of pRp,Lq

0. (5.14)
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In this setting,

Theorem 5.3 (Zuckerman, Vogan, Theorem 6.8, [Vog87]). Suppose LpRq is a Levi

subgroup of GpRq attached to the θ-stable parabolic subalgebra p “ l` n. Let L be the

complexification of LpRq, and s the dimension of nX k. Let 2ρpnq be the sum of roots

positive on n. Consider the functors

Rj
“ pRp,Lq

j j P t0, 1, 2, . . . , su (5.15)

from the category of pl,L X Kq-modules, to the category of pg,Kq-modules. Let Z

be a pl,L X Kq-module and let h be a Cartan subalgebra of l. Assume that Z has

L-infinitesimal character γL P h
˚ then

1. RjpZq has G-infinitesimal character γL ` ρpnq.

2. Assume that for each root α of h in n,

RexγL ` ρpnq, αy ě 0.

Then RjpZq is zero for j not equal to s.

3. Under the above hypothesis, if Z is unitary, then so is RspZq.

4. If we assume that for each root α of h in n,

Rexγ ` ρpnq, αy ą 0.
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Then, if Z is non-zero, so is RspZq.

For most of our applications, we will take Z to be a one dimensional pl,LXKq-

module. Let λ “ dZ P h˚. Let p :“ ppλq “ lpλq ` npλq, and by AppZq, we will

really mean RspZq. The modules AppZq, often denoted as Appλq are defined using

the θ-stable data pp, λ :“ dZq and have infinitesimal character λ` ρpnpλqq.

The following theorem shows that even though cohomological induction functor de-

pends on Z, the associated variety of the cohomologically induced module AppZq

depends only on npλq, which in turn depends only on dZ.

Theorem 5.4. [Yam94] Let GpRq be a real group corresponding to the Cartan invo-

lution θ. Let π “ AppZq, where the θ-stable data is given by p “ ppλq and Z is a one

dimensional representation of l satisfying dZ “ λ P l˚. Suppose xλ` ρpnq, αy ą 0 for

all α P ∆pnq, where ∆pnq is the set of roots on n and 2ρpnq is the sum of roots in

∆pnq. Let g “ k ‘ s be the Cartan decomposition of g. Then, AVθpπq “ K ¨ pnX sq,

is the closure of a single K-orbit in Nθ.

5.3 Coherent Continuation and Translation Functors

We know that X˚pHq is the lattice of weights of finite dimensional representa-

tions for G. So that given a finite dimensional representation F of G, the set ∆pF q

of weights of F , is a subset of X˚pHq. We begin with the definition of a coherent

family:
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Definition 5.1 (Coherent Family). A coherent family of virtual modules is a map

Θ : X˚
pHq ÝÑ KMpg,Kq, (5.16)

such that:

1. Θpλq has infinitesimal character λ P X˚pHq; and

2. For every finite-dimensional representation F of G,

F bΘpλq “
ÿ

µP∆pF q

Θpλ` µq. (5.17)

Now, fix γ P X˚pHq. Given M PMpg,K, γq, we say Θ : X˚pHq ÝÑ KMpg,Kq

is a coherent family through M if Θpγq “M . The set of all coherent families on X˚

is a finite rank, free Z-module. If γ is assumed to be regular then we have a basis for

coherent families on X˚pHq given by tΘMu, where ΘM is a coherent family through

M , and M P Πpg,K, γq.

Suppose w P W and Θ : X˚ ÝÑ KMpg,Kq is a coherent family. We can

construct a new coherent family w ¨Θ defined by

w ¨Θpλq “ Θpw´1λq (5.18)

Since the infinitesimal character is equivalent up to the action of W, w ¨ Θpλq

has infinitesimal character λ. Since the weights of a finite dimensional representation
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of G are invariant under the action of W, the second condition for the definition of

coherent family is also true for w ¨Θ. To summarize the above discussion:

Theorem 5.5 (Coherent Continuation Action). Suppose γ is a fixed regular integral

infinitesimal character. Then there is an action of W on the set of all coherent

families

Θ : X˚
ÝÑ KMpg,Kq

defined by

w ¨Θpλq “ Θpw´1λq. (5.19)

We can use the coherent continuation action to define a W action on KMpg,K, γq.

Since Πpg,K, γq is a basis for KMpg,K, γq, we only need to define the action of W

on this basis and then linearly extend this action.

Suppose J P Πpg,K, γq. Choose a coherent family Θ : X˚ ÝÑ KMpg,Kq such that

Θpγq “ J . Then,

w ¨ J “ pw ¨Θqpγq. (5.20)

We can use the action of W on KMpg,K, γq to define a partial order on repre-

sentations in Πpg,K, γq as follows:

Definition 5.2. Suppose X, Y PMpg,K, γq.

1. We say X ăγ Y if Y appears in w ¨X for some w PWγ

2. We say X „γ Y if X ăγ Y and Y ăγ X.
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The relation „γ is an equivalence relation on Πpg,K, γq, and, the equivalence

classes are called Harish-Chandra cells.

The following result provides a relation between coherent continuation action

and the operation of computing associated varieties.

Proposition 5.1. Let J P Πpg,K, γq. Suppose Θ : X˚ ÝÑ KMpg,Kq such that

Θpγq “ J . Let w PW be an arbitrary element in Wγ, then

1. AVCpJq “ AVCpw ¨ Jq.

2. AVθpJq “ AVθpw ¨ Jq.

3. AVRpJq “ AVRpw ¨ Jq.

Proof. This results comes down to checking that the graded algebras involved in the

computations of the associated varieties for J and w ¨ J are all isomorphic, since J

and w ¨ J differ only up to tensoring with finite dimensional representations of G.

The conclusion about associated varieties then follows.

Recall that Πpg,K, γq is the set of irreducible representations with infinitesimal

character γ. Zuckerman’s ideas of tensoring representations with finite-dimensional

representations lead to the the theory of translation functors, which is a way of study-

ing the representation theory at an infinitesimal character δ (possibly different from

γ) in terms of the representation theory at γ. These ideas will be used extensively in

computing unipotent representations.
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Let γ P h˚ be a fixed infinitesimal character. Fix a weight φ P X˚pHq and

let Fφ be the finite dimensional representation of G with extremal weight φ. Let

π P Πpg,K, γq be an irreducible pg,Kq-module. For, γ P X˚ , let ξγ : zpUpgqq ÝÑ C

be the character on zpUpgqq given by Harish Chandra’s isomorphism. Define the

projection map:

Pγ : KMpg,Kq ÝÑ KMpg,K, γq, (5.21)

where the map takes π P Mpg,Kq to the largest submodule of π annihilated by

pI´ ξγq|zpUpgqq. In other words, Pγ takes π to the largest submodule with infinitesimal

character γ.

Definition 5.3 (Translation (to the Wall) Functor). Suppose Fφ is a finite dimen-

sional representation of G with highest weight φ. Let γ P h˚ be regular and integral,

and, let π P KMpg,K, γq. Assume that γ ` φ is dominant (possibly singular). The

translation functor is the functor

T γ`φγ : Mpg,K, γq ÝÑMpg,K, γ ` φq, π ÞÑ Pγ`φpπ b Fφq. (5.22)

Alternately, we can define translation functors using coherent families as follows:

suppose J P Πpg,K, γq, choose a coherent family Θ such that Θpγq “ J , then

T γ`φγ pJq “ Θpγ ` φq. (5.23)

Since J P Πpg,K, γq is a basis for Mpg,K, γq, we can then linearly extend this

definition. Using the relationship of coherent families and associated varieties, we
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have

Proposition 5.2. Let γ P h˚ be a regular integral infinitesimal character and let

π PMpg,K, γq. Let φ P X˚ be an extremal weight of Fφ, a finite dimensional repre-

sentation of G. Then,

1. AVCpπq “ AVCpT
γ`φ
γ pπqq.

2. AVθpπq “ AVθpT
γ`φ
γ pπqq.

3. AVRpπq “ AVRpT
γ`φ
γ pπqq.

Proof. Since translation functors are nothing but evaluation of coherent families the

result follows from the fact that asociated varieties are constant for a fixed coherent

family.

We package this information about associated varieties being constant on co-

herent families into the following result,

Proposition 5.3. Suppose

Mpg, K, γq “
ž

HC-Cells

C,

then AVCpπq, AVθpπq, and AVRpπq remain constant as one varies π over a fixed cell

C.

Proposition 5.3 allows us to define the notion of associated variety of a cell,

that is, if C is a HC-cell, we can define AVCpCq, AVθpCq, AVRpCq to be the respective
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associated varieties of a fixed π P C.

Suppose C is a HC-cell. Taking the irreducible representations in C as a basis,

we can linearly extend the coherent continuation action to a #C :“ c-dimensional

complex representation of W. Understanding this Weyl group representation on the

cell C will be the main goal of the following section.

The coherent continuation action on C contains a unique special Weyl group

representation. We can then use the Springer-correspondence to attach a complex

nilpotent orbit of g to C. This complex nilpotent orbit turns out to be the complex

associated variety of representations in this cell. There are at least two approaches to

computing the special W -representation of the cell C - one due to Noel and Jackson,

and the other due to Binegar. In the case when the group GpRq is of classical type,

the algorithm due to Noel and Jackson is very amenable to implementation in Atlas.

5.4 The Noel-Jackson Algorithm

Let GpRq be the real form a complex classical connect reductive algebraic group

G. The special W-representation attached to a HC-cell C can be studied using the

sign representation. More precisely, suppose π is a representation of W and let Lpπq

be the set of all parabolic subgroups P of W, such that ResWP pπq contains the sign

representation of P , Lpπq is called the Levi-set of π.

Theorem 5.6 (Noel-Jackson, [FJMN18]). Suppose W is a Weyl group of classical
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type. Let π be an irreducible representation of W. Then, π is determined by its Levi

set Lpπq.

Alternately, starting with a Levi set L, it is possible to construct a unique π P xW

such that Lpπq “ L.

We need the following definition:

Definition 5.4 (Tau-invariant). Let γ be a regular integral infinitesimal character.

Suppose J P Πpg, K, γq. Fix a set of positive simple roots Π`pg, hq. We say that

a simple root α is in the tau invariant of J if and only if sα ¨ J “ ´J ( in the

Grothendieck group KMγpg, Kq). We denote this set by τpJq.

Fix a HC-cell C, let J P C and let π be the special W-representation attached

to C. We can construct a parabolic subgroup PJ of W using the sα for α P τpJq

as generators. Furthermore, by definition of the tau-invariant, we see that ResWPJ pπq

contains the sign representation of PJ . Therefore, using tau-invariants of represen-

tations in C, we can extract a Levi-set LpCq for the cell C. This is the Levi-set for

the coherent continuation representation on C. We can now use the Noel-Jackson

algorithm (in [FJMN18]) to compute the special cell representation on C. We have

implemented this algorithm into the Atlas software, so as to use it’s functionality in

computing associated varieties.
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Chapter 6: Parameterizing Theta Forms of Even Complex Nilpotent

Orbits

Let G be a complex connected reductive algebraic group. Let ΓG_ be a L-

group for G. We will be in the Atlas Setting (refer 4.3) for the rest of this paper. In

this section we outline an algorithm to parameterize real forms of an even complex

nilpotent orbit.

6.1 Unipotent Arthur Parameters

Fix a unipotent Arthur parameter (Definition 3.3), say ψ. Using the restriction

of ψ to SLp2,Cq, and under a “integrality” assumption, we get a nilpotent orbit O_

of G_ on g_. Furthermore, the restriction of ψ to WR is determined once we specify

ψpjq, which must be an element of order two in ΓG_ satisfying:

1. ψpjq P CentG_pψ|SLp2,Cqq,

2. ψpjq PΓ G_
´G_.

Corresponding to ψ, let

ψ1 :“ ψ|SLp2,Cq : SLp2,Cq ÝÑ G_, (6.1)
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and let

λ “ λ1 “ dψ1

¨

˚

˚

˝

1
2

0

0 ´1
2

˛

‹

‹

‚

P h_, Eψ “ dψ1

¨

˚

˚

˝

0 1

0 0

˛

‹

‹

‚

. (6.2)

If λ is integral, then O_ is an even nilpotent orbit for G_ (else, it is a nilpotent

orbit of a proper subgroup of G_). We can construct the parabolic subalgebra

ppλq_ “ lpλq_ ` npλq_ Ă g_. Let P_ be the G_-conjugacy class of parabolic subal-

gebras conjugate to ppλq_.

Let y P IpG_, γ_q be a representative for a strong real form of G_ and let θ_ “ Intpyq.

Let g_ “ k_ ‘ s_ be the Cartan decomposition of g_ with respect to θ_. In this set-

ting, Eψ P npλq
_Xs_, and using ([ABV92], Lemma 27.8), it belongs to the Richardson

class ([ABV92], Proposition 20.4) corresponding to P_, denoted as ZP_ .

Given a unipotent Arthur parameter ψ, let O_λ “ G_
¨λ be the semisimple orbit

containing λ “ dψ1

¨

˚

˚

˝

1
2

0

0 ´1
2

˛

‹

‹

‚

P h_. Let XpO_λ ,ΓG_
q :“ tpy1, λ1q | y1 „ y and λ1 P

O_λ u. We say that a unipotent parameter ψ1 is supported on XpO_λ ,ΓG_
q if λ1 P O_λ ,

where λ1 “ dψ11

¨

˚

˚

˝

1
2

0

0 ´1
2

˛

‹

‹

‚

.

6.2 Parameterizing Theta Forms of an even complex nilpotent orbit.

Let O_ Ă g_ be a complex even G_-nilpotent orbit. The goal of this section is

to find a “good” parameterization for the theta-forms of O_ defined in (2.4). Using

the Kostant-Sekiguchi correspondence, we get a parameterization of the real forms of
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O_ defined in (2.3).

Let tX_, Y _, H_u be the Jacobson-Morozov triple for O_, so that O_ “ G_
¨

X_. We recall a special case/corollary of ([ABV92], Theorem 27.10),

Corollary 6.1. Let θ_ be the Cartan involution of G_ satisfying pG_
qθ
_

“ K_ and

let g_ “ k_ ‘ s_ be the Cartan decomposition. Let GpRq_ be the real form of G_

corresponding to the Cartan involution θ_. Furthermore, assume that the semisimple

orbit O_λ corresponding to λ comes from a homomorphism ψ1 : SLp2,Cq ÝÑ G_

attached to the even nilpotent G_ orbit O_. Then there is a correspondence between

the following sets:

1. The equivalence classes of unipotent Arthur parameters supported on XpO_λ ,ΓG_
q.

2. K_ conjugacy classes of of parabolic subgroups Q_
P P_ “ G_

{P_, where P_

is a fixed parabolic subgroup of G_ such that its Levi factor L_ has Lie algebra

l_ “ Centg_pλq and Q_ satisfies:

(a) θ_pQq “ Q_.

(b) Let q_ “ l_ ` n_ be the Langlands decomposition of q_ “ LiepQ_
q, then

n_ X s_ XO_ ‰ H

3. K_ orbits on s_ XO_.

Proof. Let tX_, Y _, H_u be the Jacobson-Morozov triple forO_ and let l_ “ Centg_pH
_q.

Using ([CM93], Corollary 7.1.7), we note that the even nilpotent orbit O_ is a
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Richardson orbit, in fact, it is induced from the trivial obit on l_. This implies

that ZP_ “ O_. Using ([ABV92], Theorem 27.10) in the light of these observations

we get the three correspondences.

The conditions (1) and (3) in the Corollary above are most intuitive to the

reader, yet checking them is not easy. We will use the Atlas Setting and software to

work with condition (2): (2a) is elementary and has been implemented in Atlas, (2b)

is the more difficult one to test, and our method uses representation theory to arrive

at an algorithm to test it successfully in many cases.

We continue to be in the Atlas Setting as follows: G a complex connected re-

ductive algebraic group, G_ the dual group. Fix a strong real form η_ of G_ and

let θ_η_ be the corresponding Cartan involution of G_. Let K_
“ CentG_pη

_q. Let

g_ “ k_‘s_ be the Cartan decomposition of g_ with respect to θ_η_ . Furthermore, we

choose ξ to be the dual quasisplit strong real form of G, in the dual inner class of ΓG_.

Fix a regular integral infinitesimal character γ P h˚ » h_. We are fixing ξ, η_

and γ, so we will suppress them from the notation. In this setting, we have a block

of irreducible representations of GpRq at infinitesimal character γ, B “ Bpξ, η_, γq Ă

Πpg,K, γq. Corresponding to B, we have the dual block B_ of irreducible pg_,K_
q-

modules at infinitesimal character γ_. Since γ_ is integral, the full Weyl group W_

acts on B_. Using the coherent continuation action, B_ decomposes into into disjoint
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HC-cells:

B_ “
ž

HC´cells

C_. (6.3)

Recall that AVCpC_q makes sense, since the associated variety remains constant for a

fixed cell C_.

Now fix an even nilpotent orbitO_ Ă g_ with Jacobson-Morozov triple tX_, Y _, H_u

and fix λ “ 1
2
H_ and let l_ “ Centg_pλq. Let

P_pl_q :“ tθ_ - stable parabolic subalgebras of g_ with Levi-factor l_u Ă P_.

(6.4)

Then, every p_ P P_pl_q is conjugate to a parabolic subalgebra the form ppλ1q_ for

some semisimple λ1 P l_ and the θ_-stable condition comes down to checking that

θ_pλ1q “ λ1.

Definition 6.1 (Parameter set for theta forms of O_). Suppose η_ is a strong real

form of G_ and θ_ “ Intpη_q is a corresponding Cartan involution of G_. Associated

to the pair pO_, η_q is the set

SpO_, η_q :“ tp_ P K_
zP_pl_q | θ_pp_q “ p_, n_ X s_ XO_ ‰ Hu, (6.5)

where p_ “ l_`n_ is Langlands decomposition of p_ and g_ “ k_‘ s_ is the Cartan

decomposition of g_. In our setting, η_ wil be fixed, so we drop it from the notation,

i.e. the parameter set will be denoted as SpO_q.
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As noted in Corollary 6.1, we know that SpO_q parameterizes the theta forms

of O_. Even though the conditions defining SpO_q are explicit, it is not clear how

one could check the last condition - n_Xs_XO_ ‰ H - to explicitly compute SpO_q.

The first result of this paper addresses this problem:

Theorem 6.1. Suppose η_ a strong real form of G_. Choose ξ to be the dual quasis-

plit strong real form of G corresponding to η_. Let Bpξ, η_, γq and B_pξ, η_, γ_q be

blocks of representations at regular integral infinitesimal characters γ, γ_ repectively.

Let θ “ Intpξq and θ_ “ Intpη_q be Cartan involutions of G and G_ corresponding

to ξ and η_.

Let O_ be an even nilpotent orbit in the complexified Lie algebra g_. Let

tX_, Y _, H_u be the Jacobson-Morosov triple for O_ and let l_ “ Centg_pH
_q. Let

g_ “ k_‘ s_ be the Cartan decomposition of g_ with respect to θ_. Let SpO_q be set

in Definition 6.1

Then,

SpO_q Ø tp_ P K_
zP_pl_q | AVCpRp_pχtrivqq “ O_u. (6.6)

There is an algorithm to explicitly compute the latter set which is implementable in

the Atlas of Lie Groups software.

Proof. The computation of the set SpO_q involves checking for two conditions:
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1. We need to know how to check if a given parabolic is theta stable, which is

elementary.

2. We need to find a method to check the condition n_ X s_ X O_ ‰ H, which

is the difficult part. The main idea of this theorem is to replace this condition

with something more amenable to computation, in this case to reduce it to

computing the complex associated variety.

Let λ “ H_ be the semisimple element in the Jacobson-Morozov triple for O_. Recall

that P_pl_q is the set of theta-stable parabolics having Levi factor l_ “ Centg_pλq.

As a first step we find a description of K_
zP_pl_q, the K_-conjugacy classes of

parabolics in P_pl_q.

Let Spλq be the set of simple roots of g_ which are singular on λ. Then, a K_-

conjugacy class of parabolic subgroups is determined by specifying a parabolic Q_

corresponding to the data py, Spλqq, where y is a representative for a K_-orbit of

G_
{B_. The parabolic Q_

py, Spλqq is θ_-stable if and only if θ_y pλq “ λ, where θ_y

is the Cartan involution on G_ corresponding to the KGB-element y.

We can use this description of parabolics to compute the set K_
zP_pl_q in Atlas.

Since by definition, SpO_q Ă K_
zP_pl_q, our goal will be to pare down S 1pO_q :“

K_
zP_pl_q to SpO_q. To achieve this, we will use the second condition defining

SpO_q : n_ X s_ XO_ ‰ H, for a n_ arising as the nilpotent part of the the Lang-

lands decomposition of p_ P S 1pO_q.
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Define the map:

Ξ : K_
zP_pl_q ÝÑ tK_ - orbits on s_u, p_ ÞÑ K_

¨ pn_ X s_q. (6.7)

Using Theorem 5.4, we have n_ X s_ is open and dense in a single K_-orbit of

s_, as a result, the map Ξ is well defined.

We note the following consequences of Theorem 6.1:

1. The image of Ξ contains all the K_ - orbits on s_ XO_.

2. The restriction of Ξ to SpO_q is a bijective correspondence between SpO_q and

K_-orbits on s_ XO_.

Therefore, to compute SpO_q, it comes down to checking if Ξpp_q Ă s_ XO_.

Proposition 6.1. Suppose we are in the above setting and let p_ P K_
zP_pl_q. Then

Ξpp_q Ă s_ X O_ (that is p_ P SpO_q) if and only if AVCpRp_pχtrivqq “ O_, where

χtriv is the trivial character on p_.

Proof. Suppose Ξpp_q is a K_-orbit on s_ X O_, then n_ X s_ X O_ ‰ H. Let

X_ P n_ X s_ XO_ be a generic element, then using Theorem 5.4, we see that

AVθpRp_pχtrivqq “ K_
¨ pn_ X s_q “ K_

¨X_,

therefore Ξpp_q is by definition AVθpRp_pχtrivqq.

Furthermore, using the relationship between AVC and AVθ for a fixed module, we
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have

AVCpRp_pχtrivqq “ G_
¨ pK_

¨ pn_ X s_qq

“ G_
¨ pK_

¨X_q

“ G_
¨X_

“ O_

This implies that AVCpRp_pχtrivqq “ O_ if n_ X s_ XO_ ‰ H.

Now, if Ξpp_q Ć s_ X O_, then by Corollary 6.1, Ξpp_q “ AVθpRp_pχtrivqq

cannot be a theta-form of the complex nilpotent orbit O_, so that AVCpRp_pχtrivqq “

G_
¨ AVθpRp_pχtrivqq ‰ O_. This completes the proof of the proposition.

Given the fact that we can compute K_
zP_pl_q using Atlas, Proposition 6.1

reduces the computation of SpO_q to the computation of complex associated varieties

of all representations in the given block B_. It turns out that there are algorithms to

take care of this latter step, it is dealt in two cases:

1. When G_ is of classical type.

2. When G_ is of exceptional type.

For Case 1, an algorithm by Noel-Jackson computes the special W_-representation at-

tached to a representation π_ of GpRq_ by computing the special W_-representation

σpC_q attached to the HC-cell C_ containing π_, using the tau-invariants of the rep-

resentations in C_.
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We can then apply the Springer correspondence to compute the special nilpotent or-

bit attached to σpC_q, the closure of this special nilpotent orbit is AVCpπ
_qq. Both,

the Noel-Jackson algorithm and the Springer correspondences can be implemented

as functions in the Atlas software, so that given the block B_, one gets an output

specifying AVCpC_q for every HC-cell in B_.

For Case 2, we use tables computed by Binegar to find out what the AVCpC_q, for

a given HC-cell in B_. There is an algorithm due to Vogan that would compute

the special Weyl group representation of an irreducible representation of a group of

exceptional type, work is in progress to write it down in a way that could be imple-

mented in the Atlas software.

This completes the proof of the theorem. For the reader’s convenience, we

summarize the algorithm to compute SpO_q:

1. Given O_, compute the neutral element H_ in the Jacobson-Morozov triple for

O_ and let λ “ H_. Let l_ “ Centg_pλq.

2. Compute the set S 1pO_q :“ K_
zP_pl_q, which is possible in Atlas.

3. Using the Noel-Jackson algorithm or the tables by Binegar, compute theAVCpπ
_q

for every π_ P B_.

4. To pare down S 1pO_q to SpO_q, for every p_ P S 1pO_q computeAVCpRp_pχtrivqq

using previous step. If AVCpRp_pχtrivqq “ O_ put p_ into SpO_q, or else discard

it from the list.
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5. Since S 1pO_q was a finite set, this algorithm will terminate in finite number of

steps and at the end we will be left with exactly SpO_q.

6.3 Computing Theta Associated Variety

Continuing in the setting of the last section, now we describe an algorithm to

compute the theta-real-associated variety of an irreducible pg_,K_
q-module, π_ P B_,

at regular integral infinitesimal character γ_. Let AVCpπ
_q “ O_. We specify certain

“good” conditions on π_, which when satisfied, AVθpπ
_q can be explicitly computed.

To begin, fix the nilpotent orbit O_ in g_ and let λpO_q “ 1
2
H_ infinitesimal

character coming from the semisimple element in the Jacobson-Morozov triple corre-

sponding to O_. Let p_pλq “ l_ ` npλq_ be the parabolic subalgebra corresponding

to λ. If we assume that O_ is even, the set SpO_q corresponding to the real forms

of O_ in terms of representatives of K_-conjugacy classes of θ_-stable parabolics, is

computable and the algorithm is described in Section 6.4. The first “good” condition

to compute AVθpπ
_q is as follows:

Condition 1

AVCpπ
_q is the closure of an even nilpotent orbit O_.

Fix a parabolic q_ P SpO_q and let q_ “ l_`n_ be its Langlands decomposition.
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Let Q_
“ L_N_ be the corresponding parabolic of G_, with L_ the complexification

of the real Levi LpRq_.

Let λ be a one dimensional pl_,L_XK_
q-module, we then cohomologically induce it

up to a pg_,K_
q-module, denoting this final representation as Rq_pλq.

Proposition 6.2. Suppose q_ is as above and χ1 and χ2 are two one dimensional

representations of L_ XK_, such that χ1|pL_XK_q0 “ χ2|pL_XK_q0, then

AVθpRq_pχ1qq “ AVθpRq_pχ2qq. (6.8)

Proof. Since χ1|pL_XK_q0 “ χ2|pL_XK_q0 , we have an equality of derivatives dχ1 “ dχ2,

let’s call this λ0. Using Theorem 5.4 and the discussion preceding it, we know that

the theta-associated variety AVθpRq_pχ1qq and AVθpRq_pχ2qq depend only on npλ0q,

and hence the equality of the two theta-associated varieties follows.

We know how to compute all the real forms of O_ in terms of θ_-stable parabol-

ics, using Theorem 6.1 denoted as SpO_q. Suppose SpO_q “ tp_1 , p_2 , . . . , p_r u and let

tL_1 ,L
_
2 , . . . ,L

_
r u be the corresponding the Levi subgroups. Choose one dimensional

pl_i ,L
_
i XK_

q-modules χij for j “ 0, 1, 2, ¨ ¨ ¨ , s´ 1 where s “ |L_{L_0 | such that the

infinitesimal character of χij “ ρpLiq “ γL (in fact, any regular integral infinitesimal

character for Li would work, we make this choice so that our induced modules have

infinitesimal character ρpGq). For a fixed i and for all j, AVθpRp_i
pχijqq corresponds

to the K_-orbit corresponding to the same pi. That is, the real associated variety

remains the same as we vary j but keep i fixed.
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Recall that B_ is partitioned into HC-cells, C_, given by

B_ “
ž

C_.

Definition 6.2 (“Good” Cells). In the above setting we say that a HC-cell C_ is

good if it contains a representation of the form Rp_i
pχijq for some choice of i and j.

Let C_ij be the set of good cells corresponding to the representations Rp_i
pχijq

for i P t1, 2, . . . , ru and j P t1, 2, . . . , su. Note that AVθpC_i,jq is the closure of a single

K_-orbit that corresponds to the θ_-stable parabolic p_i P SpO_q.

We can now state the second good condition:

Condition 2

π_ lies in a good cell.

Definition 6.3 (Good Condition). Suppose π_ P B_. We say that π_ satisfies the

good condition if Conditions 1 and 2 (above) are both satisfied.

We are led to the following theorem:

Theorem 6.2. Let ξ, η_ be strong real forms of G, G_ in the Atlas Setting, Defi-

nition 4.3. Let B and B_ be blocks of representations at regular integral infinitesimal
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characters γ, γ_ respectively. Let O_ be a fixed even nilpotent orbit and let π_ P B_.

Then,

1. AVCpπ
_q can be explicitly computed for all π_ P B_.

2. if π_ satisfies the “good condition” (that is when Condition 1 and 2 are both

satisfied), then AVθpπ
_q can be computed as the closure of a single K_-orbit in

s_ XO_.

Proof. We describe the two algorithms mentioned in the theorem. The algorithm to

compute the complex associated variety is as follows:

1. Suppose π_ P B_. By the decomposition of B_ into HC-Cells, there must be a

cell C_, such that π_ P C_.

2. When G is of classical type, we use the Noel-Jackson algorithm to compute

the special Weyl group representation σpC_q attached to C_, this algorithm has

been implemented in Atlas. If G is of Exceptional type, there are tables for the

special Weyl groups representations attached to cells, by Binegar for example.

3. We apply the Springer correspondence (again implemented in Atlas) to σpC_q

to get the special nilpotent orbit attached to C_, by construction, this is exactly

AVCpC_q.

4. Since the associated variety remains constant on the cell, we have hence com-

puted AVCpπ
_q.

When G is of exceptional type, these computations have already been tabulated in
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literature. We mention that case here only for the sake of completeness.

1. We compute AVCpπ
_q using the previous algorithm, this will be a closure of a

single nilpotent orbit. It is possible to check if this complex nilpotent orbit is

even, if it is even, we have Condition 1 satisfied and denote this nilpotent orbit

as O_.

2. Since O_ is even, we can compute SpO_q corresponding to the block B_ as in

Theorem 6.1.

3. Now, suppose π_ is in a good cell, say C_. By definition of a good cell, C_

must contain a Rp_i
pχijq for a choice of i and j. The theta-associated variety

of Rp_i
pχijq and hence of C_ is the closure of a single theta-form parameterized

by pi P SpO_q.

Therefore if the good condition is satisfied, we can compute the theta-associated

variety of π_ as the closure of the theta-form corresponding to the parabolic pi P

SpO_q. This algorithm has been implemented in the Atlas software, so that if you

input a representation into the software, we can check if the good condition holds, and

if it does, we output the theta-associated variety in terms a parabolic corresponding

to a theta-form of O_.
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Chapter 7: Special Unipotent Packets for Real Reductive Groups

We now return to the main goal of this paper, to compute unipotent Arthur

packets in the “good” case, and when things are not “good”, to provide a list of repre-

sentations that can be used to complete these packets. We provide an algorithm that

explicitly computes Atlas/Langlands parameters of representations in these packets.

We have implemented this algorithm into the Atlas of Lie groups software.

7.1 Special Unipotent Parameters and Packets

We will be in the Atlas Setting of Definition 4.3. That is:

Let pG, γq be a basic data and pG_, γ_q be the corresponding dual basic data. Let

pB,H, tXαuq be a fixed pinning for G. Let ξ be a strong real form of G in the inner

class of γ and let η_ be a strong real form for G_ in the dual inner class given by

γ_. Corresponding to ξ and η_, let θξ “ Intpξq, and θη_ “ Intpη_q be Cartan in-

volutions of G and G_ respectively with maximal complex subgroups Kξ and K_
η_

respectively.

Let δ be a regular integral infinitesimal character for G and let Bpξ, η_, δq be the

block of irreducible pg,Kξq-modules at infinitesimal character δ specified by the pair

of strong real forms pξ, η_q. Also, B_ “ Bpη_, ξ, δ_q is the corresponding dual block

62



of irreducible pg_,K_
η_q-modules.

Definition 7.1 (Block at Singular infinitesimal character). Suppose λ P δ `X˚pHq,

then by a block at (possibly singular infinitesimal character) λ we will mean the trans-

lation of the block at regular integral infinitesimal character at δ to the infinitesimal

character λ, that is

Bpλq “ Bpξ, η_, λq :“ T λδ pBpξ, η_, δqq. (7.1)

The Bpλq does not depend on the choice of a regular integral δ P X˚pHq.

Fix a unipotent Arthur parameter (Definition: 3.3)ψ, and let φψ be the cor-

responding Langlands parameter with data py, λq. We recall that the pair py, λq

satisfies:

1. Let ψ0 be the tempered Langlands parameter corresponding to the restriction

of ψ to WR. Let py0, λ0q be the data corresponding to the parameter ψ0.

2. Let ψ1 be the restriction of ψ to SLp2,Cq. Define:

y1 “ ψ

¨

˚

˚

˝

i 0

0 ´i

˛

‹

‹

‚

, λ1 “ dψ1

¨

˚

˚

˝

1{2 0

0 ´1{2

˛

‹

‹

‚

.

Then the Langlands parameter φψ corresponding to ψ is given by py, λq where,

y “ y0y1 and λ “ λ0 ` λ1.
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Recall that y must satisfy: y2 “ expp2πiλq. We can attach the nilpotent element

Eψ :“ dψ1

¨

˚

˚

˝

0 1

0 0

˛

‹

‹

‚

to ψ . The element Eψ P npλq
_ X s_. If O_ “ G_

¨Eψ , then O_

is a even nilpotent orbit for G_ if and only if λ is integral. Let tX_, H_, Y _u be the

Jacobson-Morozov triple corresponding to O_, and now define

λpO_q :“
1

2
H_. (7.2)

Definition 7.2 (Weak Unipotent Arthur Packet). Let O_ be a dual even complex

nilpotent orbit. Choose δ such that λpO_q P δ `X˚pHq. The weak unipotent packet

corresponding to the triple pξ, η_,O_q is the set

Πu
weakpξ, η

_,O_q :“ tπ P BpλpO_qq :“ T
λpO_q
δ pBpδqq | AVCpπ_q “ O_u. (7.3)

An easy consequence of the definition of weak unipotent packets is the fact that

two weak unipotent Arthur packets are either equal or disjoint.

We can construct the parabolic subalgebra p_ “ lpλq_ ` npλq_ and define P_

to be the conjugacy class of parabolic subalgebras conjugate to p_. In this setting

Eψ P ZP_ , the Richardson orbit corresponding to P_. Since O_ is even, ZP_ “ O_.

This implies that Eψ P npλq_ X s_ X O_, as a result, we can find a K_ orbit on s_

(this is exactly K_
¨ Eψ) corresponding to the Arthur parameter ψ, call this orbit

O_K_ . The map

ψ ÞÑ K_
¨ Eψ, (7.4)
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defines a bijection between unipotent Arthur packets corresponding to unipotent

Arthur parameters supported on XjpO_λ ,ΓG_
q and the theta real forms of O_ in

the block B_pλpO_qq. Note that G_
¨ Eψ “ O_. We now define a special unipotent

Arthur packet.

Definition 7.3 (Special Unipotent Arthur Packet). The special unipotent Arthur

packet corresponding to the tuple pξ, η_,O_K_q is the set

Πu
pξ, η_,O_K_q :“ tπ P Πu

weakpξ, η
_,O_q | O_K_ Ă AVθpπ

_
qu. (7.5)

The theta associated variety of an irreducible representation need not necessarily

be the closure of a single orbit, as a result, we can only hope for an inclusion of O_K_

inside AVθpπ
_q as a result two distinct unipotent Arthur packets need not necessarily

be disjoint.

7.2 Computing Special Unipotent Packets

Continuing with the definitions of unipotent packets, we now proceed to com-

pute them. Even though the packets are explicitly defined, the computation of its

actual contents is difficult. The difficulty lies in the computation of the invariants

AVCpπq and AVθpπq.

There is no algorithm that computes the contents of a general unipotent packets. The

results relating to the computation of the invariants AVCpπq and AVθpπq (Theorem

6.2) in the earlier sections provide us with the tools to study these packets and to
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compute some of these packets in special cases.

Since we can compute AVCpπq for any π, we will first show how to completely com-

pute weak unipotent Arthur packets.

The computation of AVθpπq depends on a couple assumptions. Even under these

assumptions, we cannot always compute the special unipotent Arthur packets com-

pletely, however, we can always identify a non-empty set of representations inside the

packet and also provide a list of representations that could possibly complete this set

to the full packet.

Fix a dual even complex nilpotent orbit O_. Let λ :“ λpO_q “ 1
2
H_, where

H_ is the semisimple element in the Jacobson-Morozov triple. We want to compute

Πu
weakpξ, η

_,O_q :“ tπ P Bpλq | AVCpπ_q “ O_u. (7.6)

Fix a regular and integral δ P X˚pHq, such that λ P δ`X˚pHq. Let Bpξ, η_, δq

be a block of irreducible pg,Kq-modules at regular integral infinitesimal character δ,

note that η_ satisfies pη_q2 “ e2πiλ. Let B_ be the dual block, a block of irreducible

pg_,K_
q-modules at infnitesimal character δ_. Using Vogan duality, we note that

there is a bijection between Bpγq and B_pγ_q. If π P Bpγq, its Vogan dual will be

denoted as π_ P B_pγ_q.

This leads us to the first main result of this section:

Theorem 7.1. Let O_ be an even nilpotent orbit in g_. Suppose we are in the setting

described above, then Πu
weakpξ, η

_,O_q can be completely and explicitly computed.
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Proof. We will prove this result in a series of steps as follows:

1. Recall that the dual block is a disjoint union of HC-cells

B_pδ_q “
ž

C_.

2. Given a W_-cell C_ and for any π_ P C_, by Theorem 6.2 part (a), we know

how to compute AVCpπ
_q. Since the associated variety remains constant on C_,

this lets us compute AVCpC_q.

3. Let C_
pO_q be the set of all cells C_ satisfying AVCpC_q “ O_. For every cell

C_, we use Vogan-duality to compute the dual cell C and put this cell into the

set CpO_q, so that CpO_q is set of HC-cells for Bpδq such that the dual cell C_

has complex associated variety O_.

4. The representations in the cells C P CpO_q all have dual complex associated

variety O_, and, have infinitesimal character δ. To get representations at in-

finitesimal character λ :“ λpO_q, we apply the translation functor T λδ . Since

we chose δ such that λ P δ `X˚pHq, the application of the translation functor

is valid.

5. Therefore, the computation of the weak unipotent Arthur packets is the set:

Πu
weakpξ, η

_,O_q “
ž

CPCpO_q

T λδ pCq. (7.7)

To implement this algorithm in the Atlas software, in addition to using in built
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functions (for induction and translation functors), we have:

1. implemented the algorithm to compute H_, the semisimple element in the

Jacobson-Morozov triple corresponding to O_.

2. implemented the Noel-Jackson algorithm to compute the special Weyl group

representation when G is of classical type. In the case when G is of exceptional

type we hard code the special nilpotent orbit attached to a cell.

3. implemented the Springer correspondence to compute the special nilpotent orbit

given the special W-representation, when G is of classical type.

4. implemented Vogan-duality to compute a dual cell.

5. each of these functions have combined so that if one inputs the pair pB,O_q we

output the set Πu
weakpξ, η

_,O_q in terms of explicit Langlands parameters.

We move to computing special unipotent Arthur packets. Let O_ be a fixed

dual even complex nilpotent orbit for G. Let λ :“ λpO_q be the infinitesimal char-

acter attached to O_. Let ξ be a strong real form of G. Choose δ P X˚pHq so that

λ P δ `X˚pHq. Let η_ be a strong real form for G_ such that pη_q2 “ e2πiλ and η_

is in the dual quasisplit inner class for G. Let Bpξ, η_, δq be a block for the strong

real form ξ of G at infinitesimal character δ. Let B_pδ_q be the corresponding dual

block.
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Given the complex nilpotent orbit O_, we have a set of K_-conjugacy classes

of θ_-stable (θ_ “ Intpη_q) parabolic subgalgebras in g_ parameterizing the theta

forms of O_ in the block B_pδ_q, denoted as SpO_q and computed in Theorem 6.1.

Let SpO_q “ tp_1 , p
_
2 , . . . , p

_
r u and suppose for i “ 1, 2, . . . , r, let p_i “ l_i ` n_i be

the Langlands decomposition. Let tO_K_,1,O_K_,2, . . . ,O_K_,ru be the set of theta real

forms of O_ corresponding to the ordered set SpO_q.

For a fixed i, let si be the number of connected components of the real Levi

subgroup, L_i , corresponding to li. For j “ 1, 2, . . . , si, let χij be a character on L_i

such that dχij “ δ_L_ for all j “ 1, 2, . . . , si.

Corresponding to each χij, let C_i,j be the HC-cell in B_pδ_q containing Rp_i
pχijq.

Following the proof of Theorem 6.2, recall that for a fixed i, AVθpC_ij q “ O_K_,i. We

define

C_
pO_K_,iq :“ tC_ij | j “ 1, 2, . . . siu Ă C_

pO_q. (7.8)

Note that every cell C_ P C_
pO_K_,iq satisfies AVθpC_q “ O_K_,i, and let

CpO_K_,iq :“ tthe dual cell of C_, for every C_ P C_
pO_K_,iqu Ă CpO_q. (7.9)

Let

C_
pO_K_q :“

ď

i

C_
pO_K_,iq, (7.10)

and let
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CpO_K_q :“
ď

i

CpO_K_,iq. (7.11)

Now, let

Πu
icppξ, η

_,O_K_,iq :“
ž

CPCpO_K_,iq

T λδ pCq. (7.12)

Note that Πu
icppξ, η

_,O_K_q Ă Πupξ, η_,O_K_q. Every representation π P Πu
icppξ, η

_,O_K_,iq

is such that AVθpπ
_q is the closure of a single theta form O_K_,i of O_, and hence

irreducible.

It can be the case that there is a representation π P Bpλq such that AVθpπ
_q is

reducible and that O_K_,i is just one of the components, then π must belong to

Πupξ, η_,O_K_,iq, however such a π cannot belong to Πu
icppξ, η

_,O_K_,iq. That is why

we use the subscript “icp” which stands for “incomplete packet”.

Now, recall that CpO_q is the set of all cells C P Bpδq such that AVCpC_q “ O_.

Let

CK_pO_q “
r
ž

i“1

CpO_K_,iq Ă CpO_q. (7.13)

Definition 7.4 (Good Condition for Unipotence). We will say that the good condition

for unipotence is satisfied if CpO_q “ CK_pO_q.

When the good condition for unipotence is satisfied, all the unipotent Arthur

packets Πu
icppξ, η

_,O_K_,iq “ Πupξ, η_,O_K_,iq for all i “ 1, 2, . . . , r. Furthermore, in

this case, two unipotent Arthur packets are either disjoint or equal.
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There are cases when the good condition for unipotence is not satisfied. This

mostly has to do with the fact that there is no clear understanding about the real

associated variety of some HC-cell C_ in B_, in this case AVθpπ
_q is likely reducible

or if it is irreducible π_ does not belong to any of cells C_ P C_
pO_K_,iq for any i. Let

CmispO_q “ CpO_q ´CK_pO_q. (7.14)

Then testing for the good condition for unipotence is equivalent to checking if CmispO_q

is empty. Finally let

Πu
mispξ, η

_,O_q :“
ž

CPCmispO_q

T λγ pCq Ă Πu
weakpξ, η

_,O_q. (7.15)

The set Πu
mispξ, η

_,O_q is exactly the set of representations, a subset of which when

added to Πu
icpξ, η

_,O_K_,iq, one gets the complete unipotent Arthur packet Πupξ, η_,O_K_,iq.

For this reason we use the subscript “mis” which stands for “missing representa-

tions”. It is not immediately clear what subset of Πu
misspξ, η

_,O_q can be added to

Πu
icpξ, η

_,O_K_,iq to get a complete unipotent Arthur packet. In ongoing work with

Jeffrey Adams, we explore some ideas about stable characters to achieve this comple-

tion in some cases. We summarize the above discussion in the following theorem

Theorem 7.2. Let O_ be an even nilpotent orbit in g_. Let ξ be a strong real form

of G and let η_ a strong real form of G_, and δ a integral regular infinitesimal

character for G be chosen such that pη_q2 “ expp2πiλpO_qq and λpO_q P γ`X˚pHq.

Let Bpδq :“ Bpξ, η_, δq be the block of pg,Kξq-modules and B_pδ_q the corresponding
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dual block. Let tO_K_,1,O_K_,2, . . . ,O_K_,ru be the theta real forms of O_ in the block

B_pδ_q.

1. Suppose the good condition for unipotence is satisfied, then Πupξ, η_,O_K_,iq can

be computed for all i “ 1, 2, . . . r. This computation can be implemented in

Atlas to compute the explicit Langlands parameters of representations in these

complete unipotent packets.

2. Suppose the good condition for unipotence is not satisfied, then for each i “

1, 2, . . . , r, we can compute a set

Πu
icppξ, η

_,O_K_,iq Ă Πu
pξ, η_,O_K_,iq,

and, a set

Πu
mispξ, η

_,O_q Ă Πu
weakpξ, η

_,O_q

such that

Πu
pξ, η_O_K_,iq ´ Πu

icppξ, η
_,O_K_q Ă Πu

mispξ, η
_,O_q,

for each i “ 1, 2, . . . , r. For i “ 1, 2, . . . , r, we have the following inclusions:

Πu
icppO_K_,iq Ă Πu

pO_K_,iq Ă Πu
icppO_K_,iq

ğ

Πu
mispO_q “ Πu

weakpO_R q,

such that, except Πupξ, η_,O_K_,iq, all the other sets are completely and explicitly

computable in Atlas.
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Chapter 8: An application and some examples

Recall that Theorem 6.2 computes the real associated variety only when the

‘good condition’ given in Definition 6.3 is satisfied.

Here are two possiblities of how the good condition might fail to be true:

1. The cell C_ contains a Rqpλq, but q is not conjugate to any of the parabolics in

SpO_q.

2. The cell C_ does not contain a cohomologically induced module of the type

Rqpλq for any choice of theta-stable data pq, λq.

In case of (1), we know that the associated variety is definitely irreducible and there-

fore has to be one of the theta-forms corresponding to a parabolic in SpO_q. It is

possible that such a scenario does not arise, but at this point we don’t know how to

prove otherwise.

In case of (2), we will use Theorem 7.2 to try to figure out the the associated

variety. The main tool in this application is the stable sum formula for unipotent

packets which we now state:

Theorem 8.1 (Theorem 22.7, [ABV92]). Suppose we are in setting of previous sec-
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tion, that is the Atlas Setting, let O_ be a dual nilpotent orbit and let O_K_,i be one

of its theta-forms. Let Πupξ, η_,O_K_,iq :“ ΠupO_K,iq. Then corresponding to O_K,i, is

a strongly stable virtual character given by

ηpO_K,iq “
ÿ

πPΠupO_K,iq

apπqπ, (8.1)

the coefficients apπq are explicitly determined, and are non-zero.

Since all the coefficients apπq are non-zero, given a complete Arthur packet, we

should be able to compute ηpO_K,iq.

Alternately, if we start with a subset of an Arthur packet which does not have a stable

sum of virtual characters and we inductively add a representation, from finite set, to

this subset checking for stable sums at each step, then, in this scheme, suppose we

did not find a stable sum at stage n, and we find a stable sum with all non-zero coeffi-

cients at stage n`1. This would imply that adding these n`1 representations to the

subset we started with gives us the complete Arthur packet or a better approximation

to the Arthur packet than the original subset. In this setup, Πu
icppO_K_,iq is the subset

we want to start with and Πu
mispO_q is the set from which we add representations.

Suppose we started out with Πu
icppO_K_,jq, i ‰ j and repeated the same process

as above to compute the unipotent packet Πu
icppO_K_,jq, then the representations of

Πu
mispO_q that are in both Πu

icppO_K_,iq and Πu
icppO_K_,jq would contain O_K_,i and

O_K_,jq in their theta-associated variety, proving that the associated variety is re-

ducible. As we vary over all the theta-forms, we end up computing the associated

varieties of all the representations in Πu
mispO_q.
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Work on this is still in progress, a crucial component is the implementation of the

computations of stable sum formulas that have been implemented into the Atlas

software by Adams.

8.1 Some Examples

In this section we work out some examples of applications of the results of this

paper. We will be repeatedly applying Corollary 6.1 to compute the real forms of

a complex nilpotent orbit. We will then compare our answers with the output from

Atlas.

We briefly outline the framework of Corollary 6.1. A unipotent Arthur parameter is

a homomorphism:

ψ : WRSLp2,Cq ÝÑΓ G_.

Suppose ψ|SLp2,Cq corresponds to O_ a complex nilpotent orbit fpr G_. Suppose

WR “ xCˆ, jy, then we know that ψ|Cˆ is trivial. Therefore, the value of ψpjq will

then determine ψ, to this end we note that ψpjq must be an element of order 2 and

that

ψpjq P CentG_pψpSLp2,Cqqq X pΓG_
´G_

q. (8.2)

Let y0 “ ψ

¨

˚

˚

˝

i 0

0 ´i

˛

‹

‹

‚

then y “ y0ψpjq defines and element of order 2 in ΓG_
´G_, so

that θ_y defines a Cartan involution of G_. So every choice of ψpjq will give us a real

form of O_ for the real group of G_ defined by y “ y0ψpjq.

75



We will be concerned with the neutral element H P SLp2,Cq, where H “

¨

˚

˚

˝

i 0

0 ´i

˛

‹

‹

‚

.

Given an Arthur parameter ψ, we will denote y0 “ ψpHq. Recall that y “ y0 ¨ ψpjq

gives a strong real form of G_.

8.1.1 GpRq “ SLp2,Rq

In this case the dual group G_ is SOp3,Cq. Recall that SLp2,Cq » SOp3,Cq

has two complex nilpotent orbits:

1. the principal orbit parameterized by the partition r2s.

2. the trivial orbit parameterized by the partition r1, 1s.

Let O_ “ r1, 1s. We now compute unipotent Arthur parameters ψ. We have

have the following:

1. by unipotence of ψ, ψ|Cˆ ” 1.

2. since O_ is r1, 1s, ψpSLp2,Cqq ” 1, so that CentG_pψpSLp2,Cqqq “ G_.

Since elements of ΓG_ are just pairs px, σq where x P SOp3,Cq and σ P GalpC{Rq, for

convenience we will drop off σ from the notation.

For the condition

ψpSLp2,Cqq ” 1 and CentG_pψpSLp2,Cqqq “Γ G_,

we note that ψpHq “ 1 in this case and that we have two possibilities (upto conjuga-

tion by G_) for ψpjq:
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1. ψ1pjq “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

, so that corresponding strong real form is y “ y0 ¨ ψ1pjq “

ψ1pjq. The strong real form y corresponds to SOp3q, so that the Arthur param-

eter ψ1 captures the trivial nilpotent orbit in SOp3q.

2. ψ2pjq “

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0

0 ´1 0

0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

so that corresponding strong real form is y “ y0 ¨ψpjq “

ψ2pjq. The strong real form y corresponds to SOp2, 1q, so that the Arthur

parameter ψ2 caputures the trivial nilpotent orbit in SOp2, 1q.

To compute the Arthur packets, we need to know the elements of the blocks B1 “

BpSLp2,Rq, SOp3qq and B2 “ BpSLp2,Rq, SOp2, 1qq which are given by

1. B1 “ tPSp2ρqu where PSp2ρq is the irreducible principal series at infinitesimal

character 2ρ.

2. B2 “ tDSp`, ρq, DSp´, ρq, χtrivu, where DSp`, ρq is the discrete series at ρ with

positive K-types, DSp´, ρq is the discrete series at ρ with negative K-types and,

χtriv is the trivial representation.

In this setting, the Arthur packets corresponding to two Arthur parameters ψ1 and

ψ2 are given by

1. ΠpSLp2,Rq, ψ1q “ tPSp0qu, where PSp0q is the irreducible principal series with

infinitesimal character 0.
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2. ΠpSLp2,Rq, ψ2q “ tLDSp`, 0q, LDSp´, 0qu, where LDSp`, 0q is the limit of

discrete series with positive K-types (respectively LDSp´, 0q).

In the case with O_ “ r2s the Arthur parameter ψ restricted to the Cartan

subgroup of SL satisfies (upto conjugation by G_)

ψ

¨

˚

˚

˝

z 0

0 1{z

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

z2 0 0

0 1{z2 0

0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

,

so that y0 “ ψ

¨

˚

˚

˝

i 0

0 ´i

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0

0 ´1 0

0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

. Furthermore, CentG_pψpSLp2,Cqqq :“

t1u so that ψpjq is forced to be 1 (actually the identity matrix in SOp3,Cq). So

that the strong real form y “ y0ψpjq “ y0 corresponds to the real group SOp2, 1q.

The Arthur parameter ψ identifies the unique real form of r2s in SOp2, 1q. The

corresponding Arthur packet is given as

ΠpSLp2,Rq, ψq “ tχtrivu.

This completes the computation of all the Arthur packets for SLp2,Rq.
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Chapter 9: Tables of Data

In this section we present some tables of data corresponding to output from the

Atlas Software. In the earlier sections we simplified a lot of notation, so as to have

cleaner presentation.

We want to be in the Atlas setting as in Definition 4.3. For all of the tables below,

we will fix a real form GpRq (equivalently ξ) and vary over all dual real forms η_ in

the quasisplit inner class corresponding to ξ. For each such η_ we have a dual real

form GpRq_η_ of GpRq.

We fix a regular integral infinitesimal character λ for GpRq determined by η_ satisfy-

ing pη_q2 “ expp2πiλ_q. Recall that the triple pξ, η_, λq defines a block of irreducible

pg,K_
η_q-modules for GpRq at infinitesimal character λ, where K_

η_ “ Gη_ . Atlas

blocks only depend on the images of ξ and η_ in real forms, there is a process to get

parameters for blocks corresponding to strong real forms which we will show in an

example soon.

Since ξ and λ are fixed, the block of representation will only depend on η_. We will

only be concerned with real forms when dealing with blocks in Atlas and hence if

GpRq_ is the real form corresponding to η_ we denote the block corresponding to

the triple pξ, η_, λq by BpGpRq_q. Let B_pGpRq_q be the dual block corresponding

79



to BpGpRq_q.

Furthermore, recall that the block BpGpRq_q is partitioned into HC-cells, these

cells are parameterized by integers in Atlas, and the set of cells for BpGpRq_q will be

denoted by CpGpRq_q. Using Vogan-duality we can compute the corresponding dual

cells in B_pGpRq_q and we denote the set by C_
pGpRq_q. Note that in this setting:

BpGpRq_q “
ď

CPCpGpRq_q

C B_pGpRq_q “
ď

C_PC_pGpRq_q

C_. (9.1)

We will also use the fact that when G is of classical type, nilpotent orbits O

(resp. O_) for GpRq (resp. GpRq_) are parameterized by certain integer partitions.

Fix a dual complex nilpotent orbit O_ for GpRq, using Theorem 6.1, we know how to

parameterize the set SpO_,GpRq_q. Suppose s is the cardinality of SpO_,GpRq_q, in

Atlas we compute this set to be in correspondence with a set of integers t0, 1, 2, . . . , s´

1u, so that the pair pK_, iq (or equivalently pGpRq_, iq) determines the ith theta-form

O_pK_, iq of O_ for GpRq_. So that

O_ X pg_q´θη_ “
s´1
ď

i“0

O_pK_, iq. (9.2)

Note that K_
“ pG_

qθη_ .
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We now consider the following sets:

C_
pGpRq_,O_q :“ tC_ P C_

pGpRq_q | AVCpC_q “ O_u. (9.3)

CpGpRq_,O_q :“ tdpC_q P CpGpRq_q | C_ P C_
pGpRq_,O_qu :“ dpC_

pGpRq_,O_qq,

(9.4)

where d is the Vogan-duality map.

C_
irrpGpRq_,O_, iq :“ tC_ P C_

pGpRq_,O_q | AVθpC_q “ O_pGpRq_, iqu. (9.5)

C_
irr,0pGpRq_,O_, iq :“ tC_ P C_

irrpGpRq_,O_, iq | there exists j such that Rp_i
pχijq P C_u.

(9.6)

C_
irr,0pGpRq_,O_q :“

s´1
ď

i“0

C_
irr,0pGpRq_,O_, iq. (9.7)

C_
mispGpRq_,O_q “ C_

pGpRq_,O_q ´C_
irr,0pGpRq_,O_q. (9.8)
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So that

Cirr,0pGpRq_,O_, iq :“ dpC_
irr,0pGpRq_,O_, iqq CmispGpRq_,O_q :“ dpC_

mispGpRq_,O_qq.

(9.9)

Recall that we know how to explicitly compute C_
irr,0pGpRq_,O_, iq for all i,

and hence can compute C_
irr,0pGpRq_,O_q. We also know how to compute complex

associated varieties using Atlas, hence we can compute C_
pGpRq_,O_q.

Therefore if |C_
mispGpRq_,O_q| “ 0, we know how to compute the theta-associated

varieties of all representations in the block BpGpRq_q whose complex associated vari-

ety isO_, in particular we can compute the complete unipotent packets corresponding

to the theta-forms of O_. Alternately, the size of |C_
mispGpRq_,O_q| determines the

how far we are from computing a complete packet.

Also, if |C_
mispGpRq_,O_q| “ 0, all the unipotent packets will be disjoint.

Let tX_, H_, Y _u be the Jacobson-Morozov triple for O_, where H_ is the

neutral element. Let γ “ 1
2
H_ and let T γλ be the translation functor taking irreducible

pg,Kq-modules with infinitesimal character λ to those with infinitesimal character γ.

In this setting we get the following sets of unipotent representations constructed in

Theorem 7.2:

Πu
weakpGpRq,GpRq_,O_q “

ď

CPCpGpRq_,O_q

tT γλ pπq | π P Cu :“ T γλ pCq, (9.10)

Πu
icppGpRq,GpRq_,O_, iq “

ď

CPCirr,0pGpRq_,O_,iq

tT γλ pπq | π P Cu :“ T γλ pCq, (9.11)
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Πu
mispGpRq,GpRq_,O_q “

ď

CPCmispGpRq_,O_q

tT γλ pπq | π P Cu :“ T γλ pCq. (9.12)

Recall that the set of special unipotent representations corresponding to the

theta-form O_pGpRq_, iq was denoted as ΠupGpRq,OpGpRq_, iqq and satisfies the

following inclusions:

Πu
icppGpRq,GpRq_,O_, iq Ă ΠupGpRq,OpGpRq_, iqq,

ΠupGpRq,OpGpRq_, iqq Ă Πu
icppGpRq,GpRq_,O_, iq

Ť

Πu
mispGpRq,GpRq_,O_q,

Πu
icppGpRq,GpRq_,O_, iq

Ť

Πu
mispGpRq,GpRq_,O_q “ Πu

weakpGpRq,GpRq_,O_q.

In the tables below, we will compute CpGpRq_,O_q, Cirr,0pGpRq_,O_, iq, CmispGpRq_,O_q.

For space constraints, will only compute the cardinalities of Πu
icppGpRq,GpRq_,O_, iq,

Πu
weakpGpRq,GpRq_,O_q, Πu

mispGpRq,GpRq_,O_q and we invite the interested reader

to use this information to compute the actual parameters in Atlas.

9.1 GpRq “ SLp2,Rq.

In this case G_
“ PGLp2,Cq with real forms PGLp2,Rq and PSUp2q. Here is

some basic information about blocks and cells:

1. |BpPGLp2,Rqq| “ 3, |CpPGLp2,Rqq| “ 3.

2. |BpPSUp2q| “ 1, |CpPSUp2qq| “ 1.

Here is the basic information about associated varieties for cells.

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r2s PGLp2,Rq t0u t2u t0u t2u H

r12s PGLp2,Rq t1, 2u t0, 1u t1, 2u t0, 1u H

PSUp2q t0u t0u t0u t0u H

Here is the information about the real forms of even complex dual nilpotent orbits:
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O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r2s PGLp2,Rq 0 t0u t0u t2u

r12s PGLp2,Rq 0 t1, 2u t1, 2u t0, 1u
PSUp2q 0 t0u t0u t0u

Here is the information about the cardinalities of the special unipotent packets:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r2s PGLp2,Rq 0 r1s 1 1 0

r12s PGLp2,Rq 0 r0s 2 2 0
r12s PSUp2q 0 r0s 1 1 0

9.2 GpRq “ PGLp2,Rq » SOp2, 1q.

In this case G_
“ SLp2,Cq with strong real forms SLp2,Rq and SUp2, 0q and

SUp0, 2q. Here is some basic information about blocks and cells:

1. |BpSLp2,Rqq| “ 3, |CpSLp2,Rqq| “ 3.

2. |BpSUp2, 0q| “ 1, |CpSUp2, 0qq| “ 1.

Since Atlas computes blocks only at the level of real-forms, we are missing the block
corresponding to the strong real form SUp0, 2q. However, even though we do not
have the block corresponding to SUp0, 2q, it is still possible to find the parameters
corresponding to that block in Atlas.

Here is the basic information about associated varieties for cells.

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r2s SLp2,Rq t0, 1u t1, 2u t0, 1u t1, 2u H

r12s SLp2,Rq t2u t0u t2u t0u H

SUp2, 0q t0u t0u t0u t0u H

Here is the information about the real forms of even complex dual nilpotent orbits:

O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r2s SLp2,Rq 0 t0u t0u t1u
1 t1u t1u t2u

r12s SLp2,Rq 0 t2u t2u t0u
SUp2, 0q 0 t0u t0u t0u
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Here is the information about the cardinalities of the special unipotent packets:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r2s SLp2,Rq 0 1

2
r1s 2 1 0

1 1

r12s SLp2,Rq 0 r0s 0 0 0
r12s SUp2, 0q 0 r0s 1 1 0
r12s SUp0, 2q 0 r0s 1 1 0
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9.3 GpRq “ SOp3, 2q.

In this case G_
“ Spp4,Cq with strong real forms Spp4,Rq, Spp1, 1q, Spp2, 0q,

and Spp0, 2q. Here is some basic information about blocks and cells:

1. |BpSpp4,Rqq| “ 12, |CpSpp4,Rqq| “ 6.

2. |BpSpp1, 1qq| “ 4, |CpSpp1, 1qq| “ 2.

3. |BpSpp2, 0q| “ 1, |CpSpp2, 0qq| “ 1.

4. |BpSpp0, 2q| “ 1, |CpSpp0, 2qq| “ 1, we will use the parameters from the block
coming from Spp2, 0q to compute the unipotent representations in this block.

Here is the basic information about associated varieties for cells.

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r4s Spp4,Rq t0, 1u t4, 5u t0, 1u t4, 5u H

r22s Spp4,Rq t2, 3, 4u t2, 3, 1u t2, 3, 4u t2, 3, 4u H

Spp1, 1q t0u t1u t0u t1u H

r14s Spp4,Rq t5u t0u t5u t0u H

Spp1, 1q t1u t0u t1u t0u H

Spp2, 0q t0u t0u t0u t0u H

Here is the information about the real forms of even complex dual nilpotent orbits:

O_ GpRq_ #real-forms in GpRq_
r4s Spp4,Rq 2

r22s Spp4,Rq 3
Spp1, 1q 1

r14s Spp4,Rq 1
Spp1, 1q 1
Spp2, 0q 1

The following is the information about real forms of even nilpotent orbits in terms of
Atlas output:

O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r4s Spp4,Rq 0 t0u t0u t4u
1 t1u t1u t5u

r22s Spp4,Rq 0 t2u t2u t2u
1 t3u t3u t3u
2 t4u t4u t1u

Spp1, 1q 0 t2u t0u t1u

r14s Spp4,Rq 0 t10u t5u t0u
Spp1, 1q 0 t3u t1u t0u
Spp2, 0q 0 t0u t0u t0u
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Here is the information about the cardinalities of the special unipotent packets:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r4s Spp4,Rq 0 1

2
r3, 1s 2 1 0

1 1

r22s Spp4,Rq 0 1
2
r1, 1s 6 2 0

1 2
2 2

Spp1, 1q 0 1 1 0

r14s Spp4,Rq 0 r0, 0s 0 0 0
Spp1, 1q 0 1 1 0
Spp2, 0q 0 1 1 0
Spp0, 2q 0 1 1 0

We now show how this works in Atlas:

atlas> set G=SO(3,2)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: disconnected split real group with Lie algebra ’so(3,2)’

atlas> set B=all_blocks (G)

Variable B: [Block] (overriding previous instance, which had type [Block])

atlas> B

Value: [Block of 1 elements,Block of 4 elements,Block of 12 elements]

atlas> dual_real_forms (G)

Value: [compact connected real group with Lie algebra ’sp(2)’,

connected real group with Lie algebra ’sp(1,1)’,

connected split real group with Lie algebra ’sp(4,R)’]

Atlas output for the orbit r4s:

atlas> get_packets_from_cells ([4], [3,1]/2, B[2])

Value: (1,[final parameter(x=6,lambda=[3,1]/2,nu=[3,1]/2)])

atlas> get_packets_from_cells ([5], [3,1]/2, B[2])

Value: (1,[final parameter(x=6,lambda=[5,3]/2,nu=[3,1]/2)])

Atlas output for the orbit r22s:

atlas> get_packets_from_cells ([2], [1,1]/2, B[2])

Value: (2,[final parameter(x=3,lambda=[1,1]/2,nu=[0,1]/2),

final parameter(x=6,lambda=[5,3]/2,nu=[1,1]/2)])

atlas> get_packets_from_cells ([3], [1,1]/2, B[2])

Value: (2,[final parameter(x=3,lambda=[1,3]/2,nu=[0,1]/2),
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final parameter(x=6,lambda=[3,1]/2,nu=[1,1]/2)])

atlas> get_packets_from_cells ([1], [1,1]/2, B[2])

Value: (2,[final parameter(x=1,lambda=[1,1]/2,nu=[0,0]/1),

final parameter(x=5,lambda=[3,3]/2,nu=[1,1]/2)])

atlas> get_packets_from_cells ([1], [1,1]/2, B[1])

Value: (1,[final parameter(x=5,lambda=[3,3]/2,nu=[1,1]/1)])

Atlas output for r14s:

atlas> get_packets_from_cells ([0], [0,0], B[0])

Value: (1,[final parameter(x=6,lambda=[5,3]/2,nu=[0,0]/1)])

atlas> get_packets_from_cells ([0], [0,0], B[1])

Value: (1,[final parameter(x=2,lambda=[1,-1]/2,nu=[0,0]/1)])

atlas> all_parameters_gamma (G, [0,0])

Value: [final parameter(x=6,lambda=[3,1]/2,nu=[0,0]/1),

final parameter(x=6,lambda=[5,3]/2,nu=[0,0]/1),

final parameter(x=2,lambda=[1,-1]/2,nu=[0,0]/1)]

In the last piece of output, we want to point out the following:

1. using the get packets from cells command on the input pr0s, r0, 0s, Br2sq leads
to an error (error message not printed here), and that is because the discrete
series for SOp3, 2q at infinitesimal character r3{2, 1{2s cannot be translated to
the infinitesimal character r0, 0s.

2. using the all parameters gamma command, we can compute the unipotent
packet corresponding to the strong real form Spp0, 2q as

final parameter(x=6,lambda=[3,1]/2,nu=[0,0]/1).
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9.4 GpRq “ SOp4, 3q.

In this case G_
“ Spp6,Cq with strong real forms Spp6,Rq, Spp2, 1q, Spp1, 2q,

Spp0, 3q, and Spp3, 0q. Here is some basic information about blocks and cells from
Atlas.

atlas> set G=SO(4,3)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: disconnected split real group with Lie algebra ’so(4,3)’

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’sp(3)’,

connected real group with Lie algebra ’sp(2,1)’,

connected split real group with Lie algebra ’sp(6,R)’]

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 9 elements,Block of 53 elements],[1,3,16])

so that

1. |BpSpp6,Rqq| “ 53, |CpSpp6,Rqq| “ 16.

2. |BpSpp2, 1qq| “ 9, |CpSpp1, 1qq| “ 3.

3. |BpSpp3, 0q| “ 1, |CpSpp3, 0qq| “ 1.

4. |BpSpp0, 3q| “ 1, |CpSpp0, 3qq| “ 1, we will use the parameters from the block
coming from Spp3, 0q to compute the unipotent representations in this block.

Following is the basic information about associated varieties for cells:

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r6s Spp6,Rq t0, 1u t14, 15u t0, 1u t14, 15u H

r4, 2s Spp6,Rq t2, 3, 4, 6u t13, 9, 12, 11u t2, 3, 4, 6u t13, 9, 12, 11u H

r32s Spp6,Rq t8u t7u t8u t7u H

Spp2, 1q t0u t2u t0u t2u H

r23s Spp6,Rq t5, 7, 9, 10, 11u t8, 10, 5, 6, 4u t5, 7, 9, 10u t8, 10, 5, 6u t4u

r16s Spp6,Rq t15u t0u t15u t0u H

Spp2, 1q t2u t0u t2u t0u H

Spp3, 0q t0u t0u t0u t0u H

The following is the information about real forms of even nilpotent orbits of
Spp6,Cq:
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O_ GpRq_ #real-forms in GpRq_
r6s Spp6,Rq 2

r4, 2s Spp6,Rq 4

r32s Spp6,Rq 1
Spp2, 1q 1

r23s Spp6,Rq 4

r16s Spp6,Rq 1
Spp2, 1q 1
Spp3, 0q 1

The following is the information about real forms of even nilpotent orbits and
associated varieties of cells in terms of Atlas output:

O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r6s Spp6,Rq 0 t0u t0u t14u
1 t4u t1u t15u

r4, 2s Spp6,Rq 0 t1u t2u t13u
1 t3u t4u t12u
2 t10u t3u t9u
3 t11u t6u t11u

r32s Spp6,Rq 0 t16u t8u t7u
Spp2, 1q 0 t2u t0u t2u

r23s Spp6,Rq 0 t5u t5u t8u
1 t7u t7u t10u
2 t17u t9u t5u
3 t18u t10u t6u

r16s Spp6,Rq 0 t50u t15u t0u
Spp2, 1q 0 t8u t2u t0u
Spp3, 0q 0 t0u t0u t0u

Here is the information about the cardinalities of the special unipotent packets:
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O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r6s Spp6,Rq 0 1

2
r5, 3, 1s 2 1 0

1 1

r4, 2s Spp6,Rq 0 1
2
r3, 1, 1s 8 2 0

1 2
2 2
3 2

r32s Spp6,Rq 0 r1, 1, 0s 0 0 0
Spp2, 1q 0 1 1 0
Spp1, 2q 0 1 1 0

r23s Spp6,Rq 0 1
2
r1, 1, 1s 5 1 1

1 1
2 1
3 1

r16s Spp6,Rq 0 r0, 0, 0s 0 0 0
Spp2, 1q 0 1 1 1
Spp1, 2q 0 1 1 1
Spp3, 0q 0 1 1 1
Spp0, 3q 0 1 1 1

Following is the Atlas output with the unipotent parameters that we are inter-
ested in:

atlas> get_packets_from_cells ([14], [5,3,1]/2, B[2])

Value: (1,[final parameter(x=24,lambda=[5,3,1]/2,nu=[5,3,1]/2)])

atlas> get_packets_from_cells ([15], [5,3,1]/2, B[2])

Value: (1,[final parameter(x=24,lambda=[7,5,3]/2,nu=[5,3,1]/2)])

atlas> get_packets_from_cells ([13], [3,1,1]/2, B[2])

Value: (2,[final parameter(x=18,lambda=[5,1,3]/2,nu=[3,0,1]/2),

final parameter(x=24,lambda=[5,3,1]/2,nu=[3,1,1]/2)])

atlas> get_packets_from_cells ([12], [3,1,1]/2, B[2])

Value: (2,[final parameter(x=18,lambda=[7,1,1]/2,nu=[3,0,1]/2),

final parameter(x=24,lambda=[7,5,3]/2,nu=[3,1,1]/2)])

atlas> get_packets_from_cells ([9], [3,1,1]/2, B[2])

Value: (2,[final parameter(x=15,lambda=[7,1,1]/2,nu=[3,0,0]/2),

final parameter(x=22,lambda=[7,3,3]/2,nu=[3,1,1]/2)])

atlas> get_packets_from_cells ([11], [3,1,1]/2, B[2])

Value: (2,[final parameter(x=15,lambda=[5,1,1]/2,nu=[3,0,0]/2),

final parameter(x=22,lambda=[5,3,3]/2,nu=[3,1,1]/2)])
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atlas> get_packets_from_cells ([2], [1,1,0], B[1])

Value: (1,[final parameter(x=24,lambda=[5,3,1]/2,nu=[1,1,0]/1)])

atlas> get_packets_from_cells ([8], [1,1,1]/2, B[2])

Value: (1,[final parameter(x=24,lambda=[5,3,1]/2,nu=[1,1,1]/2)])

atlas> get_packets_from_cells ([10], [1,1,1]/2, B[2])

Value: (1,[final parameter(x=24,lambda=[7,5,3]/2,nu=[1,1,1]/2)])

atlas> get_packets_from_cells ([5], [1,1,1]/2, B[2])

Value: (1,[final parameter(x=19,lambda=[3,5,3]/2,nu=[1,1,1]/2)])

atlas> get_packets_from_cells ([6], [1,1,1]/2, B[2])

Value: (1,[final parameter(x=19,lambda=[3,3,3]/2,nu=[1,1,1]/2)])

atlas> get_packets_from_cells ([4], [1,1,1]/2, B[2])

Value: (1,[final parameter(x=11,lambda=[1,3,3]/2,nu=[0,1,1]/2)])

atlas> get_packets_from_cells ([0], [0,0,0], B[1])

Value: (1,[final parameter(x=7,lambda=[1,-1,3]/2,nu=[0,0,0]/1)])

atlas> get_packets_from_cells ([0], [0,0,0], B[0])

Value: (1,[final parameter(x=24,lambda=[7,5,3]/2,nu=[0,0,0]/1)])
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9.5 GpRq “ SOp5, 4q.

In this case G_
“ Spp8,Cq with strong real forms Spp8,Rq, Spp2, 2q, Spp3, 1q,

Spp1, 3q, Spp4, 0q and Spp0, 4q. Here is some basic information about blocks and cells
from Atlas.

atlas> set G=SO(5,4)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: disconnected split real group with Lie algebra ’so(5,4)’

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])

atlas> B

Value: [Block of 1 elements,Block of 16 elements,

Block of 42 elements,Block of 258 elements]

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’sp(4)’,

connected real group with Lie algebra ’sp(3,1)’,

connected real group with Lie algebra ’sp(2,2)’,

connected split real group with Lie algebra ’sp(8,R)’]

atlas> block_cell_info(G)

Value: ([Block of 1 elements,Block of 16 elements,

Block of 42 elements,Block of 258 elements],[1,3,6,35])

so that

1. |BpSpp8,Rqq| “ 258, |CpSpp8,Rqq| “ 35.

2. |BpSpp2, 2qq| “ 42, |CpSpp1, 1qq| “ 6.

3. |BpSpp3, 1q| “ 16, |CpSpp3, 0qq| “ 3.

4. |BpSpp4, 0q| “ 1, |CpSpp0, 3qq| “ 1.

We will need to compute unipotent representations in blocks corresponding to strong
real forms Spp1, 3q and Spp0, 4q, to do this we will use parameters from blocks corre-
sponding to Spp3, 1q and Spp4, 0q respectively.

Following is the basic information about associated varieties for cells:
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O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r8s Spp8,Rq t0, 1u t33, 34u t0, 1u t33, 34u H

r6, 2s Spp8,Rq t2, 3, 5, 8u t26, 30, 25, 32u t3, 8, 5, 2u t26, 30, 25, 32u H

r4, 4s Spp8,Rq t4, 6, 10u t29, 24, 31u t4, 10, 6u t29, 24, 31u H

Spp2, 2q t0u t5u t0u t5u

r4, 22s Spp8,Rq t7, 9, 11, 12, 14, t22, 23, 27, 15, 28, t7, 9, 11, 14, t22, 23, 27, 28, t15, 19, 10u
15, 17, 18, 23u 19, 20, 21, 10u 17, 18u 20, 21u

r32, 12s Spp8,Rq t28u t11u t28u t11u H

Spp2, 2q t1, 2u t3, 4u t1, 2u t3, 4u H

Spp3, 1q t0u t2u t0u t2u H

r24s Spp8,Rq t13, 16, 25, t13, 17, 6, t13, 16, 25, t13, 17, 6 t4u
27, 29, 30u 7, 5, 4u 27, 29u 7, 5u

Spp2, 2q t3u t2u t3u t2u H

r18s Spp8,Rq t34u t0u t34u t0u H

Spp2, 2q t5u t0u t5u t0u H

Spp3, 1q t2u t0u t2u t0u H

Spp4, 0q t0u t0u t0u t0u H

Here are the tables outlining the number of real forms of a given even complex
nilpotent orbit:

O_ GpRq_ #real-forms in GpRq_
r8s Spp8,Rq 2

r6, 2s Spp8,Rq 4

r4, 4s Spp8,Rq 3
Spp2, 2q 1

r4, 22s Spp8,Rq 6

r32, 12s Spp8,Rq 1
Spp2, 2q 2
Spp3, 1q 1

r24s Spp8,Rq 5
Spp2, 2q 1

r18s Spp8,Rq 1
Spp2, 2q 1
Spp3, 1q 1
Spp4, 0q 1
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The following is the information about real forms of even nilpotent orbits and
associated varieties of cells in terms of Atlas output:

O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r8s Spp8,Rq 0 t0u t0u t33u
1 t5u t1u t34u

r6, 2s Spp8,Rq 0 t4u t3u t30u
1 t10u t8u t32u
2 t24u t5u t25u
3 t25u t2u t26u

r42s Spp8,Rq 0 t2u t4u t29u
1 t9u t10u t31u
2 t36u t6u t24u

Spp2, 2q 0 t12u t0u t5u

r4, 22s Spp8,Rq 0 t6u t7u t22u
1 t8u t9u t23u
2 t45u t17u t20u
3 t46u t18u t21u
4 t47u t11u t27u
5 t48u t14u t28u

r32, 12s Spp8,Rq 0 t93u t28u t11u
Spp2, 2q 0 t2u t1u t3u

1 t5u t2u t4u
Spp3, 1q 0 t9u t0u t2u

r24s Spp8,Rq 0 t13u t13u t13u
1 t15u t16u t17u
2 t87u t25u t6u
3 t88u t27u t7u
4 t97u t29u t5u

Spp2, 2q 0 t25u t3u t2u

r18s Spp8,Rq 0 t252u t34u t0u
Spp2, 2q 0 t41u t5u t0u
Spp3, 1q 0 t15u t2u t0u
Spp4, 0q 0 t0u t0u t0u
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Here is the information of the cardinalities of unipotents packets we are inter-
ested in:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r8s Spp8,Rq 0 1

2
r7, 5, 3, 1s 2 1 0

1 1

r6, 2s Spp8,Rq 0 1
2
r5, 3, 1, 1s 8 2 0

1 2
2 2 0
3 2 0

r42s Spp8,Rq 0 1
2
r3, 3, 1, 1s 6 2 0

1 2
2 2

Spp2, 2q 0 1 1 0

r4, 22s Spp8,Rq 0 1
2
3, 1, 1, 1s 9 1 3

1 1
2 1
3 1
4 1
5 1

r32, 12s Spp8,Rq 0 r2, 2, 0, 0s 0 0 0
Spp2, 2q 0 2 1 0

1 1
Spp3, 1q 0 1 1 0
Spp1, 3q 0 1 1 0

r24s Spp8,Rq 0 1
2
r1, 1, 1, 1s 12 2 2

1 2
2 2
3 2
4 2

r16s Spp8,Rq 0 r0, 0, 0s 0 0 0
Spp2, 2q 0 1 1 0
Spp3, 1q 0 1 1 0
Spp1, 3q 0 1 1 0
Spp4, 0q 0 1 1 0
Spp0, 4q 0 1 1 0
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9.6 GpRq “ Spp4,Rq.

In this case G_
“ SOp5,Cq, with dual real forms SOp3, 2q, SOp4, 1q and SOp5q.

Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(4,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])

atlas> G

Value: connected split real group with Lie algebra ’sp(4,R)’

atlas> B

Value: [Block of 1 elements,Block of 5 elements,Block of 12 elements]

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 5 elements,Block of 12 elements],[1,3,6])

so that

1. |BpSOp3, 2qq| “ 12, |CpSOp3, 2qq| “ 6.

2. |BpSOp4, 1qq| “ 5, |CpSOp4, 1qq| “ 3.

3. |BpSOp5qq| “ 1, |CpSOp5qq| “ 1.

Following is the basic information about associated varieties of cells:

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r5s SOp3, 2q t0u t5u t0u t5u H

r3, 12s SOp3, 2q t1, 2, 3u t4, 2, 3u t1, 2, 3u t4, 2, 3u H

SOp4, 1q t0u t2u t0u t2u H

r15s SOp3, 2q t4, 5u t0, 1u t4, 5u t0, 1u H

SOp4, 1q t1, 2u t0, 1u t1, 2u t0, 1u H

SOp5q t0u t0u t0u t0u H

Here is information about the number of real forms of even nilpotent orbits for
SOp5,Cq.

O_ GpRq_ #real-forms in GpRq_
r5s SOp3, 2q 1

r3, 12s SOp3, 2q 2
SOp4, 1q 1

r15s SOp3, 2q 1
SOp4, 1qq 1
SOp5q 1
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Here is information of real forms of even nilpotent orbit of dual group in terms
the results from this paper:

O_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r5s SOp3, 2q 0 t0u t0u t5u

r3, 12s SOp3, 2q 0 t1u t1u t4u
1 t3, 4u t2, 3u t2, 3u

SOp4, 1q 0 t1u t0u t2u

r15s SOp3, 2q 0 t8, 9u t4, 5u t0, 1u
SOp4, 1q 0 t3, 4u t1, 2u t0, 1u
SOp5q 0 t0u t0u t0u

The cardinalities of unipotent sets that we are interested in:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r5s SOp3, 2q 0 r2, 1s 1 1 0

r3, 12s SOp3, 2q 0 r1, 0s 6 2 0
1 4

SOp4, 1q 0 2 2 0

r15s SOp3, 2q 0 r0, 0s 2 2 0
SOp4, 1qq 0 2 2 0
SOp5q 0 1 1 0
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9.7 GpRq “ Spp6,Rq.

In this case G_
“ SOp7,Cq, with dual real forms SOp4, 3q, SOp5, 2q, SOp6, 1q,

and SOp7q. Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(6,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: connected split real group with Lie algebra ’sp(6,R)’

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])

atlas> B

Value: [Block of 1 elements,Block of 7 elements,

Block of 27 elements,Block of 53 elements]

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 7 elements,

Block of 27 elements,Block of 53 elements],[1,3,8,16])

so that

1. |BpSOp4, 3qq| “ 53, |CpSOp4, 3qq| “ 16.

2. |BpSOp5, 2qq| “ 27, |CpSOp4, 1qq| “ 8.

3. |BpSOp6, 1qq| “ 7, |CpSOp6, 1qq| “ 3.

4. |BpSOp7qq| “ 1, |CpSOp7qq| “ 1.
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Following is the basic information about associated varieties of cells:

O_ GpRq_ C_
pGpRq_,O_q CpO_q C_

irr,0pO_q Cirr,0pO_q C_
mispO_q

r7s SOp4, 3q t0u t15u t0u t15u H

r5, 12s SOp4, 3q t1, 2, 3u t14, 12, 13u t2, 3, 1u t14, 12, 13u H

SOp5, 2q t0u t7u t0u t7u H

r32, 1s SOp4, 3q t4, 5, 6, 8, 10u t11, 9, 10, 5, 7u t4, 5, 6u t11, 9, 10u t5, 7u
SOp5, 2q t2, 3u t5, 6u t2, 3u t5, 6u H

r3, 14s SOp4, 3q t9, 11, 12, 13u t3, 6, 4, 2u t9, 11, 12, 13u t3, 6, 4, 2u H

SOp5, 2q t1, 4, 5u t4, 2, 3u t1, 4, 5u t4, 2, 3u H

SOp6, 1q t0u t2u t0u t2u H

r17s SOp4, 3q t14, 15u t0, 1u t14, 15u t0, 1u H

SOp5, 2q t6, 7u t0, 1u t6, 7u t0, 1u H

SOp6, 1q t1, 2u t0, 1u t1, 2u t0, 1u H

SOp5q t0u t0u t0u t0u H

Here is information of real forms of even nilpotent orbit of dual group in terms the
results from this paper:

Oo_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r7s SOp4, 3q 0 t0u t0u t15u

r5, 12s SOp4, 3q 0 t5, 6u t2, 3u t12, 13u
1 t7u t1u t14u

SOp5, 2q 0 t1u t0u t7u

r32, 1s SOp4, 3q 0 t2u t4u t11u
1 t9, 10u t5, 6u t9, 10u

SOp5, 2q 0 t5, 6u t2, 3u t5, 6u

r3, 14s SOp4, 3q 0 t14, 15u t9, 11u t3, 6u
1 t19, 20u t12, 13u t4, 2u

SOp5, 2q 0 t2u t1u t4u
1 t11, 12u t4, 5u t2, 3u

SOp6, 1q 0 t3u t0u t2u

r17s SOp4, 3q 0 t45, 49u t14, 15u t0, 1u
SOp5, 2q 0 t23, 24u t6, 7u t0, 1u
SOp6, 1q 0 t5, 6u t1, 2u t0, 1u
SOp7q 0 t0u t0u t0u

The following is information about the cardinalities of unipotent sets computed
in this paper:

100



O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r7s SOp4, 3q 0 r3, 2, 1s 1 1 0

r5, 12s SOp4, 3q 0 r2, 1, 0s 6 4 0
1 2 0

SOp5, 2q 0 2 2 0

r32, 1s SOp4, 3q 0 r1, 1, 0s 5 1 2
1 2

SOp5, 2q 0 2 2 0

r3, 14s SOp4, 3q 0 r1, 0, 0s 8 4 0
1 4

SOp5, 2q 0 6 2 0
1 4

SOp6, 1q 0 2 2 0

r17s SOp4, 3q 0 r0, 0, 0s 2 2 0
SOp5, 2q 0 2 2 0
SOp6, 1q 0 2 2 0
SOp7q 0 1 1 0
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9.8 GpRq “ Spp8,Rq.

In this case G_
“ SOp9,Cq, with dual real forms SOp5, 4q, SOp6, 3q, SOp7, 2q,

SOp8, 1q, and SOp9q. Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(8,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: connected split real group with Lie algebra ’sp(8,R)’

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’so(9)’,

disconnected real group with Lie algebra ’so(8,1)’,

disconnected real group with Lie algebra ’so(7,2)’,

disconnected real group with Lie algebra ’so(6,3)’,

disconnected split real group with Lie algebra ’so(5,4)’]

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 9 elements,

Block of 48 elements,Block of 144 elements,

Block of 258 elements],[1,3,8,20,35])

so that

1. |BpSOp5, 4qq| “ 258, |CpSOp5, 4qq| “ 35.

2. |BpSOp6, 3qq| “ 144, |CpSOp6, 3qq| “ 20.

3. |BpSOp7, 2qq| “ 48, |CpSOp7, 2qq| “ 8.

4. |BpSOp8, 1qq| “ 9, |CpSOp8, 1qq| “ 3.

5. |BpSOp9qq| “ 1, |CpSOp9qq| “ 1.
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Following is the basic information about associated varieties of cells:

O_ GpRq_ C_pGpRq_,O_q CpO_q C_irr,0pO_q Cirr,0pO_q C_mispO_q

r9s SOp5, 4q t0u t34u t0u t34u H

r7, 12s SOp5, 4q t1, 2, 3u t33, 31, 32u t1, 2, 3u t33, 31, 32u H

SOp6, 3q t0u t19u t0u t19uH

r5, 3, 1s SOp5, 4q t4, 5, 6, 7, t30, 29, 25, 27, t5, 6, 7, 4u t29, 25, 27, 30u t13, 16u

13, 17u 13, 16u

SOp6, 3q t1, 2u t16, 17u t1, 2u t16, 17u H

r5, 14s SOp5, 4q t8, 9, 12, 16u t24, 26, 21, 22u t12, 16, 8, 9u t21, 22, 24, 26u H

SOp6, 3q t4, 5, 6u t18, 13, 14u t5, 6, 4u t13, 14, 18u H

SOp7, 2q t0u t7u t0u t7u H

r33s SOp5, 4q t14, 18u t19, 20u t14, 18u H

SOp6, 3q t3u t15u t3u t15u H

r32, 13s SOp5, 4q t10, 15, 19, 20, 21, t23, 12, 15, 17, 18, t10, 15, 19, t23, 12, 15, t7, 9,
22, 23, 27, 28u 7, 9, 11, 14u 20, 21u 17, 18u 11, 14u

SOp6, 3q t7, 8, 9, 10, t9, 10, 12, 11, t7, 8, 9, 10u t9, 10, 12, 11u t6, 7u

11, 13u 6, 7u

SOp7, 2q t2, 3u t5, 6u t2, 3u t5, 6u H

r3, 16s SOp5, 4q t25, 26, 30, 32u t5, 2, 3, 8u t25, 26, 30, 32u t5, 2, 3, 8u H

SOp6, 3q t12, 14, 16, 17u t3, 5, 4, 2u t12, 14, 16, 17u t3, 5, 4, 2u H

SOp7, 2q t1, 4, 5u t4, 2, 3u t1, 4, 5u t4, 2, 3u H

SOp8, 1q t0u t2u t0u t2u H

r19s SOp4, 3q t34, 33u t0, 1u t33, 34u t0, 1u H

SOp6, 3q t18, 19u t0, 1u t18, 19u t0, 1u H

SOp7, 2q t6, 7u t0, 1u t6, 7u t0, 1u H

SOp8, 1q t1, 2u t0, 1u t1, 2u t0, 1u H

SOp9q t0u t0u t0u t0u H

103



Here is information of real forms of even nilpotent orbit of dual group in terms
the results from this paper:

Oo_ GpRq_ SpGpRq_,O_q Rp_i
pχijq C_

irr,0pGpRq_,O_, iq Cirr,0pGpRq_,O_, iq
indices in dual block

r9s SOp5, 4q 0 t0u t0u t34u

r7, 12s SOp5, 4q 0 t4u t1u t33u
1 t12, 13u t2, 3u t31, 32u

SOp6, 3q 0 t9u t0u t19u

r5, 3, 1s SOp5, 4q 0 t3u t5u t29u
1 t14, 15u t6, 7u t25, 27u
2 t21u t4u t30u

SOp6, 3q 0 t15, 16u t1, 2u t16, 17u

r5, 14s SOp5, 4q 0 t43, 44u t12, 16u t21, 22u
1 t47, 48u t8, 9u t24, 26u

SOp6, 3q 0 t21, 22u t5, 6u 13, 14u
1 t23u t4u t18u

SOp7, 2q 0 t2u t0u t7u

r33s SOp5, 4q 0 t40, 41u t14, 18u t19, 20u
SOp6, 3q 0 t2u t3u t15u

r32, 13s SOp5, 4q 0 t5u t10u t23u
1 t31, 32u t15, 19u t12, 15u
2 t61, 62u t20, 21u t17, 18u

SOp6, 3q 0 t28, 29u t7, 8u t9, 10u
1 t32, 33u t9, 10u t12, 11u

SOp7, 2q 0 t14, 15u t2, 3u t5, 6u

r3, 16s SOp5, 4q 0 t108, 109u t25, 26u t5, 2u
1 t137, 141u t30, 32u t3, 8u

SOp6, 3q 0 t40, 41u t12, 14u t3, 5u
1 t85, 89u t16, 17u t4, 2u

SOp7, 2q 0 t3u t1u t4u
1 t30, 31u t4, 5u t2, 3u

SOp8, 1q 0 t5u t0u t2u

r19s SOp4, 3q 0 t242, 247u t33, 34u t0, 1u
SOp6, 3q 0 t136, 140u t18, 19u t0, 1u
SOp7, 2q 0 t44, 45u t6, 7u t0, 1u
SOp8, 1q 0 t7, 8u t1, 2u t0, 1u
SOp9q 0 t0u t0u t0u
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The following is information about the cardinalities of unipotent sets computed
in this paper:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO_q| |Πu
icppO_, iq| |Πu

mispO_q|
r9s SOp5, 4q 0 r4, 3, 2, 1s 1 1 0

r7, 12s SOp5, 4q 0 r3, 2, 1, 0s 6 2 0
1 4

SOp6, 3q 0 2 2 0

r5, 3, 1s SOp5, 4q 0 r2, 1, 1, 0s 12 2 4
1 4
2 2

SOp6, 3q 0 4 4 0

r5, 14s SOp5, 4q 0 r2, 1, 0, 0s 8 4 0
1 4

SOp6, 3q 0 6 4 0
1 2

SOp7, 2q 0 2 2 0

r33s SOp5, 4q 0 r1, 1, 1, 0s 2 2 0
SOp6, 3q 0 1 1 0

r32, 13s SOp5, 4q 0 r1, 1, 0, 0s 9 1 4
1 2
2 2

SOp6, 3q 0 6 2 2
1 2

SOp7, 2q 0 2 2 0

r3, 16s SOp5, 4q 0 r1, 0, 0, 0s 8 4 0
1 4

SOp6, 3q 0 8 4 0
1 4

SOp7, 2q 0 6 2 0
1 4

SOp8, 1q 0 2 0

r19s SOp5, 4q 0 r0, 0, 0, 0s 2 2 0
SOp6, 3q 0 2 2 0
SOp7, 2q 0 2 2 0
SOp8, 1q 0 2 2 0
SOp9q 0 1 1 0
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9.9 GpRq “ Spp10,Rq.

In this case G_
“ SOp11,Cq, with dual real forms SOp6, 5q, SOp7, 4q, SOp8, 3q,

SOp9, 2q, SOp10, 1q, and SOp11q. Following is the output from Atlas about blocks
and cells:

atlas> set G=Sp(10,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> G

Value: connected split real group with Lie algebra ’sp(10,R)’

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’so(11)’,

disconnected real group with Lie algebra ’so(10,1)’,

disconnected real group with Lie algebra ’so(9,2)’,

disconnected real group with Lie algebra ’so(8,3)’,

disconnected real group with Lie algebra ’so(7,4)’,

disconnected split real group with Lie algebra ’so(6,5)’]

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 11 elements,

Block of 75 elements,Block of 305 elements,

Block of 810 elements,Block of 1342 elements],[1,3,8,20,44,72])

so that

1. |BpSOp6, 5qq| “ 1342, |CpSOp6, 5qq| “ 72.

2. |BpSOp7, 4qq| “ 810, |CpSOp7, 4qq| “ 44.

3. |BpSOp8, 3qq| “ 305, |CpSOp8, 3qq| “ 20.

4. |BpSOp9, 2qq| “ 75, |CpSOp9, 2qq| “ 8.

5. |BpSOp10, 1qq| “ 11, |CpSOp10, 1qq| “ 3.

6. |BpSOp11qq| “ 1, |CpSOp11qq| “ 1.
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Following is the basic information about associated varieties of cells:
O_ GpRq_ C_pGpRq_,O_q CpO_q C_

irr,0pO
_q Cirr,0pO_q C_

mispO
_q

r11s SOp6, 5q t0u t71u t0u t71u H

r9, 12s SOp6, 5q t1, 2, 3u t70, 68, 69u t1, 2, 3u t70, 68, 69u H

SOp7, 4q t0u t43u t0u t43u H

r7, 3, 1s SOp6, 5q t4, 5, 6, 7, t64, 67, 65, 66, t4, 5, 6, 7u t64, 67, 65, 66u t53, 55u
15, 17u 53, 55u

SOp7, 4q t1, 2u t39, 41u t1, 2u t39, 41u H

r7, 14s SOp6, 5q t12, 13, 19, 23u t62, 63, 56, 57u t12, 13, 19, 23u t62, 63, 56, 57u H

SOp7, 4q t5, 6, 7u t42, 37, 40u t5, 6, 7u t42, 37, 40u H

SOp8, 3q t0u t19u t0u t19u H

r52, 1s SOp6, 5q t8, 9, 16, 18, t59, 60, 52, 54, t8, 9, 16, 18u t59, 60, 52, 54u t49, 50, 33, 35u
20, 24, 36, 41u 49, 50, 33, 35u

SOp7, 4q t3, 15, 19u t38, 34, 35u t3u t38u t34, 35u

r5, 32s SOp6, 5q t11, 21, 25u t51, 46, 48u t11, 21, 25u t51, 46, 48u H

SOp7, 4q t4u t36u t4u t36u H

r5, 3, 13s SOp6, 5q t14, 22, 26, 27, t58, 45, 47, 23, t14, 30, 31, 32, t58, 38, 39, 44, t23, 30, 31,
28, 30, 31, 32, 30, 38, 39, 44, 33, 22, 26u 43, 45, 47u 34u

33, 37, 42u 43, 31, 34u
SOp7, 4q t8, 9, 11, 14, t33, 27, 29, 32, t8, 9, 11, t33, 27, 29, t14, 18u

16, 18, 20u 14, 31, 18u 14, 18u 32, 31u
SOp8, 3q t1, 2u t16, 17u t1, 2u t16, 17u H

r5, 16s SOp6, 5q t38, 43, 49, 51u t40, 41, 19, 27u t38, 43, 49, 51u t40, 41, 19, 27u H

SOp7, 4q t10, 12, 25, 26u t26, 28, 23, 24u t10, 12, 25, 26u t26, 28, 23, 24u H

SOp8, 3q t4, 5, 6u t18, 13, 14u t4, 5, 6u t18, 13, 14u H

SOp9, 2q t0u t7u t0u t7u H

r33, 12s SOp6, 5q t29, 35, 40, 46, t22, 21, 29, 12, t29, 35, 40, t22, 21, 29, t24, 32u
48, 56, 57u 18, 24, 32u 46, 48u 12, 18u

SOp7, 4q t17, 21, 23, 24u t13, 17, 21, 22u t17, 21, 23, 24u t13, 17, 21, 22u H

SOp8, 3q t3u t15u t3u t15u H

r32, 15s SOp6, 5q t39, 44, 50, 52, t20, 28, 11, 17, t39, 44, 50, 52, t20, 28, 11, 17, t13, 26,
54, 54, 58, 60, 9, 16, 13, 26, 54, 55u 9, 16u 8, 25u

62, 64u 8, 25u
SOp7, 4q t13, 27, 28, 29, t25, 19, 20, 12, t13, 27, 28, t25, 19, 20, t7, 11, 10,

30, 31, 32, 16, 7, 11, 29, 30u 12, 16u 15u
36, 37u 10, 15u

SOp8, 3q t7, 8, 9, 11, t9, 10, 6, 7, t7, 8, 13, 14u t9, 10, 11, 12u t6, 7u
13, 14u 11, 12u

SOp9, 2q t2, 3u t5, 6u t2, 3u t5, 6u H

r3, 18s SOp6, 5q t63, 65, 68, 69u t3, 14, 5, 2u t63, 65, 68, 69u t3, 14, 5, 2u H

SOp7, 4q t34, 35, 40, 41u t5, 2, 3, 8u t34, 35, 40, 41u t5, 2, 3, 8u H

SOp8, 3q t10, 12, 16, 17u t3, 5, 4, 2u t10, 12, 16, 17u t3, 5, 4, 2u H

SOp9, 2q t1, 4, 5u t4, 2, 3u t1, 4, 5u t4, 2, 3u H

SOp10, 1q t0u t2u t0u t2u H

r111s SOp6, 5q t70, 71u t0, 1u t70, 71u t0, 1u H

SOp7, 4q t42, 43u t0, 1u t42, 43u t0, 1u H

SOp8, 3q t18, 19u t0, 1u t18, 19u t0, 1u H

SOp9, 2q t6, 7u t0, 1u t6, 7u t0, 1u H

SOp10, 1q t1, 2u t0, 1u t1, 2u t0, 1u H

SOp11q t0u t0u t0u t0u H
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Here is information of real forms of even nilpotent orbit of dual group in terms
the results from this paper:

Oo_ GpRq_ SpGpRq_,O_q Rp_
i
pχijq C_

irr,0pGpRq
_,O_, iq Cirr,0pGpRq_,O_, iq

indices in dual block
r11s SOp6, 5q 0 t0u t0u t71u

r9, 12s SOp6, 5q 0 t22, 23u t2, 3u t68, 69u
1 t30u t1u t70u

SOp7, 4q 0 t5u t0u t43u

r7, 3, 1s SOp6, 5q 0 t4u t4u t64u
1 t45u t5u t67u
2 t47, 48u t6, 7u t65, 66u

SOp7, 4q 0 t24, 25u t1, 2u t39, 41u

r7, 14s SOp6, 5q 0 t66, 67u t12, 13u t62, 63u
1 t101, 102u t19, 23u t56, 57u

SOp7, 4q 0 t8u t5u t42u
1 t79, 80u t6, 7u t37, 40u

SOp8, 3q 0 t30u t0u t19u

r52, 1s SOp6, 5q 0 t26, 27u t16, 18u t52, 54u
1 t73, 74u t8, 9u t59, 60u

SOp7, 4q 0 t3u t3u t38u

r5, 32s SOp6, 5q 0 t6u t11u t51u
1 t95, 96u t21, 25u t46, 48u

SOp7, 4q 0 t71u t4u t36u

r5, 3, 13s SOp6, 5q 0 t64, 65u t30, 31u t38, 39u
1 t89u t14u t58u
2 t105, 106u t32, 33u t44, 43u
3 t142, 143u t22, 26u 45, 47u

SOp7, 4q 0 t7u t8u t33u
1 t83, 84u t9, 11u t27, 29u
2 t108, 109u t14, 18u t32, 31u

SOp8, 3q 0 t39, 40u t1, 2u t16, 17u

r5, 16s SOp6, 5q 0 t352, 356u t49, 51u t19, 27u
1 t360, 364u t38, 43u t40, 41u

SOp7, 4q 0 t195, 196u t25, 26u t23, 24u
1 t199, 200u t10, 12u t26, 28u

SOp8, 3q 0 t54, 55u t5, 6u t13, 14u
1 t56u t4u t18u

SOp9, 2q 0 t3u t0u t7u

r33, 12s SOp6, 5q 0 t9u t29u t22u
1 t168, 169u t35, 40u t21, 29u
2 t230, 231u t46, 48u t12, 18u

SOp7, 4q 0 t52, 53u t17, 21u t13, 17u
1 t170, 171u t23, 24u t21, 22u

SOp8, 3q 0 t45u t3u t15u

r32, 15s SOp6, 5q 0 t126, 127u t39, 44u t20, 28u
1 t271, 272u t50, 52u t11, 17u
2 t446, 450u t54, 55u t9, 16u

SOp7, 4q 0 t9u t13u t25u
1 t242, 243u t27, 28u t19, 20u
2 t258, 262u t29, 30u t12, 16u

SOp8, 3q 0 t62, 63u t7, 8u t9, 10u
1 t125, 129u t14, 13u t12, 11u

SOp9, 2q 0 t35, 36u t2, 3u t5, 6u

r3, 18s SOp6, 5q 0 t773, 777u t63, 65u t3, 14u
1 t883, 888u t68, 69u t5, 2u

SOp7, 4q 0 t371, 372u t34, 35u t5, 2u
1 t585, 590u t40, 41u t3, 8u

SOp8, 3q 0 t84, 85u t10, 12u t3, 5u
1 t233, 237u t16, 17u t4, 2u

SOp9, 2q 0 t4u t1u t4u
1 t57, 58u t4, 5u t2, 3u

SOp10, 1q 0 t7u t0u t2u

r111s SOp6, 5q 0 t1310, 1324u t70, 71u t0, 1u
SOp7, 4q 0 t749, 799u t42, 43u t0, 1u
SOp8, 3q 0 t297, 301u t18, 19u t0, 1u
SOp9, 2q 0 t71, 72u t6, 7u t0, 1u
SOp10, 1q 0 t9, 10u t1, 2u t0, 1u
SOp11q 0 t0u t0u t0u
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The following is information about the cardinalities of unipotent sets computed
in this paper:

O_ GpRq_ SpGpRq_,O_q 1
2
H_ |Πu

weakpO
_q| |Πu

icppO
_, iq| |Πu

mispO
_q|

r11s SOp6, 5q 0 r5, 4, 3, 2, 1s 1 1 0

r9, 12s SOp6, 5q 0 r4, 3, 2, 1, 0s 6 4 0
1 2

SOp7, 4q 0 2 2 0

r7, 3, 1s SOp6, 5q 0 r3, 2, 1, 1, 0s 8 2 0
1 2
2 4

SOp7, 4q 0 4 4 0

r7, 14s SOp6, 5q 0 r3, 2, 1, 0, 0s 8 4 0
1 4

SOp7, 4q 0 6 2 0
1 4

SOp8, 3q 0 2 2 0

r52, 1s SOp6, 5q 0 r2, 2, 1, 1, 0s 8 2 4
1 2

SOp7, 4q 0 1 1 0

r5, 32s SOp6, 5q 0 r2, 1, 1, 1, 0s 6 2 0
1 4

SOp7, 4q 0 2 2 0

r5, 3, 13s SOp6, 5q 0 r2, 1, 1, 0, 0s 22 4 8
1 2
2 4
3 4

SOp7, 4q 0 14 2 4
1 4
2 4

SOp8, 3q 0 4 4 0

r5, 16s SOp6, 5q 0 r2, 1, 0, 0, 0s 8 4 0
1 4

SOp7, 4q 0 8 4 0
1 4

SOp8, 3q 0 6 2 0
1 4

SOp9, 2q 0 2 2 0

r33, 12s SOp6, 5q 0 r1, 1, 1, 0, 0s 14 2 4
1 4
2 4

SOp7, 4q 0 8 4 0
1 4

SOp8, 3q 0 2 2 0

r32, 15s SOp6, 5q 0 r1, 1, 0, 0, 0s 10 2 4
1 2
2 2

SOp7, 4q 0 9 1 4
1 2
2 2

SOp8, 3q 0 6 2 2
1 2

SOp9, 2q 0 2 2 0

r3, 18s SOp6, 5q 0 r1, 0, 0, 0, 0s 8 4 0
1 4

SOp7, 4q 0 8 4 0
1 4

SOp8, 3q 0 8 4 0
1 4

SOp9, 2q 0 6 2 0
1 4

SOp10, 1q 0 2 2 0

r19s SOp6, 5q 0 r0, 0, 0, 0, 0s 2 2 0
SOp7, 4q 0 2 2 0
SOp8, 3q 0 2 2 0
SOp9, 2q 0 2 2 0
SOp10, 1q 0 2 2 0
SOp11q 0 1 1 0
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