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the stable sum formula.
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Chapter 1: Introduction

Suppose G is a complex connected reductive algebraic Lie group and let g be
its Lie algebra. Studying the representation theory of the real forms of G has been a
major focus over past few decades. Fix a real form G(R) of G and let K(R) be the
maximal compact subgroup in G(R) with complexification K. Let II(g, K) be the
set of irreducible (g, K)-modules of G(R). This set has been completely classified by
results of Langlands, Harish-Chandra, Vogan, Knapp, Zuckerman et al. Let 1T, (g, K)
be the set of irreducible (g, K)-modules of G(R) equipped with an (g, K)-invariant
hermitian form. The results of Knapp and Zuckerman completely classify this set
as a subset of II(g, K). Finally, let II,(g, K) be the set irreducible (g, K)-modules
in I1,,(g, K) such that the invariant (g, K)-hermitian form is positive definite. The
classification of II,(g, KC') is a challenging and an important problem. The Atlas of
Lie Groups Project - a collaboration between a wide network of mathematicians led
by Jeffrey Adams, David Vogan, Marc Van Leuven, etc. - has been able to identify
IT,(g, K) as a subset of 11, (g, K) using computer software computations implemented

in the Atlas Software. More information about this project can be found at [Adal4].

The goal of this thesis is to understand unitary representations of G(R), that



is, the set II,(g, K). Specifically, we want to study certain representations that are
conjectured to be the building blocks for the set 1T, (g, K), these representations are
called “unipotent representations”. The notion of unipotent representations is not
standard. Defining and exploring the properties of unipotent representations has
been an area of active research in the field. We primarily follow the work of Arthur,
Vogan, Adams, Barbasch, et al in development of these ideas.

In [Vog87], Vogan lays out a program to possibly classify 11, (g, K) along with ideas
to suggest what properties might be expected of unipotent representations. He ends
his introduction to [Vog87] as follows “Implicit in this discussion is the hope that the
ideas described here suffice to produce all the irreducible unitary representations of
any reductive group G(R). Because the constructions of complementary series and
unipotent representations are still undergoing improvement, this hope is as yet not
precisely defined, much less realized ...... I hope that the reader will be not disap-
pointed by this imcompleteness, but enticed by the work still to be done.” This was
written in 1987, much progress has been achieved since then.

In the early 2000’s the Atlas of Lie Groups project was initiated by Adams, Vogan,
du Cloux, et al, to use computers “to make available information about representa-
tions of reductive Lie groups. Of particular importance is the problem of the unitary
dual: classifying all of the irreducible unitary representations of a given Lie group”.
The Atlas Software is a powerful computational tool, that can be used to compute a
variety of information about the structure of Lie groups and their representations.
The primary contribution of this thesis is in the understanding of the representation

theory of G(R) and the notions of unipotent representations developed by Arthur



and Vogan in [Vog87], and formalized by Adams, Barbasch, and Vogan in [ABV92],

and to put these ideas in the computational context of the Atlas Software.

We now proceed to describing the results of this paper in a bit more detail. We
start with the following definition of Arthur parameters, first defined in [ABV92] as

follows, and can be found in Chapter 3 of this thesis (Definition 3.3):

Definition 1.1 (Arthur Parameter). An Arthur parameter for G is a homomorphism

Y Wr x SL(2,C) — G satisfying

1. the restriction of ¥ to Wg is a tempered (Definition 22.3, [ABV92]) Langlands

parameter,

2. the restriction of 1 to SL(2,C) is holomorphic.

We say that v is a unipotent Arthur parameter if 1 restricted to the identity
component of Wg is trivial.

Given a unipotent Arthur parameter, we can attach to it two algebraic objects:
1) a “theta form” (Definition 2.4)of a complex nilpotent orbit O for the dual group
GV, and 2) a Langlands parameter ¢, for G(R).
As a result, the study unipotent Arthur parameters and packets is deeply interwoven
with the study of nilpotent orbits. Complex nilpotent orbits of G are well studied
objects, when G is of classical type, there is well known classification in terms of
certain integer partitions of n + 1, 2n, or 2n + 1 where n is the rank of G.
A classification of the theta forms of OV is not known. As a first step, we address
this problem in Theorem ??, under the assumption that O is even (Definition 2.2).
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We can now use this classification to compute complex associated varieties and theta
associated varieties (see Chapter 5 for background on associated varieties).

In Theorem 6.2 we show one can compute the complex associated variety AVg () for
any irreducible representation m of G(R). Furthermore, under certain good condi-

tions, we can compute the theta-associated variety AVy(m) of G(R).

To a unipotent Arthur parameter, one can attach two types of packets as follows

(Definition 7.2 and Definition 7.3 respectively):

Definition 1.2 (Weak Unipotent Arthur Packet). Let OV be a dual even complex
nilpotent orbit. Choose 0 such that A(OV) € § + X*(H). The weak unipotent packet
corresponding to the triple (£,n¥,0Y) is the set

v, 0Y) = {me BMOY)) == T} (B(6)) | AVe(r¥) = OV} (1.1)

weak

Definition 1.3 (Special Unipotent Arthur Packet). The special unipotent Arthur
packet corresponding to the tuple (§,m", O ) is the set

(& n", O ) == {m e Wyu(&n”, 0) | O = AVy(n)}. (1.2)

weak

Note that these definitions rely on the formalism of strong real forms £ and 7",
and the notion of blocks of representations. The basic gist of these definitions is that
the ability to compute complex associated varieties and theta associated varieties,

completely determines the ability to compute unipotent packets. Theorem 7.2 sum-



marizes our main contributions to the computation of unipotent Arthur packets.

This paper is organized as follows:

1. Chapter 2 - Chapter 5: we setup the background and basic framework:

(a) Chapter 2: basic definitions and results about nilpotent orbits that are rel-
evant to our results. We recall the Springer correspondence and description

of Weyl group representations.

(b) Chapter 3: we describe the Langlands and Arthur parameters, following

[ABV92).

(c) Chapter 4: we introduce the Atlas setting, describe how representations are
classified in this setting. We also introduce structure theory of parabolics

in Atlas.

(d) Chapter 5: we introduce associated varieties for G(R). We also explore

some of their important properties.

2. Chapter 6: we give an algorithm for computing the real forms of an even nilpo-

tent orbit.

3. Chapter 7: we introduce unipotent Arthur parameters and the corresponding
special packets of unipotent representations, it ends with an algorithm to com-

pute these packets in certain cases.

4. Chapter 8: we provide an application of results proved in Section 6 and 7.



5. Chapter 9: we provide tables of data. To work out the examples and to get the
information displayed in the tables, you will need to load the script file Arthur_
Packets.at ( .at is the standard extension of Atlas script files) available in the

atlas_ scripts folder when you install the Atlas Software.

The expert reader can safely jump right to Section 6 through 8, where lies bulk of

the novelty and the main results and arguments of this thesis.



Chapter 2: Nilpotent Orbits

Let G be a complex reductive group, with complex Lie algebra g. Fix a real
form G(R) of G and let gg be the corresponding real Lie algebra. Let K be the
complexfication of a maximal compact subgroup of G(R) and let 6 be the Cartan

involution so that G’ = K. Fix H ¢ G, a Cartan subgroup and let

X*(H) = {The lattice of rational characters (into C*) of H} (2.1)

X:(H) = ({The lattice of one parameter subgroups of H}

so there is a natural pairing

()Y XH(H) x X, (H) — Z. (2.2)

Using the following natural isomorphisms,

h~X,(H®,C, b*"~X*(H)®;C, (2.3)



where h* is the vector space dual of hh, we can extend the pairing to

(,)th"xh—C. (2.4)

Now, fix a set of roots A(g, ) for g and let I1(g, h) be a choice of simple positive
roots. Let AY(g,h) and IIY(g,bh) be the corresponding set of coroots and simple

coroots. The set of weights for G is defined as

PG)={Ae X" H)®,C: (\,a¥)eZ forall aeA}. (2.5)

Also, the co-weights for G are defined as

PY(G)={N e X,H®zC: (a,\V)e Z for all ae A}. (2.6)

We can identify 27i X, (H) with the kernel of the exponential map exp : h —

H, under this identification we have

PY(G)={\"€b: exp(2mi \V) € Z(G)}, (2.7)

where Z(G) is the center of G. Also,

P(G)={\ebh": exp(2mi \) € Z(G")}, (2.8)

where Z(G") is the center of the complex connected dual group G".



We outline some facts about nilpotent adjoint and coadjoint orbits for G, ad-
ditional details can be found in [CM93]. The group G acts on g via the adjoint
action

Ad: G — End(g), g+~ Ad(g). (2.9)

An element X € g is called nilpotent if there exist a k € N such that ad(X)* = 0.

The set of all nilpotent elements in g is called the nilpotent cone and is denoted as

N.

Definition 2.1 (Nilpotent Orbit). A nilpotent orbit in g is an orbit in N under the

Ad action of G.

If X € g is a nilpotent element, then we write Ox := Ad(G) - X for the nilpotent

orbit in g.

Theorem 2.1 (Jacobson-Morozov). Suppose g is a complex reductive Lie algebra.
Let X be a non-zero nilpotent element in g. Then, there exist H € b (semisimple)

and'Y € g (nilpotent) such that

[H,X]=2X ,[H,Y]=-2Y and [X,Y]=H, (2.10)

where the bracket is the Lie algebra bracket in g.

The set {X, H, Y} is called a standard s[(2)-triple, and X is called its nilpositive

element. Suppose A is the set of Ad(G)-conjugacy classes of s[(2)-triples in g, then,



we can define a map

2 : A — {nilpotent orbits} ; Q{X,H,Y}) = Ox. (2.11)

The map €2 is bijective. We will conjugate the triple so that the semisimple element H
of the triple is dominant with respect to II(g, h). Furthermore, H belongs to P¥(G).
Using the bilinear pairing in Equation 2.4 we can label the nodes of the Dynkin
diagram for g by the integer (o, H). Such a diagram is called a labeled Dynkin
diagram and we denote it by Dgy. If H is the semisimple element of a standard
s[(2)-triple, then, using s[(2)-representation theory one can show that labels for the
Dynkin diagram can only be one of either 0,1 or 2. Let © be the set of labelled

Dynkin diagrams corresponding to standard s[(2)-triples.

Definition 2.2 (Even Nilpotent Orbits). Let O be a nilpotent orbit for G and let
{X,Y, H} be the corresponding Jacobson-Morozov triple. We say O is an even nilpo-

tent orbit if any one of the following equivalent conditions hold.
1. all the nodes of the labelled Dynkin diagram Dy are even (i.e. either 0 or 2).
2. %H e PV(Q).

When g is reductive Lie algebra of classical type, there is a classification of
nilpotent orbits in terms of partitions. We refer the reader to [[CM93], Theorem

5.1.1-5.1.4] for details of this classification.

10



2.1 Induction of Nilpotent Orbits

Many nilpotent orbits in g can be induced from nilpotent orbits on subalgebras
of g. We introduce some ideas (relevant to us) regarding induction of nilpotent orbits.

Most of the details can be found in Chapter 7 of [CM93].

Let p = [ 4+ n be a parabolic subalgebra in g. Let P be the corresponding
parabolic subgroup in G. Suppose O is a nilpotent orbit in [. We have the following

result.

Theorem 2.2 ([CM93], Theorem 7.1.1). As in the notation above, recall that, Ad(P)
is a connected subgroup of Ad( G) with Lie algebra p. There is a unique nilpotent orbit
O, in g meeting Or+n in an open dense set. The intersection Oy N (O + n) consists
of a single Ad(P)-orbit. The orbit Oy above will called the induced orbit from Oy and

will be denoted as

O, = Ind}(O)).
The induced orbit only depends on the Levi factor [ of p:

Theorem 2.3 ([CM93], Theorem 7.1.3). Let p = [+n and p’ = [+n' be two parabolic
subalgebras in g have the same Levi subalgebra | and let Oy be a nilpotent orbit in [.
Then

Indg((’)[) = [ndg/ (O[)

We say a nilpotent orbit is a Richardson orbit if it is induced from the trivial

11



orbit on some parabolic subalgebra in g. Suppose O is a nilpotent orbit with sl(2)-
triple {X, H,Y'} and let Dy be the labelled Dynkin diagram for O. Let A(O) be the
complement set of vertices labelled 2 in Dy. Let [ be the Levi subalgebra generated

by the roots in A(O).

Theorem 2.4 ([CM93], Theorem 7.1.6). Let D'(O) be the labeled sub-diagram of
D(O) consisting of vertices labeled 0 or 1. If D' is the labeled Dynkin diagram of a

nilpotent orbit O in [, then, O = Ind}(O)).

Recall that even nilpotent orbits have the nodes of their Dynkin diagram la-
belled either 0 or 2. If O is even, [ = Centy(H) and, D'(O) defined in the theorem

corresponds to the trivial orbit Oy in [. Therefore, we have

Corollary 2.1. Suppose O s an even nilpotent orbit in g. Then, O is a Richardson
orbit; induced from the trivial orbit on the Levi subalgebra | of g generated by the

nodes labelled 0 in D(O).

2.2 Real Nilpotent Orbits

Recall that N was defined to be the cone of nilpotent elements in g. The real

nilpotent cone is defined to be the nilpotents in gg:

Ng := N N gr. (2.12)

The real nilpotent cone Ny is a finite union of Ad(G(R))-conjugacy classes.

When g is of classical type, the conjugacy classes are parameterized by signed Young

12



tableau, for more details about this classification and its explicit realization we refer

the reader to ([CM93], Chapter 9).

Definition 2.3 (Real form of a complex nilpotent orbit). Let O be a complex nilpotent
orbit for G. Let G(R) be a real form of G. By a real form of O we mean a G(R)-

conjugacy class of nilpotent elements in O N gg.

We use an alternate description of Ng based on the Cartan involution 6. Let

g = €@ s be the Cartan decomposition of g with respect to 6, that is ¢ = g? and

Np := { Nilpotent elements in s}. (2.13)

Since K preserves s = g/€, K acts on acts on s and this action partitions Ny

into finitely many orbits.

Theorem 2.5 (Kostant-Sekiguchi). There is a natural bijective correspondence be-

tween nilpotent G(R)-orbits in gr and the nilpotent K-orbits in s.
We now define,

Definition 2.4 (6-form of a complex nilpotent orbit). Let O be a complex nilpotent
orbit for G. Let 0 be the Cartan involution defining the real form G(R) of G. By
a 0-form of O we mean a K-conjugacy class of nilpotent elements in O N s, where

K= G’ and g = ¢®s is the Cartan decomposition of g with respect to 6.

Since f-forms are defined using Cartan involutions, they are better suited for
our applications.

13



2.3 Coadjoint Nilpotent Orbits

In applications, nilpotent orbits arise in the dual vector space g* of g. Note
that g* does not have a Lie algebra structure, and as such, there is no direct way of
making sense of nilpotent elements in g*. If g is a complex reductive Lie algebra, one

can define an invariant non-degenerate symmetric bilinear form on g:

(ggxg—C (2.14)

such that (-, ) restricted to [g, g] is a nonzero constant multiple of the Killing form

on [g, g].

The fact that (-, -), is non-degenerate implies that the map ¢ : g — g* defined

X — ¢px :=(X, ), € g%, (2.15)

is an isomorphism of vector spaces. Define the nilpotent cone in g* as N* := ¢(N).
Suppose O is a nilpotent orbit in g with nilpositive element X € O (so that

O = Ad(G) - X), then, we define the corresponding coadjoint orbit to be

O* := Md(G) - dx = N*. (2.16)

We can use the map ¢ to identify the other coadjoint cones of nilpotent elements

with respect to a real form G(R) of G corresponding to a Cartan involution 6 as

14



follows:

NE = 0(Nr), Ny = o(Np). (2.17)

In this setting we have bijections:
1. N/G and N*/G.
2. Ny/K and Nj /K.
3. Nrg/G(R) and NVZ/G(R).

Therefore using the Kostant-Sekiguchi correspondence Ny/K, Ny /K, Ng/G(R) and

NE/G(R) are all in bijective correspondence.

2.4 Duality of Nilpotent Orbits

Let G be a complex connected reductive group and G" be the corresponding
complex connected reductive dual group.
There is a basic duality due to Spaltenstein defined as a map d : N(G) — N(G"),
called the duality map. We refer the reader to Section 6.3 in [CM93] for explicit

description in terms of partitions when G is of classical type.

2.5 The Springer Correspondence

We recall the Springer correspondence. Define B to be set of Borel subalgebras
in g.Given a nilpotent element X, the variety By is the set of Borel subalgebras
containing X. The group G~ := Centg(X) acts on By via the adjoint action. The
induced action of this action on the cohomology H*(Byx, C) is trivial on G so that

15



A(Ox) := G*/G{ acts on H*(Bx,C).

For an irreducible representation (m, V) of A(Ox) define

H*(Bx,C)x := Homyo)(Vr, H*(Bx,C)). (2.18)

We are now ready to state the Springer correspondence:

Theorem 2.6 (Springer). For any nilpotent element X, there is a natural action of

W on H*(Bx,C).

1. The actions of W and A(Ox) commute; so W acts on H*(Bx,C), for = €

A(Ox).

2. The natural maps

H*(B,C) — H*(Bx,C),

induced by H*(Bx,B), are W - equivariant.
3. Forme @), the representation o(X, ) of W on H®=Bx)(By C), is irre-
ducible or zero.

4. If w is trwial, o(X,7) # 0.

5. Suppose o € W. Then there are: a nilpotent element X € g, unique upto Ad(G);

and a unique € A(QOy), such that

o=o(X,n).

16



The correspondence

(G- X,7) — o(X,7) (2.19)

is called the Springer correspondence. We write

7(Ox) = o(Ox, 1). (2.20)

The Springer correspondence provides a way of attaching to each nilpotent orbit

O a finite set of W-representations, having a distinguished element o(O).

2.6 Weyl Group Representations in Classical Type

We go over some facts about Weyl group representations in types B; and C,

details of the general situation can be found in [Car93].

Theorem 2.7 (Irreducible Weyl group representations of Type B; and C)). The irre-
ducible representations of the Weyl group W(B;) (and C;) are in bijection with pairs
of partitions (o, B) such that |a| + |B| = 1. We write o(q,p) for the W-representation

corresponding to (a, 3).

Suppose a = (ag, a1, ..., ) and 8 = (Bo, b1, - - -, Bm—1) (we allow for the parts

to be zero, requiring that a has one more part that ) such that

O<op<a< <o, and 0<B<BH < < B (2.21)

Lusztig attaches to («, 8) the following symbol:
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Ju Ho M1 . Hm—1

where \; = a; + i and p; = B +ifori=0,1,2,....

Definition 2.5 (Special W-representation). Let 0(4,) be a irreducible representation

A
of W with corresponding symbol . We say o(a,p) is special if
1
A< o S A < S A< g << A (2.22)

Definition 2.6 (Special Nilpotent Orbit). Let O be a nilpotent orbit in g. We say
O is special if the Weyl group representation o(Q) associated to O wia the Springer

correspondence is a special W-representation.

The Springer correspondence is explicitly realized when G is of classical type, we
make use of this realization in our computations and to this end has been implemented
into Atlas. For the interested reader, the algorithm can be found in ([Car93], pages

419-423).

18



Chapter 3:  An Overview of the setting

We outline the basic setting that we use for rest of this paper. Let G be a
complex connected reductive algebraic group. Let Int(G), Aut(G) and Out(G) be
the groups of inner automorphisms, automorphisms and outer automorphisms re-

spectively of G. We have the following exact sequence

1 — Int(G) —— Aut(G) —— Out(G) —— 1,

so that Out(G) ~ Aut(G)/Int(G).

A splitting datum for G is a tuple (B, H, {X,}), where B is a Borel subgroup of G,
H a Cartan subgroup and {X,} is the set of root vectors for the of simple roots of H
in B. An involution of G is said to be distinguished if it preserves a splitting datum.
Let G be the dual group of G. There is a bijection between Out(G) and Out(G")
(Definition 2.11, [AdC09]) and we denote it by v € Out(G) — v € Out(G").

Fix v € Out(G) an element of order two. An involution 6 € Aut(G) is said to be in
the inner class of v if p(f) = . We will say that two involutions # and ¢ are inner to
each other if they have the same image in Out(G) under the map p. We call the pair
(G, ) a basic datum, and the corresponding dual basic datum is given by (GY,~v").
Let I' = Gal(C/R) = {1, 0}, then in this setting,
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Definition 3.1 (Extended group, L-group). The extended group for the pair (G,~) is
the semidirect product "G := G x T', where o € I acts by the distinguished involution
in p~*(y). The L-group for the pair (G,7) is defined to be the extended group for the

pair (G ,~v"), often denoted as G or TG .

A real form of G is an antiholomorphic involutive automorphism o : G — G.
Let 0. be a compact real form of G chosen such that it commutes with o, then
f = o o 0. is a holomorphic involution of G. We prefer to work with holomorphic

maps, and, to this end we need the following, (Theorem 3.2, [AdC09]),

Theorem 3.1. The map o — 6 gives a bijection between G-conjugacy classes of

anttholomorphic involutions and G-conjugacy classes of holomorphic involutions of

G.

A Cartan involution of G is a holomorphic involution of G. Henceforth, by a

real form of G we will mean a G-conjugacy class of Cartan involutions.

Definition 3.2 (Strong real form). A strong involution of G in the inner class defined
by v is an element £ €' G — G satisfying €% € Z(G). The set of strong involutions is
denoted by Z( G, 7).

A strong real form of G in the inner class of v is the G-conjugacy class of a strong

nvolution.

Given a strong real form £ € Z(G, ), we can define a Cartan involution of G
as 0 = Int(¢), K¢ = Stabg(fe) = G%. There is a surjective map from Z(G,~)/G
onto the set of all real forms of G in the class defined by ~, this map is bijective if G
is adjoint.

20



3.1 Langlands and Arthur Parameters

Let Wgr be the Weil group of R. A Langlands parameter is a homomorphism

¢ : Wr — 'GY such that the following diagram of L-morphisms commutes

WR —) FGV

and, ¢(C*) is contained in the set of semisimple elements of G". The group G" acts
on such parameters by conjugation. To any G conjugacy class of such parameters
is attached a L-packet of representations of real forms in the inner class defined by ~.
Using ([ABV92], Proposition 5.6), one can identify the set of Langlands parameters

with pairs (y, \¥) satisfying the conditions
1. ye' GY — GY and \Y € bV is a semisimple element,
2. y* = exp(2mi\Y), and
3. [AV,Ad(y)\Y] = 0.

Definition 3.3 (Arthur Parameter). An Arthur parameter for G is a homomorphism
Y Wr x SL(2,C) — G satisfying
1. the restriction of ¥ to Wy is a tempered (Definition 22.3, [ABV92]) Langlands

parameter,

2. the restriction of v to SL(2,C) is holomorphic.

The group GV acts on such parameters by conjugation.
We say that 1 is a unipotent Arthur parameter if ¢ restricted to the identity compo-
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nent of Wr is trivial. Given an Arthur parameter ¢, define the Langlands parameter

¢y to be
‘ w|1/2 0
Oy Wr — G gy(w) 1= P(w, . (3.1)
0 | w,—l/?

Associated to v is an Arthur Packet of representations of real forms in the inner class
given be 7 (Definition 22.6, [ABV92]) containing the L-packet corresponding to ¢y,
and at most finitely many additional representations of of strong real forms in the
given inner class. One of the main results of this paper is to devise and implement

an algorithm to compute these packets, not always completely, when v is assumed to

be unipotent.
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Chapter 4: Atlas of Lie groups requisites

We will make use of the Atlas of Lie groups setting. More details can be found
in [AdCO09] and in resources available at www.liegroups.org.
We continue in the setting of the previous section. We fix a real form G(R) of G,
with corresponding Cartan involution 6, so that K = G’. Furthermore, fix a pinning
(B,H,{X,} for G. We use the Harish-Chandra homorphism to associate to A € h*,
an infinitesimal character which we will also denote by A, which only depends on the
Weyl group orbit W -\ and is unique if we require it to be dominant with respect to a
fixed choice of simple positive roots I1(g, ). We say that A is regular (resp. integral)
if (\,a¥) # 0 (resp. € Z) for roots a € TI(g, b).
It is well known that irreducible admissible representations of G(R) are parameterized

by irreducible admissible (g, K)-modules. We define the following sets:

M(g,K) = Category of finite length (g, K)-modules.
KM(g,K) = Grothendieck group of M(g, K).
M(g,K,\) = Category of finite length (g, K)-modules with inf char A.

KM (g, K,\) = Grothendieck group of M(g, K, \).
II(g, K) = {Equiv classes of irred admissible (g, K)-modules.}

II(g,K,\) = {Jell(g,K) such that inf char of J is A.}
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By results of Harish-Chandra, the set II(g, K, \) is a finite set although there
is no closed form formula for its cardinality. It is desirable to find a combinatorial
description of I1(g, K, A), and the results in [AdC09] do exactly that. We now outline

the basic components of this description.

Recall that Z(G, ) is the set of strong real forms for the basic data (G, ), we
will denote it as Z when there is no confusion about the basic data in question. The

one-sided parameter space is the set

X(G,v) :={(eT|{eNormgr_g(H)}/H, (4.1)

the equivalence is via conjugation. The set X(G,~) is finite when G is semisimple,
and its elements are explicitly computed by the Atlas Software and are called KGB-
elements. When there is no confusion about the basic data, we will denote X'(G, 7)
by just X. Given a dual basic data (G",~"), we will denote X'(G",~") as just X'~

Furthermore, given x € X', we denote the fiber of x to be

X[r]:= {2’ € X | ¢ *(z) is G-conjugate to ¢ ' (')}, (4.2)

where ¢ is the natural projection map. Fix z € X and suppose € Z is such that

q(§) = =, we will denote 6, g to be the Cartan involution ¢ restricted to H. The
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two-sided parameter space is defined as
Z(G,y) i={(z,y) e X x XY | (o) = —Oy;mv} = X x XV, (4.3)

The following theorem provides the combinatorial setup that we want,

Theorem 4.1 (Adams-DuCloux, [AdC09], Thm 10.3). Fiz a set A < P,,(G, H)
of representatives of P(G)/X*(H). Let I = Z/G be a set of representatives for the
strong real forms of "G . For each &; € I let 0, be the Cartan involution corresponding

to conjugation by & and let K, be the fized points of O,. There is a natural bijection

2('6Y) < [ [ [ ] Mo, K, \y)- (4.4)

&iel )\j eA

By (Corollary 9.9 [AdC09]), the set X is in bijection with the disjoint union of
K;-orbits on G/B (denoted as K¢\G/B) as £ varies over Z. If we fix a strong real
form & such that ¢(§) = x, then there is a bijection between X'[z] and K¢\G/B. Fix

an infinitesimal character A for G then the set II(g, K¢, A) satisfies

(g, Ke, A) © Z2(G,7) © X[z] x XY ~K\G/Bx | [] K, \G"/B" |, (4.5)

n]Y €LV

where ZV is a set of representatives for the strong real forms of 'G".

Now fix ¥ € ZV and let y = g(n") € X¥. We assume that \ satisfies (n¥)? =

exp(2miA), then we recall the following definition of a block of representations:
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Definition 4.1 ([DAV81], Definition 9.2.1). The block equivalence of (g, K)-modules

15 the equivalence relation generated by

X ~Y if Entlyg(X,Y)#0. (4.6)

The equivalence classes for this relation are called blocks.

Every block contains irreducible modules with a fixed infinitesimal character,
hence a the cardinality of a block is finite.
Let A satisfy (n¥)? = exp(2mi\). Consider the set (denoted by B(&,nY,AY))

of irreducible (g, K¢)-modules corresponding to the combinatorial data given by:

BEn", A7) = (X[z] x X7[y]) n Z2(G,7) (4.7)

= (K\G/BxKY\G"/BY) n Z(G,7),

In this setting, B(£,nY,\Y) corresponds to an equivalence class of a block of rep-
resentations as defined by Definition 4.1. If we choose \¥ € AY < PY(G,H) such

that €2 = exp(2mi)), we can define the dual block of B(&,n¥,\Y), as the block of

irreducible (g¥, K )-modules at infinitesimal character A, as follows
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B (&Y, A) = Bn',§A) (4.8)
= (Xly] x XY[z]) n 2(Gv,7")

= (KJV\GV/Bv X Kg\G/B) N Z(GY,vY),

with the same compatibility condition as in the definition of B.

In this setting, we can realize Vogan duality as follows:

Definition 4.2 (Vogan Duality). Vogan duality is the natural bijection between the

sets B(&,nY,\Y) and BY(§,nY,\Y) obtained by the map (z,y) — (y,x).

Vogan duality provides a bijection m <> 7% between irreducible representations

in blocks B and BY, this plays a crucial role in our computations.

We end this section with a brief description of L-packets for G. The L-packets
for G are parameterized by KGB-elements for G". If we fix a KGB-element y, = p(n")
for GY, the corresponding L-packet containing representations of real forms of G is

given by

(G, yo) == {(x,y) € X[x] x X [yo] | (Ouly)" = —(Oyoly-)}- (4.9)
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Let x¢ := p(&), then L-packet of (g, K¢)-modules corresponding to the strong real

form ¢ of G and a fixed yq is given as
(g, Ke, yo) := {(z,y) e II(G, yo); | © ~ zo}. (4.10)

4.1 Parabolic Subgroups in Atlas

The Atlas of Lie groups software computes the set X'[x] on computer. We now

explain how Atlas computes K-conjugacy classes of Borel and parabolic subgroups.

Given ¢ € Z, a strong involution of G such that ¢(¢) = =, the map K¢¢gB —
bBg~! is a bijection between K¢\G/B and the K¢ := G?% conjugacy classes of Borel
subgroups. Consider the set J := {(¢,B’) | ¢(§) = z,B’ a Borel subgroup of G}.
Now fix & such that ¢(&) € X[x]

Consider the following maps:

J —2 s X[a]

[
®2
P
K:\G/B
where for (£,B’) € J, we define ¢, as follows: choose g € G such that gB'¢g™' = B
and g€g~' € Norm(H), and define ¢,(£,B’) = q(g€g™!) € X[x].
Define ¢, as follows: choose g € G such that gég! = & and define ¢(&,B’) to be

the K¢-conjugacy class of gB'g™.
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Both ¢; and ¢y are bijections and hence induce a bijection
U =dyo¢r!: X[z] — K\G/B (4.11)

We can generalize the above construction to parabolic subgroups. Let S <
II(g,h), and let Pg be the standard parabolic in G defined by S. All parabolics
conjugate to Pg will be called parabolics of type S. Furthermore, the Weyl group W
acts naturally on X[z] and so does the group W generated by the simple roots in

S. In this setting, we have the following picture:

{(&,P) | q(&) € X[x], P parabolic of type-S} _n X[x]/Wg

x lw

K \G/Ps
where given (£, P), we define ¢, as follows: choose g € G such that gPg~! = Pg and
9€g9~" € Norm(H), and define ¢:(¢, P) = q(g§g™") € X[z].
Define ¢, as follows: choose g € G such that g€g~! = & and define ¢ (&, P) to be the
1

K¢-conjugacy class of gPg™".

Both ¢; and ¢ are bijections and hence induce a bijection
b =¢0¢7": X[z]/Ws — K\G/Ps (4.12)

The main results of this paper use the explicit computation of K¢ conjugacy
classes of parabolic subgroups, which can now be done using X[z]/ ~g, the latter

computation being implemented in the Atlas software.
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Define a finite set P as follows

P ={(S,y)| S cT(gh),yeX[x]}/ ~, (4.13)

where (S,y) ~ (5',y') if and only if S = 5" and y ~5 ¥/'.
For (S,y) € P, let [Q(S,y)] be the K¢ -conjugacy class of parabolic subgroups defined

by ¥ (y), and let Q(S,y) be a representative parabolic of type S in this class.
Proposition 4.1. The parabolic Q(S,y) is 0,-stable if and only if 6,(S) = S.

Recall that given a semisimple element A € b, let S(A) < II(g, b) be the set of

simple roots vanishing on A\. One can construct a parabolic subalgebra in g as follows:

g = {Xeg|adX)(Y)=aX)Y,forallY eg.}

n(A) = >, g

aeA(g,).(a,\)>0

() = CentyW)=b+ Y g

aeA(g,h),{a,A\)=0
p(A) = [I(A) +n(N).

Let P(\) be the parabolic subgroup in G corresponding to py, then P()) is a parabolic
subgroup of type S. Therefore there exists a y € X[z] such that the parabolic
(&, P(N\) < Q(S(N\),y) = ¥(y). Let [Q(S(N),y)] be the K¢-conjugacy class of
parabolic subgroups, and Q(S,y) a representative parabolic of type S in this class.

Proposition 4.2. The parabolic Q(S(N),y) is 0,-stable if and only if 0,(X) = A.
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For more details, the interested reader can visit www.liegroups.org/Papers. In

the later parts of the paper we will be in the “Atlas Setting” as follows:

Definition 4.3 (Atlas Setting). Let (G, ) be a basic data and (GY,~") be the cor-
responding dual basic data. Let (B, H,{X,}) be a fized pinning for G. Let & be a
strong real form of G in the inner class of v and let n¥ be a strong real form for G”
in the dual inner class given by . Corresponding to & and 0", let 8 = Int(§), and
0,v = Int(n¥) be Cartan involutions of G and G respectively with maximal complex
subgroups K¢ and K, respectively. Finally, let X be an integral infinitesimal charac-
ter for G and let B(§,nY, ) be the block of irreducible (g, K¢)-modules at infinitesimal
character X\ specified by the pair of strong real forms (£,n). Also, BY = B(n",&,\Y)

is the corresponding dual block of irreducible (g, K. )-modules.
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Chapter 5:  Associated Varieties

5.1 The Complex Associated Variety

Let (m,V) be an irreducible (g, K)-module. Using the universal property of
U(g), the universal enveloping algebra of g, we can think of (7, V) as a (U(g), K)

module. Let I(7) be the annihilator of 7 in U(g), that is

I(m)={XeU(g) : m(X)(v) =0 for allve V}. (5.1)

The ideal I(7) is a primitive ideal in U(g), and one can construct a filtration
{I,(7) := U,(g)I(m)}, where {U,(g)} is the standard filtration for U(g), and, use it

to define the associated graded module:

oe]

n=0

Since Uy, (9)1n(7) € Upmin(g), gr(m) is a graded ideal in grU(g) ~ S(g). Using
the Poincare-Birkoff-Witt theorem, grU(g) ~ S(g), and hence we can compute the

support of grl(m). We call the latter the complex associated variety, AVg(w), of 7,
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that is:

AVi(m) = Supp(grl(m)) = {Aeg*: X(A\) =0 for all X e grl(n)}. (5.3)

Since grl(m) is a graded ideal in S(g), AV (7) is a cone in g*. Furthermore, it
can be shown that gr/(7) must contain some power of the augmentation ideal J of
S(g), which is the collection of Ad(G)- invariant polynomials without constant term.

Let J* < gri(r) for some k € N. This immediately implies that

AV < Supp(J*) = Supp(J). (5.4)

The following theorem due to Kostant describes Supp(J) in g*,

Theorem 5.1 ([Vog91], Theorem 5.7). Suppose G is a reductive Lie group, and
J < S(g), the augmentation ideal. Then the associated variety of J is the cone N*

of nilpotent elements in g*.

An application of the above theorem shows that AVi(7w) < N*, the nilpotent
cone in g*. Therefore AV¢(m) must be the closure of a finite union of nilpotent orbits

in g*, since A has finite number of orbits. In fact, a much stronger statement is true,

Theorem 5.2 (Borho, Brylinski, Joseph). Let G be a complex connected reductive
Lie group and let G(R) be a real form of G. Suppose (m,V') is an irreducible (g, K)-

module, then AVg(r) is the closure of a single nilpotent orbit O in g*.

Given (7, V'), an admissible irreducible (g, K)-module of G(R), it is desirable to
know if one can compute the invariant AV (7). In the case when G(R) is a classical
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connected reductive Lie group, we use an algorithm due to Noel and Jackson coupled
with the Springer correspondence. These computations have been implemented in

the Atlas software.

5.2 The Real and the Theta Associated Variety

We assume that (7, V') is a finite length (g, K)-module, in this case one can show
that V' is generated by a finite-dimensional subspace S as a (g, K)-module. Using
the universal property of U(g) we can show that (m,V) is a (U(g), K) - module.

Furthermore, for v € V, 7 satisfies the following conditions:

l.dn(Z)v=Z-v forall Zet.
2. w(k)(X -v) = (Ad(k)X) -7(k)v forall ke K and X eU(g).
Using the local finiteness of the action of K we can find a finite-dimensional
K-invariant subspace V) of V' that contains S. An easy argument shows that V =
U(g)Vp. Therefore, we can construct a filtration {V,,(7) := U, (g)Vp} for V. Since, V}

was K invariant, and the fact that the action of K is compatible with the action of

U(g), we note that V,,(7) is K-invariant for all n.

Note that U, (g)Vin(7) < Vipin(m). Therefore, this gives us a K-invariant graded

submodule of grU(g) given by:

grV = @V )/ Vi1 (). (5.5)
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A consequence of the PBW-Theorem is that grV is a (S(g), K) module so that

the S(g) and the K action satisfy the following:

7(k)(X -v) = (Ad(k)X) - w(k)v for all k e K,v e grV, and X € S(g). (5.6)

Differentiating the above equation and noting that S(g) is an abelian Lie alge-
bra, we see that

Z-v=0, forall Xet andvegrV. (5.7)

As a result, the action (S(g), K) action on grV” descends to a (S(g/), K) action.

We define

AVy(r) = Supp(grV) (5.8)

= {Ae(g/®)":v-(\) =0 forallvegrV} c (g/8)*.

As in the case of AVg(m), we can show that AVy(w) is closed under dilations,
which implies that AVp(7) lies in a cone in (g/€)*. Furthermore, the fact that the mod-
ule (m, V) is quasisimple implies that grV contains some power of the augmentation
ideal J of S(g/t), therefore

AVy(m) < Supp(J). (5.9)

As in the case of AV(m), we can show that Supp(J) is in fact the nilpotent
cone Vg in (g/¢)*. Hence AVy(m) must be a union of finitely many K-orbits in (g/€)*.

Using the Kostant-Sekiguchi correspondence, to the K-orbits in AVjy(7) one can find
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the corresponding G(R) orbits in AV and the union of these orbits is called the real

associated variety of 7, denoted as AVg (7).

To summarize the above discussion, AVp(7) satisfies:

AVp(m) = 0L v 0% U - L OF, (5.10)

where O} are nilpotent K-orbits on (g/€)*. Fori = 1,2,...,r, if Of is the G(R) orbit
corresponding to O% under the Kostant-Sekiguchi correspondence then we define the

real associated variety to be

AVg(m) = Of v O% U -+ U OF. (5.11)

The two invariants AV (7) and AVp(7) attached to (m, V') are related as follows:

1. AVi(m) < N*.

2. AVy(m) < Nj.

3. AVg(m) < N

4. If AVp(m) = O 0 O% U -+ U O, then

AVp(m) = Ad(G) - O%.
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5. If AVg(m) = Of v OF U -+ U Of, then

AVp(m) = Ad(G) - O%.

We end this section with a brief description of cohomologically induced modules
and their associated varieties. Fix a Cartan involution 8 for G. Let p = [+ n be
a theta-stable parabolic subalgebra of g, so that p, [ and n are preserved by 6. Let
g = £® s, be the Cartan decomposition of g and s = dim(s N n). We start with a
([,L n K)- module and construct a (g, K)-module using Zuckerman’s cohomological

induction functor.

Suppose Z is a one dimensional (I, (L nK))-module with infinitesimal character
v We can extend Z to a (p,L n K)-module by making n act trivially. Then

Zuckerman defines the following produced module

X = profi 1) (%), (5.12)
and a functor
K
(Rp1)’(Z) = T 5 (X). (5.13)

RV is a left exact functor and because the category of ([, (L " K))-modules has enough

injectives, one can define

(Rpr)" = ith right derived functor of (R,1.)". (5.14)
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In this setting,

Theorem 5.3 (Zuckerman, Vogan, Theorem 6.8, [Vog87]). Suppose L(R) is a Levi
subgroup of G(R) attached to the -stable parabolic subalgebra p = [+n. Let L be the
complezification of L(R), and s the dimension of n €. Let 2p(n) be the sum of roots

positive on n. Consider the functors

R = (Rpr) je{0,1,2,...,s} (5.15)

from the category of (I, L n K)-modules, to the category of (g, K)-modules. Let Z
be a (I, L n K)-module and let i be a Cartan subalgebra of I. Assume that Z has

L-infinitesimal character v, € h* then
1. RI(Z) has G-infinitesimal character g + p(n).

2. Assume that for each root o of b in n,

\Y

Re(vyr, + p(n),a) = 0.

Then RI(Z) is zero for j not equal to s.

3. Under the above hypothesis, if Z is unitary, then so is R*(Z).

4. If we assume that for each root o of b in n,

Re(y + p(n), a) > 0.
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Then, if Z is non-zero, so is R*(Z).

For most of our applications, we will take Z to be a one dimensional (I, L n K)-
module. Let A = dZ € h*. Let p := p(\) = [(A) + n()), and by A,(Z), we will
really mean R*(Z). The modules A,(Z), often denoted as A,(\) are defined using
the f-stable data (p, A := dZ) and have infinitesimal character A + p(n(X)).

The following theorem shows that even though cohomological induction functor de-
pends on Z, the associated variety of the cohomologically induced module A,(Z)

depends only on n(\), which in turn depends only on dZ.

Theorem 5.4. [Yam9/] Let G(R) be a real group corresponding to the Cartan invo-
lution 0. Let m = A,(Z), where the 8-stable data is given by p = p(X) and Z is a one
dimensional representation of | satisfying dZ = X € [*. Suppose (A + p(n),a) > 0 for
all o € A(n), where A(n) is the set of roots on n and 2p(n) is the sum of roots in
A(n). Let g = @ s be the Cartan decomposition of g. Then, AVy(r) = K- (n N s),

is the closure of a single K-orbit in Np.

5.3 Coherent Continuation and Translation Functors

We know that X*(H) is the lattice of weights of finite dimensional representa-
tions for G. So that given a finite dimensional representation F' of G, the set A(F)
of weights of F', is a subset of X*(H). We begin with the definition of a coherent

family:
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Definition 5.1 (Coherent Family). A coherent family of virtual modules is a map

O : X*(H) — KM(g, K), (5.16)

such that:
1. ©(X) has infinitesimal character A € X*(H); and

2. For every finite-dimensional representation F of G,

F@OM) = >, O(\+p). (5.17)

HEA(F)

Now, fix v € X*(H). Given M € M(g,K, ), we say O : X*(H) — KM(g, K)
is a coherent family through M if ©(y) = M. The set of all coherent families on X*
is a finite rank, free Z-module. If v is assumed to be regular then we have a basis for

coherent families on X*(H) given by {©,,}, where O is a coherent family through

M, and M € 1l(g, K, 7).

Suppose w € W and © : X* — KM(g,K) is a coherent family. We can

construct a new coherent family w - © defined by

w-O(\) = O(w '\) (5.18)

Since the infinitesimal character is equivalent up to the action of W, w - ©(\)

has infinitesimal character A. Since the weights of a finite dimensional representation
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of G are invariant under the action of W, the second condition for the definition of

coherent family is also true for w - ©. To summarize the above discussion:

Theorem 5.5 (Coherent Continuation Action). Suppose v is a fived reqular integral
infinitesimal character. Then there is an action of W on the set of all coherent
families

0 : X* — KM(g, K)

defined by

w-O(N) = O(w ). (5.19)

We can use the coherent continuation action to define a W action on K9i(g, K, 7).
Since II(g, K, ) is a basis for KM(g, K, ), we only need to define the action of W
on this basis and then linearly extend this action.

Suppose J € I1(g, K, ). Choose a coherent family © : X* — KM(g, K) such that

O(y) = J. Then,

w-J=(w-0)(y). (5.20)

We can use the action of W on K9t(g, K, ) to define a partial order on repre-

sentations in [I(g, K, ) as follows:

Definition 5.2. Suppose X,Y € M(g, K, 7).
1. We say X <, Y if Y appears in w- X for some we W,
2. Wesay X ~, Y if X <, Y and Y <, X.
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The relation ~., is an equivalence relation on II(g, K, ~), and, the equivalence

classes are called Harish-Chandra cells.

The following result provides a relation between coherent continuation action

and the operation of computing associated varieties.

Proposition 5.1. Let J € Il(g, K,v). Suppose © : X* — KM(g, K) such that

O(y) = J. Let we W be an arbitrary element in W, then

2. AVy(J) = AVy(w - J).

Proof. This results comes down to checking that the graded algebras involved in the
computations of the associated varieties for J and w - J are all isomorphic, since J
and w - J differ only up to tensoring with finite dimensional representations of G.

The conclusion about associated varieties then follows. O

Recall that TI(g, K, ) is the set of irreducible representations with infinitesimal
character 7. Zuckerman’s ideas of tensoring representations with finite-dimensional
representations lead to the the theory of translation functors, which is a way of study-
ing the representation theory at an infinitesimal character ¢ (possibly different from
) in terms of the representation theory at . These ideas will be used extensively in

computing unipotent representations.
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Let v € b* be a fixed infinitesimal character. Fix a weight ¢ € X*(H) and
let Fy be the finite dimensional representation of G with extremal weight ¢. Let
7 e II(g, K, ) be an irreducible (g, K)-module. For, v e X* , let &, : 3(U(g)) — C
be the character on 3(U(g)) given by Harish Chandra’s isomorphism. Define the
projection map:

P, K9M(g, K) — KM(g, K, 7), (5.21)

where the map takes 7 € (g, K) to the largest submodule of 7 annihilated by
(I —&)|;w(g))- In other words, P, takes 7 to the largest submodule with infinitesimal

character .

Definition 5.3 (Translation (to the Wall) Functor). Suppose F, is a finite dimen-
sional representation of G with highest weight ¢. Let ~v € h* be regular and integral,
and, let m € KM(g, K, 7). Assume that v + ¢ is dominant (possibly singular). The

translation functor is the functor

T Mg K, y) — Mg K,y +9¢), 70 Py(r®F,).  (522)

Alternately, we can define translation functors using coherent families as follows:

suppose J € I1(g, K, ), choose a coherent family © such that ©(y) = J, then

T7*(J) = O(v + ¢). (5.23)

Since J € Il(g,K,v) is a basis for M(g,K,7), we can then linearly extend this
definition. Using the relationship of coherent families and associated varieties, we

43



have

Proposition 5.2. Let v € h* be a regular integral infinitesimal character and let
meM(g, K,7v). Let g € X* be an extremal weight of Fy, a finite dimensional repre-

sentation of G. Then,
1. AVp(m) = AV (T4 (n)).
2. AVi(r) = AVH(T]*(x)).
3. AVg(m) = AVR(T7*%(m)).

Proof. Since translation functors are nothing but evaluation of coherent families the
result follows from the fact that asociated varieties are constant for a fixed coherent

family. O

We package this information about associated varieties being constant on co-

herent families into the following result,

Proposition 5.3. Suppose

Mo, K7 =[] ¢

HC-Cells

then AVi(m), AVp(m), and AVg(w) remain constant as one varies w over a fized cell

C.

Proposition 5.3 allows us to define the notion of associated variety of a cell,

that is, if C is a HC-cell, we can define AV(C), AVy(C), AVR(C) to be the respective
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associated varieties of a fixed 7 € C.

Suppose C is a HC-cell. Taking the irreducible representations in C as a basis,
we can linearly extend the coherent continuation action to a #C := c-dimensional
complex representation of W. Understanding this Weyl group representation on the

cell C will be the main goal of the following section.

The coherent continuation action on C contains a unique special Weyl group
representation. We can then use the Springer-correspondence to attach a complex
nilpotent orbit of g to C. This complex nilpotent orbit turns out to be the complex
associated variety of representations in this cell. There are at least two approaches to
computing the special W -representation of the cell C - one due to Noel and Jackson,
and the other due to Binegar. In the case when the group G(R) is of classical type,

the algorithm due to Noel and Jackson is very amenable to implementation in Atlas.

5.4 The Noel-Jackson Algorithm

Let G(R) be the real form a complex classical connect reductive algebraic group
G. The special W-representation attached to a HC-cell C can be studied using the
sign representation. More precisely, suppose 7 is a representation of W and let L(r)
be the set of all parabolic subgroups P of W, such that Resxv(w) contains the sign

representation of P, L(w) is called the Levi-set of .

Theorem 5.6 (Noel-Jackson, [FJMNI18]). Suppose W is a Weyl group of classical
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type. Let w be an irreducible representation of W. Then, 7 is determined by its Levi
set L(m).

—~

Alternately, starting with a Levi set L, it is possible to construct a unique m € W

such that L(m) = L.
We need the following definition:

Definition 5.4 (Tau-invariant). Let v be a regular integral infinitesimal character.
Suppose J € (g, K,v). Fix a set of positive simple roots 11t (g, h). We say that
a simple root « is in the tau invariant of J if and only if s, - J = —J ( in the

Grothendieck group KO, (g, K)). We denote this set by 7(J).

Fix a HC-cell C, let J € C and let m be the special W-representation attached
to C. We can construct a parabolic subgroup P, of W using the s, for o € 7(J)
as generators. Furthermore, by definition of the tau-invariant, we see that Resy;; ()
contains the sign representation of P;. Therefore, using tau-invariants of represen-
tations in C, we can extract a Levi-set L(C) for the cell C. This is the Levi-set for
the coherent continuation representation on C. We can now use the Noel-Jackson
algorithm (in [FJMN18]) to compute the special cell representation on C. We have
implemented this algorithm into the Atlas software, so as to use it’s functionality in

computing associated varieties.
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Chapter 6: Parameterizing Theta Forms of Even Complex Nilpotent

Orbits

Let G be a complex connected reductive algebraic group. Let 'GY be a L-
group for G. We will be in the Atlas Setting (refer 4.3) for the rest of this paper. In
this section we outline an algorithm to parameterize real forms of an even complex

nilpotent orbit.

6.1 Unipotent Arthur Parameters

Fix a unipotent Arthur parameter (Definition 3.3), say ¢. Using the restriction
of ¢ to SL(2,C), and under a “integrality” assumption, we get a nilpotent orbit OV
of GY on g¥. Furthermore, the restriction of ¥ to W is determined once we specify

¥(j), which must be an element of order two in 'G" satisfying:

L. () € Centgv (Y|sri2,0));
2. ¢(j) €' GY -G,

Corresponding to 9, let

wl = '[p’SL(Q’(C) . SL(Q,C) _— GV, (61)
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and let

N =
=)
)
—

A= /\1 = dwl S f]v, Ew = dwl . (62)

o
|
DO [
o
o

If A is integral, then OV is an even nilpotent orbit for G" (else, it is a nilpotent
orbit of a proper subgroup of GY). We can construct the parabolic subalgebra
p(A)Y =1(A)Y +n(N)Y < g¥. Let P¥ be the G"-conjugacy class of parabolic subal-
gebras conjugate to p(\)Y.

Let y € Z(GY,~") be arepresentative for a strong real form of G¥ and let 6 = Int(y).
Let g¥ = €Y @s" be the Cartan decomposition of g¥ with respect to 8¥. In this set-
ting, £, € n(A)¥ ns", and using ([ABV92], Lemma 27.8), it belongs to the Richardson

class ([ABV92], Proposition 20.4) corresponding to PV, denoted as Zpv.

Given a unipotent Arthur parameter ¢, let Oy = G - X be the semisimple orbit
10

containing A = di, 2 e hv. Let X(OY,'GY) :={(y,N) |y ~y and N €

1

0 —3

Oy}. We say that a unipotent parameter 1’ is supported on X (Oy ,'GY) if X € Oy,

1
3 0

where N = di]
0 —

N[ —=

6.2 Parameterizing Theta Forms of an even complex nilpotent orbit.

Let OY < g¥ be a complex even G"-nilpotent orbit. The goal of this section is
to find a “good” parameterization for the theta-forms of OV defined in (2.4). Using

the Kostant-Sekiguchi correspondence, we get a parameterization of the real forms of
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OV defined in (2.3).

Let {XV,YY,H"} be the Jacobson-Morozov triple for OV, so that 0¥ = G -

XV. We recall a special case/corollary of ([ABV92], Theorem 27.10),

Corollary 6.1. Let 0¥ be the Cartan involution of G satisfying (G”)?" = K" and
let g¥ = €Y @sY be the Cartan decomposition. Let G(R)Y be the real form of G
corresponding to the Cartan involution 0. Furthermore, assume that the semisimple
orbit Oy corresponding to A comes from a homomorphism 1, : SL(2,C) — G”
attached to the even nilpotent G” orbit O . Then there is a correspondence between

the following sets:
1. The equivalence classes of unipotent Arthur parameters supported on X (OY,' GY).
2. K" conjugacy classes of of parabolic subgroups Q" € P¥ = G" /P, where P"
is a fized parabolic subgroup of G such that its Levi factor LY has Lie algebra
[V = Centyv (N) and QY satisfies:
(a) 0¥(Q) = Q".

(b) Let q¥ = 1Y +n" be the Langlands decomposition of q¥ = Lie(Q"), then

nwWns'nOY #Y

3. KV orbits on sV n OV.

Proof. Let {XV,Y", H"} be the Jacobson-Morozov triple for OV and let [V = Centyv (H").
Using ([CM93], Corollary 7.1.7), we note that the even nilpotent orbit OV is a
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Richardson orbit, in fact, it is induced from the trivial obit on [V. This implies
that Zp. = OV. Using ([ABV92], Theorem 27.10) in the light of these observations

we get the three correspondences. O

The conditions (1) and (3) in the Corollary above are most intuitive to the
reader, yet checking them is not easy. We will use the Atlas Setting and software to
work with condition (2): (2a) is elementary and has been implemented in Atlas, (2b)
is the more difficult one to test, and our method uses representation theory to arrive

at an algorithm to test it successfully in many cases.

We continue to be in the Atlas Setting as follows: G a complex connected re-
ductive algebraic group, G the dual group. Fix a strong real form n¥ of GY and
let 6, be the corresponding Cartan involution of G". Let K" = Centgv(n"). Let
g" =t ®s" be the Cartan decomposition of g* with respect to 6, . Furthermore, we

choose ¢ to be the dual quasisplit strong real form of G, in the dual inner class of "G .

Fix a regular integral infinitesimal character v € h* ~ h¥. We are fixing &, nV
and v, so we will suppress them from the notation. In this setting, we have a block
of irreducible representations of G(R) at infinitesimal character v, B = B({,nY,7) <
II(g, K, v). Corresponding to B, we have the dual block B" of irreducible (g%, K")-
modules at infinitesimal character v¥. Since " is integral, the full Weyl group W

acts on BY. Using the coherent continuation action, BY decomposes into into disjoint
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HC-cells:

B = [] ¢ (6.3)

HC—cells

Recall that AV (CY) makes sense, since the associated variety remains constant for a

fixed cell CV.

Now fix an even nilpotent orbit O < g* with Jacobson-Morozov triple { X", Y, H"}

and fix A\ = 1HY and let [V = Centgv (A). Let

PY(IV) := {0 - stable parabolic subalgebras of g¥ with Levi-factor [V} < P".
(6.4)
Then, every p¥ € PY(I) is conjugate to a parabolic subalgebra the form p(\')Y for

some semisimple X' € [V and the #Y-stable condition comes down to checking that

v (\) = N.

Definition 6.1 (Parameter set for theta forms of OV). Suppose nV is a strong real
form of G¥ and 0¥ = Int(n") is a corresponding Cartan involution of G” . Associated

to the pair (OY,n") is the set

SOV, nY):={p e K\P"(I")|0"(p") =p", 0V ns" nOY # &}, (6.5)

where p¥ =Y +nY is Langlands decomposition of p¥ and g¥ = €Y @®s” s the Cartan
decomposition of g¥. In our setting, n¥ wil be fixed, so we drop it from the notation,

i.e. the parameter set will be denoted as S(OV).
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As noted in Corollary 6.1, we know that S(OV) parameterizes the theta forms
of OY. Even though the conditions defining S(O") are explicit, it is not clear how
one could check the last condition - n¥ ns¥ " OV # & - to explicitly compute S(O).

The first result of this paper addresses this problem:

Theorem 6.1. Suppose n¥ a strong real form of G”. Choose £ to be the dual quasis-
plit strong real form of G corresponding to ™. Let B(§,nY,~) and B (§,nY,v") be
blocks of representations at regular integral infinitesimal characters v, vV repectively.
Let 0 = Int(&) and 0¥ = Int(n¥) be Cartan involutions of G and G" corresponding

to & and n".

Let OY be an even nilpotent orbit in the complexified Lie algebra g . Let
{XV,YY,H"} be the Jacobson-Morosov triple for OV and let [¥ = Centy  (H"). Let
g =tV ®sY be the Cartan decomposition of g% with respect to 6. Let S(OV) be set

in Definition 6.1

Then,

S(0Y) < {p” e K'\PY(I") | AVe(Rpv (Xoriw)) = OV} (6.6)

There is an algorithm to explicitly compute the latter set which is implementable in

the Atlas of Lie Groups software.

Proof. The computation of the set S(OV) involves checking for two conditions:
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1. We need to know how to check if a given parabolic is theta stable, which is

elementary.

2. We need to find a method to check the condition n¥ ns¥ n OY # &, which
is the difficult part. The main idea of this theorem is to replace this condition
with something more amenable to computation, in this case to reduce it to

computing the complex associated variety.

Let A = HY be the semisimple element in the Jacobson-Morozov triple for OV. Recall
that P ([V) is the set of theta-stable parabolics having Levi factor [¥ = Centyv (A).
As a first step we find a description of KY\PY(I¥), the K"-conjugacy classes of
parabolics in PV (IV).

Let S(A) be the set of simple roots of g¥ which are singular on A. Then, a K"-
conjugacy class of parabolic subgroups is determined by specifying a parabolic Q"
corresponding to the data (y, S()\)), where y is a representative for a K"-orbit of
GY/BY. The parabolic Q" (y, S()\)) is 0¥-stable if and only if 6 () = A, where 6
is the Cartan involution on G corresponding to the KGB-element .

We can use this description of parabolics to compute the set KY\PY([V) in Atlas.

Since by definition, S(O) < KY\PY([V), our goal will be to pare down §'(O") :=
KY\PY(IY) to S(OV). To achieve this, we will use the second condition defining
S(OY):nY nsY n OV # ¢, for an” arising as the nilpotent part of the the Lang-

lands decomposition of p¥ € S'(OV).
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Define the map:

=:KY\PY(IY) — {KY - orbitson s}, p’" - K" -(n" ns"). (6.7)

Using Theorem 5.4, we have n¥ n s¥ is open and dense in a single K" -orbit of

sV, as a result, the map = is well defined.

We note the following consequences of Theorem 6.1:
1. The image of = contains all the K" - orbits on ¥ n OV.

2. The restriction of = to S(OV) is a bijective correspondence between S(OY) and

KVY-orbits on sV n OV.

Therefore, to compute S(OV), it comes down to checking if Z(p¥) < ¥ n OV.

Proposition 6.1. Suppose we are in the above setting and let p¥ € KY\PV (V). Then
E(pY) = 5Y OV (that is p¥ € S(OV)) if and only if AVe(Ryv (X)) = OV, where

Xiriv @5 the trivial character on p.

Proof. Suppose Z(pV) is a KY-orbit on sV n OV, then n¥ ns¥ n OV # J. Let

XY enY ns¥ nOY be a generic element, then using Theorem 5.4, we see that

AVp(Rpv (Xtriv)) = KY - (nv nsv) =K - XV,

therefore Z(p") is by definition AVy(Rpv (Xtriv))-

Furthermore, using the relationship between AVy and AVjp for a fixed module, we
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have

AVe(Ryv (Xtiv)) = GY-(KY - (n¥ nsY))

- G (K- XV)

= GV -XVv

This implies that AVe(Ryv (Xuiv)) = O if n¥ ns¥ n OY # .

Now, if Z(p¥) ¢ s n OV, then by Corollary 6.1, Z(p¥) = AVh(Rpv (Xtriv))
cannot be a theta-form of the complex nilpotent orbit O, so that AVe(Rpv (Xtriv)) =

GY - AVp(Ryv (Xuriv)) # OY. This completes the proof of the proposition. O

Given the fact that we can compute KY\PY(I¥) using Atlas, Proposition 6.1
reduces the computation of S(O") to the computation of complex associated varieties
of all representations in the given block BY. It turns out that there are algorithms to

take care of this latter step, it is dealt in two cases:

1. When GV is of classical type.

2. When GV is of exceptional type.

For Case 1, an algorithm by Noel-Jackson computes the special WY -representation at-
tached to a representation ¥ of G(R)Y by computing the special W -representation
o(CV) attached to the HC-cell C¥ containing 7", using the tau-invariants of the rep-
resentations in CV.
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We can then apply the Springer correspondence to compute the special nilpotent or-
bit attached to o(C¥), the closure of this special nilpotent orbit is AV (7")). Both,
the Noel-Jackson algorithm and the Springer correspondences can be implemented
as functions in the Atlas software, so that given the block B, one gets an output
specifying AV (CY) for every HC-cell in BY.

For Case 2, we use tables computed by Binegar to find out what the AV(CY), for
a given HC-cell in BY. There is an algorithm due to Vogan that would compute
the special Weyl group representation of an irreducible representation of a group of
exceptional type, work is in progress to write it down in a way that could be imple-

mented in the Atlas software.

This completes the proof of the theorem. For the reader’s convenience, we

summarize the algorithm to compute S(OV):

1. Given OV, compute the neutral element H" in the Jacobson-Morozov triple for

OY and let A = HY. Let [V = Centgy. (A).
2. Compute the set S'(O) := KY\PY ("), which is possible in Atlas.

3. Using the Noel-Jackson algorithm or the tables by Binegar, compute the AV¢(7")

for every wv € BY.

4. To pare down §'(OY) to S(OY), for every p¥ € S'(O) compute AVe(Rpv (Xtriv))
using previous step. If AVe(Rpv (Xuiv)) = OV put p¥ into S(OV), or else discard

it from the list.
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5. Since §'(OV) was a finite set, this algorithm will terminate in finite number of

steps and at the end we will be left with exactly S(OV).

6.3 Computing Theta Associated Variety

Continuing in the setting of the last section, now we describe an algorithm to
compute the theta-real-associated variety of an irreducible (g¥, K")-module, 7¥ € BY,

at regular integral infinitesimal character v¥. Let AVg(7Y) = OV. We specify certain
“good” conditions on 7", which when satisfied, AVy(7") can be explicitly computed.

To begin, fix the nilpotent orbit O in g and let A(O¥) = $H" infinitesimal
character coming from the semisimple element in the Jacobson-Morozov triple corre-
sponding to OY. Let p¥(A) = [V 4+ n(\)¥ be the parabolic subalgebra corresponding
to A. If we assume that OV is even, the set S(O") corresponding to the real forms
of OV in terms of representatives of K"-conjugacy classes of 6¥-stable parabolics, is
computable and the algorithm is described in Section 6.4. The first “good” condition

to compute AVp(m") is as follows:

Condition 1

AVi(mY) is the closure of an even nilpotent orbit O.

Fix a parabolic ¥ € S(OY) and let ¥ = [V +n" be its Langlands decomposition.
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Let QY = LYN" be the corresponding parabolic of GY, with LY the complexification
of the real Levi L(R)".
Let A be a one dimensional (I, LY n K")-module, we then cohomologically induce it

up to a (gv, K")-module, denoting this final representation as Rqv ().

Proposition 6.2. Suppose qv is as above and x1 and xo are two one dimensional

representations of LY n K, such that X1|(zvnkv), = X2|(L¥nK"),, then

AVh(Rg- (x1)) = AVo(Ry (x2)). (6.8)

Proof. Since x1|(Lv~kv)o = X2|(@Lv~K"),, We have an equality of derivatives dx; = dyxo,
let’s call this A\g. Using Theorem 5.4 and the discussion preceding it, we know that
the theta-associated variety AVy(Rqv(x1)) and AVy(R4v (x2)) depend only on n(A),

and hence the equality of the two theta-associated varieties follows. O

We know how to compute all the real forms of OV in terms of #V-stable parabol-
ics, using Theorem 6.1 denoted as S(OV). Suppose S(OY) = {py,py,...,p,;} and let
{Ly,Ls,...,L} be the corresponding the Levi subgroups. Choose one dimensional
(1y,LY n K")-modules x;; for j =0,1,2,--- ,s— 1 where s = |L" /Ly | such that the
infinitesimal character of x;; = p(L;) = 71 (in fact, any regular integral infinitesimal
character for L; would work, we make this choice so that our induced modules have
infinitesimal character p(G)). For a fixed 7 and for all j, AVp(R,» (x4;)) corresponds
to the KY-orbit corresponding to the same p,. That is, the real associated variety

remains the same as we vary j but keep i fixed.
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Recall that BY is partitioned into HC-cells, CV, given by

B =]]c".
Definition 6.2 (“Good” Cells). In the above setting we say that a HC-cell C¥ is

good if it contains a representation of the form Ryv (Xi;) for some choice of i and j.

Let C; be the set of good cells corresponding to the representations R,y (Xij)
forie {1,2,...,7} and j € {1,2,...,s}. Note that AVp(C;;) is the closure of a single

K" -orbit that corresponds to the §Y-stable parabolic p; € S(OV).

We can now state the second good condition:

Condition 2

7V lies in a good cell.

Definition 6.3 (Good Condition). Suppose ¥ € BY. We say that " satisfies the

good condition if Conditions 1 and 2 (above) are both satisfied.
We are led to the following theorem:

Theorem 6.2. Let £, n¥ be strong real forms of G, G" in the Atlas Setting, Defi-

nition 4.3. Let B and B> be blocks of representations at reqular integral infinitesimal
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characters v, vV respectively. Let OV be a fixed even nilpotent orbit and let m¥ € BY.

Then,

1. AVe(mY) can be explicitly computed for all ™ € BY.

2. if ¥ satisfies the “good condition” (that is when Condition 1 and 2 are both
satisfied), then AVy(m>) can be computed as the closure of a single K" -orbit in

sV nOV.

Proof. We describe the two algorithms mentioned in the theorem. The algorithm to

compute the complex associated variety is as follows:

1. Suppose ¥ € BY. By the decomposition of BY into HC-Cells, there must be a

cell CV, such that 7v e CV.

2. When G is of classical type, we use the Noel-Jackson algorithm to compute
the special Weyl group representation o(C") attached to CV, this algorithm has
been implemented in Atlas. If G is of Exceptional type, there are tables for the

special Weyl groups representations attached to cells, by Binegar for example.

3. We apply the Springer correspondence (again implemented in Atlas) to o(C")
to get the special nilpotent orbit attached to C¥, by construction, this is exactly

AVE(CY).

4. Since the associated variety remains constant on the cell, we have hence com-

puted AV¢(mY).

When G is of exceptional type, these computations have already been tabulated in
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literature. We mention that case here only for the sake of completeness.

1. We compute AV (7") using the previous algorithm, this will be a closure of a
single nilpotent orbit. It is possible to check if this complex nilpotent orbit is

even, if it is even, we have Condition 1 satisfied and denote this nilpotent orbit

as OV.

2. Since OV is even, we can compute S(OV) corresponding to the block BY as in

Theorem 6.1.

3. Now, suppose 7V is in a good cell, say CV. By definition of a good cell, CV
must contain a Ry (Xi;) for a choice of i and j. The theta-associated variety
of Rpy (xij) and hence of CV is the closure of a single theta-form parameterized

Therefore if the good condition is satisfied, we can compute the theta-associated
variety of m¥ as the closure of the theta-form corresponding to the parabolic p; €
S(OY). This algorithm has been implemented in the Atlas software, so that if you
input a representation into the software, we can check if the good condition holds, and
if it does, we output the theta-associated variety in terms a parabolic corresponding

to a theta-form of OV. OJ
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Chapter 7:  Special Unipotent Packets for Real Reductive Groups

We now return to the main goal of this paper, to compute unipotent Arthur
packets in the “good” case, and when things are not “good”, to provide a list of repre-
sentations that can be used to complete these packets. We provide an algorithm that
explicitly computes Atlas/Langlands parameters of representations in these packets.

We have implemented this algorithm into the Atlas of Lie groups software.

7.1 Special Unipotent Parameters and Packets

We will be in the Atlas Setting of Definition 4.3. That is:
Let (G,v) be a basic data and (G",~") be the corresponding dual basic data. Let
(B,H, {X,}) be a fixed pinning for G. Let £ be a strong real form of G in the inner

class of v and let n¥ be a strong real form for G" in the dual inner class given by

\%

vY. Corresponding to ¢ and 7V, let §; = Int(§), and ,v = Int(n¥) be Cartan in-
volutions of G and G" respectively with maximal complex subgroups K, and K,
respectively.

Let § be a regular integral infinitesimal character for G and let B(£,n",d) be the

block of irreducible (g, K¢)-modules at infinitesimal character d specified by the pair

of strong real forms (£,1"). Also, BY = B(n¥,&,d") is the corresponding dual block

62



of irreducible (g", K, )-modules.

Definition 7.1 (Block at Singular infinitesimal character). Suppose A € § + X*(H),
then by a block at (possibly singular infinitesimal character) A we will mean the trans-
lation of the block at reqular integral infinitesimal character at 6 to the infinitesimal

character \, that is

B(\) = B(&,n", \) =T (B(&,n".9)). (7.1)

The B(\) does not depend on the choice of a regular integral § € X*(H).

Fix a unipotent Arthur parameter (Definition: 3.3)1, and let ¢, be the cor-
responding Langlands parameter with data (y,A). We recall that the pair (y, \)

satisfies:

1. Let ¢y be the tempered Langlands parameter corresponding to the restriction

of 1 to Wg. Let (yo, Ao) be the data corresponding to the parameter 1.

2. Let 1 be the restriction of ¢ to SL(2,C). Define:

0 1/2 0
yi = ;AL =diy
0 —1 0 —1/2

Then the Langlands parameter ¢,, corresponding to 1 is given by (y, A) where,

y =19yoy; and A = \g + Aq.
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Recall that y must satisfy: y? = exp(2mi)). We can attach the nilpotent element,

01
Ey = diy to ¢ . The element £y, e n(A)Y ns¥. If OY = G" - Ey , then O

0 0
is a even nilpotent orbit for G" if and only if A is integral. Let {XY, HY,Y "} be the

Jacobson-Morozov triple corresponding to O, and now define

1
ANOY) = §HV. (7.2)
Definition 7.2 (Weak Unipotent Arthur Packet). Let OV be a dual even complex
nilpotent orbit. Choose § such that A(O) € § + X*(H). The weak unipotent packet

corresponding to the triple (£,nY,0Y) is the set

I (6,7, OY) i= {m € BA(OY)) := T} O (B(5)) | AVe(nY) = OV} (7.3)

An easy consequence of the definition of weak unipotent packets is the fact that

two weak unipotent Arthur packets are either equal or disjoint.

We can construct the parabolic subalgebra p¥ = [(A)Y + n(\)¥ and define P
to be the conjugacy class of parabolic subalgebras conjugate to p¥. In this setting
Ey € Zpv, the Richardson orbit corresponding to PY. Since OV is even, Zpv = OV.
This implies that Ey € n(A)Y nsY n OV, as a result, we can find a K orbit on s
(this is exactly K" - E}) corresponding to the Arthur parameter ¢, call this orbit

kv The map

> KY - By, (7.4)
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defines a bijection between unipotent Arthur packets corresponding to unipotent
Arthur parameters supported on X;(Oy,"G") and the theta real forms of OV in
the block BY(A(OV)). Note that G - E;, = OY. We now define a special unipotent

Arthur packet.

Definition 7.3 (Special Unipotent Arthur Packet). The special unipotent Arthur

packet corresponding to the tuple (§,n", Oy ) is the set

(&, n", Ok ) = {m € (&, 1", 0) | Ogv < AVy(m")}. (7.5)

weak

The theta associated variety of an irreducible representation need not necessarily
be the closure of a single orbit, as a result, we can only hope for an inclusion of Og.
inside AVy(7") as a result two distinct unipotent Arthur packets need not necessarily

be disjoint.

7.2 Computing Special Unipotent Packets

Continuing with the definitions of unipotent packets, we now proceed to com-
pute them. Even though the packets are explicitly defined, the computation of its
actual contents is difficult. The difficulty lies in the computation of the invariants
AVe(m) and AVp(r).

There is no algorithm that computes the contents of a general unipotent packets. The
results relating to the computation of the invariants AVg(7) and AVy(m) (Theorem

6.2) in the earlier sections provide us with the tools to study these packets and to
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compute some of these packets in special cases.

Since we can compute AVg(m) for any 7, we will first show how to completely com-
pute weak unipotent Arthur packets.

The computation of AVy(m) depends on a couple assumptions. Even under these
assumptions, we cannot always compute the special unipotent Arthur packets com-
pletely, however, we can always identify a non-empty set of representations inside the
packet and also provide a list of representations that could possibly complete this set

to the full packet.

Fix a dual even complex nilpotent orbit OY. Let A := A(OY) = %H v, where
HY is the semisimple element in the Jacobson-Morozov triple. We want to compute

v, 0Y) = {re B\ | AVe(nY) = OV} (7.6)

weak

Fix a regular and integral 6 € X*(H), such that A € § + X*(H). Let B(&,nV, )
be a block of irreducible (g, K)-modules at regular integral infinitesimal character §,
note that n" satisfies (n¥)% = e2™*. Let B be the dual block, a block of irreducible
(g¥,K")-modules at infnitesimal character 6. Using Vogan duality, we note that
there is a bijection between B(v) and B (yY). If 7 € B(y), its Vogan dual will be
denoted as 7 € BY (yY).

This leads us to the first main result of this section:

Theorem 7.1. Let O be an even nilpotent orbit in g¥. Suppose we are in the setting

described above, then IIY . (£,nY,OY) can be completely and explicitly computed.

weak
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Proof. We will prove this result in a series of steps as follows:

1. Recall that the dual block is a disjoint union of HC-cells

BV (V) =]]c.

2. Given a WV-cell CV and for any ¥ € C¥, by Theorem 6.2 part (a), we know
how to compute AV(7mY). Since the associated variety remains constant on C",

this lets us compute AVe(CV).

3. Let CY(OV) be the set of all cells C¥ satisfying AV¢(CY) = OV. For every cell
CY, we use Vogan-duality to compute the dual cell C and put this cell into the
set C(OVY), so that C(OV) is set of HC-cells for B(9) such that the dual cell C¥

has complex associated variety OV.

4. The representations in the cells C € C(OV) all have dual complex associated
variety OV, and, have infinitesimal character . To get representations at in-
finitesimal character A := A(OY), we apply the translation functor T3. Since
we chose ¢ such that A\ € § + X*(H), the application of the translation functor

is valid.

5. Therefore, the computation of the weak unipotent Arthur packets is the set:

H&eak(&nvv OV) = ]_[ T(;\(C) (77)
CeC(0OVv)

To implement this algorithm in the Atlas software, in addition to using in built
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functions (for induction and translation functors), we have:

1. implemented the algorithm to compute HY, the semisimple element in the

Jacobson-Morozov triple corresponding to OV.

2. implemented the Noel-Jackson algorithm to compute the special Weyl group
representation when G is of classical type. In the case when G is of exceptional

type we hard code the special nilpotent orbit attached to a cell.

3. implemented the Springer correspondence to compute the special nilpotent orbit

given the special W-representation, when G is of classical type.
4. implemented Vogan-duality to compute a dual cell.

5. each of these functions have combined so that if one inputs the pair (B8, 0") we

output the set IT%_, (£,17Y,OY) in terms of explicit Langlands parameters.
m

We move to computing special unipotent Arthur packets. Let OV be a fixed
dual even complex nilpotent orbit for G. Let A := A(OV) be the infinitesimal char-
acter attached to OV. Let & be a strong real form of G. Choose 6 € X*(H) so that
A€ d + X*(H). Let ¥ be a strong real form for G such that (n¥)? = €™ and n"
is in the dual quasisplit inner class for G. Let B(§,n",d) be a block for the strong
real form £ of G at infinitesimal character §. Let BY (") be the corresponding dual

block.
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Given the complex nilpotent orbit OV, we have a set of K"-conjugacy classes
of #V-stable (¥ = Int(n¥)) parabolic subgalgebras in g¥ parameterizing the theta
forms of OV in the block BY(4), denoted as S(O") and computed in Theorem 6.1.
Let S(OY) = {py,py,....p;} and suppose for ¢ = 1,2,...,7, let py = [ + n be
the Langlands decomposition. Let {Og. 1, Ox. 5, ..., Oy .} be the set of theta real

forms of OV corresponding to the ordered set S(O").

For a fixed i, let s; be the number of connected components of the real Levi
subgroup, L;, corresponding to [;. For j = 1,2,...,s;, let x;; be a character on L,
such that dy;; = oyv forall j =1,2,... s,.

Corresponding to each xy;, let C; be the HC-cell in BY(§") containing Ry (X4)-
Following the proof of Theorem 6.2, recall that for a fixed i, AVy(C}}) = m We
define

C"(Okgv,;)=1{Cj1i=12,...51 = C"(OY). (7.8)

Note that every cell C¥ € CY (O ;) satisties AV,(C") = m, and let
C(Oxv ;) := {the dual cell of C¥, for every C" € CY(Okv ;)} = C(O¥).  (7.9)
Let
CY(Og) = U CY (O ), (7.10)

and let
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C(Ox) == JC(Ox- ). (7.11)

Now, let

H;Jcp(éan\/?(l)l\év,i) = ]_[ T6)\<C) (712>
CEC(OIEVJ.)

Note that ITf (£, 7, Ok ) < TI*(§,n", Ok ). Every representation 7 € I, (€, 1", O+ ;)
is such that AVp(7") is the closure of a single theta form Og. ; of OV, and hence
irreducible.

It can be the case that there is a representation m € B(\A) such that AVp(7") is

reducible and that Ovvy-

; is just one of the components, then m must belong to

IT*(&,m", Okv ;), however such a 7 cannot belong to II{ (£,7", Ok ;). That is why

icp

we use the subscript “icp” which stands for “incomplete packet”.

Now, recall that C(OV) is the set of all cells C € B(§) such that AVz(CY) = OV.
Let
Cx+(0Y) = [C(Ox.,) = C(O). (7.13)
i=1

Definition 7.4 (Good Condition for Unipotence). We will say that the good condition

for unipotence is satisfied if C(O¥) = Cg (OV).

When the good condition for unipotence is satisfied, all the unipotent Arthur
packets [T (§,1", Okv ;) = TI"(&,nY, Ok ;) for all i = 1,2,... r. Furthermore, in

this case, two unipotent Arthur packets are either disjoint or equal.
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There are cases when the good condition for unipotence is not satisfied. This
mostly has to do with the fact that there is no clear understanding about the real
associated variety of some HC-cell C¥ in BY, in this case AVy(m") is likely reducible

or if it is irreducible ¥ does not belong to any of cells C¥ € C¥ (O ;) for any i. Let

Cois(©Y) = C(OY) — Cxev (OV). (7.14)

Then testing for the good condition for unipotence is equivalent to checking if C (O

is empty. Finally let

M (&n”,0Y) = [ TXC) @ (&Y, 0Y). (7.15)
CECmis(OV)

The set 1%, (&,nY,O0Y) is exactly the set of representations, a subset of which when
added to ITi, (€, 7", O ;), one gets the complete unipotent Arthur packet IT*(&, 7", Ok ;).
For this reason we use the subscript “mis” which stands for “missing representa-
tions”. It is not immediately clear what subset of II%. (&, 7Y, O") can be added to
I (&, mY, Ok ;) to get a complete unipotent Arthur packet. In ongoing work with

Jeffrey Adams, we explore some ideas about stable characters to achieve this comple-

tion in some cases. We summarize the above discussion in the following theorem

Theorem 7.2. Let OV be an even nilpotent orbit in g¥. Let & be a strong real form
of G and let n¥ a strong real form of G, and § a integral reqular infinitesimal
character for G be chosen such that (n¥)? = exp(2miX\(OV)) and A\(OV) € v+ X*(H).

Let B(0) := B(&,n",6) be the block of (g, K¢)-modules and B (5") the corresponding
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dual block. Let {Oxv 1,Oxv 5,..., O .} be the theta real forms of OV in the block

BY(5).

1. Suppose the good condition for unipotence is satisfied, then I1*(&,n, Oy l) can
be computed for all © = 1,2,...r. This computation can be implemented in
Atlas to compute the explicit Langlands parameters of representations in these

complete unipotent packets.

2. Suppose the good condition for unipotence is not satisfied, then for each i =

1,2,...,r, we can compute a set

H?cp(£7 nvv OI\;'V ,z’) - Hu(ﬁ? nvv OI\;'V ,i)?

and, a set
H:%is(gv nva Ov) - H?ueak(ﬁ? 77v> OV)
such that
Hu(fv 77V IV{V,i) - H?cp<€7 nvu OVV) - szfrzis(€777v> Ov)’
foreach1=1,2,...,r. Fori=1,2,...,r, we have the following inclusions:

H?cp( Iva,i) - Hu( Iva,i) - H?cp( Iv(v,i) UH?MS(OV) = Z}eak(oﬂ\{f%

such that, except IT*(&,nY, Oy vﬂ-), all the other sets are completely and explicitly
computable in Atlas.
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Chapter 8: An application and some examples

Recall that Theorem 6.2 computes the real associated variety only when the
‘good condition’ given in Definition 6.3 is satisfied.

Here are two possiblities of how the good condition might fail to be true:

1. The cell C¥ contains a R4(A), but q is not conjugate to any of the parabolics in

S(0Y).

2. The cell C¥ does not contain a cohomologically induced module of the type

R4(A) for any choice of theta-stable data (g, A).

In case of (1), we know that the associated variety is definitely irreducible and there-
fore has to be one of the theta-forms corresponding to a parabolic in S(OV). It is
possible that such a scenario does not arise, but at this point we don’t know how to

prove otherwise.

In case of (2), we will use Theorem 7.2 to try to figure out the the associated
variety. The main tool in this application is the stable sum formula for unipotent

packets which we now state:
Theorem 8.1 (Theorem 22.7, [ABV92]). Suppose we are in setting of previous sec-
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tion, that is the Atlas Setting, let OV be a dual nilpotent orbit and let Ok ; be one
of its theta-forms. Let I1"(¢,n", Ok ;) := I (Ok,). Then corresponding to Oy, is

a strongly stable virtual character given by

”eHu(Ol\é,i)
the coefficients a(m) are explicitly determined, and are non-zero.

Since all the coefficients a(m) are non-zero, given a complete Arthur packet, we
should be able to compute (O ;).
Alternately, if we start with a subset of an Arthur packet which does not have a stable
sum of virtual characters and we inductively add a representation, from finite set, to
this subset checking for stable sums at each step, then, in this scheme, suppose we
did not find a stable sum at stage n, and we find a stable sum with all non-zero coeffi-
cients at stage n+ 1. This would imply that adding these n + 1 representations to the
subset we started with gives us the complete Arthur packet or a better approximation

to the Arthur packet than the original subset. In this setup, H?Cp( KV Z) is the subset

we want to start with and II%,.(O") is the set from which we add representations.

mis

Suppose we started out with ITj ( IV@J-), 1 # 7 and repeated the same process

as above to compute the unipotent packet H}’ép( Iv<v7j), then the representations of

u
Hmis

(OY) that are in both II{ (O ;) and Il (Ok. ;) would contain Og. ; and

OIV@J) in their theta-associated variety, proving that the associated variety is re-
ducible. As we vary over all the theta-forms, we end up computing the associated
varieties of all the representations in IT%, . (OY).

mis
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Work on this is still in progress, a crucial component is the implementation of the
computations of stable sum formulas that have been implemented into the Atlas

software by Adams.

8.1 Some Examples

In this section we work out some examples of applications of the results of this
paper. We will be repeatedly applying Corollary 6.1 to compute the real forms of
a complex nilpotent orbit. We will then compare our answers with the output from
Atlas.

We briefly outline the framework of Corollary 6.1. A unipotent Arthur parameter is
a homomorphism:

Y WeSL(2,C) —'GY.

Suppose 9|sp(2,c) corresponds to OV a complex nilpotent orbit fpr GY. Suppose
Wgr = (C*,j), then we know that 1|cx is trivial. Therefore, the value of ¥(j) will
then determine v, to this end we note that () must be an element of order 2 and
that

Y(j) € Centev (¥(SL(2,C))) n ('GY — GY), (8.2)
1 0

Let yg = ¢ then y = 310 (j) defines and element of order 2 in 'GY — G, so
0 —2

that 0, defines a Cartan involution of G". So every choice of ¢(j) will give us a real

form of OV for the real group of G" defined by y = ().
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We will be concerned with the neutral element H € SL(2,C), where H =
0 —i
Given an Arthur parameter v, we will denote yo = )(H). Recall that y = yo - 1¥(j)

gives a strong real form of G".

8.1.1 G(R) = SL(2,R)

In this case the dual group G" is SO(3,C). Recall that SL(2,C) ~ SO(3,C)

has two complex nilpotent orbits:

1. the principal orbit parameterized by the partition [2].

2. the trivial orbit parameterized by the partition [1, 1].

Let OV = [1,1]. We now compute unipotent Arthur parameters ¢». We have

have the following:
1. by unipotence of ¥, ¥|cx = 1.
2. since OV is [1,1], ¥ (SL(2,C)) = 1, so that Centgv (¥(SL(2,C))) = G".

Since elements of 'G¥ are just pairs (z,0) where x € SO(3,C) and o € Gal(C/R), for
convenience we will drop off ¢ from the notation.

For the condition

Y(SL(2,C)) =1 and Centg (¥(SL(2,C))) ="GY,

we note that ¢)(H) = 1 in this case and that we have two possibilities (upto conjuga-
tion by G") for ¥(j):
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1. v1(j) =10 1 0] so that corresponding strong real form is y = yo - ¥1(j) =

0 0 1
1(j). The strong real form y corresponds to SO(3), so that the Arthur param-

eter ¢y captures the trivial nilpotent orbit in SO(3).

-1 0 0
2. (j) =1 0 =1 o [sothat corresponding strong real form is y = yo - 1(j) =
0 0 1

19(j). The strong real form y corresponds to SO(2,1), so that the Arthur

parameter 1, caputures the trivial nilpotent orbit in SO(2,1).

To compute the Arthur packets, we need to know the elements of the blocks B; =

B(SL(2,R),SO(3)) and By = B(SL(2,R),SO(2,1)) which are given by

1. By = {PS(2p)} where PS(2p) is the irreducible principal series at infinitesimal

character 2p.

2. By ={DS(+,p), DS(—, p), Xtiv}, Where DS(+, p) is the discrete series at p with
positive K-types, DS(—, p) is the discrete series at p with negative K-types and,

Xtriv 1S the trivial representation.

In this setting, the Arthur packets corresponding to two Arthur parameters v; and

1 are given by

1. TI(SL(2,R),vy) = {PS(0)}, where PS(0) is the irreducible principal series with

infinitesimal character 0.
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2. II(SL(2,R), ) = {LDS(+,0),LDS(—,0)}, where LDS(+,0) is the limit of

discrete series with positive K-types (respectively LDS(—,0)).

In the case with OV = [2] the Arthur parameter v restricted to the Cartan

subgroup of SL satisfies (upto conjugation by G")

2 0 0
z 0
(G =10 1/22 0}
0 1/z
0 0 1
-1 0 0
t 0
so that yo = ¥ =10 -1 ol Furthermore, Centg.(¢(SL(2,C))) :=
0 —1
0 0 1

{1} so that 9(j) is forced to be 1 (actually the identity matrix in SO(3,C)). So
that the strong real form y = yo1)(j) = yo corresponds to the real group SO(2,1).
The Arthur parameter v identifies the unique real form of [2] in SO(2,1). The

corresponding Arthur packet is given as

H(SL(27 R)v ¢) = {Xtriv}'

This completes the computation of all the Arthur packets for SL(2,R).

78



Chapter 9: Tables of Data

In this section we present some tables of data corresponding to output from the
Atlas Software. In the earlier sections we simplified a lot of notation, so as to have
cleaner presentation.

We want to be in the Atlas setting as in Definition 4.3. For all of the tables below,
we will fix a real form G(R) (equivalently &) and vary over all dual real forms n* in
the quasisplit inner class corresponding to &. For each such n¥ we have a dual real
form G(R)y. of G(R).

We fix a regular integral infinitesimal character A for G(R) determined by 1" satisfy-
ing (n¥)? = exp(2mi\Y). Recall that the triple (£,7, \) defines a block of irreducible
(9, K, )-modules for G(R) at infinitesimal character A, where K, = G"'. Atlas
blocks only depend on the images of £ and n¥ in real forms, there is a process to get
parameters for blocks corresponding to strong real forms which we will show in an
example soon.

Since ¢ and A\ are fixed, the block of representation will only depend on nv. We will
only be concerned with real forms when dealing with blocks in Atlas and hence if

G(R)Y is the real form corresponding to n¥ we denote the block corresponding to

the triple (£,17Y,\) by B(G(R)"). Let BY(G(R)") be the dual block corresponding
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to B(G(R)).

Furthermore, recall that the block B(G(R)"Y) is partitioned into HC-cells, these
cells are parameterized by integers in Atlas, and the set of cells for B(G(R)") will be
denoted by C(G(R)"). Using Vogan-duality we can compute the corresponding dual

cells in BY(G(R)") and we denote the set by CY(G(R)"). Note that in this setting:

BGR)Y )= |J ¢ B@GwHy= |J c. (9.1)
CeC(G(R)V) CveCY(G(R)Y)

We will also use the fact that when G is of classical type, nilpotent orbits O
(resp. OV) for G(R) (resp. G(R)Y) are parameterized by certain integer partitions.
Fix a dual complex nilpotent orbit O for G(R), using Theorem 6.1, we know how to
parameterize the set S(OY, G(R)"). Suppose s is the cardinality of S(OY, G(R)"), in
Atlas we compute this set to be in correspondence with a set of integers {0, 1,2, ..., s—
1}, so that the pair (K", %) (or equivalently (G(R)Y,7)) determines the ith theta-form

OY(KY,i) of O for G(R)". So that
0" n(g”) " = oV (K",i). (9.2)

Note that K = (GY )%,
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We now consider the following sets:

CY(G(R)Y,0Y):={C"Y e CY(G(R)Y) | AV(CY) = OV}. (9.3)

where d is the Vogan-duality map.

v
C irr

(G(R)Y,0Y,i) = {C” € C"(G(R)",0") | AVy(C*) = O (G(R)V,d)}. (9.5)

Cio(G(R)Y,0Y,i) := {C” € G .(G(R)", 0, 1) | there exists j such that Ry, (x;) € C"}.
(9.6)
s—1
Ciro(G(R)Y,0Y) := | Cl1o(G(R)Y, 0, d). (9.7)
i=0
CLis(G(R)",0Y) = CY(G(R)",0%) = G, 4(G(R)”, O). (9:8)
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So that

Cirryo(G(R)v, Ov,’i) = d(CV

irr,0

(G(R)",07,i)) Cumis(G(R)Y,0) :=d(Cy,

miS(G<R)V7 OV))
(9.9)

Recall that we know how to explicitly compute C; ,(G(R)Y, OV, i) for all i,

irr,0

v
irr,0

and hence can compute C;, ,(G(R)¥,0"). We also know how to compute complex
associated varieties using Atlas, hence we can compute CY(G(R)Y,0Y).
Therefore if |C) (G(R)Y,0Y)| = 0, we know how to compute the theta-associated
varieties of all representations in the block B(G(R)") whose complex associated vari-
ety is OV, in particular we can compute the complete unipotent packets corresponding
to the theta-forms of OV. Alternately, the size of |C..(G(R)Y,O")| determines the
how far we are from computing a complete packet.
Also, if |C(G(R)Y,0V)| = 0, all the unipotent packets will be disjoint.

Let {XV,HY,Y"} be the Jacobson-Morozov triple for OV, where H" is the
neutral element. Let v = %H ¥ and let T) be the translation functor taking irreducible

(g, K)-modules with infinitesimal character A to those with infinitesimal character .

In this setting we get the following sets of unipotent representations constructed in

Theorem 7.2:
Lear (G(R), G(R),0Y) = lJ (D) recy:=17(0), (9.10)
CeC(G(R)V,0V)
H}‘CP(G(R),G(R)V,(’)V,i) = U {TV(m) | meC}:=TY(C), (9.11)

CeCirr,0(G(R)V,0V i)
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mis

(G(R), G(R)",0") =

U

CeCrnis(G(R)V,0V)

(Ti(n) | reCl=T}(C).  (9.12)

Recall that the set of special unipotent representations corresponding to the
theta-form OY(G(R)",i) was denoted as [I*(G(R), O(G(R)",7)) and satisfies the

following inclusions:

I, (G(R), G(R)Y, 0¥, i) < II"(G(R), O(G(R)", 7)),
"(G(R), O(G(R)", 1)) = I, (G(R), G(R)", 0¥, 1) U1 (G(R), G(R)”, O),
T (G(R), G(R)Y, 0%, 1) UIILi(G(R), G(R) ", 0) = IIL 4 (G(R), G(R)*, OY).

In the tables below, we will compute C(G(R)Y,0V), Ciro(G(R)Y, 0V, 1), Chis(G(R)Y, OV).
G(R)”

(G(R),G(R)v,0") and we invite the interested reader

For space constraints, will only compute the cardinalities of II{; |(G(R), , OV, 1),

Mear (G(R), G(R)Y, OY), TI,;

mis

to use this information to compute the actual parameters in Atlas.

9.1 G(R) = SL(2,R).

In this case GY = PGL(2,C) with real forms PGL(2,
some basic information about blocks and cells:

R) and PSU(2). Here is

1. [B(PGL(2,R))| = 3, |C(PGL(2,R))| = 3.
2. |B(PSU(2)| = 1, |C(PSU(2))| =

Here is the basic information about associated varieties for cells.

0" | GR)” |CYG[R)",0) | C(OY)]| Cip(OY) | Ciro(OY) | Cyis(OY)

2] | PGL(2,R) {0} {2} {0} {2} %)

)] | PGL(2,R) {1,2] 0.1} | (L2 {0,1} %
PSU(2) {0} {0} {0} {0} %)

Here is the information about the real forms of even complex dual nilpotent orbits:
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O | GR)Y |S(G[R)",0Y) | Rpyr(xij) | CirolGR)Y,0Y,1) | Cino(GR)", 0, i)
indices in dual block
2] | PGL(2,R) 0 {0} {0} {2}
[1?] | PGL(2,R) 0 {1,2} {1,2} {0,1}
PSU(2) 0 {0} {0} {0}
Here is the information about the cardinalities of the special unipotent packets:

OV | GR)” [S(GR)",0Y)|;HY | My (O] | I, (O, 4)] | T};(O)]

[2] | PGL(2,R) 0 [1] 1 1 0

[1?] | PGL(2,R) 0 [0] 2 2 0

[12] | PSU(2) 0 [0] 1 1 0

9.2 G(R) = PGL(2,R) ~ SO(2,1).

In this case GV = SL(2,C) with strong real forms SL(2,R) and SU(2,0) and
SU(0,2). Here is some basic information about blocks and cells:

1. [B(SL(2,R))| = 3, |C(SL(2,R))| = 3.
2. |B(SU(2,0)| = 1, |C(SU(2,0))| = 1.

Since Atlas computes blocks only at the level of real-forms, we are missing the block
corresponding to the strong real form SU(0,2). However, even though we do not
have the block corresponding to SU(0,2), it is still possible to find the parameters
corresponding to that block in Atlas.

Here is the basic information about associated varieties for cells.

O | G(R)” | CYG(R)",0%) | C(O) | Ciro(O0Y) | Cino(O0Y) | Cpiis(O)

2] [SL(2,R) {0,1} (1.2} | {0,1 {1,2} %

[1°] | SL(2,R) {2} {0} 12} {0} %
SU(2,0) {0} {0} {0} {0} %

Here is the information about the real forms of even complex dual nilpotent orbits:

(O G(R)v S(G(R)V>OV) RPZ (Xij) Ci\;r,O(G(R)V>OV’i) Cirr,O(G(R)V7OV7i>
indices in dual block
2] | SL(2,R) 0 {0} {0} {1}
1 {1} {1} {2}
[’ | SL2.K) 0 2 2 0}
SU(2,0) 0 {0} {0} {0}
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Here is the information about the cardinalities of the special unipotent packets:

G(R)” [S(G(R)",0") [ TH" [ (Mg (O [, (O, )] | Mg (O]
SL(2,R) 0 s[1] 2 1

1 1
SL(2,R) 0 [0] 0 0 0
SU(2,0) 0 [0] 1 1 0
SU(0,2) 0 [0] 1 1 0
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9.3 G(R) = SO(3,2).

In this case G = Sp(4,C) with strong real forms Sp(4,R), Sp(1,1), Sp(2,0),
and Sp(0,2). Here is some basic information about blocks and cells:

L |B(Sp(4,R))| = 12, |C(Sp(4, R))| = 6.
2. [B(Sp(1,1))| = 4, [C(Sp(1,1))] = 2.
3. [B(Sp(2,0)] = 1, [C(Sp(2,0)) = 1.

4. [B(5p(0,2)]

=1, |C(Sp(0,2))] = 1, we will use the parameters from the block

coming from Sp(2,0) to compute the unipotent representations in this block.

Here is the basic information about associated varieties for cells.

OY | GR)” |C(G(R)",0) | C(O) | Cy\,o(O) | Cirro(OY) | Clis(O)
[4] | Sp(4,R) {0, 1} 4,5 | {01} {4,5} %
[2°] Sp(4,R) (2,3, 4] (2,31} | {2,3,4) | {2,3,4) %
Sp(1,1) {0} {1} {0} {1} &
[1*] | Sp(4,R) {5} {0} {54 {0} 7
Sp(1,1) {1} {0} {1} {0} %)
Sp(2,0) {0} {0} {0} {0} %)

Here is the information about the real forms of even complex dual nilpotent orbits:

O | G(R)Y | #real-forms in G(R)"
[4] | Sp(4,R) 2
[2%] | Sp(4,R) 3
Sp(1, 1) 1
[1] | Sp(4,R) 1
Sp(1, 1) 1
Sp(2,0) 1

The following is the information about real forms of even nilpotent orbits in terms of

Atlas output:

0" [ GR) [SGER),0")] Ry (xi) |CirolGRI,0%,1) | Corg(GR)", 07,1
indices in dual block

[4] | Sp(4,R) 0 {0} {0} {4}
1 {1} {1} {5}
[2%] | Sp(4,R) 0 {2} {2} {2}
1 {3} {3} {3}
2 {4} {4} {1}
Sp(1,1) 0 {2} {0} {1}
[1*] | Sp(4,R) 0 {10} {5} {0}
Sp(1,1) 0 {3} {1} {0}
Sp(2,0) 0 {0} {0} {0}
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Here is the information about the cardinalities of the special unipotent packets:

07 [ G [SGR),0%) | 1B [ (O] [ T (07, )] | e (07)]
[4] | Sp(4,R) 0 513, 1] 2 1 0
1 1
[2%] | Sp(4,R) 0 S[1,1] 6 2 0
1 2
2 2
Sp(1,1) 0 1 1 0
[17 | Sp(4,R) 0 [0, 0] 0 0 0
Sp(1,1) 0 1 1 0
Sp(2,0) 0 1 1 0
Sp(0,2) 0 1 1 0

We now show how this works in Atlas:

atlas> set G=S0(3,2)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: disconnected split real group with Lie algebra ’so(3,2)’

atlas> set B=all_blocks (G)

Variable B: [Block] (overriding previous instance, which had type [Block])
atlas> B

Value: [Block of 1 elements,Block of 4 elements,Block of 12 elements]
atlas> dual_real_forms (G)

Value: [compact connected real group with Lie algebra ’sp(2)’,

connected real group with Lie algebra ’sp(1,1)’,

connected split real group with Lie algebra ’sp(4,R)’]

Atlas output for the orbit [4]:

atlas> get_packets_from_cells ([4], [3,1]1/2, B[2])
Value: (1,[final parameter(x=6,lambda=[3,1]/2,nu=[3,1]1/2)]1)

atlas> get_packets_from_cells ([5], [3,1]1/2, B[2])
Value: (1, [final parameter(x=6,lambda=[5,3]/2,nu=[3,1]1/2)]1)

Atlas output for the orbit [2%]:

atlas> get_packets_from_cells ([2], [1,1]1/2, B[2])
Value: (2, [final parameter(x=3,lambda=[1,1]/2,nu=[0,1]/2),
final parameter (x=6,lambda=[5,3]/2,nu=[1,1]1/2)1)

atlas> get_packets_from_cells ([3], [1,1]1/2, B[2])
Value: (2, [final parameter(x=3,lambda=[1,3]/2,nu=[0,1]1/2),
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final parameter(x=6,lambda=[3,1]/2,nu=[1,1]1/2)])

atlas> get_packets_from_cells ([1], [1,1]1/2, B[2])
Value: (2, [final parameter(x=1,lambda=[1,1]/2,nu=[0,0]/1),
final parameter(x=5,lambda=[3,3]/2,nu=[1,1]1/2)])

atlas> get_packets_from_cells ([1], [1,1]1/2, B[1])
Value: (1, [final parameter(x=5,lambda=[3,3]/2,nu=[1,1]1/1)1)

Atlas output for [14]:

atlas> get_packets_from_cells ([0], [0,0], B[O])
Value: (1, [final parameter(x=6,lambda=[5,3]/2,nu=[0,0]/1)])

atlas> get_packets_from_cells ([0], [0,0], B[1])
Value: (1, [final parameter(x=2,lambda=[1,-1]/2,nu=[0,0]/1)1)

atlas> all_parameters_gamma (G, [0,0])

Value: [final parameter(x=6,lambda=[3,1]/2,nu=[0,0]/1),
final parameter(x=6,lambda=[5,3]/2,nu=[0,0]/1),

final parameter(x=2,lambda=[1,-1]/2,nu=[0,0]/1)]

In the last piece of output, we want to point out the following:

1. using the get_packets_from_cells command on the input ([0], [0, 0], B[2]) leads
to an error (error message not printed here), and that is because the discrete
series for SO(3,2) at infinitesimal character [3/2,1/2] cannot be translated to

the infinitesimal character [0, 0].

2. using the all_parameters_gamma command, we can compute the unipotent

packet corresponding to the strong real form Sp(0,2) as

final parameter(x=6,lambda=[3,1]/2,nu=[0,0]/1).
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94 G(R) = SO(4,3).

In this case G = Sp(6,C) with strong real forms Sp(6,R), Sp(2,1), Sp(1,2),
Sp(0,3), and Sp(3,0). Here is some basic information about blocks and cells from
Atlas.

atlas> set G=S0(4,3)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: disconnected split real group with Lie algebra ’so(4,3)’

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’sp(3)’,
connected real group with Lie algebra ’sp(2,1)’,

connected split real group with Lie algebra ’sp(6,R)’]

atlas> block_cell_info (G)
Value: ([Block of 1 elements,Block of 9 elements,Block of 53 elements],[1,3,16])

so that
1. |B(Sp(6,R))| = 53, |C(Sp(6,R))| = 16.
2. |B(Sp(2,1))] =9, |C(Sp(1,1))] = 3.
3. |1B(Sp(3,0)] = 1, [C(Sp(3,0))] = 1.

4. |B(Sp(0,3)| = 1, |C(Sp(0,3))] = 1, we will use the parameters from the block
coming from Sp(3,0) to compute the unipotent representations in this block.

Following is the basic information about associated varieties for cells:

0" | GR)” |CY(G[R)",0Y)| C(OY) | Cio(0Y) | Cup(0Y) | Cpi(0Y)
[6] |Sp(6,R) {0,1} (14,15} {0,1} {14, 15} %]
[4,2] [ Sp(6,R) [ {2,3,4,6} [{13,9,12,11} | {2,3,4,6} [{13,9,12,11} | & |
[3°] | Sp(6,R) {8} {7} {8} {7} %]
Sp(2,1) {0} {2} {0} {2} %)
|[2°] | Sp(6,R)| {5,7,9,10,11} |[{8,10,5,6,4}|{5,7,9,10} | {8,10,5,6} | {4} |
[1°] | Sp(6,R) {15} {0} {15} {0} %]
Sp(2,1) {2} {0} {2} {0} %]
S5p(3,0) {0} {0} {0} {0} %]

The following is the information about real forms of even nilpotent orbits of

Sp(6,C):

89



oV G(R)Y | #real-forms in G(R)Y
[6] | Sp(6,R) 2
| [4,2] [ Sp(6,R) | 4
[3°] | Sp(6,R) 1
Sp(2,1) 1
[ [2°] [ Sp(6,R) | 4
[1°] | Sp(6,R) 1
Sp(2,1) 1
Sp(3,0) 1

The following is the information about real forms of even nilpotent orbits and
associated varieties of cells in terms of Atlas output:

0" | GR)Y |S(GR),0Y) | Rpr(xij) | Cio(GR)Y,0%,4) | Cieo(G(R)Y, 0¥, 4)
indices in dual block
[6] | Sp(6,R) 0 {0} {0} {14}
1 {4} {1} {15}
[4,2] | Sp(6,R) 0 {1} {2} {13}
1 {3} {4} {12}
2 {10} {3} {9}
3 {11} {6} {11}
[3°] | Sp(6,R) 0 {16} {8} {7}
Sp(2,1) 0 {2} {0} {2}
[2°] | Sp(6,R) 0 {5} {5} {8}
1 {7} {7} {10}
2 {17} {9} {5}
3 {18} {10} {6}
[1°] | Sp(6,R) 0 {50} {15} {0}
Sp(2,1) 0 {8} {2} {0}
Sp(3,0) 0 {0} {0} {0}

Here is the information about the cardinalities of the special unipotent packets:
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0" [ GR)” [S(GR)Y,0) [ FHY [, (O], (07, )] [ M}, (0Y)]
[6] |Sp(6,R) 0 5[5,3,1] 2 1 0
1 1
[4,2] | Sp(6,R) 0 5[3,1,1] 8 2 0
1 2
2 2
3 2
[3%] | Sp(6,R) 0 [1,1,0] 0 0 0
Sp(2,1) 0 1 1 0
Sp(1,2) 0 1 1 0
[23] | Sp(6,R) 0 S[1,1,1] 5 1 1
1 1
2 1
3 1
[1°] | Sp(6,R) 0 [0,0,0] 0 0 0
Sp(2,1) 0 1 1 1
Sp(1,2) 0 1 1 1
Sp(3,0) 0 1 1 1
Sp(0, 3) 0 1 1 1

Following is the Atlas output with the unipotent parameters that we are inter-
ested in:

atlas> get_packets_from_cells ([14], [5,3,1]1/2, B[2])
Value: (1, [final parameter(x=24,lambda=[5,3,1]1/2,nu=[5,3,11/2)]1)
atlas> get_packets_from_cells ([15], [5,3,1]1/2, B[2])
Value: (1,[final parameter(x=24,lambda=[7,5,3]/2,nu=[5,3,1]1/2)])

atlas> get_packets_from_cells ([13], [3,1,1]1/2, B[2])
Value: (2, [final parameter(x=18,lambda=[5,1,3]/2,nu=[3,0,1]1/2),
final parameter(x=24,lambda=[5,3,1]/2,nu=[3,1,11/2)])

atlas> get_packets_from_cells ([12], [3,1,1]1/2, B[2])
Value: (2, [final parameter(x=18,lambda=[7,1,1]/2,nu=[3,0,1]1/2),
final parameter(x=24,lambda=[7,5,3]/2,nu=[3,1,11/2)]1)

atlas> get_packets_from_cells ([9], [3,1,1]1/2, B[2])
Value: (2, [final parameter(x=15,lambda=[7,1,1]/2,nu=[3,0,0]/2),
final parameter(x=22,lambda=[7,3,3]/2,nu=[(3,1,11/2)])

atlas> get_packets_from_cells ([11], [3,1,1]1/2, B[2])

Value: (2, [final parameter(x=15,lambda=[5,1,1]/2,nu=[3,0,0]/2),
final parameter(x=22,lambda=[5,3,3]/2,nu=[3,1,11/2)])
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atlas>
Value:

atlas>
Value:
atlas>
Value:
atlas>
Value:
atlas>
Value:

atlas>
Value:

atlas>
Value:
atlas>
Value:

get_packets_from_cells ([2], [1,1,0], B[1])
(1, [final parameter(x=24,lambda=[5,3,1]/2,nu=[1,1,0]1/1)1)

get_packets_from_cells ([8], [1,1,1]/2, B[2])

(1, [final parameter(x=24,lambda=[5,3,1]/2,nu=[1,1,1]1/2)]1)
get_packets_from_cells ([10], [1,1,1]1/2, B[2])

(1, [final parameter(x=24,lambda=[7,5,3]/2,nu=[1,1,11/2)]1)
get_packets_from_cells ([5], [1,1,1]/2, B[2])

(1, [final parameter(x=19,lambda=[3,5,3]/2,nu=[1,1,1]1/2)1)
get_packets_from_cells ([6], [1,1,1]1/2, B[2])

(1, [final parameter(x=19,lambda=[3,3,3]/2,nu=[1,1,11/2)]1)

get_packets_from_cells ([4], [1,1,1]1/2, B[2])
(1, [final parameter(x=11,lambda=[1,3,3]/2,nu=[0,1,1]1/2)1)

get_packets_from_cells ([0], [0,0,0], B[1])
(1, [final parameter(x=7,lambda=[1,-1,3]/2,nu=[0,0,0]1/1)1)
get_packets_from_cells ([0], [0,0,0], B[0])
(1, [final parameter(x=24,lambda=[7,5,3]/2,nu=[0,0,0]/1)])
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9.5 G(R) = SO(5,4).

In this case GY = Sp(8,C) with strong real forms Sp(8,R), Sp(2,2), Sp(3,1),
Sp(1,3), Sp(4,0) and Sp(0,4). Here is some basic information about blocks and cells
from Atlas.

atlas> set G=S0(5,4)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: disconnected split real group with Lie algebra ’so(5,4)’

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])
atlas> B

Value: [Block of 1 elements,Block of 16 elements,

Block of 42 elements,Block of 258 elements]

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’sp(4)’,

connected real group with Lie algebra ’sp(3,1)’,

connected real group with Lie algebra ’sp(2,2)’,

connected split real group with Lie algebra ’sp(8,R)’]

atlas> block_cell_info(G)
Value: ([Block of 1 elements,Block of 16 elements,
Block of 42 elements,Block of 258 elements],[1,3,6,35])

so that
1. |B(Sp(8,R))| = 258, |C(Sp(8,R))| = 35.
2. |B(Sp(2,2))] = 42, |C(Sp(1, 1))| = 6.
3. [B(Sp(3,1)] = 16, |C(Sp(3,0))| = 3.
4. |B(Sp(4,0)| = 1, |C(Sp(0,3))] = 1.

We will need to compute unipotent representations in blocks corresponding to strong
real forms Sp(1,3) and Sp(0,4), to do this we will use parameters from blocks corre-
sponding to Sp(3,1) and Sp(4,0) respectively.

Following is the basic information about associated varieties for cells:
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0~ G[R)” | C'(GR)",0Y) C(0Y) Cio(0Y) | Cirpo(0Y) | Cyi(O0Y)

B Sp(8,R) (0,1} (33,34} (0,1} (33,34} %]

1[6,2] |[Sp(8,R)[ {2,3,5,88 | {26,30,25,32} | {3,8,5,2} |{26,30,25,632} | %] |

[4,4] [ Sp(8,R) {4,6,10} {29, 24,31} {4,10,6} {29, 24,31} 1%}
Sp(2,2) {0} {5} {0} {5}

[4,27] [Sp(8,R) [ {7,9,11,12,14, [{22,23,27,15,28, [ {7,9,11,14, | {22,23,27,28, | {15,19, 10}

15,17,18, 23} 19,20, 21, 10} 17,18} 20,21}

[32,1%] | Sp(8,R) {28} {11} {28} {11} %]
5p(2,2) {1,2} {3,4} {1,2} {3,4} %)
Sp(3,1) {0} {2} {0} {2} %)

[27] Sp(8,R) | {13,16,25, {13,17,6, {13,16, 25, {13,17,6 {4}

27,29,30} 7,5,4} 27,29} 7,5}
5p(2,2) {3} {2} {3} {2} %)

[1°] | Sp(8,R) {34} {0} {34} {0} &
Sp(2,2) {5} {0} {5} {0} %]
Sp(3,1) {2} {0} {2} {0} 2]
Sp(4,0) {0} {0} {0} {0} %)

Here are the tables outlining the number of real forms of a given even complex

nilpotent orbit:

oY G(R)Y | #real-forms in G(R)"
[8] Sp(8, R) 2
1[6,2] | Sp(8,R) | 4 |
[4,4] Sp(8,R) 3
Sp(2,2) 1
[ [4,2°] [ Sp(8,R) | 6 |
[3%,1%] | Sp(8,R) 1
Sp(2,2) P
Sp(3,1) 1
(2] | Sp(8,R) 5
Sp(2,2) 1
[1°] | Sp(8,R) 1
Sp(2,2) 1
Sp(3,1) 1
Sp(4,0) 1
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The following is the information about real forms of even nilpotent orbits and
associated varieties of cells in terms of Atlas output:

07 [ GR) [SGR.0)| Ry(xy) | Coro(GR).0%.) | Crral G(R)".07.3)
indices in dual block
8] Sp(8,R) 0 {0} {0} {33}
1 {5} {1} {34}
6,2] | Sp(8,R) 0 {4} {3} {30}
1 {10} {8} {32}
2 {24} {5} {25}
3 {25} {2} {26}
[4*] | Sp(8,R) 0 {2} {4} {29}
1 {9} {10} {31}
2 {36} {6} {24}
Sp(2,2) 0 {12} {0} {5}
4,2°] | Sp(8 0 {6} {7} {22}
1 {8} {9} {23}
2 {45} {17} {20}
3 {46} {18} {21}
4 {47} {11} {27}
5 {48} {14} {28}
[3%,1%] | Sp(8,R) 0 {93} {28} {11}
Sp(2,2) 0 {2} {1} {3}
1 {5} {2} {4}
Sp(3,1) 0 {9} {0} {2}
27 | S 0 (13} (13} {13)
1 {15} {16} {17}
2 {87} {25} {6}
3 {88} {27} {7}
4 {97} {29} {5}
Sp(2,2) 0 {25} {3} {2}
] | S)G.R) 0 (252] 54] 0}
Sp(2.2) 0 1) B 0}
Sp(3,1) 0 (15} 2 {0}
Sp(4,0) 0 {0} {0} {0}
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Here is the information of the cardinalities of unipotents packets we are inter-

ested in:
0" [ GR) [S(GR),0V) [ FH" [ (O[], (0, i)] | M (OV)]
8] Sp(8,R) 0 517,5,3,1] 2 1
1 1
[6,2] | Sp(8,R) 0 5[6,3,1,1] 8 2 0
1 2
2 2 0
3 2 0
[4%] Sp(8,R) 0 5[3,3,1,1] 6 2 0
1 2
2 2
Sp(2,2) 0 1 1 0
[4,22] | Sp(8, 0 33,1,1,1] 9 1 3
1 1
2 1
3 1
4 1
5 1
[32,12] | Sp(8,R) 0 [2,2,0,0] 0 0 0
Sp(2,2) 0 2 1 0
1 1
Sp(3,1) 0 1 1 0
Sp(1,3) 0 1 1 0
[24] Sp(8, 0 5[1,1,1,1] 12 2 2
1 2
2 2
3 2
4 2
[1°] Sp(8,R) 0 [0,0,0] 0 0 0
Sp(2,2) 0 1 1 0
Sp(3,1) 0 1 1 0
Sp(1,3) 0 1 1 0
Sp(4,0) 0 1 1 0
Sp(0, 4) 0 1 1 0
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9.6 G(R) = Sp(4,R).

In this case GV = SO(5, C), with dual real forms SO(3,2), SO(4,1) and SO(5).
Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(4,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)

atlas> set B=all_blocks(G)
Variable B:
atlas> G

Value: connected split real group with Lie algebra ’sp(4,R)’

atlas> B
Value:
atlas> block_cell_info (G)
Value:

so that

1. |B(SO(3,2))] = 12, |C(SO(3,2))| = 6.

2. |B(SO(4,1))| = 5, |C(SO(4,1))]
3. |B(SO(5))| = 1, |[C(SO(5))| = 1.

= 3.

Following is the basic information about associated varieties of cells:

[Block] (overriding previous instance, which had type [Block])

[Block of 1 elements,Block of 5 elements,Block of 12 elements]

([Block of 1 elements,Block of 5 elements,Block of 12 elements],[1,3,6])

0 | GR)” |C(GR)",0%) | C(OY) | Cii;p(O) | Cirro(O) | Cylie(OY)
[5]  [50(3,2) {0} {5} {0} {5} %)
[3,1%] | SO(3,2) {1,2,3} {4,2,3} | {1,2,3} {4,2,3} (%)
SO(4,1) {0} {2} {0} {2} %)
[1°] SO(3,2) {4,5} {0,1} {4,5} {0,1} [0}
SO(4,1) {1,2} {0,1} {1,2} {0,1} (%)
50(5) {0} {0} {0} {0} &
Here is information about the number of real forms of even nilpotent orbits for
SO(5,C).
oY G(R)Y | #real-forms in G(R)Y
[5] SO(3,2) 1
[3,1%] | SO(3,2) 2
SO(4,1) 1
[1°] SO(3,2) 1
SO(4,1)) 1
SO(5) 1
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Here is information of real forms of even nilpotent orbit of dual group in terms
the results from this paper:

oY G(R)Y |S(G(R)",0Y) | Rpyy(xij) | Ciro(GR)Y,0%,1) | Cio(G(R)”,0",4)
indices in dual block
[5]  [50(3,2) 0 {0} {0} {5}
[3,1°] | SO(3,2) 0 {1} {1} {4}
1 {3,4} {2,3} {2,3}
S0(4,1) 0 {1} {0} {2}
[1°] SO(3,2) 0 {8,9} {4,5} {0,1}
SO(4,1) 0 {3,4} {1,2} {0,1}
SO(5) 0 {0} {0} {0}

The cardinalities of unipotent sets that we are interested in:

% GR)" [S(GR)",0Y) | 3H" [ [y (O] | T, (O, 9)] | [I15(OY))]
5] | SO(3,2) 0 2,1] 1 1
[3,12] | SO(3,2) 0 [1,0] 6 2
1 4
SO(4,1) 0 2 2 0
[1°] | SO(3,2) 0 [0, 0] 2 2 0
S0(4,1)) 0 2 2 0
SO(5) 0 1 1 0
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9.7 G(R) = Sp(6,R).

In this case GV = SO(7,C), with dual real forms SO(4, 3), SO(5,2), SO(6, 1),
and SO(7). Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(6,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: connected split real group with Lie algebra ’sp(6,R)’

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])
atlas> B

Value: [Block of 1 elements,Block of 7 elements,

Block of 27 elements,Block of 53 elements]

atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 7 elements,

Block of 27 elements,Block of 53 elements],[1,3,8,16])

so that
1. |B(SO(4,3))| =53, |C(SO(4,3))| = 16.
2. |B(SO(5,2))| =27, |C(SO(4,1))| = 8.
3. |[B(SO(6,1))] =17, |C(SO(6,1))| = 3.
4. |[B(SO(7))| =1, |C(SO(7))| = 1.
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Following is the basic information about associated varieties of cells:

0" | G(R)” |CY(G(R)",0) C(0Y) Ci0(0Y) | Cio(0Y) | Cris(0Y)
[7] 1 50(4,3) {0} {15} {0} {15} %)
[5,1%] [ SO(4, 3) {1,2,3] (14,12, 13} {2,3,1} | {14,12,13} %]
50(5,2) {0} {7} {0} {7} %]
[32,1] [ SO(4,3) | {4,5,6,8,10} |{11,9,10,5,7}| {4,5,6} | {11,9,10} | {5,7}
50(5,2) (2,3} (5,6} (2,3} {5,6} %
[3,177[ SO(4,3) | {9,11,12,13} {3,6,4,2} [{9,11,12,13} | {3,6,4,2} %]
50(5,2) {1,4,5} {4,2,3] {1,4,5} {4,2,3} 1%
50(6,1) {0} {2} {0} {2} %]
[17] [SO(4,3) (14,15} (0,1} {14, 15} (0,1} %]
SO(5,2) {6,7} {0,1} {6,7} {0,1} %)
50(6,1) (1,2} (0,1} (1,27 (0,17 %]
SO(5) {0} {0} {0} {0} %]

Here is information of real forms of even nilpotent orbit of dual group in terms the
results from this paper:

Oo” | G(R)Y | S(G(R)",0Y) | Rpy(xij) | Cino(G(R)Y,0Y,1) | Cino(G(R)”, 0, 1)
indices in dual block

(71 ] 50(4,3) 0 {0} {0} {15}
[5,12] | SO(4,3) 0 {5,6} {2,3} {12,13}
1 {7} {1} {14}
SO(5,2) 0 {1} {0} {7}
[3%,1] | SO(4,3) 0 {2} {4} {11}
1 {9, 10} {5,6} {9, 10}
SO(5,2) 0 {5,6} {2,3} {5,6}
[3,1%] | SO(4,3) 0 {14,15} {9,11} {3,6}
1 {19,20} {12,13} {4,2}
50(5,2) 0 {2} {1} {4}
1 {11,12} {4,5} {2,3}
50(6,1) 0 {3} {0} {2}
[17] | SO(4,3) 0 {45, 49} {14, 15} {0,1}
SO(5,2) 0 {23,24} {6,7} {0,1}
S0(6,1) 0 {5,6} {1,2} {0,1}
S0(7) 0 {0} {0} {0}

The following is information about the cardinalities of unipotent sets computed

in this paper:
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98 G(R) = Sp(8,R).

In this case GV = SO(9,C), with dual real forms SO(5,4), SO(6,3), SO(7,2),
SO(8,1), and SO(9). Following is the output from Atlas about blocks and cells:

atlas> set G=Sp(8,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: connected split real group with Lie algebra ’sp(8,R)’

atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’so(9)’,
disconnected real group with Lie algebra ’so(8,1)7,

disconnected real group with Lie algebra ’so(7,2)’,

disconnected real group with Lie algebra ’so(6,3)’,

disconnected split real group with Lie algebra ’so(5,4)’]

atlas> set B=all_blocks(G)

Variable B: [Block] (overriding previous instance, which had type [Block])
atlas> block_cell_info (G)

Value: ([Block of 1 elements,Block of 9 elements,

Block of 48 elements,Block of 144 elements,

Block of 258 elements],[1,3,8,20,35])

so that
1. |B(SO(5,4))| = 258, |C(SO(5,4))| = 35.
2. |B(SO(6,3))| = 144, |C(SO(6, 3))| = 20.
3. [B(SO(7,2))| = 48, |C(SO(7,2))| = 8.
4. |B(SO(8,1))| = 9, |C(SO(8,1))] = 3.
5. [B(SO(9))] = 1, [C(50(9))| = 1.
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Following is the basic information about associated varieties of cells:

G(R)¥ | CY(G(R)",0Y) c(oY) Ciiro(0Y) Cirr0(0Y)
SO(5,4) {0} {34} {0} {34}
[7,1%2] [ SO(5,4) {1,2,3} {33,31,32} {1,2,3} {33,31,32}
SO(6, 3) {0} {19} {0} {19}
[5,3,1] | SO(5,4) {4,5,6,7, (30,29, 25, 27, {5,6,7,4} | {29,25,27,30}
13,17} 13,16}
50(6,3) {1,2} (16,17} (1,2} (16,17}
[5,17] [SO(5,4) | {8,9,12,16} {24,26,21,22} | {12,16,8,9} | {21,22,24,26}
50(6,3) {4,5,6} (18,13, 14} {5,6,4} (13,14, 18}
S0(7,2) {0} {7} {0} {7}
SO(5,4) (14,18} {19, 20} (14,18} &
SO(6, 3) {3} {15} {3} {15}
[32,13] [ SO(5,4) | {10, 15, 19,20, 21, | {23,12,15,17,18, | {10, 15, 19, (23,12, 15,
22,23,27,28} 7,9,11,14} 20,21} 17,18}
50(6,3) {7,8,9,10, {9,10,12,11, {7,8,9,10} | {9,10,12,11}
11,13} 6,7}
SO(7,2) (2,3} (5,6} (2,3} (5,6} %)
[3,15] [ SO(5,4) | {25,26,30,32} (5,2, 3,8} {25,26,30,32} | {5,2,3,8} %]
50(6,3) | {12,14,16,17} (3,5,4,2} {12,14,16,17} | {3,5,4,2} %)
SO(7,2) {1,4,5} {4,2,3} {1,4,5} {4,2,3} &
SO(8,1) {0} {2} {0} {2} %]
SO(4, 3) (34,33} {0,1} (33,34} {0,1} %]
50(6,3) (18,19} {0,1} (18,19} {0,1} %)
SO(7,2) {6,7} {0,1} {6,7} {0,1} %)
SO(8,1) (1,2} (0,1} (1,2} (0,1} &
S0(9) {0} {0} {0} {0} %]
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Here is information of real forms of even nilpotent orbit of dual group in terms
the results from this paper:

G(R)v S(G(R)V7Ov) ,R’Plv (Xl]) (G(R)V7OV>Z) ClrnO(G(R)V,OV,Z)
indices in dual block
SO(5,4) 0 {0} {0} {34}
SO(5,4) 0 {4} {1} {33}
1 {12,13} {2,3} {31, 32}
SO(6,3) 0 {9} {0} {19}
SO(5,4) 0 {3} {5} {29}
1 {14, 15} {6,7} {25,27}
2 {21} {4} {30}
SO(6,3) 0 {15,16} {1,2} {16,17}
SO(5,4) 0 {43, 44} {12, 16} {21, 22}
1 {47, 48} {8,9} {24, 26}
SO(6,3) 0 {21, 22} {5,6} 13,14}
1 {23} {4} {18}
S0(7,2) 0 {2} {0} {7}
SO(5,4) 0 {40, 41} {14, 18} {19, 20}
SO(6,3) 0 {2} {3} {15}
SO(5,4) 0 {5} {10} {23}
1 {31, 32} {15,19} {12, 15}
2 {61, 62} {20, 21} {17,18}
SO(6,3) 0 {28,29} {7,8} {9,10}
1 {32, 33} {9,10} {12,11}
SO(7,2) 0 {14, 15} {2,3} {5,6}
SO(5,4) 0 {108,109} {25, 26} {5,2}
1 {137,141} {30, 32} {3,8}
SO(6,3) 0 {40, 41} {12, 14} {3,5}
1 {85, 89} {16, 17} {4,2}
50(7,2) 0 {3} {1} {4}
1 {30, 31} {4,5} {2,3}
50(8,1) 0 {5} {0} {2}
SO(4,3) 0 {242,247} {33, 34} {0,1}
SO(6,3) 0 {136, 140} {18, 19} {0,1}
SO(7,2) 0 {44, 45} {6,7} {0,1}
SO(8,1) 0 {7,8} {1,2} {0,1}
S0(9) 0 {0} {0} {0}
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The following is information about the cardinalities of unipotent sets computed
in this paper:

o GR)" |S(GR)",0Y)| HY || (O], (0,4 | [T (OY)]
[9] SO(5,4) 0 [4,3,2,1] 1 1
[7,1%2] | SO(5,4) 0 [3,2,1,0] 6 2 0
1 4
SO(6,3 0 2 2 0
[5,3,1] | SO(5,4) 0 [2,1,1,0] 12 2 4
1 4
2 2
SO(6, 0 4 0
[5,1%] | SO(5, 0 [2,1,0,0] 8 4 0
1 4
SO(6,3) 0 6 4 0
1 2
SO(7,2) 0 2 2 0
[3%] SO(5,4) 0 [1,1,1,0] 2 2 0
SO(6,3) 0 1 1 0
[32,13] | SO(5,4) 0 [1,1,0,0] 9 1 4
1 2
2 2
SO(6,3) 0 6 2 2
1 2
SO(7, 0 2 2 0
[3,1°] | SO(5, 0 [1,0,0,0] 8 4 0
1 4
SO(6,3) 0 8 4 0
1 4
SO(7,2) 0 6 2 0
1 4
SO(8,1) 0 2 0
[1°] SO(5,4) 0 [0,0,0,0] 2 2 0
SO(6,3) 0 2 2 0
SO(7,2) 0 2 2 0
SO(8,1) 0 2 2 0
SO(9) 0 1 1 0
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9.9 G(R) = Sp(10,R).

In this case G¥ = SO(11, C), with dual real forms SO(6,5), SO(7,4), SO(8, 3),
S0(9,2), SO(10,1), and SO(11). Following is the output from Atlas about blocks

and cells:

atlas> set G=Sp(10,R)

Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> G

Value: connected split real group with Lie algebra ’sp(10,R)’
atlas> dual_real_forms(G)

Value: [compact connected real group with Lie algebra ’so(11)’,
disconnected real group with Lie algebra ’so(10,1)’,
disconnected real group with Lie algebra ’so0(9,2)’,
disconnected real group with Lie algebra ’so(8,3)’,
disconnected real group with Lie algebra ’so(7,4)’,
disconnected split real group with Lie algebra ’so(6,5)’]

atlas> block_cell_info (G)
Value: ([Block of 1 elements,Block of 11 elements,
Block of 75 elements,Block of 305 elements,

Block of 810 elements,Block of 1342 elements],[1,3,8,20,44,72])
so that

1. |B(SO(6,5))| = 1342, |C(SO(6,5))| = 72.
7,4))| = 810, |C(SO(7,4))| = 44.

9,2

)

)
8,3))| = 305, |C(SO(8,3))| = 20.

)| =175, [C(50(9,2))] = 8.

1)

10,1))| = 11, |C(SO(10,1))| = 3.

S
~—~~ o~~~ I~ o~

11))] = 1, |C(SO(11))] = 1.
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Following is the basic information about associated varieties of cells:

[ o7 GR)Y [C(GER),07)] C(OY) [ Cio@7) T GCimo(@7) [ Cris(0Y) ]
[ [11] [ 50(6,5) | {0} | {71} | {0} | {71} | J
[[9,12] [ s0(,5) | {1,2,3} [ {70,68,69} | {1,2,3} [ {70,68,69} | %] |
[ [ so@4) | {0} | {43} | {0} | {43} [ 7] J
7,3, 1] S0(6,5) {4,5,6,7, {64, 67, 65, 66, {4,5,6,7} {64, 67, 65, 66} (53,55}
15,17} 53, 55}
SO(7, 4) 1,2} (39,41} {1, 2} (39,41} %]
[7,1%] SO(6,5) {12, 13, 19, 23} {62,63,56,57} | {12,13,19,23} | {62,63,56,57} [Z]
SO(7, 4) (5,6, 7} {42, 37, 40} (5,6, 7} {42, 37, 40} %]
SO(8,3) {0} {19} {0} {19} 7]
52,1] S0(6,5) {8,9, 16, 18, {59, 60, 52, 54, {8,9, 16, 18} {59, 60,52, 54} | {49, 50, 33, 35}
20, 24, 36, 41} 49, 50, 33, 35}
SO(7, 4) {3, 15, 19} {38, 34, 35} 3} 138} {34, 35}
[[5,3%21 [ S0(,5) | {11, 21, 25} [ {51,46,48) [ {11,21,25} [ {51,46,48} | %] |
[ [ so@4) | {4} | {36} | {4} | {36} [ 7] J
[5,3,13] | SO(6,5) {14, 22, 26, 27, {58, 45,47,23, | {14,30,31,32, | {58, 38,39, 44, {23, 30, 31,
28, 30, 31, 32, 30, 38, 39, 44, 33,22, 26} 43,45, 47} 34}
33,37, 42} 43,31, 34}
SO(7, 4) (8,9, 11, 14, (33, 27, 29, 32, 8,09, 11, {33, 27, 29, {14, 18}
16, 18, 20} 14, 31, 18} 14,18} 32,31}
SO(8, 3) {1, 2} {16, 17} 1,2} {16, 17} %]
[5,1%] S0(6, 5) (38, 43,49, 51} {40,41,19,27} | {38,43,49,51} | {40,41, 19,27} [Z]
SO(7, 4) {10, 12, 25, 26} {26, 28, 23,24} | {10, 12, 25,26} | {26, 28, 23, 24} %]
SO(8,3) {4,5,6} {18,13, 14} {4,5,6} {18, 13, 14} 1%}
S0O(9,2) {0} {7} {0} {7} %)
3%, 17] SO(6,5) {29, 35, 40, 46, {22, 21,29, 12, {29, 35, 40, {22, 21, 29, {24, 32}
48,56, 57} 18, 24, 32} 46, 48} 12,18}
SO(7, 4) {17, 21, 23, 24} {13, 17, 21,22} | {17, 21, 23,24} | {13,17, 21,22} %]
SO(8,3) {3} {15} {3} {15} 7]
[3%,17] SO(6,5) {39, 44, 50, 52, {20,28,11, 17, | {39,44,50,52, | {20,28, 11,17, {13, 26,
54, 54, 58, 60, 9,16, 13, 26, 54,55} 9,16} 8,25}
62,64} 8,25}
SO(7, 4) {13, 27, 28, 29, {25, 19, 20, 12, {13, 27, 28, {25, 19, 20, {7, 11, 10,
30, 31, 32, 16,7, 11, 29,30} 12,16} 15}
36,37} 10, 15}
SO(8, 3) 17.8,09, 11, 9,10, 6,7, (7.8, 13, 14} 9,10, 11, 12} 6,7}
13,14} 11,12}
50(9,2) {2, 3} {5, 6} {2, 3} {5, 6} %]
[3,1%] 50(6,5) 63, 65, 68, 69 {3,14,5,2} 63, 65, 68, 69 {3,14, 5, 2} %]
SO(7, 4) 34, 35, 40, 41 (5,2, 3,8} 34, 35, 40, 41 {5, 2, 3,8} %]
SO(8,3) 10,12, 16, 17 (3,5, 4,2} 10,12, 16, 17 (3,5, 4,2} %]
50(9,2) {1.4,5) 4,2,3) {1.4,5) 4,2,3) %]
S0(10,1) {0} {2} {0} {2} [5]
1111 S0(6, 5) {70, 71} {0, 1} {70, 71} {0, 1} [Z]
SO(7,4) {42, 43} {0, 1 {42, 43} 0,1 %]
SO(8,3) {18, 19} {0, 1 {18, 19} 0,1 %]
SO(9,2) {6,7} {0,1 {6,7} 0,1 %]
SO(10,1) {1,2} {0, 1} {1,2} {0, 1} 7]
So(11) {0} {0} {0} {0} %]
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Here is information of real forms of even nilpotent orbit of dual group in terms

the results from this paper:

Oo” GR)Y S(GR)Y,07) Rpy (Xij) Gl 0(GR)Y,0V,%) | Cirr,0(GR)Y,07, %)
indices in dual block
[11] 50(6,5) 0 {0} {0} {71}
[9,17] SO(6,5) 0 {22, 23} {2,3} {68, 69}
1 {30} {1} {70}
SO(7,4) 0 {5} {0} {43}
[7,3,1] SO(6,5) 0 {4} {4} {64}
1 {45} {5} {67}
2 {47, 48} {6, 7} {65, 66}
SO(7, 4) 0 {24, 25} {1, 2} {39, 41}
7,19 S0(6,5) 0 {66, 67} {12, 13} {62, 63}
1 {101, 102} {19, 23} {56, 57}
SO(7, 4) 0 87 57 142}
1 {79, 80} {6, 7} {37, 40}
SO(8,3) 0 {30} {0} {19}
[52,1] S0(6,5) 0 {26, 27} {16, 18} {52, 54}
1 {73, 74} {8, 9} {59, 60}
SO(7,4) 0 {3} {3} {38}
[5,37] SO(6, 5) 0 {6} {11} {51}
1 {95, 96} {21, 25} {46, 48}
SO(7, 4) 0 {71} 4} {36}
[5,3,13] | SO(6,5) 0 {64, 65} {30, 31} (38, 39}
1 {89} {14} {58}
2 {105, 106} {32, 33} {44, 43}
3 {142, 143} {22, 26} 45,47}
SO(7,4) 0 {7} {8} {33}
1 {83, 84} {9, 11} {27, 29}
2 {108, 109} {14, 18} {32,31}
SO(8, 3) 0 {39, 40} {1,2} {16, 17}
[5,1°] S0(6,5) 0 {352, 356} {49, 51} {19, 27}
1 {360, 364} {38, 43} {40, 41}
SO(7, 4) 0 {195, 196} {25, 26} {23, 24}
1 {199, 200} {10, 12} {26, 28}
SO(8, 3) 0 (54,55} 5,6} {13, 14}
1 {56} {4} {18}
50(9,2) 0 {3} {0} {7}
[38%.1°] | s0¢(,5) 0 {9} {29} {22}
1 {168,169} {35, 40} {21, 29}
2 {230, 231} {46, 48} {12, 18}
SO(7, 4) 0 {52, 53} {17, 21} (13,17}
1 {170,171} {23, 24} {21, 22}
SO(8, 3) 0 {45} 3} {15}
[3%,1°] S0O(6, 5) 0 {126, 127} {39, 44} {20, 28}
1 {271, 272} {50, 52} {11,17}
2 {446, 450} {54, 55} {9, 16}
SO(7, 4) 0 {9} {13} 125}
1 {242, 243} {27, 28} {19, 20}
2 {258, 262} {29, 30} {12, 16}
SO(8, 3) 0 162, 63} 17,8} {9, 10}
1 {125, 129} {14, 13} {12, 11}
50(9,2) 0 {35, 36} 12,3} (5,6}
[3,1%] S0(6, 5) 0 {773,777} {63, 65} 3,14}
1 {883, 888} {68, 69} {5, 2}
SO(7, 4) 0 {371, 372} {34, 35} (5,2}
1 {585,590} {40, 41} {3, 8}
SO(8, 3) 0 {84, 85} {10, 12} (3,5}
1 {233, 237} {16, 17} {4, 2}
S0(9,2) 0 {4} {1} {4}
1 {57, 58} {4, 5} {2, 3}
SO(10, 1) 0 {7} {0} 2}
[1t1] SO(6,5) 0 {1310, 1324} {70, 71} {0,1}
SO(7, 4) 0 {749, 799} {42, 43} 0,1}
50(8, 3) 0 {297, 301} {18, 19} 0,1}
S0(9,2) 0 {71, 72} 16,7} 0,1}
SO(10, 1) 0 {9, 10} 11,2} 0,1}
So(11) 0 {0} {0} {0}
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The following is information about the cardinalities of unipotent sets computed
in this paper:

[0Y [ G®Y [S@C®Y,0N) [  THY [y (@) [ M, (0¥, 9] [ Mg (0] ]
[ [11] | 50(6,5) | 0 [ 15,4,3,2,1] | 1 | 1 | 0 |

[9,17] SO(6, 5) 0 [4,3,2,1,0] 6 4 0
1 2

SO(7, 4) 0 2 2 0

[7,3,1] SO(6, 5) 0 [3,2,1,1,0] 8 2 0
1 2
2 4

SO(7, 4) 0 1 1 0

7,19 S0O(6,5) 0 [3,2,1,0,0] 8 4 0
1 4

SO(7, 4) 0 6 2 0
1 4

SO(8, 3) 0 2 2 0

52, 1] SO(6, 5) 0 [2,2,1,1,0] 8 2 4
1 2

SO(7, 4) 0 1 1 0

[5,3%] SO(6, 5) 0 [2,1,1,1,0] 6 2 0
1 4

SO(7, 4) 0 2 2 0

[5,3,1] | sO¢(s,5) 0 [2,1,1,0,0] 22 4 8
1 2
2 4
3 4

SO(7, 4) 0 14 2 1
1 4
2 4

SO(8, 3) 0 1 1 0

[5,1°] 50(6,5) 0 [2,1,0,0,0] 8 4 0
1 4

SO(7, 4) 0 8 1 0
1 4

SO(8, 3) 0 6 2 0
1 4

SO(9, 2) 0 2 2 0

3%, 12] S0O(6,5) 0 [1,1,1,0,0] 14 2 4
1 4
2 4

SO(7, 4) 0 8 1 0
1 4

SO(8, 3) 0 2 2 0

[3%,1°] S0(6,5) 0 [1,1,0,0,0] 10 2 4
1 2
2 2

SO(7, 4) 0 9 1 1
1 2
2 2

SO(8, 3) 0 6 2 2
1 2

SO(9, 2) 0 2 2 0

[3,1%] SO(6, 5) 0 [1,0,0,0,0] 8 4 0
1 4

SO(7, 4) 0 8 1 0
1 4

SO(8, 3) 0 8 1 0
1 4

SO(9, 2) 0 6 2 0
1 4

SO(10, 1) 0 2 2 0

K] SO(6, 5) 0 [0,0,0,0,0] 2 2 0

SO(7, 4) 0 2 2 0

SO(8, 3) 0 2 2 0

SO(9, 2) 0 2 2 0

SO(10, 1) 0 2 2 0

SO(11) 0 1 1 0
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