
  

 
 
 
 
 

ABSTRACT 
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We developed and evaluated a mathematical model-based method to monitor 

cardiovascular health and estimate risk predictors from two peripheral cuff oscillation 

measurements. The model structure was established by studying tube-load models 

individually augmented with a gain, Voigt model, and standard linear solid model to best 

capture the relationship between carotid tonometry and cuff waveforms at the upper arm 

and ankle. The arm-cuff interface was better modeled with increasing viscoelasticity but 

not as much for the ankle-cuff interface. Next, model-estimated ankle blood pressure 

waveforms were used to formulate a matrix equation for estimating wave reflection. 

Subsequently derived risk predictors were adequately correlated with those from 

reference methods. Finally, subject-specific central blood pressure waveforms were 

estimated from two cuff oscillation signals via multichannel blind system identification. 

The model estimated central arterial blood pressure waveforms with good accuracy with 

a median RMSE of 3.08 mmHg and IQR of 1.71 mmHg. 
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Chapter 1: Introduction 

1.1 Importance of Cardiovascular Health Monitoring 

In the United States cardiovascular diseases (CVD), including but not limited to 

stroke, atherosclerosis, and heart failure, are the leading causes of death in the world. 

According to the American Health Association, CVD were responsible for more than 

800,000 deaths in 2013, roughly 30% of all deaths in the United States [1]. Although 

death rates linked to CVD decreased by 28.8% from 2003 to 2013, it remains very high at 

an average of 1 American death every 40 seconds. In addition 20% of CVD-related 

deaths occurred before the age of 65 and 35% before 75, highlighting the urgent need for 

early detection, prevention, and/or treatment. 

Linked with the number of CVD cases, the associated costs were high as well. For 

2011 to 2012, healthcare costs accounted for an estimated $193.1 billion, greater than 

double of the direct costs associated with cancer. Indirect costs, such as lost future 

productivity, were estimated to be $125 billion contributing to a total cost of more than 

$316 billion. In order to reduce mortality rates and costs associated with CVD, clinicians 

utilize established techniques to diagnose risks of developing CVD, but these methods 

have room for improvement. 

 

1.2 Established Cardiovascular Disease Risk Factors 

CVD risk factors are certain characteristics of the cardiovascular (CV) system that 

are linked to increased risks of developing a CVD. One property of particular interest is 

the arterial blood pressure (ABP) wave propagation and reflection phenomena. In 



 

 2 
 

summary, the ABP at any point in the arterial tree is the superposition of the forward 

wave created by the ejection from the heart and the backward wave traveling back to the 

heart after it is reflected at the peripheral vascular beds [2]–[5]. Wave reflection can be 

utilized in different ways to assess different aspects of the CV system such as cardiac 

afterload and arterial stiffness. 

Arterial stiffness can also be assessed by pulse wave velocity (PWV), which is the 

speed of the ABP waveform as it propagates through the arterial tree [6], [7]. Increased 

wave reflection is a significant contributor of increased arterial stiffness and early 

vascular aging [8]–[11]. An alternative to PVW is pulse transit time (PTT), the time it 

takes for an ABP waveform to travel a certain distance. PWV can be estimated from PTT 

by dividing the distance between two points divided the PTT between the same two 

points. 

 
Fig. 1.1: Example of a hypertensive subject. 

One estimate of wave reflection is hypertension. Hypertension is defined as 

elevated systolic blood pressure (SBP) and diastolic blood pressure (DBP), specifically 
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higher than 140 mmHg and 90 mmHg, respectively. As wave reflection increases, a 

backward wave of greater amplitude combines with the forward wave, increasing the 

overall ABP [12]–[14]. In some studies, increased wave reflection has been shown to be 

linked with age-dependent increase in SBP and DBP [8], [9]. Hypertension is one of the 

most commonly used risk factors because it can be easily measured using publicly 

available BP cuff machines, albeit with limited accuracy. As shown in Fig. 1.1 a 

hypertensive patient has a SBP of higher than 140 mmHg and/or diastolic DBP higher 

than 90 mmHg, compared to ideal blood pressures of 120 mmHg and 80 mmHg, 

respectively. Hypertension increases the afterload on the heart, the minimum pressure 

needed to eject blood from the heart, which reduces the cardiac output (CO) and strains 

the CV system [11]. The difference of SBP and DBP, pulse pressure (PP), is another 

measure of CV health. In multiple studies higher PP was associated with increased 

mortality [15]–[18] and in others, lower PP was associated with increased mortality as 

well [19], [20]. Wave reflection can also be explicitly quantified by reflection magnitude 

(RM) and reflection index (RI), which are defined by: 

RM =
|𝑃𝑃𝑏𝑏|
�𝑃𝑃𝑓𝑓�

,    RI =
|𝑃𝑃𝑏𝑏|

�𝑃𝑃𝑓𝑓� + |𝑃𝑃𝑏𝑏|
 

where �𝑃𝑃𝑓𝑓� and |𝑃𝑃𝑏𝑏| are PP of forward and backward ABP waves, respectively [21], [22].  

Traditionally, clinicians have measured blood pressure by wrapping around the 

brachial artery at the upper arm with an inflated sphygmomanometer (BP cuff) and 

listening for the Korotkoff sounds using a stethoscope due to the ease and accessibility of 

measuring ABP at the arm. However, the ABP waveform morphology becomes 

increasingly distorted, typically observed as pulse pressure amplification, as it travels 

along the arterial tree [23], and central CVD risk predictors were shown to have more 
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clinical value than those measured at peripheral locations [15], [24]–[29]. Despite the 

added reliability of the central CVD risk predictors, most have not been incorporated into 

routine clinical practice due to difficulties in obtaining accurate measurements. 

1.3 Techniques for Cardiovascular Health Monitoring 

The measurement of central ABP waveforms is a nontrivial issue because the 

techniques available today are invasive, costly, and require a trained expert to operate the 

device. The current gold standard for measuring central ABP is aortic catheterization 

which involves inserting a thin, flexible wire equipped with a pressure sensor into the 

femoral (upper thigh) or radial (forearm) arteries. While the accuracy of aortic 

catheterization is unrivaled, it is an unnecessary procedure in routine clinical settings due 

to its invasive nature and nontrivial process. 

As a result, carotid artery tonometry has been widely adopted as a noninvasive 

alternative [30]–[32]. Applanation tonometry requires a trained operator to applanate, or 

to flatten, the artery of interest against the surrounding tissue and bones [30], [33]. 

Tonometry also allows for measurement of distal ABP waveforms, typically at the 

femoral and radial arteries, but the need for an expert to perform the measurements deters 

the implementation into daily practice. 

To bypass specialized techniques such as catheterization and tonometry, pulse 

volume waveform, also called pulse volume recording (PVR), has been investigated in an 

effort to exploit the easily measured signal by calibrating the PVR waveform using ABP 

values estimated via brachial oscillometry [34]–[37]. Obtained using a blood pressure 

(BP) cuff, PVR is the small-amplitude oscillation of the pressure in the cuff as a result of 

ABP pulsation coupled by arterial vessel-tissue-cuff bladder mechanics [38], [39]. 
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Additionally the morphology of PVR waveforms is similar to that of ABP waveforms. 

Accommodated by the simple procedure, PVR offers opportunities for implementation of 

improved methods of CV health monitoring into daily practice. 

1.4 Review of Model-Based Estimation of Risk Factors 

1.4.1 Estimation of Central Arterial Blood Pressure 

The introduction of noninvasive ABP measurements such as applanation 

tonometry and PVR has led to the development of mathematical techniques to derive 

central ABP waveforms from a noninvasive distal measurement and subsequently 

quantify wave reflection and other CVD risk factors. Most of the current methods 

estimate central ABP by a generalized transfer function (GTF). A GTF is a population-

based transfer function optimized by using proximal and distal ABP measurements, such 

as carotid tonometry and brachial PVR, from a set of subjects. The transfer function is 

then applied to distal ABP measurements from a new set of subjects [40]–[48] to estimate 

central ABP. There are various types of GTFs, but frequency response-based models, 

physiology-based models, and regression models are among the most common. The 

appeal of GTF is the relative ease of application; once the model is compiled it can 

estimate central ABP from only one distal measurement. 

However, GTFs lack adaptability as it is impossible to account to individual 

differences between subjects. As a result, individualized transfer functions (ITF) have 

been developed and reviewed to account for inter-subject variability [49]–[56]. In many 

of these reports, the tube-load (TL) model (Fig. 1.2) has been incorporated to exploit the 

wave reflection phenomena incorporated into the transfer function, which when applied 

to invasively measured or tonometry measured ABP waveforms, accurately reproduced  
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Fig. 1.2: Lossless Windkessel load tube-load model. Pi(k): proximal ABP. Po(k): distal ABP. Pf(k): forward 

ABP wave. Pb(k): backward ABP wave. ZC: tube characteristic impedance. ZL: terminal load impedance 
(Windkessel load). 

central ABP waveforms [49]–[56]. Recently, methods of estimating central ABP from 

peripheral PVR waveforms, typically at the brachial artery, utilizing GTFs representing 

the relationship have been reported and validated [34], [37], [46]–[48], [57], [58]. As was 

the case previously, the systematic inability to personalize the process leaves much room 

for improvement. Table 1.1 summarizes the techniques listed above. 

1.4.2 Multichannel Blind System Identification 

Blind system identification is a signal processing technique used to identify a 

system’s unknown properties or input from its output only. Similarly, multichannel blind 

system identification (MBSI) estimates the system and/or its input(s) from the outputs of 

each channel. Investigations have shown that a single-input and multiple-output (SIMO) 

system can be characterized via MBSI techniques by placing sensors at the output 

locations [59], [60]. Though mainly used in communications or image processing, 

preliminary studies have shown that the MBSI methodology can be directly applied to the 

cardiovascular system by measuring BP waves at two distinct peripheral locations (e.g 

arm and leg) in order to identify the system dynamics [50], [51], [55].  
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Table 1.1: Summary of reported models 

Author (year) 
Proximal 

Measurement 
Method 

Distal Measurement 
Method 

Class of Transfer 
Function Reference 

Karamanoglu 
(1993) Aortic Cath. 1) Brachial Cath. 

2) Radial Cath. GTF [40] 

Fetics (1999) Aortic Cath. Radial Tonometry GTF [41] 

Pauca (2001) Aortic Cath. Radial Cath. GTF [42] 

Söderström (2002) Aortic Cath. Radial Cath. GTF [43] 

Gallagher (2004) Carotid Tonometry Radial Tonometry GTF [44] 

Sharman (2006) Aortic Cath. Radial Tonometry GTF [45] 

Cheng (2010) Aortic Cath. 1) Brachial Cath. 
2) Brachial Oscill. GTF [46] 

Weber (2011) Aortic Cath. 1) Brachial Oscill. 
2) Radial Tonometry GTF [47] 

Shih (2013) Aortic Cath. 1) Brachial Cath. 
2) Brachial Oscill. GTF [48] 

Swamy (2007) N/A 1) Femoral Cath. 
2) Brachial Cath. ITF [49] 

Hahn (2009) Aortic Cath. 1) Femoral Cath. 
2) Radial Cath. ITF [50] 

Swamy (2009) Aortic Cath. Femoral Cath. ITF [52] 

Hahn (2012) Aortic Cath. Radial Cath. ITF [53] 

Rashedi (2013) Aortic Cath. 1) Femoral Cath. 
2) Radial Cath. ITF [54] 

Fazeli (2014) Aortic Cath. 1) Femoral Cath. 
2) Radial Cath. ITF [55] 

Abdollahzade 
(2014) Aortic Cath. 1) Femoral Cath. 

2) Radial Cath. ITF [56] 

Wassertheurer 
(2010) N/A Brachial Oscill. GTF [57] 

Climie (2012) N/A Brachial PVR GTF [34] 

Brett (2012) N/A Brachial PVR GTF [58] 

Verberk (2016) N/A Brachial PVR GTF [37] 
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1.4.3 Quantification of Wave Reflection 

The breadth of importance of wave reflection across multiple CVD risk factors 

make it an attractive platform for developing techniques to estimate the dynamics of 

reflection. As such, a variety of methods have been reported ranging from measurement-

based methods [21], [61], [62] to model-based methods [2], [7], [63]–[66]. Measurement-

based methods extract information from measured data, such as differences in ABP 

waveform before and after occlusion of a distal artery [21] or subtle characteristics of the 

ABP waveform [62], in order to estimate forward and backward BP waves. Model-based 

methods utilize estimated values of parameters such as PTT and reflection coefficient (𝛤𝛤) 

or estimated central ABP waveforms to calculate the corresponding forward and 

backward waves.  

1.5 Thesis Goal and Outline 

The objective is to develop an easy to use, innovative, individualized, low cost, 

and noninvasive method for estimating central ABP and subsequently extract CVD risk 

factors. This method utilizes peripheral PVR measurements at the upper arm (brachial 

artery) and ankle (posterior-tibial artery) to derive the central ABP. First, in Chapter 2, 

candidate models to represent the relationship between brachial PVR and central ABP 

and the relationship between ankle PVR and central ABP are studied and compared with 

the TL model, an established ITF for use with invasive or high-fidelity tonometry 

waveforms. Chapter 3 estimates wave reflection by decomposing the model estimated 

central ABP waveform and ankle PVR into forward and backward BP waves. The 

decomposed waves and the extracted CVD risk factors are compared to those obtained 

from carotid tonometry and femoral (upper thigh) tonometry waveforms, which is treated 
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as the reference. Theoretically, the two methods should agree well with each other since 

the femoral and posterior-tibial arteries are part of the same branch in the arterial tree. 

Finally, Chapter 4 identifies the noninvasive 2-sensor individualized arterial tree model 

which is compared to and an existing, standard noninvasive 1-sensor GTF. 

  



 

 10 
 

Chapter 2: Characterization of the Relationship between 

Carotid Tonometry and Distal Pulse Volume Recordings 

2.1 Introduction to the Tube-Load Viscoelastic Models 

To investigate the relationship between carotid artery tonometry and the distal 

PVR waveforms (at the brachial and posterior-tibial arteries) the candidate models were 

first developed starting from the TL model due to its physical basis and inherent ability to 

account to for the wave propagation phenomena. As shown in Fig. 2.1, a viscoelastic 

model, which represents the lumped dynamic pressure-volume relationship of the arterial 

wall, tissues, and BP cuff bladder, was connected in series with the TL model (Fig. 1.2) 

to form a tube-load viscoelastic model (TLVE). The TL model relates distal ABP, PD, to 

proximal ABP, PP, and the viscoelastic model relates cuff pressure, PC, to PD. Three 

models of varying viscoelasticity were employed to assess the relationship between the 

central and distal measurements. 

 

Fig. 2.1: A mechanistic model employed to relate carotid artery tonometry waveform to a distal pulse 
volume waveform (PVR). The model is composed of a tube-load (TL) model representing the arterial blood 

pressure (ABP) wave propagation and reflection in the artery and a viscoelastic model representing the 
lumped, dynamic pressure-volume relationships of the arterial wall, tissues, and BP cuff. 𝑃𝑃𝑃𝑃(𝑡𝑡): Proximal 

ABP (carotid artery tonometry waveform). 𝑃𝑃𝐷𝐷(𝑡𝑡): Distal ABP. 𝑃𝑃𝐶𝐶(𝑡𝑡): PVR. 
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1. TLG: TL model augmented with a constant, purely elastic, gain to represent a 

relationship between proximal and distal waveforms that is dominated by wave 

reflection 

2. TLV: TL model augmented with a Voigt model, a well-known viscoelastic model, 

to represent a relationship that combines wave reflection and viscoelasticity 

3. TLS: TL model augmented with a standard linear solid (SLS) model, a more 

complex viscoelastic model 

2.2 Mathematical Formulation of Tube-Load Viscoelastic Models 

2.2.1 Tube-Load Model Transfer Function 

The TL model is characterized by the terminal load impedance, 𝑍𝑍𝐿𝐿, and reflection 

coefficient, 𝛤𝛤. The terminal load impedance of the Windkessel load is given by 

𝑍𝑍𝐿𝐿(𝑠𝑠) = 𝑍𝑍𝐶𝐶 +
𝑅𝑅𝑇𝑇

𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇𝑠𝑠 + 1
 (2.1) 

where s is the Laplace variable, 𝑍𝑍𝐶𝐶  is the characteristic impedance, and 𝑅𝑅𝑇𝑇 and 𝐶𝐶𝑇𝑇 are the 

peripheral resistance exerted by the arterioles and compliance of distant arteries, 

respectively. 𝑍𝑍𝐶𝐶 = �𝑙𝑙𝐿𝐿
𝑐𝑐𝐿𝐿

 is a constant due to constant inertance, 𝑙𝑙𝐿𝐿 , and compliance, 𝑐𝑐𝐿𝐿 , 

following the Bramwell-Hill equation. The terminal load impedance is formulated such 

that the impedance depends on the frequency of the signal and 𝑍𝑍𝐿𝐿 = 𝑍𝑍𝐶𝐶  when 𝑠𝑠 = 0 [65]. 

The reflection coefficient, defined as the mismatch between the tube and terminal 

impedances, is given by 

Γ(𝑠𝑠) =
𝑍𝑍𝐿𝐿(𝑠𝑠) − 𝑍𝑍𝐶𝐶
𝑍𝑍𝐿𝐿(𝑠𝑠) + 𝑍𝑍𝐶𝐶

=
𝑅𝑅𝑇𝑇

2𝑍𝑍𝐶𝐶𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇𝑠𝑠 + (2𝑍𝑍𝐶𝐶 + 𝑅𝑅𝑇𝑇) (2.2) 

Finally, the relationship between proximal and distal ABP can be formulated as 
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𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐺𝐺(𝑠𝑠)𝑃𝑃𝐷𝐷(𝑠𝑠) =
1 + Γ(𝑠𝑠)

𝑒𝑒𝜏𝜏𝜏𝜏 + 𝑒𝑒−𝜏𝜏𝜏𝜏Γ(𝑠𝑠)𝑃𝑃𝐷𝐷
(𝑠𝑠) (2.3) 

following the transmission line theory [67], [68], and by substituting (2.2) into (2.3) the 

transfer function is expressed as 

𝑃𝑃𝑃𝑃(𝑠𝑠) =
𝑠𝑠 + 𝜃𝜃1 + 𝜃𝜃2

(𝑠𝑠 + 𝜃𝜃1)𝑒𝑒𝜏𝜏𝜏𝜏 + 𝜃𝜃2𝑒𝑒−𝜏𝜏𝜏𝜏
𝑃𝑃𝐷𝐷(𝑠𝑠) (2.4) 

where  

τ is PTT, 𝜃𝜃1 = 2𝑍𝑍𝐶𝐶+𝑅𝑅𝑇𝑇
2𝑍𝑍𝐶𝐶𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇

, and 𝜃𝜃2 = 𝑅𝑅𝑇𝑇
2𝑍𝑍𝐶𝐶𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇

. (2.5) 

2.2.2 Tube-Load Viscoelastic Model Transfer Functions 

In addition to the TL model, the viscoelastic models provide the relationship 

between distal ABP and PVR. Among the three proposed viscoelastic models, the gain 

model is given by 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
1
𝐸𝐸1
𝑃𝑃𝐷𝐷(𝑠𝑠) (2.6) 

where 𝐸𝐸1is the elastic coefficient. This model dictates that PVR is simply a scaled form 

of the distal ABP. The Voigt model is expressed as 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
1

𝐸𝐸1 + 𝜂𝜂𝜂𝜂
𝑃𝑃𝐷𝐷(𝑠𝑠) (2.7) 

where 𝐸𝐸1 and 𝜂𝜂 the elastic and damping coefficients associated with a spring and dashpot 

connected in parallel. Finally, the SLS model is given by 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
𝐸𝐸2 + 𝜂𝜂𝜂𝜂

𝐸𝐸1𝐸𝐸2 + (𝐸𝐸1 + 𝐸𝐸2)𝜂𝜂𝜂𝜂
𝑃𝑃𝐷𝐷(𝑠𝑠) (2.8) 

where 𝜂𝜂  and 𝐸𝐸2  are the damping and elastic coefficients of the dashpot and spring 

connected in series, and 𝐸𝐸1 is the elastic coefficient of the spring connected in parallel 

with the spring and dashpot. It can be seen from equations (2.6)-(2.8) that the gain model 

is a specific case of the Voigt model when 𝜂𝜂 = 0, and the Voigt model is a special case of 

the SLS model when 𝐸𝐸2 = ∞. 
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Combining the TL model transfer function with those of the viscoelastic models 

results in the three physical models under investigation: TLG model (2.9a), TLV model 

(2.9b), and TLS model (2.9c). 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
1
𝐸𝐸1
𝑃𝑃𝐷𝐷(𝑠𝑠) =

1
𝐸𝐸1

𝑠𝑠 + 𝜃𝜃1 + 𝜃𝜃2
𝑒𝑒𝜏𝜏𝜏𝜏(𝑠𝑠 + 𝜃𝜃1) + 𝑒𝑒−𝜏𝜏𝜏𝜏𝜃𝜃2

𝑃𝑃𝑃𝑃(𝑠𝑠) (2.9a) 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
1

𝐸𝐸1 + 𝜂𝜂𝜂𝜂
𝑃𝑃𝐷𝐷(𝑠𝑠) =

1
𝐸𝐸1 + 𝜂𝜂𝜂𝜂

𝑠𝑠 + 𝜃𝜃1 + 𝜃𝜃2
𝑒𝑒𝜏𝜏𝜏𝜏(𝑠𝑠 + 𝜃𝜃1) + 𝑒𝑒−𝜏𝜏𝜏𝜏𝜃𝜃2

𝑃𝑃𝑃𝑃(𝑠𝑠) (2.9b) 

𝑃𝑃𝐶𝐶(𝑠𝑠) =
𝐸𝐸2 + 𝜂𝜂𝜂𝜂

𝐸𝐸1𝐸𝐸2 + (𝐸𝐸1 + 𝐸𝐸2)𝜂𝜂𝜂𝜂
𝑃𝑃𝐷𝐷(𝑠𝑠) 

=
𝐸𝐸2 + 𝜂𝜂𝜂𝜂

𝐸𝐸1𝐸𝐸2 + (𝐸𝐸1 + 𝐸𝐸2)𝜂𝜂𝜂𝜂
𝑠𝑠 + 𝜃𝜃1 + 𝜃𝜃2

𝑒𝑒𝜏𝜏𝜏𝜏(𝑠𝑠 + 𝜃𝜃1) + 𝑒𝑒−𝜏𝜏𝜏𝜏𝜃𝜃2
𝑃𝑃𝑃𝑃(𝑠𝑠) 

(2.9c) 

2.2.3 Discretization 

As illustrated in Fig. 2.1, the TLVE models in (2.9a)-(2.9c) were applied to de-

trended waveforms to minimize artifacts caused by the DC components. Therefore, the 

discretized models only utilize the pulsatile components, 𝑃𝑃�𝑋𝑋(𝑡𝑡) = 𝑃𝑃𝑋𝑋(𝑡𝑡) − 𝑃𝑃�𝑋𝑋(𝑡𝑡), where 

𝑃𝑃�𝑋𝑋(𝑡𝑡)  is the mean value of 𝑃𝑃𝑋𝑋(𝑡𝑡) . Using the forward difference approximation, 𝑠𝑠 ≈

𝐹𝐹𝑆𝑆(𝑧𝑧 − 1) [69], where 𝐹𝐹𝑆𝑆 is the sampling frequency (250 Hz) and 𝑧𝑧 is the forward shift 

operator, the discretized models are as follows: TLG model (2.10a), TLV model (2.10b), 

and TLS model (2.10c). 

𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1) = �1 −
𝜃𝜃1 + 𝜃𝜃2
𝐹𝐹𝑆𝑆

� ∙ 𝑃𝑃�𝑃𝑃(𝑘𝑘) + 𝐸𝐸1 ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 1) + 𝐸𝐸1 �
𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1� ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ)

+
𝜃𝜃2𝐸𝐸1
𝐹𝐹𝑆𝑆

∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ) 
(2.10a) 

𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1) = �1 −
𝜃𝜃1 + 𝜃𝜃2
𝐹𝐹𝑆𝑆

� ∙ 𝑃𝑃�𝑃𝑃(𝑘𝑘) + 𝜂𝜂𝐹𝐹𝑆𝑆 ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 2) + (𝐸𝐸1 + 𝜃𝜃1𝜂𝜂 − 2𝜂𝜂𝐹𝐹𝑆𝑆)

∙ 𝑃𝑃�𝑐𝑐(𝑘𝑘 + Δ + 1) + �
𝜃𝜃1𝐸𝐸1
𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝜃𝜃1𝜂𝜂 + 𝜂𝜂𝐹𝐹𝑆𝑆� ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ) + 𝜃𝜃2𝜂𝜂

∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ + 1) + �
𝜃𝜃2𝐸𝐸1
𝐹𝐹𝑆𝑆

− 𝜃𝜃2𝜂𝜂� ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ) 

(2.10b) 
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𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1) = �2 −
𝜃𝜃1 + 𝜃𝜃2 + 𝐸𝐸2

𝜂𝜂
𝐹𝐹𝑆𝑆

� ∙ 𝑃𝑃�𝑃𝑃(𝑘𝑘)

+ ��
𝜃𝜃1 + 𝜃𝜃2 + 𝐸𝐸2

𝜂𝜂
𝐹𝐹𝑆𝑆

� −
𝐸𝐸2(𝜃𝜃1 + 𝜃𝜃2)

𝜂𝜂𝐹𝐹𝑆𝑆2
− 1� ∙ 𝑃𝑃�𝑃𝑃(𝑘𝑘 − 1) + (𝐸𝐸1 + 𝐸𝐸2)

∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 1) + ��
𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1� (𝐸𝐸1 + 𝐸𝐸1) +

𝐸𝐸1𝐸𝐸2
𝜂𝜂𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝐸𝐸2� ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ)

+
𝜃𝜃2
𝐹𝐹𝑆𝑆

(𝐸𝐸1 + 𝐸𝐸2) ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ) + �
𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1� �

𝐸𝐸1𝐸𝐸2
𝜂𝜂𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝐸𝐸2�

∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ − 1) +
𝜃𝜃2
𝐹𝐹𝑆𝑆
�
𝐸𝐸1𝐸𝐸2
𝜂𝜂𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝐸𝐸2� ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ − 1) 

(2.10c) 

where Δ = 𝜏𝜏𝐹𝐹𝑆𝑆, which was rounded to the nearest integer  

 The sampling frequency of 250 Hz was deemed to be sufficient for two reasons. 

Firstly, the sampling frequency was large enough to capture the major components of the 

circulatory waveforms, which consists of the heart rate and its harmonics (up to the 4th or 

5th harmonics corresponding to roughly 5-6 Hz).  Secondly, the errors in PTT estimation 

due to a resolution of 4 ms were roughly 11% for the carotid-brachial arterial path and 3% 

for the carotid-posterior-tibial arterial path.  

2.3 Identifiability Analysis 

The discretized models, (2.10a)-(2.10c), re-formulated as linear regression models 

in the form of y = 𝜙𝜙𝑇𝑇𝜃𝜃 , can be used to check for unique identifiability of model 

parameters [69]. The TLG model, (2.10a), re-written as 

𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1) = [𝑃𝑃�𝑃𝑃(𝑘𝑘) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 1) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ) 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ)]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

𝜃𝜃1 + 𝜃𝜃2
𝐹𝐹𝑆𝑆

𝐸𝐸1

𝐸𝐸1 �
𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1�

𝜃𝜃2𝐸𝐸1
𝐹𝐹𝑆𝑆 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
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shows that the system is overdetermined, but under ideal conditions (i.e. no noise) the 

parameters 𝜃𝜃1 , 𝜃𝜃2 , and 𝐸𝐸1  can be uniquely identified. Similarly the parameters of the 

TLV model, (2.10b),  

𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1)

= [𝑃𝑃�𝑃𝑃(𝑘𝑘) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 2) 𝑃𝑃�𝑐𝑐(𝑘𝑘 + Δ + 1) ∙ 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ) 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ + 1) 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ)]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 −

𝜃𝜃1 + 𝜃𝜃2
𝐹𝐹𝑆𝑆

𝜂𝜂𝐹𝐹𝑆𝑆
𝐸𝐸1 + 𝜃𝜃1𝜂𝜂 − 2𝜂𝜂𝐹𝐹𝑆𝑆

𝜃𝜃1𝐸𝐸1
𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝜃𝜃1𝜂𝜂 + 𝜂𝜂𝐹𝐹𝑆𝑆

𝜃𝜃2𝜂𝜂
𝜃𝜃2𝐸𝐸1
𝐹𝐹𝑆𝑆

− 𝜃𝜃2𝜂𝜂 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

and the TLS model, (2.10c), 

𝑃𝑃�𝑃𝑃(𝑘𝑘 + 1) =
[𝑃𝑃�𝑃𝑃(𝑘𝑘) 𝑃𝑃�𝑃𝑃(𝑘𝑘 − 1) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ + 1) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ)⋯
⋯𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ) 𝑃𝑃�𝐶𝐶(𝑘𝑘 + Δ − 1) 𝑃𝑃�𝐶𝐶(𝑘𝑘 − Δ − 1)]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 2 −

𝜃𝜃1+𝜃𝜃2+
𝐸𝐸2
𝜂𝜂

𝐹𝐹𝑆𝑆

�
𝜃𝜃1+𝜃𝜃2+

𝐸𝐸2
𝜂𝜂

𝐹𝐹𝑆𝑆
� − 𝐸𝐸2(𝜃𝜃1+𝜃𝜃2)

𝜂𝜂𝐹𝐹𝑆𝑆
2 − 1

𝐸𝐸1 + 𝐸𝐸2
�𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1� (𝐸𝐸1 + 𝐸𝐸1) + 𝐸𝐸1𝐸𝐸2

𝜂𝜂𝐹𝐹𝑆𝑆
− 𝐸𝐸1 − 𝐸𝐸2

𝜃𝜃2
𝐹𝐹𝑆𝑆

(𝐸𝐸1 + 𝐸𝐸2)

�𝜃𝜃1
𝐹𝐹𝑆𝑆
− 1� �𝐸𝐸1𝐸𝐸2

𝜂𝜂𝐹𝐹𝑆𝑆
− 𝐸𝐸1 − 𝐸𝐸2�

𝜃𝜃2
𝐹𝐹𝑆𝑆
�𝐸𝐸1𝐸𝐸2
𝜂𝜂𝐹𝐹𝑆𝑆

− 𝐸𝐸1 − 𝐸𝐸2� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

are over-constrained but can be theoretically estimated uniquely. 

2.4 Data Set 

The data used in this thesis are electronically archived data from 133 human 

subjects that were originally obtained for a previous study under IRB approval and 

written informed consent [70]. All waveforms, archived as .mat files, were saved as 

ensemble averaged, single-beat waveforms, which were calibrated using mean and 

diastolic BP values calculated from brachial artery oscillometry. Oscillometry measures 

only SBP and DBP, but mean pressure can be calculated by 
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𝑀𝑀𝑀𝑀 =
𝑆𝑆𝑆𝑆𝑆𝑆 + 2𝐷𝐷𝐷𝐷𝐷𝐷

3
 (2.11) 

Among the 133 subjects, 124 had brachial PVR waveforms and 99 had ankle PVR 

waveforms and all had carotid tonometry waveforms. It was important for the ankle PVR 

subjects to also have femoral tonometry recordings to be utilized in Chapter 3. Table 2.1 

summarizes the characteristics of the subjects used in this investigation. Initially, more 

subjects were considered but some were excluded under one of 3 conditions with 

examples shown in Fig. 2.2. 

1. Subjects with visibly corrupt recordings were excluded from the study. 

2. In some subjects, the mean and/or diastolic BP discrepancy between carotid 

tonometry and peripheral PVR waveforms were significant due to imperfection of 

an automated process. These subjects were excluded as well. 

3. In case of subjects with ankle PVR waveforms, femoral tonometry recording must 

be included and the PP associated with femoral tonometry must be greater than 

that associated with carotid tonometry following the principle of increasing PP 

with increasing distance from the heart [23], in addition to the mean and diastolic 

BP requirements listed above. Subjects with greater carotid tonometry PP than 

femoral tonometry PP were excluded. 
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Table 2.1: Model identification subject characteristics 

Characteristics n (number of 
subjects) Median (IQR) 

Male, % 133 67 

Age Range 133 15-89 

Carotid SBP (mmHg) 133 115.0 (103.7~132.4) 

Carotid DBP (mmHg) 133 75 (64~86) 

Carotid PP (mmHg) 133 41.6 (34.2~53.0) 

Brachial Cuff SBP (mmHg) 124 111.6 (97.2~127.7) 

Brachial Cuff DBP (mmHg) 124 75 (64~86) 

Brachial Cuff PP (mmHg) 124 36.7 (30.5~44.6) 

Ankle Cuff SBP (mmHg) 99 120.7 (107.7~136.1) 

Ankle Cuff DBP (mmHg) 99 75 (65~86) 

Ankle Cuff PP (mmHg) 99 46.2 (39.5~52.3) 
 

 

 

Fig. 2.2: Examples of conditions for exclusion of data. Incorrect morphology of carotid tonometry 
waveform (left), improper calibration (middle), and PP associated with femoral tonometry larger than that 

associated with carotid tonometry (right). 
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To prepare the data for model optimization, the single-beat waveforms were 

serially connected end-to-end in order to mimic physiologically stable conditions of more 

than 30 seconds. 

2.5 Model Optimization via System Identification 

The models were first computed by fitting them to the carotid tonometry 

waveform, 𝑃𝑃𝑃𝑃(𝑘𝑘), and corresponding distal PVR waveform. The reproduced carotid ABP 

waveform estimates, 𝑃𝑃�𝑃𝑃(𝑘𝑘,Θ∗)  were then compared with 𝑃𝑃𝑃𝑃(𝑘𝑘) , where Θ∗  is set of 

optimal parameters for each model that minimizes the following constrained optimization 

problem: 

Θ∗ = arg min
Θ

�
1
𝑁𝑁
� �𝑃𝑃𝑃𝑃(𝑘𝑘) − 𝑃𝑃�𝑃𝑃(𝑘𝑘,Θ)�

2𝑁𝑁

𝑘𝑘=1
 (2.12) 

where the constraints were separately specified for each TLVE model. For the TLG 

model, Θ = {𝜏𝜏,𝜃𝜃1,𝜃𝜃2,𝐸𝐸1} and the inequality constraints are: 

τ > 0,    500 > 𝜃𝜃1 > 𝜃𝜃2 > 0.01,    𝐸𝐸1 > 0.0001  
where all parameters must be positive because they represent physical components of the 

model. In particular 𝜃𝜃1 > 𝜃𝜃2  because 𝜃𝜃1 = 𝜃𝜃2 + 1
𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇

 from (2.5). It follows that Θ =

{𝜏𝜏,𝜃𝜃1,𝜃𝜃2,𝐸𝐸1, 𝜂𝜂}  and  

τ > 0,    500 > 𝜃𝜃1 > 𝜃𝜃2 > 0.01,    𝐸𝐸1 > 0.0001,    η > 0.0001  
are the parameters and constraints for the TLV model, and lastly Θ = {𝜏𝜏,𝜃𝜃1,𝜃𝜃2,𝐸𝐸1, 𝜂𝜂,𝐸𝐸2} 

and 

τ > 0,    500 > 𝜃𝜃1 > 𝜃𝜃2 > 0.01,    𝐸𝐸1 > 0.0001,    η > 0.0001,    𝐸𝐸2 > 0.0001  
are the parameters and constraints for the TLS model. For all three models, the upper and 

lower boundaries for 𝜏𝜏  were set according to anatomically realistic values. For the 
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carotid-brachial artery path, the boundaries were 0.11 s and 0.004 s while the boundaries 

for the carotid-posterior-tibial artery path were 0.18 s and 0.08 s. 

2.6 Results 

2.6.1 Estimation of Carotid Arterial Blood Pressure 

Fig. 2.3 shows examples of measured and optimized carotid ABP waveforms at (a) 

the upper arm and (b) the ankle. Among the three models for (a) it is clear that TLS 

model provides the most accurate waveform, but it is not the case for the ankle in (b). In 

fact, no model stands out as the best suited for describing the relationship between carotid 

artery tonometry and ankle PVR.  

These findings are further supported by Table 2.2 which lists the shape and 

central ABP errors root-mean-squared across all subjects. The root-mean-square was 

applied as opposed to mean ± standard deviation or median (IQR) in order to compensate 

for a non-Gaussian distribution of results and to present accuracy and precision of the 

model for each metric (e.g. SBP error and PP error) into a single value. To evaluate 

statistical significance between models a paired t-test was used with p<0.0167 as 

significant based on the Bonferroni correction to counteract multiple comparisons. 

Compared to the TLG model, TLV and TLG were superior in for both upper arm 

and ankle. In the upper arm especially, TLS greatly outperformed TLG and TLV. Even 

though TLV reduced all error metrics except for PP error, the differences were marginal 

compared to the improvements provided by TLS. For the ankle, surprisingly, TLV 

performed better than TLS with smaller RMSE and SP error. Realistically, all three 

models performed similarly for the ankle and TLG and TLV performed similarly for the 

upper arm. 
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The distribution of error and the relative performance of three physical models 

can be easily visualized by Bland-Altman plots in Fig. 2.4. In the upper arm, the 

differences of the mean and distribution of error between TLG and TLV were minimal 

while TLS displayed very narrow limits of agreement. In estimating central ABP from 

ankle PVR, there were only minimal differences between TLG, TLV, and TLS as 

supported by Fig. 2.3(b) and Table 2.2. 

 

 

 

 
(a) 

 
(b) 

Fig. 2.3: Representative example of measured (𝑃𝑃𝑃𝑃(𝑘𝑘)) and model-predicted (𝑃𝑃�𝑃𝑃(𝑘𝑘,Θ∗)) carotid artery 
tonometry waveform as well as measured pulse volume waveform (PVR) (𝑃𝑃𝐶𝐶(𝑘𝑘)).  (a) Upper arm.  (b) 

Ankle. 
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Table 2.2: TLVE error results 

 
Upper Arm Ankle 

TLG TLV TLS TLG TLV TLS 
RMSE 

[mmHg] 3.2 2.8† 1.2†‡ 2.9 2.5† 2.6†‡ 

SBP Error 
[mmHg] 4.3 3.0† 1.1†‡ 2.1 2.1 2.2 

DBP Error 
[mmHg] 4.6 4.5 1.0†‡ 1.7 1.5 1.3† 

PP Error 
[mmHg] 2.7 3.5 1.5†‡ 2.3 2.2 2.2 

RMSE: root-mean-squared error between carotid tonometry and estimated carotid ABP waveform. 
†:p<0.0167 compared with TLG. ‡: p<0.0167 compared with TLV. 
 

 
(a) 
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(b) 

Fig. 2.4:  Bland-Altman plots associated with carotid SP, DP, and PP in all subjects derived from (a) upper 
arm PVR and (b) ankle PVR. 

2.6.2 Frequency Response Results 

For the carotid-brachial arterial path, the frequency responses of TLG and TLV 

were very close to each other up to 3 Hz (Fig. 2.5(a)). At greater than 3 Hz, TLG 

maintains a relatively flat magnitude response while TLV exhibits behaviors established 

for single-pole filters, similar to the Voigt model. The frequency response associated with 

TLS in the upper arm was largely different from those of TLV and TLG, especially the 

DC gain (TLV: 0.9; TLS: 1.7). Additionally, the pole locations were not close to each 

other (TLV: 3.7 Hz; TLS: 0.4 Hz), and the zero location of the TLS model was very 
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small (1.4 Hz). The TLV model, which is equipped with only one pole, cannot replicate 

the frequency response of the TLS model. 

For the carotid-posterior-tibial arterial path the frequency response associated 

with TLG was slightly different compared to those of TLV and TLS and not the degree of 

TLG in the upper arm. The frequency responses of TLV and TLS were nearly identical 

for the ankle up to very high frequency regions (~30 Hz) which is outside of the 

frequency regime associated with the energy content in arterial waveforms. The DC gains 

were very similar (TLV: 1.0; TLS: 1.1) as were the pole locations (TLV: 6.6 Hz; TLS: 

3.6 Hz). Finally, the zero location associated with the TLS model was very far from the 

pole locations (14.6 Hz), minimizing its influence on the BP waveforms. 

Table 2.3 continues the trend of significantly different results between TLVE 

models for the carotid-brachial arterial path (Table 2.3(a)) while the results for the 

carotid-posterior-tibial arterial path are very similar (Table 2.3(b)). 

 
(a) 



 

 24 
 

 
(b) 

Fig. 2.5: Frequency responses associated with TLG, TLV, and TLS models. (a) Upper arm. (b) Ankle. 

Table 2.3: Optimal model parameters associated with TLG, TLV, and TLS models (Median (IQR)) 

 𝜏𝜏  
[ms] 

𝜃𝜃1 
[s-1] 

𝜃𝜃2 
[s-1] 

𝐸𝐸1 
[au] 

𝜂𝜂 
[s] 

𝐸𝐸2 
[au] 

TLG 
64 

(60~76) 

0.8 

(0.4~31.4) 

0.6 

(0.2~5.1) 

1.3 

(1.2~1.4) 
N/A N/A 

TLV 
36 

(24~52)† 

210 

(24~437) † 

19 

(3~57) † 

1.1 

(1.0~1.2) † 

0.05 

(0.02~0.08) 
N/A 

TLS 
44 

(40~52) †‡ 

22 

(13~32) †‡ 

12 

(7~18)‡ 

0.6 

(0.2~0.7) †‡ 

0.2 

(0.1~0.3)‡ 

1.6 

(1.2~1.8) 

(a) 
 

 𝜏𝜏  
[ms] 

𝜃𝜃1 
[s-1] 

𝜃𝜃2 
[s-1] 

𝐸𝐸1 
[au] 

𝜂𝜂 
[s] 

𝐸𝐸2 
[au] 

TLG 140 

(120~160) 

390 

(31~434) 

52 

(4~92) 

1.1 

(1.0~1.1) 
N/A N/A 

TLV 120 

(100~130)† 

390 

(247~443) 

60 

(10~109) 

1.0 

(0.95~1.1)† 

0.02 

(0.01~0.04) 
N/A 

TLS 
120 

(110~140)†‡ 

388 

(346~442) 

58 

(15~109) 

0.9 

(0.7~1.0)†‡ 

0.03 

(0.01~0.36)‡ 

2.9 

(1.2~11.9) 

(b) 
†: p<0.0167 compared to TLG. ‡: p<0.0167 compared to TLV. 
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2.6.3 Akaike Information Criterion 

Akaike Information Criterion (AIC) is a metric to evaluate the accuracy-

complexity tradeoff for each mode. For each subject, an AIC value was assigned to each 

model. Then the number of subjects for which a model had the smallest AIC value, a 

measure of best accuracy-complexity tradeoff, was counted. AIC indicated that TLS and 

TLV models were the best options for the upper arm and ankle, respectively (Table 2.4). 

Table 2.4: Akaike information criterion 

 TLG TLV TLS 

Upper Arm 0 5 119 

Ankle 3 78 18 

 

2.7 Discussion 

Due to the simple measuring procedure along with morphological similarity to 

ABP waveforms, PVR is an attractive non-invasive surrogate of ABP waveform. Yet the 

waveforms are inherently volume recordings, not pressure, and they often lack the 

complex morphology of ABP waveforms. The goal of this study was to develop models 

for the carotid-brachial and carotid-posterior-tibial arterial paths in order to overcome the 

flaws and further improve its appeal as a staple in routine CV health monitoring. 

2.7.1 Relationship between Central Aortic BP and Distal PVR 

The results overwhelmingly favor the TLS model for the upper arm but are 

inconclusive for the ankle. The results indicate that viscoelasticity is not as important at 

the ankle and that the difference between ankle ABP and ankle PVR may be minimal. In 
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fact, disregarding shape error (RMSE in Table 2.2), TLG may be the best model due to 

its simplicity and comparable accuracy in estimating central ABP from A PVR.  

For the upper arm, the results suggest viscoelasticity played a more central role in 

a large percentage of subjects in which the brachial PVR pulse amplitude was smaller 

than the carotid tonometry pulse pressure. Despite being equipped with parameters to 

predict pulse pressure amplification, it was rarely observed in TLG and TLV results. In 

fact, the frequency response and optimized parameter values in Table 2.3 show that TLG 

and TLV exhibited a relatively flat frequency response. For the TLG model, the TL 

component of the model reduced to 𝑒𝑒−𝜏𝜏𝜏𝜏, since 𝜃𝜃1 and 𝜃𝜃2 were very small. Similarly, the 

TL component of the TLV model reduced to 𝑒𝑒−𝜏𝜏𝜏𝜏 since 𝜃𝜃1 was much larger than 𝜃𝜃2. The 

less complex TLG and TLV models struggled in comparison while TLS was highly 

effective. The different conclusions for the separate pathways suggest that the 

oscillometric cuff is not a major cause of distortions in the wave. Had the cuff mechanics 

played a bigger part in distorting ankle ABP, the results for the carotid-ankle pathway 

may have been more like those for the carotid-brachial pathway. Yet it is undeniable that 

the carotid-brachial arterial path was better modeled when viscoelasticity was heavily 

considered. It is plausible that the tissues coupling the arterial vessel to BP cuff play a 

non-negligible role in this relationship as more tissue typically surrounds the brachial 

artery at the upper arm than the posterior-tibial artery at the ankle. 

2.7.2 Limitations 

There were two main limitations of this study that may need to be addressed in 

the future. Carotid artery tonometry is a noninvasive gold standard method of recording 

BP waveforms but for investigative purposes, invasive aortic BP would be ideal. Second, 
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this investigation was not an exhaustive review of established viscoelastic models. 

Therefore it can only be concluded that among the three physical models examined, TLS 

is better suited for the carotid-brachial arterial path while TLV or TLG may be sufficient 

for the carotid-posterior-tibial arterial path. 
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Chapter 3: Wave Reflection Quantification Using Estimated 

Central and Peripheral Blood Pressure Waveforms 

In Chapter 2, models were selected to represent the relationship between carotid 

tonometry and distal PVR. This chapter will employ the TLV model to estimate central 

ankle ABP from ankle PVR and use it along with carotid tonometry to calculate forward 

and backward BP waves via a technique previously shown to be effective on swine [71].  

3.1 Problem Formulation 

The arterial tree can be modeled as a lossless tube, such as the TL model utilized 

in Chapter 2, meaning that forward and backward BP waves propagate along the tube 

without experiencing changes in morphology. The BP waves at the inlet, 𝑃𝑃𝑃𝑃(𝑘𝑘), and the 

outlet, 𝑃𝑃𝐷𝐷(𝑘𝑘), can be formulated as the sum of forward and backward BP waves properly 

shifted for the corresponding location. 

𝑃𝑃𝑃𝑃(𝑘𝑘) = 𝑃𝑃𝑓𝑓(𝑘𝑘 + Δ) + 𝑃𝑃𝑏𝑏(𝑘𝑘 − Δ) 
𝑃𝑃𝐷𝐷(𝑘𝑘) = 𝑃𝑃𝑓𝑓(𝑘𝑘) + 𝑃𝑃𝑏𝑏(𝑘𝑘) 

(3.1) 

where Δ = τ𝐹𝐹𝑆𝑆 and 𝜏𝜏 and 𝐹𝐹𝑆𝑆 are PTT and sampling frequency, respectively. Assuming the 

subject is in a stable physiological state, the follow relationships hold true: 

𝑃𝑃𝑓𝑓(𝑘𝑘 + Δ) = 𝑃𝑃𝑓𝑓(𝑘𝑘 + Δ − 𝑁𝑁) if k + Δ > 𝑁𝑁 
𝑃𝑃𝑏𝑏(𝑘𝑘 − Δ) = 𝑃𝑃𝑏𝑏(𝑘𝑘 − Δ + 𝑁𝑁) if k − Δ < 0 

(3.2) 

where 𝑁𝑁 is the number of data samples in a single heartbeat. As a result, (2.13) results in 

2𝑁𝑁 equations, 2 for each k = 1⋯N. Substituting the relationship in (3.2) when required, 

(2.13) can be stacked to build the following matrix equation: 

𝐴𝐴2𝑁𝑁×2𝑁𝑁𝑋𝑋2𝑁𝑁×1 = 𝐵𝐵2𝑁𝑁×1 (3.3) 
where  

𝑋𝑋2𝑁𝑁×1 = �𝑃𝑃𝑓𝑓(1)⋯𝑃𝑃𝑓𝑓(𝑁𝑁) 𝑃𝑃𝑏𝑏(1)⋯𝑃𝑃𝑏𝑏(𝑁𝑁)�
𝑇𝑇
 (3.4) 
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𝐵𝐵2𝑁𝑁×1 = [𝑃𝑃𝐷𝐷(1)⋯𝑃𝑃𝐷𝐷(𝑁𝑁) 𝑃𝑃𝑃𝑃(1)⋯𝑃𝑃𝑃𝑃(𝑁𝑁)]𝑇𝑇 (3.5) 

𝐴𝐴2𝑁𝑁×2𝑁𝑁 = �𝐴𝐴1𝐴𝐴2
� =

⎣
⎢
⎢
⎡

𝐼𝐼Δ×Δ 0Δ×(𝑁𝑁−Δ)
0(𝑁𝑁−Δ)×Δ 0Δ×(𝑁𝑁−Δ)

𝐼𝐼Δ×Δ 0Δ×(𝑁𝑁−Δ)
0(𝑁𝑁−Δ)×Δ 𝐼𝐼(𝑁𝑁−Δ)×(𝑁𝑁−Δ)

0(𝑁𝑁−Δ)×Δ 𝐼𝐼(𝑁𝑁−Δ)×(𝑁𝑁−Δ)
𝐼𝐼Δ×Δ 0Δ×(𝑁𝑁−Δ)

0Δ×(𝑁𝑁−Δ) 𝐼𝐼Δ×Δ
𝐼𝐼(𝑁𝑁−Δ)×(𝑁𝑁−Δ) 0(𝑁𝑁−Δ)×Δ⎦

⎥
⎥
⎤
 (3.6) 

It can be easily seen from (3.6) that the rows of A is linearly dependent but it is addressed 

by imposing stacking additional physiologically relevant equations. Specifically, central 

aortic flow is zero during diastole and this characteristic can be formulated as  

𝑄𝑄0(𝑘𝑘) =
𝑃𝑃𝑓𝑓(𝑘𝑘 + Δ) − 𝑃𝑃𝑏𝑏(𝑘𝑘 − Δ)

𝑍𝑍𝑐𝑐
= 0 (3.7) 

where 𝑄𝑄0(𝑘𝑘), 𝛿𝛿𝛿𝛿 < 𝑘𝑘 ≤ 𝑁𝑁 corresponds to aortic flow during diastole. Incorporating (3.7) 

into (3.3) over constrains the once ill-conditioned matrix equation. 

𝐴𝐴(3−𝛿𝛿)𝑁𝑁×2𝑁𝑁𝑋𝑋2𝑁𝑁×1 = 𝐵𝐵(3−𝛿𝛿)𝑁𝑁×1 (3.8) 
(3.8) can be solved by the least-squares method by pre-multiplying the pseudo-inverse of 

𝐴𝐴(3−𝛿𝛿)𝑁𝑁×𝑁𝑁 to both sides of (3.8), or 

𝑋𝑋 = [𝐴𝐴𝑇𝑇𝐴𝐴]−1𝐴𝐴𝑇𝑇𝐵𝐵 (3.9) 
As described in (3.4), once 𝑋𝑋 is determined it can be separated into 𝑃𝑃𝑓𝑓(𝑘𝑘) = 𝑋𝑋(1:𝑁𝑁) and 

𝑃𝑃𝑏𝑏(𝑘𝑘) = 𝑋𝑋(𝑁𝑁 + 1: 2𝑁𝑁).  

3.2 Data Set 

For the study, the same 99 subjects with carotid tonometry and ankle PVR data 

were used. Recall that this data set also included femoral tonometry recordings as well. 

Since carotid tonometry and femoral tonometry are established, high-fidelity BP 

measurement modalities, the wave reflection calculated from carotid tonometry and 

femoral tonometry waveforms was used as the reference method to evaluate the wave 

reflection calculated from carotid tonometry and estimated ankle ABP waveforms. This 
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method allows for direct evaluation of estimated ankle ABP waveforms as a potential 

surrogate of femoral tonometry. 

Table 3.1: Wave reflection subject characteristics 
Characteristics Median (IQR) 

Male, % 43 

Age Range 15-81 

Carotid SBP (mmHg) 113.8 (100.7~130.5) 

Carotid DBP (mmHg) 75 (65~86) 

Carotid PP (mmHg) 40.2 (33.2~48.6) 

Ankle Cuff SBP (mmHg) 120.7 (107.7~136.1) 

Ankle Cuff DBP (mmHg) 75 (65~86) 

Ankle Cuff PP (mmHg) 46.2 (39.5~52.3) 

Femoral SBP (mmHg) 120.9 (107.4~133.8) 

Femoral DBP (mmHg) 75 (65~86) 

Femoral PP (mmHg) 45.5 (38.9~54.4) 
 

 

3.3 Methods 

First, ankle ABP waveform was estimated by applying ankle PVR to the Voigt 

model component of the individualized TLV model. Then PTT between carotid 

tonometry and ankle ABP waveform was estimated by the time delay between the two 

waveforms. The tunable constraint parameter, 𝛿𝛿 , offers some freedom. The relative 

duration of diastole is roughly 30% of the cardiac cycle. Setting δ = 0.5, which was used 

in a previous study to sufficiently constrain the problem [71], forward and backward BP 

waves were calculated using (3.9).  

This technique, while novel and physics based, is limited by the 2𝑁𝑁 degrees of 

freedom. The minor flaw in manifested in the form in non-differentiable forward and 
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backward waves as shown in Fig. 3.1(a). It can be remedied by applying a low-pass filter 

(𝜔𝜔𝑐𝑐= 5 Hz in this study) but information may be lost in the process and is not ideal. From 

the filtered forward and backward BP waves, the corresponding pulse pressures, |𝑃𝑃𝑓𝑓| and 

|𝑃𝑃𝑏𝑏|  can be extracted and used to calculate reflection magnitude (RM = |𝑃𝑃𝑏𝑏|
|𝑃𝑃𝑓𝑓|

 ) and 

reflection index (RI= |𝑃𝑃𝑏𝑏|
�𝑃𝑃𝑓𝑓�+|𝑃𝑃𝑓𝑓|

). 

3.4 Results 

As mentioned above, the process of filtering degraded the goodness of fit between 

the sum of shifted forward and backward BP waves and (b) carotid tonometry and (c) 

estimated ankle ABP waveform. However, the end results were promising. The 

decomposed waves, 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑏𝑏were shifted to estimate the femoral ABP waveform. Since 

the BP pulse travels from the heart and through the femoral artery (near groin area) to 

reach the ankle, it is not unreasonable to expect estimated femoral pressure to be similar 

in shape to femoral tonometry in ideal conditions. Simultaneously, forward and backward 

BP waves decomposed from carotid tonometry and femoral tonometry, 𝑃𝑃𝑓𝑓,𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑃𝑃𝑏𝑏,𝑟𝑟𝑟𝑟𝑟𝑟 

were compared 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑏𝑏 (Fig. 3.1(d)).  

The average estimations of �𝑃𝑃𝑓𝑓(𝑡𝑡)�, |𝑃𝑃𝑏𝑏(𝑡𝑡)|, RM and RI were close in magnitude 

to those from the reference method (Table 3.2), however Fig. 3.2 and Table 3.3 indicate 

that there is much room for improvement. Estimated carotid-ankle PTT correlated 

acceptably with carotid-femoral PTT, but the correlations of estimated and reference RM 

and RI were marginally acceptable. Fig. 3.2(a) shows that there is a slight trend between 

estimated and reference RM and RI but also that there is non-trivial spread, decreasing 

the correlation. Additionally, the Bland-Altman plots (Fig. 3.2(b)) suggest that this 
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method underestimates larger RM and RI while overestimating smaller RM and RI when 

compared with the reference method. 

�𝑃𝑃𝑓𝑓(𝑡𝑡)� and |𝑃𝑃𝑏𝑏(𝑡𝑡)| were highly correlated with �𝑃𝑃𝑓𝑓,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)� and �𝑃𝑃𝑏𝑏,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)� but 

individual PPs contain little information on the health or potential risk since wave 

reflection quantified as the ratio of forward and backward pulse pressures.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 3.1: An example of wave decomposition, with reconstruction of ABP waveforms at (a) carotid artery 
using unfiltered forward and backward BP waves (b) carotid artery, (c) posterior-tibial artery, and (d) 

femoral artery. 
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(a)  

 
(b) 

Fig. 3.2: Correlation and Bland-Altman plots associated with PTT, |Pf(t)|, |Pb(t)|, RM and RI. (a) Correlation 
plots. (b) Bland-Altman plots. 

 

Table 3.2: Reference and estimated CV risk predictors 

n=64 PTT 
[ms] 

|Pf(t)| 
[mmHg] 

|Pb(t)| 
[mmHg] 

RM 
[AU] 

RI 
[AU] 

Reference 56±14 32±10 12±5 0.37±0.11 0.27±0.16 

Estimated 119±22 37±10 10±4 0.28±0.07 0.22±.04 

 
Table 3.3: Correlations between reference and cstimated CV risk predictors 

n=64 PTT |Pf(t)| |Pb(t)| RM RI 

R 0.68 0.93 0.83 0.53 0.54 
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3.5 Discussion 

The lack of a clear metric to optimize the performance proved to be challenging. 

Unlike the models developed in Chapter 2, which were optimized via an explicit 

objective function to minimize the error between estimated and measured central ABP 

waveforms, this technique more heavily dependent on the data, which are not perfect. 

Specifically, estimated ankle ABP waveform was used with the assumption that the TLV 

model adequately captured the lumped dynamics of the arterial vessel, tissue, and BP cuff, 

however there may be better suited models that would produce more powerful results. 

In addition to the imperfections associated with the data, the tunable parameter 𝛿𝛿 

opens possibilities for refining the problem. Since 𝛿𝛿 is directly connected to the least-

squares-solution, (3.9), a potential algorithm to identify an optimal 𝛿𝛿  specific to each 

subject is appealing. For example, as 𝛿𝛿 changes the resulting forward and backward BP 

waves will change in morphology as well. Exploiting the common occurrence of non-

differentiable, step-wise-like forward and backward BP waves (Fig. 3.1(a)) an algorithm 

to identify 𝛿𝛿 at which the forward and backward waves are free of such discontinuities 

may benefit the solution. A few adaptations of 𝛿𝛿 optimizing algorithms were tested but 

they were unsuccessful in outperforming the technique with 𝛿𝛿 = 0.5. In an attempt to 

bypass the issue surrounding 𝛿𝛿 , matrix regularization was applied to avoid an ill-

conditioned matrix equation with little success. 

Wave reflection quantification offers valuable insight regarding the CV health, 

specifically the arterial tree, when used with highly accurate waveforms such as invasive 

measurements [2], [7], [21], [61]–[66]. Although not yet robust against ABP 
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measurement or estimation errors, the matrix equation based method studied in this 

chapter has much potential for being incorporated into routine practice.  
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Chapter 4: Two-Sensor Blind System Identification 

4.1 Introduction to Individualized Transfer Functions 

ITF offers an inherent advantage over GTF due to its ability to select model 

parameters unique to each case. In the case of modeling the cardiovascular system via a 

TL model, an individualized, subject-specific model is able to identify pulse transit time, 

𝜏𝜏, and tube-load parameters, 𝜃𝜃1 and 𝜃𝜃2, that are different for each subject. Additionally, 

GTF was shown to be less able to compensate for higher frequency components present 

in the ABP waveform, which typically carry individualized information, while ITF was 

able to extract relevant information [72]. 

As a result, methodologies involving ITF have been increasingly reported, as 

shown in Table 1.1. Specifically, studies have shown that central ABP can be estimated 

via two-channel blind system identification (i.e. having no input information) by applying 

an ITF to two invasive peripheral BP measurements (e.g. femoral and radial ABPs) in 

swine [50] and in humans [55]. The model consisted to two asymmetric TL models 

connected in parallel branched from a common source, similar to the anatomy of the 

human arterial tree shown in Fig. 4.1. This chapter presents and evaluates a similar model 

applied to brachial and ankle PVR measurements in order to avoid the need for 

specialized tonometry or even invasive measurements. 



 

 38 
 

 
Fig. 4.1: Schematic of human arterial tree from Reymond, et al. [73]. 21: Brachial Artery; 44: Femoral 

Artery 

4.2 Model of Human Arterial Tree 

It was concluded in Chapter 2 that the TLS model best relates brachial PVR 

waveform to carotid tonometry. For the carotid-ankle PVR relationship, the three models 

studied showed minimal differences in accuracy. Further, the median value for the gain, 

𝐸𝐸1, in the TLG model was very close to 1 (Table 2.3). In order to reduce the number of 

parameters, decreasing both complexity of the model and variance of the included 

parameters, 𝐸𝐸1 was treated as a constant with a value of 1. Therefore, TLS and simple TL 

models were employed for the two-channel cuff model shown in Fig. 4.2. 
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Fig. 4.2: Two-sensor cuff model. GB(z): TL model associated with carotid-brachial arterial path; GA(z): TL 

model associated with carotid-posterior-tibial arterial path 

4.3 Mathematical Formulation of Blind System Identification Problem 

Exploiting the common input, 𝑃𝑃𝑝𝑝(𝑘𝑘), of the two parallel channels, it can be shown 

that 

𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑠𝑠) = 𝐺𝐺𝐵𝐵−1(𝑠𝑠)𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵−1(𝑠𝑠)𝑃𝑃𝐶𝐶,𝐵𝐵(𝑠𝑠) = 𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐺𝐺𝐴𝐴−1(𝑠𝑠)𝑃𝑃𝐶𝐶,𝐴𝐴(𝑠𝑠) = 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑠𝑠) (4.1) 
(𝑠𝑠 + 𝜃𝜃1𝐵𝐵)𝑒𝑒𝜏𝜏𝐵𝐵𝑠𝑠 + 𝜃𝜃2𝐵𝐵𝑒𝑒−𝜏𝜏𝐵𝐵𝑠𝑠

𝑠𝑠 + 𝜃𝜃1𝐵𝐵 + 𝜃𝜃2𝐵𝐵
∙
𝐸𝐸1𝐵𝐵𝐸𝐸2𝐵𝐵 + (𝐸𝐸1𝐵𝐵 + 𝐸𝐸2𝐵𝐵)𝜂𝜂𝐵𝐵𝑠𝑠

𝐸𝐸2𝐵𝐵 + 𝜂𝜂𝐵𝐵𝑠𝑠
𝑃𝑃𝐶𝐶,𝐵𝐵(𝑠𝑠)

=
(𝑠𝑠 + 𝜃𝜃1𝐴𝐴)𝑒𝑒𝜏𝜏𝐴𝐴𝑠𝑠 + 𝜃𝜃2𝐴𝐴𝑒𝑒−𝜏𝜏𝐴𝐴𝑠𝑠

𝑠𝑠 + 𝜃𝜃1𝐴𝐴 + 𝜃𝜃2𝐴𝐴
𝑃𝑃𝐶𝐶,𝐴𝐴(𝑠𝑠) 

(4.2) 

where 𝑃𝑃�𝑃𝑃,𝐵𝐵 is the central ABP estimated from brachial PVR and 𝑃𝑃�𝑃𝑃,𝐴𝐴 is the central ABP 

estimated from ankle PVR. Equation (4.2) cannot be explicitly satisfied, but 𝑃𝑃𝑃𝑃 can be 

estimated in two steps by first identifying the SLS model, then the two-sensor ITF. 

Using the forward difference approximation, 𝑠𝑠 ≈ 𝐹𝐹𝑆𝑆(𝑧𝑧 − 1), the SLS model can 

be re-written as 

𝑃𝑃𝑃𝑃(𝑘𝑘 + 1) = �1 −
𝐸𝐸2𝐵𝐵
𝜂𝜂𝐵𝐵𝐹𝐹𝑆𝑆

� 𝑃𝑃𝑃𝑃(𝑘𝑘) + (𝐸𝐸1𝐵𝐵 + 𝐸𝐸2𝐵𝐵)𝑃𝑃𝐶𝐶(𝑘𝑘 + 1)

+ �
𝐸𝐸1𝐵𝐵𝐸𝐸2𝐵𝐵
𝜂𝜂𝐵𝐵𝐹𝐹𝑆𝑆

− 𝐸𝐸1𝐵𝐵 − 𝐸𝐸2𝐵𝐵�𝑃𝑃𝐶𝐶(𝑘𝑘) 
(4.3) 

as well as the TL models associated with the two-channel model. 

𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘 + 1) = �1 −
𝜃𝜃1𝐵𝐵 + 𝜃𝜃2𝐵𝐵

𝐹𝐹𝑆𝑆
� ∙ 𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) + 𝑃𝑃𝐶𝐶(𝑘𝑘 + Δ𝐵𝐵 + 1) + �

𝜃𝜃1𝐵𝐵
𝐹𝐹𝑆𝑆

− 1� ∙ 𝑃𝑃𝐶𝐶(𝑘𝑘 + Δ𝐵𝐵) +
𝜃𝜃2𝐵𝐵
𝐹𝐹𝑆𝑆

∙ 𝑃𝑃𝐶𝐶(𝑘𝑘 − Δ𝐵𝐵) 
(4.4) 
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𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘 + 1) = �1 −
𝜃𝜃1𝐴𝐴 + 𝜃𝜃2𝐴𝐴

𝐹𝐹𝑆𝑆
� ∙ 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘) + 𝑃𝑃𝐶𝐶(𝑘𝑘 + Δ𝐵𝐵 + 𝛿𝛿Δ + 1) + �

𝜃𝜃1𝐴𝐴
𝐹𝐹𝑆𝑆

− 1�

∙ 𝑃𝑃𝐶𝐶(𝑘𝑘 + Δ𝐵𝐵 + 𝛿𝛿Δ) +
𝜃𝜃2𝐴𝐴
𝐹𝐹𝑆𝑆

∙ 𝑃𝑃𝐶𝐶(𝑘𝑘 − Δ𝐵𝐵 − 𝛿𝛿Δ) 
(4.5) 

where 𝛿𝛿Δ = Δ𝐴𝐴 − Δ𝐵𝐵 = (𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐵𝐵)𝐹𝐹𝐹𝐹 > 0 is the sample difference between ankle PVR 

and estimated brachial ABP waveform, assuming 𝜏𝜏𝐴𝐴 is larger than 𝜏𝜏𝐵𝐵. If it is not the case, 

then (4.4) and (4.5) are adjusted accordingly so that Δ𝐵𝐵 = Δ𝐴𝐴 + 𝛿𝛿Δ , where 𝛿𝛿Δ =

(𝜏𝜏𝐵𝐵 − 𝜏𝜏𝐴𝐴)𝐹𝐹𝐹𝐹. Since brachial ABP waveform, 𝑃𝑃�𝐵𝐵, is first estimated, the PTT between 𝑃𝑃�𝐵𝐵 

and 𝑃𝑃𝐶𝐶,𝐴𝐴 is used to 𝛿𝛿Δ. 

4.4 Identifiability Analysis 

Unlike the TLVE models discussed in Chapter 2, the lumped two-sensor cuff 

model was not identifiable in a single optimization. Therefore the model was separated 

into a two-channel model and SLS model. 

The two-channel model was previously shown to be identifiable under most 

physiological conditions [55]. In summary the load characteristics associated with the 

two channels representing the arterial branches of upper and lower body extremities are 

highly different. In the extreme case that they are very similar, the problem re-forms into 

a single-channel problem (𝑃𝑃𝐶𝐶,𝐵𝐵 = 𝑃𝑃𝐶𝐶,𝐴𝐴) and cannot be uniquely identified without input 

information. Another condition of identifiability, known as the “blind identifiability 

condition,” states that the PTT to each of the measurement locations and the sampling 

frequency must be large enough. That is, 

Δ𝐵𝐵 = 𝜏𝜏𝐵𝐵𝐹𝐹𝑆𝑆 ≥ 1,    Δ𝐴𝐴 = 𝜏𝜏𝐴𝐴𝐹𝐹𝑆𝑆 ≥ 1 (4.6) 
Equation (4.6) can be easily satisfied with proper selection of BP measurement locations 

and sampling frequency. 
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The identifiability of the SLS model can be address by analyzing the discretized 

equation, (4.3), similar to what was done in Chapter 2. First, 𝐸𝐸2𝐵𝐵
𝜂𝜂𝐵𝐵

 and 𝐸𝐸1𝐵𝐵 + 𝐸𝐸2𝐵𝐵 can be 

uniquely identified by the regressors 𝑃𝑃𝑃𝑃(𝑘𝑘) and 𝑃𝑃𝐶𝐶(𝑘𝑘 + 1) respectively. Then 𝐸𝐸1𝐵𝐵 can be 

calculated by identifying the coefficient �𝐸𝐸1𝐵𝐵𝐸𝐸2𝐵𝐵
𝜂𝜂𝐵𝐵𝐹𝐹𝑆𝑆

− 𝐸𝐸1𝐵𝐵 − 𝐸𝐸2𝐵𝐵�  and using the values 

obtained for 𝐸𝐸2𝐵𝐵
𝜂𝜂𝐵𝐵

 and 𝐸𝐸1𝐵𝐵 + 𝐸𝐸2𝐵𝐵 . Finally 𝐸𝐸2𝐵𝐵  and 𝜂𝜂𝐵𝐵  can be realized from the previous 

relationships. 

4.5 Model Optimization 

Identifying the SLS model requires knowledge of the input to the system, the 

brachial ABP. While this information was not directly available, the process of 

calibrating the measured waveforms offered insight regarding the brachial ABP. As 

mentioned in Section 2.4, all measured waveforms were calibrated using values derived 

from brachial artery oscillometry, which estimated brachial SBP and DBP. Inverting 

equation (2.11) used to calculate MP, brachial SBP was individually estimated from MP 

and DBP of brachial PVR of each subject. Therefore the optimization problem for 

identifying the SLS model was formulated as the following. 

Θ𝑆𝑆𝑆𝑆𝑆𝑆∗ = arg min
Θ𝑆𝑆𝑆𝑆𝑆𝑆

��𝑆𝑆𝑆𝑆𝐵𝐵 − max�𝑃𝑃�𝐵𝐵�� + �𝑀𝑀𝑀𝑀𝐵𝐵 − mean(𝑃𝑃�𝐵𝐵)� + �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝐵𝐵��� (4.7) 
with constraints 

𝐸𝐸1𝐵𝐵 > 0.0001,    𝐸𝐸2𝐵𝐵 > 0.0001,    𝜂𝜂𝐵𝐵 > 0.0001 
where Θ𝑆𝑆𝑆𝑆𝑆𝑆 = {𝐸𝐸1𝐵𝐵,𝐸𝐸2𝐵𝐵 , 𝜂𝜂𝐵𝐵}. 

Then the SLS model equipped with Θ𝑆𝑆𝑆𝑆𝑆𝑆∗  was used to estimate brachial ABP 

waveform, which was applied to the two-channel model along with an ankle PVR 
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waveform. The two-channel model was realized by minimizing the following 

optimization problem. 

Θ∗ = arg min
Θ

�
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�

2𝑁𝑁

𝑘𝑘=1
 (4.8) 

with constraints 

0.11 > 𝜏𝜏𝐵𝐵 > 0.004,    500 > 𝜃𝜃1𝐵𝐵 > 𝜃𝜃2𝐵𝐵 > 0.01,    500 > 𝜃𝜃1𝐴𝐴 > 𝜃𝜃2𝐴𝐴 > 0.01 
Afterwards, 𝑃𝑃�𝑃𝑃,𝐵𝐵  and 𝑃𝑃�𝑃𝑃,𝐴𝐴  were calculated using Θ∗  and estimated central ABP was 

calculated as an average of both estimated central ABP waveforms.: 𝑃𝑃�𝑃𝑃 = 0.5𝑃𝑃�𝑃𝑃,𝐵𝐵 +

0.5𝑃𝑃�𝑃𝑃,𝐴𝐴. 

The optimization was performed by scanning 𝜏𝜏𝐵𝐵  and optimizing the model for 

each fixed value of 𝜏𝜏𝐵𝐵. Then by comparing the output of the objective function and 𝜏𝜏𝐵𝐵, 

the optimal 𝜏𝜏𝐵𝐵 was selected as the point where the objective function output was minimal. 

In the optimization, a set of 21 initial conditions were used for each iteration of 𝜏𝜏𝐵𝐵 . 

Consequently, some of the optimized parameter values were very close to the prescribed 

boundaries. Such results were treated as numerical saturation of parameters and were 

excluded from the final results even if only one parameter was saturated. 

4.6 Data Sets 

For this study, 100 subjects were randomly selected from the same set of data 

obtained in a previous study [70]. The selected subject data files contained both brachial 

and ankle PVR waveforms as well as a carotid tonometry waveform to be used as a 

surrogate of central ABP waveform in evaluating the model results. In addition, 

conditions 1 and 2 listed in Section 2.4 needed to be satisfied. In preparation for the 
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system identification process the data were prepared in the same manner as in Chapter 2. 

The set of 100 subjects was separated into a testing set (n=50) and validation set (n=50). 

Table 4.1: Blind model identification subject characteristics 
Characteristics Median (IQR) 

Male, % 55 

Age 55 (47~69) 

Carotid SBP (mmHg) 120.5 (104.1~131.7) 

Carotid DBP (mmHg) 78 (67~88) 

Carotid PP (mmHg) 41.5 (33.2~48.6) 

Brachial Cuff SBP (mmHg) 113.9 (101.4~127.6) 

Brachial Cuff DBP (mmHg) 78 (67~88) 

Brachial Cuff PP (mmHg) 36.5 (29.7~42.7) 

Ankle Cuff SBP (mmHg) 126.6 (112.8~139.4) 

Ankle Cuff DBP (mmHg) 78 (67~88) 

Ankle Cuff PP (mmHg) 47.0 (41.5~56.5) 
 

 

4.7 Results 

4.6.1 Model Selection (Testing Set) 

An example of optimization results of (4.8) are presented below (Fig. 4.3). As 

shown in Fig. 4.3(a) the SBP and DBP errors between 𝑃𝑃𝑃𝑃 and 𝑃𝑃�𝐶𝐶 (labeled as 𝑃𝑃𝐶𝐶,𝐸𝐸𝐸𝐸𝐸𝐸 in the 

legend) was large. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 4.3: Representative result of (4.8). (a) Overall results. (b) Carotid-posterior-tibial arterial path results. 
(c) carotid-brachial arterial path results. (d) SLS model results. 

To test the hypothesis that improving DBP error will also indirectly improve SBP, 

DBP error was introduced into the objective function (4.8) in various forms (Table 4.2). 
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DBP error was defined as the difference between measured DBP, also used in SLS model 

optimization, and DBP of estimated central ABP waveform. 

Table 4.2: Objective functions tested to reduce DBP error 
 Objective Functions 

1 min
Θ

�
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
 

2 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐵𝐵�� + �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐴𝐴��� 

3 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ 2�𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐵𝐵�� + �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐴𝐴��� 

4 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐵𝐵��� 

5 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ 2�𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐵𝐵��� 

6 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ �𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐴𝐴��� 

7 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ 2�𝐷𝐷𝐷𝐷𝐵𝐵 − min�𝑃𝑃�𝑃𝑃,𝐴𝐴��� 

 
However, it increased the number of subjects in which at least parameter was 

saturated for all 21 initial conditions. Additionally as shown in Table 4.3, the DP error 

was not significantly reduced. 
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Table 4.3: DP error incorporation results 

Objective 
Function 

# of 
unsaturated 

results 
RMSE SBP error MP error DBP error PP error 

1 50 3.56 
(3.14~4.86) 

-5.22 
(-7.67~-3.00) 

-0.01 
(-0.04~0.05) 

-0.92 
(-1.7~-0.67) 

-3.97 
(-6.64~-1.57) 

2 32 3.77 
(3.11~4.81) 

-5.73 
(-7.75~-3.74) 

-0.01 
(-0.03~0.06) 

-0.80 
(-1.29~-0.59) 

-4.75 
(-7.29~-2.73) 

3 38 3.91 
(3.22~4.97) 

-6.17 
(-8.29~-4.01) 

-0.01 
(-0.03~0.06) 

-0.74 
(-1.24~-0.61) 

-5.51 
(-7.55~-2.90) 

4 47 3.79 
(3.12~4.91) 

-5.19 
(-7.79~-3.26) 

-0.01 
(-0.03~0.06) 

-0.84 
(-1.70~-0.62) 

-3.97 
(-6.88~-1.84) 

5 47 3.98 
(3.13~4.94) 

-5.28 
(-7.69~-3.45) 

-0.01 
(-0.03~0.06) 

-0.83 
(-1.81~-0.66) 

-3.86 
(-6.56~-1.69) 

6 28 3.73 
(3.26~5.08) 

-6.11 
(-7.82~-4.19) 

-0.02 
(-0.07~0.04) 

-1.01 
(-1.49~-0.63) 

-4.69 
(-6.97~-2.67) 

7 19 3.77 
(3.23~4.46) 

-5.63 
(-7.08~-4.53) 

-0.01 
(-0.03~0.06) 

-0.91 
(-1.37~-0.64) 

-4.54 
(-6.18~-3.38) 

 
Due to the alarming number of saturated cases, a different approach was taken by 

incorporating SBP and PP error between 𝑃𝑃�𝑃𝑃,𝐵𝐵  and 𝑃𝑃�𝑃𝑃,𝐴𝐴 . The new set of objective 

functions tested is listed in Table 4.4. 

It is also important to note that the optimization ideally resulted in 21 results for 

each iterative value of 𝜏𝜏𝐵𝐵. As a result, for each value of 𝜏𝜏𝐵𝐵, the point in the parameter 

space that produced the smaller objective function value was selected as a candidate 

optimal point. However, some outliers would result in extremely small objective values 

and subsequently be selected as the optimal set of parameters. Therefore, the assumption 

that the most frequently occurring result is the desired local minimum for each value of 

𝜏𝜏𝐵𝐵 was made, and it was applied by using the result closest to the median of the 21 results. 
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Table 4.4: Final set of candidate objective functions 
Model 
Name Objective Function 

ITF-1 min
Θ

�
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
 

ITF-2 min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ �max�𝑃𝑃�𝑃𝑃,𝐵𝐵� − max�𝑃𝑃�𝑃𝑃,𝐴𝐴��� 

ITF-3 

min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1

+ �max�𝑃𝑃�𝑃𝑃,𝐵𝐵� − min�𝑃𝑃�𝑃𝑃,𝐵𝐵� − max�𝑃𝑃�𝑃𝑃,𝐴𝐴� + min (𝑃𝑃�𝑃𝑃,𝐴𝐴)�� 

ITF-4 

min
Θ

��
1
𝑁𝑁
� �𝑃𝑃�𝑃𝑃,𝐵𝐵(𝑘𝑘) − 𝑃𝑃�𝑃𝑃,𝐴𝐴(𝑘𝑘,Θ)�2

𝑁𝑁

𝑘𝑘=1
+ �max�𝑃𝑃�𝑃𝑃,𝐵𝐵� − max�𝑃𝑃�𝑃𝑃,𝐴𝐴��

+ �max�𝑃𝑃�𝑃𝑃,𝐵𝐵� − min�𝑃𝑃�𝑃𝑃,𝐵𝐵� − max�𝑃𝑃�𝑃𝑃,𝐴𝐴� + min (𝑃𝑃�𝑃𝑃,𝐴𝐴)�� 

 
The optimization results, both comparisons with 𝑃𝑃𝑃𝑃 and average parameter values, 

are presented in Tables 4.5 and 4.6, respectively. The results suggest that ITF-4 may be 

the best suited out of the tested objective functions to relate ankle PVR and brachial PVR 

to the central ABP waveform. Although DBP error was not significantly different from 

that of ITF-1, shape error (RMSE), SBP error, and PP error were all improved 

significantly.  

Identifiability conditions were satisfied as shown in Table 4.6. 𝜏𝜏𝐵𝐵  was large 

enough to satisfy 𝜏𝜏𝐵𝐵𝐹𝐹𝑆𝑆 > 1  and since 𝛿𝛿Δ  was always positive, 𝜏𝜏𝐴𝐴𝐹𝐹𝑆𝑆 > 1  was always 

satisfied as well. Additionally, load parameter values, 𝜃𝜃 , for the two channels were 

different from each other avoiding pole-zero cancellations. Individual parameter results 

can be found in Table A1 in the Appendix. 
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Table 4.5: Results of final candidate objective functions. (Median(IQR)) 
Model RMSE SBP error DBP error PP error 

ITF-1 3.55 
(2.74~4.48) 

-5.03 
(-6.86~-2.15) 

-0.94 
(-1.53~-0.61) 

-3.15 
(-5.69~-1.36) 

ITF-2 3.19 
(2.32~4.06)* 

-2.87 
(-6.65~-0.69) 

-0.84 
(-1.37~-0.58)* 

-2.18 
(-5.54~-0.13) 

ITF-3 3.14 
(2.58~4.52)*† 

-3.94 
(-6.64~-1.25)† 

-0.74 
(-1.42~-0.56)* 

-2.83 
(-6.19~-0.58)† 

ITF-4 3.08 
(2.24~3.98)*† 

-2.50 
(-5.26~0.64)*†‡ 

-1.04 
(-1.58~-0.70) 

-1.48 
(-4.25~1.72)*†‡ 

*: p<0.008 when compared to ITF-1 
†: p<0.008 when compared to ITF-2 
‡: p<0.008 when compared to ITF-3 
 

Table 4.6: Verification of identifiability conditions (testing set) 

Model 𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

ITF-1 0.034 
(0.026~0.052) 

40.7 
(14.6~263.4) 

38.8 
(14.4~149.0) 

4.26 
(0.21~58.81) 

0.88 
(0.13~2.60) 

ITF-2 0.032 
(0.025~0.051) 

19.2 
(11.3~36.3) 

16.9 
(8.8~29.4) 

58.2 
(7.1~134.9) 

1.28 
(0.17~2.76) 

ITF-3 0.036 
(0.028~0.052) 

22.7 
(8.64~114.4) 

17.4 
(8.4~46.6) 

48.0 
(8.0~152.7) 

1.19 
(0.25~3.00) 

ITF-4 0.036 
(0.028~0.052) 

14.4 
(9.9~25.1) 

13.9 
(9.3~22.8) 

308.2 
(221.4~313.3) 

17.8 
(3.6~33.8) 

 
ITF-4 was selected to evaluate its performance by comparison with the current 

standard of estimating central ABP waveform from PVR measurements. The current 

practice considers brachial PVR as a surrogate of central ABP waveform. Similarly ankle 

PVR was used as another proxy of central ABP waveform. Another common practice as 

mentioned in Section 1.4.1 and Table 1.1 is to apply a GTF to brachial PVR to estimate 

central ABP waveform, considering brachial PVR as a stand-in for brachial ABP 

waveform. Therefore, TLG model was applied to brachial PVR of the testing set, and the 

median values of the resulting optimal parameters were used to equip TLG-GTF to be 

evaluated with the validation set. 

4.6.3 Comparison with State-of-the-Art (Validation Set) 

ITF-4 and was applied to a new set of 50 subjects to compare its performance to 

current methods. ITF-4 better related brachial and ankle PVR to central ABP according to 
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the four metrics presented in Table 4.7. However, the DBP error for ankle and brachial 

PVR may be misleading. Since carotid tonometry, ankle, and brachial PVR were all 

calibrated to the same DBP, the DBP error will always be zero for this method. 

Interestingly, TLG-GTF outperformed ITF-4 in estimating SBP, DBP, and PP.  

Table 4.7: Comparison of ITF-4 and current standards on validation set 
Model RMSE SBP error DBP error PP error 

ITF-4 3.08 
(2.24~3.98) 

-2.50 
(-5.26~0.64) 

-1.04 
(-1.58~-0.70) 

-1.48 
(-4.25~1.72) 

TLG-GTF 3.63 
(2.63~4.59) 

2.38 
(-1.06~4.61)* 

2.73 
(2.43~3.06)* 

-0.33 
(-3.57~1.59)* 

Ankle PVR 4.04 
(3.02~6.35)* 

-5.46 
(-9.49~-2.75)* 

0 
(0~0)* 

-5.46 
(-9.49~-2.75)* 

Brachial PVR 2.89 
(2.08~4.36)* 

4.58 
(1.87~8.06)* 

0 
(0~0)* 

4.58 
(1.87~8.06)* 

*: p<0.05 when compared to ITF-4 
 

Table 4.8: Verification of identifiability conditions (validation set) 
𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

0.038 
(0.028~0.048) 

12.59 
(7.64~25.5) 

12.1 
(7.44~18.5) 

305.4 
(210.6~312.1) 

22.1 
(6.79~40.2) 

 
The identifiability conditions were satisfied, as shown in Table 4.8. Load 

parameters associated with the carotid-brachial arterial path and carotid-posterior-tibial 

arterial path were distinct, avoiding pole-zero cancellation. In addition, 𝜏𝜏𝐵𝐵 and 𝜏𝜏𝐴𝐴 were 

sufficiently large to satisfy the blind identifiability condition. The individual results 

associated with each patient is presented in Table A2 in the Appendix. 

4.8 Discussion 

Pulse volume recordings are becoming increasingly popular in clinical settings 

due to its morphological similarity to ABP waveforms as well as their ease of use relative 

to risky methods such as catheterization or specialized techniques like applanation 

tonometry. However, it not a good surrogate of central ABP, and techniques such as 

GTFs have been developed to estimate central ABP. While GTFs offer valuable 
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information, they inherently lack the ability to account for inter-subject variability. As a 

result, a two-channel ITF was developed to estimate central ABP from two peripheral 

ABP measurements [55]. This study aimed to improve the model in order to apply it to 

PVR measurements that were shown to require additional complexity to compensate for 

viscoelastic effects of the arterial vessel, tissue, and BP cuff bladder, as discussed in 

Chapter 2.  

Using the testing data a model, ITF-4, was shown to be most effective at 

achieving the objective. However comparisons with current methods using the validation 

set have shown that there is room for improvement. ITF-4 was better than brachial and 

ankle PVR, but this is a trivial conclusion as it has already been shown that peripheral 

PVR is not a great replacement for central ABP. Therefore, adjustments may need to be 

made to ITF in order to truly improve on the current gold standard. 
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Chapter 5:  Conclusions and Future Directions 

In Chapter 1, an exhaustive variety of transfer functions were tested in order to 

model the viscoelastic properties of the arterial wall, tissue, and BP cuff. Unlike the 

carotid-posterior-tibial arterial path which displayed little variance across the three 

transfer functions, the carotid-brachial arterial path may be better modeled by more 

complex viscoelastic models. 

A broader inspection of the optimal ITF load parameters, from blind identification, 

shows that across all 100 subjects and across different ITF objective functions, the 

parameters 𝜏𝜏𝐵𝐵,𝜃𝜃1𝐵𝐵, and 𝜃𝜃2𝐵𝐵 exhibited very little variance. Conversely, the parameters 𝜃𝜃1𝐴𝐴 

and 𝜃𝜃2𝐴𝐴 were largely different between ITF-4 and the other ITF variations. This suggests 

that the model is more sensitive to 𝜏𝜏𝐵𝐵,𝜃𝜃1𝐵𝐵, and 𝜃𝜃2𝐵𝐵 than 𝜃𝜃1𝐴𝐴 and 𝜃𝜃2𝐴𝐴. A conjecture on the 

sensitivity of SLS parameters cannot be made because the ITF variations only applied to 

the objective function associated with the 2-channel model component. In other words 

the optimal SLS parameters were the same for a specific subject regardless of ITF 

variations. 

Additionally, the similarity in the range of values of 𝜏𝜏𝐵𝐵,𝜃𝜃1𝐵𝐵, and 𝜃𝜃2𝐵𝐵 suggest that 

these parameters may be fixed quantities, minimizing unnecessary computation time. 

Coupled with the fact that TLG-GTF outperformed ITF-4, an explicit parameter 

sensitivity analysis should be performed to find the minimum number of parameters 

required to optimally estimate central ABP from brachial and ankle PVR waveforms. 

That is, there may exist an optimal transfer function that is partly generalized and partly 

individualized. 
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Another possible explanation for the ITF inability to outperform TLG-GTF may 

be subtle differences in the data. For example if the ratio 𝑆𝑆𝑆𝑆
𝑀𝑀𝑀𝑀

 of a subject is large, it 

suggest that the waveform contains a relatively sharply shaped, high amplitude peak. 

Whereas if the ratio is large, then the waveform might be dull and short in amplitude. It 

may be interesting to investigate if ITF works better than GTF for subjects with a large 

𝑆𝑆𝑆𝑆
𝑀𝑀𝑀𝑀

, or another ratio. 

The ultimate goal of wave decomposition, discussed in Chapter 3, is to apply the 

technique to estimated central ABP waveform and estimated peripheral ABP waveforms 

resulting from two-sensor blind identification. The findings from Chapter 3 show that the 

technique may be further improved by optimizing tunable parameters in the model. Once 

optimized, application of wave decomposition to blind identification results may offer 

access to CV health risk factors that could be easily and quickly calculated from 

commonly accessible devices such as oscillometry devices. 
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Appendix 
 

Table A1: Individual results for test set. (a) ITF-1. (b) ITF-2. (c) ITF-3. (d) ITF-4. 
Subject 

ID 
𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜂𝜂𝐵𝐵 
[s] 

𝐸𝐸1𝐵𝐵 
[AU] 

𝐸𝐸2𝐵𝐵 
[AU] 

𝜏𝜏𝐴𝐴 
[s] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

C010203a 0.020 21.434 21.267 0.202 0.544 1.301 0.132 0.128 0.045 
C010204a 0.012 28.041 27.824 0.249 0.315 2.227 0.084 0.098 0.097 
C010204b 0.048 5.071 5.032 0.258 0.338 1.723 0.116 0.199 0.198 
C010303b 0.052 3.042 1.394 0.192 0.444 1.248 0.132 94.117 10.352 
C010405a 0.032 298.163 201.947 0.085 0.638 2.021 0.116 15.338 5.071 
C010604b 0.036 4.453 4.418 0.240 0.495 1.350 0.124 45.715 2.025 
C010705a 0.056 3.989 3.958 0.270 0.311 1.768 0.128 0.159 0.158 
C010904a 0.020 24.567 24.376 0.214 0.195 2.672 0.104 0.098 0.097 
C011305a 0.040 253.293 246.729 0.183 0.196 2.403 0.152 4.137 1.849 
C011306a 0.032 4.166 4.134 0.314 0.310 1.384 0.108 44.467 4.446 
C011405a 0.056 357.000 143.096 0.255 0.310 1.693 0.144 4.066 0.991 
C011504a 0.064 376.392 123.633 0.265 0.328 1.371 0.148 0.408 0.405 
C011604a 0.056 254.066 245.950 0.243 0.211 2.246 0.124 0.494 0.057 
C011706a 0.048 287.510 212.546 0.104 0.750 0.948 0.144 1.730 0.854 
C011805a 0.040 346.488 153.543 0.232 0.355 1.367 0.120 69.813 3.044 
C012004a 0.072 186.432 63.839 0.223 0.302 1.393 0.196 21.994 2.179 
C012105b 0.032 21.773 15.965 0.378 0.307 1.455 0.112 473.537 26.510 
C012704a 0.016 38.688 38.388 0.180 0.543 1.347 0.120 480.464 19.595 
C012705a 0.064 350.404 149.622 0.239 0.306 1.601 0.148 0.658 0.653 
C012904a 0.040 251.547 248.478 0.276 0.500 1.256 0.104 342.464 1.693 
C013004a 0.020 21.408 20.493 0.224 0.235 1.642 0.124 2.393 0.909 
C013004b 0.032 4.518 4.483 0.218 0.357 1.861 0.124 60.719 0.037 
C021204a 0.028 14.073 13.963 0.255 0.341 1.483 0.100 0.135 0.063 
C021505a 0.056 319.015 181.153 0.195 0.237 1.575 0.132 4.383 1.236 
C021704b 0.020 8.996 8.024 0.215 0.410 1.105 0.128 1.970 0.144 
C021705a 0.072 5.106 5.066 0.306 0.332 2.115 0.136 0.234 0.232 
C021904a 0.092 387.460 112.581 0.200 0.293 1.566 0.132 0.707 0.701 
C022404a 0.048 314.690 185.333 0.231 0.330 1.480 0.108 95.359 0.166 
C030105a 0.036 2.709 2.688 0.274 0.383 1.343 0.120 107.515 9.303 
C030204b 0.028 10.804 10.720 0.208 0.498 1.493 0.140 80.398 4.161 
C030405a 0.012 20.263 20.106 0.285 0.325 1.614 0.096 0.161 0.009 
C030805a 0.032 266.541 233.502 0.187 0.303 1.857 0.124 12.232 2.190 
C031105a 0.040 157.910 79.745 0.164 0.604 1.697 0.156 20.237 3.731 
C031204a 0.024 20.076 19.920 0.269 0.345 1.459 0.100 0.079 0.078 
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C031505a 0.052 338.155 161.875 0.216 0.299 2.009 0.140 0.142 0.119 
C031604a 0.060 101.970 54.312 0.221 0.175 2.878 0.140 0.138 0.069 
C031904a 0.028 6.752 6.699 0.285 0.084 1.904 0.092 70.943 0.289 
C031904b 0.032 168.368 152.075 0.155 0.550 3.017 0.140 1.186 0.572 
C032504a 0.060 3.249 3.224 0.251 0.332 1.937 0.144 0.647 0.642 
C033105a 0.028 22.042 19.655 0.209 0.447 1.454 0.116 0.138 0.015 
C040805a 0.024 142.387 48.857 0.169 0.340 1.566 0.100 5.881 1.764 
C040904a 0.008 16.024 15.899 0.262 0.336 1.731 0.104 0.098 0.097 
C041205a 0.016 29.518 29.289 0.187 0.482 2.094 0.100 0.129 0.055 
C041405a 0.052 338.108 161.939 0.279 0.095 2.052 0.144 53.096 2.730 
C041505a 0.020 42.745 39.138 0.213 0.328 1.869 0.100 471.130 28.964 
C041604a 0.036 223.663 123.952 0.148 0.555 2.254 0.156 9.455 1.376 
C041905a 0.028 33.409 30.801 0.121 0.507 3.601 0.140 6.634 2.167 
C042004a 0.040 352.857 147.194 0.268 0.340 1.431 0.124 317.322 1.446 
C042205a 0.032 159.882 146.162 0.154 0.647 1.548 0.124 484.096 15.958 
C042605a 0.028 142.657 129.676 0.176 0.325 2.475 0.128 14.723 4.576 

 (a) 
 

Subject 
ID 

𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜂𝜂𝐵𝐵 
[s] 

𝐸𝐸1𝐵𝐵 
[AU] 

𝐸𝐸2𝐵𝐵 
[AU] 

𝜏𝜏𝐴𝐴 
[s] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

C010203a 0.036 26.396 17.598 0.202 0.544 1.301 0.148 109.452 0.023 
C010204a 0.060 377.441 122.608 0.249 0.315 2.227 0.132 227.380 1.749 
C010204b 0.052 6.019 5.972 0.258 0.338 1.723 0.120 383.331 3.454 
C010303b 0.056 2.141 0.903 0.192 0.444 1.248 0.136 108.068 10.450 
C010405a 0.024 28.989 28.764 0.085 0.638 2.021 0.108 11.334 4.244 
C010604b 0.036 4.230 4.197 0.240 0.495 1.350 0.124 39.382 1.528 
C010705a 0.052 4.203 4.170 0.270 0.311 1.768 0.124 55.987 0.108 
C010904a 0.032 28.029 18.100 0.214 0.195 2.672 0.116 66.783 0.226 
C011305a 0.032 16.854 16.723 0.183 0.196 2.403 0.144 4.121 1.888 
C011306a 0.024 4.937 4.898 0.314 0.310 1.384 0.100 59.137 5.248 
C011405a 0.032 16.197 15.051 0.255 0.310 1.693 0.120 1.972 1.039 
C011504a 0.060 161.868 65.167 0.265 0.328 1.371 0.144 120.308 1.181 
C011604a 0.044 12.163 12.068 0.243 0.211 2.246 0.112 315.952 2.641 
C011706a 0.048 56.404 40.780 0.104 0.750 0.948 0.144 1.198 0.821 
C011805a 0.024 16.624 16.495 0.232 0.355 1.367 0.104 23.900 1.230 
C012004a 0.032 8.515 8.449 0.223 0.302 1.393 0.156 6.545 1.341 
C012105b 0.024 19.236 17.053 0.378 0.307 1.455 0.104 99.277 0.024 
C012704a 0.016 32.760 32.506 0.180 0.543 1.347 0.120 314.440 10.689 
C012705a 0.064 112.792 60.066 0.239 0.306 1.601 0.148 281.671 2.378 
C012904a 0.040 17.409 17.274 0.276 0.500 1.256 0.104 139.781 0.024 
C013004a 0.020 15.910 15.787 0.224 0.235 1.642 0.124 4.737 1.058 
C013004b 0.032 4.155 4.123 0.218 0.357 1.861 0.124 55.581 0.815 
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C021204a 0.048 23.079 16.626 0.255 0.341 1.483 0.120 147.698 2.096 
C021505a 0.056 138.385 76.822 0.195 0.237 1.575 0.132 4.645 1.315 
C021704b 0.020 11.204 8.066 0.215 0.410 1.105 0.128 0.191 0.149 
C021705a 0.072 5.834 5.789 0.306 0.332 2.115 0.136 37.589 0.017 
C021904a 0.088 376.665 123.161 0.200 0.293 1.566 0.128 57.889 0.035 
C022404a 0.044 39.604 23.534 0.231 0.330 1.480 0.104 245.507 0.992 
C030105a 0.028 2.505 2.486 0.274 0.383 1.343 0.112 106.500 9.517 
C030204b 0.032 10.987 9.673 0.208 0.498 1.493 0.144 106.503 6.551 
C030405a 0.048 31.727 16.736 0.285 0.325 1.614 0.132 82.783 0.020 
C030805a 0.024 29.862 29.631 0.187 0.303 1.857 0.116 7.529 2.157 
C031105a 0.028 21.963 20.194 0.164 0.604 1.697 0.144 15.583 3.115 
C031204a 0.032 11.555 11.465 0.269 0.345 1.459 0.108 0.251 0.011 
C031505a 0.060 348.730 151.302 0.216 0.299 2.009 0.148 98.675 0.904 
C031604a 0.048 7.728 7.668 0.221 0.175 2.878 0.128 56.165 2.799 
C031904a 0.024 6.964 6.910 0.285 0.084 1.904 0.088 108.788 0.178 
C031904b 0.028 19.258 19.109 0.155 0.550 3.017 0.136 0.648 0.643 
C032504a 0.060 11.696 5.614 0.251 0.332 1.937 0.144 0.209 0.020 
C033105a 0.040 36.391 18.644 0.209 0.447 1.454 0.128 300.915 0.168 
C040805a 0.024 189.893 55.306 0.169 0.340 1.566 0.100 5.946 1.928 
C040904a 0.052 35.846 13.704 0.262 0.336 1.731 0.148 498.081 1.970 
C041205a 0.028 16.816 16.686 0.187 0.482 2.094 0.112 58.414 0.011 
C041405a 0.060 348.583 151.436 0.279 0.095 2.052 0.152 414.334 23.406 
C041505a 0.020 23.293 23.112 0.213 0.328 1.869 0.100 261.989 15.106 
C041604a 0.024 16.456 16.329 0.148 0.555 2.254 0.144 6.732 1.239 
C041905a 0.028 17.995 17.855 0.121 0.507 3.601 0.140 6.984 2.234 
C042004a 0.024 24.037 23.686 0.268 0.340 1.431 0.108 53.805 0.015 
C042205a 0.036 216.988 161.155 0.154 0.647 1.548 0.128 489.003 10.973 
C042605a 0.028 85.750 75.993 0.176 0.325 2.475 0.128 14.463 4.400 

 (b) 
 

Subject 
ID 

𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜂𝜂𝐵𝐵 
[s] 

𝐸𝐸1𝐵𝐵 
[AU] 

𝐸𝐸2𝐵𝐵 
[AU] 

𝜏𝜏𝐴𝐴 
[s] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

C010203a 0.032 23.669 19.044 0.202 0.544 1.301 0.144 68.706 0.142 
C010204a 0.028 17.409 17.273 0.249 0.315 2.227 0.100 30.601 0.014 
C010204b 0.036 7.396 7.339 0.258 0.338 1.723 0.104 317.503 1.332 
C010303b 0.056 3.837 0.846 0.192 0.444 1.248 0.136 259.680 24.662 
C010405a 0.024 30.184 29.950 0.085 0.638 2.021 0.108 12.086 3.987 
C010604b 0.036 4.451 4.417 0.240 0.495 1.350 0.124 55.690 2.617 
C010705a 0.056 3.505 3.478 0.270 0.311 1.768 0.128 0.323 0.320 
C010904a 0.044 128.133 48.450 0.214 0.195 2.672 0.128 147.016 0.043 
C011305a 0.064 134.382 67.067 0.183 0.196 2.403 0.176 10.895 2.618 
C011306a 0.032 3.828 3.799 0.314 0.310 1.384 0.108 40.237 4.420 
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C011405a 0.032 12.223 12.128 0.255 0.310 1.693 0.120 2.121 0.910 
C011504a 0.060 94.711 30.815 0.265 0.328 1.371 0.144 0.339 0.336 
C011604a 0.044 13.644 13.539 0.243 0.211 2.246 0.112 0.379 0.020 
C011706a 0.036 22.906 22.129 0.104 0.750 0.948 0.132 0.660 0.655 
C011805a 0.048 366.290 133.721 0.232 0.355 1.367 0.128 90.289 4.736 
C012004a 0.072 192.806 67.536 0.223 0.302 1.393 0.196 31.510 3.118 
C012105b 0.024 23.208 19.873 0.378 0.307 1.455 0.104 316.389 0.053 
C012704a 0.016 37.741 37.448 0.180 0.543 1.347 0.120 340.266 13.609 
C012705a 0.060 57.219 28.843 0.239 0.306 1.601 0.144 0.526 0.451 
C012904a 0.036 15.750 15.628 0.276 0.500 1.256 0.100 152.932 0.069 
C013004a 0.024 16.953 15.492 0.224 0.235 1.642 0.128 5.247 0.903 
C013004b 0.028 4.527 4.492 0.218 0.357 1.861 0.120 56.927 0.775 
C021204a 0.036 12.210 11.651 0.255 0.341 1.483 0.108 0.076 0.075 
C021505a 0.060 311.944 188.182 0.195 0.237 1.575 0.136 12.407 1.342 
C021704b 0.020 8.166 7.705 0.215 0.410 1.105 0.128 4.933 0.219 
C021705a 0.072 6.425 6.375 0.306 0.332 2.115 0.136 29.979 0.232 
C021904a 0.044 7.003 6.949 0.200 0.293 1.566 0.084 1.059 1.051 
C022404a 0.052 190.941 90.274 0.231 0.330 1.480 0.112 151.084 0.959 
C030105a 0.024 2.979 2.956 0.274 0.383 1.343 0.108 107.593 9.483 
C030204b 0.028 10.079 10.001 0.208 0.498 1.493 0.140 56.557 2.042 
C030405a 0.032 12.787 12.687 0.285 0.325 1.614 0.116 79.330 0.035 
C030805a 0.028 41.471 41.150 0.187 0.303 1.857 0.120 9.807 1.799 
C031105a 0.028 22.406 17.282 0.164 0.604 1.697 0.144 12.906 2.583 
C031204a 0.048 33.730 16.480 0.269 0.345 1.459 0.124 386.029 0.563 
C031505a 0.056 146.961 74.120 0.216 0.299 2.009 0.144 128.410 1.597 
C031604a 0.052 7.931 7.843 0.221 0.175 2.878 0.132 30.922 2.115 
C031904a 0.024 7.226 7.170 0.285 0.084 1.904 0.088 83.578 0.768 
C031904b 0.048 230.822 128.482 0.155 0.550 3.017 0.156 313.586 7.001 
C032504a 0.048 4.587 4.552 0.251 0.332 1.937 0.132 0.233 0.231 
C033105a 0.052 358.875 131.893 0.209 0.447 1.454 0.140 398.438 4.216 
C040805a 0.020 52.355 23.180 0.169 0.340 1.566 0.096 5.323 1.791 
C040904a 0.032 14.080 13.868 0.262 0.336 1.731 0.128 152.154 0.042 
C041205a 0.052 388.091 111.979 0.187 0.482 2.094 0.136 301.777 0.103 
C041405a 0.060 350.598 149.250 0.279 0.095 2.052 0.152 227.320 13.143 
C041505a 0.020 24.903 24.710 0.213 0.328 1.869 0.100 339.446 17.625 
C041604a 0.028 18.199 17.580 0.148 0.555 2.254 0.148 9.887 1.435 
C041905a 0.028 14.854 14.739 0.121 0.507 3.601 0.140 7.326 1.953 
C042004a 0.024 32.835 29.863 0.268 0.340 1.431 0.108 345.269 0.737 
C042205a 0.032 158.358 145.772 0.154 0.647 1.548 0.124 307.311 11.864 
C042605a 0.028 121.015 111.622 0.176 0.325 2.475 0.128 15.124 4.764 

 (c) 



 

 58 
 

 
Subject ID 𝜏𝜏𝐵𝐵 

[s] 
𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜂𝜂𝐵𝐵 
[s] 

𝐸𝐸1𝐵𝐵 
[AU] 

𝐸𝐸2𝐵𝐵 
[AU] 

𝜏𝜏𝐴𝐴 
[s] 

𝜃𝜃1𝐴𝐴 
[s-1] 

 
 

C010203a 0.032 11.849 11.500 0.202 0.544 1.301 0.144 312.649  
C010204a 0.028 9.253 9.181 0.249 0.315 2.227 0.100 313.347  
C010204b 0.048 13.202 7.070 0.258 0.338 1.723 0.116 1.116  
C010303b 0.052 4.103 0.845 0.192 0.444 1.248 0.132 304.658  
C010405a 0.048 357.451 142.378 0.085 0.638 2.021 0.132 320.987  
C010604b 0.032 8.896 7.824 0.240 0.495 1.350 0.120 314.198  
C010705a 0.064 7.506 7.447 0.270 0.311 1.768 0.136 308.197  
C010904a 0.028 25.749 21.068 0.214 0.195 2.672 0.112 110.047  
C011305a 0.056 38.395 28.037 0.183 0.196 2.403 0.168 305.600  
C011306a 0.024 18.255 11.233 0.314 0.310 1.384 0.100 313.078  
C011405a 0.076 323.135 91.281 0.255 0.310 1.693 0.164 308.241  
C011504a 0.036 13.562 13.457 0.265 0.328 1.371 0.120 45.980  
C011604a 0.040 11.833 11.742 0.243 0.211 2.246 0.108 315.856  
C011706a 0.040 16.134 16.009 0.104 0.750 0.948 0.136 2.598  
C011805a 0.028 18.257 17.590 0.232 0.355 1.367 0.108 209.939  
C012004a 0.064 245.660 89.040 0.223 0.302 1.393 0.188 323.260  
C012105b 0.028 14.628 11.733 0.378 0.307 1.455 0.108 314.130  
C012704a 0.016 23.216 23.010 0.180 0.543 1.347 0.120 312.014  
C012705a 0.068 48.192 26.440 0.239 0.306 1.601 0.152 309.971  
C012904a 0.040 14.399 14.288 0.276 0.500 1.256 0.104 263.997  
C013004a 0.024 14.282 14.171 0.224 0.235 1.642 0.128 17.784  
C013004b 0.036 5.833 5.788 0.218 0.357 1.861 0.128 311.854  
C021204a 0.036 12.816 12.658 0.255 0.341 1.483 0.108 316.383  
C021505a 0.036 17.040 16.908 0.195 0.237 1.575 0.112 4.450  
C021704b 0.020 9.297 9.225 0.215 0.410 1.105 0.128 315.342  
C021705a 0.072 6.549 6.499 0.306 0.332 2.115 0.136 316.381  
C021904a 0.108 338.877 161.180 0.200 0.293 1.566 0.148 307.544  
C022404a 0.040 13.730 13.624 0.231 0.330 1.480 0.100 255.973  
C030105a 0.024 3.420 3.394 0.274 0.383 1.343 0.108 310.768  
C030204b 0.028 9.355 9.282 0.208 0.498 1.493 0.140 314.395  
C030405a 0.032 12.132 12.038 0.285 0.325 1.614 0.116 0.095  
C030805a 0.024 22.341 22.167 0.187 0.303 1.857 0.116 307.959  
C031105a 0.032 23.174 22.995 0.164 0.604 1.697 0.148 323.187  
C031204a 0.032 10.939 10.854 0.269 0.345 1.459 0.108 0.241  
C031505a 0.040 16.167 15.669 0.216 0.299 2.009 0.128 313.219  
C031604a 0.052 9.589 9.515 0.221 0.175 2.878 0.132 209.361  
C031904a 0.028 7.683 7.624 0.285 0.084 1.904 0.092 261.345  
C031904b 0.064 117.785 50.995 0.155 0.550 3.017 0.172 312.096  
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C032504a 0.052 6.012 5.966 0.251 0.332 1.937 0.136 314.037 15.696 
C033105a 0.028 14.494 14.377 0.209 0.447 1.454 0.116 75.511 2.030 
C040805a 0.064 456.396 43.694 0.169 0.340 1.566 0.140 306.084 49.784 
C040904a 0.036 9.394 9.183 0.262 0.336 1.731 0.132 56.251 3.456 
C041205a 0.024 11.985 11.892 0.187 0.482 2.094 0.108 4.744 0.270 
C041405a 0.036 15.996 15.872 0.279 0.095 2.052 0.128 304.610 20.498 
C041505a 0.024 33.202 21.849 0.213 0.328 1.869 0.104 317.329 19.073 
C041604a 0.056 127.328 57.790 0.148 0.555 2.254 0.176 309.896 41.953 
C041905a 0.060 371.937 128.109 0.121 0.507 3.601 0.172 307.114 50.023 
C042004a 0.028 13.092 12.990 0.268 0.340 1.431 0.112 310.521 27.841 
C042205a 0.032 20.840 20.669 0.154 0.647 1.548 0.124 312.125 34.971 
C042605a 0.040 50.057 24.701 0.176 0.325 2.475 0.140 295.177 110.776 

 (d) 
 

Table A2: Individual results for ITF-4 on validation set 
Subject 

ID 
𝜏𝜏𝐵𝐵 
[s] 

𝜃𝜃1𝐵𝐵 
[s-1] 

𝜃𝜃2𝐵𝐵 
[s-1] 

𝜂𝜂𝐵𝐵 
[s] 

𝐸𝐸1𝐵𝐵 
[AU] 

𝐸𝐸2𝐵𝐵 
[AU] 

𝜏𝜏𝐴𝐴 
[s] 

𝜃𝜃1𝐴𝐴 
[s-1] 

𝜃𝜃2𝐴𝐴 
[s-1] 

C010203a 0.04 7.233 7.177 0.247 0.339 1.427 0.096 296.414 36.552 
C010204a 0.04 9.347 9.274 0.245 0.295 2.154 0.148 0.245 0.243 
C010204b 0.072 367.298 132.744 0.145 0.508 2.390 0.192 308.302 42.903 
C010303b 0.032 10.851 10.767 0.227 0.366 2.162 0.116 0.185 0.105 
C010405a 0.028 21.975 21.805 0.090 0.626 2.991 0.128 262.937 50.631 
C010604b 0.032 2.175 2.158 0.230 0.353 1.336 0.128 54.253 13.361 
C010705a 0.028 12.620 10.905 0.221 0.375 1.465 0.124 58.629 2.275 
C010904a 0.036 13.313 12.191 0.245 0.325 1.741 0.108 56.472 2.072 
C011305a 0.048 5.494 5.451 0.191 0.399 1.678 0.112 308.659 42.789 
C011306a 0.056 3.438 3.411 0.334 0.340 1.511 0.136 249.700 28.275 
C011405a 0.028 31.052 29.789 0.301 0.288 1.578 0.132 312.629 22.519 
C011504a 0.036 12.560 10.424 0.223 0.327 2.162 0.112 56.107 6.198 
C011604a 0.04 4.592 4.009 0.302 0.447 1.210 0.072 32.206 4.859 
C011706a 0.032 10.727 9.815 0.284 0.098 2.414 0.112 314.124 8.557 
C011805a 0.024 9.346 8.517 0.176 0.495 2.579 0.116 1.010 0.332 
C012004a 0.02 26.300 24.904 0.158 0.297 3.321 0.108 312.996 19.255 
C012105b 0.04 2.803 2.782 0.252 0.326 1.335 0.116 207.188 30.262 
C012704a 0.04 3.482 3.455 0.479 0.290 1.491 0.156 309.891 35.503 
C012705a 0.028 26.950 20.964 0.171 0.493 1.210 0.136 312.969 20.287 
C012904a 0.036 23.256 19.600 0.216 0.336 1.726 0.112 307.781 40.845 
C013004a 0.04 124.572 60.318 0.257 0.270 1.759 0.128 314.590 34.822 
C013004b 0.04 22.330 22.157 0.179 0.190 2.814 0.120 312.554 37.157 
C021204a 0.028 12.854 12.754 0.218 0.240 2.231 0.120 5.603 0.748 
C021505a 0.028 317.444 182.610 0.143 0.486 1.539 0.104 291.784 43.739 
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C021704b 0.048 12.109 12.015 0.193 0.323 2.754 0.128 312.341 21.753 
C021705a 0.044 18.325 18.183 0.206 0.259 1.967 0.132 305.238 59.594 
C021904a 0.028 9.753 9.678 0.308 0.286 1.447 0.124 0.157 0.156 
C022404a 0.02 40.926 40.608 0.126 0.355 1.613 0.092 311.399 38.086 
C030105a 0.024 13.945 13.837 0.202 0.294 2.591 0.128 261.550 12.709 
C030204b 0.104 221.744 218.862 0.274 0.231 0.723 0.104 258.512 241.564 
C030405a 0.02 15.533 15.413 0.117 0.432 2.960 0.108 8.059 3.318 
C030805a 0.02 12.236 12.141 0.307 0.293 1.245 0.088 314.104 8.839 
C031105a 0.044 8.853 8.235 0.277 0.360 1.559 0.116 1.441 0.365 
C031204a 0.06 3.980 3.949 0.299 0.310 1.778 0.136 309.206 41.102 
C031505a 0.1 27.257 18.543 0.208 0.442 1.974 0.180 305.643 57.703 
C031604a 0.036 11.206 11.119 0.208 0.355 1.609 0.128 315.050 8.925 
C031904a 0.072 62.001 13.869 0.256 0.284 1.401 0.172 299.372 92.808 
C031904b 0.04 9.423 9.350 0.253 0.363 1.835 0.164 314.976 18.912 
C032504a 0.024 7.081 4.395 0.216 0.397 1.289 0.100 318.644 1.019 
C033105a 0.048 43.893 16.609 0.148 0.742 0.941 0.156 220.933 15.307 
C040805a 0.036 3.136 3.112 0.274 0.336 1.369 0.124 306.745 31.359 
C040904a 0.056 12.131 12.037 0.206 0.189 3.248 0.160 310.843 30.411 
C041205a 0.056 6.494 6.444 0.274 0.176 1.746 0.112 306.624 52.676 
C041405a 0.028 23.278 16.418 0.209 0.262 1.985 0.124 313.026 21.383 
C041505a 0.064 26.373 16.607 0.266 0.175 2.289 0.164 335.698 24.872 
C041604a 0.036 17.707 17.570 0.208 0.366 2.053 0.136 310.800 30.971 
C041905a 0.056 2.944 2.921 0.286 0.333 1.446 0.144 304.886 61.530 
C042004a 0.052 46.466 37.100 0.147 0.527 1.757 0.128 260.778 19.528 
C042205a 0.056 3.359 3.333 0.324 0.514 1.314 0.128 306.738 52.046 
C042605a 0.02 14.244 14.129 0.245 0.264 1.985 0.088 262.632 0.117 
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