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Abstract

In this paper, we study the interdependencies between system’s
leakage and on-chip temperature. We show that the temperature
variation caused by on-chip heat accumulation has a large impact
in estimating the system’s leakage energy. More importantly, we
propose an online temperature-aware leakage minimizationtech-
nique to demonstrate how to incorporate the temperature informa-
tion to reduce energy consumption at real time. The basic idea is
to run when the system is cool and the workload is high and to
put the system to sleep when it is hot and the workload is light.
The online algorithm has low run-time complexity and achieves
significant leakage energy saving. In fact, we are able to getabout
25% leakage reduction on both real life and artificial benchmarks.
Comparing to our optimal offline algorithm, the above onlineal-
gorithm provides similar energy savings with similar decisions on
how to put the system to sleep and how to wake it up. Finally, our
temperature-aware leakage minimization techniques can becom-
bined with existing DVS methods to improve the total energy effi-
ciency by further saving on leakage.

1 Introduction

As technology scales down to the deep sub-micron (DSM) domain,
chip power dissipation and power density are increasing rapidly.
Dynamic power and leakage power are the two main contributors
for chip power dissipation. The recent trend is that leakagepower
is becoming more and more significant and is predicted to be the
dominant source of power dissipation in the near future [2].For
example, leakage accounts for almost 50% of total power on In-
tel Pentium IV processors [5]. Meanwhile, the power densityis
doubled every three years and is projected to reach100W/cm2 at
process technologies below 50nm [23]. These have posed critical
challenges for DSM design.

One of such challenges is power and energy efficient system
design, particularly for real-time systems where energy islimited.
Dynamic voltage scaling (DVS) technique is among the most effec-
tive in reducing system’s dynamic power and energy consumption.
To obtain the maximal dynamic energy reduction, DVS method ag-
gressively slows down the task’s execution such that the completion
occurs at the task’s deadline sharply. However, this comes with a
longer execution time which results in larger leakage energy dissi-
pation. With the steep increase of leakage, new DVS policieshave
been proposed to minimize system’s total power and energy con-
sumption, instead of the dynamic part only [8, 11, 21]. Basically,
they propose to operate the system at a speed higher than the mini-
mum and shut down the system or put it into asleep state when the
task is completed earlier than deadline. This trades the dynamic en-
ergy saving for more leakage saving in order to obtain the maximal
total energy reduction.

These power and energy minimization methods will help on-
chip cooling device to keep the hot chip cool. However, with the
rapid increase of power density, chip temperature goes up accord-
ingly. High temperature not only affects the performance and reli-
ability of the chip, but also has a significant impact to the leakage
current. Unfortunately, most leakage reduction techniques do not
consider this impact. In fact, transistor’s leakage current has an
exponential dependence on temperature according to the Berkeley
BSIM model [22]. This interdependency between leakage and tem-
perature implies that if the system is not designed properly, chip

temperature and leakage power will interact in a positive feedback
loop and lead to thermal runaway.

To prevent this from happening, several temperature manage-
ment techniques have been proposed for general purpose proces-
sors and large sever systems [3, 7, 15]. The architectural level
dynamic thermal management (DTM) technique [3, 7] employs a
temperature monitoring mechanism with the help of on-chip ther-
mal sensors or thermal estimation. If the chip temperature is higher
than a pre-determined maximal temperature threshold, certain ther-
mal adjustment techniques will be engaged to reduce the temper-
ature. These techniques include clock frequency/voltage scaling,
fetch-toggling, instruction throttling, and control theoretic based
approaches. When the temperature drops below a pre-determined
minimal temperature threshold, the processor will return to the nor-
mal execution mode.

The DTM technique is very effective in controlling the peak
temperature for general purpose processors [3, 7, 15]. However,
when the thermal adjustment techniques are used, the systemwill
slow down. Therefore, DTM cannot guarantee the deadlines that
most real-time tasks require and is not suitable for real-time sys-
tems. In addition, the values ofmax andmin temperature thresh-
olds will affect the energy consumption to complete a real-time
task. DTM selects such thresholds in order to control the peak tem-
perature, and its solution may not be good for energy minimization,
another important requirement for real-time systems.

Our goal in this paper is to show (1) the importance of consid-
ering temperature variation during task execution for energy mini-
mization, leakage in particular; and (2) how to incorporatetemper-
ature information for energy reduction in real-time systems.

1.1 Motivational Example
We consider an asynchronous digital subscriber line (ADSL)mo-
dem application with a deadline 2048ms and workload 864ms based
on the ADSL standard [19]. Figure 1 shows the energy consump-
tion for executing this application under different approaches.

No-DVS is the traditional way of running at full speed for 864ms
and then going to sleep. Its energy consumption is 40.49J, inwhich
21.46J is on dynamic and 19.03J is on leakage.DVS operates at the
lowest voltage that can complete at the 2048ms deadline. It reduces
the dynamic energy to the minimal level of 6.56J, but consumes
more leakage due to its longer execution time.CS-DVS [8] runs at
a slightly higher speed than DVS in order to minimize total energy.
Comparing to DVS, the dynamic energy using CS-DVS increases
to 7.02J, but the leakage energy decreases to 9.40J, and total en-
ergy is reduced to 16.43J. Our proposed Temperature-Aware LeaK-
ageTALK minimization method runs at the same speed as CS-DVS
with more than 22% energy saving on leakage.

Leakage increases rapidly as temperature rises. In the above
approaches, leakage is calculated with transient temperature (See
section 3 for details.). However, existing literature treats tempera-
ture as a constant during the execution. Figure 1 also reports the
leakage estimation with temperature fixed at the highest tempera-
ture 388K and the lowest starting temperature 300K. One can easily
see that it is important to consider temperature.s impact toleakage.

The idea behind TALK is to restrict the execution at high tem-
perature. This is clearly shown in Figure 2 where the temperature
curve for each approach is given. Although No-DVS has the short-
est execution time, it has the largest leakage because it executes
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Figure 1: Energy consumption for executing ADSL application un-
der different approaches. For each approach, three leakagenum-
bers are obtained with temperature, from left to right, fixedat the
highest, varied based on the accumulated heat, and fixed at the low-
est temperature. Dynamic energy is shown in parentheses andleak-
age energy is shown in the figure on top of each bar.

0 500 1000 1500 2000
Time (ms)

300

310

320

330

340

350

360

370

380

390

T
em

pe
ra

tu
re

 (
K

)

No-DVS
DVS
CS-DVS
TALK

Figure 2: Temperature behavior for executing ADSL benchmark
with No-DVS, DVS, CS-DVS, and TALK.

at high temperature. CS-DVS has less leakage than DVS because
it completes earlier and can go to the sleep (or shut down) mode
where there is no or little leak. However, CS-DVS still executes
at a relatively high temperature, higher than 360K, for a long time.
TALK monitors the chip temperature and decides whether to ex-
ecute or to cool the system down. Consequently, its temperature
curve goes up and down and most of the time it runs at temperature
lower than 350K.

1.2 Contributions

The contribution of this paper are the following: we study the
temperature and leakage interdependencies for real-time systems;
we propose optimal offline and efficient online temperature-aware
leakage minimization algorithm to adjust the system’s active/sleep
mode during task execution in order to reduce the leakage energy.
Both algorithm can take the wakeup overhead in time and energy
as well as the energy dissipation, if any, at sleep mode into con-
sideration. The proposed online algorithm requires littlehardware
support and has very low run-time complexity. We simulate both
algorithms on real life benchmarks. The results demonstrate that
1) both the offline and online algorithm can reduce leakage energy
by about 25% with moderately small number of wake-ups; 2) both

the online algorithm’s energy saving and its decision on system ac-
tive/wakeup are very close to those of the optimal offline algorithm;
and 3) both algorithms can be combined with existing DVS tech-
niques to further enhance their energy efficiency.

2 Related Work

A large amount of work have been done in designing DVS algo-
rithms to reduce the dynamic power consumption in real-timesys-
tems [1, 6, 10, 13, 17]. However, the energy saving achieved by
DVS comes at the cost of extended execution time, which means
the system will leak for a longer period and generate more leak-
age energy. Recently, due to the steep increase in leakage power,
several new DVS techniques have been proposed to minimize the
total energy in the real-time system [8, 20, 21]. In [20], theauthor
proposed a combined supply voltage and threshold voltage scaling
technique to minimize dynamic power and leakage power simul-
taneously. In [8] and [21], both authors identify a criticalsupply
voltage in the DVS design space, such that if the supply voltage is
scaled down below the critical voltage, the increase in leakage en-
ergy will surpass the reduction in dynamic energy and thus increase
the total energy consumption. Based on such critical voltage/speed,
[8] proposed a scheduling algorithm that keeps the tasks running
back-to-back and leaves a long idle duration for the system to shut-
down. None of these approaches consider the temperature effect in
the leakage power. That is, they assume temperature is a constant.

On the other hand, temperature management have received more
attention in general purpose processor design. Skadron et al. presents
a microarchitectural level thermal model that considers both the
temporal and local thermal effects on chip [16]. A few dynamic
temperature management techniques have been proposed to con-
trol the peak temperature in processors. A trigger mechanism is
designed in [14], where an on-chip sensor is used to measure the
temperature; whenever the temperature exceeds a predetermined
threshold, athrottling technique is used to reduce the number of
instructions flowing to the processor core. Huang et al. [7] pro-
posed a framework for temperature management at operating sys-
tem levels. Brooks et al. [3] eliminated the delay overhead of tem-
perature sensor by estimating the temperature based on the power
consumption in a thermal window. [15] used a feedback control
theory based approach to tune the system performance at a finer
granularity. Srinivasan et al.[18] proposed an thermal management
technique for multimedia applications. The runtime temperature is
predicted based on the starting temperature. However, theydid not
consider leakage power, which is an unnegligible portion oftotal
power and is temperature sensible.

3 Preliminaries

3.1 System model

We study systems that execute a set of real-time tasks (also called
applications or jobs). To keep our focus on the temperature-aware
energy minimization, we assume that the tasks have already been
scheduled to meet their deadlines. That is, each task has itssched-
uled starting time, completion time, and worst case execution time.
If the system is DVS enabled, each task will also have its operating
voltage and speed. Interested readers can refer to [1, 8, 10,13, 17]
for how to determine such schedule.

The system has two operation modes: anactive mode and a
sleep mode. During theactive mode, the system executes the jobs
and dissipates both dynamic and leakage power; during thesleep
mode, no job is performed and there is only leakage which is negli-
gible with leakage control mechanisms such as power gating.When
the system switches from thesleep mode toactive mode, an addi-
tional time, called “wakeup” time, is needed before any job can be
executed. Normally, a small amount of energy is consumed during
this “wakeup” time.



3.2 Thermal model

During theactive mode, both the dynamic and leakage energy dis-
sipated by the system will be converted into heat. Some of theheat
will be removed by the cooling device such as a heatsink; the rest
heat will accumulate and result in a temperature increase onthe
chip. Similarly, when the system enters thesleep mode, the chip
will begin to cool down since little power is produced duringthe
sleep mode. We apply the model described in [15] to characterize
thermal behavior in both heating and cooling of the chip. It is based
on the well-known duality between heat transfer and electrical phe-
nomena in RC circuits.

The change in temperatureT over timet on chip can be de-
scribed using equation (1) below:

T (t) = P ·Rth+Tamb+(Tcur−P ·Rth−Tamb)·e
−

t
RthCth (1)

whereP is the transient power dissipated in the chip;Rth and
Cth are the equivalent thermal resistance and thermal capacitance;
Tamb is the ambient temperature of the environment, normally as-
sumed to be room temperature; andTcur is the current temperature
of the chip.

When chip temperature rises, the system will reach a state where
the amount of heat generated during a period of time becomes equal
to the amount of heat being removed by the heatsink. Hence there
will be almost no temperature variation and this state is generally
called thethermal equilibrium. Let’s denote the temperature at
this state asK1. Similarly, when the chip cools down, it will also
reach a temperatureK2 where no more heat can be removed by the
heatsink. K2 is normally very close to the ambient temperature.
We further denote the productRthCth asK3. Now, we can use the
following functions to describe the temperature rise and fall:

Trise(t) = K1 − (K1 − Tcur)e
−

t
K3 (2)

Tfall(t) = K2 + (Tcur − K2)e
−

t
K3 (3)

3.3 Energy model

System’s energy consumption consists of dynamic energy andleak-
age energy. Dynamic energy is proportional toCs · V 2

dd, whereCs

is the effective capacitance andVdd is the supply voltage. Note that
dynamic energy is independent of temperature. Leakage energy is
caused by leakage current flowing in the CMOS circuits, whichin-
cludes gate leakage and subthreshold leakage. The leakage power
can be calculated as:

Pleakage = Ng · Ileakage · Vdd (4)

whereNg is the number of equivalent transistors in the system and
Ileakage is the leakage current that can be modeled as follows for
65nm technology [12]:

Ileakage = A · T 2 · e
αVdd+β

T + B · eγVdd+δ (5)

In this formula,A, B, α, β, γ, andδ are empirical constants that
can be found in [12];T is the temperature. The first term denotes
the subthreshold leakage that increases asT goes up. The second
term is gate leakage, which is insensitive to temperature and is pro-
jected to be controlled by high-K material [9]. Therefore, we focus
on the subthreshold leakage.

In summary, when the system stays atactive mode for the in-
terval of [t1, t2] and goes tosleep mode for the interval of[t2, t3],
its energy dissipation will be

Etotal =
∫ t2

t1
Pactivedt +

∫ t3

t2
Psleepdt

= (CsV
2

dd · (t2 − t1) +
∫ t2

t1
Pleakagedt) + Psleep · (t3 − t2)(6)

wherePsleep is the power when the system is atsleep mode. Note
that the leakage powerPleakage depends on temperature which
changes over time as indicated from equations (1)-(5).

4 Temperature-Aware Leakage Minimization

In this section, we will formulate the temperature-aware leakage
minimization problem and describe our offline and online tech-
niques to solve this problem.

4.1 Problem Formulation

As we have discussed in the above section, we restrict our study
on a single scheduled task and use the deadline and workload pair
(D, W ) to represent its scheduled starting time, completion time,
and worst case execution time. Furthermore, the task is scheduled
to be operated at voltageVdd. Definex(t) to be 1 or 0 if the system
is at theactive or sleep mode at timet. Our goal is to determine
function x(t) in interval [0, D] such that the workloadW can be
completed and the total energy expressed below is minimized:

∫ D

0

(Pactive · x(t) + Psleep · (1 − x(t))dt (7)

Since dynamic energy is independent of temperature and the
system’s total active time will beW to complete the workload, the
dynamic energy part of equation (7) will be a constant. The second
term in equation (7) will also be the constantPsleep · (D − W )
wherePsleep is constant. Hence we can formulate this as the fol-
lowing temperature-aware leakage (TALK) minimization problem:
determining x(t) such that

∫ D

0

x(t)dt ≥ W (8)

and minimizes

∫ D

0

Pleakage(t) · x(t)dt (9)

Since leakage energy in equation (9) depends on temperature
and also impacts temperature through hear accumulation, this be-
comes a non-linear feedback control problem which is known to be
hard. A practical formulation is to partition the interval[0, D] into
0 = t0 < t1 < · · · < tN = D and to findx(t) such that

x(t)is constant in each interval[ti, ti+1) i = 0, 1, · · · , N − 1 (10)
N−1∑
i=1

x(ti) · (ti+1 − ti) ≥ W (11)

and to minimize
N−1∑
i=1

∫ ti+1

ti

Pleakage(t) · x(ti)dt (12)

Note that when interval[ti, ti+1) is small, we can approximate
the leakage power as a constant. Furthermore, we can integrate the
wakeup timetwakeup and energyEwakeup overhead by defining
wi = 1 if x(ti) > x(ti−1) andwi = 0 otherwise. Thus, we can
rewrite the above equations (11) and (12) by:

N−1∑
i=1

x(ti) · (ti+1 − ti − wi · twakeup) ≥ W (13)

N−1∑
i=1

(Pleakage(ti) · x(ti) · (ti+1 − ti) + wi · Ewakeup) (14)



4.2 Offline TALK Minimization

For the simplicity of discussion, we assume thatPsleep = Ewakeup

= twakeup = 0 andti+1 − ti = D
N

. However, our proposed TALK
minimization techniques can take such concerns into consideration
as formulated explicitly in equations (13) and (14). A solution to
this problem will be the values ofx(ti) for i = 0, 1, · · · , N − 1.
The offline algorithm determines such values based on a dynamic
programming paradigm and the online algorithm decides the value
of x(ti) at timeti during the task’s execution.

Suppose that according to a solutions = {x(t0), · · · , x(tN−1)},
at time ti, W s

i is the amount of work completed,T s
i is the cur-

rent temperature, andEs
i is the total energy consumption. Two

solutionss ands′ areequivalent if W s
i = W s′

i , T s
i = T s′

i , and
Es

i = Es′

i for eachi = 0, 1, · · · , N − 1. We say thats dominates
s′ at timeti if for eachj ≤ i, W s

i ≥ W s′

i , T s
i ≤ T s′

i , Es
i ≤ Es′

i ,
and at least one of the equal signs does not hold. Intuitively, s′ is
dominated because it does not complete more workload, or ends up
with a higher temperature, or consumes more energy.

Our dynamic programming based offline TALK minimization
algorithm is motivated by the observation that an optimal solution
cannot be dominated by any other solution for eachti. It constructs
an optimal solution as follows:

1. start with two candidate solutions
s = {x(t0) = 1, W s

i = 0, T s
i = Tamb, E

s
i = 0} and

s′ = {x(t0) = 0, W s′

i = 0, T s′

i = Tamb, E
s′

i = 0}.
2. calculatex(t1), W

s
i , T s

i andEs
i for each current candidate

solutions that hasx(t0) = 1.
3. eliminate all the dominated candidate solutions at timet1.
4. repeat steps 2 and 3 fort2, · · · , tN .
5. select a candidate solutions that hasW s

i ≥ W and the
smallestEs

i as the optimal solution.
We mention that this offline algorithm gives the optimal solu-

tion to the TALK minimization problem. The algorithm’s complex-
ity is linear toN , the number of intervals that we partition[0, D]
andn, the largest number of candidate solutions at a step. However,
in the worst case, this (in particularn) will still be exponential to
N . Nevertheless, this offline algorithm provides the optimalso-
lution with a given partition and we will use this to evaluatethe
performance of our online heuristic described next.

4.3 Online TALK Minimization

Input: D, W, ti, T (t0)
Output: x(ti)
1. at timet0
2. remaining workloadWr = W;
3. remaining timeDr = D;
4. for the starting timeti of each interval[ti, ti+1)
5. if (Wr ≥ Dr) return cannot complete;
6. if (Wr == Dr)
7. then x(tj) = 1, for i ≤ j ≤ N ; return;
8. if ( Wr

Dr−Wr
< Tcur−K2

K1−Tcur
)

9. then x(ti) = 0;
10. else x(ti) = 1;
11. Wr = Wr - (ti+1 − ti);
12. Dr = Dr - (ti+1 − ti);
13. if (Wr ≤ 0) x(tj) = 1, for i ≤ j ≤ N ; return;

Figure 3: Pseudo-code of the online TALK minimization heuristics.
Figure 3 illustrates the online heuristics for the TALK mini-

mization problem. Motivated by the observation in the example
and the leakage current’ dependency on temperature as shownin
equation (5), this heuristics seeks to avoid executing at high tem-
perature to reduce leakage. It puts the system tosleep mode to

cool the system down whenever the task’s workload is relatively
light and the current temperature is high.

To measure how demanding a task is at a decision pointti, we
calculate the ratioη between the remaining workloadWr over the
remaining idle timeDr −Wr, that is,η = Wr

Dr−Wr
. This also mea-

sures the ratio of the time that the system will heat up over the time
that the system can cool down before the deadlineD. We further
calculate the ratioθ between the time for the system temperature
to rise one degree over the time to go down one degree from the
current temperatureTcur = T (xi). It indicates in which direction,
up or down, that the temperature can change more. From equations
(2) and (3), we have

θ = |
dTfall/dt

dTrise/dt
| =

Tcur − K2

Ki − Tcur

(15)

If η < θ (step 7), the system goes tosleep mode because small
η implies not heavy workload and largeθ suggests high benefit in
cooling the system down. Note thatθ is small at low temperature
Tcur. This encourage system to stay atactive mode (step 10) unless
the relative workloadη is even lower. On the other hand, at high
temperature, the large value ofθ will put the system to thesleep
mode (step 9) as long as the relative workload is not extremely
demanding (that is, very largeη).

Finally, we mention that this online TALK minimization tech-
nique requires little hardware and has very low run-time complexity
from the following analysis. Steps 11 and 12 update the remaining
workload and remaining time with a couple of subtraction; current
temperature information can be obtained either from on-chip tem-
perature sensor or by estimation [3, 14]; the condition statement in
step 8 requires a couple of subtraction and two division. In fact, we
track the values ofDr andWr for the convenience of explanation.
We can instead trackDr −Wr andWr to save several subtraction.

5 Simulation Results

In this section, we describe our simulation setup and reportthe
simulation results. We are particularly interested in 1) how much
leakage the offline and online TALK minimization algorithmscan
save; 2) how good is the online TALK heuristics comparing to the
optimal offline TALK algorithm; and 3) how much can our TALK
algorithms help on systems where existing DVS techniques have
already been applied to minimize total energy.

5.1 Simulation Setup

We simulate theTALK algorithms on two types of systems: one
employs a processor running at a single supply voltage 1.0V,which
is the basic model for many small embedded applications; theother
features a DVS-enabled processor that can run at voltages from
0.5V to 1.0V in a step of 0.5V. Both systems are implemented ina
65µm technology with a threshold voltage 0.295V. The fixed fre-
quency in the first system is 500MHz; the highest and the lowest
frequency in the second system ranges from 200MHz to 500MHz
under different supply voltages. The processor in the system is im-
plemented based on the Transmeta processor model [8]. It hasa
wakeup energy overhead483µJ for the processor to switch from
thesleep mode toactive mode. The wakeup delay overhead is5ms.
During thesleep mode, the processor dissipates merely50µW power.
The thermal modeling of our system is based on [16]. We assume
an ambient temperatureK2 = 300K; the maximal temperatureK1

from 363K to 388K for different supply voltages; and the thermal
constantRthCth is 105ms.

We employ both online and offlineTALK algorithms to run
eleven benchmarks. The first benchmark is an MPEG4 media en-
coding [17]; the second to the fourth benchmarks are taken from
the Hartstone suite [4]; the fifth and sixth benchmarks are extracted
from the ADSL standard’s initialization sequences [19]; the rest
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Figure 4: Temperature trace in two real-time benchmarks running offline and online algorithms.

five benchmarks are generated artificially based on the characteris-
tics of real-life benchmarks. These benchmarks are representative
of different system utilization ratio.

5.2 Leakage Reduction in a Single-Voltage System

In a single-voltage system without temperature awareness,the most
simple and energy efficient way for the processor is to run thetasks
up front and switch to thesleep mode to saver energy. Since the
dynamic energy depends only onVdd and is insensitive to temper-
ature, they are the same in both the simple temperature awareless
algorithm and ourTALK algorithms. Our focus is on the leakage
energy reduction by temperature aware algorithms and hencewe
report the leakage saving ofTALK algorithms in Table 1.

The first column lists the benchmark names; the second and
third column show the deadline and workload for each benchmark,
and we assume the tasks’ execution time is always equal to the
workload. The leakage energy consumption in the system using
the simple temperature awareless algorithm is shown in the fourth
column. In the rest part of this table, we demonstrate the leakage
savings of both online and offlineTALK algorithms and the cor-
respondingwakeup times of the processor: the first four columns
show the results for interval size 100ms used in theTALK algo-
rithm; the next four columns are results for interval size 50ms; and
the last four columns are the results for interval size 20ms.The
#wkp1 and #wkp2 columns represent the number of times the pro-
cessor wakes up fromsleep mode in online and offline algorithms,
respectively.

We observe that as the interval size reduces, both online and
offline algorithms can achieve larger energy saving. This isquite
intuitive in that the finer granularity, potentially the more times the
algorithm can put the system intosleep mode to save leakage en-
ergy. In fact, we see the number of times for the system to wakeup
is inversely proportional to the interval sizes. In practical, choosing
the interval size is also restricted by the delay and energy overhead
for the system to switch fromsleep mode toactive mode. The use
of interval gives the freedom to design for different systemsettings.

In general the leakage saving by offline and online algorithms
are very similar while the online algorithm have more wake-ups
than the offline one. In a few cases of offline algorithm, we could
not get the results because of the time constraints. Finally, the last
row of the table shows the average results over the eleven bench-
marks. OurTALK algorithms can achieve an average leakage en-
ergy saving between 20% to 30% percent with three different in-
terval sizes. This saving is achieved by putting the processor to
sleep 3 to 23 times on average. Note that the average number of
wakeup times does not include that in benchmark MPEG4 because
it is substantially larger than the others due to the tasks’smuch
longer period and execution time. Thus, we think it’s reasonable to
treat this particular benchmark separately.

As we have explained in previous sections, the leakage energy
saving ofTALK algorithm is achieved by lowering the system tem-
perature. Figure 4 illustrates the temperature trace when the system
executes several benchmark tasks using online and offlineTALK al-
gorithms. We can see that the temperature curves in these twoal-

Table 2: Total energy consumption with No-DVS, traditionalDVS,
CS-DVS, and online and offline TALK algorithms.

Benchmark Items No-DVS DVS CS-DVS Online Offline
CH2 leakage 5.4 24% 45% 60% 61%

dynamic 7.5 75% 66% 66% 66%
total 12.9 54% 57% 63% 64%
Vdd 1.0 0.5 0.6 0.6 0.6

CO leakage 2.2 14% 38% 56% 57%
dynamic 3.7 75% 65% 65% 65%

total 5.9 52% 55% 61% 62%
Vdd 1.0 0.5 0.6 0.6 0.6

Airflow leakage 3.2 18% 39% 61% 63%
dynamic 5.0 75% 65% 65% 65%

total 8.2 53% 55% 63% 64%
Vdd 1.0 0.5 0.6 0.6 0.6

ADSL1 leakage 5.1 30% 41% 46% 44%
dynamic 7.1 70% 65% 65% 65%

total 12.2 53% 57% 59% 59%
Vdd 1.0 0.55 0.6 0.6 0.6

ADSL2 leakage 19.0 38% 51% 62% 61%
dynamic 21.5 69% 67% 67% 67%

total 40.5 54% 59% 64% 64%
Vdd 1.0 0.55 0.6 0.6 0.6

Bmk1 leakage 7.8 13% 36% 54% 54%
dynamic 9.9 75% 65% 65% 65%

total 17.7 48% 52% 60% 60%
Vdd 1.0 0.5 0.6 0.6 0.6

gorithms resemble each other. The peak temperature in benchmark
ADSL2 is much lower (less than 325K) compared to 374K in the
simple temperature awareless algorithm. This correspondsto the
largest leakage saving in Table 1.

5.3 Total Energy Reduction in DVS-Enabled Sys-
tems

Next, we apply theTALK algorithms to a system that supports
dynamic voltage scaling. We compare the total energy savingof
TALK with the traditional DVS algorithm (DVS) and the leakage
aware DVS algorithm (CS-DVS). Due to the quadratic dependency
of dynamic energy on the supply voltage and the increasing ofleak-
age energy over time, the DVS technique becomes inefficient only
when the voltage is scaled down below certain point, which isde-
fined as the critical voltage in [8]. In five out of eleven bench-
marks, DVS algorithm will not be able to scale the voltage down
below 0.7V, which is higher than the critical voltage for CS-DVS
to be superior. Therefore, the traditional DVS algorithm that ex-
tends the execution over the entire period by running at a lowest
possible voltage is still the most energy efficient way for those five
benchmarks. And the CS-DVS will assign the same voltages as the
traditional DVS. In these case, there will be no idle time foreach
task and henceTALK algorithms are not applicable in such cases.

We present the total energy saving usingTALK algorithm on the
rest six benchmarks in Table 2. For each benchmark, we display the
leakage energy, dynamic energy, total energy and the voltage to run
this benchmark in four rows. The third column lists the results for



Table 1: Leakage energy using traditional algorithm and temperature aware algorithms with different interval size.
leakage interval = 100ms interval = 50ms interval = 20msBenchmarkD (ms) W (ms)
w/o t.a. online offline #wkp1 #wkp2 online offline #wkp1 #wkp2 online offline #wkp1 #wkp2

MPEG4 60000 50000 1213.2 10% n/a 413 n/a 12% n/a 727 n/a 14% n/a 2344 n/a
CH2 1000 300 5.4 25% 28% 3 2 32% 35% 6 5 35% 37% 15 12
CO 1000 150 2.2 16% 16% 2 1 23% 27% 3 2 30% 32% 8 7

airflow 2000 200 3.2 19% 20% 2 1 31% 33% 4 3 39% 41% 8 9
ADSL1 576 285 5.1 20% 20% 3 2 22% 23% 6 4 25% 25% 15 5
ADSL2 2048 864 19.0 33% 34% 9 8 37% 38% 18 17 39% n/a 43 n/a
Bmk1 1000 400 7.8 26% 31% 4 3 32% 34% 8 7 34% 36% 20 15
Bmk2 1000 500 10.2 27% 29% 6 6 28% 31% 11 10 31% 32% 26 15
Bmk3 1000 600 12.6 24% 25% 4 4 26% 27% 11 8 27% 27% 29 12
Bmk4 1000 700 15.0 19% 19% 5 3 21% 21% 12 6 21% 22% 34 15
Bmk5 1000 800 17.5 12% 13% 4 2 15% 15% 11 4 15% 16% 37 10

Average 21% 23% 4.2 3.2 25% 28% 9 6.6 28% 30% 23.5 11.1

a system without using DVS and always runs at a reference voltage
1.0V. One can see the leakage energy in this case is the same asthe
one we have presented in Table 2. The fourth to seventh column
show the energy saving over NO-DVS scheme achieved by DVS,
CS-DVS, and ourTALK online and offline algorithms respectively.
for most benchmarks, the DVS algorithm will run the tasks with
the lowest voltage 0.5V that results in 75% reduction in dynamic
energy and 23% reduction in leakage energy on average. However,
it executes the tasks longer and consumes 32% more leakage en-
ergy than CS-DVS algorithm on average. OurTALK algorithms
will run at the same supply voltages determined by CS-DVS algo-
rithm; however, it selectively puts the processor intosleep mode
based on the chip temperature when executing the tasks.

We see that our online and offline algorithms can save 61.7%
and 61.9% of total energy on average over the No-DVS scheme
respectively; and this saving is 10.6% higher than the CS-DVS al-
gorithms. Interestingly, we see that the leakage saving ofTALK
algorithms over CS-DVS is similar to the leakage saving in single-
voltage system in Table 1.

6 Conclusions

In this paper we stress the importance of temperature considera-
tion in designing energy efficient embedded systems. We study the
temperature impact on leakage energy and propose an online and
an offline temperature aware leakage minimization algorithms that
adjust the processor modes at runtime based on the chip tempera-
ture. Our online algorithms can improve the energy saving by18%
over the traditional DVS algorithm and 11% over the leakage aware
DVS algorithm.
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