Temperature-Aware L eakage Minimization Techniques for Real-Time Systems

Abstract

In this paper, we study the interdependencies betweennsigste
leakage and on-chip temperature. We show that the temperatu
variation caused by on-chip heat accumulation has a largadn

in estimating the system’s leakage energy. More imporanté
propose an online temperature-aware leakage minimizagicim-
nigue to demonstrate how to incorporate the temperatuoenr-
tion to reduce energy consumption at real time. The basi isle
to run when the system is cool and the workload is high and to
put the system to sleep when it is hot and the workload is .light
The online algorithm has low run-time complexity and achigev
significant leakage energy saving. In fact, we are able t@agetit
25% leakage reduction on both real life and artificial benatks.
Comparing to our optimal offline algorithm, the above onlale
gorithm provides similar energy savings with similar dewis on
how to put the system to sleep and how to wake it up. Finally, ou
temperature-aware leakage minimization techniques carotre
bined with existing DVS methods to improve the total enerfiy e
ciency by further saving on leakage.

1 Introduction

As technology scales down to the deep sub-micron (DSM) domai
chip power dissipation and power density are increasinglhap
Dynamic power and leakage power are the two main contributor
for chip power dissipation. The recent trend is that leakameer

is becoming more and more significant and is predicted to ée th
dominant source of power dissipation in the near future Rbr
example, leakage accounts for almost 50% of total power en In
tel Pentium IV processors [5]. Meanwhile, the power denisty
doubled every three years and is projected to rd@efV /cm? at
process technologies below 50nm [23]. These have posechtrit
challenges for DSM design.

temperature and leakage power will interact in a positieslfack
loop and lead to thermal runaway.

To prevent this from happening, several temperature manage
ment techniques have been proposed for general purposesproc
sors and large sever systems [3, 7, 15]. The architectwal le
dynamic thermal management (DTM) technique [3, 7] employs a
temperature monitoring mechanism with the help of on-chgr-t
mal sensors or thermal estimation. If the chip temperatinigher
than a pre-determined maximal temperature thresholdjioetter-
mal adjustment techniques will be engaged to reduce thegemp
ature. These techniques include clock frequency/voltagéng,
fetch-toggling, instruction throttling, and control thetic based
approaches. When the temperature drops below a pre-datstmi
minimal temperature threshold, the processor will retartié nor-
mal execution mode.

The DTM technique is very effective in controlling the peak
temperature for general purpose processors [3, 7, 15]. tawe
when the thermal adjustment techniques are used, the sygtem
slow down. Therefore, DTM cannot guarantee the deadlinas th
most real-time tasks require and is not suitable for reaktsys-
tems. In addition, the values efax andmin temperature thresh-
olds will affect the energy consumption to complete a reakt
task. DTM selects such thresholds in order to control thé& pera-
perature, and its solution may not be good for energy mirdtion,
another important requirement for real-time systems.

Our goal in this paper is to show (1) the importance of consid-
ering temperature variation during task execution for gnenini-
mization, leakage in particular; and (2) how to incorpotataper-
ature information for energy reduction in real-time syséem

1.1 Motivational Example
We consider an asynchronous digital subscriber line (AD&h)

One of such challenges is power and energy efficient system dem application with a deadline 2048ms and workload 864rssda

design, particularly for real-time systems where enerdiniged.
Dynamic voltage scaling (DVS) technique is among the mdstef
tive in reducing system’s dynamic power and energy consiompt
To obtain the maximal dynamic energy reduction, DVS metlpd a
gressively slows down the task’s execution such that thepéetion
occurs at the task’s deadline sharply. However, this comtsav
longer execution time which results in larger leakage endrgsi-
pation. With the steep increase of leakage, new DVS polities
been proposed to minimize system’s total power and energy co
sumption, instead of the dynamic part only [8, 11, 21]. Balbic
they propose to operate the system at a speed higher thanrthe m
mum and shut down the system or put it intelaecp state when the
task is completed earlier than deadline. This trades thamdimen-
ergy saving for more leakage saving in order to obtain theimaix
total energy reduction.

These power and energy minimization methods will help on-
chip cooling device to keep the hot chip cool. However, with t
rapid increase of power density, chip temperature goes cpréc
ingly. High temperature not only affects the performance wati-
ability of the chip, but also has a significant impact to thekbkge
current. Unfortunately, most leakage reduction techrsgd not
consider this impact. In fact, transistor's leakage curteas an
exponential dependence on temperature according to thelBgr
BSIM model [22]. This interdependency between leakage emd t
perature implies that if the system is not designed propeHip

on the ADSL standard [19]. Figure 1 shows the energy consump-
tion for executing this application under different appioas.

No-DVSis the traditional way of running at full speed for 864ms
and then going to sleep. Its energy consumption is 40.4&dhich
21.46J is on dynamic and 19.03J is on leakdg}éS operates at the
lowest voltage that can complete at the 2048ms deadlinedltoes
the dynamic energy to the minimal level of 6.56J, but consime
more leakage due to its longer execution tifd&DVS[8] runs at
a slightly higher speed than DVS in order to minimize totadrgyy.
Comparing to DVS, the dynamic energy using CS-DVS increases
to 7.02J, but the leakage energy decreases to 9.40J, ahéneta
ergy is reduced to 16.43J. Our proposed Temperature-Aneak L
ageTALK minimization method runs at the same speed as CS-DVS
with more than 22% energy saving on leakage.

Leakage increases rapidly as temperature rises. In theeabov
approaches, leakage is calculated with transient temperésee
section 3 for details.). However, existing literature tss@mpera-
ture as a constant during the execution. Figure 1 also e ploet
leakage estimation with temperature fixed at the highespéeaa
ture 388K and the lowest starting temperature 300K. One asitye
see that it is important to consider temperature.s impdettage.

The idea behind TALK is to restrict the execution at high tem-
perature. This is clearly shown in Figure 2 where the tentpeza
curve for each approach is given. Although No-DVS has thetsho
est execution time, it has the largest leakage because duse
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Figure 1: Energy consumption for executing ADSL applicatio-

der different approaches. For each approach, three leakage
bers are obtained with temperature, from left to right, fis¢dhe
highest, varied based on the accumulated heat, and fixee kaith

est temperature. Dynamic energy is shown in parenthesdsaid
age energy is shown in the figure on top of each bar.
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Figure 2: Temperature behavior for executing ADSL benclkmar
with No-DVS, DVS, CS-DVS, and TALK.

at high temperature. CS-DVS has less leakage than DVS becaus
it completes earlier and can go to the sleep (or shut down)emod
where there is no or little leak. However, CS-DVS still extesu

at a relatively high temperature, higher than 360K, for gltme.
TALK monitors the chip temperature and decides whether to ex
ecute or to cool the system down. Consequently, its temyrerat
curve goes up and down and most of the time it runs at temperatu
lower than 350K.

1.2 Contributions

The contribution of this paper are the following: we studg th
temperature and leakage interdependencies for real-§sterss;
we propose optimal offline and efficient online temperatunsere
leakage minimization algorithm to adjust the system’svadsieep
mode during task execution in order to reduce the leakageygne
Both algorithm can take the wakeup overhead in time and gnerg
as well as the energy dissipation, if any, at sleep mode iato c
sideration. The proposed online algorithm requires litdedware
support and has very low run-time complexity. We simulatthbo
algorithms on real life benchmarks. The results demorestitet

1) both the offline and online algorithm can reduce leakagg®n
by about 25% with moderately small number of wake-ups; 2hbot

the online algorithm’s energy saving and its decision onesysac-
tive/wakeup are very close to those of the optimal offlin@etgm;
and 3) both algorithms can be combined with existing DVS tech
nigues to further enhance their energy efficiency.

2 Related Work

A large amount of work have been done in designing DVS algo-
rithms to reduce the dynamic power consumption in real-sgse
tems [1, 6, 10, 13, 17]. However, the energy saving achieyed b
DVS comes at the cost of extended execution time, which means
the system will leak for a longer period and generate mork-lea
age energy. Recently, due to the steep increase in leakags,po
several new DVS techniques have been proposed to miniméze th
total energy in the real-time system [8, 20, 21]. In [20], #uthor
proposed a combined supply voltage and threshold voltagagc
technique to minimize dynamic power and leakage power simul
taneously. In [8] and [21], both authors identify a criticaipply
voltage in the DVS design space, such that if the supply gelia
scaled down below the critical voltage, the increase indgaken-
ergy will surpass the reduction in dynamic energy and thaease
the total energy consumption. Based on such critical velszped,
[8] proposed a scheduling algorithm that keeps the tasksimgn
back-to-back and leaves a long idle duration for the systeshuit-
down. None of these approaches consider the temperater iff
the leakage power. That is, they assume temperature is taotns
On the other hand, temperature management have received mor
attention in general purpose processor design. Skadréngeaents
a microarchitectural level thermal model that considerth lihe
temporal and local thermal effects on chip [16]. A few dynami
temperature management techniques have been proposed-to co
trol the peak temperature in processors. A trigger mechaiss
designed in [14], where an on-chip sensor is used to mealere t
temperature; whenever the temperature exceeds a predstdrm
threshold, ahrottling technique is used to reduce the number of
instructions flowing to the processor core. Huang et al. [é} p
posed a framework for temperature management at operating s
tem levels. Brooks et al. [3] eliminated the delay overheiaeim-
perature sensor by estimating the temperature based omower p
consumption in a thermal window. [15] used a feedback cbntro
theory based approach to tune the system performance atra fine
granularity. Srinivasan et al.[18] proposed an thermalagament
technique for multimedia applications. The runtime terapge is
predicted based on the starting temperature. Howeverdidayot
consider leakage power, which is an unnegligible portionots
power and is temperature sensible.

3 Preliminaries

3.1 System model

We study systems that execute a set of real-time tasks (alkuic
applications or jobs). To keep our focus on the temperaiurare
energy minimization, we assume that the tasks have alreaely b
scheduled to meet their deadlines. That is, each task heshitsl-
uled starting time, completion time, and worst case exenutme.

If the system is DVS enabled, each task will also have itsatpay
voltage and speed. Interested readers can refer to [1, 831Q7]
for how to determine such schedule.

The system has two operation modes: aative mode and a
sleep mode. During thective mode, the system executes the jobs
and dissipates both dynamic and leakage power; duringl&ep
mode, no job is performed and there is only leakage whichgé-ne
gible with leakage control mechanisms such as power gaiifigen
the system switches from ttseep mode toactive mode, an addi-
tional time, called “wakeup” time, is needed before any jah be
executed. Normally, a small amount of energy is consumeihglur
this “wakeup” time.



3.2 Thermal model

During theactive mode, both the dynamic and leakage energy dis-
sipated by the system will be converted into heat. Some dfi¢la¢
will be removed by the cooling device such as a heatsink; ke r
heat will accumulate and result in a temperature increasthen
chip. Similarly, when the system enters theep mode, the chip
will begin to cool down since little power is produced durithge
deep mode. We apply the model described in [15] to characterize
thermal behavior in both heating and cooling of the chips based
on the well-known duality between heat transfer and elesitphe-
nomena in RC circuits.

The change in temperatuf@ over timet on chip can be de-
scribed using equation (1) below:

¢
T(t) = P'Rth‘l'Tamb‘l’(Tcur—P'Rth—Tamb)~e BinCth (l)

where P is the transient power dissipated in the chi®;, and

C4p, are the equivalent thermal resistance and thermal capaeita
Tams 1S the ambient temperature of the environment, normally as-
sumed to be room temperature; dfid - is the current temperature
of the chip.

When chip temperature rises, the system will reach a stageavh
the amount of heat generated during a period of time becomqmesd e
to the amount of heat being removed by the heatsink. Hence the
will be almost no temperature variation and this state isgaty
called thethermal equilibrium. Let's denote the temperature at
this state ad<;. Similarly, when the chip cools down, it will also
reach a temperatut&, where no more heat can be removed by the
heatsink. K> is normally very close to the ambient temperature.
We further denote the produft;, C:, asKs. Now, we can use the
following functions to describe the temperature rise afiid fa

Tr'ise(t) =K — (Kl — Tcu7~)€7KLé (2)

Trau(t) = Ko + (Teur — Ka)e ¥3 @3)

3.3 Energy model

System’s energy consumption consists of dynamic energleaike
age energy. Dynamic energy is proportionalto- V7, whereCy

is the effective capacitance aig, is the supply voltage. Note that
dynamic energy is independent of temperature. Leakaggerer
caused by leakage current flowing in the CMOS circuits, witich
cludes gate leakage and subthreshold leakage. The leakage p
can be calculated as:

- Vaa 4)

where N, is the number of equivalent transistors in the system and
Tieakage is the leakage current that can be modeled as follows for
65nm technology [12]:

Pleakage = Ng . Ileakage

aVyq+8

Ileakage =A- T2 e + B- 67Vdd+5 (5)

Inthis formula,A, B, «, 8, v, andd are empirical constants that
can be found in [12]T is the temperature. The first term denotes
the subthreshold leakage that increase® @®es up. The second
term is gate leakage, which is insensitive to temperatudésapro-
jected to be controlled by high-K material [9]. Therefores facus
on the subthreshold leakage.

In summary, when the system staysaative mode for the in-
terval of [t1, t2] and goes taleep mode for the interval ofts, ¢3],
its energy dissipation will be

— t2 . t3
Etotal = ‘[;51 Pactwedt + L2 Psleepdt
- (CsVde . (t2 - tl) + j:lz Pleakagedt) + Psleep . (t3 - t2)(6)

whereP;;..p is the power when the system issitep mode. Note
that the leakage powePi..x.qc depends on temperature which
changes over time as indicated from equations (1)-(5).

4 Temperature-Aware Leakage Minimization

In this section, we will formulate the temperature-awarakége
minimization problem and describe our offline and onlinehtec
nigues to solve this problem.

4.1 Problem Formulation

As we have discussed in the above section, we restrict ody stu
on a single scheduled task and use the deadline and workéad p
(D, W) to represent its scheduled starting time, completion time,
and worst case execution time. Furthermore, the task igistdu

to be operated at voltadé€,q. Definex(¢) to be 1 or O if the system

is at theactive or sleep mode at timet. Our goal is to determine
function z(¢) in interval [0, D] such that the workloadll’ can be
completed and the total energy expressed below is minimized

D
/ (Pacti'ue : IE(t) + Psleep : (1 - :L’(t))dt (7)
0

Since dynamic energy is independent of temperature and the
system’s total active time will b&” to complete the workload, the
dynamic energy part of equation (7) will be a constant. Tlese
term in equation (7) will also be the constaRficc, - (D — W)
where Py, IS constant. Hence we can formulate this as the fol-
lowing temperature-aware leakage (TALK) minimization peom:

determining x(¢) such that
D
/ z(t)dt > W
0

D
and minimizes / ]Dleakage (t) . :E(t)dt
0

®)

©)

Since leakage energy in equation (9) depends on temperature
and also impacts temperature through hear accumulatignbéh
comes a non-linear feedback control problem which is knawet
hard. A practical formulation is to partition the intery@l D] into
0=to <t1 <--- <ty =D andto findx(¢) such that

z(t)is constant in each interval, t;11)
N-1
Z x(ts) - (tir — ta) 2 W (11)

i=1

0,1,---,N —1 (10)

tit1
/ ]Dleakage(t) . IE(ti)dt (12)
t

i=1 i

Note that when intervdk;, ¢t;+1) is small, we can approximate
the leakage power as a constant. Furthermore, we can iteeggea
wakeup timetakeup aNd energyE qareup Overhead by defining
w; = 1if z(t;) > z(t;—1) andw; = 0 otherwise. Thus, we can
rewrite the above equations (11) and (12) by:

=z

1
x(ts) - (tig1 — ti — Wi - twakeup) = W
1

(13)

%

2

-1

(Pleak:age (tz) . x(tz) : (tiJrl - tz) + w; - Ewakeup)
1

(14)

%



4.2 Offline TALK Minimization

For the simplicity of discussion, we assume tRat.., = Ewakeup
= twakeup = 0 ANAE; 41 —t; = %. However, our proposed TALK
minimization techniques can take such concerns into cersiitn
as formulated explicitly in equations (13) and (14). A swmntto
this problem will be the values of(¢;) fori = 0,1,---, N — 1.
The offline algorithm determines such values based on a dgnam
programming paradigm and the online algorithm decides ahgev
of z(¢;) at timet; during the task’s execution.

Suppose that according to a solutios: {z(to), -,z (tn-1)},
at time¢;, W is the amount of work completed;; is the cur-
rent temperature, anfl; is the total energy consumption. Two

solutionss and s’ areequivalent if W7 = Wf’,TiS = Tf’, and
E; = E; foreachi =0,1,---,N — 1. We say thab dorninates

s’ at timet; if for eachj < i, Wl > Wf TP < TS S EP < ES
and at least one of the equal signs does not hold Intum\@élbs
dominated because it does not complete more workload, argmd
with a higher temperature, or consumes more energy.

Our dynamic programming based offline TALK minimization
algorithm is motivated by the observation that an optimé&ltson
cannot be dominated by any other solution for eaclit constructs
an optimal solution as follows:

1. start with two candidate solutions
= {l’(to) =1, W = 0,T = Taomp, E; = 0} and

s ={x(te) =0, W =0,T¢ = Tursp, E;" =0}

2. calculatex(t1), W?, T and E; for each current candidate
solutions that hase(to) = 1.

3. eliminate all the dominated candidate solutions at time

4. repeatsteps2and 3for,-- -, tn

5. select a candidate solutionthat hasW’
smallestE; as the optimal solution.

We mention that this offline algorithm gives the optimal solu
tion to the TALK minimization problem. The algorithm’s coteg-
ity is linear toV, the number of intervals that we partitigi, D]
andn, the largest number of candidate solutions at a step. Haweve
in the worst case, this (in particulal) will still be exponential to
N. Nevertheless, this offline algorithm provides the optirsad
lution with a given partition and we will use this to evaludke
performance of our online heuristic described next.

> W and the

4.3 Online TALK Minimization

T(to)

Input: D, W, t;,
Output: x(t;)
1. at timetg

2. remaining workloadV,. = W;

3. remaining timeD,. = D;

4. for the starting time; of each intervalt;, ti41)

5. if (W, > D,) return cannot complete;

6. if (W, ==D,)

7. thenz(t;) =1, fori < j < N;return;

8. if(5= W Tm“ TCM)

9. then :c( ) = 0;

10. edsex(t;) =1;

11. Wy =W, - (tiy1 — ti);

12. D,.=D, - (ti+1 — ti)

13. if (W, <0)z(t;) =1, fori < j < N;return;

Figure 3: Pseudo-code of the online TALK minimization hstics.

Figure 3 illustrates the online heuristics for the TALK mini
mization problem. Motivated by the observation in the exemp
and the leakage current’ dependency on temperature as shown
equation (5), this heuristics seeks to avoid executing gt kem-
perature to reduce leakage. It puts the systersi¢ep mode to

cool the system down whenever the task’s workload is redbtiv
light and the current temperature is high.

To measure how demanding a task is at a decision paimte
calculate the ratig between the remainlnqyworkloaw’ over the
remaining idle timeD,. — W,., thatis,n = . This also mea-
sures the ratio of the time that the system WI|| heat up owetithe
that the system can cool down before the deadlineWe further
calculate the rati@ between the time for the system temperature
to rise one degree over the time to go down one degree from the
current temperaturé..,, = T'(x;). Itindicates in which direction,
up or down, that the temperature can change more. From eqggati
(2) and (3), we have

de(L”/dt _ Tcu'r‘ - K2

9 = =
| dTrise/dt | Kz - Tcu'r

(15)

If n < 6 (step 7), the system goesdteep mode because small
n implies not heavy workload and largesuggests high benefit in
cooling the system down. Note th@ts small at low temperature
Tewr- This encourage system to stayaative mode (step 10) unless
the relative workload is even lower. On the other hand, at high
temperature, the large value éfwill put the system to thaleep
mode (step 9) as long as the relative workload is not extrgmel
demanding (that is, very largg.

Finally, we mention that this online TALK minimization tech
nigue requires little hardware and has very low run-time jglexity
from the following analysis. Steps 11 and 12 update the neimgi
workload and remaining time with a couple of subtractionyent
temperature information can be obtained either from op-téin-
perature sensor or by estimation [3, 14]; the conditiorestant in
step 8 requires a couple of subtraction and two divisiona&t, fwe
track the values oD, andW,. for the convenience of explanation.
We can instead track, — W, andW.. to save several subtraction.

5 Simulation Results

In this section, we describe our simulation setup and refhart
simulation results. We are particularly interested in Iyhouch
leakage the offline and online TALK minimization algorithmen
save; 2) how good is the online TALK heuristics comparingh® t
optimal offline TALK algorithm; and 3) how much can our TALK
algorithms help on systems where existing DVS techniques ha
already been applied to minimize total energy.

5.1 Simulation Setup

We simulate theTALK algorithms on two types of systems: one
employs a processor running at a single supply voltage Wwa\h

is the basic model for many small embedded applicationsttier
features a DVS-enabled processor that can run at voltages fr
0.5V to 1.0V in a step of 0.5V. Both systems are implementea in
65um technology with a threshold voltage 0.295V. The fixed fre-
guency in the first system is 500MHz; the highest and the lbwes
frequency in the second system ranges from 200MHz to 500MHz
under different supply voltages. The processor in the gysem-
plemented based on the Transmeta processor model [8]. & has
wakeup energy overheai3..J for the processor to switch from
thesleep mode toactivemode. The wakeup delay overheadiiss.
During thesleep mode, the processor dissipates meb@ly 1V power.
The thermal modeling of our system is based on [16]. We assume
an ambient temperatui€, = 300K; the maximal temperaturig

from 363K to 388K for different supply voltages; and the that
constantR;;, Cyy, is 105ms.

We employ both online and offlin@ALK algorithms to run
eleven benchmarks. The first benchmark is an MPEG4 media en-
coding [17]; the second to the fourth benchmarks are takam fr
the Hartstone suite [4]; the fifth and sixth benchmarks ataeted
from the ADSL standard’s initialization sequences [19f test



(a) ADSL2 (b) Airflow _ (cpCH2 _ _ (d)Bmk2
Figure 4: Temperature trace in two real-time benchmarksingnoffline and online algorithms.

five benchmarks are generated artificially based on the cteais:
tics of real-life benchmarks. These benchmarks are repiabee
of different system utilization ratio.

Table 2: Total energy consumption with No-DV'S, traditiobDsS,
CS-DVS, and online and offline TALK algorithms.
Benchmark Items [No-DVS|DVS|CS-DVS|Online|Offline
CH2 leakage| 5.4 [24%| 45% | 60% | 61%
dynamic] 7.5 [75%| 66% | 66% | 66%

5.2 Leakage Reduction in a Single-Voltage System

In a single-voltage system without temperature awaremtiessnost total 12.9 154%| 57% 1 63% | 64%
simple and energy efficient way for the processor is to ruridbks vdd 10 [05] 06 06 | 06
up front and switch to theleep mode to saver energy. Since the CcO leakage] 2.2 [14%]| 38% | 56% | 57%
dynamic energy depends only &f, and is insensitive to temper- dynamic| 3.7 |75%| 65% | 65% | 65%
ature, they are the same in both the simple temperature sare total 5.9 [52%| 55% | 61% | 62%
algorithm and oufTALK algorithms. Our focus is on the leakage vdd 10 |O05] 06 | 06 | 06

Airflow | leakage| 3.2 [18%| 39% | 61% | 63%
dynamici 5.0 [75%| 65% | 65% | 65%
total 8.2 [53%| 55% 63% | 64%

energy reduction by temperature aware algorithms and hemece
report the leakage saving ALK algorithms in Table 1.

The first column lists the benchmark names; the second and vdd 10 1051 06 06 106
third column show the deadline ano_l wor_kloaql for each benckma ADSLI |leakage| 5.1 |30%| 41% | 46% | 44%
and we assume the tasks’ execution time is always equal to the dynamic| 7.1 | 70%| 65% | 65% | 65%
workload. The leakage energy consumption in the systengusin total 12.2 [53%| 57% | 59% | 59%
the simple temperature awareless algorithm is shown inatetf Vvdd 1.0 [055] 06 06 | 0.6
column. In the rest part of this table, we demonstrate thkalga. ADSL2 |leakage| 19.0 [38%| 51% | 62% | 61%
savings of both online and offlin€ALK algorithms and the cor- dynamic| 21.5 [69%| 67% | 67% [ 67%
respondingwakeup times of the processor: the first four columns total | 405 |54%| 59% | 64% | 64%

vdd 1.0 [0.55] 0.6 0.6 0.6

show the results for interval size 100ms used in TA&K algo-
Bmk1 leakage| 7.8 [13%| 36% | 54% | 54%

rithm; the next four columns are results for interval sizenSpand dynamic 0.0 75%| 5% | 65% | 65%
the last four columns are the results for interval size 20imise

. total 17.7 [48%] 52% | 60% | 60%
#wkpl and #wkp2 columns represent the number of times the pro vad 10 105 06 | 06 1 06
cessor wakes up fromleep mode in online and offline algorithms,

respectively. . :
We observe that as the interval size reduces, both online and%cggtrg?sr(rﬁ?&ﬁfv\?:rcge?: %:'aﬁh;zg?(?kcfr?gaerreaéutféggﬂﬁhthe

offline algorithms can achieve larger energy saving. Thiguie simple temperature awareless algorithm. This corresptmdise
intuitive in that the finer granularity, potentially the neaimes the largest leakage saving in Table 1

algorithm can put the system intieep mode to save leakage en-
ergy. In fact, we see the number of times for the systemtowpke 53  Total Energy Reduction in DVS-Enabled Sys-
is inversely proportional to the interval sizes. In praatichoosing tems

the interval size is also restricted by the delay and enevgyhead

for the system to switch frordegp mode toactive mode. The use

of interval gives the freedom to design for different systasttings.

In general the leakage saving by offline and online algorithm
are very similar while the online algorithm have more waks-u
than the offline one. In a few cases of offline algorithm, weldou
not get the results because of the time constraints. Fjriafiylast
row of the table shows the average results over the elevethben
marks. OurTALK algorithms can achieve an average leakage en-
ergy saving between 20% to 30% percent with three diffenent i
terval sizes. This saving is achieved by putting the pramess
deep 3 to 23 times on average. Note that the average number of
wakeup times does not include that in benchmark MPEG4 becaus
it is substantially larger than the others due to the tasksish
longer period and execution time. Thus, we think it's readda to
treat this particular benchmark separately.

As we have explained in previous sections, the leakage gnerg
saving of TALK algorithm is achieved by lowering the system tem-
perature. Figure 4 illustrates the temperature trace wieaytstem
executes several benchmark tasks using online and ofiihK al-
gorithms. We can see that the temperature curves in thesaltwo

Next, we apply theTALK algorithms to a system that supports
dynamic voltage scaling. We compare the total energy saving
TALK with the traditional DVS algorithm (DVS) and the leakage
aware DVS algorithm (CS-DVS). Due to the quadratic depeaglen
of dynamic energy on the supply voltage and the increasitepif
age energy over time, the DVS technique becomes inefficidgt o
when the voltage is scaled down below certain point, whidteis
fined as the critical voltage in [8]. In five out of eleven bench
marks, DVS algorithm will not be able to scale the voltage dow
below 0.7V, which is higher than the critical voltage for O§'S
to be superior. Therefore, the traditional DVS algorithrattbx-
tends the execution over the entire period by running at &$ow
possible voltage is still the most energy efficient way farsth five
benchmarks. And the CS-DVS will assign the same voltagdseas t
traditional DVS. In these case, there will be no idle timedach
task and henc&ALK algorithms are not applicable in such cases.
We present the total energy saving usiAg.K algorithm on the
rest six benchmarks in Table 2. For each benchmark, we gigpa
leakage energy, dynamic energy, total energy and the wttagin
this benchmark in four rows. The third column lists the restdr



Table 1: Leakage energy using traditional algorithm andpenature aware algorithms with different interval size.

leakage interval = 100ms interval = 50ms interval = 20ms
BenchmarkD (ms) W (ms) w/o t.a.[online] offline [#wkp1| #wkp2| online| offline [ #wkp 1| #wkp2| online| offline [ #wkp 1] #wkp2
MPEG4 | 60000| 50000{1213.2] 10% | n/a | 413 | n/a | 12% | n/a | 727 | n/a | 14% | n/a | 2344| n/a
CH2 1000 | 300 54 | 25% | 28% | 3 2 32% | 35% | 6 5 35% | 37% | 15 12
CO 1000 | 150 22 | 16%| 16% | 2 1 23% | 27% | 3 2 30% | 32% | 8 7
airflow | 2000 | 200 32 | 19% | 20% | 2 1 31% | 33% | 4 3 [39% | 41%| 8 9
ADSL1 | 576 | 285 51 [20% | 20% | 3 2 22% | 23% | 6 4 25% | 25% | 15 5
ADSL2 | 2048 | 864 | 19.0 [ 33% | 34% | 9 8 [37%]| 38% | 18 17 | 39% | nla | 43 n/a
Bmk1 1000 | 400 78 [ 26% | 31% | 4 3 32% | 34% | 8 7 34% | 36% | 20 15
Bmk2 1000 | 500 | 10.2 | 27% | 29% | 6 6 28% | 31% | 11 10 [ 31% | 32% | 26 15
Bmk3 1000 | 600 | 126 | 24% | 25% | 4 4 26% | 27% | 11 8 27% | 27% | 29 12
Bmk4 1000 | 700 | 150 [ 19% | 19% | 5 3 21% | 21% | 12 6 21% | 22% | 34 15
Bmk5 1000 | 800 | 175 [ 12% | 13% | 4 2 15% | 15% | 11 4 15% | 16% | 37 10
Average 21% | 23% | 42 | 3.2 | 25% | 28% | 9 6.6 | 28% | 30% | 23.5| 11.1

a system without using DVS and always runs at a referencagelt
1.0V. One can see the leakage energy in this case is the sahe as

one we have presented in Table 2. The fourth to seventh column
show the energy saving over NO-DVS scheme achieved by DVS,

CS-DVS, and ouffALK online and offline algorithms respectively.
for most benchmarks, the DVS algorithm will run the taskshwit
the lowest voltage 0.5V that results in 75% reduction in ayita
energy and 23% reduction in leakage energy on average. Howev

it executes the tasks longer and consumes 32% more leakage en
ergy than CS-DVS algorithm on average. OWLK algorithms

will run at the same supply voltages determined by CS-DV$-alg

rithm; however, it selectively puts the processor idieep mode

based on the chip temperature when executing the tasks.

We see that our online and offline algorithms can save 61.7%

(7]

[10]

(11]

and 61.9% of total energy on average over the No-DVS scheme [12]

respectively; and this saving is 10.6% higher than the CS RV

gorithms. Interestingly, we see that the leakage savingAafK

algorithms over CS-DVS is similar to the leakage saving k-

voltage system in Table 1.

6 Conclusions

In this paper we stress the importance of temperature ocarssid

tion in designing energy efficient embedded systems. We/shel

temperature impact on leakage energy and propose an omiche a

an offline temperature aware leakage minimization algoritihat

adjust the processor modes at runtime based on the chip tempe

ture. Our online algorithms can improve the energy savin8%
over the traditional DVS algorithm and 11% over the leakagara

DVS algorithm.
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