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As the development of light-weight, small volume and versatile manipula-
tors has grown in the field of robotics, the need for more efficient and relevant
power transmission systems in the manipulators has become increasingly ap-
parent. It is clear that the advent of efficient, low friction, and backlash-free
actuation systems promises to provide significant gains in manipulator perfor-
mance. Tendon transmission has been widely used to actuate small volume and
light-weight articulated manipulators, such as dextrous mechanical hands, for
it permits actuators to be installed remotely from the end-effector, thus reduc-
ing the bulk and inertia of the manipulator system. Current research on such
actuation systems is accomplished on the basis of specialized designs. The lack
of systematic approaches has limited our scope in realizing performance of such
transmission systems. Therefore, when associated with systematic methodolo-
gies, the study of tendon-driven manipulators promises to be of major impor-

tance in the field of robotics.

This dissertation is concerned with four issues to enhance our use and
understanding of tendon-driven manipulators. First, a systematic approach for
the kinematic analysis of tendon-driven manipulators is established. Graph is

used to represent the kinematic structure of tendon-driven manipulators. It is



shown that the kinematic structure of tendon-driven manipulators is in every
way similar to that of epicyclic gear trains. The fundamental circuit equation
developed for the kinematic analysis of epicyclic gear trains can thus be applied
to this type of mechanism. The displacement equation governing joint angle

space and tendon space can be easily obtained.

Secondly, the concept of structural isomorphism and the structural charac-
teristics of tendon-driven manipulators are investigated. Based on the explored
properties, a methodology for the enumeration of tendon-driven manipulators
is developed. By applying the methodology, a class of kinematic structures

having pseudo-triangular structure matrix is enumerated.

Thirdly, a method for assessing the kinematic/static performance of tendon-
driven manipulators is developed. Transmission ellipsoids of the manipulators
are investigated. A criterion for differentiating force transmission characteris-
tics and a procedure for identifying least maximum-tendon-force are established.
Based on the rationale developed, it is shown that optimal kinematic structure

can be achieved for certain types of tendon routings.

Finally, the dynamic characteristics of tendon-driven manipulators are ex-
amined in detail. When integrating with a control algorithm in the manipu-
lator, the dynamic performance of tendon-driven manipulators is realized and

identified with more fidelity.
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Chapter 1

Introduction

1.1 Robot and Its Transmissions

The kinematic structure of a robotic manipulator often takes the form of
an open-loop kinematic chain. It commonly consists of serially connected links.
For an open-loop manipulator with n-DOF (Degree-Of-Freedom) having n inde-
pendent joints and n + 1 links, the structure is mechanically simple and easy to
construct. Actuation of the joint in such a structure usually requires the actua-
tors to be installed along the joint axes. Thus, the introduction of actuators in
some way or another increases the inertia of the manipulator system. Although
direct drives of electrical motors associated with the joints are becoming more

popular, they are found mainly on the lighter duty assembly robots.

To reduce the inertia of a manipulator, it is often necessary to use a trans-
mission system that permits the actuators to be located remotely from the
point of application. The components and configurations of the transmission
system may vary in forms, such as gear trains using meshing gears, pulley trains
using belts, linkages using tie-rod connections, and so on. Note that the ma-
jor disadvantage of introducing a transmission system is the extra cost of the
transmission components or the opportunity for creating some drawbacks such
as backlash, vibration and wear in the overall system. The type of transmis-
sion system selected depends on the application of the robot and other design
constraints. Generally, in a robot transmission system, the power-to-weight ra-
tio must be optimized, backlash and vibration minimized or compensated for,

inertia kept as low as possible, and friction reduced every where.
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This dissertation addresses one aspect of the transmission system in the
robotic manipulator: tendon transmission. The term tendon is widely used to
imply belts, cables, or similar types of applications. Specifically, this work is
concerned with the systematic approaches for the synthesis of tendon routing
in a robotic manipulator from the kinematic point of view rather than from the
geometric or material point of view. Experience with tendons has pointed out
that tendons are commonly used to transmit power between shafts where center
distance is too great for gearing or similar power-transmission devices. Thus,
tendons greatly simplify a machine and, consequently, are a major cost-reducing

element (Faires, 1959; Shigley and Mitchell, 1983).

In recent years, the application of tendons in teleoperator or robot trans-
mission has become more frequent. In robots, tendon transmission permits ac-
tuators to be installed remotely from the joints they drive, therefore, reducing
the volume and the inertia of the manipulator system. In addition, pretensioned
tendons have no backlash. These merits have made tendon transmission more
eminent in the transmission design of robots, especially, in a dextrous hand
design where the requirements of small volume and light weight are crucial.
Hence, a fundamental understanding of tendon transmission is becoming more

necessary and important in the field of robotics.

1.2 Overview of Tendon-Driven Robotic Systems

Probably the most frequent occurrence of tendon-driven robotic systems is
in the field of anthropomorphic manipulating systems. Researchers used syn-
thetic tendon-driven systems to emulate biological tendon-driven systems in

the study of animal movement. Almost without exception, no matter how aes-
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thetically the synthetic systems emulate animal movements, graceful behavior
of natural systems still can not be well achieved. Nonetheless, some fruitful

results can be perceived. An overview of some of the results follows.

One form of tendon transmission in robotic systems is to use one motor
acting through a closed-loop belt to drive the mechanism. Okada (1977) used
this approach to actuate his three-fingered mechanical hand. This construction
is similar to that of the traditional use of belt drives where an endless belt
connects two shafts and transmits motion or power. This application requires a
pretensioning of the system so the belts will not slacken when the pulleys move
at high speeds. However, experience with this type of construction has shown
that a significant amount of friction or vibration may be introduced by preten-
sioning the belts. The result is low efficiency of the system. Another form of
tendon transmission is to employ a spring-biased device in which a tendon is
pulling against a spring-biased joint. Rovetta (1977) built a mechanical gripper
in which return springs were installed in the joints to serve as a bias torque
source. This application prohibits the system from fine force control of manip-
ulation since the spring exhibits somewhat nonlinear properties and causes an

asymmetric response.

To alleviate the roughness caused by endless belt drives, researchers stud-
ied the biokinematics of living animals and found that open-ended (defined
in Chapter 2) tendon drives, as in human muscles, might offer more uniform
system characteristics. Morecki, et al. (1980) discussed some of the problem en-
countered in the design of a new drive, which is accordingly open-ended tendon
transmission, for an anthropomorphic two-handed manipulator. The authors

analyzed the structure of the drive system and identified the kinematic rela-



tionship between joint angular displacement and tendon linear displacement.
One interesting result pointed out by the authors is that in order to control
an n-DOF manipulator, at least n + 1 open-ended tendons are needed. Later,
Salisbury (1982) applied this principle to design the actuation system for the
Stanford/JPL three-fingered hand. In the Stanford/JPL hand, each finger has
three degrees of freedom and is actuated by four open-ended tendons. The

kinematics and statics of the tendon transmission system were also addressed.

On the other side, Jacobsen, et al. (1985) designed the Utah/MIT dextrous
hand intended for prosthetic hand use. In the Utah/MIT hand, each finger in-
corporated eight open-ended tendons for the control of four joints where each
joint was actuated by two opposing tendons. This hand involved 38 motors
for the actuation of 19 independently controlled joints. Various tendon-driven
manipulators intended to emulate human functions, are described in the lit-
erature by Leaver and McCarthy (1987), Morecki, et al. (1984), Pham and
Heginbotham (1986), and others.

1.3 Motivation

This work is intended to extend the author’s realization that tendon trans-
mission systems can be enhanced if more systematic approaches for the synthesis
of tendon routing can be developed. While reviewing tendon-driven systems,
the author has noticed that these special purpose devices have been used to
study the gripping function of human hands and have focused on the mechan-
ics of manipulation and their controls. Although a few attempts have been
made to address the kinematic or static analysis of the actuation systems in the

devices, there has been a lack of systematic approaches to guide users in ap-
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plying such actuation systems. It seems that the construction of the actuation
systems was developed by designers’ ingenuity. Therefore, a unified approach
for the analysis, synthesis, and control of such systems can be promising and

contributive to the field of robotics.
1.4 Contributions

This dissertation describes the development of methodologies for the anal-
ysis, structural synthesis, performance evaluation, and control issues for the

design of tendon-driven manipulators.
Among the principal contributions of this dissertation are:

1) A systematic approach for the kinematic analysis of tendon-driven robotic

manipulators,

2) A methodology for enumeration of the kinematic structures of tendon-

driven manipulators,

3) Methods for kinematic/static performance evaluation of the kinematic struc-

ture, and

4) An algorithm for the control and realization of dynamic characteristics of

tendon-driven manipulators.

The author anticipates that this research will give better understanding for

the mechanical design of tendon-driven manipulators.
1.5 Preview

This dissertation is organized as follows.

In Chapter 2, the graph theory is used to develop a systematic approach



for the kinematic analysis of tendon-driven manipulators. The correspondence
between the graph representation of kinematic structure and the mechanism is
established. It is shown that the kinematic structure of tendon-driven kinematic
chains 1s similar to that of epicyclic gear trains. It is also shown that, using
the concept of fundamental circuits, displacement equations of tendon-driven
robotic mechanisms can be systematically derived from the kinematic structure.

Several examples are used to illustrate the principle.

In Chapter 3, the structural characteristics of tendon-driven manipulators
is explored. The concept of structural isomorphism for tendon-driven manipu-
lators is introduced. Based on the rationale, a systematic methodology for the
enumeration of tendon-driven manipulators having a pseudo-triangular struc-
ture matrix is developed. Kinematic structures with up to six-DOF are enu-

merated.

In Chapter 4, a method for the evaluation of kinematic/static performance
of the kinematic structure is developed. By looking at the condition number
and the homogeneous solution of the structure matrix, we are able to identify
the so-called usotropic transmission where the magnitude of the tendon force
vector is identical in every direction provided that the joint torque vector is
confined to a quadratic equation. A method is also introduced for calculating
the least maximum-tendon-force from which a criterion for identifying optimal

kinematic structure has been established.

In Chapter 5, the computed torque method is used to formalize the con-

trol algorithm for tendon-driven manipulators. A technique, called “torque

?

resolver,” is introduced to map the joint torque signals to motor torque signals.

In this chapter, the author also simulates the dynamics of tendon-driven manip-



ulators. Some effects that influence the dynamic performance of a tendon-driven

manipulator are dictated as the final stage of the research.

Finally, in Chapter 6 the author reviews the dissertation, summarizes his

contributions, and suggests further studies.



Chapter 2

Kinematic Analysis

2.1 Introduction

Gear trains are commonly used to transmit power or motion between ei-
ther parallel or non-parallel shafts with small offset distance. When the center
distance between two offset shafts becomes large, it is often necessary to add
intermediate shafts and idler gears in order to keep the size of the gears rea-
sonably small. An alternative method of power transmission is to use tendons
or belts and pulleys. This type of mechanisms is called tendon-driven mech-
anisms. Usually, the actuators are attached to a supporting base (or fixed
reference frame) while the end-effector of the manipulator is free to manipu-
late objects. The relative movement of the actuators results in the motion of
the links that position the end-effector in a desired position/orientation. Thus,
in most applications, we are interested in the motion of the end-effector with
respect to the fixed reference frame, in particular the relations between the
motor-variable space and the position/orientation of the end-effector. To date,
the kinematic or static analysis of such mechanical systems has been accom-
plished on an individual basis. This chapter addresses a systematic procedure
for the kinematic and static analysis of multi-degree-of-freedom, tendon-driven,

robotic mechanisms.

Graph theory has been utilized for representing the topology of kinematic
chains or mechanisms over a period of time. The use of graph theory may help
simplify our task of kinematic and/or static analysis, because it visually clarifies

the relationship among the links and joints in a kinematic chain or mechanism.
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The application of graph theory to the kinematic analysis and synthesis of
epicyclic gear trains has been well established in recent years (Buchsbaum and
Freudenstein, 1970; Day, et al., 1983; Freudenstein, 1971; Freudenstein, et al.,
1984; Freudenstein and Yang, 1972; and Tsai, 1987). In what follows, the kine-
matic structure of tendon-driven robotic mechanisms will be investigated via
graph representation. It will be shown that the kinematic structure of tendon-
driven mechanisms is similar to that of epicyclic gear trains. Therefore, the
fundamental circuit equation developed for the kinematic analysis of epicyclic
gear trains (Tsai, 1988) can be directly applied to this type of mechanisms. It
will also be shown that once the displacernent equations are obtained, the input

and output torques (or forces) relationship can be easily derived.

2.2 General Assumptions

In this work, only those mechanisms which obey the following assumptions

will be considered:

(i) The tendons are always under tension and the amount of stretch in tendons

due to variation of tension is negligible.

(ii) The friction between pulleys and tendons is large enough to prevent relative

sliding to occur.

(iii) The mechanism shall obey the general DOF equation, i.e., no special pro-

portions are required to ensure the mobility of a tendon-driven mechanism.

(iv) Each pulley must have a turning pair on its axis and every pair of pulleys
connected by a tendon must have a carrier (or arm) in order to maintain

a constant center distance between the pulleys.

9



(v) The mechanism shall be of articulated type, i.e., after the removal of ten-

dons and pulleys, the mechanism becomes an open-loop chain.

2.3 Structural Representations

Three types of representation, functional, planar schematic, and graph,

will be described in this section.
2.3.1 Functional Representation

Functional representation refers to the conventional drawing of a mecha-
nism. Shafts, pulleys, tendons, and other elements are identified as such. For
the reasons of clarity and simplicity, only functional elements essential to the
kinematic structure are shown. Different functional representation may rep-
resent different designs of the same topological structure (e.g., planar versus
spatial mechanisms). For tendon-driven robotic mechanisms, there are two ba-
sic routing techniques. The first is known as the open-ended tendons and the

second the endless tendons.

In an open-ended routing, one end of the tendon is tied to a driven pulley
while the other end is attached to a linear actuator or a driving pulley that is
installed on a rotary actuator. The driven pulley is usually attached to a link
to be controlled. Fig. 2.1(a) shows two pulleys, ¢ and j, that are connected
by an open-ended tendon. Link k, which is used to maintain a constant center

distance for the two pulleys, is called the carrier.

In the endless routing, each tendon or belt is wrapped around two or more
pulleys of constant center distance in an endless loop. Fig. 2.1(b) shows an

endless tendon routed around two pulleys. Again, the carrier k i1s used to

10



To the previous pulley
(a) (b)

Fig. 2.1 (a) Open-ended tendon, (b) Endless tendon

maintain a constant center distance for the two pulleys.

Note that both kinematic chains (or sub-chains) shown in Figs. 2.1(a) and
2.1(b) consist of three rigid links, links 7, j, and k, and a flexible tendon. The
geometry of such mechanisms can be defined by the Denavit and Hartenberg’s
(1955) parameters, i.e., by the offset distance, twist angle, etc., between two

joint axes, in addition to the radii of the pulleys.
2.3.2 Planar Schematic Representation

In this representation, a positive direction of rotation is assigned to each
joint axis in the mechanism of interest and the joint axis fixed to the reference
frame is considered as the first joint axis. Then, starting from the second joint
axis, every axis is twisted about the common normal defined by the axis itself

and its preceding axis until all the joint axes are parallel to each other and are

11



To the next pulley

& S BNC =
' J i/ N\

To the previous
pulley

(a) (b)

Fig. 2.2 (a) Planar schematic of Fig. 2.1(a), (b) Planar schematic of Fig. 2.1(b)

pointed toward the same positive Z-direction. In this manner, the routing of
tendons can be clearly shown without losing the fundamental characteristics of

relative rotations among the pulleys and their carriers.

Figures. 2.2(a) and 2.2(b) show the planar schematic of the mechanisms
shown in Figs. 2.1(a) and 2.1(b), respectively. The routing method shown in
Fig. 2.2(a) is called the cross-type while the one shown in Fig. 2.2(b) is called
the parallel-type. Note that the routing of the kinematic chain shown in Fig.
2.1(a) can also be sketched in a parallel type construction if the definition of
the positive Z-direction for either one of the two axes is reversed. Although
this change does affect the sign of rotation in the fundamental circuit equation

to be described later, it has no effect on the actual motion of the mechanism.

In general, two pulleys are said to have parallel-type routing if a positive
rotation of one pulley with respect to its carrier produces a positive rotation of
the other, and cross-type routing if a positive rotation of one pulley produces

a negative rotation of the other.
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2.3.3 Graph Representation

In the graph representation, links are denoted by vertices and joints by
edges. The edge connection between vertices corresponds to the joint connection
between links. Every pair of pulleys coupled together by a tendon, whether an
open-ended or an endless tendon, is considered a pulley pair. In this regard,
the tendon has been treated as an element which merely provides the necessary
constraints to the two-coupled pulleys. In order to distinguish different types
of pair connections, turning pair is denoted by thin edge, parallel-type routing
by double-line edge, and cross-type routing by heavy edge. Further, thin edges
are labeled according to their axis locations. The graph of a tendon-driven

articulated mechanism is, therefore, similar to that of an epicyclic gear train.

Fig. 2.3(a) shows the graph representation for the tendon-driven mecha-
nism shown in Fig. 2.2(a), where the vertices 7, j, and k correspond to links 7,
J, and k; thin edges -k and j-k correspond to the turning pairs connecting links
2 and k, and links j and k; heavy edge t-j corresponds to cross-type routing
between links ¢ and j; and the edge labels a and b correspond to the axis levels a
and b, respectively. Similarly, Fig. 2.3(b) shows the graph representation of the
mechanism shown in Fig. 2.2(b) in which the parallel-type routing is denoted

by a double-line edge.

2.4 Topological Characteristics

As in epicyclic gear trains, the graph of tendon-driven articulated mecha-

nisms can be characterized by the following fundamental rules:

(i) For an Il-link, n-DOF, tendon-driven articulated mechanism, there are (I —

1) turning pairs and ({ — n — 1) pulley pairs.

13



(a) (b)

Fig. 2.3 (a) Graph representation of Fig. 2.2(a), (b) Graph representation of

Fig. 2.2(b).

(i1) The subgraph obtained by deleting all the double-line and heavy edges is

a tree, and there can be no circuit formed exclusively by thin edges.

(ii1) Any double-line or heavy-edge added to the tree forms a fundamental cir-

cuit (f-circuit) having one double-line or heavy edge and several thin edges.

(iv) The number of f-circuits is equal to the number of double-line and heavy

edges.

(v) Each thin edge can be characterized by a level which identifies the axis

location of a turning pair.

(vi) In each f-circuit, there is a vertex, called the transfer vertex, such that all
edges on one side of the transfer vertex are at the same level and edges on
the opposite side are at a different level. The transfer vertex corresponds

to the carrier in a pulley train.
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2.5 Basic Equations
2.5.1 Fundamental Circuit Equation

Let ¢ and 7 denote the vertices of a pulley pair in an f-circuit for which % is
the transfer vertex. Then links ¢, 7 and k constitute a simple tendon-and-pulley
train. A positive direction of rotation can be assigned to each joint axis of the
pulley pair, and a fundamental circuit equation (Tsai, 1988) can be written as

follows:

ribix = 2r;0j1 (2.1)

where 6; ; and 6; r denote the relative rotations of links 7 and j with respect to
the carrier link k and, r; and r; denote the radii of the two matching pulleys :
and j, respectively. The sign of Eq. (2.1) is to be determined by the routing
of the tendon: positive for the parallel-type routing and negative for the cross-

type. Note that Eq. (2.1) is valid whether the carrier is fixed or not.
2.5.2 Coaxiality Condition

Let 7z, j, and %k be three links that share a common joint axis, then similar

to epicyclic gear trains (Tsai, 1988), the following chain rule applies

0;;="06ir— 01 (2.2)
Equation (2.2) is useful for relating the relative rotations among three or more
coaxial links.

2.5.3 Pulley Trains

Let links 0, 1, 2, and 3 be connected in series, by turning pairs, to form
a spatial open-loop chain; let a, b, and ¢ be the consecutive joint axes; and let

pulleys j, j +1 and j + 2 be pivoted about the joint axes a, b and c, respectively,

15



as shown in Fig. 2.4(a). Pulleys j and j + 1 are free to rotate with respect to
links 0, 1, and 2 while pulley j+2 is rigidly tied to link 3. An endless tendon
has been routed around these pulleys as shown in Fig. 2.4(a). We consider link
0 as the base link and link 3 as the link to be controlled, and seek to find a
transformation between the rotation of the base pulley, 7, and the joint angles,

01,0, 02,1, and 65 5 in the open-loop chain.

Figure 2.4(b) shows the corresponding graph representation of Fig. 2.4(a).
This graph consists of two f-circuits: (j, j +1, 1) and (j + 1, 3, 2), where
the first two numbers in the parenthesis denote the link numbers of a pulley
pair, and the third denotes the corresponding carrier. Writing Eq. (2.1) once

for each of the two f-circuits, yields:

rifia =rjt1841,1 (2.3)

and

ri+18i41,2 = rjtobs (2.4)
Since links 0, 1, and j are coaxial, Eq. (2.2) yields
i1 ="8650—61, (2.5)
Similarly, writing Eq. (2.2) for links 1, 2, and j + 1, yields

Oivi2="0;411—021 (2.6)

Substituting Eqs. (2.5) and (2.6) into (2.3) and (2.4), respectively, and elimi-

nating 6,41 ; from the two resulting equations, yields

0 =010 + (rj+1/r;)02,1 + (rj12/r;)0s 2 (2.7)
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Fig. 2.4(a) A single tendon-driven articulated mechanism

Fig. 2.4(b) Graph representation of Fig. 2.4(a)
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Equation (2.7) shows the influence of the joint angles, 6, g, 621 and 65 5,
on the rotation of the base pulley 6; o. In general, the relationship between the
rotation of a base pulley and the joint angles in an open-loop chain with (m+1)

links can be written as follows

Oj0 =010 £ (rj41/75)02,1 £ (rj42/75)03,2

+... .+ (rj+m_1/rj)9m’m_1 (28)

The sign of each term, (rj4r-1,1/7)0k k-1, in Eq. (2.8) is to be determined .
by the number of cross-type routing preceding the k£** joint axis. If the number
of cross-type routing is even, the sign is positive; otherwise it is negative. This
equation can be derived by an inspection of the kinematic structure without
going through the graph representation, once one becomes familiar with the

subject.
Taking the total derivative of Eq. (2.8), yields

dej’() :del,o :f: (T'j+1,1/7'j)d02,] :l: (T']‘+2/T'j)d93,2

+...% (rj+m_1,1‘/rj)d9m,m_1 (29)

where d( ) denotes the total derivative of (). Hence, the coefficients of each
derivative on the right-hand-side of Eq. (2.9) may be considered as the partial
rate of change of the base pulley rotation with respect to the corresponding

joint angle.

2.6 Kinematics of Tendon-Driven Robotic Mechanisms

It has been shown by Tsai (1988) that the graph of a spatial robotic bevel-

gear train can be reconstructed into a canonical form from which an equivalent
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open-loop chain can be identified. Similarly, a canonical graph can be con-
structed to represent the topological structure of a tendon-driven robotic mech-
anism. Hence, the kinematic analysis of articulated, tendon-driven robotic de-
vices can be accomplished in two steps. First, the end-effector position and/or
orientation can be related to the joint angles associated with the equivalent
open-loop chain. Then, these joint angles can be related to the rotational dis-
placements of the base pulleys. The first step is well-known and will not be
discussed in this work. In what follows, a systematic procedure will be de-
scribed for the derivation of the linear transformation relating the rotational
displacements of the base pulleys to the joint angles. Three examples will be

used to illustrate the principle.

2.6.1 A Three-DOF Robotic Arm Driven by Endless Tendons

Figure 2.5(a) shows the planar schematic of a spatial robotic arm. Pulleys
4 and 5 are free to rotate about axis a, pulleys 2 and 6 are free to rotate about
axis b, and pulley 3 is free to rotate about axis ¢. The first moving link serves
as the carrier for the pulley pairs (4,2), and (5,6); the second moving link which
is rigidly tied to pulley 2, serves as the carrier for the pulley pair (6,3); and
the third moving link is attached to pulley 3. The first tendon connects pulleys
4 and 2, and the second tendon connects pulleys 5, 6, and 3. Overall, the
mechanism consists of seven rigid links and two endless tendons. It has three
degrees of freedom. We can designate links 1, 4, and 5 as the inputs and link
3 as the output or end-effector. Note that the mechanism shown in Fig. 2.5(a)

has been sketched in its zero reference position (Tsai, 1988).

Figure 2.5(b) shows the corresponding canonical graph of the mechanism.

It can be seen from Fig. 2.5(b) that the equivalent open-loop chain for the
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Fig. 2.5(c) Two tendon drives
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mechanism consists of links 0-1-2-3, and there are three f-circuits: (2, 4, 1),
(5, 6, 1) and (3, 6, 2). Figure 2.5(c) shows the routing of the two tendons with
respect to the equivalent open-loop chain. The parallel-type routing is clearly
depicted in both Figs. 2.5(b) and 2.5(c). Each of the tendon routings shown in

Fig. 2.5(c) 1s sometimes called a transmission line.

Writing Eq. (2.8) once for each of the two tendon routings shown in Fig.
2.5(c), yields

01,0 = 01,0 + (r2/r4)021 (2.10)

and
95,0 = 9170 =+ (7‘6/7'5 )92’1 + (7’3/7'5)93’2 (211)
where r;, j=2, 3, 4, ..., denote the radii of the pulleys shown in Fig. 2.5(a).

We can add an identity equation, 6; o = 6, o, to Egqs. (2.10) and (2.11) and

then rearrange them in a matrix form as shown below:

61,0 1 0 0 91,0
94,0 = |1 7'2/7"4 0 92,1 (212)
05 0 1 refrs r3/rs| [632

Equation (2.12) provides the necessary transformation between the angular
displacements of the input links (6,0, 64,0, 650) and the joint angles (8 o, 0 1,
f32). The equations are linear and its inverse transformation can be easily

derived.

Let ry = ry and r5 = rg = r3, then Eq. (2.12) becomes,

61,0 1 0 0 91,0
64,0 =1 1 O 62’1 (2.13)
f5 o 1 1 1 6s



and its inverse transformation is then given by,

010 I 0 0f [6ip
62,1 = —1 1 0 64,0 (214)
93 2 0 -1 1 95 0

Note that, for this special proportion, the second joint is locked when links 1
and 4 are driven at the same rate; the third joint is locked when links 4 and
5 are driven at the same rate; and both the second and third joints are locked

when links 1, 4, and 5 are all driven at the same rate.
2.6.2 The Stanford/JPL Finger

Figure 2.6(a) shows the functional representation of the Stanford /JPL Fin-
ger taken from Mason and Salisbury (1985), where the first joint axis, Z1, is
fixed to the base link, link 0; the second joint axis, Z,, is perpendicular to the
first; and the third joint axis, Z3, is parallel to the second. Pulleys 4, 5, 6, and
7 are free to rotate about the first joint axis, pulleys 2 and 8 are free to rotate
about the second joint axis, and pulley 3 is free to rotate about the third joint
axis. The first link, link 1, serves as the carrier for the pulley pairs (4,2), (5,2),
(6,8), and (7,8). The second link, which is attached to pulley 2, serves as the
carrier for the pulley pair (8,3). The third link is attached to pulley 3. The
first tendon, T, connects pulley 2 to 4; the second, Tk, connects pulley 2 to 5;
the third, Tg, connects pulley 3 to 8 and then 6; and the fourth, T%, connects
pulley 3 to 8 and then 7 in open-ended routing as shown in Fig. 2.6(a). Over-
all, the mechanism consists of nine rigid links and four unidirectional tendons.
Although it has three degrees of freedom, it requires four open-ended tendons

to achieve positive control of the mechanism.

Figure 2.6(b) shows the mechanism in a planar schematic. The equivalent

open-loop chain consists of links 0-1-2-3. The routing of the four tendons with
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Fig. 2.6(a) Functional schematic of the Stanford/JPL finger

Fig. 2.6(b) Planar schematic of the Stanford/JPL finger
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respect to the equivalent open-loop chain is clearly depicted in Fig. 2.6(b).

Writing Eq. (2.8) once for each of the four tendon routings shown in Fig.

2.6(b), yields:

01,0 =610+ (ro/ra)b21 (2.15)

B5,0 = 610 — (r2/rs)0a,1 (2.16)

060 =010~ (rs/r6)021 — (73/76)03 2 (2.17)
and

070 =010+ (rs/r7)021 + (r3/77)05 2 (2.18)

Equations (2.15)-(2.18) can be written in a matrix form as shown below:

04’0 1 T2/T4 0 91 o
05 0 1 ——7‘2/7“5 0 ’

Tl = 0 2.19
96,0 1 —7‘8/7“6 —7'3/7'6 62’; ( )
7.0 1 rg/re r3 /Ty ’

The linear displacements of the tendons to be pulled away from their neutral

positions are given by

54 = 14049 (2.20)

s5 = 15050 (2.21)

sg = —rgbs 0 (2.22)
and

s7=—r787, (2.23)

Multiplying the first row of Eq. (2.19) by ry4, the second row by rs, the

third row by —rg, and the fourth row by —r7, yields

S=40 (2.24)
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_ . T _
where _5_—(84, b5,86,87) ) 0= (91,0, 92,1, 93,2)T, and

T T4 9 0

A= T2 0 (2.25)
~Te T8 L ‘
.—T7 —Trg —T3

where the superscript T denotes the transpose of the associated matrix.

Furthermore, if ry = r5 = r¢ = r7, and ry = rg, then the matrix 4 can be

decomposed into the product of two matrices:

A= R (2.26)
where
1 1 0
1 -1 0
b= -1 1 1
-1 -1 -1
and
T4 0 0
R= 0 92 0
O 0 r3

Matrix B which depends on the routing of tendons, is called the structure
matrix. Matrix R, under the condition that all pulleys on the same joint axis
are of the same size, is a diagonal matrix whose non-zero elements are the
radii of the pulleys installed at the consecutive axes of the equivalent open-loop

chain.

It can be concluded that, once the joint angles, 81, 6, and 83, are
known, linear displacements of the tendons are uniquely determined. On the
other hand, the four linear displacements, sy, sz, s3, and s4 can not be specified
arbitrarily. Once three of the four linear displacements are specified, the fourth

linear displacement and the joint angles are determined by Eq. (2.24).
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It can be shown that the vector of forces, F, exerted by the tendons are
related to the resultant torques, 7, in the joints of the open-loop chain by the

following relationship:

r=ATF (2.27)
where 7 = (710,72,1,73,2)7, and F = (f4, f5, fs, f1)T -

Hence, once tensions in the tendons are specified, torques in the joints
are uniquely determined. On the other hand, when torques in the joints are
specified, tensions in the tendons are indeterminate. For a given set of joint
torques, Equation (2.27) yields three linear equations in four unknowns. The
homogeneous solution corresponds to a set of tensions that result in no net joint
torque about any of the three joint axes. The general solution is given by the
sum of a particular solution plus the homogeneous solution multiplied by an
arbitrary constant. Thus positive tension can be maintained by selecting an

appropriate multiplier to the homogeneous solution.

2.6.3 A Six-DOF Manipulator

Now let us consider a general six-DOF manipulator as shown in Fig. 2.7 in
a planar schematic. The equivalent open-loop chain is made up of links 0-1-2-3-
4-5-6. For the sake of clarity, each individual routing of the tendons about the
equivalent open-loop chain is sketched on a separate drawing. It can be seen
from Fig. 2.7 that there are twenty pulleys and five endless tendons. Pulleys 2
to 6 are rigidly attached to links 2 to 6, respectively. Overall, there are twenty-
two rigid links, twenty-one turning pairs and fifteen pulley pairs. Hence, the
mechanism has six degrees of freedom. We can designate pulleys 7 to 11 and
the first moving link as the input links and seek for the transformation between

the rotational displacements of these inputs and the joint angles associated with
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Fig. 2.7 Planar schematic of a six-DOF manipulator

the equivalent open-loop chain.

Writing Eq. (2.8) once for each of the tendon routing shown in Fig. 2.7,

yields the following linear transformation in matrix form:
P=40 (2.28)

where

Q P (91,0, 97’0, 03’0, 99’0, 910’0, 911,0)’11 : input angles

Q_ = (91,0, 92’1 N 93’2, 04,3,65,4, 66,5)T . joint angles
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and

(1 0 0 0 0 0 7
1 7'2/7'7 0 0 0 0
1 T'12/T‘8 7'3/7‘8 0 0 0 ‘
A= 2.29
1 7'13/1"9 7‘16/7“9 1'4/7"9 0 0 ( )
1 rfrio ri7/rio —rio/rio —rs/rio 0
L1 7‘15/7'11 “7“18/7“11 ~‘7‘20/7“11 —7‘21/7'11 7“6/7°11-
Again, let r; = rg = rg = ry9p = 711, T2 = Tz = T3 = P4 = ris,

s =Ti6 = T17 = T18, "4 = T'19 = 720, and rs = Trai, then the matrix A can be

decomposed into the product of two matrices as shown below:

A=BR (2.30)
where
rl1 0 0 0 0 07
1 1 0 0 0 0
1 1 1 0 0 O
B = 11 1 1 0 0
11 1 -1 -1 0
L1 1 -1 -1 -1 1]
and,
P! 0 0 0 0 0 7
0 'I°2/7'7 0 0 0 0
R— 0 0 r3/Ts 0 0 0
o 0 0 0 T4/T‘9 0 0
0 0 0 0 7'5/7'10 0
_0 0 0 0 O 7‘6/?“11_

The matrix B is the structure matrix and matrix R the radius matrix. This
example illustrates how easily we can derive the transformation matrix merely

by inspecting the kinematic structure of the mechanism.
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2.7 Summary

The kinematic structure of tendon-driven robotic mechanisms has been
investigated with the aid of graph theory. The correspondence between the
graph representation of a kinematic structure and the mechanism has been
established. It is shown that the routing of tendons in a spatial robotic device
can be best represented by the planar schematic. It is also shown that the
kinematic structure of tendon-driven robotic mechanisms is similar to that of

epicyclic gear trains.

Using the concept of fundamental circuit, a general expression relating the
rotational displacement of a base pulley to the joint angles of a pulley train
in a tendon-driven mechanism has been derived. It has been shown that the
displacement equations of a tendon-driven robotic mechanism can be readily
obtained by an inspection of its kinematic structure. The theory has been

demonstrated by the kinematic analysis of three articulated robotic devices.
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Chapter 3

Structural Synthesis

3.1 Introduction

One of the fundamental phases in mechanical design is the conceptual de-
sign phase, i.e., the creation of a mechanism to satisfy certain desired functional
requirements. Conventionally, this is accomplished by designers’ intuition and
experience. Recently, there has been considerable interest in the creation of
mechanisms in a systematic manner. A promising approach is to separate the
structure of a mechanism from its function. Then, kinematic structures of the
same type, same number of degrees of freedom, number of links, and nature of
the desired function, can be enumerated systematically. Finally, each kinematic
structure obtained cab be evaluated according to the functional requirements of
a mechanism. This methodology of synthesis has been successfully applied to
the creation of epicyclic gear trains (Buchsbaum and Freudenstein, 1970; and

Tsai and Lin, 1989).

So far the kinematic and static relations between the joint angle space and
tendon/actuator space have been investigated. In the previous chapter, it has
been shown that the routing of tendons in a spatial robotic device can be best
understood by the planar schematic, the kinematic structure of tendon-driven
robotic mechanisms is similar to that of epicyclic gear trains, and the transfor-
mation between the actuator space and the joint space can be easily derived by
an inspection of the kinematic structure. In order to facilitate the synthesis of
tendon-driven manipulators in a systematic manner, first the structural char-

acteristics will be investigated thoroughly, then the structural isomorphism of

30



tendon-driven manipulators will be defined, and finally a systematic methodol-

ogy for the enumeration of such mechanisms will be developed in this chapter.

3.2 General Principle of Operation

In what follows, the research will be concentrated on the kinematic struc-
tures with open-ended tendon routing only. Generally, for an n-DOF manipula-

tor with m open-ended tendons, the equation of transformation can be written

as

S=A0 (3.1a)
where § = (81,32,...,sm)T is an m X 1 column matrix representing linear
displacements of the tendons, © = (6;,6s,...,6,)T is an n x 1 column matrix

for the joint angles, and A is an m X n matrix. If we assume that all pulleys
pivoted about one joint axis are of the same radius, then matrix A can be

decomposed into the following form:
A=BR (3.10)

Here, the matrix B whose elements consist of -1, 0 and +1, is an m X n matrix
describing the routing of the tendons, and the matrix R is an n x n diagonal

matrix whose non-zero elements are the radii of the pulleys.

As to the force transformation, resultant torques, 7, about the joint axes
in the equivalent open-loop chain, can be related to tendon forces F, through

the principle of energy conservation:
. T .T
Or=5F (3-2)

Substituting the time derivative of Eq. (3.1a) into (3.2), yields
r=AT F (3.3a)

or
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provided A=B R (3.3b)

Equations (3.1a,b) and (3.3a,b) describe the basic relationships necessary
for the kinematic and force control of open-ended tendon-driven manipulators.
In the displacement (or velocity) domain, once the joint angles (or joint rates)
are known, linear displacements (or velocities) of the tendons can be uniquely
determined. Conversely, linear displacements (or velocities) of the tendons can
not be specified independently. The attainable tendon displacements (or veloc-

ities) are contained in an n-dimensional column space of A.

In the force domain, once tensions in the tendons are specified, torques in
the joints are uniquely determined. Conversely, for a given set of joint torques,
Eq. (3.3) constitutes n linear equations in m unknowns. In order to achieve
positive tensions in the tendons, m should be greater than n. Thus, the solu-
tion for the forces in tendons consists of a particular solution plus an (m — n)-
dimensional homogeneous solution. The particular solution can be determined
by, for example, the generalized inverse transformation of Eq. (3.3). The ho-
mogeneous solution corresponds to certain sets of tendon tensions that result
in no net joint torques. The homogeneous solution can be expressed as a sum
of (m — n) basis vectors each of them being multiplied by an arbitrary con-
stant. The (m — n) basis vectors span the null space of BT. The components
in the homogeneous solution must be of the same sign. Thus, by adjusting the

constants, positive tension can be maintained in all of the tendons.
3.3 Structural Characteristics

In this work, it is assumed that all the actuators are installed at the base.
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Thus, every tendon regardless of which link it is attached to, must be routed

through the base joint of the manipulator and connected to its actuator on the

base link.

To facilitate the analysis, the Degree-of-Incidence (DOI) of a tendon is
defined as the number of joints the tendon has been routed over. For example,
if a tendon has been routed over five consecutive joints, then we say the DOI

of the tendon is five.

Let n be the number of DOF of a robotic system, m the total number of
tendons, and m; the number of tendons with ¢ DOL. Then, it can be concluded

that

i m; = m, (3.4)
i=1

and

m>n+1 (3.5)

Note that m; defines the number of columns with 7 non-zero elements in the

matrix BT,

Because the robotic system is maneuverable, a subsystem containing any
number of links and their associated joints taken from the distal end of the
original system should also be maneuverable. This means the number of tendons
contained in the subsystem should also be greater than the number of joints by a
minimum of one. Taking the distal link and its associated joint as a subsystem,
we can conclude that there should be at least two tendons routed over the distal
joint. Since these two tendons must be routed over all the joints of the original
system, the sum of the DOI for these two tendons is equal to 2n. Likewise, the

subsystem consisting of the last two moving links (distal and its adjacent link)
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should contain at least 3 tendons, and the minimum number of total DOI is
2n 4 (n — 1). Following the same argument, it can be concluded that the lower

limit for the sum of DOI for an n-DOF robotic system with m tendons is given

by:

2n+(n—1)+n-2)+...+1+(m—-n—1) < m;+2my+3ms+...+nm, (3.6a)

The upper limit for the total DOI is reached when all the tendons are attached

to the distal moving link. Hence,

my + 2mo +3mz + ... +nm, <nm (3.6b)

Combining Eqs. (3.6a) and (3.6b), yields

n(n+3)/24+(m—-n—-1)<mg+2my+...+nm, <nm (3.6¢)

These m;’s are also subjected to the following constraints:

My +My1+...4+my >2n+1 (3.7)

Note that the set (m,,m,—_1,...,m1), when assembled into a structure

matrix, takes the following form:

# # # 0 0 ... 0 0 0 0

# H#H o H#HHH L H# . 0 0 ...00
B=|: 0 ononoo o (38)

#o# B HE L # L #O 0

N SNTEE RTTRE TS N PP
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where the “#” sign represents the existence of a non-zero element.

In Eq. (3.8), the existence of a non-zero element at the i** row and j**

column implies that the j** tendon is incident with the (n— i+ 1) joint, and

the sign of the element is determined by the type of the tendon routing. In

this notation, the rows have been arranged in a reversed sequence, i.e., the first

row represents the distal (nth) joint in a manipulator. This will facilitate the

structural synthesis to be discussed next.

Based on the above discussion, the structural characteristics for the tendon-

driven manipulators can be summarized as follows:

Cl.

C2.

C3.

C4.

Cs.

There is a minimum of two non-zero elements and one sign change between
elements in each row. This guarantees every joint can be manipulated in

both directions.

Exchanging any two columns, which is equivalent to the renaming of two

tendons, does not affect the function and structure of the system.

The structure matrix can always be arranged in a form such that all the

zero elements appear on the upper-right-hand corner of the matrix.

Changing the sign of every element in a row does not affect the generic
characteristics of the structure. This is equivalent to a change in the defi-

nition of positive direction of a joint axis.

The rank of the structure matrix is equal to the degrees of freedom of
the system. Hence, for an n-DOF system with m tendons, at least one
determinant of a submatrix formed by deleting (m — n) columns from the

structure matrix shall not be equal to zero. Furthermore, if m = n + 1,
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then the determinant of a submatrix formed by deleting any column shall

not be equal to zero.

C6. There exists one (m — n)-dimensional homogeneous solution to Eq. (3.3)
such that all the elements in the homogeneous solution are of the same

sign.

3.4 Structural Isomorphism

To define isomorphic structures, a positive direction of rotation is assigned
to each joint axis and then the mechanism is sketched as a planar schematic
defined in Chapter Two. It has been shown in Eq. (2.8) that the elements of
the structure matrix are determined by the tendon routing and the definition of
positive direction of rotation for the joint axes. If the direction of rotation for a
joint axis is defined in the reverse manner, then the sign for each element in the
corresponding row of the structure matrix is reversed. Since the definition of the
positive direction for a joint axis has no effect on the function of a mechanism,

two tendon-driven manipulators are said to be structurally isomorphic if
(a) the structure matrices of the two systems are identical, or

(b) they become identical after a change of sign for every element in one or

more rows, or

(c¢) they become identical after rearranging certain columns, or
(d) a combination of both (b) and (c).

For example, if we define the axes of positive rotation to be pointing out

of the page, the structure matrices for the manipulators shown in Figs. 3.1(a)
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Fig. 3.1 Two structurally isomorphic, two-DOF, tendon-driven manipulators

and 3.1(b) are given by

r_[-1 1 0 r_ [-1 1 0
Bl_[~1 -1 1}’ and B2_[1 1 —1}’

respectively. It can be seen that after switching the sign of each element in the
second row of B BI becomes identical to BY. Physically, if we reverse the
direction of the proximal joint axis of the mechanism shown in Fig. 3.1(b), then
it becomes identical to that of Fig. 3.1(a). Therefore, the two mechanisms are

said to be structurally isomorphic.

Another example i1s shown in Fig. 3.2. The structure matrices for the

mechanisms shown in Figs. 3.2(a) and 3.2(b) are given by:

-1 1 00 -1 1 00
BIl'=|-1 -1 1 0|, and Bf=|-1 -1 1 0],
-1 1 -1 1 1 -1 -1 1

respectively. By switching the sign of each element in the first row of BT,
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Fig. 3.2 Two structurally isomorphic, three-DOF, tendon-driven manipulators

and then exchanging the first and second columns, B becomes identical to
BT. This can also be explained as follows. If we reverse the direction of the
distal joint axis in Fig. 3.2(b) and rename f; to f, and f; to fi, then the two
mechanisms become identical. Therefore, the two mechanisms are said to be

structurally isomorphic.

3.5 Structure Synthesis

In what follows, the research shall focus on those tendon-driven robotic
systems with the number of tendons greater than the number of DOF by one;
that is m = n + 1. Writing Egs. (3.4), (3.6.c), and (3.7) for n = 3 and m = 4,
yields

my +mg +m3 =4 (3.9a)
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(m1,m2, mAl (1, 1, 2) 0. 2,2 [ (1,0, 3| (0, 1, 3) | (0, O, 4)

. ##00 ##00 ¥ HHO0 ##HO #HHH
B ###0 4444 #aH0 | HHHH B #HH
#H#H# ¥ HH ###H #H#H# #H#HH

o 1100} -1100 n AL O 01
adrlms_SIblc A1 10| 011 Solstion 1-1-1 1| 1.1
solution 111 ) 1111 TR N D N NS T (RS

Table 3.1 Structure matrices for manipulators having three-DOF and four ten-

dons.
9 <my +2mg +3mz < 12 (3.90)
ma > 2 (3.9¢)
m3 +mg >3 (3.9d)

Solving Eq. (3.9a) for my, my and mj subjected to the inequality constraints,
Eqs. (3.9b - 8.9d), yields (m1,ma,ms3) = (1, 1, 2), or (0, 2, 2), or (1, 0, 3),
or (0, 1, 3), or (0, 0, 4). Table 3.1 shows the admissible structure matrices
corresponding to the above possible solutions. Note that the structure matrix
for those systems with m — n = 1 must have a positive homogeneous solution

F to Eq. (3.3). Otherwise, it is not controllable and, hence, not admissible.

The number of admissible structure matrices increases as the number of
degrees of freedom increases. Morecki, et al. (1980) predicted there could

exist up to 23040 admissible structures for six-DOF manipulators having seven
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tendons. Note that the Stanford/JPL hand has a structure matrix of the form
(my, ma, m3)=(0, 2, 2) as shown in Table 3.1 while the manipulator designed
by Morecki, et al. (1980) has a pseudo-triangular structure matrix. In what
follows, only those systems whose structure matrix takes the following pseudo-

triangular form will be considered:

€11 €19 0 0 0
€21 ez ez O 0
BT = : : (3.10)
€n—1,1 €n-—1,2 * - ... 0
€ni €n2 . © Cnpntl
or (my,mg,mg,...,myp) =(1,1,1,...,2), where

n

Z7n,-:m=n+1.

=1

Each non-zero element in Eq. (3.10) can assume the value of +1 or —1
provided that the resulting matrix satisfies the structural characteristics C1 -
C6 outlined in the previous section. Since there are n(n+3)/2 non-zero elements
in a robotic system having n-DOF and (rn + 1) tendons, the number of possible
structure matrices is equal to 2 to the [n(n + 3)/2]** order. It would be very
difficult if not impossible, to identify the admissible structures from such a large

number of possible combinations. In what follows, a simpler approach will be

presented.

The synthesis starts with a known n by (n+1) structure, called the generic
structure, and increases the complexity of the structure by adding one degree of
freedom at a time. In view of Eq. (3.10), it can be concluded that each time the
degree of freedom is increased by one, both the number of links and the number

of joints in the equivalent open-loop chain should also be increased by one. Let
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the new link be connected to the base-link of the generic structure by a turning
pair and let the added link be the base-link for the new mechanism. In this way
the base-link of the generic structure becomes the first moving link. All the
tendons in the generic structure must now be extended over the newly added
joint to allow all actuators be connected to the base. Moreover, an additional

tendon is required to connect the first moving link to the new base-link.

From the structure matrix point of view, this procedure implies that the
matrix of a generic structure is to be supplemented by an additional column
and an additional row. All the elements in the supplemented column, except
the last, are to be set to zero. The new elements in the supplemented row
can assume the value of +1 or —1. Without losing generality, one can let
the last element of supplemented column (and row) be +1. Hence, there are
potentially 2" combinations for assigning the signs of the remaining elements
in the supplemented row. However, some of the combinations may be rejected
due to the violation of the structural characteristics, C1 through C6, or may
be eliminated due to the reason of structural isomorphism. So the number
of admissible non-isomorphic structure matrices is usually much less than 2.
This procedure can be automated by a computer program. The systematic

procedure and the results can be summarized as follows:

One-DOF system. The simplest one-DOF manipulator has one moving link
and one fixed link connected together by a turning pair. The only possible
structure is shown in Fig. 3.3 where two cables are routed through different
sides of the joint. The corresponding structure matrix is also shown in Fig.
3.3. Note that the (1, 2) element has been chosen to be +1. The homogeneous

solution to this structure matrix is given by F = (1,1)7.
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) B'=[-11]

Fig. 3.3 Functional schematic of a one-DOF tendon-driven manipulator

Two-DOF system. There are 22 = 4 jossible combinations to form an addi-
tional row of non-zero elements to the structure matrix of a one-DOF system.
Only one form as shown in Fig. 3.4 satisfies the structural characteristics C1
through C6. The corresponding structure matrix is shown in Fig. 3.4. The

homogeneous solution is given by F = (1,1,2)T.

Three-DOF systems. There are 23 = 8 possible combinations to form an
additional row to the matrix shown in Fig. 3.4. Only three were found to
satisfy C1 through C6, however, two of them were structurally isomorphic.
Hence, there exist only two nonisomorphic structures as shown in Figs. 3.5(a)

and 3.5(b) (in page 45). Their associated structure matrices are also shown in

the figures.

Four-DOF systems. There are 2* = 16 possible ways to form one additional
row to each of the matrices shown in Figs. 3.5(a) and 3.5(b). Since there are
two structurally nonisomorphic structures for the three-DOF systems, totally,

16x2 = 32 possible structures can be generated for four-DOF systems. Thirteen
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Fig. 3.4 Planar schematic of a two-DOF tendon-driven manipulator

of them satisfy structural characteristics C1 through C6. But, only eleven are
structurally nonisomorphic as shown in Figs. 3.6(a) - 3.6(k) (in pages 46-49).

The corresponding structure matrices are also shown in these figures.

Five-DOF systems. There are 2° = 32 possible ways to form one additional
row to each of the matrices shown in Figs. 3.6(a) - 3.6(k). Since there are
eleven structurally nonisomorphic four-DOF systems, a total of 11 x 32 = 352
structures can be generated for five-DOF systems. After applying structural
characteristics, C1 through C6, and checking for structural isomorphism, 141
nonisomorphic kinematic structures were obtained. Table 3.2 (in page 50) cat-
egorizes the numbers of non-isomorphic structures according to their homoge-
ncous solutions. Fig. 3.7 (in pages 51-55) shows the corresponding structure

matrices.

Six-DOF systems. There are 2° = 64 possible ways to form one additional
row to each of the matrices of five-DOF systems. A total of 64 x 141 = 9024

possible structures can be generated. Again, after checking for structural char-
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acteristics, C1 through C6, and structural isomorphism, 3905 structurally non-
isomorphic drives were obtained. Table 3.3 (in pages 56-63) categorizes the
numbers of non-isomorphic structures according to their homogeneous solu-
tions. Appendix A shows one example of an admissible structure matrix for
each category of kinematic structures listed in Table 3.3. Note that this result
is different from the 23040 solutions obtained earlier by Morecki, et al. (1980).
It is believed that a certain number of those structures given by Morecki, et al.

contain isomorphic structures.

3.6 Summary

The structural characteristics of tendon-driven manipulator system have
been investigated. A set of criteria for the identification of structure isomor-
phism has been established and a methodology for the enumeration of tendon-
driven manipulators having pseudo-triangular structure matrix has been de-
veloped. All the admissible structure matrices with up to six-DOF have been

enumerated.

There is a planar schematic corresponding to each structure matrix. How-
ever, each planar schematic can be converted into various different spatial mech-
anisms depending on the twist angle chosen for every pair of adjacent joint axes.
This is also true for the construction of planar mechanisms, for which the twist
angles can be either 0° or 180°. Hence, the number of functional mechanisms

1s much larger than that of nonisomorphic structures.
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Fig. 3.5 Planar schematic and the associated structure matrices for three-DOF

tendon-driven manipulators

45



— OO
—_—o0 O 0O

—_— e O
—_—0 O
_—0 OO

—t e O
— OO

Fig. 3.6 Planar schematic and the associated structure matrices for four-DOF

tendon-driven manipulators
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Chapter 4

Topological Analysis and Performance Evalua-

tion

4.1 Introduction

Once various design alternatives have been generated, the following proce-
dure in mechanical design is to assess their performance. The designer may set
several suitable criteria for the performance assessment, for example, structural
versus functional, or kinematic versus dynamic, and so on. By comparing the
performance requirements, the number of potentially useful mechanisms may
be reduced, or an optimum configuration may be identified. Following this ra-
tionale, we may ask ourselves the following questions. For a given number of
degrees of freedom in a tendon-driven manipulator, how many different tendon
routings are admissible? And if we know the solution, what type of routing is
the optimal? In the previous chapter, a methodology for the enumeration of
admissible tendon routings for manipulators having pseudo-triangular structure
matrix has been developed. All the admissible kinematic structures with up to
six-DOF have been enumerated. In this chapter, the kinematic and static force
transmission characteristics associated with tendon-driven manipulators will be
investigated and the structural differences among various tendon routings will

be compared.

Various performance indices have been devised for assessing kinematic per-
formance of robotic manipulators. Among these, the theory of differential geom-

etry has been most frequently used by researchers to define various performance
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indices, such as the velocity /force ellipsoid (Asada and Cro Granito, 1985; and
Ghosal and Roth, 1987), the condition number (Salisbury and Craig, 1982)
and the manipulability measure of a robotic manipulator (Yoshikawa, 1985).
However, most of the performance measures are based on the evaluation of the
transformation between the end-effector space and the joint space. In what
follows, the theory of differential geometry will be used for the analysis of force
and/or motion transformation between the actuator space and joint space in
tendon-driven manipulators. First, it will be shown that a tendon-driven ma-
nipulator can be characterized by the condition number, defined as the ratio
of the maximum singular-value to the minimum singular-value of the struc-
ture matrix, and the direction of its homogeneous solution. Then, an index for
measuring the goodness of tendon routing will be defined and it will be shown
that an isotropic transformation between the actuator space and joint space
can be achieved for certain type of routings. Finally, a method for resolving

the maximum tension required to produce a set of desired joint torques will be

described.

4.2 Basic Equations

It has been shown in Section 3.2 that the kinematic and force relationships
between the joint space and tendon space can be expressed by Egs. (3.1) and

(3.3). Taking the derivative of Eq. (3.1), yields

S=BRO (4.1)

Equation (3.3) can be written as

r=RTBTF (4.2)



provided that all pulleys pivoted about one joint axis have the same radius.
More specifically, if the number of tendons is greater than the number of DOF
by one, then the solution of F can be generally expressed as the summation of

a particular solution and a homogeneous solution as shown below
F=(R"BT)*r+Af, (4.3)

where (#)* = {(#)T[(#)(#)T]7!} represents the pseudo-inverse of (#) (Strang,
1980), [, lies in the null space of structure matrix BT, and ) is an arbitrary
constant. The homogeneous solution vector f, represents a set of tendon forces
which results in no net joint torques. The components of [, must be of the same
sign. Thus by adjusting the constant A, positive tension can be maintained in

every tendon.

The structure matrix BT is of primary importance in determining the
characteristics of a manipulator, since the radius matrix R is a non-singular
square matrix which does not affect the generic property of a manipulator.
For the sake of clarity, it is assumed that R is an identity matrix so that
manipulators are normalized to unity. A two-DOF system will be used as an

example to develop the concept throughout this Chapter.

4.3 Transmission Ellipsoids

The planar schematic of a two-DOF' tendon-driven manipulator with three
control tendons is shown in Fig. 4.1. Defining the positive axes of rotation

about the joints to be pointing out of the paper, Eq. (4.2) can be written as:

r=BTF (4.4)



f f, f,

Fig. 4.1 A two-DOF tendon-driven manipulator

whetez = [, |, F=1fi fo fa]TandBT=["1 : 0]-

-1 -1 1

When there is no joint torque requirement, tendon forces are given by the
homogeneous solution, f = A [1 1 2]T and not much more can be said
about it. One effective method is to compare tendon forces required to achieve

a unity joint torque

in all directions. For a two-DOF system, Equation (4.5) represents a circle in

the joint torque space as shown in Fig. 4.2.
Substituting Eq. (4.4) into (4.5), yields:
F'BBTFR =1 (4.6)

Since matrix BT is of rank two, the quantity (BB7T) is a symmetric 3 x 3

matrix of rank two. Therefore, Eq. (4.6) describes a cylinder with its elements
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472

N,
1/

Fig. 4.2 Quadratic joint torque constraint

oblique to the coordinate axes in the tendon force space as shown in Fig. 4.3.
The principal axes of this force ellipsoid coincide with the eigenvectors of (BBT)
and the lengths of its principal axes are equal to the reciprocals of the square
roots of the eigenvalues. Since (BBT) is a symmetric 3 x 3 matrix of rank
two, this quantity always has an eigenvalue of zero magnitude which results
in a principal axis of infinite length. This axis defines the direction of the

homogeneous solution of Eq. (4.4).

4.3.1 Force Ellipsoid

The force ellipsoid shown in Fig. 4.3 is a useful tool for visualizing the
force transmission characteristics. From geometric point of view, each element
of the cylindrical surface in the tendon force space maps onto a point in the joint
torque space. This implies that tendon forces can be proportionally increased
along the direction of its homogeneous solution without affecting the resultant
joint torques. If the direction of the homogeneous solution is not contained in
the first quadrant, then increasing tendon forces along the longitudinal direc-
tion of the cylindrical surface will result in some negative tensions. Hence, all

components of the homogeneous solution must be positive.
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Fig. 4.3 Tendon force ellipsoid

4.3.2 Velocity Ellipsoid

Similar to the force ellipsoid, a velocity ellipsoid can be constructed to
visualize the velocity transmission characteristics. Velocity in the joint space
can be mapped into tendon space via Eq. (4.1). For a unity matrix R, Eq.

(4.1) can be written as follows:

$=B6 (4.7)

Given S, the least squares solution of © to the above equation can be
obtained as follows (Strang, 1980). Taking the left general inverse of B, Eq.
(4.7) yields:

©='B%S (4.8)

where !Bt is defined as [(BTB)“1 BT]. Restraining Q with unit speed condi-

tion, one obtains:
. . . T .
6" 6=8 ('BHT'B*§=1 (4.9)
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Fig. 4.4 Tendon velocity ellipsoid

The quantity [(!B*)T !B*] is a symmetric 3 x 3 matrix of rank two, there-

fore, the velocity vector S depicts an ellipse as shown in Fig. 4.4.

Another quick way to depict the velocity ellipsoid is to apply the duality
property of force and velocity. The principal axes of the velocity and force ellip-
soids coincide, while the lengths of the principal axes are inversely proportional
to one another. Hence, principal axes of the velocity ellipsoid shown in Fig.
4.4 are oriented in the same direction as those of force ellipsoid shown in Fig.
4.3, and its lengths are the reciprocals of those of the force ellipsoid. Notice
that one of the axes (corresponding to the homogeneous solution) in the force
ellipsoid is infinite long; therefore, the length of the corresponding axis in the
velocity ellipsoid is zero. Also, note that although S has one fewer DOF than

F, S still implicitly describes an ellipsoid with a degenerate axis of zero length.

4.4 Isotropy of the Transmission Ellipsoid

It is well known that the velocity transformation between the joint space
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and end-effector space of a manipulator can be characterized by the Jacobian
matrix J. The condition number of the Jacobian matrix has been used as a
quality index for measuring the performance of a manipulator. The condition
number is defined as the product of norms of J and J~! (Strang, 1980). It
can also be used as an indicator for measuring the shape of the transmission
ellipsoid. When the condition number is equal to one, we call the mapping
1sotropic. Isotropic transmission has advantageous properties as discussed by
Salisbury and Craig (1982), and Gosselin and Angeles (1988). For tendon-
driven manipulators, the force transmission ellipsoid formed by the structure
matrix BT has an axis of infinite length. Therefore, traditional definition for
the condition number can no longer be used. In this work, the condition number

of the structure matrix is defined as:

maximum singular value of BT

cond(BT) =

(4.10)

minimum singular value of B r

This condition number measures the shape of the cross section perpendic-
ular to the longitudinal axis of the cylinder. When the value is close to 1, the
shape of the cross section approaches a circle. The physical meaning of this
measure is given as follows. It can be shown that matrix BT can be factored
into

BT = @, © (Q)F (4.11)

where () is a 2 X 2 orthogonal matrix, @2 is a 3 X 3 orthogonal matrix, and &

has a special diagonal form as shown below:

101 0 0 ‘
'2_-[0 o 0] (4.12)

with o3 > o9 > 0.
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This is known as the singular value decomposition and, ¢; and ¢4 are called
the singular values of BY. From Eq. (4.10), it follows that cond(BT) = o, /0».
The shape of the cross section is an ellipse for which the ratio of the major
axis to the minor axis is equal to the value of the condition number oy /2.
The application of this index can be explained in the following. The cylinder
intersects with the fo — f3, fs — f1, and fi — f2 planes in three curves Iy, l,, and
I3, respectively, as shown in Fig. 4.3. Physically, these intersecting curves are
the loci of minimum tendon forces required to produce a unity joint torque in
all directions as shown in Fig. 4.2. Therefore, we can readily see that the shape
of the cross section as well as the direction of the longitudinal axis has some
dominant effect on the location of the curves. An ideal condition would be for
the intersecting curves Iy, Iz, and I3 to be located symmetrically with respect to
the origin. For the ideal condition to happen, the cylinder must have a circular
cross section and the longitudinal axis must intersect all the coordinate axes at

equal angles.

From the above discussion, it can be concluded that the direction of the
longitudinal axis plays an important role in the distribution of tendon forces.
The more the longitudinal axis is skewed, i.e, the components of the vector
are in an odd proportion, the larger the difference in tensions will occur. This
will result in a severe antagonism among the tendons and greatly reduce the
efficiency of the system. Therefore, it is desirable to have the longitudinal axis
of the cylinder pointed as closely toward the direction which makes equal angles
with all the coordinate axes as possible. We shall call the vector which makes

equal angles with all the coordinate axes as the isotropic vector. Define:

6* = cos (U - I,) (4.13)
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where U is a unit vector defined along the longitudinal axis of the cylinder and
I, is the unit isotropic vector. Then, the angle #* can be used to indicate the
closeness of the longitudinal axis to the isotropic vector. The smaller the angle
6* is, the closer the longitudinal axis is to the isotropic vector. In the three-
dimensional space, the unit isotropic vectoris given by [1/v/3 1/v/3 1/V3 ]T.
In an n-dimensional space, it is given by [1/y/n  1/\/n ... 1/\/H]T.

Isotropic Transmission Ellipsoid.  An isotropic transmission ellipsoid is

defined as one which has a unit condition number of the structure matrix and

has the isotropic vector as the direction of the homogeneous solution.

4.5 Maximum Tendon Force

To compute tendon forces, we first obtain a particular solution to Eq. (4.2),
then the homogeneous solution multiplied by a constant A is added onto the
particular solution, see Eq.(4.3). The constant A must be chosen such that
all the tendons are under tension. The result is exactly the same as finding
the intersection of the force ellipsoid with its coordinate planes, i.e., solving Iy,
Iy, and I3 in terms of joint torques. This procedure can be accomplished by
substituting the equations of the coordinate planes f; = 0 (i=1,2,3) into Eq.

(4.4), and then solving for f; (j=1,2,3; 7 # 7).

Consider the two-DOF manipulator for example. Substituting f; = 0 into

Eq. (4.4), and solving f, and f3, yields / in parametric form as:

{ﬁ: Z + 7 (4.14a)

where 71 and 73 are subject to the constraint imposed by Eq. (4.5).
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Similarly, substituting f; = 0 into Eq. (4.4), yields I, as

fs=—-Ta+m

{f L= (4.14b)

Substituting f; = 0 into Eq. (4.4), yields I3 as

{folnmpe "

The maximum value of f; can be found using Cauchy-Schwarz inequality for-
mula.
(az +by)? < (a® 4 0)(2® + o) (4.15)
Applying Cauchy-Schwarz inequality to the first equation of Eq. (4.14a), yields,
£ =12 < (02 +1%) (12 +n?) (4.16a)
or

f2 <1 (4.16b)

Applying Cauchy-Schwarz inequality to the second equation of Eq. (4.14c),
yields,

for = (12)2 — 1 /2)? < (1/22 +1/2%) (1 + 1?) (4.17a)
or

f2<1/V2 (4.17b)

Hence, tendon f, has an extreme value of 1. Similarly, extreme values of f;

and f3 can be found.

The above procedure can be extended to n-DOF manipulators. For an
n-DOF manipulator, there are n + 1 hyperplanes with which the (n + 1)-
dimensional force ellipsoid may intersect. The equations of the hyperplanes

can be represented as

fi=0, i=12...n+1 (4.18)



Substituting Eq. (4.18) into (4.2), yields:
r=BTF (4.19)

where B;T is the matrix obtained by deleting the i** column from BT and F*

is the column matrix obtained by deleting the ** element of F.

For each ¢, Eq. (4.19) denotes n linear equations in n unknowns. Hence,
F* can be obtained by inverting BiT, or by using Crammer’s rule. The jt*

element f; can then be represented as:

_ =)z B;;"|
1B;"|

f; (4.20)

where

s=j3—-1 if1>j

s=17 fe<y’
and where :=1,2, ..., n+1; 7=1,2,---, n+1; and j # 7; and where B,'jT repre-
sents the matrix obtained by deleting the :** and j** column of B7; and [(#)|

represents the determinant of (#).

There are n(n + 1) such equations. For each equation, an extreme value
of the tendon force can be obtained using Cauchy-Schwarz inequality formula.
Therefore, the maximum tension in each tendon can be derived. Comparing
the extreme values, the static performance among various tendon routings can

be distinguished.

4.6 Application to Three-DOF Systems

In this section, the foregoing concepts will be applied to analyzing three-

DOF systems. A three-DOF manipulator requires four tendons. Therefore,
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to achieve a unit joint torque in all directions, joint torques describe a three-
dimensional sphere while tendon forces describe a four-dimensional cylinder
with an axis of infinite length. Similar to the two-DOF manipulator, the condi-
tion number of the structure matrix measures the shape of the directrix of the
cylinder. Figure 4.5 shows five nonisomorphic tendon routings derived from the

previous chapter, Table 3.1.

Table 4.1 (on page 78) lists the structure matrix BT, homogeneous solution
[, of the BT condition number C, and the angle 6* for each of the kinematic

structures shown in Fig. 4.5.

Note that Fig. 4.5(c) represents the kinematic structure of a finger used in
the Stanford/JPL Hand. The homogeneous solution of the Stanford/JPL finger
points in the isotropic direction, 8*=0. However, its condition number is not
equal to one, but C=2.618. On the other hand, the tendon routing as shown in
Fig. 4.5(d) results in an isotropic transmission. All other kinematic structures
show different extent of nonisotropy in terms of the condition number and the

angle 6*.

Table 4.2 (on page 79) lists the maximum tendon forces for the structures
shown in Fig. 4.5. To differentiate the performance among various structures,

we can define an optimality criterion as follows:

Objective function (Iél}f)li [mfx (il

subject to 71 -7 =1, (4.21)

where max( f;) denotes the maximum tendon force in a given kinematic struc-
ture, and min| | denotes the least maximum tendon force among a set of differ-

ent structures.
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Table 4.2 A comparison of maximum tendon forces

It can be seen that the structure shown in Fig. 4.5(d) requires the least
maximum tendon force, which is two times smaller than that of the structure of
Stanford finger shown in Fig. 4.5(c). An additional merit of the structure shown
in Fig. 4.5(d) is that it requires equal strength actuators and tendons. This

characteristic can simplify the selection and design of the actuating system.

4.7 Summary

The force and velocity transmissions for tendon-driven manipulators have
been analyzed. It has been shown that the effect of routing on force/velocity
transmission can be characterized by both the condition number and the di-
rection of the homogeneous solution. Isotropic transmission of tendon-driven

manipulators has been defined and several three-DOF kinematic structures have

79



been used to illustrate the concept. In addition, a criterion for differentiating
force transmission characteristics has been defined and a procedure for iden-
tifying the least maximum-tendon-force has been presented. It is found that
the kinematic structure of the three-DOF manipulator shown in Fig. 4.5(d)
satisfies the isotropic transmission as well as the least maximum-tendon-force
conditions. The results may be of great help for the design of new generation

of tendon-driven manipulator systems.

The performance of force transmission can also be affected by the pulley
radii of the manipulator. We feel that it is a topic worth further research on the
optimization of the pulley radii in a kinematic structure to achieve the optimal

performance.
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Chapter 5

Control and Simulation

5.1 Introduction

Based on the material developed in Chapters 2 through 4, the control prob-
lem of tendon-driven manipulators can now be studied. Although the control
of tendon-driven manipulators has been investigated by a few researchers (Sal-
isbury, 1984; Jacobsen, et al. 1989), the problem is still relatively unexplored.
It can be further complicated by friction, compliance, and the coupling of the
displacements and forces in tendons. In general, the control problem consists
of: 1) kinematic and dynamic modelling of the system, and 2) design of control
strategies to achieve desired system performance. The objective of this chapter
1s to study the dynamic characteristics, investigate relevant control issues, and

suggest appropriate control strategies for tendon-driven manipulators.

First, a dynamic model for tendon-driven manipulators will be established
under the assumption that friction and compliance effects in tendons can be
neglected. Following the derivation, a control algorithm based on computed
torque method will be described. This algorithm assumes that feedback signals
from the sensors at each joint can be used to compute torques required for
the motors. Then, an efficient method for transforming joint feedback signals
to motor torques will be developed. Finally, based on the developed model,
simulation results for the realization of dynamic characteristics of a sample

tendon-driven manipulator will be presented.
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5.2 Dynamic Modelling

We now proceed to the dynamic modelling of a tendon-driven manipulator.
A three-DOF system will be used to demonstrate the concept throughout this
chapter. The dynamics of a tendon-driven manipulator can be divided into
three parts: 1) dynamics of the open-loop chain, 2) transformation between the

joint space and the tendon space, and 3) rotor dynamics.

5.2.1 Dynamics of the Open-Loop Chain

The generalized dynamic equations of motion for an open-loop chain can

be obtained using Lagrangian Mechanics. The equations of motion without

gravity term for a three-DOF manipulator can be expressed as (Paul, 1981):
M) O+ h,6)= 1 (5.1)

where M(6) is a 3 x 3 inertia matrix, © a 3 x 1 vector representing the joint
angles 8, h(6, 9) a 3 x 1 vector representing the Centrifugal and Coriolis terms,

and 7 a joint torque vector for the open-loop chain.

5.2.2 Kinematic Relationship Between Joint Space and Tendon Space

The force and displacement transformations between the joint space and

the tendon space have been developed in Section 3.2. They are
r=RTBTF (5.2a)

and

S = BRO (5.20)

The definitions of the parameters are given in Section 3.2.
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Fig. 5.1 Schematic of the motor-tendon spooling system

5.2.3 Rotor Dynamics

The motor rotor dynamics can be approximated by a second-order system.
Consider the ith motor-tendon spooling system as shown in Fig. 5.1. If the ith
tendon 1s wound around the ¢th pulley of radius r,,,, and the pulley is coupled
to a gear reducer having a gear ratio of n; = ry/r, (n; > 1), then the torque
developed by the ith motor is equal to the sum of the inertia torque, friction
torque, and the torque reflected at the motor shaft due to tension in the tendon.

Specifically, the equation can be written as

jmiemi + bmiém; + ﬁl’l' 1= 61’ (5.3(1)
n:

1

where Jum,, bm;, Om,;, fi, and € denote motor rotor inertia, viscous-friction
coefficient, motor-rotor angular displacement, tension in the ¢th tendon, and

torque developed by the 7th motor, respectively.
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Since there are four motors for a three-DOF tendon-driven manipulator,
Equation (5.3a) can be written four times, once for each motor. These four

dynamic equations can be compiled into a matrix form as:
JnOm + B8 + B = € (5.30)

where J,,,, By, and R,,, are 4 x4 diagonal matrices whose diagonal elements are
Jmiy bm;, and rn&, respectively; and ©,, and £ are 4 x 1 vectors whose elements

are the motor-rotor angular displacements and motor torques, respectively.

5.2.4 Overall System Dynamics

The motor-rotor angular displacements can be related to the manipulator
joint angles by R,,0,, = BRO. Substituting this relationship into Eq. (5.3b),

one can solve tendon forces in terms of motor torques and joint angles as:

F=R, 't = J,Rn 'BRO — B,,R,, ' BRO] (5.4)

Substituting Eqs. (5.4) and (5.2a) into (5.1), yields

(M + M)8 + B,,0 +1(8,6) = RTBTR,, ¢ (5.5)
where M = R"BTR,, ' JwRm 'BR
and B,, = RTBTR,, 'B,,R, 'BR.

Equation (5.5) completely describes the dynamics of the tendon-driven
manipulator. The term M gives the effect of rotor inertia to the dynamics of
the system and the term B,, gives the effect of damping to the system. It
should be noted that tendon tensions given by Eq.(5.4) must be positive at all
times for the dynamic model to be valid. This will be described in more detail

in Section 5.3.
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5.3 Computed Torque Controller

The purpose of a controller is to servo the motors so that the end-effector
will trace a desired path. In this work, the “computed torque” technique will
be implemented for controlling the manipulator. The technique assumes that
one can accurately compute the configuration dependent variables, AM(8), and
h(8, 9), in the equations of motion to minimize their nonlinear effect. It uses
a proportional plus derivative feedback to servo the motors. Therefore, the

proposed control law consists of two terms:

1) Compensation of the Centrifugal/Coriolis force and the viscous friction
g

terms:

Bn® + h(9,6) (5.6)

(ii) Proportional and derivative feedback terms:
(M + M)[Q, + Koé + Kpel (5.7)

where K, and I, are respectively 3 x 3 derivative and position feedback gain
matrices, O, is the desired joint angular displacement vector, and e=0, - O

1s the error vector.

If the structure of the control law contains the above two terms, then the
tracking error e(¢) will approach zero asymptotically. This can be explained as

follows. Let the computed torque 7, be related to the motor torques by

Tem = RTBTR,7'¢ (5.8a)

and let the value of 7, be computed from joint feedback signals as

Tom = (M + M)[B, + Kué + Kype] + B + h(6,6) (5.8b)
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Substituting Eq.(5.8a) and Eq. (5.8b) into (5.5), yields
(M + M08 + B0 + h(6,6)
=R"B"R,, "¢

= (M + M)[©, + K.é+ Kye] + B.n© + h(8,6) (5.9a)
After some simplification, Eq. (5.9a) becomes
(M + M)+ K,é + Kpe) =0 (5.9b)

Since (M + M ) is always nonsingular, one can choose K, and K, appro-
priately so that the characteristic roots of Eq. (5.9b) have negative real parts

and the tracking error ¢(t) approaches zero asymptotically.

Note that since the vector spaces of 7., and ¢ do not have the same
dimensions, the mapping between these two spaces is not one to one. Therefore,
1t is necessary to devise a “torque resolver” to convert the computed torque 7,

to the motor torque . This will be explained in the following section.

5.4 Torque Resolver

As mentioned in Section 3.2, given desired joint torques, the determination
of tendon forces is an indeterminate problem. For an n x (n + 1) system, the
pseudo-inverse technique can be used to solve for tendon forces as shown in Eq.
(4.3). In Eq. (4.3), the constant A must be chosen properly such that all the
tendons are under tension. To achieve this, the largest ratio of all the negative
tendon forces in the particular solution to their corresponding components in the
homogeneous solution must be identified. This process will inevitably increase
the computation time and reduce the probability for real time control of the

system.
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Fig. 5.2 Characteristics of O+(;r) and O~ (z)

Another method proposed by Jacobsen et al.(1985, 1989) is to use the
“rectifier” concept to determine the appropriate tendon tension. This method,
without going through the pseudo-inverse formulation, uses circuit-like oper-
ators to convert joint torque signals to tendon tension (or motor torque) sig-
nals. It provides a closed-form-like solution to determine the necessary tendon
tensions and can be implemented by analog circuits. Nonetheless, the result
developed by Jacobsen, et al. is solely applicable to the Utah/MIT hand for
which the tendon forces is less coupled than that of the n x (n 4 1) system. In
what follows, this method will be refined for the n x (n + 1) system. It will be

shown that this concept can be systematized.

First, let the operators Ot and O~ be defined as

! (5.10a)

and

0~ (z) = {(ix ’ (5.100)

where x is a dummy variuble. Figure 5.2 shows the characteristics of O (z)
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and O~ (z). From Fig. 5.2, the mathematical forms for O%(z) and O~(z) can
be written as

Ot (z) = [z + |«[)/2 (5.10¢)

and

O™ (z) =[—z +|z]]/2 (5.10d)
Note that O (z) + O~ (z) = |z], and OF(z) — O~ (z) = =.
For convenience, Equation (5.2a) can be rewritten as
BTF = (R")™'z (5.11)

The application of operators Ot (z) and O~ (z) to Eq. (5.11) leads to a general
approach for the determination of tendon forces without using the pseudo-
inverse technique. In general, the system of equations shown in Eq. (5.11) will
be reduced to such an extent that every equation contains only two unknown
variables. Until then, the solution for the unknown forces can be obtained by
applying the operators Ot (z) and O~ (z). The following three examples are

designed to illustrate the principle.

Example 1. Structure Matrix in Pseudo-Triangular Form

Take the structure shown in Fig. 5.3(a) (on page 90) for example. The

structure matrix BT is given by

-1 1 0 0
Bf=|-1 -1 1 0
-1 -1 -1 1

The homogeneous solution is given by [L 1 2 4], Substituting the structure

matrix into Eq. (5.11), yields
—fi+ fa=m3/r3 (5.12a)
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—h—frt fa=m/r 5.12b)
—fhi—f—fs+fa=7/m 5.12¢)

In view of the fact that Eq. (5.12a) contains only two unknowns and the
condition that f; and f, must be positive, we conclude that if 73 is a positive
value, the minimum forces required will be 73 /r3 for f, and zero for f;. On the
other hand, if 73 is negative, the minimum force will be —73/r3 for f; and zero

for fi. This can be expressed mathematically as,

=6 .
{2 _ 7';/7"3 b6y tf 320 (5.13a)
and
{;1 PSR (5.13b)
2 — U1,

where 6, is a positive biased force which has no effect on the joint torque 3.

Writing Eq. (5.13) in terms of operators O1 and O™, yields

fi =07 (73/r3) + 61
{f2 = O+ET:3§T'3§+51 (5-14)

The physical meaning of Eq. (5.14) can be readily seen from Fig. 5.3(b). If the
torque required in joint 3 is positive (counterclockwise), then tendon f; must
have a minimum pull of magnitude 73/r; while f; remains zero. On the other
hand, if the torque required is negative (clockwise), then tendon f; must have
a pull of magnitude —73/r3 while f; remains zero. Adding é; to both f; and

f2 has no influence on 7.

To determine f3, we substitute Eq. (5.14) into Eq. (5.12b) and apply the
fact that O~ (2) + O"(z) = |z]. This yields

=261+ f3 = 1o/ro + |3 /73] (5.15a)
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Fig. 5.3 Free-body diagrams of a three-DOF manipulator
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Following the same reasoning, one can conclude that if the value of (r9/ry +
|T3/r3]) is positive, then the minimum force will be (75/ry + |73/rs]) for f,
and zero for §;. On the other hand, if (12/ry + |73/r3]) is negative, then the
minimum forces will be zero for f3 and (—72/ry — |75/rs|) for 26;. This can be

mathematically expressed as:

For (m2/r2 + |73/r3]) > 0, then

261 = (52
{f3=7’2/7‘2+|7'3/7”3!+52, (5.155)

else

261 = -—TQ/TQ -_ ITg/’l"g! +62
5.15
{f3=52 (3.15¢)

where 65 is a positive biased force which will result in no net joint torque about

joint 2.

Combining Eqs. (5.14), (5.15b), and (5.15¢), yields

fi=07(13/rs) + O~ (ra/ra + |73/73])/2 + 82/2 (5.16a)
fg = O+(7'3/T'3) + O_(TQ/TQ -+ |T3/T‘3|)/2 +62/2 (516b)
fa = 0% (r2/ry + |73 /r3|) + 62 (5.16¢)

The physical meaning of Eqs (5.15) can also be explained from the tendon
routing shown in Fig. 5.3(c). Both f; and f; pull to the right while f3 pulls
to the left of the pulley at joint 2. The two tendons f; and fo always produce
a net force of |r3/r3|. Hence, to generate a desired torque of 7, at joint 2,
the force difference between f; and that from the biased force 2§; must be
equal to (7o/ry + |73/r3|). If it is positive, then the minimum forces will be
(T2/r2 + |73/7r3]) for f;3 and zero for é;,. If it is negative, then the minimum

forces will be zero for f; and one-half of (72/ry + |73/r3|) for 6;. The biased
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force 6, is added to adjust torque about the first joint axis. Note that adding

02/2, b2/2, and 63 to fy, fz, and f3, respectively has no effect on the net joint

torques 73 and T5.

Likewise, substituting Eq. (5.16) into Eq. (5.12c¢), yields
20+ fa=11/r1 + IT2/T2 + |7'3/7‘3|| + |13 /73|
Following the same reasoning, one concludes that
if (11/r1+ !7‘2/7‘2 + |7'3/7’3” + |7m3/r3l) > 0, then

252 :53
fa=m/rm+ |7’2/7“2 + |T3/7"3|| + |73 /73| + 83,

else

{252 = —(mi/r1+ |2 /ra + [3/rs]| + T /ra]) + 63
fi=46;

where 63 is a positive biased force.

Combining Egs. (5.17b,c) and (5.16), yields

((f1 =07 (73/r3) + O (12/r2 + |13 /73])/2
+O7(m1/ry + |r2/r2 + |73 /73| + |73/73]) /4 + 63 /4
fo=0t(r3/rs) + O~ (12/r2 + |13/r3])/2
+O~ (11 /ry + |72 /T2 + |73 /rs]| + |73 /r3) /4 + 63 /4

 fa = OF (i fry 4 o fra + |73 /3| + |73 /ra]) + 65

(5.17a)

(5.17b)

(5.17¢)

f3 =0 (ra/ry + |3 /r3|) + O~ (7 /1 + |7'2/r2 + [Tg/r3|| + |3 /r3])/2 4 83 /2

(5.18)

Equation (5.18) provides an alternative method for the transformation of

joint torques to tendon forces other than the pseudo-inverse formulation. The

result guarantees that each tendon force is greater than or equal to zero. It

can be seen that the computation is more straight forward than that of the
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pseudo-inverse technique. It should be noticed that the biased force 83 can be
chosen arbitrarily beforehand and its effect on the joint torques is in accordance

with that of the homogeneous solution.

Example 2. The Stanford/JPL Finger

The kinematic structure of the Stanford/JPL finger is shown in Fig. 4.5(c)
(on page 77) and its corresponding structure matrix is listed in Table 4.1. The

homogeneous solution is given by [1 1 1 1]7. Substituting BT into Eq. (5.11),

yields
—fi+ fa=m3/r3 (5.19a)
—fh+fa—fat+fa=m/rs (5.19b)
—h—fot+fat+tfa=n/m (5.19¢)

Since Eq. (5.19a) contains only two unknowns, f; and f, can be written in

terms of 07 and O~ as,

fi=0"(m3/rs) + 61
{ fa= O+ET3§T33 + 6 (5-20)

where §; is a positive biased force which has no influence on joint torques 7

and 73.

Substituting above equations into Eq. (5.19b), yields

—fst+ fa=m12/r2 —73/rs (5.21)
Hence, f3 and f4 can be written as

fa =07 (2fre — 13/73) + 62
{ fa= O'*Er2 Jra — T3 /ng +6, (5.22)

where 69 is a positive biased force which has no influence on torque 7.
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Substituting Eqs. (5.20) and (5.22) into (5.19¢), yields

—261+252:Tl/T1+IT3/T3|—|T2/T'2“Tg/T‘g' (523)

If the value on the right-hand-side of Eq. (5.23) is positive, the minimum
value will be equal to that value for 26, and zero for 26;. On the other side, if
the value is negative, then the minimum value will be zero for 26, and equal to

that value for 26;. Writing this in terms of the O and O~ operators gives
(52 - 0+(T1/T1 + |7'3/T3| — ITQ/T'Q - T3/7’3|)/2 -+ 63 (524&)
and

01 = O (mi/ry + |3 /r3| — |72 /2 — T3 /73])/2 + &3 (5.24b)

where 63 1s a positive biased force which has no effect on joint torques 7;, 7,

and 73.

Substituting Eqs. (5.24b) and (5.24a) into (5.20) and (5.22), respectively,

yields

f1=07(73/r3) + O~ (11 /ry + |13/r3| — |2 /r2 — T3/73])/2 + &3

fo=0%(r3/rs)+ O~ (11 /r1 +|73/r3| — |2 Jre — 73/73|)/2 + 63

fs =0"(ra/ry —13/73) + O+(7'1/r1 + |73 /r3| — |2 /r2 — T3 /73])/2 + 63
fa=0F(r2/ra — 13 /r3) + O (71 fr1 + |3 /73| — |12 /12 — T3 /73]) /2 + &3

(5.25)

Note that the value 3 can be used as a pretensioning force for the tendons.
Example 3. Fully Coupled Kinematic Structure

The kinematic structure shown in Fig. 4.5(d) is a fully coupled kinematic

-1 -1 1 1
structure. The BT for the structure is given by | 1 -1 —1 1
-1 1 -1 1

The homogeneous solution is given by [1 1 1 1]7.
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Substituting the structure matrix into Eq. (5.11), yields

—fi—fot+fat fa=T3/r3 (5.26a)
h—fa—fs+ fa=12/r2 (5.26b)
—hi+fe—fitfa=mn/ry (5.26¢)

In this case, none of the fy, f3, fs, and f; can be determined by using just
one of the above equations. Thus, some algebraic manipulations are necessary.

Adding Eq. (5.26a) to (5.26b), yields

fo— fa = (13/r3 + 12/72)/2 (5.27)
Therefore, f; and f; can be written in terms of the operators Ot and O,

fa=0"(r3)rs +12/r2)/2 + &
{ fa= O+g7’3;r3 + Tz/r2§/2 + 6, (5.28)

where 61 is a positive biased force which produces no net torques about joints

2 and 3.

Substituting Eq. (5.28) back into (5.26b), yields

fi = fs = (m2/re —73/r3)/2 (5.29)
Therefore, f; and f3 can be obtained in terms of the operators Ot and O~ as,

fr=0%(ra/ry —73/13)/2+ &
{fs = 0‘(T2/rz - TZ/T‘g)/Z + 6y (5.30)

where 6, is a positive biased force which produces no net torque about joints 2
and 3.
Substituting Eqs. (5.28) and (5.30) into (5.26¢), yields
261 -_— 262 p 7'1/7'1 -|'- |7'2/T2 —_ T3/T3|/2 —_ [7'3/7’3 + 7'2/7'2|/2
=b (5.31)
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Hence, §; = O*(b)/2 + 83 and 6, = O7(b)/2 + 83, where 83 is a biased force
which has no effect on joint torques 7y, 75, and 73. Substituting §; and &, into

Eqgs. (5.28) and (5.30), yields

f1 = O+(T2/7‘2 - 7'3/7‘3)/2 + O_(b)/2 + 53
fa=07(r3/rs +12/r2)/2 4+ Ot (b)/2 + 6,
f3 = 0_(7’2/7‘2 —T3/T3)/2+ 0_(6)/2 + 63
Fa = O (r3/rs + 72 )r3)]2 + OF (B)/2 + 65

(5.32)

It can be seen that the above procedure is general and can be applied to any

kind of n x (n + 1) systems.

5.5 Implementation and Simulation Results

In this section the simulation results of a three-DOF tendon-driven ma-
nipulator using the control algorithm developed in Sections 5.2 and 5.3 are
presented. The kinematic structure shown in Fig. 4.5(d) is used for illustra-
tion. Figure 5.4 shows the control block diagram for the system. The detailed
dimensions of the manipulator used for the simulation are given in the Appendix

B.

5.5.1 Controller and Torque Resolver Design

The controller is designed according to Eq. (5.8b). Figure 5.5(a) (on page
98) shows the detailed diagram of the controller shown in Fig. 5.4, where k,,,

ky;, and m;; are the elements of matrices K,, K,, and (M + M), respectively.

As mentioned in Section 5.2, it is necessary to keep tendon forces positive
at all times in order for the dynamic simulation to be valid. The following
heuristic has been implemented to assure positive tendon force. In view of Eq.

9.4, to compensate for the uncertainty due to motor inertia torques and viscous
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Fig. 5.4 Control block diagram of a three-DOF tendon-driven manipulator

friction torques, the computed joint torques are first rectified through a “torque
resolver”, then the maximum desirable manipulator acceleration and velocity,
@_m and Qm, are used to estimate additional motor torques, Jm(ém)mar and
Bm(ém)m”, needed for pretensioning the tendons. These added values can be
thought as the biased force 83 shown in Eq. (5.32). Derived from Eq. (5.32),
Figure 5.5(b) (on page 99) shows the detailed design of the resolver shown in Fig.
5.4. It can be seen that the transformation from joint signals to motor signals

has been replaced by a circuit-like procedure which can be easily programmed

on a digital computer or implemented into an analog circuit.

5.5.2 Feedback Gains Design

The performance of a nonlinear system can be realized or compared if

uniform criteria are used for the design of feedback system. That is, the gain
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matrices are chosen to satisfy a specified output response criterion. To do this,
first the influence of feedback gains K, and K, on the positional response of
the system is investigated. Figure 5.6 shows the response of joint angle 3 to the
simultaneous execution of step inputs to all the three joints for various damping
ratios. The initial conditions for the simulations are given as 6; = 0 and 9, =0,
(i=1,2,3) and the step function for each joint is applied at t=0.1 sec and has a
step value of 0.2618 radian. Three sets of gain values are chosen for comparison,
they are (K, K,)=(225, 23), (225, 30), and (225, 35), respectively. The system
is underdamped for the value (K,, K,)=(225, 23); overdamped for the value
of (225, 35); and critically damped for the value of (225, 30). Since critical
damping yields better system response, in what follows the gain matrices will

be chosen such that the system is critically damped, 1.e.,

koo = 2/kp;,  i=1,2,3 (5.33)

In practice, one method for improving the response time is to increase
the gains k,, and k,;. However, increasing the gains also increases torque
requirement on motors, hence resulting in an unstable situation. Figure 5.7
shows the response of the system to simultaneous step inputs of three joints for
two different gain values. Both gains are chosen to satisfy the critically damped
condition. It can be seen that the higher the gains are, the stiffer the system
is. The demand of motor torques for these two gain values are plotted in Fig.
5.8(a) and (b) (on page 103), respectively. To achieve high system response
and stability, the gain value (225, 30) which demands about one third of the
available motor torque will be used for the following studies. Note that a biased
motor torque of 2045 dyne-cm has been added to all motors in order to obtain

proper pretension of the tendons. The velocity and acceleration responses of the
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motors are also shown in Figs. 5.9 and 5.10 (on page 104), respectively. Note
that the negative velocities of motors 1, 2, and 3 shown in Fig. 5.9 denote that
the motors are under “back driving” condition, i.e., the direction of rotation is

in the opposite direction of the motor torque applied.

5.5.3 Motor Inertia and Viscous Friction Effects on Tendon Force

Figures 5.11 and 5.12 (on page 106) show the response of tendon forces for
two different gains. In Fig. 5.11, the gain is (225, 30) and the lowest tendon
tension occurs at the point B where the force magnitude is 1.67 x 10* dyne
(45.5 % below the pretensioning force). On the other hand, in Fig. 5.12, the
gain is (400, 40) and the point B has dropped to a value of 1.22 x 10* dyne
(60.2 % below the pretensioning force). This is due to the effect of motor
inertia and viscous friction. Figures 5.13 and 5.14 (on page 107) respectively
show motor torque and tendon force responses without considering the motor
inertias and viscous frictions. Comparing the tendon force curves shown in
Figs. 5.11 and 5.14, it can be seen that if pretensioning is not well managed,
system modelling without considering motor inertia and viscous friction terms
may cause slackness in tendons and result in errors. It should also be noted
that the magnitude of pretension may play an important role in the dynamic

response of tendon-driven manipulators.

5.5.4 Maximum Motor Torque

To compare the motor torque requirement among different kinematic struc-
tures, motor torque response for various combinations of simultaneous step in-
puts to a kinematic structure has been investigated. A step input can be applied

either in the positive or negative direction of a joint. For a three-jointed ma-
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nipulator, there are eight combinations of step inputs that can be applied to
each kinematic structure. Due to directional sensitivity in the manipulator, all
the combinations of the simultaneous step inputs are executed and the worst
condition which requires maximum motor torque for each kinematic structure
is recorded. For the kinematic structures shown in Fig. 4.5(a,b,c, and d), the
maximum motor torque occurs at the step input of 614 = 024 = 034 = 0.2618
radian, while the maximum motor torque for the structure shown in Fig. 4.5(e)
occurs at the step input of 614 = 634 = 0.2618 radian and 6,4 = —0.2618 ra-
dian. Figures 5.15 through 5.18 (on page 108,109) show the simulation results.
It can be observed that for the kinematic structure as shown in Fig. 4.5(d), the
peak motor torque as shown in Fig. 5.8(a) has the least value among all the

kinematic structures.

5.6 Summary

The formulation of the dynamic equations of motion and the control al-
gorithm for a general class of tendon-driven manipulators have been devel-
oped. The computed torque method has been used to illustrate the principle of
the control algorithm and a technique for transforming joint-torque signals to
motor-torque signals has been developed. The integral of the control method
in the simulation is demonstrated through a three-DOF tendon-driven manip-
ulator. Several system characteristics have been investigated through the sim-
ulation. It is hoped that this study will lead to a better understanding of

tendon-driven manipulators.
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Chapter 6

Summary and Conclusions

6.1 Review

This research has addressed four aspects of tendon-driven manipulators:
1) kinematic analysis, 2) structural synthesis, 3) transmission assessment, and

4) control issues.

In Chapter 2 a systematic methodology for the kinematic analysis of tendon-
driven manipulators was presented. Using graph representation, it has been
shown that the kinematic structure of tendon-driven mechanisms is similar to
that of epicyclic gear trains. Thus, the graph theory established for the kine-
matic analysis of epicyclic gear trains can be applied to this type of mechanism.
It has also been shown that the relationship between joint angular displacement
and tendon linear displacement can be easily obtained by an inspection of the

kinematic structure without going through the graph representation.

In Chapter 3 the topological structure of a tendon-driven manipulator was
separated from its functional consideration by using a structure matrix repre-
sentation. The characteristics of the structure matrix were investigated and a
criterion for identifying structure isomorphism was established. Applying these
structure characteristics, a methodology was developed for the enumeration of
tendon-driven manipulators having pseudo-triangular structure matrix. All the

admissible structure matrices with up to six-DOF were enumerated.

In Chapter 4 the effect of tendon routing on kinematic and static force
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transmission associated with tendon-driven manipulators was investigated. The
transmission characteristics can be described by the velocity and/or force ellip-
soid. It has been shown that the effect of tendon routing can be characterized by
a condition number and the direction of a homogeneous solution. The condition
number is defined as the ratio of the maximum to the minimum singular value
of the structure matrix and the homogeneous solution is the set of tendon forces
that results in no net joint torques. A methodology for calculating maximum
tension in a tendon-driven manipulator was developed. It has also been shown
that among the various tendon routings in three-DOF manipulators, the routing

with an isotropic transmission ellipsoid possesses least maximum-tendon-force.

In Chapter 5 the dynamic equation of a model of n x (n+1) class of tendon-
driven manipulators was formulated. A control algorithm based on the com-
puted torqued method of such a model was developed and a technique for trans-
forming joint feedback signals to motor torque signals was established. This
technique uses a circuit-like form to serve as the transformation between two
different vector spaces and can be implemented into an analog-circuit system
to simplify the calculation. The integral of the control algorithm in the simu-
lation was demonstrated by a three-DOF tendon-driven manipulator. Through

the results of simulation, several dynamic characteristics of the system were

1dentified .

We believe that the contributions of this dissertation are the development

of a:

1) Systematic procedure for the kinematic analysis of tendon-driven ma-

nipulators,

2) Methodology for the structural synthesis of tendon-driven manipulators,
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3) Method for assessing the transmission quality of tendon-driven manip-

ulators, and

4) Model of a control algorithm governing the manipulation and force con-

trol of this type of manipulator.

6.2 Suggestions for Future Research

We suggest the following research directions to extend our understanding

of tendon-driven manipulators:

- Research on the structures with combinations of rigid-elastic assemblies.
These may include rigid-link assemblies and elastic transmission elements, such

as belts, springs, and bellows, and so on.

- a systematic methodology for deriving the kinematic equations of such

structures,

- generation of the varieties of kinematic structures with combined rigid/

flexible elements,
- performance assessment, and

-the dynamic characteristics of such rigid-elastic combined models.
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Admissible pseudo-triangular structure matrices for six-DOF

Appendix A
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Appendix B: Dimensions of the open-loop chain

Figure A1 shows the configuration of the open-loop chain used in the simu-
lation. It is assumed that the links are uniform and the mass center of each link
is located in the middle of the link. The dynamic equations for the open-loop

chain neglecting gravitational terms are given by:

1 =[mili%/3 + mo(l + Ib2cy% /3 + lilges) + ms(ly + laea + lzeas /2)*+

msls®cys? /12)6; + hy

T2 =[maly? /3 + m3(l22 + 132/3 + 121363)]é2 + [m3132/3 + m3121363/2]é3 + hy

73 =[mg(ls2/3 + lolscs /2)]6; + (msly?/3)5 + hs (A.1)
where

hy = — mab16,[lo(1y + laca/2)ss + 12cy5, /6]
- m39193[(11 + laco + l3c23/2) 13523 + I3523¢03 /6]

— mséléz[(h +lzcp + I3cp3/2)(2l555 + I3s23) + l§023323/6]

« 2 N
he =ma(lil282/2 + 1220232/3)91 + ma(ly + laea + Isea3/2)(l2sz + I3523) 07

+ m31329'3023323/12 - m31213(92 + 93/2)5393

hs =m31382séf[(11 +loco + l3cos/2) + lscas /6]/2 + mglalsss 622

and where sy = sinf, s3 = sinfy, c; = cos by, c3 = cosfs, sq3 = sin(by + 63),

and cy3 = cos(f; + 0;).
The following numerical values are used for the simulation:

m; = 90 gm, my = mg = 100 gm; Iy = 3 cm, I, = I3 = 4 cm; joint axis

pulley radius: ry = ry = ry = 0.8 cm, spooler radius of the i** motor: r,,, =
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Fig. A1l Schematic of the open-loop chain

0.8 cm, gear ratio n;=12, motor rotor inertia j,, = 12.78 dyne —cm — sec?,
viscous damping coefficient b,,, = 68.5 dyne-cm-sec/rad, and maximum motor

torque=215400 dyne-cm, for all motors.

The simulation package SIMNON (Astrom, 1985) is used to simulate the
system. The plant is integrated under the continuous time system and the time

step for integration is 0.005 sec.
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