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Abstract

The least squares (LS) minimization problem constitutes the core of many real-time signal
processing problems, such as adaptive filtering, system identification and adaptive beamform-
ing. Recently efficient implementations of the recursive least squares (RLS) algorithm and the
constrained recursive least squares (CRLS) algorithm based on the numerically stable QR de-
composition (QRD) have been of great interest. Several papers have proposed modifications to
the rotation algorithm that circumvent the square root operations and minimize the number of
divisions that are involved in the Givens rotation. It has also been shown that all the known
square root free algorithms are instances of one parametric algorithm. Recently, a square root
free and division free algorithm has been proposed [4].

In this paper, we propose a family of square root and division free algorithms and examine
its relationship with the square root free parametric family. We choose a specific instance
for each one of the two parametric algorithms and make a comparative study of the systolic
structures based on these two instances, as well as the standard Givens rotation. We constder
the architectures for both the optimal residual computation and the optimal weight vector
extraction.

The dynamic range of the newly proposed algorithm for QRD-RLS optimal residual com-
putation and the wordlength lower bounds that guarantee no overflow are presented. The
numerical stability of the algorithm is also considered. A number of obscure points relevant to
the realization of the QRD-RLS and the QRD-CRLS algorithms are clarified. Some systolic
structures that are described in this paper are very promising, since they require less compu-
tational complexity (in various aspects) than the structures known to date and they make the
VLSI implementation easier.

SP EDICS:
5.2. Algorithms and Application Mappings
5.1. Architectures and VLSI Hardware
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1 Introduction

The least squares (LS) minimization problem constitutes the core of many real-time signal process-
ing problems, such as adaptive filtering, system identification and beamforming [6]. There are two

common variations of the LS problem for adaptive signal processing:

1. Solve the minimization problem

w(n) = arg min [| B(n)(X (m)w(n) - y(n) 1%, (1)
where X (n) is a matrix of size n x p, w(n) is a vector of length p, y(n) is a vector of length
n and B(n) = diag{s"1,""2,.--,1},0 < B < 1, that is, 8 is a forgetting factor.

2. Solve the minimization problem in (1) subject to the linear constraints
cTw(n)=ri=1,2,---,N, (2)
where ¢’ is a vector of length p and = is a scalar. In this paper, we consider only the special

case for which y(n) = 0 for all n.

There are two different pieces of information that may be required as the result of this minimiza-

tion [6]:
1. The optimizing weight vector w(n) and/or

2. the optimal residual at the time instant n:

e(tn) = X(tn)w(n) — y(tn), (3)

where X(t,) is the last row of the matrix X(n) and y(t,) is the last element of the vector

y(n).

Efficient implementations of the recursive least squares (RLS) algorithms and the constrained
recursive least squares (CRLS) algorithms based on the QR decomposition (QRD) were first intro-

duced by McWhirter [14], [15]. A comprehensive description of the algorithms and the architectural



implementations of these algorithms is given in [6, chap.14]. It has been proved that the QRD-
based algorithms have good numerical properties [6]. However, they are not very appropriate for
VLSI implementation, because of the square root and the division operations that are involved in
the Givens rotation and the back-substitution required for the case of weight extraction.

Several papers have proposed modifications in order to reduce the computational load involved
in the original Givens rotation [2, 5, 4, 8]. These rotation-based algorithms are not rotations any
more, since they do not exhibit the normalization property of the Givens rotation. Nevertheless,
they can substitute for the Givens rotation as the building block of the QRD algorithm and thus

they can be treated as rotation algorithms in a wider sense:

Definition 1 A Givens-rotation-based algorithm that can be used as the building block of the QRD

algorithm will be called a Rotation algorithm.

A number of square-root-free Rotations have appeared in the literature [2], [5], [8], [10]. It has been
shown that a square-root-free and division-free Rotation does exist [4]. Recently, a parametric
family of square-root-free Rotation algorithms was proposed in [8]; it was also shown that all the
known square-root-free Rotation algorithms belong to this family, which is called the ” gv-family”.
In this paper we will refer to the pv-family of Rotation algorithms with the name parametric pv
Rotation. We will also say that a Rotation algorithm is a uv Rotation if this algorithm belongs
to the pv-family. Several QRD-based algorithms have made use of these Rotation algorithms.
McWhirter has been able to compute the optimal residual of the RLS algorithm without square
root operations [14]. He also employed an argument for the similarity of the RLS and the CRLS
algorithms to obtain a square-root-free computation for the optimal residual of the CRLS algo-
rithm [15]. A fully-pipelined structure for weight extraction that circumvents the back-substitution
divisions was also derived independently in [17] and in [19]. Finally, an algorithm for computing
the RLS optimal residual based on the parametric uv Rotation was derived in [8].

In this paper, we introduce a parametric family of square-root-free and division-free Rotations.
We will refer to this family of algorithms with the name parametric kA Rotation. We will also
say that a Rotation algorithm is a kKA Rotation if this algorithm is obtained by the parametric kKA
Rotation with a choice of specific values for the parameters x and A\. We employ the arguments

in [8], [14], [15] and [17] in order to design novel architectures for the RLS and the CRLS algorithms

that have less computation and circuit complexity. Some systolic structures that are described here



are very promising, since they require the minimum computational complexity (in various aspects)
known to date, and they can be easily implemented in VLSI.

In Section 2, we introduce the parametric kA Rotation. In Section 3, we derive the RLS
algorithms that are based on the parametric kA Rotation and we consider the architectural imple-
mentations for a specific KA Rotation. In Section 4, we follow the same procedure for the CRLS
algorithms. In Section 5, we address the issues of dynamic range, lower bounds for the wordlength,
stability and error bounds. We conclude with Section 6. In the Appendix we give the proofs of

some lemmas that are stated in the course of the paper.

2 Square Root and Division free Algorithms

In this Section, we introduce a new parametric family of Givens-rotation-based algorithms that re-
quire neither square root nor division operations. This modification to the Givens rotation provides
a better insight on the computational complexity optimization issues of the QR decomposition and

makes the VLSI implementation easier.

2.1 The Parametric kA Rotation

The standard Givens rotation operates (for real-valued data) as follows:

T Th T, c s Bry Bry - Bry,
= ’ (4)
0 zf --- =z, -5 ¢ Ty Ty o Ty
where
B Iy
c = § =

S S N (5)
\/B2rE + a2 \/ B2 4+ 23

ri = m (6)
r;:cﬁrj+smj, j:1,2,---,m (7)

:1:;':—857‘]'4-633]', j:2a3v"'am . (8)



We introduce the following data transformation:

We seek the square root and division-free expressions for the transformed data as,j=1,2,---,m, b

Jj=2,3,---,m,in (6) and solving for a}, we get

ll
d, = \/ L5 (0%t + 103). (10)

By substituting (5) and (9) in (7) and (8) and solving for a; and b;, we get

2 . R - . .
L L e T 1 s o U R ST
Vials(1s5203 + 1,03) /1. V(158202 + 1.b3)/1;
We will let I/, and /] be equal to
U = lL(A%E + 1L.b3)R?, 1) = (%2 + 1,03))2, (12)

where £ and A are two parameters. By substituting (12) in (10)-(11) we obtain the expressions

) = k(5262 + 1,b7) (13)
@) = k(8% a1a; + labiby), j=2,3,---,m and (14)
by = AB(=bia; + arby), j=2,3,--,m. (15)

If the evaluation of the parameters k and A does not involve any square root or division operations,
the update equations (12)-(15) will be square root and division-free. In other words, every such

choice of the parameters k and A specifies a square root and division-free Rotation algorithm.

Definition 2 Equations (12)-(15) specify the parametric kKA Rotation algorithm. Furthermore, a
Rotation algorithm will be called a k) Rotation if it is specified by (12)-(15) for specific square-

root-free and division-free expressions of the parameters k and .



One can easily verify that the only one square root and division-free Rotation in the literature to

date [4] is a kA Rotation and is obtained by choosing kK = A = 1.

2.2 The Relation between the Parametric kA and the Parametric yv Rotation

Let

1 1 1 1
ka = ‘—’ = _, k, = "‘" k;, = .
L =y k= Ry (16)

We can express k!, and kj in terms of k, and k; as follows [8]:

koky 1
K= (kafPal + ktd) /1, K= 250 (17)

If we substitute (16) and (17) in (12) and solve for x4 and v we obtain

_ nlkaBad + kyb?)
kaky

, V=A (18)

The above provides a proof for the following Lemma:

Lemma 2.1 For each square root and division-free pair of parameters (k,A) that specifies a kKA
Rotation algorithm Al, we can find square-root-free parameters (pu(k),v(A)) with two properties:
first, the pair (u(k),v(A)) specifies a pv Rotation algorithm A2 and second, both Al and A2 are

mathematically equivalent'. O

Consequently, the set of kA Rotation algorithms can be thought of as a subset of the set of the puv
Fotations. Furthermore, (18) provides a means of mapping a kA Rotation onto a uv Rotation. For
example, one can verify that the square root and division-free algorithm in [4] is a uv Rotation and

is obtained for
_ kaﬂ2af + kbbf

=1.
kky 0

In Fig. 1, we draw a graph that summarizes the relations among the classes of algorithms based on

QR decomposition, a Rotation algorithm, a pv Rotation and a kA Rotation.

1They evaluate logically equivalent equations.



3 RLS Algorithm and Architecture

In this Section, we consider the kA Rotation for optimal residual and weight extraction using systolic

array implementation. Detailed comparisons with existing approaches are presented.
3.1 A Novel Fast Algorithm for the RLS Optimal Residual Computation
The QR-decomposition of the data at time instant n is as follows:

R(n) u(n) | oy | PR 1) Butn =)

-7 , (19)
0T v(t,) J X(tn) y(tn)

where T'(n) is a unitary matrix of size (p + 1) X (p + 1) that performs a sequence of p Givens

rotations. This can be written symbolically as

-t o || sRM) Bam)

07 Ln)F || X(ta) gt)

Ty | Lin+1)72 0 BR(n+1) Bi(n+1) 20)
07 L(n+1)7% 07 b7,
where
L()3R()=R(), L) Fa() = u(), o)
lo(n) 2 X (1) = X (1), lo(n)"Fii(tn) = y(tn)
and
L(n) =diag{ly,lz, -, 1p} L(n +1) =diag{l}, 15, -, 1},
- 7 r 1
ayp Gi2 - Gyp al; ajy --- allp
_ a P a _ a, . e al
R(n) = 22 2p Rn+1)= 22 ?p ’
L Gpp | L a;p i
u(n) = [ay p+1 A1 e a ]T u(n + 1) = [a,’ al e al T
) wp+1 pp+1 1,p+1 “1,p41 pp+1| 2

[X(tn) 9(ta)] = [b1 ba -+ by bpya].



Equations (12)-(15) imply that the ith Rotation is specified as follows:

= LDV 262 4 160 ) (22)

1) = (150522 + ()2, (23)

a;j = Hi(l,(;i_l)ﬂzauaij + libz(-i_l)bgi"l)), j=4,i4+1,---,p+1 (24)
b = MiB(~bVay + aibl™Y), j=it 142,41, (25)

where i = 1,2,---,p, b;o) =b;, 7=1,---,p+1and lff’) = l,. For the optimal residual we have:

Lemma 3.1 If the parametric kA Rotation is used in the QRD-RLS algorithm, the optimal residual

18 given by the expression

erLs(tn) (HA Ba ) “”ﬁ‘f"”b,,ﬁl v, (26)

Aptpp
where v = 1/\/I, if p is an even number and v = /I, if p is an odd number. O

The proof is given in the Appendix.

Here, [, is a free variable. If we choose [, = 1 we get v = 1 for both even and odd values of p and
we can avoid the square root operation. We can see that for a recursive computation of (26) only
one division operation is needed at the last step of the recursion. This compares very favorably
with the square root free fast algorithms that require one division for every recursion step, as well
as with the original approach (62), which involves one division and one square root operation for
every recursion step.

The division operation in (26) cannot be avoided by proper choice of expressions for the pa-

rameters k and A. This is restated by the following Lemma, which is proved in the Appendix:

Lemma 3.2 If a kA Rotation is used, the RLS optimal residual evaluation will require at least one

division evaluation. O

Note that the proper choice of the expression for the parameter A,, along with the rest of the
prop p Y I3 g
parameters, is an open question, since the minimization of the multiplication operations, as well as

communication and stability issues have to be considered.



3.2 A Systolic Architecture for the Optimal RLS Residual Evaluation

McWhirter has used a systolic architecture for the implementation of the QR decomposition [14].
This architecture is modified, so that equations (22)-(26) be evaluated for the special case of k; =
Ai=1,1=1,2,.--,p and [, = 1. The systolic array, as well as the memory and the communication
links of its components, are depicted in Fig. 2 2. The boundary cells (cell number 1) are responsible
for evaluating (22) and (23), as well as the coefficients ¢; = lgi_l)aii and 3; = libl(-i—l) and the
partial products e; = H§=1(,Bajj). The internal cells (cell number 2) are responsible for evaluating
(24) and (25). Finally, the output cell (cell number 3) evaluates (26). The functionality of each
one of the cells is described in Fig. 2. We will call this systolic array 51.1.

On Table 1, we collect some features of the systolic structure S1.1 and the two structures, 51.2
and 51.3,in [14] that are pertinent to the circuit complexity. The §1.2 implements the square-root-
free QRD-RLS algorithm with ¢ = v = 1, while §1.3 is the systolic implementation based on the
original Givens rotation. In Table 1, the complexity per processor cell and the number of required
processor cells are indicated for each one of the three different cells 3. One can easily observe
that S1.1 requires only one division operator and no square root operator, S1.2 requires p division
operators and no square root operator, while $1.3 requires p division and p square root operators.
This reduction of the complexity in terms of division and square root operators is penalized with
the increase of the number of the multiplications and the communication links that are required.

Apart from the circuit complexity that is involved in the implementation of the systolic struc-
tures, another feature of the computational complexity is the number of operations-per-cycle. This
number determines the minimum required delay between two consecutive sets of input data. For
the structures 51.2 and 51.3 the boundary cell (cell number 1) constitutes the bottleneck of the
computation and therefore it determines the operations-per-cycle that are shown on Table 5. For

the structure S1.1 either the boundary cell or the output cell are the bottleneck of the computation.

?Note the aliases: Iy ™" = 0in, 1) = oo, L = L ai; = 1,007 = bin, b = bour,
€;—1 = €in, € = Cout.

3The multiplications with the constants § and 8?2 are not encountered.



3.3 A Systolic Architecture for the Optimal RLS Weight Extraction

Shepherd et al. [17] and Tang et al. [19] have independently shown that the optimal weight vector
can be evaluated in a recursive way. More specifically, one can compute recursively the term
R~H(n) by

R=H(n) iR H(n-1)

=T(n A 27
, Ol (27)

and then use parallel multiplication for computing w”(n) by

wT(n) = ul(n) (R_H(n))* . (28)
The symbol # denotes a term of no interest. The above algorithm can be implemented by a fully
pipelined systolic array that can operate in two distinct modes, 0 and 1. The initialization phase
consists of 2p steps for each processor. During the first p steps the processors operate in mode 0
in order to calculate a full rank matrix R. During the following p steps, the processors operate in
mode 1 in order to compute R~ by performing a task equivalent to forward substitution. After
the initialization phase the processors operate in mode 0. In [17] one can find the systolic array
implementations based both on the original Givens rotation and the Gentleman’s variation of the
square-root-free Rotation, that is, the ur Rotation for y = v = 1. We will call these two structures
52.3 and 52.2 respectively.

In Fig. 3, we present the systolic structure 52.1 based on the kA Rotation with k; = A; = 1,2 =
1,2,---,p. This is a square-root-free and division-free implementation. The boundary cells (cell
number 1) are slightly simpler than the corresponding ones of the array S1.1. More specifically,
they do not compute the partial products e;. The internal cells (cell number 2), that compute the
elements of the matrix R, are identical to the corresponding ones of the array S1.1. The cells that
are responsible for computing the vector u (cell number 3) differ from the other internal cells only
in the fact that they communicate their memory value with their right neighbors. The latter (cell
number 4) are responsible for evaluating (28) and (27). The functionality of the processing cells,
as well as their communication links and their memory contents, are given in Fig. 3. The mode of
operation of each cell is controlled by the mode bit provided from the input. For a more detailed

description of the operation of the mode bit one can see [15] and [17].



On Tables 2 and 5, we collect some computational complexity metrics for the systolic arrays
52.1, §2.2 and §2.3, when they operate in mode 0%. The conclusions we can draw are similar to
the ones we had for the circuits that calculate the optimal residual: the square root operations and
the division operations can be eliminated with the cost of an increased number of multiplication
operations and communication links. We should also note that 52.1 does require the implementation
of division operators in the boundary cells, since these operators are used during the initialization
phase. Nevertheless, after the initialization phase the circuit will not suffer from any time delay
caused by division operations. The computational bottleneck of all three structures, §2.1, 52.2
and §2.3, is the boundary cell, thus it determines the operations-per-cycle metric.

As a conclusion for the RLS architectures, we observe that the figures on Tables 1, 2 and 5
favor the architectures based on the kA Fotation, K = A = 1 versus the ones that are based on the
pv rotation with u = v = 1 and the standard Givens rotation. This claim is clearly substantiated
by the delay times on Table 5, associated to the DSP implementation of the QRD-RLS algorithm.
These delay times are calculated on the basis of the manufacturers benchmark speeds for floating
point operations [18]. The readers may have to bear in mind that the weight extraction of [17] is

not a good form due to the updating of R=! if the weight vector at each time instant is required.

4 CRLS Algorithm and Architecture

The optimal weight vector wi(n) and the optimal residual ep; g(t,) that correspond to the ith

constraint vector ¢' are given by the expressions [15]:

t

w'(n) = H—z,.("WR*(n)z"(n) (29)
and _
eonps(tn) = “—Zi“(%)_ﬂiéicms(tn)v (30)
where
éorLs(tn) = X (tn)R™Y(n)2'(n). (31)

*The multiplications with the constants 2, 8%,1/8 and 1/,82, as well as the communication links that drive the
mode bit, are not encountered.
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The term z*(n) is defined as follows
Z'(n) = R~ (n)¢* (32)
and it is computed with the recursion [15]

2'(n) — T(n) %z’(n - 1) ’ (33)
# 07
where the symbol # denotes a term of no interest. In this Section, we derive a variation of the
recursion that is based on the parametric kKA Rotation. Then, we design the systolic arrays that
implement this recursion for k = A = 1. We also make a comparison of these systolic structures with
those based on the Givens rotation and the uv Rotation introduced by Gentleman [6, 2, 15, 17].
From (32) and (21) we have z'(n) = (L(n)“l/zR(n)> " and since L(n) is a diagonal real

valued matrix we get 2'(n) = L(n)/2R(n)~H ¢, where ¢' is the constraint direction. If we let
z'(n) = L(n)R(n)~H¢! (34)
we obtain
Zi(n) = L(n) V25 (n). (35)

From (35) we get || z'(n) ||?= 2" (n)L=!(n)#(n). Also, from (21) and (35) we get R™'(n)z!(n) =
R=!(n)z'(n). Consequently, from (30), (31) and (29) we have

7

ecrrs(n) = ziy(n)Lrl(n)Z,-(n)éiCRLS(n) (36)
and _
wi(n) = — r - __an’.n,
(W = Zr e E) (37
where
éores(n) = X (n)R™(n)Z(n). (38)

Because of the similarity of (31) with (38) and (29) with (37) we are able to use a variation of the

systolic arrays that are based on the Givens rotation [15, 17] in order to evaluate (36)-(37).

11



4.1 Systolic Architecture for the Optimal CRLS Residual Evaluation

From (26) and (36), if /; = 1, we get the optimal residual

. i p—1

ecrrs(n) = “Eiﬂ(n)L:(n)éi(n) (;1;11 /\jajj) Z—Zzzbﬁl- (39)
In Fig. 4, we present the systolic array 53.1, that evaluates the optimal residual for k; = A; =
1,7 = 1,2,--+,p, and the number of constraints is N = 2. This systolic array is based on the
design proposed by McWhirter {15]. It operates in two modes and is in a way very similar to the
operation of the systolic structure S2.1 (see Section 3). The recursive equations for the data of the
matrix R are given in (22)-(25). They are evaluated by the boundary cells (cell number 1) and the
internal cells (cell number 2). These internal cells are identical to the ones of the array $2.1. The
boundary cells have a very important difference from the corresponding ones of 52.1: while they
operate in mode 0, they make use of their division operators in order to evaluate the elements of
the diagonal matrix L~1(n), i.e. the quantities 1/l;,4 = 1,2,---,p. These quantities are needed
for the evaluation of the term EiH(n)L(n)'lzi(n) in (39). The elements of the vectors 3! and 22
are updated by a variation of (24) and (25), for which the constant § is replaced by 1/3. The two
columns of the internal cells (cell number 3) are responsible for these computations. They initialize
their memory value during the second phase of the initialization (mode 1) according to (34). While

they operate in mode 0, they are responsible for evaluating the partial sums
k .
me=_ I £ 1° /1. (40)
=1

The output cells (cell number 4) are responsible for the final evaluation of the residual®.
McWhirter has designed the systolic arrays that evaluate the optimal residual, based on either
the Givens rotation or the square-root-free variation that was introduced by Gentleman [15, 2].
We will call these systolic arrays §3.3 and 53.2 respectively. On Tables 3 and 5 we collect some
computational complexity metrics for the systolic arrays §3.1, $3.2 and $3.3, when they operate in

mode 0 6. We observe that the uv Rotation-based §3.2, outperforms the kA Rotation-based 53.1.

SNote the alias ' = 7.
$The multiplications with the constants 8,82,1/8 and 1/8?, as well as the communication links that drive the
mode bit, are not encountered.

12



The two structures require the same number of division operators, while §3.2 needs less multipliers

and also it has less communication overhead.

4.2 A Systolic Architecture for the Optimal CRLS Weight Vector Extraction

In Fig. 5, we present the systolic array that evaluates (37) for k; = A; = 1,5 = 1,2,--,p and the
number of constraints equal to N = 2. This systolic array operates in two modes, just as the arrays
52.1 and 53.1 do. The boundary cell (cell number 1) is responsible for evaluating the diagonal
elements of the matrices R and L, the variable /4, as well as all the coefficients that will be needed
in the computations of the internal cells. In mode 0 its operation is identical to the operation of the
boundary cell in §2.1, while in mode 1 it behaves like the corresponding cell of §3.1. The internal
cells in the left triangular part of the systolic structure (cell number 2) evaluate the non-diagonal
elements of the matrix R and they are identical to the corresponding cells of $3.1. The remaining
part of the systolic structure is a 2-layer array. The cells in the first column of each layer (cell
number 3) are responsible for the calculation of the vector 2 and the partial summations (40).
They also communicate their memory values to their right neighbors. The latter (cell number 4)
evaluate the elements of the matrix R~ and they are identical to the corresponding elements of
52.1. The output elements (cell number 5) are responsible for the normalization of the weight
vectors and they compute the final result.

Shepherd et al. [17] and Tang et al. [19] have designed systolic structures for the weight vector
extraction based on the Givens rotation and the square-root-free Rotation of Gentleman [2]. We
will call these two arrays 54.3 and 54.2 respectively. On Tables 4 and §, we show the computational
complexity metrics for the systolic arrays 54.1, §4.2 and 54.3, when they operate i mode 0. The
observations we make are similar to the ones we have for the systolic arrays that evaluate the RLS
weight vector (see Section 3).

Note that each part of the 2-layer structure computes the terms relevant to one of the two
constraints. In the same way, a problem with N constraints will require an N-layer structure.
With this arrangement of the multiple layers we obtain a unit time delay between the evaluation
of the weight vectors for the different constraints. The price we have to pay is the global wiring for
some of the communication links of cell 3. A different approach can also be considered: we may

place the multiple layers side by side, one on the right of the other. In this way, not only the global

13



wiring will be avoided, but also the number of communication links of cell 3, will be considerably
reduced. The price we will pay with this approach is a time delay of p units between consequent
evaluations of the weight vectors for different constraints.

As a conclusion for the CRLS architectures, we observe that the figures on Tables 3, 4 and 5
favor the architectures based on the uv Rotation, 4 = v = 1 versus the ones that are based on the

kA rotation with k = A = 1.

5 Dynamic Range, Stability, and Error Bounds

Both the kA and pv Rotation algorithms enjoy computational complexity advantages compared
to the standard Givens rotation with the cost of the denormalization of the latter. Consequently,
the numerical stability of the QRD architectures based on these algorithms can be questioned.
Furthermore, a crucial piece of information in the circuit design is the wordlength, that is the
number of bits per word required to ensure correct operations of the algorithm without overflow.
At the same time, the wordlength has large impact on the complexity and the speed of the hardware
implementation. In this Section, we address issues on stability, error bounds and lower bounds for
the wordlength by means of dynamic range analysis. We focus on the algorithm for RLS optimal
residual extraction based on a kA Rotation. The dynamic range of the variables involved in the
other newly introduced algorithms can be computed in a similar way.

In [13], Liu et al. study the dynamic range of the QRD-RLS algorithm that utilizes the standard
Givens rotation. This study is based on the fact that the rotation parameters generated by the
boundary cells of the systolic QRD-RLS structure eventually reach a quasi-steady-state regardless
of the input data statistics, provided that the forgetting factor 3 is close to one. A worst case

analysis of the steady state dynamic range reveals the bound [13]

i—1
hm Irij(n)| < \(/ﬁ)_ZﬁIxm”l =R, Jj=t4i+1l,---,p+1 (41)
th

for the contents of the processing elements of the :*"' row in the systolic structure, i = 1,2,---,p,

where |T,,4;| is the largest value in the input data. Similarly, at the steady state the output of the

14



it row m(i),j =1,i4+1,--+-,p+ 1is bounded by [13]

J
. ) i-1 FAN_ . . .
lim ‘:vj (n)lg(.‘lﬁ) |Zmaz| = RE, Jj=1+1,i4+2,--,p+ 1. (42)

n—0o0

Furthermore, the optimal residual egrs is bounded by [13]
: p—1 A err
Jim |erps(n)] < (26)77 [€maa| = RY

The latter is a BIBO stability result that applies also for the QRD-RLS algorithm based on a
kA Rotation. Nevertheless, the internal stability is not guaranteed. More concretely, the terms
involved in the QRD-RLS algorithm may not be upper bounded.

In view of the internal stability problem, a proper choice of the parameters k and A should be

made. A correct choice will compensate for the denormalization of the type

(2)
— ), (43)

where [} and l,(,i) are given in (22) and (23) respectively. The terms £? and A} in (22) and (23) can

be used as shift operators by choosing
k; =277 and X\ =2"", 1=1,2,---,p, (44)

where p; and 7; take integer values. For instance, in (23), if 7; > 0 the effect of A? on (1518202 4

libgi_l)z) will be a right shift of 27; bits. We can ensure that
05<li<2 and 05<i) <2, i=1,2,p (45)

by forcing the most significant bit (MSB) of the binary representation to be either at position 20 or
21 after the shift operation. This normalization task has been introduced in [1] and further used

in [4]. It can be described in analytic terms by the expression

shift_amount(unnormalized_quantity) = |{log, (unnormalized_quantity) + 1} /2]
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and it can be implemented very easily in hardware.

In the sequel, we consider the kA Rotation by choosing:

pi = shift_amount [lil,(;i_l)(l,(,i_l) 2ak + libgi_l)z)]

' i—1)? (46)
7; = shift_amount [(lg'_l)ﬂza?i + libz(l_l) )} :

for i = 1,2,---,p [4]. Note that (46) along with (44) should precede (22)-(25) in the rotation
algorithm. In conformity to [1] and [4] we will refer to the resulting rotation algorithm with the
name scaled rotation.

The systolic array that implements the QRD-RLS algorithm for the optimal residual extraction
is depicted in Fig. 6. A comparison of this systolic array with the one in Fig. 2 is summarized by
the following points: The boundary cells generate the shift quantities p and 7 associated with the
parameters k and A respectively, and they communicate them horizontally with the internal cells.
This yields two additional links for the boundary cells and four additional ones for the internal
cells. In the dynamic range study that follows, we show that the number of bits these links occupy
is close to the logarithm of the number of bits required by the rest of the links. The boundary cells
are also responsible for computing the quantities [T?_; Ba;; and Hf;ll Ai in (26). In this case, A; is
an exponential term according to (44), so the above product can be computed as the running sum

of the exponents

g,'.—_ZTk, 1=1,2,---,p—1, (47)

yielding an additional adder for the boundary cells. Finally, as far as the boundary cells are
concerned, we observe that the cell at position (p, p) of the systolic array is not identical to the rest
of the boundary cells. This is a direct consequence of (26). On the other hand, the shift operators
constitute the only overhead of the internal and the output cells compared with the corresponding
ones in Fig. 2. Overall, the computational complexity (in terms of operator counts) is slightly
higher than that of the systolic array with £ = A = 1.

Let us focus now on the dynamic range of the variables in the systolic array. By solving (43) for
a/; and using (41) and (45) one can compute an upper bound for a;; at the steady state, thus one

h

can specify the dynamic range of the i*h row cell content. A similar result can be obtained for the

h

output of the i*! row by using (42), (43) and (45). The results are summarized by the following
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Lemma:

Lemma 5.1 The steady state dynamic range of the cell content R and output range ’Rf in the it

row are given by

/

lim ag;(n)] < RE S V2R and  lim }bgi)(n)l < R 2 VIR? (48)

respectively.

The lower bounds in the wordlength come as a direct consequence of Lemma 5.1: The wordlength

of the cell content B¢ and output B? in the ith row must be lower bounded by
B¢ > [BF +0.5] and BY> [Bf +0.5] (49)

respectively, where Bf = [logy RY| and B? = [log, R¥] are the corresponding wordlength lower
bounds for the QRD-RLS implementation based on the standard Givens rotation.
The parameters k;, A; are communicated via their exponents p; and ;. The dynamic ranges of

these exponents are given by Lemma 5.2 which is proved in the Appendix.

Lemma 5.2 The steady state dynamic range of the terms p; and 1; at the ith row R and R} are
given by
limy—o0 |pi] < RY 2 B2 +2.5
A (50)
limp—oo || <RI =B+ 1.5
respectively’.
Consequently, the lower bounds on the wordlength B? and B of p; and 7; are
B? > [log (B¢ +2.5)] and B > [log(B{ + 1.5)] (51)

respectively.
For the computation of the optimal residual the boundary cells need to evaluate both the
running product e; = [Ji_, Baxs and the running sum in (47). The dynamic ranges for these terms

are given by the following Lemma:

"For the sake of simplicity in notation we have dropped the time parameter n from the expression in the limit
argument.
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Lemma 5.3 The steady state dynamic range of the terms e; and g; at the ith row R¢ and RY are

given by
. A ;
limpoo €i] < Rf = [Ti=1 R (52)
limp, o |gi] < RY 2 iBe 4 H£2)

respectively.

The proof is given in the Appendix. With simple algebraic manipulations one can show that the

corresponding lower bounds on wordlength Bf and BY of e; and g; are

B; > Z Bf and B] > max{[logB{ +logi+ 1], [logi + log(i + 2)]} (53)
k=1

respectively.

Finally, consider the coefficients defined as

¢ = 1¢" 52, 5 =LY

& = faii 8= poiY,

that describe the information exchanged by the remaining horizontal links in the systolic array (cf.
Fig. 6). One can easily show that the steady state dynamic range of these coefficients, denoted by

RE, RE, RE and R? respectively are

limpoo |&)] < RE 2 2RE limy oo 5] < RE 2 2RY

A A

) _ (54)
limp—oo |&] < RES RE limn_o |3 < RS = RE.

The implied wordlength lower bounds are B¢ > B¢ + 1, Bf > BY + 1,Bf > B? and B! > B
respectively.

In summary, (45), (48), (50), (52) and (54) show that all the internal parameters are bounded
and therefore the algorithm is stable. Furthermore, the lower bounds on the wordlength provide
the guidelines for an inexpensive, functionally correct realization.

The error bound of the whole QRD to a given matrix A € ™*" due to floating point operations
is given by [1, 4]

[6All < m(m +n ~ 3)(1+ 7)™ 4 Al + O(), (55)
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where 7 is the upper bound and € is the largest number such that 1 4 € is computed as 1. If (44)
and (45) are satisfied, for K = A = 1, then it follows that 7 = 6.5¢ [4]. This is fairly close to the

standard Givens rotation which has 7 = 6.0¢ [4].

6 Conclusion

We introduced the parametric kA Rotation, which is a square-root-free and division-free algorithm,
and showed that the parametric kKA Rotation describes a subset of the uv Rotation algorithms [8].
We then derived novel architectures based on the kA Rotation for x = A = 1 and made a com-
parative study with the standard Givens rotation and the uv Rotation with p = v = 1. Finally,
a dynamic range study is pursued. It is observed that considerable improvements can be obtained
for the implementation of some QRD-based algorithms.

We pointed out the trade-offs between the architectures based on the above Rotations. Our
analysis suggests the following decision rule for selecting between the architectures that are based on
the puv Rotation and the kA Rotation : Use the uv Rotation-based architectures, with u = v = 1, for
the constrained minimization problems and the kA Rotation-based architectures, with xk = A = 1, for
the unconstrained minimization problems. Table 5 shows the benchmark comparisons of different
algorithms using different DSP processors and it confirms the properties claimed in this paper.

A number of obscure points relevant to the realization of the QRD-RLS and the QRD-CRILS
algorithms are clarified. Some systolic structures that are described in this paper are very promising,
since they require less computational complexity (in various aspects) from the structures known to

date and they make the VLSI implementation easier.

A Appendix

Proof of Lemma 3.1:
First, we derive some equations that will be used in the course of the optimal residual compu-
tation.

If we solve (24), case i = j = 1, for lqﬂ2a%1 + llb% and substitute in (22) we get
’ 0'11 2
7 =4Hl;,—
1 1¢g K1 R
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and therefore
ll
ﬁ = lqa'nﬁl. (56)

. (i-1) g2 2 i (i-—l)2 . .
If we solve (24), case j = ¢, for Iy~ "/ B%af + 1;b; and substitute in (23) we get

. /\2 ’
(1) — 17 n —
lq Ki (57)

If we substitute the same expression in (22) we get

l: = lil{(]i_l)a;-ifi,‘.

In the above expression we substitute 1,5"‘1) from (57), and solve for I!/l; to obtain

I pL Aoaki (58)

Also, we note that (4) implies that
¢ = Bri/rh;

and by substituting (9) we obtain

a [l
ci:%‘} oi=12 et (60)
Similarly, from (4) and (9), we get
b(2 1) Il
= | =12, 1. 61
5 a;'i l,(; 1) ? ) P+ ( )
The optimal residual for the RLS problem is [6]
(62)

errs(tn) = — (f[ ) v(t,)
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The expressions in (20) and (19) imply

v(ty) = p(P)

\/—) byt

If we substitute the above expressions of v(t,) and ¢; in (62) we obtain

14
Baii [1i} 1
cniste) = - 1] ( o\ et )
i=1 11 1 lqp

From (59) we get

2 2
1P = Aplp 1 = Apl;’ Kp-1 lp— 11(p 2)
K3 lp l,(]p_l) K3 lp )‘;2; 1l
Hk_: )‘_%Lfé_l_"%z—l ;1 I = 9%
=1 H%] 12.7 A%]—l l;]—l 77 p .

(64)

Thus, from (63) and (64), for the case of p = 2k, we have

1
k [ / 2 2 -2
— Bag;a; 13 Bagj—12-1 [13j-1 ()‘23' Iy K3j—1 a1 1 )
l I 7 Y] : 7 732 7 g1
j=1 \ %2j2; la; Q51,251 laj—1 K2; la; )‘2]' 112] 1 \/E

By doing the appropriate term cancellations and by substituting the expressions of !/l;,7 =

1,2,--,2k from (56) and (58) we obtain the expression (26) for the optimal residual. Similarly,
for the case of p = 2k — 1, from (63) and (64) we obtain

1

- ] ! 2 ! 2 -2
errs(in) H Bazjoi |12 Bazj-10i-1 (-1 (AZj—1 19,1 65 1y;
. oql } 2 . 2.1
j=1 ‘12],2] la; Ai-1,2§-1 laj—1 Ka;1 laj—1 >‘2j le

ﬂam&\/‘ |“ llg 5P
/\211 p+1

The question is whether we can avoid the division in the evaluation of the residual. Obviously

and by substituting (58) we get (26).

Proof of Lemma 3.2:
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we should choose the expressions of the parameters x, and A, so that the equation «, = Apay, or

Ap = Kp/ay,
holds. But, from (24), for j = ¢, we get

1
= EERVE
l((]p 1)ﬂ2agp+lpb;()p 1)

rp/ a;p =

Therefore, if we choose to avoid the division operation in the expression of the residual, we will
need to perform another division in order to evaluate the parameter \,.
Proof of Lemma 5.2:

From (45) and the fact that 0 < 8 < 1 we get

0522 4+ 10 < 2a5(n)? + 26071

i i
Consequently, at the steady state we have

lim 160522 + 1| < 2(R9)? + 2 (RE).

Also, (41), (42) and (48) imply that R? > R?. Therefore, we obtain the bound

lim Il((li—l)ﬁza?i_Jrlibl(_i-l)?’ < 4(73?)2

N—+00

and by utilizing (23) and the fact that l,gi) > 0.5 we get

lim [\7?] <2 lim
N=+00 =00

1=V% + l,-b?'l)zl < 8(RH). (65)

By substituting the expression A; = 27, using (65) and solving the resulted inequality for 7; we
obtain

Jim |7i] < log R + 1.5.

The expression for the dynamic range of 7; in (50) is a direct consequence of the above inequality.
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Similarly, for the computation of the dynamic range of the term p; first one can prove that
: () 1G=1) p2 .2 pi=1)? a2
lim PG 8%3 + 160 < 16 (RE)

and then compute an upper bound for p; at the steady state based on (22), (44) and the fact that
1! > 0.5.
Proof of Lemma 5.3:

Since 0 < A < 1, for the term e; we have

7 7
Jmleit = 8 1 Jim, lowsl < TLRE:
=1 =1

Similarly, for the term g; we have

tim Jg) = 3 lim |
k=1

and from (50)

lim || <Y RE =3 (Bf +1.5). (66)
nee k=1 k=1
(41) implies that the wordlength for the variable r should satisfy the inequality
Bi > [(i—1)(1+1logB) + CT,
where C' is constant with respect to i. Since § < 1, it is sufficient to have
BZT 2 [7’ -1+ C]v

or

Br>i—1+ B (67)

A similar formula can be derived for the wordlength of the contents of the the array that utilizes

the scaled rotation, based on (49) and (67). More specifically, we have

Bf > B} +i—1.
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From this inequality and (66) we get

i(i— 1)

lim |e < B} + =

+ 1.52.

The dynamic range expression in (52) follows directly.
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S1.1:kA S1.2: pv 51.3 : Givens rotation
cell 1 2 311 2 3 1 2 3
number of | p ﬂpzilz 1i{p Bﬁp—;—ll 1 p ﬂ’gi) 1
sq.rt - - - - - - 1 - -
div. - - 111 - - 1 - -
mult. 9 4 115 3 1 4 4 1
i/o 9 10 416 8 5 6

Table 1: RLS residual computational complexity.

§2.1: KA 52.2: pv 52.3 : Givens rotation

cell 1 2 3 4 1 2 3 4 1 2 3 4
number of | p p~21 Py p(p;l) P (p—zl)p p B p2+1 P g%lg P m%l)

sq.rt - - - - - - - - 1 - - -

div. - - - - 1 - - - 1 - - -

mult. 8 4 4 5 5 3 3 4 4 4 4 5

ifo 7 10 11 14 6 8 9 12 3 6 7 10

Table 2: RLS weight extraction computational complexity (mode 0).
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§3.1: KA 53.2: uv 53.3 : Givens rotation
cell 1 2 3 4 |1 2 3 4 {1 2 3 4
number of | p L’—’——z—l)f Np N |»p p—,‘,l P°-"Np N |p szlll_’ Np N
sq.rt - - - - - - - -1 - - -
div. 1 - 111 111 - - 1
mult. 9 4 6 3|6 3 5 215 4 ) 2
ifo 10 12 14 717 10 12 5 |5 6 8 5
Table 3: CRLS optimal residual computational complexity (mode 0).
S4.1: KA 54.2: pv
cell 1 2 3 4 5 |1 2 3 4 5
number of | p L_ZIE Np ﬂﬂ%’_“_) Np|p g%)ﬁ Np N—p(—gﬂ Np
sq.rt - - - - - - - - - -
div. 1 - - - 1 |1 - - - 1
mult. 8 4 6 5 1 15 3 5 4 -
i/o 8 12 19 14 4 |6 8 14 10 4
54.3 : Givens rotation
cell 1 2 3 4 5
number of | p L%M Np Méﬁ—ll Np
sq.rt 1 - - - -
div. 1 - 1
mult. 4 4 5 5 -
i/o 4 8 13 10 4

Table 4: CRLS weight vector extraction comp. complexity (mode 0).

operations-per-cycle DSP96000 IMS T800 WEITEK 3164 ADSP-3201/2

(ns) (ns) (ns) (ns)
S1.1 | max{1 div. + 1 mult. , 9 mult. } 900 3150 1800 2700
S51.2 | 1 div. + 5 mult. 1020 2300 2700 3675
S1.3 | 1sq.rt. + 1 div. + 4 mult. 1810 4500 5300 7175
S52.1 | 8 mult. 800 2800 1600 2400
52.2 | 1 div. + 5 mult. 1020 2300 2700 3675
52.3 | 1 sq.rt. + 1 div. 4+ 4 mult. 1810 4500 5300 7175
S3.1 | 1 div. 4+ 9 mult. 1420 3700 3500 4875
S3.2 | 1 div. 4+ 6 mult. 1120 2650 2900 3975
S53.3 | 1 sq.rt. + 1 div. + 5 mult. 1810 4500 5300 7175
S54.1 | 1 div. + 8 mult. 1320 3350 3300 4575
S4.2 | 1 div. 4+ 5 mult. 1020 2300 2700 3675
54.3 | 1sq.rt. + 1 div. + 4 mult. 1810 4500 5300 7175

Table 5: Minimum required delay between two consequent sets of input data.
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QR Decomposition

Rotation Algorithms

v Rotation

xA Rotation

Figure 1: The relations among the classes of algorithms based on QR decomposition. a Rotation al-
gorithm, a pur Rotation and a KA Rotation.
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Figure 5: S4.1 : Systolic array that computes the CRLS optimal weight vector. It implements the

algorithm that is based on the kA Rotation for which k = A = L.
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Figure 6: Systolic array that computes the RLS optimal residual based on the scaled square root
free and division free Rotation.



