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With the exponential growth in human population and rapid increase in global 

urbanization, understanding changes in community dynamics and structure in human 

dominated landscapes is essential, yet, rarely studied.  To determine what factors 

account for tree species composition and distribution in an urban setting, data from 

the 1999 UFORE Model vegetation survey of Baltimore, Maryland was analyzed.  

There was a diverse arboreal population found, comprised primarily of species native 

to the area.  Detrended correspondence analysis did not show a clear pattern of 

species assemblages based on land-use, possibly indicating a homogenization of 

conditions across the urban environment.  In canonical correspondence analyses, 



  

species distribution could not be explained by socioeconomic factors, however, there 

was a significant relationship of tree species assemblages and the physical 

environment, specifically with percent impervious surface cover.  The amount of 

variance accounted for was small indicating that other factors may be involved in 

determining plant species assemblages.   
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Chapter 1: Introduction 

 
Few ecosystems are untouched by the direct and subtle effects caused by the 

development and expansion of human civilization (McDonnell and Pickett, 1993).  In 

the  United States, approximately 80% of the population lives in or near cities 

(USCB, 2005), while the surface area of urban areas is projected to almost double in 

the next 25 years to 9.2% (Alig et al., 2004).  Worldwide, an estimated five billion 

people will be living in urban areas by the year 2030 (UN, 2005).  Despite the 

increase in urban population, little research in North America has focused on 

understanding the community dynamics of city-dwelling plant species or ecosystem 

functioning within urban environments (Collins et al., 2000).  In large part, this lack 

of attention stems from the fact that forests dominated by humans and urban 

infrastructure are rarely seen as functioning ecosystems by citizens and scientists 

alike as vegetation is forced to exist within disconnected forest remnants, street tree 

pits, and highly variable residential and commercial landscapes.  In order for planners 

and both public and private land stewards to make informed decisions that will 

protect and improve environmental and, ultimately, human health and well-being, 

there must be a greater understanding of how human dominated systems function 

(Meiners et al., 2001).  
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The challenges for urban vegetation 
 

Urban environments differ in many respects from more researched and 

understood rural and wilderness settings.  Urban areas are defined here as areas 

containing more than 620 people per km2 with an overall population greater than 

50,000 (USCB, 1980).  Typically, population density, the proportion of land 

apportioned to buildings, and road density are all highest near the urban core and 

decrease with distance outwards as the forest matrix becomes more dominant 

(Medley et al., 1995).  Cities are often characterized by a low percentage of forested 

area (Medley et. al, 1995) with an average of 33% tree cover for cities in the northeast 

United States (Nowak and Crane, 2002) compared with surrounding rural areas 

characterized by about 80% tree cover, on average (Freedman et al., 1996).  Land that 

is available for tree growth is broken into more numerous and smaller isolated 

fragments (Medley et al., 1995; Porter et al., 2001), reducing available space for the 

establishment and persistence of species adapted to the protection provided for by the 

forest interior.   

In more natural forested areas, disturbance events include fire outbreaks and 

tree falls (Pickett et al., 1989).  While in an urban environment, disturbance is 

commonly a result of land-use change and new construction.  Practices in land 

management, such as lawn mowing, can provide for more frequent, smaller scale 

disturbances.  However, while the actual pathways may be markedly different, urban 

forests and rural forests are similar in the mechanisms of vegetation community 

dynamics.  As in forest species assemblages found in more rural settings, trees in 

urban forests are distributed based on generalized mechanisms of species 
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replacement: 1) sites become available, 2) species are differentially available based 

on seed source or vegetative propagation, and 3) species are able to persist through 

adaptation and competition (Pickett et al., 1987). 

Once space is available for tree growth, the species available to regenerate 

naturally are determined by the available seed source and by adjacent species able to 

vegetatively propagate and colonize the area.  In cases where trees are being planted, 

species composition is in large part due to the availability of plant material, trends in 

landscaping, and personal preference.  Only those native trees able to adapt to the 

transition from undisturbed forest to developed city will persist and regenerate in 

natural areas as well as spread into neglected and abandoned private land spaces.   

Species composition and distribution in the urban environment can also differ 

when compared with surrounding areas due to the introduction of non-native species.  

Non-native species are defined as those species that were not found in the Baltimore 

area pre-European settlement and have since then been imported from areas of similar 

climatic characteristics, mainly portions of Asia and Europe, for landscaping, 

medicinal purposes and soil erosion control.  Some of these non-native species may 

naturalize through environmental adaption and freely reproduce while others do not 

escape into the environment.  Invasive species are those non-native species that 

aggressively spread and are found to cause economic and environmental harm or 

harm to human health (Swearingen, 2002).   

There is often a larger stem densities of non-native plant species around 

developed areas that increases overall species richness (Burton and Samuelson, 2008; 

Lowenstein and Lowenstein, 2005; Sax and Gaines, 2003) and leads to biotic 
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homogenization at small, large, and global spatial scales as cities are built to serve a 

single species, man (McKinney, 2006).  Forests along an urban-rural gradient in New 

York were found to have lower stem densities and an increased proportion of invasive 

seedlings and saplings, as well as seed bank stores, at the urban end of the gradient 

(Cadenasso et al., 2007, McDonnell et al, 1997).  Previous studies have shown that 

native plant communities in urban areas typically have decreased stem densities, 

lower species diversity, and decreasing overstory tree regeneration (Burton and 

Samuelson, 2008, Moffatt et al., 2004).   Species composition in cities can be 

dominated by few species accounting for more than half of the tree population 

(Nowak, 1994d).  

  Finally, after a tree seed germinates, it has to be able to persist in that 

location.  With the intensive construction and constant modification needed to support 

a large human population, urban areas are characterized by conditions challenging to 

some species of trees such as altered hydrology (Groffman et al., 2003) and a higher 

percentage of impervious groundcover affecting water flow and plant root growth 

(Medley et al., 1995).  Soils are typically compacted and degraded with altered 

nutrient cycling (Groffman et al., 1995; Pickett et al., 1997), higher concentrations of 

heavy metals and organic matter, and reduced fungi and microinvertebrates 

(McDonnell et al., 1997; Pouyat et al., 1995).  Urban areas are prone to the “heat 

island effect” where anthropogenic changes to land cover and pollution have resulted 

in temperatures higher than surrounding rural areas (Karl et al., 1988; Oke, 1995), 

possibly leading to longer growing seasons and altered flowering times for resident 

plant species (Luo et al., 2007).  These factors, along with many others, including the 
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unique history and development of each patch of land, may influence the plant 

species assemblages found within the urban environment. 

 

Socioeconomic factors versus abiotic and biotic factors in determining plant 
composition and diversity 

 
Urbanization has resulted in new definitions for plant community ecology and 

new parameters for species composition and spatial relationships.  In natural systems, 

site characteristics such as climate, resource availability, hydrology, seed source 

proximity and dispersal, and topography are typically the dominant factors in 

determining species composition and spatial distribution (Brush, 1980; Chesson, 

2000; Grimes, 1979; Lavorel, 2002).  However, in an environment modified by and 

dominated by humans, abiotic and biotic factors become integrated, or sometimes 

replaced, with site history, socioeconomic status, cultural influences, and personal 

preferences.  

Hope et al. (2003) found in planted landscapes that perennial plant diversity in 

urban gardens was affected by the “luxury effect”, the relationship of wealth and 

plant diversity, in addition to elevation and land-use (Hope et al, 2003).  Martin et al. 

(2004) investigated the sources of variation in perennial vegetation composition 

planted across the landscape of Phoenix, Arizona.  Median family income accounted 

for most of the variation in plant richness in neighborhoods.  Plant abundance in 

surrounding park land was best predicted by the time since last disturbance 

represented by the median age of the neighborhood. 
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Grove et al. (2006) investigated the importance of multidimensional social 

theories on vegetation cover in Baltimore, Maryland by extracting land cover from 

satellite imagery in terms of grass cover versus tree cover on residential areas located 

on private lands, public rights-of-way, and riparian areas.  They found that tree 

canopy cover, on private lands and on public rights-of-way, was best predicted by the 

land management decisions aimed towards upholding prestige within the community, 

particularly when modeled with housing age.   

While there have been some gains in the understanding of the interaction of 

humans and vegetation in urban environments, little has been investigated within 

urban areas on arboreal vegetation at the species level.   Whitney and Adams (1980) 

found that age of housing on the property and the proximity to the center of Akron, 

Ohio greatly influenced the tree species present.  They suggested that this may have 

been due to the changing recommendations by the nursery industry as plants go in 

and out of fashion over time.  Plants in more developed areas closer to the city’s 

central complex were more likely to be undesirable species, such as Morus alba and 

Ailanthus altissima, due to differential property upkeep, if any at all, as land 

management can be absent with vacant property in comparison to suburban areas.  

They also found correlates in income and occupation of the homeowner.  Vallet et al. 

(2008) found that buildings and pavement areas were significant predictors of species 

composition.  

In an effort to further research the drivers for tree species assemblages in an 

urban environment, tree survey data was collected and used in a series of multivariate 
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analyses in order to evaluate chosen social and environmental factors found in 

previous studies to influence vegetation distribution.   

 

Questions and hypotheses 
 

Using data collected from a vegetation survey from the UFORE Model 

collected in Baltimore, Maryland in 1999 by the USDA Forest Service, the following 

analyses will attempt to describe the tree populations found, as well as the possible 

drivers for tree species composition, and their positioning in the urban landscape.  

UFORE, or the Urban Forest Effects Model, is a computer model developed in the 

1990’s by the USDA Forest Service Northeastern Research Station to quantify an 

urban forest’s structure and function (Nowak and Crane, 2000).   

Survey plots were grouped by land-use type as this can be an indicator of site 

history, degree of disturbance, and of land management practices.  In this study, three 

questions will be addressed.  What is the current tree population of Baltimore, MD 

and does land-use influence the spatial distribution of tree species?  And finally, as 

the natural environment is heavily modified, do anthropogenic processes act as 

drivers for tree species composition and distribution?  The following hypotheses will 

be tested with the purpose of answering these questions: 

 

(H1) Differences in species assemblages among the survey plots will be 

related to land-use classification.   
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(H2) Socioeconomic data, specifically income, population density, and percent 

vacant housing, will be correlated with tree species distribution.   

(H3) Physical environmental data, represented by impervious surface cover 

and time since last major disturbance, will be significant to tree species 

distribution.   
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Chapter 2: Methods 
 

Site description – Baltimore, MD 
 
 

All plots surveyed were within the city limits of Baltimore, Maryland, located 

in the Mid-Atlantic region of the United States (Illustration 1).  Baltimore City (lower 

left 39˚11’37” N, 76˚42’38” W and upper right 39˚22’30” N, 76˚31’42” W) is located 

on the Patapsco River, which empties into the Chesapeake Bay.  The city is protected 

to the west by the Appalachian Mountain range, blocking northern winds and lake 

effect snows from the Great Lakes region.  To the east, the Atlantic Ocean buffers the 

area from extreme freezing conditions.  The average annual rainfall is 100-115 

centimeters and is generally distributed evenly throughout the year with around 10 

centimeters per month with the exception of late spring and early summer where there 

is a slight increase in precipitation (NOAA, 2004).  The highest daily temperatures 

typically occur in July at an average of 32.8˚ C and lowest temperatures take place in 

January with an average low of 6.7˚ C.  The record high was 42˚ C in 1985 and the 

record low was set in 1934 at -21.7˚ C (TWC, 2007).  Primarily located within Plant 

Hardiness Zone 8, a small portion of zone 7 occupies the north-western part of the 

city according to the USDA Hardiness Zone map (USDA, 1990).  The fall line, 

designating the meeting of two physiographic regions, the Atlantic Coastal Plain and 

the Piedmont, cuts through the city, nearly dividing Baltimore into half.  The city’s 

elevation ranges from sea level to 400 feet above sea level with the center of the city 

about 33 feet above sea level (USGS, 2008).   
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Illustration 1.  A map of Baltimore City with the 1999 

UFORE plots marked and land-use categories indicated 

(Courtesy of the USDA Forest Service; Pouyat et al., 2007). 
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Baltimore’s population peaked in the 1950’s as the sixth largest city in the 

United States and then began to decline as people moved into the surrounding 

suburbs.  The population in 2000 was estimated to be 651,154 people by the United 

States Census Bureau, down 14.7% from 1990’s estimate of 763,014.  Although still 

falling, the population decline has slowed in recent years to 631,366 in 2006.  City 

revitalization projects including the renovation of the Inner Harbor, a popular tourist 

attraction, and increased residential building may have contributed to the reduced rate 

of population decline.  Even with the recent renewal, a large percentage of the 

population lives below the poverty line with an unemployment rate of 22.9% and 

much of the city’s landscape is abandoned and unattended with a vacant housing 

estimate of 42,000 homes (Chapelle et al., 1986; US Census, 2008).                

 

Description of the Urban Forest Effects Model (UFORE) 
 

Data for this analysis have been provided by the USDA Forest Service from a 

vegetation survey in the summer of 1999 (UFORE, 2004c).  The UFORE computer 

model was developed in the 1990’s by the United States Department of Agriculture 

Forest Service, Northern Research Station to allow researchers and land managers to 

quantify the structure, functions, and values of forests using vegetation data collected 

in the field and corresponding meteorological and pollution data (Nowak and Crane, 

2000).  The program began with a handful of large cities within the United States, 

such as New York, NY, Atlanta, GA and Baltimore, MD and has since been utilized 

in approximately 50 cities throughout the world.  The UFORE model can provide 

information as to the current state of a city’s forest and management opportunities 
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through species diversity, forest health, and age class distribution.  In addition, the 

model has been used to predict the future health of the city’s forest and to provide 

political ammunition and perhaps a will to enact policies that will preserve and 

improve a forest’s current state.  The model calculates a monetary valuation of an 

urban forest, the potential losses due to invasive trees, pests, and pathogens, and the 

environmental services provided by the city’s forest including building temperature 

moderation and air pollution uptake (Nowak and Crane, 2002). 

 

Survey design and plot selection 
 

Urban landscapes are collections of patches of the landscape that differ 

physically, biologically, and socially.  Research has suggested that, in urban 

landscapes, topography and climatic variables are overcome by anthropogenic factors 

and spatial connectivity when determining species presence (Guirado et al., 2008).  In 

a city, land-use has an overall impact on the amount of tree cover (Nowak et al., 

2002).  Industrial sites, for example, can be predicted to have a smaller percentage of 

tree cover, a higher percentage of impervious groundcover, and to have greater 

degrees of environmental disturbance than other types of land-uses.  In contrast, 

canopied forested sites can be expected to have little, if any, impervious groundcover, 

less disturbance, and higher tree stem density and species diversity than industrial 

sites and other highly developed land-uses.  Therefore, these patches, if grouped by 

current overall land-use of the surveyed area, are more easily defined and studied, as 

well as potentially better managed for optimum tree health and survivability.  With 
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this in mind, experimental design of the UFORE vegetation analysis uses a land-use 

typology to stratify plot locations. 

As part of the UFORE data collection process, 202 circular 1/10 acre stratified 

random plots were selected in 1999 within the city limits of Baltimore, Maryland.  A 

map representing a modified Anderson Level II classification was entered into a 

UFORE random plot selection program developed by the US Forest Service as a tool 

in ArcGIS (ESRI, 2006).  The number of plots in each land-use category was based 

on the relative proportions of the land-use classifications that existed within the city.  

These plot locations were then placed onto satellite maps detailing building and street 

locations in order to most accurately locate the plot centers from the ground.  The 

land-use designation of the plot was affirmed or ratified on site the day of data 

collection.   

The categories for land-use were as follows: Forested, Bare Ground, Open 

Urban, Institutional, Medium and High Density Residential, Commercial, and 

Industrial.  There were two land-use categories, Low Density Residential and 

Wetland, with one plot each, that were omitted from the original data set for the 

purposes of this data analysis due to lack of replication, bringing the total to 200 

plots.   Forested plots were areas that were unmanaged and tree canopied.  Open 

Urban areas included those plots managed for recreational purposes such as parks, 

golf courses, and sports fields, as well as vacant lots that were undergoing vegetation 

regeneration.  Bare Ground plots were disturbed areas dominated by exposed soil and 

included sites such as landfills and constructions plots.  Institutional plots were 

located on school grounds, cemeteries, hospitals, and nursing home facilities.  
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Medium Density Residential plots were located on the properties of single family 

homes and High Density Residential plots were multifamily plots of land located on 

the grounds of apartment complexes and row houses.   Commercial plots were on 

properties of retail stores, strip malls, and buildings dedicated to the service industry, 

including parking lots for such purposes.  While Industrial plots were located in areas 

dedicated to refining, building, or other types of industry.   

If a plot fell on an area that was split between two or more land-uses, then the 

plot was classified as the dominate land-use.  If plots were inaccessible due to 

impassable physical barriers or to the survey crew being denied right-of-way by the 

landowner, data were estimated when possible.  If estimation was not possible, then 

plots were relocated randomly to the nearest accessible similar land-use property 

using a randomly-generated number table in conjunction with a gridded satellite map. 

 

Vegetation data collection  
 

Vegetation data were collected in 1999 from June through October according 

to the UFORE protocol (Nowak et al., 2008; Nowak et al., 2005).  Plot center was 

established based on the satellite imagery and related to two reference points and a 

street address, when possible.  If reliable reference points were not available, as with 

interior forested plots, GPS coordinates of the plot center were noted for plot 

relocation.  In order to be within the 1/10 acre plot, any part of the tree’s trunk had to 

be within the delineated plot boundary.  Trees were differentiated as any woody 

vegetation above 1 foot in height and greater than 1 inch at dbh (diameter at breast 

height or 4.5 feet).  Species meeting this definition but known to more 
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characteristically to have a shrub-like habit, such as Berberis thunbergii, Lindera 

benzoin, and Syringa and Forsythia cultivars (Dirr, 1998), were omitted from the data 

set used in this analysis.   

Tree measurements began with the tree at the northern-most compass 

direction and followed with all individuals in a clockwise direction.  For each tree 

included, individuals were identified to the species level if possible for all trees 

except for the Ulmus, Carya, and Fraxinus genera, which were challenging to 

correctly discriminate from closely related taxa, particularly when foliage and twigs 

were unreachable, and were therefore grouped within their respective genera.  The 

diameter at breast height (dbh) was measured with dbh tape at 4.5 feet.   

Ground point measurements were taken for each plot in order to determine 

impervious surface areas.  Beginning at plot center and then progressing toward north 

on a transect in the zero degree compass direction, ground cover at 9 feet, 18 feet and 

27 feet from plot center was noted.  This was repeated for seven other transects within 

the plot at 45 compass degree increments and at direct plot center resulting in 24 total 

ground points per plot.  Pervious ground cover categories included maintained and 

wild grass, herbaceous plants, bare soil, duff, and gravel.  Impervious ground cover 

categories included tar, cement, brick, rock and categories of roofing materials.  

Percent impervious and percent pervious surfaces were calculated by extrapolating 

the entire plot surface cover by the sampling point percent totals.   
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Data analysis: Importance values and species diversity 
 

Calculations for species importance values were performed through a 

compilation of data from identified species from all of the plots.  Six genera were also 

included in these calculations: Ulmus, Fraxinus, Prunus, Malus, Magnolia, and 

Malus.  Importance values were calculated as: 

 

Importance value = Relative frequency + Relative density + Relative Dominance 

 

Derived from the following equations: 

 

            Relative frequency =  Frequency of a species* 100  _  
                                               Sum of all species frequencies    

 

            Relative density =   Density of a species * 100_ 
                                            Sum of all species densities 
 
  
            Relative dominance =   Dominance of a species * 100_ 
                                                  Sum of all species dominances 
 
                                          

The frequency for each species was calculated as the number of plots that the 

species was found over the total number of plots (200).  Density was calculated as the 

number of trees in the species or genus divided by the total plot acreage of the survey 

or 20 acres.  The dominance for each species was calculated as the sum of the basal 

areas for all individuals of that species divided by the total area of the survey (20 

acres).  Basal area for each species was determined by the sum of the basal areas for 
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all of the individual trees within that species as π*diameter at breast height/4.  If an 

individual tree had more than one trunk stem, then the basal areas of all of the stems 

were summed and assigned to that tree.  The maximum value each for relative 

frequency, relative density, and relative dominance is 100, therefore, the maximum 

value for the importance value for each species is 300 (Kent, 1992; Kuers, 2005). 

 Raw data from the UFORE plots data collection was organized into a table of 

plot number by tree species matrix containing the number of stems.  There were 200 

plots entered for the purposes of this analysis.  Of those, 87 plots did not have tree 

species.  Species diversity indices, richness, and evenness were determined through 

plot row summary analysis of PCORD (McCune and Mefford, 1999) for all of the 

plots separately, by land-use, and for all plots total. 

 

Data analysis: Detrended correspondence analysis 
 

As the environmental gradient is complex and nonlinear on the landscape, 

particularly an urban patchwork landscape with integrated anthropogenic and natural 

factors (McDonnell and Pickett, 1993; Porter et al., 2001), multivariate analysis was 

utilized to quantify tree species distribution.  Detrended correspondence analysis 

(DCA) is an indirect gradient analysis technique that allows for environmental 

gradients to be inferred from species composition data by positioning sample units 

based on covariation and association of the species.  DCA is a modification of 

Correspondence analysis (CA), created for ecological data sets that calculates site and 

species scores iteratively one based on the other in order to reduce redundant 

information within the dataset (Hill and Gauch,1980; McCune and Grace, 2002).   
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In DCA, numbers called site scores are arbitrarily assigned to all of the plots.  

Species scores are then assigned to each species based on the weighted averaging of 

the site scores weighted by the abundances of the species within each plot.  Species 

scores are re-standardized and then new site scores are calculated based on the 

weighted averages of the scores of the species found within those sites.  Reciprocal 

averaging continues with site and species scores until there is no noticeable difference 

in the numbers through the iterations.  In addition to the steps of correspondence 

analysis described above, DCA removes the “arch effect” found in CA by a 

detrending step that divides the first segment into segments and resetting the averages 

of the scores on the second axis to zero.  A subsequent rescaling step corrects the 

compressed axis ends found in CA.  DCA then ordinates plots and species 

simultaneously, allowing the plot and species scores to be used to possibly infer the 

gradient of vegetation change (Hill, 1979; Hill and Gauch, 1980).   

DCA was applied to the plot by species matrix as the main matrix using a 

debugged version of DECORANA (Hill, 1979; Hill and Gauch, 1980) in PCORD 

version 4.41.   DCA was applied with detrending by segments and non-linear 

rescaling.  A plot by land-use matrix was added as a second matrix in order to 

evaluate the influence that land-use may have on tree species distribution.   

As multivariate analyses used were sensitive to outliers such as rare species 

and low stem densities, species that occurred in less than 5 plots and plots with less 

than 5 species were removed.  Finally, Bare Ground (3 plots) and Industrial plots (4 

plots) were left out of data analysis as only 1 and 2 plots remained within those 
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categories, respectively, after the previously mentioned eliminations.  The option to 

downweight rare species during analysis was applied. 

 

Data analysis: Canonical correspondence analysis relating census information 
 

Along with environmental gradients, social theories and demographics may 

influence the distribution of tree species.  Species-environment relationships can be 

inferred using community composition data and measured habitat variables through 

canonical correspondence analysis (CCA), a multivariate analysis technique that can 

relate species composition to known environmental variation (Ter Braak, 1986; Ter 

Braak, 1988).   

Canonical correspondence analysis is a direct gradient analysis technique.  

Like DCA, CCA is also a modification of CA.  In CCA, species composition is 

directly related to measured environmental variables in such a way that the former is 

explained by a linear combination of the latter.  Essentially, CCA constrains the 

ordination of a main matrix, here a matrix of species abundances, by a multiple linear 

regression on variables in a second matrix.  

In CCA, species scores are calculated from weighted averages of arbitrarily 

assigned initial site scores.  Then, new site scores are assigned as weighted averages 

of the species scores.  Site scores are used as dependent variables and environmental 

variables as independent variables in a multiple linear least-squares regression.  New 

site scores are then assigned from the regression equation and then centered and 

standardized.  These steps are repeated until the scores reach steady values (McCune 

and Grace, 2002; Ter Braak, 1986).   
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Species scores and site scores can then be simultaneously plotted in a biplot 

graph where the chosen environmental variables can be viewed as arrows overlaid 

onto the ordination plot.  The scatterplot shows surveyed plots nearly central to the 

species that it contains.  The length and direction of an environmental variable arrow 

indicate the importance of the environmental variable and the correlation with species 

composition axes, respectively.  Environmental characteristics can be inferred from 

the position of the sites in relation to the arrows and locations of species could be 

used to infer environmental preferences of each species.  The angle between arrows 

indicates correlation of the environmental variables. 

A CCA was used to analyze the species abundances in relation to sets of 

chosen environmental variables using PCORD Version 4.41 (McCune and Mefford, 

1999).  The rows and columns were standardized through centering and normalizing 

and the scores for graphing were linear combinations of attributes.  The analysis was 

done with 1000 runs.   

In order to determine if there was any correlation of tree species with 

demographic data, the plot by tree species matrix containing species abundances was 

analyzed along with the 2000 108th Congressional District 2000 Baltimore City 

census in a CCA.  Demographic information used in the CCA for each plot was 

attained via calculations using census data from the census tract that housed that plot. 

Plot locations were projected onto a Baltimore City map of census tracts supplied by 

the US Census Bureau as a TIGER (Topographically Geographic Encoding and 

Referencing Database) geographic layer (U.S. Census Bureau, 2007) within ArcGIS.  

A database was created with Census data gathered in 2000 (U.S. Census Bureau, 
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2000) matched with each plot through its associated census tract.  Census information 

that was gathered for each tract included total population, median household income, 

median age of structure on site, and percent vacant housing.  With the original plot by 

species matrix, this database was used as a second matrix in a CCA. 
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Chapter 3: Results 

 

The genera and species composition of trees found in the Baltimore City survey 
 

The urban tree population found in Baltimore, MD can be classified as an oak-

beech-maple-ash forest as these genera dominated, collectively accounting for 41% of 

the 1503 trees used in this analysis from the Baltimore City 1999 survey (Figure 1).   

Quercus, represented by 10 species, was the most common genus encountered 

with 13% of the trees measured.  Fagus was the second largest genus represented, 

accounting for 10% of all trees counted, and, unlike the previous diverse genus, 

consisted of a single species, Fagus grandifolia.  Six species of Acer were found and 

two species of Fraxinus were observed representing 10% and 8% of the total number 

of trees in the plots, respectively.  Prunus species, encompassing substantial numbers 

of individuals of Prunus serotina as well as several species of unidentified flowering 

cherries, were a large portion of the trees, accounting for 8% of the total tree 

population.  Ulmus, consisting of 3 species of elm, was also present and represented 

8% of the survey tree population.    

Trees of moderate presence levels were genera comprised of a single species 

each: Sassafras albidum (6%), Cornus florida (6%), and Liriodendron tulipifera 

(4%).  Present in lower numbers than those genera stated previously, but still present 

in sufficient numbers to be mentioned, was a grouping of genera representing a single 

species each that are invasive to the Baltimore region: Ailanthus altissima (6%), 
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Figure 1.  Relative proportions of genera surveyed in Baltimore,  

Maryland in 1999 as part of the UFORE survey. 

 

 

Robinia pseudoacaia (4%), and Morus alba (3%).  Finally, genera that were present 

in amounts less than 3% of the total tree sampling were compiled into the category 

labeled as “Other”, with the exception of the genus Carya, representing  2% of the 

surveyed tree population and enumerated because it included several notable native 

species of hickory.  The genera  “Other” category, together accounting for 12% of the 

trees surveyed, included a wide range of exotic trees as well as less frequently 

encountered native trees such as Asimina triloba and Cercis canadensis. 

 



 

 24 
 

A total of 48 tree species were identified in the survey (Table 1).  In addition, 

there were 7 genera that could not be correctly identified to species level at the time 

of the survey or were in doubt at the time of data analysis.   

 

Tree species prevalence   

Of the 1503 individuals determined to be trees, 48 species were identified 

(Table 1).  There were 123 trees that were labeled as unknown species and were not 

included in the analysis leaving 1355 trees. 

Populations of Fraxinus pennsylvanica and Fraxinus americana were 

combined under the genus name, Fraxinus, as correct separation of the two species 

during the survey became suspect in analysis.  Subsequent personal observations in 

the Baltimore region suggest that the large majority of this group were likely to have 

been Fraxinus pennsylvanica, therefore, Fraxinus has been included here with the 

individual species.  Fraxinus accounted for 7.7% of the surveyed population, with 

116 trees and an importance value of 23.6.   

Fagus grandifolia, found less frequently than Fraxinus, was the most common 

individual species encountered with 144 trees, or 9.6% of all trees measured, resulting 

in an importance value of 22.7.  Quercus rubra had notably fewer trees than the 

previously mentioned species with only 64 individuals.  However, with a large 
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CODE Number 
of total 
trees 

Number 
of plots 
species 
is found 

Density 
(Num. of 
trees/acre) 

Total 
basal 
area 
(ft2) 

Average 
basal 
area per 
tree (ft2) 

Dominance 
(ft2 per 
acre) 

Import
-ance  
Value 

Fraxinus species       
(F. pensylvanica 
and   F. 
americana) 116 28 5.80 85.52 0.74 4.28 23.61 
Fagus grandifolia 144 17 7.20 83.30 0.58 4.17 22.66 
Quercus rubra 64 19 3.20 75.01 1.17 3.75 16.58 
Liriodendron 
tulipifera 51 16 2.55 88.87 1.74 4.44 16.21 
Prunus serotina 96 22 4.80 29.73 0.31 1.49 15.32 
Ulmus species           
(U. rubra and U. 
americana) 83 21 4.15 41.00 0.49 2.05 15.20 
Acer saccharinum 29 19 1.45 77.76 2.68 3.89 14.31 
Morus alba 36 16 1.80 58.98 1.64 2.95 12.27 
Ailanthus altissima 79 16 3.95 22.92 0.29 1.15 11.93 
Quercus alba 54 13 2.70 48.11 0.89 2.41 11.78 
Cornus florida 74 17 3.70 13.59 0.18 0.68 10.93 
Robinia 
pseudoacacia 49 9 2.45 48.63 0.99 2.43 10.46 
Sassafras albidum 87 9 4.35 11.33 0.13 0.57 9.64 
Acer rubrum 40 18 2.00 21.49 0.54 1.07 9.47 
Acer negundo 34 10 1.70 33.39 0.98 1.67 8.17 
Prunus species 
(ornamental 
cherries) 14 12 0.70 19.61 1.40 0.98 5.90 
Carya species 31 12 1.55 6.34 0.20 0.32 5.86 
Quercus phellos 26 6 1.30 23.95 0.92 1.20 5.68 
Quercus velutina 13 6 0.65 32.82 2.52 1.64 5.59 
Nyssa sylvatica 35 7 1.75 5.51 0.16 0.28 4.82 
Acer platanoides 21 10 1.05 7.20 0.34 0.36 4.72 
Picea abies 16 6 0.80 19.04 1.19 0.95 4.49 
Pinus strobus 17 7 0.85 15.44 0.91 0.77 4.47 
Juniperus 
virginiana 9 3 0.45 24.00 2.67 1.20 3.70 
Acer palmatum 7 6 0.35 17.14 2.45 0.86 3.65 
Malus species 3 3 0.15 19.77 6.59 0.99 2.86 
Magnolia species 3 3 0.15 18.19 6.06 0.91 2.71 
Platanus 
occidentalis 8 3 0.40 13.55 1.69 0.68 2.63 
Pyrus calleryana 9 6 0.45 4.41 0.49 0.22 2.58 
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CODE Number 
of total 
trees 

Number 
of plots 
species 
is found 

Density 
(Num. of 
trees/acre) 

Total 
basal 
area 
(ft2) 

Average 
basal 
area per 
tree (ft2) 

Dominance 
(ft2 per 
acre) 

Import-
ance 
Value 

Acer saccharum 7 6 0.35 4.35 0.62 0.22 2.43 
Carpinus 
caroliniana 13 5 0.65 1.08 0.08 0.05 2.30 
Thuja occidentalis 7 5 0.35 5.53 0.79 0.28 2.29 
Ulmus parvifolia 22 1 1.10 2.35 0.11 0.12 2.07 
Quercus palustris 9 2 0.45 6.74 0.75 0.34 1.80 
Quercus prinus 7 2 0.35 5.45 0.78 0.27 1.53 
Catalpa speciosa 7 3 0.35 1.11 0.16 0.06 1.37 
Celtis occidentalis 2 1 0.10 8.89 4.45 0.44 1.25 
Salix xchrysocoma 1 1 0.05 9.62 9.62 0.48 1.24 
Tilia americana 6 3 0.30 0.56 0.09 0.03 1.24 
Populus deltoides 1 1 0.05 9.25 9.25 0.46 1.21 
Ilex opaca 5 3 0.25 0.31 0.06 0.02 1.14 
Juglans nigra 3 2 0.15 2.45 0.82 0.12 0.95 
Quercus falcata 1 1 0.05 6.01 6.01 0.30 0.90 
Hibiscus syriacus 4 2 0.20 0.63 0.16 0.03 0.85 
Picea species 2 2 0.10 1.72 0.86 0.09 0.81 
Liquidambar 
styraciflua 2 2 0.10 1.68 0.84 0.08 0.81 
Hamamelis 
virginiana 7 1 0.35 0.38 0.05 0.02 0.79 
Gleditsia triacanthos 3 2 0.15 0.16 0.05 0.01 0.73 
Cercis canadensis 6 1 0.30 0.35 0.06 0.02 0.72 
Tilia cordata 1 1 0.05 3.35 3.35 0.17 0.64 
Cedrus libani 1 1 0.05 2.22 2.22 0.11 0.54 
Quercus coccinea 2 1 0.10 1.25 0.62 0.06 0.52 
Ostrya virginiana 2 1 0.10 0.17 0.08 0.01 0.41 
Asimina triloba 2 1 0.10 0.02 0.01 0.00 0.40 
Quercus acutissima 1 1 0.05 0.11 0.11 0.01 0.33 

 

Table 1.   The 48 identified species along with 7 genera found in the 1999 Baltimore 
UFORE survey along with the total number of trees found within each species and the 
number of plots where the species was found out of 200 plots.  The Density for each species 
was calculated as the total number of trees within that species divided by the total survey 
area of 20 acres.  The total basal area represents the sum of all trunks of all trees within that 
species calculated as (∏*dbh2/4).  The average basal area per species was calculated as the 
total basal area divided by the total number of trees for each individual species in order to 
represent the average diameter of the species.  The Dominance for each species was 
calculated as the total basal area divided by the total area of the plots (20 acres).  The 
formula for the Importance Value is detailed in the Methods as the (Relative Frequency + 
Relative Density + Relative Dominance) and has a max value for each species of 300. 
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number of more mature trees, Q. rubra had a high combined basal area and a 

relatively high importance value of 16.6.   Liriodendron tulipifera, commonly found 

as a dominant tree in Baltimore’s canopy, also had a relatively large number of 

mature trees.  L. tulipifera was found 51 times, only 3.4% of the surveyed trees, but 

with a combined basal area of 88.9 ft2, the species had an importance value of 16.2.  

Prunus serotina, considered a “weedy”, or undesirable native species, was also 

heavily present in the Baltimore area as 6.4% of the surveyed trees with 96 counts.  

The importance value of P. serotina was 15.3.  Ulmus, consisting of Ulmus rubra and 

Ulmus americana, as was the case was Fraxinus, was left at the genus level as correct 

identification between the two species was in doubt after the survey was completed.  

Together, they represented with 83 individuals.  Acer saccharinum had a relatively 

large importance value of 14.3 with only 29 individual trees, or 1.9% of the survey, 

indicating that there were a small number of large trees present.  As further evidence, 

A. saccharinum had one of the largest average basal areas for a species with 2.7 

square feet per tree on average compared with the average size of trees in the survey, 

which was only 0.8 square feet in basal area.   

The few non-native species that accounted for large numbers of trees were 

Ailanthus altissima and Morus alba at 79 trees (5.3) and an importance value of 11.9 

and 36 trees (2.4%) with an importance value of 12.3, respectively.  Robinia 

pseudoacacia trees were found 49 times in the survey with an importance value of 

9.94.  Robinia pseudoacacia, while native to the western part of Maryland, is a non-

native invasive species to the Baltimore region (Little, 1971).    
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Cornus florida, found both naturally and in the landscape, was found 74 times 

with a relatively lower importance value for the number of trees at 10.93, as these 

trees are normally smaller, with an average basal area of 0.2 square feet in this 

survey.  Sassafras albidum, more commonly found in forested areas, had a large 

number of trees with 87 individuals, but was less frequent and more clustered, with 

only 9 plots containing the species.   

Maples in the survey were found with similar statistics even if they generally 

have different niches in the urban forest.  Acer rubrum, an adaptable species found in 

many conditions and used frequently as a street and landscape tree, was found 40 

times resulting in an importance value of 9.47.  While Acer negundo, a species more 

confined to wet and disturbed areas outside of the landscape, was found 34 times with 

an importance value 8.17. 

Other notable species found in the survey were oaks and, with importance 

values in parentheses, these included Quercus alba (11.78), Quercus phellos (5.68), 

Quercus velutina (5.59), Quercus palustris (1.80), and Quercus prinus (1.53).  Maple 

species, besides the ones already mentioned, included Acer platanoides (4.72), Acer 

palmatum (3.65), and Acer saccharum (2.43).   

Evergreen species were not common and were represented by Picea abies 

(4.49), Pinus strobus (4.47), Juniperus virginiana (3.70), Tsuga canadensis (2.51), 

Thuja occidentalis (2.29), Ilex opaca (1.14) and Cedrus libani (0.54). 

Several other tree species found in small numbers throughout the city were 

uncommon native species and select non-native desirable species sold in the nursery 
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industry.  A single Quercus acutissima was found resulting in an importance value of 

0.33 for the species.  Two native understory trees, Asimina triloba and Ostrya 

virginiana, were found with importance values of 0.40 and 0.41.  Two trees of 

Quercus coccinea, as well as one tree each of Cedrus libani and Tilia cordata, were 

found in the landscape with importance values of 0.52, 0.54, and 0.64, respectively.  

Cercis canadensis and Hamamelis virginiana, sometimes found as a shrub or small 

tree, were found 6 and 7 times, respectively, with small trees averaging 0.06 and 0.05 

ft2 per tree in basal area. 

 

Tree species origins 
 

There were, by far, more native tree species found in the urban mosaic of 

land-use patches of Baltimore City than non-native species (Figure 2).  As previously 

mentioned, exotic species are defined as those species that were not found natively in 

the Baltimore area prior to European settlement.  Invasive plants are non-native and, 

by definition, are able to spread aggressively and cause environmental harm outside 

of their native ranges.  Invasive species tend to thrive in cities, yet, were found in 

relatively low numbers as they accounted for only 13% of the surveyed tree 

population. 
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Figure 2.  The relative proportions of the invasive, non-invasive 

exotic, and native trees identified to species level in the Baltimore 

UFORE survey. 

 

 

Of those invasive species present, most of the trees were Ailanthus altissima, 

comprising 36% of the invasive species surveyed (Figure 3).  Robinia pseudoacacia, 

as mentioned previously, is not native to the Baltimore region and, therefore, was 

treated here as an invasive plant.  R. pseudoacacia was found to represent nearly one 

quarter of the invasive species present.  Morus alba accounted for 17% of the 

invasive plants.  In smaller amounts, Ulmus parvifolia, Acer platanoides, Pyrus 

calleryana, and Quercus acutissima were the only popular nursery and landscape 
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species that accounted for a portion of invasive plants at 10%, 10%, 4% and less than 

1% of the total number of invasive trees, respectively. 

 

 

Figure 3.  The relative proportions of trees by species that are considered 

invasive in the Baltimore, Maryland area found in the UFORE survey.  Tree 

species codes can be found in Appendix 1. 

 

Tree species frequency 
 

In examining tree species frequency, Fraxinus (generally Fraxinus 

pennsylvanica as previously mentioned) was the most ubiquitous, appearing in 28 of 

the 200 plots (Table 1).  Prunus serotina was found in 22 plots, the most for any 

individual species.  Species commonly found naturally regenerating in the Baltimore 
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region, as well as in the landscape, were present in a large number of plots and 

included Quercus rubra, Acer saccharinum, and Acer rubrum, found in 19, 19, and 

18 plots each, respectively.  Notable species also frequently encountered in a 

relatively large percentage of the 200 plots were Fagus grandifolia (17 plots), Cornus 

florida (17 plots), Liriodendron tulipifera (16 plots), Ailanthus altissima (16 plots), 

Morus alba (16 plots), and Quercus alba (13 plots). 

Species found less frequently included a mix of trees with different origins.  

Several native species that can also be found sold in the landscape industry, but are 

generally uncommon in both instances, were Cercis canadensis, Populus deltoides, 

Quercus falcata, Celtis occidentalis, and Hamamelis virginiana, all found in a single 

plot each.  Other rare native species that are generally only found naturally, and are 

rarely seen sold commercially, were Ostrya virginiana and Asimina triloba which 

were also found in single plots.  Less prevalent trees that are found in the landscape 

trade were Gleditsia triacanthos (2 plots), Hibiscus syriacus (2 plots), and Ulmus 

parvifolia (1 plot). 

Tree species prevalence across Baltimore City was also evaluated across land-

uses.  Only 6 of the 48 species were found to occur in 5 or more of the 9 designated 

land- uses.  Ailanthus altissima, an aggressive invasive species, was found in 6 of the 

9 land-uses (Table 2).  The other 5 species, all found in 5 land-use categories were 

species native to Baltimore.  These tree species included Quercus saccharinum and 

Prunus serotina, both more likely to be volunteer, or naturally regenerating, trees.  
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Table 2.   A summary of the species found in 5 or more land-use classes and 

the land-use classes in which they were found as part of the UFORE analysis 

of Baltimore, Maryland. 

 

 

Also included were Acer rubrum and Quercus rubra, two species that are 

found throughout the region naturally, in the landscape, and as street trees.  Trees 

found within only one land-use are not shown as there was an extensive list of 

nineteen tree species mostly localized within either the forested or medium density 

residential sites.  Included with these were generally those trees typically found only 

within forested interiors and are not commonly found in the nursery or landscape 

industries, such as Asimina triloba and Nyssa sylvatica.   

Conversely, many of the trees only found within one land-use, the medium 

density residential class, were generally those trees that are not native to the 

SPECIES NUMBER AND TYPE OF LAND-USES THAT SPECIES WAS 
ENCOUNTERED 

Ailanthus altissima 6 Forested, High Density Residential, Industrial, Medium 
Density Residential, Open Urban, and Transportation 

Acer rubrum 5 Forested, High Density Residential, Medium Density 
Residential, Open Urban, and Transportation 

Acer saccharinum 5 Forested, High Density Residential, Medium Density 
Residential, Open Urban, and Transportation 

Fraxinus species 
(generally Fraxinus 
pennsylvanica) 

5 Forested, High Density Residential, Medium Density 
Residential, Open Urban, and Transportation 

Prunus serotina 5 Bare Ground, Forested, High Density Residential, Medium 
Density Residential, Open Urban 

Quercus rubra 5 Commercial, Forested, High Density Residential, Medium 
Density Residential, Open Urban 
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Baltimore area and are found here through nursery distribution.  Species within this 

group included Picea abies, Ulmus parvifolia, and Acer palmatum, a species 

mentioned earlier as one of the species with a high number of individuals represented 

in the survey.   

 

Land-use classifications of the plots 
 

The largest proportion of plots was dedicated to residential areas.  High 

Density Residential plots had the greatest number of plots surveyed with 49 plots and 

had a relatively low 14 trees per acre on the average (Table 3).  Medium Density  

 

 

Table 3.  Summary of land-use classes and the number of plots and 

trees within each of those classes from 200 plots surveyed as part of the 

UFORE analysis in Baltimore, Maryland.  Number of trees per acre 

was calculated as the total number of trees in the land-use divided by 

the land area of that land-use (number of plots * 1/10 acre). 

 

Land-use class Number of 
plots total 

Number of 
plots with 

trees 

Total 
number 
of trees 

Number 
of trees 
per acre

Bare Ground 12 1 5 4 
Commercial 15 4 4 3 
Forested 28 28 871 311 
High Density Residential 49 26 69 14 
Institutional 11 2 4 4 
Industrial 9 2 6 7 
Medium Density Residential 43 37 135 31 
Open Urban 23 13 230 100 
Transportation 10 4 31 31 
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Residential plots, in comparison, with a similar number of plots of 43, had more than 

double the tree density with 31 trees per acre.  The 28 Forested plots had a 

substantially higher tree density, as would be expected, with 311 trees per acre, over 

three times the next highest density of 100 for the 23 Open Urban plots.  The 

Transportation plots had 4 of the 10 plots with trees and a combined tree density of 31 

trees, rivaling that of the Medium Density Residential plots.  Only 2 of the 9 

Industrial plots had trees with 4 trees per acre, while the 4 of 15 Commercial plots 

that had trees averaged out to 3 trees per acre.  The remaining land-uses, Institutional 

and Bare Ground, were similar in number of plots and in tree density with 4 trees per 

acre.  

 

Tree species diversity within land-use classifications 
 

A full recording of species by land-use classification can be found in 

Appendix 2.  An annotated version of this table has been included in Table 4 for 

convenience that lists the 5 most common species of the residential, Forested, Open 

Urban, and Transportation plots.   

The 37 Medium Density Residential plots with trees included trees originating 

from nurseries as well generally undesirable species to use in the landscape.  Some of 

the most frequently encountered trees within this land-use were popular evergreen 

landscape trees, such as Picea abies with 11.9% and Tsuga canadensis with 5.9% of 

the trees within these Medium Density Residential plots.  Deciduous trees popular in 

the landscape were Acer palmatum (5.2%), Cornus florida (3.0%), and ornamental 

Prunus species, found in respectable numbers with 1.5%.  Also found were most  
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Table 4.  A listing of the 5 most prevalent tree species found within 5 of the 

most populated land-use classes in the 1999 Baltimore UFORE survey.  A 

complete listing of species found within land-uses can be found in Appendix 

2. 

 

 

LAND-USE SPECIES NUMBER 
OF TREES 

PERCENTAGE 
OF LAND-USE 

TOTAL 
High Density Residential Ailanthus altissima 14 20.3% 
 Acer saccharinum 8 11.6% 
 Morus alba 7 10.1% 
 Acer rubrum 6 8.7% 
 Quercus prinus 4 5.8% 
Medium Density 
Residential Picea abies 16 

11.9% 

 Acer saccharinum 12 8.9% 
 Fraxinus spp. 9 6.7% 
 Prunus serotina 9 6.7% 
 Tsuga canadensis 8 5.9% 
Forested Fagus grandifolia 143 16.4% 
 Sassafras albidum 83 9.5% 
 Cornus florida 67 7.7% 
 Prunus serotina 65 7.5% 
 Fraxinus spp. 63 7.2% 
Open Urban Fraxinus spp. 40 17.4% 
 Robinia 

pseudoacacia 28 12.2% 
 Ulmus parvifolia 22 9.6% 
 Quercus alba 20 8.7% 
 Ulmus species 19 8.3% 
Transportation Ailanthus altissima 19 61.3% 
 Fraxinus species 2 6.5% 
 Ulmus species 2 6.5% 
 Acer rubrum 2 6.5% 
 Quercus phellos 2 6.5% 
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likely volunteer trees that were allowed to persist: Acer saccharinum was highly 

prevalent with 12 trees (8.9%), Prunus serotina (6.7%), and Ailanthus altissima had 6 

individuals in the survey and 4.4% of the trees in this land-use.  Species that could 

either have been planted or have germinated naturally as they are native species 

included 9 Fraxinus trees (6.7%) and 4 Ulmus trees (3.0%). 

High Density Residential plots, generally less maintained and less planted 

with “luxury” species when compared with Medium Density Residential plots, were 

composed of undesirable native and invasive tree species more so than of planted 

landscape trees.  Ailanthus altissima was present in the greatest numbers across these 

plots with 14 trees and 20.3% of the trees counted within this land-use.  Acer 

saccharinum and Morus alba were the next most common tree species with 11.6% 

and 10.1%, respectively.  As with the Medium Density Residential plots, there were 

several tree species that are native regenerating species and are also sold in the 

landscape industry: Acer rubrum (8.7%), Fraxinus species (2.9%), and Quercus rubra 

(2.9%).  Other tree species most likely planted, but could also possibly be volunteer 

species, were a few to several trees each of Pyrus calleryana (4.3%) and Cornus 

florida (2.9%). 

            As expected, there were more trees in the land-use type designated “Forested” 

than in any other land-use class.  Fagus grandifolia was the most prevalent tree by 

nearly 2:1 over the next species with 143 individuals, or 16.4% or the trees within this 

land-use.  Sassafras albidum was second with 9.5% of the trees, although the vast 

majority of these were a single densely populated Forested plot along Hilton Avenue.  

Common native forest trees found throughout the plots with similar numbers of 
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individuals (between 50 and 70) included Fraxinus  at 7.2%, the understory species 

Cornus florida at 7.7%, as well as the light-obligate Prunus serotina (7.5%), and the 

dominant canopy species, Liriodendron tulipifera (5.7%).  Only one invasive species 

was present in numbers in the Forested plots worthy of mention, and this was 

Ailanthus altissima with 32 individuals at 3.7% of the Forested trees. 

            Open Urban plots contained markedly different species than the Forested plots 

as there were generally more disturbed conditions and edge effects that have 

determined tree species composition.  Fraxinus, consisting largely of Fraxinus 

pennsylvanica, was the most common Open Urban tree with 40 individuals and 

17.4% of the total tree count within this land-use.  Edge species that were present in 

large numbers included Robinia pseudoacacia (12.2%), Prunus serotina (7.4%), 

Morus alba (6.1%), and Ailanthus altissima (1.7%). Ulmus parvifolia, with 9.6% of 

the trees, was found in a single plot.  Quercus alba, found 20 times in these plots, was 

8.7% of the trees. 

Transportation sites, or plots located adjacent to major highways or median 

strips, were dominated by Ailanthus altissima with 19 total trees, or 61.3% of the 

trees in this land-use.  There were several species represented by only by 2 

individuals, representing 6.5% of the trees that may have been planted as street trees: 

Fraxinus species, Quercus phellos, Prunus species, Acer platanoides, and Acer 

rubrum. 

Not illustrated in Table 4 were land-use classes with less than five tree species 

each.  Bare Ground sites consisted of 1 plot with trees comprised of 3 naturally 

regenerating native species with a total of 5 individual trees.  These species within the 
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single treed Bare Ground plot were Prunus serotina, Liquidambar styraciflua, and 

Sassafras albidum.  Two Institutional plots contained a total of 4 individuals 

encompassing 3 commonly sold landscape industry species of Pyrus calleryana, 

Pinus strobus, and flowering Prunus trees.  Four Commercial plots each contained a 

single tree and single unique species with Acer platanoides, Acer saccharum, Pyrus 

calleryana, and Quercus rubra.  And, finally, two industrial sites collectively 

contained Ulmus species, Ailanthus altissima, and Quercus acutissima trees. 

With the exception of the Forested land-use class, all other land-use classes 

had plots without tree species (Table 5).  An Open Urban plot, a densely packed 

regenerating edge stand, had the greatest number of trees with 105 trees counted.  The 

greatest number of trees found within a Forested plot was 76 trees.  The Institutional 

and Commercial plots were the least canopied with a maximum of 2 trees and 1 tree 

each.   

The Medium Density Residential plots as a whole had the greatest richness 

with 35 tree species out of 48 total species found in Baltimore, followed closely by 

the Forested plots with 33 species.  Open Urban plots and High Density Residential 

plots each had relatively intermediate richness values with 25 and 22 species, 

respectively.  The remaining land-use classes all had richness values below 10 with 

Industrial, Institutional, and Bare Ground plots all having a richness of 3.   

Tree species evenness, a measure of species distribution equity across plots, 

was a value of 1 for the Commercial plots as there were 4 species with 1 individual 

each.  Institutional plots had the second highest evenness with a value of 0.946.  
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Transportation plots collectively had the lowest evenness value with 0.660, largely 

due to the overwhelming number of Ailanthus altissima trees. 

 

 

 

 

 

 

 

 

 

 

 

Table 5.  Measures of tree species richness and diversity across 9 land-

use classes surveyed during the 1999 Baltimore UFORE survey. 

 

When the land-uses were compared across plots, the highest diversity indices 

were found in the Medium Density, Forested, and High Density plots with Shannon’s 

diversity indices of 3.22, 2.94 and 2.74, respectively (Table 5).  The land-use types 

with the lowest diversity values were the Industrial, Institutional, and Commercial 

land-use plots, although the Commercial plots had a higher Shannon’s Diversity 

Index (1.38) than the other two classes with values around 1.  Understandably, the 

Bare Ground sites had the lowest diversity as only one plot had three species resulting 

 

Land-use 

Minimum 
trees per 

plot 

Maximum 
trees per 

plot 

Richness Evenness Shannon’s 
Diversity 

Simpsons 
Diversity 

Bare Ground 0 5 3 0.865 0.95 0.56 
Commercial 0 1 4 1.000 1.38 0.75 
Forested 2 76 33 0.841 2.94 0.92 
High Density 
Residential 0 7 22 0.889 2.74 0.91 
Industrial 0 5 3 0.921 1.01 0.61 
Institutional 0 2 3 0.946 1.04 0.62 
Medium 
Density 
Residential 0 13 35 0.908 3.22 0.94 
Open Urban 0 105 25 0.829 2.67 0.91 
Transportation 0 21 9 0.660 1.45 0.60 
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in a Shannon’s diversity index of 0.95.  Simpson’s Diversity Index, interpreted as a 

probability of encountering a species again in an area, is included in the data set as it 

is more intuitive.  The index and the relative rankings are not discussed as results 

were similar to the Shannon’s Diversity Index. 

 

Detrended correspondence analysis of tree species across land-uses 
 

A DCA ordination (Figure 4) was used to examine possible environmental 

gradients influencing tree species distribution based on land-use classification.  The 

total variance accounted for in the species data, or the inertia, was 9.196.  There are 

no significance tests associated with DCA to report. 

In a DCA scatterplot, Axis 1 explains the principal sources of compositional 

variation while higher order axes explain progressively less of the variation.  As a 

modified reciprocal averaging ordination, environmental gradients affecting the 

species compositional response, or other factors, may be indicated by positioning 

along Axis 1.  In essence, species that are found in similar habitats should be found 

within close proximity along Axis 1, while plots that are similar in tree composition 

should be grouped in a similar fashion.  If Hypothesis 1 is correct and plots of the 

same land-use contained similar species, then there should be a clear pattern of plots 

being arranged by land-use, clustered horizontally along Axis 1. 

In this analysis, however, the distribution of plot scores across the first axis 

yielded no obvious visual pattern of plots clustering based on land-use classification.  

The large amount of overlap of land-uses along Axis 1 (Figure 4A) indicated that 

either contrasting environmental or management conditions that would be assumed to  
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FIG. 4a and 4b. A Detrended Correspondence Analysis ordination graph of 
the vegetation data from the UFORE survey of Baltimore, MD in 1999. The 
first two axes DCA ordination axes from PCORD Version 4.41.  Axes are 
scaled in 100 3 SD beta diversity units (Hill and Gauch, 1980).  (A) Sample 
scores for 100 plots within 6 land-use types. (B) Species scores for 28 tree 
species (see App. 1).  
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characterize the different land-uses does not appear to explain tree species 

distribution or that the cityscape is too homogenized across land-uses to produce 

discrete compositional groups.   

Perhaps the only exception was Medium Density Residential plots, which 

appear to cluster slightly at the right hand side of Axis 1 around the score of 500 

standard deviation units. This may be due to the presence of a number of unique 

exotic species that were planted by homeowners that could not be found elsewhere in 

other land-uses as they do not naturalize in the area. 

Tree species scores within this ordination (Figure 4B) may, however, present 

a slight pattern indicating that there a possibility that land-use classification may 

partly explain tree species distribution.  There was a general grouping of tree species 

towards the left side of Axis 1 that are usually almost exclusively found in forested 

areas including Fagus grandifolia, Liriodendron tulipifera, Carpinus caroliniana, and 

Nyssa sylvatica.  There was also a second clustering of species found generally only 

within planted landscapes in the Baltimore region that can be found to the far right 

section of axis 1 including Acer palmatum, Thuja occidentalis, and Picea abies.  A 

third clustering of species generally confined to the edges of forests, disturbed areas, 

roadsides, and fenced yards can be found in between the two mentioned previously 

groups.  These disturbed and edge-site dwelling species consisted of Robinia 

pseudoacacia, Morus alba, and Ailanthus altissima.  Two outlying species were 

Sassafras albidum and Tsuga Canadensis. 
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Figure 5.  A map of Baltimore City’s census tracts used in the 2000 US 

Census and the corresponding locations of the 200 plots from the 1999 

UFORE vegetation survey. 
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The relationship between socioeconomic variables and tree species composition 
 

Canonical correspondence analysis was utilized in order to evaluate the 

correlation of social economic factors and non-natural environmental factors with the 

distribution of tree species.  Data was taken from the 2000 United States  

Census based on data for census tracts to represent plot socioeconomic data with the 

assumption that census tracts are relatively small, homogenous areas that are 

comparable for statistical purposes (Figure 5).  

 

 

 

 

 

 

 

 

 

 

Table 6.  Variables used in canonical correspondence analysis          

taken in the 2000 United States Census of Baltimore City, MD 

 

 

The first canonical correspondence analysis was run using socio-economic 

variables from the 2000 Census (Table 6).  Variables in this analysis related to the 

2000 Census 
Bureau Data 
Variable  

Range Present in Baltimore City 

Population Density 1.6 - 41.4 people per acre 

Median Household 
Income 

$11,840 - $71,771 per year 

Percent Vacant 
Housing 

0 - 30% 

Median Age of 
Structure on Property

27 - 68 years 

Percent Impervious 
Surface on Plot 

0 - 100% 
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tree species abundance matrix included: population density, median annual household 

income, and percent vacant housing (Table 6).  The locations of the plots, represented 

by triangles on a CCA scatterpoint graph, indicate the environmental characteristics 

of the plot and the positions of the species on the plot, represented by both plus signs 

and the species codes, indicate the relationship of the variables and the tree species.  

Plot locations spatially reflect similarities in species composition and in 

environmental variable values (Jongman, 1987).     

In the ordination biplot, variables are represented by vectors shown as arrows 

on the plot.  The magnitudes of the arrows indicate importance of the environmental 

variables in accounting for the variation in species composition within the plots.  

Visually, the CCA graph of the census information of the plots (Figure 6) shows short 

arrow lengths that encompass only a fraction of the plots in the ordination and do not 

appear to be important in explaining tree species distribution.  The direction of the 

arrow indicates the correlation of the variable with the axes and with other variables, 

with smaller angles between vectors and axes indicating closer association.  By 

direction, Population Density and Median Household Income were not correlated.  

Percent Vacant Housing did not appear on the biplot as it was not important in the 

first two axes. 

The total variance or inertia, or the total amount of variability in the 

community matrix that could potentially be explained, was 12.5359 with 3 canonical 

axes interpreted.  Eigenvalues represent the variance in the community matrix 

accounted for by each axis as well as the correlation of the species scores and the site 

scores with a value near 1 indicating a strong relationship.  As expected, the 
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eigenvalue was greatest for the first axis at 0.321, and then decreased for the second 

and third axes at 0.252 and 0.160, respectively.   

 

 

 

Figure 6.  Canonical correspondence analysis biplot of 2000 Baltimore 

City Census Data figures for Population Density, Median Household 

Income, and Percent Vacant Housing.  The symbols are as follows: ∆ 

represent plots, + represent tree species. 

  

 

 



 

 48 
 

Table 7 shows the canonical coefficients and the correlation coefficients, or 

the intraset correlations.  The canonical coefficients are the correlations between the  

variables and the species scores, representing the contributions of individual variables 

(McCune and Grace, 2002).  The intraset correlations are the correlations between the  

variables and the axes, indicating the importance of each variable in the ordination.  

The first axis was defined by Median Household Income, but the other two variables 

were almost of similar significance with regards to axis 1, indicating that there was no 

clear overriding factor accounting for variation among the variables.  We can also 

infer from the differences in importance values that the areas with lower median 

household incomes have a high percentage of vacant housing.  The second axis was 

defined clearly by Population Density and the third axis that was not shown in the 

biplot was defined by Percent Vacant Housing.      

 

 

 Canonical coefficients Correlation coefficients 
 Axis 1 Axis 2 Axis 1 Axis 2 
     
Population density -0.369 -0.370 -0.385 -0.919 
Median household 
income 

-0.562 0.216 -0.541  0.555 

Percent vacant 
housing 

 0.401 0.107 -0.240  0.069 

 

Table 7.  Canonical coefficients (standardized) and correlation 

coefficients (intraset correlations) of the 2000 US Census 

socioeconomic data variables with the first two axes of CCA. 
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The relationships between environmental factors and species composition can 

be tested using Monte Carlo permutation with 999 runs employed at the 5% 

significance level (Ter Braak and Smilauer, 2002).  The Monte Carlo permutation test 

will test the significance of the first axis eigenvalue (ter Braak, 1990).  The first 

hypothesis will test the null hypothesis that there is no linear relationship between 

matrices, or in other words, that the community composition is unrelated to the 

environmental variables.  The Monte Carlo tests for this analysis had a p-value of 

0.1790, indicating that the variance is not explained by these variables.  Also, the 

Species-Environment Correlation had a non-significant p-value of 0.2770, therefore, 

the matrices are not correlated and sites with the same social economic factors do not 

have the same species.  Correlates are not discussed as there was no relationship 

found. 

 As some of the land-uses may not be sensitive to socioeconomic impacts on 

tree species composition and may confound the results of those that are, a secondary 

CCA was utilized with data solely from the residential plots.  Medium Density and 

High Density Residential vegetation data was entered separately as the main matrix 

along with the same census information as above.  For this analysis, trees that 

occurred in more than 3 plots and with more than 4 total individuals, totaling 21 

species within 56 plots, were included. 

 The joint biplot again shows arrows that are short of encompassing all of the 

sites (Figure 7).  Unlike the previous analysis, the variable percent vacant housing 

appears on the biplot.  The total variance in the species data was 10.7017 with 3 

canonical axes.  The eigenvalue of the first axis was 0.472 and accounted for 4.4% of  
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Figure 7.  Reduced canonical correspondence analysis biplot using 

High Density and Medium Density Residential plots with the 2000 

Baltimore City Census Data figures for Population Density, Median 

Household Income, and Percent Vacant Housing.  The symbols are as 

follows: ∆ represent plots, + represent tree species. 
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the variance explained by this analysis.  The first axis was explained by Median 

Household Income, while the second axis, unlike the previous analysis with all land-

uses, was explained by Percent Vacant Housing.  

The first hypothesis test of the Monte Carlo results had a significance of 

0.0420 and the variance summarized by the first axis could be meaningfully 

interpreted.  The second test showed that there was not a significant relationship 

between the species compositions and the socioeconomic data with a p value of 

0.1910.  Therefore, socioeconomic factors alone could not account for the variance in 

data in the residential plots. 

 

The relationship between anthropogenic environmental variables and tree species 
composition 
 

A canonical correspondence analysis was performed with the species matrix 

using the non-natural environmental factors median age of structure and percent 

impervious surface cover.  Median age of structure on property, taken from data from 

the 2000 US Census, is used here as an indication of the last time that a construction 

disturbance occurred on the plot.  For example, newer residential developments on 

the edges of the city could be expected to have had recent major land-clearing 

projects, whereas residential developments constructed earlier in the century or prior 

may have less disturbed landscape areas.  Percent impervious surface of the 

individual plots was taken directly from the survey data and indicates the amount of 

concrete, paved roadways and driveways, and building.  The average percent of 

impervious surface by land-use is shown in Table 8. 
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 Table 8.  The average percent surface impervious cover  

calculated from groundpoints for each land-use of the 200 plots 

counted in the Baltimore, MD UFORE vegetation survey. 

 
 

The biplot indicated that there was no correlation between the two variables as 

their directions were nearly perpendicular and the correlation among the variables 

was very low (Figure 8); the weighted correlation being -0.027 (data not shown).  The 

environmental variables are related to the first axis fairly well (Table 9), and are 

poorly related to the second axis.  The first axis is defined by percent impervious 

surface cover (Table 10) and the second axis is defined by median structure age on 

 

Land-use Avg % 
imp. 

surface 
Commercial 76% 
Industrial 64% 
High Density 
Residential 61% 
Institutional 50% 
Transportation 44% 
Medium Density 
Res. 44% 
Open Urban 22% 
Forested 10% 
Bare Ground 0% 
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Figure 8.  Canonical correspondence analysis of 2000 Baltimore City 

Census Data figures for Median Age of Structure and Percent 

Impervious Surface of the pot.  The symbols are as follows: ∆ 

represent plots, + represent tree species. 
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Table 9.  Eigenvalues and Pearson Species-Environment correlation 

coefficients for the first two axes of the CCA analysis of tree species 

abundances with anthropogenic environmental coefficients. 

 

property.  The total variance, or inertia, of the species data was 12.536, and the 

percent variance explained for the first axis was 3.2%.  

A Monte Carlo Test did indicate a significant result with the Eigenvalue 

having a p-value of 0.0100 and the Species-Environment Correlation with a p-value 

of 0.0300.  The hypothesis of no relationship between the species data and the 

environmental data is rejected as the eigenvalue for the first axis, representing the 

variance in the community matrix accounted for by the first axis, is much higher than 

expected by chance.  Percent Impervious Surface Cover was apparently more of a 

factor in this significant result as the canonical coefficients for this variable was         

-0.983 with Axis 1 and Median Age of Structure was only 0.209 for Axis 1 (Table 

10).  This indicates that some of the variance can be explained by the amount of 

 

 Axis 1 Axis 2 

Eigenvalue 0.401 0.128 

Variance in species data 
     % explained 
 

    3.2 1.0 

Pearson Correlation,    
species-environment 

0.33 0.506 
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Table 10.  Canonical coefficients and intraset correlations of anthropogenic 

environmental variables with the first two axes of CCA. 

 
 

 

impervious surface cover on the plots, essentially describing the degree of 

urbanization, and that plots with similar amounts of impervious surface cover had 

similar species.   

This can be seen with the species denoted on the biplot (Figure 8).  Species at 

the opposite end of the arrowhead of percent impervious cover are those that would 

likely be found in plots with little impervious surface.  These species include a variety 

of species generally confined to forested environments, such as Fagus grandifolia, 

Nyssa sylvatica, and Carya species.  While species at the opposite end, such as 

Ailanthus altissima, Pyrus calleryana, and Acer saccharinum, are species typically 

found near areas of high percentages of impervious groundcover. 

 

 Canonical coefficients Correlation coefficients 
 Axis 1 Axis 2 Axis 1 Axis 2 
     
Percent Impervious 
Surface over 

-0.620 0.075 -0.983 0.183 

 
Median Age of 
Structure on 
Property 

 
0.116 

 
0.352 

  
0.209 

 
0.978 
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The impact of soil properties on tree species compositions 
 
 Forested area species composition is influenced by both natural and 

anthropogenic factors.  This study has focused primarily on anthropogenic-based 

urban ecological concepts, however, more traditional forest environment ecological 

principles could influence species assemblages in urban environments.  With 

permission to access soil data collected in 2002 on many of the UFORE sites 

provided by the USDA Forest Service, 22 Forested plots with complete soil data were 

used in a canonical correspondence analysis along with 26 species and 7 soil 

variables, including: bulk density, texture (represented by percent sand), pH, organic 

matter content, and the nutrients phosphorous, potassium, and calcium (Figure 9).   

 The total variance in the species data accounted for by the data was 4.9856 

with 3 canonical axes.  The eigenvalue of the first axis was 0.598 with 12% of the 

variance accounted for by the analysis.  The Monte Carlo test for the eigenvalues 

resulted in a p of 0.278.  The Monte Carlo test for the species-environment correlation 

was 0.3470 indicating that the soil data used did not account for the variation in tree 

species distribution.   
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Figure 9.  Canonical correspondence analysis of soil properties taken 

in 2002 by the USDA Forest Service in select Forested Baltimore City 

UFORE plots.  The symbols are as follows: ∆ represent plots, + 

represent tree species. 
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Chapter 4: Discussion 

The history of dominant trees in Baltimore 
 

Just prior to European settlement, the Eastern Deciduous Forest stretched 

from Maine to Florida, dominated by broadleaf species of Ulmus, Castanea, and 

Quercus, with a small number of coniferous species interspersed (Barnes, 1991).  

Baltimore, Maryland, straddling the two physiographic provinces of the Atlantic 

Coastal Plain and the Piedmont, was the meeting of two vast forests: the Northern 

pine-oak forest and the oak-hickory forest (Kricher, 1998).   

On the eastern side, from the fall line to the Atlantic Ocean, the Coastal Plain 

is an area dominated by low elevation and exists as an underlying material of 

unconsolidated sediments including sand, silt, clay, and gravel, over crystalline 

bedrock.  Conditions vary throughout the area with wetlands and impervious fragipan 

as well as well-drained gravel sites (Brush et al., 1980).  Pre-European vegetation was 

dominated by pitch pine, Virginia pine, and Eastern red cedar over highbush 

blueberry and mountain laurel.   

To the west, the Piedmont extends from the fall line to the Catoctin 

Mountains.  The Piedmont soils consist of older igneous and metamorphic rock, 

including gneiss, schist, and serpentine (Brush et al., 1980).  Nut producing trees 

historically dominated at the time of European settlement and included Northern red, 

black, chestnut, and white oaks, as well as mockernut, pignut, shagbark and bitternut 

hickories, along with tulip trees, American beech, red maples, boxelder, ironwood, 

sassafras, and flowering dogwoods.  Castanea dentata, or American chestnut, once 
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dominated the forests in Baltimore and to the north, but was decimated in numbers in 

the early part of the twentieth century as the result of the introduction of chestnut 

blight (Cryphonectria parasitica).   

 

Trees in Baltimore today 
 

The unbroken forest of these trees present in Baltimore several hundred years 

ago is now a complex landscape, comprised of patches of residential property, 

commercial sites, industrial areas, and new and remnant forest patches, each with a 

unique history.  Settlement and development led to a redesigned landscape and 

redefined species dominance in the region.  Those native trees that could adapt to, or 

at least tolerate anthropogenic alterations as well as new species imported for 

aesthetic and commercial reasons began to dominate the region.   

This study revealed that many native species that were historically present 

such as Quercus, Acer, and Fraxinus had survived Baltimore’s drastic land 

alterations, and in fact, were still dominant in the landscape over imported species.  

All three of these genera contain species that are common in the forested sections of 

Baltimore as native, regenerating trees in a variety of site conditions.  There are also 

species within each genus that are commonly used as landscape trees and quite 

frequently as street trees, such as Fraxinus pennsylvanica, Acer rubrum, and Quercus 

rubra.  Genera of moderate presence levels, such as Sassafras, Liriodendron, and 

Ulmus, were found almost exclusively as forested trees and were rarely seen in the 

landscape unless a volunteer tree remained, commonly near the property boundary or 

fence’s edge.   
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Fagus grandifolia was found to be the most dominant species in the Baltimore 

landscape, even though it does not typically do well in developed areas.  The root 

system of F. grandifolia is typically shallow in the soil profile and does not tolerate 

disturbed or compacted soils with less than 10-15% oxygen (Dirr, 1998).   In 

addition, the species has a large taproot, making it difficult to transplant and a poor 

choice as a nursery tree (Dirr, 1998).  F. grandifolia was, therefore, found almost 

exclusively in forested locations within the city with only a single tree found in a 

High Density Residential site that likely contained forested area before development.  

The high number of individuals found for this species and that only 28 of the 200 

plots were Forested indicates that F. grandifolia was highly prevalent throughout the 

Forested sites. 

Fraxinus was not identified to species level in this analysis, but the two 

representative species found in the Baltimore region, Fraxinus pensylvanica and 

Fraxinus americana, were both found naturally and used in the landscape.  Many of 

the individuals in this study have been assumed to be F. pensylvanica from personal 

observation and from the adaptability differences between the two species.  F. 

pensylvanica is the most widely distributed of the American ashes (Dirr, 1998).  A 

facultative wetland species, it is typically found along moist bottomlands, but is 

tolerant of climatic extremes and long-term flooding (Simmons et al,, 2007).  It is 

also one of the most commonly cultivated trees in the United States as it is highly 

tolerant of urban conditions, has a beautiful shade tree shape, and is relatively 

resistant to diseases and insects (Burns and Honkala, 1990).  Fraxinus americana, in 

contrast, is less common in the forest and limited to well-drained soils.  Since many 
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remnant forests surround streams and rivers, land acceptable to F. americana may be 

more limited than that suitable for F. pensylvanica.  F. americana is also only 

occasionally used in cultivation.  The prominence of the genus Fraxinus, may be 

attributed at least in part from being a wind-dispersed species, allowing it to spread 

without dependence on wildlife that may not be present in disturbed urban areas or 

areas stripped of vegetation (Shea and Chesson, 2002). 

Quercus, a genus that became highly prevalent in the Eastern Deciduous 

Forest with the downfall of Castanea dentata was found in the Baltimore survey as a 

diverse and widely distributed genus.  Quercus trees were found equally within the 

natural environment and planted in the landscape.  All of the Quercus species found, 

with the exception of a single species, Q. acutissima, were native to the region.  The 

Quercus trees found in Baltimore were about an equal mix of those species that are 

typically only found naturally in the forested sections and those species that are used 

frequently in the landscape.   

Quercus alba and Quercus rubra, widely different in use in the cityscape, 

were the most prominent, and were found almost equally present.  Q. alba is found in 

a variety of soil conditions, moisture levels, and site aspects in native environments 

(Burns and Hankala, 1990; Kricher, 1998).  Q. alba seedlings produce a taproot 

during development and have a slower growth rate, making them undesirable nursery 

plants (Dirr, 1998).  Quercus rubra, in contrast, is easily transplanted, has good form, 

colorful fall color, and a dense canopy of foliage, making the species highly desirable 

as a residential and commercial landscape plant in addition to being found quite often 

in the forests with Q. alba. 
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In similar contrast, Quercus phellos and Quercus velutina, with approximately 

half as many individuals as the oaks previously mentioned, were found with similar 

importance values to one another.  Q. phellos, rarely found naturally, is quite often 

found as a street and landscape tree due to its elegant shape and colorful fall foliage.  

With a shallow root system, the species is easily transplantable. Whereas Q. velutina 

possesses a taproot, is rare to find in the nursery trade, and is generally found 

naturally on dry, poor hillsides (Burns and Hankala, 1990).  Finally, there is a similar 

relationship between the heavily used street tree, Q. palustris, and the naturally found 

slow-growing Q. prinus, found mostly on rocky ridges in the area.   

It is important to note that correct identification of Quercus species becomes 

complicated by the frequent hybridization among the oak species and that there 

should be caution in interpreting oak population numbers (Young, 1979).   

The future composition of the oak forests is unclear and considerable evidence 

suggests that oak regeneration is failing across much of their range in part due to fire 

suppression and consequential replacement by faster growing species such as Acer 

rubrum, Acer saccharinum, and Prunus serotina (Abrams, 1992; Smith, 1992). These 

species were commonly found in Baltimore’s tree population.  Another threat to the 

Quercus trees in the forests and in the residential landscapes of Baltimore has been 

the introduction of the aggressive fungal pathogen, oak wilt, distributed over much of 

the eastern United States (Shigo, 1958).  Further loss of existing Quercus dominated 

forests could lead to a dramatic change in the forest composition and in the landscape 

species used in Baltimore. 
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The genus Acer was comprised of a variety of maples with different origins 

and uses and was found heavily represented in the UFORE 1999 survey.  Acer 

rubrum was the most numerous maple species found in the survey.  A. rubrum is a 

fast growing species found on a wide variety of microhabitat sites and is a subclimax 

species able to sprout in full sun or shade (Dirr, 1988).  With the degree of fire 

suppression common in cities, A. rubrum has flourished in forested areas (Smith, 

1992).  While it is one of the most common, adaptable, and widespread trees in North 

America naturally (Hutnick, 1961), A. rubrum is also a frequently planted street and 

landscape tree with numerous cultivars exhibiting brilliant fall color.   

Acer saccharinum, similar to A. rubrum, is common, widespread, and 

adaptable to urban conditions and is native to areas just west of Baltimore city.  A. 

saccharinum grows quickly but lacks the desirable fall color of A. rubrum.  Although 

A. saccharinum can be found in the nursery trade, personal observations suggest that 

many of the trees in this study were volunteer trees that were allowed to persist 

through neglect of the property.  In contrast, Acer negundo was observed in similar 

numbers to the previously mentioned maples, is a species that is rarely found 

commercially (Burns and Hankala, 1990), and is generally only found along forest 

edges, along streamsides, and in disturbed sites.   

Acer saccharum was less prevalent than the other Acer species. Often 

associated in the forest with Fagus grandifolia (Kricher, 1988), A. saccharum both 

benefits and suffers from urban development.  The species is not tolerant of pollution 

or heat stress, both symptoms of urban environments and is on the southern edge of 

its natural range in Baltimore (Dirr, 1998; McClenahen, 1978).  A. saccharum is 
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being displaced in the forest as a shade tolerant understory species and in the 

landscape by the more urban tolerant Acer platanoides, an introduced invasive 

species commonly used as a street tree and landscape tree throughout the region due 

to its adaptability and dense foliage.  Conversely, A. saccharum benefits from 

disturbance and responds quickly to gaps in the canopy with rapid growth.  A. 

saccharum also benefits from fire suppression as mentioned previously since it is 

sensitive to fire.  The species is presently invading in areas traditionally dominated by 

oaks and hickories when long periods between fires have been documented (Davis, 

1998; Frelich, 2002).   

Liriodendron tulipifera, a dominant native tree in Baltimore’s forests and once 

an important lumber tree was also common in Baltimore.  It is one of the tallest trees 

in the Eastern forest and is highly adaptable to any soil type except for the extremes 

of very dry or very wet conditions.  Commonly thought of as an early successional 

species, it is fast growing, shade-intolerant, and benefits from disturbance.  The 

species can be long-lived and persist in the canopy until later successional stages   

(Busing, 1995; Burns and Honkala, 1990).  A number of sites that were reclaimed 

farmland cleared during the early part of the twentieth century appear to be 

dominated by L. tulipifera in Baltimore’s forests.  The regenerative power of L. 

tulipifera has been documented with positive responses such as sprouting and rapid 

growth after clearcutting (Boring et al., 1981; Elliott et al., 1997) and, along with 

opportunistic species like Acer rubrum, replaces oak species after disturbance.  

Cadenasso et al. (2007) found similar results along an urban-rural gradient in New 

York where more shade intolerant species dominated at the urban end of the gradient, 
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perhaps due to the larger number of gaps in the forest canopies.  As one of the more 

common species in Baltimore’s tree population, L. tulipifera is rarely found outside of 

forested areas in the United States perhaps because they are considered undesirable 

landscape species with unusual forms and lower branches that shed (Eyre, 1980; 

Rogers, 1935). 

Prunus serotina, one of the more common native species found in the survey, 

is seen more as an undesirable native species outside of the lumber industry (Dirr, 

1998).  It is typically not found in the nursery trade since it has a poor form and loose 

and open foliage (Burns, 1935).  Naturally, it is a pioneer species that thrives in urban 

disturbed conditions and is not nearly as prevalent in suburban areas (Cadenasso et 

al., 1997) and can be an invader in European and Asian landscapes (Verheyen et al., 

2007).  The species was found numerous times along forested edges, in canopy gaps, 

in vacant lots, and in neglected landscapes.   

There was a variety of native tree species found naturally and in the 

commercial landscape trade including Cornus florida, Pinus strobus, Platanus 

occidentalis, Tilia americana.  Cercis canadensis is easily spotted flowering in the 

spring before leaf-out in the Eastern forest that has become popular in the nursery 

trade.  C. canadensis was not, however, as popular as other native understory trees 

such as Cornus florida.  Other species commonly observed in the forests of 

Baltimore, but not usually sold in the neighborhood nursery include Sassafras 

albidum, Nyssa sylvatica, Juniperus virginiana, and Carpinus caroliniana.  Several 

new cultivars of Nyssa sylvatica have been produced in the last few decades and this 

species appears to be on the way to becoming prominent in the nursery trade in the 
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near future.  Juniperus virginiana is also found cultivated, but from personal 

observation, is typically found in the Baltimore landscape as a remnant or volunteer 

individual. 

Finally, in significantly smaller numbers than the native species, there were 

exotic species in the survey that have been imported from Europe and Asia as 

important landscape plants.  These included ornamental Prunus species, Picea abies, 

and Acer palmatum, all present in residential, recreational, and commercial properties 

in Baltimore. 

Most of the species that were found in Baltimore become established without 

human intervention, continuously reproducing in their native range or freely 

naturalizing as a non-native species. 

 

Invasive species in Baltimore 
 

Invasive species common to urban and disturbed environments, such as 

Baltimore, are typically imported for medicinal and/or commercial purposes that 

spread aggressively, cause ecological harm, and replace native plants (Mack, 2000).  

Species can also be brought into the country unintentionally with nursery stock or in 

packaging material.  Invasive plants are typically fast-growing, rapidly reproducing 

species and may benefit from an absence of natural controls, such as herbivores and 

pathogens that may be found in their native environment (Shea and Chesson, 2002).  

Invasive species are niche opportunists, meaning they benefit from the disruption of 

communities, particularly when the original population is not as well adapted to the 

newly disturbed conditions.  The increasing amount of urbanization has been shown 
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to lead to an increase in invasive species as well as a corresponding decrease in native 

species (McKinney, 2006; Shea and Chesson, 2002).   

These invasive trees, primarily represented by Ailanthus altissima and Morus 

alba, are not usually found in the nursery industry currently, but were planted in the 

landscape in the past and have since naturalized and spread throughout the region in 

large numbers.   

Morus alba was brought to the United States from China for the silkworm 

industry.  It can be found cultivated in the nursery industry, but is generally seen as an 

undesirable species that spreads quickly along forest edges and fences through bird 

dissemination (Dirr, 1998; Swearingen, 2002).  Ailanthus altissima, spread across the 

greatest number of land-uses, was imported in the late 1700’s from China as an 

unusual looking ornamental.  A. altissima grows quickly, is able to produce seeds as a 

one year old sapling, and spreads vegetatively through rhizomes to form pure, dense 

stands (Bory and Clair-Maczulajtys, 1980; Hu, 1979).   Ailanthus altissima produces 

an allelopathic chemical that has long been theorized to be a competitive tool to 

exclude other trees and influence plant community structure (Mergen, 1959).  The 

species is shade-tolerant and is not competitive in intact interior forest (Inderjit and 

Duke, 2003).  Both of these species are known to flourish in urban soils, to thrive in 

edge environments, and to withstand drought and pollution better than many species 

of trees (Dirr, 1998; McDonald and Urban, 2006).  As mentioned of Acer and 

Fraxinus species, A. altissima may benefit by being a wind-dispersed species with 

millions of seeds being produced by a single, mature female tree (Shea and Chesson, 

2002, Swearingen, 2000).   Also landscape species from Asia, Ulmus parvifolia was 
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found dominating one site in the survey and Quercus acutissima was found once in 

the survey, both species considered invasive (Swearingen, 2002).  

Robinia pseudoacaia is a native tree to Maryland, but not to the Baltimore 

region, and was present in relatively large numbers.  A member of the Fabaceae 

family, Robinia is a shade-intolerant, nitrogen fixing species that will colonize any 

condition of soil except permanently wet soils and it has naturalized throughout the 

United States (Burns and Honkala, 1990).  The species is commonly found on 

roadsides and disturbed edges with poor, dry soil where few other species would 

survive and has been found to have a strong growth response to elevated CO2 levels 

(Mohan et al., 2007), a condition common in urban environments. 

Pyrus calleryana is an invasive species that is frequently planted in the 

landscape.  Once self-incompatible and a favorite cultivated tree in the nursery 

industry, the species has started to dominate disturbed areas as new cultivars have 

been able to reproduce (Culley and Hardiman, 2007).  P. calleryana has become a 

widespread pest species in many northern cities including New York City, Boston, 

and Philadelphia (USDA, 2004a; USDA, 2004b). 

In summary, considering the long history of disturbance, habitat 

fragmentation, and land-clearing throughout the Baltimore area, only 13% of the trees 

counted in the 1999 survey were considered invasive to the region.  Invasive species 

such as Ailanthus altissima, Morus alba, and Robinia pseudoacacia are pollution 

tolerant, able to grow in compacted and sterile soils, and are able to spread quickly 

(Dirr, 1998; Hu, 1979; Swearingen, 2002).  These species may outcompete native 

species and dominate disturbed areas such as roadsides, forest edges, and abandoned 



 

 69 
 

properties and unmaintained landscapes.  Therefore, it was surprising that they were 

not present in larger numbers.  In Boston, Massachusetts, for example, Acer 

platanoides alone accounted for over 17% of all trees surveyed (USDA, 2004a) and 

in New York City, Ailanthus altissima accounted for 9% of all trees surveyed (Table 

11).  In total, 78% of the trees in Baltimore were native to the region, while in New 

York and Boston, 55% and 57.5% of the trees were native, respectively. 

 

 

New York, NY Percent of 
trees 
surveyed 

Boston, MA Percent of 
trees 
surveyed 

Ailanthus altissima 9% Acer platanoides 17% 

Prunus serotina 8% Quercus rubra 12% 

Liquidambar 
styraciflua 

8% Acer rubrum 11% 

Quercus rubra 8% Tsuga canadensis 4% 

Acer platanoides 6% Prunus serotina 3% 

Morus alba 6% Ulmus americana 3% 

Percent of native 
trees 

55% Percent of native 
trees 

57.5% 

 
Table 11.  The most common trees found in New York and Boston in a survey 

performed in 1996.  Data from the USDA Forest Service (USDA, 2004a; 

USDA, 2004b). 
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With a large proportion of the population, native species appear able to 

compete with aggressive invasive species and maintain dominance.  Baltimore City is 

unique with a relatively large expanse of interconnecting forested areas including 

Gwynns Falls Park, Patapsco Valley State Park, and Herring Run Park.  These areas 

may retain forest species and act as a seed bank for native trees in Baltimore City.  

Native species retention is crucial to resistance of exotic species invasion in medium 

to high intensity disturbance (Mandryk and Wein, 2006).  

 

Tree species and groundcover by land-use  
 

A large portion of land in Baltimore City is dedicated to residential housing 

and this was reflected in the Baltimore UFORE plot assignments as almost half (46%) 

of the plots occurred on nearly even numbers of Medium Density and High Density 

Residential sites.  Most of the Medium Density Residential plots had trees (86%) 

while only slightly more than half (53%) of the High Density Residential sites had 

trees present in the plots.   

High Density Residential plots were those plots located on the properties of 

apartment building, condominiums, and of rowhouses.  Some of these plots occurred 

in the alleys behind rowhouses; land that was generally neglected and where species 

were allowed to grow uncontrolled.  There was also a number of rowhouses that were 

abandoned or temporarily vacant where the plantable space on the property was not 

maintained.  Property that was maintained for an apartment or condominium complex 

was generally sparse and consisted, on the average, mainly of mown grass (24%), 
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building space (23%), sidewalks and cemented areas (20%), and parking lots (19%) 

(groundpoint data not shown).  These plots averaged only one tree per plot. 

There were a total of 55 individual trees and 22 species found in the High 

Density Residential plots.  Most of the species found on these plots were undesirable 

regenerating native species, invasive species, and a few landscape species sold in the 

trade.  Ailanthus altissima dominated on these sites, accounting for 29% of the trees 

found in this land-use category.  Seven of the 55 trees were Morus alba, another 

invasive species from China.  This species is generally not planted, but sprouts along 

forest edges and fences through bird dissemination.  Acer saccharinum accounted for 

16% of the trees found and is also typically not a planted species, but one that spreads 

quickly by winged, wind-dispersed fruit and may have been allowed to remain 

through neglect.  Several native species found in these plots and it is not certain if 

they were volunteer or planted: Cornus florida, Quercus rubra, and one of the 

Fraxinus species.  Thuja occidentalis, also observed twice in the plots, was likely 

planted.  There were individuals of species found (data not shown) that may indicate 

that some of the plots occurred at the edge of an adjacent remnant portion of forest as 

they are forested species that are rarely found planted, including Fagus grandifolia, 

Quercus velutina, and Acer negundo.     

The Medium Residential plots contained the most diverse groups of trees as 

this land-use had the greatest Shannon’s Diversity Index and the greatest number of 

species, both more so than the Forested plots.  The plots contained only about 15% of 

the individual trees of the Forested plots with 135 trees, indicating that there were 

many small counts of a large number of species.  Throughout these plots, there were 



 

 72 
 

native trees as well as a wide variety of imported species, leading to 35 total species.  

In these plots, there were a large number of desirable trees that are assumed to be 

planted.  One of the few coniferous trees in the survey, Picea abies, a large-sized and 

expansive tree, dominated these plots with 16 individuals.  Another evergreen 

species, Thuja occidentalis, normally found naturally in the more northern regions of 

the eastern United States, was also observed in this land-use.  Of the planted 

deciduous species, there were exotic flowering cherries found as well as the popular 

nursery plant, Acer palmatum.   

The Medium Density Residential plots also contained horticulturally 

undesirable native and invasive trees, but to a lesser degree than the High Density 

Residential plots.  The only invasive species, Ailanthus altissima, was present as 

7.5% of the trees surveyed.  The undesirable native species were Acer saccharinum 

and Prunus serotina, representing together nearly a quarter of the trees in these plots.  

Most likely, these trees were volunteer trees at the edge of a tree line on the property 

or along a fence, however, there were larger sized individuals of A. saccharinum that 

may have been planted or allowed to remain (data not shown).  Finally, there were a 

couple of desirable native species that are not known to have been planted or to be 

volunteer.  Fraxinus trees and the smaller tree, Cornus florida, are both popular in the 

nursery industry and were likely planted and maintained by homeowners.  As with the 

High Density Residential plots, there were individuals of forested species that may 

have occurred due to the presence of remnant trees or forested sections adjacent to the 

residential property that was included in the plot, including Liriodendron tulipifera, 

Quercus velutina, Carpinus caroliniana, and Carya species. 
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Forested plots were represented by 28 of the 200 plots and held most of the 

trees in the survey with 871, or more than half of the 1355 trees used in this analysis.  

There was a minimum of 2 trees per plot, which may have happened at the edge of a 

forest or if the plot occurred in a forest gap, and a maximum of 76 trees in one plot.  

Forested plots had a high Shannon’s Diversity Index of 2.94 and a richness of 33 tree 

species, second only to Medium Density Residential but with a much larger number 

of trees.  Fagus grandifolia was found 143 times within these plots and was only 

found one other time in the survey outside of the forest, and that was in 1 High 

Density Residential plot.  The second most common species in the Forested plots was 

Sassafras albidum, found 83 times, deceptively making the species appear to be 

widespread.  However, 71 of these individuals were found in a single plot.  The other 

native trees found were equal parts slow-growing and dominant canopy trees, 

including Quercus species, as well as fast-growing, light obligate species, such as 

Liriodendron tulipifera and Prunus serotina that benefit from canopy gaps and forest 

edges.  The only species that overlapped with planted residential landscapes were 

those native species sold in the trade, including Cornus florida, Fraxinus species, and 

Quercus rubra.  There were few invasive species found competing with the native 

species, and these were likely found in disturbed areas or along edges as supported by 

edge theory that predicts that increased disturbance and edge will favor the 

establishment of invasive species (Brothers and Spingarn, 1992; Harris and 

Sanderson, 2000).  There were 32 Ailanthus altissima trees, a small number out of the 

large number of trees found in Forested plots.  There were also about half as many 

each of Robinia pseudoacacia and Morus alba.  The only invasive tree that is capable 
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of competing in the forest interior was Acer platanoides and these were found with 12 

individuals within the Forested sites.  In total, the invasive trees represented 8% of all 

trees counted in the Forested plots, less than the 13% invasive trees found throughout 

the city and there were none of the non-invasive exotic species counted in the 

Forested plots.  

The results for the Forested sections in the Baltimore survey were similar to 

those found in natural areas in a vegetation survey by Brush et al. (1980).  The 

majority of natural areas surrounding Baltimore City were classified as a 

Liriodendron tulipifera association.  Species included in this association were Acer 

rubrum, Cornus florida, Nyssa sylvatica, Quercus alba, Sassafras albidum, Prunus 

serotina, and Carya tomentosa.  This association was found in the bottomlands with 

Robinia pseudoacacia, Carpinus caroliniana, and Prunus serotina or in the upland 

forests with Carya, Fagus grandifolia, and Cornus florida.  The other large 

association found in the surrounding areas of Baltimore City was a Quercus prinus-

Quercus stellata-Quercus marilandica group consisting of Acer rubrum, Nyssa 

sylvatica, Quercus alba, Sassafras albidum, Quercus velutina, Fagus grandifolia, 

Liquidambar styraciflua, Carya tomentosa, and Prunus serotina,  

Open Urban sites, representing parks, including areas of unmaintained edge 

forest adjacent to recreational areas, sports fields, and vacant lots, had 23 plots in the 

survey with more than half (57%) containing trees.  As these sites can be highly 

disturbed and recently regenerating, there was a maximum tree count of 105 trees per 

plot, more than one third greater than any of the Forested plots.  There was a 

relatively high diversity and richness values for these plots.  The species found were a 
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mixture of native forested species, invasive species, and undesirable native species.  

These species were dramatically different than the forested plots, even thought the 

Open Urban plots could have contained some edge forest.  This may, in large part, be 

due to the presence of these edge forests as edge effects can often result in 

dramatically different species composition with an increase in invasive species when 

a seed source is available nearby (McDonald and Urban, 2006). 

The largest population of trees within a genus in the Open Urban plots 

belonged to Fraxinus and it is unknown if these were planted or naturally 

regenerating trees.  There were also a large number of Robinia pseudoacacia, only 

otherwise found in small amounts in the Medium Residential sites and the Forested 

sites.  R. pseudoacacia is an early successional species that thrives in abandoned 

fields and degraded woodland areas with full sun exposure that is common in this 

land-use category.  Morus alba, another invasive tree, was also found in large 

amounts in the Open Urban plots with 14 individuals while Ailanthus altissima was 

only found 4 times in the survey in these plots.   

The native species found, other than those of the genus Fraxinus, were mature 

forest species such as Quercus alba and Quercus rubra that may have been planted in 

the parks or allowed to remain as remnant trees.  Large canopy trees that were likely 

not planted were Q. velutina as well as a relatively large number of trees within the 

Carya genus otherwise only seen in any substantial numbers in the Forested sites 

indicating that there may have been edge-forests present in these sites or adjacent 

forested patches.  There were also native pioneer species such as Acer negundo, 

Sassafras albidum, Prunus serotina, as well as understory species such as Cornus 
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florida and Acer saccharum that may or may not have been planted.  There were 

about 19 individuals in the Ulmus genus that may have been small, surviving U. 

americana, as there are some mature trees of American elm in the city that have not 

yet fallen to Dutch elm disease acting as seed sources, or individuals of U. rubra.  In 

essence, it appears that the Open Urban plots consisted largely of a mixture of edge-

loving, fast-growing native species, invasive tree species, as well as native forest trees 

that either appeared in edge forests or were planted as park trees.  Unlike the 

residential plots, there were no exotic non-invasive trees counted within the Open 

Urban plots. 

At the other end of the spectrum in terms of diversity and species richness 

were the more “urban” sites.  Unlike residential areas, where planting trees may be 

encouraged for aesthetic reasons, for upholding prestige, or for increasing the value of 

the property, these remaining land-uses include sites devoted to Commercial or 

Industrial purposes, as well as highly disturbed Bare Ground sites, and Institutional 

locations.  These property managers may have motivation to prevent volunteer and 

invasive species from occurring, mostly in terms of safety. 

Transportation plots were located adjacent to roadways or encompassed 

completely by highways.  These sites could have included median strips with planted 

street trees maintained with regular intervals of mowing or have been bordered by 

completely neglected pieces of edge forest.  The latter is indicated as, of the 29 trees 

counted in the plots, two-thirds were the invasive tree Ailanthus altissima.  The 

remaining species were probably planted as street trees, including Quercus phellos, 

Acer platanoides, Acer rubrum, Acer platanoides, and a single ornamental cherry. 
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The Industrial plots were largely without trees as included were petroleum 

storage areas and manufacturing sites that were prohibited from allowing vegetation 

on the premises.  The 2 plots of 9 that did have trees were apparently slightly lax in 

land management and allowed a few weedy species to sprout.  These plots had only 

one native species, one in the Ulmus genus, likely a volunteer tree, and 2 invasive tree 

species, Ailanthus altissima and Quercus acutissima. 

There were only 4 plots with trees of the 15 Commercial plots and these were 

likely parking lot trees or planted near a storefront for aesthetic reasons.  Each plot 

had one tree of one species, Acer platanoides, Acer saccharum, Pyrus calleryana, and 

Quercus rubra.  There is a chance that any of these were counted at the edge of the 

commercial property and were volunteer trees. 

Institutional plots occurred on school property, on cemetery lots, or on golf 

courses; all highly managed properties, where more land space is dedicated to mown 

lawn than planted space.  These plots had 3 ornamental species planted, including an 

invasive, a native, and a non-native exotic; Pyrus calleryana, Pinus strobus, and a 

flowering Prunus tree.  

The Bare Ground plots are arguably the most disturbed sites in the city.  These 

construction sites and landfills consist mainly of compacted, and generally infertile, 

bare soil.  These plots were all recently disturbed, allowing for only volunteer species, 

and surprisingly, the species found were all native species instead of the expected 

occurrence of invasive trees.  It is assumed that there is a nearby source of seeds in an 

adjacent forest for these native trees: Prunus serotina, Liquidambar styraciflua, and 

Sassafras albidum. 
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There would appear to be distinct patterns to the trees found within and 

among the land-use classifications in Baltimore’s vegetation survey as maintenance 

and motivation for planting may be key factors in the tree composition in most of the 

plots.  In general, it would appear that the Medium Density Residential plots were 

mostly a combination of desirable exotic species and undesirable native species while 

the High Density Residential plots were dominated by invasive tree species and 

undesirable and quickly regenerating natives.  The high levels of diversity in the 

Medium Density plots were likely due to the combination of landowners planting a 

range of exotic trees from nurseries in combination with volunteer trees that sprouted 

near fence lines and property boundaries.  Forested plots were mainly rich in native 

species across different environments such as riparian areas, bottomland forests, and 

upland forests as well as a small cropping of invasive species along the forest edges.  

The Open Urban plots contained many fast-growing edge species, invasive and 

native, as well as some large, planted park species.  The Transportation plots were 

lined with colonies of Ailanthus altissima and a few species of planted street trees.  

The few Institutional and Commercial plots that contained trees had planted 

landscape trees, both native and exotic.  The Industrial plots that were treed had a few 

invasive species while the Bare Ground plots exclusively had native volunteer trees. 

 

Detrended correspondence analysis of species distribution related to land-use 
 

While there were possible patterns in species distribution by land-use 

classification through the tree population data above, multivariate analysis was not 

conclusive.  The plot scores of the detrended correspondence analysis did not indicate 
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a pattern of species composition within the plots based on land-use alone, leaving 

Hypothesis 1 that tree species distribution is based on land-use unsubstantiated.  

However, the species scores, when plotted alone, may have revealed a general pattern 

where trees are expected to be found in the urban landscape.  The species that are 

generally only located in forested environments were found to be grouped at the left 

end of the first axis and those that can only be expected to be found in planted 

landscapes were found at the right hand side.   

There may be several reasons for the discrepancy between a pattern existing 

for the species scores and not for the plot scores.  Plot locations and the size of the 

land-use type patches where the plot was located were highly variable.  For example, 

commercial plots located in a strip mall at the urban core can be very different from a 

small store located in a residential area with regards to plantable space and desired 

aesthetic appearance.  It is possible that the land-use designation was not specific 

enough in order to account for different management regimes or disturbance event 

type and frequency.  Also, the location of each plot varied in proximity to the nearest 

seed source for volunteer trees, such as the distance to the nearest forest patch or the 

nearest regenerating vacant lot.  Another confounding factor was the percentage of 

land area within the plot dedicated to the assigned land-use classification.  Some of 

the plots fell on two or more land-uses, but each was designated based on the greatest 

portion of land.  For example, a plot that was 60% forest, but also 40% residential 

was still designated as a Forested plot.  This was corrected in subsequent UFORE 

vegetation surveys as percentages of land-uses were noted.  That could not be 

accounted for here as some of the plots had been lost and relocated or had changed 
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land-use status since the original 1999 survey.  Further examination of the patch sizes 

and the proximity of each plot to the nearest seed source would be useful analyses in 

the future.  

While there was an apparent grouping of some of the species by their DCA 

species scores along the first axis, there were not completely clear distinctions of 

species origins or preferred habitat.  The species that are found mostly in forested 

environments, such as Fagus grandifolia, were clustered at the beginning of the axis, 

while the planted exotic species typically found only in residential areas were at the 

end of the species scores.  A large grouping of species in the middle of the ordination 

had no such clear pattern.  There are perhaps several reasons for an overlapping of 

species origins and uses.  For one, there is a homogenization of species across cites, 

and even across the globe, due to highly adaptable, urban tolerant species that are 

planted universally (McKinney, 2006).  Homogenization is mostly caused by invasive 

species or weedy native species that are found across many land-uses, including 

Ailanthus altissima and Prunus serotina (Results, Table 3).  The real determining 

factor is only whether they are allowed to remain and land management can vary 

highly, not only between different land-uses, but also within the classifications based 

on vacancy status, site history, and current degree of management.  The source of the 

trees may have also blurred any distinguishable pattern in the DCA analysis as it was 

not noted during the survey whether or not each tree was planted or was volunteer.  

Many native species are sold in the nursery industry and planted in the landscape 

leading to a larger seed bank than normally would be present.  Planted Quercus rubra 

individuals would tend to be found in residential areas, along street edges and in 
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yards, and around parking lots of commercial plots while naturally regenerating 

individuals may only be found in forest environments or in Open Urban recreational 

areas.  If the planted individuals had been separated by source, a clearer pattern might 

have emerged in species distribution based on land-use classification.  Later UFORE 

surveys did include this information, but as mentioned before, it was impossible to 

reference this information to the 1999 survey as some of the plots had been relocated 

and trees were removed or planted since that time.  To test how much of an impact 

this might have, a secondary DCA was performed that separated certain species into 

planted and volunteer categories assuming that they would generally be one or the 

other based purely on land-use classification.  For example, Quercus rubra was 

entered as planted for residential sites and volunteer for Forested sites and Open 

Urban sites.  This was also done for trees such as Fraxinus, Cornus florida, and Acer 

rubrum.  The DCA performed provided the same results as the original DCA 

reported, indicating that the source of trees may not a factor in the results. 

There is no obvious environmental gradient observed, if the species are 

analyzed individually by preferred soil moisture, normal pH range, or disturbance 

tolerance.  For example, species that tend to be found in dry, rocky sites were mixed 

with species that are found almost exclusively in moist, bottomland settings along the 

first axis.  This could be due, in small part, to a difference in the role that competition 

plays.  Species that are confined to bottomland areas because they are unable to 

compete with upland species may be able to grow in drier sites, but are not able to 

compete naturally.  These species could be planted in drier sites through landscaping 

and may thrive in such conditions.  It is also unknown which individual trees were 
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maintained, perhaps watered regularly in an environment that they were not 

accustomed, and which species were existing on their own.   

With urban environments and the amount of disturbance, there tends to be a 

disruption of normal environmental gradients.  Soil conditions change through such 

changes as soil compaction, organic matter removal, altered hydrology affecting 

drainage, and the addition of heavy metals.  The existence of an environmental 

gradient, therefore, is difficult to detect without knowledge of site characteristics of 

each plot. 

With respect to the two different physiographic regions that Baltimore 

encompasses, there could have been obvious differences in soil conditions due to the 

parent material.  In a separate DCA (not shown), plots were analyzed based on their 

location with respect to the fall line.  There was no apparent contribution to tree 

species distribution based on the physiographic region. 

In a discussion of the analyses used, it is important to note that the ordination 

methods themselves may have inherent issues that prevent the detection of existing 

patterns.  One of the problems facing an ordination method based on weighted 

averaging, such as DCA or CCA, is assumption of a symmetric, unimodal response.  

Species response curves can often deviate from a simple unimodal shape when 

analyzed for environmental gradients (Ejrneas, 2000; Minchin, 1987).  DCA is also 

highly sensitive to outlying samples or species (Jongman et al., 1987), can be unstable 

with certain types of data (Minchin, 1987), and rescales and detrends the data, 

basically manipulating the data to fit a mold, or a pattern, that may not really exist 

(Ter Braak, 1986).  However, there is sufficient evidence that DCA is robust against 
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violation of its assumptions and, in spite of DCA’s failings, the ordination method has 

been shown to be useful in analyses such as the one presented here (Okland, 1990a).  

In this case in particular, in its function as a general sweep of species and samples 

without measured environmental factors, the results of the DCA analysis here have 

been accepted as sufficiently reliable.   

The function of DCA is to act as a predictive tool in choosing environmental 

variables for subsequent modeling with other forms of analyses and there is 

indications with the results presented that environmental factors, such as soil 

compaction, soil type, or seed source proximity should be considered in subsequent 

research. 

It has been suggested in some literature sources that other ordination 

techniques would be preferred over DCA (McCune and Grace, 1999), such as non-

metric multi-dimensional scaling (NMS) or should be used in combination with DCA 

(Minchin, 1987).  Therefore, NMS was performed on the dataset.  The NMS analysis 

was similar to the DCA results, and as DCA is more intuitive in interpretation, only 

those results were presented. 

 

The analysis of socioeconomic and environmental variables through canonical 
correspondence analysis 
 

Canonical correspondence analysis was performed in order to evaluate the 

influence of measured anthropogenic variables on the distribution of tree species.  

These tests were related to hypotheses 2 and 3.  CCA is more flexible with regards to 

response shapes than DCA as it directly models species with measured environmental 
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variables.  It may, however, suffer some of the same complaints mentioned of DCA, 

such as the assumption of a unimodal gradient.  CCA also relies on the knowledge 

that the most important underlying factors are being tested as variables, and this may 

lead to distortion by unaccounted for secondary gradients.    

 Hypothesis 2 was that that population density, percent vacant housing, and 

median household income would be significant in determining tree community 

distribution.  There is an assumption here that houses in areas of lower density would 

have more plantable space for trees and that areas of higher income would have more 

resources available to purchase and maintain trees.   

Socioeconomic factors were tested through CCA in terms of population 

density, percent vacant housing, and median household income.  The hypothesis that 

these socioeconomic factors would account for the variation in the data was found to 

be unsubstantiated.  Simply defining tree spatial patterns by population and income in 

a complex interaction of human influence as well as environment was not effective.  

 There are a number of reasons that concluding results, if there were any to 

find between social status and vegetation patterns, were not attained including that the 

analysis is a simplification of a complex environment.  Another reason that the 

relationship was not found could be that there is a temporal lag between a time that a 

neighborhood’s economic status changes and the vegetation changes that 

appropriately follow (Grove, 1996; Vogt et al., 2002).  It should also be considered 

that a census tract may not be homogenous enough to be used as a representation for a 

located within its boundaries.  Baltimore is a highly diverse city and, at times, 

crossing the street can bring one into a completely different income bracket.  The 
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median average income and population density information is also a calculated value 

from census surveys and may not represent the area in and surrounding the plot well 

enough or may not have captured many enough of the population as census surveys 

may not account for people of all socioeconomic statuses.   

It is not known if there is an easy solution for these issues involving the 

socioeconomic analysis.  In an ideal situation, information for individual homeowners 

who live on the property containing the plot would be available.  However, many 

people were suspicious of simply having their trees measured at the time of the 

survey and were concerned that the information would be used to impact their taxes 

or for other nefarious purposes.  It is doubtful that such private information could be 

attained.   

As motivation for planting vegetation cover has been shown to reach beyond 

income and population levels for many communities (Grove et al., 2006; Hope et al., 

2003), further research into the lifestyle behaviors and social stratifications of these 

plots in relation to tree species composition could prove fruitful. 

Regardless if significant results were found, there were indications from the 

biplot that patterns, in part, could exist.  Species located the furthest distance from the 

arrowhead of an environmental variable have the lowest weighted average with 

respect to that variable.  When looking at the biplot in Figure 6, the species that occur 

at the sites with the highest median incomes are those that would be expected to be 

desirable species.  This was true as the species grouped at the highest income levels 

were those species such as Acer palmatum and ornamental Prunus species.  This was 

not true at the end of the gradient as there was a mixture of species of different uses 
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and origins.  There is also a suggestion of a pattern with population density as 

Ailanthus altissima is at the higher end of the gradient, while forested species such as 

Carya species and Liriodendron tulipifera are found at the opposite end.  This 

clustering appears for only a fraction of the species, and does not appear to be the 

general rule. 

 In the CCA analysis with environmental variables, Hypothesis 3, that 

anthropogenic environmental factors accounted for tree species distribution, was 

tested using the amount of plot surface area covered by impervious service was 

analyzed with the average age of structure on the property.   

The age of structure on property was used here as an indication of the time 

since disturbance in the area.  It is a general age for a complex patch of land and may 

not reliably indicate the time since disturbance for every structure on every plot 

within that census tract, but it is taken as a sign of time since development and 

disturbance within that area.  If assumed to be true, the age of structure on the 

property can greatly affect the species planted.  Previous research has found that time 

since neighborhood development is important in predicting species abundance for 

perennials (Martin et al., 2004).  For understory vegetation, stand age after 

clearcutting was found, along with site moisture, to be the most important measured 

environmental variable related to species distribution in Maryland (York et al., 2000). 

For the trees in Baltimore, it is hypothesized that the time since disturbance 

will have an impact on the species composition.  Older sites tend to have mature 

trees, dominated by non-native species that may have been popular in an earlier era, 

while younger sites are affected by a renewed interest in native species in new 
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developments and buffer zones, and have a smaller biomass as younger trees are 

recently planted (Detwyler and Marcus, 1972; Freedman et al., 1996).  

If the impervious surface area is taken as an estimation of urbanization, it can 

easily follow that the less plantable space a plot has, the less the number of species 

that would be able to tolerate that environment.  The trees planted in an area largely 

composed of parking lot and sidewalk would most likely have to be urban tolerant 

street trees, landscape trees, or volunteer invasive species and weedy native species 

that survive with little resources, minimum root space, a tolerance for high levels of 

solar radiation, and are able to withstand soil compaction.   

There was a large range in the average impervious surface cover of plots by 

land-use.  There is a general sense that this a measure of urbanization as Commercial 

and High Density Residential plots dominate the city’s core, and along with Industrial 

plots, have the least amount of plantable space and the greatest proportions of 

undesirable and fast growing native species and invasive tree species .  The nearly 

total pervious surfaces of the Bare Ground plots deceptively reflect plantable space as 

these areas were recently disturbed or kept unvegetated.  Bare Ground plots ranged 

from 0 to 4% impervious surface cover extrapolated from groundpoint data while 

Forested plots were between 0 and 52% with most being at 0% impervious surface 

(Table 8).  Commercial plots ranged from 36 to 100%.  The rest of the land-uses had 

an extrapolated percent impervious surface area between 0 and 100%. 

This second CCA using the age of the structure on the property and the 

amount of impervious surface cover on the plots was found to yield significant 

results.  About 12% of the total variance in the species data was accounted for by 
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these variables.  The first axis accounted for most of the variance among the axes 

with 3.2% of the total variance.  Both Monte Carlo tests were found to be significant.  

These tests determined that the impervious surface area and age of structure on the 

property accounted for some of the variance in the data, and plots with similar values 

for these variables have similar species.  The amount of impervious surface cover was 

the more significant variable found as it was calculated to have considerably greater 

correlation than age of structure.   

A similar result was found in France as Vallet et al. (2008) analyzed land 

cover of buffer zones surrounding woodland areas and the response of plant 

assemblages.  A canonical correspondence analysis found that buildings and 

pavement areas were the most significant predictors of plant species composition, 

indicating that the proportion of impervious surface surrounding the sites was the 

most important factor.  

A major concern with the results of this CCA analysis is that, even though 

statistically significant, the model explains little of the variation as seen by the short 

extracted gradients.  Therefore, the probability of a species occurring increases or 

decreases monotonically, not unimodally, along the gradients and this violates one of 

the assumptions of CCA (Ter braak, 1986).  In spite of this, the CCA analysis 

appeared to have run appropriately.  The amount of total variance in the community 

matrix accounted for with this analysis was relatively small indicating that there are 

more contributing factors to species distribution.  Plantable space, or pervious area, 

may also be a factor of wealth and status as areas of lower economic standing 

presumably have less plantable space, a greater housing density, more parking lots 
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and streets, and less resources and political power to uphold the community 

aesthetics.  

Finally, a CCA was run for some of the Forested sites with soil properties in 

order to evaluate the possible influence of natural factors more traditionally 

responsible for species assemblages.  Many factors, including soil properties, 

biogeochemical processes, and biological properties, interact in order to determine 

conditions suitable for a species to establish and grow (Hutchison, 1957).  Van 

Breeman et al. (1997) found that Fraxinus americana occurred on sites high in Ca 

and Mg, while, conversely, sites with Quercus rubra and Fagus Americana were low 

in Ca and Mg.  Soil pH levels, at the forest floor especially, was greatest under Acer 

saccharum and Fraxinus Americana, and decreased under Acer rubrum and Fagus 

americana, with the lowest pH under Quercus rubra and Tsuga canadensis.  A 

similar pattern was found with exchangeable Ca and Mg.   

There is also sufficient evidence to establish the case that, in a plant-soil 

feedback loop, plant species often change conditions due to leaf chemistry and 

selective uptake that further amplifies the effect of the soil on plants (Augusto et al., 

2001; Binkley and Giardina, 1998; Ehrenfeld et al., 2005; Reich et al., 2005).  Trees 

influence soil acidity and exchangeable cations (Alban, 1982) and differentially take 

up cations, produce organic acids, and have different rates of decomposition (Finz, 

1998).  Regardless, a relationship can exist between environmental conditions and 

species composition.   

This final analysis of soil factors in the Forested plots (Figure 9) was run in 

order to detect any contrast with the previous analyses that focused on anthropogenic 
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variables.  Very little of the variance was accounted for by this analysis.  The number 

of soil variables was reduced and run in numerous combinations to assure, along with 

the analysis output, that there was no evident interaction among the variables.  Some 

of the variables were related in the analysis output, as shown by the relationships of 

the variables, as they would obviously be in the physical world, such as the level of 

magnesium present and the pH of the soil, but this did not appear to affect the results 

shown.   

There were only a small number of plots with data available in this analysis 

and data from only 22 of the 200 plots were used.  There is good reason to believe 

that tree species differences were likely due to plot location, history, and disturbance 

factors rather than soil properties.  For example, those plots that occurred at the edge 

of a forest can be markedly different from those in the intact interior, regardless of 

soil properties (Godefroid and Koedam, 2003).  In conclusion, the results with this 

CCA indicate that tree species assemblages in Baltimore City are likely due to 

anthropogenic factors. 

Trees, generally seen to be an afterthought in urban planning, are essential 

elements of the urban forest and the underappreciated mitigators of urban pollution 

woes.  The populations of trees in a city environment are often poorly understood and 

are rarely seen as a functioning component of the urban ecosystem.  The ecological 

services provided to a city are, therefore, often undervalued.  The arboreal community 

provides valuable services to the human population of a city with environmental 

services such as the moderation of the heat island effect with the reduction of albedo 

and solar radiation (Oke, 1989), the absorption of airborne particulate matter and 
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nonpoint water pollution to improve health conditions (Beckett, et al., 1998; Borin, et 

al., 2004; Freer-Smith, et al., 1997; Nowak, 1994b; Tabacchi et al., 2000), carbon 

sequestration (Nowak, 1994c; Freedman et al., 1996), stream bank stabilization, the 

moderation of  storm water flow and the corresponding decrease in soil erosion, and 

the reduction of heating and cooling needs for adjacent buildings (Nowak, 1993). 

Understanding how tree species are distributed within a city environment is 

useful only with the knowledge that the population is constantly changing along with 

the way the land is being used.  On the small scale, plants continue to move in and out 

of favor with homeowners and city designers, and change with the tastes of new 

owners and managers as properties change hands.  On a larger scale, epidemics such 

as emerald ash borer killing off large expanses of Fraxinus trees to the north (Poland 

and McCullough, 2006) and sudden oak death (Rizzo et al. 2002; Stokstad, 2004) 

destroying forests of oak trees to the west, threaten to wipe out entire populations of 

important tree species in both the forest and the landscape on the scale of Dutch elm 

disease.  Only through the knowledge of what trees are present and how they are 

changing can proper land management decisions be made to preserve the biodiversity 

and, consequently, maintain a healthy and functioning urban forest.  

 

Conclusion 
 

Based on the tree survey in Baltimore, MD, the vast majority of species was 

native to the region, found in the forests before European settlement and throughout 

the subsequent land-use changes that resulted from a changing cityscape.  Less than a 
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quarter of the trees surveyed were non-native to the area, brought in mostly as species 

sold in the nursery industry currently, or were imported in the city’s early history.   

There was a mixture of trees found within the city including those such as 

Fagus grandifolia that generally are confined to more natural and undisturbed 

forested areas, as well as those species that are adaptable to many types of soils and 

disturbance conditions, such as Fraxinus pensylvanica.  There was also a combination 

of species that dominated the canopies of a mature forest in the Eastern Deciduous 

Forest, such as those of the genera Quercus and Carya, as well as a number of fast-

growing, light-obligate pioneer species such as Liriodendron tulipifera and Prunus 

serotina.  These latter species were likely not as present in the forests of Baltimore 

before European settlement, but with disturbance and canopy openings that came with 

the growth of a major metropolitan area, they have flourished and gained importance.   

Surprisingly, there was not a monopolization of the tree species population by 

any of the cross-over species, meaning those that are found regenerating natively in 

the forested areas as well as found sold in the nursery trade.  These species, such Acer 

rubrum and Quercus rubra, have two sources of new recruits.  Regeneration of these 

species happens through native tree seed sources and through saplings being planted 

in the landscape by public agencies, landscape companies, and homeowners. 

Also present in smaller amounts than might be expected in a highly urbanized 

region, were invasive species.   The invasive species in Baltimore accounted for 13% 

of the tree population in Baltimore city.  This was a lower percentage than found in 

comparable cities in the eastern United States (see Table 10). 
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 With the multivariate analyses performed, there was no clear indication of 

overriding factors that was driving the city’s biodiversity.  Tree species distribution 

could not be explained based on land-use classification of the plots alone.  

Socioeconomic factors were also not significant in explaining vegetation patterns. 

There was a trend that suggested that the amount of impervious surface area was 

related to species distribution.  However, many factors probably contributed to this 

finding.  There is inherent complication of multiple, inter-related factors, 

environmental and socioeconomic combined, that, together, may contribute to tree 

species distribution across the urban landscape.  This may have contributed to the 

unclear partitioning of plots across land-uses.  Further information on patch size and 

location, of specific plot socioeconomic and environmental information would be 

helpful in forming conclusive explanations for what determines tree species 

composition and distribution in an urban environment.     
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Appendix 1: Species Codes 

 

 

CODE SCIENTIFIC NAME COMMON NAME 

Native/ 
Invasive or 
Exotic to 
Baltimore 

ACNE Acer negundo boxelder Native 

ACPA Acer palmatum Japanese maple 
Exotic 

ACPL Acer platanoides Norway maple Invasive 
ACRU Acer rubrum red maple Native 

ACSA1 Acer saccharinum silver maple 

Native to areas 
just west of 
Baltimore 

ACSA2 Acer saccharum sugar maple 
Native 

AIAL Ailanthus altissima tree of heaven Invasive 
ASTR Asimina triloba common paw-paw Native 

CACA Carpinus caroliniana ironwood, American hornbeam 
Native 

CA1 Carya species hickory Native 
CASP Catalpa speciosa northern catalpa Exotic 
CECA Cercis canadensis eastern redbud Native 
CELI Cedrus libani cedar of Lebanon Exotic 
CEOC Celtis occidentalis hackberry Native 
COFL Cornus florida flowering dogwood Native 
FAGR Fagus grandifolia American beech Native 
FR Fraxinus species ash Native 
GLTR Gleditsia triacanthos honeylocust Exotic 
HAVI Hamamelis virginiana common witchhazel Native 
HISY Hibiscus syriacus rose of sharon Exotic 
ILOP Ilex opaca American holly Native 
JUVI Juniperus virginiana eastern redcedar Native 

LIST Liquidambar styraciflua sweetgum 
Native 

LITU Liriodendron tulipifera tulip tree, yellow poplar 
Native 

MA2 Malus species crabapple Exotic 
MA1 Magnolia species magnolia Exotic 
MOAL Morus alba white mulberry Invasive 
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* The category of Native/Exotic/Invasive was determined through personal 
knowledge and with the aid of Burns and Honkala (1990). 

 
 

CODE SCIENTIFIC NAME COMMON NAME 

Native/ 
Invasive/ or 
Exotic to 
Baltimore 

NYSY Nyssa sylvatica blackgum Native 

OSVI Ostrya virginiana American hophornbeam 
Perhaps native to 
western portions 

PIAB Picea abies Norway spruce Exotic 
PIST Pinus strobus eastern white pine Native 

PLOC Platanus occidentalis American sycamore Native 

PODE Populus deltoides eastern poplar Uncertain 
PR Prunus species flowering cherry Exotic 
PRSE1 Prunus serotina black cherry Native 

PYCA Pyrus calleryana Callery pear Invasive 
QUAC Quercus acutissima sawtooth oak Invasive 
QUAL Quercus alba white oak Native 
QUCO Quercus coccinea scarlet oak Native 
QUFA Quercus falcata southern red oak Native 
QUPA Quercus palustris pin oak Native 
QUPH Quercus phellos willow oak Native 
QUPR Quercus prinus chestnut oak Native 
QURU Quercus rubra red oak Native 
QUVE Quercus velutina black oak Native 
ROPS Robinia pseudoacacia black locust Exotic 
SAAL Sassafras albidum sassafras Native 
THOC Thuja occidentalis American arborvitae Exotic 
TIAM Tilia americana basswood Exotic 

TICO Tilia cordata littleleaf linden Exotic 

TSCA Tsuga canadensis eastern hemlock Exotic 
ULPA Ulmus parvifolia chinese elm Invasive 
ULSP Ulmus species elm Native 
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Appendix 2: Species by land-use 
 

LAND-USE SPECIES 

NUMBER 
OF 

TREES 

PERCENTAGE 
OF LAND-

USE TOTAL 
Bare Ground Prunus serotina 3 60.0% 
 Liquidamabar styraciflua 1 20.0% 
 Sassfras albidum 1 20.0% 
Commercial Pyrus calleryana 1 25.0% 
 Acer platanoides 1 25.0% 
 Acer saccharum 1 25.0% 
 Quercus velutina 1 25.0% 
Forested Fagus grandifolia 143 16.4% 
 Sassfras albidum 83 9.5% 
 Cornus florida 67 7.7% 
 Prunus serotina 65 7.5% 
 Fraxinus species 63 7.2% 
 Quercus rubra 57 6.5% 
 Ulmus species 55 6.3% 
 Liriodendron tulipifera 50 5.7% 
 Quercus alba 33 3.8% 
 Ailanthus altissima 32 3.7% 
 Acer rubrum 27 3.1% 
 Quercus phellos 23 2.6% 
 Carya species 21 2.4% 
 Nyssa sylvatica 18 2.1% 
 Robinia pseudoacacia 18 2.1% 
 Acer platanoides 15 1.7% 
 Acer negundo 15 1.7% 
 Carpinus caroliniana 12 1.4% 
 Morus alba 12 1.4% 
 Quercus velutina 9 1.0% 
 Quercus palustris 8 0.9% 
 Hamamelis virginiana 7 0.8% 
 Catalpa speciosa 6 0.7% 
 Cercis canadensis 6 0.7% 
 Tilia americana 6 0.7% 
 Acer saccharinum 5 0.6% 
 Acer saccharum 3 0.3% 
 Quercus prinus 3 0.3% 
 Asimina triloba 2 0.2% 
 Ostrya virginiana 2 0.2% 
 Platanus occidentalis 2 0.2% 
 Quercus coccinea 2 0.2% 
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LAND-USE SPECIES 

NUMBER 
OF 

TREES 

PERCENTAGE 
OF LAND-

USE TOTAL 
Forested 
(continued) Prunus species 1 0.1% 

High Density 
Residential Ailanthus altissima 14 20.3% 
 Acer saccharinum 8 11.6% 
 Morus alba 7 10.1% 
 Acer rubrum 6 8.7% 
 Quercus prinus 4 5.8% 
 Pyrus calleryana 3 4.3% 
 Cornus florida 2 2.9% 
 Prunus serotina 2 2.9% 
 Fraxinus species 2 2.9% 
 Quercus rubra 2 2.9% 
 Pinus strobus 2 2.9% 
 Celtis occidentalis 2 2.9% 
 Juniperus virginiana 2 2.9% 
 Thuja occidentalis 2 2.9% 
 Tsuga canadensis 2 2.9% 
 Fagus grandifolia 1 1.4% 
 Acer negundo 1 1.4% 
 Quercus velutina 1 1.4% 
 Catalpa speciosa 1 1.4% 
 Prunus species 1 1.4% 
 Magnolia species 1 1.4% 
 Pyrus calleryana 2 50.0% 
 Pinus strobus 1 25.0% 
 Prunus species 1 25.0% 
 Ulmus species 3 50.0% 
Industrial Ailanthus altissima 2 33.3% 
 Quercus acutissima 1 16.7% 
Medium 
Density 
Residential Picea abies 16 11.9% 
 Acer saccharinum 12 8.9% 
 Prunus serotina 9 6.7% 
 Fraxinus species 9 6.7% 
 Tsuga canadensis 8 5.9% 
 Acer palmatum 7 5.2% 
 Ailanthus altissima 6 4.4% 
 Prunus species 6 4.4% 
 Juniperus virginiana 6 4.4% 
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LAND-USE SPECIES 

NUMBER 
OF 

TREES 

PERCENTAGE 
OF LAND-

USE TOTAL 
Medium 
Density 
Residential 
(continued) Ilex opaca 5 3.7% 
 Ulmus species 4 3.0% 
 Cornus florida 4 3.0% 
 Acer platanoides 4 3.0% 
 Morus alba 3 2.2% 
 Thuja occidentalis 3 2.2% 
 Robinia pseudoacacia 3 2.2% 
 Malus species 3 2.2% 
 Pyrus calleryana 2 1.5% 
 Pinus strobus 2 1.5% 
 Acer rubrum 2 1.5% 
 Quercus rubra 2 1.5% 
 Magnolia species 2 1.5% 
 Carya species 2 1.5% 
 Acer saccharum 2 1.5% 
 Gleditsia triacanthos 2 1.5% 
 Prunus species 2 1.5% 
 Acer negundo 1 0.7% 
 Quercus velutina 1 0.7% 
 Liriodendron tulipifera 1 0.7% 
 Quercus alba 1 0.7% 
 Carpinus caroliniana 1 0.7% 
 Quercus palustris 1 0.7% 
 Cedrus libani 1 0.7% 
 Populus deltoides 1 0.7% 
Open Urban Fraxinus species 40 17.4% 
 Robinia pseudoacacia 28 12.2% 
 Ulmus parvifolia 22 9.6% 
 Quercus alba 20 8.7% 
 Ulmus species 19 8.3% 
 Prunus serotina 17 7.4% 
 Acer negundo 17 7.4% 
 Morus alba 14 6.1% 
 Pinus strobus 12 5.2% 
 Carya species 8 3.5% 
 Platanus occidentalis 6 2.6% 
 Ailanthus altissima 4 1.7% 
 Acer saccharinum 3 1.3% 
 Acer rubrum 3 1.3% 
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LAND-USE SPECIES 

NUMBER 
OF 

TREES 

PERCENTAGE 
OF LAND-

USE TOTAL 
Open Urban 
(continued) Quercus rubra 3 1.3% 
 Sassafras albidum 3 1.3% 
 Cornus florida 2 0.9% 
 Thuja occidentalis 2 0.9% 
 Acer saccharum 1 0.4% 
 Prunus species 1 0.4% 
 Quercus velutina 1 0.4% 
 Quercus phellos 1 0.4% 
 Liquidamabar styraciflua 1 0.4% 
 Quercus falcata 1 0.4% 
 Tilia cordata 1 0.4% 
Transportation Ailanthus altissima 19 61.3% 
 Fraxinus species 2 6.5% 
 Ulmus species 2 6.5% 
 Acer rubrum 2 6.5% 
 Quercus phellos 2 6.5% 
 Acer saccharinum 1 3.2% 
 Prunus species 1 3.2% 
 Acer platanoides 1 3.2% 
 Gleditsia triacanthos 1 3.2% 
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