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Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer 

rates and have been identified as a most promising technology for integration into compact 

cold plates.  Unfortunately, the absence of phenomenological insights and physical models 

hinders the extrapolation of grooved-tube performance to new applications.  The success 

of regime-based heat transfer correlations for smooth tubes has motivated the current effort 

to explore the relationship between flow regimes and enhanced heat transfer in internally-

grooved tubes.  In this thesis, a detailed analysis of smooth and internally-grooved tube 

data reveals that performance improvement in internally-grooved tubes at low-to-

intermediate mass flux is a result of early flow regime transition.  Based on this analysis, a 

new flow regime map and corresponding heat transfer coefficient correlation, which 

account for the increased wetted angle, turbulence, and Gregorig effects unique to 

internally-grooved tubes, were developed.   

A two-phase test facility was designed and fabricated to validate the newly-

developed flow regime map and regime-based heat transfer coefficient correlation. As part 

of this setup, a non-intrusive optical technique was developed to study the dynamic nature 

of two-phase flows.  It was found that different flow regimes result in unique temporally 



 

 

varying film thickness profiles.  Using these profiles, quantitative flow regime 

identification measures were developed, including the ability to explain and quantify the 

more subtle transitions that exist between dominant flow regimes. 

Flow regime data, based on the newly-developed method, and heat transfer 

coefficient data, using infrared thermography, were collected for two-phase HFE-7100 

flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with 

mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities 

approaching 1.  In total, over 6500 combined data points for the adiabatic and diabatic 

smooth and internally-grooved tubes were acquired.   

Based on results from the experiments and a reinterpretation of data from 

independent researchers, it was established that heat transfer enhancement in internally-

grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime 

transition to Annular flow.  The regime-based heat transfer coefficient outperformed 

empirical correlations from the literature, with mean and absolute deviations of 4.0% and 

32% for the full range of data collected. 
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Chapter 1: Introduction 

The last several decades have witnessed a dramatic increase in the use of electronics 

on a variety of transportation systems.  This trend continues today in hybrid electric vehicle 

(HEV), electric vehicle (EV), and plug-in hybrid electric vehicle (PHEV) technologies for 

commercial and military applications.  Military use can include both direct vehicle 

applications, such as propulsion, and indirect applications such as electrically operated 

arms or interfacing the vehicle electrical system to create a military base microgrid [1].   

There are several motivations for replacing the traditional internal combustion (IC) 

motors and mechanical drives with HEV equivalents on military platforms.  One of the 

most important reasons is the high cost of fuel.  Transporting fuel to the theater through 

dangerous routes and over long distances to geographically dispersed troops can 

significantly increase the cost of fuel.  The cost can rise from a commercial pump price of 

several dollars per gallon to about $400/gal in the battlefield.  If an airlift is needed, the 

cost can reach $1000 per gallon [2].  As such, even a modest saving in fuel efficiency can 

lead to huge cost savings for the Department of Defense.   

HEV platforms also promise reduced operation noise and, as a result, improve 

stealth capabilities and personnel safety in dangerous environments.   Furthermore, HEVs 

can be designed with one motor per axle or even hub motors in each of the wheels for 

propulsion.  This provides system redundancy, so that if one of the motors fails the vehicle 

can operate in a degraded mode to reach a safe or serviceable location.  An indirect benefit 

of HEVs for military applications is the ability to interconnect multiple HEVs to provide 

utility-level power to bases and other infrastructures in combat zones.  With appropriate 
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control electronics, several HEVs can form a ‘micro-grid’ with a robust source of utility 

power [1].  This use of HEVs can reduce the need for ancillary generators and power units, 

therefore leading to savings stemming from acquisition and transportation costs.   

1.1 Power Conversion Electronics - Thermal Issue 

Figure 1 illustrates the continuous power needs for current commercial midsize 

HEVs, full EVs, and PHEVs.  As shown, continuous power demands increase through the 

transition from commercial HEVs to PHEVs and all-electric drive applications such as fuel 

cells or EVs.  In the case of HEVs and PHEVs, electrical power requirements approach 30 

to 60kW while the all-electric platforms reach 100kW for short durations.   

 

Figure 1:  Midsize hybrid electric power requirements (adapted from [1]) 

Power conversion electronics are a ubiquitous and enabling technology for the 

success of current and future electric vehicle architectures; this is due to the disparate 
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electrical systems common to these programs and the need to draw from a platform’s 

single-voltage electrical bus. This mainly involves the use of power semiconductor 

switches such as power diodes, metal oxide field effect transistors (MOSFETs), and 

insulated gate bipolar transistors (IGBTs).  Unfortunately, such electronic energy 

conversion devices cannot be 100% efficient and vehicle systems requiring 100kW of 

electrical power would have thermal losses of 2 to 4 kW, even with power electronic 

conversion efficiencies of 96-98%.  Larger systems or systems with multiple powertrain 

motors, high-power bidirectional DC-DC converters, and power electronics modules could 

have significantly higher waste heat challenges [1].   

Aligned efforts aimed towards increasing total power while simultaneously 

decreasing the component size and weight [3] have led to improvements in cost and power 

density.  However, increased power density has inevitably increased power electronic heat 

flux and is presenting thermal management challenges for current and future systems; fast, 

compact, IGBT devices can be expected to dissipate heat fluxes in upwards of 250 W/cm² 

[1].  The primary target for thermal management of Silicon power electronics is sustained 

operation below the maximum allowable temperature of 125˚C, since lower die 

temperatures result in lower losses and better electrical performance.  As such, efficient 

thermal management of power electronics modules is critical to maintaining system-level 

operational specifications without undermining efforts to improve power electronic size, 

cost, weight, and power density. 

1.2 Power Electronic Thermal Management 

Traditionally, power electronics have relied on air-cooled heat sinks or liquid-

cooled cold plates to manage electronic waste heat, however new power-dense electronic 
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systems are further increasing waste heat and presenting challenges to the capabilities of 

conventional cooling systems.  The effect of higher heat flux electronics for air-cooled 

systems is larger, heavier, costlier heat sinks and fans to compensate for insufficient 

convective performance.  The effect is equally dramatic with single-phase liquid cooling, 

with higher heat fluxes requiring larger coolant flow rates to sufficiently cool the system 

devices [4].  These large flow rates and subsequent pumping powers result in increasingly 

bulky, heavy systems that consume more fuel [5] and undermine the current and future 

efforts to reduce system cost and improve efficiency.  Thus, there is a drive to develop 

improved cooling components that are smaller and lighter, and have increased performance 

relative to conventional liquid cold plates. 

Cooling schemes using liquid-vapor phase change (two-phase cooling) have been 

examined as a practical and cost-conscious next step beyond single-phase cooling.  A two-

phase cooling system has several potential benefits over a standard single-phase liquid 

cooling approach.  First, the latent heat of vaporization for a particular fluid, reflecting the 

heat absorbed to evaporate a unit mass, can be two orders of magnitude larger than the 

specific (sensible) heat used in single-phase liquid cooling [6].  Therefore, evaporative 

cooling provides the possibility of increased heat absorption per unit mass and volume of 

fluid and improved heat acquisition effectiveness.  The single-phase heat dissipation 

relationship for water can be expressed as: 

q = ṁCpdT = ṁ × 4,186 × 1 = 4,186ṁ (1) 

where q is the heat dissipation, ṁ is the mass flow rate, Cp is the specific heat of the fluid 

(4186 kJ/kgK for water), and ∆T is the temperature rise of the fluid.  Equation (1) assumes 

an allowable fluid temperature rise of 1ºC, such that the heat dissipation can be expressed 
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as the product of mass flow rate and a constant.  Similarly, the two-phase latent heat 

dissipation relationship for water can be expressed as: 

q = ṁhlgx = ṁ × 2,257,000 × 1 = 2,257,000ṁ (2) 

where q is the heat dissipation, x is the quality (fraction of the mass flow rate that has been 

vaporized), ṁ is the mass  flow rate, and hlg is the latent heat of vaporization of the fluid 

(2,257 kJ/kg for water).  Assuming full vaporization of the fluid (x=1.0), this heat 

dissipation can also be expressed as the product of the flow rate and a constant.   

As shown symbolically in Equation (1) and Equation (2), and graphically in Figure 

2, the increased heat acquisition effectiveness of two-phase flow translates into lower flow 

rates compared to single-phase flow for comparable heat dissipation.  The potential benefit 

of lower flow rates includes:  smaller fluid reservoirs; smaller onboard fluid volume; 

reduction in pumping power; smaller pumps; and a reduction in system weight and volume.  

Additionally, two-phase cooling has the potential benefit of a relatively isothermal cold 

plate surface, due to the use of latent heat absorption which occurs at nearly isothermal 

conditions [7], and order-of-magnitude larger heat transfer coefficients than equivalent 

single-phase forced convection methods [6].  Based on these benefits, cooling schemes 

utilizing liquid-vapor phase change are an attractive next-step beyond single-phase cooling 

to manage escalating power electronic thermal concerns. 
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Figure 2:  Dissipated heat vs flow rate for water using latent heat and sensible heat 

1.3 Two-Phase Surface Enhancements and Internally-Grooved Tubes 

As shown by Sharar et al. [8] and Saums [7], performance improvement can be 

accomplished by simply taking an existing single-phase system, for example, an IGBT cold 

plate for cooling power electronics, and operating it in two-phase.  However, by 

understanding the mechanisms that make two-phase advantageous, surface enhancements 

have been developed to further improve two-phase cooling performance. Specific to flow 

boiling heat transfer, these enhancement techniques can be classified into two distinct 

categories: 1) nucleate boiling techniques and 2) convective vaporization techniques.  A 

summary of these techniques can be found in Table 1 and are discussed more extensively 

by Bergles [9] [10], Thome [11], Webb [12], and Kandlikar [13].  Furthermore, a closer 

look at specific topics including, microporous coatings [14], reentrant cavities [15], 

nanoparticle fluid additives [16], twisted tape inserts [17] [18], corrugated tubes [17] [19], 

and internally-grooved tubes can be found in a presentation by Sharar et al. [20]. 
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Table 1: Classification of flow boiling enhancement techniques 

Nucleate Boiling Convective Vaporization 

Acoustic pulsation  

Mechanical and ultrasonic vibration Fins 

Porous surfaces Twisted tape inserts 

Structured surfaces (reentrant cavities) Helical wire inserts 

Screens Corrugated or fluted tubes 

Fins 

Electrohydrodynamic field effect 

Internally-grooved tubes 

 

Among the available enhancement techniques, internally-grooved tubes have been 

identified as a most promising technology for integration into vehicle power electronic cold 

plates.  Helical internally-grooved tubes, also known as inner grooved tubes and micro-fin 

tubes, are perhaps the most prevalent passive two-phase enhancement technique in use 

today and are widely used for refrigerant tubes and for fin-tube heat exchangers, as well as 

shell and tube heat exchangers. Internally-grooved tubes were originally developed in 

Japan and gained widespread adoption in the 1980’s [17]. Seamless internally-grooved 

tubes are typically manufactured by running a mandrel through a smooth bore copper tube 

but can also be made by embossing fin geometries on a metal strip, rolling, and seam 

welding. The latter manufacturing method provides a wider range of groove geometries, 

including 3-D geometries and herringbone tubes, however most commercial vendors 

continue to manufacture seamless tubes [21].  Figure 3a shows the characteristic internally-

grooved tube geometry which is defined by the internal diameter, number of fins, helix 

angle β (or axial pitch), fin height, apex angle, γ, and the internal area ratio.  Figure 3b 

shows a photograph of a commercial 9.52 mm diameter Wieland Cuprofin internally-

grooved tube [22].   
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Figure 3:  a) Schematic of internally-grooved tube (adapted from [23]) and b) photograph of a 9.52 

mm Wieland internally-grooved tube (adapted from [22]) 

 

Depending on the process, tube size, and manufacturer, the surface enhancement 

typically consists of 40-80 small, approximately 0.1 to 0.4 mm wide and 0.1 to 0.4 mm tall, 

fins with helix angles from 7˚ to 23˚, yielding typical area enhancement factors of 1.3 to 

1.8.  These tubes generally range in diameter from 5 to 15 mm, although recently internally-

grooved tubes as small as 1.95 mm have been fabricated and tested [24].  The majority of 

internally-grooved tubes have fins with approximately trapezoidal cross-sectional shapes 

but triangular and rectangular fins have also been manufactured.  Table 2 lists geometric 

parameters for three commercially available internally-grooved tubes from Wieland.   

Table 2: Geometric parameters and fin efficiencies for three Wieland copper internally-grooved 

tubes 

Name 
Diameter 

(mm) 

Wall 

thickness 

(mm) 

# 

Fins 

Fin 

height 

(mm) 

Approximate 

fin base (mm) 

ηf (%) 

h=1000 

W/m² 

ηf (%) 

h=20,000 

W/m² 

Surface 

enhancement 

(A/Ap) 

 

S2AD-5 

 
5 

 
0.23 

 
40 

 
0.15 

 
0.20 

 
99 

 
98 

 
1.52 

 

S2AD-952 

 

9.52 

 

0.34 

 

60 

 

0.2 

 

0.25 

 

99 

 

97.5 

 

1.52 

 

S2AD-15 

 

15 

 

0.4 

 

75 

 

0.3 

 

0.31 

 

99 

 

96.7 

 

1.53 

 

As tabulated in Table 2, the resulting fin efficiencies are greater than 95% for all 

three tubes with heat transfer coefficients ranging from 1,000 to 20,000 W/m²K.  

Furthermore, the curves for triangular, rectangular, and parabolic fins converge at 

𝐿𝑐
3 2⁄

(h/𝑘𝐴𝑝) values less than 0.3 [25] which suggests that for a fixed fin profile area, the 

(b) (a) 
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fin geometry does not significantly affect fin efficiency in standard internally-grooved 

tubes. 

In horizontal orientations, internally-grooved tubes typically show heat transfer 

enhancement ratios as high as 6-7 times that of smooth tubes at low mass velocities and 

improvement equal to or slightly greater than the internal area ratio at high mass velocities 

[26] [17].  The pressure drop of internally-grooved tubes is often equal to that of an 

equivalent smooth tube at low mass fluxes and rises to 1.5 times the smooth tube at high 

mass fluxes.  The reported range of heat transfer improvement and pressure drop increase 

for internally-grooved tubes compared to smooth tubes are compiled in Table 3. 

Table 3: Performance comparison of internally-grooved tubes to smooth tubes 

Metric Internally-Grooved Tube 

Area ratio 

 
1.3-1.8x that of a plain tube 

Heat transfer augmentation at low mass flux 

 
3-7x that of a plain tube 

Heat transfer augmentation at high mass flux 

 
~ internal area ratio 

Pressure drop penalty 1-1.5x that of a plain tube 

 

Researchers have speculated that the significant heat transfer improvement above  

the area enhancement at low mass flux is a result of several factors:  thinning of the liquid 

film in Annular flow due to the larger surface area [26], redistribution of the liquid in 

Annular flow due to the helical grooves [27], and increased turbulence [28].  However, 

generalized models that attempt to capture these effects have proven unreliable.  It has 

recently been suggested that flow regime transition from an undesirable flow regime, such 

as Stratified flow (where only the bottom portion of the tube is wetted), to a desirable flow 

regime, such as Annular flow (where thin film evaporation around the periphery leads to 
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high heat transfer rates), may well explain the observed enhancement in internally-grooved 

tubes at low mass flux [29].   

1.4 Goals and Outline 

1.4.1 Goals 

Despite the documented performance improvement in internally-grooved tubes, the 

flow mechanisms that deliver performance enhancement are not fully understood.  The 

absence of phenomenological insights and physical models makes it difficult to transition 

internally-grooved tube technology from conventional refrigeration equipment to compact 

cold plates for vehicle power electronics.  Therefore, a stronger experimental and 

theoretical knowledge base needs to be established for this enhancement mode, focusing 

on a more comprehensive understanding of the physical mechanisms responsible for 

improved performance in internally-grooved tubes.  To this end, this Dissertation focuses 

on the analytical development and experimental validation of a physics-based flow regime 

map and heat transfer coefficient model that recognizes the role played by surface 

structures in enhancing two-phase thermal transport within internally-grooved tubes.  

These new models mark a significant contribution to the scientific community, allowing 

better thermofluid prediction and enabling more reliable design and optimization of two-

phase cooling systems.  In addition to the intellectual merits, the research is directly 

impactful to ongoing efforts in the Army and is more broadly applicable to ubiquitous 

refrigeration equipment. 

Since the flow regime is a key parameter in analytically defining thermal 

performance, an additional target is to develop a new non-intrusive optical film thickness 

measurement technique to provide a quantitative characterization of the flow regime.  
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Using temporally-varying film thickness profiles produced by this technique, quantitative 

identification measures were developed for the primary flow regimes, including the ability 

to explain and quantify the more subtle transitions that exist between dominant regimes.  

This quantitative methodology assists in establishing the effect of flow regime on thermal 

and momentum transport in internally-grooved tubes. 

1.4.2 Outline 

In Chapter 2, a description of two-phase flow boiling fundamentals is provided.  

Heat transfer mechanisms and the interrelationship between two-phase flow regime and 

local heat and mass transfer are discussed.  A brief review of smooth tube flow regime 

maps and heat transfer coefficient correlations, with a focus on flow regime based heat 

transfer models, is provided.  The Wojtan et al. flow regime map [30] and associated heat 

transfer coefficient correlation [31] are compared to data in the literature to demonstrate 

the validity of this regime-based approach to defining thermal transport. 

Fundamental studies of thermofluid performance in internally-grooved tubes are 

reviewed and analyzed to demonstrate the relationship between flow regime and 

evaporative heat transfer rates, in Chapter 3.  Through reinterpretation of data in the 

literature, it is shown that performance improvement in internally-grooved tubes at low 

mass flux is a result of early transition to Annular flow.  Finally, the current state of two-

phase flow regime maps and heat transfer correlations for internally-grooved tubes is 

summarized and motivation for the current research effort is established. 

Chapter 4 outlines the original Wojtan et al. [31] formulation and describes the 

current modification to the existing flow regime map and heat transfer coefficient 

correlation to better reflect the trends discussed in Chapter 3.  The original and newly 
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proposed model are simulated through a range of operating conditions to demonstrate how 

the model works and to verify that the model can successfully predict 6 to 7 times higher 

heat transfer coefficients at low mass flux and enhancement approaching the area 

enhancement at high mass flux (refer to Table 3). 

Chapter 5 describes the design and fabrication of the single- and two-phase test 

facility used to experimentally validate the model developed in Chapter 4.  The tube heating 

method, fluid selection, parametric space tested, tube parameters, data acquisition and 

reduction, and experimental uncertainty are described.  Appendix A describes lessons 

learned from an attempt to heat the tubes with Atomic Layer Deposition (ALD) thin film 

heaters. 

Common experimental flow regime definitions are based on visual and verbal 

descriptions, which can be subjective and unreliable.  Chapter 6 describes the theory, 

development, and validation of an objective non-intrusive optical flow regime 

characterization methodology based on Total Internal Reflection (TIR).  Results are 

compared to several flow regime maps available in the literature for validation.  Appendix 

B provides additional details on the Matlab code developed to process the TIR data. 

Chapter 7 shows single-phase heat transfer coefficient and energy balance results.  

Theoretical predictions were compared to the experimental results to demonstrate the 

accuracy of the experimental apparatus and test methods.  Good agreement with several 

turbulent flow models was shown. 

Flow regime data, obtained with dynamic total-internal-reflection measurements, 

and heat transfer coefficient data, obtained with infrared thermography, are presented and 

analyzed in Chapter 8 for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm 
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diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat 

fluxes from 4-56 kW/m², and vapor qualities approaching 1.  This data, along with data 

from the literature, is then compared to the new flow regime map and associated heat 

transfer coefficient correlation and additional models from the literature.  Furthermore, 

suggestions for future experimental and modeling research are given, based on insights 

from the current study.  Appendix C - Appendix F provide additional experimental results, 

as well as a more detailed statistical analysis of the data. 

Finally, conclusions and recommendation for future research are provided in 

Chapter 9.   

The reader is reminded that this Dissertation has a focus on exploring an internally-

grooved tube cold plate ‘unit cell’ (single tubes) as a lower complexity ‘building block’ for 

future applications.  Lessons learned from a ‘unit cell’ study will aid in the development 

of future internally-grooved tube power electronic cold plates.  Additionally, it’s important 

to note that while the primary application for this work is vehicle power electronics, the 

concepts and ideas presented herein for internally-grooved tubes are broadly applicable to 

refrigeration, air-conditioning, and other power electronic platforms such as solar, wind 

turbines, and ‘smart grids’.   
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Chapter 2: Two-Phase Flow Boiling Fundamentals 

During two-phase flow, the vapor and liquid phases are in simultaneous motion 

inside the channel or pipe.  The physics involved are typically more complicated than 

single-phase flow.  In addition to the viscous, pressure, and inertial effects existing in 

single-phase flow, two-phase flows are also affected by the wetting characteristics of the 

liquid on the channel wall, momentum exchange between the liquid and vapor phases, 

interfacial tension forces, and by gravity (due to the large density differences between the 

phases).  The particular flow regime resulting from these interactions plays a critical role 

in the local heat and mass transfer.  Understanding these distinct effects in plain tubes 

provides a baseline for understanding the behavior and performance of enhanced channels.   

The remainder of this chapter provides a brief overview of the dominant flow 

regimes, flow regime maps for smooth tubes under adiabatic and diabatic conditions, and 

the regime-based heat transfer models.  Please refer to the reviews by Cheng et al. [32] and 

Thome, Bar-Cohen, Revellin, and Zun [33] for a more comprehensive discussion of two-

phase flow pattern and flow pattern maps in smooth macro- and microscale channels. 

2.1 Diabatic Two-Phase Flow Patterns and Dependence on Heat Transfer 

During diabatic two-phase flow, as the quality and void fraction change in the flow 

direction, the flow pattern may undergo a sequence of transitions altering both the 

magnitude and character of the local heat transfer.  Figure 4 is a schematic representation 

of a typical diabatic flow boiling process in a horizontal smooth channel, with saturated 

inlet liquid and a uniform heat flux, and the associated heat transfer regimes.  As the process 

proceeds down the length of the tube, the percentage of the flow that has been vaporized 
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increases.  Conservation of mass dictates that as the mean density of the flow decreases, 

due to the formation of vapor, the mean flow velocity must increase.  The accompanied 

acceleration of the flow results in varying liquid and vapor velocities, which together with 

the increasing mass fraction of the flowing vapor, causes a progressive series of changes 

in the flow regime.  

 
Figure 4:  a) Schematic of flow patterns and b) the corresponding heat transfer mechanisms and 

qualitative variation of the heat transfer coefficients for flow boiling in a horizontal tube (adapted 

from [34]) 

 

During Bubble flow, nucleate boiling is the dominant vaporization mechanism. The 

added turbulence and mixing resulting from the bubble formation results in a ‘nucleate 

boiling dominated’ region and an increase in the heat transfer coefficient, as indicated by 

the red line on Figure 4.  As the quality downstream increases, bubbles begin to coalesce 
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and Intermittent flow develops.  In the Intermittent regime, the tube wall is intermittently 

cooled by liquid plugs and vapor slugs, often (but not always) resulting in a decrease in the 

heat transfer coefficient prior to transition to Annular flow.  This leads to the characteristic 

M-shaped curve, as identified by Bar-Cohen and Rahim [35] and shown by the ‘red’ line 

in Figure 4.  This effect was also shown by Cortina-Diaz and Schmidt [36] and Yang and 

Fujita [37] for flow boiling in minichannels and microgap channels, respectively.  As 

shown by the black profile in Figure 4, the effect of nucleate boiling can also be less 

dramatic;  this effect was shown by Filho and Jabardo [38] and will be shown later in this 

chapter.  It’s important to note that for both Intermittent and Bubby flow, the heat transfer 

coefficient is expected to be higher than for a comparable single-phase flow.  At very low 

flow rates, Stratified flow may occur where the upper portion of the tube is completely 

occupied by vapor and the bottom by liquid.  Stratified flow is marked by drastically 

reduced heat transfer coefficients due to the dry upper surface.   

In the Annular flow regime, evaporation from the liquid-vapor interface is the 

dominant heat transfer mechanism.  Annular flow is considered a desirable flow regime 

because it can provide relatively high heat transfer coefficients, as shown schematically in 

Figure 4.  As with adiabatic flow, gravity effects may result in a thicker film at the bottom, 

however, at appropriately high vapor velocities strong shear forces serve to redistribute the 

fluid more evenly around the perimeter of the tube.  Entrained droplets, as a result of strong 

shear forces, along with continual downstream vaporization tend to further thin the liquid 

film and increase the heat transfer coefficient.  Eventually, however, the film may 

completely disappear from portions of the tube wall.  Such local dryout causes a drastic 

decrease in the average heat transfer coefficient and expands to cover wider and wider 
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areas for longer and longer periods, as the flow quality increases towards complete 

vaporization.  It is important to note that Figure 4 represents general trends for fluids at 

standard temperature and pressure.  As described by Thome and Ribatski [39] and Cheng 

et al. [40] [41] flow boiling of high reduced pressure fluids, such as CO2, can significantly 

affect the progression of these flow regimes, the dominant heat transfer mechanisms, and 

the resulting heat transfer coefficients. 

2.2 Two-Phase Flow Pattern Maps 

The observed dependence of heat transfer performance on flow regime led 

researchers to analytically describe and map the dominant flow regimes in channels.  Baker 

[42] provided the earliest empirical flow regime map and other generalized flow regime 

maps followed: Mandhane et al. [43], Taitel and Dukler [44], and Weisman et al. [45].  

Most notable among these was the phenomenological map by Taitel and Dukler which 

used underlying physical mechanisms to define and map the four primary adiabatic flow 

regimes using superficial velocity coordinates:  Stratified, Intermittent, Bubbly, and 

Annular.  In 1990 the Unified Model was developed to predict the adiabatic flow regime 

in a variety of channel sizes and orientations based on two-phase non-dimensional 

groupings [46].  The Taitel-Dukler physics-based models contain little empirical fitting 

and have been successfully applied to many fluids and channel sizes, including evaporating 

refrigerant flows in microchannels [35]. A Taitel-Dukler flow regime map [46], converted 

to coordinates of mass flux and vapor quality for ease of interpretation, for R134a flowing 

in a 9 mm smooth channel at a saturation temperature of -15ºC is shown in Figure 5a.  The 

extent of the flow regimes were calculated through an iterative process and the solid lines 

represent the general loci of predicted regime transition. 
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Adiabatic models do not account for axial variation in quality nor thermal 

interactions inside the channel and their use in diabatic channels is based on an assumed 

dominance of local conditions.  Consequently, these models are not strictly valid for 

diabatic heating and cooling applications in which heat is added to or removed from the 

two-phase mixture and, in which, acceleration terms and entry length effects may 

dominate.  As a result, diabatic flow regime maps have been developed to account for these 

interactions.  Beginning in 1998 Kattan, Thome, and Favrat [47] empirically-modified the 

Steiner map, a modification of the Taitel-Dukler map [46], and introduced a method for 

determining the onset of dryout during Annular flow.  Since then, other empirically-

modified diabatic flow regime maps have followed: Zurcher, Thome, and Favrat [48], 

Zurcher, Favrat, and Thome [49], Thome and El Hajal [50], and Wojtan, Ursenbacher, and 

Thome [30].  These modifications provide a more-accurate prediction of flow regimes and 

dryout in real-world diabatic systems with halogenated refrigerants at standard temperature 

and pressure (reduced pressure typically less than 0.1), but have not yet gained the 

generality of the Taitel-Dukler adiabatic map.  A Wojtan et al. [30] flow regime map for 

R134a in a smooth 9 mm diameter tube is shown in Figure 5b.  The Wojtan et al. [30] map 

defines 8 distinct flow regimes: Stratified, Stratified-Wavy, Slug and Stratified-Wavy, 

Slug, Intermittent, Annular, Dryout, and Mist in coordinates of mass flux (G) and vapor 

quality (x).   
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Figure 5:  a) Taitel-Dukler [46] adiabatic flow regime map and b) Wojtan et al. [30] diabatic flow 

regime map for evaporation of R134a at -15ºC in a 9mm smooth tube with a heat flux of 4 kW/m² 

 

Recently, there has been a renewed interest in the use of CO2, as an environmentally 

friendly alternative refrigerant, and halogenated refrigerants at high reduced pressure for 

clothes dryers [51], solar assisted heat pumps [52], and electronic cooling applications [53].  

Thome and Ribatski [39] published a comprehensive review of smooth tube flow boiling 

of CO2 and found that the high reduced pressure and associated high vapor density, low 

surface tension, high vapor viscosity, and low liquid viscosity resulted in significant flow 

regime and heat transfer variations compared to traditional refrigerants.  Consequently, the 

available diabatic flow regime maps described above did not adequately predict flow 

regimes for CO2.  In response, Mastrullo et al. [54] collected heat transfer and flow regime 

measurements for CO2 and R410A at reduced pressures from 0.19 to 0.64 and developed 

new ‘easy to use’ semi-empirical models to improve predictive accuracy at high reduced 

pressure.   

It’s interesting to note that the Taitel-Dukler [46] and Wojtan et al. [30] flow regime 

maps in Figure 5 share distinct similarities, such as the general locations of the dominant 
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flow regimes, but the transitions from one flow regime to the next occur at significantly 

different mass fluxes and vapor qualities.  In addition, creating the Taitel-Dukler map [46] 

requires complex calculations and an iterative process to determine the extent of each 

regime, while rather simple calculations are required to implement the Wojtan et al. [30] 

and Mastrullo et al. [54] maps, to describe the loci of flow regime transitions.  Therefore, 

the Wojtan et al. [30] and Mastrullo et al. [54] maps will be used herein as diagnostic tools 

and to provide a baseline for the evaluation of flow regime transition in internally-grooved 

tubes with refrigerants at standard and reduced pressure, respectively.   

Regarding applicability to a range of working fluids and channel sizes, the database 

used to create the most-recent Wojtan et al. [30] flow regime map covers data from three 

common refrigerants, namely R134a, R22, and R410A, but only a limited range of internal 

diameters, from 12 to 14 mm.  The Mastrullo et al. [54] flow regime map was validated 

using one 6 mm diameter smooth tube, reduced pressure from 0.57 to 0.64 for CO2 and 

0.19 to 0.52 for R410A, mass fluxes from 150 to 500 kg/m²s, and heat fluxes between 5 

and 20 kW/m².  Since these models originated with the physics-based transition criteria of 

Taitel-Dukler [46], it is expected that they will apply to a wider range of tube diameters 

and fluids than that presented in the validating data set.   

It is to be noted that unlike the eight unique flow regimes defined by the Wojtan et 

al. [30] map, most two-phase researchers [55] have limited their classification to the 

previously described primary flow regimes.  In the interest of uniformity and consistency, 

and to avoid confusion that may derive from the diversity of names used by authors for 

some of the observed sub-regimes, the present effort will follow the classification proposed 

by Rahim et al. [55], combining Slug, Plug, and Intermittent data points into Intermittent 
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flow, combining Slugging-Annular flow, Wavy-Annular flow, and Semi-Annular data into 

Annular flow, and defining Stratified-Wavy flow as a sub-regime of Stratified flow, 

leading to the presence of just 4 primary regimes:  Stratified, Bubbly, Intermittent, and 

Annular.    

2.3 Smooth Tube Regime-Based Heat Transfer Models 

As shown schematically in Figure 4, the heat transfer coefficient during two-phase 

flow is generally dependent on the predominant flow regime and, in diabatic flow, varies 

axially as the quality changes from the inlet to the outlet of the channel.  Therefore, accurate 

prediction of two-phase heat transfer coefficients requires prediction and knowledge of the 

prevailing flow regime and its axial progression.  Despite this fact, the most widely used 

heat transfer coefficient correlations are empirical, failing to incorporate flow structure in 

the prediction method, or based on a physical representation of a specific flow regime but 

used indiscriminately across all the prevailing regimes, as for example with the smooth 

tube correlations of  Chen [56], Shah [57], Kandlikar and Balasubramanian [58], and 

Gungor and Winterton [59] [60].  Studies such as the one by Bar-Cohen and Rahim [35] 

suggest that substantially improved predictive agreement can be achieved when the 

selection of a correlation includes consideration of its phenomenological underpinnings. 

To more accurately capture the regime-dependent performance during diabatic 

flow in tubes, Kattan et al. [61] [62] developed the first comprehensive flow pattern based 

heat transfer model.  Based on the predicted flow regime, the Annular film thickness, 

turbulence, and dry perimeter during Stratified flows were determined and used to calculate 

the local heat transfer coefficient.  The Kattan, Thome, and Favrat flow regime and heat 

transfer models [61] [62] have since been modified by other researchers.  Each successive 
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flow regime map, as described above, had an accompanying regime-based heat transfer 

coefficient correlation.  The most recent version, as developed by Wojtan et al. [31], 

includes the onset of nucleate boiling as defined by Zurcher at al. [49], a Dryout and Mist 

flow regime at high vapor quality, and a more detailed description of the Stratified-Wavy 

sub-regime of Stratified flow.   

As an example of the power of this regime-based approach, Figure 6 shows a 

comparison of two-phase data from Filho and Jabardo [38] with the predicted heat transfer 

coefficient and the flow regime map from Wojtan et al. [30] for flow boiling in an 8.92 

mm ID tube with R134a at a saturation temperature of 5ºC and mass fluxes of 100 and 300 

kg/m²s.   

 

 
Figure 6:  Comparison of experimental heat transfer data (adapted from Filho and Jabardo [38]) 

(hollow data points) for R134a at 5ºC in an 8.92 mm smooth tube with a heat flux of 5 kW/m² to a) 

the Wojtan et al. heat transfer model [31] and b) Wojtan et al. flow regime map [30] 

 

At a mass flux of 100 kg/m²s, the locus of which is shown in Figure 6b, the model 

correctly predicts a low heat transfer coefficient characteristic of Stratified flow and a large 

dry perimeter.  When the flow regime transitions from Intermittent to Annular flow at a 
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mass flux of 300 kg/m²s, as may be seen from the locus shown in Figure 6b, the model 

predicts an increase in heat transfer coefficient due to enhanced convective cooling and a 

thinning Annular film.  Additionally, the heat transfer coefficient correlation correctly 

predicts the smooth transition between the respective flow regimes and the sharp reduction 

at high vapor qualities due to dryout. 
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Chapter 3: Fundamental Studies of Flow Patterns and Heat 

Transfer in Internally-Grooved Tubes 

Two-phase flow boiling in internally-grooved tubes has been a subject of interest 

since they were invented in 1977, with notable reviews by Thome of internally-grooved 

tube studies prior to 1990 [11], a quality general review by Bergles and Manglik [63],  and 

an update on boiling heat transfer inside enhanced tubes published by Thome in 2004 [17].  

Since early 2000, there have been a large number of studies in the literature exploring 

evaporative heat transfer in internally-grooved tubes but few, if any, researchers have made 

an effort to compile this data and analyze the relationship between flow regime and 

evaporative heat transfer rates.   

Based on this apparent void in the literature and the demonstrated success of 

regime-based analyses and correlations in providing improved predictive accuracy for heat 

transfer coefficients in smooth tubes, as described in Chapter 2, this chapter aims to explore 

the relationship between two-phase flow regimes and heat transfer rates in internally-

grooved tubes.  First, fundamental studies of thermofluid performance in internally-

grooved tubes are reviewed and compared to the Wojtan et al. [30] and Mastrullo et al. [54] 

flow regime maps.  Then, the current state of two-phase flow regime maps and heat transfer 

coefficient correlations for internally-grooved tubes is described.  Finally, results and 

general comments are summarized and research directions for the current effort are 

developed.  The majority of studies, reviewed herein, deal with halogenated fluids in 

conventional-sized tubes at standard temperature and pressure.  However, studies of small 

diameter tubes, as well as alternative refrigerants and operation at reduced pressure, are 



 

25 

 

also considered.  The majority of this chapter was published as a paper in the Journal of 

Enhanced Heat Transfer by Sharar and Bar-Cohen [64]. 

3.1 Flow Regime Quantification 

Although the common flow regime definitions are typically based on visual and 

verbal descriptions, the complex nature of two-phase flow limits the accuracy and utility 

of such subjective determinations of flow models [65].  Regrettably, the majority of the 

studies to be discussed in the following chapter relied solely on subjective flow regime 

determination methods.  These studies provide an adequate starting point for developing a 

physical relationship between flow regime and heat transfer in internally-grooved tubes, 

however, more subjective techniques will be needed to firmly establish the nature and 

repeatability of the dependence of thermal and momentum transport on the prevailing flow 

regime in such tubes.  The reader is referred to Chapter 6 for a more detailed description 

of subjective determination techniques in the literature and the Total Internal Reflection 

technique used in the current study.  

3.2 Studies on Conventional Internally-Grooved Tubes 

The majority of the experiments focusing on flow regime and heat transfer in 

internally-grooved tubes have been conducted in conventional tubes ranging in size from 

5 to 15 mm.  Such tubes are more widely available and have been extensively tested, 

whereas tubes smaller than 5 mm have only recently gained attention.  Table 4 is a 

summary of relevant studies of flow pattern and heat transfer in ‘meso’-sized internally-

grooved tubes, focusing on studies that demonstrate heat transfer improvement through 

early flow regime transition.  Most of the studies examined used refrigerant - refrigerant 

vapor (of a single fluid) under diabatic conditions and standard temperature and pressure.  
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Some studies explored halogenated fluids and CO2 at high reduced pressure while others 

explored refrigerant/oil mixtures.  Several studies used adiabatic water - air as the working 

fluids.   

Table 4:  Summary of relevant studies on flow patterns and heat transfer in macroscale internally-

grooved tubes 

Authors/References Fluid and test section description Main research content 

Yu, Lin, and Tseng [66] 

 

 

R134a evaporation, 1.5 m horizontal 

smooth and internally-grooved tube, 

10.7 mm ID 

Flow regime was mapped for both 

tubes, heat transfer coefficient was 

measured, new heat transfer coefficient 

correlation was developed 

 

Oh and Bergles [67]  

 

R134a evaporation, one smooth and 3 

internally-grooved tubes with helix 

angles of 6º, 18º, and 44º, horizontal 

9.52 mm ID tubes 

 

Used a boroscope visualization 

technique to relate fluid redistribution 

to helix angle 

 

Shedd and Newell [27] 

 

 

Adiabatic water-air, 0.8 m horizontal 

smooth and internally-grooved PVC 

tubing, 15.1 mm ID  

Flow regime, pressure drop, and 

circumferential Annular film thickness 

were measured 

 

Shedd, Newell, and Lee [68] 

 

 

 

 

Adiabatic water-air, 0.8 m horizontal 

smooth and internally-grooved PVC 

tubing, 15.1 mm ID 

Flow regime, pressure drop, and 

circumferential Annular film thickness 

were measured, influence of number 

and angle of microgrooves was 

reported 

 

Shen and Groll [69] 

 

A critical review of lubricant 

influence on pool and flow boiling in 

smooth and enhanced tubes 

 

Comprehensive summary of recent 

work and technical recommendations 

 

Kim Shin [26] 

 

 

 

R22 and R410A evaporation, 0.92 m 

horizontal smooth, 5 internally-

grooved, and 1 herringbone tube, 

8.14-8.7 mm ID 

Heat transfer coefficient was measured 

for all tubes, heat transfer data 

compared to heat transfer coefficient 

correlations available in the literature 

 

Schael and Kind [70] 

 

 

Reduced pressure CO2 evaporation, 

0.2 m horizontal internally-grooved 

tube, 8.62 mm ID  

Flow regime was mapped, heat transfer 

coefficient was measured and 

compared to previous smooth tube data 

 

Filho and Jabardo [38] 

 

 

R134a evaporation, 1.5 m horizontal 

smooth, herringbone, and internally-

grooved tube, 8.76-8.92 mm ID 

Flow visualization for smooth and 

internally-grooved tubes, heat transfer 

coefficient and pressure drop were 

measured 

 

Cho and Kim [71]  Reduced pressure CO2 evaporation, 

0.2 m horizontal internally-grooved 

tube, 8.62 mm ID 

Heat transfer coefficient and pressure 

drop was measured and compared to 

heat transfer coefficient and pressure 

drop correlations available in the 

literature 

 

Targanski and Cieslinski [72]  

 

R407C and R407C/oil mixture 

evaporation in two smooth tubes, one 

corrugated tube, and one internally-

grooved tube, 2 m long, 8-8.92 mm 

ID 

Heat transfer coefficient and pressure 

drop was measured for all tubes  
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Hu, Ding, and Wang [73] 

 

R410A and R410A-oil mixture 

evaporation in a 7 mm OD internally-

grooved tube 

 

Heat transfer coefficient was measured 

for nominal oil concentrations from 0-

5%, new heat transfer coefficient 

correlation was developed 

 

Spindler and Müller-Steinhagen 

[74] 

 

 

 

R134a and R404A evaporation, two 

0.5 m horizontal internally-grooved 

tubes, 8.95 mm ID 

Flow regime was mapped for both 

fluids, heat transfer coefficient was 

measured and compared to correlations 

in the literature, modified constants on 

existing heat transfer coefficient 

correlation 

 

Filho and Barbieri [75] 

 

 

R134a evaporation, 1.5 m horizontal 

smooth and two internally-grooved 

tubes, 8.92 mm ID 

Flow visualization for both tubes, heat 

transfer coefficient and pressure drop 

were measured 

 

Padovan et al. [76] 

 

 

Reduced pressure (0.19-0.49) R134a 

and R410A evaporation, 0.3 m 

horizontal internally-grooved tube, 

8.15 mm ID 

heat transfer coefficient and dryout 

vapor quality were measured and 

compared to correlations available in 

the literature, new dryout inception 

model was developed 

 

Hatamipour and Akhavan-

Behabadi [77] 

 

 

R134a evaporation, 1.1 m horizontal 

smooth and internally-grooved tube, 

8.92 mm ID 

Flow regime was mapped for both 

tubes, heat transfer coefficient was 

measured 

Zhao and Bansal [78] Reduced pressure CO2 evaporation, 1 

m horizontal internally-grooved tube, 

7.3 mm ID 

 

Heat transfer coefficient was measured 

and compared to heat transfer 

coefficient correlations available in the 

literature 

 

Colombo et al. [79] 

 

R134a evaporation, 1.3 m horizontal 

smooth and two internally-grooved 

tubes, 8.62-8.92 mm ID 

Flow regime was mapped on existing 

maps, pressure drop and heat transfer 

coefficient were measured and 

compared to correlations available in 

the literature 

 

Sharar and Bar-Cohen [80] HFE-7100 evaporation, 0.2 m 

horizontal smooth and internally-

grooved tubes, 8.84 mm ID 

Flow regime was mapped and heat 

transfer coefficient was measured for 

both tubes.  New heat transfer 

coefficient was introduced based on 

previous flow regime map [29].  Model 

matched well with results and data from 

3 independent researchers. 

3.2.1 Flow Regime Transition Mechanisms 

The smooth tube regime transition from Stratified to Annular flow is modeled in 

the Taitel-Dukler flow regime map [46] by the waves produced due to the Kelvin-

Helmholtz instability or the impingement of liquid drops on the upper surfaces, while the 

Intermittent to Annular transition is modeled by the rupture of the liquid plug by the vapor 

flow.  Annular flow in internally-grooved tubes appears to exist at lower mass flux and 
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vapor quality than in smooth tubes [29], suggesting that the physics of flow regime 

transition in internally-grooved tubes is more complex.  In addition to the inertial and 

surface tension effects mentioned above, it is believed that fluid flow redirection from axial 

to  helical flow in the grooves (momentum change), as well as capillary force in the groove 

structures, and centrifugal force due to flow circulation, play a role in early transition to 

Annular flow in these tubes.  

Shedd and Newell [27] [81] [82] [68] used a non-intrusive optical film thickness 

measurement technique to observe the liquid distribution in horizontal adiabatic water-air 

flow through 15.1 mm ID smooth and internally-grooved tubes with helix angles of 9° and 

18°.   These studies demonstrated the impact of grooves on liquid redistribution and early 

transition to Annular flow in internally-grooved tubes.  Liquid film thickness profiles for 

Stratified/Annular flow through 15.1 mm smooth and internally-grooved tubes at mass 

fluxes of 44 and 120 kg/m²s are shown schematically in Figure 7.  Additionally, these data 

points are plotted on the Wojtan et al. [30] flow regime map.  The smooth tube films are 

represented by dotted lines and the grooved tube film thicknesses are shown with solid 

lines.   

At low mass flux, 44 kg/m²s, the smooth tube profiles were symmetric from left to 

right with thicker liquid films on the bottom and dry patches at the top surface; this can be 

identified as Stratified flow and corresponds to a Stratified-Wavy regime on the Wojtan et 

al. map [30].  The grooved tube profiles appeared to be rotated counterclockwise (the same 

direction as the groove), achieving wetting of nearly 94% of the periphery vs only 62% for 

the smooth tube, and displaying behavior that can be identified as Annular flow.  Shedd 

and Newell [27] also reported that the liquid film profiles for the smooth and internally-
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grooved tubes tended to converge at higher mass flux, as seen in the film profiles for 120 

kg/m²s, corresponding to Annular flow on the Wojtan et al. [30] map in Figure 7. The 

preferential redistribution of liquid in the direction of the helical grooves, achieving greater 

wetting at low mass fluxes, supports the existence of a secondary Stratified-to-Annular 

flow regime transition mechanism in internally-grooved tubes and could be expected to 

lead to higher heat transfer coefficients.  Moreover, the similarity in film profiles at the 

higher mass fluxes would appear to be consistent with the decrease in enhancement at 

higher mass flux, as reported in the literature and outlined in Table 3. 

Based on heat transfer experiments with liquid capillary rise on grooved flat plates, 

Kimura and Ito [83] and Ito and Kimura [84] hypothesized that capillary force in the 

grooves is a dominant factor for enhanced heat transfer in internally-grooved tubes.  

Essentially, the capillary force works to redistribute fluid from the bottom or sides of the 

tube to the top.  This mode of enhancement in internally-grooved tubes has also been 

suggested by Yoshida et al. [85] [86] and Cui et al. [87] .  

 
Figure 7:  Film thickness profiles for smooth (dashed lines) and 18° internally-grooved (solid red 

lines) tubes with 15.1 mm ID and mass fluxes of a) G=44 kg/m²s and x=0.6 and b) G=120 kg/m²s and 

x=0.76 [27], plotted on the simplified Wojtan et al. [30] flow regime map 
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3.2.2 Halogenated Fluids at Standard Pressure and Temperature 

Yu, Lin, and Tseng [66] performed a flow visualization and heat transfer study with 

R134a at 6ºC in a 10.7 mm ID smooth and an 11.1 mm ID internally-grooved tube with an 

18° helix angle.  Mass fluxes from 163 to 408 kg/m²s, heat flux between 2.2 and 56 kW/m², 

and a fixed heated length of 1.5 m were tested.  Figure 8 shows the results of the flow 

visualization, plotted in the coordinates of mass flux and vapor quality and superimposed 

on the Wojtan et al. [30] flow regime map; Figure 8a is the smooth tube experimental 

results and Figure 8b is the internally-grooved tube results.  The transitions of flow pattern 

visually observed were Stratified, Intermittent, and Annular in the direction of increasing 

mass flux and vapor quality.   

It was reported in the study, and also apparent from Figure 8, that the transitions in 

the internally-grooved tube occurred at lower mass flux and vapor quality compared with 

the smooth tube.  Thus, at a mass flux of 163 kg/m²s and a quality greater than 0.3, Annular 

flow was encountered in the internally-grooved tube while the smooth tube was operating 

in the Stratified regime.  Additionally, at a mass flux of 245 kg/m²s and a quality greater 

than 0.15, Annular flow was encountered in the internally-grooved tube while the smooth 

tube was operating in the Intermittent regime.  The Wojtan et al. [30] flow regime map was 

shown to satisfactorily predict flow regime in the smooth tube, but due to the observed 

early flow regime transition in the internally-grooved tube at lower mass flux and vapor 

quality, the Wojtan et al. [30] map did a poor job predicting flow regimes in the internally-

grooved tube [29].  
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Figure 8:  Experimental flow visualization results from Yu et al. [66] for R134a at 6ºC with a heat 

flux of 20 kW/m² plotted on a simplified Wojtan et al. [30] map for a) 10.7 mm ID smooth tube and 

b) 11.1 mm ID internally-grooved tube 

 

The aforementioned early flow regime transitions at low mass flux improved heat 

transfer in the internally-grooved tube relative to the smooth tube.  Figure 9a shows the 

average heat transfer coefficient vs. vapor quality for a mass flux of 163 kg/m²s and Figure 

9b shows the internally-grooved enhancement factor.  The enhancement factor is defined 

as the ratio of the internally-grooved tube heat transfer coefficient to the smooth tube heat 

transfer coefficient.  The additional area provided by the internally-grooved tube of Yu, 

Lin, and Tseng [66] was accounted for in Figure 9, resulting in a smooth tube equivalent 

heat transfer coefficient.  

As can be seen in Figure 9a, the increase in the smooth tube heat transfer coefficient 

was minimal due to the dominance of Stratified flow.  Alternatively, when the flow pattern 

was changing, the rise in the heat transfer coefficient was dramatic.  At a mass flux of 163 

kg/m²s  and quality of 0.3 there was a sharp increase in the heat transfer coefficient, from 
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approximately 4 to 5.5 kW/m²K (40% improvement), accompanying the flow regime 

transition from Intermittent to Annular flow in the internally-grooved tube.  Consequently, 

the maximum heat transfer enhancement of 2.25, as shown in Figure 9b, occurred at a flow 

rate of 163 kg/m²s and qualities 0.3<x<0.7 where Stratified flow dominated in the smooth 

tube and flow transition to Annular was achieved in the internally-grooved tube.       

 

 
Figure 9:  a) Heat transfer coefficient vs vapor quality and b) accompanying enhancement factor 

from several researchers with low mass flux (100 – 163 kg/m²s) 

 

As may be seen in Figure 8a, at a mass fluxes of 326 kg/m²s or above, the observed 

flow regimes for the smooth and internally-grooved tubes tended to converge to Annular 

flow.  Figure 10a and Figure 10b show the average heat transfer coefficient vs. vapor 

quality for the smooth tube and internally-grooved tube and the enhancement factor at the 

higher mass flux of 326 kg/m²s.  As can be seen in Figure 10a, a significant increase in 

heat transfer coefficient is observed in the smooth tube at a mass flux of 326 kg/m²s and a 

vapor quality of 0.2, coinciding with transition to Annular flow and yielding a smooth tube 
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heat transfer coefficient profile that more closely resembles that of the internally-grooved 

tube.  Calculation of the internally-grooved tube enhancement factor reveals that the heat 

transfer improvement approaches 1.3 at high mass flux and high vapor quality.  The 

marginal improvement beyond area enhancement at higher mass fluxes may be a result of 

extra turbulence, mixing, or nucleate boiling due to the grooved structures.  These trends 

are consistent with trends discussed in Table 3, and as described, are directly related to the 

observed flow regime. The experimental data were compared with existing smooth tube 

correlations from Kattan et al. [62], Chen [56], Shah [57], Gungor and Winterton [60], Liu 

and Winterton [88] and a newly-proposed heat transfer coefficient correlation by Yu, Lin, 

and Tseng [66].  Their experimental data was found to correlate well with the most recent 

heat transfer coefficient correlation. 

 

 
Figure 10:  a) Heat transfer coefficient vs vapor quality and b) accompanying enhancement factor 

from several researchers with high mass flux (300 - 326 kg/m²s) 
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Bandarra Filho and co-workers [75] [38] reported experimental investigations of 

flow boiling of R134a in a smooth tube and two internally-grooved tubes with inside 

diameters of 8.76 to 8.92 mm, helix angles of 18°, fin heights of 0.2 mm, and between 60 

and 80 grooves.  Tests were performed in 1.5 m long tubes with a saturation temperature 

of 5°C, a heat flux of 5 kW/m², vapor qualities up to 90%, and mass fluxes from 100 to 

500 kg/m²s.  The area enhancement of the internally-grooved tube was 1.91 times the 

smooth tube in the Filho and Jabardo [38] study but was not reported in the Filho and 

Barbieri [75] study.  Filho and Barbieri [75] provided representative flow regime 

photographs for several operating conditions and described the flow regime trends but did 

not plot their flow visualization data.  

Figure 11 shows the Filho and Barbieri [75] flow regime data plotted on a Wojtan 

et al. [30] flow regime map.  For the smooth tubes they visually observed that Annular flow 

was the dominant regime at high vapor quality and mass flux greater than 150 kg/m²s.  For 

mass fluxes higher than 150 kg/m²s and low vapor quality, Intermittent flow was the 

dominant regime.  At mass velocities lower than 150 kg/m²s, Stratified flow was observed 

for the entire range of vapor qualities tested.  These trends are captured well by the Wojtan 

et al. [30] flow regime map.   

The trends were different in the internally-grooved tubes.  Stratified flow was never 

observed in the internally-grooved tubes, even at mass fluxes as low as 100 kg/m²s.  

Instead, earlier transition to Intermittent and Annular flow was reported at lower mass flux 

and vapor quality than observed in the smooth tube.  One specific example on Figure 11 is 

at a mass flux of 300 kg/m²s and a vapor quality of 0.1 where the smooth tube was operating 

in Stratified flow while the internally-grooved tube was operating in Annular flow.  It’s 
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also interesting to point out that at a mass flux of 500 kg/m²s and a vapor quality around 

0.65, the smooth tube was operating in Annular flow and the internally-grooved tube 

prematurely transitioned to Mist flow.  Similar flow regime trends were reported by Filho 

and Jabardo [38] for similar test conditions. 

 
Figure 11:  Experimental flow visualization results of Filho and Barbieri [75] for R134a at 5ºC in an 

8.92 mm smooth and internally-grooved tube with a heat flux of 5 kW/m² plotted on a simplified 

Wojtan et al. [30] flow regime map 

 

  Figure 9a shows the average heat transfer coefficient vs. vapor quality for the 

smooth tube and three internally-grooved tubes at a mass flux of 100 kg/m²s for Filho and 

Barbieri [75] and Filho and Jabardo [38].  It’s important to note that - in these studies - the 

increased internally-grooved tube surface area was not accounted for when calculating the 

heat transfer coefficient, so it’s expected that the heat transfer coefficient should be close 

to 1.3 to 1.91 times larger than the smooth tube values for all test conditions.  At a mass 

flux of 100 kg/m²s the heat transfer coefficient in the smooth tube is low and appears to 

slightly deteriorate over the whole range of vapor qualities; this is indicative of the 
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observed Stratified flow regime at mass fluxes below 150 kg/m²s.  Under the same 

conditions, the heat transfer coefficient increases in all of the internally-grooved tubes.  As 

described above, this is a result of the dominance of Intermittent and Annular flow in the 

internally-grooved tube.  As shown in Figure 9b, the effect is heat transfer enhancement 

close to 6 times that of the plain tube.  However, at a higher mass flux of 300 kg/m²s, where 

Intermittent and Annular flow were the dominant regimes in both the smooth and 

internally-grooved tubes, the heat transfer trends begin to converge to the internal area 

enhancement.  This effect is clearly shown in Figure 10a and b.   

Additionally, at a mass flux of 500 kg/m²s and vapor quality above 0.5, Filho and 

Barbieri [75] and Filho and Jabardo [38] reported worse performance in the internally-

grooved tubes compared to the smooth tube as a result of the premature transition to Mist 

flow.  The results were not compared to existing internally-grooved tube heat transfer 

coefficient correlations.  It’s interesting to note that Filho and Jabardo [38] and Filho and 

Barbieri [75] reported similar trends with respect to flow regime and thermal performance, 

however, subtle differences in performance between the two studies can be seen in Figure 

9 and Figure 10, presumably as a result of varying geometric parameters. 

Colombo et al. [79] performed a flow visualization and evaporative/condensing 

heat transfer study with R134a at a saturation temperature of 5°C in a horizontal 8.92 mm 

ID smooth tube and two internally-grooved tubes with inside diameters of 8.62 and 8.92 

mm.  Both internally-grooved tubes had helix angles of 18° and apex angles of 40º, but had 

alternating fin heights ranging from 0.16 to 0.23 mm and the number of grooves ranging 

from 54 to 82.  The resulting internally-grooved tube area enhancement ranged from 1.55 

to 1.82.  Mass fluxes from 100 to 340 kg/m²s, heat flux between 2.2 and 56 kW/m², vapor 
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qualities from 0.1 to 0.9, and a fixed heated length of 1.3 m were tested.  Figure 12 shows 

the results of the flow visualization, plotted in the coordinates of mass flux and vapor 

quality and superimposed on the Wojtan et al. [30] flow regime map; Figure 12a is the 

smooth tube experimental results and Figure 12b is the results for one of the internally-

grooved tubes.  The transitions of flow pattern visually observed were Stratified, 

Intermittent, and Annular in the direction of increasing mass flux and vapor quality.   

 

 
Figure 12:  Flow visualization results from Colombo et al. [79] for 8.92 mm ID a) smooth and b) 

internally-grooved tubes with R134a at 5ºC and a heat flux of 4.2 kW/m² plotted on the Wojtan et al. 

[30] flow regime map 

 

Figure 12 makes it very clear that there are distinct differences in flow regimes 

between the smooth and internally-grooved tubes, with the latter shifting the onset of  

Annular flow to lower mass flux and vapor quality.  One example is at a mass flux of 100 

kg/m²s and a quality greater than 0.4 where Annular flow was encountered in the internally-

grooved tube, while the smooth tube was operating in the Stratified regime.  Additionally, 

at vapor qualities close to 0.3 and mass fluxes greater than 180 kg/m²s, the smooth tube 

was operating in Intermittent flow and the internally-grooved tube was operating in 
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Annular flow.  Annular flow was observed in both the smooth and internally-grooved tubes 

at high mass flux and vapor quality.  The Wojtan et al. [30] flow regime map accurately 

predicted flow regime and flow regime transitions in the smooth tube, but due to the 

observed early flow regime transition in the internally-grooved tube at lower mass flux and 

vapor quality, the Wojtan et al. [30] map was unable to properly predict flow regimes in 

the internally-grooved tube.  

Due to limitations in the data of Colombo et al. [79], it could not be included in the 

overall plot of the heat transfer coefficient vs vapor quality, Figure 9a and Figure 10a.  

However, they reported enhancement factors at an average vapor quality of 0.45 for mass 

fluxes ranging from 90 to 320 kg/m²s and these values were added to the enhancement 

factor plots, Figure 9b and Figure 10b.  As shown in Figure 9b, the heat transfer 

enhancement at a mass flux of 90 kg/m²s and mean vapor quality of 0.45 was 2.4 to 2.7 

times higher than the smooth tube.  This corresponds to Annular flow in the internally-

grooved tube and Stratified flow in the smooth tube.  As shown in Figure 10b, at a higher 

mass flux of 320 kg/m²s and the same vapor quality where Annular flow is the dominant 

regime in both the smooth and internally-grooved tubes, the enhancement ratio reduces to 

1.35 for both internally-grooved tubes.  It is to be noted that Colombo et al. [79] did not 

account for the increased internally-grooved tube surface area when calculating the heat 

transfer coefficient.  So, it’s to be expected that the heat transfer enhancement should be at 

least 1.55 to 1.82 times larger than the smooth tube values for all test conditions.  The 

researchers did not comment on this discrepancy.  Though not explicitly described here, 

it’s important to note that the Colombo et al. [79] results showed performance differences 
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between the two internally-grooved tubes, which reinforces that the specific geometric 

parameters may affect thermal performance.   

The internally-grooved tube experimental data was compared with existing 

internally-grooved correlations from Murata et al. [89], Yun et al. [90], and Thome et al. 

[91].  The measured heat transfer coefficients were not well correlated by any of the 

existing correlations, with average percent errors ranging from -39% to +156%. 

Spindler and Müller-Steinhagen [74] performed an experimental investigation of 

heat transfer and flow regime during evaporative cooling in an 8.92 mm ID internally-

grooved tube with a 15° helix angle using two different refrigerants, R134a and R404A.  

Experiments were conducted in a 1 m long heated test section with mass fluxes ranging 

from 25 to 150 kg/m², heat flux from 1 to 15 kW/m², inlet vapor qualities ranging from 0.1 

to 0.7, and a saturation temperature of -20ºC.  Stratified, Intermittent, and Annular flow 

were observed.  Annular flow was the dominant regime for mass fluxes at or above 65 

kg/m²s.  Shown in Figure 13 is the experimental visual flow regime data of Spindler and 

Müller-Steinhagen [74] for R134a and R404A plotted on the Wojtan et al. [30] flow regime 

map.   

The Wojtan et al. [30] map over-predicts the mass flux at which transition from 

Stratified to Annular flow occurs for both fluids.  They hypothesized that the spiral grooves 

worked to redistribute the liquid, resulting in early transition to Annular flow.  

Unfortunately they did not perform flow regime and heat transfer experiments for a 

comparable smooth tube as a benchmark for comparison.  The experimental heat transfer 

coefficients were compared to the correlations from Koyama et al. [92] and Kandlikar [93] 

and average deviations of ±15% and ±30%, respectively, were observed.    
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Figure 13:  Experimental flow visualization results from Spindler and Müller-Steinhagen [74] for a) 

R134a and b) R404A at -20ºC with a heat flux of 7.5 kW/m² in one 8.92 mm ID internally-grooved 

tube plotted on a corresponding Wojtan et al. [30] flow regime map 

 

3.2.3 Refrigerant/Oil Mixtures 

In operating refrigeration systems, it is not uncommon to encounter boiling of 

refrigerant/oil mixtures.  The amount of oil in the mixture, which is dependent on system 

wear and worker expertise, will increase pressure drop and may help or hinder cooling 

performance.  Therefore, it is essential to test flow boiling of refrigerant/oil mixtures for a 

wide range of test conditions and a wide range of refrigerants and oils.  While not the main 

intent of the current research effort, several representative reviews and studies [72] [73] 

[69] on the performance of refrigerant/oil mixtures in internally-grooved tubes have been 

included in Table 4 for the sake of completeness. 

3.2.4 Halogenated Fluids and CO2 at Elevated Reduced Pressure 

Most macro-channel internally-grooved tube flow boiling studies in the open 

literature are concerned with halogenated fluids at standard pressures and temperatures 

ranging from -15 to 20°C for refrigeration systems.  However, some researchers have 
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looked at CO2 and halogenated fluids at higher saturation temperatures (and higher reduced 

pressures) for clothes dryers [51], solar assisted heat pumps [52], and electronic cooling 

applications [53].  As mentioned earlier in Chapter 2, reduced pressure has been shown to 

play a significant role in predicting the flow regime and heat transfer coefficient.  Thus, 

there is a need to explore heat transfer coefficients and flow regimes in internally-grooved 

tubes with CO2 and halogenated refrigerants at high reduced pressure to establish 

performance trends.  A brief description of CO2 and refrigerant flow boiling at high reduced 

pressure are given below; please refer to Table 4 for a more comprehensive list of high 

reduced pressure studies in internally-grooved tubes.  

Schael and Kind [70] visually observed flow patterns and measured heat transfer 

coefficients in an 8.92 mm ID internally-grooved tube and a comparable smooth tube with 

CO2 at reduced pressures of 0.54 (Tsat = 5°C) and 0.36 (Tsat = -10°C).  Shown in Figure 14 

is the experimental flow regime data of Schael and Kind [70] plotted on the Mastrullo et 

al. [54] map for CO2 and halogenated fluids at elevated reduced pressures.  It is clear from 

the figure that for both reduced pressures, the experimental transition from Stratified to 

Annular flow and Intermittent to Annular flow occurs at lower mass flux and vapor quality 

than predicted by the map.  They showed a marked improvement in heat transfer coefficient 

when increasing the mass flux from 75 to 250 kg/m²s in the internally-grooved tube and 

related this enhancement to early regime transition to Intermittent and Annular flow, as 

shown in Figure 14.  

Similarly, Zhao and Bansal [78] compared their experimental data for CO2 flow 

boiling in a 7.3 mm ID internally-grooved tube, at a reduced pressure of 0.19 (Tsat = -30°C), 

with comparable smooth tube data from Park and Hrnjak [94], and deduced that early flow 



 

42 

 

regime transition to Annular flow at low mass flux was an enhancement mechanism for 

CO2 flow boiling in internally-grooved tubes.   

 

 
Figure 14:  Experimental flow visualization results from Schael and Kind [70] for CO2 flow boiling in 

an 8.92 mm ID internally-grooved tube with heat fluxes up to 120 kW/m² at reduced pressures of a) 

0.54 (Tsat = 5°C) and b) 0.36 (Tsat = -10°C) plotted on the Mastrullo et al. [54] flow regime map 

 

Schael and Kind [70] and Padovan, Del Col, and Rossetto [76] showed performance 

degradation at high mass flux during flow boiling at high reduced pressure.  Unlike Filho 

and Barbieri [75] and Filho and Jabardo [38], who associated this reduction with premature 

Mist flow, Schael and Kind [70], and Padovan, Del Col, and Rossetto [76] hypothesized 

that the heat transfer reduction was likely a result of nucleate boiling suppression.  Along 

the same lines, Zhoa and Bansal [78] correlated an observed heat flux dependence 

according to the power law (i.e. h α q̇n), which identifies nucleate boiling as a key 

mechanism in high reduced pressure internally-grooved tubes.  The exponent ‘n’ varied 

between 0.67 and 0.73 for the internally-grooved tube.  This exponent is the same value as 

the exponent used in the correlation by Cho and Kim [71], 0.67, for flow boiling of CO2 in 

internally-grooved tubes but higher than the exponent used in the model of Cheng et al. 
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[40] for flow boiling of CO2 in smooth tubes.  However, this is the opposite trend of Schael 

and Kind [70], who showed a smaller exponent for the internally-grooved tube, 0.4 to 0.5, 

than the smooth tube, 0.5 to 0.55.   

3.2.5 Geometric Considerations 

Geometric parameters have been shown to play a critical role in flow redistribution 

and the thermal performance of internally-grooved tubes.  Oh and Bergles [67] used a 

boroscope visualization technique to study the effect of helical groove angle on 

enhancement during flow boiling of R134a in internally-grooved tubes.  The behavior of 

the liquid was observed for four tubes including a smooth tube and three internally-grooved 

tubes with helix angles of 6°, 18°, and 44°, operating with mass fluxes of 50, 100, and 200 

kg/m²s and heat fluxes ranging from 5 to 20 kW/m².  They found that the 18° helix angle 

caused earlier transition to Annular flow and provided the most enhancement at a mass 

flux of 50 kg/m²s, while the 6° helix angle was optimal for a mass flux of 200 kg/m²s.  

These results are consistent with conclusions drawn earlier by Yoshida et al. [85].  They 

investigated heat transfer and flow pattern in an internally-grooved tube with R22 at a 

pressure of 5.9 bar (pr=0.12) and found that the grooves worked to redistribute fluid to the 

top of the channel, even at mass fluxes as low as 50 kg/m²s.   

Kim and Shin [26] performed an extensive experimental flow boiling study with 

R22 and R410A in one 8.70 mm ID smooth tube, five 8.46-8.68 mm ID internally-grooved 

tubes, and two 8.14-8.51 mm ID cross grooved tubes with mass fluxes of 136, 205, and 

273 kg/m²s.  Helix angles for the internally-grooved tubes varied from 15.5° to 30°, apex 

angles varied from 25° to 53°, fin heights varied from 0.12 to 0.25 mm, the number of fins 

ranged from 54 to 65, and the resulting area enhancement ranged from 1.28 to 1.85. The 
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heat transfer enhancement was 1.86 to 3.27 depending on the particular tube.  The best 

performing tube had the largest fin height to diameter ratio, largest area enhancement, most 

fins, and the smallest apex and helix angles.  In addition, Filho and Barbieri [75], Filho and 

Jabardo [38], and Colombo et al. [79], independently identified relationships between heat 

transfer and various geometric parameters such as fin profile, number of fins, apex angle, 

helix angle, and fin height to diameter ratio, and ratio of the fin height to the liquid film 

thickness.   

3.3 Studies on Small Internally-Grooved Tubes 

Flow patterns and heat transfer mechanisms can be different in small smooth 

channels from those in conventional channels.  For example, the effect of channel 

orientation tends to disappear, flow regimes tend to converge to Annular flow, and new 

flow patterns such as wedge flow [95] and lump flow [96] have been observed.  Reducing 

the size of refrigeration tubes offers the potential for more compact and efficient heat 

exchangers [71], but before small diameter internally-grooved tubes can be considered as 

a viable replacement for conventional channels the impact of channel size on thermofluid 

performance needs to be revealed.  Unfortunately, as shown in Table 5, the study of small 

diameter internally-grooved tubes has only been a topic of research since 2006 and, as 

such, the literature contains only a few studies for this form factor.  All of the reported 

studies used refrigerant – refrigerant vapor (of a single fluid) under diabatic conditions and 

elevated reduced pressure.  In fact, none of the studies in Table 5 are at an elevated reduced 

pressure less than 0.12.  Fortunately, many of the studies considered the effect of 

refrigerant/oil mixtures to simulate more realistic operating conditions.   
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Table 5:  Summary of relevant studies on flow patterns and heat transfer in small and microscale 

internally-grooved tubes 

Authors/References Fluid and test section description Main research content 

Gao et al. [97] [98] [99] Reduced pressure CO2 and CO2-oil 

evaporation, 1 m long horizontal 

and smooth internally-grooved 

tubes, 3.04 mm ID 

 

Measured heat transfer coefficient 

and pressure drop 

 

Cho and Kim [71] 

 

Reduced pressure CO2 evaporation, 

0.2 m horizontal smooth and 

internally-grooved tube, 4.4 mm ID 

Measured heat transfer coefficient 

and pressure drop, compared 

experimental database to existing 

pressure drop and heat transfer 

coefficient correlations 

 

Kim, Cho, and Kim [100] 

 

 

 Reduced pressure CO2 evaporation, 

one vertical smooth tube and one 

vertical internally-grooved tube, 4-

4.4 mm ID  

 

Measured heat transfer coefficient 

and pressure drop, compared 

experimental database to existing 

pressure drop and heat transfer 

coefficient correlations 

 

Ono, Gao, Honda [101] Reduced pressure CO2 and CO2-oil 

evaporation, 1 m long horizontal 

and smooth internally-grooved 

tubes, 3.75 mm ID 

Observed flow regime, measured 

heat transfer coefficient and pressure 

drop, reported higher dryout quality 

in the internally-grooved tube, 

compared results to Cheng et al. 

flow regime map [102] 

 

Gao et al. [24] Reduced pressure CO2 and CO2-oil 

evaporation, 1 m long horizontal 

and smooth internally-grooved 

tubes, 1.95 mm ID 

Observed flow regime, measured 

heat transfer coefficient, reported 

delayed dryout and sustained 

performance in the internally-

grooved tubes, compared results 

with Cheng et al. [102] flow regime 

map and heat transfer coefficient 

correlation  

 

 Dang, Haraguchi, and Hihara [23] Reduced pressure CO2 evaporation, 

1.43-5.72 m horizontal smooth and 

internally-grooved tubes, 2 mm ID 

Observed flow regime, measured 

heat transfer coefficient and pressure 

drop, reported delayed dryout and 

sustained performance in the 

internally-grooved tubes 

 

Wu, Wu, Sunden, and Li [103] 

 

 

 

Reduced pressure R22 and R410A 

evaporation, one horizontal smooth 

tube and five internally-grooved 

tubes, 4.4-4.6 mm ID 

Measured heat transfer coefficient 

and pressure drop, developed a new 

semi-empirical heat transfer model 

based on past and present data 

 

Mancin, Diani, and Rossetto [104] 

 

 

Reduced pressure R134a 

evaporation, 0.3 m horizontal 

internally-grooved tube, 3.4 mm ID 

Measured heat transfer coefficient, 

pressure drop, and vapor quality at 

onset of dryout 

 

Diani et al. [53] 

 

Reduced pressure R1234ze(E) 

evaporation, 0.3 m horizontal 

internally-grooved tube, 3.4 mm ID 

Measured heat transfer coefficient, 

pressure drop, and dryout, compared 

data to that of Mancin et al. [104] 
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Considering flow boiling of CO2 and refrigerants at elevated reduced pressure, few 

studies have been conducted at mass fluxes low enough to demonstrate early flow regime 

transition in internally-grooved tubes.  For example, Gao et al. [24], Dang et al. [23], Cho 

and Kim [71], Diani et al. [53], and Mancin et al. [104] all tested mass fluxes above 190 

kg/m²s, where one would expect Intermittent and Annular flow to be the dominant flow 

regimes for both smooth and internally-grooved tubes.  For these high mass fluxes, the 

researchers generally reported enhancement factors close to the area enhancement, which 

is consistent with trends in Table 3.  Regrettably, flow regime visualization (let alone 

quantification) was not typically performed in these studies.  To reiterate a sentiment 

expressed by Wu et al. [103], future research should pay closer attention to flow boiling in 

internally-grooved tubes at low mass flux. 

One interesting trend reported by Gao et al. [24] and Dang et al. [23], for CO2 flow 

boiling in 1.95-2.65 mm ID tubes at a saturation temperature of 10ºC, was dryout in the 

smooth tubes at vapor qualities ranging from 0.4 to 0.8 and sustained performance in the 

internally-grooved tubes up to vapor qualities approaching 1.  These results are similar to 

those reported by Padovan et al. [76] for flow boiling of R134a and R404A in conventional 

8.15 mm ID tubes at reduced pressures ranging from 0.19 to 0.49. 

3.3.1 Refrigerant/Oil Mixtures 

For the sake of brevity, studies of flow boiling with refrigerant/oil mixtures in small 

diameter internally-grooved tubes will not be described in great detail.  Please refer to 

studies by Gao et al. [97] [98] [99] [24] and Ono et al. [101].  They report varying, and 

sometimes contradictory, pressure drop, heat transfer, and flow regime trends for smooth 

and internally-grooved tubes with a strong dependence on heat and mass flux.  All of these 
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studies used CO2 at 10ºC and polyalkylene glycol (PAG).  Thus, there is a need to extend 

the experimental database to other refrigerant and oil combinations.   

3.3.2 Geometric Considerations 

Geometric parameters play a critical role in flow redistribution and the thermal 

performance of conventional sized internally-grooved tubes.  As shown by Wu et al. [103], 

who described a strong relationship between performance and the ratio of the fin height to 

the liquid film thickness, this appears to be the case for small diameter internally-grooved 

tubes, as well.  Additionally, Diani et al. [53] and Mancin et al. [104] speculated that the 

observed maximum heat transfer coefficient at moderate mass fluxes may be a result of 

tube geometric parameters.  Despite this dependence, a systematic study of fin shape, fin 

height, number of fins, helix and apex angle, and ratio of relevant parameters has not been 

performed to determine the relationship between geometric parameters and thermofluid 

performance in small diameter internally-grooved tubes.   

3.4 Flow Regime Maps and Regime-Inspired Heat Transfer Coefficient 

Correlations for Internally-Grooved Tubes 

As the previous discussion has made abundantly clear, thermal performance during 

two-phase flow boiling in internally-grooved tubes is dependent on the predominant flow 

regime.  Despite this fact, the most widely used heat transfer coefficient correlations for 

internally-grooved tubes are empirical and do not account for the prevailing flow regime.  

Others assume a fixed flow regime, such as Annular flow, and are unable to universally 

predict heat transfer.  Furthermore, geometric parameters that have been proven to affect 

performance are often not considered.  Although the eventual goal is to develop a physics-

based heat transfer model that represents the impact of two-phase flow structures and is 
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coupled to a reliable flow regime map [105], the literature suggests that we are still far 

from having a universally accurate model to predict flow boiling heat transfer in internally-

grooved tubes. 

 A number of researchers have recognized the dependence of heat transfer on the 

particular flow regime in internally-grooved tubes.  As such, flow regime maps for 

internally-grooved tubes and regime-inspired heat transfer coefficient correlations have 

been developed.  A summary of these studies can be found in Table 6 and are discussed in 

more detail below. 

Table 6:  Summary of relevant studies on new flow pattern maps for internally-grooved tubes and 

regime-based heat transfer coefficient models 

Authors/References Main research content 

Nozu and Honda [106]   Developed a model to predict condensation heat transfer for Annular flow 

in internally-grooved tubes.  Compared model to data for four refrigerants 

and three tubes and found good agreement. 

 

Honda, Wang, and Nozu [107]  Developed a model to predict condensation heat transfer for Stratified flow 

in internally-grooved tubes.  Model was compared to heat transfer 

coefficient correlations available in the literature and data for five tubes 

and five refrigerants.  New model outperformed empirical models. 

 

Wang, Honda, Nozu [108]  Modified previous condensation models to account for effects of surface 

tension in Stratified flow and shear stress in Annular flow.  Compared 

modified model to experimental data for six tubes and five refrigerants and 

showed good agreement. 

 

Mori et al. [109]  Proposed a new Stratified flow internally-grooved tube model that 

expressed the circumferential average heat transfer coefficient as the sum 

of thin film evaporation between the grooves on the top surface and 

convective boiling of the stratified liquid at the bottom surface. 

 

Honda and Wang [110]  Modified Stratified flow condensation models to predict evaporation heat 

transfer in internally-grooved tubes.  Good agreement was found with data 

available in the literature. 

 

Makishi, Honda, and Wang [111]  Proposed a new Stratified and Annular flow model of evaporation heat 

transfer in horizontal internally-grooved tubes.  Used the Stratified-Wavy 

to Annular flow transition of Kattan et al. [47] to predict heat transfer in 

the intermediate region.  Compared new model to experimental data for ten 

tubes and four refrigerants. 

 

Wang, Wang, Wang, Honda [112]  

 

Modified previous Annular and Stratified evaporation model to account for 

local heat transfer enhancement due to disturbance waves in internally-

grooved tubes.  Comparison of the model to data in the literature revealed 

good agreement. 
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Momoki et al. [113]  Proposed a prediction method for evaporating heat transfer coefficient of 

refrigerants in a horizontal internally-grooved tube with consideration of 

flow regime.  Classified four flow regimes:  Annular flow, Annular flow 

with liquid meniscus, separated flow with liquid meniscus, and separated 

flow with dry surface.  Experimental data matched the calculated values 

well. 

 

Liebenberg and Meyer [114]  Observed flow regime, measured heat transfer coefficient and pressure 

drop, developed semi-empirical equations for heat transfer and pressure 

drop, modified I/A transition for condensation on past flow regime maps. 

 

Doretti, Zilio, Mancin, Cavallini [115]  Detailed literature review of two-phase flow regime, heat transfer, and 

pressure drop during condensation in internally-grooved tubes.  Observed 

flow regime, measured heat transfer coefficient and pressure drop.  

Developed new Annular flow transition model. 

 

Sharar et al. [29] Re-interpreted data in the literature to show that flow regime transition 

from Stratified flow to Annular flow in internally-grooved tubes is a key 

enhancement mechanism.  Modified the Wojtan et al. flow regime map by 

shifting the Intermittent to Annular transition to lower vapor quality and 

the Stratified-Wavy transition to lower mass flux.  New model matched 

well with data from the literature. 

 

Rollman and Spindler [116] Flow regime was mapped and heat transfer coefficient was measured for 

R134a in one 8.8mm ID internally-grooved tube.  A new flow regime map 

was developed. 

 

Sharar and Bar-Cohen [64] 

 

 

 

Sharar and Bar-Cohen [80] 

Performed an extensive literature review of internally-grooved tube studies 

since 2004 with a focus on identifying the relationship between flow 

regime transition and thermal enhancement. 

 

Flow regime was mapped and heat transfer coefficient was measured for a 

smooth and grooved tube.  New heat transfer coefficient correlation was 

introduced based on previous flow regime map [29].  Model matched well 

with current results and data from 3 independent researchers. 

 

Nozu and Honda [106] and Honda, Wang, and Nozu [107] recognized the 

dependence of heat transfer on the particular flow regime and, as such, developed Annular 

and Stratified flow models for condensing heat transfer in internally-grooved tubes.  Wang, 

Honda, and Nozu [108]  later modified the previous condensation models to account for 

interfacial shear stresses during Annular flow and curvature of the condensate film during 

Stratified flow due to surface tension forces.  Around the same time, Mori et al. [109] 

proposed a Stratified flow model for evaporation in internally-grooved tubes.  The model 

assumed a thin film on the upper portion of the tube and a thick Stratified liquid layer on 

the bottom portion due to gravity.  Mori et al. [109] compared their heat transfer model to 
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10 correlations available in the literature and experimental data for nine refrigerants and 

26 tubes and found that their correlation had the best agreement with a mean absolute error 

of 19% for the entire dataset.  Momoki et al. [113] later extended the Mori et al. [109] 

model and classified four heat transfer regimes:  Annular flow, Annular flow with a liquid 

meniscus, separated flow with a liquid meniscus, and separated flow with a dry surface, 

and proposed empirical correlations for flow regime transitions.  They compared their 

correlation to experimental data and showed that their regime-informed correlation 

outperformed correlations available in the literature. 

Honda and Wang [110] modified the condensation Stratified model of Honda, 

Wang, and Nozu [107] using the newly-developed Stratified evaporation flow model of 

Mori et al. [109] and found reasonable agreement with data in the literature.  The agreement 

was good for low mass flux and vapor where Stratified flow would be expected but poorly 

predicted heat transfer coefficients at high mass flux and vapor quality where Annular flow 

would be expected.  Additionally, the model did not account for the contribution of 

nucleate boiling.  In response, Makishi et al. [111] developed a new theoretical model for 

Stratified and Annular flow in internally-grooved tubes that considered the effect of 

nucleate boiling and forced convection.  A modified version of the Kattan et al. [47] 

Stratified to Annular transition was used to predict the weighted average heat transfer 

coefficient in the intermediate region.  The predictions of the new theoretical models and 

previously proposed empirical models by Koyama et al. [92], Murata [89], Thome et al. 

[91], Cavallini et al. [117], Yun et al. [90], and Mori et al. [109] were compared to available 

experimental data for ten internally-grooved tubes and four refrigerants.  The model 

developed to account for the dependence of flow regime had smaller RMS errors than the 
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empirical models.  However, the RMS error of the theoretical model was still fairly high, 

at 22.4% to 25.7%.   

Finally, Wang et al. [112] modified the previous Makishi et al. [111] model to 

account for local heat transfer enhancement due to disturbance waves in internally-grooved 

tubes and compared the model to data from the literature.  Reasonably good agreement was 

found but improvement is needed if they are to be used as a general prediction and design 

tool.  Specifically, the Wang et al. [112] model uses the dimensionless liquid Froude 

number to distinguish between Stratified and Annular flow.  Unfortunately, the liquid 

Froude number is not sufficient for determining the transition from Stratified to non-

stratified flow [105].   Additionally, the model does not account for Dryout or the effect of 

Intermittent flow.  Thus, a comprehensive tool similar to the coupled flow regime map and 

heat transfer coefficient correlation of Wojtan et al. [30] [31] needs to be developed for 

internally-grooved tubes. 

In an attempt to answer this call, Liebenberg, Thome, and Meyer [118] observed 

and described flow regimes and heat transfer during condensation in horizontal internally-

grooved tubes.  They modified the Intermittent to Annular transition on the Thome map 

[119] and developed new semi-empirical flow regime based heat transfer and pressure drop 

correlations.  The modification shifted the Intermittent to Annular transition to lower vapor 

quality, a trend apparent from the previous discussion, and greatly improved the predictive 

accuracy of condensing flow in internally-grooved tubes.  Unfortunately, flow boiling is 

not fully analogous to condensation [120] and the flow regime maps and associated heat 

transfer models developed for condensation cannot be strictly used for flow boiling.  For 

example, Liebenberg et al. [114] did not report early transition from Stratified to Annular 
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flow during condensation in internally-grooved tubes.  As shown in the preceding 

discussion, this is a dominant trend during flow boiling.  In addition, nucleate boiling, 

Stratified flow with a completely dry upper surface, and dryout do not occur for 

condensation. 

Thus, research is progressing in the proper direction but, as of yet, a coupled flow 

regime map and heat transfer coefficient correlation for flow boiling in internally-grooved 

tubes have not been developed.  A stronger experimental and theoretical knowledge base 

needs to be established, focusing on a more comprehensive understanding of the physical 

mechanisms responsible for improved performance in internally-grooved tubes.  

3.5 Summary 

The preceding has presented a survey of two-phase flow boiling studies in 

internally-grooved tubes.  The vast majority of the discussion dealt with halogenated fluids 

in conventional sized tubes at standard temperature and pressure.  Studies of small diameter 

tubes, alternative refrigerants, refrigerant/oil mixtures, and elevated reduced pressure were 

also considered.  Additionally, existing flow regime maps and regime-informed heat 

transfer coefficient correlations for internally-grooved tubes were discussed.  Through this 

process, parametric trends have been identified and goals for the current research effort 

have been developed. 

In meso-scaled (i.e. “conventional”) internally-grooved tubes, heat transfer 

enhancement generally exceeded the area enhancement at low mass flux by factors of  3-7 

times a plain tube, but decreased to the area enhancement at high mass flux, yielding 

improvement of just 1.3-1.8 times a plain tube.  This trend is summarized in Table 3 and 

displayed in Figure 9 and Figure 10.  It was shown that this performance enhancement at 
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low mass flux can be correlated to early transition to Annular flow in internally-grooved 

tubes, for conditions in which smooth tubes were operating in Stratified flow.  However, 

at high mass flux where the smooth and internally-grooved tubes are both operating in 

Annular flow, the enhancement decreased towards the area enhancement. It is argued that 

this early transition in internally-grooved tubes is primarily a result of fluid flow redirection 

from axial to helical flow (momentum change), augmented by favorable capillary force in 

the groove structures.  Minor deviations from these parametric trends were observed, such 

as enhancement factors larger or smaller than the area ratio at high mass flux, and may be 

a result of the particular geometric parameters for the various internally-grooved tubes 

tested, turbulence, or nucleate boiling.  The trends are less clear for refrigerants and CO2 at 

high reduced pressure. 

The study of small internally-grooved tubes is still in its infancy and the 

experimental studies available are not sufficient to draw clear trends or conclusions 

regarding the impact of flow regime on heat transfer performance.  Specifically, the 

available studies generally tested mass fluxes above 190 kg/m²s where the hypothesized 

benefit of early transition from Stratified to Annular flow, with significant enhancement in 

the heat transfer coefficient, at low mass flux is not achievable.  However, in a fashion 

similar to larger diameter tubes, small diameter internally-grooved tubes demonstrated 

enhancement close to the internal area ratio at high mass fluxes due to the prevalence of 

Intermittent and Annular flow. 

The Wojtan et al. [30] flow regime map proved useful for predicting flow regimes 

in the smooth channel studies reported above.  However, due to observed early transition 

to Annular flow at lower mass flux and vapor quality, the Wojtan et al. [30] map, and 
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Mastrullo et al. [54] map, had diminished predictive accuracy for the internally-grooved 

tube experimental data.  Furthermore, many researchers reported poor agreement with the 

most widely used heat transfer coefficient correlations for internally-grooved tubes because 

they are either:  a) empirical and do not account for flow regime or b) assume a fixed flow 

regime, such as Annular flow, and are unable to universally predict heat transfer.   

Based on these findings, research objectives and guidelines have been identified 

that will provide a more comprehensive understanding of the physical mechanisms 

responsible for improved performance in internally-grooved tubes: 

a. Concurrent heat transfer and quantitative flow regime data will be collected 

over a wide range of operating conditions, particularly low mass flux, to 

establish the intrinsic relationship between the dominant flow structure and 

thermofluid performance in internally-grooved tubes.  Additionally, 

comparison to existing correlations, flow regime maps, and smooth tube 

data as a means to normalize the results will accompany all experiments to 

determine the current state of internally-grooved tube predictive methods. 

b. The majority of the studies in the literature relied solely on subjective flow 

regime data collection, which calls into question the accuracy of the results.  

The current study will focus on an objective Total Internal Reflection (TIR) 

flow regime determination method to obtain more accurate data. 

c. The study of small diameter internally-grooved tubes has only been a topic 

of research since 2006 and, as such, the available experimental data set is 

incomplete.  Therefore, the current effort aims to test both conventional 
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tubes and extend the small diameter data to a wider range of refrigerants 

and operating conditions. 

d. The eventual goal of the current research effort is to develop a physics-

based heat transfer model that represents the impact of two-phase flow 

structures and is coupled to a reliable flow regime map [105].  Based on the 

above research initiatives, a stronger experimental and theoretical 

knowledge base will be established, focusing on a more comprehensive 

understanding of the physical mechanisms responsible to improved 

performance in internally-grooved tubes. 

Though outside the scope of the current effort, several additional conclusions and 

recommendations for future internally-grooved tube research have been identified based 

on the preceding literature review and analysis:   

a. It is not entirely clear what impact operation of refrigerants and CO2 at high 

reduced pressure has on flow regimes and heat transfer in internally-

grooved tubes.  Future studies should be conducted with a focus on items 

‘a’ and ‘b’ above. 

b. Researchers have observed performance discrepancies for identical test 

conditions but variable tube groove parameters.  Therefore, a more 

systematic study of the effect of tube diameter, fin shape, fin height, number 

of fins, helix and apex angle, and ratio of relevant parameters needs to be 

undertaken to determine the relationship between these parameters, flow 

regime, and thermofluid performance, and what constitutes a geometrically-

optimum tube for given operating conditions. 
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Greater detail on the analytical and experimental research plan, including specifics 

on the breadth of work necessary to achieve items ‘a’ through ‘d’ above, are described in 

the following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

Chapter 4: New Flow Regime Map and Heat Transfer 

Coefficient Correlation for Internally-Grooved Tubes 

Heat transfer enhancement in internally-grooved tubes is related to early transition 

to Annular flow at relatively low mass flux and vapor quality, where a comparable smooth 

tube is expected to operate in Stratified or Intermittent flow.  As such, the capability to 

accurately predict this early transition to Annular flow for a range of tube diameters is 

critical to predicting the improved performance in internally-grooved tubes.  As shown in 

the previous chapter, the original formulations by Wojtan et al. [30] for transition from 

Intermittent to Annular and Stratified to Annular flow are adequate for predicting flow 

regime in smooth channels for a range of fluids and operating conditions, however, they 

are not sufficient for predicting flow regimes in internally-grooved tubes.  Therefore, this 

chapter gives a description of the original Wojtan et al. [30] [31] formulation and outlines 

current modifications to the existing flow regime map and regime-based heat transfer 

coefficient correlation to better reflect the trends described in Chapter 3.  Lastly, the new 

model is simulated through a range of operating conditions to verify that it accurately 

captures the trends previously described, namely 3-7x improvement at low-to-moderate 

mass flux. 

4.1 Taitel-Dukler [46] Annular Transition Criteria 

The Wojtan et al. flow regime map [30] is a modification of the Taitel-Dukler [46] 

flow regime map.  Thus, understanding the Annular flow transition mechanisms outlined 

by Taitel-Dukler [46] is a logical starting point for understanding the Wojtan et al. [30] 

flow regime map.  Taitel-Dukler [46] expressed the Stratified to Annular transition in terms 
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of inertial effects using two-phase non-dimensional groupings.  As shown in Figure 15, the 

transition to Annular flow can be described using the modified Froude number (F), non-

dimensional Z parameter (Z), and non-dimensional liquid height (hL/D), where hL is the 

Stratified liquid height and D is the channel diameter.  The Froude number and Z parameter 

represent transition ‘F’ and transition ‘Z’ on Figure 15, respectively.   

 
Figure 15: Generalized transition boundaries in Taitel-Dukler model (adapted from [46]) 

 

The first inertial effect to consider, as described by the Froude number, is the 

stability of the Stratified flow due to the Kelvin-Helmholtz instability.  Assuming a 

stationary wave on the Stratified liquid interface, two forces can be identified: gravity force 

tends to flatten the wave and stabilize the Stratified configuration while the Bernoulli force, 

due to the increased gas velocity and associated pressure decrease above the interface, 

tends to increase the wave amplitude.  If the Bernoulli force is large enough to overcome 

the gravity force, the wave will wet the dry upper surface of the channel.  A force balance 

results in a dimensionless Froude number modified by the density ratio as shown in 

Equation (3): 
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F = (
ρg

ρL − ρg

)

1/2
ugs

√Dgcosβ
 (3) 

where ρg is the vapor density, ρL is the liquid density, ugs is the superficial gas velocity, D 

is the channel diameter, g is the acceleration of gravity, and β is the tube inclination. 

The second transition criterion is attributed to the impingement of liquid droplets 

on the top surface, which are torn away from the Stratified liquid-vapor interface.  In this 

case, transition to Annular flow will occur when liquid droplets have enough kinetic energy 

to reach the top of the channel.  Calculation of the liquid droplet trajectory is related to the 

maximum turbulent velocity fluctuations as estimated by Barnea et al. [121].  The criterion 

for Annular flow becomes: 

uL
2 =

gD (1 −
hL

D
) cosβ

fL

 (4) 

where uL
2 is the liquid velocity and fL is the liquid friction factor.  This transition criterion 

can be represented in dimensionless form as the Z parameter: 

Z =
(dp/dx)Ls

ρLgcosβ
 (5) 

where (dp/dx)Ls is the pressure drop when the tube is completely filled with liquid.  The 

non-dimensional transition criteria can also be expressed in terms of superficial liquid and 

vapor velocities. 

The full description of the sequence of tests for iteratively calculating flow regime 

for the Taitel-Dukler maps is not included here, for the sake of brevity, but please refer to 

[46] for a more comprehensive explanation.  
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4.2 Traditional Wojtan et al. [30] Flow Regime Map for Smooth Tubes 

The Taitel-Dukler [46] map requires complex calculations (and an iterative 

process) and is not coupled to a reliable flow regime based heat transfer model.  This limits 

its practical applicability.  The Wojtan et al. [30] flow regime map, on the other hand, can 

be implemented with simple calculations and has an accompanying comprehensive flow 

pattern based heat transfer model; more detail on the Wojtan et al. [31] regime based heat 

transfer model will be described in Section 4.4.  For these perceived benefits, the Wojtan 

et al. [30] map for smooth tubes (and heat transfer coefficient correlation [31]) will be used 

as a starting point for analytically describing and mapping early flow regime transition to 

Annular flow in internally-grooved tubes.  For the sake of completeness, the entire Wojtan 

et al. [30] flow regime transition criteria will be described below.  Refer to Figure 16 for a 

graphical representation of the original smooth tube Wojtan et al. [30] flow regime map. 

 
Figure 16:  Traditional smooth tube Wojtan et al. [30] diabatic flow regime map for evaporation of 

R134a at -15ºC in a 9mm smooth tube with a heat flux of 4 kW/m² 

 

As shown on Figure 16, the Wojtan et al. [30] map consists of five governing 

equations to represent the loci of flow regime transition; Gstrat, Gwavy, xIA, Gdryout, and 
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Gmist.  In order to calculate these transition curves the following three dimensionless 

geometric variables must first be defined: 

hLD = 0.5 (1 − cos (
2π − θdry

2
)) 

(6) 

AVD =
Aε

D2
 

(7) 

ALD =
A(1 − ε)

D2
 (8) 

As shown in Figure 17, hLD is the dimensionless vertical height of the liquid, A is 

the total cross-sectional area of the tube, AVD is the dimensionless cross-sectional area 

occupied by the vapor phase, ALD is the dimensionless cross-sectional area occupied by the 

liquid, and D is the internal tube diameter.  

 

Figure 17:  Two-phase Stratified flow cross-section (adapted from [30]) 

ɛ is the void fraction calculated using the Steiner version of the Rouhani-Axelsson 

drift flux model for horizontal tubes [122].  This drift flux model, as opposed to the method 

employed by Taitel-Dukler [46], is easy to implement and provides void fraction as a 

D

hLDALD

AVD

θstrat

θwet

Vapor

Liquid



 

62 

 

function of mass flux and vapor quality.  The applicability of this model was proven by 

Wojtan et al. [123] by optically measuring dynamic void fractions in Stratified types of 

flow with R-22 and R-410A as the working fluids.  θstrat is an approximation of the 

Stratified angle as described by Biberg [124] and θwet is simply θstrat-2π.  These terms 

can be directly evaluated as: 

ε =
x

ρV

[(1 + 0.12(1 − x)) (
x

ρV

+
1 − x

ρL

) +
1.18(1 − x)[gσ(ρL − ρV)]0.25

GρL
0.5 ]

−1

 
(9) 

θstrat = 2π − 2 {π(1 − ε)

+ (
3π

2
)

1
3

[1 − 2(1 − ε) + (1 − ε)
1
3 − ε

1
3

−
1

200
(1 − ε)ε[1 − 2(1 − ε)][1 + 4((1 − ε)2 + ε2]]} 

(10) 

where x is the vapor quality, G is the mass flux, σ is the fluid surface tension, g is 

gravitational acceleration, ρV is the vapor density, and  ρL is the liquid density. 

After the geometric parameters have been calculated, the Stratified-Wavy to 

Intermittent/Annular transition curve (labeled as Gwavy on Figure 16) can be calculated 

from the following equation: 

Gwavy = {
16AVD

3 gDρLρV

x2π2(1 − (2hLD − 1)2)0.5
× [

π2

25hLD
2 × (

We

Fr
)

L

−1

+ 1]}

0.5

+ 50 
(11) 

where Gwavy is the mass flux at which transition occurs, We is the liquid Weber number, 

and Fr is the liquid Froude number.  It’s interesting to note that the Weber number is a 

measure of the relative importance of a fluid’s inertia to its surface tension and is useful 

for analyzing the formation of droplets in multiphase flows.  Additionally, the Froude 
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number is defined as the ratio of a body’s inertia to gravity forces and, in two-phase flows, 

is useful for describing wave formation.  Thus, the physical mechanisms described by the 

Wojtan et al. [30] Gwavy transition from Stratified to Annular flow are consistent with those 

described by Taitel-Dukler and outlined in Section 4.1 above. 

 The Stratified to Stratified-Wavy transition (labeled as Gstrat on Figure 16) is 

calculated from: 

  Gstrat = [
226.32ALDAVD

2 ρv(ρL−ρv)μLg

x2(1−x)π3 ]

1

3

 (12) 

 The Intermittent to Annular transition (labeled as xIA on Figure 16) is calculated 

from: 

  xIA = {[0.34
1

0.875 (
ρV

ρL
)

−1

1.75
(

μL

μV
)

−1

7
] + 1}

−1

 
(13) 

 The Annular to Dryout and Dryout to Mist (labeled as Gdryout and Gmist on Figure 

16, respectively) are empirically-modified from the dryout inception-completion model of 

Mori et al. [125]: 

Gdryout = [
1

0.235
(ln (

0.58

x
) + 0.52) (

D

ρvσ
)

−0.17

× (
1

gDρv(ρL − ρv)
)

−0.37

(
ρv

ρL

)
−0.25

(
q

qcrit

)
−0.70

]

0.926

 

 

 

(14) 

Gmist = [
1

0.0058
(ln (

0.61

x
) + 0.57) (

D

ρvσ
)

−0.38

× (
1

gDρv(ρL − ρv)
)

−0.15

(
ρv

ρL

)
0.09

(
q

qcrit

)
−0.27

]

0.943

 
(15) 

where q is the applied heat flux (at the inside surface of the tube) and qcrit is the critical 

heat flux as described by Kutateladze [126]:  
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  qcrit = 0.131ρv
0.5hLV[g(ρL − ρv)σ]0.25

 (16) 

where hLV is the latent heat of vaporization. 

Once the main transition lines are calculated, further subdivisions at low vapor 

quality and high vapor quality, respectively, are made to better predict trends described by 

Wojtan et al. [30].  The subdivisions at low vapor quality are described below and shown 

on Figure 16: 

a. If G > Gwavy(xIA) and < Gwavy(x) , the flow regime becomes Slug. 

b. If Gstrat < G < Gwavy(xIA) and x < xIA, the flow regime becomes Slug and 

Stratified-Wavy. 

c. If Gstrat < G < Gwavy(xIA) and x ≥ xIA, the flow regime is the Stratified-

Wavy zone. 

d. If x < xIA, Gstrat = Gstrat(xIA). 

The subdivisions to describe dryout and mist conditions at high vapor quality are 

as follows: 

a. If Gstrat(x) ≥ Gdryout(x), then Gdryout(x) = Gstrat(x). 

b. If Gwavy(x) ≥ Gdryout(x), then Gdryout(x) = Gwavy(x). 

c. If Gdryout(x) = Gmist(x) (which is possible at low heat flux and high mass 

velocity) then Gdryout(x) = Gmist(x). 

4.3 Modified Sharar et al. [29] Flow Regime Map for Internally-Grooved Tubes 

As described in great detail in Chapter 2 and Chapter 3, the Wojtan et al. [30] flow 

regime methodology works particularly well for predicting refrigerant evaporation in 

conventionally-size smooth tubes.  However, as evident by the early flow regime 
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transitions in internally-grooved tubes and the efforts to modify existing flow regime maps 

to account for these variations [111] [118], smooth tube flow regime maps do not 

accurately predict flow regimes in internally-grooved tubes.  In addition to the inertial and 

surface tension effects discussed above, it is suggested in the literature that the capillary 

force in the groove structures [111] [110] [84], as well as fluid flow redirection from an 

axial direction to a direction following the helix angle of the groove (momentum change) 

[27], play a favorable role in transitioning from Stratified and Intermittent flow to Annular 

flow.   

In order to better capture these trends for evaporative two-phase flow, Sharar et al. 

[29] recently modified the existing Wojtan et al. [30] flow regime map by adopting the 

Liebenberg et al. [118] and Liebenberg and Meyer [114] Intermittent to Annular transition 

criteria and modifying the existing Stratified to Annular transition.  The modified 

Intermittent to Annular transition is defined by: 

  xIA = {[C (
ρL

ρV
)

0.5

(
μV

μL
)

0.1

]
1/0.9

+ 1}

−1

 
(17) 

where μL is the liquid viscosity, μV is the vapor viscosity, ρL is the liquid density, ρV is the 

vapor density, and C is the transition coefficient.  For smooth tubes, C=0.3218 and for 

internally-grooved tubes C=0.6678 [114].  The modified Stratified-Wavy to Annular 

transition was defined by Sharar, Jankowski, and Bar-Cohen [29]: 

 Gwavy  IG = {
16AVD

3 gDρLρV

x2π2(1−(2hLD−1)2)0.5 × [
π2

25hLD
2 × (

We

Fr
)

L

−1

+ 1]}
0.5

− 15 (18) 

where Gwavy IG is the mass flux at which transition occurs, AVD is the dimensionless cross-

sectional area occupied by the vapor phase, g is gravitational acceleration, D is the internal 

tube diameter, x is the vapor quality, hLD is the dimensionless vertical height of the liquid, 
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We is the liquid Weber number, and Fr is the liquid Froude number.  In practice, Equations 

(17) and (18) replace Equations (11) and (13) in the original formulation; all other 

equations remain the same. 

Figure 18 shows the original and modified Sharar et al. [29] flow regime maps for 

R134a at -15ºC in a 9 mm diameter tube; Figure 18a is the original smooth tube map 

proposed by Wojtan et al. [30] and Figure 18b is the modified Sharar et al. [29] flow regime 

map for a comparable internally-grooved tube.  Both maps define 8 distinct flow regimes: 

Stratified, Stratified-Wavy, Slug and Stratified-Wavy, Slug, Intermittent, Annular, Dryout, 

and Mist in coordinates of mass flux (G) and quality (x).  The modified map reflects early 

transition to Annular flow at lower vapor quality and lower mass flux compared to a smooth 

tube.   

 
Figure 18:  a) Traditional smooth tube Wojtan et al. [30] and b) modified Sharar et al. [29] 

internally-grooved tube diabatic flow regime map for evaporation of R134a at -15ºC in 9mm tubes 

with a heat flux of 4 kW/m² 

4.4 Traditional Wojtan et al. [31] Heat Transfer Coefficient Correlation 

The Wojtan et al. [31] heat transfer coefficient correlation will be used as a starting 

point for analytically describing enhanced heat transfer in internally-grooved tubes 
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associated with early transition to Annular flow.  Wojtan et al. [31] modified the regime-

based heat transfer model of Kattan, Thome, and Favrat [62] using the flow regime map 

described in Section 4.2 and shown in Figure 16 and Figure 18a.  This model improved 

heat transfer prediction during Stratified-Wavy flow, and extended the applicability to high 

vapor quality and heat flux where Dryout and Mist flow can occur.  The model also 

considers the effects of flow regime on the Annular film thickness, turbulence, nucleate 

boiling, and the dry perimeter during Stratified flows in smooth tubes to calculate the local 

heat transfer coefficient.   

During Stratified, Stratified-Wavy, and Annular flow with partial dryout, at least a 

portion of the tube is cooled by vapor at the top surface.  Therefore, they proposed the 

following equation to calculate the heat transfer coefficient as the average of the dry and 

wet surfaces: 

  htp =
θdryhv+(2π−θdry)hwet

2π
 (19) 

where htp is the two-phase heat transfer coefficient, θdry is the dry angle (from 0 to 2π), 

and hv is the heat transfer coefficient associated with vapor flow on the dry perimeter.  The 

dry perimeter heat transfer coefficient is expressed in terms of the vapor thermal 

conductivity, kv, vapor Reynolds number, Rev, and vapor Prandtl number, Prv: 

  hv = 0.023Rev
0.8Prv

0.4 kv

D
 (20) 

 hwet is the heat transfer coefficient for the wet perimeter.  Wojtan et al. [31] use 

an asymptotic model accounting for the effect of convective vaporization and nucleate 

boiling: 

  hwet = [(hcb)3 + (hnb)3]
1

3 (21) 
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The convective vaporization heat transfer coefficient, hcb, is calculated based on 

the predicted film thickness, δ, fluid thermal conductivity, kL, liquid film Reynolds 

number, Reδ, and liquid Prandtl number, PrL: 

  hcb = 0.0133Reδ
0.69PrL

0.4 kL

δ
 (22) 

The nucleate boiling heat transfer coefficient, hnb, is calculated from a slightly 

modified version of the Cooper correlation [127] : 

  hnb = S × 55(Pr)0.12(−logPr)−0.55M−0.5q0.67
 (23) 

where M is the fluid molar mass,  q is the heat flux, and S is a suppression factor of 0.8 

proposed by Wojtan et al. [31] to better match their experimental data;  the degree of 

improvement obtained by applying the suppression factor was not quantified by Wojtan et 

al. [31]. 

The parameter which takes into account the flow regime in Equation (19) is the dry 

angle, θdry, as shown schematically in Figure 17;  The original formulation by Kattan, 

Thome, and Favrat [62] assumed a linear variation in the wetted perimeter between 

Stratified and Annular flow.  However, Wojtan et al. [31] found that the complexity 

resulting from subdivisions of Stratified-Wavy flow regimes requires a different approach 

to calculating dry angle.   

For Slug, Intermittent, and Annular flow where the entire perimeter of the channel 

is covered with a continuous thick or thin layer of liquid, the dry angle is 0: 

  θdry = 0 (24) 

 For Stratified-Wavy flow, Wojtan et al. [31] proposed a modified version of the El 

Hajal et al. [128] model which used a quadratic interpolation to calculate θdry.  An 

exponent of 0.61 showed best agreement with the data from Wojtan et al. [31]: 
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  θdry = [
(Gwavy−G)

(Gwavy−Gstrat)
]

0.61

θstrat  
(25) 

where  θstrat is an approximation of the stratified angle as described by Biberg [124], 

shown in Figure 17, and expressed in Equation (10).  Quantitative measures of 

‘improvement’ obtained by adopting the new exponent of 0.61 were not provided by 

Wojtan et al. [31]. 

In the Slug and Stratified-Wavy region, it is possible to have both low amplitude 

waves with a dry upper surface and liquid Slugs that completely wet all surfaces of the 

tube.  As vapor quality increases for a fixed mass flux, the frequency of Slugs decreases 

and Stratified-Wavy flow becomes the dominant regime.  As the vapor quality approaches 

xIA, slugs disappear completely [30].  To capture this trend Wojtan et al. [31] proposed the 

following dry angle correlation when x < xIA: 

  θdry =
x

xIA
[

(Gwavy−G)

(Gwavy−Gstrat)
]

0.61

θstrat  
(26) 

 Based on the dry angle, the liquid film thickness is calculated using the equation by 

El Hajal et al. [128]: 

  δ =
D

2
− √(

D

2
)

2

−
2AL

(2π−θdry)
 

(27) 

When/if Equation (27) gives a value larger than D/2, δ is set to D/2 because a 

symmetric film thickness larger than the tube radius is geometrically impossible.  

The model of Kattan et al. [62] did not cover Mist flow or Dryout due to a lack of 

experimental data at the time.  Wojtan et al. [31] collected heat transfer data and modified 

the Groeneveld Mist flow correlation [129] which is a modification of the Dougall-
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Rohsenow Mist flow correlation [130].  The Dougall-Rohsenow Mist flow correlation 

[130] takes the form: 

  hmist = 0.023ReH
0.8Prv

0.4 kv

D
 (28) 

where ReH is the homogeneous Reynolds number: 

  ReH =
GD

μv
(x +

ρL

ρv
(1 − x)) 

(29) 

Groeneveld [129] determined that the homogeneous Reynolds number described 

by Dougall-Rohsenow [130] was not consistent with homogenous theory because vapor 

and liquid properties were used rather than homogeneous properties.  Therefore, 

Groeneveld [129] proposed a correction factor, Y, to be used in calculating hmistand 

defined it as: 

  Y = 1 − 0.1 [(
ρL

ρv
− 1) (1 − x)]

0.4

 (30) 

Groeneveld [129] used data obtained from experiments with water as the working 

fluid at high mass fluxes, >700 kg/m²s, high saturation pressures, >34 bar, and high heat 

fluxes, >120 kW/m², to modify Equation (28), using the proposed correction factor, Y, with 

an exponent of -1.5, altering the exponents on the Reynolds and Pradtl numbers, and 

introducing a vastly lower value of the empirical coefficient to yield: 

  hmist = 0.00327ReH
0.901Prv

1.32Y−1.5 kv

D
 (31) 

Wojtan et al. [31] further modified the empirical coefficients in the Groeneveld 

[129] correlation based on their experimental results to yield Equation (32) below.   

  hmist = 0.0117ReH
0.79Prv

1.06Y−1.83 kv

D
 (32) 

 Wojtan et al. [31] compared Mist flow heat transfer results for R-22 and R-410A in 

a 13.84mm test section with the correlations from Dougall-Rohsenow [130], Groeneveld 
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[129], and the new Mist flow correlation in Equation (32).  They reported that the values 

predicted by the Dougall-Rohsenow [130] correlation were considerably higher than their 

experimental results.  The Groeneveld [129] correlation, which was empirically optimized 

based on experimental results for high mass fluxes, saturation pressures, and heat fluxes 

with water as the working fluid, had an average deviation, ε, mean absolute deviation, |ε|, 

and standard deviation, σ, of 13.6%, 9.0%, and 10.7%, respectively.  Much better 

agreement was shown for the re-optimized Groeneveld [129] correlation described by 

Wojtan et al. [31]; the average deviation, ε, mean absolute deviation, |ε|, and standard 

deviation, σ, for all experimental data points was only -0.04%, 6.31%, and 8.32%, using 

the new re-optimized model, respectively.  Additionally, the new Mist flow model 

predicted 93% of the experimental R-22 and R-410A results to within ±15% error. 

Wojtan et al. [31], based on the original formulation by Mori et al. [125], showed 

that the heat transfer coefficient falls sharply from the two-phase heat transfer coefficient 

at the dryout inception vapor quality, xdi, to the Mist flow heat transfer coefficient at the 

dryout completion vapor quality, xde.  Therefore, they proposed a Dryout flow correlation 

based on linear interpolation between dryout inception and dryout completion as expressed 

by: 

  hdryout = htp(xdi) −
x−xdi

xde−xdi
[htp(xdi) − hmist(xde)] (33) 

where htp(xdi) is the two-phase heat transfer coefficient at xdi, as calculated from Equation 

(19), and hmist(xde) is the Mist flow heat transfer coefficient at xde, as calculated from 

Equation (32).  xdi and xde can be calculated directly from the following equations: 

  xdi = 0.58e
[0.52−0.235Wev

0.17Frv
0.37(

ρv
ρL

)
0.25

(
q

qcrit
)

0.70
]

 (34) 
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  xdi = 0.61e
[0.57−5.8∙10−3Wev

0.38Frv
0.15(

ρv
ρL

)
−0.09

(
q

qcrit
)

0.27
]

 

(35) 

where qcrit is the critical heat flux calculated by Kutateladze [126] in Equation (16). 

 The regime-informed heat transfer coefficient model described above was 

statistically compared to 413 experimental data points for R-22 flow boiling in the 

13.84mm smooth tube at mass fluxes from 70 to 700 kg/m²s, heat fluxes from 2 to 57.5 

kW/m², and vapor qualities from 0 to xdi.  Additionally, 121 data points for Dryout and 

Mist flow, x>xdi, were collected to extend the experimental database and heat transfer 

methodology to higher vapor qualities and to serve as a basis for model comparison.  The 

average deviation, ε, mean deviation, ε, and standard deviation, σ, of the data were 

calculated based on the original regime-based approach of Kattan, Thome, and Favrat [62] 

and the ‘new’ Wojtan et al. [31]  model.   

For vapor qualities from 0 to xdi, the original Kattan et al. [62] heat transfer 

coefficient had an average deviation, ε, mean deviation, |ε|, and standard deviation, σ, of 

15.43%, 9.56%, and 14.26%, respectively.  For the same conditions, the Wojtan et al. [31] 

improved the average deviation, ε, mean deviation, |ε|, and standard deviation, σ, to 2.48%, 

6.83%, and 10.39%, respectively.  For vapor qualities after dryout, x>xdi, the original 

Kattan et al. [62] heat transfer coefficient had an average deviation, ε, mean deviation, |ε|, 

and standard deviation, σ, of 913.24%, 725.30%, and 886.80%, respectively.  After dryout 

(x>xdi), the Wojtan et al. [31] improved the average deviation, ε, mean deviation, |ε|, and 

standard deviation, σ, to 91.05%, 116.44%, and 155.59%, respectively.  Wojtan et al. [31] 

correlated the relatively large, but still markedly improved, predictive error at high vapor 

quality in the dryout region to error in experimentally predicting vapor quality.  For 
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example, a small error in predicting vapor quality can result in relative errors of 2000% 

due to the sharp slope of the heat transfer coefficient in this region [31]. Additional 

statistical analysis was provided in the PhD Thesis by Wojtan [131].  

To enhance the credibility of the new model, Wojtan et al. [31] compared 

independent data from Lallemand et al. [132] for flow boiling of R-22 and R-407C in a 

smooth tube at mass fluxes from 100 to 300 kg/m²s and showed equally-good agreement.  

Statistical measures were not provided to quantify the agreement between the Lallemand 

et al. [132] data and the Wojtan et al. [31] model.  Additionally, Chapter 2 (Figure 6) 

provides an additional qualitative example of the validity of the Wojtan et al. [30] flow 

regime map and associate heat transfer coefficient correlation [31] with more recent data 

from Filho and Jabardo [38]. 

4.5 Modified Heat Transfer Coefficient Correlation 

In the current study, the Wojtan et al. [31] heat transfer coefficient described in 

Section 4.4 is modified to represent improved performance in internally-grooved tubes, 

particularly at low mass flux.  A portion of this enhancement will originate from Equation 

(25) and Equation (26) whereby a modified (reduced) Stratified-Wavy to Annular 

transition, Gwavy IG, and Intermittent to Annular transition, xIA IG, will result in a smaller 

dry angle, θdry, and a larger two-phase heat transfer coefficient,  htp, in Equation (19).  

The remaining enhancement derives from an internally-grooved tube enhancement factor 

for single-phase turbulent flow, Erb, (developed by Ravigururajan and Bergles [28]) and 

an empirically derived enhancement factor introduced by Thome et al. [91], Emf, that 

accounts for the effects of film flow and the Gregorig effect.  The turbulent enhancement 

factor, Erb, can be expressed as: 
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  Erb = {1 + [2.64Reδ
0.036PrL

−0.024 (
ef

df
)

0.212

(
pf

df
)

−0.21

(
αf

90°
)

0.29

]
7

}

1/7

 
(36) 

where ef is the groove height, df is the nominal inside diameter at the fin base, pf is the 

axial pitch from groove to groove, and αf is the helix angle of the grooves.  With this 

modification, hwet from Equation (21) and Equation (19) becomes: 

  hwet = Emf[(Erbhcb)3 + (hnb)3]
1

3 (37) 

where Emf is an additional enhancement factor proposed by Thome et al. [91] that accounts 

for the effects of film flow and the Gregorig effect.  The Gregorig effect enhances 

evaporation by drawing liquid from the microfin tips towards the base as described by 

Carey [34].  The enhancement factor, Emf, takes the form: 

  Emf = 1.89 (
ṁ

ṁref
)

2

− 3.7 (
ṁ

ṁref
) + 3.02 (38) 

where ṁref is the maximum mass flux tested (500 kg/m²s).  This was introduced to non-

dimensionalize the expression.   

 Ravigururajan and Bergles [28] developed their model based on a broad collection 

of data from the literature.  The data covered a wide range of Reynolds numbers (from 

6000 to 440000), Prandtl numbers (from 0.66 to 37.6), and tube variables.  Specifically,  
ef

df
 

values from 0.01 to 0.218, 
pf

df
 values from 0.1 to 17.81, and 

αf

90°
 values from 0.27 to 1 were 

used.  Semi-circular, wire coils, rectangular, and triangular ‘fin’ shapes were compared to 

the model.  The Ravigururajan and Bergles [28] correlation was found to accurately predict 

99% of the data from the literature to within ±50% accuracy.   

 Ravigururajan and Bergles [28] performed independent experiments to further 

determine the applicability of the correlation.  Water or air were used as the heat transfer 
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fluids for four commercially available tubes from General Atomic, Wolverine, and Turbo 

Refrigerating as well as four wire-coil tubes fabricated by the researchers.  The normalized 

roughness heights, 
ef

df
, varied from 0.038 to 0.127, the normalized pitch, 

pf

df
, ranged from 

0.169 to 1.05, and the normalized helix angle, 
αf

90°
, ranged from 0.33 to 0.91.  Reynolds 

numbers from 150 to 20000 were tested.  The new correlation was ‘in excellent agreement’ 

with the heat transfer data for both air and water, although quantitative measures of 

statistical fit were not provided.   

As shown in Equation (36) and also reported by Ravigururajan and Bergles [28], 

the increase in the augmentation was predominantly controlled by the tube design rather 

than the cooling liquid and flow parameters.  This is evidenced by the very low powers of 

Re and Pr.  This suggests that this correlation should generally work well for fluids and 

flowrates outside the range experimentally validated by Ravigururajan and Bergles [28]. 

Thome et al. [91] validated the use of the Emf correlation with a statistical 

comparison of 362 local heat transfer coefficients for R-134a and R-123 with vapor 

qualities from 0.15 to 0.85.  The standard deviation, mean deviation, and average deviation 

for the R-134a data was 18.5%, 12.8%, and 2.0%, respectively.  The standard deviation, 

mean deviation, and average deviation for the R-123 data was 12.9%, 11.8%, and 6.4%.  

The authors indicated that future work should involve validation for a wider range of tube 

geometries and fluids. 

4.6 Model Simulation 

As previously described, internally-grooved tubes have shown heat transfer 

enhancement ratios as high as 6 to 7 times that of smooth tubes at low mass velocities and 
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improvement equal to, or slightly greater than, the internal area ratio, 1.3-1.8x that of a 

smooth tube, at high mass velocities [26] [17].  The goal of this section is to perform 

simulations of the above flow regime based heat transfer coefficient model with a range of 

operating conditions to determine if the updated model is capable of capturing these trends.  

This also provides examples to demonstrate how the physical model works.   

Figure 19 and Figure 20 show flow regime maps and heat transfer coefficient 

modeling results for 8.84mm inside diameter smooth and internally-grooved tubes for 

HFE-7100 at 61°C with mass fluxes of 25, 50, 100, 150, 200, 250, and 300 kg/m²s and a 

heat flux of 4kW/m². Figure 19a and Figure 19b show the traditional Wojtan et al. [30] 

flow regime map and corresponding heat transfer coefficient [31], respectively, 

superimposed on the locus of mass fluxes described above.  Figure 20a and Figure 20b 

show the modified Sharar et al. [29] flow regime map and corresponding heat transfer 

coefficient described in Section 4.3 and Section 4.5, respectively, superimposed with the 

same mass fluxes.  The internally-grooved tube parameters used for this simulation are for 

the Wieland Cuprofin copper tube S2AD-952 described in Table 2; the simulated tube has 

60-0.2mm tall fins with a helix angle of 18° and an area enhancement of 1.52.   

As shown in Figure 19a and Figure 20a, the smooth and internally-grooved tube 

are predicted to operate in Slug, Intermittent, and Annular flow (before dryout occurs) for 

mass fluxes of 200, 250, and 300 kg/m²s.  In these cases, the dry angle (θdry) is zero and 

the film thickness in Equation (22) is decreasing as the vapor quality increases.  The result, 

as shown in Figure 19b and Figure 20b, is a monotonically increasing heat transfer 

coefficient with increasing vapor quality and internally-grooved tube enhancement ratios, 

(i.e. the internally-grooved tube heat transfer coefficient divided by the smooth tube heat 



 

77 

 

transfer coefficient) that approaches the area enhancement provided by the grooves. This 

is clear at the highest mass flux 300 kg/m²s and a moderate vapor quality of 0.5 where the 

internally-grooved tube has a heat transfer coefficient of 7428W/m²K and the smooth tube 

has a heat transfer coefficient of 3,599W/m²K; 7,428/3,599=2.06.  It’s important to note 

that as the mass flux decreases from 300 to 200 kg/m²s and below, the convective 

vaporization component of the two-phase heat transfer coefficient decreases because the 

Reynolds number value in Equation (22) is decreasing.   

 
Figure 19:  Modeling simulation results for a) original Wojtan et al. [30] flow regime map and b) 

associated heat transfer coefficient [31] in an 8.84mm smooth tube with HFE-7100 at 61°C and a heat 

flux of 4 kW/m² 

 

At a mass flux of 150 kg/m²s and below, the results for smooth tube and internally-

grooved tube begin to diverge.  At a mass flux of 150 kg/m²s on Figure 19a, the smooth 

tube is operating in the Slug and Stratified-Wavy regime for vapor qualities from 0 to 0.23.  

For this case, the dry angle ranges from 0 to θstrat, as dictated by Equation (26), and the 

two-phase heat transfer coefficient, given by Equation (19), decreases.  Annular flow is 
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reached after a vapor quality of 0.23 and the dry angle is then zero.  At this point, the 

smooth tube is operating in Annular flow and the heat transfer coefficient profile begins 

increasing monotonically.  The internally-grooved tube shows a similar, yet slightly altered 

profile.  Similar to the smooth tube, the internally-grooved tube begins operating in the 

Slug and Stratified-Wavy flow regime, the dry angle is non-zero, and the heat transfer 

coefficient remains low.  However, because the Intermittent to Annular transition line is 

shifted to a lower vapor quality (Equation (17)), the internally-grooved tube reaches 

Annular flow at a lower vapor quality of 0.12 in Figure 20a.  After this point, it follows a 

similar monotonically increasing Annular flow profile to that exhibited by the smooth tube.   

 
Figure 20:  Modeling simulation results for a) Modified Sharar et al. [29] internally-grooved tube 

flow regime map and b) associated heat transfer coefficient in an 8.84mm internally-grooved tube 

with HFE-7100 at 61°C and a heat flux of 4 kW/m² 

 

  At a mass flux of 100 kg/m²s, the smooth tube is operating in the Slug and 

Stratified-Wavy or Stratified flow regime for all vapor qualities and the internally-grooved 

tube begins operating in the Slug and Stratified-Wavy flow regime and transitions to 

Annular flow at a vapor quality of 0.25.  For the smooth tube, the dry angle ranges from 0 
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to θstrat as dictated by Equation (25) and (26) for all vapor qualities.  The result is a 

relatively poor, yet slightly increasing, heat transfer coefficient as the vapor quality 

increases.  Under the same conditions, the internally-grooved tube transitions to Annular 

flow and the heat transfer coefficient increases sharply with increasing vapor quality.  At a 

moderate vapor quality of 0.5 where the internally-grooved tube is operating in Annular 

flow (h=4,968W/m²K) and the smooth tube is operating in Stratified-Wavy flow 

(h=954W/m²K) the enhancement ratio is 5.2. 

 The simulation showed similar performance enhancement in the internally-grooved 

tube at a mass flux of 50 kg/m²s.  As shown in Figure 19a, the smooth tube is operating in 

the Slug and Stratified-Wavy or Stratified flow regime.  The internally-grooved tube, 

shown in Figure 20a, begins operating in the Slug and Stratified-Wavy flow regime at low 

vapor quality and approaches Annular flow at higher vapor qualities.  The resulting smooth 

tube heat transfer coefficient remains low due to Stratified flow, and a large dry angle in 

Equation (19), and reaches a value of 320W/m²K at a vapor quality of 0.5.  However, 

because the internally-grooved tube flow regime is approaching Annular flow, the dry 

angle decreases with increasing vapor quality and the heat transfer coefficient increases to 

a value of 1,737W/m²K at the same vapor quality.  This represents an enhancement ratio 

of 5.4. 

 At the lowest vapor quality modeled, 25 kg/m²s, both the smooth tube and 

internally-grooved tube are operating exclusively in the Stratified and Stratified-Wavy 

flow regimes.  In this case, the dry angle is always between the stratified angle, Equation 

(10), and θdry as described by Equation (25).  The combined effect of a poor convective 

vaporization term (Equation (22)) and a large dry angle is a poor heat transfer coefficient, 
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as calculated by Equation (19).  For a mass flux of 25 kg/m²s, the smooth tube had a heat 

transfer coefficient of 207W/m²K and the internally-grooved tube simulation showed a heat 

transfer coefficient of 553W/m²K.  The enhancement ratio in this case reduced to 2.6, again 

approaching the area enhancement provided by the grooves. 

Figure 21 shows a graphical summary of the enhancement ratio vs mass flux based 

on Figure 19, Figure 20, and the analysis above.  The green dashed line represents the 

predicted enhancement ratios for a vapor quality of 0.5 and plotted as a function of mass 

flux; again, the enhancement ratio is defined as the internally-grooved tube heat transfer 

coefficient divided by the smooth tube heat transfer coefficient.  The solid red line is the 

area enhancement of the internally-grooved tube.   

 
Figure 21:  Simulated results comparing enhancement ratio vs mass flux for 8.84mm smooth and 

internally-grooved tubes with HFE-7100 at 61°C and a heat flux of 4 kW/m² as shown in Figure 19 

and Figure 20 

 

The figure shows heat transfer improvement approaching the area enhancement of 
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Stratified-Wavy flow, and at high mass flux, where both tubes are predicted to operate in 

the Slug, Intermittent, or Annular flow regimes.  Large enhancement (6 to 7x) was 

predicted at low-to-intermediate mass fluxes where the smooth tube was operating in 

Stratified flow and the internally-grooved tube is operating in Annular flow.  The practical 

benefit of operating at low mass flux, where the enhancement is predicted to be 6-7x, is the 

reduction in pumping power associated with this operating condition.  These trends are 

consistent with those described earlier, in Chapter 1 and Chapter 3, and indicate that the 

new flow regime map and associated heat transfer coefficient correlation likely capture the 

physical mechanisms responsible for enhancement in internally-grooved tubes.   

Figure 22 shows a more detailed summary of the enhancement mechanisms 

responsible for improved performance in internally-grooved tubes.  As shown, the 

Ravigururajan and Bergles [28] turbulent enhancement does not vary significantly over the 

range of mass fluxes considered;  the enhancement factor is 1.426 at a mass flux of 400 

kg/m²s and 1.271 at a mass flux of 10 kg/m²s.  The Thome et al. [91] enhancement factor, 

on the other hand, increases from 1.269 at a mass flux of 400 kg/m²s to 2.947 at a mass 

flux of 10 kg/m²s.  As shown in Figure 22, the enhancement ratio has the same slope as the 

Thome et al. [91] enhancement factor for mass fluxes ranging from 400 kg/m²s to 

approximately 150 kg/m²s where Slug, Intermittent, and Annular flow are the dominant 

flow regimes for both the smooth and internally-grooved tubes; please refer to Figure 19 

and Figure 20.  For this range of mass fluxes, enhancement is dominated by area 

enhancement, turbulence (as described by Ravigururajan and Bergles [28]), and the 

Gregorig effect/film flow (as described by Thome et al. [91]). 
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At mass fluxes below 150 kg/m²s, the slope and value of the enhancement ratio 

significantly increases due to sustained Annular flow in the internally-grooved tube and 

transition to Stratified-Wavy flow in the smooth tube.  In this case, enhancement is 

dominated by the observed/predicted dominance of Annular flow in the grooved tube. 

Annular flow results in a dry angle of zero for the internally-grooved tube and Stratified 

flow results in a dry angle between 0 and 2π for the smooth tube; again, please refer to 

Figure 19 and Figure 20.  At low mass flux, the total enhancement is less than the 

component of the Thome et al. [91] enhancement because a large dry angle is predicted in 

the internally-grooved tube during Stratified flow.  Recall that the Ravigururajan and 

Bergles [28] and Thome et al. [91] enhancement factors only contribute to the wet angle 

heat transfer coefficient, as shown in Equation (37).   

 
Figure 22:  Simulated results comparing enhancement ratio, Emf, and Erb vs mass flux for 8.84mm 

smooth and internally-grooved tubes with HFE-7100 at 61°C and a heat flux of 4 kW/m² 

4.7 Summary 

In this chapter, a new flow regime map and heat transfer coefficient correlation 
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0

1

2

3

4

5

6

7

8

0 100 200 300 400

E
n
h
an

ce
m

en
t 

R
at

io

G (kg/m²s)

Current model area enhancement

Emf Erb

0

1

2

3

4

5

6

7

8

0 100 200 300 400

E
n
h
an

ce
m

en
t 

R
at

io

G (kg/m²s)

Enhancement Ratio area enhancement

Emf Erb

 Area Enhancement 



 

83 

 

heat transfer enhancement.  The existing Wojtan et al. [30] flow regime map was modified 

using the Liebenberg et al. [118] and Liebenberg and Meyer [114] Intermittent to Annular 

transition and the Sharar, Jankowski, and Bar-Cohen [29] Stratified-Wavy to Annular 

transition.  Additionally, the Ravigururajan and Bergles [28] turbulence factor and an 

empirically derived enhancement factor, introduced by Thome et al. [91], were adopted to 

modify the associated heat transfer coefficient correlation.  These modifications resulted 

in varying the calculated dry perimeter angle, θdry, and represent the physical mechanisms 

responsible for enhancement in internally-grooved tubes.   

Through analytical modeling simulations, it was shown that heat transfer 

enhancement at high mass flux (>150 kg/m²s) is dominated by area enhancement, 

turbulence (as described by Ravigururajan and Bergles [28]), and the Gregorig effect/film 

flow (as described by Thome et al. [91]).  Enhancement of 6-7x at low-to-intermediate 

mass flux is dominated by transition to Annular flow in the internally-grooved tube.  

Additionally, predicted heat transfer enhancements approach the area enhancement when 

the smooth and internally-grooved tubes are operating in the same flow regime; this was 

shown at sufficiently low mass flux, where Stratified flow is expected, as well as high mass 

flux, where Annular flow is expected. 

One motivation for the current research effort is to experimentally validate the peak 

enhancement demonstrated in Figure 21 and Figure 22.  Clearly, understanding 

performance at and near this high enhancement operating space is critical to proper design 

and optimization of two-phase systems. 
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Chapter 5: Experimental Setup and Procedures 

In the course of this study, the thermofluid characteristics of a series of 

experimental tests for single, uniformly heated horizontal internally-grooved tubes and 

smooth tubes with various IDs were experimentally studied.   Focus was given to collecting 

and processing flow regime and heat transfer coefficient data to validate flow regime 

transition as a key enhancement mechanism in internally-grooved tubes and validate the 

new flow regime map and heat transfer model described in Chapter 4.  This chapter 

describes the test facility designed and fabricated to collect flow regime data, using a new 

Total Internal Reflection method, and heat transfer coefficient data, using infrared 

thermography, for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter 

smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes 

from 4-56 kW/m², and exit vapor qualities approaching 1.   

The following sections outline the experimental flow loop, tube heating method, 

fluid selection, experimental ranges, tube parameters, data acquisition scheme, vapor 

quality and heat transfer coefficient calculation, and uncertainty analysis.  This approach 

is inspired by the tasks and goals set forth in previous chapters.   

5.1 Two-Phase Testing Setup 

As shown schematically in Figure 23, a test setup was developed to test single- and 

two-phase performance in smooth and internally-grooved horizontal tubes with water (for 

calibration and system validation purposes) and HFE-7100 as the working fluids.  A 

custom reservoir and degasser (a) and a Fluid-o-Tech TMFR motor/pump system (b) are 

used to store, degas, heat, and pump the fluid during testing.  The degasser is necessary to 
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remove dissolved air in the fluid, before two-phase experiments commence, because 

dissolved gasses have been shown to affect performance in smooth channels [133].  To the 

author’s knowledge, the effect of degassed and gassy fluid on heat transfer in internally-

grooved tubes has not been experimentally explored.  The current setup is a closed loop 

system to allow degassing of dielectric fluid and prolonged testing, without the possibility 

of non-condensible gas entering the system.   

 
Figure 23: Schematic of two-phase flow test setup: a) reservoir and degasser b) Fluid-o-Tech pump c) 

Atrato or Kobold flow meter d) control valves e) inline heater f) 0.2m developing flow section g) 0.2m 

test tube h) 8cm sight glass (location of high speed flow visualization and TIR method) i) condenser 

P) pressure transducers and T) thermocouple probes DP) differential pressure transducer 

 

An Atrato ultrasonic flow meter with ±1.5% absolute reading accuracy and 250:1 

turndown ratio (20 mL/min to 5 L/min) was used to measure flow rate for water calibration 

tests.  Kobold DPM 1153 and 1170 pelton wheel flow sensors with ±1.5% full scale 

accuracy and flowrate ranges of 0.24-4.8 GPH and 0.8-30 GPH, respectively, were used to 

measure flowrate for HFE-7100 tests (c).  It’s interesting to note that the Atrato ultrasonic 

flow meter did not work with HFE-7100 due to fluid compressibility and ultrasonic 
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modulation.  Swagelok fluid control valves (d) were used to better control system flowrate 

and pressure.  An Omegalux inline heater (e) was installed to further preheat and vaporize 

the fluid when necessary.  A 0.2m-long smooth or – alternatively – an internally-grooved 

tube developing flow section (f) was placed directly before a corresponding 0.2m-long test 

section (g) and was connected with custom tube fittings made using a FDM Titan rapid 

prototyping machine.  A custom 0.08m-long Pyrex sight glass (h), with the same ID as the 

internally-grooved and smooth tubes, was placed at the exit of the test section (g) to observe 

the local flow regime.  A parallel plate heat exchanger (i) was used to re-condense the 

vapor produced during two-phase operation. 

Fluid pressure was measured by two Omega MMG050 pressure transducers (P), 

with ±0.05% full scale reading accuracy and 0-50psi pressure limits, after the flowmeter 

and before the test section.  Pressure drop across the developing flow section, test section, 

and 0.08m-long sight glass was measured with a Setra Model 230 wet-to-wet differential 

pressure transducer with ±0.25% full scale reading accuracy and 0-25psi differential 

pressure limits.  The fluid temperature at the inlet and outlet of the test section was 

measured by two Special Limits of Error (SLE) Omega Type T thermocouples with ±0.5ºC 

accuracy.  Similarly, two SLE Type T thermocouples were used to measure the fluid 

temperature before the inline heater and after the condenser.  An AeroVironment MT30 

power supply, capable operating up to 120 V and 330 A, was used to supply electrical 

power to the inline heater.  Delivered power was measured by a Tektronix TC312 current 

probe and Yokogawa 7000924 differential voltage probe.  A Tenma 72-6851 power supply 

capable of 35V (±0.1% absolute reading) and 10A (±0.2% absolute reading) was used to 

heat the test tube and was interfaced with a GPIB for ease of experimentation.   
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The tube outside wall temperature was measured using a FLIR ThermoVisionA40 

long wave IR thermal camera (7.5 to 13 μm, ±0.3ºC accuracy [134]) at 14 discrete locations 

along the tube and three axial locations (top, side, and bottom), providing 42 discrete 

temperature data points.  This was accomplished with the use of a custom fabricated 5-inch 

long IR mirror, as shown schematically in Figure 24.  An IR photograph, taken during 

testing of the 2.80mm smooth tube, is shown in Figure 25.  The ABS mirror mount was 

created using a FDM Titan rapid prototyping machine.  Using a CHA E-Beam evaporator, 

the mirror surfaces were created by depositing an adhesion layer of 50nm of titanium (Ti), 

at a rate of 5Å/s for 100s, followed by 150nm of gold (Au), at a rate of 5Å/s for 300s, on 

Pyrex strips that measured 0.1”x1.15”x5”.  The IR mirrors were attached to the mirror 

mount, metallization side facing towards the camera, using Loctite E-20HP structural 

adhesive.  Gold is an excellent IR reflector beyond 1.5 μm with reflectance greater than 

99% and, unlike aluminum or silver, is resistant to oxidation and degradation over time 

[135] [136].  Therefore, gold was an ideal candidate for the current experiments.   

                     
Figure 24:  Schematic of custom IR mirror setup for measuring temperature on the top, middle, and 

side of the test section 
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A Keyence VW6000 high speed camera capable of up to 25,000 fps was used to 

observe the flow regimes in the sight glass.  At the same location, an optical total internal 

reflection (TIR) method using a red fiber optic light source [137] was used to observe and 

quantify flow regime; more detail will be given in Chapter 6.  It is noteworthy to point out 

that flow patterns were observed through sight glasses that are smooth rather than 

internally-grooved.  Nevertheless, they are assumed to be representative of the flow 

regimes actually occurring at the internally-grooved tube exit.  It is conjectured that the 

internally-grooved tube flow structure persists into the sight glass section and experiences 

only minor disruptions do to its short length and low 𝐿ℎ/𝐷;  the distance from the end of 

the test section and the location of the total internal reflection measurement, and high speed 

flow visualization, is 0.015m and 0.03m, respectively.      

 
Figure 25:  Schematic of custom IR mirror setup for measuring temperature on the top, middle, and 

side of the test section, and an IR photograph of the 2.80mm smooth tube during testing 

5.2 Tube Heating Method 

The smooth and internally-grooved tube diabatic test sections (‘g’ on Figure 23) 

were experimentally heated using custom-fabricated thin-film heaters deposited on the 

outside of the tubes.  To create the heaters, the tubes were coated with 8 μm Parylene-C in 

a Specialty Coating Systems PDS2010 coating tool.  This provided a dielectric layer to 

prevent electrical energy from shorting through the highly conductive copper tube.  Next, 
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the resistor material, consisting of 12,000 Å of Titanium at a rate of 4 Å/s and 2,000 Å of 

Platinum at a rate of 2 Å/s, was deposited in a CHA E-beam evaporator using a rotating 

stepper motor assembly.  These thicknesses were chosen to provide an appropriate 

resistance, ~5-20Ω, for electrically heating the tube; details on these values are provided in 

Appendix A.  Then, copper electrical leads were attached to the metalized tube with EPO-

TEK H20E silver-filled epoxy.  Finally, the entire assembly was sprayed with Boron 

Nitride to provide a uniform emissivity.  During testing, the thin film resistor was heated 

with a TENMA 72-6851 DC power supply.  Figure 26 shows a photograph of the smooth 

tube before attaching the electrical leads and spraying with Boron Nitride.  Boron Nitride 

emissivity was assumed to be 0.96 for all test conditions [138].  Please refer to Appendix 

A for a discussion of alternative tube heating methods considers as well as an attempt to 

make thin film resistors using atomic layer deposition (ALD). 

 

 
Figure 26:  Photograph of a smooth tube coated with a thin-film heater 

5.3 Fluid Selection 

As discussed in Chapter 2 and Chapter 4, the Taitel-Dukler [46], original Wojtan 

et al. [30], and modified Sharar et al. [29] maps were developed using phenomenological 

models and, as such, are amenable to general use and applicable to a variety of fluids and 

flow conditions.  From this perspective, any fluid could theoretically be used in the 

following tests and extrapolated to other conditions.  However, the fluid selected should 

8 μm Parylene-C Cu tube 1.2 μm Ti and 0.2 μm Pt  
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have properties close to the fluid used in other internally-grooved tube studies [110] [111] 

[66] [77] so that direct comparison can be made.  Furthermore, selecting a fluid with 

properties similar to the fluids used to develop semi-empirical flow regime [47] [48] [49] 

[50] [30] maps provides the added benefit of a large database of smooth tube data for 

comparison.   Additional considerations when choosing a fluid are saturation temperature, 

saturation pressure, and latent heat of vaporization.  If the fluid boils at a relatively high 

saturation temperature in atmospheric pressure, the vapor can be condensed by an air- or 

water-cooled condenser, as in the schematic shown in Figure 23, and a refrigeration 

compression loop is not necessary.  Furthermore, if the fluid has a low to moderate latent 

heat of vaporization, less heat will be required to reach the desired vapor quality; this 

should be considered beneficial from an experimental standpoint.   

Table 7 summarizes the fluids and properties used in the empirical flow regime 

maps discussed in Chapter 2 and Chapter 4, [47] [48] [49] [50] [30], along with several 

candidate fluids, FC-72, HFE-7100, and water.  Water, which is renowned as a thermal 

management fluid, has dramatically different properties than the refrigerants and dielectric 

liquids and is not suitable as a heat transfer fluid for the current study.  As shown in Table 

7, HFE-7100 has fluid properties similar to the fluids used to define the empirical flow 

regime maps and similar to the studies outlined in the literature review (most of which used 

R-134a).  Additionally, HFE-7100 has a moderate boiling point (61˚C) at ambient pressure 

and a relatively low latent heat of vaporization (112 kJ/kg).  Therefore, the current research 

used degassed HFE-7100 as the working fluid.  Fluid properties for FC-72 and HFE-7100 

were not included in the table for pressure of 900 kPa (0.9 MPa) because properties were 

not available.  Additionally, it should be noted that there appears to be some inconsistencies 
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in reported properties for HFE-7100, FC-72 and other 3M Novec fluids [139]; this will 

inevitably lead to uncertainty in measurement and modeling results.  Unfortunately, this 

uncertainty cannot be quantified at this time.  Efforts should be made to better characterize 

these fluids. 

Table 7: Comparison of fluids (and properties) used for empirically fitted flow regime maps and 

candidate fluids 
 Boiling Point 

(˚C) 

ρl (kg/m³) ρg (kg/m³) σ (mN/m) µl (µPa-s) µg (µPa-s) hlg (kJ/kg) 

Fluid 0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

0.1 

MPa 

0.9 

MPa 

R-22 -41 20 1410 1211 4.64 38.05 18.1 8.8 347 174 9.68 12.2 234 188 

R-134a -26 36 1377 1165 5.19 44.08 15.5 6.7 380 171 9.76 12.2 217 168 

R-410a -52 4 1361 1154 4.12 33.82 17.8 8.5 387 162 9.89 12.8 272 216 

FC-72 56 N/A 1680 N/A 13.4 N/A 10 N/A 262 N/A 12.1 N/A 88 N/A 

HFE-7100 61 N/A 1370 N/A 9.87 N/A 14 N/A 275 N/A 11.3 N/A 112 N/A 

Water 100 175 958 891 0.59 4.653 58.9 43.2 283 154 12.3 14.9 2257 2030 

5.4 Experimental Ranges 

Wieland, a leading manufacturer of smooth and internally-grooved refrigeration 

tubes, was contacted, informed of the current research initiative, and agreed to provide 

smooth and internally-grooved copper tubes.  They provided six, 1 meter long lengths of 

various internally-grooved and smooth tubes.  Additional smooth tubes with comparable 

inside diameters and wall thicknesses were purchased from McMaster-Carr.  Table 8 

outlines the parameters of interest for the smooth and internally-grooved tubes used for the 

current study.  As shown, tube inside diameters ranged from 2.62mm to 8.84mm, tube wall 

thicknesses range from 0.19 to 0.9mm, number of fins ranges from 36 to 60, fin height 

ranges from 0.12 to 0.2mm, fin base ranges from approximately 0.12 to 0.25mm, and helix 

angles range from 10˚ to 18˚.  All the internally-grooved tubes have trapezoidal fin profiles 

and surface enhancements between 152-160% compared to smooth tube equivalents.  

18cm-long heated tube lengths of the 2.62mm, 4.54mm, and 8.84mm ID tubes were 

used to simulate channel lengths typical in an IGBT cold plate, thus creating the cold plate 

‘unit cell’.  These tube diameters cover the range of past research, for comparison purposes, 
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and also smaller sized channels that approach mini- and microchannels to explore the size 

effects in internally-grooved tubes.  It is unclear what effect heated length has on internally-

grooved tube performance, however, this aspect is outside the scope of the current effort.   

Table 8: Geometric parameters of internally-grooved and smooth tubes for the current study 

Manufacturer Type Inside 

Diameter 

(mm) 

Wall 

thickness 

(mm) 

# 

fins 

Fin 

height 

(mm) 

Fin base 

(mm) 

Helix 

angle α 

(˚) 

Surface 

enhancement 

(%) 

Wieland IG 2.62 0.19 36 0.12 0.12 10 160 

 

McMaster 

 

Smooth 2.8 .9 N/A N/A N/A N/A N/A 

Wieland IG 4.54 0.23 40 0.15 0.20 18 152 

 

McMaster smooth 4.54 0.23 N/A N/A N/A N/A N/A 

 

Wieland IG 8.84 0.34 60 0.2 0.25 18 152 

 

Wieland smooth 8.84 0.34 N/A N/A N/A N/A N/A 

 

Nine different flowrates were tested (25, 50, 75, 100, 125, 150, 175, 200, and 300 

kg/m²s) for the 8.84mm ID tubes, eight flowrates were tested for the 4.54mm tubes (50-

300 kg/m²s), and seven flowrates were tested for the 2.62 – 2.8mm tubes (75-300 kg/m²s).  

This represents Reynolds numbers ranging from 640 to 12000; this is based on average 

liquid/vapor properties, superficial velocities, and vapor qualities from 0 to 1.  The Kobold 

flow meters used in the current study could not accurately measure flowrates below these 

lower bounds.  Six different tube heat fluxes were tested; 4, 9, 18, 28, 40, and 56 kW/m².  

Vapor qualities ranging from 0 to 1 were tested.  These mass fluxes centered around regions 

near the Stratified/Annular, Stratified/Intermittent, and Intermittent/Annular transitions 

because these are the regions where internally-grooved tubes have demonstrated heat 

transfer improvement that can be explained by flow regime transition.  However, data well 

within a specified flow regime (away from the transitions, as is the case with mass fluxes 
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of 25, 200, and 300 kg/m²s) were also explored to assess the flow regime map’s ability to 

predict general trends.    

5.5 Data Acquisition 

All measurements, with exception of the TIR flow quantification and high speed 

camera data, were collected by National Instruments DAQ accessories and transmitted to 

an adjacent desktop computer running a LabView interface.  During testing, the flowrate 

was fixed and the inline heater power was incrementally increased, such that the inlet vapor 

quality was increased by steps of approximately 0.1, until either the maximum inline heater 

load of 1.2 kW was reached or the vapor quality exceeded 1.  It’s worth noting that the 

inlet temperature at the inline heater changed over the course of testing and the incremental 

increase in quality did not match 0.1 for every data point.   

At each inlet vapor quality, the six different heat fluxes were sequentially applied 

to the heater until dryout or excessive overheating occurred.  For the current test setup, the 

maximum allowable temperature of the tubes before damage to the thin film heaters was 

120ºC.  Data was acquired when the system had reached steady state, which, depending on 

the mass flux and heat load, usually took no more than 10-15 minutes after changing a 

system parameter.  After achieving steady state, high speed image data was recorded at a 

frame rate of 250-500 fps for 5 seconds. Then, the TIR data images were collected at 30 

fps for 10 seconds (300 data points per test condition).  The high speed and TIR imaging 

could not be performed simultaneously because the high intensity light required for the 

high speed camera saturated the CMOS camera used for the TIR method.  This data was 

later post-processed using a custom MATLAB code.  Please refer to Chapter 6, Appendix 
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B, and the journal paper by Sharar et al. [137] for a detailed description of the TIR 

methodology. 

It is to be noted that unlike the eight unique flow regimes defined by the Wojtan et 

al. map [30] and the Sharar et al. map [29], most two-phase researchers [55] have limited 

their classification to the primary flow regimes:  Stratified, Intermittent, Annular, and 

Bubbly.  In the interest of uniformity and consistency, and to avoid confusion that may 

derive from the diversity of names used by authors for some of the observed sub-regimes, 

the present effort will follow the classification proposed by Rahim et al. [55], combining 

Slug, Plug, and Intermittent data points into Intermittent flow, combining Slugging-

Annular flow, Wavy-Annular flow, and Semi-Annular flow into Annular flow, and 

defining Stratified-Wavy flow as a sub-regime of Stratified flow. This classification 

(simplification) will be applied to the current study when experimentally defining flow 

regime.  One exception is Chapter 6, where sub-regimes are defined to demonstrate the 

more-subtle capabilities of the optical technique. 

5.6 Deduction of Vapor Quality 

The vapor quality at the inlet of the diabatic test section was calculated using 

Equation (39) below: 

xinlet =
Kqinline − ṁCp(Tsat−inlet − Ti)

ṁhlv

 (39) 

where qinline is the applied heat load from the inline heater and the diabatic test section, ṁ 

is the mass flowrate, Cp is the specific heat of HFE-7100 at the specified temperature, x is 

the vapor quality, Tsat−inlet is the saturation temperature of HFE-7100 at the inlet of the 

test section, Ti was the temperature at the inline heater inlet (Ti < Tsat), hlv is the latent 
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heat of the fluid, and K is the percentage of the applied heat from the inline heater that 

entered the fluid.  For the current study, K was determined to always be greater than 95% 

(0.95) with HFE-7100 as the working fluid.  More details on calculating K, based on a 

single-phase energy balance, are described in Chapter 7. 

The vapor quality at the outlet of the diabatic test section was calculated using 

Equation (40) below: 

xoutlet =
Kqtotal − ṁCp(Tsat−outlet − Ti)

ṁhlv

 (40) 

where qtotal is the total heat applied to the inline heater and the diabatic test section and 

Tsat−outlet is the saturation temperature of HFE-7100 at the outlet of the test section.  

Again, K was assumed to be 0.95 based on single-phase results.  Vapor qualities shown in 

the Results and Discussion sections are average values between the inlet and outlet of the 

diabatic section. 

5.7 Calculating Heat Transfer Coefficient 

The average heat transfer coefficient was calculated experimentally with 

knowledge of the fluid saturation temperature, tube inside wall temperature, and tube heat 

flux: 

h =
q"

Twall − Tsat

 
(41) 

 

where q" is the heat flux, Twall is the average of the 42 discrete temperatures of the 

liquid/wall interface, and Tsat is the saturation temperature of the fluid at the specified 

pressure.  Each measured heat transfer coefficient is the mean value of ten sequential 

acquisitions; as discussed later in the uncertainty analysis, averaging reduces the 

experimental uncertainty in the calculated heat transfer coefficient.  A linear pressure drop 
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was assumed between the inlet and outlet of the tube to determine the saturation 

temperature.  Based on a simple conduction model, the inner wall temperature was 

calculated as: 

Twall = T0 −
q ln(

r3
r2

⁄ )

2πkpL
+

q ln(
r2

r1
⁄ )

2πkcuL
 

(42) 

 

where T0 is the outside temperature of the tube as measured by the IR camera, q is the total 

heat dissipation of the tube, r3 is the outside radius of the tube and the 8 μm Parylene-C 

layer, r2 is the tube outside radius, r1 is the tube inside radius at the base of the fins, kp is 

the Parylene thermal conductivity, kcu is the copper tube thermal conductivity, and L is the 

length of the tube.  A physical representation of this is shown schematically in Figure 27. 

 

Figure 27:  Schematic of 1-D radial heat conduction in the Parylene-C/Ti-Pt coated tubes 

ANSYS simulations were performed to determine if the conduction model 

accurately captured the inside wall temperature.  The concern was that significant 

spreading in the tube wall would lead to significant ‘3-D effects’ and predicted wall 

temperature values would not be a good representation of the actual values.  This would 

lead to uncertainty in the experimental heat transfer coefficient; this is less of a concern for 

the current study because average heat transfer coefficient values were reported, however, 
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r2
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for future studies where local variations in the heat transfer coefficient may be of interest, 

this analysis is of obvious practical importance.   

Figure 28a shows a screenshot of the ANSYS model and Figure 28b shows the 

difference between the numerical and predicted (based on Equation (42)) values.  These 

results are for a circumferentially and axially varying heat transfer coefficient profile that 

would induce spreading and non-linearities in the heat flow and resulting temperature 

profile.  The values applied to the model are listed in Table 9 and are meant to represent 

low-to-moderate inlet heat transfer coefficient values (perhaps single-phase saturated 

liquid), followed by progressively higher heat transfer coefficients (Intermittent and 

Annular flow), followed by an abrupt drop in heat transfer coefficient from 7000 W/m²K 

to only 300 W/m²K (which represents Dryout).  It is expected that the sharp contrast in heat 

transfer coefficient between Annular flow and Dryout would lead to the most heat 

spreading and the largest errors in the predicted value.  This is considered a ‘worst case’ 

scenario and is a good indicator of the accuracy of the conduction model. 

 

Figure 28:  Numerical results for a circumferentially and axially varying heat transfer coefficient 
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As shown in Figure 28b, the largest difference between the predicted and numerical 

results was, as expected, at the boundary between Annular flow and Dryout.  However, the 

difference between the expected values, based on the above conduction model, and the 

numerical simulation was always less than ±0.06ºC.  Since the measurement error in the 

IR camera is an order of magnitude larger than the spreading error, ±0.3ºC accuracy vs 

±0.06ºC, heat spreading in the Parylene and copper layers is negligibly small and the 

conduction model above is appropriate for calculating local and average heat transfer 

coefficients for the current test setup.   

Table 9:  Heat transfer coefficients applied at different axially and circumferentially varying 

locations for the ANSYS numerical model 

 Heat Transfer Coefficient at Different Axial Locations (W/m²K) 

Circumferential 

Location 

0cm 2.5cm 5cm 7.5cm 10cm 12.5cm 15cm 

0º (Right) 1000 3000 3000 5500 6000 7000 300 

90º (Top) 1000 2000 2500 6000 6000 7000 300 

180º (Left) 1000 3000 3000 5500 6000 7000 300 

270º (Bottom) 1000 2500 2500 6000 6000 7000 300 

5.8 Uncertainty Analysis 

 Measurement uncertainty was estimated using the root-sum-square method [140] 

and is based on the accuracies outlined in the above sections.  The error in the measured 

heat transfer coefficient is a function of the tube heat flux and the difference between the 

saturation temperature and tube wall, ∆T: 

δh

h
=

√(
δq"

q" )
2

+ (
δ∆T
∆T

)
2

√n

⁄
 

(43) 

 

For the current data set, the reported heat transfer coefficient was the average of 10 

successive measurements at steady state conditions.  In accordance with the method 

outlined by Bevington and Robinson [140], averaging reduces the uncertainty by a factor 
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of √n, where ‘n’ is the number of samples.  In practice, the averaging of 10 samples reduces 

the uncertainty in the experimental heat transfer coefficient by a factor of 3.16. 

The error in the experimental heat flux is a function of the error in the applied heat, 

q, the internal diameter of the tube, D, and the tube length, L.  Both the heated length and 

internal diameter were measured using calipers with accuracy of ±0.01mm.  Variations in 

the tube diameter for a given test section were considered nonexistent.  The error in the 

heat flux is calculated by: 

δq"

q"
= √(

δq

q
)

2

+ (
δD

D
)

2

+ (
δL

L
)

2

 

(44) 

 

The error in the applied heat load is dependent on the accuracy of the power supply 

voltage, V, and current, I: 

δq

q
= √(

δV

V
)

2

+ (
δI

I
)

2

 

(45) 

 

The error in the heat transfer coefficient varied depending on the applied heat flux 

and measured temperature rise of the tube wall.  Generally, error bars were smallest for 

low mass flux and high heat flux where heat transfer coefficients are low and ∆T values 

are large.  Conversely, error bars were typically larger at high mass flux and low heat flux 

where heat transfer coefficients were higher and ∆T values were small.   

It’s important to note that the heat transfer coefficients reported in Chapter 8 and 

Appendix C-Appendix E for the internally-grooved tubes are average augmented values 

accounting for the increased area enhancement of the groove structures.  Therefore, 

uncertainty stemming from ambiguity in the reported area enhancement is not propagated 

in the heat transfer error measurement.  However, when normalizing the results to account 
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for area enhancement in summary charts, it should be expected that small ~1-5% error 

(based on a conversation with Wieland and the understanding that this is a carefully 

controlled industrial process) is introduced due to slight manufacturing deviations.  

Vapor quality uncertainty is a function of the applied heat, latent heat (which is 

assumed to be a constant and whose uncertainty is ignored), and the mass flowrate:   

δx

x
= √(

δq

q
)

2

+ (
δG

G
)

2

 

(46) 

 

The error in vapor quality was generally small for high mass flux cases, ±0.005, but 

was as high as ±0.1 for low mass fluxes.   

Experimental uncertainty for mass flux was a fixed value of ±10.5 kg/m²s for the 

8.84mm tubes, 12.49 kg/m²s for the 4.54mm tubes, and ±14 kg/m²s for the smallest 

diameter tubes.  Vertical error bars shown in the Results and Discussion section are based 

on the above analysis while horizontal error bars (for vapor quality) are omitted for figure 

clarity.  A summary of typical measurement and uncertainties for the sensors and 

thermofluid parameters, based on the above analysis, are listed in Table 10.  Please note 

that these are ‘typical’ values and, as described above, the actual experimental uncertainty 

values can vary depending on the specific operating conditions. 
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Table 10:  Summary of uncertainties for sensors and parameters 

Sensors Uncertainty (typical) 

Diameter/Length 

Temperature (TC) 

±0.01 mm 

±0.5ºC 

Temperature (IR) ±0.3ºC 

Pressure (absolute) ±0.05% F.S. 

Pressure (differential) ±0.25% F.S. 

Voltage ±0.1% reading 

Current ±0.2% reading 

Flowrate 

TIR film thickness 

±1.5% F.S. 

±17μm 

Parameters Uncertainty (typical) 

Heat transfer coefficient ±1-5%  

Heat flux ±1-2% 

Vapor quality ±1-2% 

Mass flux ±10.5 to 14 kg/m²s 
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Chapter 6: Total Internal Reflection Flow Regime 

Quantification 

As described in Chapter 2 and Chapter 3, and analytically defined in Chapter 4, 

local heat transfer rates in smooth and internally-grooved tubes are inherently tied to the 

local flow regime.  Therefore, any efforts aimed towards experimentally determining and 

correlating heat transfer rates in internally-grooved tubes should focus heavily on 

collecting reliable flow regime data.  For this purpose, the intent of this chapter is to; (a) 

demonstrate the ability to accurately determine flow regime and intermediate sub-regimes 

based on a non-intrusive flow visualization method; (b) use the non-intrusive flow 

visualization method with the two-phase experimental setup, described in Chapter 5, to 

collect adiabatic data for water in an 8.84 mm smooth tube; and (c) compare the results of 

the new flow visualization method to the phenomenological flow regime maps of Taitel-

Dukler [46], Ullmann-Brauner [141], and Wojtan et al. [30] for validation purposes.   

This chapter will begin with a discussion of the non-intrusive optical flow 

identification technique and experimental setup.  Next, experimental TIR flow regime data 

and high speed photographs are presented.  From this data, unique temporally varying film 

thickness profiles for different flow regimes and sub-regimes are identified.  Then, the 

experimental flow regime data is compared to the Taitel-Dukler [46], Ullman-Brauner 

[141], and Wojtan et al. [30] flow regime maps to determine accuracy of the experimental 

method and analytical flow regime maps alike.  Finally, conclusions on the relative 

applicability of the existing flow regime maps with water as the working fluid are 

presented.  This chapter is based on a journal paper published in the Journal of Heat 
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Transfer Engineering titled ‘Non-Intrusive Optical Validation of Two-Phase Flow 

Regimes in a Small Diameter Tube’ [142]. 

6.1 Flow Regime Quantification Methods Available in the Literature 

Drahos and Cermak [143] performed a review of available quantitative techniques 

and divided them into two categories.  The first category is measurement of some parameter 

that is influenced differently by the presence of liquid or vapor.  Examples of such a  

method are X-ray photography [144], photon attenuation [145], hot film anemometry, 

ultrasonic transmission [146], electrical impedance [147] [148], and a variety of optical 

methods based on light modulation [142] [149] [150] [151] [81].  The second category is 

measurement of an energetic parameter such as pressure fluctuation or wall shear stress 

fluctuation [118], which varies in a known way with the vapor or liquid content of the flow.  

For additional useful information and a description of these techniques, with a focus on 

electrical impedance and capacitance methods, the reader is directed to the Ph.D. Thesis 

by Canièri [152]. 

Of these methods, the optical techniques appear to be the most promising for the 

present study because they have been shown to be simple to implement, non-intrusive, 

inexpensive, and can provide film thickness measurement in addition to broad flow regime 

determination.  Specific to the current study, reapplication of a total internal reflection 

(TIR) optical method, originally developed by Shedd and Newell [81], can provide a 

temporally-varying film thickness profile.  Based on the observed film profile, both flow 

regime and local film thicknesses can be obtained.  Use of a complimentary flow 

visualization technique, in this case a high speed camera, will provide validation of the TIR 

film thickness measurements.  
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6.2 Theory 

A schematic representation of the TIR method is provided in Figure 29.  As shown, 

diffuse light emitted from a point light source on the outside of an optically transparent 

wall, tube, or channel will be reflected via total internal reflection at the liquid-vapor 

interface.  The reflected light will travel back to the outside surface of the wall, tube, or 

channel and an image will be formed.  The image can be recorded with a camera, captured 

with a frame grabber, and processed using custom software or the Matlab Image Processing 

Toolbox [153].   

Figure 29:  Principle of Total Internal Reflection (TIR) film thickness measurement technique 

 

The TIR thickness measurement relates the distance between a light source and the 

reflected rays to the liquid film thickness.  Figure 29 shows the geometric relationships 

defined by the liquid and wall thicknesses, tl and tw, and critical angles, θclv and θcwa.  

The distance from the source to the location where the reflected light passes back through 

the incident surface is: 

x = 2tltanθclv + 2twtanθcwa (47) 

where θclv and θcwa are the critical angles at liquid-vapor and wall-air interfaces: 
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θc = sin−1
n2

n1

 (48) 

Rearranging Equation (47) for tl yields: 

tl =
x − 2twtanθcwa

2tanθclv

 (49) 

With knowledge of the optical properties of the materials and the tube wall 

thickness, the liquid film thickness can be determined by measuring the distance between 

the light source and first fully reflected ray.   However, there is also total internal reflection 

at the wall-liquid interface at sufficiently large angles.  If the film thickness is sufficiently 

large, then the first fully reflected ray from the liquid-vapor interface will fall beyond the 

reflected ray from the wall-liquid interface.  This makes image processing difficult [154] 

[27] [153] and, therefore, poses an upper limit on the film thickness that can be measured 

for a particular setup.  This effect is discussed later in this chapter.  A complete discussion 

and derivation of the TIR liquid thickness measurement technique, including this upper 

limit, is described in a Master’s Thesis by Shedd [81].   

Different flow regimes will result in unique temporally varying film thickness 

measurements when taken at the top of a transparent tube, as shown in Figure 30.  

Therefore, two-phase flow regimes can be identified by measuring film thickness at a fixed 

point on the top (with respect to gravity) of a horizontal transparent channel and comparing 

the results to a catalog of known profiles.  Single-phase flow, not shown, would result in a 

first fully reflected ray at the wall-liquid interface and a constant film thickness 

measurement at the upper limit of the measurement technique.  Ideally, Bubbly flow would 

result in a relatively large average thickness with quick oscillations.  Intermittent flow 

would have slower temporal response and a larger variation as liquid plugs and vapor slugs 
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intermittently pass the stationary sensor.  Annular flow, which is traditionally characterized 

by a thin Annular film around the perimeter of the tube and a fast moving vapor core, would 

result in a relatively uniform film thickness with an occasional excursion due to dryout or 

rivulets, and the possibility of wave-induced relatively high-frequency ripples.  Stratified 

flow, where vapor occupies the top of the channel and liquid settles to the bottom due to 

buoyancy forces, would show no film thickness at the top of the channel.    In this way, 

flow regime can be objectively quantified by fixing a stationary TIR film thickness sensor 

at the top of a horizontal transparent channel.   

 
Figure 30:  Two-phase flow regimes (bottom) and associated film thickness profiles (top) 

 

This methodology would work for inclined, declined, and vertical flow as well, 

because the orientation of the sensor with respect to gravity does not affect the path of the 

reflected light in the present parametric range.  Light can be affected by intense 

gravitational fields and/or long paths, neither of which pertain to the present study.  

However, one would expect different flow regimes for different channel orientations due 
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to gravity effects on phase distribution.  For example, asymmetrical phase distributions 

such as Stratified flow, which are common in meso-and macro-scale tube horizontal flow, 

are not encountered in vertical flow, but may well dominate a wide range of qualities for a 

declined flow.  Also, Annular films tend to be thinner at the top of horizontal tubes 

compared to the bottom, whereas vertical flows maintain more uniform Annular films.  In 

general, flow patterns in inclined and declined tubes tend to share attributes of both 

horizontal and vertical two-phase flow.  For more information on the effect of channel 

orientation on flow regimes, please refer to reviews by Cheng et al. [32] and Rouhani and 

Sohal [155]. 

6.3 TIR Setup and Procedures 

6.3.1 Implementation of the TIR Technique 

The TIR optical flow regime technique consists of a diffuse light source on the top 

(with respect to gravity) of an optically transparent horizontal tube, a charge coupled device 

(CCD) camera to capture the resulting light ring, and image processing software to extract 

a film thickness value.  For the current study, this was accomplished by using a clear 

borosilicate glass tube from Precision Glass Blowing, IF-E96 red LED light source with 

internal microlens and a precision-molded PBT housing to maximize optical coupling into 

standard 1000 μm core plastic fiber cable, and an EO-1312C CMOS color USB camera 

with focusing optics.  The cladding was stripped off of the fiber cable to reduce the 

diameter so that the light ring could be viewed with greater ease; subsequently, the stripped 

fiber core had to be painted black to prevent saturation of the image.  A 27426 diffuse film 

from Edmund Optics was attached to the outside of the tube using UV-curing Norland 

Optical Adhesive 65.  This coating homogenized the light leaving the LEDs and distributed 



 

108 

 

the light diffusely.  Additionally, the diffuse film serves to couple the light out of the tube 

and scatter it so that an image of the light ring may be detected.  Image processing and 

measurement automation were accomplished using a custom Matlab code, and are 

discussed further in Section 6.3.4 and Appendix B. 

6.3.2 Experimental Ranges for Method Validation 

Water at atmospheric pressure was used as the working fluid to validate the TIR 

method.  Five different flowrates were tested; 60, 125, 250, 500, and 1000 mL/min equating 

to mass fluxes in the range of approximately 15 to 230 kg/m²s.  Flowrates fluctuated by 3-

5% during testing due to oscillations in the pump.  The fluid reservoir was kept at 95˚C 

resulting in temperatures between 80˚C and 90˚C at the heater inlet.  Higher reservoir 

temperatures were not possible due to cavitation in the pump.  Nominal heat addition from 

the inline heater ranged from 150 to 1.2 kW, resulting in experimental vapor qualities 

ranging from 0.00012 to 0.32.  All of the tests were performed with the test setup shown 

in Chapter 5. 

6.3.3 Data Acquisition 

All measurements, with exception of the TIR flow identification and high speed 

camera data, were collected by National Instruments DAQ accessories and controlled by 

an adjacent desktop computer running a LabView interface to allow real-time system 

monitoring.  During testing, the flowrate was fixed and the power was incrementally 

increased until the maximum power level of 1.2 kW was reached.  After achieving steady 

state, high speed image data was recorded at a framerate of 250-500 fps for 5 seconds. 

Then, the TIR data images were collected at 30 fps for 10 seconds (300 data points per test 

condition).  The high speed and TIR imaging could not be performed simultaneously 
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because the high intensity light required for the high speed camera saturated the CMOS 

camera.  This data was later post-processed using the custom Matlab code; the code is fully 

documented in Appendix B. 

6.3.4 Data Reduction 

6.3.4.1 Deduction of Vapor Quality and Superficial Velocities   

The Taitel-Dukler [46] and Ullman-Brauner [141] maps have coordinates of 

superficial liquid velocity and superficial gas velocity while the Wojtan et al. [30] flow 

regime map has coordinates of mass flux and vapor quality.  Therefore, plotting 

experimental data on the respective maps required the calculation of vapor quality, 

superficial liquid velocity, and superficial gas velocities from the available data. 

First, a single-phase energy balance on the system was used to determine the 

percentage of the applied heat (from the inline heater) that remained in the fluid when it 

reached the outlet of the sight glass.  This was possible by measuring the temperature 

change of the fluid between the heater inlet and the outlet of the sight glass and comparing 

this value to the total heat input.  Single-phase tests were conducted for all flowrates with 

reduced inlet temperature and various heat loads, such that the water was within a few 

degrees of saturation at the heater outlet but did not vaporize.  All of the heat was assumed 

to sensibly heat the fluid or be lost to the ambient.  It was found that at least 80% of the 

applied heat remained in the fluid at the exit of the sight glass using Equation (50) below: 

q = ṁCp∆T (50) 

where q is the applied heat load, ṁ is the mass flowrate (kg/s), Cp is the specific heat of 

water at the specified temperature, and ∆T is the temperature rise in the fluid.  As system 

heat losses should be primarily driven by the fluid temperature, the same losses were 
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assumed when testing under two-phase operation with water as the working fluid.  

Improved insulation and lower operating temperatures for HFE-7100 testing explains the 

discrepancy in system losses between this data set and those described in Chapter 5 and 

later in Chapter 7. 

Considering that approximately 80% of the applied heat remained in the fluid at the 

exit of the sight glass, and that any heat in excess of what is required to bring the fluid up 

from the subcooled single-phase condition at the heater inlet to the saturation temperature 

goes toward vaporizing the fluid, vapor quality was estimated using Equation (39) below: 

x =
0.8q − ṁCp(Tsat − Ti)

ṁhlv

 (51) 

where x is the vapor quality, Tsat is the saturation temperature of water at the outlet of the 

sight glass, Ti was the temperature at the heater inlet (Ti < Tsat), and hlv is the latent heat 

of water (2.26 kJ/kg).  It’s important to note that the flow was always single-phase liquid 

at the inlet of the heater and Tsat, typically 100˚C, was calculated based on the pressure 

measurement at the exit of the sight glass.  Then, superficial liquid and vapor velocities 

could be directly calculated from: 

JL =
G(1 − x)

ρl

 (52) 

JG =
Gx

ρg

 (53) 

where G is the mass flux, ρl is the liquid density (958.4 kg/m³), and ρg is the vapor density 

(0.59 kg/m³).  All values used in these calculations were averages of 120 data points taken 

over the course of 60s of steady state operation.  The 3-5% flowrate (mass flux) variation 

indicated in the Experimental Ranges section would, in turn, translate to a 3-5% fluctuation 

in superficial velocity.   
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6.3.4.2 Algorithm for Film Thickness Determination   

A custom Matlab image processing algorithm was developed to post process the 

TIR image data. This algorithm determined the distance between the light source and the 

reflected rays, and calculated the liquid film thickness using the relationship shown in 

Equation (49).  The Matlab code and a brief description can be found in Appendix B. 

Several image processing steps were required to extract a film thickness value from 

an unrefined image.  First, the image was captured with an appropriate camera.  A captured 

image for a dry channel, i.e. with no liquid film, is shown in Figure 31.  The black shaft on 

the bottom-center of the figure is the painted fiber optic LED connecting to the diffuse 

coating.  The reflected light ring is visible, but not distinct enough to extract accurate film 

thickness values.  Next, the image was converted to red-only to eliminate background light 

noise.  Then, adaptive contrast enhancement was performed to normalize the image and 

remove complications stemming from intensity variations in the reflected light ring as a 

result of LED mounting imperfections.  Figure 31b shows the image after eliminating green 

and blue light, and applying adaptive contrast enhancement.  Next, a 2-D median filter was 

applied to eliminate salt and pepper noise and a simple contrast enhancement code was 

applied resulting in a binary image, shown in Figure 31c.  The reflected light ring is now 

clearly visible.  

The center of the LED was manually identified.  In Figure 31c, the center of the 

LED is indicated with a red point.  Next, a Sobel filter was used to locate the edges where 

the binary image changes from black to white and vice versa; the Sobel filter function 

outputs a matrix of these locations.  As shown on Figure 31c, the third ‘edge’ identified by 

the Sobel filter will represent the first fully reflected ray.  Then, a custom Matlab code was 



 

112 

 

used to count left and right (pixel-by-pixel) out from the LED center point while searching 

for the third location where the contrast changes.  The diameter of the light ring, in pixels, 

is the sum of the distance measured to the left and right.  Next, the pixel distance was 

translated to a physical distance using the width of the LED (1.27 mm) as a reference scale.  

Finally, Equations (47)-(49) were used to relate the light ring to a liquid film thickness. 

 
Figure 31:  a) Raw image of reflected light ring on a glass tube with no film thickness, b) Image after 

converting to black and white and contrast enhancement, and c) Image after converting to binary 

6.4 Experimental Results 

6.4.1 Accuracy of the Total Internal Reflection Technique 

The experimental system and the proposed image processing Matlab code were 

validated for static films before exploring temporally varying films.  This was achieved by 

confirming that the proposed method generates results that are consistent with known film 

thickness and index of refraction data.  Four different samples were prepared with film 

thicknesses of 0 μm, 183 μm, 449 μm, and 1005 μm.  For each sample, a 27426 diffuse 

film from Edmund Optics was attached to the bottom of a 1 mm thick microscope slide 

using UV-curing Norland Optical Adhesive 65. Varying thicknesses of UV-curing Norland 

(b) (c)(a)

123

Location of first fully 

reflected light ray
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Optical Adhesive 65 were then applied to the top of the slide to achieve the desired sample 

thickness.  The fiber optic LED was spring clipped against the diffuse coating.   

The different thicknesses of UV-curing adhesive were obtained by liberally 

applying the adhesive, placing precision ball bearings or microscope slides to act as 

spacers, clamping a microscope slide on top to ensure a flat surface, and then curing the 

assembly.  The top microscope slide was coated with a thin layer of Duraseal stress-free 

silicon so it could be removed after the curing process to provide a simulated liquid-vapor 

interface.  Adhesive thicknesses of 0 μm, 183μm, 449 μm, and 1005 μm were measured 

using a LEXT OLS4000 3D Laser Measuring Microscope designed for nanometer level 

imaging.  These values represent an average of 10 data points taken from various locations 

for each of the samples.  The error of the LEXT measurement can be determined by the 

following equation [156]: 

ε = 0.2 +
L

100
 (54) 

where L is the observed height of the film in μm.  The resulting accuracy for the 0 μm, 183 

μm, 449 μm, and 1005 μm films, as measured by the LEXT, are ±0.2 μm, ±2 μm, ±4.7 μm, 

and ±10.3 μm, respectively.   

The TIR optical method has a theoretical accuracy resulting from the resolution of 

the CMOS camera.  The spatial resolution of the camera, ± 1 pixel, can be related to a 

physical dimension, x, which can be translated to a film thickness resolution based on 

Equation (49).  From an image captured of the setup, a total of 176 pixels were counted for 

the 1.27 mm fiber optic cable, resulting in a pixel distance of 7.2 μm/pixel.  This suggests 

an inherent accuracy of the light ring radius measurement of ±7.2μm.  Based on Equations 
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(47)-(49), this propagates to a best-case film thickness accuracy of ±2.8μm in the ideal case 

of a perfectly resolved light ring. 

 The cured Norland Optical Adhesive 65 and microscope slides both have an index 

of refraction of 1.52 [157].  There was no upper limit on the measurable film thickness for 

the test cases because the refractive index of the slide and film are identical, therefore, there 

was no total internal reflection at the slide-film interface.  The predicted light ring radius 

was calculated using Equations (47)-(49) with known optical properties and thickness of 

the microscope slides and adhesive films.  Figure 32 shows binary images of the four 

different test cases.  The distance of the first fully reflected light ray increased as the film 

thickness increased.  This trend is consistent with theory. 

 
Figure 32:  Binary images of validation samples a) 0 μm film, b) 183 μm film, c) 449 μm film, and d) 

1005 μm film 

(b)

(c)

(a)

(d)
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Table 11 is a tabulation of the actual thickness as measured by the LEXT OLS4000 

3D Laser Measuring Microscope, the accuracy of the LEXT, experimentally determined 

film thickness using the test setup and Matlab code, accuracy of the optical method, and a 

comparison of the actual and predicted values.  The maximum difference between the 

actual and experimental result occurred with the maximum thickness tested, 1005 μm, with 

a difference of 17 μm.  The sample with no film thickness demonstrated a difference of 8 

μm while the 183 μm and 449 μm samples demonstrated 3 μm and 1 μm differences, 

respectively.  For the range of film thicknesses tested, the experimental values were always 

within 20 μm of the actual value, and in most cases within 10 μm of the actual value.  

Therefore, the TIR optical method and accompanying Matlab code were validated with an 

accuracy of 20 μm for static films.   

Table 11:  Comparison of thickness prediction using test setup and Matlab algorithm to actual 

thickness values 

LEXT thickness TIR determined 

thickness 

Difference in LEXT and TIR 

values 

% error 

0 μm ± 0.2 μm 

 

8 μm ± 2.8 μm 8 μm N/A 

183 μm ± 2 μm 

 

180 μm ± 2.8 μm 3 μm 1.6% 

449 μm ± 4.7 μm 

 

450 μm ± 2.8 μm 1 μm 0.2% 

1005 μm ± 10.3 μm 1022 μm ± 2.8 μm 17 μm 1.7% 

6.4.2 Limitations of the Total Internal Reflection Technique during Two-Phase 

Testing 

There was total internal reflection at the wall-liquid interface at sufficiently large 

angles due to the difference in index of refraction between the borosilicate glass tube 

(n=1.52) and fluid (water n=1.33 and HFE-7100 n=1.27).  This makes image processing 

difficult [154] [27] [153] and, therefore, poses an upper limit on the film thickness that can 

be measured for the current two-phase setup.  The maximum measurable film thickness 

can be calculated with the following equation, and is shown schematically in Figure 33: 
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tlMAX =
tw(tanθwl − tanθcwa)

tanθclv

 (55) 

 
Figure 33:  Schematic of the maximum measurable film thickness (adapted from [154]) 

 

The maximum measurable thickness for the current setup with a tube wall thickness 

of 1.12 mm and the above glass and water properties was 940 µm.  It should be anticipated 

that the measurement technique will calculate a maximum value of 940 µm for instances 

where the liquid is thicker than 940 µm such as single-phase flow and during Intermittent 

flow where liquid plugs are passing the sensor.  Film thickness during Intermittent bubble 

passage and Annular thin film flow should fall well below the 940µm upper limit.  

Additionally, the camera sampled at a discrete rate of 30 fps so the maximum resolvable 

film thickness frequency was 15 hz (0.066 seconds) based on the Nyquist sampling 

criterion.  The maximum measurable film thickness varied for different tubes with HFE-

7100 as the working fluid because the tubes had different wall thicknesses and HFE-7100 

has a lower index of refraction (n=1.27) than water.  Table 12 shows a summary of the 

borosilicate glass tubes geometric parameters and the resulting maximum measurable film 

thicknesses with water and HFE-7100 as the working fluids.     

 

θclv  

θcwa  
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xmax  
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Table 12:  Geometric properties and maximum measurable film thickness for different operating 

conditions 

Fluid Nominal Tube ID Tube Wall Thickness Maximum Measurable Film 

Thickness 

Water 

 

8.84 mm 1.12 mm 940 μm 

HFE-7100 

 

8.84 mm 1.12 mm 494 μm 

HFE-7100 

 

4.54 mm 1.21 mm 534 μm 

HFE-7100 2.64-2.8 mm 0.94 mm 419 μm 

 

Film thickness measurement error may come from electronic noise, vibrational 

noise, large disturbances in the film, poor image contrast, and camera movement with 

respect to the light source.  Shedd and Newell discuss the relative effect of these noise 

sources on the measurement, and validate the technique for thin films (<1 mm) [154].  It’s 

important to note that the resulting light ring during two-phase flow is slightly distorted in 

the circumferential direction due to the curvature of the tube.  Measurements were taken in 

the axial direction to eliminate this source of error. 

6.4.3 Characterization of Primary Flow Regimes  

The previous section validated the ability to accurately measure static films in the 

range of 0-1005 μm and established the upper limits of the measurement technique for the 

existing test setup, 419 µm - 940 µm depending on the specific tube and fluid.  The next 

step was to operate the system under various two-phase conditions to observe temporally 

varying film thickness profiles.  Evaluating film thickness profiles ‘deep’ in the dominant 

flow regimes is desirable to observe ideal scenarios.  This was possible for single-phase 

flow, Stratified flow, and Intermittent flow by flowing subcooled water or evaporating 

water in the existing two-phase setup.  It was not possible to obtain high quality Annular 

flow (which occurs at higher vapor quality) with the 1.2 kW inline heater due to the high 
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latent heat of water.  Instead, water and nitrogen were flowed to simulate water liquid/vapor 

Annular flow.  The following sections outline the experimental results for water flow but 

are representative of the HFE-7100 results, as well.   

Figure 34 shows representative data for single-phase flow, Stratified flow, 

Intermittent flow, and Annular flow.  Please note that only one second of the ten second 

recording is shown in Figure 34 to maintain profile clarity.  Figure 35 shows accompanying 

high speed flow visualization data taken immediately preceding the TIR data.  The results, 

as shown on Figure 34, match well with the ideal cases identified in Figure 30 with a 

stationary TIR sensor at the top of a transparent tube.  Single-phase flow was examined at 

a flowrate of 1000 mL/min (230 kg/m²s) with water at 90˚C.  Single-phase flow shows a 

constant thick film equivalent to the maximum thickness the method can measure, 940 µm.   

 
Figure 34:  Unique temporally varying two-phase film thickness profiles in an 8.84 mm ID smooth 

tube for a ‘Flooded’ condition (230 kg/m²s), ‘Stratified’ condition (15 kg/m²s, x=0.067), ‘Intermittent’ 

condition (230 kg/m²s, x=0.01), and ‘Annular’ condition (120 kg/m²s, x>0.15) 
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Figure 35:  Photographs of high speed flow visualization 
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Stratified flow was studied at a flowrate of 60 mL/min (15 kg/m²s), heat input of 

350 W, and vapor quality of 0.067.  This regime showed an average film thickness of 0 µm 

due to the resulting dry upper surface.  This data point is identified on Figure 35 as ‘Ideal 

Stratified’.  It is important to note that the film thickness profile shown in Figure 34 for no-

film Stratified flow fluctuates by as much as 50 µm, indicating as-yet-unidentified noise in 

the measurement technique.   

The film thickness for Intermittent flow was examined at a flowrate of 1000 

mL/min (230 kg/m²s), heat input of 750 W, and vapor quality of 0.01. The Intermittent 

profile demonstrates a film thickness that fluctuates between the saturation point of the 

technique, 940 µm, and 200µm, indicating the periodic passage of a liquid plugs and vapor 

slugs.  This data point is identified on Figure 35 as ‘Ideal Intermittent’.  During Annular 

flow, the water flowrate was kept at 500 mL/min (120 kg/m²s) and the nitrogen flowrate 

was increased until steady Annular flow was reached.  It was estimated that this Annular 

data point represents a vapor quality exceeding 0.15, superficial liquid velocity of 0.12 m/s, 

and superficial vapor velocity exceeding 30 m/s.  During Annular flow, a finite film 

thickness centered around 100 µm and fluctuations between 30 and 330 µm were observed.  

This data point is identified on Figure 35 as ‘Annular’.  It is interesting to note that the 

fluctuations for Annular flow were six times larger than the noise-related fluctuations for 

Stratified flow.  This suggests that the fluctuations measured during Annular flow could be 

a real phenomenon and not a result of noise in the measurement technique.  This assertion 

is supported by the photograph of Annular flow in Figure 35 that clearly shows a wavy 

Annular interface at the upper portion of the tube. 
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6.4.4 Characterization of Sub-Regimes and Subtle Differences of Primary Flow 

Regimes  

 The two-phase film thickness profiles shown in Figure 34 are ideal cases, 

demonstrating the ability to determine the primary flow regimes with the TIR method.  

Flow regimes such as Stratified flow and single-phase liquid flow did not deviate from the 

ideal cases because, generally speaking, a continuously flooded tube or continuously dry 

upper surface are not dynamically changing conditions.  As expected, the three 

photographs of Stratified flow on Figure 35 did not result in unique film thickness profiles 

despite varying vapor quality, mass flux, and Stratified liquid-vapor interfacial structure.  

Intermittent/Slug flow, on the other hand, varied significantly depending on the specific 

operating conditions, namely mass flux and vapor quality.  Additionally, Slug-Annular 

flow was observed as a sub-regime between Intermittent/Slug and Annular flow.  This 

demonstrates the utility of the TIR method for explaining and quantifying the more subtle 

transitions that exist between dominant flow regimes.   

Unique to Intermittent flow, regardless of operating parameters, was saturation of 

the film thickness measurement (indicating liquid plug passage) and abrupt decrease in the 

film thickness (indicating vapor slug passage).  Despite the similarities, deviations from 

the ideal periodic Intermittent case in Figure 34 arose from the relative velocity of the 

liquid and vapor phases, bubble size, and bubble frequency for different operating 

conditions.  The varying film thicknesses that Intermittent flow can exhibit are shown in 

Figure 36.   
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Figure 36:  Intermittent flow film thickness profiles for a) 15 kg/m²s and x=0.004 and b) 230 kg/m²s 

and x=0.023 

 

Figure 36a shows data for a flowrate of 60 mL/min (15 kg/m²s), heat input of 150 

W, and vapor quality of 0.0041.  Due to the low flowrate and low heat input, the channel 

was primarily occupied by slow moving liquid with a few small Intermittent bubbles.  The 

result was a film thickness profile pinned at the saturation point of the measurement 

technique (indicating all liquid) with an intermittent drop in film thickness (indicating 

bubble passage).  This data point is identified on Figure 35 as ‘Intermittent – lower G’.  

Figure 36b shows data for a flowrate of 1000 mL/min (230 kg/m²s), heat input of 1200 W, 

and vapor quality of 0.023.  The channel was occupied by fast moving liquid plugs and 

vapor slugs due to the high liquid flowrate and the vaporization of a large quantity of liquid.  

The result was a highly oscillatory film thickness profile with several high magnitude 

fluctuations per second.  This effect is represented on Figure 35 as ‘Intermittent – higher 

x’ at three different discrete times, labeled ‘t1’, ‘t2’, and ‘t3’.  ‘t1’ shows a relatively thin 

film at the top of the channel, which would represent a valley in the film thickness profile 

shown in Figure 36b.  ‘t2’ represents a slightly thicker film and may describe the locus of 
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data points that fall close to 700 μm on Figure 36b.  Finally, the TIR sensor reached the 

saturation point of the measurement technique at ‘t3’.  Both of the scenarios shown in 

Figure 36 are experimentally defined as Intermittent flow (both here and for the duration 

of the Dissertation), but were differentiated here for academic purposes. 

Another subtle difference between the ideal cases and actual experimental cases is 

the presence of unstable Slug-Annular flow as an intermediate sub-regime between the 

Slug flow and Annular flow regimes for moderate flowrates, 250 and 500 mL/min (60-125 

kg/m²s), and vapor qualities exceeding 0.01. Other researchers have observed this 

phenomenon and referred to this regime as Aerated Slug [141] [158], Slug/Semi-Annular 

[159], and churn flow.   

 Two examples of the unstable film thickness profile characteristic of Slug-Annular 

flow are shown in Figure 37.  Slug-Annular flow had characteristics of both Annular and 

Intermittent flow.  For both cases, Slug-Annular flow was marked by an unstable film, 

similar to the ideal Annular flow case in Figure 34, with the passage of an occasional liquid 

plug, similar to the Intermittent flow cases in Figure 34 and Figure 36.  For a flowrate of 

250 mL/min (60 kg/m²s) and vapor quality of 0.014, the passing liquid plugs were thick 

enough to saturate the film thickness measurement technique.  Figure 35 shows Slug-

Annular high speed photographs for this operating condition, labeled as ‘Slug-Annular – 

lower x’ at three different time steps.  As the time progresses from ‘t1’ to ‘t3’, it can be 

seen that the film thickness progresses from relatively thin to thick, resulting in occasional 

saturation of the measurement technique and the film thickness profile shown in Figure 

37a.  However, as the vapor quality increased from 0.014 to 0.066 in Figure 37b, the liquid 

plugs reduced in thickness and did not saturate the technique.  In other words, as vapor 
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quality increased the film thickness profile appeared to approach a more-Annular (and less 

Intermittent) operating condition.  This is shown in Figure 35, labeled as ‘Slug-Annular – 

higher x’ at three different time steps, where the film fluctuates from relatively thin to 

relatively thick without completely saturating the technique.   

 
Figure 37:  Film thickness profile for intermediate Slug-Annular flow with a) 60 kg/m²s and x=0.014 

and b) 60 kg/m²s and x=0.066 

 

For the HFE-7100 results in Chapter 8, the flow regime is defined as Annular flow 

if a thin film is present but the technique is not saturated (Figure 37b) and Intermittent flow 

if the passing liquid plug saturates the technique (Figure 37a).  However, one could be 

inclined to believe that the profile shown in Figure 37b is representative of Intermittent 

flow, as well.  Therefore, it’s necessary to acknowledge that this method is not fully-

objective.  In order to classify the film thickness profiles into useful flow regime categories, 

objective qualifiers must be chosen or set.  Such is the case with differentiating between 

Intermittent and Annular flow in Figure 37a and Figure 37b, above.  However, when these 

classifications are well argued and consistently applied, this method provides a much less 

subjective, and much more repeatable method for determining flow regime. 
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6.4.5 TIR Validation with Existing Flow Regime Maps 

 Horizontal two-phase flow regime data was collected, using the TIR method at the 

top of an 8.84mm ID transparent tube, across the parametric space described in Section 

6.3.2.  Then, the data was converted to a usable form and plotted on the Taitel-Dukler [46], 

Ullmann-Brauner [141], and Wojtan et al. [30] flow regime maps using Equations (50)-

(53).   

Three dominant experimental flow regimes were observed; Stratified; 

Intermittent/Slug; and Slug-Annular as an intermediate flow regime between Slug and 

Annular flow.  It is to be noted that unlike the eight unique flow regimes defined by the 

Wojtan et al. [30] map, most two-phase researchers [55] have limited their classification to 

the Bubbly, Intermittent, Stratified, and Annular flow.  In the interest of uniformity and 

consistency, and to avoid confusion that may derive from the diversity of names used by 

authors for some of the observed sub-regimes, the classifications of flow regime beyond 

this chapter will follow the classification proposed by Rahim et al. [55], combining Slug, 

Plug, and Intermittent data points into Intermittent flow, combining Slugging-Annular 

flow, Wavy-Annular flow, and Semi-Annular data into Annular flow, and defining 

Stratified-Wavy flow as a sub-regime of Stratified flow, leading to the presence of just 4 

primary regimes:  Stratified, Bubbly, Intermittent, and Annular.  For the remainder of this 

chapter, however, the sub-regime of Slug-Annular flow is differentiated to further 

demonstrate the capabilities and subtleties of the optical technique. 

Figure 38 shows the experimental data plotted on the three respective flow regime 

maps.  The circle data points are Stratified observations, the triangular data points are the 

Intermittent/Slug observations, and the square data points are the Slug-Annular 
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observations.  It should be noted that the transition boundaries on these flow regime maps 

are typically ±25%, so data points on or near the border may fall within this error band. 

The Taitel-Dukler [46] flow regimes are marked in coordinates of superficial liquid 

velocity and superficial gas velocity with the transition locus for Stratified, Intermittent, 

Annular, and Bubbly flow marked by solid black lines.  The Ullmann-Brauner [141] map, 

displayed in the same coordinates as Taitel-Dukler [46], plotted Stratified flow, Slug flow, 

Aerated Slug flow, Annular flow, Bubbly flow, and Dispersed Bubbly flow with solid lines 

separating the flow regimes.  The Wojtan et al. [30] flow regime map plotted Stratified 

flow, Stratified-Wavy flow, Slug and Stratified-Wavy flow, Slug flow, Intermittent flow, 

and Annular flow in coordinates mass flux and vapor quality with solid lines separating the 

flow regimes.  

Data points at higher superficial liquid velocity or mass flux correspond to higher 

flowrate (1000, 500, 250, 125, or 62 mL/min).  Superficial liquid velocity decreased 

slightly for a fixed flowrate and increasing vapor quality according to Equation (52).  

However, superficial vapor velocity increased significantly as vapor quality increased, as 

shown by Equation (53).  Therefore, tracking horizontally from left to right on these flow 

regime maps provides flow regime data for a fixed flowrate with increasing vapor quality.   

For a flowrate of 1000 mL/min (225 kg/m²s), the vapor quality ranged from 0.0001 

to 0.0232 and the observed fluctuations in film thickness always corresponded to 

Intermittent/Slug flow.  The data point labeled ‘Ideal Intermittent’ on Figure 38 represents 

the ideal Intermittent film thickness profile shown in Figure 34 and visually in Figure 35.  

The data point labeled ‘Intermittent – higher x’ represents the highly oscillatory 

Intermittent film thickness profile shown in Figure 36b and visually in Figure 35.   
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Figure 38:  Two-Phase flow regime data plotted on a) Taitel-Dukler [46] map, b) Ullmann-Brauner 

[141] map, and c) Wojtan et al. [30] map 
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For a flowrate of 500 mL/min (120 kg/m²s) the vapor quality ranged from 0.0003 

to 0.0353.  The flow regime started as Intermittent/Slug flow at low vapor quality but 

transitioned to Slug-Annular flow at higher vapor quality and superficial gas velocity.  The 

data point labeled ‘Slug-Annular - lower x’ represents Slug-Annular flow that has 

characteristics closely related to Intermittent flow, as shown in Figure 37a and Figure 35.  

The data point labeled ‘Slug-Annular – higher x’ represents Slug-Annular flow at higher 

vapor quality that more closely resembles Annular flow, as shown in Figure 37b and Figure 

35.  The flow regime would presumably transition to the data point labeled ‘Annular’, the 

Annular flow film thickness profile shown in Figure 34 and Figure 35, if more heat was 

added to the system.  

 With a flowrate of 250 mL/min (60 kg/m²s), the vapor quality ranged from 0.0016 

to 0.066 and, similar to the 500 mL/min (120 kg/m²s) case, the flow regime started as 

Intermittent/Slug flow at low vapor quality but transitioned to Slug-Annular flow at higher 

vapor quality.  At a flowrate of 125 mL/min (30 kg/m²s), the vapor quality ranged from 

0.0002 to 0.129 and the flow regime transitioned from Intermittent/Slug flow to Stratified 

flow at vapor qualities greater than 0.02.   

For a flowrate of 60 mL/min (15kg/m²s), the vapor quality ranged from 0.004 to 

0.319 and, similar to 125 mL/min, the flow regime was Intermittent/Slug at low vapor 

quality and appeared to transition to Stratified flow at qualities greater than 0.3.  The data 

point labeled ‘Intermittent – lower G’ represents Intermittent/Slug flow at low flowrate and 

low vapor quality resulting in a channel primarily occupied by slow moving liquid with a 

few Intermittent bubbles as shown in Figure 36a and Figure 35.  The data point labeled 
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‘Ideal Stratified’ represents the ideal Stratified film thickness profile shown in Figure 34 

and Figure 35. 

All three flow regime maps accurately predicted the primary flow regimes shown 

in Figure 34 and identified by the labeled data points on Figure 35 and Figure 38.  The flow 

regime maps also accurately predicted the natural transition from Intermittent/Slug flow to 

Annular flow with increasing vapor quality and superficial vapor velocity, as well as other 

trends as discussed above.  Deviation in predictive accuracy arose when observing the full 

parametric space tested for a variety of flow rates and vapor qualities.  The predominance 

of Slug-Annular flow suggests that the transition from one flow regime to another cannot 

necessarily be identified by a discrete point or curve, but rather a range of operating 

conditions.  Along these same lines, it is to be noted that the observed discrepancy between 

predicted and measured flow regimes for data in the literature is commonly within a ±25% 

band.   

In addition to general trends and ideal cases consistent from one map to the next, 

the results agreed reasonably well with the Taitel-Dukler [46] flow regime map.  Every 

Stratified data point is correctly predicted, every Intermittent/Slug flow data point at 1000 

mL/min, over the full range of vapor qualities tested is predicted, and the model appears to 

predict the transition towards more-Annular flow for 250 and 500 mL/min.    The Taitel-

Dukler [46] flow regime map does not correctly predict the parametric space occupied by 

Intermittent flow at relatively low superficial gas velocity (less than 1 m/s).  From Figure 

38, it incorrectly predicts these Intermittent data points as Stratified flow.  However, these 

data points exist at low heat dissipation and low vapor quality which are of little importance 

in most practical applications. 
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The Ullmann-Brauner [141] model reflects trends indicative of the experimental 

data and matches closely with many data points.  It predicts the correct vicinity of the 

Stratified flow regime and identifies that this flow regime may occupy a smaller parametric 

space than previously hypothesized by Taitel-Dukler [46].  Additionally, the Ullmann-

Brauner [141] map identifies the possibility to transition from Intermittent/Slug flow to 

Stratified flow at low flowrate and increasing vapor quality.  Three additional trends the 

Ullmann-Brauner [141] map accurately captures are; presence of Annular flow at higher 

superficial gas velocity; dominance of the Aerated Slug regime as an intermediate regime 

between Slug and Annular flow; and extension of Intermittent/Slug flow regime to lower 

superficial liquid and vapor velocities.   

The Wojtan et al. [30] flow regime map accurately predicts all of the Stratified data 

points.  This map also accurately predicts the dominance of Intermittent/Slug flow at low 

vapor quality across a wide range of flowrates.  One exception is at very low mass flux and 

vapor quality where Intermittent/Slug data points are incorrectly predicted as Stratified 

flow.  However, these data points exist at low heat dissipation and low vapor quality which 

are of little importance in most applications and occupy a very small region of the operating 

space.  The Wojtan et al. [30] map also predicts the natural progression from Slug-Annular 

flow at 500 mL/min (120 kg/m²s) to Annular flow, the data point labeled ‘Slug-Annular – 

higher x’, with increasing vapor quality.  One discrepancy is the location of the Annular 

flow regime with relation to the observed Slug-Annular data points for 250 mL/min (50 

kg/m²s).  From Figure 37, it was shown that as vapor quality increases from 0.014 to 0.066 

the liquid slugs reduce in thickness and do not saturate the measurement technique.  In 

other words, as vapor quality increases the film thickness profile appears to approach a 
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more-Annular (and less Intermittent) operating condition.  However, with a fixed flowrate 

of 250 mL/min (50 kg/m²s) the Wojtan et al. [30] map predicts transition to Stratified-

Wavy flow, not Annular flow.  A likely explanation for this deviation is that the Wojtan et 

al. [30] flow regime map was empirically fit to match common refrigerants, which have 

fluid properties vastly different than water (see Table 7).  In effect, the empirical constants 

allow for better predictive accuracy for operating conditions close to the data set used to 

develop the correlations, but do not extrapolate well to different conditions.  Conversely, 

due to the generality of the Taitel-Dukler [46] and Ullmann-Brauner [141] flow regime 

maps, they can often be ‘less accurate’ at times but applicable to a wider range of fluids 

and operating conditions.  Consequently, the Taitel-Dukler [46] and Ullman-Brauner [141] 

maps both predict transition to Annular flow at a fixed flowrate of 250 mL/min and 

increasing vapor quality with water as the working fluid.   

 The three maps above all correctly predicted the primary flow regimes, the natural 

transition from Intermittent/Slug flow to Annular flow with increasing vapor quality and 

superficial vapor velocity, as well as other trends.  No single flow regime map accurately 

predicted every data point, however, each individual map did provide specific advantages 

and the ability to predict certain flow regimes better than others (with water as the working 

fluid).  As suggested by Rahim et al. [55], and consistent with trends in the current study, 

a combination of these maps might better predict the prevailing flow regimes.  

6.5 Summary 

An optical, non-intrusive, flow pattern identification method was developed to 

validate flow regime maps for two-phase adiabatic water/vapor/nitrogen flow in an 8.84 

mm diameter tube.  The method consisted of shining a red fiber-optic light source through 
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the top of an optically transparent glass tube, using a CMOS camera to capture light rings 

resulting from total internal reflection at the liquid-vapor interface, and extracting a film 

thickness profile from the resulting images.  It was found that different flow regimes 

resulted in unique temporally varying film thickness profiles, which were confirmed using 

high speed visualization. Using these profiles, quantitative flow regime identification 

measures were developed, including the ability to explain and quantify the more subtle 

transitions that exist between dominant flow regimes.   This method is applicable to two-

phase flow in transparent tubes and substrates alike, with a variety a working fluids.   

The principal flow regimes, Stratified, Intermittent/Slug, and Annular flow were 

experimentally observed.  Additionally, Slug-Annular flow as an intermediate flow regime 

between Intermittent/Slug and Annular flow was observed and quantified.  The 

phenomenological flow regime maps of Taitel-Dukler [46], Ullmann-Brauner [141], and 

Wojtan et al. [30] were found to capture the smooth tube experimental data, with varying 

accuracy, validating the use of the TIR technique in predicting flow regime.  Please note, 

sub-regimes were described here to demonstrate the capabilities of the technique, however, 

in Chapter 8 flow regime definitions will be simplified to avoid overcomplicating the data 

and analysis.   
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Chapter 7: Single-Phase Data and Discussion 

This chapter considers heat transfer rates for horizontal in-tube single-phase flows.  

Single-phase tests were performed with the three-different smooth and internally-grooved 

tubes described in Table 8, coated with the thin-film heaters described in Section 5.2, and 

operating with HFE-7100 as the working fluid.  Theoretical predictions were compared to 

the experimental results to determine the accuracy and reliability of the test setup and to 

assess the accuracy of single-phase, smooth and internally-grooved tube, heat transfer 

models in the literature.  

7.1 Single-Phase Energy Balance 

As described in Chapter 5, a single-phase energy balance was first performed to 

ensure that the majority of the heat electrically applied to the system was entering the fluid 

and to make sure the thermofluid delivery and measurement system was calibrated and 

working properly.  This step was an essential first-step for validating the test setup; without 

this analysis, the local and exit vapor qualities as well as the experimental heat transfer 

coefficients during two-phase testing cannot be trusted.  For these tests, the fluid inlet 

temperature was held around 15ºC and the tube outside wall temperature was not allowed 

to exceed 61ºC, the boiling temperature of HFE-7100 at atmospheric pressure.  This 

reduced the likelihood of pseudo-boiling (air coming out of the solution) and the 

occurrence of sub-cooled flow boiling, which could affect the heat transfer coefficient.  The 

input energy was the electrical power applied to the system.  The output energy was 

calculated based on the fluid temperature rise,  ∆T, mass flowrate, ṁ, and specific heat, Cp, 

based on the equation below: 
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Qout = ṁCp∆T (56) 

Figure 39 shows the single-phase energy balance ratio for the 2.8mm, 4.54mm, and 

8.84mm smooth tubes with a heat flux of 18 kW/m², mass fluxes ranging from 150 to 1100 

kg/m²s, and HFE-7100 as the working fluid.  The ratio of heat out to heat in, as measured 

through the temperature rise in the fluid, was generally less than 1 but always greater than 

0.95.  This reveals that there is a minor source of heat loss and measurement uncertainty in 

the system.  However, the results are always within ±5% of the expected value, which is 

considered acceptable for the current study. 

 
Figure 39:  Single-phase liquid energy balance ratio for HFE-7100 in different tube diameters 

7.2 Single-Phase Heat Transfer Measurements and Comparison to Smooth Tube 

Correlations 

Measured heat transfer coefficients for the 2.8mm, 4.54mm, and 8.84mm smooth 

tubes with a heat flux of 18 kW/m², mass fluxes ranging from 150 to 1100 kg/m²s, and 

HFE-7100 as the working fluid were compared to the two correlations of Dittus-Boelter 

(‘common’ and ‘original’ form), Colburn, and Gnielinski; all four correlations were taken 

from the Incropera et al. Fundamentals of Heat and Mass Transfer Handbook [25].  Since 
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turbulent flow is convoluted, emphasis has been placed on empirical correlations.  The 

‘common’ Dittus-Boelter correlation for heating takes the form: 

NuD = 0.023Re0.8Pr0.4 (57) 

where Re is the Reynolds number and Pr is the Prandtl number.  The ‘original’ Dittus-

Boelter equation for heating is of the form: 

NuD = 0.0243Re0.8Pr0.4 (58) 

The Colburn equation is: 

NuD = 0.023Re0.8Pr0.333 (59) 

Finally, the Gnielinski correlation, which is valid over a large Reynolds number range 

(3000<Re<5x106), takes the form: 

NuD =
(

f
8

) (Re − 1000)Pr

1 + 12.7 (
f
8

)
0.5

(Pr0.667 − 1)

 (60) 

where f is friction factor, which can be obtained from a Moody diagram or calculated 

directly for smooth tubes as: 

f = (0.790 ln Re − 1.64)−2 (61) 

Figure 40 shows the experimental single-phase heat transfer coefficient vs mass 

flux results, compared to the predictions.  The properties used while evaluating these 

correlations were the average values between the inlet and outlet of the test section.  The 

results show that the heat transfer coefficient increases with increasing flowrate, for all 

three tube diameters, to the power of approximately 0.8; the reader is directed to the 

correlations shown in Equation (57)-(59) where the Reynolds number is raised to the power 

of 0.8.  For a fixed flowrate, heat transfer coefficients slightly increased as the tube 

diameter decreased.  These trends are predicted well by the correlations. 
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Figure 40:  Experimental and predicted single-phase heat transfer coefficient vs mass flux for a) 8.84 

mm smooth tube, b) 4.54 mm smooth tube, and c) 2.8 mm smooth tube 
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 The statistical parameters of mean deviation, ε, and mean of absolute value of 

deviations, |ε|, were calculated based on the equations below: 

ε = ∑[(hpredicted − hexperimental)100/hexperimental] (62) 

|ε| = ∑ ABS[(hpredicted − hexperimental)100/hexperimental] 
(63) 

where hpredicted is the heat transfer coefficient predicted by the respective heat transfer 

coefficient correlation and hexperimental is the measured heat transfer coefficient. 

Table 13 lists a summary of the statistical parameters for the four correlations used.  

As shown, and also apparent from Figure 40, the ‘common’ form of the Dittus-Boelter 

correlation was generally the most accurate, with deviations of just 7% and 9% in the mean 

deviation and absolute deviation, for single-phase flow of HFE-7100 in the 2.8 mm to 8.84 

mm smooth tubes.  The Colburn correlation was second best with deviations between -

7.62% and 10.55%, followed by the ‘original’ Dittus-Boelter correlation with 13.08% and 

13.86%, and the Gnielinski correlation with -18.49% and 18.49%.   

Table 13:  Statistical analysis of the experimental single-phase smooth tube heat transfer 

measurements 

 Dittus-Boelter ‘common’ Dittus-Boelter ‘original’ Colburn Gnielinski 

𝜺 7.07% 13.08% -7.62% -18.49% 

|𝜺| 9.02% 13.86% 10.55% 18.49% 

7.3 Single-Phase Heat Transfer Measurements and Comparison to Internally-

Grooved Tube Correlations 

Originally developed for single-phase flow in ribbed tubes and tubes with helical 

wire inserts, the Ravigururajan and Bergles [28] correlation has been widely adopted for 

internally-grooved tubes [11]. In fact, the Ravigururajan and Bergles [28] correlation is 

incorporated in the current two-phase flow boiling model for internally-grooved tubes, as 
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described in Chapter 4, Equation (36).  The final, normalized, heat transfer coefficient for 

internally-grooved tubes is given by: 

  Nurb/Nus = Erb = {1 + [2.64Re0.36PrL
−0.024 (

ef

df
)

0.212

(
pf

df
)

−0.21

(
αf

90°
)

0.29

]
7

}

1/7

 
(64) 

where ef is the groove height, df is the nominal inside diameter at the fin base, pf is the 

axial pitch from groove to groove, and αf is the helix angle of the grooves.  As shown in 

Equation (64) and discussed in Chapter 4, the single-phase turbulent correlation developed 

by Ravigururajan and Bergles [28] was described as an ‘enhancement’ over a comparable 

smooth tube.  For the current analysis, the reference smooth-tube heat transfer correlations 

will be the two correlations of Dittus-Boelter (‘common’ and ‘original’ form), Colburn, 

and Gnielinski; all four correlations were taken from the Incropera et al. Fundamentals of 

Heat and Mass Transfer Handbook [25] and are described formulaically above.  The 

‘common’ Dittus-Boelter correlation adjusted for predicting heat transfer coefficient in 

internally-grooved tubes becomes: 

NuD = Erb0.023Re0.8Pr0.4 (65) 

The ‘original’ Dittus-Boelter equation for heating takes the form: 

NuD = Erb0.0243Re0.8Pr0.4 (66) 

The Colburn equation is now: 

NuD = Erb0.023Re0.8Pr0.333 (67) 

Finally, the Gnielinski correlation becomes: 

NuD =
Erb (

f
8

) (Re − 1000)Pr

1 + 12.7 (
f
8

)
0.5

(Pr0.667 − 1)

 (68) 

where f is the smooth-tube friction factor, which can be calculated directly: 
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f = (0.790 ln Re − 1.64)−2 (69) 

Figure 41 shows the measured and predicted (based on Equations (65)-(68) above) 

heat transfer coefficients for the 2.62mm, 4.54mm, and 8.84mm internally-grooved tubes 

with a heat flux of 18 kW/m², mass fluxes ranging from 150 to 1100 kg/m²s, and HFE-

7100 as the working fluid.  The properties used while evaluating these correlations were 

the average values between the inlet and outlet of the test section.  The results show that 

the heat transfer coefficient increases with increasing flowrate, for all three tube diameters.  

For a fixed flowrate, heat transfer coefficients slightly increased as the tube diameter 

decreased.   

Table 13 lists a summary of the statistical parameters for the four correlations used.  

As shown, the ‘common’ form of the Dittus-Boelter correlation (adjusted with the 

Ravigururajan and Bergles [28] enhancement factor) was generally the most accurate for 

the range of internally-grooved tube diameters and mass fluxes tested, with mean and 

absolute deviations of only 4.46% and 11.08%.  The Colburn correlation was second best 

with deviations between -9.87% and 10.56%, followed by the ‘original’ Dittus-Boelter 

correlation with 10.33% and 13.91%, and the Gnielinski correlation with -23.38% and 

26.26%.  These predictive trends are consistent with those reported for the smooth tubes. 

Table 14:  Statistical analysis of the experimental single-phase internally-grooved tube heat transfer 

measurements 

 Dittus-Boelter ‘common’ Dittus-Boelter ‘original’ Colburn Gnielinski 

𝜺 4.46% 10.33% -9.87% -23.38% 

|𝜺| 11.08% 13.91% 10.56% 26.26% 
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Figure 41:  Experimental and predicted single-phase heat transfer coefficient vs mass flux for a) 8.84 

mm internally-grooved tube, b) 4.54 mm internally-grooved tube, and c) 2.62 mm internally-grooved 

tube 
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The above single-phase energy balance and single-phase heat transfer statistical 

analysis indicates that the test setup is functioning properly and the experimental method 

is robust and can provide reliable measurements.  This analysis also justifies the use of the 

Ravigururajan and Bergles [28] enhancement factor, Erb, for predicting turbulence effects 

resulting from the groove structures in the two-phase internally-grooved tube correlation 

developed in Chapter 4. 
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Chapter 8: Two-Phase Data and Discussion 

This chapter outlines the experimental validation of the physics-based heat transfer 

coefficient model described Chapter 4 that recognizes the role played by two-phase flow 

structures in enhancing thermal transport within internally-grooved tubes.  Flow regime 

data, obtained with dynamic total-internal-reflection measurements described in Chapter 

6, and heat transfer coefficient data, obtained with infrared thermography and the test setup 

described in Chapter 5, are presented and analyzed for two-phase HFE-7100 flow in 

horizontal, 2.62-8.84 mm diameter, smooth and internally-grooved tubes, with mass fluxes 

from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and exit vapor qualities approaching 1.   

First, the flow regime results are compared to the Wojtan et al. [30] smooth tube 

map and the Sharar et al. [29] internally-grooved tube map.  Next, the smooth tube and 

internally-grooved tubes heat transfer results will be compared at varying mass fluxes and 

heat fluxes to illustrate the validity of the current regime-based approach to explaining 

enhancement in internally-grooved tubes.  This data is then used to statistically validate the 

new flow regime based heat transfer coefficient correlation, as well as correlations from 

the literature.  Finally, the new heat transfer model will be compared to independent data 

in the literature and the chapter results will be summarized.    

An extensive heat transfer coefficient and flow regime database of over 6,500 

combined data points for the adiabatic and diabatic smooth and internally-grooved tubes, 

respectively, was acquired.  For the sake of brevity, only select data and figures will be 

used to explain the points above.  Please refer to Appendix C - Appendix E for all of the 

heat transfer data collected and Appendix F for a more comprehensive statistical analysis 
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of the correlations for smooth and internally-grooved tubes – only summaries and selected 

results are given herein.    

As reported in the error analysis in Chapter 5, the reported heat transfer coefficients 

in the internally-grooved tubes are average augmented values accounting for the increased 

area enhancement.  Therefore, uncertainty stemming from ambiguity in the reported area 

enhancement is not propagated in the heat transfer error measurement.  However, when 

normalizing the results to account for area enhancement in summary charts, it should be 

expected that small ~1-5% error (based on a conversation with Wieland and the 

understanding that this is a carefully controlled industrial process) is introduced due to 

slight manufacturing deviations. 

8.1 8.84mm Smooth and Internally-Grooved Tubes  

8.1.1 Influence of Mass Flux and Flow Regime 

 Figure 42 shows the adiabatic results of the flow visualization/quantification, 

plotted in coordinates of mass flux and vapor quality and superimposed on the smooth tube 

and internally-grooved tube flow regime maps; Figure 42a is the smooth tube experimental 

results on the Wojtan et al. [30] map, Figure 42b is the internally-grooved tube results 

plotted on the Wojtan et al. map [30], and Figure 42c is the internally-grooved tube data 

plotted on the current Sharar et al. [29] map.  Stratified data points are represented by red 

circles, Intermittent data points are blue triangles, and Annular data points are shown by 

green squares.  Please note, for figure clarity, the diabatic flow visualization results are not 

shown but the adiabatic data points shown on Figure 42 are representative of the flow 

trends observed.   
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Figure 42:  8.84mm smooth tube data plotted on a) the Wojtan et al. [30] map and 8.84mm 

internally-grooved tube data plotted on b) the Wojtan et al. [30] map and c) the Sharar et al. [29] 

map with HFE-7100 at 61°C, G=50 kg/m²s, and q”=9 kW/m² 
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The transitions of flow pattern observed were Stratified, Intermittent, and Annular 

in the direction of increasing G and x.  It’s apparent from Figure 42 that the transition to 

Annular flow in the internally-grooved tube is seen to occur at lower mass flux and vapor 

quality compared to the smooth tube.  For example, at a mass flux of G=75 kg/m²s and 

vapor quality greater than x=0.4, Annular flow was encountered in the internally-grooved 

tube while the smooth tube was operating in Stratified flow.  In fact, Annular flow did not 

occur in the smooth tube for mass fluxes below G=125 kg/m²s while the internally-grooved 

tube was found to sustain Annular flow at mass fluxes as low as G=50 kg/m²s.   

In addition to early Stratified-to-Annular transition, the internally-grooved tube 

provided early transition from Intermittent to Annular flow at higher mass fluxes.  As an 

example, at a mass flux of G=200 kg/m²s and vapor quality greater than x=0.1 the 

internally-grooved tube is operating in Annular flow.  This transition does not occur in the 

smooth tube until a vapor quality of approximately 0.3.   

It’s also interesting to note that at sufficiently low mass fluxes, G<25 kg/m²s, both 

the smooth and internally-grooved tubes are operating in Stratified flow.   Similarly, at 

high mass fluxes, G>125 kg/m²s, and high vapor qualities, x=0.3, both the smooth tube and 

the internally-grooved tube are operating in Annular flow.  As shown in Figure 42a, the 

Wojtan et al. [30] flow regime map captures these smooth tube trends well, correctly 

predicting 178/197 flow regime data points (90.3%).  However, as shown in Figure 42b 

the Wojtan et al. [30] map does a poor job predicting flow regime in the internally-grooved 

tube, correctly predicting only 122/186 data points (65.6%).  The Sharar et al. [29] 

modified flow regime map shown in Figure 42c correctly predicted 164/186 (87.7%) of the 

flow regime data in the internally-grooved tube, representing a 22% improvement in 
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predictive accuracy of the traditional Wojtan et al. [30] model.  It’s worth mentioning that 

the new model does mis-predict a number of Annular data points at low mass flux and high 

vapor quality; this is clear in Figure 42c at vapor qualities greater than 0.4 and a mass flux 

of 50 kg/m²s. 

Figure 43 shows a comparison of experimental heat transfer coefficients for the 

smooth and internally-grooved tubes with HFE-7100 at a heat flux of 9 kW/m² for three 

mass fluxes; Figure 43a is a mass flux of 25 kg/m²s, Figure 43b is a mass flux of 75 kg/m²s, 

and Figure 43c is a mass flux of 200 kg/m²s.  The experimental smooth tube data points 

are shown as red squares and the internally-grooved tube data points are green circles.  ‘IG 

1’ and ‘smooth 1’ were the first tests run and ‘IG 2’ and ‘smooth 2’ were the second tests 

run; these do not represent different tubes, just a second set of experiments for validation.  

The smooth tube heat transfer coefficient correlation as described by Wojtan et al. [31] and 

the internally-grooved tube heat transfer coefficient correlation, described in the current 

study, are plotted as solid red and dashed green lines, respectively.   

As can be seen in Figure 43a, the smooth and internally-grooved tube heat transfer 

coefficients remain low over the full range of vapor qualities tested for a mass flux of 25 

kg/m²s.  This is a result of the prevalence of Stratified flow in both the smooth and 

internally-groove tube, as shown in Figure 43 and discussed above.  At a mass flux of 25 

kg/m²s the smooth and internally-grooved tubes have θdry values between 0 to 2π.  Since 

early flow regime transition has not occurred in the internally-grooved tube, the full 

enhancement effect, combining area enhancement with favorable regime transition, has not 

been observed.  In this case, the internally-grooved tube enhancement ratio, defined as the 
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grooved tube heat transfer coefficient divided by the smooth tube coefficient, is close to 

the area enhancement, 1.5.    

As shown in Figure 43b, the smooth tube heat transfer coefficient for a mass flux 

75 kg/m²s is similar to Figure 43a and remains low over the full range of vapor qualities 

tested.  Again, this is due to the prevalence of Stratified flow and a large dry perimeter 

(θdry≠0).  This is evident from Figure 42a at a mass flux of 75 kg/m²s where the smooth 

tube is consistently operating in Stratified flow.  However, the trend for the internally-

grooved tube is much different from Figure 42a as a result of early transition to Annular 

flow and a fully wetted perimeter (θdry=0).  As can be seen in Figure 42b/c, at 75 kg/m²s 

and vapor qualities greater than x=0.4, Annular flow was encountered in the internally-

grooved.  The result is a progressively higher heat transfer coefficient as vapor quality 

increases, Annular flow develops in the tube, and the Annular film thins.  Eventually, 

dryout occurs at vapor qualities close to 1 and the heat transfer coefficient significantly 

reduces to a value close to the smooth tube values.  In this case, the internally-grooved tube 

enhancement ratio reaches a maximum value of close to 6.5 at high vapor quality, where 

thin film Annular flow prevails in the internally-grooved tube and Stratified flow persists 

in the smooth tube.  The practical benefit of operating at this low mass flux where the 

enhancement is shown to be 6.5x is the reduction in pumping power associated with this 

operating condition. 
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Figure 43:  Comparison of heat transfer coefficient vs vapor quality for a mass flux of a) 25 kg/m²s, 

b) 75 kg/m²s, and c) 200 kg/m²s with HFE-7100 at 61°C and q”=9 kW/m² in the 8.84mm tubes 

 

0

2000

4000

6000

8000

10000

12000

14000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ea

t 
T

ra
n
sf

er
 C

o
ef

fi
ci

en
t 

(W
/m

²K
)

x

0

2000

4000

6000

8000

10000

12000

14000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ea

t 
T

ra
n
sf

er
 C

o
ef

fi
ci

en
t 

(W
/m

²K
)

x

0

2000

4000

6000

8000

10000

12000

14000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ea

t 
T

ra
n
sf

er
 C

o
ef

fi
ci

en
t 

(W
/m

²K
)

x
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Current Wojtan IG 1 IG 2 smooth 1 smooth 2

G = 200 kg/m²s, 9 kW/m² 

G = 75 kg/m²s, 9 kW/m² 

G = 25 kg/m²s, 9 kW/m² 

a) 

b) 

c) 

Modified 



 

149 

 

The trends shown in Figure 43c for a mass flux of 200 kg/m²s are, again, different 

from those observed at 25 and 75 kg/m²s.  For both the smooth tube and the internally-

grooved tube, the heat transfer coefficients increase monotonically as vapor quality 

increases.  As shown in Figure 42, this is due to the predominance of Annular flow (θdry=0) 

in both the smooth and internally-grooved tube and a thinning Annular film as vapor 

quality increases.  Similar to the case for 25 kg/m²s, the enhancement factor approaches 

the area enhancement at a mass flux of 200 kg/m²s because both tubes are operating in the 

same flow regime.   

It’s interesting to note that the measured heat transfer coefficient for different runs 

of the smooth tube agreed very well for all conditions shown in Figure 43, where it was 

operating deep in Stratified or Intermittent/Annular flow.  The same is true for 25 kg/m²s 

and 200 kg/m²s in the internally-grooved tube where the tube is operating in Stratified or 

Intermittent/Annular flow.  However, there is more variability between ‘IG 1’ and ‘IG 2’ 

at a mass flux of 75 kg/m²s near the Stratified-Wavy to Annular transition boundary.  More 

detail on this point is given in 8.6.2 below.   

8.1.2 Influence of Heat Flux 

Heat flux has an impact on the contribution of nucleate boiling to thermal transport 

from the wetted wall and on dry-out inception and completion.  A higher heat flux results 

in a higher wall temperature, thus causing faster and more aggressive bubble nucleation, 

growth, and departure.  Therefore, higher heat flux generally enhances two-phase heat 

transfer coefficients.  Alternatively, higher heat flux is also observed to yield earlier dryout 

at lower vapor quality compared to lower heat fluxes and, consequently, a degraded heat 

transfer coefficient.  Figure 44 shows heat transfer coefficient vs vapor quality for the 
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8.84mm smooth and internally-grooved tubes for a mass flux of 200kg/m²s and six 

different heat fluxes;  Figure 44a is a heat flux of 4 kW/m², Figure 44b is a heat flux of 9 

kW/m², Figure 44c is a heat flux of 18 kW/m², Figure 44d is a heat flux of 28 kW/m², 

Figure 44e is a heat flux of 40 kW/m², and Figure 44f is a heat flux of 56 kW/m².  Please 

refer to Appendix C for additional data. 

 The smooth tube and internally-grooved tube correlations both predict higher heat 

transfer coefficients at low vapor quality as the heat flux increases.  For example, at a vapor 

quality of 0.1 the smooth tube correlation predicts an improvement from 1467 W/m²K to 

2386 W/m²K when moving from a heat flux of 4 kW/m² to 56 kW/m² due to nucleate 

boiling enhancement.  The internally-grooved tube correlation predicts a similar trend and 

increases from approximately 3820 W/m²K to 5068 W/m²K with heat fluxes of 4 kW/m² 

to 56 kW/m², respectively.  However, this enhancement diminishes at higher vapor quality 

where nucleate boiling is suppressed and convective vaporization dominates.  This is clear 

from Figure 44a and Figure 44f where the heat transfer coefficient is approximately 7500 

W/m²K for both 4 kW/m² and 56 kW/m² in the internally-grooved tube.  Another 

interesting effect is a reduction in the vapor quality at which dryout occurs with increasing 

heat flux.  The vapor quality where dryout occurs changes from 0.91 to 0.63 for the smooth 

and internally-grooved tube correlations when moving from 4 kW/m² to 56 kW/m².   
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Figure 44:  Comparison of heat transfer coefficient vs vapor quality for the 8.84mm tubes with HFE-

7100 at 61°C and a mass flux of 200 kg/m²s for heat fluxes of a) 4 kW/m², b) 9 kW/m², c) 18 kW/m², 

d) 28 kW/m², e) 40 kW/m², and f) 56 kW/m² 
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The correlations were found to accurately predict data with heat fluxes at and below 

28 kW/m² but were less accurate for the heat transfer data for higher heat flux values of 40 

kW/m² and 56 kW/m².  The mean deviation, 𝜀, and mean of absolute value of deviations, 

|𝜀|,  for a mass flux of 200 kg/m²s and heat flux ranging from 4-28 kW/m² was -4.01% and 

11.01%, respectively, for the smooth tube data and original Wojtan et al. correlation.  For 

the same conditions, but a heat flux between 40 and 56 kW/m², the mean and absolute 

deviation rose to -26.50% and 26.61%, respectively.  This was less dramatic for the 

internally-grooved tube data with mean and absolute deviations of 13.92% and 12.54% for 

heat fluxes between 4 and 28 kW/m²  and deviations of 12.91% and -11.87% for heat fluxes 

of 40 and 56 kW/m².  This may be a result of enhanced convective cooling in the internally-

grooved tube that acts to suppress boiling.   

This effect is clear at the highest mass flux tested, 56 kW/m², and low to moderate 

vapor qualities where the measured dependence on heat flux was larger than the values 

predicted by the Wojtan et al. [31] correlation and the new correlation, defined in Chapter 

4.  The effect is, as expected, more dramatic in the nucleate boiling region (at low vapor 

qualities).  These trends were also mentioned by in the PhD Thesis by Canerie [152] for R-

134a in 7.91mm smooth tube and heat fluxes up to 25 kW/m² and for the data by da Silva 

Lima et al. [160].   

As shown in Figure 44, the models have difficulty predicting the vapor quality at 

which dryout occurs.  However, the models seem to predict the majority of the data at low 

to moderate heat flux well.  Future studies and model development should focus on a more 

comprehensive understanding of nucleate boiling and dryout mechanisms in smooth and 

internally-grooved tubes.  
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8.2 4.54mm Smooth and Internally-Grooved Tubes  

8.2.1 Influence of Mass Flux and Flow Regime 

Figure 45 shows the adiabatic results of the flow visualization/quantification, 

plotted in coordinates of mass flux and vapor quality and superimposed on the smooth tube 

and internally-grooved tube flow regime maps; Figure 45a is the 4.54mm smooth tube 

experimental results on the Wojtan et al. [30] map, Figure 45b is the internally-grooved 

tube results plotted on the Wojtan et al. [30] map, and Figure 45c is the internally-grooved 

tube data plotted on the current Sharar et al. [29] map.  Stratified data points are represented 

by red circles, Intermittent data points are blue triangles, and Annular data points are shown 

by green squares.  The diabatic flow visualization results are not shown for figure clarity 

but the adiabatic data points shown are representative of the flow trends observed.   

The transitions of flow pattern observed were Stratified, Intermittent, and Annular 

in the direction of increasing G and x.  Similar to the 8.84mm results in Figure 42, the 

transition to Annular flow in the 4.54mm internally-grooved tube occurred at lower mass 

flux and vapor quality compared to the smooth tube.  For example, at a mass flux of G=75 

kg/m²s and vapor quality greater than x=0.45, the smooth tube was operating in Stratified 

flow and the internally-grooved tube had transitioned to Annular flow.  Annular flow did 

not occur in the smooth tube for mass fluxes below G=100 kg/m²s while the internally-

grooved sustained Annular flow at mass fluxes as low as G=50 kg/m²s.   
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Figure 45:  4.54mm smooth tube data plotted on a) the Wojtan et al. [30] map and 4.54mm 

internally-grooved tube data plotted on b) the Wojtan et al. [30] map and c) the Sharar et al. [29] 

map with HFE-7100 at 61°C, G=50 kg/m²s, and q”=9 kW/m² 
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In addition to early Stratified to Annular transition, the internally-grooved tube 

provided early transition from Intermittent to Annular flow at higher mass fluxes.  As an 

example, at a mass flux of G=200 kg/m²s and vapor quality greater than x=0.1 the 

internally-grooved tube was operating in Annular flow.  This transition does not occur in 

the smooth tube until a vapor quality of approximately 0.25.  It’s also interesting to note 

that at sufficiently low mass fluxes and vapor qualities, G<100 kg/m²s and x<0.4, both the 

smooth and internally-grooved tubes were operating in Stratified flow.   Similarly, at high 

mass fluxes, G>125 kg/m²s, and high vapor qualities, x>0.25, both the smooth tube and the 

internally-grooved tube are operating in Annular flow.   

As shown in Figure 45a, Wojtan et al. [30] flow regime map captures these smooth 

tube trends well, predicting 145/165 data points (87.9% accurate).  However, as shown in 

Figure 45b the Wojtan et al. [30] flow regime map does a poor job predicting flow regime 

in the internally-grooved tube because Annular flow is shifted to lower mass flux and vapor 

quality; only 119/166 data points are correctly predicted (71.7%).  The Sharar et al. [29] 

modified flow regime map shown in Figure 45c does a good job predicting flow regime in 

the internally-grooved tube, correctly predicting 146/166 data points (87.9%); this 

represents an improvement of 16% over the traditional model.  Again, the new model mis-

predicts a small number of Annular data points at low mass flux and high vapor quality; 

one clear example is at a mass flux of 50 kg/m²s where the model is predicting Stratified-

Wavy flow and the tube was found to operate in Annular flow. 

Figure 46 shows a comparison of experimental heat transfer coefficients for the 

smooth and internally-grooved tubes with HFE-7100 at a heat flux of 9 kW/m² for three 

mass fluxes; Figure 46a for a mass flux of 50 kg/m²s, Figure 46b at a mass flux of 75 
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kg/m²s, and Figure 46c for a mass flux of 200 kg/m²s.  The experimental smooth tube data 

points are shown as red squares and the internally-grooved tube data points are green 

circles.  Additionally, the smooth tube heat transfer coefficient correlation as described by 

Wojtan et al. [31] and the internally-grooved tube heat transfer coefficient correlation 

described in the current study are plotted as solid red and dashed green lines, respectively.   

 As can be seen in Figure 46a, the smooth tube heat transfer coefficient remains low 

over the full range of vapor qualities tested for a mass flux of 50 kg/m²s.  This is a result 

of the prevalence of Stratified flow in the smooth tube and a large dry perimeter (θdry≠0), 

as shown in Figure 45; at a mass flux of 50 kg/m²s the smooth tube has θdry values between 

0 to 2π.  Under the same conditions, flow regime transition to Annular flow in the 

internally-grooved tube has occurred and the enhancement effect is observed.  In this case, 

the internally-grooved tube enhancement ratio, defined as the grooved tube heat transfer 

coefficient divided by the smooth tube coefficient, is close to 6.5.  It’s interesting to note 

that the heat transfer coefficient significantly under predicts the heat transfer coefficient at 

high vapor quality, x=0.6-0.8, because the flow regime map and model predict that the flow 

regime should transition back to Stratified flow but the observed flow regime was Annular 

flow prior to dryout.  This trend can also be seen in Figure 42c for the 8.84mm internally-

grooved tube.   
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Figure 46:  Comparison of heat transfer coefficient vs vapor quality for a mass flux of a) 50 kg/m²s, 

b) 75 kg/m²s, and c) 200 kg/m²s with HFE-7100 at 61°C and q”=9 kW/m² in the 4.54mm tubes 
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As shown in Figure 46b, the smooth tube heat transfer coefficients for a mass flux 

75 kg/m²s are similar to Figure 46a and remain low over the full range of vapor qualities 

tested.  Again, this is due to the prevalence of Stratified flow.  This is clear from Figure 

45a where it may be seen that, at a mass flux of 75 kg/m²s, the smooth tube is consistently 

operating in Stratified flow.  However, as can be seen in Figure 45b, at 75 kg/m²s and vapor 

qualities greater than x=0.4, Annular flow was observed in the internally-grooved tube.  

The result is a progressively higher heat transfer coefficient as vapor quality increases, 

Annular flow is developed, and the Annular film thins.  Eventually, dryout occurs at vapor 

qualities close to 1 and the heat transfer coefficient significantly reduces to a value close 

to the smooth tube values.  In this case, the internally-grooved tube enhancement ratio 

reaches a maximum value of close to 6 at high vapor quality, where thin Annular flow 

prevails in the internally-grooved tube and Stratified flow persists in the smooth tube.  

Again this low-flowrate operating point represents the ability for maximum enhancement 

while simultaneously reducing pumping power. 

The trends shown in Figure 46c for a mass flux of 200 kg/m²s are similar to those 

for the larger diameter tube, Figure 43c.  For both the smooth tube and the internally-

grooved tube, the heat transfer coefficients increase monotonically as vapor quality 

increases due to the predominance of Annular flow (θdry=0) and a thinning film as vapor 

quality increases.  The enhancement factor approaches the area enhancement at a mass flux 

of 200 kg/m²s because both tubes are occupying the same flow regime.  Similar to the 

8.84mm tube results, the variability in ‘IG 1’ and ‘IG 2’ appears to be larger for conditions 

near flow regime transition (as is the case for the internally-grooved tube at 50 kg/m²s and 

75 kg/m²s). 
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It’s interesting to note that the observed and predicted heat transfer coefficients 

were larger for the 4.54mm tubes than the 8.84mm tubes for similar operating conditions.  

As shown in Figure 43c, at a mass flux of 200 kg/m²s, heat flux of 9 kW/m², and vapor 

quality of 0.7, the smooth tube coefficient was 3172 W/m²K and the internally-grooved 

tube coefficient was 7998 W/m²K.  For the same conditions (Figure 46c) the 4.54mm 

smooth tube had a heat transfer coefficient of 3876 W/m²K and the internally-grooved tube 

had a coefficient of 9549 W/m²K.  This represents a 16% to 18% improvement by 

transitioning from an 8.84mm to 4.54mm smooth or internally-grooved tube.  This trend 

can be explained by analyzing the predicted film thickness (Equation (27)) and two-phase 

convective vaporization term (Equation (22)) described in Chapter 4.  For a fixed mass 

flux, vapor quality, void fraction, and heat flux, the smaller diameter tube has a thinner 

film thickness.  At the conditions above, the 8.84mm tube has a predicted film thickness 

of 89μm and the 4.54mm tube has a predicted film thickness of only 45μm.  The two-phase 

convective vaporization term in Equation (22) is proportional to the fluid thermal 

conductivity divided by the liquid film thickness, i.e. ℎ𝑐𝑏~
kL

δ
.  Therefore, a smaller 

diameter tube results in a thinner liquid film and a larger heat transfer coefficient. 

8.2.2 Influence of Heat Flux 

Figure 47 shows heat transfer coefficient vs vapor quality for the 4.54mm smooth 

and internally-grooved tubes for a mass flux of 200 kg/m²s and six different heat fluxes;  

Figure 47a is a heat flux of 4 kW/m², Figure 47b is a heat flux of 9 kW/m², Figure 47c is a 

heat flux of 18 kW/m², Figure 47d is a heat flux of 28 kW/m², Figure 47e is a heat flux of 

40 kW/m², and Figure 47f is a heat flux of 56 kW/m².  Refer to Appendix D for all data. 
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Figure 47:  Comparison of heat transfer coefficient vs vapor quality for the 4.54mm tubes with HFE-

7100 at 61°C and a mass flux of 200 kg/m²s for heat fluxes of a) 4 kW/m², b) 9 kW/m², c) 18 kW/m², 

d) 28 kW/m², e) 40 kW/m², and f) 56 kW/m² 
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The smooth tube and internally-grooved tube correlations both predict higher heat 

transfer coefficients at low vapor quality as the heat flux increases.  For example, at a vapor 

quality of 0.1 the smooth tube correlation predicts an improvement from 1760 W/m²K to 

2771 W/m²K when moving from a heat flux of 4 kW/m² to 56 kW/m² due to nucleate 

boiling enhancement.  The internally-grooved tube correlation predicts a similar trend and 

increases from approximately 4148 W/m²K to 5618 W/m²K with heat fluxes of 4 kW/m² 

to 56 kW/m², respectively.  However, this enhancement diminishes at higher vapor quality 

where nucleate boiling is suppressed and convective vaporization dominates.  This can be 

seen from Figure 47a and Figure 47f where the heat transfer coefficient is approximately 

8500 W/m²K for both 4 kW/m² and 56 kW/m² in the internally-grooved tube.  Another 

interesting effect is a reduction in the vapor quality at which local dryout occurs with 

increasing heat flux.  The predicted vapor quality where dryout occurs changes from 0.9 to 

0.59 for the smooth and internally-grooved tube correlations when moving from 4 kW/m² 

to 56 kW/m². 

The Wojtan et al. [31] smooth tube correlation was found to accurately predict the 

experimental results for heat fluxes at and below 28 kW/m², with mean and absolute 

deviations of 20.38% and -9.69%, but was less accurate for higher heat flux values of 40 

kW/m² and 56 kW/m², yielding mean and absolute deviations of 46.22% and -46.22%.  

This trend is similar to what was observed for the 8.84mm smooth tube in Figure 44 and is 

a result of the combined effect of under-prediction at low vapor quality, as well as at high 

vapor quality where dryout was predicted, but the tube sustained Annular flow.  This effect 

is clear at the highest heat flux tested, 56 kW/m², and the full range of vapor qualities where 

the measured dependence on heat flux was much larger than the values predicted by the 
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Wojtan et al. [31] correlation.  Similarly, the 4.54mm internally-grooved tube experimental 

data matched the model reasonably well for heat fluxes from 4 to 28 kW/m², with mean 

and absolute deviations of 25.96% and 4.98%.  However, the modified model described 

herein was less accurate at heat fluxes of 40 and 56 kW/m², with mean and absolute 

deviations of 31.83% and -21.21%.  This appears to be largely due to mis-prediction of the 

vapor quality at which dryout occurs, resulting in under-prediction of the heat transfer 

coefficient at high vapor quality.   

As described above, the models are not able to accurately predict the vapor quality 

at which dryout occurs for high heat fluxes.  The result is an under-prediction of the dryout 

quality and under-prediction of the heat transfer coefficient at high vapor qualities (x>0.7).  

Therefore, future studies should focus on a more comprehensive understanding of dryout 

conditions in smooth and internally-grooved tubes.  Inspiration should be drawn from 

recent experimental and numerical results from Bar-Cohen, Holloway, Riaz, and Kaffel 

[161] that provides a much more detailed description of interfacial wave patterns, 

instabilities, and local film rupture, compared to the current model that (incorrectly) 

assumes a thin uniform film at high vapor quality before dryout.     

8.3 2.8mm Smooth and 2.62mm Internally-Grooved Tubes  

8.3.1 Influence of Mass Flux and Flow Regime 

Figure 48 shows the adiabatic results of the flow visualization/quantification, 

plotted in coordinates of mass flux and vapor quality and superimposed on the smooth tube 

and internally-grooved tube flow regime maps; Figure 48a is the 2.8mm smooth tube 

experimental results on the Wojtan et al. [30] map, Figure 48b is the internally-grooved 

tube results plotted on the Wojtan et al. [30] map, and Figure 48c is the internally-grooved 
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tube data plotted on the current Sharar et al. [29] map.  Stratified data points are represented 

by red circles, Intermittent data points are blue triangles, and Annular data points are shown 

by green squares.  The diabatic flow visualization results are not shown for figure clarity 

but the adiabatic data points shown are representative of the flow trends observed.  Please 

refer to Appendix E for all of the data. 

The transitions of flow pattern observed were Stratified, Intermittent, and Annular 

in the direction of increasing G and x.  Similar to the 4.54mm and 8.84mm results in Figure 

42 and Figure 45, the transition to Annular flow in the 2.62mm internally-grooved tube 

occurred at lower mass flux and vapor quality compared to the smooth tube.  For example, 

at a mass flux of G=75 kg/m²s and vapor quality greater than x=0.35, the smooth tube was 

operating in Stratified flow and the internally-grooved tube had transitioned to Annular 

flow.  Annular flow did not occur in the smooth tube for mass fluxes below G=100 kg/m²s 

while the internally-grooved sustained Annular flow at the lowest mass flux tested, G=75 

kg/m²s.   

In addition to early Stratified to Annular transition, the internally-grooved tube 

provided early transition from Intermittent to Annular flow at higher mass fluxes.  As an 

example, at a mass flux of G=200 kg/m²s and vapor quality greater than x=0.15 the 

internally-grooved tube was operating in Annular flow.  This transition does not occur in 

the smooth tube until a vapor quality of approximately 0.25.   
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Figure 48:  2.8mm smooth tube data plotted on a) the Wojtan et al. [30] map and 2.62mm internally-

grooved tube data plotted on b) the Wojtan et al. [30] map and c) the Sharar et al. [29] map with 

HFE-7100 at 61°C, G=50 kg/m²s, and q”=9 kW/m² 
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It’s also interesting to note that at sufficiently low mass fluxes and vapor qualities, 

G<100 kg/m²s and x<0.35, both the smooth and internally-grooved tubes were operating 

in Stratified flow.   Similarly, at high mass fluxes, G>125 kg/m²s, and high vapor qualities, 

x>0.25, both the smooth tube and the internally-grooved tube are operating in Annular 

flow.  As shown in Figure 48a, the Wojtan et al. [30] flow regime map captures these 

smooth tube trends well, however, as shown in Figure 48b it does a poor job predicting 

flow regime in the internally-grooved tube; the Wojtan et al. [30] map correctly predicted 

131/153 experimental data points for the smooth tube (85.6%) but only 96/153 data points 

for the internally-grooved tube (62.7%).   The Sharar et al. [29] modified flow regime map 

shown in Figure 48c does a good job predicting flow regime in the internally-grooved tube, 

correctly predicting 136/153 experimental data points (88.9%).  This represents an 

improvement of 26.2% by adopting the new Sharar, Bar-Cohen, and Jankowski [29] 

modified flow regime map.  Again, the model does not predict Annular data points at low 

mass flux and high vapor quality, as is the case for 75 kg/m²s and vapor qualities greater 

than 0.6. 

Figure 49 shows a comparison of experimental heat transfer coefficients for the 

smooth and internally-grooved tubes with HFE-7100 at a heat flux of 9 kW/m² for two 

mass fluxes; Figure 49a is the lowest mass flux tested for the 2.62-2.8mm tubes (75 kg/m²s) 

and Figure 49b is a mass flux of 200 kg/m²s.  Mass fluxes below 75 kg/m²s could not be 

accurately tested due to the measurement range of the flow meters being used; please refer 

to Chapter 5 for more details.  The experimental smooth tube data points are shown as red 

squares and the internally-grooved tube data points are green circles.  The smooth tube heat 

transfer coefficient correlation, as described by Wojtan et al. [31], and the internally-
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grooved tube heat transfer coefficient correlation, described in the current study, are plotted 

as solid red and dashed green lines, respectively.   

 

 

 
Figure 49:  Comparison of heat transfer coefficient vs vapor quality for a mass flux of a) 75 kg/m²s 

and b) 200 kg/m²s with HFE-7100 at 61°C and q”=9 kW/m² in 2.62-2.8mm tubes 

 

As can be seen in Figure 49a, the smooth tube heat transfer coefficient remains low 

over the full range of vapor qualities tested, for a mass flux of 75 kg/m²s.  This is a result 

of the prevalence of Stratified flow, as shown in Figure 48a, in the smooth tube and a large 

dry perimeter (θdry≠0).  Under the same conditions, flow regime transition in the 
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internally-grooved tube has occurred and the enhancement effect is observed.  In this case, 

the internally-grooved tube enhancement ratio, defined as the grooved tube heat transfer 

coefficient divided by the smooth tube coefficient, is close to 5.5; this condition represents 

maximum enhancement with the potential for pumping power reduction.  It’s interesting 

to note that the heat transfer coefficient model over-predicts the heat transfer coefficient at 

low vapor quality, x=0.1-0.4.  The flow regime map and model predict that the heat transfer 

coefficient should increase sharply as the Stratified angle reduces and Annular flow is 

approached.  Experimentally, however, Stratified flow was maintained and the heat transfer 

coefficient remained low until Annular flow was reached at a vapor quality of 0.4. 

The trends shown in Figure 49b for a mass flux of 200 kg/m²s are similar to those 

for the larger diameter tubes, Figure 43c and Figure 46c.  For both the smooth tube and the 

internally-grooved tube, the heat transfer coefficients increase monotonically as vapor 

quality increases due to the predominance of Annular flow (θdry=0) and a thinning film.  

The enhancement factor approaches the area enhancement at a mass flux of 200 kg/m²s 

because both tubes are occupying the same flow regime.   

The observed and predicted heat transfer coefficients were larger for the 2.62mm 

internally-grooved tube and 2.8mm smooth tube than the 8.84mm tubes for similar 

operating conditions.  As shown in Figure 43c, at a mass flux of 200 kg/m²s, heat flux of 9 

kW/m², and vapor quality of 0.7, the smooth tube coefficient was 3172 W/m²K and the 

internally-grooved tube coefficient was 7998 W/m²K.  For the same conditions (Figure 

49b) the 2.8mm smooth tube had a heat transfer coefficient of 4642 W/m²K and the 

internally-grooved tube had a coefficient of 9494 W/m²K.  This represents a 16% to 32% 

improvement by transitioning from an 8.84mm to 2.8mm smooth or 2.62mm internally-
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grooved tube, respectively.  It’s interesting to note that this represents a significant 13% 

improvement over the 4.54mm smooth tube but a minor reduction for the internally-

grooved tube performance.  Intuitively this makes sense for the smooth tubes whereby a 

reduction in tube diameter leads to a thinner film and an increasing heat transfer coefficient.  

The seemingly contradictory results in the internally-grooved tube can be explained by 

closer inspection of the Ravigururajan and Bergles turbulent enhancement factor Erb 

(Equation (36));  the 2.62mm internally-grooved tube has a smaller groove height, smaller 

number of fins, and smaller helix angle which reduces the component contributed in 

Equation (36) and (37).  

8.3.2 Influence of Heat Flux 

Figure 50 shows heat transfer coefficient vs vapor quality for the 2.8mm smooth 

and 2.62mm internally-grooved tubes for a mass flux of 200kg/ m²s and six different heat 

fluxes;  Figure 50a is a heat flux of 4 kW/m², Figure 50b is a heat flux of 9 kW/m², Figure 

50c is a heat flux of 18 kW/m², Figure 50d is a heat flux of 28 kW/m², Figure 50e is a heat 

flux of 40 kW/m², and Figure 50f is a heat flux of 56 kW/m².  Please refer to Appendix E 

for additional data. 

 The smooth tube and internally-grooved tube correlations both predict higher heat 

transfer coefficients at low vapor quality as the heat flux increases.  For example, at a vapor 

quality of 0.1 the smooth tube correlation predicts an improvement from 2083 W/m²K to 

2928 W/m²K when moving from a heat flux of 4 kW/m² to 56 kW/m² due to nucleate 

boiling enhancement.  The internally-grooved tube correlation predicts a similar trend and 

increases from approximately 4421 W/m²K to 5365 W/m²K with heat fluxes of 4 kW/m² 

to 56 kW/m², respectively.  This enhancement diminishes at higher vapor quality where 
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nucleate boiling is suppressed and convective vaporization dominates.  This can be seen at 

a vapor quality of 0.5 on Figure 50a and Figure 50f where the heat transfer coefficient is 

approximately 8000 W/m²K for both 4 kW/m² and 56 kW/m² in the internally-grooved 

tube.  The vapor quality at which dryout occurs decreases with increasing heat flux.  The 

vapor quality where dryout occurs changes from 0.9 to 0.56 for the smooth and internally-

grooved tube correlations when moving from 4 kW/m² to 56 kW/m².   

 The Wojtan et al. [31] smooth tube correlation was found to accurately predict the 

data for heat fluxes at and below 28 kW/m², with a mean and absolute deviation of 30.74% 

and -0.50%, but was less accurate for higher heat flux values of 40 kW/m² and 56 kW/m², 

with a mean and absolute deviation of 43.20% and -43.13%.  This trend is similar to what 

was observed for the 8.84mm and 4.54mm smooth tubes in Figure 44 and Figure 47, 

respectively.  This effect is clear at the highest mass flux tested, 56 kW/m², and the full 

range of vapor qualities where the measured dependence on heat flux was larger than the 

values predicted by the Wojtan et al. [31] correlation, especially at high vapor quality where 

the model predicts dryout, but experimentally Annular flow was maintained and the heat 

transfer coefficient stayed high.  The modified heat transfer correlation developed herein 

showed similar results, with a mean and absolute deviation of just 19.45% and -8.68% for 

heat fluxes ranging from 4 to 28 kW/m², and deviations of 23.14% and -16.31% for heat 

fluxes of 40 and 56 kW/m².   
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Figure 50:  Comparison of heat transfer coefficient vs vapor quality for the 2.62-2.8mm tubes with 

HFE-7100 at 61°C and a mass flux of 200 kg/m²s for heat fluxes of a) 4 kW/m², b) 9 kW/m², c) 18 

kW/m², d) 28 kW/m², e) 40 kW/m², and f) 56 kW/m² 
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Similar to the 2.0mm smooth tube results and, generally-speaking, the majority of 

the results in this chapter, a major source of deviation between the predicted and measured 

heat transfer coefficient appears to derive from a mis-prediction of the vapor quality at 

which dryout occurs.  As shown in Figure 50, the models appear to predict the majority of 

the dryout data at heat fluxes at and below 9 kW/m² but generally under predicts the vapor 

quality at which dryout occurs for heat fluxes exceeding 18 kW/m².  Future studies should 

focus on a more comprehensive understanding of dryout conditions in smooth and 

internally-grooved tubes. 

8.4 Tabulation of Flow Regime Modeling Results 

Table 15 shows a full tabulation of the predictive accuracy of the original Wojtan 

et al. [30] flow regime map for the 2.80mm, 4.54mm, and 8.84mm smooth tube data shown 

in Figure 42a, Figure 45a, and Figure 48a.  The left column represents the experimentally 

observed flow regime or testing parameter and the next three columns represent the number 

of successful predictions and total data points (successful/total) for the three tube diameters 

when superimposed on the original Wojtan et al. [30] flow regime map.    

As shown in Table 15, and in the previous sections, the Wojtan et al. [30] model 

did a very good job predicting Stratified and Intermittent flow in the smooth tubes; in fact, 

the traditional flow regime map correctly predicted 296/301 (98.3%) Stratified and 

Intermittent data points for the full range tested.  However, the Wojtan et al. [30] map was 

not able to predict a number of Annular data points near the Stratified-Wavy to Annular 

transition.  Despite this minor misgiving, the traditional Wojtan et al. [30] flow regime map 

correctly predicted 178/197 (90.3%), 145/165 (87.9%), and 131/153 (85.6%) data points 
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for the 8.84mm, 4.54mm, and 2.80mm smooth tubes, respectively.  This represents a total 

weighted average success rate of 86.2% for all smooth tube data points.  

Table 15:  Predictive accuracy of Traditional Wojtan et al. [30] flow regime map for the smooth tube 

data 
Fluid HFE-7100 HFE-7100 HFE-7100 

Sat. Temp. 61°C 61°C 61°C 

Diameter 8.84mm 4.54mm 2.80mm 

Model Wojtan Wojtan Wojtan 

Stratified 81/83 
43/43 

54/71 

47/47 
44/44 

54/74 

34/34 
47/50 

50/69 
Intermittent 

Annular 

Total 178/197 

90.3% 

145/165 

87.9% 

131/153 

85.6% % 

 

Table 16 shows a full tabulation of the predictive accuracy of the original Wojtan 

et al. [30] flow regime map and the modified Sharar et al. [29] flow regime map developed 

in the current study for the 2.62mm, 4.54mm, and 8.84mm internally-grooved tube data, 

as shown in Figure 42b and c, Figure 45b and c, and Figure 48b and c.  The left column 

represents the experimentally observed flow regime or testing parameter and the next six 

columns represent the number of successful predictions and total data points 

(successful/total) for the three tube diameters when superimposed on the original Wojtan 

et al. [30] flow regime map and the modified Sharar et al. [29] map.   As shown in Table 

16 and in the previous sections, the Wojtan et al. [30] model generally did a poor job 

predicting the flow regime in the internally-grooved tubes.  The predictive accuracy for 

Stratified and Intermittent flow was generally good, but the Wojtan et al. [30] map 

predicted only 58/122, 65/112, and 52/109 Annular data points for the 8.84mm, 4.54mm, 

and 2.62mm internally-grooved tubes, respectively.  This represents a 51.0% predictive 

accuracy of Annular flow in internally-grooved tubes using the traditional Wojtan et al. 

[30] flow regime map and a total weighted average success rate 66.7% for all data points.   
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Table 16: Predictive accuracy of Traditional Wojtan et al. [30] and Modified Sharar et al. [29]  flow 

regime maps for the internally-grooved tube data 
Fluid HFE-7100 HFE-7100 HFE-7100 

Sat. Temp. 61°C 61°C 61°C 

Diameter 8.84mm 4.54mm 2.62mm 

Model Wojtan  Modified Wojtan  Modified Wojtan  Modified 

Stratified 34/34 31/34 25/25 19/25 8/8 8/8 

Intermittent 30/30 28/30 29/29 29/29 36/36 35/36 

Annular 58/122 105/122 65/112 95/112 52/109 93/109 

Total 122/186 164/186 119/166 143/166 96/153 136/153 

% 65.6% 87.7% 71.7% 86.1% 62.7% 88.9% 

 

The new model, applied to the internally-grooved tubes, did not always improve 

the success of predicting Stratified and Intermittent flow compared to the Wojtan et al. [30] 

flow regime map.  A minor reduction from 34/34 to 31/34 Stratified data points for the 

8.84mm tube and 25/25 to 19/25 Stratified data points for 4.54mm tube was observed.  

Similarly, a minor reduction from 30/30 to 28/30 Intermittent data points for the 8.84mm 

tube, and 36/36 to 35/36 Intermittent data points for the 2.62mm tube was shown.  

However, the new model significantly improves the predictability for Annular flow in all 

of the studies.  The new model improved Annular flow predictive accuracy from 58/122 to 

105/122 for the 8.84mm tube, 65/112 to 95/112 for the 4.54mm tube, and 52/109 to 93/109 

for the 2.62mm tube; this represents and improvement of 34.4% in predicting Annular 

flow, from 51.0% accuracy to 85.4%, by adopting the new model.  Overall, the new model 

represents an improvement from 66.7% accuracy for the Wojtan et al. [30] model to 88.3% 

using the updated transition criteria.  Based on these results, the new model appears to far 

more accurately predict early transition to Annular flow for the current data set. 

8.5 Enhancement Ratio 

Figure 51 shows a graphical summary of the enhancement ratio vs mass flux based 

on Figure 43, Figure 46, Figure 49, and additional 9 kW/m² data from Appendix C - 
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Appendix E.  This is similar to the figure shown in the Chapter 4 summary of the simulated 

modeling results and is revisited here with superimposed experimental data.   

 
Figure 51:  Enhancement ratio vs mass flux with current data for the 8.84mm, 4.54mm, and 2.62mm 

internally-grooved tubes 

 

 

The blue dashed line represents the predicted enhancement ratios for a vapor quality 

of 0.45 to 0.55 for the specific geometric parameters of the 8.84mm tube and plotted as a 

function of mass flux; again, the enhancement ratio is defined as the internally-grooved 

tube heat transfer coefficient divided by the smooth tube heat transfer coefficient.  
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Specifically, this was calculated with HFE-7100 at a saturation temperature of 61°C in an 

8.84mm tube with an area enhancement of 1.52, fin height of 0.2mm, and a helix angle of 

18°; a similar enhancement ratio was predicted for the 4.54mm tubes and was not included 

here for figure clarity.  The dashed green line is the predicted enhancement ratio for the 

2.62mm internally-grooved tube; this was calculated for HFE-7100 at a saturation 

temperature of 61°C in an 2.62mm tube with an area enhancement of 1.6, fin height of 

0.12mm, and a helix angle of 10°   Horizontal error bars for the uncertainty in mass flux 

are shown.  Additionally, labels for several data points direct the reader back to 

corresponding figures earlier in this chapter. 

The figure shows heat transfer improvement approximately equal to the area ratio 

of 1.52 at sufficiently low mass flux where both the smooth and internally-grooved tubes 

were operating in Stratified or Stratified-Wavy flow; this was the case for the 8.84mm 

smooth and internally-grooved tube at 9 kW/m² and a mass flux of 25 kg/m²s, as shown in 

Figure 43a.  The enhancement ratio also approached the area enhancement at high mass 

flux where both tubes were operating in the Slug, Intermittent, or Annular flow regime and 

the dry angle was zero (θdry=0); this can be clearly seen in Figure 43c, Figure 44b, Figure 

46c, Figure 47b, Figure 49b, and Figure 50b.  Large enhancement (5 to 7x) was predicted 

at low-to-intermediate mass fluxes where the smooth tube was operating in Stratified flow 

and the internally-grooved tube is operating in Annular flow;  this was shown for the 

8.84mm, 4.54mm, and 2.62mm internally-grooved tubes in Figure 43b, Figure 46a, Figure 

46c, and Figure 49a.  These trends are consistent with those described earlier and indicate 

that the new flow regime map and associated heat transfer coefficient can capture the 

physical mechanisms responsible for enhancement in internally-grooved tubes.   
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As shown in Figure 51, different tube geometric parameters (and fluids) result in 

different predicted enhancement ratios. Therefore, applying these exact predictions to 

different working fluids, saturation temperatures, and geometric parameters has 

limitations. Clearly, these parameters can affect the mass flux at which flow regime 

transition occurs and the relative effect of turbulence, Equation (36), and wet angle heat 

transfer coefficient, Equation (37). For example, the 2.62mm internally-grooved tube has 

a smaller helix angle (10° vs 18º), less fins (36 vs 60), and a smaller fin height (0.12mm vs 

0.20mm) compared to the 8.84mm and 4.54mm internally-grooved tubes.  This results in 

a reduction from 1.38 to 1.14 in the turbulence factor proposed by Ravagururajan and 

Bergles [28], and a corresponding reduction on Figure 51.   

8.6 Statistical Assessment of the Heat Transfer Coefficient Correlations 

In this section, several smooth tube and internally-grooved tube heat transfer 

coefficient models will be evaluated using the experimental database gathered in the 

current study for 2.8/2.62mm, 4.54mm, and 8.84mm tubes with heat fluxes from 4 kW/m² 

to 56 kW/m², mass fluxes ranging from 25 to 300 kg/m²s, and HFE-7100 at 61ºC as the 

working fluid.  Graphs for the largest diameter, 8.84mm, will be shown below and a tabular 

summary of all results will be provided.  Please refer to Appendix F for similar figures for 

the 4.54mm and 2.62/2.8mm smooth and internally-grooved tubes, and a more detailed 

table of results.  Please note, the figures created only consider ‘IG 1’ and ‘smooth 1’ data 

points which are fully representative of the trends observed for ‘IG 2’ and ‘smooth 2’; this 

allowed figure clarity.  The summary tables, however, considered all of the experimental 

data.  The statistical parameters of mean deviation, 𝜀, and mean of absolute value of 

deviations, |𝜀|, were calculated based on the equations below: 
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ε = ∑[(hpredicted − hexperimental)100/hexperimental] (70) 

|ε| = ∑ ABS[(hpredicted − hexperimental)100/hexperimental] 
(71) 

where hpredicted is the heat transfer coefficient predicted by the respective heat transfer 

coefficient correlation and hexperimental is the measured heat transfer coefficient.  These 

parameters are used to assess the success of the models in context of mass flux and flow 

regime. 

8.6.1 Smooth Tubes  

Measured smooth tube heat transfer coefficients were compared to the smooth tube 

two-phase correlations of Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], Gungor 

and Winterton [59], and a simplified two-phase flow boiling correlation by Gungor and 

Winterton [60] (referred to hereafter as Gungor-Winterton ‘new’).  Figure 52 shows the 

predicted heat transfer coefficient values vs the experimental two-phase heat transfer 

coefficient values for different mass fluxes.  The solid black line has a slope of 1, indicating 

perfect agreement between the model and experimental results.  The dashed lines represent 

±20% for reference.   The properties used while evaluating these correlations were the 

average values between the inlet and outlet of the test section (at the location of the wall 

temperature measurements).  Table 17 lists a summary of the statistical parameters for the 

six correlations used. 
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Figure 52:  Comparison of the 8.84mm smooth tube experimental data for HFE-7100 at 61°C with 

correlations from a) Wojtan et al. [31], b) Chen [56], c) Shah [57], d) Kandlikar [93], e) Gungor-

Winterton ‘original’ [59], and f) Gungor-Winterton ‘new’ [60] 
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As shown, and also apparent from Figure 52, the flow pattern based model of 

Wojtan et al. [31] was generally the most accurate for predicting two-phase flow of HFE-

7100 in the 8.84 mm smooth tube.  The mean and absolute deviations were the best among 

those evaluated, with values of -14.0% and 26.9%.  These results were reasonably 

consistent across the full range of mass fluxes, indicating the ability of the correlation to 

predict heat transfer coefficients in different flow regimes. 

As shown on Figure 52a, the data was reasonably well centered but the Wojtan et 

al. [31] model under-predicted a fair amount of data points.  Many of these under-predicted 

data points were at high vapor quality where Annular flow was sustained in the smooth 

tubes and the model incorrectly predicted dryout.  This is clear on Figure 44f at a mass flux 

of 200 kg/m²s, heat flux of 56 kW/m², and vapor quality of 0.82 where the experimental 

heat transfer coefficient was ~4200 W/m²K and the predicted value was ~1000 W/m²K; 

this data point is also indicated on Figure 52a and is clearly seen as falling well outside the 

±20% lines.  Again, this reinforces the assertion that modeling dryout conditions in smooth 

tubes needs to be revisited. 

 The Chen [56], Shah [57], Kandlikar [93], Gungor and Winterton [59], and ‘new’ 

Gungor and Winterton [60] correlations over-predicted much of the data and generally 

performed poorly over the full range of mass fluxes tested.  This can be explained by the 

inability of these correlations to accurately predict heat transfer for Stratified-Wavy and 

Stratified flow in smooth tubes.  For example, below 150 kg/m²s where Stratified-Wavy 

and Stratified flow was observed in the smooth tubes, the mean and absolute deviations 

rose to beyond 200% in many cases on Table 17.  However, considering only mass fluxes 

above 150 kg/m²s where Intermittent and Annular flow were observed in the smooth tubes, 
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the models performed reasonably well.  For example, the Chen [56] correlation showed a 

mean and absolute deviation of only 4.5% and 25.2% for the mass flux of 300 kg/m²s where 

Annular flow was the dominant flow regime and 679% mean and absolute error for a mass 

flux of 25 kg/m²s where Stratified flow dominated.  It’s worth noting that, as repeatedly 

observed by Rahim, Bar-Cohen, et al. [35] [55], the Chen [56] correlation performs 

remarkably well in the Annular flow regime and actually outperformed the Wojtan et al. 

[31] correlation at 300 kg/m²s.  Similar trends can be seen for the Shah [57], Kandlikar 

[93], Gungor-Winterton [59], and ‘new’ Gungor-Winterton [60] correlations. 

Table 17:  Predictive accuracy of two-phase smooth tube heat transfer coefficient correlations from 

Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], and Gungor-Winterton [59] [60] 

 compared to the 2.8mm to 8.84mm experimental results 

G 

kg/m²s 

Wojtan % Chen % Shah % Kandlikar % Gungor-

Winterton % 

Gungor-

Winterton 

new % 

 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -13.1 25.0 4.5 25.2 9.67 31.6 96.2 97.5 15.3 40.3 3.3 34.4 

200 -12.9 25.0 15.2 30.3 26.4 42.7 68.5 69.7 25.8 45.5 5.7 34.0 

175 -13.7 25.6 24.6 37.4 34.8 52.5 60.9 63.5 34.1 54.1 9.6 38.9 

150 -12.9 22.6 28.6 42.7 34.2 53.3 47.9 56.2 36.1 57.3 8.9 39.2 

125 -13.5 24.4 54.4 59.8 56.4 64.8 56.5 59.1 61.8 71.7 26.1 42.2 

100 -18.7 32.8 110.3 153.0 106.5 116.5 86.8 97.6 118.8 132.5 65.2 78.8 

75 -10.2 28.3 274.1 274.1 200.7 200.8 130.8 131.9 204.2 204.3 134.3 134.6 

50 -8.6 33.6 487.2 488.4 277.1 277.1 156.8 157.3 214.4 214.4 216.7 216.7 

25 -47.3 47.9 679.1 679.1 98.8 98.8 59.0 63.6 88.7 90.7 157.0 157.0 

total -14.0 26.9 100.7 115.6 72.8 85.9 80.6 84.4 72.1 87.5 44.3 65.3 

8.6.2 Internally-Grooved Tubes 

Measured internally-grooved tube heat transfer coefficients were compared to the 

current two-phase correlation described in Chapter 4, and the correlations of Thome, 

Kattan, and Favrat [91], Cavallini et al. [117], Chamra and Mago [162], Wu et al. [103], 

and Yun et al. [90].  Figure 53 shows the predicted heat transfer coefficient values vs the 

experimental two-phase heat transfer coefficient values for different mass fluxes.  Again, 

the solid black line has a slope of 1 indicating perfect agreement between the model and 

experimental results and the dashed lines represent ±20% deviation.    



 

181 

 

  

 

 
Figure 53:  Comparison of the 8.84mm internally-grooved tube experimental data for HFE-7100 at 

61°C with a) the Modified Sharar and Bar-Cohen correlation and correlations from b) Thome et al. 

[91], c) Cavallini et al. [117], d) Chamra and Mago [162], e) Wu et al. [103], and f) Yun et al. [90] 
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Table 18 lists a summary of the statistical parameters for the six internally-grooved 

correlations used.  The mean deviation was best for the Wu et al. [103] correlation with a 

value of -2.4%, indicating that the data was ‘well centered’.  However, the absolute error 

was quite high with a value of 80.7%.  The large absolute deviation is clear from Figure 

53e.  The small mean deviation, therefore, is a result of the large errors at high predicted 

values and low experimental values that offset the general trend of under-predicting heat 

transfer coefficient.  The same assessment can be made for the Cavallini et al. [117], 

Chamra and Mago [162] correlations. 

Table 18:  Predictive accuracy of Modified Sharar and Bar-Cohen two-phase internally-grooved tube 

heat transfer coefficient correlation and correlations from Thome et al. [91], Cavallini et al. [117], 

Chamra and Mago [162], Wu et al. [103], and Yun et al. [90] 

G Modified % Thome % Cavallini % Chamra % Wu % Yun % 

kg/m²s 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -5.1 28.7 52.8 61.5 -23.4 44.0 30.0 91.3 -1.0 58.5 -35.7 55.3 

200 1.1 25.1 67.3 74.7 -19.3 47.9 -10.9 55.9 -11.1 73.2 -55.9 68.3 

175 11.2 31.3 82.0 87.3 -10.4 54.3 -5.6 61.4 -11.5 76.2 -63.7 70.1 

150 21.7 40.9 99.5 105.0 -3.7 59.5 36.9 104.6 -8.9 84.0 -63.9 74.4 

125 10.8 29.1 93.6 98.7 -0.7 60.9 -1.1 66.3 -17.7 77.1 -64.7 77.9 

100 3.6 31.0 196.3 202.8 18.8 77.4 30.8 97.2 18.9 111.8 -70.7 76.4 

75 -2.8 31.7 130.3 135.0 82.3 129.6 65.1 123.1 -16.1 73.8 -60.6 80.6 

50 -12.9 41.1 250.7 252.3 76.6 119.2 75.8 132.5 22.6 95.5 -55.1 79.9 

25 -21.3 48.9 530.3 530.3 210.7 223.9 129.7 152.9 112.4 133.7 -48.3 73.0 

total 4.0 32.0 118.7 124.6 12.6 72.3 25.4 88.9 -2.4 80.7 -58.2 71.85 

 

The Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], Wu et al. 

[103], and Yun et al. [90] correlations generally performed poorly over the full range of 

mass fluxes tested but worked markedly better for higher mass fluxes.  Similar to the 

smooth tube correlations, this is explained by the inability of these correlations to 

accurately predict heat transfer for Stratified-Wavy (Slug and Stratified-Wavy) and 

Stratified flow.  For example, below 150 kg/m²s on Figure 42c, where Stratified flow was 

observed in the internally-grooved tubes, the mean and absolute deviations rose to values 

in excess of 100% in many cases on Table 18.  At and below mass fluxes of 75 kg/m²s, 



 

183 

 

where Stratified flow occupied 40% or 100% of the parametric space, deviations further 

increased.  However, considering only mass fluxes above 150 kg/m²s where Intermittent 

and Annular flow were the dominant flow regimes in the internally-grooved tubes, some 

of the models performed reasonably well.  For example, the Cavallini et al. [117] 

correlation showed a mean and absolute deviation of -23.4% and 44.0% for the mass flux 

of 300 kg/m²s where Annular flow was the dominant flow regime and 210.7% to 223.9% 

mean and absolute error for a mass flux of 25 kg/m²s where Stratified flow dominated.   

From a practical standpoint, the model developed in this Dissertation was the best 

among those evaluated with a mean deviation of 4% and a relatively low absolute deviation 

of 32%.  These results were reasonably consistent across the full range of mass fluxes, 

indicating the ability of the correlation to predict heat transfer coefficients in different flow 

regimes.  As shown on Figure 53a, the data was reasonably well centered but under-

predicted a substantial number of data points.  Many of these under-predicted data points 

were at high vapor quality where Annular flow was sustained in the internally-grooved 

tubes and the model incorrectly predicted dryout; this effect was also noted for the smooth 

tube data and indicates the need to re-examine dryout conditions in smooth and internally-

grooved tubes in the future.  This is clear on Figure 44d at a mass flux of 200 kg/m²s, heat 

flux of 28 kW/m², and vapor quality of 0.801 where the experimental heat transfer 

coefficient was ~8300 W/m²K and the predicted value was ~5500 W/m²K; this data point 

is also indicated on Figure 53a and is clearly seen as falling well outside the ±20% lines.  

It was also found that data around 50 kg/m²s (more so for the 8.84mm tube than the 

4.54mm tube) deviated from the new model value more than other mass fluxes, as shown 

on Figure 53a.  It is speculated that this is a result of experimental uncertainty in mass flux.  
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The mass flux experimental uncertainty was a fixed value of ±10.5 kg/m²s for the 8.84mm 

tubes.  Therefore, at a mass flux of 50 kg/m²s, the actual mass flux could, in fact, be 

operating anywhere from 40 kg/m²s to 60 kg/m²s.  Figure 54 shows an example of how 

much the heat transfer coefficient can be expected to change for mass fluxes ranging from 

40 kg/m²s to 60 kg/m²s based on the heat transfer model described herein.  Figure 54a is 

the Modified Sharar et al. [29] flow regime map for HFE-7100 in an 8.84mm internally-

grooved tube superimposed with the loci of 40 kg/m²s, 50 kg/m²s, and 60 kg/m²s; they are 

shown as a blue dashed line, green dashed line, and red dashed line, respectively.  Figure 

54b is the simulated heat transfer coefficient, for the same mass fluxes, along with the 

smooth tube data and internally-grooved tube data at a mass flux of 50 kg/m²s and 

equivalent heat flux.   

 

 
Figure 54:  Example of heat transfer coefficient uncertainty and deviation near the transition 

boundary between Stratified-Wavy and Annular flow for HFE-7100 at 61°C in the 8.84mm tubes; a) 

locus of different flowrates on the Modified flow regime map and b) resulting heat transfer 

coefficients 
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at a vapor quality of 0.2, and approach Annular flow around a vapor quality of 0.7.  The 

result, as seen on Figure 54b, is a relatively low heat transfer coefficient until Stratified-

Wavy flow is reached, and a maximum heat transfer coefficient of 3032 W/m²K at x=0.7, 

where Annular flow is approached and the dry angle is small; the model at this mass flux 

under-predicts the experimental data.  At a lower mass flux of 40 kg/m²s, where the model 

predicts Stratified and Stratified-Wavy flow, the heat transfer coefficient is worse-still due 

to a larger dry angle.  In this case, the maximum heat transfer coefficient is only 2182 

W/m²K, representing a 28% reduction in predicted performance from 50 kg/m²s; the model 

under-predicts the experimental data at 40 kg/m²s.  At a higher mass flux of 60 kg/m²s, the 

flow regime starts as Stratified and Stratified-Wavy flow but transitions to Annular flow at 

a vapor quality of 0.49.  This results in a much larger predicted heat transfer coefficient 

(maximum value of 4869 W/m²K), representing a 37% and 55% improvement over the 

predicted values for 40 kg/m²s and 50 kg/m²s, respectively.  As shown, the predicted values 

at 40 and 50 kg/m²s tend to under-predict the measured values at 50 kg/m²s, but the 60 

kg/m²s model simulation generally over-predicts the experimental results.  This validates 

the argument that uncertainty in the experimental mass flux and proximity to the Stratified-

Wavy to Annular transition line is the likely explanation of the large deviation at a mass 

flux of 50 kg/m²s.  Future work should focus on improving the test facilities to reduce mass 

flux uncertainty and allow a more robust understanding and discussion of heat transfer 

around the Stratified-Wavy to Annular transition line. 

It’s interesting to note that the mass flux uncertainty may also explain variation 

between the predicted and measured enhancement ratio shown in Figure 51.  As shown, a 

seemingly modest uncertainty of ±10.5 kg/m²s can result in large deviations in the 
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enhancement ratio because the slope of enhancement vs mass flux is very steep in the 

Stratified-Wavy to Annular transition region.  Again, efforts should be made to reduce the 

uncertainty in the experimental mass flux to better map out the enhancement vs mass flux 

chart shown in Figure 51. 

8.7 Comparison to Data from the Literature 

The studies from Yu et al. [66], Colombo et al. [79], and Spindler and Müller-

Steinhagen [74], discussed in Chapter 3, demonstrated the shift of the dominant Annular 

flow regimes in internally-grooved tubes to lower mass flux and vapor quality and an 

expansion of the parametric space occupied by Annular flow.  The traditional Wojtan et al. 

[30] map did a poor job predicting flow regimes in these studies due to the observed flow 

regime transition; this conclusion from the literature review was a driving factor in 

undertaking the current research effort.  The goal of this section is to revisit those studies 

and compare their flow regime and heat transfer coefficient data to the new flow regime 

map and regime based heat transfer coefficient correlation.  This serves several purposes; 

a) further substantiate early flow regime transition to Annular flow as an enhancement 

mechanism in internally-grooved tubes; b) provide an independent validation of the flow 

regime map and heat transfer coefficient developed Chapter 4. 

8.7.1 Flow Regime Data 

Yu, Lin, and Tseng [66] performed a flow visualization and heat transfer study with 

R134a at 6ºC in a 10.7 mm ID smooth and an 11.1 mm ID internally-grooved tube with an 

18° helix angle.  Mass fluxes from 163 to 408 kg/m²s, heat flux between 2.2 and 56 kW/m², 

and a fixed heated length of 1.5 m were tested.  Figure 55a shows the results of the 

internally-grooved tube flow visualization, plotted in the coordinates of mass flux and 
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vapor quality and superimposed on the Wojtan et al. [30] flow regime map and modified 

Sharar et al. [29] map; Figure 55a is the data plotted on the Wojtan et al. [30] map and 

Figure 55b is the internally-grooved tube results plotted on the Sharar et al. [29] map.  As 

shown in Figure 55a, the Wojtan et al. [30] flow regime map predicted 45/47 Intermittent 

data points but only 6/30 Annular flow data points for the Yu et al. [66] internally-grooved 

tube.  In total, the Wojtan et al. [30] flow regime map predicted 51/77 experimental data 

points, equaling 66% of the internally-grooved tube data.  As shown in Figure 55b, the 

current flow regime modifications, which shift Annular flow to lower vapor quality and 

mass flux, greatly improved the predictive accuracy for the Yu et al. [66] internally-

grooved tube data.  The new model predicted 43/47 Intermittent data points and 21/30 

Annular data points; this is a weighted average total of 83% of the data from Yu et al. [66]. 

 
Figure 55:  11.1 mm ID internally-grooved tube experimental flow visualization results from Yu et al. 

[66] for R134a at 6ºC with a heat flux of 20 kW/m² plotted on the a) original Wojtan et al. [30] map 

and b) Modified Sharar et al. [29] map 

 

Colombo et al. [79] performed a flow visualization and evaporative heat transfer 
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tube and two internally-grooved tubes with inside diameters of 8.62 and 8.92 mm.  Both 

internally-grooved tubes had helix angles of 18° and apex angles of 40º but had alternating 

fin heights ranging from 0.16 to 0.23 mm and the number of grooves ranging from 54 to 

82.  The resulting internally-grooved tube area ratio ranged from 1.55 to 1.82.  Mass fluxes 

from 100 to 340 kg/m²s, heat flux between 2.2 and 56 kW/m², vapor qualities from 0.1 to 

0.9, and a fixed heated length of 1.3 m were tested.   

Figure 56 shows the results of the flow visualization, plotted in the coordinates of 

mass flux and vapor quality and superimposed on the Wojtan et al. [30] flow regime map 

and Sharar et al. [29] map; Figure 56a is the internally-grooved tube experimental results 

on the traditional map [30] and Figure 56b is the same results on the new model [29] 

described herein.  As shown, the modified map markedly improves predictability of flow 

regime in the internally-grooved tube, particularly for Annular flow.  Compared to the 

smooth tube model, Figure 56a, which predicted 31/31 Stratified data points, 2/4 

Intermittent data points, and only 25/42 Annular data points, the new model, Figure 56b, 

predicted 28/31 Stratified data points, 0/4 Intermittent data points, and 42/42 Annular data 

points.  This represents an improvement from 75% to 91% predictive accuracy when 

switching from the Wojtan et al. [30] model to the new Sharar et al. [29] model. 

Spindler and Müller-Steinhagen [74] performed an experimental investigation of 

heat transfer and flow regime during evaporative cooling in an 8.92 mm ID internally-

grooved tube with a 15° helix angle using two different refrigerants, R134a and R404A.  

Experiments were conducted in a 1 m long, heated test section with mass fluxes ranging 

from 25 to 150 kg/m², heat flux from 1 to 15 kW/m², inlet vapor qualities ranging from 0.1 

to 0.7, and a saturation temperature of -20ºC.  Stratified, Intermittent, and Annular flow 
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were observed, however, Annular flow was the dominant regime for mass fluxes at or 

above 65 kg/m²s.   

 

 
Figure 56:  8.92 mm ID internally-grooved tube experimental flow visualization results from 

Colombo et al. [79] with R134a at 5ºC and a heat flux of 4.2 kW/m² plotted on the a) original Wojtan 

et al. [30] map and b) Modified Sharar et al. [29] map 

 

Figure 57a and Figure 57b show the R134a internally-grooved tube data of Spindler 

and Müller-Steinhagen [74] plotted on the traditional flow regime map [30] and the 

modified map [29], respectively.  Similar to Figure 55 and Figure 56 above, the modified 

map improves predictability of flow regime in the internally-grooved tube.  The smooth 

tube Wojtan et al. [30] model, Figure 57a, predicted 2/3 Stratified data points and 3/11 

Annular data points while the new model [29], Figure 57b, predicted 2/3 Stratified data 

points and 9/11 Annular data points.  This represents an improvement from 36% predictive 

accuracy to 79% accuracy. 
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Figure 57:  8.92 mm ID internally-grooved tube experimental flow visualization results from 

Spindler and Müller-Steinhagen [74] for R134a at -20ºC with a heat flux of 7.5 kW/m² plotted on the 

a) original Wojtan et al. [30] map and b) Modified Sharar et al. [29]  map  

 

Figure 58 shows the R404a internally-grooved tube data of Spindler and Müller-

Steinhagen [74] plotted on the traditional [30] and modified Sharar et al. [29] flow regime 

maps.  As is consistent with the above results, the modified model greatly improved 

predictive accuracy for the data set.  The original model correctly predicted 2/3 Stratified 

data points but only 3/11 Annular data points while the modified model predicted 2/3 

Stratified data points and a much improved 10/11 Annular data points.  The represents an 

overall accuracy improvement of 49%, from 36% for the Wojtan et al. [30] model (only 

5/14 correct) to 85% for the Sharar et al. [29] model (12/14 correct).   

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
 (

k
g
/m

²s
)

x

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
 (

k
g
/m

²s
)

x

1 1 1

Intermittent 

Annular 

Stratified 

Slug and 

Stratified-

Wavy 

Slug 

Stratified-Wavy 

Dryout 

Mist 

(a) 

Intermittent 

Annular 

Stratified 

Slug and 

Stratified-

Wavy 

Slug 

Stratified-Wavy 

Dryout 

Mist 

(b) 

Stratified Annular 



 

191 

 

 

 
Figure 58:  8.92 mm ID internally-grooved tube experimental flow visualization results from 

Spindler and Müller-Steinhagen [74] for R404a at -20ºC with a heat flux of 7.5 kW/m² plotted on the 

a) original Wojtan et al. [30] map and b) Modified Sharar et al. [29] map 

 

A full tabulation of the success of the original Wojtan et al. [30] and modified 

Sharar et al. [29] flow regime maps are shown in Table 19.  The left column represents the 

experimentally observed flow regime or testing parameters and the next 8 columns 

represent the number of successful predictions and total data points (successful/total) for 

the Yu et al. [66], Colombo et al. [79], and Spindler and Müller-Steinhagen [74] studies 

when superimposed on the traditional Wojtan et al. [30] and modified Sharar et al. [29] 

models.   As shown, the modified model outperforms the traditional model for predicting 

flow regime in internally-grooved tubes.  The net result is a weighted average success rate 

improvement of 21%, from 65% for the original model to 86% for the modified model. 

The new model, applied to the internally-grooved tubes, did not always improve 

the success of predicting Stratified and Intermittent flow.  A minor reduction from 45/47 

to 43/47 Intermittent data points for the Yu et al. [66] study and from 2/4 to 0/4 Intermittent 

data points for the Colombo et al. [79] study was observed.  Similarly, a minor reduction 
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from 31/31 Stratified data points to 28/31for the Colombo et al. [79] study was observed.  

However, the new model vastly improved the predictability for Annular flow in all of the 

studies.  The new model improved Annular flow predictive accuracy from 6/30 to 21/30 

for the Yu et al. [66] study, 25/42 to 42/42 for the Colombo et al. [79] study, and 6/22 to 

19/22 for the two Spindler and Müller-Steinhagen [74] tests; this represents an 

improvement of 48% in predicting Annular flow, from 39% accuracy to 87%, by adopting 

the new model.  These trends are consistent with those described in Section 8.4, and 

summarized in Table 16, for the current data set. 

Table 19: Predictive accuracy of Traditional Wojtan et al. [30] and Modified Sharar et al. [29] flow 

regime maps 
 Yu et al. Colombo et al. Spindler and Müller-Steinhagen 

Fluid R134a R134a R134a R404a 

Sat. Temp. 6°C 5°C -20°C -20°C 

Diameter 11.1mm 8.92mm 8.92mm 8.92mm 

Model Wojtan  Modified Wojtan  Modified Wojtan  Modified Wojtan  Modified 

Stratified N/A N/A 31/31 28/31 2/3 2/3 2/3 2/3 

Intermittent 45/47 43/47 2/4 0/4 N/A N/A N/A N/A 

Annular 6/30 21/30 25/42 42/42 3/11 9/11 3/11 10/11 

Total 51/77 64/77 58/77 70/77 5/14 11/14 5/14 12/14 

% 66% 83% 75% 91% 36% 79% 36% 85% 

8.7.2 Heat Transfer Coefficient  

Figure 59 shows heat transfer coefficient vs vapor quality for the smooth (solid red 

circles) and internally-grooved tubes (hollow red circles) tested at 163 kg/m²s in the Yu et 

al. [66] study.   The original smooth tube Wojtan et al. [31] heat transfer model and the 

current internally-grooved tube model are also plotted on Figure 59; The Wojtan et al. [31] 

model is represented by a solid red line and the new model is a dashed green line.  As 

shown in the figure, the heat transfer coefficient remains relatively low but slightly 

increases over the range of vapor qualities tested for the smooth tube.  Again, this is due to 

the prevalence of Stratified flow and a large dry perimeter (θdry≠0) up until a vapor quality 

of 0.32 when it approaches Annular flow; refer back to Figure 8.  As shown, this trend is 
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reasonably well predicted by the original Wojtan et al. [31] smooth tube heat transfer 

coefficient correlation.   

 
Figure 59:  Heat transfer coefficient vs vapor quality for the original Wojtan et al. [31] model, 

Modified heat transfer coefficient described in this Dissertation, and data from Yu et al. [66] for an 

11.1 mm smooth and internally-grooved tube with R134a at 6ºC and a heat flux of 20 kW/m² 

 

The trend for the internally-grooved tube is much different as a result of early 

transition to Annular flow and a fully wetted perimeter (θdry=0).  As can be seen in Figure 

55b at 163 kg/m²s and vapor qualities greater than x=0.3, transition from Slug and 

Stratified-Wavy to Annular flow occurred in the internally-grooved tube.  The result, as 

shown on Figure 59, is a relatively poor heat transfer coefficient for vapor qualities below 

0.2-0.3, after which a sharp increase is seen; this sharp increase corresponds directly with 

the transition to Annular flow.  For vapor qualities below 0.2 where both the smooth and 

internally-grooved tube are operating in Slug and Stratified-Wavy flow, the tube heat 

transfer enhancement ratio approaches the area ratio; at a vapor quality of 0.15, the smooth 

tube has a heat transfer coefficient of 2631 W/m²K and the internally-grooved tube has a 
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value of 3738 W/m²K (3738/2631=1.42).  However, the enhancement ratio reaches a 

maximum value of close to 2.25 at vapor quality of 0.52 where thin film Annular flow 

prevails in the internally-grooved tube and Stratified-Wavy flow persists in the smooth 

tube.  The results further demonstrate that the large heat transfer enhancement at low-to-

intermediate mass fluxes commonly observed in internally-grooved tubes is strongly 

related to early transition to Annular flow.  As shown in Figure 59, the model described 

herein captures these trends and provides a tool for analytically and physically defining 

this enhancement mode. 

Figure 60 shows the normalized enhancement ratio vs mass flux for a vapor quality 

of 0.45-0.55 for the data from Yu et al. [66] (hollow red circles), Filho et al. [75] [38] 

(hollow blue triangles), Colombo et al. [79] (hollow black diamonds), and the current data 

from Figure 51; error bars were not included to maintain figure clarity, however, please 

refer to Sections 8.5 and 8.6.2 for a discussion.  The independent data was extracted from 

the two enhancement ratio vs vapor quality figures (Figure 9 and Figure 10) shown in 

Chapter 3.  The enhancement ratios shown in Figure 60 have been normalized by dividing 

the tube heat transfer enhancement by the tube area enhancement; this provided a ‘smooth 

tube equivalent’ and allows easier comparison among tubes with different geometric 

parameters.  The blue and green dashed lines represent the 8.84mm and 2.62mm predicted 

normalized enhancement ratios averaged over a vapor quality of 0.45 to 0.55 and plotted 

as a function of mass flux.  The predicted values are obtained by comparing the predicted 

results from the current internally-grooved tube model, described in Chapter 4, to the 

Wojtan et al. [31] smooth tube model.  The model comparison predicts heat transfer 

improvement approaching 1 (recall these results are normalized to eliminate the effect of 



 

195 

 

area enhancement) at sufficiently low mass flux where both tubes are operating in Stratified 

flow and high mass flux where both tubes are in the Annular flow regime.  Large 

enhancement is predicted at low-to-intermediate mass fluxes where the smooth tube is 

operating in Stratified flow and the internally-grooved tube is operating in Annular flow.   

 
Figure 60:  Normalized enhancement ratio vs mass flux with data from the current study and data 

from three independent researchers 
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It should be noted that the predicted enhancement shown in Figure 60 is for HFE-

7100 and the unique geometric parameters of the internally-grooved tubes used in the 

current study.  Again, applying these exact predictions to different working fluids, 

saturation temperatures, and geometric parameters has limitations because these 

parameters can affect the mass flux at which flow regime transition occurs, the relative 

effect of turbulence, and the grooved tube enhancement. However, the model appears to 

adequately predict the trends shown by Yu et al. [66], Filho et al. [75] [38], and Colombo 

et al. [79]. 

8.8 Applicability of the Sharar et al. Model 

The current flow map and heat transfer coefficient correlation were validated herein 

with data from Yu et al. [66], Colombo et al. [79], Spindler Müller-Steinhagen [74], Filho 

et al. [75] [38], and the current data set, which in-total covered internally-grooved tubes 

with internal diameters of 2.62mm, 4.54mm, 8.84mm, 8.92mm, and 11.1mm with R-134a, 

R404a, and HFE-7100 as the working fluids, and heat fluxes up to 56 kW/m².  The 

Liebenberg et al. [114] Intermittent to Annular transition used in the current study covered 

internally-grooved tubes with internal diameters from 8 to 9 mm and refrigerants R-134a, 

R-22, and R-407C.  Furthermore, the database used to create the original Wojtan et al. [30] 

map covers tubes with internal diameters from 12 to 14 mm and common refrigerants, 

namely R-134a, R-22, and R-410a.  A detailed discussion on the range of conditions used 

to validate the original Wojtan et al. flow regime map [30] and heat transfer correlation 

[31], as well as the Ravigururajan and Bergles [28] internally-grooved tube enhancement 

factor, Erb, and the empirically derived enhancement factor introduced by Thome et al. 

[91], Emf, can be found in Chapter 4. 
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It is reasonable to expect that the modified Sharar et al. [29] map, validated with 

multiple tube sizes and fluids, is valid for a wider range of tube diameters and fluids.  The 

basis for the modified model, the Wojtan et al. [30] model, originated from the Taitel-

Dukler [46] physics-based transition criteria which contains little empirical fitting and 

should theoretically apply to most fluids and channel sizes.  Additionally, a comparison of 

fluid properties at atmospheric pressure, as shown in Table 20 [163], reveals that the fluids 

used to validate the modified Stratified-Wavy to Annular transition, R-134a, R404a, and 

HFE-7100, have similar properties to fluids used in the original Wojtan et al. [30] model 

and other common heat transfer fluids.  Referring to Chapter 4, consistency in the fluid 

properties in Table 20 would imply similar fluidic performance and applicability of the 

modified model to R113, R134a, R22, R245fa, R410a, FC-72, and HFE-7100.  It’s worth 

noting that due to the similarity in the fluid properties, the boundaries and extent of the 

predicted flow regimes and heat transfer coefficients are similar for the range of fluids 

considered in this Dissertation. 

However, predicting flow regimes with water as the working fluid will likely not 

work due to the disparate fluid properties.  This point is emphasized by Figure 38c and the 

analysis in Chapter 6 that showed that the Wojtan et al. [30] flow regime map did not 

accurately predict flow regimes for water/vapor as the working fluids in an 8.84mm smooth 

channel.  Again, the likely explanation for this deviation is that the Wojtan et al. [30] flow 

regime map was (at least partially) empirically fit to match the common refrigerants, shown 

in Table 20, which have fluid properties vastly different than water.  In effect, the empirical 

constants allow for better predictive accuracy for operating conditions close to the data set 

used to develop the correlations, but may not extrapolate well to different conditions.  The 
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current model would benefit from future experimental validation to reinforce these 

assertions. 

Table 20:  Saturated Properties of Various Fluids  

Fluid Properties at 0.1 MPa 

Boiling pt. (ºC) ρL (kg/m³) ρV (kg/m³) σ (mN/m) μL  (μPa-s) μV (μPa-s) 

R113 47 1509 7.29 14.8 493 10.3 

R134a -26 1377 5.19 15.5 380 9.76 

R22 -41 1410 4.64 18.1 347 9.68 

R245fa 14.5 1367 5.83 15.4 466 9.97 

R410a -52 1361 4.12 17.8 387 9.89 

FC-72 56 1680 13.4 10 262 12.1 

HFE-7100 61 1370 9.87 14 275 11.3 

Water 100 958 0.59 58.9 283 12.3 

8.9 Refitting the Sharar et al. Flow Regime Map 

The Sharar et al. [29] flow regime map, developed based on trends observed in the 

literature and described in detail in Chapter 4 was not refitted based on the current set of 

data using HFE-7100 in 2.62-8.84mm internally-grooved tubes.  While it was shown to be 

accurate for 86-88% of the flow regime data for the current data set, it is likely that 

alterations based on the collection of new data, in conjunction with data from the literature, 

will improve flow regime predictability and subsequently, heat transfer predictability.  This 

section aims to carefully and precisely address this theory, indicating the merits of a more-

comprehensive future effort.   

One trend that was observed for the 2.62mm, 4.54mm, and 8.84mm internally-

grooved tubes was mis-prediction of Annular flow near the transition boundary between 

Stratified-Wavy and Annular flow.  Specifically, at low mass fluxes of 50 and 75 kg/m²s 

and vapor qualities greater than 0.60, the Sharar et al. [29] flow regime map predicted that 

the grooved tubes should transition from Annular flow to Stratified-Wavy flow.  However, 

as shown for the 8.84mm (Figure 42c), 4.54mm (Figure 45c), and 2.62mm (Figure 48c) 

internally-grooved tubes, the experimental flow regime was found to be Annular flow for 
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this range of operating conditions.  Figure 45c for the 4.54mm grooved tube is reproduced 

on Figure 61a below for convenience.   

 
Figure 61:  4.54mm internally-grooved tube data plotted on a) the Sharar et al. map [29] described in 

Chapter 4 and b) the adjusted map based on the current data set with HFE-7100 at 61°C, G=50 

kg/m²s, and q”=9 kW/m² 

 

It’s interesting to note that the heat transfer coefficient generally under-predicts the 

heat transfer coefficient for the same conditions because the flow regime map and heat 

transfer model incorrectly predict Stratified flow and a large dry angle.  This is clearly 

shown on Figure 46a for the 4.54mm grooved tube with a mass flux of 50 kg/m²s and vapor 
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qualities greater than 0.6; this data is reproduced on Figure 62a below, again for 

convenience.  Therefore, this region of low mass flux, ranging from 50 to 75 kg/m²s, and 

high vapor qualities, greater than 0.60, represents a parametric space that could benefit 

from adjustment to the flow regime map.  

 

 
Figure 62:  Comparison of heat transfer coefficient vs vapor quality for a mass flux of 50 kg/m²s with 

HFE-7100 at 61°C and q”=9 kW/m² in the 4.54mm tubes superimposed with a) heat transfer 

coefficient based on Sharar et al. [29] map and b) adjusted Sharar et al. map 

 

To better capture this trend, an adjustment to the Stratified-Wavy to Annular 
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prevents the Stratified-Wavy to Annular transition boundary from increasing past the 

minimum predicted value at high vapor quality.  Figure 61 shows the 4.54mm internally-

grooved tube flow visualization results plotted in coordinates of mass flux and vapor 

quality and superimposed on the Sharar et al. [29] map, described in Chapter 4, and revised 

Sharar et al. [29] flow regime map based on the above adjustment; Figure 61a is the 

4.54mm internally-grooved tube experimental results on the Sharar et al. [29] map and 

Figure 61b is the internally-grooved tube results plotted on the adjusted Sharar et al. [29] 

flow regime map.  Stratified data points are represented by red circles, Intermittent data 

points are blue triangles, and Annular data points are shown by green squares.   

As shown by the figure, the proposed modification increases the predictability of 

Annular flow at low mass flux (50-75 kg/m²s) and high vapor quality (x>0.6).  Specifically, 

the prediction of Annular flow increases from 95/112 data points to 102/112 data points.  

This represents an improvement from 84.8% to 91.1% for predicting Annular flow in the 

4.54mm internally-grooved tube and a weighted average improvement from 86.1% to 

90.4%.  This modification does not result in any change to the predictability of Stratified 

and Intermittent flow.  This analysis would be expected to provide improved predictability 

for the 8.84mm and 2.62mm internally-grooved tube data; future work should focus on 

justifying this assertion. 

Figure 62 shows a comparison of experimental heat transfer coefficients for the 

smooth and internally-grooved tubes with HFE-7100 at a heat flux of 9 kW/m², mass flux 

of 50 kg/m²s, and a tube diameter of 4.54mm; Figure 62a is the experimental results plotted 

with the heat transfer correlation predicted based on the Sharar et al. [29] map and Figure 

62b is the predicted heat transfer coefficient based on the above alteration.  The 
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experimental smooth tube data points are shown as red squares and the internally-grooved 

tube data points are green circles.   

 As previously mentioned, the heat transfer coefficient correlation based on the 

Sharar et al. [29] map (Figure 62a) significantly under predicts the heat transfer coefficient 

at high vapor quality, x=0.6-0.8.  This is a result of the flow regime map mis-predicting 

transition to Stratified-Wavy flow where the observed experimental flow regime was 

Annular flow, prior to dryout.  The predicted heat transfer coefficient based on the adjusted 

flow regime map, shown in Figure 62b, predicts Annular flow and a reduced dry angle at 

this operating condition.  As a result, the predicted heat transfer coefficient more closely 

resembles the experimental heat transfer results at vapor qualities from 0.6-0.8.   

As shown at a vapor quality of approximately 0.85 on Figure 62b, there is still 

uncertainty in predicting performance at these conditions, despite the favorable outcome 

of this adjustment.  Therefore, a more comprehensive feedback study needs to be conducted 

to firmly establish the flow regime transition boundaries and what constitutes ‘optimum’ 

boundaries for minimizing error between the model and combined data from the literature 

and current study.  Future studies should focus not only on the Stratified-Wavy to Annular 

transition, but also the Intermittent to Annular transition, and the effect of heat flux on the 

Dryout boundaries. 

8.10 Summary  

The preceding chapter has presented an experimental and analytical study of flow 

boiling of HFE-7100 in horizontal 2.62mm - 8.84 mm diameter smooth and internally-

grooved tubes, with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and 

exit vapor qualities approaching 1.  The new physics-based flow regime map and heat 
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transfer model described in Chapter 4 were quantitatively and statistically validated using 

the current data and data from the literature.  Models from the literature were also compared 

to the current data set.   

It was shown that the Wojtan et al. [31] regime-based heat transfer coefficient 

correlation, with a mean and absolute deviation of -14.0% and 26.9%, outperformed the 

smooth tube models of Chen [56], Shah [57], Kandlikar [93], Gungor and Winterton [59], 

and simplified two-phase flow boiling correlation by Gungor and Winterton [60].  This 

was especially true at mass fluxes below 150 kg/m²s where Stratified-Wavy and Stratified 

flow occupied a large portion of the parametric space.  Deficiencies in the Wojtan et al. 

[31] model for predicting heat transfer coefficient at high heat flux and near dryout 

conditions represent a future research opportunity.  

Similarly, the new Sharar et al. [29] flow regime map and associated regime-based 

heat transfer coefficient correlation outperformed the internally-grooved tube correlations 

from Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], Wu et al. [103], 

and Yun et al. [90], particularly at mass fluxes below 75 kg/m²s where Stratified-Wavy and 

Stratified flow occupied a large portion of the parametric space; the mean and absolute 

deviation for the new model was 4.0% and 32%, respectively.  The largest source of 

deviation was at high vapor quality where the model predicted dryout and Annular flow 

was sustained in the internally-grooved tubes.  Additionally, larger-than-normal errors 

arose near the transition boundary between Stratified-Wavy and Annular flow, presumably 

due to uncertainty in the reported mass flux.  Suggestions for future flow regime and heat 

transfer model improvements (as well as improvements to the experimental test setup) were 

made, focusing primarily on the need for future research on high heat flux, dry-out 
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conditions, and operation close to flow regime transition boundaries.  Along these lines, a 

section of this chapter was devoted to identifying the merits of altering the newly developed 

flow regime map and heat transfer coefficient correlation.  This analysis indicated that a 

more comprehensive feedback study needs to be conducted to firmly establish the flow 

regime transition boundaries and what constitutes ‘optimum’ boundaries for minimizing 

error between the model and combined data from the literature and current study.   

Based on results from the current study and those from independent researchers, it 

was shown that heat transfer enhancement at low-to-intermediate mass flux is primarily 

due to early flow regime transition in internally-grooved tubes.  Additionally, it was shown 

that heat transfer enhancement approaches the area enhancement when the smooth and 

internally-grooved tubes are operating in the same flow regime.  This applied at sufficiently 

low mass flux, where Stratified flow is expected, as well as high mass flux, where Annular 

flow is expected.  This result fulfills the goal of developing and validating a physics-based 

heat transfer model that represents the impact of two-phase flow structures and is coupled 

to a reliable flow regime map [105].   
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Chapter 9: Conclusions and Future Work 

9.1 Conclusions 

The predictive accuracy for two-phase flow boiling in smooth channels has 

benefitted from the adoption and proliferation of regime-based heat transfer coefficients.  

Unfortunately, the same level of phenomenological insight and physical modeling for 

internally-grooved tubes has not yet been developed.  Therefore, a stronger experimental 

and theoretical knowledge base needs to be established for enhancement in internally-

grooved tubes, focusing on a more comprehensive understanding of the physical 

mechanisms responsible for improved performance in these tubes.  Pursuant to this goal, 

this work focused on the analytical development and experimental validation of a physics-

based flow regime map and heat transfer coefficient model that recognize the role played 

by two-phase flow structures in enhancing thermal transport within internally-grooved 

tubes.   

A detailed analysis of smooth and internally-grooved tube data for two-phase flow 

of refrigerants, obtained from the literature and superimposed on the Wojtan et al. [30] 

flow regime map, revealed that performance improvement (3-7 times that of a plain tube) 

in internally-grooved tubes at low-to-intermediate mass flux is a result of early transition 

to Annular flow.  At high mass flux where the smooth tube and internally-grooved tube are 

operating in Annular flow, the enhancement reduces to the internal area ratio (1.5 to 1.8 

times that of a plain tube).  The current state of two-phase flow regime maps and heat 

transfer correlations for internally-grooved tubes was summarized and motivation for the 

current research effort was established.  
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Based on the trends revealed in the literature review, the existing Wojtan et al. [30] 

flow regime map was modified using the Liebenberg et al. [114] Intermittent to Annular 

transition and the Sharar et al. [29] Stratified-Wavy to Annular transition criteria.  

Additionally, the Ravigururajan and Bergles [28] turbulence factor and an empirically 

derived enhancement factor introduced by Thome et al. [11] were adopted to modify the 

associated heat transfer coefficient correlation.  These modifications represent changes in 

the physical mechanisms responsible for enhancement in internally-grooved tubes and 

resulted in varying the calculation of the dry perimeter angle, θdry.  Through analytical 

modeling simulations, it was shown that heat transfer enhancement of 3-7 times a smooth 

tube at low-to-intermediate mass flux can be modeled by early flow regime transition to 

Annular flow in internally-grooved tubes.  Additionally, it was shown that using the same 

model, it is possible to predict heat transfer enhancements that approach the area ratio when 

the smooth and internally-grooved tubes are operating in the same flow regime.  These 

trends were consistent with those distilled from the literature review. 

A single- and two-phase test facility was designed and fabricated to experimentally 

validate the newly-developed flow regime map and regime-based heat transfer coefficient 

correlation; focus was given to collecting and processing thermofluidic data, namely flow 

regime and heat transfer coefficient, to substantiate flow regime transition as a key 

enhancement mechanism in internally-grooved tubes.  Before two-phase experiments were 

considered, a single-phase energy balance and heat transfer statistical analysis was 

conducted.  Theoretical predictions from Dittus-Boelter (both ‘common’ and ‘original’ 

form), Colburn, and Gnielinski were compared to the single-phase smooth tube 

experimental data [25].  The ‘common’ form of the Dittus-Boelter correlation was the most 
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accurate for predicting single-phase flow of HFE-7100 in 2.8mm, 4.54mm, and 8.84mm 

smooth tubes with a mean and absolute deviation of 7.07% and 9.02%, respectively.  The 

Dittus-Boelter (both ‘common’ and ‘original’ form), Colburn, and Gnielinski correlations 

were modified using the Ravigururajan and Bergles [28] turbulence factor to predict single-

phase flow in the internally-grooved tubes.  The ‘common’ form of the Dittus-Boelter 

correlation (modified with the turbulence factor) was the most accurate for predicting 

single-phase flow of HFE-7100 in 2.62mm, 4.54mm, and 8.84mm internally-grooved tubes 

with a mean and absolute deviation of 4.46% and 11.08%, respectively.   This illustrated 

that the test setup was functioning properly and the experimental method was robust and 

capable of providing reliable measurements.  This also validated the use of the 

Ravigururajan and Bergles [28] turbulence factor in the heat transfer coefficient correlation 

described in this dissertation. 

A non-intrusive optical sensor, based on Total Internal Reflection (TIR) and 

capable of determining the liquid film thickness, was developed to study the dynamic 

nature of two-phase flows.  The new method represents a more reliable method for 

experimentally determining flow regime compared to the common visual and verbal flow 

regime definitions.  The method consisted of shining a red fiber-optic light source through 

the top of an optically transparent glass tube, using a CMOS camera to capture light rings 

resulting from total internal reflection at the liquid-vapor interface, and extracting a film 

thickness profile from the resulting images.  It was found that different flow regimes 

resulted in unique temporally varying film thickness profiles, which were confirmed using 

high speed visualization. Using these profiles, quantitative flow regime identification 

measures were developed, including the ability to explain and quantify the more subtle 
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transitions that occur between dominant flow regimes.  The flow regime maps of Taitel-

Dukler [46], Ullmann-Brauner [141], and Wojtan et al. [30] were found to correlate the 

smooth-tube experimental data accurately, to varying degrees, thus validating the use of 

the TIR technique in predicting flow regime. 

Flow regime data, based on the newly-developed Total Internal Reflection method, 

and heat transfer coefficient data, using infrared thermography, was collected for two-

phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-

grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and 

vapor qualities approaching 1.  In total, over 6,500 combined data points for the adiabatic 

and diabatic smooth and internally-grooved tubes were acquired.   

For the current smooth tube data, it was shown that the Wojtan et al. [31] regime-

based heat transfer coefficient correlation, with a mean and absolute deviation of -14.0% 

and 26.9%, outperformed the smooth tube models of Chen [56], Shah [57], Kandlikar [93], 

Gungor and Winterton [59], and the simplified two-phase flow boiling correlation by 

Gungor and Winterton [60].  This was especially true at mass fluxes below 150 kg/m²s, 

where Stratified-Wavy and Stratified flow occupied a large portion of the parametric space.  

Similarly, the modified Sharar et al. [29] flow regime map and associated regime-based 

heat transfer coefficient correlation, described herein, outperformed the internally-grooved 

tube correlations from Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], 

Wu et al. [103], and Yun et al. [90], particularly at mass fluxes below 75 kg/m²s where 

Stratified-Wavy and Stratified flow occupied a large portion of the parametric space; the 

mean and absolute deviations for the new model were 4.0% and 32%, respectively.  

Adoption of the new flow regime map [29] improved flow regime predictive accuracy from 
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66.7% to 88.3% for the current data set and from 65% to 86% when compared to data from 

Yu et al. [66], Colombo et al. [79], and Spindler and Müller-Steinhagen [74]. 

Based on results from the current study and those from independent researchers, it 

was shown that heat transfer enhancement at low-to-intermediate mass flux is primarily 

due to early flow regime transition in internally-grooved tubes.  Additionally, it was shown 

that heat transfer enhancement approaches the area enhancement when the smooth and 

internally-grooved tubes are operating in the same flow regime.  This applied at sufficiently 

low mass flux, where Stratified flow is expected, as well as high mass flux, where Annular 

flow is expected.  These results fulfill the goal of developing a physics-based heat transfer 

model that represents the impact of two-phase flow structures in internally-grooved tubes.  

9.2 Future Work 

Several recommendations for future internally-grooved tube research have been 

identified based on the preceding literature review and experimental work:   

a. The largest deviation between the current model and experimental results was 

at high vapor quality where the model predicted dryout and Annular flow was 

sustained in the internally-grooved tubes.  Additionally, larger-than-normal 

errors arose near the transition boundary between Stratified-Wavy and Annular 

flow, presumably due to uncertainty in the reported mass flux.  Future research 

on high heat flux, dry-out conditions, and operation close to flow regime 

transition boundaries should be undertaken. 

b. Even though the new flow regime map and heat transfer model improves 

predictive accuracy, there is still uncertainty in predicting performance under 

certain conditions.  It was shown that alterations to the map, based on the 
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collection of new data and data from the literature, can improve flow regime 

predictability and subsequently, heat transfer predictability.  Therefore, a 

comprehensive feedback study needs to be conducted to firmly establish the 

flow regime transition boundaries and what constitutes optimum boundaries for 

minimizing error between the model and available data.  Future studies should 

focus not only on the Stratified-Wavy to Annular transition, but also the 

Intermittent to Annular transition, and the effect of heat flux on the Dryout 

boundaries. 

c. Similarly, deficiencies in the Wojtan et al. [31] model for predicting heat 

transfer coefficient at high heat flux and near dryout conditions represents 

future research opportunities.  

d. Researchers have observed performance differences for identical test conditions 

but variable tube groove parameters.  Therefore, a more systematic study of the 

effect of fin shape, fin height, number of fins, helix and apex angle, and ratio of 

relevant parameters needs to be undertaken to determine the relationship 

between these parameters, flow regime, and thermofluid performance, and what 

constitutes a geometrically-optimum tube for given operating conditions. 

e. It is not entirely clear what impact operation of refrigerants and CO2 at high 

reduced pressure has on flow regimes and heat transfer in internally-grooved 

tubes.  Future studies are needed.  Please refer to Chapter 3 for more details.   

f. All of the small diameter internally-grooved tube studies in the literature for 

refrigerant/oil mixtures used CO2 at 10ºC and polyalkylene glycol (PAG).  
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Thus, there is a need to extend the experimental database to other refrigerant 

and oil combinations.   

When undertaking the above tasks, effort should be made to adhere to the following 

research guidelines: 

a. Concurrent heat transfer and quantitative flow regime data should be collected 

over a wide range of operating conditions, particularly low mass flux, to 

establish the intrinsic relationship between the dominant flow structure and 

thermofluid performance in internally-grooved tubes.  Additionally, 

comparison to existing correlations, flow regime maps, and smooth tube data 

as a means to normalize the results should accompany all experiments to 

determine the current state of internally-grooved tube predictive methods. 

b. The majority of the studies in the literature relied solely on subjective flow 

regime data collection, which calls into question the accuracy of the results.  

Future studies should focus on objective flow regime determination methods to 

obtain more accurate and repeatable results. 
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Appendix A Atomic Layer Deposition Tube Coating Method 

As described in Chapter 5, the smooth and internally-grooved tubes were coated 

with 8 μm Parylene-C in a Specialty Coating Systems PDS2010 coating tool followed by 

12,000 Å of Titanium and 2,000 Å of Platinum in a CHA E-beam evaporator using a 

rotating stepper motor assembly.  This supplied a robust, conformal, thin film resistor 

necessary to experimentally heat the tubes.  However, there were alternative heating 

methods that were being explored.  This Appendix gives a brief description of candidate 

heating methods and focuses on an attempt to create thin film heaters with Atomic Layer 

Deposition (ALD). 

A.1 Candidate Heating Methods 

When choosing a heating method it is important that appropriate heat flux levels 

can be met for all of the tubes.  For a maximum heat flux of 56 kW/m², the 8.84mm, 

4.54mm, and 2.62/2.8mm smooth and internally-grooved tubes need to have 210W, 100W, 

and 60W of heat applied, respectively.  For the 35V, 10A TENMA DC power supply used, 

this suggests resistances of 5.83Ω for the 8.84mm tubes, 12.25Ω for the 4.54mm tubes, and 

~20.5Ω for the 2.62 and 2.8mm tubes.  In addition to staying within these resistance levels, 

the chosen method should provide a uniform heat flux and should allow for IR imaging.   

One option was to electrically heat the tubes themselves.  In the case of the smooth 

and internally-grooved copper tubes, the resistance varied from 91µΩ to 500µΩ.  With the 

35V 10A TENMA DC power supply, these resistances would only provide 0.05W and 

0.009W of thermal energy to the smooth and internally-grooved tubes; this is clearly 

inadequate given the goal of 210W to 60W.  Thinning of the tube walls through chemical 
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etching or machining would likely double the resistance, and power dissipation, but would 

not be adequate to reach high heat fluxes.  Wieland does not manufacture stainless steel or 

other low electrical conductivity material tubes, therefore, direct heating of the tube wall 

was not possible.  Another option considered was wrapping the tube with a wire or 

electrical heater.  However, due to the potential variable contact resistance, and associated 

non-uniform heat flux, the wire wrapping method is not an appropriate solution.  

Additionally, cross flow of hot water in an annulus was considered prohibitively complex, 

would likely not provide a uniform heat flux condition, and would not allow IR imaging. 

A.2 Atomic Layer Deposition Heating  

One alternative to the above methods was to deposit a thin layer of dielectric 

material on the outer surface of the tube followed by a thin layer of metal.  This method 

would provide electrical isolation between the tube and resistor, allow for IR imaging, 

virtually eliminate contact resistance, and provide repeatability if ALD (atomic layer 

deposition) or other cleanroom tools are employed.  Based on these perceived benefits, an 

ALD coated thin film heater was considered a preferred method for heating the smooth and 

internally-grooved tubes.     

ALD is a chemical vapor deposition (CVD) method that (as-advertised) allows 

building nanometer thick, pinhole-free, conformal thin films on any 3D shape and 

geometry.  Proponents of this technology cite further benefits such as excellent adhesion, 

self-terminating reactions, precision, and repeatability.  Based on these claims, the use of 

ALD appeared to be an attractive solution to coating the tubes.    

To provide the primary insulating layer, Alumina was chosen because it has a very 

high electrical resistivity, good voltage hold-off (10V/nm) [164]), good thermal 
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conductivity (40W/mK), and is relatively inexpensive.  Furthermore, Alumina is widely 

used in ALD processes and is, therefore, well characterized.  Based on the properties of 

Alumina, the insulating layer needed to be at least 3.5nm thick to provide the 35V hold-off 

necessary for the power supply; for a large safety factor and a more robust film, a final 

thickness of 200nm was deposited.  To provide the secondary resistor layer, Ruthenium 

was chosen based on lab capabilities.  The Ruthenium layer should be 100-250 nm to 

provide appropriate resistances and allow the appropriate heat fluxes to be applied.  Shown 

in Table 21 are the physical properties and thicknesses needed for the copper tube, Alumina 

layer, and Ruthenium layer.  

Table 21: Material properties of interest for ALD coated copper tubes 

Material Thermal Conductivity 

(W/mK) 

Electrical Resistivity 

(nΩ-m) 

Voltage Hold-off 

(V/nm) 

Thickness 

(nm) 

Copper 400 16.8 - - 

Alumina 40 - 10 [164] 200 

Ruthenium 117 71 - 100-250 

 

A .2.1 ALD Uniformity 

One concern is that the Alumina and, more importantly, the Ruthenium layers are 

uniform circumferentially and axially along the tube.  If the Alumina is not uniform, it may 

not provide the required electrical isolation.  Furthermore, if the Ruthenium is not uniform, 

then the resistance will vary along the tube and a uniform heat flux condition will not be 

obtained.    It is difficult to measure film thickness on a curved surface such as a tube.  In 

order to simulate the sides of the tube (top, bottom, left, and right) several 1” silicon wafers 

were attached to a custom cantilever fixture and placed in the ALD tool; a schematic of the 

setup is shown in Figure 63.  The silicon wafers were plated with several microns of 

titanium and copper in an evaporator before the ALD process.  The purpose of this step 
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was to better simulate adhesion to the copper tubes and also provide a conducting undercoat 

so that probes could be used to determine if the Alumina was insulating.   

 

Figure 63:  Schematic (side view) of the cantilever test setup made to test material thickness in the 

ALD tool 

 

Using a Cambridge NonoTech Fiji ALD tool, the process consisted of a repeating 

cycle of trimethylaluminum (TMA) precursor pulse, purge, H2O pulse, and a final purge 

for a total of 2000 cycles.  The TMA and H2O yield ALD Al2O3.  The process had a 

deposition rate of approximately 1 angstrom per cycle, resulting in approximately 200nm 

of Alumina.  Two different Alumina processes were explored: ‘plasma’ Alumina and 

‘thermal’ Alumina.  Using an ellipsometer to measure film thickness, results showed that 

the Plasma process did not vary axially but varied by as much as 14% circumferentially.  

The Thermal process did not vary axially and varied by only 4% circumferentially.  For 

both processes, the Alumina film was insulating.  Therefore, the ‘thermal’ Alumina process 

was better suited to coat the copper tubes due to the increased uniformity. 

A .2.2 Pinhole Defects in ALD 

  As discussed above, ALD is advertised as a pinhole-free conformal coating, 

however, various researchers including Zhang et al. [165] have shown that Alumina ALD 

coatings can suffer from pinholes and defects that can degrade film integrity.  Pinholes 

top

bottom

left

right
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would represent a void in the insulating layer and a potential avenue for an electrical short 

from the resistive layer to the copper tube.  Therefore, before coating with Ruthenium, 

experiments were conducted to ensure that the Alumina thin films were pinhole free.   

In addition to being uniform and transparent, voids in the ALD thin films can be on 

the same order as the films themselves, nanometers, which can make detection a formidable 

task.  Using conventional microscopy techniques can be difficult for void detection.  

Instead, the pinhole defect density can be characterized by using a copper electroplating 

visualization technique developed by Zhang et al. [165].  Figure 64 is a schematic showing 

the formation of a copper metallic bump on a conductive substrate.  In the current case, the 

initial copper layer used to better simulate adhesion on the copper tubes serves as the 

conductive material.  When the sample is placed in an electroplating bath and a potential 

is applied between the conductive substrate and the solution, copper will deposit in the 

pinhole and a copper bump will form.  Not surprisingly, electroplating is commonly used 

to make metal nanowires and interconnects in nanoporous templates [166].  As shown in 

the schematic, the copper bump is larger in size than the pinhole and also opaque which 

makes imaging possible with conventional methods.   

 

Figure 64:  Schematic showing a copper metallic bump formed at a defect site when electroplating a 

conductive substrate in an electrolytic solution of H2SO4 and CuSO4 (adapted from [165]) 
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Figure 65 shows SEM images of an Alumina-coated Silicon substrate that was pre-

treated with a titanium-copper coating.  The figure on the left is the substrate before the 

electroplating process and the figure on the right is after the plating process.  In the current 

study, the copper electrolyte bath was composed of 15 g/L of Cu and 210 g/L sulfuric acid 

[167].  Samples were plated for 20 minutes each.  It is clear from the figure that defects are 

not readily apparent before electroplating but copper nodules are clearly visible after 

electroplating.  For several samples tested, the defect density exceeded 50/cm².  Defect 

densities on this order would provide paths for potential short circuiting of the thin film 

resistor to the underlying conductive substrate/tube.  It is reasonable to assume that the 

electroplating bath had little to no deleterious effect on the Al2O3 film [168]. 

 

Figure 65:  Comparison between SEM images of 200nm thick Alumina deposited on Cu-coated Si 

substrates a) before and b) after electroplating process 

 

To confirm that the defects would eliminate the necessary electrical isolation, 

several copper tubes were coated with 200nm Al2O3 and sent to Impreglon [169] to be 

coated with Titanium Nitride (TiN).  TiN is an extremely hard ceramic material commonly 

used to coat machine tools such as drill bits and milling cutters.  In addition to the robust 

mechanical properties, TiN is also electrically conductive so it is suitable as a resistive 

100 μm 100 μm 

b) a) 



 

218 

 

material.  After the tubes were coated by Impreglon, they were tested for electrical isolation 

between the copper tube and TiN film.  Unfortunately, the two layers were not effectively 

isolated by the 200nm Al2O3 layer.  Presumably, this was a result of the pinhole defects 

previously discussed. 

A .2.3 Ruthenium ALD 

Despite the known concerns with the primary Al2O3 insulating layer, experiments 

were also conducted using the Cambridge NonoTech Fiji ALD tool to observe the 

properties of the secondary conducting Ru layer.  Unfortunately, the Ru layer suffered from 

nucleation effects, which are temperature and substrate dependent [170]; Figure 66 shows 

a SEM image of Ru nucleation sites taken during the current study.  Cambridge customer 

support indicated that a chamber conditioning step of 3000-5000 cycles of Ru would 

promote the stable growth of Ru films.  Unfortunately, the Ru precursor material was 

prohibitively expensive and a more detailed experimental study involving extensive 

chamber conditioning steps was not feasible.  We were sufficiently satisfied with being 

able to explain ‘why’ this proposed methodology was not working, and relied on the 

Parylene and Ti-Pt process for creating thin film heaters for the current study.   

 

Figure 66:  SEM image of Ruthenium nucleation sites 
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Appendix B Matlab Code for Total Internal Reflection 

This appendix describes the Matlab code used for systematically calculating film 

thickness and flow regime for Chapter 6.  The process involves pulling the individual ‘.png’ 

picture files from a specified file location, then undertaking the image processing steps 

outlined in Chapter 6 and included below for the reader’s convenience.   The basis of the 

Matlab algorithm was determining the distance between the light source and the reflected 

rays and calculated the liquid film thickness using the following relationship: 

tl =
x − 2twtanθcwa

2tanθclv

 (72) 

Several image processing steps were required to extract a film thickness value from 

an unrefined image.  First, the image was captured with an appropriate camera.  Shown in 

Figure 67a is a captured image with no film (dry channel).  The black shaft on the bottom-

center of the figure is the painted fiber optic LED connecting to the diffuse coating.  The 

reflected light ring is visible, but not distinct enough to extract accurate film thickness 

values.  Next, the image was converted to red-only to eliminate background light noise.  

Then, adaptive contrast enhancement was performed to normalize the image and remove 

complications stemming from intensity variations in the reflected light ring as a result of 

LED mounting imperfections.  Figure 67b shows the original image after eliminating green 

and blue light, and adaptive contrast enhancement.  Next, a 2-D median filter was applied 

to eliminate salt and pepper noise and a simple contrast enhancement code was applied, 

resulting in a binary image, as shown in Figure 67c.  The reflected light ring is now clearly 

visible.  
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The center of the LED was manually identified.  In Figure 67c, the center of the 

LED is indicated with a red point.  Next, a Sobel filter was used to locate the edges where 

the binary image changes from black to white and vice versa; the Sobel filter function 

outputs a matrix of these locations.  As shown on Figure 67c, the third ‘edge’ identified by 

the Sobel filter will represent the first fully reflected ray.  Then, a custom Matlab code was 

used to count left and right (pixel-by-pixel) out from the LED center point while searching 

for the third location where the contrast changes.  The diameter of the light ring, in pixels, 

is the sum of the distance measured to the left and right.  Next, the pixel distance was 

translated to a physical distance using the width of the LED (1.27 mm) as a reference scale.  

Finally, Equation (49) was used to relate the light ring to a liquid film thickness. 

 
Figure 67:  a) Raw image of reflected light ring on a glass tube with no film thickness, b) Image after 

converting to black and white and contrast enhancement, and c) Image after converting to binary 

 

The Matlab code used to accomplish this is shown below, along with comments to 

assist the reader: 

 

(b) (c)(a)

123

Location of first fully 

reflected light ray
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clc 

clear all 

close all 

B.1 Preprocessing 

fiber_dia=0.00127;  % diameter of the fiber optic LED 

fiber_pix=176;   % diameter (in pixels) of the fiber optic  

pix=fiber_dia/fiber_pix;        % defines m/pixel (pixel ‘length’) 

center=[603,360];  % manually determined by inspection 

B.2 Importing the Picture and Finding the Location of the First Fully Reflected 

Ray 

I = imread('183 micrometer calibration.png');  % read the file 

figure('Name','I');  % name the figure 

imshow(I)  % show the figure - Figure 67a 

I_2=I(:,:,1);  % change the image to red 

Max=max(max(I_2));  % find the maximum 

Min=min(min(I_2)); % find the minimum 

figure('Name','I_2');  % name the figure 

imshow(I_2)  % show the figure 

[N,M]=size(I_2);  % size of the 'contrast' matrix 
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filtered=medfilt2(medfilt2(medfilt2(medfilt2(medfilt2(medfilt2((medfilt2(I_2))))))));  % 

median filter used to eliminate salt and pepper noise 

figure ('Name','filtered');  % name the figure 

imshow(filtered) % show the figure 

adapthisteq=adapthisteq(filtered,'NumTiles',[8 

8],'ClipLimit',0.1,'NBins',1000,'Distribution','uniform');  % adaptive contrast 

enhancement based on local maximum and minimum 

figure ('Name','adapthisteq');  % name the figure 

imshow(adapthisteq) % show the figure  

contrast=255*((adapthisteq-Min)/(Max-Min));  % increase the contrast as described by 

Shedd and Newell [81] 

figure('Name','contrast')  % name the figure 

imshow(contrast)  % show the figure Figure 67b 

hold on; 

filtered2=medfilt2(medfilt2(medfilt2(medfilt2(medfilt2(medfilt2((medfilt2(contrast,[11 

11])))))))); % median filter used to eliminate salt and pepper noise 

figure ('Name','filtered2'); % name the figure 

imshow(filtered2) % show the figure 

hold on 

plot(603,360,'r.','MarkerSize',20) % plot the LED center point on the figure 
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sobel=edge(filtered2,'sobel');  % Sobel filter finds the 'edges' of the high contrast region 

(highest slope) 

figure('Name','sobel');  % name the figure 

imshow(sobel)  % show the figure 

hold on 

plot(603,360,'r.','MarkerSize',20) % plot the LED center point on the figure Figure 67c 

hold off  

B.3 Determining the Number of Pixels Between Lines 

iii=0; 

jjj=0; 

kkk=0; 

ring=zeros(N,M); 

band=60; % region above and below the center point that will be ‘searched’ 

% search for first fully reflected ray to the right 

for i =center(2)-band/2:center(2)+band/2 

    iii=0; 

    jjj=0; 

    kkk=0; 
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    for j =center(1):M 

        if sobel(i,j) == 1 

            iii=iii+1 % transition counter 

        end 

        if iii == 2 

            if contrast(i,j) == 0 

                jjj=jjj+1;  % counts number of consecutive black pixels 

            elseif contrast(i,j) == 255 

                jjj=0; 

            end 

        end 

        if iii == 3 

            dist_r(i)=abs(j-center(1)); 

            break 

        end 

    end 

end 

dist_r; 
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% search for first fully reflected ray to the left 

i=0; 

j=0; 

iii=0; 

jjj=0; 

kkk=0; 

for i =center(2)-band/2:center(2)+band/2 

    iii=0; 

    jjj=0; 

    kkk=0; 

    for jj =center(1):M 

        kkk=kkk+1; 

        j=jj-2*kkk;     % creating a negatively moving index 

        if sobel(i,j) == 1 

            iii=iii+1; % transition counter 

        end 

        if iii == 2 

            if contrast(i,j) == 0 



 

226 

 

                jjj=jjj+1;  % counts number of consecutive black pixels 

            elseif contrast(i,j) == 255 

                jjj=0; 

            end 

        end 

        if iii == 3 

            dist_l(i)=abs(j-center(1)); 

            break 

        end 

    end 

end 

avg_dist=(dist_r+dist_l)/2; % the light ring radius is half of the diameter 

total_dist=dist_r+dist_l; 

actual_radius=avg_dist*pix; 

non_zero=actual_radius(actual_radius~=0); % eliminates any discontinuities 

avg=mean(non_zero); 

avg_mm=avg*1000; 

max=max(non_zero); 
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max_mm=max*1000; 

plot(1:length(avg_dist),avg_dist) % plot the average distance (in pixels) 

B.4 Defining Properties and Dimensions 

n_tube=1.52;     % index of refraction of tube wall (microscope slide) 

n_vapor=1;          % index of refraction of air/vapor 

n_film=1.524;           % index of refraction of UV curing adhesive (in actual applications 

it will be the index of the fluid at the appropriate temperature) 

t_tube=0.00101;        % thickness of the tube wall in meters (microscope slide) 

avg_dist=avg;         % average radius of the light ring in meters 

B.5 TIR Film Thickness Calculation 

theta_crit_cl=asin(n_vapor/n_film); 

theta_crit_cw=asin(n_vapor/n_tube); 

theta_crit_wl=asin(n_film/n_tube); 

x_dry=2000*t_tube*tan(theta_crit_cw) 

thickness_avg=(avg-2*t_tube*tan(theta_crit_cw))/(2*tan(theta_crit_cl)) 

thickness_mm_avg=thickness_avg*1000 

max_thickness=(t_tube*(tan(theta_crit_wl)-tan(theta_crit_cw)))/(tan(theta_crit_cl)); 
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x_dry = 

    1.7646 

Thickness_avg = 

   1.8031e-04 

thickness_mm_avg = 

    0.1803 

 

Published with MATLAB® 7.14 
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Appendix C 8.84mm Smooth and Internally-Grooved Tube 

Data 

This Appendix is a compilation of all of the diabatic 8.84mm smooth and internally-

grooved tube data collected during the course of this study; in total, 2098 diabatic data 

points are shown below.  The Wojtan et al. [31] heat transfer coefficient correlation as well 

as the correlation developed in this dissertation are included for reference.  Select figures 

from this data set were used for the analysis in Chapter 8.  Please refer to Chapter 8 for a 

description of the more salient trends observed; this Appendix mainly serves as a means to 

document the entirety of the experimental results.  

Each figure represents a different flowrate (25-300 kg/m²s) and six different heat 

fluxes (4-56 kW/m²s).  In some scenarios, high heat fluxes could not be accurately 

measured because the heat transfer coefficient was too low or dryout occurred and the tube 

overheated.  However, the heat transfer coefficient correlations were still included for 

reference.  One example of this is Figure 75 with a heat flux of 56 kW/m²s.   

The experimental smooth tube data points are shown as red squares and the 

internally-grooved tube data points are green circles.  ‘IG 1’ and ‘smooth 1’ were the first 

tests run and ‘IG 2’ and ‘smooth 2’ were the second tests run; as indicated in Chapter 8, 

these do not represent different tubes, just a second run of experiments for validation.  The 

smooth tube heat transfer coefficient correlation [31] and the current internally-grooved 

tube heat transfer coefficient correlation are plotted as solid red and dashed green lines, 

respectively.   
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Figure 68:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 300 kg/m²s and different heat fluxes 
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Figure 69:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 200 kg/m²s and different heat fluxes 
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Figure 70:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 175 kg/m²s and different heat fluxes 
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Figure 71:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 150 kg/m²s and different heat fluxes 
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Figure 72:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 125 kg/m²s and different heat fluxes 
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Figure 73:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 100 kg/m²s and different heat fluxes 
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Figure 74:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 75 kg/m²s and different heat fluxes 
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Figure 75:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 50 kg/m²s and different heat fluxes 
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Figure 76:  Heat transfer coefficient vs vapor quality for 8.84 mm ID smooth and internally-grooved 

tubes at a mass flux of 25 kg/m²s and different heat fluxes 
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Appendix D 4.54mm Smooth and Internally-Grooved Tube 

Data 

This Appendix is a compilation of all of the diabatic 4.54mm smooth and internally-

grooved tube data collected during the course of this study; in total, 1722 diabatic data 

points are shown below.  The Wojtan et al. [31] heat transfer coefficient correlation as well 

as the correlation developed in this dissertation are included for reference.  Select figures 

from this data set were used for the analysis in Chapter 8.  Please refer to Chapter 8 for a 

description of the more salient trends observed; this Appendix mainly serves as a means to 

document the entirety of the experimental results.  

Each figure represents a different flowrate (50-300 kg/m²s) and six different heat 

fluxes (4-56 kW/m²s).  In some scenarios, high heat fluxes could not be accurately 

measured because the heat transfer coefficient was too low or dryout occurred and the tube 

overheated.  However, the heat transfer coefficient correlations were still included for 

reference.  One example of this is Figure 84 with a heat flux of 56 kW/m²s.   

The experimental smooth tube data points are shown as red squares and the 

internally-grooved tube data points are green circles.  ‘IG 1’ and ‘smooth 1’ were the first 

tests run and ‘IG 2’ and ‘smooth 2’ were the second tests run; as indicated in Chapter 8, 

these do not represent different tubes, just a second run of experiments for validation.  The 

smooth tube heat transfer coefficient correlation [31] and the current internally-grooved 

tube heat transfer coefficient correlation are plotted as solid red and dashed green lines, 

respectively.   
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Figure 77:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 300 kg/m²s and different heat fluxes 
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Figure 78:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 200 kg/m²s and different heat fluxes 
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Figure 79:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 175 kg/m²s and different heat fluxes 
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Figure 80:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 150 kg/m²s and different heat fluxes 
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Figure 81:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 125 kg/m²s and different heat fluxes 
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Figure 82:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 100 kg/m²s and different heat fluxes 
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Figure 83:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 75 kg/m²s and different heat fluxes 
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Figure 84:  Heat transfer coefficient vs vapor quality for 4.54 mm ID smooth and internally-grooved 

tubes at a mass flux of 50 kg/m²s and different heat fluxes 
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Appendix E 2.8mm Smooth and 2.62mm Internally-

Grooved Tube Data 

This Appendix is a compilation of all of the diabatic 2.8mm smooth and 2.62mm 

internally-grooved tube data collected during the course of this study; in total, 1573 

diabatic data points are shown below.  The Wojtan et al. [31] heat transfer coefficient 

correlation, as well as the internally-grooved tube correlation developed in this dissertation 

are included for reference.  Select figures from this data set were used for the analysis in 

Chapter 8.  Please refer to Chapter 8 for a description of the more salient trends observed; 

this Appendix mainly serves as a means to document the entirety of the experimental 

results.  

Each figure represents a different flowrate (75-300 kg/m²s) and six different heat 

fluxes (4-56 kW/m²s).  In some scenarios, high heat fluxes could not be accurately 

measured because the heat transfer coefficient was too low or dryout occurred and the tube 

overheated.  However, the heat transfer coefficient correlations were still included for 

reference.  One example of this is Figure 91 with a heat flux of 56 kW/m²s.   

The experimental smooth tube data points are shown as red squares and the 

internally-grooved tube data points are green circles.  ‘IG 1’ and ‘smooth 1’ were the first 

tests run and ‘IG 2’ and ‘smooth 2’ were the second tests run; as indicated in Chapter 8, 

these do not represent different tubes, just a second run of experiments for validation.  The 

smooth tube heat transfer coefficient correlation and the current internally-grooved tube 

heat transfer coefficient correlation are plotted as solid red and dashed green lines, 

respectively.   
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Figure 85:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 300 kg/m²s and different heat fluxes 
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Figure 86:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 200 kg/m²s and different heat fluxes 
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Figure 87:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 175 kg/m²s and different heat fluxes 
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Figure 88:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 150 kg/m²s and different heat fluxes 
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Figure 89:   Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 125 kg/m²s and different heat fluxes 
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Figure 90:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 100 kg/m²s and different heat fluxes 
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Figure 91:  Heat transfer coefficient vs vapor quality for 2.8 mm ID smooth and 2.62 mm ID 

internally-grooved tubes at a mass flux of 75 kg/m²s and different heat fluxes 
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Appendix F Statistical Analysis of Heat Transfer Results 

This Appendix provides more detail of the statistical analysis results of the 8.84mm, 

4.54mm, and 2.62/2.8mm smooth and internally-grooved tubes.  The more salient features 

are discussed in Chapter 8.  The figures created only consider ‘IG 1’ and ‘smooth 1’ data 

points, which are fully representative of the trends observed for ‘IG 2’ and ‘smooth 2’.  

This allowed figure clarity.  The summary tables, however, considered all of the 

experimental data.  Please refer to Appendix C - Appendix E for a full catalog of the 

diabatic experimental results.  The statistical parameters of mean deviation, 𝜀, and mean of 

absolute value of deviations, |𝜀|, were calculated based on the equations below: 

ε = ∑[(hpredicted − hexperimental)100/hexperimental] (73) 

|ε| = ∑ ABS[(hpredicted − hexperimental)100/hexperimental] 
(74) 

where hpredicted is the heat transfer coefficient predicted by the respective heat transfer 

coefficient correlation and hexperimental is the measured heat transfer coefficient.  These 

parameters are used to assess the accuracy of the models in context of mass flux and flow 

regime. 

Measured smooth tube heat transfer coefficients were compared to the smooth tube 

two-phase correlations of Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], Gungor 

and Winterton [59], and a simplified two-phase flow boiling correlation by Gungor and 

Winterton [60] (referred to hereafter as Gungor-Winterton ‘new’).  Measured internally-

grooved tube heat transfer coefficients were compared to the current two-phase correlation 

described in Chapter 4, and the correlations of Thome, Kattan, and Favrat [91], Cavallini 

et al. [117], Chamra and Mago [162], Wu et al. [103], and Yun et al. [90]. Figure 92-Figure 
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94 show the smooth tube results and Figure 95 - Figure 97 show the internally-grooved 

tube results.  The solid black line on the figures has a slope of 1 indicating perfect 

agreement between the model and experimental results.  The dashed lines represent ±20%, 

for reference.   The properties used while evaluating these correlations were the average 

values between the inlet and outlet of the test section (at the location of the wall temperature 

measurements).  Table 22 - Table 25 provide a summary of the smooth tube modeling 

results for individual tube diameters and flowrates, and Table 26 - Table 29 provide the 

same information for the internally-grooved tubes.  Please note, Figure 92, Figure 95, Table 

25, and Table 29 are the same as those shown in Chapter 8. 
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Figure 92:  Comparison of the 8.84mm smooth tube experimental data for HFE-7100 at 61°C with a) 

Wojtan et al. [31], b) Chen [56], c) Shah [57], d) Kandlikar [93], e) Gungor-Winterton ‘original’ [59], 

and f) Gungor-Winterton ‘new’ [60] 
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Figure 93:  Comparison of the 4.54mm smooth tube experimental data for HFE-7100 at 61°C with a) 

Wojtan et al. [31], b) Chen [56], c) Shah [57], d) Kandlikar [93], e) Gungor-Winterton ‘original’ [59], 

and f) Gungor-Winterton ‘new’ [60] 
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Figure 94:  Comparison of the 2.8mm smooth tube experimental data for HFE-7100 at 61°C with a) 

Wojtan et al. [31], b) Chen [56], c) Shah [57], d) Kandlikar [93], e) Gungor-Winterton ‘original’ [59], 

and f) Gungor-Winterton ‘new’ [60] 
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Figure 95:  Comparison of the 8.84mm internally-grooved tube experimental data for HFE-7100 at 

61°C with a) the Modified Sharar and Bar-Cohen correlation, and correlations from b) Thome et al. 

[91], c) Cavallini et al. [117], d) Chamra and Mago [162], e) Wu et al. [103], and f) Yun et al. [90] 
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Figure 96:  Comparison of the 4.54mm internally-grooved tube experimental data for HFE-7100 at 

61°C with a) the Modified Sharar and Bar-Cohen correlation, and correlations from b) Thome et al. 

[91], c) Cavallini et al. [117], d) Chamra and Mago [162], e) Wu et al. [103], and f) Yun et al. [90] 
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Figure 97:  Comparison of the 2.62mm internally-grooved tube experimental data for HFE-7100 at 

61°C with a) the Modified Sharar and Bar-Cohen correlation, and correlations from b) Thome et al. 

[91], c) Cavallini et al. [117], d) Chamra and Mago [162], e) Wu et al. [103], and f) Yun et al. [90] 
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Table 22:  Predictive accuracy of two-phase smooth tube heat transfer coefficient correlations from 

Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], and Gungor-Winterton [59] [60] 

 compared to the 8.84mm experimental results 

G 

kg/m²s 

Wojtan % Chen % Shah % Kandlikar % Gungor-

Winterton % 

Gungor-

Winterton 

new % 

 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -4.6 11.1 3.5 17.0 8.5 28.6 55.0 58.8 26.9 44.6 16.2 36.2 

200 -10.7 15.7 7.1 22.1 19.8 33.9 33.8 35.6 23.6 41.7 7.1 31.4 

175 -11.0 25.8 20.9 35.0 36.1 54.1 37.5 42.9 30.4 52.1 10.9 41.2 

150 -20.6 23.8 8.8 34.9 17.7 44.5 13.2 34.7 15.8 48.9 -2.8 38.5 

125 -17.8 26.0 38.0 49.1 39.3 45.1 23.6 27.8 43.8 52.4 16.0 32.3 

100 -36.3 43.6 51.2 166.5 74.0 101.7 36.0 68.4 76.9 116.8 37.1 73.8 

75 -24.2 30.8 189.2 189.2 139.8 139.8 67.3 70.6 106.4 106.5 96.4 97.5 

50 -16.5 34.1 486.9 489.1 223.8 223.8 134.6 135.6 187.5 187.7 217.9 217.9 

25 -47.3 47.9 679.1 679.1 98.8 98.8 59.0 63.6 88.8 90.7 157.0 157.0 

total -18.8 26.8 115.0 138.6 62.9 77.0 47.1 56.1 58.7 76.1 47.8 69.1 

 

 

 

Table 23:  Predictive accuracy of two-phase smooth tube heat transfer coefficient correlations from 

Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], and Gungor-Winterton [59] [60] 

 compared to the 4.54mm experimental results 

G 

kg/m²s 

Wojtan % Chen % Shah % Kandlikar % Gungor-

Winterton % 

Gungor-

Winterton 

new % 

 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -18.6 28.8 3.7 24.6 10.6 29.6 102.4 102.5 6.9 30.7 -4.0 27.3 

200 -18.8 26.8 22.6 37.9 35.7 51.6 79.8 80.3 27.6 46.1 6.8 35.0 

175 -17.4 22.6 19.6 31.7 27.0 44.6 60.3 61.6 26.5 46.1 4.2 32.1 

150 -18.0 20.4 31.2 41.2 39.7 54.6 45.1 48.3 43.3 58.1 12.3 37.4 

125 -11.6 22.1 67.9 70.0 71.7 79.6 69.0 71.1 74.3 82.8 34.5 47.8 

100 -11.6 24.3 106.3 106.3 101.5 103.5 81.5 81.7 106.3 107.4 56.5 60.9 

75 -1.5 31.5 322.7 322.7 229.9 229.9 144.1 144.1 253.0 253.0 153.7 153.7 

50 -0.8 33.2 487.6 487.6 330.3 330.3 179.0 179.0 241.2 241.2 215.5 215.5 

25             

total -13.4 25.9 107.5 116.2 89.1 99.9 90.6 91.5 82.7 94.9 48.1 66.3 

 

 

 

Table 24:  Predictive accuracy of two-phase smooth tube heat transfer coefficient correlations from 

Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], and Gungor-Winterton [59] [60] 

 compared to the 2.8mm experimental results 

G 

kg/m²s 

Wojtan % Chen % Shah % Kandlikar % Gungor-

Winterton % 

Gungor-

Winterton 

new % 

 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -16.0 35.1 6.2 33.6 9.9 36.9 131.2 131.2 12.1 45.7 -2.3 39.8 

200 -9.4 32.6 16.3 31.6 23.8 42.8 92.0 93.3 26.3 48.7 3.3 35.8 

175 -12.8 28.5 33.5 45.5 41.4 58.8 85.1 86.2 45.1 64.1 13.8 43.5 

150 -0.2 23.8 45.7 51.6 45.2 60.9 85.5 85.8 49.1 64.9 17.3 41.8 

125 -11.1 25.0 60.9 63.0 58.3 69.8 76.8 78.2 67.4 80.1 27.6 46.5 

100 -8.2 30.6 194.0 194.0 144.1 144.3 143.0 143.0 173.3 173.3 102.0 102.0 

75 -4.8 22.6 339.6 339.6 232.4 232.7 181.1 181.1 253.3 253.3 152.8 152.8 

50             

25             

total -9.3 28.8 85.9 85.9 63.5 78.4 107.6 108.2 71.8 88.8 33.3 57.4 
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Table 25:  Summary of the predictive accuracy of two-phase smooth tube heat transfer coefficient 

correlations from Wojtan et al. [31], Chen [56], Shah [57], Kandlikar [93], and Gungor-Winterton 

[59] [60] to the 2.8mm to 8.84mm experimental results 

G 

kg/m²s 

Wojtan % Chen % Shah % Kandlikar % Gungor-

Winterton % 

Gungor-

Winterton 

new % 

 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -13.1 25.0 4.5 25.2 9.67 31.6 96.2 97.5 15.3 40.3 3.3 34.4 

200 -12.9 25.0 15.2 30.3 26.4 42.7 68.5 69.7 25.8 45.5 5.7 34.0 

175 -13.7 25.6 24.6 37.4 34.8 52.5 60.9 63.5 34.1 54.1 9.6 38.9 

150 -12.9 22.6 28.6 42.7 34.2 53.3 47.9 56.2 36.1 57.3 8.9 39.2 

125 -13.5 24.4 54.4 59.8 56.4 64.8 56.5 59.1 61.8 71.7 26.1 42.2 

100 -18.7 32.8 110.3 153.0 106.5 116.5 86.8 97.6 118.8 132.5 65.2 78.8 

75 -10.2 28.3 274.1 274.1 200.7 200.8 130.8 131.9 204.2 204.3 134.3 134.6 

50 -8.6 33.6 487.2 488.4 277.1 277.1 156.8 157.3 214.4 214.4 216.7 216.7 

25 -47.3 47.9 679.1 679.1 98.8 98.8 59.0 63.6 88.7 90.7 157.0 157.0 

total -14.0 26.9 100.7 115.6 72.8 85.9 80.6 84.4 72.1 87.5 44.3 65.3 

 

 

Table 26:  Predictive accuracy of the Modified Sharar and Bar-Cohen internally-grooved tube 

correlation, and correlations from Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], 

Wu et al. [103], and Yun et al. [90] compared to the 8.84mm experimental results 

G Modified % Thome % Cavallini % Chamra % Wu % Yun % 

kg/m²s 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 0.1 16.7 1.0 17.0 -35.8 48.4 111.9 192.5 -34.9 38.0 4.6 34.1 

200 0.5 15.5 6.8 15.5 -43.0 50.1 -32.2 63.4 -46.3 47.8 -40.3 56.4 

175 -5.2 17.8 12.5 21.8 -47.9 51.3 -43.9 59.1 -46.4 54.3 -55.5 58.9 

150 -4.9 23.7 30.2 37.1 -42.3 57.6 70.8 177.0 -40.6 57.2 -55.7 68.0 

125 -7.2 22.4 85.8 96.0 -44.9 55.8 -28.7 80.0 -21.2 83.7 -61.3 72.5 

100 -17.6 35.0 137.6 147.0 -46.5 57.7 -38.3 77.5 -5.1 87.7 -71.0 76.2 

75 -14.4 34.2 67.2 73.8 -34.8 56.2 -38.7 67.1 -37.8 60.8 -68.6 77.3 

50 -38.4 47.4 224.3 225.1 11.7 70.9 -10.0 68.0 9.4 83.2 -66.5 72.7 

25 -21.3 49.0 530.3 530.3 210.7 224.0 129.7 153.0 112.4 133.7 -48.3 73.0 

total -10.8 27.5 93.7 101.9 -23.2 65.2 5.8 102.1 -20.7 68.3 -52.2 65.5 

 

 

 

 

 
Table 27:  Predictive accuracy of the Modified Sharar and Bar-Cohen internally-grooved tube 

correlation, and correlations from Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], 

Wu et al. [103], and Yun et al. [90] compared to the 4.54mm experimental results 

G Modified % Thome % Cavallini % Chamra % Wu % Yun % 

kg/m²s 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -7.0 36.5 77.6 82.1 -38.9 42.3 -38.3 39.3 16.7 67.1 -54.9 58.8 

200 -1.9 27.5 72.3 77.6 -34.5 44.4 -25.7 56.6 -4.8 73.9 -64.1 66.5 

175 -6.1 23.2 104.6 108.0 -36.7 42.2 -40.2 45.5 1.3 86.7 -71.3 74.2 

150 -3.5 18.3 39.8 44.0 -29.7 46.4 -22.0 63.8 -36.5 60.9 -70.5 75.9 

125 15.3 33.6 129.7 134.2 -16.9 49.8 -26.2 51.0 -2.8 91.6 -70.5 78.1 

100 6.2 24.1 256.0 260.0 -6.3 56.4 20.1 94.4 43.9 139.9 -71.9 80.5 

75 8.3 27.3 139.3 142.4 24.1 70.9 41.4 104.0 -9.7 85.8 -66.0 84.4 

50 12.5 34.9 277.2 279.6 141.5 167.5 161.6 197.0 35.9 107.9 -43.8 87.3 

25             

Total 2.0 28.1 125.9 130.0 -7.6 59.8 -0.2 74.5 3.7 86.7 -64.6 74.4 
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Table 28:  Predictive accuracy of the Modified Sharar and Bar-Cohen internally-grooved tube 

correlation, and correlations from Thome et al. [91], Cavallini et al. [117], Chamra and Mago [162], 

Wu et al. [103], and Yun et al. [90] compared to the 2.62mm experimental results 

G Modified % Thome % Cavallini % Chamra % Wu % Yun % 

kg/m²s 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -8.4 32.9 80.0 85.6 4.3 41.4 16.6 42.1 15.1 70.6 -57.0 73.1 

200 4.7 32.3 123.1 131.2 19.5 49.5 25.2 47.9 17.6 97.9 -63.6 81.9 

175 44.8 52.9 129.0 132.3 53.2 69.3 67.2 79.7 10.6 87.7 -64.5 77.2 

150 73.5 80.8 228.7 233.9 61.0 74.7 62.1 73.1 50.2 133.9 -65.8 79.4 

125 24.3 31.1 65.1 66.1 59.6 77.1 51.5 68.1 -29.2 56.0 -62.5 83.2 

100 22.3 34.0 195.5 201.4 109.3 118.1 110.9 119.7 18.1 108.0 -69.3 72.4 

75 -2.4 33.7 184.5 188.9 257.8 261.7 192.8 198.4 -0.9 74.9 -47.1 80.1 

50             

25             

total 21.4 42.0 132.0 136.8 63.1 83.9 62.0 78.4 11.1 87.6 -61.6 78.1 

 

 

 

 

 

Table 29:  Summary of the predictive accuracy of the Modified Sharar and Bar-Cohen internally-

grooved tube correlation, and correlations from Thome et al. [91], Cavallini et al. [117], Chamra and 

Mago [162], Wu et al. [103], and Yun et al. [90] for the 2.62mm to 8.84mm experimental results 

G Modified % Thome % Cavallini % Chamra % Wu % Yun % 

kg/m²s 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 𝜺 |𝜺| 

300 -5.1 28.7 52.8 61.5 -23.4 44.0 30.0 91.3 -1.0 58.5 -35.7 55.3 

200 1.1 25.1 67.3 74.7 -19.3 47.9 -10.9 55.9 -11.1 73.2 -55.9 68.3 

175 11.2 31.3 82.0 87.3 -10.4 54.3 -5.6 61.4 -11.5 76.2 -63.7 70.1 

150 21.7 40.9 99.5 105.0 -3.7 59.5 36.9 104.6 -8.9 84.0 -63.9 74.4 

125 10.8 29.1 93.6 98.7 -0.7 60.9 -1.1 66.3 -17.7 77.1 -64.7 77.9 

100 3.6 31.0 196.3 202.8 18.8 77.4 30.8 97.2 18.9 111.8 -70.7 76.4 

75 -2.8 31.7 130.3 135.0 82.3 129.6 65.1 123.1 -16.1 73.8 -60.6 80.6 

50 -12.9 41.1 250.7 252.3 76.6 119.2 75.8 132.5 22.6 95.5 -55.1 79.9 

25 -21.3 48.9 530.3 530.3 210.7 223.9 129.7 152.9 112.4 133.7 -48.3 73.0 

total 4.0 32.0 118.7 124.6 12.6 72.3 25.4 88.9 -2.4 80.7 -58.2 71.85 
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