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NONLINEAR FILTERING: The SET-MEMBERSHIP

(BOUNDING) and the H1 TECHNIQUES

J.S. Baras�, and A. Kurzhanskiy

Abstract: We consider the problem of nonlinear �ltering within the framework of deterministic uncer-
tain systems (i.e. control systems with disturbances). We investigate the relationship between the two
main approaches to the problems: the set-membership approach and the nonlinear H1 approach. We
establish an interesting connection between the two basic constructs of these two approaches: the infor-
mation state and the information domain. This connection helps to establish a clearer understanding
for the problem and will play a fundamental role in nonlinear robust output feedback control.

Keywords: nonlinear control, nonlinear �ltering, nonlinear H1, set-membership, information state.

INTRODUCTION

At the present time, it appears, that two basic approaches have emerged for the deterministic treat-
ment of uncertainty in the dynamics of controlled processes. The �rst of these is the \set-membership"
or \bounding" approach based on the techniques of set-valued calculus where the uncertain items are
taken to be unknown but bounded with given bounds and the performance range for the uncertain sys-
tem is sought for in the form of a set [1-4]. The second one is the so-called H1 approach based on the
calculation of the minimal-norm disturbance-output map for the investigated system, the error bound
for the system performance expressed through this norm and a di�erential game formulation [5-8,23-25].
Although formally somewhat di�erent, these two approaches appear to show close connections, being
�guratively \two sides of one coin". We shall demonstrate the speci�cities and the interconnections of
these approaches through the treatment of the nonlinear �ltering problem which will thus also serve as a
\case study". The more general issue of applying the two approaches to the problem of output feedback
control under uncertainty will be the topic of a separate publication. Some related results can be found
also in [21,22].

1 THE NONLINEAR FILTERING PROBLEM

Consider a system described by the nonlinear ODE

_x = f(t; x) + c(t; x)v(t) (1.1)

y = g(t; x) + w(t) (1.2)

where x 2 Rn is the state vector, y(t) the available measurement, v(t) 2 Rp; w(t) 2 Rq; the unknown
\noises" or \disturbances" in the system and measurement inputs, x(t0) = x0 the unknown initial
state. The functions f(t; x); c(t; x) are taken to be such that they ensure the unicity and prolongability
of solutions throughout Rn, for any �nite time interval, whatever the integrable function v(t) (such
standard conditions could be found, for example, in [9]).
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The unknown items �(�) = fx0; v(t); w(t); t0 � t � �g may be assumed to be bounded by the
inequality

	(�; �(�)) =

Z �

t0

 (t; v(t); w(t))dt + �(x0) � �2 (1.3)

where, particularly, the bounds may be of the quadratic integral type, namely, such that

�(x0) = (x0 � a; P0(x
0 � a)) (1.4)

 (t; v(t); w(t)) = (v(t) � v�(t);M(t)(v(t) � v�(t)))2

+ (w(t) � w�(t); N(t)(w(t) � w�(t)))2 � �2 (1.5)

where (p; q) (p; q 2 Rk); stands for the scalar product in the respective spaceRk; a 2 Rn is a given vector;
v�(t); w�(t) are given functions of respective dimensions, square-integrable in t 2 [t0; � ]; M(t); N(t) are
positive de�nite, continuous, and P0 > 0.

Another common type of restriction is given by magnitude bounds, a particular case of which is
described by the inequalities

I0(x
0) = (x0 � a; P0(x

0 � a)) (1.6)

I1(�; v(�)) = esssupt(v(t)� v�(t);M(t)(v(t) � v�(t)) � �2; (1.7)

I2(�; w(�)) = esssupt(w(t) � w�(t); N(t)(w(t) � w�(t)) � �2; (1.8)

t 2 [t0; � ]

In this case the functional is

	(�; �(�)) = maxfI0; I1; I2g (1.9)

As we shall observe in the sequel, the number � in the restriction (1.3) may or may not be given in
advance and the corresponding solution will of course depend on this speci�city of the problem. Despite
the latter fact, the aim of the �ltering problem could be described as follows:

(a) Determine an estimate x0(�) for the unknown state x(�) on the basis of the available information:
the system parameters, the measurement y(t); t 2 [t0; � ], and the restrictions on the uncertain items �(�)
(if these are speci�ed in advance).

(b) Calculate the error bounds for the estimate x0(�) on the basis of the same information.
(c) Describe the evolution of the estimate x0(�)) and the error bound in � , preferably through a

dynamic recurrence-type relation, an ODE -\�lter", for example, if possible.

2 THE SET-MEMBERSHIP (BOUNDING) AND THE H1

APPROACHES

Suppose that the constraints (1.3) with speci�ed � are given together with the available measurement
y = y�(t); t 2 [t0; � ]. The �rst, or \set-membership" approach then requires that the solution to the
problem would be given through the information domain X(�) of states x consistent at instant t = �

with the system equations, the measurement y�(t) and the constraints on �(�) (this will be demonstrated
more precisely in the next section). With X(t) calculated, one may be certain that for the unknown
actual value x(�) we have: x(�) 2 X(�), and may therefore �nd a certain point x�(�) 2 X(�) that would
serve as the required estimate for x(�). This point x� may be particularly selected as the \Chebyshev
center" for X(�) which is de�ned through the relation

min
x

max
z

(x� z; x� z) = max
z

(x� � z; x� � z); z 2 X(�); (2.1)
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and is obviously the center of the smallest ball that includes the set X(�). The inclusion

x�(�) 2 X(�)

will be secured, as we shall see in the sequel, if X(�) is convex. This may not be the case for the general
nonlinear problem, however, when the con�guration of X(�) may be quite complicated (in fact, X(�)
may not even be a connected domain). The set X(�) gives an unimprovable estimate of the state vector
x(�), provided the bound on the uncertain items (the number �) is given in advance.

On the other hand, in the second or H1 approach, the value � for the bound on the uncertain items
is not presumed to be known, while the value of the estimation error

e2(�) = (x(�) � x�(�); x(�) � x�(�))

is then estimated merely through the smallest number 
2 that ensures the inequality

e2(�) � 
2	(�; �(�)) (2.2)

under restrictions (1.1), (1.2).
In the linear case the smallest number 
2 is clearly the square of the minimal norm of the disturbance-

output mapping T e.g. (e(�) = T (�(�))) with y = y�(t) given. It obviously depends on the type of norm
(the type of functional 	(�(�)) selected.

The latter \worst-case" estimate is less precise than in the �rst approach. However it may sometimes
su�ce for the speci�c problem under discussion.

Both approaches have been thoroughly developed for the linear-quadratic case, while both have natu-
rally encountered di�culties in generalization of the results to nonlinear systems [10,11], with promising
results in [23-27] for the second approach.

At �rst glance, the techniques of the two approaches may seem quite apart (as also are the commu-
nities of the scientists involved). Nevertheless, the aim of this paper is to emphasize the connections
between the two approaches and to indicate, through a generalized Hamiltonian technique, a general
framework that incorporates both of these, producing either of them, depending on the \a priori" infor-
mation, as well as on the required accuracy of the solutions.

3 THE INFORMATION DOMAIN AND THE INFORMA-
TION STATE

Assume system (1.1), (1.2) and restriction (1.3) with preassigned � to be given and measurement
y�(t); t 2 [t0; � ] to be speci�ed.

Denote X(�) = fx(�; t0; x0; v(�))g to be the set (the bundle) of trajectories x(t) = x(t; t0; x
0; v(�)) of

system (1.1) that also satisfy (1.2) for y(t) � y�(t) and some w = w(t); t 2 [t0; � ], whilst alltogether the
triplet �(�) satis�es the given restriction (1.3).

De�nition 3.1. The cross section X(�) of the tube X(�) at instant t = � will be referred to as the
information domain at instant t = � generated by measurement y = y�(t); t 2 [t0; � ] under restriction
(1.3), (see[1-4]).

The set X(�) is obviously the set of states of system (1.1), (1.2) at instant t = � consistent with the
given measurement y = y�(�) and the restriction (1.3) on the uncertain items �(�). Clearly, we always
have

x(�) 2 X(�): (3.1)

The calculation of the domains X(�) and their evolution in time is the topic of many papers that
range from theoretical schemes to numerical techniques and develop into the theory of guaranteed state
estimation (see for example, references [3,4,12,13]).
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Let us now introduce a scheme for describing the information domains X(�), presuming y�(�) to be
given and the restriction (1.3) to be of the integral type. To start with (the treatment of magnitude
bounds along the lines of a similar scheme will be demonstrated later), denote

�(�) = fx0; v(t); t 2 [t0; � ]g; x(t; t0; x0; v(�)) = x(t; t0; �(�)) (3.2)

and

�(�; �(�)) = (x0 � a; P0(x
0 � a)) +

Z �

t0

((v(t) � v�(t);M(t)(v(t) � v�(t)))

+(y�(t)� g(t; x(t; x(t; t0; �(�))� w�(t)); N(t)(y�(t)� g(t; x(t; x(t; t0; ��))� w�(t)))dt

Clearly,

�(�; �(�)) = f	(�; �(�)) j w(t) � y(t)� g(t; x(t; t0; �(�))g (3.3)

De�ne

V (�; x) = inf
�(�)

f�(�; �(�)) j x(�; t0; �(�)) = xg (3.4)

With P0; N(t) > 0 the operation inf in the line above may be substituted for min. An obvious
assertion is given by

Lemma 3.1. The information domain X(�) is the level set

X(�) = fx : V (�; x) � �2g (3.5)

for the information state V (�; x).
It should be emphasized here that both V (�; x) � 0 and X(�) depend on the given measurement

y�(t) as well as on the type of functionals 	;� and that X(�) 6= ; provided

V 0(�) = inffV (�; x) j x 2 Rng � �2: (3.6)

With �(�) = ��(�) = fa; v�(�)g; w(�) = w�(�), the respective measurement

y�(t) = g(t; ��(�)) + w�(t)

is the \worst-case" realization and the respective value

V �(�) = V 0(�)jy(�)=y�(�) = 0

The latter assertion may be checked by direct substitution.
Lemma 3.1 indicates that the information set X(�) is a level set for V (�; x). The knowledge of V (�; x)

will thus allow us to calculate the sets X(�).

De�nition 3.2 Given the measurements y�(t); t 2 [t0; � ] and function �(�; �(�)) of (3.3), the respective
function V (�; x) will be referred to as the information state of system (1.1), (1.2), relative to measurement
y�(�) and criterion �.

Therefore the main conclusion here is that:
(i) The information domain X(�) is the level set for the information state V (�; x) that corresponds

to the given number �.
(ii) The information state depends both on y�(�) and on the type of functional �.
Let us now specify the function V (�; x) for the case of magnitude constraints, presuming � is de�ned

through relations (1.5) - (1.8).
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Denote

�(�; �(�); �; �(�); 
(�)) = f�(x0 � a; P0(x
0 � a))

+

Z �

t0

(�(t)(v(t) � v�(t);M(t)(v(t) � v�(t)))

+ 
(t)(w(t) � w�(t); N(t)(w(t) � w�(t))))dtg

Lemma 3.2. The function �(�; �(�)) of (1.9),(3.3) may be expressed as

�(�; �(�)) = supf�(�; �(�); �; �(�); 
(�)) j �; �(�); 
(�)g (3.7)

under the condition

�+

Z �

t0

(�(t) + 
(t))dt = 1; � � 0;�(t); 
(t) � 0; t 2 [t0; � ] (3.8)

The proof of an analogous result may be found in reference [4].
The crucial di�culty here is the calculation of the sets X(�), of the function V (�; x) and further on, of

the estimate x�(�) for the unknown state x(�). The calculations are relatively simple for an exceptional
situation - the linear-quadratic case with

f(t; x) + c(t; x)v = A(t)x + C(t)v; (3.9)

y(t) = G(t)x + w(t) (3.10)

and 	(�; �(�)) given by (1.3).
We shall now proceed with some analytical techniques for the necessary calculations applying the

Hamilton-Jacobi formalism.

4 THE HAMILTON-JACOBITECHNIQUES (QUADRATIC
CRITERIA)

Let us introduce a Dynamic Programming-type of equation treating V (�; x) as the value function for the
problem (3.4) with � given by (3.3), (1.3). Presuming the forthcoming partial derivatives existing and
continuous in the corresponding variables, the respective equation is

@V

@�
= max

v
f(
@V

@x
; (f(t; x) + c(t; x)v)) � (v(t) � v�(t);

M(t)(v(t)� v � (t))) � (y(t)� g(t; x); N(t)(y(t)� g(t; x)))g = 0

or, after the elimination of v,

@V

@�
+ (

@V

@x
; f(t; x) + c(t; x)v�) +

1

4
(
@V

@x
; c0(t; x)M�1(t)c(t; x)

@V

@x
)

� (y(t)� g(t; x); N(t)(y(t)� g(t; x))) = 0 (4.1)

with boundary condition
V (t0; x) = (x � a; P 0(x� a)): (4.2)

The existence of a solution to (4.1), (4.2) requires special considerations. It surely exists, however, if
the system (1.1), (1.2) is linear. Presuming (3.9), (3.10), equation (4.1) transforms into

@V

@t
+ (

@V

@x
;Ax+ v�) +

1

4
(
@V

@x
; c0(t; x)M�1(t)c(t; x)

@V

@x
)

� (y(t)�G(t)x;N(t)(y(t) �G(t)x) = 0: (4.3)
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Its solution with boundary condition (4.2) is a quadratic form

V (�; x) = (x � z(�); P (�)(x � z(�))) + k2(�) (4.4)

where P (t); z(t); k2(t) are the solutions to the following well-known equations [3,12,13]

_z = A(t)z + P�1G0(t)N(t)(y(t)�G(t)z) + C(t)v�; z(t0) = a; (4.5)
_P + PA(t) +A0(t)P + PC 0(t)M�1C(t)P �G0(t)N(t)G(t) = 0; P (t0) = P 0; (4.6)
_k2 = (y(t)�G(t)z;N(t)(y(t) �G(t)z)); k2(t0) = 0 (4.7)

An obvious consequence of the given reasoning is the following assertion.

Lemma 4.1. Under restrictions (1.3), on the uncertain inputs �(�) = f�(�); w(�)g the information
domain X(�) for the linear system (1.1),(1.2),(3.9),(3.10) is the level set (3.5) for the information state
V (�; x), being an ellipsoid E(z(�); P (�)) given by the relation

X(�) = E(z(�); P (�)) = fx : (x� z(�); P (�)(x � z(�))) � �2 � k2(�)g (4.8)

where z(�); P (�); k2(�) are de�ned through equations (4.5)-(4.7).
Formula (4.8) immediately indicates the worst-case realization of the measurement y�(t) which yields

the \largest" set X(t) (with respect to inclusion).

Lemma 4.2. The worst-case realization of the measurement y�(t) is generated by the triplet fx0 =
a; v(t) = v�(t); w(t) = w�(t)g which yields k2(t) = 0 .

This assertion may be checked by direct substitution.
In the more general case the assertion is loose:

Lemma 4.3. Under existence and uniqueness assumptions for the solution to the boundary-value problem
(4.1),(4.2) the level set

X(�) = fx : V (�; x) � �2g

is the information domain for the system (1.1)-(1.3).
The assumptions mentioned above may, for example, follow the conventional classical theory of

nonlinear �rst-order PDE's (see [14]). In the absence of classical solutions one may apply either one of
the equivalent concepts of \viscosity" or of \minmax" solutions ([15,16]).

5 THE HAMILTON-JACOBI TECHNIQUES (NON-
QUADRATIC CRITERIA)

In this section we indicate a Dynamic Programming - type of equation when the functional �(�; �(�))
is given by relations (1.9), (3.3). A direct derivation of the corresponding equation under obvious
nondi�erentiability properties is a separate topic which will not be discussed in this paper. We will
follow another scheme, however, under the following assumption.

Assumption 5.1. The integral

�(�; �(�); �; �(�); 
(�))

is convex in �(�) = fx0; v(�)g for any fx : x(�; �(�)) = xg.
This assumption always holds for the linear case (3.9), (3.10).
Since

V (�; x) = inf
�
f�(�; �(�)) j x(�; �(�)) = xg (5.1)

= inf
�

sup
�;�;


f�(�; �(�); �; �(�); 
(�))g (5.2)
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under restrictions (3.8) and
x(�; �(�)) = x (5.3)

and since under Assumption 5.1 the order of operations inf, sup may be interchanged due to the minmax
theorem of [17], we come to the relation

V (�; x) = sup
�;�;


min
�(�)

�(�; �(�); �; �(�); 
(�)): (5.4)

Denote �(�) = f�; �(�); 
(�)g. The internal problem of �nding

V (�; x; �(�)) = minf�(�; �(�); �(�)) j �(�)g (5.5)

under restriction (5.4) may be solved through equation (4.3) with V (�; x) substituted by V (�; x; �(�))
and M(t), N(t) by �(t)M(t), 
(t)N(t) respectively with boundary condition being

V (t0; x; �(�)) = �(x � a; P 0(x � a)): (5.6)

This leads to

Lemma 5.1. Under criteria (1.9), (3.3) and Assumption 5.1 the information state is given by

V (�; x) = supfV (�; x; �(�)) j �(�); (3:8)g (5.7)

where V (�; x; �(�)) is the solution to equation (4.3), under (5.6), with M(t); N(t) substituted by
�M(t); 
(t)N(t).

Passing to the linear case (3.9), (3.10) and solving problem (5.5), we observe

V (�; x; �(�)) = (x � z(�; �(�)); P (�; �(�))(x � z(�; �(�)))) + k2(�; �(�)); (5.8)

where P = P (t; �(�)); z = z(t; �(�)); k = k(t; �(�)) satisfy the equations

_P + PA(t) +A0(t)P + ��1(t)PC 0(t)M�1(t)C(t)P � 
(t)G0(t)N(t)G(t) = 0; (5.9)

_z = A(t)z + 
(t)P�1(t)G0(t)N(t)(y(t) �G(t)z) + C(t)v�(t); (5.10)
_k2(t) = 
(t)(y(t)�G(t)z;N(t)(y(t)�G(t)z)) (5.11)

Pt0 = �P 0; z(t0) = x0; k(t0) = 0 (5.12)

Finally this develops into the assertion

Lemma 5.2. For the linear system (1.1), (1.2), (3.9), (3.10) the information state V (�; x) relative to
measurement y(�) and nonquadratic criterion (1.9),(3.3) is the upper bound

V (�; x) = supfV (�; x; �(�)) j �(�); (3:8)g (5.13)

of a parametrized family of quadratic forms V (�; x; �(�)) of type (5.8) over the functional parameter
�(�) = f�; �(�); 
(�)g restricted by relations (3.8).

As we have observed in the previous sections, the information domain X(�) = E(z(�); P (�)) is
de�ned by V (t; x) through inequality (3.5), given �. Moreover, for each of the ellipsoidal level sets

X(�; �(�)) = E(z(�; �(�)); P (�; �(�)) = fx : V (�; x; �(�)) � �2g (5.14)

(V (�; x; �(�)) is a nondegenerate quadratic form), we obviously have

X(�) � X(�; �(�)) = E(z(�; �(�)); (�2 � k2(t))P (�; �(�))); 8�(�):
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Therefore (5.13) yields the following

Lemma 5.3. For the linear system (1.1), (1.2), (3.9), (3.10) with criterion (1.9), (3.3) the information
set X(�) is the intersection of ellipsoids

X(�; �(�)) = E(z(�; �(�)); (�2 � k2(�))P (�; �(�)))

namely,

X(�) = f\E(z(�; �(�)); (�2 � k2(�))P (�; �(�))) j �(�); (3:8)g (5.15)

where

z(t) = z(t; �(�)) = z(t; 
(�)); P (t) = P (t; �(�)); k2(t) = k2(t; �(�)) = k2(t; 
(�))

are de�ned through equations (5.9)-(5.12).
The worst case measurement y(t) = y�(t) is generated by the triplet x0 = a; v(t) = v�(t); w(t) =

w�(t) and yields k2(�) = 0.

Remark 5.1 In the linear case of sections 4, 5 the function k2(t) depends upon the measurement y�,
while P (t) does not depend upon y�.

Remark 5.2. In the general case, under assumption 5.1, the property (5.15) is true again, however the
sets X(�; �(�)) need not be ellipsoids at all, of course.

Remark 5.3. In the absence of Assumption 5.1, relation (5.15) turns into an inclusion

X(�) � f\X(�; �(�)) j �(�)); (3:8)g

6 THE ESTIMATES AND THE ERROR BOUNDS

Consider the information domain X(�) to be speci�ed. Under the assumptions of this paper and the
restriction (1.3) X(�) will be closed and bounded. Let us seek an expression for the Chebyshev center
of X(�). Following formula (2.1), we have to minimaximize the function

min
x

max
z

(x� z; x� z) = max
z

(x� � z; x� � z)

under the restriction
V (�; z) � �2

Applying the conventional generalized Lagrangian technique ([18]), we have

min
x

max
z
f(x� z; x� z) � �2�V (�; x)g (6.1)

V (�; x) � �2

Under the assumptions made the solution to this problem exists. The respective calculations are
among the topics of the algorithmic techniques of mathematical programming.

Since x�(�) is the center of the smallest ball that includes X(�), the inclusion x�(�) 2 X(�) may not
be true, however, we always have x�(�) 2 coX(�), where coX(�) is the closed convex hull of X(�) (the
latter is obvious for the linear-convex case when X(�) = coX(�)).

Here the number �2� is the Lagrange multiplier which generally depends on � as also does x�(�) =
x��(�). In the linear-quadratic case, with V (�; x) being a quadratic form of type (4.4), the solution
to (6.1) is the center of the ellipsoid (4.4), namely, x�(�) = z(�), no matter what is the value of �.
Summarizing the results, we have
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Lemma 6.1. For the set-membership estimation problem the minmax estimate x�(t) = z(�) (the Cheby-
shev center of X(�)) satis�es the property

x�(�) 2 coX(�)

In the linear-convex case, with �(�; �(�)) of type (3.3),(1.3) or (3.3), (1.9), we have

x(�) 2 X(�)

and x�(�) = x��(�).
In the linear-quadratic case (3.3),(1.3)

x�(�) = z(�)

is the center of the ellipsoid E(�; P (�)) described by the system (4.5)-(4.7) and does not depend on the
number � .

In order to �nd the estimate x0(�) for the H1 estimation problem, we have to solve the following
problem:

Find the smallest number 
2 that ensures

min
x

max
�(�)

f(x� z; x� z)� 
2V (�; x)g � 0

under the conditions
x(�; �(�)) = z; g(t; x(t; �(�)) � y�(t); t0 � t � �

This, however, is equivalent to the problem of �nding the smallest number 
2 = 
20 that ensures

min
x

max
z

f(x� z; x� z)� 
2V (�; z)g � 0 (6.2)

It is not di�cult to observe the following:

Lemma 6.2. In the linear-quadratic case (3.3), (1.3) the Lagrange multiplier �� of Lemma 6.1 satis�es
the equality

�2� = 
20 ; 8�

and the solution x0(�) to (6.2) satis�es

x0(�) = x�(�); 8�;

In the linear-convex case (1.9),(3.3) with magnitude constraints we have

�2� ! 
20 ; (�!1)

and
x��(�)! x0(�); (�!1)

The properties of the Chebyshev centers for the set-membership and theH1 solutions in the nonlinear
case, which yields yet more diversity in the estimates, is beyond the scope of this paper.

Remark 6.1. Among the conventional estimates for the nonlinear �ltering problem is the following
one, ([19,26,27]):

z�(�) = argminfV (�; x) j x 2 Rng:

This selection is certainly justi�ed for the linear-quadratic problem as in this case one has

z(�) = x�(�) = x0(�) = z�(�);

so that all the estimate types coincide.
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However, as soon as we apply a nonquadratic functional �(�; �(�)), all the previous estimates may
turn to be di�erent (even for a linear system). This is all the more true for the nonlinear case, since
always z�(�) 2 X(�), while even in simple nonlinear examples one may observe that x�(�) 62 X(�).

One of the basic elements of the solution to the �ltering problem is the computation of error bounds
for the estimates. These are given in the form of sets, once the restrictions on the uncertain items �(�)
are speci�ed in advance. Then the error set is taken to be either


(�) = X(�)� x�(�)

or, more roughly,


�(�) = co(X(�)� x�(�))

(There is no di�erence between these for the linear-convex case).
As indicated above, the set 
 will be the largest possible (with respect to inclusion) if the realizations

of the uncertain items �(�) will generate the worst-case measurement y�(t). (For the criteria 	(�; �(�))
of this paper, these are fx�0 = a; v(t) � v�(t); w(t) � w�(t)g).

Another feature of the solution for the set-membership approach is to �nd the best-case measurement,
that would yield X(�) = fx�(�)g and 
 = f0g: The principles for identifying such measurements were
indicated in [10,13]. The special cases when w(t) � 0 and when the output y(t) does not depend on the
input v(t) were discussed in [13,20].

As for the H1 approach, the estimation error e2(�) will depend upon the number 
2 in the inequality
(2.2) (this number depends in general on the measurement y(t) that determines the restriction in (2.2)).
Here the largest possible value of 
2(�) will be attained again at the same worst- case measurement y(t)
of the previous lines.

7 Conclusions

This paper presents an introductory discussion on the similarities and di�erences in solving deterministic
problems of nonlinear �ltering under uncertainty in the system inputs through the two conventional
approaches: the set-membership approach and the so-called H1 techniques. The basic points that lead
to a uni�ed approach for the topic are the dual notions of the information state and the information
domain. The discussion thus indicates obvious new problems for more detailed investigations in nonlinear
�ltering. The given notions may also be readily applied to indicate the connections between the solutions
of problems of output feedback control with deterministic uncertainty under the set-membership and
H1 settings. The latter problems are however beyond the scope of this paper.
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