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ABSTRACT

We consider the one-step prediction problem for discrete-time
linear systems in correlated Gaussian white plant and observation
noises, and non—Gaussian initial conditions. Explicit representa-
tions are obtained for the MMSE and LLSE (or Kalman) estimates
of the state given past observations, as well as for the expected
square of their difference. These formulae are obtained with the
help of the Girsanov transformation for Gaussian white noise se-
quences, and explicitly display the effects of the distribution of the
initial condition. With the help of these formulae, we investigate
the large-time asymptotics of ¢4, the expected squared difference
between the MMSE and LLSE estimates at time t. We character-
ize the limit of the error sequence {e¢, t = 1,2,...} and obtain
some related rates of convergence. A complete large—time analysis
is provided for the scalar case.
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I. INTRODUCTION

In his seminal paper of 1960, Kalman [13] developed a method of es-
timating the state of a noisy linear dynamical system based upon linear
observations corrupted by additive Gaussian white noise. The import of
Kalman’s state-space approach was that it provided a dynamical and re-
cursive, and hence computable description of the estimator, thereby over-
coming, for many practical problems, the restrictive stationarity assump-
tions of the Wiener—Hopf-Kolmogorov theory of linear filtering. Kalman’s
state—space approach renewed intense interest in filtering theory, eventu-
ally leading to a clearer understanding of the general problem of filtering
a nonlinear dynamical plant given nonlinear observations. Advances in
nonlinear filtering theory have, in turn, motivated fundamental and far-
reaching breakthroughs in a wide range of other probabilistic questions,
from stochastic control theory [8] to martingale theory [8, 12] to stochastic

partial differential equations [24-25].

We shall revisit, in this chapter, Kalman’s problem. His model, as we
shall understand it here, is that of an R"-valued plant process evolving

according to the stochastic discrete-time linear dynamical equations
ngé, Xto_*_l :AtXto'*"Wt:_l. t:0,1,... (1.13.)

This plant process describes the evolution of some quantity of interest—the
so—called system state, e.g., the amount of a quantity in a chemical reaction
or the position and velocity of an orbiting satellite. Unfortunately, full state
information is often not available and we can only measure a sequence of

R*-valued observations which are given by the linear equations
Y= H X+ Vi t=0,1,... (1.1b)

To be rigorous, we denote by (2, 7, P°) an underlying probability triple on
which all random variables (rvs) are defined. Of course, the matrices A;
and H, are respectively of size n x n and k X n for each ¢t = 0,1,.... The
statistics of the random noise processes W° = {W2, ;¢ = 0,1,...} and
Ve ={V3,;t=0,1,...} are governed by the following assumptions:
(A.1): The process (W°,V°) is a zero-mean Gaussian white noise

(GWN) sequence with covariance structure ¥ = {4415 ¢t =
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0,1,...} given by

= Wi _ (i i -
Et+1 := Cov ( V't:_l = Eg}r_’l 22}4’1 , t= 0, 1, e (1.2)

i.e., the R™*—valued rvs {(W2{,V%1); t = 0,1,...} are mutu-
ally independent zero-mean Gaussian rvs with covariances (1.2);
and

(A.2): Forallt =1,2,..., the covariance matrix ¥} is positive definite
(and thus invertible).

The reader is referred to [7, 27] for background material on GWN sequences.
In the classical Kalman filtering model, the statistics of the initial condition

£ are assumed to be governed by

(K): The initial condition £ is a Gaussian rv with mean p and covari-

ance A, and is independent of the process (W°,V°),

We note that there is an analogous continuous-time formulation of (1.1a)-
(1.1b) using Ito equations [8, 12, 14, 17]. However, we have elected here
to study the discrete—time model in order to minimize technicalities and
since, in applications, at most a finite number of observations are usually
recorded. We also note, in passing, that the superscript ‘°” on the plant
X° = {X2t=0,1,...}, noises (W°,V°) = {(W2,V3%1);t=0,1,...}
and measure P° indicates that these are ‘original’ components of the model,
to be distinguished from auxiliary plant and noise processes and probability

measures which we define in the course of the analysis.

In [13], Kalman then posed the problem of estimating in the minimum-
mean—-square—error sense the state X7, ; of the plant given the observations
Yo, Y1,...,Y;, for each ¢t = 0,1,.... In particular, he set out to compute

the conditional means
X1 = E°[X3 V] t=0,1,... (1.3)
where the o—field Y; is defined by
Y :i=a{Yo,V1,..., Y1} t=0,1,...

In the process of doing so, he also solved the generalized one-step prediction

problem, which is defined as the finding of the conditional law of X, ; given
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the o—field ;. We may alternately formulate this latter question as the

simultaneous evaluation of the conditional expectations

E°[p(X2y1)| V] t=0,1,... (14)

for all bounded Borel mappings ¢ : R®™ — C, with C denoting the
set of complex numbers. Under assumptions (A.l), (A.2) and (K),
the linearity of (1.1a)-(1.1b) implies that for each t = 0,1,..., the rvs
{X?1,Y0,Y1,...,Y:} are jointly Gaussian and therefore X7, is condition-
ally Gaussian given ), [2, Sec. 2.2]. The generalized one-step prediction
problem is then solved once two sequences of finite-dimensional sufficient
statistics are known, namely the conditional means of (1.3) and the condi-

tional covariances
Pryr = BP[(XPp1 = KXot (X2 = Xep))IWd, t=0,1,... (15)

with ’ denoting transpose. Kalman’s breakthrough lies in showing that the
processes X = {Xt+1; t=20,1,...} and P = {Pt+1; t=0,1,...} can be
described by dynamical recursions [2, pp. 38-39]. These recursions are

given by the following coupled system
xK =
X{ = AX{ - (AP H + SEHPEH 4 S20) 7 Y - HXS
t=0,1,... (1.6)
and
Pt = A,
PX, = A,PFA,+ ¥, t=0,1,... (L.7)
— [APS B+ SEA)H P + 5700 7 AP H + S

Under assumption (K), we have the following identities
Xt+1 =thil and pt+1 - PtIil' t=0,1,... (18)

It will shortly become apparent why we have separately stated the defini-
tions (1.3), (1.5) and the recursions (1.6)—(1.7).
The goal of this paper is a modest one—to relax assumption (K),

replacing it with the more realistic assumption (A.3) given by
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(A.3): The initial condition £ has distribution F with finite first and
second moments p and A, respectively, and is independent of the
process (W° V°). No other a priori assumptions, save these on

the first two moments, are enforced on F.

We shall investigate in various ways how replacing assumption (K) by
assumption (A.3) affects the solution of the prediction problem. The dis-
cussion below constitutes a synthesis of the material which has appeared
in the three papers [28-30]. We hope that this account will provide a valu-
able complement to classical Kalman filtering, as the initial condition is in
practice a rather vaguely—defined object about which only first and second

moments are known.

The effect of replacing the classical assumption by (A.3) is dra-
matic; the rvs {X7,,Yp,Y1,...,Y:} are no longer jointly Gaussian for each
t=0,1,..., and thus we cannot a priori expect that the conditional law
of the the state given the observations can be described by any finite col-
lection of sufficient statistics, e.g., X and P as in (1.3) and (1.5). We also
note that in this more general case (1.8) no longer holds; the conditional
means and covariances of (1.8) and (1.5) no longer propagate according
to (1.6) and (1.7). Faced with this state of affairs, we might naturally
seek to directly describe the evolution of the conditional law of the state
given the observations, say by a straightforward use of Bayes’ rule or via
the discrete-time analogue of the celebrated Zakai equation of nonlinear
filtering [7, 32]. This is not an easy task, however, for studying the evo-
lution of this conditional law is tantamount to studying the evolution of
an infinite-dimensional sufficient statistic. Moreover, under the suggested
approaches, it seems quite difficult, if not impossible, to clearly follow, over
time, the precise influence of the initial distribution. The key to overcoming
these difficulties lies in the techniques of [22], where the filter is factored
into a collection of finite—dimensional and computable sufficient statistics
and a functional—the information of the observations is contained solely in
these statistics, while the initial distribution appears only in the structure
of the functional. These sufficient statistics obey recursions derived from
filtering an auxiliary system of the type (1.1a)-(1.1b) under Kalman’s orig-
inal assumptions (A.1)~-(A.2) and (K). This provides us with a pleasing

reaflirmation of the centrality of Kalman’s results.
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Aware of the demands of real applications, we shall not content our-
selves only with a solution of the generalized one-step prediction problem,
but shall address also the more practical question of state estimation (as
in (1.3)). This will be of more direct interest to the engineer, who in gen-
eral is not concerned with the entire conditional law, but rather with some
appropriate estimate of the true state of the plant. For each t = 0,1,...,
the estimation of the state X7 ; given the observation o-field ) is often
defined as the problem of finding a Borel measurable ¢ : (R¥)!*! — R™

which minimizes the mean-square error

E°([| X3 — o(Yo, Y1, .. YOI |V (1.9)

over some allowable class of Borel measurable functions. If we minimize
(1.9) over all Borel measurable mappings ¢, we get the minimum mean
square error (or MMSE) estimate, while if we minimize (1.9) only over all
affine mappings ¢, we get the linear least square error (or LLSE) estimate.
In fact, the MMSE and LLSE estimators are objects which have already
been introduced: It is well known indeed that the MMSE estimators co-
incide with the sequence (1.3) of conditional means [2, Thm. 2.3.1], and
that the LLSE estimator propagates according to (1.6)—(1.7), with P¥ be-
ing the sequence of corresponding error covariances (2, Sec. 5.4]. As we
remarked in (1.8), under the Gaussian assumption (K), X;1q = X[, for
allt=0,1,... and the MMSE and LLSE estimators coincide. But as soon
as we pass to assumption (A.3), the minimization of (1.9) over all Borel
measurable mappings ¢ is not the same as the minimization of (1.9) over
all affine mappings ¢, so that in general the MMSE and LLSE estimators
will not agree. The difference between the MMSE and LLSE estimators is
a direct consequence of having a non—Gaussian initial condition.

We shall in this paper not only provide computable expressions for the
MMSE and LLSE estimators, but also study properties of their difference.
We are directed to this study for two reasons. Firstly, this difference, as
we mentioned above, is a direct consequence of relaxing (K) to (A.3).
An understanding of this difference might be useful to the engineer, who,
due to computing restrictions, often constructs the LLSE estimator as an
approximation of the more accurate MMSE estimator. We shall study the

MMSE-LLSE difference by considering the mean-square error
¢ = E°[|| X — XX12). t=1,2,... (1.10)
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After deriving a formula for (1.10), we shall then proceed to an asymptotic
analysis of the sequence € = {g;;t = 1,2,...} under the classical assump-
tion of time-homogeneity of the plant and observation dynamics, and noise
correlation structure. We shall in particular be interested in situations in
which the LLSE estimates are asymptotically the same as the MMSE es-
timates, i.e., when lim; ¢; = 0. In these cases, we shall also give a more
refined analysis of the rate of this convergence. These cases provide a formal
justification of the idea widely held by practitioners that short of first and
second moment information, precise distributional assumptions on the ini-
tial condition can be dispensed with when estimating the plant process on
the basis of the observations. Under the assumption of time-homogeneity

enforced in this asymptotic analysis, we may write
et =€ ((A,H,X), F), t=1,2,... (1.11)

where A, H and X are respectively the time-invariant state and observation
gain matrices and noise correlation structure. For each ¢t = 0,1,..., this
representation displays the dependence of ¢; on the system triple (A, H,X)
and on the initial distribution F, thus providing a natural organization of
our study of the asymptotics of €. We hope that as a consequence of this
analysis, there will emerge a much more precise understanding of the effects

of the initial condition on the filtering of (1.1a)—(1.1b).

The reader familiar with more recent developments in filtering the-
ory will already be acquainted with some of the tools used here, namely
the Girsanov measure transformation and the Kallianpur-Striebel formula:
The former will be used to define a new probability measure under which
ezplicit calculations can be performed, while the latter will be invoked to
relate the conditional expectations of (1.4) to corresponding conditional
expectations under the new measure. In essence, the arguments in this
paper amount to pushing the nonlinear effects of the non—Gaussian initial
condition into the probability measure. To do this, we take as a pattern the
techniques of [22] which solve the filtering problem in the corresponding
continuous—time case when the plant and observation noises are uncorre-
lated. It will be of some interest, in fact, to see how the calculations of
[22] can be generalized to handle correlated plant and observation noises.
A pleasing discovery awaits us in that the structure of the solution of the

prediction problem with correlated noise is essentially the same as that for
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uncorrelated noise. The only difference lies in the dynamics of a collection
of finite-dimensional sufficient statistics, while the functional dependence of
the predictor upon these statistics remains the same as in the uncorrelated

case.

The complete organization of this paper is as follows. Some notational
conventions are collected in Section II for easy reference. Section III pro-
vides a review of the discrete-time Girsanov transform. In Section IV, we
carry over to the discrete-time context the arguments developed in [22]
for handling the continuous—time problem when the plant and observation
noises are uncorrelated and the observation noise sequence V° is standard.
We then show in Section V how to modify these ideas in order to solve
the prediction problem in the case of correlated noises. In Section VI we
use these results to obtain computable expressions for both the MMSE and
LLSE estimators X and XX. We also apply the machinery developed thus
far to give a formula for the error process € of (1.10)-—this formula is pre-
sented in Theorem 6.4. Section VII is devoted to a careful study of the
asymptotics of the expression of Theorem 6.4, yielding our most general
results about the asymptotics of € in the multivariable case. Section VIII,
a relatively short section, discusses a key technical result dealing with a
partial converse for the asymptotics of €. We close with Section IX, which
contains an even more complete asymptotic analysis in the scalar case (i.e.,
when n = k = 1), when many of the expressions of Sections V-VII can be

simplified.

Several authors have considered various prediction, estimation and
filtering problems for (1.1a)—(1.1b) under assumptions (A.1)-(A.3); the
continuous-time filtering problem has been studied in [3, 11, 19, 22]. Vari-
ations to the basic discrete-time model with a class of non—-Gaussian white
noises have been discussed in [20-21] with applications to failure detection.
Related studies of the evolution of the conditional law of the plant given

the observations as a measure-valued Markov process are given in [15-16].

We would like to point out that in this chapter we have studied only the
one-step prediction problem. Of course, other estimation problems could
have been considered, namely, the the so—called filtering and interpolation
problems, which are respectively the problems of estimating the states X7

and X7, s=0,1,...,t — 1, on the basis of ), for each ¢ = 0,1,.... These
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problems can be addressed with methods similar to those presented here.
We have restricted our attention to the one—step prediction problem mainly
for calculational convenience and since it is the natural analogue of the

continuous—time filtering calculations [19, 22].

To the best of the authors’ knowledge, few results have been reported in
the literature on the large-time asymptotics of € for a general non—-Gaussian
initial distribution. This may be due to the fact that the key representation
result (Theorem 6.4) has been derived only relatively recently [27, 29].

II. NOTATION AND CONVENTIONS

For the sake of easy reference, we have collected here the various no-

tation and conventions used throughout the paper:

The set of real numbers is denoted by R, and C stands for the set
of complex numbers. Elements of R™ are viewed as column vectors and

transposition is denoted by ’, so that ||v||? = v'v for every v in R™

For positive integers n and m, we denote the space of n X m real
matrices by Myuxm; let Opxm denote the zero element in M, x,,. When
m = n, we write M, for the space M,xm of n X n real matrices, and we
denote by Q,, the cone of n X n symmetric positive semi—definite matrices.

We let I, and O, be the unit and zero elements in M, respectively.

Elements of random or deterministic sequences will be set in regular
type; the corresponding boldface character will denote the sequence itself.
Examples which we have already introduced are the plant process X° =

{X?2;t=0,1,...} and the covariance structure £ = {X;; t = 1,2,...}.

For any matrix K in M,,, with sp(K) denoting the set of all eigenvalues
of K, we set Apin(K) := min{|\| : A € sp(K)} and Apax(K) := max{|A| :
A € sp(K)}; it is customary to call Amax(K) the spectral radius of K and
to denote it by p(K). The mapping M, — R given by

. Kv ,
|1 K |op := supuﬂulwﬂu, K e My, (2.1)

defines the operator norm on M, induced by the Euclidean norm on R™.
However, since My, is a finite—dimensional Banach space, all norms on M,
are equivalent [10, Thm. IX.2.1]. This will be valuable in some of our

limiting operations in the latter parts of this chapter, as we may safely take
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entrywise limits. The following well-known facts about || - ||, Will come in
handy:
|K|2, = Amax(K'K), K € My, (2.2)

and

Amin(K'K)[[0]]* < [|Ko]? < Amax(K'K)|l0]f?,
K€M, veRn (2.3)

The constant mapping R™ — R :z — 1 is denoted by 1.
For each matrix R in Q,, let Gg denote the distribution of a zero—mean
R"™valued Gaussian rv with covariance R.

The following notation will be useful in our representation result for
the conditional expectations of (1.4). For every S in Qj,, let Xg and Bg
denote generic R™-valued rvs such that (Xg,Bs) is a R?"-valued zero-
mean Gaussian rv with covariance matrix S. For every bounded Borel
mapping ¢ : R™ — C, we define the mappings 7¢ : R» X R™ X @y, — C
and Up : R* X R" x Qp X My x Q3 — C by

Telz,b; 5] = € [o(a + Xs) explb' Bs]],
z,bER™, S € Qyny  (2.4)

and

Uplz,b; A, T; 5] = Tolz + ¥z, z; S exp {b’z - %z'Az] dF(z),
mn

:B,b E Rn, A E Qn, lI’ E Mna S E Q2n7 (2'5)

with the understanding that £ denotes integration with respect to the Gaus-

sian distribution of the rv (Xg, Bs).

We denote by D(R™) the set of all square-integrable probability distri-
butions functions on R™ with positive definite (and thus invertible) covari-
ance matrix, and by D°(R") the set of those distributions in P(R™) which

have zero mean.

III. THE GIRSANOV TRANSFORMATION

Our efforts of Sections IV and V, where we derive expressions for the

conditional expectations (1.4), will rely crucially on the celebrated Girsanov
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measure transformations for GWN sequences {7, 9]. To streamline the
arguments in Sections IV and V, we here summarize the properties of the

Girsanov transform.

The essence of the Girsanov transformation is the translation of a Gaus-
sian process. As evidence of the simple ideas at the heart of the Girsanov
transformation, we begin with the fact that the probability law of a Gaus-
sian rv with mean vector m # 0 and invertible covariance matrix R is
absolutely continuous with respect to the law of a Gaussian rv with zero
mean and covariance matrix R. It is easy to see that the corresponding

Radon-Nikodym derivative is given by

dGr(z —m) _exp(—i(z —m)R™(z —m))
dGgr(z) exp (—32'R~1z)

= exp (m’R"lm — %m'R'1m> , T€ER™

we are in this simple calculation translating a Gaussian rv by a constant
m. The discrete-time Girsanov measure transformation is conceptually
very similar, but since we are dealing with processes, the class of allowable
translates turns out to be much richer.

The basic framework for the discrete~time Girsanov transformation is
as follows: The underlying probability space (2, F,P°) is equipped with
the filtration {Fy; ¢t = 0,1,...} of F, ie., {Fi;¢t = 0,1,...} is an in-
creasing family of sub—o—fields of 7. Let U = {Uy;; ¢t = 1,2,...} be an
R?-valued zero-mean (F;, P°)-GWN sequence with correlation structure
A= {Ast =1,2,...}, ie,forall t = 0,1,..., the rv Uy is Fyppq—

measurable and
E° [exp [i6'Upsa] | F:) = exp [—%‘“tﬂ"], BER™ t=0,1,... (3.1)

For future reference, we note the well-known fact that (3.1) more generally
holds for 8 in C*.

A case of special interest arises when in this definition, the filtration
is taken to be the natural filtration {F/;¢ = 0,1,...} induced by the

sequence U, l.e.,
Flii=0{Usp; s=0,1,...,t} t=0,1,... (3.2)
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with F{ chosen so that FY C F¥; in fact, F§ is often selected to be
the trivial o-field on Q. With the choice (3.2), we simply refer to U as
a zero-mean P°-~-GWN sequence with correlation structure A; moreover,
when the reference probability measure P° is clear from the context, we
further omit it from the terminology. This is in agreement with usage in
earlier sections, since (3.1) always implies that the rvs {Us; t = 1,2,...} are
mutually independent. We also say that for any T' > 0, a finite collection
{Us; t=1,2,...,T+1} of rvs is an (F;, P°)-GWN sequence if (3.1) holds
forallt=0,1,...,T.

Now, for a given F;-adapted R%valued sequence x = {xs;t =
0,1,...}, we define the sequences U = {Uy;t = 1,2,...}and L = {L¢; t =
0,1,...} taking values in R% and R, respectively, by

ﬁt—*—l = Ut+1 - AH-lXt t= 0, 1, . (33)

and
: 1
Lo=1, Liyy:= HeXP [XQUsH - §X'3As+1xs . t=0,1,... (3.4)

s=0

The first key fact that underlies the Girsanov transformation is given in the

following Lemma:

Lemma 3.1. The sequence L of positive rvs constitutes an (F;, P°)-
martingale, with
E°[L] = 1. t=0,1,... (3.5)

Proof. Fix t = 0,1,.... The rv Ly being positive, its (conditional)

expectations are well defined, though not a priori finite. From the relation
! 1 !
Liy1 = L¢-exp [XtUH-l - EXtAt+1Xt} ) (36)
we obtain
o 1
E°[Lt11|Fi] = Ly - exp [—EX;AHIXt] E° [exp [x; Ur41] | 7] (3.7)

as both the rvs L; and x; are F;-measurable. Since the process U is

a zero-mean (F;, P°)-GWN sequence with correlation structure A, the
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conditional distribution of U;yq given F, is that of a zero-mean Gaussian

rv with covariance matrix A;y1. Therefore, we have

o 1
B fexp (Vo] 172 = exp [ 5iA ek (39)

using again the F;—measurability of the rv x;. Substituting (3.8) into (3.7)

we obtain the martingale property in the form
Eo[Lt-I—llft] = Lt Po — a.s.

whence

E°[Ls41] = E°[L). (3.9)

The equality (3.5) is now a simple consequence of (3.9) and of the fact that

LO = 1. .
For each fixed integer T = 0,1,..., we now define a measure P74, on
(2, F) by
Pria(A) = / Ly dP°, A€ F. (3.10)
A

It follows from (3.5) in Lemma 3.1 that the measure Pry; is indeed a
probability measure on F; we denote by E74; the expectation operator
associated with Pryq. A simple martingale argument in conjunction with
the fact that Lo = 1 shows that Pr,, agrees with P° on F;. Also, since
L4, is nonzero, we see that Pry, is mutually absolutely continuous with
P° on F; the Radon—-Nikodym derivatives are given by

dPry1 dp°

= ——— =L7L,.
Tpo = Lr+1 and P Ly

As a consequence of this last fact, the statements P°-a.s. and Pryi-a.s.
are equivalent and reference to the underlying probability measure is usually
dropped. Moreover, for notational convenience we omit a.s. equivalencies
in the ensuing discussion, as such omissions have no effect upon the final

results.

This change of measure which replaces the base measure P° by P, is
what is referred to in the literature as the Girsanov measure transformation.

Its most important properties are summarized below.
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Theorem 3.2. With the notation and definitions given above, we have the
following facts:
(a) The sequence {Uy; t =1,2,...,T+1} is a zero-mean (Fy, Pryq1)-

GWN process with covariance structure given by
ET+1[[7t+1(_];+1|ft] = A1 t=0,1,...,T (3.11)
and
(b) Thervs {L;',t=0,1,...,T+1} form an (F;, Py;,)-martingale.
Proof. Thervs {Uy; t =1,2,...,T+ 1} are clearly F;-adapted. Therefore

Claim (a) will be proved if we can show that

_ o 1 n

Eryy [exp [10'Uig] | Fi] = exp [_'2‘0’At+19] , #€eR™

t=0,1,...,T (3.12)

Fixt = 0,1,...,7 and 8 in R™ Invoking a standard result on the eval-

uation of conditional expectations under an absolutely continuous change

of measures [18, Sec. 27.4]—the so—called Kallianpur-Striebel formula of
nonlinear filtering—we have

E° [exp [i610t+1] LT+1|]:t]

Ery [exp [i6'Uepa] | 74] = E° [Lr41|F]

(3.13)

and the remainder of the proof consists in evaluating the numerator and

denominator of (3.13).
By the martingale property of Lemma 3.1, we first see that
E°[Lr41|F:) = Lt (3.14)
Next, using the smoothing property of conditional expectations, we readily
get
E° [exp [i8'Upt1] LT+1|]-}]
= E° [E° [exp [i6'Usy1] Lr41|Fes1] | F

=E° [exp [i9’(7t+1] E° [LT+1|'7:'¢+1] l]:t] (315)

= Eo [exp [i()’ﬁtH] Lt+1|-7:t] (316)
1 cnl

= Lt *exp { —2- At+1Xt] [exp [lelUH.l + XQU‘&+1] lj:t] (317)
1 .

— Lt - exp [ 5 At-}—lX't 10 At+1xt] EO [eXp [(10 + Xt), Ut+1] |ft] .

(3.18)
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The passage from (3.15) to (3.16) is validated by the martingale prop-
erty of L, while (3.17) follows from (3.16) upon using (3.6) and the F;-
measurability of the rv x; substituting (3.3) into (3.17) yields (3.18). Fi-
nally, using the first comment that followed (3.1), we see that

o . 1 . .
E [exp [(u‘) +xe) Ut+1] |]-'t] = exp [—-5(0 —ixe) Asp1(8 - zxt)]
and substitution of this last fact into (3.18) yields
s 1
Eo [exp [’LOIUH_l] LT+1l]:t] = Lt - exXp [—50,At+19] . (319)

We now obtain (3.12) by inserting (3.14) and (3.19) into (3.13).

To establish Claim (b), we observe that the base measure P° itself can
be obtained from the transformed measure Pry; by a Girsanov measure

transformation: Indeed, we rewrite (3.3) as
Utpr = Ugr + A1 xe t=0,1,...

where it is now known by the first part of the proof that the sequence
{U;t = 1,2,...,T + 1} is a zero-mean (F;, Pr41)-GWN process with
covariance structure (3.11). Therefore, in analogy with (3.4), with Uy
and —Ap1x: playing the role of Uypq and A¢y1x:, respectively, for all
t=0,1,...,T, we define the sequence L = {L;;t =10,1,...} of R-valued
Tvs by

t

- . 1
L() = 1, Lt+1 = Hexp [_X;U8+1 - §X;A3+1X3} Lt = 0,1, ‘e (320)

s=0

By Lemma 3.1, the rvs {L;;t = 0,1,...T + 1} form an (F;,Pryq)-
martingale, and the proof of Claim (b) is now completed upon observing
that

Li=L;". t=0,1,... (3.21)

n

We conclude this section with an easy observation: An alternate ex-
pression for (3.4) is simply

t

1 N
Liyq =exp {Z {X;US—H - §X;As+1Xs}:| t=0,1,... (3.22)

3=0

15



and similarly from (3.20)—(3.21), we get

t
_ - 1
L}y = exp [E {_X;Us+1 - §XQA3+1X3}} . t=0,1,...

3=0

Theorem 3.2 implies that the probability measures {P7; T = 1,2,...}
obey a consistency property—that if T and T' are finite times with 0 < T <
T', then {Uy; t = 1,2,...,T + 1} has the same statistics under both Pz,
and P7/;;—more completely, Pry; and Priyy agree on Fo V o{U;; t =
1,2,...,T+1}. The reader may then ask if, by setting T = oo in (3.10), we
may find a single probability measure P under which Claim (a) of Theorem
3.21s true for all T. Unfortunately, the existence Qf such a ‘projective limit’
of the measures {Pr; T = 1,2,...} is rare. In fact, such a probability
measure will exist if and only if L is a uniformly integrable martingale;
the reader is referred to [27, Thm. 2.1 and 23, Props. III-1-1 and IV-
2-3] for a more detailed analysis of this question. The absence of such a
limiting probability measure P will not, however, cause any difficulties in
our efforts here. We shall be considering the one—step prediction problem
for (1.1a)-(1.1b) on finite horizons, which involve only finite subsets of the
rvs {£,(W2,V2);t = 0,1,...}. We will touch upon this matter again in
Section V.

IV. THE UNCORRELATED CASE: A REVIEW

We first review the solution of the one—step prediction problem (i.e.,
evaluating the conditional expectations (1.4)) in the simpler case when the
plant and observation noise sequences are uncorrelated and the observa-
tion noise sequence is standard. In other words, we temporarily replace
assumption (A.1) by assumption (A.1)*, where
(A.1)*: The process (W°,V°)is a zero-mean GWN sequence with covari-

ance structure X given by

— W2 _ (¥ Onxs _
oo (M) (. O). 1caa

The situation defined by (A.1)* is essentially the discrete-time analogue
of the one discussed in [19, 22], and as was done there, the arguments will

rely crucially on the Girsanov measure transformation; this time of course,
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the discrete-time version, which was presented in Section III, will be used.
As our purpose here is to provide some motivation and background for the
more complicated arguments of Section V, we review below the various
steps leading to the relevant discrete-time Girsanov transformation. In
doing so, we are careful to explicitly point out the essential features of our

reasoning,.

We wish to emphasize once again that the only source of non—Gaussian
randomness in the model comes from the initial condition £. If £ were a
Gaussian rv, then (1.8) would hold and the generalized one-step prediction
problem would be fully described by (1.6)-(1.7). Furthermore, the MMSE
and LLSE estimation processes X and X¥ would coincide and the error
process € would be identically zero, whence the asymptotic analysis of
Sections VI-IX would be trivial. Given this, our guiding principle is to
effect a decomposition of (1.1a)—(1.1b) so that, as much as possible, we may
separate the effects of the Gaussian white noise sequence (W°,V°) from

the troublesome effects of the non-Gaussian initial condition &.

We begin by noting that the closed—form solution of the recursive equa-

tion (1.1a) is simply
t-1
X = ®(t,0)6+ ) ¥(t,5)Weyy t=1,2,...
s=0
where P is the state transition matrix defined by
O(s,8)=1I,, ®(t+1,s)=A;®(¢,s), s<t. st=0,1,... (4.1)
This suggests the decomposition
X0 =27, + X, t=1,2,... (4.2)
where the processes Z and X are given by
Zo=§&, Z,=®(t,0)¢ t=1,2,... (4.3)
and
-1
Xo=0, Xe=) ®(t,5)W2,. t=1,2,... (4.4)
s=0
The effects of the non—Gaussian initial condition £ are encoded in the pro-

cess Z, while X is a Gaussian sequence. For future reference, we note that
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the evolution of the processes Z and X are also described by the dynamical
equations
Zo - f, Zt+1 - AtZt t= 0, 1, e (45)

and
XO - 0, Xt+1 - AtXt + thl' t = 0, 1, e (46)

Using the decomposition (4.2), we can write (1.1b) as

YVi=HXi+ HZ:+ Vi
=HtXt+‘/t+1 t=0,1,... (47)

where we have set
‘/t_{..l:‘/tz_l"‘HZt- t=0,1,...

Therefore the observation process Y is the sum of the P°~Gaussian pro-
cess {H:Xy;t = 0,1,...} and of the sequence V which can be inter-
preted as the translation of the P°~GWN sequence V° by the process
{H:Z;;t = 0,1,...}. This simple observation suggests that after an ap-
propriate Girsanov transformation to be determined, the noise sequence V

can be made to look like a GWN sequence under the transformed measure.

Our next step consists of using the Girsanov measure transformation
to see that the law of the translated Gaussian process V is absolutely con-
tinuous with respect to the law of a centered Gaussian process; this will be
made more precise in a moment. As the end result of this measure trans-
formation, we can consider a new probability measure under which V (as
opposed to V°) is now a zero—mean standard GWN. In short, the effects of
the non-Gaussian initial condition have been pushed into a Radon-Nikodym

derivative.

For the situation at hand, the processes V° and {H;Z;;t = 0,1,...}
play the role of the processes U and x of Section III, respectively. To
complete the preparations for the Girsanov transformation, we introduce
the filtration {F;; ¢ = 0,1,...} by setting

Fo:=o{(,W);s=1,2,...}

and
Fii=FoVo{Vy;s=1,2,...,t} t=1,2,...
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Since the processes W and V° are uncorrelated (and thus independent
since Gaussian), V° will indeed be a zero-mean (F;, P°)-GWN sequence.
(When considering the correlated case in Section V, V° will not be a
(Ft, P°)-GWN sequence for this definition of F;. This will be the main

hurdle we shall confront.)

Using (3.22), we see that the sequence L of Radon-Nikodym derivatives
of (3.4) is here given by Ly := 1 and
Litt t=0,1,... (4.8)

= exp [—s'Z[Hsé(s,O)]’ 1~ %f’E[H&(s,O)]’[Hs@(s,O)k :
5=0

3=0
For any nonnegative integer T, we then define the probability measure

Pry by

PT+1(A) = / LT+1dP°, AeF. (49)
A

Applying the results of Section III, we readily conclude the following facts:
(G) The Pryq-statistics of the rvs {&, Wyy157 = 0,1,...,Vyp1; 8 =
0,1,...,T} are the same as the P°-statistics of the rvs {£, W7, ,;
r=0,1,...,V2,;s=0,1,...,T}. In particular, under the trans-
formed measure P71, the rv € has distribution F and is indepen-
dent of the rvs {W2, s r=0,1,...; Vop1; 8 = 0,1,...,T} which

are zero—mean Gaussian rvs with known covariance structure.
We can summarize thus far the effects of the decomposition (4.2) and of
the Girsanov transformation (4.8)-(4.9): The observation process Y can
be viewed as the sum of a Gaussian process and of a translated Gaussian
process, this translate being amenable to a Girsanov transformation which

results in property (G).

We now turn to the evaluation of the conditional expectation (1.4)
for some fixed time index ¢t = 0,1,..., and for some given bounded Borel
mappings ¢ : R®™ — C. Fixing the time horizon T so that ¢t < T, we
consider the change of measure defined by (4.9) and seek to evaluate (1.4)
by performing the calculations under the transformed measure Py, rather
than under P°. To do this, as in Section III, we resort to the Kallianpur—
Striebel formula [18, Sec. 27.4], which here takes the form

ET+1 [SO(XE’H)L:F}H | Vi)

B lp(Xi )V = —5 - TN

(4.10)
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since
_ig_o_ = I:1
dPr4y T+
Our problem thus reduces to the evaluation of expressions of the form

ET+1[‘P(X?+1)L;:-1!yt]
for all bounded Borel mappings ¢ : R® — C.
First, an easy preliminary simplification: The rv X tr1 18 Fepa—
measurable and }; is also contained in F;;;, whence iterated conditioning

and the martingale property of Claim (b) in Theorem 3.2 readily imply the
equality

Er1le(X21) L7411V =Er [Bria[e(X20) L 1 FIVH
:ET+1[99(X5+1)L:4}1Iyt]' (4.11)
By another argument based on iterated conditioning, we also observe that
Eriile(X21) L V]
= ET+1[ET+1[‘19(X?+1)L:-&1D)¢ Vv a{&}]| Ve (4.12)

The importance of this formula stems from the fact that under Pryq, the
process & has known statistics and is independent of Y;. (Reviewing our
arguments, we see that one essential feature of the decomposition (4.2)
and of the Girsanov transformation was that it allowed the non-Gaussian
effects of £ to be put into the oservation noise. Thus the randomness in
the observations comes from the Gaussian plant noise and the observation
noise, which is also Gaussian under the new measure. Making £ measurable
with respect to Fy makes £ independent of these noise sequences and thus

of the process Y.)

To proceed with the evaluation of the inner conditional expectation
on the right-hand side of (4.12), we shall write (4.8) more compactly. We
define the R™valued process B = {B;; t =0,1,...} by

t

By:=0, Bi1:=» [H8(s,0)]'V,41 t=0,1,... (4.13)

5=0
and the Q,—valued sequence M = {M;; t = 0,1,...} by

My :=0,, My = }_t:[H,@(s,O)]'[H,(D(s,O)]. t=0,1,... (4.14)

§=0
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With this notation, (4.8) now becomes

- 1
Lt-f}l = exp [€/Bt+l — §§IMt+1€] t= 0, 1, .. (4.15)
so that, combining (4.2)-(4.3), we get
Bro1 [e(Xe)Lih| v of¢)]
1
= exXp -—EE Mt+1f (416)

Eret [@(Xers + 8(t + 1,006) exp[€'Busal [V v o (e}

Returning to (G), which describes the statistics of the relevant
rvs under Pr,;, we argue that the evaluation of (4.16) is concep-
tually a simple matter: Indeed, from (G) we observe that the rvs
{Xt+1, Bi+1,Y0,Y1,...,Y;} can be expressed as linear combinations of the
rvs {Wo;8=0,1,...,Voqq;7=0,1,...,T}, and under Pry1 are thus
Jjointly Gaussian and independent of £. Therefore, as a first consequence of

these facts, we can write
Brin [o(Xepr + (2 +1,008) expl€'Busa] ¥ v o ()]

= ET+1 [QO(XH.l + @(t + 1,0)2) exp [z’Bt+l] ]yt] =t . (4.17)

Next, defining the conditional expectations
Xt+1 = ET+1 [Xt+1|yt] and Bt+1 = ET-H [Bt+1|yt] (4-18)
with corresponding errors
Xt-}-l = Xt41 — Xeq1 and Bt+1 = Bypq - By, (4.19)
we see that
Eran [p(Xers +2(1+1,0)2) expl2'Buna] | ]
= exp [#/Bit1]
By [w()"(m + 3+ &t +1,0)2)exp [;:'Bm] ’yt] g
z € R™ (4.20)
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The evaluation of (4.20) requires only the Pz, ;~conditional distribution of
the pair (X;41, Biy1) given the Gaussian rvs {Yp, Y, ...,Y;}. Since the rvs
{Xi+1, Bt41,Y0,Y1,-..,Y:} are jointly f’T_,_l—Gaussia,n, it is well known
[6, p. 10] that under Ppyq, the pair (Xiy1, Bir1) is independent of the
rvs {Yo,Y;,...,Y;} and has a Gaussian distribution distribution with zero

mean and covariance matrix Sy given by

. X Z1 )"
st | (52) (322) |

Therefore, using this fact in (4.20), we find

(4.21)

Bri1 [p(Xers + 8(t +1,0)2) exp [+ Beya] [ ]

= exp [Z'Bt+1] T(P[Xt+1 + @(t + 1,0)2, zZ, SH.l], Z € Rn,
where we have used the notation (2.4). It is now plain from (4.17) that

Eri [w(Xm + ®(t + 1,0)8) exp[2' Bey1] !yt \ 0{5}]

= exp ['Bry1] To[ X1 + (¢ + 1,0)€,6; Seqa),
and going back to (4.16), we can now conclude that
n o -1
Ery [‘P(Xtﬂ Lt+1|yt v U{f}]
]' ! I
= exp —'2'E Mit1&+ E B
- Tp[Xep1 + B+ 1,0)6,€; Seqal. (4.22)

Finally, by averaging over ¢ as indicated by (4.12), we get the relation

Er1lp(Xep) Ll Ve = Up[Xivr, Begr; Miga, B(t+1,0); S14a]  (4.23)

where we have used the notation (2.5).

Combining (4.10) and (4.23), we obtain the representation result

[Xet1, ]?t+1; Mipq1,®(t+1,0); S544]
(X1, Beyrs Migq, ®(2+ 1,0); St4]

B lp(X2 )] = o (4:20)

This formula is the discrete-time analogue of Theorem T5 in [22]. To

finish the one-step prediction problem, we only need to calculate X1,
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Biy1, Miy1, ®(t + 1,0) and Sip1. We shall perform these computa-
tions in the more general case of Section V. For the reader eager to carry
out in totality the calculations of this section, we note that the Pryq—
Gaussian 1vs {(X¢41, Bi+1);t = 0,1,...,T} described by (4.6) and (4.13),
obey linear dynamics driven by a P7.1-GWN sequence, and that for
each t = 0,1,...,T, the observation Y; is a linear combination of the rv
(Xt+1, Bi+1) and of the P 1—Gaussian noise term V4. Therefore, classi-
cal Kalman filtering theory applies and leads to recursive equations for the

tvs (X¢y1, Bt+1) and the error covariance matrices Sty1,t=0,1,...,7T.

Before closing this section, let us continue the calculation of (4.22) in
the specific case when ¢ = 1; this will be needed in Section VI. Straight-

forward evaluations yield
Erq [Lt-{—lllyt v 0{5}]

= exp [‘"12‘5' (Mt+l - ET+1[BQ+1Bt+1]) £+ €lBt+1] . (4.25)

V. THE CORRELATED CASE

We now turn to the more complicated case where the noise sequences
W? and V° are allowed to be correlated and V° to be nonstandard, i.e.,

we are returning to the general assumption (A.1).

First, a few comments to guide the discussion of this more complex
situation: We seek again a decomposition of the form (4.2), with the objec-
tive of separating the effects of the non—Gaussian initial condition £ from
those of the GWN sequence (V°, W°). However, as we review the argu-
ments of Section IV, we readily see the main difficulty in arguing as was
done there on the basis of the decomposition (4.2)—(4.4): Since W° and V°
are correlated, we cannot expect in general that a Girsanov transformation
will change the statistics of V without changing the statistics of W°! As a
result, under the Girsanov transformation (4.8)—(4.9) based on the decom-
position (4.2)-(4.4), the process X defined by (4.4) will probably not retain
its Gaussian character and the arguments of Section IV cannot be carried

through.

The remedy to this difficulty is easily seen: We shall perform a Gir-

sanov transformation on the joint R"**-valued process (W°, V°), instead
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of the GWN process V° alone (as was done in Section IV). We thus look
for a new probability measure under which an appropriate translate of the
joint process (W°, V°) is Gaussian (up to a finite horizon). Of course, the
search for this Girsanov transformation will be initiated via a decomposi-
tion of the form (4.2), where this time, the processes X and Z are yet to
be determined, i.e., we do not a priori make the definitions (4.3) and (4.4)

in the postulated decomposition
X:ZXt-FZt. t=0,1,... (51)

With this in mind, from (1.1a) and (5.1), we first obtain

Xip1+ Zir
= Xt°+1
= A X7+ Wiy,
= AXi+ AZi A Woy.  t=0,1,... (5.2)

Prompted by the remarks above, we tentatively define the R™valued pro-

cesses X and Z via the recursions
X():O, Xt+1 :AtXt—Wt+Wt?+.1 t=0,1,... (53)

and
Zo =&, Zi1=AZi+ 7y t=0,1,... (5.4)

for some R™-valued process # = {m;; ¢t = 0,1,...}; these equations are
compatible with (5.2) and generalize (4.5) and (4.6). Equation (4.7), being
a direct consequence of the decomposition (4.2), still holds in our present
case, i.e.,

}/t:HtXt'i"‘/H-l t=0,1,...

where we have again defined the sequence V by
Vigr = Vi + HiZy. t=0,1,... (5.5)
Moreover, we observe that (5.3) can also be rewritten as
Xo=0, Xiy1=AXi+Wia t=0,1,...
if the R"-valued sequence W is defined by
Wiy = Wiy — T t=0,1,... (5.6)
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Now, going back to the line of reasoning given in Section IV (as
amended above), we must perform a Girsanov transformation on the R™**-
valued process (W°,V°). The particular form of (5.5) and (5.6) suggests
that the relevant Girsanov transformation is the one associated with trans-
lating the GWN sequence (W°, V°) into the R"**—valued process (W, V).
We do this as follows: First we define the filtration {F; t = 0,1,...} on
(2, F) by Fo := 0{£} and

]:t ::U{E’ (W° Vo),3=1,2,.‘.,t}. t:1,2,"

8" s

Under the enforced independence assumption in (A.3), the sequence
(W°,V®) is indeed an (F;, P°)-GWN sequence. The feasibility of the
translation mentioned above will be established if we can find two Fy-
adapted sequences ¥" = {¥¥; t = 0,1,...} and ¥* = {9f; t =0,1,...}
taking values in R™ and R¥, respectively, such that

(Wt+1>:( t°+1>_< 41 t+1>(¢’t> t=0,1,... (5.7)
Vi Vi L Tip by ’

Upon comparing this last relation with (5.5) and (5.6), we readily see that
the processes ¥" and 1" have to be selected so that

—I¥avy — S = t=20,1,...

and

LNy —TiaYy = HiZe.  t1=0,1,...

Since X},; is invertible, this can be achieved by choosing some as-yet-
unspecified R"-valued sequence ¥ = {9y t = 0,1,...} which is Fs-
adapted, and by taking the processes )™ and 9" such that

’l,b;'u = ¢7t and pr = (Et-{—l) 1[2f$1¢t+HtZt]. tZO,l,...
With this choice, the process 7 is given by

iy + ey

= (B - Z¥(EEa)” t+1]¢’t
2 (B ' H,Z,. t=20,1,...

To simplify the Girsanov transformation as much as possible, we take

P =0, t=0,1,...
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so that

PP =0 and oY = —(T,) 1 H.Z, t=0,1,... (5.8)
with
-2 (B 'H,Z,. t=0,1,... (5.9)

Inserting these choices (5.8)—(5.9) into (5.3)—(5.4) and (5.7) we have

the following summary of our decomposition:

e The effect of the initial condition

ZO = 67 Zt+1 = [At t+1(2t+1)‘lHt]Zt = 0, 1, e (510)

e The noise processes

(Wt+1> _ (Wtzl-l) _ (E?'ﬂ E;H-:l) ( 0 ) )
Vt+1 Vtgq—l 251-1{-”1 t+1 (EJt+1) H:Z,
(Wt+l + ZP () HtZt) 4 =0.1....
‘/H-l + HtZt T

e The auxiliary system

X() = 0, Xt+1 - AtXt + Wt+1 1= 0,1,. .. (511)
and

}ft-:HtXt-*-I/t.{.l. t:'-O,l,... (512)

The Girsanov measure transformation associated with (5.7), under the
choice (5.8), will be effected by the sequence L of Radon-Nykodym deriva-

tives given here by Ly := 1 and

Lt+1 t:(),l,...

= exp {—Z[HZ](E 5 Ve = 3 UL (5 L2

=0 s=0

This expression follows from Section III with the identification

0
a (‘(E?+1)'1HtZt) and Ay =Npp. t=0,1,...
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Next we repeat our arguments of Section IV to evaluate the conditional
expectation (1.4) for some fixed time index t = 0,1, ..., and for some given
bounded Borel mappings ¢ : R® — C. For each T' =0, 1,..., we define the
probability measure Py through the formula dP7y,/dP° = Lri;—the
same formula as (4.9). Fix the time horizon T so that t < T. We seek
to evaluate (1.4) by performing the calculations under the transformed
measure Py, rather than under P°. To do this, we observe that the
following property (G*) holds, where

(G*) The Pry1-statistics of {¢, (Wsy1,Vey1); 8 = 0,1,...,T} are the
same as the P°-statistics of {{,(Wor1,V1);s = 0,1,...,T}.
As a result, {Xy;t =0,1,...,T} and {Viy1;t = 0,1,...,T} are
jointly Pp,1—Gaussian with known statistics, and the rv ¢ has
known Pr,-statistics and is P, -independent of the observa-
tions {Y,; s =0,1,...,T}.
As a consequence, X satisfies the same dynamics as X°, except that W re-
places W°, and furthermore the Py —statistics of {W;41; ¢ =0,1,...,T}
are the same as the P°-statistics of {W2 ;¢ = 0,1,...,T}. This very
nicely ties our calculations to the dynamics of the original system (1.1a).

From (5.10), we find that
Zy = ¥(t,0)¢ t=20,1,...
where here ¥ is the state transition matrix defined by
U(s,s)=1I,, ¥(t+1,s)=[A:—ZP(SY ) H]¥(¢, s),
s<t. s,t=1,2,... (5.13)

When Y =0 for all t = 1,2,..., we see that ¥ agrees with ®. We shall
see that essentially the only change we need to make to equations (4.13)-
(4.24) will be to replace ® of (4.1) by ¥ of (5.13), so it will at each step be

clear how our current calculations generalize those of Section IV.

The remainder of the arguments leading to the analogue of (4.24) is es-
sentially the same as in Section IV. The Kallianpur—Striebel formula (4.10)
still holds, as does the martingale argument of (4.11) and the iterated con-
ditioning argument of (4.12). We can still write L in the form of (4.15) if

we now make the definitions

t
By :=0, Bypi:= Y [H¥(s,0)]'Veps t=0,1,... (5.14)

8=0
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and
t
My =0,y M= [H¥(s,0)['(ZY,,) 7 [H,¥(s,0)]
s=0

t=0,1,... (5.15)
instead of (4.13) and (4.14). Equations (4.16)—(4.17) still hold if we replace
®(t+1,0) by ¥(¢ + 1,0). We define the rvs {X;; ¢t =0,1,..., T} {By t =
0,1,...,T},{Xs;t=0,1,...,T}and {B;; t = 0,1,...,T} as in (4.18) and
(4.19), and then (4.20) holds if we, again, replace ®(¢ + 1,0) by ¥(t +
1,0). By virtue of the property (G*) and of the equations (5.11)—-(5.12)
and (5.14), we see that the rvs {X;+1, Bi+1, Y0, Y1,...,Y:} are all linear
combinations of {(Wsy1,Vsy1);8 = 0,1,...,t}, whence they are Pryq-
jointly Gaussian and independent of £. Defining S¢4; as in (4.21), we find
that (4.23) holds with ¥(¢ + 1,0) replacing ®(¢ + 1,0). Finally, we have

U‘P[):(Hl’ ?t+l; My, ¥(t+1,0); S114]
UL[X 41, Beyr; Mey1, ¥(E + 1,0); St

E°[p( X7 )] = (5.16)

which is the generalization of (4.24) to the correlated case. Observe that
the dependence of (5.16) upon the statistics Xy41, Brr1, Mit1, ¥(¢ + 1,0)
and Syy1 is the same as the dependence of (4.24) upon the statistics X, 41,
Biy1, Miyy, ®(t+1,0) and Si41. It is only the definitions of these statistics
which is changed and not the form of the statistics—bearing functional as
we move from the uncorrelated case to the correlated case.

To finish our study of the one-step prediction problem, we should give
a method for actually computing X;;1, By, and S;4;. By writing down
the dynamical equations for B which correspond to (5.14), we see that the

pair (X, B) satisfies the recursive plant equation
Xo)_ (0
By ) \0)’
Xt+1 _ A, 0 X, N
<Bt+1)—<0 In) (Bt) t=0,1,...(5.17a)

(6 weoen) (%)
0 W(t,0)H(2)™ ) \ Vin

to which we adjoin an observation equation

X W,
Y: = (H; 0)<B:)+(0 Ik)(V::;)' t=0,1,...(5.17b)



Since the rvs {(Wy41,Vs41); 8 = 0,1,...,T} constitute a P7,1-GWN
sequence, the Kalman filtering formulae may be applied to find dynami-
cal equations for the Pryi-statistics {(X;, B;);t = 1,2,...,T + 1} and
{Syt=1,2,..., T+ 1}.

Prior to applying the Kalman filtering equations to (5.17a)-(5.17b),
we make several comments concerning the effect of the horizon length T
The probability measure Pr,, was constructed to ensure that the finite-
horizon sequence {(Wey1,Viq1); t = 0,1,...,T}is a Pr41—~GWN sequence,
and thus that the system (5.17a)-(5.17b) is amenable to Gaussian linear
filtering methods for ¢t = 0,1,...,T. By the dynamic nature of (5.17a)-
(5.17b), the rvs {X;41, Biy1, Y0, Y1,...,Y:} are measurable with respect to
{(Ws41,Vss1); 8 = 0,1,...,t} for each t = 0,1,.... Now, by the con-
sistency property mentioned at the end of Section III, the statistics of
{(Wyt1,Vss1); s = 0,1,...,1} are the same under any two measures Pr,;
and Py 4y so long as t < T < T', and therefore the rvs Xy, B;11 and
St+1 of (4.18) and (4.21) do not depend upon the horizon T for T > t. In
particular, we may take T' =t in (4.18) and (4.21), setting

X1 = By [Xea W] and  Bygq = By [Be1| V4] (5.18)
and
= th"‘Xt-&-l)(th"XtAl I
S = F + i + Tt , 5.19
tH 1 [( Biy1 — By Biy1 — By (5-19)
forallt = 0,1,..., which defines X, B and S as infinite-horizon sequences.

Turning now to the structure of the Kalman filter, as in (1.6)—(1.7),
we recall that one of the strengths of the Kalman filtering equations is that
they are recursive, i.e., at any time ¢t = 0,1,..., the one-step predictor of
the state at time t+1 and the corresponding (conditional) covariance matrix
may be obtained by updating these quantities at time ¢ using the observation
at time t. Combining this with the remarks concerning the consistency of
the measures {Pr41; T =0,1,...}, we conclude that the Kalman filtering
equations which yield Xy, B;11 and Syy; do not depend on the choice
of the horizon T, with 7" > t. A moment of reflection will convince the
reader that consequently, we may get valid recursive equations for X, B
and S by applying the Kalman filtering equations to (5.17a)-(5.17b) as if
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there were a measure P under which the entire infinite~horizon sequence
{(Wit1,Vig1); t = 0,1,...} were a P-GWN sequence. In line with the
closing comments of Section III, we remark that such a measure P will not
in general exist—we are merely introducing it as a fictitious construct to
aid us in arriving at valid equations for X, B and S.

With these thoughts in mind, we apply the Kalman filtering equations
(1.6)—(1.7) to the higher—dimensional system (5.17a)-(5.17b). To help us,

we first write

(P @ _
St_<Q; Rt) t=0,1,... (5.20)

as this corresponds to a natural partition of the covariance matrices of
(5.19) according to the (conditional) covariances of the processes X and B.
After some simplification, we get the following recursions for the sequences
P={P;t=0,1,...},Q={Q;t=0,1,...} and R ={R;; t =0,1,...}:
The Q,—valued deterministic sequence P satisfies the recursion
Py = Oy,
Py = AP AL+ Y t=0,1,... (5.21)
~ (AP Hy + SN H P H, + 277 AP H] + T

For convenience, we introduce the Q;—valued deterministic sequence J =
{J;;t=0,1,...} by

Jy i= HPH| + 57,1 t=0,1,...
The recursion for the M, —valued sequence Q is
Qo = On,
Qi1 = AQ — [APH{ + TP )T H (Qe + 9(2,0))
+ 2P (BY,) T HU(2,0) t=0,1,... (5.22)
and the recursion for the Q,—valued sequence R is
Ry = Oy,
Rip1 = R — (Q: + 9(1,0)) H{J Hy (Q: + ¥(2,0))
+ W'(¢,0)H,H,¥(t,0). t=0,1,... (5.23)

The processes X and B of (5.18) satisfy the dynamical equations
Xo =0,
Xep1 = AsXopr + [APH] + SEITHY: — HiX 4]
t=0,1,... (5.24)
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and
BO =0
Biy1 = B+ (Qi + 9(1,0)) H{J;'[Y: — Hi X,
t=0,1,... (5.25)
Let us also, if only for the sake of having a dynamical representation for all
of the processes, rewrite (5.15) in the form
Mo = On, Mt+1 = Mt + \I’(t, O)IHtI(E;J_*_l —1HtW(t, 0)
t=0,1,... (5.26)
Thus we have that for any bounded Borel mapping ¢ from R" to C, (5.16)
holds, where S, X and B are defined by (5.20), (5.24) and (5.25). We state

this result as a theorem:
Theorem 5.1. For any bounded Borel mapping ¢ : R — C and any
t=1,2,..., we have that

USD[)E}H, l?t—H; Mg, U(t 4+ 1,0); Se44]
UL[X 41, Beprs Migr, (2 + 1,0); Seqq]

E°le(XE )| = (5.27)

where the processes S, X, B and M are given respectively by (5.21), (5.24),
(5.25) and (5.26), and the state transition matrix ¥ is defined by (5.13).
The component sequences P, Q and R of S propagate according to (5.21)-
(5.23).

Observe the very special structure of (5.27) in that E°[¢(X{,1)|Y:] can
be computed by inserting a collection of finite-dimensional and computable
sufficient statistics which do not depend upon the distribution of the ini-
tial condition into a functional which is determined solely by the initial

distribution. Note also that this functional does not depend upon time.

The calculation (4.25) at the end of Section V may now be more com-

pactly rewritten as

Ers1 [L;&l‘yt v U{f}]
= exp [—-21-51 (Mt+1 - Rt+1)£ + f’l@ﬂ_l} . (528)

As a closing remark, we direct the reader’s attention to the similarity
of (1.6)—(1.7) and (5.21), (5.24). The reader will note the pleasing fact
that the recursions for X and P are ezactly those we would get for the
conditional means and conditional covariances of (1.1a)-(1.1b) if £ = 0

(i.e., £ is a degenerate Gaussian 1v).
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VI. REPRESENTATIONS FOR THE MMSE, LLSE,
AND MMSE-LLSE ERROR

Having solved the one—step prediction problem in Theorem 5.1, we now
use this result to give representations for the MMSE and LLSE estimates
and for the mean square error between these estimates. As these represen-
tations are basic to the ensuing asymptotic analysis of € given in Sections

VII and VIII, we devote this entire section to their derivations.

As perhaps the most direct way of representing the MMSE process X
using Theorem 5.1, we will first find a representation for the conditional

characteristic function
E° {exp[i()'XfH]‘yt] , #eR", t=0,1,...

and then differentiate it with respect to # at = 0. This line of arguments is
readily validated by the fact that the rv X, ; is an element of L¥(Q, F,PO).
To carry out the calculations, we find it convenient to define for each 8 in

R", the bounded Borel mapping ¢y : R® — C by
pa(z) = exp[id'al, =€ R™

Fixt=0,1,...and 4 in R", and recall the definitions (2.4) and (2.5).
We find by simple calculations that

Tpelz, b; St41]

1
= exp [iglilf - §olpt+10 + ioIQH_]b + -;—b,RH_lb] 3 iII,b € R™.

Another simple calculation shows that

Upgz,b; Myy1, ¥(t +1,0); Se4a]

. * 1 1 *
=E° [exp [10'(2: + Q716) - -2-9'Pt+19 + b6 - —2-z'Rt+lz]:|

= /n exp [iG'(x +Q1p12) — %H'Pt.HG + bz~ %z'Rsz] dF(z),
z,be R™, (6.1)
where we have set
Qf = Q¢+ ¥(t,0), and R} :=M,;- R,
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Since 1 = ¢y for § = 0, we can set § = 0 in (6.1) in order to get
UL[z,b; My, U(t + 1,0); St41]
- / exp [b'z - %Z'R;‘+1z] dF(2),
z,be R™". (6.2)

Combining the expressions (6.1) and (6.2), when evaluated at z = X,

and b = By, we conclude from Theorem 5.1 that
E° [exP[ie'Xt°+l]|yt] (6.3)

_ Jin €xp [10'(Xop1 + QFpy2) — 20' P10 + Bl 2 — L2/ RE 2] dF(2)
[y € [Bly12 — 32/ R} 2] dF(2)

Finally, upon taking the gradient in (6.3) at § = 0, we obtain the following

result.
Theorem 6.1. Foreacht =0,1,..., the relation

« Jg 2€xp [2'Bigr — $2'RY 2] dF(2)

E°[X?° =X —
(X2l V] 1+ @ Jge xP [2'Bey1 — 32/ RYyq 2] dF(2)

(6.4)

holds.

In the spirit of the recursions (5.22)—(5.23), we can now write down the

dynamical equations for the matrices Q* and R*; we find that

Q5 =1In, Q1 =[A:—[APH+ T H,]QF t=0,1,... (6.5)
and
Ry =0, R:y=R:+Q HIHQE. t=0,1,... (6.6)

Using the process Q* instead of Q, we can simplify the dynamics of B to
g

read
By =0, Buy1=B+QVHJY, - H:X].  t=0,1,...

Proceeding now on to the LLSE process X¥, we can easily get a rep-
resentation for it by making use of the following two facts: (a) The LLSE

or Kalman filter depends solely on the first and second moments of the
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involved rvs [2, Sec. 5.2]; (b) The MMSE and LLSE filters coincide if £ has
a Gaussian distribution. Governed by these thoughts, we replace F' in (6.4)
by a Gaussian distribution of mean px and covariance A to get, after some

calculations, the following representation result.

Theorem 6.2. If the covariance matrix A of the initial condition £ is

invertible, then we have the relation
thil ———Xt-i'l = 1,2,...

+ Qi [Ripr + A7 7 [Beyr + A7)

In view of this last result, we strengthen (A.3) to condition (A.4), namely

(A.4): The initial condition £ has distribution F with finite first and
second moments p and A, respectively, and is independent of the
process (W?°,V°). Furthermore, A is invertible, so that F’ belongs
to D(R™).

For the remainder of this paper we assume (A.1l), (A.2) and (A.4) to
hold.

The final representation we seek is for the error process € defined by
(1.10) and which measures how well the MMSE and LLSE estimates agree
in quadratic mean. We shall naturally start from the representation results
of Theorems 6.1 and 6.2. In order to make the notation less cumbersome,

we introduce the mapping v : R® X R" x @,, — R defined by
v(z,b; R) := exp [z'b - —;—z'Rz] , 2,b€eR™ Re Q,. (6.7)

Fix t = 0,1,.... Combining Theorems 6.1 and 6.2, we write the dif-
ference X,y — X[, with the help of the function v, in the form

. A Yz, Bipr; R AF(2
Xt+1"X{.§.1= ;,+1fm{ }'7( t+1 1,+1) () (6.8)

Jar 7(%, Bey1; REL))AE(2)

where
{-}=2-[Ri.+ A—l]_l [Bewr + A7 ] .

We clearly see from this formula that X,4; — X & ,—which we a priori know

depends upon the observations {¥p, Y3, ..., ¥;}—in fact depends upon these
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observations only through the rv B;1;. To calculate €41, we thus must,
after applying the mapping ¢ — ||z||?, average the expression (6.8) over

Bt+1.

To gain some insight into how to perform these calculations, recall the
definition (4.18) of B4, as well as the fact that the rvs { Byy1, Yo, Y1,- . ., Y3}
are jointly P;i1-Gaussian. In contrast, the P°—statistics of Byy; are in
general non—Gaussian! This state of affairs suggests that the computations
for £;41 should be performed under P,y instead of under P°. We shall in
fact see that many of the properties of P;;; which were used in deriving
Theorem 5.1 will also be used here.

We begin by observing that

€41 = By _||Xt+1 - XtIiIH2Lt_—-f}1]
= Eiq1 _HXt+1 = XS Ee [Lin Y v 0{5}]] (6.9)
=By _||Xt+1 - XflP (e, Bt+1?Mt+1)] : (6.10)

In passing from (6.9) to (6.10) we have used (5.28). We also recall that
the rv B;y1 and the Y;—measurable rv X 41— X {il are Pt+1—independent
of £&. Therefore, a simple conditioning argument in (6.10) followed by an

application of Tonelli’s theorem yields
cutt = B [[Xers = XEIP [ 905, B Mot )aF (2|
]Rn

= [ Besa [Iews = XELlP2(e, Besai M) 4F (). (6.1)
mn

We next decompose Byyy as Biyq = Biy1 + Biy as in (4.18)~(4.19). Since

Xip1—-X K | is 0{B.41}-measurable, as we remarked above, we find that

B [”XH-I - Xt14<-1”27(z’Bt+l;Mt+1)]

=E [”Xt+1 - X5 B [7(2, Biy1; Miyy) Bt+1“ , z€R™

In Sections IV and V we used the fact that By and Byyq are Pipg-
independent; we again use this fact, together with the definition of the

matrix R;y; as the P;,,—covariance of the zero-mean P, ;—Gaussian rv
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Bt.*.l, to make the simplification

Eipa (2, Bt41; Mt41) Bt+l =E¢t1 |7(z,0+ Bt+l;Mt+1) _
b=By41

= 1
= exp [z'BH,l - Ezr'R;‘Hz]
= y(z, Bey1; Riy1), 2 €R™
Therefore,

Eip1 [”le - Xfiﬂlz’r(z,Bm; Mt+1)]

=Ein [||Xt+1 - X{alP (=, Bt+1;R?+1)] , z€R™ (6.12)
Inserting (6.12) into (6.11), we readily see from (6.8) that
Ee41 = / Eia [”Xtﬂ — X{5all*1(2, Bipas Ripq ] dF(z) (6.13)

”Q:-H fmn {- '}’Z(Z, Biyy; Rf+1)dF(z)||2
Ji» 7(2, Bry1; Ri)dF ()

= E{

(6.14)

where
{-}=2-[Ria+ A_l]_l [Bes1 + A7

after a simple cancellation. It now remains only to find the P, ;-statistics

of the 1v By 1; these are presented in the following lemma.
Lemma 6.3. Forallt =0,1,..., under the probability measure Py, the
rv Byy1 is Gaussian with zero mean and covariance R}, ;.

Proof. The arguments of Section V already show us that Byyq is Pyy1-
Gaussian: Indeed, the rv B,y is the conditional P;.1-expectation of Byy1
given the rvs {Yo,Y],...,Y:}, and moreover the rvs {By1,Y0,Y1,...,Y:}
are jointly P;;1-Gaussian. The rv B;.1 has zero mean under P:y since
Bi41 has zero mean under P;y1. Finally, since the rvs By and Bt+1 are

P;,1-independent, it is easy to see that
COVp‘+1 By = COthHBt.H + COVp‘H Biy1.

From (5.14) and (5.15), we see that Covp, Bit1 = M1, and by defini-

tion, Ry is the P; . —covariance of the rv Bt+1- This completes the proof.
||
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This last property leads to a simple representation for the error process
€ when used on (6.13)-(6.14).

Theorem 6.4. For eacht = 0,1,..., we have the representation

_ [ 19k fan {-- 21(z b RE AP )|
Et+1 —/" +1 f];,. ’y(z,b;R’t*H)d}l(Z) dGr:(b)  (6.15)

where

(-Y=2-[RL +A7 T b+ A71].

VII. THE ASYMPTOTIC BEHAVIOR OF e¢:
THE MULTIVARIABLE CASE

We now begin our study of the asymptotics of the error process €, with
Theorem 6.4 as our main tool, and based upon the dependencies suggested
by (1.11). In order to make such an analysis feasible, we must of course
enforce some structure on the asymptotics of the matrix—valued sequences
A, H and ¥ which describe the dynamics of the system (1.1a)-(1.1b).
We shall from here on restrict ourselves to the classical time-homogeneous

situation. This is captured by assumption (A.5) enforced hereafter, where

(A.5): The matrix—valued sequences A, H and X are constant; that is,
there are matrices A, H and ¥ in M,, Mgy, and Q,tk, re-
spectively, such that for all £ = 0,1,..., A; = A, H; = H and
it =X

It is clear from the form of (6.15) that we may study ¢; as a functional
of the initial distribution F' and of the matrices ¢} and Rj, for each ¢ =
1,2,.... Not surprisingly then, a central component of our efforts will be an
analysis of the asymptotics of the sequences Q* and R*. An examination
of the dynamics of these sequences will indicate several cases which are
amenable to straightforward analysis. However, as often the case with

general multivariable systems, a complete analysis is not possible.

A considerable simplification occurs in (6.15) if p = E[¢] = 0. Of
course, since the dynamics (1.1a)-(1.1b) are linear, no generality is lost

by assuming that the initial distribution F' is centered. Indeed, a simple
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translation argument shows that for any distribution F'in D(R™) with mean

i, the relation
e((A,H,%), F)=¢,((A,H, %), F) t=1,2,... (7.1)

holds, where F is the centered distribution in D°(R"™) defined by the trans-

lation
F(z)=F(z —p), zeR™ (7.2)
Consequently, we shall henceforth in this section consider only distributions
F in D°(R"™).
In order to more clearly understand the dependence of the right-hand

side of (6.15) upon the distribution F' and the matrices @} and R}, we
define the mapping Ip : M, X @, — R as

IF(I(a R)
2

) / K fa {z = [R+ 8717 b} 2(z,b RYF(2)
T e Jz» 7(2,b; R)AF(2)

dGRg(b),

KeM, ReQ, (73)

In Lemma 7.1 below we verify that this expression is well defined for all

matrices K in M,, and R in Qp, so that (6.15) may indeed be rewritten as
et = Ir(Q7, RY). t=12,... (74)

This clearly separates the dependence of ¢£; on the matrices 7 and R7,
which depend only on the system triple (A, H,Y), from the dependence on
the initial distribution F. The distribution F affects €; only through the
structure of the functional Iy, whereas the system triple and time affect ¢,

only through the matrices Q7 and R}.

Before beginning with our calculations, we set
I'(b;R):= / v(z,b; R)dF(z), beR", Re Q,.

Some of our manipulations of (7.3) will be clearer when using this notation.
We first show that (7.3) is well defined for all K in M, and all R in Q.
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Lemma 7.1. Let F be a distribution in D°(R™). For all K in M, and
R in Q,, the quantity Ir(K, R) is well defined and finite, with alternate

representation

In(K, ) = / {--JT(b; R)AGR(D), K € Mn, R€ Qn, (7.5)

where

HK/ {z=[R+ A7} 7&)’)}5)

Proof. In view of (7.4), we already know, via the probabilistic arguments
of Section VI, that (7.3) is well defined and finite when K = @} and R = R}
forallt = 1,2,..., given any system triple (4, H,¥). Rather than working
to extend these probabilistic calculations to cover all K and R, we shall
instead study formula (7.3) by simple techniques from analysis. In the
process, we shall obtain a bound—inequality (7.9)—which will prove useful

later on.

Fix K in M, and R in Q,. First we show that Ir(K, R)is well defined.
Observe that whenever b lies in the range Im(R) of R, the quadratic form in

the exponent of v in (6.7) is amenable to a completion of squares, namely

5 (== R#8)' R (s~ R*3),

2'h— %Z’RZ = b’R#b
z € R™, b e Im(R),

where R# denotes the Moore-Penrose pseudo-inverse of R [2, pp. 329-330].

Consequently,
0 < v(z,b; R) < exp [%b’R#b:l , z€R" belIm(R), (7.6)

and the bound
0 < I'(b;R) < exp [—;—b'R#b] , beIm(R), (7.7)

holds. The bound (7.6) and the finite second moment assumption (A.2)
on { together imply that the inner integral in the numerator of (7.3) is well
defined and finite for each b in Im(R). Therefore, since the support of the
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Gaussian distribution Gy is exactly Im(R), we conclude, using (7.7), that
Ir(K,R)is indeed well defined. As a result of this discussion, we see that
the alternate expression (7.5) is indeed valid.

Next, to show that Ir(K, R) is finite, we first observe from Jensen’s
inequality and from the definition of the operator norm (2.1) that

¥(z,b; R) 2

HK/W {z-[R+A27"]7"b} Wdf’(z)

<KL, [ - 1R+ a7t L Barc),

beIm(R). (7.8)

Next, we set

Jr(R)

= /n /n |z - [R+ A_l]'lb”2 v(z,b; R)dF(2)dG g(b)
= /" [/mn lz— R+ A_l]_lb“2 exp[z’b]dGR(b)] exp [—%z'Rz] dF(2)

where the last equality follows from Tonelli’s theorem, and it is now plain
from (7.5) and (7.8) that

Ir(K,R) < | K| r(R). (7.9)

Finally, after some tedious calculations, we find that

Jr(R) = trace ([R+ A7 'R[R+ A7) (7.10)

+ / AR+ AR + A AT 2dF(2)

and therefore since £ has finite second moments, Jr(R) is finite and so is

Ir(K, R) as a result of (7.9). | |
With Lemma 7.1 in hand, we now commence the study of the asymp-
totics of £ through the representation (7.4). This requires that we study
the behavior of Ir under the joint asymptotic behavior of the sequences

Q* and R*. By using (2.3) on (7.3), we get

/\min(Q:r,Q:()IF(In’ R:)
<e((A H,X), F)

< Amax (@Y QN r(In, RY), t=1,2,... (7.11)
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thereby separating somewhat the effects of Q7 from those of R}. This di-
rects our study towards an understanding of the behavior of Q}'QF and
Ir(I,, RY) for large times ¢ under different assumptions on the initial dis-

tribution F’ and the system triple (A, H,X).

Some general comments on the structure of the dynamics of the
matrix—valued sequences P, Q* and R* are in order at this point. Firstly,
the equation (5.21) for P is a discrete-time Ricatti equation. Since discrete—
time Ricatti equations have been extensively studied, there exists a fairly
large body of results concerning the large-time asymptotics of P. Turning

next to the sequence Q*, we rewrite (6.5) as
Qs =1, Qf,=KQ7 t=0,1,... (7.12)
where we have set
Ki:= A-[AP,H' + S*'|[HP,H' + "' H. t=20,1,...

Thus we expect Q* to exhibit some sort of exponential growth or decay
which will depend primarily upon the spectrum of the limiting matrix
lim; K;, if this limit exists. As the existence of this limit defines an im-
portant situation, we formally introduce the following condition (C.1),

where
(C.1): The limit K := lim; K exists.

Of course, if Py, = lim; P; exists, then (C.1) holds true, and we have
Ko =A—[AP H' + S¥|[HP H' + 27 H.

Finally, we can see more clearly what to expect of R* by rewriting (6.6) as

t—1
Ry =) QYH'HPH'+X'|'HQ}. t=1,2,... (7.13)

§=0

We note here for future reference that R* is nondecreasing in the sense of
the partial ordering on Qy; i.e., v'Rfv < v'R} v for all v in R™ and all
t = 0,1,.... However, in general this does not imply convergence of the
sequence R* which would be equivalent to the convergence of the sequence

of cross—terms {u'R}v; t = 0,1,...} for all w and v in R™. That the previous
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convergence “on the diagonal” is not sufficient to ensure full convergence

can be seen from the parallelogram identity, which here takes the form

(u+v)Ri(u+v)— (v—v)Rf (u—v) = 4u'R}v,
u,v € R*. t=0,1,...

Therefore the cross—terms u'Rjv will not converge unless both monotone
sequences (v + v)'R¥(v + v) and (v — v)'Rf(u — v) have a finite limit.
In view of these comments, we shall find the following to be a valuable

hypothesis on the asymptotics of R*:

(C.2): The sequence R* has a well-defined limit R%, which is positive

definite and thus invertible.

We observe from (7.13) that a natural situation in which (C.2) holds arises

when the sequence Q* tends to zero, assumably with some ezponential rate.

First we study the asymptotic behavior of Q*. We make rigorous our
earlier comment that Q* exponentially grows or decays with rate depending
upon Ko, whenever (C.1) holds.

Proposition 7.2. Under (C.1), we have the following estimates: The
upper bound

— 1
lim, < In Amax(Q7Q7) < 2In p(K ) (7.14a)

always holds. The lower bound
210 Amin (K oo) < lim, % In Amin(Q2'Q7) (7.14)

holds provided either K, is singular or the matrices {K; t = 0,1,...} are

all invertible.

If K is singular for some T, then by (7.12) Q7 is singular forall ¢ > T'.
In this case (7.14b) cannot hold unless K, is also singular. This is the
reason for the two assumptions for (7.14b). In the analogous continuous—
time calculations, Q* obeys a linear differential equation in M, with the

net result that Q7 will be invertible for all ¢.

Proof of Proposition 7.2. First we develop the recursion (7.12) to obtain

Q?+1 = KKy .. .Ifs.*.]Q:, s<t. s,t=0,1,... (7.15)
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The natural basis of our arguments would be the following sequence of

steps:

1 1
lim, 't'hl /\max(Q?IQ?) = 2lim, ;ln”Q?”op

t
Fraand ].
< 2%im, - D In || Kollop (7.16)
s=1
= 21n || K o] op- (7.17)

The first equality comes from (2.2) while (7.16) follows from (7.15) (with
s = 0) with the help of standard properties of the operator norm; the pas-
sage to (7.17) is validated by invoking (C.1), the continuity of the operator
norm and Cesaro convergence. Unfortunately, (7.17) is short of the desired
result (7.14a), which gives a tighter bound than (7.17) since in general
P(Koo) < [ Koallop [31]-

The arguments leading to (7.17) must therefore be modified. The

missing step is to be found in a well-known fact from matrix theory 31, p.
271 and Thm. 3.8, p. 284] stating that

X . 1/N .
limy (1KY llop) " = p(Koo). (7.18)

This suggests that we consider the evolution of Q* at time instants

{0,N,2N,...} for each N = 1,2,.... To do this, we fix an integer
N =1,2,... and define the matrices {KﬁN); t=20,1,...} by

KM = KyynKepn-1 - Ko t=0,1,... (7.19)

Note that under (C.1), we have the convergence lim; KfN) = KYN. By
standard properties of the operator norm, we see from (7.15) and (7.19)

that

j—1
— 1 — 1% (N
Titj =10 Qjwllop <Tm; 5 3~ 1n KLYl
k=0

=10 ]| K lop, (7.20)
where the last equality (7.20) is obtained by Cesaro convergence since
. (N -
limy ||I‘£N)Hop = ”I‘ol\i“op-
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To pass from the estimate (7.20) on the lattice {0, N,2N,---} to a

corresponding estimate on {0,1,...}, we define
in(@) = {t/n], N=1,2,... t=0,1,...

where |-] is the integer floor function; for each t = 0,1,..., jn(t) is the

unique integer such that
NN <t < Gn(E)+ 1N, N=1,2,.... (7.21)

For each fixed integer N = 1,2,..., we readily conclude from (7.15) (with
s = jn(t)N) that

t

— 1 1
i, < In Q7 llop < Time > || Kkllop)

k=jn(t)+1
— Jn() 1
+hmt t (t) ”QJN(t)NHOP' (722)

Using (7.21), we observe that

t
1
7 Z n || Kkllop| < =

k=jn(t)+1

IN()N - Nt | 1o [[ & kllopl (7.23)

and

; (1 - T) < t( ) W (7.24)

Since lim; jn(t) = oo monotonically, it is now apparent from (7.22)—(7.24)
that

lim, —ln”Q,l —lim; — h\”Q inllop

=J_V_In“‘[(o]\</;”0p' (725)

where the last equality follows from (7.20).

Now letting N go to infinity in (7.25) and using (7.18), we finally get
the desired estimate (7.14a) via (2.2)

The proof of (7.14b) is similar to (7.14a) if all the matrices {K;; t =
0,1,...} are invertible: Indeed, under such circumstance, all the matrices

in the sequence Q* are invertible and we can write the following recursion

QY =L, QD) = (K7H(@Qr Y t=0,1,... (7.26)
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for the inverse transposed matrices; this recursion has essentially the same
form as the recursion (7.12) for the sequence Q*. Therefore, if in addition
K is invertible, then the sequence of matrices {(K;'); ¢t = 0,1,...}
(which plays the role of the sequence K for (7.26)) satisfies condition (C.1),
i.e., it has a limit with lim, (K; ') = (KZ!)". Consequently, the arguments

which validated (7.14a) in the first part of the proof apply to give

= 1 - -
limn, ?ln”(Q? 1)’|]?,,, < 2ln."(("(ool)l)‘
=2lnp(K))
= 2111 /\min(Koo)_l (7‘27)

where the last two equalities readily follow from well-known facts from

matrix theory [31]. Next, invoking (2.2) again, we also have

QT Y112, = Amax((QF™H(@QFT))
= ’\maX((Q’tHQ?)_l)
= (’\min(Q?’Q:))-l' t= 07 1’ e (728)

Combining (7.27) and (7.28), we obtain that (7.14b) holds when the matri-
ces {K;; t =0,1,...} and K are all invertible. In the other case, when
K is singular, (7.14b) holds trivially. This covers all the cases in the
hypothesis for the lower bound (7.14b). ]

Proposition 7.2 gives part of the asymptotic analysis suggested by
(7.11). The following result helps complete the picture.
Proposition 7.3.  For every distribution F in D°(R™), we have
sup; Ir(In, R}) < .

Proof. Note that we have not required condition (C.2) to hold. In light
of the bound (7.9), it is sufficient to show that

lim:Jp(R*) < 00 (7.29)

for all distributions F' in D°(R"). The functional Jr being continuous on
Q,., we clearly have (7.29) under the assumption (C.2). When (C.2) does
not hold in the scalar case (i.e., n = 1), R* is a scalar sequence, and we
may carry out some simple calculations on (7.10) to show (7.29). Some

analogous but more complicated manipulations of (7.10) also yield (7.29)
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in the multivariable case when (C.2) does not hold; details are omitted for
the sake of brevity. ]

Combining Proposition 7.3 with (7.11) and the estimate (7.14a) yields
the following upper bound.

Theorem 7.4. If assumption (C.1) holds, then

mt %Inst S 211’1/)(1(00)

The analogous asymptotic lower bound is made a bit more complicated
by the possibility that we may have lim, Ir(I,, R}) = 0. In the next section,
we prove the following “converse”.

Proposition 7.5. If assumption (C.2) holds, then lim, Ir(I,,R;) = 0
implies that the distribution F of the initial condition is Gaussian.
Collecting this result and the lower bound of (7.14b) gives the following
lower bound. A

Theorem 7.6. If assumptions (C.1) and (C.2) hold, then for every non—

Gaussian initial distribution F in D°(R™), we have
1 .
h_mt ?lnet _>_ QInAmin(Ixoo)

if either K, is singular or all the matrices {Ky; t = 0,1,...} are invertible.
Recall that in the case where F is actually Gaussian, the MMSE and LLSE
estimators agree so that e, =0 forall ¢t =1,2,...

We now present some straightforward implications of Theorems 7.4
and 7.6.

Theorem 7.7. Assume (C.1). If p(K) < 1, then

(a) The sequence Q* converges to zero;
(b) The sequence R* has a well-defined limit R} ; and
(¢) Forall distributions F in D(R™), the convergence lim; ¢; = 0 takes

place at least exponentially fast according to Theorem 7.4.

Proof. Claim (a) is almost a direct consequence of (7.14a), (2.3) and of
the equivalence of norms on M,. To prove Claim (b), we should note via
(7.13) that

max(H H)

1B = Bllop < ot oo

Z”Q*”OP’ s <. 3,t = 0,1,...
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Since under assumption (C.1), the convergence lim; ||@F|lop = 0 is expo-
nentially fast when p(Ko) < 1, the sequence R* is thus Cauchy and hence
convergent in M, under the conditions of the theorem. Claim (c) is simply
a qualititative interpretation of Theorem 7.4. [ |

Given the encrmous literature on the discrete-time Ricatti equation,
we should expect that there are some well-known conditions under which
the hypotheses of Theorem 7.7 hold. We conclude this section with these
results:
Theorem 7.8. If the pair (A, H) is detectable, then (C.1) holds. If in
addition, the pair (A, 51/2) is stabilizable, where

A:=A-Z"(EY)'H and C:=X¥ -3 (E¥)"lpw,

then condition (C.1) holds and the matrix K, is asymptotically stable,
ie, p(Ks) < 1.
Proof. The first claim is Theorem 5.2(b) of [4, p. 172], while the second
claim follows from Theorem 5.3 of [4, p. 175]. |

It is worth pointing out that the matrix C may be interpreted as the
conditional covariance of W, ; given V3, for each t = 0,1,..., and hence
is positive semi-definite. Essentially, Theorem 7.8 gives a set of conditions
under which the mean-square MMSE-LLSE error tends to zero. Note
however that the hypotheses do not imply that either the MMSE or LLSE
estimators provide good estimates of the plant process X°. Indeed, to
elaborate somewhat upon this point, assume the stronger hypotheses that
the pair (A, H) is detectable and the pair (A, C"/?) is controllable. Then
it is a classical result [5] that the recursion (1.7) for the error covariances
associated with the LLSE estimates has a well-defined and positive definite

limit PX which is the unique solution of the steady—state Ricatti equation
PI( — APKA' + nw
—[APEH' + x*|[HPEH' + 2|7 {APEH' + 3]
Hence, under these stronger hypotheses, we conclude that
lim; E°|| X5, — X21111%] = trace (PX) > 0. (7.30)

Moreover, by the ‘orthogonality principle’ for MMSE estimators [2, Sec.
2.3], we readily get that

E[|X5 1 — X2llP) = Bl R — X2llP] + eear. = 0,1,... (7.31)
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Now by combining (7.30) and the results of Theorems 7.7 and 7.8, we see
from (7.31) that the relation

lim, E°[||Xt+1 - Xf+1”2] = trace (P£) >0

also holds. Thus, under some appropriate assumptions, the performance of
the LLSE and MMSE estimators are (essentially) equivalent for large times,
i.e., nothing is (asymptotically) lost by using the simpler LLSE estimator

rather than the more computationally demanding MMSE estimator.

VIII. A PARTIAL CONVERSE

This rather short section is devoted solely to the proof of Proposition

7.5. Before starting the discussion, we observe from (7.11) that a sufficient

condition for lim,Jp(I,, Rf) = 0 is that Anin(@*Q7F) > 0 for all ¢ large
enough and

e((A,H, %), F) —0

Amin(Q7'Q7) '

We suggest the following probabilistic interpretation for this: Whenever

limt

Amin(@Y'QF) > 0 for all t large enough, if € decays quickly enough, then
& must in fact be Gaussian, in which case €; is identically zero for all
t = 1,2,.... This not only provides an indirect characterization of the
initial condition as a Gaussian or non—Gaussian rv, but also may be viewed
as some form of phase transition as we vary the initial condition between

Gaussian and non—Gaussian rvs.

Proof of Proposition 7.5. We base our study of the implications of
lim; Ir (I, RY) = 0 on the formula (7.3).

A natural first step is to try to interchange the integration operations
of (7.3) with the limiting operation of letting R} tend to R%,. To do this,
we must study the behavior of both the integrand in (7.3) with K = I, and
R = R}, and the measures {GRs; t = 1,2,...} as we let ¢ tend to infinity.
We consider first the more difficult question of the probability measures
{Gre; t=1,2,...}. Assumption (C.2), which is that the sequence R* has
a well-defined and invertible limit R7 , allows us to control the behavior of
these probability measures by comparing them to Lebesgue measure A on
R™. Since the set of invertible n X n real matrices is an open subset of M,

[10, Thm. X.2.1], assumption (C.2) implies the existence of a finite T" such
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that for t = T,T -+ 1, ..., the matrix R} is invertible and the probability
measure G gy is thus absolutely continuous with respect to A for all such
t. Fatou’s lemma and the condition lim, Ir(l,, R}) = 0 then immediately

imply

_p* -11-1 . p* 2 .
i, Mo Gz = [RE A 870}y 6 BOAEG| dGr; ),
T(b; RY) d\

for A-almost all b in R™. Under (C.2), we find

. dGpr dGpRe, n
lim, N (b)= o (b)>0, beR"

while by dominated convergence with the bound (7.6), we also have that
lim; T'(b; RY) =T(b,Rs,) >0, beR™
This allows us to focus on the numerator of the integrand of (7.3) and thus

to conclude that if im, Ir(I,, R}) = 0, then

=0

lim,

/m {z — [R} + A1} v(2,b; R})dF(z)

for A-almost all b in R™. Appealing once more to dominated convergence

and (7.6), we see that
[ e B)aPE) = (R + 477 [ 9(zbiRE)AFG) (8)
n Rr

for A-almost all b in R™. This equation clearly enforces some constraints
upon the distribution F—to complete the proof of Proposition 7.5 we shall
show that in fact they imply that F' is Gaussian.

The implications of (8.1) are not directly obvious. Things become a

bit clearer, however, upon expanding v(z, b; R}); we get that
/ zexp [z'b - -;—Z'R’:z} dF(z)
1
=[RS+ A7 A exp [z'b - Ez'sz] dF(z) (8.2)

for A-almost all b in R™. If we define an auxiliary probability measure Fon
R™ which is absolutely continuous with respect to F' via its Radon—-Nikodym

derivative
dF exp [-12'R%, 7]

“~

ﬁ(~) = Jgn exp [-32'RY, 2] dF(2)’

z € R", (8.3)
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then (8.2) becomes

/ zexpl#/b)dF(z) =[RS, + A~1]1b / explB]dE(2),
. -

for A-almost all b in R”™ Rewriting (8.1) in this way now suggests an

analysis in terms of the moment generating function N of F', where

. b; R:.)
N(b) := waiz) = [ 125D ypey pern (84
0= [ explai) = [ Aslare), bern (54)
By (7.6) and some straightforward technical calculations [27, Sec. VI.2],
we see that N is well defined and differentiable on all of R”, with

VN(b):/ zll(,_fo_”éi)lm z), beR™

Comparing this last fact with (8.1) and (8.4), we find that N satisfies the

differential equation
N@O)=1, VN()=[RL+AY T bN(), beRY,
and by the uniqueness of solutions of ordinary differential equations we get

T, beR™

1
N(b) = exp [—2-1)' [RE, + A7
By the uniqueness of moment generating functions, the distribution Fis
now completely characterized—it is a Gaussian distribution with zero mean
and covariance R’ + A~1. The matrix R%, + A~! being positive definite,
this implies that F' is absolutely continuous with respect to A, with Radon—

Nikodym derivative

exp [—12'[RE, + A~
(2m)7/?/det [(RE, + A=)~

z € R™ (8.5)

dF
ﬁ(z) =

To complete the proof of the proposition, we now must show that since
F is Gaussian, so is the original distribution F. An obvious implication of
(8.3) and of the absolute continuity of F' with respect to X is that F is also
absolutely continuous with respect to A. In fact, combining (8.3) and (8.5),

we get the formula

dF dF dF

1 - ] n
—(—i—X(z) = ;’—ﬁ(z) . ﬁ(z) = cCc-€exp I:——Q'ZIA 12- 3 z € R 3

for some positive constant ¢. This completes our proof—F is Gaussian. |
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IX. THE SCALAR CASE

In this section we continue the analysis of Section VII, here focusing
exclusively on the scalar case n = k = 1. We shall see that a number of
simplifications of (5.21), (6.5), (6.6) and (7.3) are now possible, allowing a
much more complete study of the asymptotics of €.

To emphasize the scalar nature of our calculations and to conform

to standard notation, we shall use lower case letters for all of our scalar

quantities. Thus

with 0¥ > 0, the system triple now is (a, h, X) and the variance of the initial

condition is §. Proposition 7.8 suggests that the quantities

and ¢:=g"¥ - —"—

will play a fundamental role in our ensuing analysis. We can more immedi-
ately see the utility of these quantities in the scalar case by rewriting (5.21),
(6.5) and (6.6) in the forms

a g pt _
po =0, pty1 Wi+ 07 + ¢, t=0,1,... (9.1)
%=1 @1 = kgt t=0,1,... (9.2)
with
ao?
ki = | 55— t=0,1,... 9.3
t (h2pt +0-v) ? b ] ( )
and
* * * (Q:)2h2
e = —— t = 0 1 oo 94
7'0 07 rt-{-l rt + h2pt +0-‘U Y ( )

We also have in the scalar case the advantage that the upper and lower

bounds of (7.11) ccllapse into the equality
€ = (q:)zIF(lvr?% t=1,2,... (95)

which holds for all F in D°(R).

A natural way to organize our efforts here is to taxonomize the different

possible cases based upon Proposition 7.8—that is, upon the detectability
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of (a,h) and the stabilizability of (a,c'/?). A slightly more direct classi-
fication scheme of the scalar problem, however, will emerge, yielding four
possibilities parametrized by h, @ and €.

Our first case is an obvious degeneracy:

Proposition 9.1. If either @ = 0 or h = 0, thene; =0 for all t = 1,2,...
and all distributions F in D(R).
Proof. Fix F in D°(R). If @ = 0, then ¢f = 0 for all ¢t = 1,2,... by
(9.2) and (9.3), and therefore (9.5) implies ¢; = 0 for all ¢t = 1,2,.... On
the other hand, if A = 0, then (9.4) yields rf = 0 for all ¢t = 0,1,..., so
again g; = 0 for all t = 1,2,. .., this time by direct evaluation of (7.3). We
translate these results from D°(R) to D(R) by making use of the translation
arguments of (7.1)-(7.2). |
We now consider the more interesting situation where both @ # 0 and
h # 0, in which case ¢f # 0, rf > 0and g, > 0forall t = 1,2,.... We
rewrite (9.1) as p;r1 = T(p:) where the mapping T : [0,00) — R is given
by

-9 v
a‘o'p B
T(p) i= > 0. 9.6
(p) ot 1O P2 (9.6)
Note that since
—2 12
Tl — a (U ) > 0,

the mapping T is concave and nondecreasing on [0, c0). Hence, the iterates
{pt, t =0,1,...} form a nondecreasing and thus convergent sequence with
limit point pe in [0, 00). The finiteness of py, is an easy consequence of the
relation po = T(pwo), Which must necessarily hold.

Consequently, the sequence k has a limit &£, given by
_ ac®
T p2 Poo + OV

.
o0 ¢

with |ke| > 0 since @ # 0 and po < . By Cesaro convergence, this
implies via (9.2) that

H l *\2 ..

hmtt In(g})* = 21In kool

It is then easy to see from (7.13) that if |ko| < 1, then 73 := lim; 7}
is well defined and finite, whereas if |ke| > 1, then lim; 7 = oo. These

observations give us the second case of interest:
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Proposition 9.2, We assume bothh # 0 anda # 0. Ifeither¢ #0orc =0
with |a| < 1, then |keo| < 1 and lim, &; = 0 withlim, }1lney = 21In|ko| < 0
for all non—Gaussian distributions F in D(R).

Proof. Prompted by the remarks made earlier, we begin by showing that
|koo| < 1 under the stated conditions. If ¢ = 0, then p; = 0 for all ¢ =
0,1,..., so that p,, = 0 and the conclusion |k.| < |a] < 1 follows when
la] < 1. If ¢ # 0, then necessarily ¢ > 0 by the first remark following
Theorem 7.8 and therefore po, > 0 (since € = p; < peo). Consequently, peo
is the only finite solution to the fixed point equation T(p) = p on (0, c0),
and geometric considerations based on the concavity and monotonicity of
T readily lead to T"(pso) < 1. The conclusion |ko| < 1 now follows from
the relation 7"(pso) = k2.

As pointed ocut earlier, if both A # 0 and @ # 0, then ¢f # 0 and
r¥ > 0 for all t = 0,1,..., whence r¥, > 0 since {r}, ¢t = 0,1,...} is
an increasing sequence. On the other hand, we saw earlier that |ko| < 1
implies r%, < oo. Therefore, from Propositions 7.3 and 7.5, we obtain
0 < lim, Ir(1,7) < lim; Ip(1,7}) < oo for every non-Gaussian F in
D°(R). As a result, lim; 11ne; = lim; 11In(g})? = 2In|koo| < 0 for all F
non—Gaussian in D°(R), and thus in D(R) by translation. B

Notice that Proposition 9.2 is almost a direct consequence of Theorems 7.4
and 7.6 since in the scalar case, we have Apin(keo) = p(koo) = koo, and we
thus would need only to establish that conditions (C.1) and (C.2) hold
true under the assumptions of Proposition 9.2. However, we found the more
direct argument involving (9.6) to be an interesting calculation tailored to

the scalar case.

It now remains to investigate the case ¢ = 0 and |a| > 1, still with
h # 0. We shall see that in this case the initial state distribution F’ has
a nontrivial effect on the large time asymptotics of €. A priori, it would
seem natural that the initial distribution F' should have some effect on
the asymptotics of the mean squared error between the MMSE and LLSE
filters. However, in both cases considered thus far in Propositions 9.1 and
9.2, the effect of the system parameters (a,h,X) have dominated these
asymptotics. Only when € = 0 and |@| > 1, does F" have a significant effect.
We shall establish this dependence by giving a complete analysis for two
specific initial distributions F, and by noting the different asymptotics of
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€. We first verify a general result which complements Proposition 7.5.

Lemma 9.3. For any distribution F in D(R), we have Ip(1,7) < % for all
r > 0 so that lim, Irp(1,7)=0.

Proof. Since the functional Ip(1,-) is independent of the system triple
(a, h,X), we can study it by choosing the system (1.1a)—(1.1b) at our con-
venience. In particular, we shall take the system (1.1a)—(1.1b) to be

;=€ yr=E€+v0, t=0,1,...

ie,a=~h=1and ¢¥ = 0"’ =0, in which case ¢ = 1, r} = t/o” and
e¢ = Ip(1,t/0o") for all t = 0,1,.... We now define a process X = {&; ¢t =

1,2,...} of linear estimates of the process x° on the basis of y as

t
Tip1 1= Zys. t=20,1,...

Invoking (7.31), we get that
E°[|¢:41 — 2851]?]
< E°flzfh ~ 2244 7]
< E[|Eu41 — 2547, t=0,1,... (9.7)
where the last inequality follows from the minimizing definition of the LLSE

estimator and the fact that X is a sequence of linear estimates. Therefore,

we conclude that

2

t 12 o?
Ip <1,;;) =g <E° ?ngﬂ = t=1,2
=0
and the result now follows since o” is arbitrary. |

Whereas Lemma 9.3 gives us a uniform upper bound similar to that
of Proposition 7.5, our real interest in the next case is to show that if the
system triple (a, h,X) is of a specific form, then the asymptotics of € are
not uniform over all non—Gaussian initial distributions F'—the asymptotics
of € depend nonirivially on F. We shall use the following two types of

non—Gaussian distributions as examples of this:
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Distribution F;: Distribution F; admits a density with respect to

Lebesgue measure A on R of the form

dF; = 1 — pi)?
1(z) = Zai exp [—-l (z=p )-] , 2z€ER,
=1

dA v/ 27 p? 2 p?
where p > 0,0 < @; < 1for¢ = 1,2,...,m, > -, 0; = 1, and
E:’;l a;pu; = 0. We exclude the trivial case where Fj is Gaussian.
Distribution F3: Under F,, the rv £ takes on a finite number of values

z1 < 23...< z, with strictly positive probabilities py,p2,...,pm, re-

spectively, such that 3 ,°, piz; = 0.
Distributions of the type F} have been considered before in the context of

filtering theory [1], {2, Sec. 8.4}, [26]. The following two important facts
about F; and F; are proved in [27]:

Fact 1. We have

_ K +o0(1) ‘
IFl(l,T) = (p21'+ 1)2, T >0,
for some K > 0.
Fact 2. We also have
14+ 0(1
IFg(l,”')—————;(—z, '0.

We now can prove the following results, which concern the third case:

Proposition 9.4. If h # 0, |a| = 1 and € = 0, then lim; &; = 0 for any
distribution F in D(R), withlim; 11ne; < 0. This convergence takes place

at a rate which depends nontrivially upon F for non—Gaussian F'.

Proof. Under the stated hypothesis, we have p, = 0, (¢f)* = 1, r} =
h*t/o¥ and ¢; = Ip(1,h%t/o?) for all t = 0,1,... and all F in D°(R),
the extension to D(R) being as before. The conclusions lim; ¢, = 0 and
lim; %111 €+ < 0 are immediate consequences of Lemma 9.3. However, direct
calculations show that if the initial distribution is Fj, then lim; t?¢, =
K(o%)?/(p*h*), whereas if the initial distribution is Fj, then lim; te; =
o?/h? (thus lim¢ 1Ine; = 0 in both cases.) |
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And finally, the fourth case, which like Proposition 9.4 displays a non-

trivial dependence on the initial distribution, is

Proposition 9.5. If h # 0, |a] > 1 and ¢ = 0, then lim; &; < oo for all
distributions F in D(R), the asymptotic behavior depending nontrivially
upon F for non—Gaussian F'.

Proof. Under the stated hypotheses on (a,k,%), p; = 0, (¢F)? = a*,
Y= 2: %r‘i forall t = 0,1,.... Thus lim; r¥ = co with lim, (¢})?/r} =
o(a® — 1)/h? and we are led to write

£t = (qt )2 (riIp(1,77)) < Z—:(a ) a” t=1,2,... (9.8)

where the inequality follows from Lemma 9.3. We now see that lim, &; < co
for all F in D°(R), and thus for all distributions F' in D(R). However, if £
has distribution Fj, then lim; ¢; = 0, whereas if £ has distribution F3, then
lim;e; = o¥(a® — 1)/h%. |

This essentially completes our analysis of the scalar case, as all possible

combinations of @, ¢ and h have now been considered.

A review of the arguments thus far reveals that a large portion of
our calculations relied upon scalar manipulations which are not readily
extendable to the multivariable case. Several remarks, however, do give us
some information and intuition concerning the multivariable case. First,

from (7.31) we see by an argument similar to the one leading to (9.7) that
EtSEO[th_mtI] t:1,2,-.

where the error variances {pX, t = 0,1,...} are generated through the
recursion (9.1) (which is nothing but (1.7)) with initial condition pf = §.
The sequence {p, t = 0,1,...} is either monotone nondecreasing or mono-
tone nonincreasing, and thus convergent, with limit point pX. Therefore,

whenever pX < oo, we conclude by inspection that
g; < max{§,pX}. t=1,2,... (9.9

In particular, under the conditions of Proposition 9.5, i.e., h # 0, |@a| > 1
and ¢ = 0, we have (9.9) with pX = ¢?(@> —1)/h? (a fact which is of course
in agreement with (9.8)). Analogous calculations using (7.31) can be made

in the multivariable case to yield a bound corresponding to (9.9).
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A second comment on the multivariable case is the following. Our
analysis suggests the following classification: For any matrices A and C in
My, the pair (4, C’) is said to be marginally stabilizable if all modes which
are neither stable nor critically stable, are in the controllable subspace.
With this notion, we can now rewrite the results of this section in terms
which are also meaningful for the multivariable case. As such, this formu-
lation provides a useful starting point for investigating the asymptotics in
the nonscalar case.

Theorem 9.6. We have the following convergence results:

la. If the pair (@,¢) is marginally stabilizable, then lim,; ¢; = 0 for

any distribution F' in D(R); and

1b. If the pair (a,c) is not marginally stabilizable, then the asymptotic

behavior of € depends nontrivially upon F in D(R).

Moreover we also have the following:

2a. If (a,¢) is stabilizable, then lim; ¢; = 0 at an exponential rate
independent of F' for non—Gaussian F in D(R); and
2b. If (a,c¢) is marginally stabilizable but not stabilizable, then the

rate depends nontrivially upon F.
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