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Multimedia content sharing and distribution over multimedia social networks

is more popular now than ever before: we download music from Napster, share our

images on Flickr, view user-created video on YouTube, and watch peer-to-peer tele-

vision using Coolstreaming, PPLive and PPStream. Within these multimedia social

networks, users share, exchange, and compete for scarce resources such as multime-

dia data and bandwidth, and thus influence each other’s decision and performance.

Therefore, to provide fundamental guidelines for the better system design, it is

important to analyze the users’ behaviors and interactions in a multimedia social

network, i.e., how users interact with and respond to each other.

Game theory is a mathematical tool that analyzes the strategic interactions

among multiple decision makers. It is ideal and essential for studying, analyzing,

and modeling the users’ behaviors and interactions in social networking. In this

thesis, game theory will be used to model users’ behaviors in social networks and

analyze the corresponding equilibria. Specifically, in this thesis, we first illustrate



how to use game theory to analyze and model users’ behaviors in multimedia social

networks by discussing the following three different scenarios. In the first scenario,

we consider a non-cooperative multimedia social network where users in the social

network compete for the same resource. We use multiuser rate allocation social

network as an example for this scenario. In the second scenario, we consider a

cooperative multimedia social network where users in the social network cooperate

with each other to obtain the content. We use cooperative peer-to-peer streaming

social network as an example for this scenario. In the third scenario, we consider

how to use the indirect reciprocity game to stimulate cooperation among users. We

use the packet forwarding social network as an example.

Moreover, the concept of “multimedia social networks” can be applied into

the field of signal and image processing. If each pixel/sample is treated as a user,

then the whole image/signal can be regarded as a multimedia social network. From

such a perspective, we introduce a new paradigm for signal and image processing,

and develop generalized and unified frameworks for classical signal and image prob-

lems. In this thesis, we use image denoising and image interpolation as examples

to illustrate how to use game theory to re-formulate the classical signal and image

processing problems.
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Chapter 1

Introduction

1.1 Motivation

Multimedia content sharing and distribution over multimedia social networks

is more popular now than ever before: we download music from Napster [3], share

our images on Flickr [2], view user-created video on YouTube [9], and watch peer-

to-peer television using Coolstreaming [133], PPLive [4] and PPStream [5]. Within

these multimedia social networks, users share, exchange, and compete for scarce

resources such as multimedia data and bandwidth, and thus influence each other’s

decision and performance. Therefore, to provide fundamental guidelines for the

better system design, it is important to analyze the users’ behaviors and interactions

in a multimedia social network, i.e., how users interact with and respond to each

other.

Unlike generic data applications, multimedia applications have time-varying

bandwidth requirements, stringent delay deadlines and dynamic characteristics. To

enable users in a multimedia social network to successfully participate in the resource

competition, the uniquely scalable and delay-sensitive characteristics of multimedia

data and the resulting impact on users viewing experiences of multimedia content

should be explicitly involved in the system design.

In multimedia social networks, users are intelligent and have the ability to

1



observe, learn, and make intelligent decisions. Since users usually belong to differ-

ent authorities and pursue different goals, they will choose the strategies that can

maximize their own payoffs. In such a case, traditional centralized optimization-

based approaches no longer work well since they only consider the efficiency of the

whole system while totally ignore the fairness among users, which is an even more

important issue in multimedia social networks. To better design the system, not

only the efficiency issue from the system designers’ perspective but also the fairness

issue from the users’ perspective should be taken into accout. Moreover, since users

in multimedia social networks are rational and thus naturally selfish, they tend to

over-claim what they may need and will not truly report their private information

if cheating can improve their payoffs. Therefore, enforcing truth-telling is crucial in

multimedia social networks.

From the above discussions, we can see that the behavior dynamics among

users in a multimedia social network are very complex. To understand the users’

complex behavior dynamics and thus lead to a better system design, game theory is a

powerful mathematical tool that analyzes the strategic interactions among multiple

decision makers [97]. It has been developed for understanding cooperation and

conflict between individuals in many fields such as economics, politics, business,

social sciences and biology. Thus, game theory is ideal and essential for studying,

analyzing, and modeling the users’ behaviors and interactions in social networking.

Recently, it draws great attentions in cognitive networking [30] [123] and multimedia

signal processing [27]. In this thesis, we will illustrate how game theory can be used

to model users’ behaviors in various multimedia social networks and analyze the
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corresponding equilibria.

1.2 Related Works on Social Networks

A social network is a social structure made of individuals and/or organizations

called “nodes”, which are connected with each other by certain types of interdepen-

dency, such as friendship, kinship, financial exchange, conflict, trade, etc. Many

methodologies have been studied to formulate the relationships among members

at all scales, from interpersonal to international, and social network analysis be-

comes a popular topic in sociology, economics, information science and many other

disciplines.

Most of the existing works on social networks fall into the following three cat-

egories [80]: (1) social network properties, (2) social network models, (3) social net-

work dynamics and evolution. In [17] [43], the authors showed that the vertex con-

nectivities in many large networks follow a scale-free power-law distribution. Such

a property is found to be a consequence of two generic mechanisms: (i) networks

expand continuously by the addition of new vertices, and (ii) new vertices attach

preferentially to sites that are already well connected. Another important property

of social networks is the “small-world” phenomenon. As pointed out in [125] [18],

most real-world networks exhibit relatively small diameter, i.e., the networks are

highly clustered.

Besides the study of the social network properties, there are quite a lot of work

on building models for social networks. The simplest model is the random graph
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model introduced in [37], where given a number of nodes, each pair of nodes has an

identical and independent probability of being joined by an edge. However, since

it fails to match the real-world social network properties, e.g., it does not produce

power law degree distributions, this model is not realistic. A better model that can

produce power law degree distributions is the preferential attachment [38] [44] [10],

where when a new node u arrives to the network, the probability of connecting to

a node v is proportional to the degree of v. Another model that can also produce

power law degree distributions is the copying model [103], where a new node joins

the networks by uniformly creating random edges or first random choosing a node

u and then linking to u′s neighbors.

Another important research topic in the field of social network is the study of

social network dynamics and evolution where the researchers study how the social

network evolve and how information spread over the networks. Many works have

been done to investigate the dynamics and evolution of different networks, e.g.,

trendsetters selecting in viral marketing [49], inoculation targets identification in

epidemiology [92], and studying trends in blogosphere [102].

However, most of these existing works study and analyze the social networks at

the macroeconomic level, i.e., from system designer’s perspective. Few efforts have

been made to investigate the social networks at the microeconomic level, i.e., from

the users’ perspective, which is an important issue in social network analysis since

users may only care about their own objectives and their decisions greatly affect the

evolution and performance of the social networks. In this thesis, we will study and

analyze the social networks from the users’ perspective by modeling users’ behaviors
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and interactions using game theory.

1.3 Dissertation Outline

Since users in different multimedia social networks may have different types of

interdependency, to effectively model the users’ behaviors and interactions, different

game models for different multimedia social networks should be employed. The

two most common types of users’ interdependency in multimedia social networks

are competition and cooperation, which leads to non-cooperative social networks

and cooperative social networks, respectively. In cooperative social networks, since

users are rational thus naturally selfish, they will not cooperate with others unless

cooperation can improve their own performance. Therefore, one important issue in

cooperative social networks is cooperation stimulation. Without loss of generality,

in this thesis, we first illustrate how to use game theory to analyze and model users’

behaviors in multimedia social networks by discussing the following three different

scenarios:

• In the first scenario, we consider a non-cooperative multimedia social network

where users in the social network compete for the same resource. We use

multiuser rate allocation social network [29] as an example for this scenario

and the details will be described in Chapter 3.

• In the second scenario, we consider a cooperative multimedia social network

where users in the social network cooperate with each other to obtain the con-

tent. As discussed in Chapter 4, we will use cooperative peer-to-peer streaming
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social network [34] as an example for this scenario.

• In the third scenario, we consider how to use the indirect reciprocity game

to stimulate cooperation among users. In Chapter 5, we will use the packet

forwarding social network [28] as an example.

Moreover, the concept of “multimedia social networks” can be applied into

the field of signal and image processing. Although there are seemingly no human

factors involved in the algorithmic solution in classical signal/image processing, if

we take the view that the pixels/signals of an image are forming a notion of a

“social network” to jointly interact to accomplish a common (“processing”) goal,

be it filtering, denoising, or segmentation, then the game theoretic approach can

offer new views beyond what classical methods can. This completely changes the

traditional thinking that we have to decide what a pixel does instead of simply

giving some generic rules/guidelines and let the pixels themselves interact/cooperte

to decide the best “strategy”. From such a perspective, we introduce a new paradigm

for signal and image processing, and develop generalized and unified frameworks for

classical signal and image problems. In this thesis, we use image denoising (Chapter

6) and simultaneous image denoising and interpolation (Chapter 7) as examples to

illustrate how to use game theory to re-formulate the classical signal and image

processing problems. The rest of the dissertation is organized as follows.
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1.3.1 An Overview of Game Theory (Chapter 2)

Since game theory has been recognized as an important tool in studying, mod-

eling, and analyzing the interaction process among multiple decision makers, in this

chapter, we present an overview of some fundamental concepts of game theory that

will be used in this thesis.

1.3.2 Multiuser Rate Allocation Social Networks (Chapter 3)

In multiuser rate allocation problem, a set of transmitters want to transmit

the video sequences to corresponding receivers through a common channel that is

shared by all transmitters. Since the transmitters compete for the same resource, i.e.,

channel bandwidth, they form a non-cooperative social network. The key problem in

this social network is how to efficiently and fairly allocate data rate among different

users. Most of the existing optimization-based methods, such as minimizing the

weighted sum of the distortions or maximizing the weighted sum of the peak signal-

to-noise ratios (PSNRs), have their weights heuristically determined. Moreover,

those approaches mainly focus on the efficiency issue while there is no notion of

fairness. In this chapter, we address this problem by proposing a game-theoretic

framework, in which the utility function of each user is jointly determined by the

characteristics of the transmitted video sequence and the allocated bit-rate. We show

that a unique Nash equilibrium (NE), which is proportionally fair in terms of both

utility and PSNR, can be obtained, according to which the controller can efficiently

and fairly allocate the available network bandwidth to the users. Moreover, we
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propose a distributed cheat-proof rate allocation scheme for the users to converge

to the optimal NE using alternative ascending clock auction. We also show that the

traditional optimization-based approach that maximizes the weighted sum of the

PSNRs is a special case of the game-theoretic framework with the utility function

defined as an exponential function of PSNR. Finally, we show several experimental

results on real video data to demonstrate the efficiency and effectiveness of the

proposed method.

1.3.3 Peer-to-Peer Cooperative Video Streaming Social Networks (Chap-

ter 4)

While peer-to-peer (P2P) video streaming systems have achieved promising

results, they introduce a large number of unnecessary traverse links, which con-

sequently leads to substantial network inefficiency. To address this problem and

achieve better streaming performance, we propose to enable cooperation among

group peers, which are geographically neighboring peers with large intra-group up-

load and download bandwidths. Considering the peers selfish nature, we formulate

the cooperative streaming problem as an evolutionary game and derive, for every

peer, the evolutionarily stable strategy (ESS), which is the stable Nash equilibrium

and no one will deviate from. Moreover, we propose a simple and distributed learn-

ing algorithm for the peers to converge to the ESSs. With the proposed algorithm,

each peer decides whether to be an agent who downloads data from the peers out-

side the group or a freerider who downloads data from the agents by simply tossing
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a coin, where the probability of being a head for the coin is learned from the peers

own past payoff history. Simulation results show that the strategy of a peer con-

verges to the ESS. Compared to the traditional non-cooperative P2P schemes, the

proposed cooperative scheme achieves much better performance in terms of social

welfare, probability of real-time streaming, and video quality (source rate).

1.3.4 Cooperation Stimulation Using Indirect Reciprocity Game Mod-

eling (Chapter 5)

In social networks, since nodes generally belong to different authorities and

pursue different goals, they will not cooperate with others unless cooperation can

improve their own performance. Thus, how to stimulate cooperation among nodes in

social networks is very important. However, most of existing game-theoretic cooper-

ation stimulation approaches rely on the assumption that the interactions between

any pair of players are long-lasting. When this assumption is not true, according

to the well-known Prisoners Dilemma and the backward induction principle, the

unique Nash equilibrium (NE) is to always play non-cooperatively. In this chapter,

we propose a cooperation stimulation scheme for the scenario where the number of

interactions between any pair of players are finite. The proposed algorithm is based

on indirect reciprocity game modelling where the key concept is “I help you not

because you have helped me but because you have helped others”. We formulate

the problem of finding the optimal action rule as a Markov Decision Process (MDP)

and propose a modified value iteration algorithm to find the optimal action rule.
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Using the packet forwarding game as an example, we show that with an appropriate

cost-to-gain ratio, the strategy of forwarding the number of packets that is equal

to the reputation level of the receiver is an evolutionarily stable strategy (ESS). Fi-

nally, simulations are shown to verify the efficiency and effectiveness of the proposed

algorithm.

1.3.5 Image Denoising Games (Chapter 6)

Based on the observation that every small window in a natural image has many

similar windows in the same image, the nonlocal denoising methods perform denois-

ing by weighted averaging all the pixels in a nonlocal window and have achieved

very promising denoising results. However, the use of a fixed square neighborhood

window greatly limits the denoising performance. Therefore, an important issue

in pixel-domain image denoising algorithms is how to adaptively choose optimal

neighborhoods. Obviously, too large a neighborhood set may cause overly-smooth

artifacts, while too small a neighborhood set may not be able to efficiently reduce

the noise variance. While the Stein’s principle is shown to be able to estimate the

true mean square error (MSE) for determining the optimal neighborhoods, there

exists a trade-off between the accuracy of the estimate and the minimum of the

true MSE. In this chapter, we study the impact of such a trade-off and formulate

the image denoising problem as a coalition formation game. In this game, every

pixel is treated as a player, who tries to seek partners to form a coalition to achieve

better denoising results. By forming a coalition, every player in the coalition can
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obtain certain gains by improving the accuracy of the Stein’s estimate, while incur-

ring some costs by increasing the minimum of the true MSE. Moreover, we show

that the traditional approaches using a heuristically determined neighborhood set

are special cases of the proposed game theoretical framework by choosing the utility

function without a cost term. Finally, experimental results show that the proposed

game theoretic approach can achieve better performance than the nonlocal method

in terms of both PSNR and visual quality.

1.3.6 Simultaneous Image Denoising and Interpolation Using Evolu-

tionary Games (Chapter 7)

While the existing image interpolation approaches can achieve promising in-

terpolation results, they are specially designed for the clean images. However, when

the low resolution image is noisy, most of the existing interpolation approaches will

also boost the noise and introduces severe visual distortions. Therefore, to achieve

better reconstruction, we should jointly consider image denoising and interpola-

tion. In this chapter, we study the problem of simultaneous image denoising and

interpolation from the game theoretic perspective and formulate the problem as an

evolutionary game. In this evolutionary game, the players are the unknown high

resolution pixels and the pure strategies of the players are the corresponding noisy

low resolution neighbors. By regarding the non-negative weights of the noisy low

resolution pixels as the probabilities of selecting the pure strategies, the problem

of estimating the high resolution pixels becomes finding the evolutionarily stable
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strategies for the evolutionary game. Experimental results show that the proposed

game theoretical approach can achieve better performance than the methods that

first denoise the noisy low resolution image and then interpolate the denoised image,

in terms of both PSNR and visual quality.
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Chapter 2

An Overview of Game Theory

Game theory [97] is a mathematical tool that analyzes the strategic interac-

tions among multiple decision makers. Its history dates back to 1944 when J. von

Neumann and O. Morgenstern publish the book Theory of Games and Economic

Behavior. In this book, von Neumann and Morgenstern introduced the method

of finding mutually consistent solutions for two-person zero-sum games, which lays

the foundation of game theory. During the late 1940s, cooperative game theory

had been studied to analyze how groups of individuals should cooperate with each

other to improve their positions in a game. In early 1950s, J. Nash developed an

important criterion, known as Nash equilibrium, to characterize mutually optimal

strategies of players. This concept is applicable to non-zero-sum games, and thus

is more general than the criterion proposed by von Neumann and Morgenstern and

marks a quantum leap forward in the development of non-cooperative game theory.

During the 1950s, many important concepts of game theory were developed, such as

the concepts of the core, the extensive form games, repeated games, and the Shapley

value. Refinement of Nash equilibriums and the concepts of complete information

and Bayesian games were proposed in the 1960s. Application of game theory to biol-

ogy, i.e., the evolutionary game theory, was introduced by J. M. Smith in the 1970s,

during which time, the concepts of correlated equilibrium and common knowledge
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were introduced by R. Aumann. In nowadays, game theory has been widely rec-

ognized as an important tool in many fields, such as economics, politics, business,

social sciences, biology, computer science, and engineering, for understanding co-

operation and conflict between individuals. In this chapter, we will present a brief

overview on some fundamental concepts of game theory that will be used in this

thesis to model and analyze users’ behaviors and interaction in multimedia social

networks. For more extensive concepts of game theory, the readers are referred to.

2.1 Nash Equilibrium and Pareto Optimality

A strategic game 〈N, (Ai), (ui)〉 consists of three components: a set of players,

denoted by N ; a set of actions, denoted by Ai for player i; and payoff functions,

denoted by ui : A → R for player i, where A = ×i∈NAi is the action set of all

players. Generally, one player’s payoff depends on not only his/her own action,

but also other players’ actions, and hence there is a strategic interaction between

players.

Nash equilibrium is the key concept to understand non-cooperative game the-

ory. Informally speaking, it is an equilibrium where everyone plays the best strategy

while taking others’ decisions into account. Mathematically, a? is a Nash equilibrium

if for every player i ∈ N ,

ui(a
?
i , a

?
−i) ≥ ui(ai, a

?
−i), ∀ai ∈ Ai, (2.1)

where ai denotes the strategy of player i and a−i is a common notation in game

theory representing the strategies of all players other than player i. Therefore, Nash
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equilibrium predicts the outcome of a game when all players are rational. Depending

on whether players choose a single action or randomize over a set of actions according

to some probability distribution, an equilibrium can be classified as the pure-strategy

Nash equilibrium or the mixed-strategy Nash equilibrium.

Pareto optimality is a strategy profile at which no single player can improve

his/her own payoff without hurting any other player. Specifically, let u be a vector

composed of payoffs in one particular game outcome. Then, u is Pareto efficient if

there is no u′ of another game outcome for which u′i > ui for all i ∈ N ; u is strongly

Pareto efficient if there is no u′ for which u′i ≥ ui for all i ∈ N and u′i > ui for some

i ∈ N . The Pareto frontier is defined as the set of all u that are Pareto efficient.

2.2 Auction Games

Auction theory [77] is an applied branch of game theory which analyzes inter-

actions in auction markets. An auction, conducted by an auctioneer, is a process

of buying and selling products by eliciting bids from potential buyers (i.e., bidders)

and deciding the auction outcome based on the bids and auction rules. The rules of

auction, or auction mechanisms, determine whom the goods are allocated to (i.e.,

the allocation rule) and how much they have to pay (i.e., the payment rule).

The well-known four basic forms of auctions are: English auction, Dutch auc-

tion, Second-price (sealed-bid) auction, and First-price (sealed-bid) auction. English

auction is a sequential auction where price increases round by round from a low

starting price until only one bidder is left, who wins the product and pays his/her
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bid. Dutch auction is another sequential auction where price decreases round by

round from a high starting price until one bidder accepts the price, who wins the

product and pays the price at acceptance. Second-price (sealed-bid) auction is the

auction where each bidder submits a bid in a sealed envelope simultaneously, and

the highest bidder wins the product with payment equal to the second highest bid.

First-price (sealed-bid) auction is the auction where each bidder submits a bid in

a sealed envelope simultaneously, and the highest bidder wins the product with

payment equal to his/her own bid.

Although the four basic auctions appear quite different at first glance, they

are actually equivalent in some sense under certain conditions [119]. As established

in [119] by William Vickrey, a Nobel laureate in Economics, the English auction

is equivalent to the second-price sealed-bid auction under the private values model

while the Dutch auction is equivalent to the first-price sealed-bid auction since for

every strategy in the first-price auction, there is an equivalent strategy in the Dutch

auction and vice versa; and given symmetric and risk-neutral bidders and private

values, all four auctions yield the same expected revenue of the seller. Therefore, it

will suffice to study or adopt only one kind of auction out of the four basic forms.

An auction becomes more complicated when more than one item are simul-

taneously sold and bidders bid for “packages” of products instead of individual

products. This is known as the combinatorial auction [40]. One possible approach

is the Vickrey-Clarke-Groves (VCG) mechanism, which is the generalized version

of the second-price mechanism. The basic idea is that the allocation of products

maximizes the social welfare and each winner in the auction pays the opportunity
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cost that their presence introduces to all the other bidders. Another approach is

the alternative ascending clock auction proposed in [16], where the basic idea is to

awarded the items to bidders at the price whenever they are “clinched”.

2.3 Evolutionary Games

In some games, there can be more than one Nash equilibrium. When there ex-

ist multiple Nash equilibria, one interesting and important problem is how to choose

an optimal one in some sense. This process is also known as “equilibria refinement”

in game theory. In the literature, several refinement criteria have been proposed,

e.g. Pareto optimality is defined to compare multi-dimension payoff profiles. How-

ever, the establishment of Pareto optimality is based on the assumption that players

have the full knowledge of the game they are playing and others players’ actions,

and that players are rational and willing to cooperate in their moves. Nevertheless,

this assumption may not be true since players may only have limited information

about the other players strategies. Moreover, players may take out-of-equilibrium

strategies due to the uncertainty of the game and incorrect/noisy estimate of others’

strategies. To overcome such problems, we need to provide a robust stable equilib-

rium, and evolutionary game theory is such a theory that can provide the desired

stable equilibrium – evolutionarily stable strategy.

Evolutionary game theory is an application of the mathematical theory of

games to the interaction dependent strategy evolution in populations [110] [41].

Arising from the realization that frequency dependent fitness introduces a strategic
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aspect to evolution, evolutionary game theory becomes an essential component of

a mathematical and computational approach to biological contexts, such as genes,

viruses, cells, and humans. Recently, however, evolutionary game theory has become

of increased interest to economists, sociologists, anthropologists, social scientists,

and computer science.

Differs from classical game theory, evolutionary game theory focuses on the

dynamics of strategy change more than the properties of strategy equilibria. It can

tell us how a rational player should behave to approach a best strategy against a

small number of players who do not follow the best strategy, and thus evolutionary

game theory can better handle the unpredictable behavior of players.

2.4 Coalition Formation Games

The coalition formation game is one type of cooperative game [104], which

describes how a set of players can cooperate with others by forming cooperating

groups and thus improves their payoffs in a game.

A coalition S is a nonempty subset of N , the set of all players. Since the

players in coalition S have agreed to cooperate together, they can be viewed as one

entity and is associated with a value v(S) which represents the worth of coalition

S. Then, a coalitional game is determined by N and v(S). When the value v(S) is

the total payoff that can be distributed in any way among the members of S, e.g.,

using an appropriate fairness rule, this kind of coalitional games is known as games

with transferrable payoff. However, in some coalitional games, rigid restrictions exist
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on the allocation of the payoff. These games fall into the other category known as

games without transferrable payoff.

In coalition formation games, often the value v(S) is determined by two terms:

the gain of forming a coalition g(S) and the cost of forming a coalition c(S), i.e.

v(S) = g(S)− c(S). (2.2)

In general, cooperation by forming larger coalitions is beneficial for players in

terms of a higher gain. This property is referred to as superadditivity, i.e.,

g
(
S1

⋃
S2

)
≥ g(S1) + g(S2), ∀S1, S2 ⊂ N, S1

⋂
S2 = ∅. (2.3)

However, on the other hand, forming a larger coalition also require a larger

cost, i.e. the cost is also superadditive as follows

c
(
S1

⋃
S2

)
≥ c(S1) + c(S2), ∀S1, S2 ⊂ N, S1

⋂
S2 = ∅. (2.4)

Therefore, forming larger coalitions are not always beneficial due to the cost

term, which means that grand coalition is seldom formed. The objective of coalition

formation games is to find the optimal coalition structure S? = {S?
1 , S

?
2 , ..., S

?
l },

S?
1 ∪ S?

2 ∪ ... ∪ S?
l = N , that maximizes the total coalition values, i.e.,

S? = {S?
1 , S

?
2 , ..., S

?
l } = arg max

S

∑
i

v(Si). (2.5)

2.5 Stochastic Games

We have discussed various games, but generally speaking, players are assumed

to face the same stage game at each time, meaning the game and the players’
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strategies are not depending on the current state of the network. However, this is

not true for a dynamic environment where players’ strategies keep changing over

time. In order to study the cooperation and competition behaviors under such a

dynamic environment, the theory of stochastic games might be a better fit.

A stochastic game [108] is an extension of Markov decision process (MDP) [101]

by considering the interactive competition among different agents. In a stochas-

tic game, there is a set of states, denoted by S, and a collection of action sets,

A1, · · · , A|N |, one for each player in the game. The game is played in a sequence

of stages. At the beginning of each stage the game is in a certain state. After the

players select and execute their actions, the game then moves to a new random

state with some transition probability determined by the current state and actions

from all players: T : S × A1 × · · · × A|N | 7→ PD(S). Meanwhile, at each stage

each player receives a payoff ui : S × A1 × · · · × A|N | 7→ R, which also depends on

the current state and all the chosen actions. The game is played continually for a

number of stages, and each player attempts to maximize an objective function. Like

in the repeated game, the overall payoff function is defined as the expected sum of

discounted intermediate payoffs.

The solution, also called a policy of a stochastic game is defined as a probability

distribution over the action set at any state, πi : S → PD(Ai), for all i ∈ N . Given

the current state st at time t, if player i’s policy πt
i at time t is independent of the

states and actions in all previous time slots, the policy πi is said to be Markov. If

the policy is further independent of time, it is said to be stationary.

The stationary policy of the players in a stochastic game, i.e., their optimal
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strategies, can be obtained by value iteration according to Bellman’s optimality

condition. For example, in a two-player stochastic game with opposite objectives,

let us denote V (s) as the expected reward (of player 1) for the optimal policy

starting from state s, and Q(s, a1, a2) as the expected reward of player 1 for taking

action a1 against player 2 who takes action a2 from state s and continuing optimally

thereafter [85]. Then, the optimal strategy for player 1 can be obtained from the

following iterations,

V (s) = max
π

min
a2∈A2

∑
a1∈A1

Q(s, a1, a2)πa1 , (2.6)

Q(s, a1, a2) = u1(s, a1, a2) + δ
∑

s′∈S
T (s, a1, a2, s

′)V (s′), (2.7)

where πa1 denotes player 1’s strategy profile, and T (s, a1, a2, s
′) denotes the transi-

tion probability from state s to s′ when player 1 takes a1 and player 2 takes a2.
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Chapter 3

Multiuser Rate Allocation Social Networks

Nowadays, due to the explosive growth of the Internet and the advance of

compression technologies, delay-sensitive multimedia networking applications such

as multimedia streaming and multi-camera surveillance become more and more pop-

ular. Therefore, a fundamental problem in these applications, how to fairly and effi-

ciently allocate the rate among many users who share the same network bandwidth,

becomes more and more important and draws great attention recently.

Rate allocation for a single user has been well investigated in the literature

[39] [35] [48]. In single-user rate allocation, the task of the rate controller is to assign

the available rate to each frame and each macroblock (MB) to achieve the maximal

visual quality. This is also known as rate control. The simplest rate control method

is the constant bit-rate allocation (CBR), which equally allocates the bit-rate to each

frame. However, CBR often results in quality fluctuation, due to which the overall

visual quality is significantly degraded. To overcome this problem, variable bit-rate

allocation (VBR) is proposed for constant quality reconstruction by assigning rate

according to the complexity of each frame [78]. A core technique in VBR-based

rate control methods is rate distortion modelling [64], which highly affects the rate

control performance. Many works have been done on rate distortion modelling,

including parametric method [137] and non-parametric method [134].
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If a channel is shared by multiple users, besides considering the rate allocation

within the same user (i.e., frame-level rate allocation and MB-level rate allocation),

the rate controller needs to consider the rate allocation among different users. This

becomes the multi-user rate allocation problem. Similar to frame-level rate allo-

cation, the simplest multi-user rate allocation is the constant bit-rate allocation

(CBR), where the available network bandwidth is equally assigned to each user. A

major problem of CBR is that it does not consider the variable bit-rate characteris-

tics of the video sequences. One way to overcome this disadvantage is to optimize a

global objective function that involves the characteristics of all the video sequences

using conventional optimization methods such as Lagrangian or dynamic program-

ming [95]. For example, a commonly adopted method is for the rate controller to

minimize the weighted sum of the distortions or try to maximize the weighted sum

of the PSNRs, i.e., the optimization problem becomes:

min
Ri

N∑
i=1

wiDi(Ri), s.t.

N∑
i=1

Ri ≤ R, (3.1)

or

max
Ri

N∑
i=1

wiPSNRi(Ri), s.t.

N∑
i=1

Ri ≤ R, (3.2)

where R is the available network bandwidth, wi is the weight, Di is the distortion,

and PSNRi is the PSNR of the ith user.

Notice that the solution to the above optimization-based methods is highly re-

lated to the selection of the weights wi. However, in the literature, the weights wi’s

are usually heuristically determined, e.g., wi is uniformly set to be 1/N [109]. More-

over, such a formulation can only address the efficiency issue, e.g., how to maximize
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the weighted sum of the PSNRs or minimize the weighted sum of the distortions. As

such, the fairness issue, which is an important problem for multi-user rate allocation,

has been generally ignored in the image/video/multimedia community.

However, in the networking literature, the fairness issue in multi-user rate

allocation have been considered in a different setting. In [105], the authors formu-

lated the optimal channel-assignment problem as a convex optimization problem

using a max-min fairness criterion for the downlink application. As pointed out

in [61], the max-min approach deals with the worst-cast scenario, so it favors users

with worse channels and reduces the system efficiency. To overcome the disadvan-

tage, the authors in [61] considered a generalized proportional fairness based on the

Nash bargaining solutions and coalitions. While this proportional fairness criterion

was successfully employed in networking applications, it cannot be directly used in

content-aware multimedia applications since it does not explicitly consider the char-

acteristics of the video content and the resulting impact on video quality. In [98],

the authors applied the Nash bargaining solutions to the multimedia multi-user rate

allocation problem, where the utility function for each user is defined as the inverse

of the distortion. But there are two main drawbacks of that utility function. Firstly,

since no cost in video transmission is considered, every user can overclaim his/her

need to get more bandwidth regardless the consequence to the system, which is

recognized as selfish behavior. Due to the selfish nature, without a cost, all users

will become too greedy and want to get as much bit-rate as possible, which is not

good to the system [106]. Secondly, since the gain is defined as the inverse of the

distortion, i.e., an exponential function of the PSNR, a certain increase of the bit-
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rate in the low PSNR region will lead to a less significant gain than that in the high

PSNR region. This contradicts with the human visual system (HVS) model since

the quality difference in the low PSNR region is easier to be distinguished than that

in the high PSNR region (see Section 3.1.3 for details). Moreover, with the utility

function defined in [98], the generalized Nash bargaining solution is shown to be the

same as the traditional optimization-based approach in (3.2), i.e., to maximize the

weighted sum of the PSNRs, while the weights are determined by the bargaining

powers, which are still heuristically determined.

In this chapter, we propose a multi-user rate allocation game framework to

efficiently and fairly allocate the available network bandwidth to different multime-

dia users. The utility/payoff function of each user/player is defined according to

the characteristics of the transmitted video sequences and the allocated bit-rate.

Specifically, motivated by the intuition that the quality difference in the low PSNR

region is easier to be distinguished than that in the high PSNR region, we define

the gain as a logarithm function of the PSNR. We also introduce a cost term in

the utility function, which is linear in the allocated rate, to guide users’ behaviors.

In this way, the users will be more rational in choosing bit-rate since transmitting

data with a higher bit-rate in this case does not necessarily result in a higher payoff,

especially when the transmitted video sequence is a fast motion and complex scene

sequence. Then, we discuss the Nash equilibrium (NE) of this rate allocation game.

We show that with a unique NE, which is proportionally fair in terms of both utility

and PSNR, can be obtained, based on which the rate controller can efficiently and

fairly allocate the available rate. Moveover, we propose a decentralized cheat-proof
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rate allocation scheme for the users to converge to the unique NE using alternative

ascending clock auction [16]. We also show that the traditional optimization-based

method in (3.2) is a special case of the game-theoretic framework if the utility func-

tion is defined as an exponential function of PSNR. This fact indicates that the

game-theoretic approach offers a more general and unified solution, especially in a

multi-user setting. Finally, we illustrate several experimental results on real video

data to demonstrate the efficiency and effectiveness of the proposed game-theoretic

multi-user multimedia rate allocation method.

The rest of this chapter is organized as follows. In Section 3.1, we give a

detailed description on the proposed method, including the system model, how

to define the utility function, and the problem formulation. In Section 3.2, we

provide a detailed analysis of the proposed game-theoretic framework. In Section

3.3, we show the relationship between the proposed game-theoretic method and the

traditional optimization-based approach. In Section 3.4, we describe in details the

proposed distributed cheat-proof rate allocation scheme using alternative ascending

clock auction. Finally, we illustrate the experimental results on real video signals in

Section 3.5 and draw conclusions in Section 3.6.

3.1 The Game-Theoretic Framework

3.1.1 System Model

As shown in Figure 3.1, in our system, we assume that there is a controller,

N transmitters, u1, u2, ..., uN , and N receivers, r1, r2, ..., rN . User ui transmits
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Figure 3.1: System Model.

the video sequence vi to the corresponding receiver ri through a channel/link that

is shared by other users u1, ..., ui−1, ui+1, ..., uN . Since the channel has a limited

bandwidth, it may not be able to satisfy the bandwidth requirements for all users.

The role of the controller is to allocate the channel bandwidth to users u1, u2, ...,

uN . So, the question is how the controller allocates the bandwidth to the users in

an efficient and fair way? We will formally define the notion of fairness later.

3.1.2 Video Distortion-Rate Model

Before answering the question raised in the above subsection, let us first discuss

the Distortion-Rate (DR) model for the video sequences. In video compression,

due to the quantization process, there exists a tradeoff between the distortion (D),

which is usually defined as the mean squared error (MSE), and bit-rate (R), which

determines the channel bandwidth or storage space required to transmit or store

the coded data. Generally, high bit-rate leads to small distortion while low bit-rate

causes large distortion. In the literature, several models have been proposed to
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characterize this distortion rate tradeoff for different video coders, such as MPEG2

[63] [48], MPEG4 [39] [35], FGS [46], H.263 [114], H.264 [31] [83], and wavelet-based

coders [124]. Without loss of generality, in this chapter, we use a simple two-

parameter distortion-rate model, which is widely employed in a medium or high

bit-rate situation, and other models can be similarly analyzed. The two-parameter

distortion-rate model is described as follows:

D(R) = αe−βR, (3.3)

where α and β are two positive parameters determined by the characteristics of the

video content.

3.1.3 User’s Utility Function

As shown in Figure 3.1, user ui can get gain by successfully transmitting the

video vi to receiver ri, and the gain is determined by the quality of the transmitted

video. On the other hand, user ui needs to pay for the used bandwidth to transmit

vi, and the payment is determined by the bit-rate of vi. Therefore, given the profile

of ui, the bit-rate Ri and distortion Di, the utility function of user ui can be defined

as:

Ui(Ri, Di) = f(Di)− ag(Ri). (3.4)

where f(Di) is the gain, g(Ri) is the cost, and a is a parameter controlling the balance

between the gain and cost.

Generally, since the gain of ui will be larger if the distortion Di is smaller,

the function f(.) should be a monotonically decreasing function. Similarly, since the
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cost of ui will be larger if the bit-rate Ri is larger, the function g(.) should be a

monotonically increasing function. Without loss of generality, we assume that the

cost per bit-rate unit is one, which means:

g(Ri) = Ri. (3.5)

The gain f(Di) is generally determined by how much receiver ri is satisfied with

the received video. In video processing and coding community, the PSNR is a more

common objective quality measure than MSE. For any MSE, i.e., the distortion D,

the corresponding PSNR is given by:

PSNR = 10 log10

2552

D
. (3.6)

Moreover, according to the human visual system (HVS) model, the quality

difference in the low PSNR region is easier to be distinguished than that in the high

PSNR region, e.g., as shown in Figure 3.2, the 33dB and 34dB images are easier

to be distinguished than the 40dB and 41dB images. Therefore, we define the f(.)

function as:

f(Di) = ln(PSNRi) = ln[10 log10

2552

Di

]. (3.7)

Note that the reason of using ln(.) function is that ln(.) is a monotonically

increasing function in its argument and its second order derivative is negative, due

to which a certain increase in the low PSNR region will lead to a more significant

gain than that in the high PSNR region. Other functions that have similar properties

can also be used. Moreover, if we do not consider the distinct characteristics of video

signals, any monotonically decreasing function of the distortion D can be used, e.g.,

f(D) = 2552/D = eηPSNR, (3.8)
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(c) (d)

Figure 3.2: The visual quality of Foreman sequence at different PSNR level: (a)

33dB; (b) 34dB; (c) 40dB; (d) 41dB.

or

f(D) = 10 log10

2552

D
= PSNR. (3.9)

Combining (3.3)-(3.7) and ignoring the constant term, the utility function of

user ui becomes:

Ui(Ri) = ln(γi + βiRi)− aRi. (3.10)

where γi = 2 ln 255− ln αi.
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3.1.4 Multi-User Rate Allocation Game

To answer the question raised in Section 3.1.1, we formulate this problem as

a multi-user rate allocation game. As shown in Figure 3.1, in this game, there are

N users/players, who share the available network bandwidth with each other. Each

user ui has his/her own utility function as shown in (3.10), and it also has a minimum

desired quality constraint (minimal rate constraint Rmin
i ) and a maximum satisfied

quality constraint (maximum rate constraint Rmax
i ). Since Rmin

i is the minimal

rate constraint that each user expects by jointing in the game, we assume that the

available network rate at least guarantees each user for the minimal desired rate

in the game. Obviously, if the available network bandwidth is able to satisfy all

the users with the maximum quality constraint Rmax
i , the rate allocation problem

is trivial since the controller just needs to allocate Rmax
i to each user ui. However,

in the case that the available network bandwidth is not able to satisfy all the user

with Rmax
i , the problem becomes more interesting: how does the controller fairly

and efficiently allocate the available bandwidth to the users? From the users’ point

of view, they try to maximize their utilities subject to the constraint that the sum

of the users’ bit-rate does not exceed the available bandwidth. Therefore, the game

can be formulated as:

max
Ri

Ui(Ri) = ln(γi + βiRi)− aRi,

s.t. Rmin
i ≤ Ri ≤ Rmax

i , ∀i = 1, 2, ..., N,

N∑
i=1

Ri ≤ R, (3.11)

where R is the available network bandwidth.
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3.2 Analysis of The Multi-User Rate Allocation Game

According to (3.10), we can see that the utility function Ui(Ri) is a concave

function in terms of Ri. By taking the derivative of Ui(Ri) over Ri, we have:

∂Ui(Ri)

∂Ri

=
βi

γi + βiRi

− a, ∀i = 1, 2, ..., N. (3.12)

Therefore, user ui achieves his/her maximal utility U?
i (R?

i ) at R?
i , where R?

i is

defined as:

R?
i = max[Rmin

i , min(
1

a
− γi

βi

, Rmax
i )], ∀i = 1, 2, ..., N. (3.13)

From (3.13), we can see that the optimal R?
i corresponding to the maximal

utility is determined by the parameter a. Therefore, for different choices of a, the

game in (3.11) has different equilibria with different physical meanings. Specifically,

in the following, we discuss the Nash equilibrium (NE) in three different cases:

a > a0, 0 ≤ a < a0, and a = a0, where a0 is the constant that satisfies the following

equation:
N∑

i=1

(
max[Rmin

i , min(
1

a0

− γi

βi

, Rmax
i )]

)
= R. (3.14)

3.2.1 Non-Efficient Rate Allocation (a > a0)

If a > a0, the game in (3.11) has a unique Nash Equilibrium (R?
1, R

?
2, ..., R

?
N).

Since a > a0, from (3.14), we have
∑N

i=1 R?
i < R, which means that the available

network bandwidth is not fully utilized. Therefore, this allocation scheme is not

efficient.
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3.2.2 Efficient Rate Allocation (0 ≤ a < a0)

If 0 ≤ a < a0, the game in (3.11) has infinitely many NE. For every NE

(R̃1, R̃2, ..., R̃N), according to Lemma 1, we have
∑N

i=1 R̃i = R, which means that

the available network bandwidth is fully utilized. Therefore, this allocation scheme

is efficient.

Lemma 1: When 0 ≤ a < a0, every NE (R̃1, R̃2, ..., R̃N) satisfies
∑N

i=1 R̃i = R.

Proof: Since
∑N

i=1 R̃i ≤ R, let us assume that there is a NE (R̃1, R̃2, ..., R̃N)

such that
∑N

i=1 R̃i = R −∆ < R. Since 0 ≤ a < a0, we have
∑N

i=1 R?
i > R, which

means there exists at least one R̃j such that R̃j < R?
j . Let R̂j = min(R̃j + ∆, R?

j ),

then
∑j−1

i=1 R̃i + R̂j +
∑N

i=j+1 R̃i ≤ R and Uj(R̂j) > Uj(R̃j) (due to the concavity of

the utility function). This contradicts with the assumption that (R̃1, R̃2, ..., R̃N) is

a NE. Therefore,
∑N

i=1 R̃i = R. This completes the proof.

3.2.3 Efficient and Proportionally Fair in Both Utility and PSNR

(a = a0)

If a = a0, the game in (3.11) has a unique Nash Equilibrium (R?
1, R

?
2, ..., R

?
N).

According to (3.14), we have
∑N

i=1 R?
i = R, which means that the available network

bandwidth is fully utilized. Therefore, this allocation scheme is efficient.

Moreover, we will show in the following definition [72] and theorem that when

a = a0, (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms of both utility and

PSNR.

Definition 1: A utility distribution is said to be proportionally fair when any
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change in the distribution of utilities results in the sum of the proportional changes

being non-positive, i.e.,

∑
i

Ui − Ũi

Ũi

≤ 0, ∀Ui ∈ S. (3.15)

where Ũi and Ui are the proportionally fair utility and any other feasible utility for

the ith user, respectively, and S is a closed and convex subset of <N to represent the

set of feasible utility functions that the users can achieve.

Remark: The definition of proportional fairness comes from the fact that, if

(Ũ1, Ũ2, ..., ŨN) satisfies (3.15), any deviation from (Ũ1, Ũ2, ..., ŨN) will lead to a non-

increasing sum of the proportional changes. Moreover, from [72] and [61], we can see

that (Ũ1, Ũ2, ..., ŨN) is a proportionally fair utility if and only if
∏N

i=1 Ũi ≥
∏N

i=1 Ui

for any feasible (U1, U2, ..., UN).

Theorem 1: When a = a0, (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms

of both utility and PSNR.

Proof: According to the above remark, (R?
1, R

?
2, ..., R

?
N) is a proportionally fair

NE in terms of both utility and PSNR if and only if it is the solution to the following

two optimization problems:

max
Ri

N∏
i=1

Ui =
N∏

i=1

[ln(γi + βiRi)− aRi]

s.t. Rmin
i ≤ Ri ≤ Rmax

i , ∀i = 1, 2, ..., N,

N∑
i=1

Ri ≤ R, (3.16)

34



and

max
Ri

N∏
i=1

PSNRi =
N∏

i=1

(γi + βiRi)

s.t. Rmin
i ≤ Ri ≤ Rmax

i , ∀i = 1, 2, ..., N,

N∑
i=1

Ri ≤ R. (3.17)

• We first show that (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms of

utility. Since user ui achieves his/her maximal utility U?
i (R?

i ) at R?
i , we have

Ui(R
?
i ) ≥ Ui(Ri), for any Ri satisfies Rmin

i ≤ Ri ≤ Rmax
i and

∑N
i=1 Ri ≤ R.

This means that
∏N

i=1 Ui(R
?
i ) ≥

∏N
i=1 Ui(Ri) for any feasible (R1, R2, ..., RN).

Therefore, (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms of utility.

• We then show that (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms of

PSNR. Since maximizing
∏

i xi is the same as maximizing
∑

i ln(xi), the opti-

mization problem in (3.17) is equivalent to the following optimization problem:

max
Ri

N∑
i=1

ln(γi + βiRi)

s.t. Rmin
i ≤ Ri ≤ Rmax

i , ∀i = 1, 2, ..., N,

N∑
i=1

Ri ≤ R, (3.18)

Since the above optimization problem is convex, the optimal solution can be

found by solving the Karush-Kuhn-Tucker (KKT) conditions [19]. We first

write the Lagrangian of problem (3.18) as:

L(Ri, λ, κi, νi) = −
N∑

i=1

ln(γi + βiRi) + λ(
N∑

i=1

Ri −R)

+
N∑

i=1

κi(Ri −Rmax
i ) +

N∑
i=1

νi(R
min
i −Ri). (3.19)
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Then, the KKT conditions are:

− βi

γi + βiRi

+ λ + κi − νi = 0;

λ(
N∑

i=1

Ri −R) = 0;

κi(Ri −Rmax
i ) = 0; ∀i = 1, ..., N.

νi(R
min
i −Ri) = 0; ∀i = 1, ..., N.

Rmin
i ≤ Ri ≤ Rmax

i ; ∀i = 1, ..., N.

N∑
i=1

Ri ≤ R;

λ ≥ 0, κi ≥ 0, νi ≥ 0; ∀i = 1, ..., N. (3.20)

By solving the KKT conditions above, the optimal solution is:

R?
i = max[Rmin

i , min(
1

λ
− γi

βi

, Rmax
i )], ∀i = 1, ..., N. (3.21)

where
∑N

i=1 max[Rmin
i , min( 1

λ
− γi

βi
, Rmax

i )] = R.

Therefore, (R?
1, R

?
2, ..., R

?
N) is the solution to the optimization problem in

(3.17), which means that it is a proportionally fair NE in terms of PSNR.

In all, when a = a0, (R?
1, R

?
2, ..., R

?
N) is a proportionally fair NE in terms of both

utility and PSNR. This completes the proof.

Remark: From the above analysis, we can see that choosing a = a0 is the

best among the three different cases due to the following four reasons: (1) a unique

proportionally fair NE in terms of both utility and PSNR can be found when a = a0;

(2) with the unique proportionally fair NE, the available network bandwidth will be

fully utilized; (3) since the optimal solution shown in (3.21) is very simple, no opti-

mization is needed and the computational complexity is low; and (4) a distributed

36



algorithm can be designed for the users to converge to the unique NE which will

discussed in Section 3.4.

3.3 Relation To The Traditional Optimization-Based Approach

While the task of rate allocation for a single user is to find the best trade-off

point on the rate-distortion curve, the traditional optimization-based multi-user rate

allocation approach can be seen as first constructing an overall rate-distortion curve

by combining rate-distortion curves of all users, and then finding the best trade-

off point on the joint rate-distortion curve. However, it is difficult to construct

the overall rate-distortion curve from all users’ rate-distortion curve. The approach

shown in (3.2) is one possible way, but there is no notion of fairness. Furthermore,

the weights in (3.2) are hard to determine and are usually defined heuristically.

Instead of focusing on finding a good way of constructing the overall rate-

distortion curve, the proposed game-theoretic framework considers each user’s rate-

distortion trade-off in the utility function. Then, the notion of proportional fairness,

is introduced to balance the rate allocation among different users and to make sure

that the total rate constraint is satisfied. Moreover, from (3.2), (3.4), and (3.16), we

can see that the traditional optimization-based approach shown in (3.2) is actually a

special case of the proposed game-theoretic framework by choosing the gain function

and the cost function as follows:

f(Di) = ewiPSNRi , g(Ri) = 0, (3.22)
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which means,

Ui(Ri, Di) = ewiPSNRi . (3.23)

Note that there are mainly three drawbacks of this kind of utility function:

• The parameters wi are usually heuristically determined.

• If no cost in video transmission is considered, selfish users may become too

greedy and want to get as much bit-rate as possible, which is not good to the

system [106].

• Since the gain is defined as an exponential function of the PSNR, a certain

increase of the bit-rate in the low PSNR region will lead to a less significant

gain than that in the high PSNR region. This contradicts with the human

visual system (HVS) model since the quality difference in the low PSNR region

is easier to be distinguished than that in the high PSNR region.

3.4 Clock Auction For Distributed Cheat-Proof Optimal Rate Allo-

cation

In Section 3.2, we have discussed the NE of the multi-user rate allocation

game for different a’s and found that, when a = a0, the game has a proportionally

fair NE in both utility and PSNR. However, we have not discussed how to obtain

a0 and how the users converge to the NE yet. There are two possible approaches,

centralized approach and distributed approach. For the centralized approach, the

controller knows exactly all the private information of each user, i.e., γi, βi, Rmin
i ,
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and Rmax
i . Then, the controller can first find a0 in a collective way by solving (3.14)

and then allocate R?
i to ui.

However, in general, the users can be geographically distributed in many

places, it is therefore not feasible for the controller to collect all the private informa-

tion of each user. Moreover, since the users are selfish, e.g., they tend to overclaim

what they may need, they will not truly report their private information if cheating

can improve their utilities [62]. To solve this problem, we propose a distributed

cheat-proof rate allocation scheme using alternative ascending clock auction [16].

An auction is a decentralized mechanism for allocating resources, where there is an

auctioneer and several bidders. The auction processes can be described as follows:

the auctioneer announces a price, bidders report to the auctioneer their demands

at that price, and the auctioneer raises the price until the total demand meets the

supply. In our multi-user rate allocation problem, the controller is the auctioneer

and the users are the bidders.

The proposed rate allocation scheme is described in Algorithm 1. As shown

in Algorithm 1, before the auction, the controller sets up the step size δ > 0, clock

index t = 0, and initializes a with a small value a0. At the beginning of clock t,

the controller first announces at to all the users. Then, each user submits his/her

optimal demand to the controller. After collecting all the demands, the controller

compares the total demand Rtotal with the available bandwidth R. If Rtotal > R, i.e.,

the total demand exceeds the supply, the auction is not concluded. The controller

continues the auction and goes to next clock t + 1 with an increased a computed

by at+1 = at + δ. Moreover, the controller computes the cumulative clinch, which is
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the amount of bit-rate that a user is guaranteed to win at current clock given by

Ct
i = max(0, R−

∑

j 6=i

Rt
j). (3.24)

On the other hand, if Rtotal ≤ R, then the supply can meet all users’ demands

and the auction is concluded. Let the final clock index be L. As a increases dis-

cretely, we may have Rtotal < R and do not fully utilize the bandwidth. To make

sure that Rtotal = R, we modify (3.24) by introducing proportional rationing [16],

and the final cumulative clinch of ui is given by,

CL
i = RL

i +
RL−1

i −RL
i∑

i R
L−1
i −∑

i R
L
i

[R−
∑

i

RL
i ], with

∑
i

CL
i = R. (3.25)

Finally, the rate allocated to ui is R?
i = CL

i . The utility of ui is obtained as,

U?
i = ln(γi + βiR

?
i )− P ?

i , (3.26)

where P ?
i = C0

i a
0 +

∑L
t=1 at(Ct

i − Ct−1
i ) is the payment from user ui.

Remark: Since at+1 > at, we have Rt+1
j ≤ Rt

j. Therefore, at clock t, ui is

guaranteed at least the amount of bit-rate Ct
i = max(0, R − ∑

j 6=i

Rt
j). This is how

(3.24) comes from.

The rate allocation scheme described in Algorithm 1 has several advantages:

• The auction process is transparent to all users and simple enough for all users

to understand. Simplicity and transparency are two important factors to stim-

ulate auction since users may not be willing to join in the game if they do not

understand the auction process.

• The auction scheme can preserve privacy. Since the scheme is distributed,
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Algorithm 1 Cheat-Proof Rate Allocation Scheme Using Clock Auction

Given the available bandwidth R, step size δ > 0, and clock index t = 0, the

controller initializes a with a small value a0.

Repeat:

(1) the controller announces at to all the users.

(2) Each user ui submits his/her optimal demand:

Rt
i = max[Rmin

i , min( 1
at − γi

βi
, Rmax

i )].

(3) The controller sums up all the demand Rt
total =

∑
i R

t
i and compares Rt

total

with R:

If Rt
total > R, compute Ct

i = max(0, R−∑
j 6=i

Rt
j), set at+1 = at + δ, t = t+1,

and go to (1).

Else, conclude the auction, set L = t, compute CL
i = RL

i +
RL−1

i −RL
i∑

i RL−1
i −∑

i RL
i

[R−
∑

i R
L
i ],

and allocate R?
i = CL

i to ui.

Finally, the payment of ui is P ?
i = C0

i a
0 +

∑L
t=1 at(Ct

i − Ct−1
i ) and the utility of

ui is U?
i = ln(γi + βiR

?
i )− P ?

i .
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users do not need to report their private information. Instead, they only need

to submit their demands.

• The computational complexity of each user is low since what the users need to

do is to submit their optimal demands calculated by Ri = max[Rmin
i , min( 1

a
−

γi

βi
, Rmax

i )] for any given a.

• The computational complexity of the controller is low in that the controller

only needs to sum up the demands from the users, compare it with the available

bandwidth, and compute the cumulative clinch for each user.

• Through the auction, each user will converge to the unique proportionally fair

NE shown in Section 3.2. This is trivial due to the following two reasons:

(1) since the auction concludes if and only if
∑

i R
t
i ≤ R, when δ is sufficient

small, the auction will conclude at
∑

i R
t
i = R. (2) At each clock t, ui chooses

Rt
i = max[Rmin

i , min( 1
at − γi

βi
, Rmax

i )].

• The scheme is cheat-proof, meaning that the best strategy of each user is to

report his/her true optimal demand at every clock. There is no incentive for

ui to deviate, and the proof is shown in Theorem 2.

Let Rt
i be user ui’s true optimal demand at clock t, and R̃i

t
be the claimed

demand that ui reports to the controller at clock t. Note that R̃i
t
can be any value

in [Rmin
i , Rmax

i ] if ui cheats at clock t. Let Γ(t, L) = {L, R̃i
0
, ..., R̃i

t
, Rt+1

i , ..., RL
i ;

C0
i , ..., C

L
i ; a0, ..., aL} be the profile of ui at the following scenario: from clock 0 to

clock t, ui reports R̃i
0
, ..., R̃i

t
, and from clock t + 1 to the final clock, ui reports

42



2L

i
R 1L

i
R

2ln( )
L

i i i
Rγ β+

1ln( )
L

i i i
Rγ β+

1 1 2

1

(ln( ))
ln( ) ( )

L

i i

L L Li i i

i i i i i

i R R

R
R R R

R

γ β
γ β

=

∂ +
+ − −

(a)

1L

i
R

2L

i
R

2ln( )
L

i i i
Rγ β+

1ln( )
L

i i i
Rγ β+

2 2 1

1

(ln( ))
ln( ) ( )

L

i i

L L Li i i

i i i i i

i R R

R
R R R

R

γ β
γ β

=

∂ +
+ − −

(b)

Figure 3.3: Illustration for the proof of Lemma 2: (a) If R̃i
t ≤ Rt

i and RL1
i > Rmin

i ,

we can see that [ln(γi + βiR
L1
i ) − ∂ ln(γi+βiRi)

∂Ri
|
Ri=R

L1
i

(RL1
i − RL2

i )] ≥ ln(γi + βiR
L2
i );

(b) If R̃i
t
> Rt

i and RL1
i < Rmax

i , we can see that ln(γi + βiR
L1
i ) ≥ [ln(γi + βiR

L2
i )−

∂ ln(γi+βiRi)
∂Ri

|
Ri=R

L1
i

(RL2
i −RL1

i )].

Rt+1
i , ..., RL

i , where L is the final clock index, C0
i , ..., C

L
i is the corresponding cumu-

lative clinch of ui from clock 0 to clock L, and a0, ..., aL is the corresponding value

of a at each clock. Let Ui[Γ(t, L)] be the utility of ui in this scenario. Let Γ(−1, L) =

{L,R0
i , ..., R

L
i ; C0

i , ..., C
L
i ; a0, ..., aL} and Γ(L,L) = {L, R̃i

0
, ..., R̃i

L
; C0

i , ..., C
L
i ; a0, ..., aL}

be two special cases of Γ(t, L).

Lemma 2: If all other users report their true optimal demands at every clock,

then Ui[Γ(t− 1, L1)] ≥ Ui[Γ(t, L2)].

Proof: From (3.26), we have,

Ui[Γ(t− 1, L1)] = ln(γi + βiR
L1
i )− a0C0

i −
L1∑

k=1

ak(Ck
i − Ck−1

i ),

Ui[Γ(t, L2)] = ln(γi + βiR
L2
i )− a0C0

i −
L2∑

k=1

ak(Ck
i − Ck−1

i ). (3.27)

• If R̃i
t ≤ Rt

i, according to Algorithm 1, we have L2 ≤ L1 and RL2
i ≤ RL1

i .
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Then,

Ui[Γ(t− 1, L1)]− Ui[Γ(t, L2)]

= ln(γi + βiR
L1
i )− ln(γi + βiR

L2
i )−

L1∑

k=L2+1

ak(Ck
i − Ck−1

i )

≥ ln(γi + βiR
L1
i )− ln(γi + βiR

L2
i )− aL1(CL1

i − CL2
i ). (3.28)

When δ is sufficiently small, CL1
i = RL1

i and CL2
i = RL2

i . Since Rt
i =

max[Rmin
i , min( 1

at − γi

βi
, Rmax

i )],

– if RL1
i > Rmin

i , according to (3.12), we get aL1 ≤ ∂ ln(γi+βiRi)
∂Ri

|
Ri=R

L1
i

.

Thus, (3.28) becomes

Ui[Γ(t− 1, L1)]− Ui[Γ(t, L2)]

≥ [ln(γi + βiR
L1
i )− ∂ ln(γi + βiRi)

∂Ri

|
Ri=R

L1
i

(RL1
i −RL2

i )]− ln(γi + βiR
L2
i )

≥ 0 (see Figure 3.3(a)). (3.29)

– if RL1
i = Rmin

i , since Rmin
i ≤ RL2

i ≤ RL1
i = Rmin

i , we have RL2
i = Rmin

i =

RL1
i . Therefore,

Ui[Γ(t− 1, L1)] = Ui[Γ(t, L2)]. (3.30)

So, if R̃i
t ≤ Rt

i, we have Ui[Γ(t− 1, L1)] ≥ Ui[Γ(t, L2)].

• If R̃i
t

> Rt
i, according to Algorithm 1, we have L2 ≥ L1 and RL2

i ≥ RL1
i .

Then,

Ui[Γ(t− 1, L1)]− Ui[Γ(t, L2)]

= ln(γi + βiR
L1
i )− ln(γi + βiR

L2
i ) +

L2∑

k=L1+1

ak(Ck
i − Ck−1

i )

≥ ln(γi + βiR
L1
i )− ln(γi + βiR

L2
i ) + aL1(CL2

i − CL1
i ). (3.31)
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When δ is sufficiently small, CL1
i = RL1

i and CL2
i = RL2

i . Since Rt
i =

max[Rmin
i , min( 1

at − γi

βi
, Rmax

i )],

– if RL1
i < Rmax

i , according to (3.12), aL1 ≥ ∂ ln(γi+βiRi)
∂Ri

|
Ri=R

L1
i

. Thus,

(3.31) becomes

Ui[Γ(t− 1, L1)]− Ui[Γ(t, L2)]

≥ ln(γi + βiR
L1
i )− [ln(γi + βiR

L2
i )− ∂ ln(γi + βiRi)

∂Ri

|
Ri=R

L1
i

(RL2
i −RL1

i )]

≥ 0 (see Figure 3.3(b)). (3.32)

– if RL1
i = Rmax

i , since Rmax
i ≥ RL2

i ≥ RL1
i = Rmax

i , we have RL2
i = Rmax

i =

RL1
i . Therefore,

Ui[Γ(t− 1, L1)] = Ui[Γ(t, L2)]. (3.33)

So, if R̃i
t
> Rt

i, we still have Ui[Γ(t− 1, L1)] ≥ Ui[Γ(t, L2)].

In all, we can show that Ui[Γ(t− 1, L1)] ≥ Ui[Γ(t, L2)]. This completes the proof.

With Lemma 2, we can now show that the best strategy of each user is to

report his/her true optimal demand at every clock.

Theorem 2 (Cheat-Proof): Reporting true optimal demand at every clock is a

mutually best response for every user, i.e., Ui[Γ(L3, L3)] ≤ Ui[Γ(−1, L4)] ∀i.

Proof: If all the other users report their true optimal demands in every

clock, according to Lemma 2, we have Ui[Γ(L3, L3)] ≤ Ui[Γ(L3 − 1, L̃3)] ≤ ... ≤

Ui[Γ(−1, L4)], where L̃3 stands for the final clock index of the following scenario:

from clock 0 to clock L3−1, ui reports R̃i
0
, ..., R̃i

L3−1
, and from clock L3 to the final

clock L̃3, ui reports RL3
i , ..., RL̃3

i . Since all users are non-collaborative, reporting true
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optimal demand at every clock is a mutually best response for every user. There is

no incentive for the users to cheat since any cheating will lead to a loss in utility.

Therefore, the proposed scheme is cheat-proof. This completes the proof.

In the above theorem, we give a theoretical proof for the cheat-proof strategy.

In the following section, we will verify this cheat-proof strategy through experimental

results.

3.5 Experimental Results

In order to evaluate the proposed game-theoretic multi-user rate allocation

game, we conduct experiments on real video data. Seven video sequences: Akiyo,

Mobile, Table, Carphone, Coastguard, Foreman, and Football in QCIF format, are

tested. Notice that these video sequences include slow, medium or fast motion,

and smooth or complex scene. We use the state-of-art H.264 JM 9.0 video codec

to encode the video sequences [6]. By changing the quantization parameter (QP)

or using the rate control feature, we are able to compress the video sequences at

different bit-rate and achieve different quality requirements.

3.5.1 Parameter Estimation

From Section 3.1, we can see that there are several parameters in our frame-

work, γi, βi, Rmin
i , and Rmax

i . In this subsection, we will discuss how to estimate

these parameters.
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Table 3.1: γ?
i , β?

i , Rmin
i (kb/s), and Rmax

i (kb/s) for different sequence by training.

Sequence γ?
i β?

i Rmin
i (kb/s) Rmax

i (kb/s)

Akiyo 6.8449 0.0416 1.5119 84.5447

Carphone 6.6759 0.0114 20.2554 322.0153

Coastguard 6.6796 0.0043 28.4987 878.8011

Foreman 6.7418 0.0093 17.8168 388.7091

Football 6.2201 0.0024 286.311 1720

Mobile 6.3464 0.0025 225.0682 1610

Table 6.8135 0.0074 12.7781 481.1014

According to (3.3) and (3.6), we have:

PSNRi = 10(log10 e) ln
2552

Di

= (10 log10 e)(γi + βiRi) (3.34)

Therefore, we can estimate γi and βi using off-line training. For each video

sequence, we first generate a set of (PSNRi, Ri) by encoding the sequence using

H.264 JM 9.0 with different QP. Then, the optimal γ?
i and β?

i can be computed by:

(γ?
i , β

?
i ) = min

γi,βi

∑
j

[PSNRi(j)− (10 log10 e)(γi + βiRi(j))]
2, (3.35)

where j is the index of the training set.

Through the training data and equation above, we get the optimal γ?
i and β?

i

for different video sequences and show them in Table 3.1. As shown in Figure 3.4,
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Figure 3.4: Training γ and β: (a) Football; (b) Coastguard.

with the optimal γ?
i and β?

i , the (10 log10 e)(γi+βiRi) can approximate PSNRi well.

Due to the page limitation, we only show the results for Football and Coastguard.

Similar results are observed for other sequences.

After finding the optimal γ?
i and β?

i , we derive the values for Rmin
i and Rmax

i .

Suppose that the minimal desired PSNR (quality) constraint is PSNRmin, e.g.,

30dB, and the maximal satisfied PSNR (quality) constraint is PSNRmax, e.g., 45dB.

According to (3.34), we have:

Rmin
i =

1

β?
i

(
PSNRmin

10 log10 e
− γ?

i ),

Rmax
i =

1

β?
i

(
PSNRmax

10 log10 e
− γ?

i ). (3.36)

According the equations above, the Rmin
i and Rmax

i for different sequences are

obtained and shown in Table 3.1. From Table 3.1, we can see that the tested video

sequences can be classified to four categories according to β?, Rmin
i and Rmax

i : slow

motion and smooth scene (Akiyo), medium motion and smooth scene (Carphone,

Foreman, and Table), medium motion and complex scene (Coastguard), and fast or
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Figure 3.5: Allocated rates for Akiyo, Carphone, Coastguard, Foreman, Table, Foot-

ball, and Mobile using different methods.

complex motion (Football and Mobile).

3.5.2 Multi-User Rate Allocation

We compare the proposed method with three approaches: the Absolute Fair-

ness in Rate (AFR), which equally divides the available bandwidth to all the users,

the Absolute Fairness in Distortion (AFD), which minimizes the maximal distor-

tion of all the users, i.e., min-max fairness, and the approach Maximizing the Sum

of the PSNRs (MSPSNR), i.e. the traditional optimization-based approach shown

in (3.2) with uniform weights. Notice that for AFR, AFD, and MSPSNR, the
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Figure 3.6: The sum of PSNR vs. the available network bandwidth R.

allocated rate should be within [Rmin
i , Rmax

i ]. Otherwise, we set it to be Rmin
i or

Rmax
i and re-allocate the rest rate for the other users. Given the video sequences

to be transmitted, the available bandwidth R, we can compute the rate allocated

to each video sequence using different methods, i.e., AFD, AFR, MSPSNR, and

the proposed method. Then, setting the allocated bit-rate as the target bit-rate,

we compress the video sequence using the rate control feature in H.264 JM 9.0

reference software. Finally, each user transmits the compressed bitstream to the

corresponding receiver.

In the experiments, we assume that there are seven users u1, u2, ..., u7. They

transmit Akiyo, Carphone, Coastguard, Foreman, Table, Football, and Mobile to

seven receivers r1, r2, ..., r7, respectively. We test R at 1000, 2000, 3000, 4000 and
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Figure 3.7: Cheat-proof performance: (a) AFD, AFR, and MSPSNR; (b) Proposed

Method.

5000 kb/s. The allocated bit-rate for each video sequence in different situations

(i.e., different R) using different methods (i.e., AFD, AFR, MSPSNR, and the

proposed method) are shown in Figure 3.5. From Figure 3.5, we can see that AFR

equally allocates the bandwidth to each users if the allocated bit-rate is within

[Rmin
i , Rmax

i ]. AFD tries to allocate more bit-rate to the video sequence that has

more complex motion and/or scene (a smaller β?) to preserve constant quality among

different users. On the contrary, MSPSNR favors the video sequence that has

a larger β? since allocating more bit-rate to the sequence with a larger β? leads

to a greater increase in the sum of the PSNRs. However, with MSPSNR, the

sequence with β?
i will not be allocated more bit-rate than Rmin

i if there is a sequence

with β?
j > β?

i who has not been allocated its maximal rate requirement Rmax
j yet.

Specifically, the rate controller will first allocate each user with Rmin
i . Then, the

remaining rates will be first allocated to Akiyo until the bit-rate of Akiyo achieves

its maximal requirement. If there are still some unused rates, then Carphone will
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be satisfied first. And the bit-rate of Football with the smallest β? stays at its

minimal requirement until all other sequences with higher β? have achieved their

maximal rate requirements. Obviously, this is not fair to the users who transmit

the sequences with smaller β?. By taking the proportional fairness into account,

the proposed method can avoid this disadvantage and balance the rate allocation

between the sequences with a larger β? and a smaller β?. For example, as shown in

Figure 3.5, when the total available network bandwidth R increases from 3000kb/s

to 4000kb/s, both the bit-rate of Mobile and Football increase. This is because

the proposed method with the proportional fairness criterion aims at maximizing

the product of the utility function Ui, and keeping a certain balance between the

sequences with a larger β? and a smaller β? leads to an increase in the product.

Let T PSNR =
∑N

i=1 PSNRi be the sum of the analytical PSNRi computed

by (3.34) of all the users. In Figure 3.6, we show T PSNR versus the available

network bandwidth R. We can see that there is a big gap between the performance

of AFD, AFR and MSPSNR, which means using AFD or AFR leads to a big

loss in the system performance. However, the performance of the proposed method

is almost the same as that of MSPSNR, which fully demonstrates the efficiency

of the proposed method. Therefore, while achieving a fair rate allocation among

different users, the proposed method still performs well in terms of total PSNR.

Finally, we evaluate the cheat-proof property of different methods. As shown

in Table 3.1, since β is the most important parameter representing the characteristics

of video sequences, the best way for ui to pretend as another user uj is to use βj

rather than βi in calculating optimal demand. Therefore, we evaluate the cheat-
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proof property in terms of β. In this experiment, the available network bandwidth

R is set to be 4.2Mb/s. We assume that u6 who transmits Mobile sequence will

cheat while other users are honest. In AFD, AFR and MSPSNR, u6 reports a

false β̃ to the controller by scaling the original β with a factor k, i.e., β̃ = kβ.

In the proposed method, at each clock t of the auction, u6 uses β̃ to generate the

“optimal” demand R̃6
t
using R̃6

t
= max[Rmin

6 , min( 1
at − γ6

kβ6
, Rmax

6 )] and reports R̃6
t

to the controller. As shown in Figure 3.7(a), the PSNR performance of AFR is

independent of the scale factor k. This is because AFR does not care about β and

just equally allocates the bandwidth to each user if the allocated bit-rate is within

[Rmin
i , Rmax

i ]. The PSNR performance of AFD decreases as k increases. This is

because AFD tries to allocate more bit-rate to the video sequence with a smaller β

to preserve constant quality among different users. Therefore, with AFD, all users

tend to report a smaller β to the controller to obtain a better PSNR performance.

On the contrary, the PSNR performance of MSPSNR is an increasing piecewise

constant function in terms of k. This is because, with MSPSNR, the sequence

with βi will not be allocated more bit-rate than Rmin
i if there is a sequence with

βj > βi who has not been allocated its maximal rate requirement Rmax
j yet. To be

allocated more rate and obtain a higher PSNR, u6 should increase k until at least

kβ6 > βj where βj = minl(βl > β6). Therefore, with MSPSNR, all users tend to

report a larger β to the controller to obtain a better PSNR performance. However,

with the proposed method, as shown in Figure 3.7(b), reporting the optimal demand

generated by the true β (k=1) will lead to the best utility. Any deviation will lead

to a loss in terms of utility, which means that the proposed method is cheat-proof.
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Therefore, the proposed method ensures all users will be honest about their private

information.

3.6 Summary

In this chapter, we proposed a game-theoretic framework for multi-user multi-

media rate allocation and a distributed cheat-proof scheme for users to converge to

the NE of the game. Different from the traditional optimization-based approaches,

which mainly focus on the efficiency issue, e.g. maximizing the system performance,

the proposed method not only considers the efficiency issue but also the fairness

issue. From the experimental results on real video sequences, we can see that with

the proportional fairness criterion, the proposed game-theoretic method can effi-

ciently and fairly allocate bit-rate to different users by allocating more bit-rate to

the sequence with slower motion and/or simpler scene while keeping an eye on the

fast motion and/or complex scene sequence. We also find that, with the proposed

distributed cheat-proof rate allocation scheme, reporting the true optimal demand

at every clock is the mutual best response for every user. Moreover, we show that

the traditional optimization-based method that maximizes the weighted sum of the

PSNRs is a special case of the game-theoretic framework with the utility function

defined as an exponential function of PSNR.

54



Chapter 4

Peer-to-Peer Cooperative Video Streaming Social Networks

With the rapid development of signal processing, communication, and net-

working technologies, video-over-IP applications become more and more popular

and have attracted millions of users over the Internet [1] [9]. One simple solution to

video streaming over Internet is the client-server service model [47] [76], where the

video is streamed directly from a server to clients. However, with the client-server

service model, the upload bandwidth of the server grows proportionally with the

number of clients [86], which makes the large-scale video streaming impractical.

To reduce the workload of the server, Peer-to-Peer (P2P) service model is

proposed [36] [133], where a peer not only acts as a client to download data from

the network, but also acts as a server to upload data for the other peers in the

network. The upload bandwidth of the peers reduces the workload placed on the

server dramatically, which makes large-scale video streaming possible. Recently,

several industrial large-scale P2P video streaming systems have been developed,

including Coolstreaming [133], PPLive [4], PPStream [5], UUSee [8] and Sopcast

[7]. Studies show that these systems can support hundreds of thousands of users

simultaneously [65].

While P2P video streaming systems have achieved promising results, they have

several drawbacks. First, there is a large number of unnecessary traverse links within
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a provider’s network. As observed in [129], each P2P bit on the Verizon network

traverses 1000 miles and takes 5.5 metro-hops on average. Second, there is a huge

number of cross Internet Service Provider (ISP) traffic. The studies in [71] [107]

showed that 50%-90% of the existing local pieces in active peers are downloaded

externally. Third, the differences in playback time among peers can be as high as

140 seconds [65], and the lag can be greater if the source rate is higher. Fourth,

most of the current P2P systems assume that all peers are willing to contribute

their resources. However, this assumption may not be true since the P2P systems

are self-organizing networks and the peers are selfish by nature [128] [60]. Note that

the selfish peers will act as free-riders if being free-riders can improve their utilities.

In the literature, many approaches have been proposed to overcome these

drawbacks. Karagiannis et al. [71] and Madhyastha et al. [87] proposed to use

locality-aware P2P schemes to reduce the unnecessary traverse links within and

cross ISPs and thus reduce the download time. Purandare and Guha [100] proposed

an alliance based peering scheme to reduce the playback time lag and improve

the Quality of Service (QoS). Xie et al. [129] proposed a P4P architecture that

allows cooperative traffic control between applications and network providers. To

stimulate selfish peers to contribute their resources, payment mechanisms [121] [57]

and reputation schemes [88] [59] are proposed, where peers pay points to receive data

and earn points by forwarding data to others. However, such payment or reputation

based mechanisms often demand a centralized architecture and thus hinder their

scalability.

Game theory is a mathematical tool that analyzes the strategic interactions
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among multiple decision makers. Recently, it draws great attentions in cognitive

networking [123], multimedia social networking [136], and is being applied to many

multimedia signal processing problems such as video coding [12] and multimedia

communications [29]. In P2P networks, peers make intelligent decisions on their

strategies of requesting and forwarding packets based on their needs and other peers’

actions. Moreover, since peers are rational and thus naturally selfish, they have no

incentive to contribute their resources for other peers. Therefore, it is natural to

study the intelligent behaviors and interactions of selfish peers in P2P networks from

a game theoretic perspective [128] [84]. Using a mental cost to describe the level

of the peer’s altruism, the authors in [128] presented a game theoretical model to

analyze nodes’ behaviors and the influence of incentive mechanism. In [84], a game

theoretic framework is proposed for designing distributed, cheat-proof and attack-

resistant cooperation stimulation strategies for P2P live streaming social networks.

Most of the existing schemes treat every peer as an independent individual.

However, in reality, every peer can have a large number of geographically neighboring

peers with large intra-group upload and download bandwidths, e.g. the peers in the

same lab, building, or campus. Here, we name those geographically neighboring

peers with large intra-group upload and download bandwidths as group peers. To

reduce the unnecessary traverse links and improve network efficiency, instead of

considering each peer’s strategy independently, we investigate possible cooperation

among the group peers. Moreover, since peers are naturally selfish, they will act as

free-riders if doing so can improve their utilities. In such a case, full cooperation

cannot be guaranteed. Instead, to achieve better payoff, rational peers will adjust
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their degree of cooperation by learning from their payoff history. Therefore, a key

question to answer is: “how a group of selfish peers should cooperate with each other

to achieve better streaming performance?”

The main contributions of this chapter are summarized as follows.

• We propose a cooperative streaming scheme to enable cooperation among

group peers to achieve better streaming performance.

• In the proposed scheme, we define the utility function of a peer by taking into

account the possibility of real-time streaming and the cost of acting as a server

to upload data for the other peers.

• Due to their selfish nature, peers tend to act as free riders to improve their

own utilities. Moreover, the peers may take out-of-equilibrium strategies due

to the uncertainty of the strategies of the other peers. Therefore, a robust

Nash equilibrium (NE) solution is desired for every peer. In this chapter, we

formulate the cooperative streaming problem as an evolutionary game and

derive the evolutionarily stable strategy (ESS) for every peer, which is the

desired stable NE.

• To stimulate cooperation, the cooperative streaming scheme should be simple

since peers may not be willing to join the cooperative streaming if the protocol

is complicated. The proposed cooperative streaming scheme is very simple.

Each peer tosses a coin to decide whether to be an agent or a free rider. If the

outcome is head, the peer acts as an agent to download data from the peers

outside the group. Otherwise, the peer acts as a free-rider to download data
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from the agents. And the probability of being a head for the coin is learned

from the peer’s own past payoff history.

• Due to the highly dynamic behaviors of the peers, i.e., the peers may join or

leave the P2P network at any time, the cooperative streaming scheme should

be distributed. We propose a distributed algorithm for every peer to approach

the ESS by learning from the peer’s own past payoff history.

The rest of this chapter is organized as follows. In Section 4.1, we describe the

system model and the utility function. Then, we show in details how to select agents

in a homogeneous group in Section 4.2. We extend the analysis to the heterogeneous

case in Section 4.3. In Section 4.4, we propose a distributed learning algorithm for

ESS. Finally, we show the simulation results in Section 4.5 and draw conclusions in

Section 4.6.

4.1 The System Model and Utility Function

4.1.1 System Model

As shown in Figure 4.1, there is a set of group peers1 (three in this example)

who want to view a real-time video streaming simultaneously. Within a group, every

peer can choose either to be an agent or a normal peer. If the peer serves as an

agent, he/she not only needs to act as a client to download video data from the

1How to group the peers itself is an interesting problem. However, in this chapter, we assume

that the peers have already been grouped and mainly focus on how the group peers cooperate with

each other to achieve better streaming performance.
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Agent

Group Peers

Figure 4.1: A cooperative streaming example.

agents in other groups, but also needs to act as a server to upload video streams

for both the agents in other groups and the peers in the same group. However, if

the peer chooses not to be an agent, he/she only needs to download/upload data

from/to the peers in the same group. We assume that the upload and download

bandwidth within the group is larger than those cross groups. In such a case, peers

tend to be a normal peer due to the selfish nature. Nevertheless, the normal peers,

on the other hand, take a risk of receiving degraded streaming performance since

there may not be sufficient agents to download data from other groups. In order

to achieve good streaming performance through cooperation, a question need to be

addressed: given a group of peers, which peers should serve as agents.
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4.1.2 Utility Functions

In a P2P network, a peer not only acts as a client to download video data from

the other peers but also acts as a server to upload video data for the other peers.

Therefore, while a peer can benefit from downloading data from the other peers,

he/she also incurs a cost in uploading data for the other peers, where the cost can

be resource spending on uploading data, e.g. bandwidth, buffer size.

Given the group peers, u1, u2, ..., uN , we assume that k peers are willing to

serve as agents to download multimedia data from the peers outside the group. Let

the download rate be the transmission speed between an agent and a corresponding

peer outside the group. If we denote that the download rates of the k agents are r1,

r2, ..., rk, then the total download rate of the group peers is given by

yk =
k∑

i=1

ri. (4.1)

Since the agents randomly and independently select peers outside the group for

downloading data, the download rate ri’s are random variables. According to [68],

the Cumulative Distribution Function (CDF) of a peer’s download bandwidth can

be modelled as a linear function, which means that the PDF of a peer’s down-

load bandwidth can be modelled as a uniform distribution, i.e., ri’s are uniformly

distributed.

To provide more insight into the cooperative streaming problem, we first con-

sider a simple scenario without buffering. Then, we extend our discussion to the

case when there is buffering effect in Section 4.5. For the scenario without buffering,

if the total download rate yk is not smaller than the source rate r, then the group
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peers can have a real-time streaming, and all the group peers can obtain a certain

gain G. Otherwise, there will be some delay, and in this case we assume the gain is

zero. Therefore, given the total download rate yk and the source rate r, if peer ui

chooses to be an agent, then the utility function of ui is given by

UA,i(k) = Pr(yk ≥ r)G− Ci,∀k ∈ [1, N ], (4.2)

where Ci is the cost of ui when he/she serves as an agent, and Pr(yk ≥ r) is the

probability of achieving a real-time streaming which can be computed according to

Theorem 1.

Since the upload and download bandwidths within the group is large, the cost

of uploading data to the other peers within the group can be negligible. In such

a case, if peer ui chooses not to be an agent, then there is no cost for ui and the

utility function becomes

UN,i(k) =





Pr(yk ≥ r)G, if k ∈ [1, N − 1];

0, if k = 0.

(4.3)

Theorem 1: If r1, r2,..., rk are i.i.d. uniformly distributed within [rL, rU ],

then Pr(yk ≥ r) is given by

Pr(yk ≥ r) =
1

2k!

k∑

l=0

(−1)l




k

l




[
(k − l)k − sgn(r̂ − l)(r̂ − l)k

]
, (4.4)

and when k is sufficiently large, Pr(yk ≥ r) can be approximated as

Pr(yk ≥ r) ≈ Q


 r̂ − k

2√
k
12


 , (4.5)

where r̂ = r−krL

rU−rL and Q(x) is the Gaussian tail function
∫∞

x
1√
2π

exp−
x2

2 dx.
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Proof :Let r̂l = rl−rL

rU−rL , ∀l, then r̂1, r̂2, ..., r̂k are i.i.d. uniformly distributed

with [0, 1]. And the characteristic function of r̂l is given by

φ(t) =
i(1− eit)

t
. (4.6)

Let ŷk =
∑k

l=1 r̂l, then the characteristic function of ŷk can be computed by

φŷk
(t) =

(
i(1− eit)

t

)k

. (4.7)

Therefore, the density function of ŷk is

fŷk
(y)=F−1

t

[(
i(1− eit)

t

)k
]

(y)

=
1

2(k − 1)!

k∑

l=0

(−1)l




k

l


 sgn(y − l)(y − l)k−1. (4.8)

Since Pr(yk ≥ r) = Pr(ŷk ≥ r̂), according to (4.8), we have

Pr(yk ≥ r)

= Pr(ŷk ≥ r̂) =

∫ ∞

r̂

fŷk
(y)dy

=
1

2k!

k∑

l=0

(−1)l




k

l




[
(k − l)k − sgn(r̂ − l)(r̂ − l)k

]
. (4.9)

When k is sufficiently large, according to the Central Limit Theory, the dis-

tribution of ŷk can be approximated as Gaussian distribution N(k
2
, k

12
). Therefore,

we have

Pr(yk ≥ r) = Pr(ŷk ≥ r̂) ≈ Q


 r̂ − k

2√
k
12


 . (4.10)
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4.2 Agents Selection Within A Homogeneous Group

In the previous section, we have discussed the system model and the peer’s

utility function. To optimize the streaming performance, proper peers should serve

as agents to download data from the peers outside the group. In this section, we

will discuss how to select agents within a homogeneous group where the cost of all

peers serving as an agent is assumed to be the same.

4.2.1 Centralized Agent Selection

If there is a central controller who can choose which peers should act as agents,

then a straightforward criterion of selecting proper agents is to maximize the social

welfare, which is the sum of all peers’ utilities.

Let Ci = C be the cost of a peer serving as an agent in a homogeneous group.

Then the social welfare of an N − peer group with k agents can be calculated by

SW (k) = Pr(yk ≥ r)GN − kC. (4.11)

Based on (4.11), the agent selection problem to maximize the social welfare

can be formulated as

max
k

SW (k) = max
k

[Pr(yk ≥ r)GN − kC] , (4.12)

where k ∈ {1, 2, ..., N}.

By solving (4.12), we can find the optimal k? that maximizes the social wel-

fare. Then, the central controller can choose k? peers from the group as agents to

download data from the peers outside the group based on some mechanism, e.g.
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the peers take turns to serve as agents. However, since peers’ behaviors are highly

dynamic, they may join in or leave the P2P network at any time. In such a case,

the centralized approach may not be practical.

4.2.2 Distributed Agent Selection

To overcome the drawback of the centralized approach, it is possible to consider

a distributed approach where each peer acts as an agent with probability x. Then,

according to (4.2) and (4.3), the group’s social welfare can be computed by

Utotal(x)=
N∑

i=1




N

i


 xi(1− x)N−i

[
Pr(yi ≥ r)GN − iC

]
. (4.13)

The problem of finding an optimal x to maximize the social welfare can be

formulated as

max
x

N∑
i=1




N

i


 xi(1− x)N−i

[
Pr(yi ≥ r)GN − iC

]

s.t. 0 ≤ x ≤ 1. (4.14)

However, since peers are selfish by nature, they are not as cooperative as a

system designer/controller desires. By solving (4.14), we can find the optimal x?

that maximizes the social welfare, but x? can not maximize each peer’s own utility.

Therefore, the social welfare maximizer x? is not attainable when peers are selfish.

Moreover, the solution to the optimization problem shown in (4.14) is not stable

since any perturbation will lead to a new solution.
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4.2.3 Evolutionary Cooperative Streaming Game

In order to provide a robust equilibrium strategy for the selfish peers, we adopt

the concept of Evolutionarily Stable Strategy (ESS) [110] [122], which is defined as

follows.

Definition 1: A strategy a? is an ESS if and only if, ∀a 6= a?, a? satisfies

• equilibrium condition: Ui(a, a?) ≤ Ui(a
?, a?), and

• stability condition: if Ui(a, a?) = Ui(a
?, a?), Ui(a, a) < Ui(a

?, a),

where Ui(a1, a2) is the utility of player i when he/she uses strategy a1 and another

player uses strategy a2.

Since all peers are selfish, they will cheat if cheating can improve their payoffs,

which means that all peers are uncertain of other peers’ actions and utilities. In such

a case, to improve their utilities, peers will try different strategies in every play and

learn from the strategic interactions using the methodology of understanding-by-

building. During the process, the percentage of peers using a certain pure strategy

may change. Such a population evolution can be modelled by replicator dynamics.

Specifically, let xa stand for the probability of a peer using pure strategy a ∈ A,

where A = {A,N} is the set of pure strategies including being an agent (A) and

not being an agent (N). By replicator dynamics, the evolution dynamics of xa are

given by the following differential equation

ẋa = η[Ū(a, x−a)− Ū(xa)]xa, (4.15)

where Ū(a, x−a) is the average payoff of the peers using pure strategy a, x−a is the
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set of peers who use pure strategies other than a, Ū(xa) is the average payoff of all

peers, and η is a positive scale factor.

From (4.15), we can see that if adopting pure strategy a can lead to a higher

payoff than the average level, the probability of a peer using a will grow and the

growth rate ẋa/xa is proportional to the difference between the average payoff of

using strategy a (i.e., Ū(a, x−a)) and the average payoff of all peers (i.e., Ū(xa)).

4.2.4 Analysis of the Cooperative Streaming Game

According to (4.2) and (4.3), the average payoff of a peer if he/she choose to

be an agent can be computed by

ŪA(x) =
N−1∑
i=0



N−1

i


 xi(1− x)N−1−i

[
Pr(yi+1 ≥ r)G− C

]
, (4.16)

where x is the probability of a peer being an agent, and

(
N−1

i

)
xi(1− x)N−1−i is the

probability that there are i agents out of N − 1 other peers.

Similarly, the average payoff of a peer if he/she chooses not to be an agent is

given by

ŪN(x) =
N−1∑
i=1




N−1

i


 xi(1− x)N−1−iPr(yi ≥ r)G. (4.17)

According to (4.16) and (4.17), the average payoff of a peer is

Ū(x) = xŪA(x) + (1− x)ŪN(x). (4.18)

Substituting (4.18) back to (4.15), we have

ẋ = ηx(1− x)[ŪA(x)− ŪN(x)]. (4.19)
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Figure 4.2: The deceasing property of wi.

At equilibrium x?, no player will deviate from the optimal strategy, which

means ẋ? = 0, and we can obtain x? = 0, 1, or the solutions to ŪA(x) = ŪN(x).

However, since ẋ? = 0 is only the necessary condition for x? to be ESS, we examine

the sufficient condition for each ESS candidate and draw the following conclusions

with the proofs shown in Theorem 2-4.

• x? = 0 is an ESS only when Pr(y1 ≥ r)G− C ≤ 0.

• x? = 1 is an ESS only when Pr(yN ≥ r)G− Pr(yN−1 ≥ r)G ≥ C.

• Let x? be the solution to ŪA(x) = ŪN(x), and x? ∈ (0, 1). Then, x? is an ESS.

Lemma 1: Let f(x) = ŪA(x) − ŪN(x), then f ′(x) < 0, ∀x ∈ [0, 1]. Proof :
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According to (4.16) and (4.17), we have

f(x) =
N−1∑
i=0



N−1

i


 xi(1− x)N−1−iwi − C, (4.20)

where wi = [Pr(yi+1 ≥ r)− Pr(yi ≥ r)]G.

• ∀x ∈ (0, 1), by taking the derivative of f(x) over x, we have

f ′(x) =
N−1∑
i=0



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x]wi,

=

i1∑
i=0



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x]wi

+
N−1∑

i=i1+1



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x]wi,

(4.21)

where i1 is the integer such that i1 ≤ (N − 1)x and i1 + 1 > (N − 1)x.

Since wi stands for the additional gain by introducing one more agent into

the i-agent system, as shown in Fig. 4.2, it is a decreasing function in terms

of i, which means that wi ≥ wi1 ,∀i ≤ i1 and wi ≤ wi1 ,∀i > i1. Therefore,
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according to (4.21), we have

f ′(x) <

i1∑
i=0



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x]wi1

+
N−1∑

i=i1+1



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x]wi1 ,

= wi1

N−1∑
i=0



N−1

i


 xi−1(1− x)N−2−i[i− (N − 1)x],

= wi1

d




∑N−1
i=0



N−1

i


 xi(1− x)N−1−i




dx
,

= 0. (4.22)

Therefore, f ′(x) < 0, ∀x ∈ (0, 1).

• The derivative of f(x) over x at x = 0 can be computed by

f ′(0) = lim
ε→0

f(ε)− f(0)

ε

= lim
ε→0

∑N−1
i=0



N−1

i


 εi(1− ε)N−1−iwi − w0

ε

= lim
ε→0

(1− ε)N−1w0 − w0

ε
+ lim

ε→0

(N − 1)ε(1− ε)N−2w1

ε

= (N − 1)(w1 − w0)

< 0. (4.23)

where the last inequality comes from the fact that wi is a decreasing function

in terms of i.
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• Similarly, the derivative of f(x) over x at x = 1 can be computed by

f ′(1) = lim
ε→0

f(1)− f(1− ε)

ε

= lim
ε→0

wN−1 −
∑N−1

i=0



N−1

i


 (1− ε)iεN−1−iwi

ε

= lim
ε→0

wN−1 − (1− ε)N−1wN−1

ε
+ lim

ε→0

−(N − 1)(1− ε)N−2εwN−2

ε

= (N − 1)(wN−1 − wN−2)

< 0. (4.24)

where the last inequality comes from the fact that wi is a decreasing function

in terms of i.

In all, f ′(x) < 0, ∀x ∈ [0, 1]. This completes the proof of the lemma.

Theorem 2: The condition for x? = 0 to be an ESS is Pr(y1 ≥ r)G−C ≤ 0.

Proof : According to (4.16-4.18), the utility that a peer using mixed strategy

x and the other peers use mixed strategy x? = 0 can be written as

Ū(x, 0) = ŪN(0) + (ŪA(0)− ŪN(0))x,

where ŪA(0) = Pr(y1 ≥ r)G− C and ŪN(0) = 0.

• If Pr(y1 ≥ r)G− C > 0, i.e. ŪA(0) > ŪN(0), every peer will deviate to x = 1

to obtain ŪA(0) rather than ŪN(0).

• If Pr(y1 ≥ r)G− C < 0, i.e. ŪA(0) < ŪN(0), every peer will stay at x = 0 to

obtain ŪN(0) rather than ŪA(0).
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• If Pr(y1 ≥ r)G − C = 0, i.e. ŪA(0) = ŪN(0), then Ū(x, 0) = 0 ∀x, and

f(0) = ŪA(0)− ŪN(0) = 0. According to Lemma 1, we know that f ′(x) < 0

∀x ∈ [0, 1], so f(x) = ŪA(x)− ŪN(x) < 0. In such a case, Ū(0, x) = ŪN(x) >

Ū(x, x) = ŪN(x)+(ŪA(x)−ŪN(x))x, which means x? = 0 is an ESS according

to Definition 1.

Therefore, x? = 0 is an ESS only when Pr(y1 ≥ r)G−C ≤ 0.

Theorem 3: The condition for x? = 1 to be an ESS is Pr(yN ≥ r)G −

Pr(yN−1 ≥ r)G ≥ C.

Proof : According to (4.16-4.18), the utility that a peer using mixed strategy

x and the other peers use mixed strategy x? = 1 can be written as

Ū(x, 1) = ŪN(1) + (ŪA(1)− ŪN(1))x,

where ŪA(1) = Pr(yN ≥ r)G− C and ŪN(1) = Pr(yN−1 ≥ r)G.

• If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G < C, i.e., ŪN(1) > ŪA(1), every peer will

deviate to x = 0 to obtain ŪN(1) rather than ŪA(1).

• If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G > C, i.e., ŪN(1) < ŪA(1), every peer will

stay at x = 1 to obtain ŪA(1) rather than ŪN(1).

• If Pr(yN ≥ r)G − Pr(yN−1 ≥ r)G = C, i.e. ŪN(1) = ŪA(1), then Ū(x, 1) =

ŪN(1) ∀x, and f(1) = ŪA(1)− ŪN(1) = 0. According to Lemma 1, we know

that f ′(x) < 0 ∀x ∈ [0, 1], so f(x) = ŪA(x) − ŪN(x) > 0. In such a case,

Ū(1, x) = ŪN(x) + (ŪA(x)− ŪN(x))1 > Ū(x, x) = ŪN(x) + (ŪA(x)− ŪN(x))x,

which means x? = 1 is an ESS according to Definition 1.
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Therefore, x? = 1 is an ESS only when Pr(yN ≥ r)G− Pr(yN−1 ≥ r)G ≥ C.

Theorem 4: If x? ∈ (0, 1) is a solution to ŪA(x) = ŪN(x), then x? is an ESS.

Proof : Let Ūi(x, x?) be the utility of player i when player i uses mixed strategy

x and other users use mixed strategy x?. Then, we have

Ūi(x, x?) = xŪA(x?) + (1− x)ŪN(x?). (4.25)

Since x? is a solution to ŪA(x) = ŪN(x), we have ŪA(x?) = ŪN(x?). Therefore,

(4.25) becomes

Ūi(x, x?) = ŪA(x?) = Ūi(x
?, x?), (4.26)

which means x? satisfies the equilibrium condition shown in Definition 1.

Moreover, according to (4.18), we have

Ūi(x, x) = ŪN(x) + (ŪA(x)− ŪN(x))x, (4.27)

and

Ūi(x
?, x) = ŪN(x) + (ŪA(x)− ŪN(x))x?. (4.28)

Therefore, we have

Ūi(x
?, x)− Ūi(x, x) = (ŪA(x)− ŪN(x))(x? − x). (4.29)

From Lemma 1, we know that f(x) = ŪA(x) − ŪN(x) is a monotonically

decreasing function. Since ŪA(x?) = ŪN(x?), ŪA(x) − ŪN(x) > 0 if x < x?, and

ŪA(x)− ŪN(x) < 0 if x > x?. Therefore, (ŪA(x)− ŪN(x))(x?−x) > 0, ∀x 6= x?, i.e.

Ūi(x
?, x) > Ūi(x, x),∀x 6= x?, (4.30)
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which means x? satisfies the stability condition shown in Definition 1.

According to (4.26) and (4.30), we know that x? is an ESS.

4.3 Agents Selection Within A Heterogeneous Group

In this section, we will discuss how to select agents within a heterogeneous

group where the costs of the peers acting as agents are different.

Let xi,ai
stands for the probability of peer ui using pure strategy ai ∈ A.

By replicator dynamics, the evolution dynamics of xi,ai
are given by the following

differential equation

ẋi,ai
= η[Ūi(ai, x−i)− Ūi(xi)]xi,ai

, (4.31)

where Ūi(ai, x−i) is the average payoff of peer ui using pure strategy ai, Ūi(xi) is the

average payoff of peer ui using mixed strategy xi, and η is a positive scale factor.

Since it is generally very difficult to represent Ūi(ai, x−i) and Ūi(xi) in a com-

pact form, in the following, we first analyze a two-player game to gain some insight.

Then, we generalize the observation in the two-player game to the multi-player game.

Table 4.1: Utility table of a two-player game.
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4.3.1 Two-Player Game

Let x1 and x2 be the probability of u1 and u2 being an agent, respectively.

Let B1 = Pr(y1 ≥ r)G and B2 = Pr(y2 ≥ r)G. Then, the payoff matrix of u1 and

u2 can be written as in Table 4.1. Therefore, the average payoff Ū1(A, x2) can be

computed by

Ū1(A, x2) = (B2 − C1)x2 + (B1 − C1)(1− x2), (4.32)

and the average payoff Ū1(x1) becomes

Ū1(x1) = (B2 − C1)x1x2 + (B1 − C1)x1(1− x2) + B1(1− x1)x2. (4.33)

According to (4.31), the replicator dynamics equation of u1 is given by

ẋ1 = ηx1(1− x1) [B1 − C1 − (2B1 −B2)x2] . (4.34)

Similarly, the replicator dynamics equation of u2 can be computed by

ẋ2 = ηx2(1− x2) [B1 − C2 − (2B1 −B2)x1] . (4.35)

At equilibrium, we know that ẋ1 = 0 and ẋ2 = 0. According to (4.34) and

(4.35), we can get five equilibria: (0, 0), (0, 1), (1, 0), (1, 1), and the mixed strategy

equilibrium
(

B1−C2

2B1−B2
, B1−C1

2B1−B2

)
.

According to [41], if an equilibrium of the replicator dynamics equations is a

locally asymptotically stable point in a dynamic system, it is an ESS. Therefore,

by viewing (4.34) and (4.35) as a nonlinear dynamic system and analyzing the

corresponding Jacobian matrix, we can examine whether the five equilibria are ESSs.
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By taking partial derivatives of (4.34) and (4.35), the Jacobian matrix can be written

as

J =




∂ẋ1

∂x1

∂ẋ1

∂x2

∂ẋ2

∂x1

∂ẋ2

∂x2


 = η




J11 J12

J21 J22


 , (4.36)

where J11 = (1 − 2x1)(B1 − C1 − (2B1 − B2)x2), J12 = −x1(1 − x1)(2B1 − B2),

J21 = −x2(1− x2)(2B1 −B2), and J22 = (1− 2x2)(B1 − C2 − (2B1 −B2)x1).

The asymptotical stability requires that det(J) > 0 and tr(J) < 0 [41]. Sub-

stituting the five equilibria, i.e. (0, 0), (0, 1), (1, 0), (1, 1), and
(

B1−C2

2B1−B2
, B1−C1

2B1−B2

)
, to

(4.36), we conclude that

• If B2−B1−C1 > 0 and B2−B1−C2 > 0, there is a unique ESS (1, 1), where

both u1 and u2 converge to be agents.

• Elseif B2 − B1 − C1 > 0 and B2 − B1 − C2 < 0, there is a unique ESS (1, 0),

where u1 converges to be an agent and u2 converges to be a free-rider.

• Elseif B2 − B1 − C1 < 0 and B2 − B1 − C2 > 0, there is a unique ESS (0, 1),

where u2 converges to be an agent and u1 converges to be a free-rider.

• Else, there are two ESSs (0, 1) and (1, 0), where the converged strategy profiles

depends on the initial strategy profiles.

From the above analysis, we can see that when the gain of being an agent

(B2 − B1) is greater than the cost of being an agent (C1 or C2), the peer tends to

be an agent. And the peer with a higher cost tends to be a free-rider and rely on

the peer with a lower cost.
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Algorithm 2 : A Distributed Learning Algorithm For ESS

1. Given the step size η and the slot index t = 0, each peer ui initializes xi with

xi(0).

2. During slot t, for q = 1 : M ,

• ui tosses a coin with probability xi(t) being head. If the outcome is head,

ui serves as an agent and downloads data from the peers outside the group

with download rate ri(t, q). On the other hand, if the outcome is tail, ui

acts as a free-rider and downloads the data from the agents.

• ui computes his/her utility using (4.39).

• ui computes the indicator function using (4.38).

3. Then, ui approximates Ūi(A, x−i(t)) and Ūi(xi(t)) using (4.40) and (4.41).

4. Finally, ui updates the probability of being an agent xi(t) using (4.37).

4.3.2 Multi-Player Game

From the analysis of the two-player game, we can infer that the peer with

a higher cost (Ci) tends to take advantage of the peer with a lower cost. This

observation can be extended to multi-player game. If there are more than two peers

in the game, the strategy of the peers with higher C ′
is will converge to “N” with

a greater probability. The peers with lower C ′
is tend to be agents since they suffer

relatively heavier losses if no one serves as an agent.
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4.4 A Distributed Learning Algorithm For ESS

From the previous two sections, we can see that the ESS can be found by solv-

ing the replicator dynamics equations ((4.19) or (4.31)). However, solving the repli-

cator dynamics equations require the exchange of private information and strategies

adopted by other peers. In this section, we will present a distributed learning algo-

rithm that can gradually converge to ESS without information exchange.

We first discretize the replicator dynamics equation shown in (4.31) as

xi(t + 1) = xi(t) + η
[
Ūi(A, x−i(t))− Ūi(xi(t))

]
xi(t), (4.37)

where t is the slot index and xi(t) is the probability of ui being an agent during slot

t. Here, we assume that each slot can be further divided into M subslots and each

peer can choose to be an agent or not at the beginning of each subslot.

From (4.37), we can see that in order to update xi(t + 1), we need to first

compute Ūi(A, x−i(t)) and Ūi(xi(t)). Let us define an indicator function 1i(t, k) as

1i(t, q)=





1, if ui is an agent at subslot q in slot t,

0, else,

(4.38)

where q is the subslot index.

The immediate utility of ui at subslot q in slot t can be computed by

Ui(t, q) =





G− Ci, if ui is an agent and rt ≥ r,

−Ci, if ui is an agent and rt < r,

G, if ui is not an agent and rt ≥ r,

0, if ui is not an agent and rt < r,

(4.39)
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where rt is the total download rate of the agents and r is the source rate.

Then, Ūi(A, x−i(t)) can be approximated using

Ūi(A, x−i(t)) =

∑M
q=1 Ui(t, q)1i(t, q)∑M

q=1 1i(t, q)
, (4.40)

Similarly Ūi(xi(t)) can be approximated as

Ūi(xi(t)) =
1

M

M∑
q=1

Ui(t, q). (4.41)

Based on (4.37-4.41), ui can gradually learn the ESS. In Algorithm 2, we

summarize the detailed procedures of the proposed distributed learning algorithm.

4.5 Simulation Results

In all simulations, the parameters G, rL, and rU are set to be 1, 50, and

800, respectively. For convenience, in the rest of this chapter, we denote the cen-

tralized approach maximizing the social welfare shown in (4.12) as MSW-C, the

distributed approach maximizing the social welfare shown in (4.14) as MSW-D, and

the ESS-based approach as ESS-D. We compare the proposed methods with the

traditional P2P non-cooperation method, denoted as Non-Coop. In Non-Coop,

each peer acts as an individual and randomly selects some peers for downloading

video streams. Such a protocol has been widely used in the existing P2P systems,

e.g., Coolstreaming [133] and PPLive [4].

In the first simulation, we show the social welfare (the sum of all peers’ util-

ities) comparison among different approaches, where we assume that there are 20

homogenous peers and the cost C is 0.1. As show in Fig. 4.3, MSW-C achieves the
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best social welfare performance since its objective function is to maximize the social

welfare with pure strategy. By using the mixed strategy to maximize the social

welfare, MSW-D achieves the second best social welfare performance. However, as

discussed in Section 4.2.2, the solution to MSW-D is not stable. With ESS-D, a

stable NE solution can be obtained at the cost of a slight loss in social welfare. Nev-

ertheless, all three proposed algorithms perform much better than the Non-Coop

method. In Non-Coop, the social welfare performance decreases linearly in terms

of the source rate. With cooperation and adaptively selecting the proper number of

agents, all three proposed algorithms can preserve a high social welfare performance

even with a large source rate.

In the second simulation, we evaluate the convergence property of the ESS-D.

In Fig. 4.4, we show the replicator dynamic of the cooperation streaming game with

homogeneous peers, where C = 0.1 and r = 500. We can see that starting from

a high initial value, all peers gradually reduce their probabilities of being an agent

since being a free-rider more often can bring a higher payoff. However, since too low

a probability of being an agent increases the chance of having no peer be an agent,

the probability of being an agent will finally converge to a certain value which is

determined by the number of peers.

In Fig. 4.5, we show the replicator dynamic of the cooperation streaming game

with 20 heterogeneous peers, where r = 500 and the cost Ci is randomly chosen from

[0.1, 0.3]. We further assume that Ci is monotonically increasing in i where u1 has

the lowest cost and u20 has the highest cost. From Fig. 4.5, we can see that the peers

with lower costs (u1, u2, and u3 in this simulation) converge to be an agent while
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Figure 4.3: The social welfare comparison among Non-Coop, MSW-C, MSW-D,

and ESS-D.

the peers with higher costs (u4 − u20 in this simulation) converge to be a free-rider.

This observation coincides with our conclusion in Section 4.3.2, which is “the peers

with lower costs tend to be an agent since they suffer relatively higher losses if no

one serves as an agent”. Note that due to the space limitation, we only show the

behavior dynamics of u1 − u4. All other peers u5 − u20 have the similar behavior

dynamics with u4, and they all converge to be free-riders.

In the third simulation, we compare the performance of Non-Coop and ESS-

D in terms of the probability of real-time streaming, which is defined as the proba-

bility that the total download rate is greater than the source rate. The simulation

results are shown in Fig. 4.6. We can see that with cooperation, the probability of
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Figure 4.4: Behavior dynamic of a homogeneous group of peers.

real-time streaming can be significantly improved especially at the high source rate

region. We also find that at the high source rate region, the probability of real-time

streaming increases as N increases.

The visual quality comparison between Non-Coop and ESS-D is shown in

Fig. 4.7. In this simulation, we fix the probability of real-time streaming to be

0.85. According to Fig. 4.6, we can see that the corresponding source rates for

“Non-Coop”, “ESS-D with N=2”, “ESS-D with N=3”, and “ESS-D with N=4”

are around 100kb/s, 300kb/s, 520kb/s, and 720kb/s, respectively. By setting the

above source rates as the target bitrates, we encode the Foreman sequence with CIF

format using H.264 encoder. From Fig. 4.7, we can see that the video visual quality

with the proposed ESS-D is much better than that with Non-Coop.

Then, we show the simulation result of the source rate versus the utility. As
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Figure 4.5: Behavior dynamic of a heterogeneous group of peers.

shown in Fig. 4.8, without cooperation, if the peer requires a utility around 0.8, the

source rate can not be larger than 130 kb/s. However, with cooperation, the source

rate can be more than 400 kb/s even when there are only 2 peers. Therefore, with

cooperation, the peers can enjoy much higher quality video with the same utility.

In the fourth simulation, we consider the case that the peers in the same group

are viewing multiple channels with L being the number of the channels. We assume

that the source rate is the same for all channels and there are 20 homogenous peers

with the cost C = 0.1. Similar to the View-Upload Decoupling (VUD) scheme [127],

the uploading and downloading are decoupled in the proposed ESS-D algorithm in

this case. We allow cooperation among all the peers where the agent may download
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Figure 4.6: The probability of real-time streaming comparison between Non-Coop

and ESS-D.

source data that he/she is not viewing. As shown in Fig. 4.9, without cooperation,

if the peer requires a utility around 0.8, the source rate can not be larger than 130

kb/s in the Non-Coop method. However, with the proposed ESS-D algorithm, the

source rate can be around 240kb/s even when the peers are view 8 different channels.

This phenomenon fully demonstrates the efficiency of the proposed method.

In the last simulation, we consider the scenario when there is buffering effect.

In such a scenario, the gain in the utility will not drop to zero when the total

download rate is smaller than the source rate. Instead, the gain should maintain

a positive value due to the existence of buffers. One possible utility function that
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Figure 4.7: The visual quality comparison: (a) Non-Coop; (b) ESS-D with N=2;

(c) ESS-D with N=3; (d) ESS-D with N=4.

considers the buffering effect is

UA,i(k) =
1

ln(r)
E [ln(yk)] G− Ci,∀k ∈ [1, N ],

UN,i(k) =





1
ln(r)

E [ln(yk)] G, if k ∈ [1, N − 1];

0, if k = 0.

(4.42)

From the above utility function, we can see that for any given source rate

r, the gain increases as the total download rate yk increases. Moreover, since the

probability of playback delay becomes smaller with more data in the buffer, a certain

85



0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

300

350

400

450

500

Utility

S
ou

rc
e 

R
at

e 
(k

b/
s)

 

 

Non−Coop
ESS−D with N=2
ESS−D with N=3

Figure 4.8: Single-source rate comparison between Non-Coop and ESS-D.

increase in the high yk region should lead to a less significant gain than that in the

low yk region [30]. Here, we use the ln(.) function to characterize such properties.

Nevertheless, other functions that have similar properties can also be used.

The social welfare comparison between Non-Coop and ESS-D with the util-

ity function in (4.42) is shown in Fig. 4.10. From Fig. 4.10, we can see that when

the utility function in (4.42) is used, the social welfare performance of Non-Coop

no longer decreases linearly in terms of the source rate. This phenomenon is mainly

because, with the existence of buffers, the gain will not drop to zero when the total

download rate is smaller than the source rate. Nevertheless, ESS-D can still lead

to a much higher social welfare performance for all source rates, compared with
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Figure 4.9: Multi-source rate comparison between Non-Coop and ESS-D.

Non-Coop. Moreover, we should notice that all the analysis in Section 4.2 is still

applicable to the utility function in (4.42).

4.6 Summary

In this chapter, we propose a cooperative streaming scheme to address the

network inefficiency problem encountered by the traditional non-cooperative P2P

schemes. We answer the question of “how a group of selfish peers with large intra-

group upload and download bandwidths cooperate with each other to achieve better

streaming performance” by formulating the problem as an evolutionary game and

deriving the ESS for every peer. We further propose a distributed learning algorithm
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Figure 4.10: The social welfare comparison between Non-Coop and ESS-D when

the utility function is defined as (4.42).

for each peer to converge to the ESS by learning from his/her own past payoff

history. From the simulation results, we can see that compared with the traditional

non-cooperative P2P schemes, the proposed algorithm achieves much better social

welfare, higher probability of real-time streaming, and better video quality (higher

source rate). Moreover, by incorporated with the recent proposed View-Upload

Decoupling (VUD) scheme, the proposed cooperative streaming scheme allows the

peers who are viewing different videos to cooperate with each other and mutually

improve the streaming performance.

88



Chapter 5

Cooperation Stimulation Using Indirect Reciprocity Game Modeling

A cognitive network is a network composed of elements that can dynamically

adapt to varying network conditions to optimize end-to-end performance through

learning and reasoning [116]. In such a network, nodes are intelligent and have

the ability to observe, learn, and act to optimize their performance. Since nodes

generally belong to different authorities and pursue different goals, fully cooperative

behaviors, such as unconditionally forwarding packets for each other, cannot be

taken for granted. Instead, nodes will only cooperate with others when cooperation

can improve their own performance. We regard the nodes with such behaviors as

selfish nodes. Therefore, a key problem in cognitive networks is how to stimulate

cooperation among selfish nodes.

In the literature, many schemes have been proposed to stimulate node co-

operation for different cognitive networks, such as [23] [138] for ad hoc networks

and [121] [57] for peer-to-peer networks. One way to stimulate cooperation among

selfish nodes is to use payment based methods [139] [14]. Although these schemes

can achieve promising cooperation stimulation results, the requirement of tamper-

proof hardware or central billing services greatly limits their potential applications.

Another way to stimulate cooperation among selfish nodes is to use reputation-

based methods with necessary monitoring [130] [88] [59]. Marti et. al [89] propose
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a mechanism, called “watchdog”, to identify the misbehaving nodes and another

mechanism, called “pathrater”, to deflect the traffics around them. The major

drawback of their method is that misbehaving nodes are not punished. Therefore,

there is no incentive for the nodes to cooperate. To overcome this problem, Bucheg-

ger and Boudec [22] as well as Michiardi and Molva [90] propose reputation-based

mechanisms to enforce node cooperation. In both approaches, nodes observe the be-

havior of each other, store this information locally, and distribute this information

in reputation reports. According to their observations, nodes isolate the misbehav-

ing nodes by denying forwarding packets to them. However, there is no theoretical

justification about the optimality of such approaches.

Recently, efforts have been made to mathematically analyzing cooperation in

cognitive networks using game theory [91] [42] [84] [128]. Srinivasan et al. [112]

propose to use generous TIT-FOR-TAT strategy while Urpi et al. [118] propose to

use Bayesian games. In [53], Felegyhazi et al. investigate equilibrium conditions

of packet forwarding strategies based on game theory and graph theory by taking

into account the network topology. In [131], Yu and Liu propose a game theoretic

framework to jointly analyze cooperation stimulation and security in autonomous

mobile ad hoc networks. Their results show that, for a two-player packet forwarding

game, the unique cheat-proof Nash equilibrium for every node is not to help the

opponent more than the opponent has helped him/her.

However, most of the existing game theoretical frameworks rely on the assump-

tion that the game between a pair of players is directly played for infinite times. In

reality, due to mobility or changes of environment, nodes will periodically update
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their partners to achieve better performance, which means that any pair of players

are supposed to play for only finite times with the termination time are either known

or can be estimated by both players. Note that every player can experience infinite

times with many players but never always with the same partner. In such a case,

according to the well known Prisoner’s Dilemma and backward induction princi-

ple [96], the only optimal strategy is to always play non-cooperatively. The major

reason causing such a non-cooperative optimal strategy is the implicit assumption of

direct reciprocity in most games, where the action of a player taking towards his/her

opponent is purely determined by the history of how the opponent treats him/her.

Obviously, under such a scenario, all players have no incentive to play cooperatively

since their behaviors will not be evaluated by other players except their opponents.

To stimulate the plays’ incentive to play cooperatively, not only the evaluations

from the opponents but also the evaluations from other observers should be taken

into account, which leads to the notion of “indirect reciprocity”. Indirect reciprocity

is a key mechanism for the evolution of human cooperation and has recently drawn

a lot of attentions in the area of social science and evolutionary biology [93] [94].

The key concept of indirect reciprocity is “I help you not because you have helped

me but because you have helped others”. In this chapter, we propose to use the

indirect reciprocity game modelling to stimulate cooperation among selfish nodes

for the scenario where the number of interactions between any pair of players are

finite. The main contributions of this chapter are summarized as follows.

• We propose a cooperation stimulation scheme to stimulate cooperation among
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selfish users in cognitive networks using indirect reciprocity game modelling.

Different from the existing game-theoretic approaches, our proposed scheme

does not rely on the assumption that the number of interactions between a

pair of players are infinite.

• In the proposed scheme, we first develop the concept of reputation distribu-

tion to capture not only the mean behavior of the transmitter’s reputation but

also all likelihoods of the transmitter’s reputation that may be. Then, we de-

velop a reputation updating policy for the receiver and observers to update the

transmitter’s reputation distribution based on the transmitter’s previous rep-

utation distribution and his/her action toward the receiver. We also propose

a gradient descent algorithm to find the stationary reputation distribution of

the whole population for any given optimal action rule.

• In the proposed scheme, we formulate the problem of finding the optimal

action rule as a Markov Decision Process (MDP) and proposed a modified

value iteration algorithm to find the optimal action rule.

• We show that with an appropriate cost-to-gain ratio, the strategy of forwarding

the number of packets that is equal to the reputation level of the receiver is

an evolutionarily stable strategy (ESS). We also show that even with only 60

percentage of population adopting the optimal action rule at the beginning,

by natural selection, the optimal action rule will quickly spread over the whole

population. And once the whole population use the optimal action rule, no

one will deviate. Moreover, we find that such an ESS will lead to a “good”
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Figure 5.1: System model. Within every interaction, a pair of transmitter and re-

ceiver is randomly sampled from the population. Then, the transmitter will forward

a certain amount of packets to the receiver according to the receiver’s and his/her

own reputations. After the transmission, the transmitter’s reputation will be up-

dated by the receiver and the observers. Finally, the transmitter’s reputation is

propagated to the whole population from the receiver and the observers through a

noisy gossip channel.

society with more than 90 percentage of the population have good reputation.

The rest of this chapter is organized as follows. In Section 5.1, we describe the

problem formulation and introduce basic components in our system model. Then,

we show in details how to find the optimal action rule in Section 5.2. In Section

5.3, we describe two action spreading algorithms due to natural selection. Finally,

we show the simulation results in Section 5.4 and draw conclusions in Section 5.5.
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5.1 The System Model

As shown in Figure 5.1, let us consider a cognitive network with sufficiently

large population of nodes. Due to mobility and/or changes of environment, short

interactions rather than long-lasting associations between anonymous partners are

dominant. At each time slot, a fraction of players is chosen from the population to

form pairs to forward packets. Within each pair, one player acts as a transmitter

and the other player as a receiver. Let A = {0, 1, ..., L} stand for the action set

that the transmitter may choose, where the action i ∈ A stands for the transmitter

forwards i packets to the receiver.

In the simplest model with L = 1, the receiver can obtain a gain g at a cost c

to the transmitter. We should always assume that the gain g is greater than the cost

c. Otherwise, no transmission will occur. In such a case, if both players cooperate

with each other and forward one packet to the other player, both players receive

g − c, which is better than what they would obtain by both defecting, namely 0.

However, a unilateral defector would earn g, which is the highest payoff, and the

exploited cooperator would pay the cost c without receiving any benefit. The payoff

structure yields an instance of the well-known Prisoner’s Dilemma game and the

unique Nash equilibrium (NE) is defecting, i.e. both players will not forward the

packet to the other player. Moreover, with backward deduction, the NE remains

the same even the game is played a finite number of times. Such a non-cooperative

optimal strategy is mainly because of the use of direct reciprocity, where the action

of a transmitter taking towards a receiver is purely determined by the history of
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how the receiver treats him/her. Obviously, under such a scenario, all transmitters

have no incentive to forward packets since their behaviors will not be evaluated by

other players except their corresponding receivers.

To stimulate the cooperation under such a scenario, we use the indirect reci-

procity game modelling, where the essential concept is: “I help you not because you

have helped me but because you have helped others”. Therefore, a key concept in

indirect reciprocity game is the establishment of the notion of reputation, which is

the evaluation of the history of the players’ action. Here, to simplify the analysis,

we assume that the reputation is quantized to L + 1 levels with “0” being the worst

reputation and “L” being the best reputation, i.e., the reputation set can be repre-

sented as T = {0, 1, ..., L}. However, the results can be easily extended to the case

that the reputation set has different size from the action set. Here, we also assume

that everyone agrees on the reputation of an individual and no private opinions are

allowed. However, errors in assigning reputation are possible. During each inter-

action, the transmitter determines his action, i.e. how many packets to forward to

the receiver, based on the receiver’s and his/her own reputations. After each inter-

action, the reputation of the receiver remains the same, while the reputation of the

transmitter is first updated by the receiver and the observers, and propagated to the

whole population through a noisy gossip channel. Then, each participant (including

both the transmitter and receiver) goes back to the population with probability δ or

leaves the population with probability 1 − δ. The parameter δ can be treated as a

discounting factor of the future. For every player who leaves the population, a new

individual enters with an initial reputation randomly chosen from the reputation set
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with equal probability 1
L+1

.

5.1.1 Social Norms

A social norm, Q, is a matrix used for updating the immediate reputation of

players, where the immediate reputation is the reputation that a transmitter can

immediately obtain by taking an action. Each element Qi,j in the social norm stands

for the immediate reputation assigned to a transmitter who has taken the action

i toward a receiver whose reputation is j. Without loss of generality, we assume

that all players in the population share the same norm. Although the immediate

reputation is only determined by the action of the transmitter and the reputation

of the receiver, we can see from the later discussion, the final reputation updating

rule also involves the reputation of the transmitter.

Since both the cardinalities of the action set and the reputation set are L + 1,

there are (L + 1)(L+1)×(L+1) possible social norms. Based on the intuition that for-

warding packets to the receiver with good reputation or denying forwarding packets

to the receiver with bad reputation should receive good reputation, here, we define

the immediate reputation Qi,j as follows

Qi,j = L− |i− j|, (5.1)
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which means that the social norm is

Q =




L L− 1 . . . 1 0

L− 1 L . . .
... 1

... L− 1
. . . L− 1

...

1
... . . . L L− 1

0 1 . . . L− 1 L




. (5.2)

For the special case when L = 1, the 2× 2 social norm can be written as

Q2×2 =




1 0

0 1


 , (5.3)

where “1” stands for good reputation and “0” stands for bad reputation.

With such a social norm shown in (5.3), we can see that the transmitter can

obtain a good immediate reputation by either forwarding packets to the receiver with

good reputation or denying forwarding packets to the receiver with bad reputation.

On the other hand, the transmitter will obtain a bad immediate reputation if he/she

either denies forwarding packets to the receiver with good reputation or forwards

packets to the receiver with bad reputation.

5.1.2 Action Rules

An action rule, a, is an action table of the transmitter, where the ith row and

jth column element ai,j stands for the action of the transmitter based on his/her

own reputation i and the corresponding receiver’s reputation j. Since both the

cardinalities of the action set and the reputation set are L + 1, there are (L +
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Figure 5.2: Reputation updating policy.

1)(L+1)×(L+1) possible action rules. The optimal action rule, a?, should be the one

that maximizes the payoff function as discussed later.

5.2 Optimal Action Rule

5.2.1 Reputation Updating Policy

A key concept in indirect reciprocity game is reputation [94]. There is a

similar notion of trust [115], however, which is mostly based on direct reciprocity.

Players monitor the social interactions within their group and help others establish

the reputation of being a helpful player. Therefore, one important step in indirect

reciprocity game modelling is how to update reputation based on players’ actions.

In this subsection, we develop a reputation updating policy based on the action of

the transmitter, the reputation of the transmitter and the reputation of the receiver.

To capture not only the mean behavior of the transmitter’s reputation but also

all likelihoods of the transmitter’s reputation that may be, we assign a reputation

distribution for each player. Let d = [d0, d1, ..., dL]T be a reputation distribution for

a specific player. Then di stands for the likelihood of the player being assigned with
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reputation i.

The proposed reputation updating policy is shown in Fig. 5.2. Suppose, at

time index n, a transmitter with a reputation distribution dn
i is matched with a

receiver with a reputation distribution dn
j . By taking a certain action, the transmit-

ter is assigned with an immediate reputation d̂
n

i based on the social norm. Then,

the receiver and the observers will update the transmitter’s reputation distribution

using a linear combination of the transmitter’s original and immediate reputations,

where the weight λ can be treated as a discounting factor of the past reputation.

Finally, the transmitter’s reputation is propagated among the population by the

receiver and observers through a noisy gossip channel.

In a simple example, we assume that the transmitter’s reputation distribution

is dn
i = ei and the receiver’s reputation distribution is dn

j = ej, where ei and ej are

the standard basis vectors. Let ai,j be the action the transmitter takes towards the

receiver. Then, the immediate reputation of the transmitter is eQai,j ,j
. According to

the reputation updating policy in Fig. 5.2, after the transmission, the transmitter’s

reputation distribution becomes

dn+1
i = PN

(
λei + (1− λ)eQai,j ,j

)
, (5.4)

where PN is the transition matrix of the noisy channel. Without loss of generality1,

1Note that the analysis in this chapter are also applicable to the PN with other forms.
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we define PN as follows

PN =




1− µ µ/L . . . µ/L µ/L

µ/L 1− µ . . .
... µ/L

... µ/L
. . . µ/L

...

µ/L
... . . . 1− µ µ/L

µ/L µ/L . . . µ/L 1− µ




, (5.5)

with µ ∈ [0, 0.5] being a constant.

The dn+1
i in (5.4) is the updated reputation distribution of the transmitter

after the transmitter with an original reputation ei takes an action ai,j towards

the receiver with a reputation ej. Since this updated reputation distribution will

be used later in the analysis for finding the optimal action rule, we use a specific

symbol d̃i→j to denote it, i.e.,

d̃i→j = PN

(
λei + (1− λ)eQai,j ,j

)
. (5.6)

For the general case that dn
i 6= ei and/or dn

j 6= ej, the transmitter’s updated

reputation distribution cannot be simply expressed using (5.4) since, given an action

rule, different combinations of the transmitter’s and receiver’s reputations may lead

to the same immediate reputation. In such a case, we need to first find the immediate

reputation using

d̂
n

i (k) =
∑

p

∑

q: Qap,q,q=k

dn
i (p)dn

j (q). (5.7)

Then, according to Fig. 5.2, the transmitter’s updated reputation distribution

can be computed by

dn+1
i = PN

(
λdn

i + (1− λ)d̂
n

i

)
. (5.8)
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5.2.2 Stationary Reputation Distribution

Let x = [x0, x1, ..., xL]T stand for the reputation distribution of the entire

population, where xi is the portion of the population that have the reputation i.

Since every pair of transmitter and receiver is chosen from the population, given

the transmitter with reputation i, the probability of matching with the receiver

with reputation k is xk. After the transmission, the reputation of the transmitter

is updated using the policy shown in Fig.5.2. Therefore, the evolution of x can be

described by the following differential equation

dx

dt
= xnew − x, (5.9)

where xnew is the new reputation distribution of the entire population and can be

computed by

xnew = PN (λI + (1− λ)PT )x, (5.10)

with the ith row and jth column element of the matrix PT being defined as

PT (j, i) =
∑

k: Qa?
i,k

,k=j

xk. (5.11)

According to (5.9), (5.10), and (5.11), the stationary reputation distribution

x? is the solution to the following equation

PN (λI + (1− λ)PT )x? = x?. (5.12)

From (5.11) and (5.12), we can see that, given the optimal action a?, the

stationary reputation distribution can be found by solving the nonlinear equations

in (5.12). In Algorithm 3, we propose a gradient descent algorithm for finding the

stationary reputation distribution given the optimal action rule.
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Algorithm 3 : Finding Stationary Reputation Distribution Using Gradi-

ent Descent
1. Given the optimal action a?

i,j , ∀i, ∀j, the tolerance η0 = 0.01, the index t = 0, and step

size α = 0.1, initialize x = [x0, x1, ..., xL]T with x0 = [x0
0, x

0
1, ..., x

0
L]T , set ε = 1, and let

F(x) = PN (λI + (1− λ)PT (x))x− x.

2. while ε > η0

• Compute the updating vector ∆xt+1 using ∆xt+1 = −α×∇F(xt)× F(xt).

• Update xt+1 by xt+1 = xt + ∆xt+1.

• Normalize xt+1 using xt+1 = xt+1

||xt+1||2 .

• Update the parameter ε by ε = ||xt+1 − xt||2.

• Update the index t = t + 1.

End

3. The stationary reputation distribution is x? = xt.

5.2.3 Payoff Function

Suppose that the cost of forwarding a packet is a constant, c, the total cost of

the transmitter with reputation i taking action ai,j towards a receiver with reputa-

tion j is given by

C(ai,j) = ai,jc. (5.13)

Similarly, if the gain of receiving a packet is a constant, g, the total gain of

the receiver with reputation i can be computed by

G(aj,i) = aj,ig, (5.14)

where aj,i is the action of the corresponding transmitter with reputation j.
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Let Wi,j denote the maximum payoff that a player, currently having reputation

i and being matched with a player with reputation j, can gain from this interaction

to future. Obviously, if the player with reputation i serves as a transmitter, then

the long-term expected payoff that he/she can obtain by taking action ai,j would be

f1(ai,j) = −ai,jc + δ
∑

k

∑

l

d̃i→j(k)x?(l)Wk,l, (5.15)

where the first term ai,jc is the immediate cost the transmitter incurred by taking

action ai,j, and the second term
∑

k

∑
l d̃i→j(k)x?(l)Wk,l stands for the benefit he

gains in the future with a discounting factor δ. According to (5.6), by taking action

ai,j, the reputation distribution of the transmitter will change from ei to d̃i→j. Since

his opponent in the next round is randomly sampled from the population with a sta-

tionary reputation distribution x?, with probability d̃i→j(k)x?(l), the transmitter’s

reputation becomes k and his opponent’s reputation is l.

On the other hand, if the player with reputation i serves as a receiver, the

long-term expected payoff that he/she can obtain is

f2 = a?
j,ig + δ

∑

l

x?
l Wi,l, (5.16)

where the first term a?
j,ig is the immediate gain he/she can obtain when the trans-

mitter takes the optimal action a?
j,i, and the second term

∑
l x

?
l Wi,l stands for the

benefit he gains in the future with a discounting factor δ. As a receiver, the reputa-

tion will not change after the transmission. Since his opponent in the next round is

randomly sampled from the population with a stationary reputation distribution x?,

with probability x?(l), the receiver’s reputation is i and his opponent’s reputation

is l.
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With each interaction, the play acts either as a transmitter or as a receiver

with equal probability 1
2
. Therefore, the Bellman equation of Wi,j can be written as

Wi,j = max
ai,j

[
1

2

(
−ai,jc + δ

∑

k

∑

l

d̃i→j(k)x?(l)Wk,l

)

+
1

2

(
a?

j,ig + δ
∑

l

x?(l)Wi,l

)]
, (5.17)

and the optimal action a?
i,j can be computed by

a?
i,j=arg max

ai,j

Wi,j

=arg max
ai,j

[
1

2

(
−ai,jc + δ

∑

k

∑

l

d̃i→j(k)x?(l)Wk,l

)]
.

(5.18)

From (5.17) and (5.18), we can see that the problem of finding the optimal

action rule is a Markov Decision Process (MDP), where the state is the reputation

pair (i, j), the action is ai,j, the transition probability is determined by d̃i→j and x?,

and the reward is determined by c and g. Therefore, given the stationary reputa-

tion distribution, the optimal action can be found by solving (5.18) using dynamic

programming. In this chapter, we propose a modified value iteration algorithm to

find the optimal action given stationary reputation distribution, which is shown in

Algorithm 4.

5.2.4 Optimal Action Using An Alternative Algorithm

From the previous two subsections, we can see that given the optimal action,

the stationary reputation distribution can be found using Algorithm 3, and given
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the stationary reputation distribution, the optimal action can be found using Algo-

rithm 4. Therefore, we can obtain the optimal action and the stationary reputation

distribution alternatively by iteratively fixing one and solving the other. The de-

tailed processes are summarized in Algorithm 5. Note that the convergence speed of

Algorithm 5 is highly determined by the initial action rule a0. Nevertheless, it will

converge since the number of the possible action rules is finite. Moreover, Algorithm

5 can also be used to test the evolutionary stability of any action rule. The idea is

to set the tested action rule as the initial action rule and see whether it can converge

in one iteration. The details will be discussed in Section 5.4.

5.3 Action Spreading Due To Natural Selection

Based on Algorithm 5, we can find the optimal action rule and the stationary

reputation distribution. However, during the above analysis, we do not include

the perturbation effect, where players may take non-optimal action rule due to

uncertainty of the system and/or the incorrect (noisy) parameters. Taking the

perturbation effect into account, we need to evaluate the stability of the optimal

action rule. Here, we adopt the concept of evolutionarily stable strategy (ESS)

[110], which is “a strategy such that, if all members of the population adopt it,

then no mutant strategy could invade the population under the influence of natural

selection”. In the following subsections, we first discuss, by natural selection, how

the action rules spread over the population. Specifically, we discuss two action

spreading algorithms: one is action spreading algorithm using Wright-Fisher model
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[54] and the other is action spreading algorithm using replicator dynamic equation

[110]. Then, we examine, in Section 5.4, the stability of the optimal action rule

derived by Algorithm 5 by the simulations.

Let M be the number of action rules, a1, a2, ..., aM , used in the population.

Let pt
i be the percentage of the population that uses action rule ai at time t. Then,

we have
∑M

i=1 pt
i = 1. Let U t

i be the average payoff using action rule ai at time t.

5.3.1 Action Spreading Algorithm Using Wright Fisher Model

The Wright-Fisher model is by far the most popular stochastic model for re-

production in population genetics [54]. It is based on the assumption that the prob-

ability of an individual adopting a certain strategy is proportional to the expected

payoff of the population using that strategy. Due to its simplicity and capability of

capturing the essence of the biology involved, we use the Wright-Fisher model here

to characterize how action rules spread over the population.

Let yi be the probability of an individual using action ai. Then, we have

∑M
i=1 yi = 1. With the Wright-Fisher Model, we assume that yi is proportional to

the total payoff of the users using ai. Therefore, yi can be computed by

yi =
pt

iU
t
i∑M

j=1 pt
jU

t
j

, (5.19)

where the numerator pt
iU

t
i is the total payoff of the users using action ai, and the

denominator
∑M

j=1 pt
jU

t
j is the total payoff of the whole population, which is the

normalization term that ensures
∑M

i=1 yi = 1.

Based on the assumption that the population size is sufficiently large, the per-
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centage of the population using action ai is equal to the probability of an individual

using ai. Therefore, the action spreading equation can be written as

pt+1
i =

pt
iU

t
i∑M

j=1 pt
jU

t
j

. (5.20)

5.3.2 Action Spreading Algorithm Using Replicator Dynamic Equa-

tion

Replicator dynamic equation is widely used to characterize the population

evolution in evolutionary game theory [110]. It is based on the following intuition:

if a certain strategy results in a higher payoff than the average level, the population

share using that strategy will grow with the growth rate proportional to the dif-

ference between the expected payoff of the population using that strategy and the

expected payoff of the entire population. In this subsection, we use the replicator

dynamic equation to model the evolution of the percentage of the population using

a certain action rule, which means that the evolution of pi is given by the following

equation

dpi

dt
= η

(
Ui −

M∑
j=1

pjUj

)
pi, (5.21)

where η is a scale factor controlling the speed of the evolution.

By discretizing the replicator dynamic equation in (5.21), we have the action

spreading equation

pt+1
i = pt

i + η

(
U t

i −
M∑

j=1

pt
jU

t
j

)
pt

i

= pt
i

[
1 + η

(
U t

i −
M∑

j=1

pt
jU

t
j

)]
. (5.22)
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Figure 5.3: The population evolution when L = 1, g = 1 and c = 0.1: (a) the

percentage of the population with reputation L = 1; (b) the percentage of the

population using optimal action shown in (5.24).

5.4 Evolutionarily Stable Strategy and Simulations

To verify the proposed algorithm, we simulate the packet forwarding game.

We study a fixed-size population, N = 1000. Each new player receives an initial

reputation, which is randomly chosen from {0, 1, ..., L} with equal probability 1
L+1

.

Each player uses one of (L + 1)(L+1)×(L+1) possible action rules. All players in the

population share the fixed social norm defined in (5.2). Before any one elementary

step of action updating, each individual has exactly 20 interactions with other ran-

domly chosen individuals. Individuals act as transmitter and receiver on average

10 times each. After each interaction, the reputation of the transmitter is updated

according to the reputation updating policy shown in Fig. 5.2. We assume that

every player in the population agrees on the reputation generated by the reputation

updating policy. No private lists of reputation are considered. After all 20 interac-
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tions have taken place, each participant including both the transmitter and receiver

goes back to the population with probability δ or leaves the population with proba-

bility 1− δ. For every player who leaves, a new individual enters the population to

keep the total population size constant. The initial reputation of the new coming is

randomly chosen from {0, 1, ..., L} with equal probability 1
L+1

. Then, the players in

the population, including the old players who stay in the population and the new

players who enter the population, choose their new action rules according to previ-

ous payoff history of the whole population. There are two possible action spreading

algorithms as shown in the previous section. One is the action spreading algorithm

using Wright Fisher Model, which is denoted as “WFM”, and the other one is the

action spreading algorithm using Replicator Dynamic Equation, which is denoted

as “RDE”. After updating the action rule, the payoffs of all players are reset to

zero. Therefore, older players do not accumulate their payoffs. In all the following

simulations, the parameters λ, δ, and µ are set to be 0.5, 0.9, and 0.95 respectively.

The parameter η that controls the speed of the evolution in RDE is set to be 0.1.

5.4.1 Binary Reputation Scenario

To give more insights into the proposed algorithm, we first evaluate the binary

reputation scenario where L = 1. We assume that the gain per unit is 1 and the

cost per unit is 0.1, i.e. g = 1 and c = 0.1. According to Algorithm 5, with different

initial conditions, we can find three pairs of stationary reputation distribution x?
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c=0.582g

Stable Region

Figure 5.4: The stable region for the optimal action rule shown in (5.24) when

L = 1.

and the optimal action rule a?, which are

x?
1 =




0.5

0.5


 , a?

1 =




0 0

0 0


 . (5.23)

x?
2 =




0.0909

0.9091


 , a?

2 =




0 1

0 1


 . (5.24)

x?
3 =




0.9091

0.0909


 , a?

3 =




1 0

1 0


 . (5.25)

With (x?
1,a

?
1), the transmitter will not forward any packet to the receiver re-

gardless his/her own reputation and the corresponding receiver’s reputation. Obvi-
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Figure 5.5: The population evolution when L = 1, g = 1 and c = 0.6: (a) the

percentage of the population with reputation L = 1; (b) the percentage of the

population using optimal action shown in (5.24).

ously, it is a bad strategy since, with such a strategy, there is no cooperation and

the payoff of every player is zero. The pairs (x?
2,a

?
2) and (x?

3,a
?
3) are symmetric where

with the former pair, the transmitter will always forward packets to the receiver who

has good reputation, and with the latter pair, the transmitter will always forward

packets to the receiver who has bad reputation. We can also find that the pair

(x?
2,a

?
2) leads to a population with more than 90 percentage of the players are good

reputation while (x?
3,a

?
3) leads to a population with more than 90 percentage of the

players are bad reputation. Here, we prefer (x?
2,a

?
2) since it leads to a “good” society

with more than 90 percentage of the population are good reputation.

Then, we evaluate the evolutionary stability of (x?
2,a

?
2). In the simulation, the

initial frequency of the optimal action rule a? shown in (5.24) is set to be 0.6. The

initial frequencies of the other action rules are randomly chosen. The initial repu-

tation of new players is randomly chosen from {0, 1} with equal probability 1
2
. In
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Fig. 5.3 (a), we show the evolutionary results of the percentage of the population

with reputation level L = 1. From Fig. 5.3 (a), we can see that for both WFM

and RDE, the reputation distribution converges to the stationary reputation dis-

tribution x?
2. Compared with WFM, the convergence speed of RDE is a bit slower

since a small speed controlling parameter η = 0.1 is used in RDE.

The evolutionary results of the percentage of the population using the action

rule a?
2 are shown in Fig. 5.3 (b). From Fig. 5.3 (b), we can see that for both WFM

and RDE, the action rule a?
2 will spread over the whole population. And once the

whole population adopt a?
2, no one will deviate. Therefore, the action rule a?

2 is an

evolutionarily stable strategy (ESS) [110] in this case.

From (5.17), we can see that the optimal action rule is determined by the

values of g and c. Intuitively, if g À c, every player is willing to cooperate with

other players since in such a scenario, the potential cooperation gain will be greater

than the immediate cooperation cost. On the other hand, if c À g, every player

tends not to cooperate with other players since the potential cooperation gain will

be smaller than the immediate cooperation cost in such a scenario. Based on the

intuition, there should exist a critical cost-to-gain ratio γ such that the optimal

action rule a?
2 is stable if c < γg and is not stable otherwise.

By setting a?
2 as the initial action rule a0 in Algorithm 5 and varying g and c,

we find that if c
g
≤ 0.582, the optimal action rule found by Algorithm 5 is a?

2. On

the other hand, if c
g

> 0.582, the optimal action rule changes to be a?
1. Therefore,

the critical cost-to-gain ratio γ is equal to 0.582 in this case, which means that the

stable region for a?
2 is the shadow region shown in Fig. 5.4.
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Figure 5.6: The stable region for the optimal action rule shown in (5.26) when

L = 4.

We verify the above statement by evaluating the stability of a?
2 when g = 1

and c = 0.6. The corresponding evolutionary results are shown in Fig. 5.5. From

Fig. 5.5 (b), we can see that when c
g

= 0.6 > 0.582, the percentage of the population

using action rule a?
2 does not converge to 1 for both WFM and RDE. Therefore,

a?
2 is not stable in this case. Correspondingly, we can also see from Fig. 5.5 (a) that

the reputation distribution does not converge to x?
2 in this case.

5.4.2 Multi-Level Reputation Scenario

For the multi-level reputation scenario where L ≥ 2, due to the large dimension

of the action space ((L + 1)(L+1)×(L+1)), it is difficult to find all the possible pairs of
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Figure 5.7: The population evolution when L = 4, g = 1 and c = 0.5: (a) the

percentage of the population with reputation L = 4; (b) the percentage of the

population using optimal action shown in (5.26).

stationary reputation distribution x? and optimal action rule a?. However, based on

the results in the binary reputation scenario, we can infer that one possible optimal

action rule a?
0 is to forward i packets to the receiver with reputation i, i.e. a?

0 can

be written as

a?
0 =




0 1 . . . L

0 1 . . . L

...
...

...
...

0 1 . . . L




. (5.26)

According to Algorithm 3, we can find the corresponding stationary reputation

distribution x?
0. For the special case with L = 4, x?

0 is

x?
0 =

(
0.0235 0.0235 0.0235 0.0235 0.906

)T

. (5.27)

Then, similar to the binary reputation scenario, we obtain the stable region for

the optimal action rule a?
0. By setting a?

0 as the initial action rule a0 in Algorithm
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Figure 5.8: The population evolution when L = 4, g = 1 and c = 0.7: (a) the

percentage of the population with reputation L = 4; (b) the percentage of the

population using optimal action shown in (5.26).

5 and varying g and c, we find that if c
g
≤ 0.622, the optimal action rule found by

Algorithm 5 is still a?
0. On the other hand, if c

g
> 0.622, the optimal action rule

changes. Therefore, the critical cost-to-gain ratio γ in this case is equal to 0.622,

which means that the stable region for a?
0 is the shadow region shown in Fig. 5.6.

We then verify the above statement by simulating the packet forwarding game

with two different cost-to-gain ratio settings. One is g = 1 and c = 0.5, i.e. c
g

=

0.5 < 0.622, and the other is g = 1 and c = 0.7, i.e. c
g

= 0.7 > 0.622. The

evolutionary results for the former setting are shown in Fig. 5.7. From Fig. 5.7, we

can see that when the cost-to-gain ratio is set to be c
g

= 0.5 < 0.622, the reputation

distribution converges to x?
0 and the optimal action rule a?

0 spreads over the whole

population for both WFM and RDE, which verifies that a?
0 is an ESS in this case.

The evolutionary results for the latter cost-to-gain ratio setting are different

and shown in Fig. 5.8. From Fig. 5.8, we can see that when the cost-to-gain ratio
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is set to be c
g

= 0.7 > 0.622, for both WFM and RDE, the action rule a?
0 does not

spread over the whole population and the reputation distribution does not converge

to x?
0. Therefore, a?

0 is not stable in this case.

5.5 Summary

In this chapter, we propose a cooperation stimulation scheme for cognitive

networks using indirect reciprocity game modelling. Different from the existing

game theoretic approaches, our proposed scheme does not rely on the assumption

that the number of interactions between a pair of players are infinite. From the

simulation results, we can see that with a proper cost-to-gain ratio, the action rule

of forwarding i packets to the receiver with reputation level i is an ESS. Even

starting with only 60 percentage of population adopting the optimal action rule,

the optimal action rule will quickly spread over the whole population by natural

selection. And once the whole population use the optimal action rule, no one will

deviate. Moreover, such an ESS will lead to a “good” society where more than 90

percentage of the population have good reputation.
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Algorithm 4 : Modified Value Iteration For Optimal Action Selection

Given Stationary Reputation Distribution
1. Given the stationary reputation x?, tolerance η0 = 0.01, initialize a?

i,j with a0
i,j ∀i ∀j, set

ε1 = 1 and ε2 = 1.

2. while ε1 > η0

• Set ε2 = 1.

• Initialize Wi,j = 0 ∀i ∀j.

• while ε2 > η0

– Compute d̃i→j using d̃i→j = PN

(
λei + (1− λ)eQai,j ,j

)
.

– Compute Ŵi,j using

Ŵi,j = max
ai,j

[
1
2

(
−ai,jc + δ

∑

k

∑

l

d̃i→j(k)x?(l)Wk,l

)

+
1
2

(
a?

j,ig + δ
∑

l

x?(l)Wi,l

)]
.

– Compute âi,j using

âi,j = arg max
ai,j

[
1
2

(
−ai,jc + δ

∑

k

∑

l

d̃i→j(k)x?(l)Wk,l

)]
.

– Update the parameter ε2 by ε2 = ||Ŵ−W||2.

– Update W by W = Ŵ.

– End

• Update the parameter ε1 by ε1 = ||â− a?||2.

• Update a? by a? = â.

End

3. The optimal action is a?.
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Algorithm 5 : An Alternative Algorithm For Finding Stationary Repu-

tation Distribution And Optimal Action
1. Given the tolerance η0 = 0.01, initialize a? with a0 and set ε = 1.

2. while ε > η0

• Given the optimal action a?, finding the stationary reputation distribution x? using Al-

gorithm 3.

• Given the stationary reputation distribution x?, finding the optimal action â? using Al-

gorithm 4.

• Update the parameter ε by ε = ||â? − a?||2.

• Update a? by a? = â?.

End

3. The stationary reputation distribution is x? and the optimal action is a?.
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Chapter 6

Image Denoising Games

During the processes of being captured, digitized, recorded, and transmitted,

an image is usually distorted and noisy. Such a noisy image is visually annoying

and often not suited to further perform tasks such as segmentation, recognition and

compression. Therefore, image denoising is a very important issue to reconstruct a

good estimate of the original image from the noisy observations.

Many approaches have been proposed in the literature to reconstruct the orig-

inal image by exploiting the inherently spatial correlation. By assuming that the

image locally satisfies a stationary Gaussian process, Woods and Radewan [126]

propose to estimate the original image from the noisy image using Kalman filter

while Jin et al [70] propose to use adaptive Wiener filter. In both approaches, the

first-order and second-order statistics used in the filters are calculated based on the

noisy samples within a local window. In [111] [51] [117], the authors propose to

use bilateral filtering over the local neighborhood samples, where the weights of

the bilateral filters are computed based on the intensity and radiometric distances

between the center sample and the neighboring samples. Another class of locally

adaptive image denoising approaches are derived by considering image processing as

a variational problem where the restored image is computed by minimizing a care-

fully designed energy function [26] [55] [56]. Typically, such energy functions consist
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of a fidelity term that is determined by the difference between the reconstructed

image and the noisy image, and a regularization penalty term that is determined by

the image prior.

To further exploit the spatial correlation, Buades et al [20] proposed to average,

in a weighted manner, all the pixels in a nonlocal window instead of only involving

the locally neighboring pixels, where the weights are determined by the differences

between the region centered by the target pixel and the regions centered by the

candidate pixels. Since the weights are not determined by the radiometric (physical)

distance, similar pixels that are far away from the target pixel can still be awarded

large weights. In such a way, the denoising performance is greatly improved. Several

extensions of the nonlocal approach are also proposed [21] [73] [74].

Besides the pixel-domain approaches, transform-domain approaches are also

investigated [50] [99] [58] [66]. The transform-domain approaches are mainly based

on the assumption that the original signal can be well approximated by a linear

combination of few basis, i.e., the original signal is sparse in the transform-domain.

In such a case, the original signal can be well estimated by preserving the few

high-magnitude transform coefficients that convey mostly the energy of the original

signal and discarding the rest which are mainly introduced by the noise. Therefore,

one important issue in the transform-domain approaches is how to threshold the

transform coefficients. Many threshold rules have been proposed from different

speculations [50] [11] [52]. A combination of the nonlocal and transform-domain

thresholding ideas is proposed in [45]. The basic idea is to first group similar 2D

image blocks into 3D data arrays, then perform 3D wavelet transform, and finally
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shrinkage the transform spectrum.

Most of the existing schemes focus on how to choose good weights for some

given neighborhoods to achieve better reconstructions. However, how to adaptively

choose optimal neighborhoods can be even more important since too large a neigh-

borhood set may cause overly-smooth artifacts, while too small a neighborhood

set may not be able to efficiently reduce noise variance. Due to the absence of

the original image, the Stein’s principle [113] is used to estimate the true MSE for

determining the optimal neighborhoods. Nevertheless, we find that there exists a

trade-off between the accuracy of the estimate and the minimum of the true MSE.

In this chapter, we study the impact of this trade-off and formulate the image de-

noising problem as a coalition formation game. In this game, every pixel is treated

as a player, who tries to seek partners to form a coalition to improve the accu-

racy of the Stein’s estimate while incurring a cost of increasing the minimum of the

true MSE. Since finding the optimal coalition structures is NP-hard, we propose a

heuristically distributed algorithm in solving the coalition formation game. We also

show that the traditional approaches that use a heuristically determined candidate

set are special cases of the proposed game theoretical framework by choosing the

utility function without a cost term. Finally, experimental results show that the

proposed game theoretical approach can achieve better performance than the non-

local method in terms of both PSNR and visual quality. Note that the proposed

game is also applicable in other scenarios besides the nonlocal method as long as 1)

there exist some locally adaptive parameters to be estimated, and 2) the estimation

accuracy will be improved when more samples are involved in the estimate process.
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The rest of this chapter is organized as follows. In Section 6.1, we give a

brief description of the system model and the coalition formation game. Then,

we discuss how to choose a good candidate set in Section 6.2. In Section 6.3,

we study the trade-off between the accuracy of the estimate and the minimum of

the true MSE and provide a detailed analysis of the proposed game-theoretic image

denoising framework. In Section 6.4, we show the relationship between the proposed

game-theoretic framework and the traditional candidate set selection approaches.

Finally, we illustrate the experimental results on real images in Section 6.5 and

draw conclusions in Section 6.6.

6.1 The System Model and Coalition Formation Game

6.1.1 The System Model

In this chapter, we consider the problem of restoring images degraded by

additive white Gaussian noise. The degraded process can be modelled as

In(k) = I(k) + n(k), (6.1)

where I is the original image, In is the noisy observation of the image, and n is the

additive Gaussian noise with zero mean and σ2 noise variance. The k = (k1, k2) is

the coordinate of a pixel. The problem is to find an estimate Î of the original image

based on the noisy observation In.

It is well known that the image denoising problem is ill-posed. To reconstruct

the original image from the noisy observation, we need to use some prior information

122



such as the correlations among spatial neighboring pixels. In this chapter, we focus

on the spatially adaptive linear filtering approach. For the pixel located at k, we

find the estimate Î(k) using the weighted average of the spatially neighboring pixels,

i.e.,

Î(k) =

∑
l∈S(k) wk,lI

n(l)∑
l∈S(k) wk,l

, (6.2)

where S(k) is the candidate set that contains the spatially neighboring pixels for k,

and wk,l is the weight for pixel In(l).

6.1.2 The Coalition Formation Game

Game theory is a mathematical tool that analyzes the strategic interactions

among multiple decision makers. A game is mainly composed by three components:

• a finite set of players, denoted by u1, u2, ..., uN ;

• a set of actions, denoted by Ai, for each player ui;

• payoff/utility function, denoted by Ui, which measures the outcome for player

ui determined by the actions of all players.

A coalition formation game is a game where the players seek to form coopera-

tive groups, i.e., coalitions, to strengthen their positions in the game. The players’

actions in the coalition formation game are whom to cooperate with, i.e., which

players to form coalitions with. The payoff/utility function in the coalition for-

mation game is defined over coalitions, called coalition value. The coalition value,

which quantifies the worth of a coalition, is mainly determined by two terms: the
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gain and the cost. By forming a coalition, every player in the coalition can obtain

a gain through cooperation within the coalition. However, the gain is limited by a

cooperation cost for forming the coalition, e.g. the negotiation cost or information

exchange cost.

Given the player set and the coalition value, the coalition formation game

is uniquely defined, and the outcome of the game is a set of coalitions, which is

the optimal partitions of the player set. To obtain the optimal partitions, there

are two possible approaches: centralized approach and distributed approach. For

the centralized approach, the centralized controller needs to search over all the

partitions of the player set to find the optimal partitions, which is NP-complete

and impractical when the size of the player set is large [104]. For the distributed

approach, the players will make their own decisions as to whether or not they join a

coalition. One typical approach is to use the merge and split rules proposed in [15].

This approach starts with an initial partition and repeats alternatively the merge

and split rule, 1) merge rule: merge any set of coalitions into a single coalition

if the new coalition can provide larger total coalition values; 2) split rule: split a

coalition into smaller coalitions if the resulting smaller coalitions can provide larger

total coalition values.

In Section 6.3, we will discuss in details how to use the coalition formation

game to formulate the image denoising problem, where each pixel will be treated as

a player seeking to form coalitions to achieve optimal denosing performance.
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6.2 Candidate Set Selection

From (6.2), we can see that the reconstruction performance are determined by

the selection of the weights wk,l and the candidate set S(k). For any given S(k), the

optimal weights w?
k,l(S(k)) are determined by the correlation between pixels I(k)

and I(l), and should be chosen to minimize the difference between the estimation

Î(k) and the original pixel I(k) as below.

w?
k,l(S(k)) = arg min

wk,l

(∑
l∈S(k) wk,lI

n(l)∑
l∈S(k) wk,l

− I(k)

)2

(6.3)

Note that when the optimal weights in (6.3) are used, the selection of the

candidate set S(k) is trivial since the accuracy of the reconstruction improves as

the candidate set S(k) becomes larger. The proof can be found in Theorem 1.

Theorem 1: When the optimal weights in (6.3) are used, the accuracy of the

reconstruction improves as the candidate set S(k) becomes larger. Proof : Let S1(k)

and S2(k) be two candidate sets with S1(k) ⊂ S2(k). Let w?
k,l(S1(k)) and w?

k,l(S2(k))

be the corresponding optimal weights computed by (6.3). Suppose w̃k,l(S2(k)) are

the weights for S2(k) and are defined as follows

w̃k,l(S2(k)) =





w?
k,l(S1(k)), l ∈ S1(k);

0, else.

(6.4)

Then, according to the optimality of w?
k,l(S2(k)), we have

(∑
l∈S2(k) wk,l(S2(k))In(l)∑

l∈S2(k) wk,l(S2(k))
− I(k)

)2

≤
(∑

l∈S2(k) w̃k,l(S2(k))In(l)∑
l∈S2(k) w̃k,l(S2(k))

− I(k)

)2

=

(∑
l∈S1(k) wk,l(S1(k))In(l)∑

l∈S1(k) wk,l(S1(k))
− I(k)

)2

. (6.5)
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Therefore, when optimal weights are used, the reconstruction using candidate

set S2(k) is more accurate than that using candidate set S1(k).

However, due to the absence of the original pixel I(k), it is impossible for us

to find the optimal weights using (6.3). One possible approximation is to use the

similarity between the neighborhoods around k and l [20], which is defined as follows

wk,l = exp

{
−

∑
b∈B [In(k + b)− In(l + b)]2

h2

}
, (6.6)

where B is a predefined neighborhood and h is the parameter related to the noise’s

variance.

Nevertheless, since the weights in (6.6) are not optimal, the selection of the

candidate set S(k) for the reconstruction becomes critically important. On one

hand, if the size of the candidate set is too small, then the noise may not be effectively

removed. On the other hand, if the size of the candidate set is too large, then the

reconstruction may be overly-smooth. Moreover, according to (6.6), we can see

that the pixels that are more similar to the target pixel would have larger weights.

To prevent the reconstruction from being overly-smooth, we will only involve the

pixels that have relatively large weights. Let Ω(m) stand for the subset of S(k)

which contains the pixels with the first m largest weights. Then, the reconstruction

Î(k,m) using Ω(m) can be written as

Î(k,m) =

∑
l∈Ω(m) wk,lI

n(l)∑
l∈Ω(m) wk,l

. (6.7)

Obviously, the parameter m in (6.7) should be chosen in such a way that the

difference between Î(k,m) and I(k) is minimized, i.e., the optimal m? can be found
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: An example of optimal candidate set with an edge region: (a) original

image; (b) noisy image with σ = 15; (c) noisy image with σ = 25; (d) noisy image

with σ = 35; (e) the candidate set used by nonlocal; (f) the ideally optimal candidate

set of (b) when the original signal is available; (g) the ideally optimal candidate set

of (c) when the original signal is available; (h) the ideally optimal candidate set of

(d) when the original signal is available.

by

m? = arg min
m
|Î(k,m)− I(k)|2. (6.8)

In general, m? is content dependent, i.e., m? may be different for different

k and/or different noise variances. Even with the same m?, the structure of the

candidate set Ω(m?) may be different for different pixels. In Figs. 6.1 and 6.2, we

show the structure of the optimal candidate set for two different scenarios: 1) the

target pixel is centered within an edge region, and 2) the target pixel is centered

within a smooth region. For illustration purpose, we assume that the original image
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is available for finding m? in these two examples. Later in Section 6.3, we will discuss

how to find m? using game theory under the scenario that the original image is not

available. As shown in Figs. 6.1 and 6.2, (a) is the original image centered by

the target pixel, which is denoted by red “x”, (b)-(d) are the noisy images with σ

being 15, 25, and 35 respectively. (e) is the candidate set using in [20], which is

a square window. (f)-(h) are the optimal candidate sets generated using (6.8) for

(b)-(d) respectively. Note that the black pixels in (f)-(h) stand for the pixels in

the candidate set. From Figs. 6.1 and 6.2, we can see that for the scenario where

the target pixel is centered within an edge region, the candidate set has an edge

structure, while for the scenario where the target pixel is centered within a smooth

region, the structure of the candidate set is unpredictable. Moreover, we can also see

that with different noise variance, the candidate sets are quite different. Therefore,

the candidate set should not be pre-defined in a fixed way such as using a square

window in [20]. Instead, the candidate set should be chosen adaptively to minimize

the difference between the estimate and the original signal.

6.3 Game Theoretical Problem Formulation

6.3.1 Stein’s unbiased risk estimate (SURE)

Since I(k) is unknown, the optimal m? can not be explicitly computed using

(6.5). Fortunately, we can first use the Stein’s unbiased risk estimate (SURE) [113]

to estimate the true mean squared error (MSE) from the noisy observation and then

use the estimated MSE to find the optimal m?.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: An example of optimal candidate set with a smooth region: (a) original

image; (b) noisy image with σ = 15; (c) noisy image with σ = 25; (d) noisy image

with σ = 35; (e) the candidate set used by nonlocal; (f) the ideally optimal candidate

set of (b) when the original signal is available; (g) the ideally optimal candidate set

of (c) when the original signal is available; (h) the ideally optimal candidate set of

(d) when the original signal is available.

In Fig. 6.3, we show the optimal m? obtained using (6.8) for lena image when

the standard deviation of the noise is σ = 10, where the intensity stands for the

optimal m? value. From Fig. 6.3, we can see that there are many pixels have the

similar m? value, which can be grouped together for finding m?. For example, the

pixels in the red circles have the m? value near 60 can be grouped together. Suppose

that the whole image is partitioned into M subsets Φ = {Φ1, Φ2, ..., ΦM}, where each

subset Φi contains a set of pixels that may not be physical neighboring but have the
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8 441 6 28 310 296 26 441 

5 138 49 16 6 389 225 441 

58 177 88 28 6 441 240 23 

37 62 12 191 312 3 7 1 

71 93 315 72 441 10 58 441 

441 5 252 35 441 8 144 441 

85 254 10 36 12 185 14 51 

306 2 2 20 10 59 60 155 

Figure 6.3: The optimal m? for lena image when σ = 10.

same optimal parameter m?
i , i.e.,

m?
i = arg min

m

∑

k∈Φi

|Î(k,m)− I(k)|2. (6.9)

With the optimal m?
i , the mean square error (MSE) for the subset Φi can be

computed by

msei =
1

|Φi|
∑

k∈Φi

|Î(k,m?
i )− I(k)|2, (6.10)

and such a MSE can be approximated using SURE, according to Theorem 2, as

follows

SUREi =

1

|Φi|
∑

k∈Φi

|Î(k,m?
i )−In(k)|2+σ2

(
2

|Φi|
∑

k∈Φi

∂Î(k,m?
i )

∂In(k)
−1

)
, (6.11)
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where
∂Î(k,m?

i )

∂In(k)
can be found by

∂Î(k,m?
i )

∂In(k)
=

1∑
l∈Ω(m?

i ) wk,l

×

 ∑

l∈Ω(m?
i )

∂wk,l

∂In(k)
In(l) + 1− Î(k,m?

i )
∑

l∈Ω(m?
i )

∂wk,l

∂In(k)


 , (6.12)

with
∂wk,l

∂In(k)
being defined as

∂wk,l

∂In(k)
=





2wk,l
In(l)−In(k)

h2 , l− k 6∈ B;

2wk,l
In(l)+In(2k−l)−2In(k)

h2 , l− k ∈ B.

(6.13)

Theorem 2: The SUREi in (6.11) is an unbiased estimator of the true MSE

msei in (6.10), i.e,

E[SUREi] = E[msei]. (6.14)

Proof : By substituting I(k) with In(k)− n(k), we can re-write E[msei] as follows

E[msei] = E

[
1

|Φi|
∑

k∈Φi

|Î(k, m?
i )− I(k)|2

]

= E

[
1

|Φi|
∑

k∈Φi

(
|Î(k,m?

i )− In(k)|2

+2n(k)Î(k,m?
i )− n(k)2

)]

=
1

|Φi|
∑

k∈Φi

E
[
|Î(k,m?

i )− In(k)|2
]

+2
1

|Φi|
∑

k∈Φi

E
[
n(k)Î(k, m?

i )
]
− σ2. (6.15)

According to Stein’s Lemma [113], we have

E
[
n(k)Î(k,m?

i )
]

= σ2E

[
∂Î(k,m?

i )

∂In(k)

]
. (6.16)
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Figure 6.4: The trade-off between the confidence term C and the distortion term D:

(a) the performance of C with different N ; (b) the performance of D with different

N .

Then, by substituting (6.19) back to (6.18), we have

E[msei] = E

[
1

|Φi|
∑

k∈Φi

|Î(k,m?
i )− In(k)|2

+σ2

(
2

|Φi|
∑

k∈Φi

∂Î(k,m?
i )

∂In(k)
− 1

)]

= E[SUREi].

6.3.2 Confidence and Distortion Trade-off

6.3.2.1 Confidence

From Theorem 2, we can see that SUREi is an unbiased estimator of msei.

However, there can be some mismatch between SUREi and msei for each realization

(noise observation), i.e., SUREi is just an approximation of msei. To measure the
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accuracy of the approximation, let us define the confidence term, C, as the average

difference between SUREi and msei over the whole image

C =
1

|Φ|
M∑
i=1

|Φi| × |msei − SUREi|. (6.17)

According to [113], the estimator SUREi becomes closer to msei as |Φi| in-

creases, which means that the confidence term C in (6.17) decreases as |Φi| increases.

6.3.2.2 Distortion

With the partition Φ = {Φ1, Φ2, ..., ΦM} and the optimal parameters {m?
1,m

?
2, ..., m

?
M},

we can compute the mean square error for the whole image, D, as follows

D =
1

|Φ|
M∑
i=1

|Φi| ×msei. (6.18)

According to the analysis in Section 6.3.1, we group the pixels with similar m?

values together and assign a common m?
i to all pixels in subset Φi. In such a case,

as |Φi| increases, the probability that the pixels in Φi have different true m? values

increases, which leads to the increase of msei. Therefore, the distortion term D in

(6.18) increases as |Φi| increases.

6.3.2.3 Confidence and Distortion Trade-off

From the above discussion, we can see that as |Φi| increases, the confidence

term C decreases but the distortion term D increases. Therefore, there exists a

trade-off between C and D. To verify such a trade-off, we conduct a simple ex-

periment by setting |Φi| = N, ∀i. As shown in Figure 6.4, the confidence term C
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Figure 6.5: Some possible gain functions.

decrease as N increases while the distortion term D increases as N increases, which

are consistent with our analysis.

6.3.3 Utility Function and Solution to the Game

From the previous subsections, we can see that given the partition Φ =

{Φ1, Φ2, ..., ΦM}, SURE can be used to approximate the true MSE to find the opti-

mal m?. However, how to find a good partition is not trivial since the number of the

partition is not fixed and the size of each partition can vary. Due to the uncertainty

of the number of the partition, the traditional segmentation and clustering meth-

ods may not work. To study the complex interactions among different pixels and
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(a) (b)

(c) (d)

Figure 6.6: The four tested images: (a) Lena; (b) Barbara; (c) Boat; (d) Flinstones.

the dynamic partition formation process, we propose to use the coalition formation

game.

In this game theoretical formulation, every pixel is treated as a player, who

tries to seek partners to form coalitions to achieve better reconstruction. By forming

a coalition, every player in the coalition can obtain a gain of reducing the difference

between the SURE and the true estimate, i.e., the confidence term in (6.17), while

incurring a cost of increasing the minimum of the MSE. With this idea in mind, we
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define the utility for a coalition as:

U(Φi) = −|Φi| × SUREi + g(|Φi|, σ2), (6.19)

where the first term of the right hand side is the cost and the second term g(|Φi|, σ2)

is the gain.

The function g(|Φi|, σ2) in (6.19) characterizes the gain of forming a coalition,

which is the reduction of the difference between the SURE and the true estimate

due to the increase of the coalition size. Therefore, g(|Φi|, σ2) should satisfy the

following properties

1. g(|Φi|, σ2) should be an increasing function in terms of |Φi| since the gain

increases as the coalition size |Φi| increases, i.e., ∂g(|Φi|,σ2)
∂|Φi| > 0.

2. g(|Φi|, σ2) should be a concave function in terms of |Φi| since a certain increase

of the coalition size in the low |Φi| region should lead to a more significant

gain than that in the high |Φi| region, i.e., ∂2g(|Φi|,σ2)
∂|Φi|2 < 0.

3. g(|Φi|, σ2) should be a superadditive function since the gain of a large coalition

should be no smaller than that of two sub coalitions, i.e., g(|Φi + Φj|, σ2) ≥

g(|Φi|, σ2) + g(|Φj|, σ2).

4. g(|Φi|, σ2) should be a decreasing function in terms of σ2 since the gain de-

creases as noise variance σ2 increases, i.e., ∂g(|Φi|,σ2)
∂σ2 < 0.

There are many functions that can satisfy the above property. In the following,

we list three possible functions

g1(|Φi|, σ2) = λ1σ
2

( −1

|Φi|
)

, (6.20)
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g2(|Φi|, σ2) = λ2σ
2

[
− exp

(−|Φi|
4

)]
, (6.21)

g3(|Φi|, σ2) = λ3σ
2

[
ln

( |Φi|
|Φi|+ 1

)]
, (6.22)

where λ1, λ2, and λ3 are fixed parameters.

In Fig. 6.5, we plot the three possible gain functions versus |Φi| by setting

σ2 = 1. We can see that all the three functions meet our requirements and are

therefore valid gain functions. Moreover, we can see that all three functions behave

similarly. Therefore, in this chapter, we only evaluate the first gain function, i.e.,

g(|Φi|, σ2) in (6.19) is set to be g1(|Φi|, σ2). Nevertheless, similar results can be

obtained with the other two functions (g2(|Φi|, σ2) and g3(|Φi|, σ2)) and any other

functions with similar properties.

With the utility function in (6.19), we can see that as the size of the coalition

increases, the members in the coalition can obtain gains from g(|Φi|, σ2). However,

the gains are limited by the a cost of forming the coalition, which is −|Φi|×SUREi.

The problem now is to find the optimal coalition structures based on the utility func-

tion in (6.19). One possible approach is to use the merge and split rules proposed

in [15], where the authors prove that their algorithm will converge to a unique solu-

tion with arbitrary merge and split iterations. However, the computation complexity

is still very large since all possible sub-partitions need to be evaluated during the

split process. To make the problem traceable, in this chapter, we propose a heuris-

tic algorithm in solving the coalition formation game. As shown in Algorithm 6,

the proposed heuristic algorithm starts with a randomly chosen pixel and finds the

coalition by selecting the neighborhoods that can give best average utility. Then, all
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the pixels in the coalition are denoised with the corresponding optimal m?. Finally,

all the pixels in the coalition are excluded from the un-denoised set. The above

procedures are repeated until all pixels are denoised.

The proposed heuristic algorithm is distributive, and only locally neighboring

information is required for finding the coalition. Moreover, since it is not an iterative

algorithm, there is no convergence issue. Compared with the merge and split rules

[15], the computation complexity is greatly reduced since the split process is avoided.

From the experimental results shown in Section 6.5, we can see that the proposed

heuristic algorithm performs quite well.

Algorithm 6 A Heuristic Algorithm For Coalition Formation
Initialization: let the set of denoised pixel SD = ∅ and its complement S̄D = Φ, let N1 = 800,

N2 = 21× 21, and i = 0.

While S̄D 6= ∅

• i = i + 1

• randomly choose k ∈ S̄D, let Φ0 = {k} and set j = N1

• While j > 0

– j = j − 1

– (l?,m?) = arg min
l∈S̄D\Φ0,1≤m≤N2

SURE
(
Φ0 ∪ {l},m)

– set Φ0 = Φ0 ∪ {l?}

– compute u(|Φ0|) = g(|Φ0|)
|Φ0| − SURE

(
Φ0,m?

)

End

• let n?
i = arg maxn u(n), Φi = Φ0(1 : n?

i )

• compute m?
i = arg min

1≤m≤N2
SURE (Φi,m)

• set S̄D = S̄D \ Φi and SD = SD ∪ Φi

• denoise the pixel in Φi using (6.4) with m = m?
i

End
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6.4 Relation to the Traditional Approaches

In the traditional pixel-domain image denoising approaches, every pixel is de-

noised using (6.2) with a heuristically pre-defined candidate set S(k). For example,

a fixed-size square window centered by the target pixel k is chosen as the candidate

set in the nonlocal image denoising method [20]. Such kinds of approaches have a

performance limitation due to the self-constrained use of a pre-defined candidate

set. As shown in Figs. 6.1 and 6.2, we can see that the candidate set should be

adaptively chosen for different neighborhoods and/or noise variances. Moreover, we

will show in the following analysis that the traditional methods such as the nonlocal

method [20] is actually a special case of the proposed game theoretical framework

by choosing a utility function without a cost term

U(Φi) = g(|Φi|, σ2). (6.23)

According to the discussion in Section 6.3.3, we know that a valid gain function

g(|Φi|, σ2) should be monotonically increasing, concave, and superadditive in terms

of |Φi|. In such a case, if the utility function only involves the gain function as

in (6.23), then all pixels will form a grand coalition and use the same candidate

set. In such a case, it return to the traditional ad-hoc approaches where a fixed

candidate set is used for all pixels. In this sense, we can say that the traditional

ad-hoc approaches are special cases of the proposed game theoretical framework.
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6.5 Experimental Results

We evaluate the proposed game theoretical image denoising approach by com-

paring it with the nonlocal method [20]. Four 512× 512 images shown in Fig. 6.6:

Lena, Barbara, Boat and Flinstones, are tested. The neighborhood B and the pa-

rameter h in (6.6) are set to be 11× 11 and 10σ respectively. The candidate set for

the nonlocal method is set to be a 21 × 21 square window. The parameter λ1 for

the proposed method in the gain function in (6.20) is set to be 0.875. Note that this

parameter λ1 is fixed for all four tested images.

We first examine the candidate set generated by the proposed approach. In

Figs. 6.1 and 6.2, we show the ideally optimal candidate sets of two different image

patches by assuming the original signal is available. Obviously, due to the absence

of the original signal, we are not able to get the ideally optimal candidate sets.

Nevertheless, with the proposed game theoretical approach and the SURE estimate,

we can find approximate candidate sets and the results are shown in Figs. 6.7 and

6.8. From Figs. 6.7 and 6.8, we can see that the approximate candidate sets are

much more similar to the ideally optimal candidate sets compared with the fixed

square window candidate set used by [20].

Then, we evaluate the PSNR comparison versus the standard derivation of

the noise. The PSNR comparison between the nonlocal method and the proposed

method for the tested images at different noise levels are shown in Fig. 6.9. From

Fig. 6.9, we can see that the proposed method always performs better than, if not

equal to, the nonlocal method for all tested images at all different noise variances.
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When the standard deviation of the noise is no larger than 20, i.e. σ ≤ 20, the

PSNR performance of the proposed approach is just a bit better than the nonlocal

method. This is because when σ is small, the weights of the pixels outside the

optimal candidate set are too small. In such a case, the reconstruction using a

heuristically determined square window candidate set is similar to that using an

optimal candidate set, i.e., the performance of the nonlocal method is similar to the

performance of the proposed approach when σ is small. However, we should notice

that the performance of the nonlocal method is always upper bounded by that of the

proposed method since the adaptively chosen candidate set is always better than, if

not equal to, the fixed square window candidate set.

When σ becomes larger, the superiority of the proposed approach becomes

more significant. This phenomenon is mainly because when σ is large, the weights of

the pixels outside the optimal candidate is relatively large and is no longer negligible.

In such a case, the reconstruction using all pixels in a heuristically determined

square window tends to lead to over-smooth artifacts. On the other hand, since

the candidate set is adaptively chosen for every pixel in the proposed method, we

are able to preserve details of the original image and avoid over-smooth artifacts.

From Fig. 6.9, we can see that the gain of the proposed approach over the nonlocal

method can be up to 2.16dB for the Flinestones image when σ = 60, which fully

demonstrates the effectiveness of the proposed approach.

Finally, we evaluate the visual quality of the reconstructions. In Fig. 6.10,

we show the visual quality comparison for Flinstones. As shown in Fig. 6.10, (a) is

the original patch of Flinstones and (b) is the noisy patch with σ = 25. The results
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generated by the nonlocal method and the proposed approach are shown in (c) and

(d) respectively. We can see that the result generated by the nonlocal method is

over-smooth. This phenomenon is because the nonlocal method involves too many

dis-similar pixels in the averaging process. With the proposed approach, every pixel

(player) seeks parters to form coalition to determine the best number of neighbor-

hoods to perform denoising, which can rule out the dis-similar neighborhoods and

avoid over-smooth artifacts. Therefore, the details can be well-preserved in the pro-

posed approach. Similar phenomenons can be observed in Figs. 6.11, 6.12 and 6.13

for Barbara, Lena and Boat at noise level σ = 35, σ = 45, and σ = 20 respectively.

Due to the page limitation, we only show the results of one σ for each image in this

chapter. Similar results are observed for different σ′s.

6.6 Summary

In this chapter, we study the trade-off between the accuracy of the Stein’s esti-

mate and the minimum of the true MSE and formulate the image denoising problem

as a coalition formation game. With the proposed game, every player (pixel) seek

parters to form coalitions to obtain better decision for the optimal neighborhoods se-

lection and thus lead to better denoising results. The experimental results show that

compared with the nonlocal method [20], the proposed game theoretical approach

can achieve not only better PSNR performance but also better visual quality. Note

that the proposed game is also applicable in other scenarios besides the nonlocal

method as long as 1) there exist some locally adaptive parameters to be estimated,
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and 2) the estimation accuracy will be improved when more samples are involved

in the estimate process. Moreover, we showed that the traditional approaches using

a heuristically determined candidate set are special cases of the game theoretical

framework by choosing the utility function without a cost term.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.7: An example of optimal candidate set with an edge region: (a) original

image; (b) noisy image with σ = 15; (c) noisy image with σ = 25; (d) noisy image

with σ = 35; (e) the candidate set used by nonlocal; (f) (g) and (h) are the ideally

optimal candidate sets of (b) (c) and (d) when the original signal is available; (i) (j)

and (k) are the candidate sets of (b) (c) and (d) generated by the proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.8: An example of optimal candidate set with a smooth region: (a) original

image; (b) noisy image with σ = 15; (c) noisy image with σ = 25; (d) noisy image

with σ = 35; (e) the candidate set used by nonlocal; (f) (g) and (h) are the ideally

optimal candidate sets of (b) (c) and (d) when the original signal is available; (i) (j)

and (k) are the candidate sets of (b) (c) and (d) generated by the proposed method.
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Figure 6.9: The PSNR comparison for different images: (a) Lena; (b) Barbara; (c)

Boat; (d) Flinstones.
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(a) (b)

(c) (d)

Figure 6.10: The visual quality comparison for Flinstones with σ = 25: (a) original

image; (b) noisy image; (c) the result generated by the nonlocal method; (d) the

result generated by the proposed approach.
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(a) (b)

(c) (d)

Figure 6.11: The visual quality comparison for Barbara with σ = 35: (a) original

image; (b) noisy image; (c) the result generated by the nonlocal method; (d) the

result generated by the proposed approach.
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(a) (b)

(c) (d)

Figure 6.12: The visual quality comparison for Lena with σ = 45: (a) original

image; (b) noisy image; (c) the result generated by the nonlocal method; (d) the

result generated by the proposed approach.
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(a) (b)

(c) (d)

Figure 6.13: The visual quality comparison for Boat with σ = 20: (a) original

image; (b) noisy image; (c) the result generated by the nonlocal method; (d) the

result generated by the proposed approach.
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Chapter 7

Simultaneous Image Denoising and Interpolation Using Evolutionary

Games

Spatial resolution up-conversion is one of the most important tasks in the field

of image processing. Image interpolation is the technique addressing the problem

of spatial resolution up-conversion. It generates a high resolution image from the

input low resolution image by exploiting the inherent relationship between them.

The commonly used image interpolation methods are the conventional linear

interpolation schemes such as bilinear and bicubic interpolation [75]. These methods

generate the high resolution image using a spatial-invariant linear interpolation filter.

Although the computational complexity is low, these methods are not favored since

they introduce a lot of blurring and ringing artifacts.

To overcome the drawbacks of conventional linear interpolation schemes, many

more sophisticated adaptive image interpolation methods have been proposed. Jensen

and Anastassiou proposed to first detect edges and then fit them with some tem-

plates to improve the interpolation result [69], while Carrato and Tenze optimized

the interpolation parameters by using some predetermined edge pattern [24]. In [13],

Allebach and Wong proposed to first estimate the high resolution edge map from

the low resolution image using a subpixel edge estimation technique, and then cor-

rect the interpolated high resolution pixels based on the high resolution edge map.
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Based on the assumption that the covariance matrix of the high resolution image

can be well estimated from the covariance matrix of the low resolution image, Li

and Orchard proposed an edge-preserved interpolation scheme [82]. Cha and Kim

in [25] proposed a modified bilinear method by amending the error based on the

interpolation error theorem in an edge-adaptive way. In [81], an MRF model-based

edge-directed interpolation method is proposed by formulating the image interpola-

tion problem as an energy minimization problem over a 2-D Markov Random field,

where the edge direction information generated by a statistical based approach is

incorporated in the energy function. For better interpolation, Zhang and Wu pro-

posed to first generate multiple reconstructions from different directions, and then

fuse the results by minimum mean square error estimation [132]. To further improve

the interpolation results, a soft-decision adaptive interpolation (SAI) technique is

proposed in [135] by combining the piecewise 2-D autoregressive modeling and block

estimation.

Although the existing approaches can achieve promising interpolation results,

they are designed for the noisy-free images, i.e., clean images. However, if the low

resolution image is noisy, most of the existing interpolation approaches will also

boost the noise and introduces severe visual distortions such as fake edge artifacts

shown in Figure 7.1. In reality, due to the quality of the sensors or the conditions of

the environment, sensor noise is introduced during the image acquisition processes.

Moreover, additional noise and distortions will be introduced during the processes

of being digitized, recorded, and transmitted. To avoid the distortion caused by the

undesired noise boosting, one may perform the denoising before the interpolation.

152



(a) (b) (c)

Figure 7.1: (a) a region of Lena image that is corrupted with Gaussian noise with

noise variance σ2 = 25; (b) the interpolation result using bicubic; (c) the interpola-

tion result using SAI.

Many image denoising approaches have been proposed in the literature by exploiting

the inherently spatial correlation. For examples, Woods and Radewan [126] proposed

to estimate the original image from the noisy image by using Kalman filter while

Jin [70] proposed to use adaptive Wiener filter. To further exploit the spatial cor-

relation, Buades [20] proposed to average, in a weighted manner, all the pixels in a

nonlocal window instead of only involving the locally neighboring pixels. For better

reconstruction, the authors in [33] propose a game theoretic approach to adaptively

choose the optimal neighborhood. Nonlinear approaches such as diffusion [55], total

variation [56], rate distortion optimization [32], and fuzzy filtering [120] were also

investigated. Besides the pixel-domain approaches, transform-domain approaches

such as wavelet shrinkage [50] [45] were also investigated.

Nevertheless, as shown later in Section 7.2.1., since the denoising problem it-

self is ill-posed, the methods that first perform denoising and then interpolate the
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denoising image can in adversely introduce severe visual artifacts. Therefore, to

achieve better results, it is very important for us to jointly consider image denois-

ing and interpolation together. In the literature, there are some prior works on

jointly perform denoising and demosaicking – a special case of interpolation that

reconstructs the missing color component due to color-filtered image sensors. For

example, the authors in [67] proposed to use total least square technique, while the

authors in [79] proposed to combine directional filter with wavelet-based denoising

method. However, since these approaches are specially designed for demosaicking,

they cannot be directly applied into the general interpolation problem.

The essential problem of simultaneous denoising and interpolation is to es-

timate the unknown clean pixels in the high resolution image based on the low

resolution noisy image by exploiting the inherent relationship between them, e.g.,

estimating the unknown high resolution pixels using weighted average of a set of

neighboring low resolution noisy pixels. However, since the original high resolution

pixels are unknown, the optimal weights are not achievable. Most of the existing in-

terpolation approaches find the approximated weights based on the assumption that

the covariance matrix of the high resolution image can be well-estimated from the co-

variance matrix of the low resolution image [82]. Nevertheless, when this assumption

is not true, the interpolation performance will be greatly degraded. Moreover, since

the low resolution image is corrupted by noise, the reconstruction performance can

be further degraded. Here, instead of directly estimating the weights in one step, we

propose to progressively refine the weights by alternatively estimating the weights

based on the reconstruction and finding the reconstruction using the weights. Such
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a refinement process of the weights is actually an evolutionary process and can be

naturally formulated as an evolutionary game. Thus, in this chapter, we consider

the problem of simultaneous denoising and interpolation from the game theoretic

perspective and formulate the problem as an evolutionary game.

Evolutionary game theory is an application of the mathematical theory of

games to the interaction dependent strategy evolution in populations. Arising from

the realization that frequency dependent fitness introduces a strategic aspect to evo-

lution, evolutionary game theory becomes an essential component of a mathematical

and computational approach to biological contexts, such as genes, viruses, cells, and

humans. There are three basic components in an evolutionary game: players, strate-

gies, and payoff functions. Players are the entities who play the game. Strategies,

which can be divided into pure strategies and mixed strategies, are the complete

plans of actions players may take in the game. A pure strategy is a deterministic

plan of how a player will play a game while a mixed strategy is an assignment of

a probability to each pure strategy. Payoff functions determine the payoffs players

can obtain by adopting a certain strategy. In the proposed evolutionary game for

simultaneous image denoising and interpolation, the players are the unknown high

resolution pixels, and their pure strategies are the neighboring low resolution noisy

pixels. The probabilities in the mixed strategy are the non-negative normalized

weights of the low resolution noisy pixels. In this sense, the simultaneous image

denoising and interpolation problem is no longer ill-posed. Instead, the problem

becomes well-defined, and the objective of the player is to find the evolutionarily

stable strategy, i.e., the optimal combination of the low resolution noisy pixels, to
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achieve better denoising or interpolation performance.

The rest of this chapter is organized as follows. We first give an introduction

about evolutionary game model in Section 7.1. Then, we show the problems of the

methods that first perform denoising and then interpolate the denoising image, and

describe in details how to formulate the problem of simultaneous image denoising

and interpolation as an evolutionary game, how to choose the pure strategy set and

how to define the payoff function in Section 7.2. Experimental results are shown in

Section 7.3. Finally, we draw conclusions in Section 7.4.

7.1 Evolutionary Game Model

Before discussing how to use evolutionary game to simultaneously perform

denoising and interpolation, in this section, we first briefly give an introduction

about evolutionary games. A game G = {U, A, F} is generally defined as follows.

U = {u1, u2, ..., uN} are the players who play the game. A = A1 × A2 × ... × AN

are the pure strategy sets, where Ai is the pure strategy set containing all possible

pure strategies for user ui. Let ai ∈ Ai be one possible strategy for ui, then a =

(a1, a2, ..., aN) ∈ A is a strategy profile of U. F = {f1, f2, ..., fN} are the players’

payoff/utility functions, where fi is the payoff function of ui. In general, fi is

determined by all players’ strategies a rather than ai only, i.e., fi = fi(a). Also,

a−i = (a1, ..., ai−1, ai+1, ..., aN) denotes the players’ strategy profile except player

ui. Besides pure strategies, players can also take a mixed strategy by randomizing

among different pure strategies. Suppose there are Mi pure strategies in the pure
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strategy set Ai = {a1
i , ..., a

Mi
i }, and let pij, j = 1, ...,Mi be the probability of ui

choosing the jth pure strategy aj
i , then pi = (pi1, ..., piMi

) is a mixed strategy.

Since the payoff function fi is generally not only determined by ai but also by

a−i, to maximize the payoff, every player needs to know all other players’ strategies.

However, it is generally very difficult or even impossible for players to know other

player strategies and payoffs. In such a case, to improve their payoffs, players

will try different strategies in every play and learn from the strategic interactions

using the methodology of understanding-by-building, which leads to the concept of

“Evolutionary Game” [34] [110].

An evolutionary game is a game that studies the evolution of the interaction

dependent strategy in populations, and was first articulated by John Maynard Smith

and G. R. Price for evolutionary biology. It is based on the idea that an organism’s

genes largely determine its fitness in a given environment. Organisms that are more

fit to the environment will tend to produce more offspring, due to which genes

that provide greater fitness have more representation in the population. Therefore,

fitter genes tend to win over time and drive out other genes. If we treat organisms

as players and genes as strategies, then the genes which persist in the population

are the evolutionarily stable strategy (ESS) of an evolutionary game, which can be

formally defined as “a strategy such that, if all members of the population adopt it,

then no mutant strategy could invade the population under the influence of natural

selection”. The evolution of the strategies over the population by natural selection

can be characterized by the Wright-Fisher model [54], which is by far the most

popular stochastic model for reproduction in population genetics. It is based on
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Figure 7.2: (a) Denoising before interpolation; (b) Simultaneous denoising and in-

terpolation.

the assumption that the probability of an individual adopting a certain strategy is

proportional to the expected payoff of the population using that strategy, and the

strategy updating equation can be written as

pt+1
ij =

pt
ijf

t
i (a

j
i , a−i)∑Mi

k=1 pt
ikf

t
i (a

k
i , a−i)

, (7.1)

where the numerator pt
ijf

t
i (a

j
i , a−i) is the expected payoff of ui using strategy aj

i , and

the denominator
∑Mi

k=1 pt
ikf

t
i (a

k
i , a−i) is the total expected payoff of ui using different

strategies, which is the normalization term that ensures
∑Mi

j=1 pt+1
ij = 1.

7.2 Image Denosing and Interpolation as an Evolutionary Game

7.2.1 Problems of Denoising+Interpolation

As discussed in the introduction, when the input low resolution image is noisy,

most of the existing interpolation approaches will also boost the noise and introduces

severe visual distortions. To avoid such kinds of distortions, one may consider

performing the denoising before the interpolation as shown in Figure 7.2 (a). The

noisy low resolution image In
l is first passed through a denoising process and an

estimate of the original low resolution image Îl is found. Then, the estimated low
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(a) (b)

(c) (d)

Figure 7.3: (a) a region of Lena image that is corrupted by Gaussian noise with noise

variance σ2 = 225; (b) the denoised result using nonlocal; (c) the interpolation result

of (b) using bicubic; (d) the interpolation result of (b) using SAI.

resolution image Îl goes through a interpolation process and a reconstruction of

the original high resolution image Îh is obtained. Nevertheless, since the denoising

problem itself is ill-posed [20], the low resolution estimate Îl is not perfect and there

will be some differences between the estimate Îl and the original Il. On one hand,

the edge structures and textures may be removed during the denoising process,

e.g., the details of the hair shown in Figure 7.3 (b). On the other hand, some

noise may not be efficiently suppressed during the denoising process, e.g., the region

around the nose and mouth shown in Figure 7.3 (b). In such a case, if we directly

159



perform interpolation on Îl, the lost edge structures and textures will never be

reconstructed back and the remained noise will be boosted which introducing severe

visual distortions such as fake edge artifacts as shown in Figure 7.3 (c) and (d).

Therefore, we should jointly consider image denoising and interpolation to achieve

better reconstruction as illustrated in Figure 7.2 (b).

7.2.2 Game Theoretic Formulation

In this simultaneous denoising and interpolation problem, we have the noisy

observation of the low resolution pixels, In
l (m,n), 1 ≤ m ≤ NH , 1 ≤ n ≤ MW .

The objective of this problem is to estimate the high resolution image Ih(i, j), 1 ≤

i ≤ 2 × NH , 1 ≤ j ≤ 2 × MW based on the noisy low resolution image In
l (n, m).

Obviously, this problem is ill-posed. To find a good estimate for the unknown

high resolution pixels, we need to exploit the correlation among the low resolution

pixels and between the low resolution pixels and the high resolution pixels. One

possible approach is to use the spatially varying linear filter, i.e., each unknown

high resolution pixel can be estimated using weighted average of a set of neighboring

noisy low resolution pixels.

Îh(i, j) =
∑

(m,n)∈Ωij

wij
mnI

n
l (m,n), ∀i,∀j, (7.2)

where Ωij is the candidate set of neighboring noisy low resolution pixels for Ih(i, j)

and wij
mn is the weight of candidate pixel In

l (m,n). Usually, we have the constraints

that 0 ≤ wij
mn ≤ 1 and

∑
(m,n)∈Ωij

wij
mn = 1.

Obviously, the optimal weights in (7.2) are not achievable since the original

160



high resolution pixels are unknown. Most of the existing approaches find the ap-

proximated weights based on the assumption that the covariance matrix of the high

resolution image can be well-estimated from the covariance matrix of the low res-

olution image [82]. However, when this assumption is not true, the denoising and

interpolation performance will be greatly degraded. Here, instead of directly esti-

mating the weights in one step, we propose to progressively refine the weights by

alternatively estimating the weights based on the reconstruction and finding the

reconstruction using the weights. Such a refinement process of the weights is ac-

tually an evolutionary process and can be naturally formulated as an evolutionary

game [110]. In the proposed evolutionary game for image denoising and interpola-

tion, the players are the unknown high resolution pixels to be estimated and the

pure strategies are the correspondingly neighboring noisy low resolution pixels. By

regarding the non-negative weights of the neighboring noisy low resolution pixels

as the probabilities of selecting the pure strategies, the problem of estimating the

high resolution pixels becomes finding the evolutionarily stable strategies for the

evolutionary game. In this sense, the simultaneous image denoising and interpola-

tion problem is no longer ill-posed. Instead, the problem becomes well-defined, and

the objective of the problem is to find the evolutionarily stable strategies to achieve

good denoising and interpolation performance.

In summary, the estimation problem in (7.2) can be formulated as an evolu-

tionary game as follows.

• Players: unknown high resolution pixels Ih(i, j)
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Figure 7.4: The pure strategy set Ωij for Ih(2m−1, 2n−1), Ih(2m−1, 2n), Ih(2m, 2n−

1), Ih(2m, 2n).

• Pure strategies: noisy low resolution pixels In
l (m,n)

• Pure strategy set: the candidate set Ωij

• Mixed strategy: the estimate Îh(i, j)

• Probabilities in the mixed strategy: the non-negative normalized weights wij
mn

7.2.3 Pure Strategy Set Ωij

In most of the previous interpolation approaches, the high resolution image is

reconstructed in two steps: in the first step, the unknown high resolution pixels sur-

rounded by four low resolution pixels, i.e., Ih(2m, 2n); and in the second step, other

unknown high resolution pixels Ih(2m− 1, 2n) and Ih(2m, 2n− 1) are reconstructed
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with the help of reconstructed high resolution pixels Ih(2n, 2m). Different from pre-

vious approaches, in our game theoretic framework, pixels are treated as players and

they have the same priority. The pure strategy set Ωij is the same for all four high

resolution pixels Ih(2m−1, 2n−1), Ih(2m−1, 2n), Ih(2m, 2n−1), Ih(2m, 2n) and is

defined as a square window centered by Ih(2m− 1, 2n− 1) in Figure 7.4. As shown

in Figure 7.4, the red circle stands for pixel Ih(2m− 1, 2n− 1) and the three green

squares stand for pixels Ih(2m− 1, 2n), Ih(2m, 2n− 1), and Ih(2m, 2n) respectively.

The gray square window centered by Ih(2m− 1, 2n− 1), denoted as Ωij, is the pure

strategy set for Ih(2m− 1, 2n− 1), Ih(2m− 1, 2n), Ih(2m, 2n− 1), and Ih(2m, 2n).

7.2.4 Payoff Function

After choosing the pure strategy set, we now discuss how to define the payoff

function. The payoff function f t
ij(aij, a−ij) measures the player’s payoff of taking

strategy aij when other players’ strategies are a−ij at time t. Let Î t
h stand for the

estimate of the high resolution image Ih at time t, and B(Î t
h(i, j)) stand for the

patch centered by Î t
h(i, j). The neighborhood similarity between pixel Î t

h(i, j) and

Î t
h(m,n) at time t can be measured by Dt(Î t

h(i, j) ↔ Î t
h(m, n)) as follows

Dt(Î t
h(i, j) ↔ Î t

h(m,n)) = ||B(Î t
h(i, j))−B(Î t

h(m,n))||2. (7.3)

Moreover, let us define D̄t−1(Îh(i, j) ↔ Îh(m,n)) as the weighted average of

the neighborhood similarity up to time t− 1 as follow

D̄t−1(Îh(i, j) ↔ Îh(m,n)) =

∑t−1
k=0 βkDk(Îk

h(i, j) ↔ Îk
h(m,n))∑t−1

k=0 βk
, (7.4)
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where β is a discounting factor, and when β = 1, D̄t−1(Îh(i, j) ↔ Îh(m,n)) reduces

to the simple averaging.

Note that D̄t−1(Îh(i, j) ↔ Îh(m,n)) can be treated as an estimate of D(Ih(i, j) ↔

Ih(m,n)) at time t−1 by taking into account all previous reconstruction Î0
h, ..., Î t−1

h ,

and Dt(Î t
h(i, j) ↔ Î t

h(m, n)) is an estimate of D(Ih(i, j) ↔ Ih(m,n)) at time t us-

ing the reconstruction Î t
h. If Î t

h(i, j) is a good estimate, Dt(Î t
h(i, j) ↔ Î t

h(m, n))

tends to be close to D̄t−1(Îh(i, j) ↔ Îh(m,n)). If Dt(Î t
h(i, j) ↔ Î t

h(m,n)) <

D̄t−1(Îh(i, j) ↔ Îh(m,n)), the neighborhood similarity between pixel Îh(i, j) and

Îh(m,n) is larger than what we anticipate at time t− 1, which means that a larger

payoff should be received by adopting strategy Î t
h(m,n) at time t. On the other

hand if Dt(Î t
h(i, j) ↔ Î t

h(m,n)) > D̄t−1(Îh(i, j) ↔ Îh(m,n)), the neighborhood sim-

ilarity between pixel Îh(i, j) and Îh(m,n) is smaller than what we anticipate at time

t − 1, which means that a smaller payoff should be received by adopting strategy

Î t
h(m,n) at time t. Therefore, the payoff function should be an increasing function

of (D̄t−1(Îh(i, j) ↔ Îh(m,n) −Dt(Î t
h(i, j) ↔ Î t

h(m,n))). Here, we use the following

payoff function

f t
ij(aij, a−ij) = exp


αt

(
D̄t−1(Îh(i, j) ↔ aij)−Dt(Î t

h(i, j) ↔ aij)
)

γ


 , (7.5)

where αt and γ are parameters.

Interestingly, if we set αt = βt
∑t

k=0 βk and substitute (7.5) back into (7.1), the

probability of choosing strategy aij at time t + 1 can be simplified as

pt+1
aij

=
exp

(
− D̄t(Îh(i,j)↔aij)

γ

)

∑
aij

exp
(
− D̄t(Îh(i,j)↔aij)

γ

) . (7.6)
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Figure 7.5: The block diagram of the proposed method.

where D̄t(Îh(i, j) ↔ Îh(m, n)) is defined as

D̄t(Îh(i, j) ↔ Îh(m,n)) =

∑t
k=0 βkDk(Îk

h(i, j) ↔ Îk
h(m,n))∑t

k=0 βk
, (7.7)

The (7.6) can be interpreted as follows: the true similarity between Ih(i, j) and

aij is approximately measured by D̄t(Îh(i, j) ↔ aij), and the larger D̄t(Îh(i, j) ↔

aij), the less the similarity; therefore, the pixels with smaller D̄t(Îh(i, j) ↔ aij)

should make more contribution during the denoising and interpolation process, i.e.,

the probability of choosing aij should be a decreasing function of D̄t(Îh(i, j) ↔ aij),

and here we use an exponential function.

According to the above discussions, the proposed simultaneous image denoising

and interpolation using evolutionary games can be summarized as in Figure 7.5. As

shown in Figure 7.5, the noisy low resolution image In
l is first interpolated using

Bicubic [75] to obtain a noisy estimate of the high resolution image Î0
h. Then, at

each evolution time index t, we compute the neighborhood similarity Dt(Î t
h(i, j) ↔

Î t
h(m,n)) using (7.3). Then, the probability of using a certain pure strategy aij can

be updated using (7.6) and (7.7). Finally, the estimate of the high resolution image
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at time index t + 1 can be found as follows

Î t+1
h (i, j) =

∑
aij∈Ωij

pt+1
aij

In
l (aij). (7.8)

Note that the outcome of the proposed game theoretic algorithm is an evo-

lutionarily stable strategy, and the proof can be found in the following Theorem

1.

Theorem 1: For any β ∈ [0, 1), the outcome of the proposed game theoretic

algorithm shown in Figure 7.5 is an evolutionarily stable strategy (ESS).

Proof : Since β ∈ [0, 1), βk goes to zero as k goes to infinite. According to

(7.7), D̄t(Îh(i, j) ↔ Îh(m,n)) converges for sufficiently large t. Therefore, according

to (7.6), pt+1
aij

converges for sufficiently large t, which means that the probability

distribution of using the pure strategies pij = (p1, ..., p|Ωij |) converges. Since such a

strategy is chosen under the influence of Wright-Fisher natural selection model [54],

according to the definition of ESS, the strategy is an ESS.

7.3 Experimental Results

To evaluate the proposed game theoretic approach for simultaneous image de-

noising and interpolation, we compare with the methods that first perform denoising

using nonlocal [20] and then perform interpolation using either bicubic method [75]

or the soft-decision adaptive interpolation (SAI) method [135], which are denoted as

“Nonlocal+Bicubic” and “Nonlocal+SAI”. Five images shown in Figure 7.6:

Lena, Boat, Kodim03, Kodim07, and Kodim09, are tested. For convenience, all

tested image are truncated to 512x512. The noisy low resolution images are gen-
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erated by first adding additive white Gaussian noise to the high resolution images

and then directly perform downsample.

We first evaluate the PSNR performance for different approaches. In Figure

7.7, we show the PSNR comparison among Nonlocal+Bicubic, Nonlocal+SAI and

the proposed method. We can see that the proposed method outperforms both

Nonlocal+Bicubic and Nonlocal+SAI when σ ≥ 10, and the gain becomes larger

and larger as σ increases. We can also see that as σ increases, the advantage of

using SAI diminishes. This is mainly because too many details are removed during

the denoising process when σ is high. This phenomenon fully demonstrates the

importance of performing joint denoising and interpolation. When 5 < σ < 10,

the PSNR performance of the proposed method is similar to that of Nonlocal+SAI

(the proposed method has slightly better performance for Lena and Kodim03, and

slightly worse performance for Boat and Kodim09). However, both the proposed

method and Nonlocal+SAI are better than Nonlocal+Bicubic. When σ ≤ 5, the

proposed method performs slightly worse than Nonlocal+SAI. This is mainly be-

cause the proposed method not only removes the additive noise but also removes the

sensor noise in the original image, and the PSNR is computed based on the original

images which contains some sensor noise. Nevertheless, the proposed method can

achieve much better visual quality even in the low σ region as shown in Figure 7.9.

We also evaluate the visual quality performance and show the visual quality

comparison in Figures 7.8, 7.9, 7.10, 7.11, and 7.12, respectively, for different images

at different noise variances. The results for Lena image are shown in Figure 7.8,

where (a) is the noisy low resolution Lena image with σ = 10, (b) is the result
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generated by Nonlocal+Bicubic with PSNR 30.71dB, (c) is the result generated by

Nonlocal+SAI method with PSNR 31.11dB, and (d) is the result generated by the

proposed method with PSNR 31.38dB. By comparing (b) (c) and (d) in Figure 7.8,

we can see that both Nonlocal+Bicubic and Nonlocal+SAI cannot well suppress

noise in the edge and texture regions and introduce some visually annoying artifacts

such as fake edge artifacts in the face region. Since the proposed game theoretic

method can simultaneously perform denoising and interpolation, we can avoid the

artifacts caused by the separation of denoising and interpolation and generate the

reconstruction with much better performance in terms of both PSNR and visual

quality.

Moreover, the proposed method has the ability to automatically remove the

visually annoying sensor noise. In Figure 7.9, we show the reconstructed results

for Boat image. Note that the original Boat image contains some sensor noise es-

pecially in the sky region as shown in Figure 7.6 (b). In Figure 7.9, (a) is the

noisy low resolution Boat image with σ = 5, (b) is the result generated by Non-

local+Bicubic with PSNR 28.52dB, (c) is the result generated by Nonlocal+SAI

method with PSNR 28.92dB, and (d) is the result generated by the proposed method

with PSNR 28.74dB. By comparing (b) (c) and (d) in Figure 7.9, we can see that

the proposed method automatically removes the sensor noise in the sky region while

Nonlocal+SAI and Nonlocal+Bicubic cannot. In such a case, although the proposed

method has a lower PSNR performance compared with Nonlocal+SAI, the visual

quality of the result generated by the proposed method is still much better than

that of Nonlocal+SAI.
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The visual quality of the reconstructions of Kodim07, Kodim09 and Kodim03

are also evaluated at noise level σ = 10, σ = 15, and σ = 20 in Figures 7.10,

7.11, and 7.12, respectively. Similar to previous experiments, the proposed method

can greatly suppress the noise and restore the image with not only better PSNR

performance but also better visual quality, especially in the regions around edges

and textures.

7.4 Summary

In this chapter, we investigated the problem of simultaneous image denoising

and interpolation from a completely new angle: game theoretic perspective. We

treat each unknown high resolution pixel as an individual player and formulate the

joint image denoising and interpolation problem as an evolutionary game. From

such a perspective, the problem of estimating the high resolution pixels becomes

finding the evolutionarily stable strategies for the evolutionary game. The exper-

imental results show that compared with the methods that first denoise the noisy

low resolution image and then interpolate the denoised image, the proposed game

theoretic approach can achieve not only better PSNR performance but also better

visual quality.
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(a) (b)

(c) (d)

(e)

Figure 7.6: The test images: (a) Lena; (b) Boat; (c) Kodim03; (d) Kodim07; (e)

Kodim09.
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Figure 7.7: The PSNR comparison: (a) Lena; (b) Boat; (c) Kodim03; (d) Kodim07;

(e) Kodim09.
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(a) (b)

(c) (d)

Figure 7.8: The visual quality comparison for Lena: (a) the noisy low resolution

image with σ = 10; (b) the result generated by Nonlocal+Bicubic (30.71dB); (c)

the result generated by Nonlocal+SAI method (31.11dB); (d) the result generated

by the proposed method (31.38dB).
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(a) (b)

(c) (d)

Figure 7.9: The visual quality comparison for Boat: (a) the noisy low resolution

image with σ = 5; (b) the result generated by Nonlocal+Bicubic (28.52dB); (c) the

result generated by Nonlocal+SAI method (28.92dB); (d) the result generated by

the proposed method (28.74dB).
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(a) (b)

(c) (d)

Figure 7.10: The visual quality comparison for Kodim07: (a) the noisy low resolution

image with σ = 10; (b) the result generated by Nonlocal+Bicubic (29.85dB); (c)

the result generated by Nonlocal+SAI method (30.18dB); (d) the result generated

by the proposed method (30.35dB).
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(a) (b)

(c) (d)

Figure 7.11: The visual quality comparison for Kodim09: (a) the noisy low resolution

image with σ = 15; (b) the result generated by Nonlocal+Bicubic (29.56dB); (c)

the result generated by Nonlocal+SAI method (29.81dB); (d) the result generated

by the proposed method (30.41dB).
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(a) (b)

(c) (d)

Figure 7.12: The visual quality comparison for Kodim03: (a) the noisy low resolution

image with σ = 20; (b) the result generated by Nonlocal+Bicubic (27.85dB); (c)

the result generated by Nonlocal+SAI method (28.03dB); (d) the result generated

by the proposed method (28.37dB).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we develop a game-theoretic framework that enables us to first

analyze and model human behaviors in multimedia social networks, and then better

design the multimedia systems by taking into account the impact of human factors.

We have showed that understanding the human behaviors and dynamics in a mul-

timedia social network can ultimately offer better system performance and thus is

essential for its continued progress, and such analysis and modeling can be applied

to any social networks.

Moreover, we extend the concept of multimedia social networking into classical

signal/image processing problems to liberate pixels/signals as players to develop

a game-theoretic framework that can, not only overcome some of the undesired

ill-posed formulations in traditional approaches, but also obtain a more general

paradigm beyond what can be accomplished by using traditional optimization tools.

With the notion of learning and cognitive process inherent in a game theoretic

formulation, we show that many classical approaches are basically special cases of

the proposed game-theoretic framework. Therefore, the proposed framework offers

new directions, insight, and methodologies in further advancing of the science of

signal/image processing.
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The broader impact of this thesis is

1. Social networks have pervaded our daily life. By illustrating that game theory

can be used to understand human behavior and dynamics in a multimedia

social network with better system performance, this thesis can motivate similar

new ideas in many social networks.

2. Signal and image processing has been a fundamental tool in many scientific

and engineering disciplines. By introducing the proposed new game-theoretic

paradigm to classical signal/image problems with new insight and significant

performance improvement, this thesis can trigger similar new thinking to many

scientific areas that use signal/image processing.

Specifically, in Chapter 3, we consider a non-cooperative multimedia social

network and discuss how a group of users compete for the same resource. We use

multiuser rate allocation social network as an example and show that game the-

ory can provide a more general framework by theoretically proving that the tradi-

tional optimization-based approach is a special case of the proposed game theoretical

framework. Moreover, with the proposed method, we can find, in a distributed man-

ner, a NE that is not only efficient from system designer’s perspective but also fair

from users’ perspective. Then, in Chapter 4, we consider a cooperative multimedia

social network and discuss how a group of selfish users cooperate with each other to

better obtain the content. We use cooperative peer-to-peer streaming social network

as an example and show that evolutionary game can be used in such a scenario and

ESS is the desired cooperative strategy. Moreover, we propose a distributed learn-
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ing algorithm for users to converge to the ESS by learning from their own payoff

history. In Chapter 5, we discuss how to stimulate cooperation in cooperative social

networks. We first show that most of the existing game theoretic cooperation stim-

ulation approaches fail when the number of interaction between a pair of players is

finite, and the major reason is the use of direct reciprocity. Then, we propose to

use indirect reciprocity games to stimulate cooperation in such a scenario by taking

into account the indirect opinions. With such a modeling, we show with simulations

that an evolutionarily stable cooperative strategy can be achieved with a proper

cost-to-gain ratio. In Chapter 6, the image denoising problem is formulated as a

coalition formation game, where every pixel is treated as a player who tries to seek

partners to form a coalition to find the optimal neighborhoods for better denoising

results. By forming a coalition, every player in the coalition can obtain certain gains

by improving the accuracy of the distortion estimation, while incurring some costs

by increasing the true distortion. With such a formulation, the traditional image

denoising approaches using a heuristically determined neighborhood set can be seen

as special cases of the proposed game theoretical framework by choosing the utility

function without a cost term. Another example is formulating the problem of si-

multaneous image denoising and interpolation as an evolutionary game in Chapter

7, where the players are the unknown high resolution pixels and the pure strategies

of the players are the corresponding noisy low resolution neighbors. By regarding

the nonnegative weights of the noisy low resolution pixels as the probabilities of

selecting the pure strategies, the problem of estimating the high resolution pixels

becomes finding the evolutionarily stable strategies for the evolutionary game. In
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this sense, we say that the simultaneous image denoising and interpolation problem

is no longer ill-posed. Instead, the problem becomes well-defined, and the objec-

tive of the problem is to find the evolutionarily stable strategies to achieve good

denoising and interpolation performance.

8.2 Future Work

Recently, the area of human and social dynamics has been identified by the

U.S. National Science Foundation as one of its five priority areas, which shows

the importance of this emerging interdisciplinary research area. Game theoretic

modeling for multimedia social networks is a new emerging research field and is

still in an infant stage. There are a lot of exciting problems to be investigated and

addressed, which I will continue to devote my efforts to.

Security in multimedia social networks is one of these problems. Besides self-

ish users, there are a group of users, called malicious users, in multimedia social

networks. Unlike selfish users whose aims are to maximize their own payoffs, the

objective of malicious users is to damage or even break down the system. Therefore,

to successfully deploy the multimedia social networks, we need to study and analyze

the malicious users attack strategies and develop the corresponding attack-resistant

strategies.

With my previous works, we can see that understanding the behavior dy-

namics among users can ultimately offer better system performance. Such analysis

and modeling can be applied to other social networks. Therefore, in the future, I
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would like to investigate the possibility of using such analysis and modeling in other

networks such as online social networks, smart grid networks and camera networks.

In my previous works, I have successfully used the concept of multimedia

social networks to reformulate image denoising and image interpolation problems.

In the future, I would like to apply the concept to more classical problems such

as image/video compression problems, estimation and detection problems, pattern

recognition and classification problems, adaptive signal processing problems, and

information theory related problems. It is our belief that from the multimedia social

networks point of view, we can make the ill-posed problems well defined and are

able to construct generalized and unified frameworks for the classical problems. We

hope that we can introduce a new paradigm not only in the field of signal and image

processing but also in many other fields such as computer vision and information

theory.
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