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Many industrial applications require accurate and rapid measurement of the 3-D

shapes of physical objects. Representative applications of 3-D shape measurement

include mechanical reverse engineering, 3-D digital replication, and part inspection.

Traditional 3-D measurement techniques, such as coordinate measurement machines

(CMM) and laser scanning, provide high accuracy but are generally slow and expen-

sive. In recent years, shape measurement based on digital fringe projection (SMDFP)

has been developed for non-contact shape measurements. Systems based on SMDFP

are promising due to low cost, fast speed, and flexibility. However, the existing models

and algorithms for SMDFP systems need to be significantly improved to fully exploit

the potentials of this technique.

This dissertation presents a new mathematical model for SMDFP that provides

an accurate modeling of the optical geometry of SMDFP systems. Based on this

model, three related algorithms for shape measurements were developed, namely the



algorithm for construction of absolute phase map, algorithm for construction of point

cloud, and algorithm for estimation of sensor parameters. With the new model and

algorithms, the measurement speed of existing SMDFP systems is improved and the

calibration procedure is made easier. At the same time, high measurement accuracy

is ensured. This dissertation also provides a framework for using adaptive projec-

tion patterns in SMDFP technique. A new algorithm was developed for automatic

generation of projection patterns with variable fringe pitches to achieve improved

measurement performance. This capability is particularly important for ensuring the

accuracy and speed when measuring surfaces with a large range of normal directions.

Finally, this dissertation presents a comprehensive uncertainty model for describing

the relations between various error sources and the resulting uncertainties in shape

measurements. Based on this model, measurement uncertainties can be estimated

from the image data acquired in a measurement.

The research results reported in this dissertation can be used to improve the

performance and features of existing SMDFP systems in the following aspect: mea-

surement accuracy, speed, ease of calibration, and estimation of measurement un-

certainties. These improvements could make SMDFP technique more attractive to

industrial 3-D shape measurement applications and to stimulate the wide spread use

of this technique.
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Chapter 1

Introduction

This chapter provides an introduction to the Shape Measurement technique based

on Digital Fringe Projections (SMDFP) and an outline of the research work to be

presented in this dissertation. Section 1.1 gives a brief description of the SMDFP

technique, its applications in industrial 3-D shape measurement, and the advantages

and disadvantages when comparing it to other techniques. Section 1.2 describes

the motivation behind the research undertaken in this dissertation, as well as the

objectives and associated challenges. An outline for the remainder of this dissertation

is given in Section 1.3.

1.1 Background

1.1.1 3-D Shape Measurement for Industrial Applications

Many industrial applications require accurate and rapid measurement of the 3-D

shapes of objects. Representative applications of 3-D shape measurement include

mechanical reverse engineering, 3-D digital replication, part inspection, and quality

control. For the first two applications, the 3-D shapes of objects need to be measured

1



so that 3-D mesh representations or CAD models of objects can be created to facilitate

further engineering processes. Detailed examples include: measurements of the clay

models and prototyped models in the body design of new automobiles; measurement

of human bodies to make proprietary and artificial dental/orthopedic components for

patients in medical practice; and visualization and reproduction of ancient statues

in museums. For applications of part inspection and quality control, the shapes of

objects need to be measured to compare against nominal data (e.g. CAD models)

so that possible defects can be detected. A representative example is automatic on-

line inspection in manufacturing industry, in which surfaces of the parts, as well as

various 3-D features on the parts, need to be measured and analyzed. In this process,

the measurements need to be adequately accurate. Errors in measurements can lead

to erroneous inspection that results in acceptable parts being rejected and defective

parts being accepted. On the other hand, the measurements need to be conducted

in a short amount of time in order to follow the speed of production. Hence, both

measurement accuracy and speed are equally important.

A predominant number of shape measurement equipments used in industry are

contact-based. Representatives of such devices include Coordinate Measuring Ma-

chine (CMM), coordinate measuring arm and laser tracking system. These devices

require mechanical parts, such as touch probes, to be placed in contact with the

objects being measured, and possibly move along the surface of the object, in order

to measure the surfaces. The requirement of physical contact leads to the following

disadvantages:

• A high resolution measurement of a large surface with complex shape can be

time-consuming since it takes a long time for the probe to walk along the sur-

faces.

• In cases that the surface of the object being measured is soft, fragile or easy to

2



Figure 1.1: Point measurement using contact-based techniques is indirect measure-
ment

be scratched, contact-based techniques will not work or are not desired.

• Contact-based techniques are indirect measurement. That is, the 3-D point

coordinates obtained in measurement are not of points on the object’s surface

but positions of a characteristic point on the measuring device. Taking CMMs as

an example, this characteristic point is the center of the touch probe’s spherical

tip. As can be seen from Fig. 1.1, when the tip of the CMM’s touch probe

gets in contact with the surface and a measurement point is taken, the point

whose coordinates been measured is actually the center of the spherical tip, i.e.

point P . The point on the surface which is intended to measure, point Q, is

not known. As a result, post-processing of the measurement data is required to

remove the normal offset (
−→
QP ) in the point coordinates obtained.

In order to solve the problems associated with contact-based techniques, a num-

ber of non-contact shape measurement methods have been developed and are now

increasingly being used in industry [1, 2]. Techniques that have been used in non-

contact shape measurement include laser scanning, photogrammetry, and structured

light. All of these techniques use digital imaging and triangulation method to resolve

3



the shapes of objects. Compared to contact-based techniques, non-contact methods

are much faster. They are able to measure thousands or even millions of points on

surfaces in a few seconds. There is no need to touch the surface during the mea-

surement and offsetting of point coordinates is not required. Moreover, some of the

non-contact techniques can provide good measurement accuracy.

1.1.2 Shape Measurement Based on Digital Fringe Projec-

tion

As mentioned above, structured light is one of the non-contact techniques that have

been used in 3-D shape measurement. A typical shape measurement system based on

structured light consists of one projection unit and one or more cameras. During the

measurement, light patterns with known structures are projected sequentially on the

object being measured. Meantime, images of the object under the light projections

are captured by the camera(s). By utilizing triangulation method and knowledge

on the light patterns, the 3-D shape of the object can be resolved from the images

captured.

A commonly used type of structured light pattern for shape measurement is fringe

pattern, particularly fringe patterns with sinusoidal intensity distributions. The cor-

responding shape measurement technique by using fringe patterns is often referred as

Shape Measurement based on Fringe Projection (SMFP). In recent years, efforts have

been made to use computer projectors as the projection unit for SMFP systems. Com-

pared to traditional projection units such as those based on glass grating [1] and laser

interferometry [3], computer projectors offer promising performance and features, as

well as challenges, to the shape measurement technique. The shape measurement

technique with the use of computer projectors is referred as Shape Measurement

based on Digital Fringe Projection (SMDFP).
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Figure 1.2(a) shows the hardware setup of a typical SMDFP system with one

projector and one camera. The projector and the camera are placed away from each

other with an angle between their optical axes. They are usually fixed in a housing

and the unit as a whole is usually called the measurement sensor. Both the projector

and the camera are controlled by the computer. The object to be measured is placed

at a distance away from the sensor such that it is in the camera’s field view while

at the same time covered by the light projection from the projector. Figure 1.2(b)

shows an example of the sinusoidal fringe patterns that are used for projection. The

corresponding image of the object under the projection of the fringe pattern is shown

in Fig. 1.2(c). The final output of the shape measurement is a dense point cloud that

represents the surface of the object, as shown in Fig. 1.2(d).

1.1.3 Advantages of SMDFP

Compared to other non-contact shape measurement techniques such as laser scanning

and photogrammetry, SMDFP has several advantages on measurement speed and

system cost, which makes it a preferable choice for many industrial applications that

require an accurate, fast and inexpensive shape measurement tool. In the following

paragraphs, a comparison between SMDFP and the two other techniques will be given

and the advantages of SMDFP will be described.

Laser scanning technique measures the surface of an object by scanning a laser

beam (or projecting a laser sheet) on the object and observing the position of the

laser spots/contour from a different angle (by using a camera). Figure 1.3 shows

a schematic diagram of the measurement setup when using a laser scanner. Laser

scanning technique offers good measurement accuracy and a reasonably high data

rate, and the scanner can be made into a compact size and light weight [6, 7]. However,

a laser scanner is a line-scan device, which means it is only able to measure points
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(a) Schematic diagram of a SMDFP system with one projector
and one camera

(b) One of the fringe patterns projected
on the object

(c) Image of the object when shone by
the fringe pattern shown in (b)

(d) The constructed point cloud that represents the sur-
face of the object been measured

Figure 1.2: 3-D shape measurement based on digital fringe projection
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Figure 1.3: Schematic diagram of
laser scanning technique

Figure 1.4: Schematic diagram of shape
measurement based on photogrammetry
(Picture courtesy of Geodetic Systems, Inc.)

that are in the scanning plane of the laser beam or in the plane of the laser sheet. It

relies on other device, such as a CMM, to move it around in order to measure an area.

As a contrast, SMDFP system is doing true “area scan”, i.e. it is able to measure an

area on a 3-D surface without the need to be moved around by an external device.

As a result, SMDFP technique can perform measurement much faster than laser

scanning. While a laser scanner can measure thousands or tens of thousands points

per second, a SMDFP system can measure over a million points in a couple of seconds

or less, depending on hardware configuration. Also, SMDFP systems are significantly

cheaper than laser scanners, due to the use of digital cameras and computer projectors

as main components.

Photogrammetry [8, 9, 10] is a technique based on multiple-view geometry, in

which images of an object taken from two or more different perspectives are com-

bined to form a 3-D view of the object (see Fig. 1.4). A challenging problem in pho-

togrammetry is the registration of homogeneous points in multiple images. Despite

the significant research advances in this field, an universal and accurate algorithm
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that works for natural images of objects is not available. A solution to the registra-

tion problem is to place special marks, such as retro-reflective targets, on the surface

of the object to be measured. These marks can be easily and accurately located

by image processing algorithms, and by placing them in a fairly sparse manner and

adding special patterns on them an automatic and robust registration algorithm can

be realized. However, by applying special marks on the surface of the object, the

number of points obtained from one measurement cannot be very high. Compared

to SMDFP technique, the data rate of photogrammetry is quite low. Therefore, pho-

togrammetry is usually not used for measurement of objects with complex shapes,

but often as a tool for global coordinate registration.

From the above comparison we can see that, SMDFP technique has significantly

higher data rate, and a lower system cost, than other non-contact shape measurement

methods. In latter chapters, we will also show that it has potential to achieve suffi-

ciently high accuracy that could satisfy the requirements of many shape measurement

applications. These factors make SMDFP technique a very promising technology in

the field of 3-D shape measurement involving objects with complex shapes.

1.1.4 DMD-based Digital Projection for SMDFP Systems

The projection unit in a SMDFP system projects light patterns on objects during

measurements. The accuracy and repeatability of the light patterns are crucial to

the accuracy of shape measurement. Two of the most popularly used methods for

projection of fringe patterns are glass grating and laser interferometry. For their use

in shape measurement devices, these two methods have been tailored and improved

on certain features, and the resulting techniques are Miniature Projection Technique

(MPT) [1] and Accordion Fringe Interferometry (AFI) [3, 11, 12] respectively.

In recent years, computer projectors based on Digital Micro-mirror Devices (DMD)
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Figure 1.5: A DMD chip made by
Texas Instruments (1280× 720 pixels)
(Picture courtesy of Texas Instruments)

Figure 1.6: DMD uses the flickering of
micro-mirrors to achieve a large range
of gray-levels in a fully digitized man-
ner
(Picture courtesy of Texas Instruments)

have been increasingly used as the projection units in SMDFP systems. DMD is a

semiconductor technology that was invented and successfully commercialized by Texas

Instruments in the early 90’s [13, 14]. A DMD chip is a micro-mechanical silicon chip,

which measures less than 5/8 inch on each side but contains more than 700,000 tiny,

movable aluminum mirrors, as well as a wealth of logic, memory and control circuitry

(see Fig. 1.5 for a picture of a DMD chip made by Texas Instruments). Each indi-

vidual mirror on the chip can be controlled by computer signals to move with great

precision and at very fast speed. By shooting a light beam on a DMD chip and

sending programmed computer signals to it, high quality light patterns can be create

with excellent resolution, brightness, contrast and gray-level fidelity (see Fig. 1.6).

Compared to projection devices based on glass grating or laser interferometry,

DMD-based computer projectors have the following advantages:

• Great flexibility of light patterns: The light pattern generated by a DMD

projector can be described by a high-resolution (e.g. 1024×768 pixels) gray-scale

bitmap. The gray-scale of each pixel can be controlled individually at 256 dif-

ferent levels at least. Advance programming of DMD chip can extend the range
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of gray-levels to almost infinite. Due to the large number of pixels it has and

the individual controllability over them, DMD projector can generate almost

arbitrary light patterns. When used in fringe projection with phase-shifting

method, it is able to generate fringe patterns with different fringe widths, fringe

orientations and phase-shift values. Sophisticated projection patterns, such as

adaptive patterns (see Chapter 5), cannot be realized by using glass grating or

laser interferometry. However, they can be easily generated by DMD projectors.

• Accurate control over light patterns: DMD chips are able to control the

projected light intensities in a very accurate and repeatable manner [16]. On the

other hand, since the control signals from computer to DMD projector can be

transmitted in digital format, there will be no distortion introduced in between.

As a result, the light patterns generated by DMD projector can be controlled

precisely from the computer.

• Low cost: DMD projectors are commercially available and they are much less

expensive than projection devices based on glass grating or laser interferometry.

Nowadays, the typical market price of a DMD projector ranges from $900 to

$2,000.

Due to its excellent performance and attractive attributes, DMD-based computer

projector has become a promising projection unit for SMDFP systems.

1.2 Motivation and Research Issues

SMDFP has shown considerable promise in the field of non-contact 3-D measurements

due to its many desirable features. However, as an emerging technique, SMDFP is still

in development stage and its potentials have not been fully exploited. To make it more

attractive to industrial 3-D measurement applications, improvements are needed in
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the following aspects: measurement accuracy, measurement speed, ease of calibration

and the capability of handling complex shapes.

The mathematical model used for a SMDFP system and the related algorithms

for point cloud construction are crucial to the system’s measurement accuracy. Exist-

ing models for SMDFP can be classified into two categories, geometry based models

and calibration matrix based models [18] (see Section 2.1 for more details). Be-

tween the two, geometry based models have been more popularly used and studied,

mainly because it has the potential to achieve higher measurement accuracy. A very

promising model based on geometric approach was proposed by Legarda-Sáenz et. al.

recently [19]. However, this model involves a large number of parameters (30 in total)

and an accurate acquisition of all the parameters requires a sophisticated calibration

process. To make the calibration process easier while maintaining a high measure-

ment accuracy, the mathematical model needs to be modified and new algorithms

need to be developed.

The measurement speed of a SMDFP system is mainly determined by the amount

of time required for projecting patterns and acquiring images in a measurement cycle.

From the hardware point of view, a fast measurement speed requires a high frame

refreshing rate (for the projector), a short exposure time (for the camera) and a

good synchronization between the projector and the camera. From the algorithm

point of view, a fast measurement speed means minimizing the number of projection

patterns used in a measurement. Generally speaking, fringe projection methods that

yield better performance, in terms of accuracy and the capability of handling surface

discontinuity, require more projection patterns. However, the redundancy that exists

in multiple fringe patterns has been traditionally ignored, which could actually be

used for reducing the number of patterns required for a measurement.

Most existing SMDFP systems use fixed-pitch fringe patterns, i.e. patterns con-

taining straight fringes that are uniformly spaced. When measuring surfaces with a
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large range of normal directions, the use of fixed-pitch fringe patterns requires ex-

tra number of patterns to achieve good measurement accuracy and coverage. This

is because, for such surfaces, the fringe pitch (in the projection pattern) that gives

satisfactory measurement performance may be significantly different for different ar-

eas on the surface. Therefore, multiple patterns with different fringe pitches need to

be used for a single measurement. However, the increase in number of patterns per

measurement is not desired for applications that demand high measurement speed,

e.g. 100% on-line part inspection. Hence, new methods need to be developed for

measuring surfaces with a large range of normal directions.

From the metrology point of view, it is a desired feature for SMDFP systems to

give the uncertainty of measurement along with a measurement result. The accu-

racy of a shape measurement device can be approximately evaluated by measuring

some master gauge with accurately known geometry. However, the uncertainties of a

specific measurement depend on a number of measurement-related factors, e.g. en-

vironmental lighting, optical properties of the surface, and the shape of the object.

Therefore, the accuracy evaluation obtained from the measurement of master gauge

may not reflect the real accuracy of a measurement made on other objects. A good

solution to this would be, to build an uncertainty model for SMDFP systems, which

could give a good estimation of the measurement uncertainties by analyzing the image

data acquired from the measurement and the knowledge on other fixed uncertainty

sources in the system. However, a comprehensive uncertainty model for SMDFP

systems does not currently exist.

The research work conducted in this dissertation focuses on the following issues:

• Development of system model and algorithms for shape measure-

ments:

The accurate modeling of the optical geometry of SMDFP systems involves a
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large number of sensor parameters. To acquire these parameters accurately, a

sophisticated calibration procedure is required [19]. A possible way to simplify

the calibration is to change the representation of the sensor parameters (some

of them if not all) such that they can be acquired easily and reliably. The new

representation of the parameters should also ensure the accurate modeling of

the system. In this dissertation, a reference phase map is used as an implicit

representation of a majority portion of the projector parameters. Based on this

approach, a new algorithm for point cloud construction needs to be developed.

The algorithm for estimation of sensor parameters also needs to be modified.

The improvement in measurement speed requires new ideas to reduce the num-

ber of projection patterns needed in a measurement cycle. Through a careful

study of the phase-shifting method with multiple fringe frequencies, we discov-

ered that images acquired by using this method contain redundant information

which can be utilized to reduce the number of patterns. A new algorithm

for construction of absolute phase maps needs to be developed based on this

approach. While using fewer projection patterns, this algorithm should also

maintain a good phase measurement performance, in terms of the capability of

handling surface discontinuity and robustness to projection and image noises.

Since the use of adaptive projection patterns is considered in this dissertation,

the mathematical model and algorithms for shape measurement should also be

able to work with fringe patterns with variable fringe pitches.

• Development of a framework for using adaptive projection patterns:

The idea of adaptive projection pattern is proposed for the measurements of

surfaces with a large range of normal directions. The basic idea of adaptive

projection pattern is to vary the fringe pitch in a pattern such that, when the

pattern is projected on the surface being measured, all areas on the surface
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receive optimal (or close) fringe pitches. Hence, a good measurement accu-

racy and coverage can be achieved by using one set of phase-shifted adaptive

patterns, instead of using multiple sets of fixed-pitch fringe patterns. So far,

very little research has been done on adaptive projection patterns. A complete

framework needs to be developed on the use of adaptive projection patterns in

SMDFP technique. The system model for SMDFP and the algorithms for shape

measurement need to ensure the support for adaptive projection patterns. A

new algorithm needs to be developed for automated generation of adaptive pat-

tern(s) for measuring an object, based on knowledge of the approximate shape

of the object. The suitable applications for using adaptive projection patterns

also need to be studied.

• Development of new model and algorithms for estimation of measure-

ment uncertainties:

In order to estimate the uncertainties in a shape measurement, the sources that

could contribute errors in the shape measurement result need to be identified.

The relationship between individual error sources and the corresponding uncer-

tainties created in the results needs to be found out and modeled appropriately.

Algorithms for estimating the magnitudes of error sources, either measurement-

dependent or fixed, need to be developed.

1.3 Dissertation Outline

The research work conducted in this dissertation is presented in the following manner:

Chapter 2 gives a review of the related work and the state of the art in SMFP/SMDFP

technique. Chapter 3 explains the mathematical model and the related algorithms

developed for conducting shape measurements using SMDFP. Chapter 4 describes the
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simulator developed for SMDFP systems, which has been used as a tool for testing

the models and algorithms proposed in this dissertation. Chapter 5 discusses the use

of adaptive projection patterns in SMDFP, including the measurement procedure and

the required algorithms. Chapter 6 describes a framework developed for estimation

of measurement uncertainties. Chapter 7 summarizes the conclusions reached from

this dissertation and provides suggestions for future extensions.
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Chapter 2

Related Work

This chapter gives a review of the related work and the state of the art in SMFP/SMDFP

technique. Two major research topics are discussed. One is the mathematical models

for SMFP systems, which is presented in Section 2.1, and the other is the meth-

ods for acquisition of absolute phase maps of surfaces. The discussion of the latter

is presented in two parts, namely the phase-shifting method (Section 2.2) and the

phase unwrapping algorithms (Section 2.3). Since the research work undertaken in

this dissertation also involves the modeling of cameras, projectors and lens distor-

tions, a short review on camera models and camera calibration methods is also given

(Section 2.4).

2.1 Mathematical Models for SMFP Systems

Existing mathematical models for SMFP systems can be put into two categories, ge-

ometric approach (also referred as optical geometry based models) and calibration

matrix based approach [18]. The former group of models use mathematical equa-

tions to describe the optical geometry of SMFP systems, i.e. the projection of 2-D

patterns to the space and the imaging of 3-D objects in the camera. The algorithm
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for construction of point clouds that represent objects’ shapes is derived from the

mathematical equations established. For calibration matrix based models, the details

on the system’s optical geometry is ignored. Instead, the approach is to get a dense

sampling of the 3-D measurement volume of the system, which is organized in the

form of a huge coefficient matrix. The construction of point clouds (that represent

the surfaces being measured) is achieved by interpolations of the sample points.

In the following sections, these two approaches are explained individually.

2.1.1 Models Based on Geometric Approach

2.1.1.1 Model Proposed by Srinivasan et. al.

Srinivasan et. al. [20] developed one of the earliest shape measurement systems based

on fringe projection. The system consists of a projection unit (with phase-shifting

capability) and a light detector array. A schematic diagram of the system’s hardware

setup is shown in Fig. 2.1(a). The projection unit generates sinusoidal fringe patterns

by using laser interferometry. The projection of the fringe patterns are collimated,

which means the fringe pitch of the pattern remains constant despite the distance

to the projection unit. The light detector array is basically a digital camera, whose

optical axis is aligned to be co-planar with the fringe projection’s collimation direction

with an angle of (900 − θ0) between them. The coordinate frame for the system is

defined as shown in Fig. 2.1(b). The collimation direction and the optical axis of the

light detector array determines the X-Z plane. Z-axis is perpendicular to the image

plane of the light detector array (i.e. parallel with the optical axis of the light detector

array) and goes through the center of it. The position of the X-axis is defined close

to the center of the system’s measurement volume.

When placing a flat plane coinciding with the X-Y plane, the fringe pitch of the

projected fringe pattern on the plane is a constant. Due to its purpose of obtaining
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(a) Schematic diagram of hardware
setup

(b) Mathematical model of the optical geometry

Figure 2.1: SMFP system and mathematical model proposed by Srinivasan et. al.

reference/calibration data, such plane is often called a reference plane. Let p0 denote

the fringe pitch on the plane, the distribution of light intensity on the plane can be

written using the following equation:

I(x, y) = a(x, y) + b(x, y) cos
(

2πx/p0

)

(2.1)

where b(x, y) is the fringe contrast at point (x, y, 0) and a(x, y) is the background

intensity. The term (2πx/p0) is the reference phase value at point (x, y, 0) and often

denoted by ΦR(x, y), i.e.

ΦR(x, y) = 2πx/p0 (2.2)

The shape measurement system uses phase-shifting method (will be discussed in

Section 2.2) to measure the phase values of points on an object’s surface, and from

the phase values to compute the 3-D coordinates of the points. Consider a point,

D, on the surface the object being measured (see Fig. 2.1(b)). The phase value of

point D, denoted by Φ(D), is the same as the phase value of point A, which is on the
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reference plane and along the same projection ray as point D. On the other hand,

point C is the point on the reference plane that is imaged to the same point (on the

image plane of the light detector array), DI , as point D. The distance between point

A and point C can be expressed using their phase values as in the following equation:

|AC| = −
p0

2π

(

ΦR(A) − ΦR(C)
)

(2.3)

where ΦR(A) and ΦR(C) are the phase values of point A and point C respectively.

Since ΦR(C) is the phase value associated with point DI when the reference plane

is in place, the term (ΦR(A) − ΦR(C)) actually represents the phase change at DI

when the object in place is the real surface to be measured and the reference plane

respectively. Hence, this term is also called the “phase difference” at point DI and

denoted by ∆Φ(DI), i.e.

∆Φ(DI) = ΦR(A) − ΦR(C) (2.4)

By utilizing the geometric relationships of points A, B, C, andD, the z-coordinate

of point D can be written as the following:

zD = −|BD| =
−|AC| tan θ0

1 + tan θ0/ tan θI

(2.5)

where θI is the angle between line DDI and the image plane of the light detector

array, which can be calculated from the position of DI and parameters of the light

detector array.

Combining Eqns. 2.3, 2.4 and 2.5, the z-coordinate of point D can be expressed
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as a function of the phase difference ∆Φ(DI) and the angle θI as the following:

zD =
p0 tan θ0 ∆Φ(DI)

2π(1 + tan θ0/ tan θI)
(2.6)

Once zD is known, the x- and y-coordinates of point D can be calculated from the

position of point DI .

A remarkable characteristic of the system developed by Srinivasan et. al. is the

use of collimated projection, which achieves constant fringe pitch on the reference

plane and hence simplifies the mathematical model of the system. However, colli-

mated projection can only cover a surface area of approximately the same size as the

projection unit’s collimation lens, hence the measurement volume of the system is

limited.

2.1.1.2 Model Proposed by Toyooka and Iwaasa

Toyooka and Iwaasa [22] developed a SMFP system which consists of a slide projector

and a camera. Since a slide projector complies with the rules of perspective projection,

the optical geometry model developed by Srinivasan et. al. (see Section 2.1.1.1),

which requires collimated projection, is no longer applicable. Toyooka and Iwaasa

developed a new model for their system, in which a simplified pinhole camera model

is used to describe the optical geometry of the projector and the camera.

An illustration of the mathematical model proposed by Toyooka and Iwaasa is

shown in Fig. 2.2. The model requires that the optical axes of the projector and the

camera are in the same plane and the projection center of the projector (point P ) and

the projection center of the camera (point I) have the same distance to the image

plane of the camera. The system coordinate frame is defined as the following: The

Z-axis passes through the projection center of the camera and is perpendicular to the

camera’s image plane; The optical axes of the projector and the camera determines

20



Figure 2.2: Mathematical model for SMFP system proposed by Toyooka and Iwaasa

the X-Z plane and the intersection of them defines the origin O. By this definition,

point P and point I have the same distance, l0, to the X-axis.

The slide projector generates sinusoidal fringe patterns with fixed fringe pitch. It

is also required that the direction of the fringes is perpendicular to the X-Z plane.

Therefore, if a reference plane is placed perpendicular to the optical axis of the pro-

jector, e.g. plane Q as shown in Fig. 2.2, the distribution of light intensity on the

plane can be written as the following:

I ′(s, y) = a′(s, y) + b′(s, y) cos
(

2πs/p′0
)

(2.7)

where s is the distance to the plane defined by line PO and the Y -axis, and p′0 is

the fringe pitch on the reference plane. In Toyooka’s model, the reference plane,

plane R, is placed coinciding with the X-Y plane, which means not perpendicular

to the projector’s optical axis. Due to the projector’s perspective projection, the

light pattern appearing on plane R is not of fixed fringe pitch. Let θ0 denote the

angle between the optical axes of the projector and the camera, and let d0 denote the
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distance between their projection centers (i.e. points P and I). The light intensity

distribution on reference plane R can be expressed using the following equation:

I(x, y) = a(x, y) + b(x, y) cos

(

2πx

p0
−

2πx

p0

sin θ0 cos θ0
l0/x+ sin θ0 cos θ0

)

(2.8)

where p0 is the local fringe pitch at point O.

Consider a point, H , on the surface being measured. Point HI is its image on the

camera’s image plane and point D is its corresponding point on the reference plane

(R) which is imaged at HI as well. Point C is a point on the reference plane that

is on the same projection ray as H , i.e. their phase values are the same. From the

geometric relationship of these points, the following equation of the z-coordinate of

point H can be obtained:

zH = l0
∣

∣

−−→
DC

∣

∣

/(

d0 +
∣

∣

−−→
DC

∣

∣

)

(2.9)

where
∣

∣

−−→
DC

∣

∣ is the signed distance between points D and C, i.e.
∣

∣

−−→
DC

∣

∣ = xC − xD,

since the y-coordinates of D and C are always the same. The x-coordinates of points

D and C can be calculated from their phase values by using the following equation:

Φ(x) =
2πx

p0

(

1 −
sin θ0 cos θ0

l0/x+ sin θ0 cos θ0

)

(2.10)

The mathematical model proposed by Toyooka and Iwaasa has a number of re-

quirements on the alignment of SMFP system, e.g. the optical axes of the projector

and the camera need to be in the same plane (X-Z plane), the projection centers of

the projector and the camera need to be of the same distance to the camera’s image

plane, the direction of fringes needs to be perpendicular to the X-Z plane, and the

reference plane needs to be placed in parallel with the camera’s image plane. All these

requirements simplifies the mathematical model of the system while at the same time
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limits the system’s flexibility and increases calibration efforts. Some of the system

parameters, such as the distance between the projection centers of the projector and

the camera (d0) and the distance from the projection centers to the reference plane

(l0), cannot be obtained by direct measurement. However, the method for accurately

estimating these parameters were not given.

2.1.1.3 Model Proposed by Hu et. al.

Hu et. al. [24, 25] proposed a model for SMFP systems which can be considered

as an extension of the model proposed by Toyooka and Iwaasa (see Section 2.1.1.2).

Compared to Toyooka’s model, Hu’s model removed some of the constraints on system

configuration, such as the requirement of the projection centers of the projector and

the camera to be of the same distance to the camera’s image plane. Nevertheless, it

requires the following conditions to be met: 1) The optical axes of the projector and

the camera need to be in the same plane; 2) The vertical direction of the projector’s

image plane and the vertical direction of the camera’s image plane need to be parallel

to each other and perpendicular to plane defined by the optical axes of the projector

and the camera; And 3) the principal point of the projector needs to be centered at

the projector’s image plane. The alignment process to achieve some of the goals is

given in their paper [24]. Similar to the model proposed by Toyooka, Hu’s model also

uses a simplified pinhole camera model, but with a few more parameters, to describe

the optical geometry of the projector and the camera.

Two coordinate frames are defined in Hu’s model (see Fig. 2.3). The main frame,

XY Z, is defined on the projector’s optics as the following: Axis Z coincides with

the optical axis of the projector; Axis Y is parallel to the vertical direction of the

projector’s image plane; And the intersection of the optical axes of the projector and

the camera is the origin, O. The other coordinate frame, X(C)Y (C)Z(C), is defined

on the camera’s optics for convenient description of the point mapping from the 3-D
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Figure 2.3: Mathematical model for SMFP system proposed by Hu et. al.

space to the 2-D image plane of the camera. Hence, it is referred as the camera

coordinate frame. The axis Z(C) coincides with the optical axis of the camera and

passes through the main frame’s origin, O. Axis Y (C) is parallel to the vertical

direction of the camera’s image plane, which means it is also parallel to the Y -axis of

the main frame. Axis X(C) lies on the image plane of the camera, and the camera’s

principle point defines the origin of the frame.

Let S denote the projection center of the camera. Let DC and dc denote the

distances from S to point O and the origin of frame X(C)Y (C)Z(C) respectively. The

coordinate transformation between frame X(C)Y (C)Z(C) and frame XY Z can be de-
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scribed by the following equation:
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(2.11)

where [x, y, z, 1]T are the homogeneous coordinates in frameXY Z,
[

x(C), y(C), z(C), 1
]T

are the homogeneous coordinates in frame X(C)Y (C)Z(C), and θ is the angle between

the optical axes of the projector and the camera.

A 3-step phase-shifting method with an additional centerline pattern is used to

obtain the phase values of points on the surface being measured. By using vertical

sinusoidal fringe patterns with selected phase-shift values, the absolute phase values

of points on the X-Y plane can be described by the following function:

Φ(x, y, 0) = 2πx/p0 (2.12)

where p0 is the fringe pitch on X-Y plane. Furthermore, the absolute phase value of

an arbitrary point in the projector’s field-of-view can be described using the following

equation:

Φ(x, y, z) =
2πxzR

p0(zR − z)
(2.13)

where point R is the projector’s projection center and zR is its z-coordinate. The

value of zR can be calculated from the projector parameters (both xR and yR are

equal to zero as known from the coordinate frame definition).

Consider a point H on the surface being measured (see Fig. 2.3). Let Q denote

the image of point H on the camera’s image plane and let Φ(H) denote the absolute

phase value of point H obtained by using phase-shifting method. The coordinates of
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point Q in the camera coordinate frame can be easily calculated from its position in

the image and the camera’s intrinsic parameters. Its coordinates in the XY Z frame

can then be acquired by using Eqn. 2.11. Let α denote the angle between line RH

and the Z-axis. α can be calculated from Φ(H) as the following:

α = arctan

(

p0

2πzR

Φ(H)

)

(2.14)

By using α and the position of point Q (xQ, yQ, zQ), as well as the positions of points

S and R, the z-coordinate of point H can be computed from the following equation:

zH =
(zS − zQ)

[

(xR − xQ) cosα + zR sinα
]

+ zQ(xS − xQ) cosα

(xS − xQ) cosα + (zS − zQ) sinα
(2.15)

Once zH is known, the x- and y-coordinates of H can be computed by using the

following equations:














xH =
(zH − zQ)(xS − xQ)

zS − zQ

+ xQ

yH =
(zH − zQ)(yS − yQ)

zS − zQ

+ yQ

(2.16)

Besides the mathematical model for SMFP system and the algorithm for construc-

tion of the point cloud that represents the measured surface, Hu et. al. also developed

a two-step approach to estimate the parameters in the mathematical model, e.g. θ,

DC , dC and DP . The first step of the process is to acquire approximate values of the

parameters. A few calibration patterns, such as a horizontal line or a bright circular

spot at the center of the pattern, are projected on a flat plate which is mounted

on a straight rail. Under the projection of the calibration patterns, images of the

plate are taken with the plate being translated to a number of different positions. By

analyzing the positions of the spots and the lengths of the lines in the images, ap-

proximate values of the parameters can be obtained. The second step of the process

is to fine-tune the values of the parameters by minimizing the residual errors of a few
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calibration measurements. The calibration measurements are conducted on a gauge

part with a number of geometric features whose positions and dimensions are known

very accurately (from measurement made by other means such as CMM). By varying

the parameters around the initial values obtained from the first step, the point cloud

computed changes and hence is the residual error of the measurement. The set of

parameter values that gives the minimum residual error is then taken as the final

values for the parameters.

Compared to Toyooka’s model, the model proposed by Hu et. al. has less con-

straints on system configuration and provides better measurement accuracy with the

use of the parameter estimation process developed. However, the remaining require-

ments on system alignment still demand considerable efforts in calibration. Moreover,

Hu’s model does not consider the lens distortions of the projector and the camera,

which are generally not negligible for high accuracy measurements [25].

2.1.1.4 Model Proposed by Legarda-Sáenz et. al.

Legarda-Sáenz et. al. [19] proposed a sophisticated mathematical model for SMFP

systems with one projector and one camera. The pinhole camera model with modeling

of lens distortion is used for both the camera and the projector. The complete model

contains 30 parameters in total. It describes the optical geometry of the system with

high accuracy and has minimal constraints on system alignment.

The construction of the point cloud (representing the surface of the object) is

done by triangulation method, similar to the technique used in stereo vision. For

each point M on the object’s surface that is imaged to a point MI in the camera’s

image plane, the pixel coordinates of MI are used to determine two degrees of freedom

of point M , by utilizing the camera model and the associated parameters that are

known. The remaining one degree-of-freedom of point M (often called the depth of

M) can be calculated from the absolute phase value ofM , which was acquired by using
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the phase-shifting method. However, when considerable degree of lens distortions is

present in the projector, locating point M accurately by using the above algorithm

becomes challenging and computationally intensive.

An algorithm for estimating the system parameters was also proposed by Legarda-

Sáenz et. al. Due to the large number of parameters to be estimated and the poor

conditioning of the problem, a two-step approach is used. At the first step, the

camera parameters and the projector parameters are estimated separately by using

well-known techniques in literature [26, 27]. At the second step, the parameter val-

ues obtained from step one are used as initial values for the global minimization of

the estimation’s residual errors. More details on the formation of the minimization

problem is given in their paper [19].

Compared to the earlier models based on geometric approach, the model proposed

by Legarda-Sáenz et. al. is the most accurate one, due to the use of the full pin-

hole camera model and the modeling of lens distortions, and it has the minimum

constraints on system alignment. As a trade-off, a large number of system parame-

ters (30 parameters in total) need to be acquired and an accurate acquisition of the

parameters needs to go through a carefully designed calibration process.

2.1.1.5 Summary

The four models for SMFP systems explained above are all based on geometric ap-

proach, i.e. the construction of point clouds (for representing the surfaces of objects)

is based on a mathematical model that describes the optical geometry of the system.

Among these models, the one proposed by Legarda-Sáenz et. al. is the most accurate

and has the minimum constraints on system alignment. However, a large number of

system parameters (30 parameters in total) are involved in Legarda-Sáenz’s model

and an accurate acquisition of the parameters needs to go through a carefully designed

calibration process. Moreover, the point cloud construction based on Legarda-Sáenz’s
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model becomes challenging and computationally intensive when considerable degree

of lens distortions is present in the projector.

In this dissertation, we aimed at developing a system in which the calibration, i.e.

the acquisition of system parameters, can be conducted more accurately and with less

efforts. On the other hand, we also wanted to integrate the use of adaptive projection

patterns into the system. To achieve these goals, we developed a new mathematical

model for SMDFP systems as well as the associated algorithms for the construction

of point clouds. These methods will be described in Chapter 3.

2.1.2 Models Based on Calibration Matrix

2.1.2.1 Overview

SMFP systems use phase-shifting method to acquire the absolute phase values of

points on the surface being measured. With the absolute phase value as a third

dimension, each 2-D point in the camera’s image plane can uniquely identify a 3-D

point in the measurement volume of SMFP system. In other words, each 3-D point

in the measurement volume can be uniquely identified by its image coordinates and

its absolute phase value.

The basic idea of calibration matrix based models can be described as the fol-

lowing: First of all, a 3-D matrix of discrete sampling points of the measurement

volume is built, in which each element represents a 3-D point in the measurement

volume with known (x, y, z) coordinates, absolute phase value and image coordinates;

In a successive measurement, after the absolute phase values of points on the surface

(being measured) are acquired, the corresponding (x, y, z) coordinates of these points

can be calculated from interpolations of elements in the calibration matrix, based on

their image coordinates and absolute phase values. That is, in contrast to models

based on geometric approach, which computes the (x, y, z) coordinates of points by
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Figure 2.4: The calibration matrix defined
in the model proposed by Sitnik et. al.

Figure 2.5: The calibration plate
used in the construction of the cal-
ibration matrix

using equations established from optical geometry, calibration matrix based models

use interpolations over existing sample points for the computation of the point cloud.

Calibration matrix based models have been successfully used on some commercial

SMFP systems [18]. However, very few of them were published.

2.1.2.2 Model Proposed by Sitnik et. al.

Sitnik et. al. [29, 30] proposed a mathematical model based on the calibration ma-

trix approach, which includes the definition of the matrix, a procedure and related

algorithms for the construction of the matrix, and an algorithm for the computation

of the point cloud that represents the surface been measured.

Sitnik’s model defines the 3-D calibration matrix as a number (K) of 2-D matrices,

denoted by Ak (k = 1, · · · , K). Each 2-D matrix corresponds to a z-position in the

coordinate frame defined (as shown in Fig. 2.4) and has a dimension ofM by N , which

is the same as the resolution of the camera. Each element in the matrices corresponds

to a point in the measurement volume of the system, and has the (x, y, z) coordinates

and the absolute phase value of that point. The column and row indices of an element

are the image coordinates, (i, j), of its corresponding point.
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The procedure for constructing the calibration matrix is as the following:

• A calibration plate is used in the construction of the 2-D matrices. It has

an array of circular markers on it and the position of the markers are known

precisely. A schematic diagram of the plate is shown in Fig. 2.5. The plate is

mounted on a rail such that it can be translated along the rail and the direction

of translation is perpendicular to the surface of the plate. The translation

direction is also defined as the direction of the Z-axis, hence the plate is parallel

to the X-Y plane for all the time. A reference point on the plate is taken as the

point of (x = 0, y = 0), and a reference position of the plate is taken as z = 0.

• The calibration plate is moved to a number (K) of different z-positions. At

each position z = zk (k = 1, · · · , K), the corresponding 2-D matrix Ak is

constructed. The absolute phase values for all elements in Ak are acquired by

using phase-shifting method. An image of the calibration plate under normal

lighting is also taken, from which the image coordinates of the center positions

of the markers can be acquired. Since the positions of the markers are known,

the (x, y, z) coordinates for matrix element Ak(i, j) can then be calculated from

interpolations of the markers’ positions, since the points to be calculated and

the markers are on the same plane. In Sitnik’s model, a third order polynomial

interpolation is used for the calculations.

At the measurement of an object, the absolute phase values of points on the

object’s surface are obtained by using phase-shifting method. The (x, y, z) coordinates

of the points can then be computed from their phase values by using interpolations

over the calibration matrix.

Consider a point on the surface, P , whose image coordinates are (i, j). In the

calibration matrix, there are a total number of K points whose image coordinates are

(i, j). The z-coordinates of these points and their absolute phase values, Φ, can be
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fit into a polynomial function, z = f
(i,j)
z (Φ), in a least square sense. This function

describes the relationship between the z-coordinates and the absolute phase values

of all points in the measurement volume whose image coordinates equal to (i, j).

Sitnik et. al. pointed out that a fifth order polynomial function can approximate this

relationship to a good accuracy [29]. Once the approximation function f
(i,j)
z (Φ) is

acquired, the z-coordinate of point P can be calculated from its absolute phase value,

Φ(P ). The computation of the x- and y-coordinates of P is conducted in a similar

manner. The only difference is, the approximation functions, f
(i,j)
x and f

(i,j)
y , are

defined as functions of the z-coordinate, not the absolute phase value Φ. In Sitnik’s

approach, these two functions are selected to be linear functions.

2.1.2.3 Summary

Calibration matrix based models have a number of advantages, such as they have

no constraints on system configuration and alignment, they are fairly tolerant to

optical aberrations, and the implementation of the model and algorithms is relatively

easy. On the other hand, calibration matrix based models also have disadvantages.

Firstly, the structure of the 3-D calibration matrix has no modularization of system

parameters. All parameters of the system are coupled and implicitly expressed in the

calibration matrix. As a result, each time a system parameter has been changed, such

as due to a change of an optical component, the complete calibration procedure has to

be redone, which is time-consuming. Secondly, the computation of the point cloud is

done by using polynomial approximation functions, which is not as accurate as optical

geometry based models (see Section 2.1.1.4), especially when the configuration of the

SMFP system involves wide-angle lenses and large perspective angles.
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2.2 Phase-Shifting Method

2.2.1 Basic Idea

Phase-shifting method, also called phase-stepping method, is a technique that has

been widely used in optical measurement fields, such as moiré interferometry [31, 32]

and digital holography [33]. In SMFP technique, phase-shifting method is used to

obtain the accurate phase values of points on the surface being measured, from which

the 3-D positions of the points can be resolved. In the phase-shifting procedure, a

sequence of sinusoidal fringe patterns (with selected phase-shift values) are projected

on the surface being measured. Meanwhile, images of the surface under the projec-

tions are taken by the camera. From the image set acquired, a 2-D matrix of phase

values can be calculated, with each element in the matrix corresponds to a pixel in

the camera’s image plane and hence a point1 on the surface being measured. This

matrix of phase values has the same dimension as the individual images acquired and

is usually called the “phase map” of the surface.

There are many different phase-shifting algorithms available due to varied designs

of phase-shift values for the sequence of fringe patterns. The basic idea of phase-

shifting method, however, can be illustrated from the classic 4-step phase-shifting

algorithm as the following:

• The 4-step phase-shifting algorithm takes a total number of four projection

patterns, one “original” sinusoidal fringe pattern and three phase-shifted ver-

sions of the “original”. For SMDFP technique, which uses digital projection,

the projection patterns are constructed as grayscale bitmaps. The intensity

1Strictly speaking, each element in the matrix corresponds to a tiny area on the surface being
measured, not a single point, just as a pixel in the image does.
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distributions of the patterns can be described using the following equation:

I(P )
n (x, y) =

I
(P )
max

2

[

1 + sin

(

2πx

p
+

(n− 1)π

2

)]

, n = 1, · · · , 4 (2.17)

where x and y are coordinates on the horizontal and the vertical axes of the

bitmaps respectively, n represents the phase-shift step, I
(P )
max is the maximum

intensity in the bitmaps, p is the fringe pitch, and I
(P )
n (x, y) is the intensity

distribution of the n-th pattern. As can be seen that, the projection patterns

defined by Eqn. 2.17 are vertical fringe patterns.

• Using the four fringe patterns as defined above for projections, the correspond-

ing images of the surface being measured can be expressed using the following

equation:

In(i, j) = A(i, j) +B(i, j) sin

(

Φ(i, j) +
(n− 1)π

2

)

, n = 1, · · · , 4 (2.18)

where (i, j) are the indices for pixels, and for a given pixel (i, j), Φ(i, j) is the

pixel’s absolute phase value, A(i, j) and B(i, j) are both constants for n =

1, · · · , 4, and In(i, j) is the pixel’s intensity in the n-th image.

• Using the four images obtained from the phase-shifting process, the “wrapped”

phase map, φ(i, j), can be calculated from the following function:

φ(i, j) = arctan∗

(

I1(i, j) − I3(i, j)

I2(i, j) − I4(i, j)

)

(2.19)

where the function arctan∗(· · · ) has two arguments and is defined as the fol-
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lowing:

arctan∗

(

f

g

)

=



































arctan

(

f

g

)

, if g ≥ 0

arctan

(

f

g

)

+ π , if g < 0 and f ≥ 0

arctan

(

f

g

)

− π , if g < 0 and f < 0

(2.20)

The wrapped phase map φ(i, j) computed from Eqn. 2.19 has a value range

of [−π, π] and is a 2π wrapping (hence the name) of the absolute phase map

Φ(i, j), which has a much larger value range depending on the number of fringes

in the projection patterns. The relationship between φ(i, j) and Φ(i, j) can be

expressed using the following equation:

φ(i, j) = mod
(

Φ(i, j) , 2π
)

(2.21)

For a N -step phase-shifting algorithm with uniform phase shifts, the projection

patterns can be expressed using the following equation:

I(P )
n (x, y) =

I
(P )
max

2

[

1 + sin

(

2πx

p
+

2π(n− 1)

N

)]

, n = 1, · · · , N (2.22)

Accordingly, the images of the surface under the projections can be written as

In(i, j) = A(i, j) +B(i, j) sin

(

Φ(i, j) +
2π(n− 1)

N

)

, n = 1, · · · , N (2.23)

The equation for computation of the wrapped phase map is as the following:

φ(i, j) = arctan∗

(

∑N

n=1

[

In(i, j) cos
(

2π n−1
N

)]

∑N
n=1

[

In(i, j) sin
(

2π n−1
N

)]

)

(2.24)
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2.2.2 Design of Algorithms for Accurate Phase Measurement

Phase-shifting method assumes that the projection patterns generated are perfect si-

nusoidal fringe patterns with accurate phase shifts. However, this is generally not true

in reality. Fringe patterns generated by grating or interferometry have non-sinusoidal

waveforms and the phase shifts achieved are often not very precise. Similar prob-

lem could also happen to patterns generated by computer projectors, e.g. if the

Gamma effect of the projector is not taken care of appropriately. As a result of the

imperfect fringe patterns, the phase maps acquired from phase-shifting method are

erroneous. In order to achieve high-accuracy phase measurement without requiring

super accurate hardware and calibration, intensive research has been done in the de-

sign of phase-shifting algorithms to reduce or eliminate the influence of imperfections

in fringe patterns.

Hibino et. al. [34] studied the influence of the non-sinusoidal waveform of fringe

patterns and imprecise phase shifts to the accuracy of phase measurement. They

pointed out that, in order to eliminate the effects of harmonic components in the

waveform up to the jth order in the presence of a constance phase-shift error, at

least 2j + 3 fringe patterns are required and the phase-shift interval (between two

consecutive patterns) must be less than 2π/(j+2). A general procedure for designing

phase-shifting algorithms to achieve such goals was derived. Similar research has

also been conducted by Surrel [35] and Joenathan [36] by using different analytical

approaches.

Fringe patterns generated by computer projectors are pixelated and the intensities

of pixels are quantized to a limited number of grayscales. As a result, the waveform

of the fringe patterns is not a smooth sinusoidal curve but has a jagged profile,

which could cause errors in the measured phase values. Coggrave and Huntley [37]

studied this problem experimentally and found out that, by purposely defocusing the
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projection on the surface being measured, the phase errors caused by the pixelation

of fringe patterns can be reduced significantly.

Zhao and Surrel [38, 39] studied the influence of the quantization of image inten-

sities to the accuracy of phase measurement. The relationship between the variance

of phase errors and the variance of image intensity errors is formulated by using a

characteristic polynomial method. It is shown that, the magnitude of the phase er-

rors caused by image intensity quantization is also related with the modulated fringe

intensity and the phase-shifting algorithm being used.

2.2.3 Summary

Phase-shifting method is a well developed technique for accurate phase measurement.

Intensive research has been done on the error analysis of phase-shifting method, as well

as the design of phase-shifting algorithms for achieving high accuracy. However, before

the emergence of computer projectors, the development of phase-shifting algorithms

was mainly focused on fringe patterns with fixed fringe pitches.

In this dissertation, the use of phase-shifting method is extended to fringe patterns

with variable fringe pitches. Also, to satisfy the requirement on measurement speed

in applications such as 100% on-line inspection, a new phase-shifting algorithm has

been developed, which uses fewer projection patterns than existing algorithms but

achieves similar measurement accuracy.

2.3 Phase Unwrapping Methods

In phase-shifting method, the sinusoidal fringe pattern with zero phase shift carries

the absolute phase information that is defined implicitly on itself and its phase-shifted

counterparts. Take the fringe patterns defined by Eqn. 2.22 as an example, (2πx/p)

is the phase distribution defined. Although the intensity distribution in a sinusoidal
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fringe pattern repeats itself from fringe to fringe, the absolute phase values employed

in one fringe do not overlap with the phase values in another fringe, due to the use

of fringe order information. However, when using phase-shifting method for a phase

measurement, the acquired phase map of the surface being measured is a wrapped

phase map, which means the fringe order information has been lost. In order to

recover the fringe orders and obtain the absolute phase map of the surface, a phase

unwrapping process has to be performed.

The most popularly used phase unwrapping methods in SMFP technique can be

put into two categories [40], namely spatial phase unwrapping methods and temporal

phase unwrapping methods. In the following sections, these two classes of methods

are explained individually.

2.3.1 Spatial Phase Unwrapping

2.3.1.1 Basic Idea

In a wrapped phase map, there exists many 2π phase jumps from one pixel to the

adjacent pixel, which are caused by the 2π wrapping of phase values. Fig. 2.6 shows a

grayscale rendering of a wrapped phase map, which is obtained from a measurement

of the part shown in Fig. 1.2(a). In the figure, the grayscales represent phase values

ranging from −π to π, and the cyan color indicates areas that the phase information

is either unavailable or not applicable. Places in the figure where the grayscales of

pixels change abruptly from white to black indicate the occurrence of phase jumps.

The basic idea of spatial phase unwrapping is as the following: Firstly, the dif-

ferences of phase values between adjacent pixels are examined throughout the phase

map. The places where the phase differences are close to 2π are considered as possible

phase jumps. Secondly, the phase values of pixels in the phase map are compensated

by multiples of 2π so that the phase jumps are “flattened” and the phase distribu-
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Figure 2.6: A grayscale rendering of a wrapped phase map

tion throughout the phase map is continuous in the valid regions. As a result of this

step, the compensated phase map should agree with the absolute phase map only by

a constant phase difference which is not known. Finally, by utilizing the reference

pixels whose absolute phase values are known from other measurements, the absolute

phase map can be obtained.

2.3.1.2 Problems with Measurement of Complex Surfaces

Based on the spatial phase unwrapping approach, a wrapped phase map can be

partitioned into regions of three different types. Regions of the first type are those

with no valid phase values, e.g. holes on the surface and shadowed areas that are

caused by projection angle. Fig. 2.7 shows a topological diagram of a wrapped phase

map, in which the regions with no valid phase values are denoted by U1, . . . , Uk.

Separated by the U -type regions, the rest of the phase map, in which every pixel has

a valid phase value, consists of a number of isolated regions. Let S1, . . . , Sn denote

these regions. The third type of regions is a subset of the S-type regions, which

contains the reference pixels whose absolute phase values are known. These regions

are denoted by R1, . . . , Rm.
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Figure 2.7: Topological diagram of a wrapped phase map

In order to successfully construct an absolute phase map from a wrapped phase

map, each S-type region must contain at least one R-type region. Otherwise, the

S-type region after phase unwrapping may still have an unknown constant phase

difference compared to the true absolute phase map. The reference pixels in other

S-type regions are not able to be utilized due to the isolation of the region. For spatial

phase unwrapping approach, the R-type regions in the phase maps only spread over

a limited area on the phase map (If the R-type regions spread over all S-type regions,

the approach becomes temporal phase unwrapping). For example, the method for

creation of reference pixels proposed in Ref. [24] is able to build a strip-shaped R-

type region with a width of one fringe. When measuring a surface with unknown

shape, the topological structure of the phase map acquired is unpredictable. Hence

there is no guarantee that every S-type region include a R-type region. Hence, the

phase unwrapping process may fail at some regions.

Besides the above limitation, spatial phase unwrapping also assumes that the

difference of absolute phase values between adjacent pixels is less than π. A difference

greater than π may be handled incorrectly. In reality, surfaces that are steep or

discontinuous from the camera’s perspective often cause phase jumps greater than π.

In such cases, spatial phase unwrapping may fail.
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2.3.1.3 Summary

When measuring continuous surfaces (from the camera’s perspective) with fairly sim-

ple shapes, spatial phase unwrapping method works very well and requires fewer

projection patterns than temporal phase unwrapping method. However, if the sur-

face being measured has a complex shape or discontinuity, spatial phase unwrapping

may fail. In this dissertation, measurement of surfaces with complex shapes are con-

sidered. Hence, spatial phase unwrapping is not used.

2.3.2 Temporal Phase Unwrapping

2.3.2.1 Overview

In spatial phase unwrapping method, the absolute phase value of a pixel can be

determined only if the following two requirements are both satisfied: 1) At a certain

point at least one of the pixel’s neighbors has known absolute phase value; and 2)

the difference between the absolute phase values of the pixel and its neighbor is less

than π. If any of the two requirements are not satisfied, the spatial phase unwrapping

method will fail.

Compared to spatial phase unwrapping method, temporal phase unwrapping does

not rely on the knowledge of neighbor pixels’ phase values to determine a pixel’s

absolute phase value. In stead, it calculates the absolute phase value by using the

pixel’s intensity values in a sequence of images, which are obtained by projecting a

sequence of carefully designed fringe patterns.

In the following sections, a number of successful and popular algorithms based on

temporal phase unwrapping are presented.
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2.3.2.2 Binary Code Method

Binary code method is a structured lighting technique which uses projection patterns

with only black and white fringes [41]. Such fringe patterns are called binary fringe

patterns and a few examples are shown in Fig. 2.8(a). Binary code method can

be used by itself for phase measurement, or as a phase unwrapping tool for other

phase measurement techniques, such as phase-shifting method [29]. The basic idea

of binary code method is to construct a set of binary fringe patterns with different

fringe arrangements such that the projection pattern space can be partitioned into a

number of sections and each section can be uniquely identified by its binary intensities

in the sequence of patterns.

An example of the projection patterns constructed by using binary code method

is shown in Fig. 2.8, which are generated by the gray-code algorithm [42], a popu-

larly used algorithm of binary code method. Depending on the resolution of phase

measurement to be achieved, the number of projection patterns to be used may vary.

The higher the resolution requirement, the more projection patterns are needed. Fig-

ure 2.8(a) shows 3 projection patterns only for demonstration purpose. By using the

3 patterns in a sequence, the projection pattern space, ξ-η plane, can be partitioned

into 8 sections with each section having a unique intensity sequence (see Fig. 2.8(b)).

When using “0” for indication of black fringes and “1” for indication of white fringes,

a section’s intensity sequence can be represented by a binary code, called section code.

For example, when the patterns shown in Fig. 2.8(a) are used in the order of #1, #2

and #3, the projection intensities at section S4 are black, black and white, conse-

quently. The corresponding section code is 001. In phase measurement, the projection

pattern space ξ-η also defines a distribution of absolute phase values. Therefore each

section is associated with a certain range of absolute phase values.

By using more than 3 binary patterns, the projection pattern space can be par-
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(a) Binary fringe patterns generated (b) The resulting partitioning of the pro-
jection pattern space, ξ-η

Figure 2.8: Binary fringe patterns generated by the gray-code algorithm and the
resulting partitioning of the projection pattern space

titioned to a finer resolution. Take the gray-code algorithm as an example. If a

number of Np patterns are used, the number of sections defined in the projection

pattern space, ξ-η, could reach 2Np. When projecting these binary patterns to a

surface for phase measurement, the corresponding images of the surface have dark

and bright fringes. By performing an intensity thresholding, the grayscale images can

be converted to 1-bit bitmaps. Therefore, with a sequence of Np images, each pixel

in the camera’s image plane, which corresponds to a point on the surface being mea-

sured, can be associated with Np binary values, forming a Np-bit binary code. This

binary code of the pixel is also the section code of a corresponding partition defined

in the projection pattern space. Since every partition in the projection pattern space

is related to a certain range of absolute phase values, the possible range of the pixel’s

absolute phase value can be determined. The phase unwrapping process can hence

be done by adding multiples of 2π to the wrapped phase value of the pixel, which

can be obtained from phase measurement techniques such as phase-shifting method,

to make it consistent with the known range of the pixel’s absolute phase value.
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When using a fairly large number of binary patterns, usually more than 10, the

binary code method can be used as a phase measurement technique by itself. In this

case, the range of the absolute phase value of an arbitrary pixel given by the binary

code method is small enough such that it can be used as a determined absolute phase

value.

Different designs of binary projection patterns yield different accuracy, robustness

and efficiency in phase measurement and phase unwrapping. Gärtner et. al. [43] gave

the following benchmarks for evaluating the performance of a binary code algorithm:

• Unique identification: Every code in the set of section codes defined by a

binary code algorithm needs to be unique, i.e. no duplicates of codes is allowed.

An example can be found in Fig. 2.8, in which the section codes defined range

from 000 to 111 without recurrence.

• Ability of self-normalizing: To retrieve the section codes for individual pix-

els, the grayscale images need to be converted to 1-bit bitmaps by intensity

thresholding. Due to the influence of environment light and the reflection prop-

erty of surfaces, the grayscale intensities of the dark and the bright fringes in

the images may vary as the fringes are located in different regions of the image.

Therefore, a fixed threshold value for thresholding the whole image may not

work properly. For maximum robustness of the thresholding algorithm, the so-

lution is to select a threshold value for each pixel based on its intensities w.r.t.

the projection of the black and the white fringes respectively. This requires

that, for a set of binary patterns defined, every point is in a black fringe for

a certain pattern and in a white fringe for another pattern. This means that,

section codes with all “0”s or all “1”s are not allowed.

• The Hamming-distance of adjacent section codes needs to be equal to

1: The Hamming-distance of two codes is defined as the number of disagreed bits
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when comparing two codes in a bitwise manner. For example, the Hamming-

distance between “10011001” and “10111011” is 2 because two bits in the codes,

the 3rd and the 7th, are different.

The requirement on the Hamming-distance of adjacent section codes comes

from the following concern: Due to the finite size of pixels, it happens often

that one pixel is under the projection of a black fringe and a white fringe at the

same time, i.e. the boundary of the black and the white fringe falls somewhere

inside the pixel. In such case, the pixel has a grayscale intensity between the

maximum and the minimum intensities it could get. Depending on which fringe

is dominant on the pixel as well as the level of noise, the binarized intensity can

be either “0” or “1”, which leads to an uncertainty in the corresponding phase

range calculated. However, if the Hamming-distance of adjacent section codes

is always 1 and there is only one ambiguous bit in the retrieved binary code,

which is the most frequent case, the phase range with uncertainty considered is

guaranteed to be double of the regular range. For larger Hamming-distances,

the magnitude of uncertainty is larger.

Figure 2.9 shows the Hamming-distances of adjacent section codes generated

by the dual-code algorithm and the gray-code algorithm. As we can see, the

Hamming-distances of the gray-code algorithm is always 1, which is one of the

properties that make it a favorable algorithm for binary code method.

Gärtner et. al. [43] also discussed the efficiency of different binary code algorithms,

where efficiency is defined as the number of sections in the projection pattern space

versus the number of binary patterns used. A few algorithms with high efficiency,

e.g. the extended Maximum Zero X-ing code and the Lemming code, were presented

in their paper.

Binary fringe patterns can be generated by glass grating devices with high pre-
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(a) Hamming-distance achieved by the
dual-code algorithm

(b) Hamming-distance achieved by the
gray-code algorithm

Figure 2.9: The Hamming-distance of binary patterns achieved by different algorithms

cision and high resolution [1]. Therefore, binary code method is a favorable phase

measurement technique for SMFP systems with glass grating based projection units.

For SMFP systems based on computer projectors, there are other phase unwrapping

methods which require fewer projection patterns than binary code method. Hence,

binary code method is used in this dissertation.

2.3.2.3 Algorithm Proposed by Huntley and Saldner

Huntley and Saldner [44, 45, 46] developed a temporal phase unwrapping algorithm

which uses a number of sinusoidal fringe patterns with different fringe pitches. The

intensity distributions of the patterns can be expressed using the following equation:

I(P )(ξ, η, t, n) =
I

(P )
max

2

[

1 + sin

(

2πt
(

ξ − 1/2
)

+
(n− 1)π

2

)]

ξ, η ∈ [0, 1] ; t = 1, · · · , T ; n = 1, · · · , 4

(2.25)

where (ξ, η) are the normalized coordinates in the projection pattern space ξ-η, t

is the number of fringes in a pattern, n represents the step of phase shift, I
(P )
max is

the maximum intensity of projection, and I(P )(ξ, η, t, n) is the projection intensity
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of point(ξ, η) in the pattern (t, n). The intensity distributions of the patterns also

defined the distributions of the absolute phase values. Let Φ(ξ, η, t) denote the phase

distribution in pattern (t, 1), which has zero phase shift. Φ(ξ, η, t) can be written as

the following:

Φ(ξ, η, t) = 2πt(ξ − 1/2) (2.26)

By projecting the fringe patterns on the surface being measured, a set of images

can be acquired. Let I(i, j, t, n) denote the image that corresponds to the pattern

(t, n), where (i, j) are the pixel coordinates in the image. From the 4 images that

correspond to the same fringe number t, the associated phase map of the surface,

Φ(i, j, t), satisfies the following equation:

tan
(

Φ(i, j, t)
)

=
I(i, j, t, 1) − I(i, j, t, 3)

I(i, j, t, 2) − I(i, j, t, 4)
(2.27)

For every pixel (i, j), the difference between its phase values Φ(i, j, t) and Φ(i, j, t−1)

can be derived as the following:

∆Φ(i, j, t) = Φ(i, j, t) − Φ(i, j, t− 1)

= 2πt
[

ξi,j − 1/2
]

− 2π(t− 1)
[

ξi,j − 1/2
]

= 2π
[

ξi,j − 1/2
]

(2.28)

where ξi,j is the ξ-coordinate in the projection pattern space that corresponds to pixel

(i, j). Since the value of ξi,j is in the range of [0, 1], we can get that ∆Φ(i, j, t) is in

the range of [−π, π]. Therefore, by utilizing Eqn. 2.27, the following equation for

computing ∆Φ(i, j, t) can be derived:

∆Φ(i, j, t) = arctan

(

tan
(

Φ(i, j, t)
)

− tan
(

Φ(i, j, t− 1)
)

1 + tan
(

Φ(i, j, t)
)

· tan
(

Φ(i, j, t− 1)
)

)

(2.29)

47



The phase map that corresponds to the fringe patterns with the highest fringe

number, Φ(i, j, T ), can be calculated from the following equation:

Φ(i, j, T ) = Φ(i, j, 1) +

T
∑

t=2

∆Φ(i, j, t) (2.30)

where Φ(i, j, 1) can be computed from Eqn. 2.27 with an inverse tangent operation

on both sides, since Φ(i, j, 1) is in the range of [−π, π] and therefore no ambiguity is

involved. The phase map Φ(i, j, T ) has the highest phase accuracy and is the final

result of the phase measurement.

Compared to the binary code method, the phase unwrapping algorithm proposed

by Huntley and Saldner is more favorable to SMFP systems using computer pro-

jectors, because it fully utilizes the projection intensity range of the projector and

hence yields higher phase measurement accuracy. However, this algorithm requires

a large number of fringe patterns for a measurement, which makes it unsuitable for

applications that demand a fast measurement speed.

2.3.2.4 Algorithm Proposed by Zhao et. al.

Zhao et. al. [47] proposed a phase unwrapping algorithm which uses fewer fringe

patterns than the one developed by Huntley and Saldner (see Section 2.3.2.3) while

achieves similar performance on phase unwrapping. The basic idea of their algorithm

is to use two (or more) phase maps with different phase sensitivities, which are ob-

tained by using sinusoidal fringe patterns with different fringe pitches. A detailed

description of the algorithm is as following:

• Firstly, a wrapped phase map with high phase sensitivity, denoted by φ(i, j), is

obtained by using the phase-shifting method and fringe patterns with a small

fringe pitch. The relationship between φ(i, j) and its unwrapped counterpart,
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Φ(i, j), can be expressed using the following equation:

Φ(i, j) = φ(i, j) + 2π s(i, j) (2.31)

where (i, j) are the pixel coordinates in the image and s(i, j) are unknown

integers to be solved.

• The other phase map, Φ0(i, j), is also obtained from phase-shifting but using

fringe patterns with only one sinusoidal fringe. Therefore the acquired phase

map Φ0(i, j) is an absolute phase map without the phase wrapping problem.

By applying certain restrictions to the fringe patterns used for the acquisition

of Φ(i, j) and Φ0(i, j), the following relationship between the two phase maps

can be achieved:

Φ(i, j) = ch,0 Φ0(i, j) (2.32)

where ch,0 is a constant. By combining Eqns. 2.31 and 2.32, the equation for

solving s(i, j) can be derived:

s(i, j) = round

(

ch,0 Φ0(i, j) − φ(i, j)

2π

)

(2.33)

• Once s(i, j) is known, the absolute phase map Φ(i, j) can then be calculated by

substituting s(i, j) into Eqn. 2.31.

This phase unwrapping algorithm can also be extended to using 3 or more phase

maps with different phase sensitivities for an improved immunity to phase errors.

Due to its many attractive properties, such as excellent phase unwrapping perfor-

mance, easy implementation and the requirement of a small number of projection

patterns, the algorithm proposed by Zhao et. al. has been used in many latest SMFP

systems [3, 48].
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2.3.2.5 Summary

Compared to spatial phase unwrapping approach, temporal phase unwrapping meth-

ods are able to handle surfaces with more complicated shapes and are less subject

to phase errors, although they generally require more projection patterns. There-

fore, temporal phase unwrapping methods are more popularly used in recent SMFP

systems.

In this dissertation, a modified version of Zhao’s algorithm is proposed, which uses

fewer projection patterns but achieves similar performance.

2.4 Camera Models and Camera Calibration Meth-

ods

2.4.1 Camera Models

A camera model is a set of mathematical equations and related parameters for de-

scribing the geometric relationship between the 3-D scene and its 2-D image captured

by a camera. The most commonly used camera model is the pinhole camera model,

which describes the formation of image as a perspective projection from 3-D space

to a 2-D image plane. It is simple and reasonably accurate, hence it has been used

in many camera-related applications or been taken as a starting point for advanced

modeling of cameras. In the research of SMFP technique, many of the existing math-

ematical models for SMFP systems have used the pinhole camera model for describing

cameras and projectors [22, 24].

The pinhole camera model does not consider lens distortions (e.g. radial dis-

tortion, de-centering distortion and thin prism distortion), which exist in most real

cameras. Advanced camera models provide more accurate modeling of cameras by
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considering the influence of lens distortions to image formation. A common approach

is to use a lens distortion model which can be integrated into the basic pinhole cam-

era model. A popularly used lens distortion model was proposed by Brown [49, 50],

for which a detailed mathematical description is given in Section 3.2.1. The pinhole

camera model with Brown’s lens distortion model has been proved to be very ac-

curate and hence used in many camera-based 3-D measurement techniques, such as

photogrammetry [8].

In this dissertation, the pinhole camera model with Brown’s lens distortion model

is used in the proposed mathematical model for SMDFP systems.

2.4.2 Camera Calibration Methods

A camera model defines a number of parameters that are related to the optical or

geometric features of the camera’s lens and/or imaging sensor. These parameters are

generally unable to be measured directly. For different cameras, i.e. different lens

and imaging sensor configurations, the values of parameters are usually different.

Camera calibration is a procedure to estimate the values of parameters (defined

by the camera model) for individual cameras [52, 53]. Traditional camera calibration

methods require special equipments or facilities, such as light collimator or plumbing

lines [50]. Since late 80’s, more convenient and flexible calibration methods have

been developed, e.g. requiring only a few images of a calibration object taken by the

camera from multiple perspectives [54].

Zhang [27] proposed a calibration method which estimates camera parameters,

including lens distortion coefficients, by taking pictures of a planar pattern at multiple

orientations. The relative positions of the feature points in the pattern need to be

known, while the orientations of the pattern can be arbitrary and are not required

to be known a priori. The computation of the parameter values is done in two steps.
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At the first step, a least-square method is used to obtain the transformation matrix

which relates the 3-D positions of the feature points to their 2-D projections in the

images. At the second step, a non-linear optimization process is performed to find out

the set of parameter values that gives the minimum residual error after projection.

Heikkilä and Silvén [55] extended the two-step approach proposed by Zhang and

added compensations for the extraction of feature points and correction of the dis-

torted image coordinates. A detailed description of their approach by using a cali-

bration plate with circular feature points can be found in the literature [26].

In our research, we used the camera calibration algorithm and software library

developed by the computer vision research group at the California Institute of Tech-

nology [56, 57].
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Chapter 3

System Model and Algorithms

This chapter provides detailed descriptions of the mathematical model and algorithms

developed for SMDFP [63, 64]. Section 3.1 explains the goals, state of the art and

challenges in the development of models and algorithms. Section 3.2 explains the

camera model and the lens distortion model used, which are required to understand

the material presented in the rest of the chapter. Section 3.3 describes the proposed

mathematical model for SMDFP and the related algorithms for shape measurement,

which include the algorithm for construction of absolute phase map (Section 3.3.3), al-

gorithm for construction of point cloud (Section 3.3.4), and algorithm for estimation

of sensor parameters (Section 3.3.5). The implementation of the model and algo-

rithms is described in Section 3.4 and the results are presented. Section 3.5 finally

summarizes this chapter.

3.1 Introduction

As an emerging technique for 3-D measurements, SMDFP is still in a development

stage and its potentials have not been fully exploited. To make it more attractive to

industrial 3-D measurement applications, we need to looking for improvements in the
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following aspects: measurement accuracy, measurement speed, ease of calibration,

and the capability of handling complex shapes.

One way to achieve these goals is to improve the hardware. For example, to

use projectors and cameras with higher resolution and higher signal-to-noise ratio to

improve measurement accuracy; and to employ better synchronization between the

projector and the camera to reduce measurement time [65]. However, improving the

hardware is not always helpful and on the other hand it may increase system cost as

well. Another approach for achieving these goals is to develop better mathematical

models and algorithms for SMDFP systems.

The mathematical model used for a SMDFP system and the related algorithms

for construction of point clouds are crucial to the system’s measurement accuracy.

As discussed in Section 2.1, existing models can be classified into two categories,

namely (optical) geometry based models and calibration matrix based models [18].

Between the two, geometry based models have been more popularly used and stud-

ied, mainly because they have the potential to describe the optical physics of SMDFP

systems with higher accuracy. A very promising model based on geometric approach

was proposed by Legarda-Sáenz et. al. recently [19]. By fully considering the 3-D

perspectives and lens distortions of the projector and the camera, Legarda-Sáenz’s

model is able to describe the optical geometry of SMDFP systems very accurately.

However, this model involves a large number of parameters (30 in total) and an accu-

rate acquisition of these parameters requires a complex calibration process. To make

the calibration process easier while maintaining the accuracy achieved, improvements

need to be made to the model and new algorithms need to be developed.

In a shape measurement performed by SMDFP system, the projector needs to

project a sequence of light patterns and the camera needs to capture the images ac-

cordingly. Besides the hardware issues (e.g. the refreshing rate of the projector, the

exposure time of the camera and the synchronization between the projector and the
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camera), the time spent on the acquisition process is determined by the number of

projection patterns used. For time-critical applications such on 100% on-line inspec-

tion of parts, it is desirable to have a minimal measurement time. Hence, methods

that involve fewer projection patterns are preferred. Unfortunately, existing methods

that use a small number of patterns (typically 4 or 5) are unable to handle complex

shapes [24]. On the other hand, methods such as binary code [29] and phase-shifting

with multiple fringe frequencies [3, 48] have exellent capability of handling complex

shapes but they generally require more patterns (typically 12 or more). After a care-

ful study of the phase-shifting method with multiple fringe frequencies, we discovered

that images acquired by using this method contain redundant information which may

be utilized to reduce the number projection patterns needed.

As a summary of the above, improvements of SMDFP systems in terms of mea-

surement accuracy, speed and ease of calibration require the development of new

model and algorithms.

3.2 Mathematical Preliminaries

3.2.1 Pinhole Camera Model with Lens Distortion Model

The pinhole camera model with modeling of lens distortions has been shown to be

an accurate mathematical model for cameras. It is widely used in areas such as

photogrammetry, machine vision and computer graphics [66]. The pinhole camera

model with lens distortion model can be described by a series of transformations

presented below (see Fig. 3.1):

1. Transformation from the world coordinate frame to the camera coor-

dinate frame: In the pinhole model, each camera defines a camera coordinate

frame (Cartesian), which is determined by the cameras optics and image for-
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Figure 3.1: Pinhole camera model

mation hardware, e.g. the CCD. The coordinate transformation between the

world coordinate frame and the camera coordinate frame can be described by

a rotation matrix RW2C and a translation vector T W2C :

[

x
(C)
M , y

(C)
M , z

(C)
M

]T

= RW2C

[

x
(W )
M , y

(W )
M , z

(W )
M

]T

+ T W2C (3.1)

where
[

x
(W )
M , y

(W )
M , z

(W )
M

]T

is the coordinates of point M in the world coordinate

frame and
[

x
(C)
M , y

(C)
M , z

(C)
M

]T

is the coordinates of M in the camera coordinate

frame.

2. Perspective projection to the image plane: As a convention, the image

plane of the perspective projection is defined as the plane perpendicular to Z(C)-

axis and intersecting it at z(C) = −1. The two axes of the image plane, u and

v, are parallel to X(C)- and Y (C)-axis respectively. The principal point of the

perspective projection is defined as the intersection of Z(C)-axis and the image

plane, whose pixel coordinates are (u0, v0). Let MI denote the projection of

point M on the image plane. The coordinates of MI in the camera coordinate
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frame, i.e.
[

x
(n)
M , y

(n)
M ,−1

]T

, can be calculated as follows:

[

x
(n)
M , y

(n)
M ,−1

]T

=

[

x
(C)
M

−z
(C)
M

,
y

(C)
M

−z
(C)
M

,
z

(C)
M

−z
(C)
M

]T

(3.2)

3. Lens distortion model: Due to the distortions of optical lenses, real cam-

eras do not comply with perspective projection perfectly. The real position

of MI is generally not at the nominal coordinates, i.e.
[

x
(n)
M , y

(n)
M ,−1

]T

, but

shifted a bit in the u–v plane and ends up at
[

x
(d)
M , y

(d)
M ,−1

]T

. The most pop-

ularly used lens distortion model in photogrammetry is the one introduced by

Brown [49, 50], in which the relationship between the distorted projection po-

sition,
[

x
(d)
M , y

(d)
M ,−1

]T

, and the idealized projection position,
[

x
(n)
M , y

(n)
M ,−1

]T

,

is defined as follows:
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







(3.3)

where r2 =
(

x
(n)
M

)2

+
(

y
(n)
M

)2

and ks (s = 1, . . . , 5) are the radial and tangential

distortion coefficients of the lenses.

4. Transformation from camera coordinates to pixel coordinates: For a

digital camera (typically CCD or CMOS based), the position of point MI is

digitized by the CCD/CMOS chip and presented in pixel coordinates. Denote
[

x
(p)
M , y

(p)
M , 1

]T

as the homogeneous pixel coordinates of MI , which can be cal-
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culated from the following equation:
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(3.4)

where A is the camera’s intrinsic matrix, in which (u0, v0) is the pixel coordi-

nates of the principal point, fx and fy are the scale factors for axes u and v

respectively, and α is a coefficient describing the skewness of the axes u and v.

3.2.2 Inverse Transformations of Pinhole Camera Model

The SMFP technique involves the construction of 3-D point clouds from 2-D images,

which often requires the calculation of the world coordinates of points from their

pixel coordinates in the images. Hence, the inverse transformations of pinhole camera

model are often needed. In the following, mathematical descriptions of the inverse

transformations are given:

• From pixel coordinates to camera coordinates: The position of point

MI (with lens distortions) on the image plane can be calculated from its pixel

coordinates by using the inverse camera intrinsic matrix:













x
(d)
M

y
(d)
M

1






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= A−1













x
(p)
M

y
(p)
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




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

(3.5)

where
(

x
(d)
M , y

(d)
M

)

are in camera coordinates.

• The idealized projection position: With the lens distortion model given in

the previous section, the conversion of a point’s idealized projection position to

58



its real projection position cannot be reversed analytically. That is, there is no

analytical forms for x
(n)
M and y

(n)
M by taking x

(d)
M and y

(d)
M as arguments, since

Eqn 3.3 cannot be inversed. However,
(

x
(n)
M , y

(n)
M

)

can be solved from Eqn 3.3

by using numerical methods, such as Newton iteration.

• The inverse of perspective projection: The 3-D position of a point M in

the space cannot be decided by merely knowing its projection position MI on

the image plane, because one dimensional information is missing. In the pinhole

camera model, a point MI on the image plane defines a ray that starts from

the projection center C and passes through MI . The corresponding point M in

the 3-D space lies somewhere on the ray CMI . For SMFP technique, the depth

information of M is given by its absolute phase value.

• Transformation from the camera coordinate frame to the world co-

ordinate frame: The transformation of the coordinates of a point, M , from

the camera coordinate frame to the world coordinate frame can be done as the

following:












x
(W )
M

y
(W )
M

z
(W )
M













= R−1
W2C

























x
(C)
M

y
(C)
M

z
(C)
M













− T W2C













(3.6)

where RW2C is the rotation matrix and T W2C is the translation vector.

3.3 Model and Algorithms

3.3.1 Overview

In the following sections, the proposed mathematical model for SMDFP systems and

the related algorithms are explained in detail.
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Figure 3.2: Schematic diagram of the relationship of algorithms involved in SMDFP

Section 3.3.2 describes the mathematical model, which provides an accurate mod-

eling of the optical geometry of SMDFP systems by fully considering the influence of

3-D perspectives and the lens distortions of the projector and the camera.

Based on the proposed mathematical model, three algorithms were developed,

namely the algorithm for construction of absolute phase map, the algorithm for con-

struction of point cloud and the algorithm for estimation of sensor parameters. The

relationship between the algorithms is illustrated in Fig. 3.2.

Section 3.3.3 explains the algorithm for construction of absolute phase map. This

algorithm takes the images of an object, which are obtained under the projections

of phase-shifted fringe patterns, and generates an absolute phase map of the object.

By fully exploiting the information stored in the images from phase-shifting, the

proposed algorithm uses fewer projection patterns than existing algorithms without

compromising performance.

Section 3.3.4 explains the algorithm for construction of point cloud. This algo-

rithm takes three inputs: the absolute phase map of the object, the sensor parameters

and a reference phase map. The output of the algorithm is a dense 3-D point cloud
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that represents the surface of the object being measured. With the use of a refer-

ence phase map, the proposed algorithm simplifies the calibration process of SMDFP

systems and handles the projector’s lens distortions automatically.

Finally, Section 3.3.5 explains the algorithm for accurate estimation of the sensor

parameters, which are used by the point cloud construction algorithm.

3.3.2 Mathematical Model for SMDFP Systems

The mathematical model used for describing SMDFP systems consists of two parts,

a camera model and a projector model.

• Camera model: The camera model describes the geometric relationship be-

tween the 3-D shapes of objects and their 2-D images in the camera. The pinhole

camera model with modeling of lens distortions, as explained in Section 3.2.1,

is used.

• Projector model: The projector model describes the geometric relationship

between a 2-D projection pattern and the resulting light intensity distribution

in the 3-D space. Since a computer projector (LCD or DMD based) acts as

an inverted digital camera from the optical geometry perspective1, it can also

be modeled accurately by using the pinhole camera model (with lens distortion

model) as for the camera. By using the pinhole camera model, a Cartesian

coordinate frame X(P )Y (P )Z(P ) is defined for the projector (see Fig. 3.3). The

image plane defined by ξ–η axes represents the DMD/LCD chip of the projector.

The pixel coordinates of the principal point in the image plane is (ξ0, η0). All

transformations related to the projector model are analogous to the ones defined

for the camera (see Section 3.2.1 for details).

1For digital cameras, lights from outside the camera pass through lenses and hit the CCD/CMOS
sensor, where image is formed; While for the case of computer projectors, lights reflected by DMD
chip (or transiting via LCD) pass through lenses and hit objects in the 3-D space.
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Figure 3.3: A computer projector can be described by the pinhole camera model

Figure 3.4: Mathematical model for SMDFP systems
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(a) Sinusoidal fringe pattern
with fixed fringe pitch

(b) Generalized fringe pattern

Figure 3.5: Generalized fringe pattern vs. sinusoidal fringe pattern

The complete mathematical model for SMDFP systems with one projector and

one camera is illustrated in Fig. 3.4. Compared to some of the existing models based

on optical geometry [22, 24], this model is more accurate due to the use of the full

pinhole camera model and the modeling of lens distortions. It also has the minimum

constraints on system alignment, which allows maximal flexibility in system setup.

For example, it does not require the optical axes of the projector and the camera to

be coplanar, which is an assumption made by many existing models.

3.3.3 Algorithm for Construction of Absolute Phase Map

3.3.3.1 Phase-shifting Using Generalized Fringe Patterns

The concept of generalized fringe pattern is introduced to distinguish itself from

the traditional sinusoidal fringe pattern (with fixed fringe pitch). A sinusoidal fringe

pattern contains straight fringes and has a sinusoidal intensity profile at cross-sections,

as the one shown in Fig. 3.5(a). A generalized fringe pattern is a fringe pattern in

which the fringes can be curved and the fringe pitch can vary continuously throughout

the pattern. An example of generalized fringe pattern is shown in Fig. 3.5(b). The

sinusoidal fringe pattern is a special case of generalized fringe pattern.
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The proposed algorithm for construction of absolute phase maps uses generalized

fringe patterns. The conventional phase-shifting technique is revised to incorporate

the use of generalized fringe patterns. By using a new mathematical description,

the generation of a set of projection patterns for absolute phase measurement using

phase-shifting method can be presented as a three-step process as follows:

• Construction of phase function: A phase function Φ(P )(ξ, η) is defined in

the image plane of the projector, i.e. the ξ–η plane. Φ(P )(ξ, η) must be con-

tinuous in the ξ–η plane and monotonic in either ξ or η direction, depending

on the position of the camera w.r.t. the projector. These two constraints are

required by the algorithm for point cloud construction, which will be explained

in Section 3.3.4.

• Conversion of the phase function to fringe pattern: The phase function

Φ(P )(ξ, η) is converted to light projection pattern by certain encoding method.

Light properties that can be used for encoding include intensity, color [67], etc.

In practice, light intensity, without the involvement of color, is most popularly

used since the intensity of light can be measured accurately by photo sensors

such as CCD. A widely used modulation function for converting phase values to

light intensities is the sinusoidal function. For digital projectors, in which light

intensity is presented in grayscales, the sinusoidal modulation can be described

by the following equation:

I(P )(ξ, η) =
I

(P )
max

2

[

1 + sin
(

Φ(P )(ξ, η)
)

]

(3.7)

where I(P )(ξ, η) is the grayscale value of point (ξ, η) in the projection pattern

and I
(P )
max is the maximum grayscale in the pattern.

Sinusoidal function has features that make it particularly suitable as the modu-
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lation function for phase-shifting method. For example, if the projection is out-

of-focus at the object’s surface, the light intensity distribution of the projection

pattern will be locally averaged over the surface. However, the intensity change

would not affect the phase values restored by the phase recovery algorithm, i.e.

the phase-shifting technique can still resolve the phase values correctly despite

the out-of-focus projection. The mathematical explanation for this is, a “locally

averaged” sinusoidal function will remain as a sinusoidal function with the same

wavelength and phase offset. The only thing that will change is the amplitude.

In this dissertation, only sinusoidal modulation of phase functions is discussed.

By using the sinusoidal modulation, a large variety of fringe patterns can be

defined by appropriately constructed phase functions. For example, a vertical

sinusoidal fringe pattern (as the one shown in Fig. 3.5(a)) can be defined by the

following phase function:

Φ(P )(ξ, η) = c · ξ (3.8)

where c is a constant.

• Phase-shifting of the fringe pattern: The phase-shifting process of a fringe

pattern is to add constant phase-shift value(s) in the phase function Φ(P )(ξ, η),

in the whole ξ–η space defined, for a sequence of steps.

Take the N -step phase-shifting algorithm with uniform phase shifts as an exam-

ple. The phase-shifted projection patterns can be described using the following

equation:

I(P )
n (ξ, η) =

I
(P )
max

2

[

1 + sin

(

Φ(P )(ξ, η) +
2π(n− 1)

N

)]

, n = 1, · · · , N (3.9)

Accordingly, the images of the surface under the projections can be written as
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follows (a detailed proof is presented in Appendix A.1):

In(i, j) = A(i, j) +B(i, j) sin

(

Φ(i, j) +
2π(n− 1)

N

)

, n = 1, · · · , N (3.10)

where (i, j) are the pixel coordinates, and for a given pixel (i, j), Φ(i, j) is the

pixel’s “base” absolute phase value, A(i, j) and B(i, j) are both constants (for

n = 1, · · · , N), and In(i, j) is the pixel’s intensity in the n-th image.

The equation for computing the wrapped phase map is as the following:

φ(i, j) = arctan∗

(

∑N

n=1

[

In(i, j) cos
(

2π n−1
N

)]

∑N
n=1

[

In(i, j) sin
(

2π n−1
N

)]

)

(3.11)

where the function arctan∗(· · · ) has two arguments and is defined as follows:

arctan∗

(

f

g

)

=



































arctan

(

f

g

)

, if g ≥ 0

arctan

(

f

g

)

+ π , if g < 0 and f ≥ 0

arctan

(

f

g

)

− π , if g < 0 and f < 0

(3.12)

The relationship between the wrapped phase map φ(i, j) and the absolute phase

map Φ(i, j) can be written as

φ(i, j) = mod
(

Φ(i, j) , 2π
)

(3.13)

3.3.3.2 Construction of Absolute Phase Map

The functionality of the phase map construction algorithm is to generate an absolute

phase map from a set of images which are obtained using phase-shifting method.

As mentioned in Related Research (Section 2.3.2.4), the phase map construction
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algorithm with the use of multiple fringe frequencies has been used in many latest

research work in SMFP technique [3, 19]. The algorithm provides high accuracy in

phase measurement, is robust to noises in projections and images, and can handle all

sorts of surface discontinuities. In the following context, this algorithm will be referred

to as MFF for brevity of interpretation. The phase map construction algorithm we

developed is a modified version of MFF algorithm. It uses fewer projection patterns

than MFF but achieves the same performance. By using extended mathematical

definitions, our algorithm is also able to deal with generalized fringe patterns.

A common scheme of the conventional MFF algorithm uses 4-step phase-shifting

and 3 fringe frequencies, meaning a total number of 12 phase-shifted fringe patterns.

Our algorithm uses 8 projection patterns only, which can be defined using the follow-

ing equation:

I(P ),k
n (ξ, η) =

I
(P )
max

2

[

1 + sin

(

ck · Φ
(P )(ξ, η) +

(n− 1)π

2

)]

(3.14)

where k = 0, 1, 2 represent different levels of fringe patterns, n = 1, . . . , 4 represent

different phase-shift values, (ξ, η) is the pixel coordinates in the projection pattern,

Φ(P )(ξ, η) is the phase function, ck are scale coefficients, I
(P )
max is the maximum intensity

in the patterns, and I
(P ),k
n (ξ, η) are the intensity values of pixel (ξ, η).

For any phase function Φ(P )(ξ, η), Eqn. 3.14 defines a set of 8 fringe patterns. An

example of such fringe pattern set is shown in Fig. 3.6. The 8 patterns are divided into

3 levels by phase sensitivity (corresponding to the scale coefficient ck). Level-0 has the

lowest phase sensitivity (i.e. c0 is the smallest in {ck}, k = 0, 1, 2) and contains two

patterns with 0 and π/2 phase shift respectively (corresponding to n = 1, 2). Level-2

has the highest phase sensitivity and contains four patterns corresponding to n = 1

to 4. Level-1 has the intermediate phase sensitivity and also contains two patterns

(n = 1, 2). The concept of different “level” of fringe patterns is an analogy to the
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Figure 3.6: A set of 8 (generalized) fringe patterns used in phase map construction

“fringe frequency” in MFF algorithm. Here, the term “level” is introduced to avoid

confusion with fringe frequency, since in a generalized fringe pattern the fringe pitch

(and hence the fringe frequency) may vary continuously throughout the pattern.

Projecting the 8 fringe patterns as defined above on the object being measured,

the corresponding images of the object can be described using the following equation:

I(k)
n (i, j) = A(i, j) +B(i, j) sin

(

Φ(k)(i, j) +
(n− 1)π

2

)

(3.15)

where (i, j) is the pixel coordinates in the image, k = 0, 1, 2 represent different levels of

fringe patterns and n = 1, . . . , 4 represent different phase-shift values. For each pixel

(i, j), I
(k)
n (i, j) is the pixel’s intensity in the image that corresponds to the projection

pattern at level k and n-th phase-shift; Φ(k)(i, j) is the absolute phase value of the

pixel’s corresponding point on the object’s surface. Assuming that both the camera

and the projector have a fairly large depth-of-view and the reflection of the object

surface is linear, A(i, j) and B(i, j) are both constants for pixel (i, j) in all the 8

images.

The procedure to compute the absolute phase map of the object surface by using
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the 8 images is described below, in which Φ denotes the absolute phase maps and φ

denotes the wrapped phase maps. A flow chart of the procedure is shown in Fig. 3.7.

• Firstly, the wrapped phase map φ(2) is computed as follows:

φ(2)(i, j) = arctan∗

(

I
(2)
1 (i, j) − I

(2)
3 (i, j)

I
(2)
2 (i, j) − I

(2)
4 (i, j)

)

(3.16)

where the function arctan∗(· · · ) is defined in Eqn. 3.12.

• Secondly, the coefficients A(i, j) defined in Eqn. 3.15 is calculated using the

following equation:

A(i, j) =
1

4

[

I
(2)
1 (i, j) + I

(2)
2 (i, j) + I

(2)
3 (i, j) + I

(2)
4 (i, j)

]

(3.17)

Utilizing the A(i, j) obtained, the wrapped phase maps φ(0) and φ(1) can be

computed as follows:

φ(k)(i, j) = arctan∗

(

I
(k)
1 (i, j) − A(i, j)

I
(k)
2 (i, j) − A(i, j)

)

, k = 0, 1 (3.18)

• Finally, the absolute phase maps are calculated from the wrapped phase maps

through the following procedure:

Notice that φ(0) is an absolute phase map because it is obtained from the level-0

fringe patterns, which are designed to have a low phase sensitivity, e.g. with

a phase range of [−π, π], to avoid phase wrapping. Therefore, we have Φ(0) =

φ(0). From the relationship between the fringe patterns at different levels (see

Eqn. 3.14), we can get that for all pixel (i, j) the following equations hold:

Φ(1)(i, j) = (c1/c0) · Φ
(0)(i, j) and

Φ(2)(i, j) = (c2/c1) · Φ
(1)(i, j)

(3.19)
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where c0, c1 and c2 are coefficients defined in Eqn. 3.14. It can also be known

from the relationship between an absolute phase map and its wrapped counter-

part that

Φ(k)(i, j) = φ(k)(i, j) + 2π · nk(i, j) , k = 1, 2 (3.20)

where nk(i, j) are unknown integers. By combining Eqn. 3.19 and 3.20, the

absolute phase map Φ(1)(i, j) and Φ(2)(i, j) can be solved. Φ(2)(i, j) has the

highest phase sensitivity and is the final result of the phase map construction.

The idea described above for reducing the number of projection patterns required

in phase map construction can be applied to any phase-shifting strategy that con-

tains redundant image intensity information. For the generic N -step phase-shifting

algorithm with uniform phase shifts, whose images can be described as

In(i, j) = A(i, j) +B(i, j) sin

(

Φ(i, j) +
2π(n− 1)

N

)

, n = 1, . . . , N (3.21)

the corresponding equation for computing A(i, j) is as follows:

A(i, j) =
1

N

N
∑

n=1

In(i, j) (3.22)

Notice that although assumed to be a constant for all 8 images, B(i, j) (as defined

in Eqn. 3.15) is not utilized to further reduce the number of patterns required in

phase map construction. This is because, in practice the value of B(i, j) may vary

slightly for different level of fringe patterns due to the out-of-focus projection on the

object’s surface. However, this does not affect the value of A(i, j) at all.

An example of phase map construction by using the proposed algorithm with 8

projection patterns is shown in Fig. 3.8.
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Figure 3.7: Flow chart of the proposed algorithm for absolute phase map construction
by using 8 fringe patterns
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(a) The part being measured

(b) The two images from level 0: I
(0)
1 and I

(0)
2 (c) The two images from level 1: I

(1)
1 and I

(1)
2

(d) The four images from level 2: I
(2)
1 , I

(2)
2 ,

I
(2)
3 and I

(2)
4

(e) The absolute phase map of the part

Figure 3.8: An example of phase map construction by using the proposed algorithm
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3.3.4 Algorithm for Construction of Point Cloud

3.3.4.1 Description of the Algorithm

The point cloud construction algorithm converts the absolute phase map of an object

to a dense 3-D point cloud that represents the object’s surface. The algorithm requires

the following data to be known a priori:

• All intrinsic parameters of the camera, i.e. the intrinsic matrix A and the lens

distortion coefficients ks (s = 1, . . . , 5). Definitions of the parameters can be

found in Section 3.2.1.

• The position of the projector’s projection center, P (Px, Py, Pz), with respect to

the camera coordinate frame. (All spatial coordinates referred in this section

are w.r.t. the camera’s coordinate frame if not otherwise declared)

• The absolute phase map of a reference plane, denoted by ΦR(u, v), and the

position and orientation of the reference plane, which is represented by a point

on the plane, OR, and the plane’s normal vector nR.

Let Φ(u, v) denote the absolute phase map of the object being measured. For each

pixel (u, v) with a valid absolute phase value, a 3-D point can be possibly generated.

The algorithm for computing the 3-D coordinates of point M , corresponding to pixel

(u, v), is described at below. Figure 3.9 shows an illustration of the geometric rela-

tionships involved in the computation and Fig. 3.11 is a flow chart of the algorithm.

Detailed proofs of the equations are presented in Appendix A.2.

Let point MI denote the idealized position of the center of pixel (u, v) on the

image plane of the camera. It can be known from the pinhole camera model that

point M lies on line CMI . Let point MR denote the intersection of line CMI with the

reference plane. Similarly, let point NR denote the intersection of line PM with the

reference plane and let NI denote the intersection of line CNR with the image plane

73



Figure 3.9: Computing the 3-D coordinates of a point M from its absolute phase
value

of the camera. Define point Q as the intersection of line CMI with the plane that is

parallel to the reference plane while passes through point P . It can be seen from the

definitions that, points C, P , Q, MI , NI , MR, NR and M are coplanar.

The procedure to compute the 3-D position of point M is as follows:

1. As a first step, locate the pixel coordinates of point NI by searching in the

reference phase map ΦR(u, v) along line PIMI for a point with phase value

Φ(M) (see Fig. 3.10), in which PI is the projection of point P on the camera’s

image plane u–v. Due to the restrictions imposed on the projection patterns

used in phase-shifting (see Section 3.3.3.1), the distribution of phase values

along line PIMI is guaranteed to be monotonic. Hence, the location of point

NI is unique if one exists.

2. The 3-D coordinates of points MI and NI are calculated from their pixel coordi-

nates, by using the pinhole camera model and the camera’s intrinsic parameters
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Figure 3.10: Finding the pixel coordinates of point NI in the reference phase map ΦR

(see Section 3.2.2). Accordingly, the 3-D coordinates of points MR and NR can

be calculated from line-plane-intersections by using the following equations:

MR = C +

(−−→
COR · nR

−−−→
CMI · nR

)

−−−→
CMI , NR = C +

(−−→
COR · nR

−−→
CNI · nR

)

−−→
CNI (3.23)

where OR and nR represent the position and orientation of the reference plane.

Similarly, the 3-D coordinates of point Q can be calculated from the following

equation:

Q = C +

( −→
CP · nR

−−−→
CMI · nR

)

−−−→
CMI (3.24)

3. Finally, the 3-D position of point M can be calculated as follows:

M = Q+





∣

∣

∣

−→
PQ
∣

∣

∣

∣

∣

∣

−−−→
QMR

∣

∣

∣

∣

∣

∣

−→
PQ+

−−−−→
MRNR

∣

∣

∣

∣

∣

∣

−−−→
CMI

∣

∣

∣





−−−→
CMI (3.25)

3.3.4.2 Comparison with Existing Algorithms

The proposed algorithm for point cloud construction is a hybrid of the geometric

approach (Section 2.1.1) and the calibration matrix based approach (Section 2.1.2).
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Figure 3.11: Flow chart of the proposed algorithm for point cloud construction
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It requires full knowledge of the camera parameters, as well as the geometric infor-

mation of the reference plane. For the projector parameters, only the position of the

projection center is needed explicitly. The rest of the geometric information of the

projector is given by the reference phase map in an implicit way. Compared to the

pure geometric approach [19], this hybrid approach requires only about half of the

parameters. As a result, the parameter estimation algorithm becomes simpler and

numerically more stable, since there are fewer variables in the nonlinear minimiza-

tion process. Although a reference phase map and the geometric information of the

reference plane are required in addition, they are fairly easy to acquire. The hybrid

approach does not lose any generality or accuracy by ignoring the majority of projec-

tor parameters, as all projector parameters are reflected in the algorithm, explicitly or

implicitly. Compared to the calibration matrix based approach, this hybrid approach

is more accurate since it utilizes an accurate camera model instead of approximate

polynomial interpolations for the construction of point clouds. Moreover, it requires

much less memory for the computation and the calibration process is made easier and

more flexible.

With the use of a reference phase map, the proposed algorithm handles the lens

distortions of the projector automatically. This feature can be demonstrated by the

example shown in Fig. 3.12. A part was measured by using a projector with lens

distortion and the results obtained by using the proposed algorithm and an algorithm

that does not consider projector distortions were compared. The part used in the

example has a dimension of approximately 180mm(W) ×120mm(H) ×55mm(D) and

a picture of the part used in the example can be found in Fig. 3.8(a). Figure 3.12(a)

shows an image of the part under a sinusoidal fringe pattern that is projected using

a projector with radial lens distortion (radial distortion coefficient k1 = −2.0). As a

comparison, an image of the part under the same fringe pattern but using a projector

without distortion is shown in Fig. 3.12(c). The difference between the two images
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can hardly be found by visual examination except at the edge areas. However, the

influence of the projector’s radial lens distortion can be seen more easily from the

reference phase maps acquired under different conditions. Figure 3.12(b) and 3.12(d)

show the contours of the phase maps, from which it can be seen that the phase

contours are distorted at edge areas of the phase map that was acquired with projector

distortion. When the projector distortion is not taken into account, the constructed

point cloud contains significant error, especially at the edge areas where the distortion

of projection is large (see Fig. 3.12(e)). However, the influence of the distortion can

be compensated automatically by using the proposed algorithm (see Fig. 3.12(f)).
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(a) Image of the part under fringe pro-
jection with projector distortion

(b) Contour display of the reference
phase map with projector distortion

(c) Image of the part under fringe pro-
jection with no projector distortion

(d) Contour display of the reference
phase map with no projector distor-
tion

0

2.5

5.0

(e) Error distribution of the point cloud
constructed using an algorithm that does
not consider projector distortion

0

0.1

0.2

(f) Error distribution of the point cloud
constructed using the proposed algorithm

Figure 3.12: Automatic compensation of projector distortion by using the proposed
algorithm for point cloud construction
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3.3.5 Algorithms for Estimation of Sensor Parameters

3.3.5.1 Overview of Algorithms

The parameter estimation algorithm can be divided into two parts, the estimation of

camera parameters and the estimation of the projector’s projection center.

The estimation of camera parameters, i.e. camera calibration method, has been

intensively studied since late 80’s [53] and many improvements have been made in re-

cent years [27, 26]. The algorithms developed have been widely used by research and

industrial applications that require high-accuracy camera models, e.g. photogram-

metry. We used the camera calibration algorithm and software library that were

developed by the computer vision research group at the California Institute of Tech-

nology [56].

A projector is very similar to a camera in terms of optical geometry and can

be described accurately by a pinhole camera model with modeling of lens distortion

(see Section 3.3.2). The parameter estimation algorithm for projector can hence

be developed by adapting the existing camera calibration methods. However, such

algorithms have rarely been discussed in the research of SMDFP technique until

recently in a paper by Legarda-Sáenz et al. [19].

For the point cloud construction algorithm proposed in Section 3.3.4, the only re-

quired knowledge on projector parameters is the position of the projector’s projection

center, i.e. point P as shown in Fig. 3.9. Tailored for this specific requirement, an

algorithm was developed which estimates the projector’s projection center only. This

algorithm requires all camera parameters to be known, therefore a camera calibration

needs to be performed beforehand.
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Figure 3.13: System setup for estimation of the projector’s projection center

3.3.5.2 Estimation of the Projector’s Projection Center

The procedure for estimating the projector’s projection center involves measuring a

flat plane at two different positions. A detailed description of procedure is given

below. The system setup for the calibration is illustrated in Fig. 3.13.

• At the first step, a flat calibration plate is placed at the farther side of the

measurement volume. The position and orientation of the plate, denoted by
(

O
(S)
P ,n

(S)
P

)

, can be estimated by using the calibrated camera. Two abso-

lute phase maps of the calibration plate, namely Φ
(S)
V (u, v) and Φ

(S)
H (u, v),

are obtained by using vertical and horizontal fringe patterns respectively (see

Fig. 3.14). For each pixel (i, j) in the camera’s image plane, its corresponding

point on the plane
(

O
(S)
P ,n

(S)
P

)

, denoted by Si,j, can be located by using the

camera model and camera parameters. With the acquired absolute phase maps

Φ
(S)
V and Φ

(S)
H , each point Si,j is associated with two phase values, Φ

(S)
V (i, j) and

Φ
(S)
H (i, j). This phase value pair

(

Φ
(S)
V (i, j), Φ

(S)
H (i, j)

)

determines an unique

point on the image plane of the projector.
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• At the second step, the calibration plate is moved to
(

O
(T )
P ,n

(T )
P

)

, which is at

the nearer side of the measurement volume. Although in practice the calibration

plate is moved by using a stage and hence the positions of the plate are (nearly)

parallel, it is not required by the algorithm. The precise values of O
(T )
P and n

(T )
P

can be obtained either by using the calibrated camera or from the movement

of the plate which can be measured by other means, e.g. CMM. Again, two

absolute phase maps of the calibration plate are acquired by using vertical and

horizontal fringe patterns. The two phase maps are denoted by Φ
(T )
V (u, v) and

Φ
(T )
H (u, v) respectively.

Utilizing the acquired phase maps of the calibration plane (i.e. Φ
(S)
V , Φ

(S)
H , Φ

(T )
V

and Φ
(T )
H ), as well as the positions and orientations of the plane where the phase

maps are obtained (i.e.
(

O
(S)
P ,n

(S)
P

)

and
(

O
(T )
P ,n

(T )
P

)

), the projection center of the

projector can be estimated by using the following algorithm:

• For each point Si,j on plane
(

O
(S)
P ,n

(S)
P

)

, whose phase value pair are
(

Φ
(S)
V ,Φ

(S)
H

)

,

a point on plane
(

O
(T )
P ,n

(T )
P

)

can be located, which has the same phase value

pair as Si,j. Let Ti,j denote this point and let T
(I)
i,j denote its projection on

the camera’s image plane u-v. Notice that the subscripts i and j of Ti,j are

for reference to point Si,j. They are not the corresponding pixel coordinates of

point Ti,j . The location of point T
(I)
i,j in the image plane u–v is determined by

finding the intersection of two phase contour lines











Φ
(T )
V = Φ

(S)
V (Si,j)

Φ
(T )
H = Φ

(S)
H (Si,j)

(3.26)

in the u–v space. The algorithm for doing this will be explained later. Once

T
(I)
i,j is located, the position of point Ti,j on plane

(

O
(T )
P ,n

(T )
P

)

can be calculated

from the camera model and camera parameters.
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(a) One of the images obtained for
the acquisition of ΦV by using ver-
tical fringe patterns

(b) Contour display of the acquired
phase map ΦV

(c) One of the images obtained
for the acquisition of ΦH by us-
ing horizontal fringe patterns

(d) Contour display of the acquired
phase map ΦH

Figure 3.14: Acquisition of two absolute phase maps of the calibration plate, ΦV and
ΦH
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Figure 3.15: Estimation of the projector’s projection center

• Since point Si,j and point Ti,j share the same phase value pair, line Si,jTi,j must

pass through the projection center of the projector P , according to the pinhole

camera model. Therefore, the position of P can be located from the intersection

of all such lines that connect a point on plane
(

O
(S)
P ,n

(S)
P

)

with its corresponding

point on plane
(

O
(T )
P ,n

(T )
P

)

. The points on plane
(

O
(S)
P ,n

(S)
P

)

that do not have

corresponding points due to the shifted phase range at different plane positions,

are skipped. Because the intersection of multiple 3-D lines is an over-constrained

problem, the position of point P is computed using a least-square procedure.

The algorithm for locating point T
(I)
i,j on the image plane u–v by using given phase

value pair
(

Φ
(S)
V (Si,j),Φ

(S)
H (Si,j)

)

is as follows:

1. Starting from an initial position T0(u0, v0) (the superscript I and subscripts i

and j of T
(I)
i,j are dropped for brevity), search in the phase map Φ

(T )
H (u, v) along

v-direction for a point T1(u1, v1) such that











u1 = u0

Φ
(T )
H (u1, v1) = Φ

(S)
H (Si,j)

(3.27)
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Figure 3.16: Finding the intersection of two phase contour lines

The selection of the initial point T0(u0, v0) can be arbitrary. The location of v1 is

calculated through interpolation in the phase map, therefore sub-pixel accuracy

can be achieved (see Fig. 3.16).

2. search in the phase map Φ
(T )
V (u, v) along u-direction for a point T2(u2, v2) such

that










v2 = v1

Φ
(T )
V (u2, v2) = Φ

(S)
V (Si,j)

(3.28)

3. Repeat the zigzag search path until: (1) |uk − uk−1| and |vk − vk−1| are both

within the designated tolerance, which means the point T
(I)
i,j has been found;

Or (2) uk or vk is out of the boundaries of the u-v space, which means a bad

starting point or the desired point does not exist.

For most practical SMFP system setups, the phase contours in phase map ΦV

are nearly vertical and the phase contours in ΦH are nearly horizontal. Therefore,

the locating of point T
(I)
i,j by using the above algorithm converges fast. Although

the initial point T0(u0, v0) can be selected arbitrarily, a good initial guess can further

speed up the calculation and avoid missing intersections. An excellent candidate for

the initial point is the calculated approximate intersection by considering the phase
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Figure 3.17: Relationship of the proposed algorithms from a system perspective

contours as straight lines in the u-v space.

3.3.6 Relationship Between Algorithms

The mathematical model and related algorithms described in the previous sections

(Section 3.3.2 to 3.3.5) form a complete algorithmic infrastructure for SMDFP sys-

tems. From a system perspective, the functionalities of the algorithms and the data

flows between them can be illustrated by Fig. 3.17.

A SMDFP system needs to be calibrated before performing actual measurements.

At the first step of the calibration, the camera parameters are estimated by using an

artifact with accurately known geometry or feature points. In our experiments, we

used a flat plate with a checkerboard pattern printed on top. After the camera is
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calibrated, it can be used to measure the position and orientation of the calibration

plate by means of photogrammetry. The second step of the calibration is the estima-

tion of projector parameters (i.e. the position of the projector’s projection center),

in which the camera parameters acquired in the first step are utilized. After this

step, all sensor parameters required are known. The last step of the calibration is

to acquire a reference phase map, which is accomplished by placing a flat plate at

around the center of the system’s measurement volume and constructing an absolute

phase map of the plate.

After a SMDFP system is calibrated, it is ready for shape measurements. First,

a set of predefined fringe patterns are projected on the object and the corresponding

images are recorded. The fringe patterns used in the measurement are the same

as used in the acquisition of the reference phase map. The recorded images are

processed and an absolute phase map of the object is obtained. By using this phase

map, together with the sensor parameters and the reference phase map that were

acquired during calibration, a 3-D point cloud can be constructed which represents

the surface of the object been measured.

3.4 Implementation and Results

3.4.1 Software and Hardware

The proposed mathematical model and algorithms were programmed in C++. A sim-

ple SMDFP hardware (i.e. the sensor) was built for carrying out shape measurement

experiments. The hardware consists of a computer projector (BenQ PB2220 DMD

projector, 1024×768 pixels, 1700 ANSI lumen), a programmable B/W digital camera

(DragonflyTM made by Point Grey Research, 1/3” Sony CCD, 640×480 pixels) and a

few accessories. The projector and the camera are both fixed to an aluminum frame
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Figure 3.18: Photograph of the hardware made for experiments

and connected to a computer. A photograph of the hardware is shown in Fig. 3.18.

In a shape measurement cycle, the computer sends projection patterns (in the form

of grayscale bitmaps) to the projector through VGA interface, and the camera sends

back the images through an IEEE-1394 (a.k.a. FireWire) cable.

A computer program was developed for hardware control. A few engineering

issues were addressed, such as the calibration of the projection intensity and the

coordination between the projector and the camera. In the following paragraphs,

these two issues will be explained in detail.

Commercial computer projectors are designed for the visual reception of human

eyes. The light intensity generated by the computer projector is usually not linear

to the amplitude of the input electric signal, which is made so on purpose. However,

this nonlinear characteristic of the projection intensity, usually referred as “gamma

effect”, is not desired in SMDFP technique. Hence, the projection intensity needs to

be compensated. In our experiments, this is done by first finding the response curve

of the projection intensity and then adjusting the intensity values in the projection

patterns based on the reciprocal of the response curve.

The coordination between the projector and the camera means more than com-
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manding the camera to capture an image while letting the projector generate a des-

ignated pattern. The exposure time of the camera needs to be compatible with the

refreshing rate of the projector. As mentioned in Section 1.1.4, DMD-based computer

projectors generate grayscale intensities by a sequence flickering of micro-mirrors. As

a result, the projector needs a fixed period of time to finish generating a designated

grayscale pattern, and this generation cycle repeats at the refreshing rate of the pro-

jector (usually from 60Hz to 100Hz). From the camera’s perspective, the light pattern

produced by the projector flickers at a frequency of a few to tens of kHz, although

it may appear stable to human eyes. Therefore, in order to capture the correct pro-

jection intensities, the camera’s exposure time needs to be set as multiples of the

projector’s refreshing cycle.

3.4.2 Measurement of Complex Shapes

Using the software and hardware developed, a large number of measurements were

made on over 20 parts with varied shapes. The system worked very well for all the

parts except having difficulty in dealing with metallic surfaces, which is a common

problem for most shape measurement techniques based on structured light.

A few examples of the measurements are shown in Figs. 3.19 to 3.22. All measure-

ments were conducted under regular indoor lighting condition. No surface treatment

was applied. The constructed point clouds are presented without any post-processing.

As can be seen from the results, the developed system is able to handle surface

discontinuities (e.g. holes, slots and shadowed areas) and some degree of specular

reflection (i.e. the typical specular reflection from a plastic surface). It can also be

noticed that, surfaces that are not shone by the projector or invisible to the camera

cannot be measured. For example, the three side faces of a key in the keyboard,

as shown in Fig. 3.20, are left out. This is a limitation of all shape measurement
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techniques based on triangulation, but can be solved by taking multiple measurements

at different angles and merging the point clouds acquired. However, the registration

and merging of point clouds [68] is not one of the research issues discussed in this

dissertation, hence this problem was not addressed.
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(a) Photograph of the drill housing (b) Image of the drill housing under the level-2
fringe pattern with 0 phase-shift

(c) Rendering of the point cloud constructed

(d) Enlarged view of a mesh rendering of the point
cloud (in the blue window shown in (c))

Figure 3.19: Measurement of a plastic drill housing
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(a) Photograph of the computer keyboard (b) Image of the keyboard under the level-2
fringe pattern with 0 phase-shift

(c) Rendering (with texture mapping) of the point cloud
constructed

(d) Enlarged view of a mesh rendering of the point cloud
(in the blue window shown in (c))

Figure 3.20: Measurement of a computer keyboard
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(a) Photograph of the flowerpot (b) Image of the flowerpot under the level-2
fringe pattern with 0 phase-shift

(c) Rendering (with texture mapping) of the
point cloud constructed

(d) Enlarged view of a mesh rendering of the point
cloud

Figure 3.21: Measurement of a plastic flowerpot
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(a) Photograph of the front panel of a desk-
top computer

(b) Rendering (with texture mapping) of the point
cloud constructed from measurement of the com-
puter panel

(c) Photograph of the telephone been mea-
sured

(d) Rendering (with texture mapping) of the point
cloud constructed from measurement of the tele-
phone

(e) Photograph of the shoe been measured (f) Rendering (with texture mapping) of the point
cloud constructed from measurement of the shoe

Figure 3.22: Measurements of varied artifacts
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3.4.3 Evaluation of Measurement Accuracy

3.4.3.1 Measurement of Gauge Part No. 1

In order to evaluate the measurement accuracy achieved by using the developed soft-

ware and hardware, two gauge parts with accurately known geometry were measured.

The first gauge part has a curved cone shape with a dimension of 128mm (L) ×

128mm (W) × 151mm (H). Figure 3.23(a) shows a picture of the part. The part was

made of aluminum alloy and machined very accurately to a predefined CAD model.

According to a CMM measurement of the part, the maximum deviation of the part

from the CAD model is 35µm and the standard deviation is 11µm. Before measure-

ment, the part was painted using a spray paint (Spot-Check SKD-S2 developer) to

avoid the specular reflection from the metallic surface of the part under light projec-

tion. The paint gives the part a diffuse and reasonably uniform coating, which makes

the measurement much easier. The thickness of the coating is estimated to be around

100µm. A picture of the part after painting is shown in Fig. 3.23(b).

The accuracy of the point cloud obtained from measurement is evaluated by com-

paring it against the CAD model of the part. In order to do so, the point cloud is

first transformed to the coordinate frame of the CAD model, since the point cloud

is constructed in the camera’s coordinate frame. The coordinate transformation is

established by finding the best fit of the point cloud to the CAD model. In our

experiments, this task was accomplished by using a commercial reverse engineering

software [69]. Figure 3.24 shows the point cloud and the CAD model of the part

after the coordinate transformation. Since the raw point cloud obtained from mea-

surement contains too many points (about 200,000 points) for the reverse engineering

software to process, only an uniformly selected subset of the points are included in

data processing.

After the coordinate transformation, the divergence between the point cloud and
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(a) Photograph of the part (b) Photograph of the part with paint
applied

(c) Image of the part under fringe projection

Figure 3.23: Measurement of gauge part No. 1
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(a) View from angle A

(b) View from angle B

Figure 3.24: The acquired point cloud after being transformed to the CAD model’s
coordinate frame
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the CAD model is calculated by finding the shortest distance to the CAD model

surface for each point in the point cloud. The distribution of the divergence is shown

in Fig. 3.25, in which yellow indicates points that are within the designated tolerance

and pink indicates points out of tolerance. Statistical analysis of the deviation shows

that, 85% of the points are within the tolerance of ±0.1mm and 50% of the points

are within the tolerance of ±0.05mm. The RMS value of the deviation is 0.094mm.

As mentioned above, the shape of the part (with paint applied) and the CAD model

of the part do not match perfectly, mainly due to the thickness of the paint layer that

was applied on the part’s surface. Hence, it is safe to say that, the RMS value of the

actual deviation between the point cloud acquired and the painted part is less than

0.094mm.

As can be seen from Fig. 3.25, the regions on the surface of the part with bigger

deviation are mostly close to the edge of the point cloud. Referring to Fig. 3.23(c), it

can be seen that in these regions, the fringes appear in the image of the part are either

too sparse or of low intensity contrast. These problems could lead to bigger errors in

the acquired phase map of the part and hence in the constructed point cloud.

3.4.3.2 Measurement of Gauge Part No. 2

The second gauge part has a pyramid shape and a dimension of around 260mm (L)

×145mm (W) ×130mm (H). It is made of steel and has five plates mounted on the

top and side faces, with holes and slots on them. Figure 3.26(a) shows a picture of

the part. The plates on the part were machined very accurately and they are very

flat. According to a CMM measurement report, the flatness of the plates ranges from

11µm to 38µm. Here, the flatness of the plate is defined as the absolute range of the

plate’s deviation from a perfect plane.

Three plates on the part were measured, namely planes A, B and C, as marked

in Fig. 3.26(a). Before measurement, a spray paint was applied to the surface of the

98



(a) Tolerance = ±0.1mm

(b) Tolerance = ±0.05mm

Figure 3.25: Divergence between the acquired point cloud and the CAD model
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Plane Number of Deviation RMS of Devi-
Points Range (µm) ation (µm)

A 7546 [-96, 64] 20
B 4025 [-127, 87] 23
C 1909 [-82, 51] 14

Table 3.1: Plane fitting results of the acquired point cloud

part to avoid specular reflection. An image of the part under fringe projection, which

was obtained during the measurement, is shown in Fig. 3.26(b). The constructed

point cloud was segmented and points belonging to the same plane (A, B or C) were

grouped. Each group of points were fitted to a plane and the deviations of the points

from the plane were calculated. Table 3.1 shows the statistical result of the plane

fittings, where all values except the number of points are in unit of µm. Considering

the unevenness of the thickness of the paint that was applied on the part’s surface,

the deviations of the plane fittings are actually very small, which indicates that the

measurement accuracy achieved by using the developed SMDFP system is very good.

3.4.4 Discussion

The developed SMDFP hardware and software worked well in the series of experiments

conducted. With the use of the new algorithm for phase map construction, the number

of projection patterns required in a measurement is reduced from 12 to 8, hence the

speed of measurement is increased. The algorithm also offers excellent capability of

handling surface discontinuities. In the measurements conducted, all cases of surface

discontinuity were processed correctly.

The calibration procedure of the system is fairly easy to carry out by using the

proposed parameter estimation algorithms. If after a calibration, the relative positions

of the projector and the camera is changed, such as due to the need for a different

measurement sensitivity, a recalibration of the system can be done quickly.
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(a) Photograph of the part

(b) Image of the part under fringe projection

(c) Rendering of the point cloud constructed

Figure 3.26: Measurement of gauge part No. 2
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The measurement result of the gauge parts shows that, the developed SMDFP

system is able to achieve a measurement accuracy better than 94µm over a measure-

ment volume of 250mm(W) ×200mm(H) ×220mm(D). We believe there is still room

for improvement of accuracy by performing a more accurate system calibration.

One of the major improvements that can be made is the plate with checkerboard

pattern that was used for camera calibration. In the experiments, we built the plate by

printing out a checkerboard pattern on a paper and then pasting it on a flat aluminum

plate. The resulting artifact is not as precise as desired due to the uneven pasting and

the possible stretching of the paper. A more precise calibration artifact will improve

the accuracy of the camera parameters acquired, hence the accuracy of the projector

parameters, and eventually the accuracy of shape measurements. Another issue that

affects the evaluated accuracy is the paint coating that was applied to the gauge

parts before the measurements. The thickness of the paint coating adds additional

uncertainties to the shapes of the parts. Therefore, the evaluated accuracy of the

system (94µm), which includes the uncertainties caused by the paint coating, is quite

conservative to be taken as the measurement accuracy achieved by the system.

Another issue worth mentioning is that, the 94µm accuracy achieved is based

on a particular hardware configuration. The measurement accuracy a system could

achieve also depends on factors other than system model and shape measurement

algorithms. For example, accuracy can be improved by placing the projector and

camera at a larger angle, or by using projector and camera with higher resolutions.

3.5 Summary

As an emerging technique for 3-D measurements, SMDFP is still in a developing

stage and its potentials have not been fully exploited. To make it more attractive to

industrial applications, improvements in the following aspects are desired: measure-
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ment accuracy, measurement speed, ease of calibration and the capability of handling

complex shapes. The mathematical model and algorithms presented in this chapter

were developed to achieve these goals.

By including the influence of 3-D perspectives and lens distortions of the projector

and camera, the proposed mathematical model provides an accurate modeling of the

optical geometry of SMDFP systems, which gives a mathematical basis that is re-

quired for achieving high-accuracy shape measurements. Based on this model, three

related algorithms were developed, namely the algorithm for construction of absolute

phase map, algorithm for construction of point cloud and algorithm for estimation

of sensor parameters. By fully exploiting the information in the images obtained

from phase-shifting, the developed algorithm for phase map construction uses fewer

projection patterns than existing algorithms without compromising performance. As

a result, the measurement speed of SMDFP systems is improved. The developed

algorithm for point cloud construction requires fewer sensor parameters than similar

algorithms in its class, e.g. algorithm proposed by Legarda-Sáenz et. al. [19]. Hence,

it simplifies the calibration process of SMDFP systems without compromising accu-

racy. With the use of a reference phase map, the majority of projector parameters are

represented and utilized in an implicit manner in the construction of point clouds.

Compared to Legarda-Sáenz’s method, which uses projector parameters explicitly,

the new approach produces equal or better accuracy, since in general reference phase

maps can be acquired more accurately than projector parameters. The new algorithm

also handles projector’s lens distortions automatically.

The proposed mathematical model and algorithms were implemented in software

and a simple SMDFP hardware was also built. Based on the developed system, a

number of physical experiments were conducted. Over 30 parts with fairly complex

shapes were measured and the results show that the proposed model and algorithms

work very well. In the measurements of two gauge parts, the developed system demon-
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strated a measurement accuracy of better than 94µm (RMS of the estimated measure-

ment error) over a measurement volume of 250mm(W) ×200mm(H) ×220mm(D). It

is believed that the accuracy can be improved by performing a more accurate system

calibration.
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Chapter 4

Simulator for SMDFP Systems

This chapter describes the simulator developed for SMDFP systems, which has been

used as a tool for testing the models and algorithms proposed in this dissertation.

Section 4.1 explains the basic idea of the simulator, its advantages compared to the

experimental and analytical approaches for the study of SMDFP technique, and the

feasibility of implementing the simulator to achieve high fidelity. Section 4.2 gives a

detailed description on the implementation of the simulator. Some examples of using

the simulator for virtual measurements are presented in Section 4.3. A summary of

this chapter is given in Section 4.4.

4.1 Introduction

From the input/output point of view, A SMDFP sensor can be considered as a device

which takes an object and a projection pattern as inputs and produces the corre-

sponding image of the object under the illumination of the pattern. A simulator of

SMDFP systems, as will be discussed in this chapter, is a software for simulating the

functionalities of SMDFP sensors, e.g. pattern projection and image formation. It

has the same inputs and output as a SMDFP sensor does, while the only differences
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are: 1) the input object is given in the form of a geometric model in stead of a phys-

ical form; and 2) the output is generated by computations instead of going through

a physical imaging process.

A simulator for SMDFP systems is a great tool for system studies and for quick

testing of new ideas in this technique. So far, most research work on SMDFP tech-

nique uses experiments as the only way to verify the correctness and effectiveness of

models and algorithms. As another way to study these issues, simulation approach

has its own advantages.

One of the major advantages of simulation approach is that, it can be used to

perform a large number of virtual shape measurements with various system setups

and objects. Therefore, a comprehensive and systematic study on SMDFP can be

carried out while expending only moderate efforts.

Another advantage of simulation approach is its capability to control system com-

ponents very accurately and as desired, which is normally not possible for operating

physical systems. The convenience and complete control of system could greatly facil-

itate the study of SMDFP systems. Let us take the study of measurement accuracy as

an example. A SMDFP system has many error sources, such as noise in the light pro-

jection and images and errors in the estimated sensor parameters. For real systems,

these error sources are either fixed properties of the hardware or determined by the

calibration methods used. Hence the magnitudes of the errors are difficult to control

and they are unable to be eliminated. However, with the simulation approach, these

error sources can be controlled accurately and individually. As a result, the study of

the influence of error sources to the measurement accuracy is much easier.

Compared to the analytical approach for system study, simulation is a much more

practical solution, because SMDFP systems are nonlinear systems with a large num-

ber of parameters, therefore performing a purely analytical study is very challenging.

The simulation of SMDFP systems can also be performed with high fidelity. The
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two major components of SMDFP system, i.e. the projector and the camera, have

well established mathematical models which have been proven to be very close to

physical laws. The light reflection of surfaces, which is another important aspect in

the simulation of SMDFP systems, is also a well studied topic and accurate models

are available. Therefore, a high-fidelity simulator for SMDFP systems is feasible, and

with such a tool the results of simulations are able to reveal the true situations when

real systems are in place.

4.2 Approach

4.2.1 Mathematical Models Used

The simulation of SMDFP systems needs to accurately model three major physical

processes: the light projection of the projector, the surface reflection of the object and

the image formation in the camera. Associated with these processes, the following

mathematical models need to be considered:

• The projector model, which describes the relationship between the 2-D pro-

jection pattern and the projected light intensity distribution in the 3-D space;

• The surface reflection model, which describes the relationship between the inci-

dent light intensity and the reflected light intensity (to different directions) on

the surface of the object;

• And the camera model, which describes the relationship between the 3-D shape

of the object, the light intensity reflected from its surface and the corresponding

2-D image formed in the camera.
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As mentioned in Sections 2.4 and 3.3.2, the pinhole camera model with the lens

distortion model proposed by Brown [49, 50] has been proven to be an accurate

mathematical model for both cameras and projectors. Hence, this model is used in

the simulator for describing the geometric aspects of the projector and the camera.

On top of the pinhole camera model (and the lens distortion model), the defocus-

ing of projector and the intensity attenuation of light along its travel path are also

considered.

The surface reflection model used in the simulator is the classic Phong model [70],

which is a model widely used in computer graphics for scene rendering. From the

physics point of view, Phong model is only an approximate model of surface reflection.

However, for the optical phenomena involved in SMDFP technique, Phong model is

accurate enough to reveal the influence of surface reflection to shape measurement

without causing serious fidelity issues, due to the reasons:

• First of all, the SMDFP technique we have focused on does not involve the

use of color information for shape measurement. Hence, the inaccurate color

modeling of Phong model is avoided. On the other hand, the surface reflection

in terms of light intensities that is described by Phong model is close to physical

laws, and that part of Phong model is used in the simulator.

• Second of all, with the use of phase-shifting technique, the measurement of

phase values is determined by relative light intensities, not the absolute light

intensities. Therefore, a small offset in all light intensity values, such as that

caused by inaccurate estimation of the intensity of ambient light, will only cause

negligible difference in phase measurement (and hence shape measurement).

• Thirdly, in the case that the projected light intensity is the only variable and

everything else is fixed, the principles of Phong model guarantee a linear rela-

tionship between the projected light intensity and the reflected light intensity.
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This property agrees with the fundamental assumption of the phase-shifting

method and is also true for most reflective materials.

Based on these mathematical models, when given the sensor parameters (i.e. the

parameters of the projector and the camera), the CAD model of the object, and a

grayscale bitmap as the projection pattern, the output image is constructed by using

the ray tracing algorithm, which will be explained in detail in the following section.

4.2.2 Ray Tracing Algorithm

The developed simulator for SMDFP systems uses the ray tracing technique to com-

pute the output image when given the sensor parameters of the system, the CAD

model of the object being measured, and the projection pattern in the form of a

grayscale bitmap image.

Ray tracing is a technique used in computer graphics for generating realistic scene

renderings [71, 72]. Compared to the techniques designed for real-time rendering,

such as OpenGL, ray tracing is much closer to physical laws although it is also com-

putationally more demanding. The basic idea of the ray tracing technique is the

following: In order to compute the light intensity received by a pixel, say pixel (i, j),

on the imaging sensor of the camera, a ray is “fired” from the projection center of

the camera, going through the center of that pixel and shooting into the space; If

the ray intersects with a reflective surface in the space, say at point M , the received

illumination intensity at M will be calculated; The light intensity received by pixel

(i, j) can then be calculated based on the illumination intensity and surface normal

direction at M , the position of M , and some of the camera parameters.

In the simulator developed, the ray tracing algorithm used has been tailored in

the following aspects:

• Integration effect of the imaging sensor: The pixels on the imaging sensor
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Figure 4.1: Computing the light intensity received by a pixel on the imaging sensor

(usually a CCD or CMOS sensor) of a camera have finite sizes. Each pixel

collects the light that is reflected from a finite area on the object’s surface

instead of from a single “sharp” point. To accurately reflect this, the ray tracing

algorithm needs to fire a “beam”, instead of a ray, from a pixel. The light

reflected from the surface facet that intersects with the “beam”, needs to be

integrated to be given as the light intensity received by the pixel.

In the ray tracing algorithm implemented in the simulator, this process is ap-

proximated by firing multiple rays from a single pixel and then integrating the

light intensity values returned by the individual ray tracings. The selection

of sample points inside a pixel and the integration scheme complies with the

Legendre-Gauss quadrature. A schematic diagram of this procedure is shown

in Fig. 4.1 and a detailed description is as follows:

1. For each pixel (i, j) on the camera’s image plane, the positions of a set of

2-D Gauss quadrature nodes are calculated. Let Qk(i, j) denote the nodes

for pixel (i, j), where k = 1, . . . , K.

2. For each node Qk(i, j), a ray tracing process is carried out and the corre-

sponding light intensity received, denoted by Ik(i, j), is calculated.
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3. The overall light intensity received by pixel (i, j) is calculated using fol-

lowing equation:

I(i, j) =
K
∑

k=1

wkIk(i, j) (4.1)

where wk(k = 1, . . . , K) is the weight for node Qk as defined in Legendre-

Gauss quadrature.

• Illumination by the projector: In SMDFP technique, the major light source

is the projector. As explained earlier, the optical geometry of a projector can

be described accurately by the pinhole camera model with the lens distortion

model. Hence, the illumination intensity at any point in the space that is

provided by a projector can be calculated based on this model. Taking the

scenario depicted in Fig. 4.1 as an example, the illumination intensity at point

M provided by the projector is determined by the intensity of pixel (ξM , ηM)

in the projection pattern, which is the projected position of point M on the

projector’s image plane. With the consideration of the defocusing issue of the

projector, the situation will be slightly different, which will be discussed in more

detail in Section 4.2.3.

Another issue that needs to be addressed regarding the illumination is the

shadow. If point M can be actually illuminated by the projector or shadowed

by some part of the object itself. This can be easily checked by conducting

another ray tracing process starting from the projector, i.e. to check if the ray

can reach point M or is blocked by a surface on the way.

• Calculation of the reflected light intensity: As stated earlier, the surface

reflection model used in the simulator is the Phong model. Since none of the

processes in the simulator involves colors (also true for the real systems we have

focused on), the color modeling in Phong model is ignored. Except that, the rest
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of the components in Phong model, such as the modeling of diffuse reflection,

specular reflection and ambient light, are all considered in the calculation of the

reflected light intensity. The intensity attenuation of the light along its travel

path, i.e. from the projector to the object’s surface and from the surface to the

camera, is also taken into account.

4.2.3 Simulation of Projector Defocusing

Pinhole camera model assumes infinitesimal lens aperture and hence every point in

the 3-D space is mapped to a single point in the image plane and vice versa. No

focusing issue is involved. For a projector, this means every point in the projection

pattern is projected as a sharp point in the 3-D space, not matter at what distance

the projection is formed. In reality, this is not true due to the finite lens aperture of a

projector, in which case a point in the projection pattern would only be projected as

a sharp point at a specific distance to the projector, i.e. the in-focus position. Away

from that position, the projection would gradually become blurred, which is often

referred as the defocusing issue.

Most commercial computer projectors have large lens apertures, therefore the

defocusing issue of the projector needs to be considered in the simulation to achieve

high fidelity. For the cameras used in SMDFP systems, they are generally operated

at very small lens apertures, due to the high illumination intensity provided by the

projectors. Hence the defocusing issue of the camera can be safely ignored within the

measurement volume of the system.

A popularly used defocusing model can be found in literature [73, 74]. The basic

idea of this model is the “blur circle” concept. In the context of a projector, this

concept can be interpreted as that, if the light projection from a point on the pro-

jector’s image plane is not received at the focus distance, it would form a blurred
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Figure 4.2: The definition of blur circle in the defocusing model

spot instead of a sharp point. A schematic diagram of the “blur circle” concept is

shown in Fig. 4.2, where A is a point on the projector’s image plane and B is the

focused projection of A in the space. If the surface receiving the projection is placed

away from B, the light coming from A would spread out uniformly in a circular area

as shown in the figure. The diameter of the “blur circle”, d, which indicates the

magnitude of defocusing, can be calculated using the following equation:

d =
D

v
|s− v| (4.2)

where D is the the lens aperture, v is the focus distance (of A), and s is the distance

from the surface to the lens.

When projector defocusing is considered, the calculation of the illumination in-

tensity (given by the projector) at a point, M , in the space can be done through the

following procedure:

• Firstly, the diameter of the blur circle at point M , denoted by dM , can be

calculated using following equation, which is derived from Eqn. 4.2:

dM =
D

v(P )

∣

∣

∣
z

(P )
M + v(P )

∣

∣

∣
(4.3)
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Figure 4.3: Calculation of illumination intensity when projector defocusing is consid-
ered

where v(P ) is the focus distance, which is given as a projector parameter, and z
(P )
M

is the z-coordinate of point M in the projector coordinate frame, X(P )Y (P )Z(P ).

• Let MI denote the projection of point M on the image plane of the projector.

From the defocusing model described above, it can be known that point M is

not only illuminated by MI but also by the points in the close neighboring area

of MI . This neighboring area is a circular region centering at MI and with a

diameter given by the following equation:

d
(I)
M =

dM
∣

∣

∣
z

(P )
M

∣

∣

∣

=
D

v(P )

∣

∣

∣

∣

∣

z
(P )
M + v(P )

z
(P )
M

∣

∣

∣

∣

∣

(4.4)

• The illumination intensity at point M , I
(P )
M , can then be calculated from an

integration of the projection intensities in the circular region defined by MI and
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d
(I)
M in the ξ-η plane:

I
(P )
M =

∫∫

(ξ−ξM )2+(η−ηM )2≤
(

d
(I)
M

)2

I(P )(ξ, η) dξdη (4.5)

where (ξM , ηM) are the coordinates of pointMI on the ξ-η plane (the projector’s

image plane) and I(P )(ξ, η) is the light intensity at (ξ, η). One thing worth

mentioning is, the influence of light intensity attenuation will be added to the

value of I
(P )
M before being taken as the final illumination intensity received at

point M .

4.2.4 Emulation of Hardware Noise

In the simulation study of SMDFP technique, it is often required to emulate the

hardware noise that existed in real systems, such as to study the influence of error

sources to the accuracy of shape measurement. Despite the varied types of hardware

noise involved in SMDFP systems, many of them can be emulated by noise in either

the input projection pattern or the output image. For example, noise with different

distributions in the projection pattern can be used to emulate the noise caused by

the DMD/LCD chip of the projector, the unevenness of the projector’s light source,

and the fluctuation of environmental light.

4.3 Implementation and Results

The proposed simulator for SMDFP systems was implemented in C++. A schematic

diagram of the major components of the simulator, as well as the inputs and output,

are shown in Fig. 4.4. The ACISR© geometric kernel [75, 76] is used in the ray tracing

algorithm to acquire the positions, surface normal directions of the intersection points
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Figure 4.4: Schematic diagram of the major components in the simulator

of rays with the CAD model. It is also used to retrieve the surface reflection properties

of the part if provided in the CAD model.

A number of images created by using the simulator with different parts and under

different conditions are presented in Fig. 4.5 and 4.6.

4.4 Summary

The simulator for SMDFP presented in this chapter uses proven models and algo-

rithms for the simulation of the pattern projection and image capture processes of

SMDFP systems. The pinhole camera model with lens distortion model used is known

to be very accurate for describing the optical geometries of cameras and projectors;

and the ray tracing algorithm adopted is a well-known technique for realistic scene

rendering. Therefore, the fidelity of the simulator is guaranteed by the proven accu-

racy of the models and algorithms used.

The developed simulator has been used in the research conducted in this dis-

sertation on a few topics, e.g. the development of system models and algorithms

(Chapter 3), the estimation of measurement uncertainties (Chapter 6) and the use of
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(a) A rendering of the CAD model of
the part

(b) Image of the part under fringe projec-
tion (diffuse surface reflection)

(c) Image of the part under fringe pro-
jection (specular surface reflection, noise
added)

(d) Image of the part under fringe projec-
tion (part placed at a different angle, pat-
tern with a difference fringe number used)

Figure 4.5: Simulated images of a part under different conditions
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(a) CAD model of part S02 (b) Image of part S02 under fringe projection

(c) CAD model of part S03 (d) Image of part S03 under fringe projection

(e) CAD model of part S04 (f) Image of part S04 under fringe projection

Figure 4.6: Simulated images of varied parts under fringe projections
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adaptive projection patterns (Chapter 5). It has shown to be a very useful tool for

testing new models and algorithms and for system studies. For all the research work

where simulation was involved, experiments were also carried out to verify the results

acquired and the conclusions drawn from simulations. The comparisons showed that,

the results given by the two approaches match very well, which is another proof that

the developed simulator is of very good fidelity.
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Chapter 5

Adaptive Projection Patterns

This chapter describes the use of adaptive projection patterns in SMDFP technique.

Section 5.1 describes the basic idea of adaptive projection pattern as well as its

advantages compared to fringe patterns with fixed fringe pitches. Section 5.2 explains

the details of using adaptive projection patterns for shape measurements, including

the measurement procedure, prospective applications and the requirements on system

model and algorithms. Details of two new algorithms are presented. Section 5.3

describes how to integrate the adaptive patterns to the current system infrastructure.

Section 5.4 summaries this chapter.

5.1 Introduction

5.1.1 Problems Associated with Fixed-Pitch Fringe Patterns

Most existing SMDFP systems use straight fringe patterns with fixed fringe pitch

for projections. The intensity distribution in the patterns is a periodic function

(e.g. sinusoidal or square waveform) in one direction and uniform in the orthogonal

direction. A popularly used type is sinusoidal fringe pattern, as the one shown in
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η

0 1

1

0

Figure 5.1: A projection pattern
with fixed fringe pitch

Figure 5.2: Image of a sphere under the projec-
tion of a fixed-pitch fringe pattern

Fig. 5.1. The intensity distribution in the pattern is sinusoidal along ξ-axis and

uniform along η-axis. Here, “fixed fringe pitch” refers to the pitch of fringes in one

pattern. In systems using temporal phase unwrapping techniques (see Section 2.3.2.4),

multiple fringe patterns with varied fringe pitches are used. Although the fringe pitch

used may vary from pattern to pattern, it remains to be a constant in each pattern.

When projecting a fixed-pitch fringe pattern on an object, the corresponding

image generally shows curved fringes with the pitch of fringes varies across the image.

Figure 5.2 shows the image of a sphere under the projection of a sinusoidal fringe

pattern. The fringes in the image are bent and the fringe pitch gets larger from the

left to the right. When the measurement setup and the fringe pattern used are fixed,

the local fringe pitch in the image depends on the normal direction and position

of the object’s surface facet w.r.t. the sensor. Figure 5.3 shows an example of the

relationship between the local fringe pitch and the normal direction of surface facet.

In this particular case, the angle between the optical axes of the camera and the

projector, denoted by θPC , is 35o. A small plate, representing a surface facet, is
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(a) Schematic diagram of the mea-
surement setup
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(b) Fringe pitch vs. the tilt angle of surface facet, α

Figure 5.3: Relationship between the local fringe pitch in image and the normal
direction of surface for a typical measurement setup

placed at the intersection of the optical axes of the camera and the projector (see

Fig. 5.3(a)). The tilt angle of the plate is α, where α = 0 is the plate orientation

perpendicular to the bisection of the optical axes. Under the projection of a sinusoidal

fringe pattern, the fringe pitch appearing in the image changes as the facet rotates.

The relationship between the fringe pitch (normalized by the fringe pitch value at

α = 0) and the tilt angle of the facet, α, is shown in Fig. 5.3(b). As α increases from

around 40o to above 60o, the normalized fringe pitch turns less than 0.5 and decreases

rapidly thereafter.

Fixed-pitch fringe pattern is easy to model and able to achieve good measurement

accuracy in most cases. For many mathematical models of SMDFP, fixed-pitch fringe

patterns are the only patterns that can be used. However, with the restriction of

constant fringe pitch in a pattern, it is sometimes difficult to achieve both good

accuracy and maximum measurement coverage from a single measurement.

Figure 5.4 shows the problem of fixed-pitch fringe patterns when measuring a
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spherical object. With the measurement setup as shown in Fig. 5.4(a), the complete

top surface of the spherical object is visible to both the camera and the projector.

Therefore, theoretically the whole top surface can be measured. However, due to the

object’s large range of surface normal direction, the local fringe pitch appearing in

the image varies significantly from area to area. As a result, the fringes in certain

areas of the images are so crowded that the construction of phase map (and hence the

construction of point cloud) would fail at these areas. Figure 5.4(b) shows an image of

the spherical object obtained in measurement under the projection of a fringe pattern

with 121 fringes. The area in the image circled by red line is where the phase map

construction fails. The fringes inside that area are visually indistinguishable. The

overcrowding of fringes in the images can be solved by using projection pattern with

fewer fringes. Figure 5.4(c) shows an image of the object under the projection of

a pattern with 49 fringes. In this case, the complete top surface can be resolved

in the measurement. However, since the fringe number in the projection pattern

has decreased, the overall measurement accuracy dropped accordingly. Figure 5.4(d)

shows the RMS of measurement error and the size of unresolvable area (in number of

pixels) when different number of fringes are used in projection. As the fringe number

increases from 49 to 121, the measurement error drops while at the same time the

size of unresolvable area increases.

In conclusion, when fixed-pitch fringe patterns are used in measurements of sur-

faces with dramatically changing normal directions, a compromise between measure-

ment accuracy and measurement coverage has to be made. In many occasions, in

order to guarantee a certain level of measurement accuracy, some areas on the sur-

face may not be resolvable due to the overcrowding of fringes.
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(a) The measurement setup and the result-
ing measurement coverage

(b) The phenomenon of fringe overcrowding in
left edging area of the images (nF = 121)

(c) No fringe overcrowding when using projec-
tion pattern with a much smaller fringe number
(nF = 49)
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(d) Measurement error and the size of unresolv-
able area when different fringe numbers are used

Figure 5.4: Problem with fixed-pitch fringe patterns when measuring a spherical
object

124



5.1.2 Possible Solutions with Fixed-Pitch Fringe Patterns

There are a few solutions to achieve both good accuracy and maximum measurement

coverage while still use fixed-pitch fringe patterns. However, these solutions also

introduce certain amount of overhead or have other disadvantages which make them

inappropriate for applications that require a minimum measurement time.

One of the solutions is to move the sensor (or equivalently the object) to measure

the surface areas from a second perspective. Take the measurement of the spherical

object as an example. As illustrated in Fig. 5.5, when the sensor is at position 1, it is

able to measure most part of the object’s top surface (shown in the figure in green)

except the far left portion (shown in red). This unresolvable portion, however, can

be measured by moving the sensor to position 2 where a second measurement can be

made. By merging the results from the two measurements, a point cloud representing

the complete top surface of the object can be generated. The disadvantage of this

solution is that, either the sensor or the object has to be moved during the measure-

ment even though the complete surface of the object is visible to the sensor (which

means, visible to both the camera and the projector) from a single perspective. The

moving of the sensor or the object prolongs the measurement time and introduces

additional errors.

Another solution is to maintain the positions of the sensor and the object, and use

additional projection pattern(s) to resolve the areas that are unresolvable by using

“regular” fringe pattern. Again take the measurement of the spherical object as an

example. As explained earlier, the unresolvable area caused by fringe overcrowding in

the images can be resolved by using patterns with a fringe number smaller than reg-

ular. Figure 5.4(b) shows an image of the spherical object under a projection pattern

with 121 fringes, which is the regular case. Most part of the surface can be measured

with good accuracy except the far left area (circled in red) which is unresolvable.
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Figure 5.5: Move the sensor to achieve full measurement coverage

However, this failed area can be resolved by using a pattern with 49 fringes (an image

is shown in Fig. 5.4(c)), although in this case the measurement accuracy for the rest

of the surface is not satisfactory. Therefore, the complete surface can be measured

by using a regular pattern with large fringe number plus an additional pattern with

a smaller fringe number, followed by a merging of two point clouds. The final result

accomplishes both good accuracy and full measurement coverage. The disadvantage

of this solution is the increased measurement time due to additional pattern projec-

tion and image acquisition. Using the projection scheme proposed in Section 3.3.3.2

as an example, it means that 4 more projections have to be made in addition to the

original 8 projections, which results in a 50% increase in measurement time.

5.1.3 Projection Patterns with Variable Fringe Pitch

A projection pattern with variable fringe pitch is a fringe pattern in which the local

fringe pitch may vary from area to area. Figure 5.6(c) shows an example of such

patterns. The fringe pitch in the middle left area of the pattern is significantly larger

126



than the fringe pitch in the rest of the pattern. An adaptive projection pattern

is a pattern with variable fringe pitch that is designed for a particular object and

measurement setup to achieve improved performance.

Adaptive projection patterns can solve the problem of fringe overcrowding in

images as mentioned earlier with fixed-pitch fringe patterns. Recall the idea of using

pattern with reduced fringe number to solve the problem of fringe overcrowding, which

uses different fringe pitches to resolve different areas on the object’s surface. The idea

of variable fringe pitch is to blend multiple fringe pitches into a single pattern, instead

of using two or more fixed-pitch fringe patterns. Different fringe pitches are assigned

to different areas in the projection pattern such that the local fringe pitch in the

image (of the object) is adequate, meaning that no fringe overcrowding that creates

unresolvable areas. Figure 5.6 shows the comparison of images of a spherical object

under the projection of a fixed-pitch fringe pattern and an adaptive fringe pattern.

In the image obtained from adaptive projection pattern, the fringes are more evenly

distributed. No overcrowding of fringes in the far left area as the case with fixed-pitch

fringe pattern. For clear display, both projection patterns are shown with uniformly

increased fringe pitch than actual.

Comparing to the methods for solving fringe overcrowding with fixed-pitch fringe

patterns, as explained in the previous section, the approach with adaptive fringe pat-

terns requires no movement of the sensor or the object and no additional projections.

Therefore, it is able to achieve the maximum measurement coverage without sacri-

ficing measurement speed. The overall measurement accuracy achievable by using

adaptive projection patterns is very close to what was achieved by using multiple

fixed-pitch fringe patterns. Figure 5.7 shows the performance comparison between

fixed-pitch fringe patterns and adaptive fringe pattern in the measurement of a spher-

ical object. The x-axis represents the size of unresolvable area in number of pixels

(total number of pixels is 512 × 512) and the y-axis represents the RMS of mea-
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(a) Fixed-pitch fringe pattern (shown
with uniformly increased fringe pitch than
actual)

(b) Image obtained by using fixed-pitch fringe pattern

(c) Adaptive fringe pattern (shown with
uniformly increased fringe pitch than ac-
tual)

(d) Image obtained by using adaptive fringe pattern

Figure 5.6: Using adaptive fringe patterns to solve the problem of fringe overcrowding
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Figure 5.7: Measurement performance: adaptive fringe pattern vs. fixed-pitch fringe
patterns in the measurement of a spherical object

surement error. The measurement performance of fixed-pitch fringe patterns with

different fringe numbers (nF ) are shown in blue crosses. The adaptive fringe pattern

(indicated by a red cross) achieved a better accuracy than the fixed-pitch fringe pat-

tern with 121 fringes, while at the same time it has a measurement coverage better

than the fixed-pitch fringe pattern with 64 fringes.

The measurement method with adaptive projection pattern needs a process to

automatically generate an adaptive projection pattern for the measurement. It will

be shown that, the additional processes will not introduce extra measurement time

for certain types of applications.

5.2 Measurement Using Adaptive Projection Pat-

terns

5.2.1 Measurement Procedure

When fixed-pitch fringe patterns are used, the measurement of an object using SMDFP

includes the following steps: 1) projects phase-shifted fringe patterns on the object
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Figure 5.8: Schematic diagram of the measurement workflow when adaptive projec-
tion pattern is used

and records the images; 2) constructs an absolute phase map of the object from the

images acquired; and 3) constructs a point cloud from the absolute phase map of the

object. In case of adaptive projection patterns being used, the measurement proce-

dure requires additional steps for the generation of an adaptive pattern. In order to

integrate the use of adaptive patterns to the system infrastructure, a new measure-

ment procedure is proposed. A schematic diagram of the new procedure is shown in

Fig. 5.8. A detailed explanation of it is given at below.

• Generation of adaptive projection pattern:

For objects with different shapes or placed at different positions, the adaptive

projection patterns that could give optimal measurement performance may be

different. Hence, if the shape or position of the object being measured has

changed, the adaptive projection pattern needs to be regenerated. The algo-
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rithm for the generation of adaptive patterns requires knowledge of the approx-

imate shape of the object, as well as its position and orientation w.r.t. the

sensor. These information can either be provided to the system in the form of

a geometric model of the object, or acquired by a preliminary measurement. In

the latter case, the measurement can be conducted using a fixed-pitch fringe

pattern with a medium number of fringes to avoid any possible unresolvable

area. This measurement is not intended to give accurate result of the object’s

shape, however it is appropriate for the generation of adaptive pattern.

The method proposed here for the generation of adaptive pattern is based on the

preliminary measurement approach (see Fig. 5.8). First, an absolute phase map

of the object is obtained by using a fixed-pitch fringe pattern with a medium

fringe number. From the acquired phase map, the areas in the images of the

object where the fringe density is too high can be identified. The corresponding

areas in the projection pattern can then be located and larger fringe pitches are

assigned to these areas in the adaptive projection pattern. Finally, the adaptive

pattern is examined from an overall perspective and adjusted accordingly to

assure compatibility with the point cloud construction algorithm. A detailed

explanation of this algorithm is presented in Section 5.2.4.2.

• Construction of new reference phase map:

The point cloud construction algorithm proposed in this dissertation (see Sec-

tion 3.3.4 for details) requires a reference phase map, which is an absolute phase

map of a flat plane under the projection pattern used for measurement. When

a new projection pattern is generated and to be used in future measurements,

the reference phase map needs to be reconstructed. The construction of the

new reference phase map can be done through an interpolation based approach

which takes the adaptive projection pattern as input as well as two “regular”
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reference phase maps that are obtained using fixed-pitch fringe patterns. A

detailed description of this algorithm is presented in Section 5.2.5.

• Measurement of the object(s):

Once the adaptive projection pattern has been generated and the corresponding

reference phase map has been acquired, the procedure of measurement by using

the adaptive pattern is the same as with fixed-pitch fringe patterns. That is, a

set of phase-shifted adaptive patterns will be projected on the object and the

corresponding images will be recorded; From these images, an absolute phase

map of the object, and hence a point cloud that represents the object’s surface,

can be constructed.

5.2.2 Potential Applications

The essential benefit of using adaptive projection pattern is the capability of dealing

with surfaces with a large range of surface normal directions. This can be explained

by the example shown in Fig. 5.9 (which has been discussed briefly in Section 5.1.1).

When a measurement sensor is fixed, the normal direction of a surface facet mainly

affects two things in the acquired image: One is the local fringe contrast that corre-

sponds to that facet, and the other is the local fringe pitch. Consider a measurement

setup as shown in Fig. 5.9(a), in which the optical axes of the camera and the pro-

jector forms an angle of θPC and intersects at where the surface facet is located. Let

α denote the tilt angle of the surface facet, where α = 0 is the normal direction that

is parallel to the bisection of the optical axes of the camera and the projector. The

influence of the facet’s normal direction to the local fringe contrast and fringe pitch

in this case is shown in Fig. 5.9(b), in which both the fringe contrast and the fringe

pitch are normalized by their values at α = 0. In a real measurement, the surface to

be measured is usually place at an angle such that the major portions of the surface
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(a) Schematic diagram of the mea-
surement setup
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(b) Normalized local fringe contrast and fringe pitch vs. the
tilt angle of surface facet, α

Figure 5.9: Relationship between the local fringe pitch in image and the normal
direction of surface for a typical measurement setup

have normal directions at around α = 0, because in this way the complete image

can have an overall high fringe contrast, which is desirable for the acquisition of an

accurate phase map. Due to the requirement of a relatively high fringe contrast,

the range of the surface facet’s tilt angle α that the sensor can deal with is approx-

imately from −50o to 80o. However, if a fixed-pitch fringe pattern is used for the

measurement, the upper limit of α will be reduced to around 40o due to the problem

of fringe overcrowding for α > 40o, as been discussed earlier1. On the other hand,

the use of adaptive projection pattern can avoid the problem of fringe overcrowding

and extend the upper limit of α to around 65o. In Fig. 5.9(b), the range of surface

normal direction that can be handled by using fixed-pitch fringe pattern is marked

as “regular range”, and the additional range that can be gained by using adaptive

projection pattern is marked as “extended range”.

In summary, when the highest possible measurement accuracy is desired, the use

1As can be seen from Fig. 5.9(b), for α greater than 40o, the normalized fringe pitch drops below
0.6, which could cause fringe overcrowding (see Section 5.1.1)
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of adaptive projection pattern is able to extend the range of surface normal direction

that can be measured with a single pattern by approximately 20%. Hence, adaptive

projection patterns are favorable for measurements of surfaces with a large range of

surface normal direction.

The use of adaptive projection pattern in the measurement of an object requires

the generation of adaptive pattern. When the approximate shape of the object is not

known, a preliminary shape measurement is needed for the pattern generation, adding

extra time to the measurement. Therefore, if the adaptive pattern has to be regener-

ated this way every time a new measurement takes place, the use of adaptive pattern

will not provide any significant advantage over fixed-pitch fringe pattern, since similar

measurement accuracy and coverage can be possibly achieved in the same time frame

by using multiple fixed-pitch fringe patterns. For applications such as on-line parts

inspection, the shapes of objects, as well as their positions and orientations w.r.t. the

sensor, are very similar from measurement to measurement. The adaptive projection

pattern needs to be built only once and can then be used for many successive mea-

surements. In such case, the extra time required for pattern generation is trivial and

the gain in overall measurement speed by using adaptive pattern is remarkable.

The preliminary phase map of the object, which is required for generation of adap-

tive pattern, is obtained by using fixed-pitch patterns with a large fringe pitch. The

accuracy of the phase map is not very high, which may result in less optimized adap-

tive pattern being generated. In the proposed algorithm for generation of adaptive

patterns, 2-D filtering of the generated patterns has been used in order to maintain

adequate pattern profiles as required by the algorithm for point cloud construction.

As a result, the generated adaptive patterns may not produce optimized performance

for features on surfaces that are smaller than a certain size.

In conclusion, the use of adaptive projection patterns is an ideal solution for on-

line inspection of parts with a large range of surface normal directions.
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5.2.3 Requirements on System Model and Algorithms

The use of adaptive projection patterns in measurements requires the support of ade-

quate mathematical models and algorithms. Some of the existing models for SMDFP

technique, such as the optical geometry based models as explained in Section 2.1.1,

may require major modifications in order to incorporate adaptive projection patterns.

A short explanation of the reason is that, for a fixed-pitch fringe pattern, the phase

contours in the pattern are straight lines; while in the case of adaptive pattern, the

phase contours are generally curves and hence more difficult to deal with.

The mathematical system model, as well as the algorithms for phase map con-

struction and point cloud construction, that were proposed in Chapter 3, can work

seamlessly with adaptive projection patterns. The two new algorithms, namely the

algorithm for automated generation of adaptive pattern and the algorithm for com-

putation of reference phase map, is explained in the next section.

5.2.4 Automated Generation of Adaptive Projection Pat-

terns

5.2.4.1 Considerations in the Design of Fringe Patterns

In SMDFP technique, fringe patterns are used to obtain phase maps of objects. The

accuracy and coverage of the phase maps directly influence the accuracy and coverage

of the final measurement result. The goal of designing (or selecting) a fringe pattern

is to achieve optimal accuracy and coverage on the phase map(s) acquired by using

the designed fringe pattern for projection.

As mentioned in Section 6.3, many error sources could affect the accuracy of

phase maps obtained, e.g. imperfect light projection, fluctuation of environmental

light and noise in the image. All these error sources contribute eventually to the pixel
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intensities in the images of the object, which are acquired under the projections of

phase-shifted fringe pattern. Also, the absolute magnitudes of the image intensity

errors caused by these sources do not depend on the specific fringe pattern being

used. Given a fixed level of image intensity error, the accuracy of the phase maps

obtained can be improved through two approaches. One is to maintain high fringe

contrast in the images, and the other is to use small fringe pitch in the projection

pattern. For the first measure, a higher fringe contrast makes the relative magnitude

of the image intensity error smaller and hence achieves better phase accuracy. For

the second measure, a smaller fringe pitch leads to a wider phase range and hence

makes the relative phase error smaller. Yet, the improvement of fringe contrast in

the images and the decrease of fringe pitch in the projection pattern are limited by a

number of factors and also contradictory.

First of all, the smallest fringe pitch that can be used in projection patterns is

limited by the resolution of the DMD/LCD projector. Fringe patterns generated

by DMD/LCD projectors are pixelated, which can cause considerable errors in the

phase maps obtained. To reduce the pixelation effect of the projection patterns, the

projector can be purposely defocused such that the projection in the measurement

volume is out-of-focus [37]. However, the defocusing of the projector also reduces the

fringe contrast of the projection, which would in turn reduces the fringe contrast in

the images and leads to larger phase errors. When the fringe pitch is smaller than

a certain value, the drop in fringe contrast caused by the defocusing of projector is

significant. Based on our experiments with three different DMD projectors, we found

that 8 pixels is the practical minimum for the fringe pitch to be used in projection

patterns.

Secondly, the finite resolution of CCD camera also limits the possible fringe pitch

that can be used in projection patterns. As demonstrated earlier (see Section 5.1.1),

when a small fringe pitch is used in the projection pattern, for areas on the object’s
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surface whose normal directions are within a certain range, the corresponding local

fringe pitches in the image(s) would be too small and the phase map construction

over those areas would fail. We found that in practice, if the local fringe pitch in the

image is smaller than 6 or 7 pixels, the errors in the calculated phase values would

increase dramatically and possible failure in the phase map construction would occur.

The constraint on the minimum fringe pitch imposed by the resolution of camera can

also be explained from the perspective of fringe contrast in the images. A detailed

explanation is given in Appendix B.1.

In summary, the smallest fringe pitch that can be used in projection patterns is

limited by both the projector and the camera’s resolutions. It was found experi-

mentally that, in order to achieve a good accuracy the fringe pitch in the projection

pattern needs to be at least 8 pixels and the fringe pitch in the images needs to be

at least 6 or 7 pixels. On the other hand, the fringe pitches in both the projection

pattern and the images need to be kept at the possible minimum.

5.2.4.2 Algorithm for Generation of Adaptive Patterns

The developed algorithm for automated generation of adaptive projection pattern is

as the following:

1. Acquisition of two absolute phase maps of the object, Φ(V ) and Φ(H):

Two absolute phase maps of the object being measured are obtained by using

vertical and horizontal fixed-pitch fringe patterns respectively. Both fringe pat-

terns are selected with a medium fringe pitch to avoid possible failure in the

construction of the phase maps. Let p
(P )
fc denote the smallest fringe pitch for

the vertical fringe pattern that could provide satisfactory fringe contrast in the

light projections. The medium fringe pitch selected for the vertical fringe pat-

tern can then be written as cp0 · p
(P )
fc , where cp0 is a coefficient that is generally
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greater than 2.

Let Φ
(V )
P (ξ, η) and Φ

(H)
P (ξ, η) denote the phase distributions in the vertical and

the horizontal fringe patterns respectively. Φ
(V )
P and Φ

(H)
P can be expressed as

the following:










Φ
(V )
P (ξ, η) =

[

2π/(cp0 · p
(P )
fc )
]

· ξ

Φ
(H)
P (ξ, η) =

(

2π/p
(H)
P

)

· η
(5.1)

where p
(H)
P is the fringe pitch used in the horizontal fringe pattern.

Let Φ(V )(u, v) and Φ(H)(u, v) denote the phase maps that are obtained by using

the vertical and the horizontal fringe patterns. With the two phase maps of

the object, each point (u1, v1) in the camera’s image plane can be associated

with two phase values, Φ(V )(u1, v1) and Φ(H)(u1, v1). Accordingly, a point in

the projection pattern can be located uniquely which has the same phase value

pair. That is, if we denote this corresponding point in the projection pattern

as (ξ1, η1), the following equation holds:











Φ
(V )
P (ξ1, η1) = Φ(V )(u1, v1)

Φ
(H)
P (ξ1, η1) = Φ(H)(u1, v1)

(5.2)

As we can see, by combining Eqn. 5.1 and 5.2, the coordinates (ξ1, η1) can be

calculated from the following equation:











ξ1 =
[

cp0 · p
(P )
fc /(2π)

]

· Φ(V )(u1, v1)

η1 =
[

p
(H)
P /(2π)

]

· Φ(H)(u1, v1)
(5.3)

2. Construction of the gradient field of the adaptive pattern, [∇Φ]
(A)
ξ :

Let Φ
(A)
P (s, t) denote the phase distribution of the adaptive projection pattern

to be built, which is a 2-D array defined on the ξ-η plane. (s, t) are indices to
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elements in Φ
(A)
P . Let [∇Φ]

(A)
ξ (s, t) be the gradients of Φ

(A)
P (s, t) along ξ-axis,

i.e.

[∇Φ]
(A)
ξ (s, t) = Φ

(A)
P (s, t+ 1) − Φ

(A)
P (s, t)

for s = 1, · · · , S and t = 1, · · · , (T − 1)

(5.4)

where s = 1 to S, t = 1 to (T − 1), and S × T are the dimensions of Φ
(A)
P . In

order to build the adaptive projection pattern, the gradient field [∇Φ]
(A)
ξ needs

to be constructed first as the following:

• Initialize all elements in [∇Φ]
(A)
ξ to 2π/p

(P )
fc , where p

(P )
fc is the critical fringe

pitch of the projection pattern as defined earlier.

• Let p
(I)
fc denote the smallest local fringe pitch in the images that could

provide satisfactory phase reconstruction accuracy. Let [∇Φ]u(i, j) denote

the gradients of phase map Φ(V )(u, v) along u-axis. Create a bitmap mask,

M (I), for [∇Φ]u(i, j) to mark the pixels whose phase gradients are too

large. That is, for all pixels (i, j) in the object’s phase map who satisfy

[∇Φ]u(i, j) >
2π

cp0 · p
(I)
fc

(5.5)

where cp0 is the coefficient defined in Eqn. 5.1, mark the corresponding

pixels in M (I) as 1s and otherwise 0s. The 1-pixels in M (I) form a number

of connected components, which can be isolated and labeled by using the

region growing algorithm [77].

• Let R
(I)
M (l) (l = 1, . . . , L) denote the connected components in M (I). Cre-

ate a bitmap mask, M (A), for [∇Φ]
(A)
ξ to mark the pixels whose gradient

values need to be adjusted. This can be done using the following procedure:

For each region R
(I)
M (l) in M (I), find its boundary B

(I)
M (l); Map this bound-

ary to M (A) by using Eqn. 5.3; Fill the mapped boundary in M (A) to form
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a region R
(A)
M (l), which corresponds to the region R

(I)
M (l) in M (I).

• Consider a marked region R
(I)
M (l) (l = 1, . . . , L) in M (I). For a pixel (i1, j1)

in this region, compute its corresponding coordinates in the projection

pattern by using Eqn. 5.3. Let (s1, t1) denote the calculated coordinates

of the pixel in the projection pattern. Set the ξ-gradients of this pixel in

the adaptive projection pattern as the following:

[∇Φ]
(A)
ξ (s1, t1) =

4π2

cp0 p
(I)
fc p

(P )
fc [∇Φ]u(i1, j1)

(5.6)

Perform this operation for all pixels in the region R
(I)
M (l). Depending on

the mapping from R
(I)
M (l) to R

(A)
M (l) (i.e. the size of the region in terms

of pixels is expanded or shrunk), there might be missed pixels in R
(A)
M (l)

whose gradient values were not updated. Hence, a search in R
(A)
M (l) for

missed pixels needs to be done as the final step and the values of these

pixels can be updated by means of interpolation.

The above process is conducted for all marked regions R
(I)
M (l), i.e. all pixels

in the object’s phase map that meet the criteria described in Eqn. 5.5. The

substantial meaning of this process is, if the local fringe pitch in an area

in the object’s images is too small, the corresponding area in the adaptive

projection pattern needs to be set with larger fringe pitch.

• Smooth [∇Φ]
(A)
ξ to avoid steep changes in the gradient values.

3. Construction of the phase distribution of the adaptive pattern, Φ
(A)
P :

Once the gradient field [∇Φ]
(A)
ξ is constructed, the phase distribution of the

adaptive projection pattern, Φ
(A)
P , can be calculated from discrete integration
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of [∇Φ]
(A)
ξ as the following:

Φ
(A)
P (s, t) = Φ

(A)
P (s, t− 1) + [∇Φ]

(A)
ξ (s, t− 1) ,

for s = 1, · · · , S and t = 2, · · · , T

(5.7)

This process requires the initialization of the first column of Φ
(A)
P , i.e. Φ

(A)
P (s, 1)

(s = 1, · · · , S), which is generally set to zeros.

4. Building the adaptive pattern:

The adaptive projection pattern is built from its phase distribution, Φ
(A)
P , by

applying a sinusoidal modulation. The intensity distribution of the pattern can

be expressed using the following equation:

I(P )(s, t) =
I

(P )
max

2

[

1 + sin
(

Φ
(A)
P (s, t)

)]

(5.8)

where I(P )(s, t) is the intensity of pixel (s, t) and I
(P )
max is the maximum intensity

in projection pattern.

The process of generating an adaptive projection pattern for the measurement of

a sphere, is demonstrated in Fig. 5.10. Figure. 5.10(a) shows the phase map of the

sphere Φ(V ) (in contours), which is acquired by using the vertical fringe pattern Φ
(V )
P .

The highlighted region in the phase map indicates pixels whose phase gradients [∇Φ]u

are greater than 2π
/(

cp0 ·p
(I)
fc

)

. The corresponding region in the projection pattern, in

which the pixels’ phase gradients [∇Φ]
(A)
ξ need to be set smaller than the initial value

2π/p
(P )
fc , is shown in Fig. 5.10(b). Figure 5.10(c) shows the constructed gradient field

of the adaptive pattern, [∇Φ]ξ, in a gray-scale image, where darker color indicates

smaller gradient value. Figure 5.10(d) shows the constructed phase distribution of

the adaptive pattern, Φ
(A)
P , in contours. The adaptive projection pattern generated

at the end is shown in Fig. 5.10(e).
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(a) Contours of the sphere’s phase map,
Φ(V ) (pixels with large phase gradients,
[∇Φ]u, are highlighted)
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(b) Pixels in the projection pattern whose
phase gradients, [∇Φ]ξ, need to be set
smaller than their initial values
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(c) The constructed gradient field of the

adaptive pattern, [∇Φ]
(A)
ξ (darker color

indicates smaller value)
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(d) Contours of the constructed phase dis-

tribution of the adaptive pattern, Φ
(A)
P

(e) The adaptive projection pattern
generated at the end

Figure 5.10: Generation of an adaptive pattern for the measurement of a sphere
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A few additional examples of adaptive projection patterns generated for mea-

surements of varied objects can be found in Fig. 5.13(c), 5.15(c) and 5.17(c). The

performance of the generated adaptive patterns will be discussed in Section 5.3.

5.2.5 Algorithm for Construction of New Reference Phase

Map

As mentioned in Section 5.2.1, once a new adaptive projection pattern has been

generated for a particular measurement, a new reference phase map needs to be

acquired to support the use of the adaptive pattern in the measurement(s). The

acquisition of the new reference phase map can either be done by a set of measurement

operations or by pure computation. The measurement approach is to place a flat

plane in the measurement volume of the sensor, measure its position and orientation

(w.r.t. the sensor) and obtain an absolute phase map of the plane by projecting

the newly generated adaptive pattern. As a contrast, the computational approach

constructs the new reference phase map through numerical interpolations over the

existing regular reference phase map. It does not require any additional operations

and hence is the preferred method at most occasions.

This algorithm requires two absolute phase maps of the reference plane as inputs,

as well as the generated adaptive pattern. One of the phase maps is the regular

reference phase map (denoted by ΦR at most places in this dissertation), which is

obtained by using a vertical fringe pattern. The other phase map is obtained by

using a horizontal fringe pattern. Both fringe patterns used are of fixed fringe pitch.

Let Φ
(V )
R (u, v) denote the regular reference phase map here, and let Φ

(V )
P (ξ, η) be

the phase distribution of the corresponding vertical fringe pattern. Similarly, let

Φ
(H)
P (ξ, η) denote the horizontal fringe pattern and let Φ

(H)
R (u, v) be the resulting
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phase map. Φ
(V )
P (ξ, η) and Φ

(H)
P (ξ, η) can be expressed using the following equation:











Φ
(V )
P (ξ, η) = cV · ξ

Φ
(H)
P (ξ, η) = cH · η

(5.9)

where cV and cH are constants.

Let Φ
(A)
P (ξ, η) denote the phase distribution of the generated adaptive projection

pattern, and let Φ
(A)
R (u, v) denote the corresponding reference phase map to be con-

structed. When the sensor and the surface to be measured is fixed, each point (u, v)

in the phase map has a unique corresponding point in the projection pattern, (ξ, η),

which always has the same phase value as the point (u, v), no matter which projection

pattern has been used. Therefore, in order to construct the phase map Φ
(A)
R from the

known projection pattern Φ
(A)
P , one needs to resolve the mapping from space (ξ, η) to

space (u, v) for the reference plane. This can be done by using the prepared phase

maps of the reference plane, Φ
(V )
R and Φ

(H)
R , and the associated fringe patterns.

The procedure to compute the new reference phase map, Φ
(A)
R , is as the following:

1. For each pixel (u1, v1) in Φ
(A)
R (u, v), compute its corresponding point, (ξ1, η1),

in the projection pattern by using the following equation:











ξ1 = (1/cV ) · Φ
(V )
R (u1, v1)

η1 = (1/cH) · Φ
(H)
R (u1, v1)

(5.10)

where cV and cH are constants defined in Eqn. 5.9.

2. Using the calculated coordinates (ξ1, η1), compute the phase value Φ
(A)
P (ξ1, η1)

by interpolation over the phase distribution of the generated adaptive pattern,

Φ
(A)
P (ξ, η). The reason for involving interpolation is that, Φ

(A)
P (ξ, η) is a 2-D

array on the ξ-η plane and has phase values only on a finite number of grid
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points.

3. The calculated phase value Φ
(A)
P (ξ1, η1) is then assigned to Φ

(A)
R (u1, v1).

An example of constructing the new reference phase map for an adaptive projec-

tion pattern is shown in Fig. 5.11. Figure 5.11(a) and 5.11(b) are the contour plots

of the phase maps Φ
(V )
R and Φ

(H)
R , respectively. The blue crosses drawn in the figures

are example pixels in the u-v space, i.e. pixels (u1, v1) as referred in the description

of the algorithm above. Figure 5.11(c) shows the phase distribution of the adaptive

pattern, Φ
(A)
P , in contours. The red crosses drawn in the figure are points in the ξ-η

space that correspond to the example pixels. Figure 5.11(d) shows the contour plot

of the new reference phase map that is constructed, Φ
(A)
R .

5.3 Implementation and Results

5.3.1 Implementation

The proposed algorithms for generating adaptive projection patterns and for con-

structing new reference phase map were implemented in Matlab. By using common

data files as interface, the developed Matlab program is able to work with the point

cloud construction software as described in Section 3.4.1. By doing this, the SMDFP

system we have developed is able to conduct shape measurements using adaptive

projection patterns.

In order to verify the soundness of the adaptive pattern idea as well as the perfor-

mance of the algorithms developed, a number of tests were conducted in the manner

of both simulated measurements and physical measurements. The accuracy and cov-

erage of measurements achieved with the use of adaptive patterns were compared

against the performance benchmarks achieved by fixed-pitch fringe patterns.
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(a) Contours of the regular reference phase

map, Φ
(V )
R (blue crosses are example pixels in

the (u, v) space)
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(b) Contours of the phase map Φ
(H)
R (example

pixels drawn in blue crosses)
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(c) Contours of the phase distribution of the

adaptive pattern, Φ
(A)
P (red crosses are points

in the (ξ, η) space that correspond to the ex-
ample pixels shown in (a), (b) and (d))
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(d) Contours of the new reference phase map

computed, Φ
(A)
R (example pixels drawn in blue

crosses)

Figure 5.11: Construction of the new reference phase map for an adaptive pattern
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5.3.2 Performance Tests Using Measurements on CAD Mod-

els

By using the developed simulator for SMDFP systems (see Chapter 4 for details), a

number of simulated measurements were carried out with objects of varied shapes.

The measurement setup is shown in Fig. 5.12. The object being measured is placed

in the world coordinate frame, X(W )Y (W )Z(W ), with its center position close to the

origin. The measurement sensor (i.e. the projector and the camera) is place above

the object (along Z(W )-axis) with its measurement volume covering the entire object

or the area of interest. For all simulation runs, the same set of sensor parameters

is used, and the position of the sensor w.r.t. the world coordinate frame remains

fixed. In other words, only the projection pattern and the object being measured

were changed.

Sensor parameters used in the simulations are as the following: The optical axis

of the projector and the optical axis of the camera intersect at point (0, 0, 0), and

the angle between them, θPC , is 350; The z-coordinate of the projector’s projection

center, as well as the z-coordinate of the camera’s projection center, is 476.544mm;

The field-of-view angles of the projector are 28.0720 and the field-of-view angles of

the camera are 21.2390, in both horizontal and vertical directions; The projector has

a resolution of 1024×1024 pixels and the camera has a resolution of 512×512 pixels;

Both of them have a gray-depth of 8 bits.

Four parts were used in the simulated measurements: a part with a sawtooth

profile (shown in Fig. 5.13(a)), a block with a cone-shaped hole (shown in Fig. 5.15(a)),

a randomly generated spline surface (shown in Fig. 5.17(a)) and a spherical part

(shown in Fig. 5.12). The X-Y dimensions of the parts are around 200mm×200mm

or bigger. The Z-dimensions of the parts are as the following: The part with sawtooth

profile, 27mm; the cone-shaped hole, 160mm; the spline surface, 55.554mm; and the
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Figure 5.12: Schematic diagram of the measurement setup used in simulations

spherical part, 70mm. All parts have diffuse surfaces.

To simulate the influence of error sources, random noise was added to the images

of objects which were obtained under the projection of fringe patterns. For all simu-

lation runs, the random noise added was generated with a uniform distribution and

a magnitude of 2.5% (plus and minus) of the maximum image intensity.

The automatically generated adaptive projection patterns for the measurements

of different parts are shown in Fig. 5.13(c), 5.15(c), 5.17(c) and 5.6(c). The images of

the parts obtained under the projection of adaptive patterns are shown in Fig. 5.13(d),

5.15(d), 5.17(d) and 5.6(d). For comparison, images obtained under the projection

of a fixed-pitch fringe pattern (nF = 100) are also presented (Fig. 5.13(b), 5.15(b),

5.17(b) and 5.6(b)). As can be seen from the images, when the fixed-pitch fringe

pattern (nF = 100) was used, the corresponding images of the parts all have certain

degree of fringe overcrowding in some part of the image. As a result, the construction

of point clouds failed at these regions. Take the measurement of the cone-shaped hole

as an example. As can be seen from Fig. 5.15(b), there is a severe fringe overcrowding

in the region that corresponds to the center-right part of the cone. In the constructed
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point cloud as shown in Fig.5.16(a), that part of the cone is missing. The same

problem was observed in the measurements of other parts as well. However, when

adaptive projection patterns were used, there was no such problem.

The measurement performance achieved by using adaptive and fixed-pitch fringe

patterns are shown in Fig. 5.14(c), 5.16(c), 5.18(c) and 5.7. The horizontal axes of

the plots represent the number of pixels that are unable to be resolved in a shape

measurement. As mentioned earlier, the total number of pixels is 512×512 = 262, 144.

The vertical axes represent the RMS value of measurement error. nF is the number of

fringes in the fixed-pitch fringe patterns. As can be seen from the plots, when fixed-

pitch fringe patterns (with varied fringe numbers) were used, any single measurement

was unable to achieve good accuracy and good coverage at the same time. A high

fringe number (e.g. 121) is able to achieve very good measurement accuracy but the

surface area it fails to measure is quite large; On the opposite, a low fringe number

(e.g. 49) has excellent measurement coverage but the accuracy of measurement is

fairly poor. With the use of adaptive patterns, this compromise issue can be solved

satisfactorily. In all measurements conducted, the adaptive patterns achieved an

accuracy that is comparable to a fixed-pitch fringe pattern with a fringe number of

around 100 to 121, while at the same time achieved a measurement coverage that is

comparable to (a fixed-pitch fringe pattern with) a fringe number of around 49 to 64.

In the measurements of the cone-shaped hole by using fixed-pitch fringe patterns,

the part was place at a few slightly different tilt angles around Y (W )-axis. Fig-

ure 5.16(c) shows the results of the part at two different tilt angles, θPart = 00 and

θPart = 70, where θPart = 00 corresponds to the orientation that the part’s top sur-

face is parallel to the X(W ) − Y (W ) plane. The measurement results indicate that,

different tilt angles of the part yield different measurement accuracies and coverages

for the same fringe pattern. However, it only changes the favor of the measurement

performance between accuracy and coverage but makes no improvement to the mea-
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surement performance as a whole.

The proposed algorithm for automated generation of adaptive patterns has a few

parameters that can be adjusted, e.g. p
(P )
fc and p

(I)
fc (see Section 5.2.4.2 for a detailed

description of the algorithm and associated parameters). The values of the param-

eters could affect the exact pattern generated in the end. Figure 5.18(c) shows the

measurement performance of two difference adaptive patterns that were generated

for the measurement of the spline surface. Both adaptive patterns achieved better

overall performance than fixed-pitch fringe patterns.
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(a) Part with a sawtooth profile (b) One of the images acquired by using fixed-pitch
fringe pattern, nF = 100

(c) Adaptive fringe pattern generated
(shown in larger fringe pitch than ac-
tual)

(d) One of the images acquired by using the adaptive
fringe pattern as shown in (c)

Figure 5.13: Simulated measurements of a part with a sawtooth profile (1)

151



(a) Point cloud obtained by using fixed-pitch fringe pat-
tern, nF = 100 (pseudo-color represents z-coordinate)

(b) Point cloud obtained by using the adaptive fringe
pattern (pseudo-color represents z-coordinate)
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Figure 5.14: Simulated measurements of a part with a sawtooth profile (2)
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(a) Part with a cone-shaped hole (b) One of the images acquired by using fixed-pitch
fringe pattern, nF = 100

(c) Adaptive fringe pattern generated
(shown in larger fringe pitch than ac-
tual)

(d) One of the images acquired by using the adaptive
fringe pattern as shown in (c)

Figure 5.15: Simulated measurements of a cone-shaped hole (1)
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(a) Point cloud obtained by using fixed-
pitch fringe pattern, nF = 100 (pseudo-
color represents z-coordinate)

(b) Point cloud obtained by using the adap-
tive fringe pattern (pseudo-color represents
z-coordinate)

0 1000 2000 3000 4000 5000
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Size of Unresolvable Area (pixels)

R
M

S
 o

f M
ea

su
re

m
en

t E
rr

or
 (

m
m

) Fixed−pitch frg. ptn., θ
Part

=0o

Fixed−pitch frg. ptn., θ
Part

=7o

Adaptive fringe pattern

49

64

81

100

121

49

64

81 100
121

(c) Measurement performance: adaptive fringe pat-
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Figure 5.16: Simulated measurements of a cone-shaped hole (2)
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(a) Randomly generated spline surface (b) One of the images acquired by using fixed-pitch
fringe pattern, nF = 100

(c) Adaptive fringe pattern generated
(shown in larger fringe pitch than ac-
tual)

(d) One of the images obtained by using the adaptive
fringe pattern as shown in (c)

Figure 5.17: Simulated measurements of a spline surface (1)
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(a) Point cloud obtained by using fixed-pitch
fringe pattern, nF = 100 (pseudo-color repre-
sents z-coordinate)

(b) Point cloud obtained by using the adap-
tive fringe pattern (pseudo-color represents z-
coordinate)
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Figure 5.18: Simulated measurements of a spline surface (2)
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5.3.3 Performance Tests Using Measurements on Physical

Parts

The performance test of adaptive projection patterns was also conducted on physical

parts. Two artifacts were used in the test, one is a plastic flowerpot (see Fig. 5.19(a))

and the other is a plastic tube (see Fig. 5.20(a)). For the measurements of each

artifact, both adaptive projection pattern and fixed-pitch fringe patterns were used,

while keeping the other measurement settings fixed. The performances of different

projection patterns, in terms of measurement coverage and measurement accuracy,

were analyzed.

The measurements of the two artifacts were performed using the SMDFP sensor

we have built, as described in Section 3.4.1. The major parameters of the sensor

are as the following: The angle between the optical axis of the projector and the

optical axis of the camera is 270; The distance between the sensor and the center of

the measurement volume is around 600mm; The projector’s field-of-view angles are

43.60 (Horizontal) and 33.40 (Vertical); The camera’s field-of-view angles are 22.280

(Horizontal) and 16.770 (Vertical); The resolution of the projector is 1024×768 pixels;

The resolution of the camera is 640 × 480 pixels; Both the projector and the camera

have a gray-depth of 8 bits. All measurements were conducted under regular indoor

lighting condition.

The plastic flowerpot used in the test has a maximum diameter of 198mm and a

depth of 149mm. Figure 5.19(b) shows an image of the pot acquired by using a fixed-

pitch fringe pattern with 100 fringes (nF = 100). In the area that corresponds to the

right inner wall of the pot, the fringes are overly crowded and hardly distinguishable.

As a result, that part of the surface is unresolvable in the measurement. However,

when the adaptive projection pattern was used (as shown in Fig. 5.19(c)2), the prob-

2The adaptive projection pattern is shown with uniformly increased fringe pitch, for the purpose
of clear display
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lem of fringe overcrowding is resolved (see Fig. 5.19(d)). This improvement can also

be observed from Fig. 5.19(e), which shows the measurement coverages achieved by

using adaptive projection pattern and fixed-pitch fringe patterns respectively. The

horizontal axis of the plot represents the number of fringes in the projection pattern

(nF ), and the vertical axis represents the number of pixels that were unable to be

resolved in the measurement. For fixed-pitch fringe patterns, the size of unresolvable

area increases as the fringe number increases. This is caused by fringe overcrowding

as the fringe pitch in the projection pattern gets smaller. In the case of adaptive

pattern, a measurement coverage comparable to a (fixed-pitch fringe pattern with a)

fringe number of 50 was achieved, although the adaptive pattern has an equivalent

fringe number of 118.

As a summary of the above, when the number of fringes in the projection pattern

is fixed, e.g. in order to maintain a certain measurement accuracy, adaptive projection

pattern is able to achieve better measurement coverage than fixed-pitch fringe pattern.

Because the accurate shape of the flowerpot is not known, the study on measurement

accuracy was skipped.

The plastic tube used in the test has a diameter of 127.34mm and a height of

95mm. The adaptive pattern generated for the measurement of the tube is shown in

Fig. 5.20(c). Images of the tube under the projection of a fixed-pitch fringe pattern

(nF = 125) and the adaptive pattern are presented in Fig. 5.20(b) and 5.20(d) re-

spectively. The problem of fringe overcrowding was discovered at the left edge area of

the tube when fixed-pitch fringe patterns with large fringe numbers (greater than 81)

were used. This problem did not occur in the case of adaptive pattern. In order to

evaluate the measurement accuracy, the point cloud acquired in a measurement was

fitted to a cylinder and the residual deviation was analyzed. Figure 5.20(e) shows the

measurement coverage and measurement accuracy achieved by using different projec-

tion patterns. The horizontal axis of the plot represents the number of pixels that
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were unable to be resolved in the measurement, and the vertical axis represents the

RMS value of the divergence of the point cloud from a perfect cylinder. As can be seen

from the plot, the adaptive projection pattern achieved a better overall measurement

performance than fixed-pitch fringe patterns.

5.4 Summary

Most existing SMDFP systems use straight fringe patterns with fixed fringe pitch for

projections. When measuring objects with a large range of surface normal directions,

with the use of fixed-pitch fringe patterns it is hard to achieve full measurement

coverage and good measurement accuracy at the same time without increasing the

number of patterns required. The idea of adaptive projection pattern was proposed

to solve this problem.

A detailed description of using adaptive projection patterns in SMDFP is given

in this chapter, including the measurement procedure, potential applications and

the requirements on system model and algorithms. A number of tests, including

measurements on CAD models and measurements on physical parts, were conducted

to verify the soundness and effectiveness of the adaptive pattern idea as well as the

algorithms developed to enable this capability.

The results of the tests show, adaptive projection patterns provide better overall

measurement performance (coverage and accuracy) than fixed-pitch fringe patterns,

especially when the object being measured has a large range of surface normal di-

rections. For applications such as on-line parts inspection, the overhead of using

adaptive patterns is negligible. Hence, adaptive pattern is an ideal solution for such

applications when measurement speed and accuracy are crucial.

The developed framework of using adaptive patterns integrates seamlessly with

the mathematical system model and algorithms proposed in Chapter 3. The two
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(a) Photograph of the flowerpot (b) Image acquired using fixed-pitch fringe pattern, nF =
100

(c) The adaptive fringe pattern generated (d) Image acquired using the adaptive fringe pattern
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Figure 5.19: Measurements of a plastic flowerpot
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(a) Photograph of the plastic tube (b) Image acquired using fixed-pitch fringe pattern, nF =
125

(c) The adaptive fringe pattern (d) Image acquired using the adaptive fringe pattern
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Figure 5.20: Measurements of a plastic tube
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algorithms presented in this chapter, i.e. the algorithm for automated generation of

adaptive patterns and the algorithm for computation of new reference phase map,

worked very well to support the use of adaptive patterns.
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Chapter 6

Estimation of Measurement

Uncertainties

This chapter describes the model and algorithms proposed for the estimation of uncer-

tainties in shape measurement process conducted using SMDFP. Section 6.1 gives a

brief description of the related work on the estimation of measurement uncertainties,

the existing problems and the desired improvements. Section 6.2 gives an overview

of the framework we have developed for estimation of measurement uncertainties.

Section 6.3 explains the error sources considered in the model. Section 6.4 presents

the definitions of uncertainty components as well as the algorithms for estimation

of their values. Section 6.5 describes the algorithm for computing the uncertainties

in the point clouds. Section 6.6 presents the results of an experiment conducted

for verification of the model and algorithms. A summary of this chapter is given in

Section 6.7.
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6.1 Introduction

It is a desired feature for metrology devices to give the uncertainty of measurements

along with measurement results. For SMDFP systems, this means giving the position

uncertainties of the points in the point cloud created in a measurement.

In most existing commercial SMFP/SMDFP systems, measurement uncertainty

is given as a fixed specification of the system, which is generally acquired by mea-

suring gauge parts and analyzing the deviations of measurements w.r.t. the gauge

parts. Unfortunately, the measurement uncertainty of a SMFP/SMDFP system varies

across the measurement volume and can be influenced notably by many factors, e.g.

the environmental lighting condition, the shape of the object being measured, etc.

Therefore, a fixed rating of the measurement uncertainty may not correctly reflect

the actual error magnitude of a measurement.

Another approach to estimate measurement uncertainty is to start from evaluating

the error level in the acquired phase map of an object. Theories on the evaluation

of phase errors caused by varied sources, such as image noise, intensity quantization,

non-sinusoidal waveform of the fringe pattern and the phase-shifting method used,

have been well developed [78, 38, 39, 34, 35]. However, the modeling of the relation

between phase uncertainty and the uncertainty in shape measurement is much less

studied. In many research literature, it is assumed that the position uncertainty

of the measured points is proportional to the phase uncertainty. This is not true

in general for the following reasons: Firstly, due to perspective projection and the

angle between the projector and the camera, the ratio between phase error and the

error it causes on the position of a measured point is not a constant throughout the

measurement volume. This is particularly true when the camera-to-projector angle

and/or the field-of-view of the projector and the camera are large. Secondly, there

are other sources besides phase errors that contribute to the position errors in the
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measured points, e.g. errors in the sensor parameters. Depending on the system

configuration and the accuracy of calibration, these error components may be similar

in magnitude as the phase errors, or even larger, and hence cannot be neglected.

Due to the complex influence of various sources on the shape measurement un-

certainties, it is necessary to have a comprehensive model to describe the relations

between the many error sources and the eventual measurement uncertainties caused

by them. This model should be able to estimate the measurement uncertainties based

on the image data acquired in a measurement as well as the apriori knowledge on all

major error sources. However, currently a model consistent with the computational

framework developed in this dissertation does not exist. In this chapter, a new model

will be developed to meet the requirements discussed above.

6.2 Overview of Approach

The uncertainty model is defined based on the mathematical system model and the

related point cloud construction algorithm described in Chapter 3. A schematic di-

agram of the infrastructure of the uncertainty model is shown in Fig. 6.1. Firstly, a

number of error sources that contribute to shape measurement uncertainty are identi-

fied from the system’s perspective. Examples of the error sources include: inaccurate

system calibration, imperfect light projection, fluctuation in environmental light, and

image noise. However, direct modeling of the error sources and the estimation of their

magnitudes are difficult. To avoid this problem, a number of uncertainty components

are defined based on the mathematical system model. These uncertainty components

are reflections of the error sources in the system model and they are relatively easy

to evaluate and utilize. The components defined include, uncertainties in the sen-

sor parameters, uncertainties in the reference phase map and uncertainties in the

object’s phase map. One thing worth mentioning is, the mapping from the identi-
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fied error sources to the uncertainty components defined does not have a one-to-one

correspondence.

The magnitudes of the uncertainty components are estimated using algorithms.

The uncertainties in sensor parameters are estimated from calibration data, which

include geometric data and images of a calibration artifact. The outcome of the

estimation is the uncertainties in each individual sensor parameter. The uncertainties

in a phase map are estimated from the raw images that were used to compute the

phase map, i.e. images acquired from phase-shifting. The outcome of the estimation

is the uncertainty of each phase value in the phase map. The estimation processes

need to be performed as part of a system calibration or for every measurement. In

Fig. 6.1, the processes to be completed during system calibration are enclosed in the

dashed box.

Once the magnitudes of all uncertainty components were estimated, their influ-

ences to the uncertainties of shape measurement are evaluated and combined. As the

final result, for each point in the point cloud (acquired from a measurement), a 3-D

uncertainty region is given, which indicates the possible range of the true position of

that point.

6.3 Error Sources Considered

Error sources are the disagreements between a real SMDFP system and the virtual

system defined by the mathematical model and the associated parameters. They are

either neglected in the model, imprecisely represented or indefinite in quantity (e.g.

random noise). The error sources that are considered in the proposed uncertainty

model are enumerated in the following list with a short description given for each.

• Error in the system model: The proposed mathematical model for SMDFP

systems uses the pinhole camera model with lens distortion model for describing
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Figure 6.1: Schematic diagram of the infrastructure of the uncertainty model
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the camera and the projector. Although the disagreement between this model

and the physical laws of the camera and projector is very small, it does exist

and hence will introduce errors in shape measurements.

• Inaccurate system calibration: The sensor parameters in the system model,

which include parameters for describing the camera, projector and the reference

plane, are obtained from calibrations. Depending on the design of calibration

procedures and the accuracy of calibration artifacts, the estimated values of

these parameters may diverge from their real values.

• Imperfect light projection: SMDFP technique assumes a perfect projector

which can generate light projections precisely as designated. Real computer

projectors have limited spatial resolution (e.g. 1024 × 768 pixels) and color

depth (e.g. 8-bit gray-scale), and hence can generate digitized light projections

only. Additionally, the light modulation unit of projectors, DMD or LCD,

introduces noise as well.

• Fluctuation in environmental light: SMDFP technique requires stable en-

vironmental light. Unfortunately, most commonly used light sources, incandes-

cent or fluorescent, have some degree of fluctuation in intensity due to the use

of Alternating-Current power.

• Noise in image and quantization of image intensity: When an image is

captured, light intensities are first converted to voltage signals by the imaging

sensor (CCD/CMOS sensor) and then quantized to grayscales by A/D con-

verter. During this process, electric noises are picked up and added to the

image intensities. Meanwhile, the intensity quantization of image introduces

truncation errors.

• Finite pixel size of imaging sensor: In the construction of point clouds,
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the position of a 3-D point is calculated from the sequence of image intensities

associated with a pixel. Since a pixel in an imaging sensor has a finite size,

it collects light from a small area on the object’s surface instead of from an

infinitesimal point. As a result, the calculated point position is an averaging of

the positions of many points on a surface facet. The generated point may not

lie on the object’s surface precisely even if no other errors are present.

• Imperfection of the reference plane: The algorithm for point cloud con-

struction requires a plane that is perfectly flat for the acquisition of a reference

phase map. In practice, a flat plane can be manufactured to achieve a flat-

ness of a few microns, in which case only negligible errors (comparing to other

sources) would be caused in shape measurements. However, if the flatness of

the reference plane is poor, this term needs to be considered.

6.4 Estimation of Uncertainty Components

6.4.1 Definitions of Uncertainty Components

The uncertainty components are defined based on the mathematical system model

and the point cloud construction algorithm described in Chapter 3. Recall that the

point cloud construction algorithm takes three sets of inputs: the sensor parameters,

phase map of the object, and the reference phase map. The uncertainty components

defined below are explained following this classification.

• Uncertainties in sensor parameters:

The sensor parameters of a SMDFP system are estimated from calibration pro-

cedures. The uncertainties in sensor parameters are defined as the standard

errors in the estimated values of the parameters. They reflect the possible er-

rors introduced in the calibration procedures as well as the inaccuracy of the
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system model. A detailed list of the uncertainties is given at below. The algo-

rithm for estimation of the uncertainties will be explained in Section 6.4.2.

σfx
, σfy

, σu0 and σv0: Standard deviations of the estimated parameters fx,

fy, u0 and v0 respectively, which are coefficients in

the intrinsic matrix of the camera.

σks
(s = 1, · · · , 5): Standard deviations of the estimated lens distortion

coefficients of the camera, ks (s = 1, · · · , 5).

σP : The standard deviation of the estimated position of

the projector’s projection center, point P . It is as-

sumed for simplicity that the uncertainty region of

point P is a spherical volume, and the scalar value

σP indicates the radius of the sphere.

σOR
and σnR

: The position and orientation of the reference plane

are represented by (OR,nR), where OR is a point on

the reference plane and nR is the plane’s normal di-

rection. σOR
is defined as the standard deviation of

the position of OR along the direction of nR.

σnR
is defined as the standard deviation of

arccos
(

nR(i) · n̄R

)

, where nR(i) are the estimated

values of nR and n̄R is the mean of nR(i).

Detailed descriptions of the sensor parameters mentioned above can be found

in Section 3.2.1 and 3.3.2.

• Uncertainties in the phase map of the object, σφ(i, j):

The uncertainties in a phase map φ(i, j) are defined as an array σφ(i, j), which

has the same dimension as φ(i, j). Each element in σφ(i, j) gives the estimated

standard deviation of the corresponding phase value in φ(i, j).
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Since a phase map is calculated from images of an object obtained under pro-

jection patterns, the uncertainties in a phase map are caused by error sources

related to light projection and/or imaging, e.g. imperfections in light projec-

tion, fluctuation in environmental light, image noise and quantization of image

intensity. The phase unwrapping algorithm may occasionally introduce addi-

tional errors in phase values, in the magnitude of multiples of 2π. However,

such errors can be detected and are generally excluded as failed points. Hence,

they are not considered in the uncertainties of the phase map.

The algorithm for estimation of phase uncertainty will be explained in Sec-

tion 6.4.3.

• Uncertainties in the reference phase map, σφR
(i, j):

The uncertainties in the reference phase map, σφR
(i, j), are defined in a similar

manner as the uncertainties in the phase map of a generic object. The only

difference is, σφR
(i, j) may include phase uncertainties that are caused by the

unevenness of the reference plane.

6.4.2 Estimation of Uncertainties in Sensor Parameters

Sensor parameters are estimated from calibration procedures. To be specific, camera

parameters, as well as the position and orientation of reference plane, are estimated

from camera calibration; and the projection center of the projector is estimated from

a procedure described in Section 3.3.5.2. In both cases, the uncertainties in the

parameter values are given as by-products of the calibration.

Take the estimation of uncertainties in camera parameters as an example. The

camera parameters are estimated by solving a set of non-linear equations, which are

established from the world coordinates and image coordinates of a number of 3-D

points. Due to errors in the coordinates of the points, the equation set is solved
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using a least-square procedure and the results do not satisfy all equations in general.

From the magnitudes of the residual errors, the uncertainties in the parameter values

obtained can be estimated. The algorithm for estimating the uncertainties in camera

parameters was implemented in the camera calibration toolbox we have used [56].

6.4.3 Estimation of Phase Uncertainties

6.4.3.1 Relationship between Phase Uncertainty and Image Intensity Un-

certainty

Phase maps of objects can be obtained by a number of different techniques. The

most popular ones include Fourier Transform and phase-shifting. In the scope of

this dissertation, only phase-shifting method is discussed. There are many different

schemes for phase-shifting. The relationship between phase uncertainty and image

intensity uncertainty depends on the specific scheme used. In the following, the

standard N -step phase-shifting algorithm will be discussed. The analytical approach

used, however, can be applied to other phase-shifting algorithms as well.

Images obtained from a standard N -step phase-shifting can be expressed using

the following equation:

In(i, j) = A(i, j) + B(i, j) sin

(

φ(i, j) + 2π
n− 1

N

)

(6.1)

where In(i, j) is the intensity of pixel (i, j) in the n-th image (n = 1, · · · , N), φ(i, j) is

the phase value of pixel (i, j). A(i, j) and B(i, j) are two constant coefficients related

to pixel (i, j), which correspond to the background light intensity and fringe contrast

respectively. The phase map can be calculated from the images using the following

equation:

φ(i, j) = arctan

(

∑N
n=1

[

In(i, j) cos
(

2π n−1
N

)]

∑N

n=1

[

In(i, j) sin
(

2π n−1
N

)]

)

(6.2)
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In the above equation, each phase value φ(i, j) is given as a function of the image

intensity sequence In(i, j) (n = 1, · · · , N). The relationship between phase uncer-

tainty and image intensity uncertainty can be derived from this function, using the

principles of uncertainty propagation. Here, both the phase uncertainty and image in-

tensity uncertainty are defined as the standard deviation of the calculated or sampled

values.

Law 1 (Propogation of Variance) : If y = f(x1, x2, · · · , xn) is a continuous func-

tion and x1, x2, · · · , xn are uncorrelated variables, then

σ2
y =

(

∂y

∂x1

)2

σ2
x1

+

(

∂y

∂x2

)2

σ2
x2

+ · · ·+

(

∂y

∂xn

)2

σ2
xn

+ o
(

max(σ2
x1
, σ2

x2
, · · · , σ2

xn
)
)

where σ2
y is the variance of y and σ2

xk
(k = 1, 2, · · · , n) is the variance of xk.

Let σφ(i, j) denote the standard deviation of φ(i, j) and let σIn
(i, j) (n = 1, · · · , N)

denote the standard deviation of In. By applying the Law of Variance Propagation

to Eqn. 6.2, the relationship between σφ(i, j) and σIn
(i, j) can be written as follows:

(In the following context, the subscripts i and j of variables will be dropped for

brevity)

σ2
φ ≈

N
∑

n=1

[

(

∂φ

∂In

)2

σ2
In

]

(6.3)

The partial derivative of φ w.r.t. In can be derived from Eqn. 6.2:

(see Appendix C.1 for the detailed derivation procedures involved in this section)

∂φ

∂In
=

2

NB
cos

(

φ+ 2π
n− 1

N

)

(6.4)

Assume that the influence of error sources is the same on all the N images acquired
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from phase-shifting, we have

σI1 = σI2 = · · · = σIN
= σI (6.5)

Utilizing this property and substituting Eqn. 6.4 into Eqn. 6.3, we can get the fol-

lowing equation for σφ:

σφ(i, j) ≈

√

2

N

σI(i, j)

B(i, j)
(6.6)

where N is the number of steps in the phase-shifting method and B(i, j) is the fringe

contrast coefficient as defined in Eqn. 6.1.

6.4.3.2 Estimation of Image Intensity Uncertainty

Due to the errors in image intensities, images obtained from a standard N -step phase-

shifting generally do not fully comply with Eqn. 6.1, when N is greater than 3. In

other words, In(i, j) (n = 1, · · · , N) does not give exact solution to φ(i, j), A(i, j)

and B(i, j) since Eqn. 6.1 is overdetermined. The degree of disagreement between

the intensity sequence In and Eqn. 6.1 reflects the magnitude of errors in In. In

the following, an algorithm for estimation of image intensity uncertainty is proposed.

This algorithm is presented based on the standard N -step phase-shifting algorithm

(N > 3) but can be extended to other phase-shifting algorithms as well.

• First of all, the phase map φ(i, j) is calculated from the images In(i, j) by

using Eqn. 6.2. Since the errors in In(i, j) are random errors, the phase map

calculated is an unbiased estimation of the true phase map, meaning that the

disagreement between In and Eqn. 6.1 reaches the minimum. A detailed proof

of this is presented in Appendix C.2.

• Secondly, the estimated values of A(i, j) and B(i, j) are calculated using the
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following equations for each pixel (i, j) (subscripts i and j dropped for brevity):

Ã =
1

N

N
∑

n=1

In (6.7)

B̃ =
2

N

√

√

√

√

{

N
∑

n=1

[

In cos

(

2π
n− 1

N

)]

}2

+

{

N
∑

n=1

[

In sin

(

2π
n− 1

N

)]

}2

(6.8)

• For each pixel (i, j), the calculated phase value φ(i, j) and coefficients Ã(i, j)

and B̃(i, j) can be used to compute a sequence of “compensated” intensity

values, Ĩn(i, j) (n = 1, · · · , N), by using the following equation:

Ĩn(i, j) = Ã(i, j) + B̃(i, j) sin

(

φ(i, j) + 2π
n− 1

N

)

(6.9)

Ĩn(i, j) are generally different from their measured counterparts, In(i, j), and

the degree of disagreement reflects the magnitude of errors in In(i, j). The

standard deviation of the image intensity error, σI(i, j), can be calculated from

Ĩn(i, j) and In(i, j) by using the following equation:

σI(i, j) ≈

√

√

√

√

N

(N − 3)(N − 1)

N
∑

n=1

[

Ĩn(i, j) − In(i, j)
]2

(6.10)

A detailed proof of this equation is given in Appendix C.3.

• Although σI can be estimated individually for each pixel by using Eqn. 6.10, the

estimated value is not accurate due to the limited number of In (n = 1, · · · , N)

samples, since N is usually selected to be less than 7 for a fast measurement

speed. As a solution, the values of σI can be averaged among pixels with a

similar fringe contrast, i.e. B value. The detailed algorithm is the following:

In the first step, all pixels in the phase map are divided into a number of groups
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based on their B values. For example, for a phase map obtained from images

of 8-bit gray-depth, the possible range of B is (0, 127.5]. Hence, the pixels can

be put into 128 groups, with each group having a B range of 1 or less, which

is a good resolution for estimating σI . In the second step, the σI values of all

pixels in a group are averaged and the result is assigned to the whole group.

The averaging of σI among pixels with a similar fringe contrast (B value) will

give more accurate estimations of σI . Here we assume that the image intensity

error has no relevance (or only a weak relevance) to the location of pixels in the

image or the pixels’ A values, which is reasonably true for the error sources we

have discussed (see Section 6.3).

The algorithm presented above for estimation of uncertainty in image intensity

has a number of advantages. First of all, it operates on the images acquired in a real

measurement instead of images from calibration. Hence it is able to take into account

the error sources that are measurement-related. Secondly, it only requires the images

from phase-shifting as inputs and hence adds no additional cost to measurement.

Thirdly, it works with any phase-shifting algorithms as long as the number of phase-

shift steps is more than 3.

6.4.3.3 Algorithm for Estimation of Phase Uncertainties

A schematic diagram of the algorithm for estimation of phase uncertainties is shown

in Fig. 6.2. The major steps in the algorithm can be described as follows:

The estimation of phase uncertainties takes place after the acquisition of an phase

map, φ(i, j). The intensity uncertainties in the images are estimated as the first step,

using the algorithm described in Section 6.4.3.2. The result is given by an array

σI(i, j), which has the same dimension as the phase map φ(i, j). Each element in

the array represents the estimated uncertainty in the image intensity values of the
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Figure 6.2: Schematic diagram of the algorithm for estimation of phase uncertainties

corresponding pixel. The estimated uncertainties in the phase map, σφ(i, j), can then

be calculated using Eqn. 6.6.

6.4.3.4 Validation of the Algorithm by Simulations

In order to validate the proposed algorithm for estimation of phase uncertainties, a

simulation procedure was developed. A detailed description of the simulation is as

the following:

1. For an arbitrary phase value φ̂ in the range of [−π, π] and selected values for

A and B, compute the image intensity sequence corresponding to the N -step

phase-shifting, i.e.

În = A+B sin

(

φ̂+ 2π
n− 1

N

)

, n = 1, · · · , N (6.11)

2. Add random noise to În using the equation at below and let In denote the result:

In = În + LN rand() , n = 1, · · · , N (6.12)

The noise added have either a uniform distribution or a normal distribution.
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In the former case, function rand() generates uniformly distributed random

numbers in the range of [−0.5, 0.5]. In the latter case, the function generates

normally distributed random numbers with a mean value of 0 and a standard

deviation of 1. LN is a scale coefficient to control the magnitude of the noise.

3. Compute the phase value from the erroneous image intensity sequence In by

using Eqn. 6.2. The result is denoted by φ.

4. Repeat Step 2 and 3 for M times to acquire In(m) and φ(m) (m = 1, · · · ,M).

Compute the standard deviation of
(

φ(m) − φ̂
)

and let σ̂φ denote the result.

σ̂φ is the true value of the uncertainty in the calculated phase values. On the

other hand, the estimated value of phase uncertainty, σφ, can be obtained from

In(m) by using the proposed algorithm. The difference between σφ and σ̂φ is

an indicator of the effectiveness of the estimation algorithm.

Using the procedure described above, a number of simulation tests were performed

with different phase values, noise levels and distributions, and phase-shifting methods.

The proposed algorithm for estimation of phase uncertainties worked well for all cases.

Figure 6.3(a) shows the true values and estimated values of σφ for a number

of phase values ranging from −π to π. The smaller blue dots represent the true

values and the bigger orange triangles represent the estimated values. The result was

obtained using the standard 4-step phase-shifting method, with a selected B value

of 100, uniformly distributed noise whose magnitude LN = 8, and 500 samples of In

sequence for each phase value. In real measurements, the number of samples available

are generally much larger than 500. As can be seen from the figure, the estimated

values of σφ are pretty close to their true values although slightly smaller on average.

The magnitudes of σφ are about the same for different phase values, which agrees

with Eqn. 6.6. Figure 6.3(b) shows the simulation result under the same conditions

but with the noise magnitude doubled (LN = 16). The distribution pattern of the
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true values and estimated values is about the same, except that the magnitudes of

σφ are doubled accordingly.

For the 4-step phase-shifting method, there is a fixed ratio difference between

the estimated and the true values of σφ, which can be seen clearly from the results

based on a large number of samples. Figure 6.3(c) shows a case with 10000 samples

of In sequence. Other conditions of the simulation are: B = 100 and uniformly

distributed noise with LN = 8. The biased error in the estimated values is caused

by the algorithm for estimation of image intensity uncertainty (see Section 6.4.3.2).

Equation 6.10 would not give good estimations for the case of N = 4, since only 4

samples are available and only 2 of them are independent. However, as it will be

shown next, this problem is almost eliminated for the 6-step phase-shifting method,

in which case more samples are available to make individual estimations of the image

intensity uncertainty. From the many simulations conducted with the 4-step phase-

shifting method, it was found that the ratio between the estimated values and the

true values is about 0.93, for all phase values and different noise levels. This constant

ratio can be used to compensate the estimated values for the 4-step phase-shifting

method.

Three examples with the 6-step phase-shifting method are shown in Fig. 6.3. The

result shown in Fig. 6.3(e) was obtained with the settings: B = 100, uniformly

distributed noise with LN = 8 and 10000 samples. As can be seen from the plot,

the difference between the estimated and the true values of σφ is very small. The

remaining disagreement is caused by the uniform distribution of the noise, since the

proposed algorithm assumes normally distributed noise (see Eqn. 6.10). In Fig. 6.3(f),

which was obtained with normally distributed noise, the estimated values and the

true values of σφ match almost perfectly. Under the same conditions, the phase

error yielded with the use of 6-step phase-shifting is about 82% in magnitude of

its counterpart with the 4-step phase-shifting method, which can be seen from the
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Figure 6.3: Estimation of phase uncertainties, φ ∈ (−π, π)
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Figure 6.4: Estimation of phase uncertainties, varied noise levels

comparison of Fig. 6.3(c) and 6.3(e). This result agrees with Eqn. 6.6.

Figure 6.4 shows the changes of σφ as the magnitude of noise increases. The X-

axis of the figures represents the normalized noise level, which is defined as LN/(2B).

The common settings of the simulations are: φ = π/3; 500 samples of In sequence

were used for each noise level; and the noise were generated with uniform distribution.

Figure 6.4(a) shows the case with the 4-step phase-shifting method and Fig. 6.4(b) for

the 6-step phase-shifting method. The estimated values are close to the true values

at all tested noise levels, which shows the effectiveness of the proposed algorithm for

varied noise levels. Also, the value of σφ shows a linear relationship with the noise

magnitude, which agrees with Eqn. 6.6.
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Figure 6.5: Cylindrical uncertainty region of a measured point

6.5 Estimation of Position Uncertainties of Mea-

sured Points

6.5.1 Cylindrical Uncertainty Region

In the proposed uncertainty model, the 3-D uncertainty region of each measured point

is represented by a cylinder which takes the measured point as its center (see Fig. 6.5).

Recall the algorithm for the construction of point cloud (see Section 3.3.4). For

each pixel in the object’s phase map, a 3-D point can be generated and the calculation

of its coordinates is done in two steps. First, a point on the camera’s image plane,

say point MI , can be located by using the pixel’s coordinates (i, j). A ray starting

from the camera’s projection center (point C) and passing through point MI , can be

determined. It is known from the pinhole camera model that, all points in the 3-D

space that can be imaged to pixel (i, j) must lie on
−−−→
CMI . Therefore, two out of the
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three dimensional information of the point, say M , are determined. The one degree

of freedom left is the depth of point M w.r.t. the camera’s projection center C, i.e.

the distance |CM |. |CM | can be decided from the corresponding phase value of MI ,

Φ(i, j), which is given in the object’s phase map.

Based on the above algorithm, the uncertainties in the 3-D coordinates of pointM ,

or any other point in the point cloud, can be divided into two parts: the uncertainty

of the orientation of
−−−→
CMI and the uncertainty of the depth of M . Here, we consider

the position uncertainty of M w.r.t. the camera coordinate frame. Therefore, point

C is the absolute origin without any uncertainty in position.

The position of point MI , and hence the orientation of
−−−→
CMI , are calculated from

the pixel coordinates (i, j) and the camera parameters. They are subject to the

uncertainties of the camera parameters. By following the principles of uncertainty

propagation, the uncertainty of the position of MI can be calculated from the known

uncertainties in the camera parameters which were estimated from calibration. For

simplicity, this uncertainty can be described by a circular region around MI on the

camera’s image plane, whose radius is the standard deviation of the position of MI .

Following this definition, the resulting uncertainty space of
−−−→
CMI is a cone which has

point C as its apex and
−−−→
CMI as its axis.

The depth of point M , i.e. |CM |, is calculated from a number of variables:

the phase value of pixel (i, j), the camera parameters and projector parameters, the

position and orientation of the reference plane, and the reference phase map. The

uncertainty of |CM | can be represented by the standard deviation of |CM |, denoted

by DU(M).

By combining the uncertainties in
−−−→
CMI and |CM |, the uncertainty region of the

position of M can be determined. This 3-D region can be modeled as a cylinder,

which is given by 4 parameters (see Fig. 6.5): the position of point M , the cylinder’s

axis V U(M), radius rU(M), and half height DU(M). Among them, DU(M) is the
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uncertainty of the depth of M , and rU(M) corresponds to the uncertainty of the

orientation of
−−−→
CMI . V U(M) is the unit vector that points to the opposite direction

of
−−−→
CMI , i.e.

V U(M) = −

−−−→
CMI

|CMI |
(6.13)

In the following sections, the evaluations of rU andDU are explained in details. For

brevity, the uncertainty of the orientation of
−−−→
CMI will be referred as the uncertainty

in ray direction.

6.5.2 Estimation of Uncertainty in Ray Direction

6.5.2.1 Algorithm for Estimation of Uncertainty in Ray Direction

The ray direction
−−−→
CMI is calculated from the pixel coordinates of MI and the camera

parameters. The uncertainty in the ray direction is determined by the uncertainties

of the camera parameters as well as the camera parameters themselves. Specifically,

the following inputs are required for the estimation:

• The camera’s intrinsic parameters: fx, fy, u0 and v0.

• The lens distortion coefficients of the camera: ks (s = 1, · · · , 5).

• The uncertainties in the camera parameters: σfx
, σfy

, σu0 , σv0 and σks
(s =

1, · · · , 5), which are the standard deviations of fx, fy, u0, v0 and ks (s =

1, · · · , 5), respectively.

Consider the uncertainty in the position of MI . Recall that the position of MI

is calculated from a transformation of the pixel coordinates of MI to its undistorted

image coordinates. The transformation can be described in the following manner (see

Section 3.2.1 for more details):
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1. The first step is the transformation from the pixel coordinates, denoted by

(x(p), y(p)), to the distorted image coordinates, (x(d), y(d)), which still carry the

lens distortions. This transformation can be expressed using the following equa-

tion:













x(d)

y(d)

1













= A−1 ·













x(p)

y(p)

1













, A−1 =













1/fx 0 −u0/fx

0 1/fy −v0/fy

0 0 1













(6.14)

where A is the camera’s intrinsic matrix and fx, fy, u0 and v0 are the camera’s

intrinsic parameters. Notice that the skewness coefficient α in matrix A has

been assumed to be zero, which is true for cameras based on CCD/CMOS

imaging sensors.

2. The second step is to remove the lens distortions in coordinates (x(d), y(d)) and

convert them to the undistorted image coordinates, (x(n), y(n)). This conversion

can be solved numerically from the following equation:







x(d)

y(d)






=
(

1 + k1r
2 + k2r

4 + k5r
6
)







x(n)

y(n)






+







2k3x
(n)y(n) + k4

(

r2 + 2
(

x(n)
)2
)

k3

(

r2 + 2
(

y(n)
)2
)

+ 2k4x
(n)y(n)







(6.15)

where r2 =
(

x(n)
)2

+
(

y(n)
)2

and ks (s = 1, · · · , 5) are the lens distortion coeffi-

cients.

In the first step of the above transformation, the uncertainties of the camera pa-

rameters will be propagated to the calculated image coordinates (x(d), y(d)). Let σx(d)

and σy(d) be the standard deviations of x(d) and y(d) respectively. Rewrite Eqn. 6.14

185



as follows:










x(d) =
(

x(p) − u0

)

/fx

y(d) =
(

y(p) − v0

)

/fy

(6.16)

from which the partial derivatives of x(d) and y(d) can be derived:

∂x(d)

∂u0
= −

1

fx

,
∂x(d)

∂fx

= −
(x(p) − u0)

f 2
x

∂y(d)

∂v0

= −
1

fy

,
∂y(d)

∂fy

= −
(y(p) − v0)

f 2
y

(6.17)

Applying the Law of Variance Propagation to Eqn. 6.16 and substituting the partial

derivatives listed above, the following equations about σx(d) and σy(d) can be obtained:























σ2
x(d) ≈

σ2
u0

f 2
x

+
σ2

fx

(

x(p) − u0

)2

f 4
x

σ2
y(d) ≈

σ2
v0

f 2
y

+
σ2

fy

(

y(p) − v0

)2

f 4
y

(6.18)

A similar derivation can be applied to the second step of the transformation to

resolve the uncertainty propagation from (x(d), y(d)) to (x(n), y(n)). Let σx(n) and σy(n)

be the standard deviations of x(n) and y(n) respectively. The equations for computing

σx(n) and σy(n) can be written as follows:

σ2
x(n) ≈

[

(

∂y(d)

∂y(n)

)2

σ2
x(d) +

(

∂x(d)

∂y(n)

)2

σ2
y(d) +

5
∑

s=1

(

∂y(d)

∂y(n)

∂x(d)

∂ks

−
∂x(d)

∂y(n)

∂y(d)

∂ks

)2

σ2
ks

]

/

(

∂x(d)

∂x(n)

∂y(d)

∂y(n)
−
∂y(d)

∂x(n)

∂x(d)

∂y(n)

)2

(6.19)

σ2
y(n) ≈

[

(

∂y(d)

∂x(n)

)2

σ2
x(d) +

(

∂x(d)

∂x(n)

)2

σ2
y(d) +

5
∑
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(

∂x(d)
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∂y(d)
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−
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)2

σ2
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/
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∂x(n)

∂y(d)
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−
∂y(d)

∂x(n)

∂x(d)

∂y(n)

)2

(6.20)
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A detailed proof of the above equation, as well as the equations for computing the

partial derivatives involved, is presented in Appendix C.4. In general, only the radial

distortion needs to be considered in the lens distortions, i.e. coefficients k2 to k5, as

well as their uncertainties, can be ignored. As a result, Eqn. 6.19 and 6.20 can be

simplified to the following forms:

σ2
x(n) ≈

[

(

1 + k1r
2 + 2k1

(

y(n)
)2
)2

σ2
x(d) +

(

2k1x
(n)y(n)

)2
σ2

y(d)+

((

1 + k1r
2
)

r2x(n)
)2
σ2

k1

]/

[

(

1 + k1r
2
) (

1 + 3k1r
2
)

]2
(6.21)

σ2
y(n) ≈

[

(

2k1x
(n)y(n)

)2
σ2

x(d) +
(

1 + k1r
2 + 2k1

(

x(n)
)2
)2

σ2
y(d)+

((

1 + k1r
2
)

r2y(n)
)2
σ2

k1

]/

[

(

1 + k1r
2
) (

1 + 3k1r
2
)

]2
(6.22)

Let rUI(MI) denote the radius of the uncertainty region of MI (see Fig. 6.5).

rUI(MI) is defined in terms of σx(n) and σy(n) as the following:

rUI(MI) =
√

σ2
x(n) + σ2

y(n) (6.23)

With this definition, the probability of the true position of MI falling within the

uncertainty region of the calculated position of MI , is approximately 68%.

Finally, the radius of the cylindrical uncertainty region for point M , rU(M), can

be calculated as follows:

rU(M) =
|CM |

|CMI |
rUI(MI) =

|CM |

|CMI |

√

σ2
x(n) + σ2

y(n) (6.24)

6.5.2.2 Validation of the Algorithm by Simulations

To validate the developed algorithm for estimation of the uncertainty in ray direction,

a simulation procedure was developed. A detailed description of the simulation is as
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the following:

1. For a set of selected camera parameter values and an arbitrary pixel (x(p), y(p)),

add a certain amount of random errors to the camera parameters and compute

the corresponding undistorted image coordinates, (x(n), y(n)), by using Eqn. 6.14

and 6.15. Repeat this process to obtain a number of M samples of (x(n), y(n)).

2. The standard deviations of the coordinates x(n) and y(n), denoted by σx(n) and

σy(n) respectively, can be calculated from the M samples. On the other hand,

σx(n) and σy(n) can be estimated using the algorithm described in the last section.

The estimated values of σx(n) and σy(n) can be compared against their true values

and the disagreement reflects the soundness of the estimation algorithm.

Using the procedure described above, a number of simulation tests were conducted

with two different sets of camera parameters that were obtained from real SMDFP

systems. The magnitudes of the random errors in simulation data were set to the

estimated uncertainties in the camera parameters.

The results of two simulation runs are shown in Fig. 6.6 and 6.7. The camera

parameters used in the simulation, as well as the magnitudes of random errors, are

listed in Tab. 6.1. The data were obtained from a B/W digital camera (1/3” Sony

CCD, 640×480 resolution) with a ComputarTM M1214-MP lens (12mm focal length,

F1.4). Fig. 6.6 shows the simulation results for the pixels whose y(p)-coordinates are

240 and x(p)-coordinates range from 0 to 640. The orange triangles in the figure

represent the true values of σx(n) and σy(n) , and the blue dots represent the estimated

values. The results were based on 1000 samples. As can be seen from the figure, the

estimated values match with the true values very well. Fig. 6.7 shows the simulation

results for pixels whose x(p)-coordinates are 320 and y(p)-coordinates range from 0 to

480.
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In all simulation tests performed, the estimated values of σx(n) and σy(n) match

with their true values, which shows that the algorithm developed for estimation of

uncertainty in ray direction works well.

6.5.3 Estimation of Uncertainty in Depth

6.5.3.1 Overview of the Algorithm

The computation of the depth of a point involves a number of variables, e.g. the

absolute phase value of the point, the reference phase map, the position and orien-

tation of the reference plane, and the position of the projector’s projection center.

The uncertainties in these variables could propagate to the uncertainty in the cal-

culated depth value. The proposed algorithm begins with finding the relationships

between the uncertainties of individual variables and the corresponding uncertainties

they could cause in the depth. The overall depth uncertainty can then be estimated

by combining the individual uncertainties.

Recall the process for computing the depth of a point, say M , during the construc-

tion of point cloud (see Section 3.3.4 for details). Before the process, the position

and orientation of the ray
−−−→
CMI have been fixed (see Fig. 6.8). The location of M

along
−−−→
CMI is determined through a triangulation process. As the first step, a point

NI is located on the camera’s image plane (u − v) by searching along line PIMI for

ΦR(NI) = Φ(MI), i.e. the phase value of point NI in the reference phase map is equal

to the phase value of point MI in the object’s phase map. Here, PI is the projection

of point P on the camera’s image plane. Once NI is located, its corresponding point

on the reference plane, NR, can be located accordingly. The depth of point M can

then be determined by finding the intersection point of CMI and PNR.

The components that could affect the depth ofM are the positions of points P and

NR. The major factors that affect the position of NR are the phase value of M , the
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fx fy u0 v0 k1

Value 1633 1631.7 309.2 219.3 -0.049
STD of random errors 0.6 0.6 0.37 0.47 0.0017

Table 6.1: Camera parameters and error levels used in the simulation
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Figure 6.6: Estimation of uncertainty in ray direction: y(p) = 240 , x(p) ∈ [0, 640)
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Figure 6.7: Estimation of uncertainty in ray direction: x(p) = 320 , y(p) ∈ [0, 480)
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Figure 6.8: Triangulation process to determine the depth of point M

reference phase map, and the position and orientation of the reference plane. In the

successive sections, the influence of the uncertainty components to the uncertainty in

depth will be examined from the following aspects individually:

• The uncertainties in phase values, which include uncertainties in the object’s

phase map as well as the uncertainties in the reference phase map;

• The uncertainties in the position and orientation of the reference plane; and

• The uncertainty of the position of the projector’s projection center.

6.5.3.2 Influence of Phase Uncertainties

In the computation of the depth of point M , the position of point NI is located by

searching along line PIMI for ΦR(NI) = Φ(MI), i.e. the phase value of NI in the

reference phase map is equal to the phase value of MI in the object’s phase map. If

there are errors in Φ(MI) and/or in the close neighborhood of NI in the reference

phase map, the calculated position of NI would be affected. In turn, the position of
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(a) Definition of angle γ and ρ (b) Definition of angle ψβ1 and ψα1

Figure 6.9: Relationship between the position of NI and angle β

point NR would be affected, since it is the intersection of line CNI with the reference

plane.

Let line lFR denote the intersection of the reference plane and the plane that is

defined by points C, P and MI . It is easy to see that points MR and NR are on this

line. Let points C⊥1 and P⊥1 be the projections of points C and P , respectively, on

line lFR (see Fig. 6.9(b)). It can be seen that, as a result of possible errors in Φ(MI)

and in the reference phase map, point NR would move along the line P⊥1C⊥1.

The relationship between an error in the position of NI and the error it causes in

value of |CM | (i.e. the depth of point M) can be derived as follows:

• Relationship between |CM | and angle β: Recall the triangulation process

for locating point M (see Fig. 6.9(b)). As point NR moves along line P⊥1C⊥1,

angle β will change accordingly while angle α and the positions of points C and
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P will not be affected. From the triangle △CPM , we have

|CM | =
sin β|CP |

sin(α + β)
(6.25)

Taking the partial derivatives w.r.t. angle β on both sides of the equation and

rearranging the terms, the following equation can be obtained:

∂|CM |

∂β
=

sinα|CP |

sin2(α+ β)
(6.26)

which describes the relationship between a small change in angle β and the

corresponding change in |CM |.

• Relationship between angle β and angle γ: Let γ denote the angle between

line CMI and line CNI , as shown in Fig. 6.9. Let ψβ1 and ψα1 denote the angles

6 NRPP⊥1 and 6 NRCC⊥1 respectively. By using planar geometry, the following

equation can be obtained, which describes the relationship between a small

change in angle γ and the corresponding change in angle β:

∂β

∂γ
=

|CC⊥1| cos2 ψβ1

|PP⊥1| cos2 ψα1
(6.27)

In the above equation, dγ (the change of angle γ) is defined to be positive if

as a result point NI moves towards point PI . PI is the projection of point P

on the camera’s image plane. A detailed derivation of Eqn. 6.27 is presented in

Appendix C.5.

• Relationship between angle γ and |MINI |+: Let ρ denote the angle between

line MIC and MINI (see Fig. 6.9(a)). From the triangle △CMINI , we have

sin γ

sin(π − γ − ρ)
=

|MINI |+
|CMI |

(6.28)
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where |MINI |+ is the signed distance between points MI and NI . The definition

of |MINI |+ is the following:

|MINI |+ =
−−−→
MINI ·

−−−→
MIPI

|MIPI |
(6.29)

Based on this definition, the sign of d|MINI |+ is consistent with the sign of

dγ, i.e. d|MINI |+ is positive if as a result NI moves towards PI . Taking the

partial derivatives w.r.t. |MINI |+ on both sides of Eqn. 6.28 and rearranging

the terms, the following equation can be obtained:

∂γ

∂|MINI |+
=

sin2(γ + ρ)

sin ρ|CMI |
(6.30)

• Relationship between |CM | and |MINI |+: Since point NI is restrained on

line PIMI , its position can be described solely using |MINI |+, whose definition

is given in Eqn. 6.29. Combining Eqn. 6.26, 6.27 and 6.30, the relationship

between a change in the position of NI and the corresponding change in the

calculated depth, |CM |, can be expressed using the following equation:

∂|CM |

∂|MINI |+
=

sinα sin2(γ + ρ) cos2 ψβ1|CP ||CC⊥1|

sin2(α + β) sin ρ cos2 ψα1|CMI ||PP⊥1|
(6.31)

The uncertainty of |MINI |+, which is caused by the phase uncertainties, can be

estimated in the following manner:

• Relationship between |MINI |+ and a phase error: Assume that there is

an error in Φ(MI), denoted by dΦ, and as a result the calculated position of

NI moves to N ′
I , as shown in Fig. 6.10. The movement of point NI can be
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Figure 6.10: Influence of phase errors to the position of point NI

expressed in terms of dΦ using the following equation:

d|MINI |+ =
|MIPI |

−−−→
MIPI · ∇ΦR(NI)

dΦ (6.32)

where ∇ΦR(NI) is the phase gradient in the reference phase map ΦR(u, v) at

point NI .

• Estimation of the uncertainty of |MINI |+: Let σΦ(MI) denote the uncer-

tainty of Φ(MI), and let σΦR
(NI) denote the average uncertainty of the phase

values in the close neighborhood of point NI in the reference phase map. The

corresponding uncertainty in |MINI |+, denoted by σ|MINI |, can be calculated

using the following equation:

σ|MINI | =
|MIPI |

√

σ2
Φ(M) + σ2

ΦR
(NI)

∣

∣

∣

−−−→
MIPI · ∇ΦR(NI)

∣

∣

∣

(6.33)
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6.5.3.3 Influence of Uncertainties of the Position and Orientation of the

Reference Plane

In the computation of the depth of point M , the position and orientation of the

reference plane are used to locate point NR along line CNI (see Fig. 6.8). Errors in

these two components would cause NR to slide along CNI , and in turn cause an error

in the calculated depth of M .

In the uncertainty model, the position and orientation of the reference plane are

represented by (OR,nR), where OR is a point on the plane and nR is the normal di-

rection of the plane. The uncertainties of the position and orientation are represented

by (σOR
, σnR

). σOR
is the uncertainty of the position of OR along the direction of nR.

σnR
is defined as the standard deviation of the angle between the estimated nR and

the true nR. Both σOR
and σnR

are known from system calibration.

To study the influence of (σOR
, σnR

) to the uncertainty of depth, the relationship

between an error in |CNR| and the corresponding error in |CM | needs to be known.

This relationship can be derived as follows:

• Relationship between angle β and |CNR|: Recall the triangulation process

for locating point M (see Fig. 6.11). Let point P⊥2 be the projection of point P

on line CNI . Let Φβ2 be the angle between line PP⊥2 and line PNR. Assume

that, due to errors in (OR,nR), point NR moves to N ′
R and accordingly point

M moves to M ′. From the right triangle △NRPP⊥2, the following equation can

be obtained:

tanψβ2 =
|NRP⊥2|

|PP⊥2|
(6.34)

Differentiating the above equation, we have

dψβ2

d|NRP⊥2|
=

cos2 ψβ2

|PP⊥2|
(6.35)
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Figure 6.11: Relationship between |CNR| and angle β

Notice that dβ = ±dψβ2 and d|CNR| = ±d|NRP⊥2|, where the signs depend on

whether NR is in the middle of line segment CP⊥2 or on the extensions. The

relationship between a small change in |CNR| and the corresponding change in

β can be expressed using the following equation:

∂β

∂|CNR|
=

cos2 ψβ2

|PP⊥2|
(6.36)

• Relationship between |CM | and |CNR|: Combining Eqn. 6.26 and 6.36, the

relationship between a change in |CNR| and the corresponding change in the

depth, |CM |, can be expressed using the following equation:

∂|CM |

∂|CNR|
=

sinα cos2 ψβ2|CP |

sin2(α + β)|PP⊥2|
(6.37)

To study the influence of σnR
to the uncertainty of depth, the relationship be-

tween an error in nR and the corresponding error in |CNR| needs to be known. Let

n′
R denote the erroneous value of nR (see Fig. 6.12). Let ϑR denote the angle be-

tween nR and the projection of n′
R on the plane that is defined by ORNR and nR.

The relationship between |CNR| and ϑR (without the consideration of signs) can be
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Figure 6.12: Relationship between |CNR| and ϑR

expressed using the following equation:

∂|CNR|

∂ϑR

=
|ORNR||CNI |
∣

∣

∣
nR ·

−−→
CNI

∣

∣

∣

(6.38)

Combining Eqn. 6.37 and 6.38, the final equation for describing the relationship

between |CM | and ϑR can be written as follows:

∂|CM |

∂ϑR

=
sinα cos2 ψβ2|CP ||ORNR||CNI |

sin2(α + β)|PP⊥2|
∣

∣

∣
nR ·

−−→
CNI

∣

∣

∣

(6.39)

6.5.3.4 Influence of Uncertainty of the Projector’s Projection Center

The uncertainty in the position of the projector’s projection center (point P ) has a

complex influence on the uncertainty of depth. Assume that the estimated position
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Figure 6.13: Decomposition of the position error of point P

of point P has an error of δP , i.e. δP = P ′ − P , where P ′ is the estimated position

and P is the true position. δP can be decomposed along three orthogonal directions:

e‖, e⊥ and eF⊥, as shown in Fig. 6.13. e‖ is along the direction of line PNR. e⊥

lies in plane CPNR and is perpendicular to line PNR. eF⊥ is perpendicular to plane

CPNR. Let δP‖, δP⊥ and δPF⊥ denote the three components of δP along vectors e‖,

e⊥ and eF⊥, respectively. The influence of δP on |CM | can be studied through these

components individually. A detailed analysis is given below.

• Relationship between |CM | and δP‖: Recall that point M is located by the

intersection of line CMR and line PNR. The movement of point P along line

PNR would not change the position of M (see Fig. 6.13). Hence, δP‖ does not

affect |CM |.

• Relationship between |CM | and δP⊥: The relationship between δP⊥ and

|CM | is illustrated in Fig. 6.14. As a result of δP⊥, point P moves along e⊥ to

P ′. Accordingly, point M moves along CMI to M ′. By using planar geometry,
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Figure 6.14: Relationship between |CM | and δP⊥

the following equation can be derived to describe the relationship between δP⊥

and the corresponding change in |CM |:

∂|CM |

∂(δP⊥)
=

|NRM |

sin(α + β)|NRP |
sign

(−−−→
NRM ·

−−−→
NRP

)

sign
(−→
CP · e⊥

)

(6.40)

where function sign() extracts the signs of variables, i.e. sign(x) = x/|x|. A

detailed derivation of the above equation is given in Appendix C.6.

• Relationship between |CM | and δPF⊥: As can be seen from Fig. 6.13, since

eF⊥ is perpendicular to plane CPMI , a small movement of P along eF⊥ would

not change the distance |CP | or angle α. Instead, it causes plane CPMI to

rotate around axis CMI , and this rotation in turn causes point NR to move

inside plane CPMI (since NR needs to remain on the reference plane). From

the perspective of triangulation (see Fig. 6.8), the movement of point P along

eF⊥ changes the position of NR only. The positions of points C, P and MR

remain the same.

The movement of point NR can be further decomposed into two parts. Firstly,

200



Figure 6.15: Relationship between |CM | and δPF⊥

the rotation of plane CPMR causes vector
−−→
CNI to rotate around axis CMI

while the angle between CMI and CNI remains unaffected (see Fig. 6.15). The

rotation of
−−→
CNI will change the length of |CNR| since in general CNR is not

strictly perpendicular to the reference plane. Secondly, the movement of P also

changes the position of point PI (PI is the projection of P on the camera’s

image plane), and as a result the position of line PIMI in the image plane will

change. Recall that the position of point NI is located by searching along line

PIMI for ΦR(NI) = Φ(M) (see Section 6.5.3.1). Therefore, for different search

path PIMI , the resulting position of NI is different and hence |MINI | may be

different.

For the first part, the relationship between δPF⊥ and the corresponding change

in |CNR| can be expressed using the following equation (see Appendix C.7 for
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a detailed derivation):

∂|CNR|

∂(δPF⊥)
= −

(eF⊥ · nR)|CNR||NRM |

(
−−−→
CNR · nR)|PM |

sign
(−−−→
NRM ·

−−→
PM

)

(6.41)

For most SMDFP systems, the possible positions of plane CPMI are nearly

perpendicular to the reference plane, in which case the value of eF⊥ ·nR is small.

As a result, the corresponding change in |CNR| is small when compared to

influences from other uncertainty components, e.g. uncertainties in the position

and orientation of the reference plane.

For the second part, the error in depth it may cause is in general one order of

magnitude smaller than the errors caused by other components. Hence, it can

also be ignored. A detailed proof is given in Appendix C.8.

As a summary of the above, the only component needs to be considered in the

uncertainty of the position of point P is δP⊥.

6.5.3.5 Overall Uncertainty in Depth

The major components that cause the uncertainty of depth, namely the phase un-

certainties, the uncertainties in the position and orientation of the reference plane,

and the position uncertainty of the projector’s projection center, are uncorrelated.

Therefore, the overall depth uncertainty can be estimated from these components by

using the Law of Variance Propagation. The final equation for calculating the depth

uncertainty of a point M is the following:

(

DU(M)
)2

≈

(

∂|CM |

∂|MINI |+

)2

σ2
|MINI |

+

(

∂|CM |

∂|CNR|

)2

σ2
OR

+

(

∂|CM |

∂ϑR

)2

σ2
nR

+

(

∂|CM |

∂(δP⊥)

)2

σ2
P

(6.42)
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where DU(M) is the depth uncertainty of point M ; σ|MINI | is the uncertainty of

|MINI |+, which can be calculated from Eqn 6.33; σOR
, σnR

and σP are the uncertainty

components as defined in Section 6.4.1; and the partial derivatives of |CM | are given

in Eqns 6.31, 6.37, 6.39 and 6.40, respectively.

6.6 Implementation and Results

6.6.1 Implementation

The proposed uncertainty model and the related algorithms were implemented in

C++. The functionality of uncertainty estimation was integrated into the shape

measurement software we have developed earlier (see Section 3.4.1 for details). At

the end of each measurement, the software gives two outputs: 1) a point cloud that

represents the surface being measured; and 2) the uncertainties in the point cloud

generated. For each point (say point M) in the point cloud, the uncertainty in the

position is given by a cylindrical region, which is defined by M (center position),

V U(M) (axis), rU(M) (radius) and DU(M) (half height). When assuming all the

random error sources have normal distributions, the probability of the true position

of M falling within the uncertainty region is approximately 68%.

A popularly used method for representing the accuracy of surface measurement

is to give the distance of every measured point to the true surface position. The

cylindrical-region representation of measurement uncertainties can be approximated

to this distance representation by using the following equation:

σds ≈

√

(V U · nS)2D2
U +

1

2

[

1 − (V U · nS)2
]

r2
U (6.43)

where σds is the estimated uncertainty of the distance from a measured point to the

true surface position; V U , rU and DU are the attributes of the cylindrical uncertainty
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region; and nS is the normal direction of the local surface, which can be calculated

approximated from the point cloud obtained in the measurement.

6.6.2 Estimation of the Uncertainties in a Physical Measure-

ment

To verify the soundness of the uncertainty model and algorithms developed, a gauge

part was measured by using the SMDFP system we have built (see Section 3.4.1 for

details). The estimated measurement uncertainties given by the shape measurement

software were compared to the analysis results on the measurement errors, which were

given by a commercial reverse engineering software [69].

The gauge part used in the measurement is the same one as described in Sec-

tion 3.4.3.1. It is an aluminum part which has a curved cone shape with a dimension

of 128mm (L) × 128mm (W) × 151mm (H). Figure 6.16(a) shows a picture of the

part. The part was machined very accurately to a predefined CAD model. According

to a CMM measurement of the part, the maximum deviation of the part from the

CAD model is 35µm and the standard deviation is 11µm. Before measurement, the

part was applied a paint coating to avoid the specular reflection from the surface.

The measurement errors were evaluated by comparing the point cloud obtained

from the measurement to the CAD model of the part (see Fig. 6.16(c)). The minimum

distance from each point (in the point cloud) to the surface of the CAD model was

calculated and taken as the measurement error of that point. This analysis was done

by using the reverse engineering software. The result is shown in Fig. 6.16(b). The

RMS value of the measurement errors is 94µm.

The distribution of the estimated measurement uncertainties, in terms of point-to-

surface distances, is shown in Fig. 6.16(d). The estimated uncertainties have a similar

distribution pattern as the evaluated measurement errors, i.e. the central area of the
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surface measured has smaller measurement errors and the surrounding area has larger

errors. The RMS value of the estimated measurement uncertainties is 72µm.

6.7 Summary

It is a desired feature for SMDFP systems to give the estimated uncertainties of

measurement along with a measurement result. In most commercial SMFP/SMDFP

systems, measurement uncertainty is given as a fixed specification, which may not

correctly reflect the actual error magnitude of a particular measurement, since the

magnitudes of uncertainties vary across the measurement volume and can be influ-

enced notably by factors that are measurement-related.

In this chapter, a comprehensive uncertainty model is proposed to describe the

relations between the many error sources and the resulting uncertainties in a measure-

ment. Based on this model, the uncertainties can be estimated by using the image

data acquired in measurement and the apriori knowledge on other fixed error sources.

The result obtained by this approach provides a good estimation of the uncertainties

of a measurement.

The uncertainty model and the related algorithms were implemented in the shape

measurement software we have developed. A gauge part was measured and the mea-

surement errors were evaluated by using a commercial reverse engineering software.

The estimated measurement uncertainties given by our software match with the re-

sults of measurement errors, in terms of distribution pattern and overall magnitude.
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(a) Photograph of the gauge part (b) Distribution of the measurement errors evaluated
by a reverse engineering software

(c) The CAD model of the part and the
point cloud acquired from measurement

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(d) Distribution of the estimated measurement un-
certainties

Figure 6.16: Estimated uncertainties of the measurement of a gauge part
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Chapter 7

Conclusions

This chapter is organized in the following manner. Section 7.1 describes the main

intellectual contributions of this dissertation. Section 7.2 identifies the anticipated in-

dustrial benefits resulting from this research. Section 7.3 discusses the future research

directions.

7.1 Intellectual Contributions

This dissertation makes intellectual contributions in the following areas:

• Mathematical model and shape measurement algorithms for SMDFP:

This dissertation presents a new mathematical model for SMDFP which gives

an accurate modeling of the optical geometry of SMDFP systems. This model

provides a mathematical basis that is required to achieve high-accuracy shape

measurements. Based on this model, three related algorithms were developed,

namely the algorithm for construction of absolute phase map, algorithm for

construction of point cloud and algorithm for estimation of sensor parameters.

By fully exploiting the information in the images obtained from phase-shifting,

the algorithm for phase map construction uses fewer projection patterns than
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existing algorithms without compromising performance. As a result, the mea-

surement speed of SMDFP systems is improved. With the use of a reference

phase map, the point cloud construction algorithm presented demands fewer

sensor parameters than similar algorithms in its class and handles the lens dis-

tortions of projector automatically. As a consequence, the calibration process of

SMDFP systems is simplified and the measurement accuracy can be potentially

improved. We have shown that these algorithms work satisfactorily on a wide

variety of parts.

• Framework for using adaptive projection patterns in SMDFP:

This dissertation presents a framework for using adaptive projection patterns

in SMDFP technique. Detailed issues such as the measurement procedure,

prospected applications and the requirements on system model and algorithms,

are discussed. A new algorithm for automatically generating adaptive patterns

for measurements, was developed. Based on a number of tests, the use of

adaptive projection patterns have shown to provide better overall performance,

in terms of measurement accuracy and coverage, than using fixed-pitch fringe

patterns, especially for measuring surfaces with a large dynamic range of normal

directions.

• Model and algorithms for estimation of measurement uncertainties:

This dissertation presents a comprehensive uncertainty model for describing the

relations between the many error sources and the resulting uncertainties in shape

measurements conducted using SMDFP. Based on the model and algorithms

developed, the measurement uncertainties can be estimated from the image

data acquired in a measurement as well as the knowledge on fixed error sources.

We have shown that the measurement uncertainties computed by our approach

match with the real measurement errors.
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7.2 Anticipated Impacts on Industrial Practices

As a promising technique for 3-D shape measurements, SMDFP has been increasingly

used in many industrial applications, e.g. mechanical reverse engineering, 3-D digital

replication, parts inspection, and quality control. The research results reported in

this dissertation can be used to improve the performance and features of existing

SMDFP systems to ensure their wide spread use in industry. Specific improvements

that can be made and the resulting benefits are outlined below:

• Better measurement accuracy. The mathematical model and shape measure-

ment algorithms presented in this dissertation provides an accurate modeling

of SMDFP systems. With an accurate calibration, the resulting SMDFP sys-

tems are able to achieve high measurement accuracy which could satisfy the

requirements of many industrial applications.

• Easier system calibration. The model and shape measurement algorithms pre-

sented in this dissertation simplifies the calibration procedure of SMDFP sys-

tems. This could result in time saving and better user experience when system

calibrations are required during usage, such as due to changes in system config-

uration and environmental conditions.

• Faster measurement speed. With the new algorithms for shape measurement

and the use of adaptive projection pattern, the measurement speed of SMDFP

systems can be increased. As a result, SMDFP technique could meet the speed

requirements of more applications, such as 100% on-line parts inspection.

• Better estimation of measurement uncertainties. The uncertainty model pre-

sented in this dissertation is able to deliver better estimation of measurement

uncertainties in a measurement-specific manner. The uncertainties in shape

measurements carried out using SMDFP systems vary according to the parts
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being measured and the environmental conditions. In applications such as parts

inspection and quality control, various 3D features on a part need to be mea-

sured and analyzed, and judgments need to be made on whether a feature is

within the tolerance specifications. A good estimation of measurement uncer-

tainties can ensure the validity of such processes.

• Lower system cost. The research work conducted in this dissertation is targeted

at SMDFP systems with low-cost system configurations, e.g. using commercial

computer projectors and low-end industrial digital cameras. The hardware cost

of such systems is around $3,000 (based on the market prices of the components

at the time of writing). The low cost of the systems could ensure the wide

deployment of this technique in industry.

7.3 Future Work

Following the research work described in this dissertation, new research can be con-

ducted in the following areas:

1. Improvement on the calibration procedure of SMDFP systems: The calibration

procedure presented in this dissertation uses a flat plate with a checkerboard

pattern for calibrating the camera. However, a high-accuracy calibration plate

like this is difficult to manufacture. Therefore, it is desired to seek for other

calibration artifacts which are easier to make. As a result, the calibration

process may require modifications.

2. Improvement on the algorithm for automated generation of adaptive projection

patterns: The algorithm presented for generation of adaptive patterns works

well and the generated patterns gave better overall performance than fixed-

pitch fringe patterns. However, there is still room for improvement in this
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algorithm to achieve better performance. An in-depth understanding of the

relationship between the fringe pitch in projection pattern and the resulting

measurement performance needs to be established, as well as the influence of

other measurement factors need to be studied.

3. Characterizing influence of system parameters on measurement uncertainties:

Based on the uncertainty model presented in this dissertation, a better under-

standing of the influence of system parameters on measurement uncertainties

can be established. SMDFP systems can be configured within a large design

space, e.g. the relative position and orientation between the projector and the

camera, the specifications of the projector and the camera, the selection of

calibration methods, etc. Different configurations of the system will result in

different measurement accuracies. The characterization of the influence of sys-

tem parameters on measurement uncertainties can be used in determining the

system configuration to achieve specific design goals.
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Appendix A

Proofs for System Model and

Algorithms

A.1 Relationship between the phase-shifted pro-

jection patterns and the corresponding images

In a phase-shifting process, a set of phase-shifted fringe patterns are projected on an

object and the corresponding images are captured. For each pixel in the camera’s

imaging sensor, the light intensity received depends on many factors, e.g. the intensity

of light projected on the surface, the surface normal direction and optical property,

the intensity of environmental light, etc. A phase-shifting process takes only a few

seconds to finish, and during the process the positions of the camera, projector and

object are fixed. Therefore, most of the factors mentioned above can be considered

as constants w.r.t. time. The only variable is the light intensity projected on the

surface. For most opaque materials, the intensity of reflected light is proportional

to the intensity of incident light. As a result, the relationship between the light

projection intensity and the image intensity is linear.
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Figure A.1: Relationship between the light projection intensity and the image inten-
sity

Consider a point M on the surface, as shown in Fig. A.1. Point MI is the image of

M in the camera and (i, j) are its pixel coordinates. According to the pinhole camera

model, the light intensity received at MI , and hence the image intensity of pixel (i, j)

1, is determined by the light intensity at point M . Similarly, M
(P )
I is the projection

of M on the image plane of the projector, and the light intensity at M is determined

by the projection intensity at M
(P )
I . Let I(i, j) denote the image intensity of pixel

(i, j) and let I
(P )
i,j denote the projection intensity at M

(P )
I . The relationship between

I(i, j) and I
(P )
i,j can be described using the following equation:

I(i, j) = A′(i, j) +B′(i, j) I
(P )
i,j (A.1)

where A′(i, j) and B′(i, j) are constants. Notice that the subscripts i and j of I(P )

are for correspondence to the image pixel (i, j). They are not coordinates in the ξ-η

plane of the projector.

When a set of phase-shifted fringe patterns are projected, the intensity of any

1To be precise, each pixel in the camera’s image plane corresponds to a tiny area on the surface,
not a single point. However it can be considered as a single point in the context and will not change
the conclusion
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point in the ξ-η plane varies sinusoidally. Take the N -step phase-shifting with uni-

form phase shifts as an example: For a point (ξ, η) in the ξ-η plane, the correspond-

ing projection intensity sequence, which consists of a number of N values, can be

described using the following equation:

I(P )
n (ξ, η) =

I
(P )
max

2

[

1 + sin

(

Φ(P )(ξ, η) +
2π(n− 1)

N

)]

, n = 1, · · · , N (A.2)

where I
(P )
n (ξ, η) is the n-th projection intensity at (ξ, η), I

(P )
max is the maximum pro-

jection intensity in the pattern and Φ(P )(ξ, η) is the corresponding phase value at

(ξ, η).

Assume that (ξ1, η1) are the coordinates of point M
(P )
I . When projecting the

phase-shifted patterns as defined in Eqn. A.2, the corresponding image intensity se-

quence received at point MI can be written as the following:

In(i, j) = A′(i, j) + B′(i, j) I(P )
n (ξ1, η1) , n = 1, · · · , N (A.3)

Substituting Eqn. A.2 in the equation above, we get

In(i, j) =

[

A′(i, j) +
I

(P )
maxB′(i, j)

2

]

+
I

(P )
maxB′(i, j)

2
sin

(

Φ(P )(ξ1, η1) +
2π(n− 1)

N

)

(A.4)

which can be rewritten as the following by defining new constants A(i, j) and B(i, j):

In(i, j) = A(i, j) +B(i, j) sin

(

Φ(P )(ξ1, η1) +
2π(n− 1)

N

)

(A.5)

That is, the N intensity values associated with pixel (i, j) comply with a sinusoidal

variation.
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Figure A.2: Computing the 3-D coordinates of a point M from its absolute phase
value

A.2 Computing the 3-D coordinates of a point from

its absolute phase value

Notations and definitions

An illustration of the geometric elements involved in the computation is shown in

Fig. A.2. X(C)Y (C)Z(C) is the camera coordinate frame and point C is the projection

center of the camera. Plane u-v is the image plane of the camera. Point P is the

projection center of the projector. The reference plane passes through point OR and

has a normal vector of nR. M is the point on the object’s surface that corresponds

to pixel (u, v). All spatial coordinates referred in this section are with respect to the

camera’s coordinate frame if not otherwise declared.

Let point MI denote the idealized position of the center of pixel (u, v) on the

image plane of the camera. It can be known from the pinhole camera model that

215



point M lies on line CMI . Let point MR denote the intersection of line CMI with the

reference plane. Similarly, let point NR denote the intersection of line PM with the

reference plane and let NI denote the intersection of line CNR with the image plane

of the camera. Define point Q as the intersection of line CMI with the plane that is

parallel to the reference plane while passes through point P . It can be seen from the

definitions that, points C, P , Q, MI , NI , MR, NR and M are coplanar.

Proof of the algorithm for locating NI

Since point NR is the intersection of line PM with the reference plane, we can get

that ΦR(NI) = Φ(MI), which means the phase value of point NR in the reference

phase map is equal to the phase value of point M in the object’s phase map. On the

other hand, since points P , M and NR are collinear in the 3-D space, their projections

on the camera’s image plane, u–v, are also collinear. In other words, points PI , MI

and NI are on the same line l (PI is the projection of point P on plane u–v). Hence,

the position of NI can be located by searching in the reference phase map ΦR along

line PIMI for a point with phase value Φ(MI).

Proof of Equation 3.23 for computing MR

Since point MR is on the reference plane, we have

−−→
COR · nR =

−−−→
CMR · nR =

∣

∣

∣

−−−→
CMR

∣

∣

∣

−−−→
CMI
∣

∣

∣

−−−→
CMI

∣

∣

∣

· nR (A.6)

Rearranging the terms in the above equation, we can get

∣

∣

∣

−−−→
CMR

∣

∣

∣
=
∣

∣

∣

−−−→
CMI

∣

∣

∣

−−→
COR · nR

−−−→
CMI · nR

(A.7)

216



Therefore the position of MR can be acquired from the following equation:

MR = C +
∣

∣

∣

−−−→
CMR

∣

∣

∣

−−−→
CMI
∣

∣

∣

−−−→
CMI

∣

∣

∣

= C +

(−−→
COR · nR

−−−→
CMI · nR

)

−−−→
CMI (A.8)

Proof of Equation 3.25 for computing M

It is known from the definition of point Q that, line PQ and line MRNR are parallel.

It is also known from the definitions that, points P , Q, MR, NR and M are coplanar.

Utilizing these relations, the following equation can be obtained from similar triangles

△MPQ and △MNRMR:

∣

∣

∣

−−→
QM

∣

∣

∣

∣

∣

∣

−−−→
QMR

∣

∣

∣

=

∣

∣

∣

−→
PQ
∣

∣

∣

∣

∣

∣

−→
PQ+

−−−−→
MRNR

∣

∣

∣

(A.9)

Rearranging the terms in the above equation, we have

∣

∣

∣

−−→
QM

∣

∣

∣
=

∣

∣

∣

−→
PQ
∣

∣

∣

∣

∣

∣

−−−→
QMR

∣

∣

∣

∣

∣

∣

−→
PQ+

−−−−→
MRNR

∣

∣

∣

(A.10)

The equation for computing the position of M can then be derived as follows:

M = Q+
∣

∣

∣

−−→
QM

∣

∣

∣

−−−→
CMI
∣

∣

∣

−−−→
CMI

∣

∣

∣

= Q+





∣

∣

∣

−→
PQ
∣

∣

∣

∣

∣

∣

−−−→
QMR

∣

∣

∣

∣

∣

∣

−→
PQ+

−−−−→
MRNR

∣

∣

∣

∣

∣

∣

−−−→
CMI

∣

∣

∣





−−−→
CMI (A.11)

217



Appendix B

Proofs for Adaptive Projection

Patterns

B.1 Influence of the integration effect of CCD to

the fringe contrast in image

The pixels on the CCD sensor of a camera have finite sizes. They collect light from

small areas on the object’s surface instead of sampling on ideal points. The integration

effect of the CCD pixels could cause the fringe contrast in the image to drop. A proof

of this is given at below.

When phase-shifted fringe patterns are projected on an object, the corresponding

light intensity distributions on the camera’s image plane can be expressed using the

following equation:

In(u, v) = A(u, v) +B(u, v) sin

(

Φ(u, v) + 2π
n− 1

N

)

, n = 1, · · · , N (B.1)

where (u, v) are coordinates on the camera’s image plane u − v and n represents

different phase-shift. In the following context, the phase-shift term 2π(n− 1)/N will
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be dropped for brevity.

For a single pixel on the CCD sensor, the light intensity received is the integration

of light over a small area on the image plane, i.e.

I(i, j) =

∫∫

[

A(u, v) +B(u, v) sin
(

Φ(u, v)
)]

dudv (B.2)

The above integration can also be studied in a discrete manner, which is

I(i, j) =

M
∑

m=1

[

Am +Bm sin(Φm)
]

Sp (B.3)

where M · Sp is the size of pixel on the image plane. On the right-hand side of the

equation, the subscripts i and j are dropped for brevity.

Consider the summation of the first two items in Eqn. B.3 and let Ĩ1+2 denote the

result, i.e.

Ĩ1+2 =
[

A1 +B1 sin(Φ1)
]

Sp +
[

A2 + B2 sin(Φ2)
]

Sp

=(A1 + A2)Sp + Sp

[

B1 +B2 cos(Φ2 − Φ1)
]

sin Φ1+

Sp

[

B2 sin(Φ2 − Φ1)
]

cos Φ1

(B.4)

Let us introduce variables B′ and φ′ and define their values using the following equa-

tion set










2B′ cosφ′ = B1 +B2 cos(Φ2 − Φ1)

2B′ sinφ′ = B2 sin(Φ2 − Φ1)
(B.5)

By substituting the above equation in Eqn. B.4, Ĩ1+2 can hence be written in terms

of B′ and φ′ as the following

Ĩ1+2 =

[

A1 + A2

2
+B′ sin(Φ1 + φ′)

]

(2Sp) (B.6)
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That is, Ĩ1+2 is still in a sinusoidal form but with a different fringe contrast, B′, and

a different phase value, Φ1 + φ′.

The value of B′ can be solved from Eqn. B.5 as the following:

B′ =
√

(B′ cosφ′)2 + (B′ sin φ′)2

=
1

2

√

B2
1 + 2B1B2 cos(Φ2 − Φ1) +B2

2

(B.7)

As we can see that, since Φ2 is generally not equal to Φ1, the value of B′ is always

smaller than the average of B1 and B2, and the decrement depends on the difference

between Φ1 and Φ2. This means that the integration effect of the CCD pixels will

cause the fringe contrast in the image to drop and the magnitude of dropping depends

on the local fringe pitch in the image. The smaller the fringe pitch is, which means a

larger variance of Φ within a pixel, the larger decrement in fringe contrast.
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Appendix C

Proofs for Estimation of

Measurement Uncertainties

C.1 Relationship between σφ and σI

Images obtained from a standard N -step phase shifting can be expressed using the

following equation:

In(i, j) = A(i, j) + B(i, j) sin

(

φ(i, j) + 2π
n− 1

N

)

(C.1)

The corresponding phase map can be calculated from

φ(i, j) = arctan

(

∑N

n=1

[

In(i, j) cos
(

2π n−1
N

)]

∑N
n=1

[

In(i, j) sin
(

2π n−1
N

)]

)

(C.2)

in which each phase value φ(i, j) is given as a function of the image intensity sequence

In(i, j) (n = 1, · · · , N).

By applying the Variance Propagation Law (see Page 173) to the above equation,

the relationship between σφ(i, j), the standard deviation of φ(i, j), and σIn
(i, j) (n =
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1, · · · , N), the standard deviation of In, can be written as

(in the following, the subscripts i and j of variables will be dropped for brevity)

σ2
φ ≈

N
∑

n=1

[

(

∂φ

∂In

)2

σ2
In

]

(C.3)

The partial derivatives of φ to In can be derived from Eqn. C.2 as the following:

∂φ

∂In
=

1

1 +
(

sinφ

cos φ

)2











cos
(

2π n−1
N

)

∑N

m=1

[

Im sin
(

2πm−1
N

)] −

∑N

m=1

[

Im cos
(

2πm−1
N

)]

sin
(

2π n−1
N

)

(

∑N

m=1

[

Im sin
(

2πm−1
N

)]

)2











=
1

1 +
(

sinφ

cos φ

)2

{

2 cos
(

2π n−1
N

)

NB cosφ
−

2 sinφ sin
(

2π n−1
N

)

NB cos2 φ

}

=
2

NB
cos

(

φ+ 2π
n− 1

N

)

(C.4)

in which the following relation between φ and the In sequence has been used:



























N
∑

n=1

[

In cos

(

2π
n− 1

N

)]

=
NB

2
sinφ

N
∑

n=1

[

In sin

(

2π
n− 1

N

)]

=
NB

2
cosφ

(C.5)

Since the influence of error sources to the N images is not different from one to

another, we can get

σI1 = σI2 = · · · = σIN
= σI (C.6)
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Utilizing this property and substituting Eqn. C.4 in Eqn. C.3, we have

σ2
φ ≈

N
∑

n=1

[

(

2

NB

)2

cos2

(

Φ + 2π
n− 1

N

)

σ2
I

]

=
4σ2

I

N2B2

N
∑

n=1

[

1

2
+

1

2
cos

(

2Φ + 4π
n− 1

N

)]

=
2σ2

I

NB2

(C.7)

which can also be written as

σφ ≈

√

2

N
·
σI

B
(C.8)

where N is the number of steps in phase shifting and B is the pixel’s image intensity

contrast as defined in Eqn. C.1.

C.2 Evaluation of φ from In

Ideally, images obtained from a standard N -step phase shifting can be expressed using

the following equation:

În(i, j) = A(i, j) + B(i, j) sin

(

φ(i, j) + 2π
n− 1

N

)

(C.9)

However, due to the influence of varied error sources, the actual intensity sequence

In(i, j) contains errors and generally does not comply with Eqn. C.9 in cases where

N > 3. That is, In(i, j) (n = 1, · · · , N) give no solution to A(i, j), B(i, j) and φ(i, j)

since Eqn. C.9 is overdetermined.

Under the assumption that the errors In(i, j) are random, Eqn. C.9 can be solved

in a least square manner, i.e. to make the variance of (In − În) to be minimum:
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(subscript i and j dropped for brevity)

N
∑

n=1

[

In − A−B sin

(

φ+ 2π
n− 1

N

)]2

(C.10)

Therefore, we can get

N
∑

n=1

{

2

[

In − A−B sin

(

φ+ 2π
n− 1

N

)]

(−B) cos

(

φ+ 2π
n− 1

N

)}

= 0 (C.11)

which can be simplified to

N
∑

n=1

[

In cos

(

φ+ 2π
n− 1

N

)]

− B

N
∑

n=1

[

sin

(

φ+ 2π
n− 1

N

)

cos

(

φ+ 2π
n− 1

N

)]

= 0

N
∑

n=1

[

In cosφ cos

(

2π
n− 1

N

)

− In sin φ sin

(

2π
n− 1

N

)]

= 0

(C.12)

The final form of the above equation suggests that phase value φ can be calculated

from the following:

sin φ

cosφ
=

∑N

n=1

[

In cos
(

2π n−1
N

)]

∑N
n=1

[

In sin
(

2π n−1
N

)] (C.13)

in another form

φ(i, j) = arctan

(

∑N

n=1

[

In(i, j) cos
(

2π n−1
N

)]

∑N
n=1

[

In(i, j) sin
(

2π n−1
N

)]

)

(C.14)

We can see that, Eqn. C.14 is the formula to compute the unbiased value of φ from

erroneous In sequence under the assumption that the errors in In are random.
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C.3 Evaluation of σI from In

Let ∆I denote the difference between the compensated image intensityĨ and the raw

image intensity I, i.e.

∆Is(i, j) = Ĩs(i, j) − Is(i, j) , s = 1, · · · , N (C.15)

From Eqn. 6.9, 6.7, 6.8 and 6.2, we can see that each ∆Is(i, j) can eventually be

written as a function of the raw image intensities associated with pixel (i, j), i.e.

∆Is(i, j) = fs

(

I1(i, j), I2(i, j), · · · , IN(i, j)
)

, s = 1, · · · , N (C.16)

By applying the Variance Propagation Law (see Page 173) to the above equation,

we can get

(in the rest of this section, the subscripts i and j will be dropped for brevity)

σ2
∆Is

≈

N
∑

n=1

[

(

∂(∆Is)

∂In

)2

σ2
In

]

(C.17)

where σ∆Is
is the standard deviation of ∆Is and σIn

is the standard deviation of In.

The partial derivatives of ∆Is to In can be derived from Eqn. C.15 and 6.9 as the

following:

∂(∆Is)

∂In
=
∂Ã

∂In
+

[

B̃ cos

(

φ+ 2π
s− 1

N

)

∂φ

∂In
+
∂B̃

∂In
sin

(

φ+ 2π
s− 1

N

)

]

−
∂Is
∂In

=
1

N
+

[

B̃ cos

(

φ+ 2π
s− 1

N

)

2

NB̃
cos

(

φ+ 2π
n− 1

N

)

+

2

N
sin

(

φ+ 2π
n− 1

N

)

sin

(

φ+ 2π
s− 1

N

)]

− δ(n− s)

=
1

N
+

2

N
cos

(

2π
n− s

N

)

− δ(n− s)

(C.18)
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where δ(n− s) denotes the delta function, which is

δ(n− s) =











1 if n = s

0 else
(C.19)

In the above derivation, the following relations about Ã, B̃ and In were used, as well

as Eqn. C.4:


















∂Ã

∂In
=

1

N

∂B̃

∂In
=

2

N
sin

(

φ+ 2π
n− 1

N

)
(C.20)

Substituting Eqn. C.18 in Eqn. C.17 and utilizing the assumption made in Eqn. C.6,

we get the relationship between σ∆Is
and σI as the following:

σ2
∆Is

≈ σ2
I

N
∑

n=1

[

1

N
+

2

N
cos

(

2π
n− s

N

)

− δ(n− s)

]2

= σ2
I

(

1 −
3

N

)

(C.21)

Assuming that the error in image intensity is random noise with a normal distri-

bution, we can compute σ∆Is
by means of statistics as the following:

σ∆I =

√

√

√

√

1

N − 1

N
∑

s=1

(Ĩs − Is)2 (C.22)

Combining Eqn. C.22 and C.21, we can get that

σI(i, j) ≈

√

√

√

√

N

(N − 3)(N − 1)

N
∑

n=1

[

Ĩn(i, j) − In(i, j)
]2

(C.23)
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C.4 Uncertainty propagation from (x(d), y(d)) to

(x(n), y(n))

The transformation from the undistorted image coordinates (x(n), y(n)) to the dis-

torted image coordinates (x(d), y(d)) is given by the following equation:







x(d)

y(d)






=
(

1 + k1r
2 + k2r

4 + k5r
6
)







x(n)

y(n)






+







2k3x
(n)y(n) + k4

(

r2 + 2
(

x(n)
)2
)

k3

(

r2 + 2
(

y(n)
)2
)

+ 2k4x
(n)y(n)







(C.24)

where r2 =
(

x(n)
)2

+
(

y(n)
)2

and ks (s = 1, · · · , 5) are the lens distortion coefficients.

The partial derivatives of x(d) and y(d) to x(n), y(n) and ks (s = 1, · · · , 5) can be

derived from the equation above:



































































∂x(d)

∂k1

= r2x(n) ,
∂x(d)

∂k2

= r4x(n) ,
∂x(d)

∂k3

= 2x(n)y(n)

∂x(d)

∂k4

= r2 + 2
(

x(n)
)2

,
∂x(d)

∂k5

= r6x(n)

∂x(d)

∂x(n)
=
(

2k1 + 4k2r
2 + 6k5r

4
) (

x(n)
)2

+ 6k4x
(n) + 2k3y

(n)+

(

1 + k1r
2 + k2r

4 + k5r
6
)

∂x(d)

∂y(n)
=
(

2k1 + 4k2r
2 + 6k5r

4
)

x(n)y(n) + 2k3x
(n) + 2k4y

(n)

(C.25)



































































∂y(d)

∂k1
= r2y(n) ,

∂y(d)

∂k2
= r4y(n) ,

∂y(d)

∂k3
= r2 + 2

(

y(n)
)2

∂y(d)

∂k4
= 2x(n)y(n) ,

∂y(d)

∂k5
= r6y(n)

∂y(d)

∂x(n)
=
(

2k1 + 4k2r
2 + 6k5r

4
)

x(n)y(n) + 2k3x
(n) + 2k4y

(n)

∂y(d)

∂y(n)
=
(

2k1 + 4k2r
2 + 6k5r

4
) (

y(n)
)2

+ 6k3y
(n) + 2k4x

(n)+

(

1 + k1r
2 + k2r

4 + k5r
6
)

(C.26)
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Assuming that x̂(d), ŷ(d), x̂(n), ŷ(n) and k̂s (s = 1, · · · , 5) are the true values of the

corresponding parameters, the following equations can be obtained by a first order

Taylor expansion at these true values:

x(d) − x̂(d) ≈
∂x(d)

∂x(n)

(

x(n) − x̂(n)
)

+
∂x(d)

∂y(n)

(

y(n) − ŷ(n)
)

+

5
∑

s=1

[

∂x(d)

∂ks

(

ks − k̂s

)

]

y(d) − ŷ(d) ≈
∂y(d)

∂x(n)

(

x(n) − x̂(n)
)

+
∂y(d)

∂y(n)

(

y(n) − ŷ(n)
)

+

5
∑

s=1

[

∂y(d)

∂ks

(

ks − k̂s

)

]

(C.27)

By a rearrangement of terms in Eqn. C.27, we can get

(

∂x(d)

∂x(n)
·
∂y(d)

∂y(n)
−
∂y(d)

∂x(n)
·
∂x(d)

∂y(n)

)

·
(

x(n) − x̂(n)
)

≈

∂y(d)

∂y(n)
·

(

(

x(d) − x̂(d)
)

−

5
∑

s=1

[

∂x(d)

∂ks

(

ks − k̂s

)

]

)

−

∂x(d)

∂y(n)
·

(

(

y(d) − ŷ(d)
)

−

5
∑

s=1

[

∂y(d)

∂ks

(

ks − k̂s

)

]

)

(C.28)

(

∂x(d)

∂x(n)
·
∂y(d)

∂y(n)
−
∂y(d)

∂x(n)
·
∂x(d)

∂y(n)

)

·
(

y(n) − ŷ(n)
)

≈

∂x(d)

∂x(n)
·

(

(

y(d) − ŷ(d)
)

−
5
∑

s=1

[

∂y(d)

∂ks

(

ks − k̂s

)

]

)

−

∂y(d)

∂x(n)
·

(

(

x(d) − x̂(d)
)

−
5
∑

s=1

[

∂x(d)

∂ks

(

ks − k̂s

)

]

)

(C.29)

By applying the Variance Propagation Law (see Page 173) to Eqn. C.28 and C.29,

the variances of x(n) and y(n) can be written as the following:

σ2
x(n) ≈

[

(

∂y(d)

∂y(n)

)2

σ2
x(d) +

(

∂x(d)

∂y(n)

)2

σ2
y(d) +

5
∑

s=1

(

∂y(d)

∂y(n)

∂x(d)

∂ks

−
∂x(d)

∂y(n)

∂y(d)

∂ks

)2

σ2
ks

]

/

(

∂x(d)

∂x(n)

∂y(d)

∂y(n)
−
∂y(d)

∂x(n)

∂x(d)

∂y(n)

)2

(C.30)
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σ2
y(n) ≈

[

(

∂y(d)

∂x(n)

)2

σ2
x(d) +

(

∂x(d)

∂x(n)

)2

σ2
y(d) +

5
∑

s=1

(

∂x(d)

∂x(n)

∂y(d)

∂ks

−
∂y(d)

∂x(n)

∂x(d)

∂ks

)2

σ2
ks

]

/

(

∂x(d)

∂x(n)

∂y(d)

∂y(n)
−
∂y(d)

∂x(n)

∂x(d)

∂y(n)

)2

(C.31)

In many cases, only the effect of radial distortion needs to be considered in the

lens distortion, i.e. k2 to k5 can be assumed to be zeros. As a result, the partial

derivatives of x(d) and y(d) can be simplified as the following:



































∂x(d)

∂k1

= r2x(n)

∂x(d)

∂x(n)
= 2k1

(

x(n)
)2

+ 1 + k1r
2

∂x(d)

∂y(n)
= 2k1x

(n)y(n)

,



































∂y(d)

∂k1

= r2y(n)

∂y(d)

∂x(n)
= 2k1x

(n)y(n)

∂y(d)

∂y(n)
= 2k1

(

y(n)
)2

+ 1 + k1r
2

(C.32)

The variances of x(n) and y(n) can then be written as

σ2
x(n) ≈

[

(

1 + k1r
2 + 2k1

(

y(n)
)2
)2

σ2
x(d) +

(

2k1x
(n)y(n)

)2
σ2

y(d)+

((

1 + k1r
2
)

r2x(n)
)2
σ2

k1

]/

[

(

1 + k1r
2
) (

1 + 3k1r
2
)

]2
(C.33)

σ2
y(n) ≈

[

(

2k1x
(n)y(n)

)2
σ2

x(d) +
(

1 + k1r
2 + 2k1

(

x(n)
)2
)2

σ2
y(d)+

((

1 + k1r
2
)

r2y(n)
)2
σ2

k1

]/

[

(

1 + k1r
2
) (

1 + 3k1r
2
)

]2
(C.34)

C.5 Relationship between angle β and angle γ

In Fig. C.1, point C⊥1 is the projection of point C on the intersection of the reference

plane and the plane defined by points C, P and MI . Similarly, point P⊥1 is the

projection of point P . Points C⊥1, P⊥1, MR and NR are collinear. As point NI moves

along line PIMI , point NR moves along line P⊥1C⊥1 accordingly. Let ψβ1 and ψα1

denote angles 6 NRPP⊥1 and 6 NRCC⊥1 respectively.
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(a) Definition of angle γ (b) Definition of angle ψβ1 and ψα1

Figure C.1: Relationship between angle β and γ

From right triangle △NRPP⊥1, we can get the following equation:

tanψβ1 =
|NRP⊥1|

|PP⊥1|
(C.35)

Differentiating both sides of the equation w.r.t. |NRP⊥1|, we get that

d

dψβ1

(

tanψβ1

)

·
dψβ1

d|NRP⊥1|
=

1

|PP⊥1|
(C.36)

which can also be written as the following by a rearranging of terms:

dψβ1

d|NRP⊥1|
=

cos2 ψβ1

|PP⊥1|
(C.37)

Similarly, we can get the following equation about ψα1 from right triangle △NRCC⊥1:

dψα1

d|NRC⊥1|
=

cos2 ψα1

|CC⊥1|
(C.38)
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Notice that d|NRP⊥1| = ± d|NRC⊥1|, where the sign depends on whether point

NR is in the middle of P⊥1 and C⊥1 or outside. Therefore, Eqn. C.37 and C.38 can

be merged to a single equation as the following:

dψβ1 = ±
|CC⊥1| cos2 ψβ1

|PP⊥1| cos2 ψα1

dψα1 (C.39)

From the definitions of the angles (see Fig. C.1), it is also known that

|dψβ1| = |dβ| and |dψα1| = |dγ| (C.40)

Define dγ to be positive if as a result NI moves toward PI (PI is the projection of

point P on the camera’s image plane u−v). The relationship between a small change

in γ and the corresponding change in β can be written as the following:

dβ =
|CC⊥1| cos2 ψβ1

|PP⊥1| cos2 ψα1
dγ (C.41)

C.6 Relationship between |CM | and δP⊥

The relationship between the error component δP⊥ and the depth |CM | is illustrated

in Fig. C.2, where the left diagram shows the case that α is acute and the right

diagram for α being obtuse. As a result of δP⊥, point P moves along e⊥ to P ′, i.e.

δP⊥e⊥ = P ′ − P , and accordingly point M moves along CMI to M ′.

Consider the case shown in the left diagram in Fig. C.2. From the similar triangles

△NRMM∗ and △NRPP
′, we can get the following equation based on the fact that

δP⊥ is very small comparing to |PNR|:

|MM ′| cosψα2

δP⊥
=

|NRM |

|NRP |
(C.42)
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Figure C.2: Relationship between |CM | and δP⊥

where ψα2 is the angle between line MM∗ and MM ′. Notice that ψα2 = α + β −

π/2. Differentiating both sides of the equation w.r.t. δP⊥ and utilizing the fact that

d|CM | = −|MM ′|, we can get the following equation:

∂|CM |

∂(δP⊥)
= −

|NRM |

|NRP | cos(α+ β − π/2)
(C.43)

Considering different cases in which β and α can either be acute or obtuse (but

not both obtuse), the final equation for describing the relationship between δP⊥ and

the corresponding change in |CM | can be written as the following:

∂|CM |

∂(δP⊥)
=

|NRM |

sin(α + β)|NRP |
sign

(−−−→
NRM ·

−−−→
NRP

)

sign
(−→
CP · e⊥

)

(C.44)

where function sign() is used to extract the sign of variable, i.e. sign(x) = x/|x|.
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Figure C.3: Relationship between |CNR| and δPF⊥

C.7 Relationship between |CNR| and δPF⊥

Figure C.3 illustrates the change of |CNR| as point P moves along eF⊥ by δPF⊥. Due

to the movement of P , plane CPMI rotates by a certain angle around axis CMI and

as a result
−−−→
CNR moves from its original position to

−−−→
CN∗

R. Utilizing the principles of

rigid body rotation, we can get the following equation:

δNR

|NRNR⊥3|
=
δPF⊥ eF⊥

|PP⊥3|
sign

(−−−−−→
NRNR⊥3 ·

−−−→
PP⊥3

)

(C.45)

where P⊥3 is the projection of point P on line CMR, NR⊥3 is the projection of NR,

and δNR
= N∗

R −NR. Noticing that |NRNR⊥3|/|PP⊥3| = |NRM |/|PM |, we can write

the above equation as the following:

δNR
=

|NRM | δPF⊥ eF⊥

|PM |
sign

(−−−→
NRM ·

−−→
PM

)

(C.46)
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Let N ′
R denote the intersection of the reference plane with the extension of

−−−→
CN∗

R,

i.e. N ′
R is the new position of NR. Based on the fact that both NR and N ′

R are on

the reference plane, the following equation can be obtained:

s
(−−−→
CNR + δNR

)

· nR =
−−−→
CNR · nR (C.47)

where the coefficient s is defined as |CN ′
R|/|CNR|. By rearranging the terms, we have

s =

−−−→
CNR · nR

(−−−→
CNR + δNR

)

· nR

(C.48)

Let d|CNR| denote the change of |CNR| caused by δPF⊥. Utilizing the definition

of s and the equation above, we can get

d|CNR| = (s− 1)|CNR| = −
(δNR

· nR) |CNR|
(−−−→
CNR + δNR

)

· nR

(C.49)

Since (δNR
·nR) is much smaller than (

−−−→
CNR ·nR), the above equation can be simplified

as the following:

d|CNR| ≈ −
(δNR

· nR) |CNR|
−−−→
CNR · nR

(C.50)

Substitute Eqn. C.46 into Eqn. C.50, we can get the following equation that describes

the relationship between δPF⊥ and the corresponding change in |CNR|:

∂|CNR|

∂(δPF⊥)
= −

(eF⊥ · nR)|CNR||NRM |

(
−−−→
CNR · nR)|PM |

sign
(−−−→
NRM ·

−−→
PM

)

(C.51)

C.8 Relationship between |MINI|+ and δPF⊥

As point P moves along eF⊥ by δP⊥, its projection on the camera’s image plane

u − v moves accordingly from PI to P ′
I . As shown in Fig. C.4, as point PI moves
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Figure C.4: Relationship between |MINI |+ and |PIP
′
I |

to P ′
I , line PIMI rotates by an angle of ψF⊥ to P ′

IMI . As a result, point NI also

moves to a new position N ′
I . Notice that NI satisfies ΦR(NI) = Φ(MI) and the same

constraint applies for N ′
I as well, i.e. ΦR(N ′

I) = Φ(MI). Therefore, for a small angle

ψF⊥, NIN
′
I is along the contour line (of the reference phase map) that passes through

point NI . In other words, NIN
′
I is perpendicular to vector ∇ΦR(NI), which is the

phase gradient of the reference phase map at NI . Let us introduce vector n⊥ and

angle ψΦ, where n⊥ is perpendicular to MINI and points towards N ′
I and ψΦ is the

angle between NIN ′
I and n⊥.

Let |MINI |+ denote the signed length of MINI , which can be described using the

following equation:

|MINI |+ =
−−−→
MINI ·

−−−→
MIPI

|MIPI |
(C.52)

Let d|MINI |+ denote the change of |MINI |+ due to the movement of PI . The absolute

value of d|MINI |+ can be calculated as follows:

∣

∣d|MINI |+
∣

∣ ≈ |MINI | ψF⊥ tanψΦ (C.53)
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Notice that for a small angle ψF⊥, ψF⊥ ≈ |PIP
′
I |/|PIMI |. Therefore, the above

equation can be written as

∣

∣d|MINI |+
∣

∣ ≈
|MINI ||PIP

′
I | tanψΦ

|PIMI |
(C.54)

Considering different position arrangements of points PI , MI and NI and different

rotation directions of PIMI , the following equation can be obtained to describe the

relationship between |PIP
′
I | and the corresponding change in |MINI |+:

∂|MINI |+
∂|PIP ′

I |
= −

|MINI | tanψΦ

|PIMI |
sign

(−−→
PIP

′
I · ∇ΦR(NI)

)

(C.55)

in which angle ψΦ can be solved from the following equation:

cosψΦ =

−−−→
MINI · ∇ΦR(NI)

|MINI ||∇ΦR(NI)|
, ψΦ ∈ (0, π) (C.56)

In most cases, |MINI | is much smaller than |PIMI |, and angle ψΦ is small because

the phase contours are nearly perpendicular to PIMI . As a result, the change of

|MINI |+ due to |PIP
′
I | is generally one order of magnitude smaller than the changes

(of |MINI |+) caused by other error components, such as the phase errors. Therefore,

the depth error caused by δPF⊥ can be neglected in general.

C.9 Uncertainty of the point-to-surface distance

Let ME denote the expectation value of the position of point M . The probability

distribution ofM in the 3-D space can be described in the cylindrical coordinate frame

defined by ME and V U (see Fig. C.5). Let nS denote the surface normal direction

(unit vector) at ME . nS can be decomposed into two parts: a component along V U ,

denoted by nS‖; and a component perpendicular to V U , denoted by nS⊥. Let nS⊥
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Figure C.5: Cylindrical coordinate frame for describing the probability distribution
of M

be the radial direction of the coordinate frame where θ = 0. With the cylindrical

coordinate system defined, the position of an arbitrary 3-D point can be located by

coordinates (h, ρ, θ), as shown in Fig. C.5. As assumed in the uncertainty model, the

probability distributions of point M along the axial, radial, and tangential directions

(of the cylindrical frame) are independent of each other. Therefore, the probability

distribution function of M , pM(h, ρ, θ), can be written as the following:

pM(h, ρ, θ) = pM(h) pM(ρ) pM(θ) (C.57)

Based on the definition of the cylindrical uncertainty region, the following equations

can also be obtained: (In the following, the subscript M will be dropped for brevity)

∫

p(h) h2dh = σ2
h = D2

U ,

∫

p(ρ) ρ2dρ = σ2
ρ = r2

U and p(θ) =
1

2π
(C.58)

For a point MT (h, ρ, θ), the point-to-surface distance, dS, can be calculated from

the following equation:

dS = nS ·
−−−−→
MEMT = nS ·

(

hV U + ρ
−→
θ
)

(C.59)

where the unit vector
−→
θ represents the projection of

−−−−→
MEMT on the plane that is
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perpendicular to V U . Using the probability distribution functions, the variance of

dS, denoted by σ2
ds, can be written as the following:

σ2
ds =

∫∫∫

p(h) p(ρ) p(θ) d2
S dhdρdθ (C.60)

Substituting Eqn. C.59 in the above equation, we can get

σ2
ds =

∫∫∫

p(h) p(ρ) p(θ) h2
(

nS · V U

)2
dhdρdθ +

∫∫∫

p(h) p(ρ) p(θ) 2hρ
(

nS · V U

)

(

nS ·
−→
θ
)

dhdρdθ +
∫∫∫

p(h) p(ρ) p(θ) ρ2
(

nS ·
−→
θ
)2

dhdρdθ

(C.61)

As can be seen from above, σ2
ds is the summation of three integration terms. The

calculation of each individual term is explained at below.

• Since the unit vectors nS and V U do not depend on the coordinates (h, ρ, θ),

the first term in Eqn. C.61 can be simplified as follows by utilizing Eqn. C.58:

∫∫∫

p(h) p(ρ) p(θ) h2
(

nS · V U

)2
dhdρdθ

=
(

nS · V U

)2
∫

p(h)h2dh

∫

p(ρ)dρ

∫ 2π

0

p(θ)dθ

=
(

nS · V U

)2
D2

U

(C.62)

• By utilizing the decomposition of nS and the definition of unit vector
−→
θ , the

following equation can be derived:

nS ·
−→
θ = nS⊥ ·

−→
θ + nS‖ ·

−→
θ

=

√

1 −
(

nS · V U

)2
cos θ

(C.63)
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Hence, the second term in Eqn. C.61 can be written as the following:

∫∫∫

p(h) p(ρ) p(θ) 2hρ
(

nS · V U

)

(

nS ·
−→
θ
)

dhdρdθ

= 2
(

nS · V U

)

√

1 −
(

nS · V U

)2
∫

p(h) hdh

∫

p(ρ) ρdρ

∫ 2π

0

p(θ) cos θdθ

(C.64)

Since ME (the origin of the cylindrical coordinate frame) is the expectation

value of the position of M , the following equations hold:

∫

p(h) hdh = 0 and

∫

p(ρ) ρdρ = 0 (C.65)

Substituting the above equations in Eqn. C.64, we can get

∫∫∫

p(h) p(ρ) p(θ) 2hρ
(

nS · V U

)

(

nS ·
−→
θ
)

dhdρdθ = 0 (C.66)

• By utilizing Eqn. C.63, the last term in Eqn. C.61 can be written as the follow-

ing:

∫∫∫

p(h) p(ρ) p(θ) ρ2
(

nS ·
−→
θ
)2

dhdρdθ

=
[

1 −
(

nS · V U

)2
]

∫

p(h) dh

∫

p(ρ) ρ2dρ

∫ 2π

0

p(θ) cos2 θdθ

(C.67)

Since p(θ) = 1/(2π), we have

∫ 2π

0

p(θ) cos2 θdθ =

∫ 2π

0

cos2 θ

2π
dθ =

1

2
(C.68)

Hence, Eqn. C.67 can be written as the following by utilizing Eqn. C.58:

∫∫∫

p(h) p(ρ) p(θ) ρ2
(

nS ·
−→
θ
)2

dhdρdθ

=
1

2

[

1 −
(

nS · V U

)2
]

r2
U

(C.69)
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By combining Eqns. C.61, C.62, C.66, and C.69, the final equation for computing

σds can be written as the following:

σds =

√

(

nS · V U

)2
D2

U +
1

2

[

1 −
(

nS · V U

)2
]

r2
U (C.70)
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