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Abstract

We adopt the optimization framework for rate allocation problem proposed by Kelly and character-
ize the stability condition with amrbitrary communication delay in the case of single resource. We
demonstrate the existence of a fundamental trade-off between users’ price elasticity of demand and the
responsiveness of resource through a choice of price function as well as between system stability and
resource utilization. We investigate the effects of non-responsive traffic on system stability and show that
the presence of non-responsive traffic enhances the stability of system. We also investigate the system
behavior after the system loses its stability.
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1 Introduction

With the unprecedented growth and popularity of the Internet the problem of rate/congestion control is
emerging as a more crucial problem. Poor management of congestion can render one part of a network
inaccessible to the rest and significantly degrade the performance of networking applications. The fact
that the Internet is now in the public domain, and thus in a potentially nhon-cooperative environment, has
stimulated much work on designing rate control mechanisms based on some form of pricing mechanism to
ensure that users do not misbehave.

Kelly [12] has suggested that the problem of rate allocation for elastic traffic can be posed as one of
achieving maximum aggregate utility of the users and proposed an optimization framework for rate alloca-
tion in the Internet. Using the proposed framework he has shown that the system optimum is achieved at the
equilibrium between the end users and resources. Based on this observation researchers have proposed var-
ious rate-based algorithms that solve the system optimization problem or its relaxation [12, 18]. However,
the convergence of these algorithms has been established only in the absence of feedback delay, and the
implications of feedback delay have been left open as well as any trade-off that may exist between stability
and selected utility and cost functions. Modeling the communication delay is especially important when
the delay is non-negligibles.g.,multi-hop mobile wireless networks. Tan and Johari have studied the case
with homogeneous uselig., same round-trip delays and same form of utility functions, and provided local
stability conditions in term of users’ gain parameters and communication delays. In general their results
state that the product of gain parameter and communication delays should be no larger than some constant.
Similar results have been obtained in [4] in the context of single flow and single resource and [2] with more
general utility functions in the context of single bottleneck. The stability conditions state that the product
of the delay and gain parameter of end user algorithms needs to be smaller than some constant that depends
on the utility function of the users. However, these results focus on charactesifiigjentconditions for
stability and, as a result, do not point at a close relationship between system stability and the parameters at
the end users and network elements as is done in this paper.



In this paper we study the problem of designing a robust rate control algorithm in the presence of a
communication delay between network resources and end users. However, unlike in the previous studies
where the authors give the conditions for stability of the system, we estaldislkagindependerdtability
criterion for system optimization problem in the presence of an arbitrary delay. Our approach is consistent
with the philosophy that network protocols must be simple and robust given the complexity and scale of
the Internet. This also provides a fresh way of looking at the issue of communication delay than traditional
approaches. A natural question that arises in this setting is whether or not it is possible to design a system that
is stable with an arbitrary communication delay. If it is possible, what are the necessary and/or sufficient
conditions for the stability? In addition, what is the impact of the non-responsive traffic on the system
stability? The last question is emerging as an important issue with a growing interest of implementing real-
time applications on top of User Datagram Protocol (UDP), which are not as responsive as elastic traffic.

Our analysis is based on the invariance-based global stability results for nonlinear delay-differential
equations [9, 10, 19]. This kind of global stability results are different from that based on Lyapunov or
Razumikhin theorems used in [2, 4, 27] or from passivity approach [28], and our set up also hints at the
structure of emerging periodic orbits (such as their periodicity and amplitude) in the case of loss of stability.
Generally speaking, our results can be summarized as follows. First, there is a close relationship between the
stability of a delay-differential equations that describes network dynamics and an underlying discrete time
map. Second, if the user and resource curves have a stable market equilibrium, which is captured by the
underlying discrete time map, then corresponding dynamical equation for flow optimization will converge
to the optimal point in the presence of an arbitrary delay. This result essentially shows that stability is
related to utility and price curves in a fundamental way. In particular, for a given price curve, it is possible
to design stable user utility functions such that the ensuing dynamical system converges to the optimal flow
irrespective of communication delay. Conversely, if the underlying market equilibrium is unstable then
it is possible to find a large enough delay for which the optimal point loses its stability and gives way
to oscillations. In practice, this gives rise to a fundamental trade-off between the responsiveness of end
users and network resources. In other words, given the responsiveness of network resource, there is a limit
on how aggressivelgelfishend users can react to feedback in order to ensure delay-independent network
stability. Our results reveal another trade-off between delay-independent network stability and resource
utilization. These results provide an interesting perspective for designing end user algorithms and active
gueue management (AQM) mechanisms.

It is worth noting that in general characterizing the exact necessary and sufficient conditions for stability
with a delay is difficult. Hence, our results providesimpleand robustway of dealing with the problem
of widely varying feedback delay in communication networks through a clever choice of the users’ utility
functions and price functions. We also study the oscillatory orbits that appear when the system loses stability
by explicitly giving the bounds on their amplitude. It is shown that these bounds are derived from an
underlying discrete-time map that goes through a period doubling bifurcation with the loss of stability.
Finally, we investigate how the presence of non-responsive traffic affects the system stability. Our analysis
indicates that the presence of non-responsive traffic, which in fact can be thought of as the limiting case
of elastic traffic with decreasing responsiveness, improves the system stability. This is consistent with our
earlier results that the less responsive users are, the more stable system is.

This paper is organized as follows. Section 2 describes the optimization problem for rate control. Sec-
tion 3 studies the single flow case, which is followed by the multiple heterogeneous users case in Section 4.
We illustrate how our results can be applied to the rate control problem in networks in subsections 5. The
effects of non-responsive flows are investigated in Section 6.



2 Background

In this section we briefly describe the rate control problem in the proposed optimization framework. Con-
sider a network with a sdt of resources or links and a sktf users. LeGG denote the finite capacity of

link | € L. Each user has a fixed routewhich is a non-empty subset bf We define a zero-one matri
whereA | = 1iflink | is in useri’s router; andA; | = 0 otherwise. When the throughput of usés %, user

i receives utilityU;(x;). The utility Uj(x;) is an increasing, strictly concave and continuously differentiable
function ofx over the range; > 0.1 Furthermore, the utilities are additive so that the aggregate utility of
rate allocatiorx = (x,i € l) is 3 Ui(x). LetU = (Ui(-),i € I) andC = (C,,| € L). The rate control
problem can be formulated as the following optimization problem:

SYSTEM(U,A,C):

maximize ZUi (%) (1)
ie
subjectto ATx<C, x>0

The first constraint in the problem says that the total rate through a resource cannot be larger than the
capacity of the resource. Instead of solving (1) directly, which is difficult for any large network, Kelly in
[12] has proposed to consider the following two simpler problems.

Suppose that each ugés given the price per unit flow. GivenA;, useri selects an amount to pay per
unit time, w;, and receives a flow = ‘%‘2 Then, the user’s optimization problem becomes the following
[12].
USER(Ui;)\i) .

maximize U, (%) — Wi 2
i
over w, >0
The network, on the other hand, given the amounts the users are willing tovpagw,i € | ), attempts to
maximize the sum of weighted log functiofis.| w;log(x). Then the network’s optimization problem can

be written as follows [12].
NETWORK(A,C;w) :

maximize Zwi log(%) (3)
i€
subjectto ATx<C, x>0

Note that the network does not require the true utility functi¢dé),i € 1), and pretends that usés
utility function is w; - log(x) to carry out the computation. It is shown in [12] that one can always find
vectorsA* = (Af,i € I),w* = (wf,i € l), andx* = (x,i € ) such thatw solvesUSER(U;; ) for all
i €l,x" solvesNETWORKA,C;w*), andw = x{ - A\ for all i € |. Furthermore, the rate allocatichis
also the unique solution t8Y STENU, A,C).

Assume that every user adopts a rate-based flow controly(t¢tandx;(t) denote user's willingness
to pay per unit time and rate at timherespectively. Now suppose that at tilmeach resourcee L charges
a price per unit flow ofs (t) = pi(Jier, %i(t)), wherep(+) is an increasing function of the total rate going
through it. Consider the system of differential equations

%ym =0 =x(0) 5 1 (D) )

1Such a user is said to have elastic traffic.
2This is equivalent to selecting its rateand agreeing to paw; = X; - Aj.
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wherep (t) = pi(Tiier, Xi(t)). These equations can be motivated as follows. Each user first computes a
price per unit time it is willingness to pay, namely(t). Then, it adjusts its rate based on the feedback
provided by the resources in the network to equalize its willing to pay and the total price. The feedback
from a resourcg € J can also be interpreted as a congestion indicator, requiring a reduction in the flow
rates going through the resource. For more detailed explanation of (4), refer to [14].

Kelly etal. have shown that under some conditionsf),l € L, the above system of differential
equations converges to a point that maximizes the following expression

Yider; X
U =3 uix) - [ oy ©

Note that the first term in (5) is the objective function in @¥STEM(U, A, Qyroblem. Thus, the algorithm
proposed by Kellyet al. solves a relaxation of th8Y STENU,A,C) problem.

The analysis of the convergence of the rate control algorithm, however, does not model the commu-
nication delay that is present between the resources and the end users. There has been some work done
on studying the stability of the system in the presence of communication delay. Tan and Johari [11] have
analyzed the case where every user has the same round-trip delay and log utility function and given the con-
ditions on local stability in terms of the gain parame{eand and communication del&y. Moreover, they
have shown the convergence rate of the system in the case of single-user single-resource. More recently Deb
and Srikant [4] have investigated the stability of the system in the context of single flow and single resource.
They have provided a sufficient condition for stability. However, as will be shown in this paper, the provided
sufficient condition is not necessary and can be very restrictive depending on the range in which the initial
condition lies. Alpcan and Basar [2] have also studied the stability of a system with a single resource and
multiple flows and provided a sufficient condition for stability.

In this paper we investigate the global stability of the system. More specifically, we are interested in
characterizing the condition on the users’ utility functions and resource price functions in such a way that
the system is guaranteed to be stable regardless of the communication delay or users’ gain pafameters
We also study the trade-off between the responsiveness of resource price functions and end users’ utility
functions, which can be captured using the notion of price elasticity of demand.

3 Stability Condition: Single-Flow, Single-Resour ce

In this section we first consider a flow traversing a single resource. The rate control problem can be formu-
lated as the following net utility optimization problem [12]:

max U (x) - fg'p(y)dy (6)
S. t. x<C

wherex is the ratelJ (x) is the utility of the user when it receives a ratexpp(x) is the price per unit flow
when the rate ig, andC is the capacity of the resource. The proposed end user algorithm in the absence of
delay is given by the following differential equation [14].

Ext) = K (w(t) ~ X(OW() @

wherew(t) is the price per unit time user is willing to pgyt) = p(x(t)), andk,k > 0, is a gain parameter.

The case wherw(t) is a fixed constant,e., U(x) = log(x), is studied in [13]. In this paper we consider
general utility functions that satisfy a set of assumptions to be stated shortly. An example of a family of
utility functions that satisfy such assumptions is given in Section 5.
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The model used for design of end user rate control algorithm described here [13] does not explicitly
address the case where the total demand of the users exceeds the link capacity. In practice total rate of the
users (or at least the feedback from the resource) is limited by the link capacity. We prevent the resource
feedback signal from exceeding the link capacity by making the following assumption:

Assumption 1 We assume that the rate of the flow is bounded from above by the link capacity C.

Therefore, throughout the rest of the paper we implicitly assume that when the rate of the flow reaches the

link capacity, the time derivative is given by nfkit),0). This assumption can be lifted if the solution to the

optimization problem in (6) is smaller than the link capacity and communication delay is sufficiently small.
Using the end user algorithm given in [14] we assume W@} = x(t) -U (x(t)). Now, suppose that

congestion signal generated at the resouree,p(x(t)), is returned to the user after a fixed round trip delay

T. In the presence of delay the interaction is given by the following delayed differential equation

Extt) = k (xOU' (x(0) ~x(t - T)p(x(t —T)) (®)

After normalizing time byT and replacing =s- T, (8) becomes

Tidsx@) =Kk (X(9U'(x(9) ~ x(s— Dp(x(s— 1))
vd%x<s> = X(9)U'(X($)) — X(5— 1) p(x(s— 1)) ©)

wherev = T—lK It is (9) we are interested in studying from the stability point of view. Fos> 1, this

equation can be seen as following singular perturbation

v SX(t) = glx(t) ~ F(x(t - 1) (10)

of general nonlinear difference equation with continuous argument givegixgy)) = f(x(t — 1)), t > 0,
whereg(x) = x-U’(x) and f (y) = y- p(y) in the context of (9). Under certain natural invertibility conditions
ong(-), it leads to a much studied equation [24]

x(t) = F(x(t—1)), t >0 (11)

whereF (-) =g~%(f(-)). For the solution of (11) to be continuous tar —1, along with the continuity of

and initial conditiong(-), a so-called consistency conditiondimo@(t) = F (¢(—1)) is required [10, 24]. It

turns out that a great deal about the asymptotic stability of (10) can be learned from the asymptotic behavior
of following difference equation, witl, denoting the set of positive integers:

Xn+1=F (%), N€Z; (12)

The concave utility functions and resource price functions assumed in [12, 14] do not satisfy the as-
sumptions in [9], and hence we cannot directly apply their results. However, the general approach used in
the paper for establishing the stability can be extended to study the convergence of (8). In the following sub-
section we first establish general convergence results for one dimensional case described here and a bound
on the range of system when the system loses its stability. In Section 5 we illustrate how our results in sub-
section 3.1 can be applied to study the convergence of the system described in this section to the optimum
with utility and resource price functions given in the section.



3.1 Convergence Results

In this subsection we establish the conditions for convergence of the system in (9) regardless of the commu-
nication delayT. Consider the following substitution:

!

y(t) =x(t)U (x(t)) == g(x(t)) and f(x(t)) :=x(t) p(x(t))-
We first make the following assumptions on the functigts and f (x).

Assumption 2 (i) The function ¢x) is strictly decreasing with—d(x) > 0 for all x > O, (ii) the function
f(x) is strictly increasing for all x> 0, and (iii) both gx) and f(x) are Lipschitz continuous oft , «),
wheree is an arbitrarily small positive constant.

This allows us the following change of coordinate:

x(t) = g7Hy(t) = X(1) = gl (13)

vy(t) = g (g (y(t) (y(t) — F(g(y(t — 1))

where the inversg(-) exists from Assumption 2. Let(y(t)) := —g(g(y(t))). Clearly,k(y(t)) > 0
under Assumption 2. Using this substitution in (13) we get the following form.

vy(t) = k(y()) (f(g (y(t—1))) — (1)) (14)

We study (14) and show that there is a close correspondence between invariance and global stability proper-
ties of the discrete-time map

Yny1= f(g_l(Yn)) = F(Yn) (15)

and those of (14). In particular, we will prove thatyf.;1 = F(y,) has a fixed point then (14) will have a
uniformly constant solution for all possible time deldlys> O if the initial function’s range is contained in

the immediate basin of attraction of this fixed point. The proofs are based on the invariance property of the
underlying mapF(-) and the monotonicity of functiog(-). The mapF (y) is strictly decreasing because
g~(y) is strictly decreasing under Assumption 2 and a composition of a strictly increasing function and a
strictly decreasing function is a strictly decreasing function.

Assumption 3 Suppose now thatd {x: X > €} is a closed invariant interval under F. In particular let
| = [a, b] be compact.

Let X :=C([-1,0],0;), andX, :={@e X: ¢(s) €| Vse [-1,0]}. Under this assumption, we have
invariance for the solution of (14) for all timte> 0 and for allv > 0. Since the functions involved in (14) are
Lipschitz continuous by assumption, solutions do exist fot &l0 and are unique for any initial function
@< X, wherel is the assumed closed invariant interval unideFurthermore, the invariance property of the
solutions, which is stated below (Theorem 1), ensures that they stay positive and bounded by the initial set
they start in, which is assumed to be invariant under Fapor the proofs of the results in this paper refer
to [21].

Theorem 1 (Invariance) If@ € X, the corresponding solution(t) = y(t; @) satisfies yt) € | for allt > 0.
It means that set | is invariant under (14).



Proof: : Letty be the first time when solutiont; @) leavesl with @ € X. In particular, we can assume

thaty(tp) = b and every right hand neighborhood tgfwill have at; > to such thaty(t;) > b. Then, we

can find a pointy,tg < ty < to+ 1, such thaty(t;) > b andy(t,) > 0. Sincey(t, — 1) < b, we havey(ty) =
K(y(t2))(T(g- (y(tz WIY) 0 from (14) and Assumption 3 thatis invariant underF, i.e., f(g(y(t, —
1))) <b. ThIS contradicts with the earlier assumption thigt) > O.

Similarly, suppose that(ty) = a and the trajectory exits from left end of the interval. Then, every right
hand neighborhood df will have at; > to such that < y(t;) < a due to the smoothness of solutions, and
we can findty,tp < tp < tp+ 1, such that 0< y(tz) < a andy(tz) < 0. From thaty(t, — 1) > a, we have
y(to) = K(y(tZ))(f(gfl%(tz_l)))_y(tz)) > 0 from (14) and Assumption 3. This, however, contradicts the assumed
negativity ofy(t,) < 0. Hence, the theorem follows. n

Next theorem considers the case when rRapas an attracting fixed poigt with immediate basin of
attractionJy : F"yp — y* for anyyp € Jo. Let Xy, =C([—1,0],Jp). Then, the following theorem holds.

Theorem 2 (Stability) For anyv > 0 and @ € Xy, lim¢—.e Yy (t) = y*.

Proof: The proof is given in Appendix A n

The above theorem tells us that if the initial function liesXg then the rate(t) converges to the
solution of (6) regardless of the value ©for K. Hence, it establishes a strong convergence result in the
presence of a communication delay.

3.2 Linear Instability

In the previous subsection we have demonstrated that the system in (9) converges with an arbitrary delay
under Assumptions 2 - 3 if the initial condition lies in the specified invariant set. In this subsection we
study the case where the map defined by (15) loses stability and goes through a period doubling bifurcation
with its eigenvalue\ ;= ?j—f( Ix=x- < —1, wherex* is an unstable fixed point of mdp. We describe how the
instability of underlying discrete-time map is translated to the instability of delay-differential equation in
(14).

Assuming that the map given by (35) is locally smooth, it is possible to find conditions for linear
instability of the fixed point of the may and that of constant functioy(t) = y* for the delay-differential
equation in (14). In order foy(t) = y* to be locally asymptotically stable for &l > 0, following variational
equation should have its zero solution stable.

2(t) = kO)F vt -T)| _ 2t-T)+ (KOO)FOE-T) -y -ky®)| _ 1)

y=y* y=y*

= KOO)F (yt=T)| _ 2t=T) = K(y(t)ly-2t)  (becausd(y)=y)

=Bzt —T) + AZt) (16)
whereB = K(y*)F'(y*) andA = —k(y*). Now in order to determine the stability gft) = y*, we can apply
the following well known results [20].
(1) Eq. (16) is stable for all > 0 only if:
A<O0 and-A> |B| (17)

(2) In case when the above condition in (17) is violated we have partial stability for some values of time
delays:

cos }(-%)

—B>|A and T <T":= Y,

(18)



For our case it follows from (16) thak := —k(y*) is always negative, which holds due to the fact that
K(-) is always positive. The second conditiar> K|F'| is crucial to stability of (14). Clearly, for the case
whenF' < —1 (period doubling condition for the map) the linear stability condition given by (17) is
violated and for a large enoughthe constant solutiog(t) =y will not be stable. Thus, we know that in
unstable situation solutions will be more complex than a constant function and will stay within the interval
they initially start from due to the invariance results given by Theorem 1.

Theorem 3 Let | := [a,b] be a closed interval such that(F) := [a,b;] C |. Let the initial condition
@(t) € X be the solution of (14). Now, if the pointsand b are fixed points of F, then for all sufficiently
smalle > 0 there exists a finite E T(@,€,k) such that yt) € [ag —€,by+ €] forallt > T.

Proof:  The proof follows the same arguments used in the proof of Theorem 1 except that boundary
considered here ib; + € from right. In the interval[b, + €,b] solution will be strictly decreasing until

it reaches the poinlt) + €. Afterwards from invariance theorem it stays boundedoby € from above.
Similar reasoning follows for lower bound. n

Above theorem essentially gives bounds for the interval which will contain the solution asymptotically.
Now suppose thaj(t) is a solution of (14) under the instability condition that nfafy*) < —1. Due to
invariance theorem we know thatOliminfi_. y(t) = m<limsup_,, =M < +co.

Now based on the theory developed in [8] we make following observations:

(1) If the solutiony(t) is strictly monotone them= M = y* because of the boundedness of solutions.

(2) If m# M then the solutiory(t) is oscillating. In particular, the solutions will have a sequence of maxima
at times{t,} and minima at timegs,}. Clearly,y (t,) =y (s,) = O for allt, ands,. This implies from (14)
thaty(tn) = F(y(th — 1)) andy(sy) = F(y(ss —1)). This shows interesting discrete time map structures in
the solution of delay-differential equation (14).

(3) If y(t) does not converge tg then it oscillate around it. This holds due to the fact that image of the
interval [m,M] underF containsim, M]. Hence, it will have a fixed point.

From (1) through (3) above we conclude that solutions either converge to the fixed point or oscillate
around it.

3.3 Noteon Lyapunov Function for Single User with Single Resource

In this subsection, we study the stability of the underlying discrete time model which in turn determines the
stability of the delay-differential equation, using Lyapunov theory for discrete time maps [22]. Interestingly,
the class of Lyapunov functions that were originally proposed by Kelly [12] for the systems with no delay
appears to be useful for underlying discrete time maps of the delay-differential equations.

Consider the following (Lyapunov) functions for discrete time maps of interest:

L(x) = = [U(x) —c(x) = (U(X) = c(x"))] (19)

wherex* is the maximizer ot (x) — c(x) andc(x) = [g p(y)dy, which exists for utility and cost functions
in [12]. Clearly, function in (19) is strictly positive everywhere except fot X, where it is zero, and

convex. We also know that is the only fixed point of the discrete time mBgx‘) = x* given by (15), and

is also the unique solution &f(x) = 0 due to extremality condition.



In order to argue that (19) is a Lyapunov function for the underlying discrete time system we need
to show that change ih(-) is strictly negative along the discrete time miap) starting from any initial
condition except fox = x* or

AL(X) :=L(F(x)) —L(x) <0, ¥x> 0, Xx# X" (20)
If we look at the differential ofAL(x), it is clear thatAL/(x) has at least one zeroxat X'

AL' (X, = L'(FOO)F (9], ye = L' |,y
= L'(x)F'(x*) — L'(x*) = 0

In order to study the nature &f we will need the second derivative AL (x) evaluated ax = X.

AL”(X)‘X:X" = L"(F(x)) (FI(X))Z Xt L”(X)‘x:x*

_HLFE)F ()]
= L"(x)((F'(x))*-1) (21)

becausd-(x*) = x* andL’'(x*) = 0 due to the fact that* is the unique minimizer of. Depending on the
magnitude of'(x*) we have three cases to consider:|i)(x*)| < 1, (i) |[F'(x*)| > 1, and (iii) |F' (x*)| = 1.
In the first two cases, we assume that(x) has a unique zero at= x* (i.e.,AL’(x) is monotonic) and show
under this assumption that in the first two cagess either a global maximizer or a global minimizer of
AL(x), leading to either global stability or the lack thereof for the discrete time syB{e)n One can show
numerically that the utility and resource price functions used in Section 5 satisfy this assumption under a
mild condition. Also, we conjecture that this assumption holds for a large set of utility and resource price
functions. We discuss the aforementioned three cases:

(i) For |F'(x*)] < 1, AL"(x*) < 0 asL”(x*) > 0 due to the convexity of(-). This implies thai' is a
maximizer ofAL(-) and sinceAL(x*) = 0, AL(x) uniformly negative over positive real axis exceptfot X.
This gives us uniform asymptotic stability for the miap).

(i) For |F'(x*)] > 1, AL"(x*) > 0 asL”(x*) > 0 due to the convexity of(-). This means that" is a
minimizer of AL(-), and sinceAL(x*) = 0, its uniformly positive over positive real axis except for X.
This shows instability for the map(-).

(iii) In the case wher¢F'(x*)| = 1, x* becomes neutrally stable. This is essentially the bifurcation point
from stable to unstable behavior. Hence, paramgi@tswhich |F (x*(p),p)| = 1 are critical from stability
point of view and give the region of stable operation.

Hence, we see th#it’(x*)| < 1 is crucial to the stability of the whole system. In particular the case when
F'(-) < —1is more interesting as it indicates the birth of oscillations through period doubling bifurcation.

Next we describe a sufficient condition that guarantees the existence of a unique global attractor under
the above Lyapunov function. In order fgrto be the global maximum it suffices to show tit(x) > 0
for all 0 < x < x* andAL'(x) < 0 for all x > x*. To this end we rewrit&L'(x) as follows:

= (F(F(x)) = f(x)) = (9(x) - f(x) (22)

where the last equality follows from thBt(x) = g~*(f(x)).

Assumption 4 Suppose thad < *’F‘Z(SX) < 1forall x> 0.




Under the above assumption one can see from (22) that a sufficient condition talhaye> 0 for all
O<x<X"Is

F(F()) = 109 <g(x) - f(x)

since bothf (F(x) — f(x) andg(x) — f(x) are positive. This is equivalent to

g (F(F()) >gH(g() =x

becausey(-) is assumed to be monotonically decreasing. From the definition of the mappingne can
see thatg~2(f(F(x))) = F(F(x)). Therefore, a sufficient condition is th&f(x) > x for all 0 < x < x".
Similarly, one can show that a sufficient condition for the other casgAL(x) < 0 for all x > x*, is that
F2(x) < x.

Proposition 1 Suppose that Assumption 4 holds. Then, a sufficient condition for the existence of a unique
global stable equilibrium under the above Lyapunov function is that) x for all x > x* and F?(x) > x
forall 0 < x < x*.

One can easily show that Assumption 4 and the above conditions in Proposition 1 hold with the utility and
price functions used in Section 5 under a stability condition.

4 Stability Conditions: Multiple-Flow, Multiple-Resour ce

Let || be the set of users traversing resoureel, i.e.,| ={ie L |l € r;}. We assume than (-),l € L,

are strictly increasing and continuously differentiable. Suppose that the feedback information from the
resources to the end users is delayed'hy 0. Following Kelly’'s rate control formulation [12], the rate of

i-th user now evolves according to the following delay-differential equation

2x(0) = K6 OV (1)) (2 - (3 u(E-T) (23)

wherep (t —T) = pi (e, Xj(t —T)). After normalizing time in (23) byl and using the substitution=
xU'(x) := gi(x), the dynamic equation fdrth user can be rewritten as

PN T
X0 =600 5O = S0

Wi (1) = Kig (g7 (Y () (Wi () — fi(@ (Tt - 1))))
wherev = 1,y(t — 1) = (y1(t — 1),---,yn(t — 1)), and
fi(@ (vt —1))) =g (it —1)) (IZ P (Z gyt - 1)))) :
€rj JEN
We can write the above in the following matrix form:
Vy(t) = k(¥(t) (F(¥(t - 1)) - ¥(t)) (24)

wherex (-) is state dependent diagonal gain matrix with= —kig; (g (yi(t))). Clearly, this decomposition
is possible due to the fact that the utility of a user is a function only of its own rate and does not depend
on those of other users. The map) given by (25) is a multidimensional one step nonlinear map which is
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crucial for understanding the stability of the system. We note that this system of differential equations has a
natural underlying difference map structure similarly as in the single-flow, single-resource case.

Yos1 = F(Yn), NE€Z1,yn€ 07 and R (Y) = fi(gr (Y1), - O (YN)) (25)

The importance of this multidimensional one step map will be evident when it will be shown that global
stability of this map is a sufficient condition for the global stability of the delay-differential system given by
(24).

4.1 Convergence Results

For the case of multiple users with heterogenous utility functions we will need to prove the global conver-
gence in a multidimensional space. Our approach builds upon the approach used by Verriest and Ivanov [26].
The basic idea behind this approach is to use invariance and continuity properties of the underlying map for
the differential equation and find a sequence of bounds using convex sets, which converge to the singleton
with the solution to (5). Hence, the convergence is derived from the underlying map, which provides the
bounds for the trajectories of the delay-differential system. Following this plan, we will first prove the in-
variance of system given by (24) when the underlying map given by (25) has a convex invariance set that is
a product space. The assumption of existence of a convex invariance set is natural in rate control problem
as will be illustrated in the next section using a family of utility and resource price functions.

Before we present the convergence results, we state an assumption that we magkewaf;(-),i € l.

Assumption 5 (i) The function g(x) is strictly decreasing With—g’(Xi) > Ofor all x; > 0, (ii) the function
fi(x) is strictly increasing in each component for albx0, and (iii) both gx) and f(x) are Lipschitz
continuous onJ, and Dﬂ, respectively.

It can be seen that under this assump#o) is strictly positive definite matrix, which turns out to be an
important property to prove the convergence results for the system given by (24).

Ouir first result states that the $€&{—1,0], D) is invariant under the action generated by (24), provided
thatD is closed, convex and invariant undein (25).

Theorem 4 (Invariance) Suppose that D is a closed, convex, invariant domain undegiven as a product
space, i.e., = |‘|i'\':1proji(D) where proj(-) denotes the i-th component projection operator. Then, for any
initial function @ € C([—1,0],D) := Xp the resultingy’(t) from (24) belongs to the domain D for alit 0
andv > 0, where the superscript is used to denote the dependence)@ﬂ%.

Proof: The proof is given in Appendix B. n

Now, using the invariance property, we turn to the asymptotic property of delay-differential equation
under the natural assumption that the underlying map is stable. The lack of convexity of arFifbgg# a
convex seD forbids the direct application of techniques developed by Verriest and Ivanov [26]. Instead our
approach is to construct a series of convex coverings of irkdBg) and look at their asymptotic behavior.
In particular, we construct a sequence of product spaces which seem to be the most reasonable choice for
the networking problems. These product spaces are obviously convex and if we can prove that they contain
their images, then the invariance follows. Also, due to the monotonicity property oFfagpvhich follows
from Assumption 5, the coordinates of these product spaces and their images can be computed explicitly. To
recapitulate we want to construct a series of convex closed dorfiBifissuch that under certain stability
conditions tha¥ (D) C Dny1 C int(Dp), whereint(Dy) denotes the interior db,, and{y*} = Nn>oD;, all
the solutions of the map given by (25) will convergejtasymptotically.

11



Assumption 6 Multidimensional map E ON — ON has an arbitrary fixed point*yand there exists an
open convex neighborhood (), which is an open product space. Also, assume that there is a sequence
of closed convex domaing, [ > O, that are product spaces, such thaflls) C Dny1 C int(Dp) and{y*} =
mnzODn-

Let Yp, = C([-1,0],int(Do)) be a subset of initial functions aryj a solution of (24) constructed through
(OS] YDO-

Theorem 5 (Stability) All solutions starting with initial functiong € Y5, converge to yfor all v > 0.

Proof: The proof is given in Appendix C. n

Theorem 5 establishes that the attracting fixed point is stable ibysdthe basic tool these theorems
give us is to look at a delay-differential equation as a discrete map which is much more convenient to study
and intuitive from implementation point of view due to the discrete nature of computation elements. The
study of underlying maps give us more insight than the equations themselves as shown in the next section.

4.2 Noteon Lyapunov Function for a General Networ k

In this subsection, we study the stability of the underlying discrete time model using Lyapunov theory for
discrete time maps [22] similarly as in Section 4.2 for one flow with single resource case. Consider the
following (Lyapunov) function for a discrete time map of interest:

L9 = - [z W03 [ ay - 3000 -3 [7 "o (y)dy.] (26)

wherex* is the unique maximizer ¢f; Ui(x) — 5 02“'6” i (y)dy, which exists for utility and cost functions
used in [12]. Clearlyl(x) is convex and strictly positive everywhere except fox atX, where it is zero.
In order to show the stability of the underlying discrete time system we need to show that the change in

L()

is strictly negative along the discrete time nfa@), starting from any initial condition except for at= X.
In other words,

AL(x) <0 forallx >0, x# X.

Before we analyze the nature of change in our Lyapunov function, let us define the following. This
notation will help us carry over the intuition of one dimensional case in Section 4.2.

L'(-) = OL(-) or Gradient of_(-)

L"(:) = Hessian oL(")

F'() = Jacobian of multidimensional mdg(-)
F'()T = Transpose oF'(-)

If we look at the gradient ahL(x), it is clear thatAL(x) has at least one zeroat X.
AL . = F'OTL'(F(X)], . — L'(X)]

— FI(X*)TL/(X*) _ LI(X*) =0

X=x* X=x*

12



In order to study the nature of the extrenl(X') we need the second-order derivative or HessiahlLgk)

evaluated ax = x*.
AL"(X)],_,. = F'()TL"(FX))F' (9], = L" ()], + AX) e

— FI(X*)T LII(X*)FI(X*) _ LII(X*) (27)

X=x*

becausd- (x*) = x*. The last term\(x*) goes away because it consists of the second-order derivative of map
F(-) multiplied by L'(x*)(= 0). The stability of this system is dependent on the magnitude of eigenvalues
of F'T(x*)F’(x*). Clearly, in order foix* to be a (local) maximizer oL (-) (27) must be negative definite.

A simple example of a sufficient condition for (27) to be negative definite is

Amad (X)TF' (x*) < Aminl (28)

whereAmin andAmax are minimum and maximum eigenvaluesLB{x*), respectively. Note thdt’(x*) > 0
asL(-) is a convex function, and hence bodthi, andAnax are positive. Heré denotes thél x N identity
matrix. The condition in (28) implies that the singular value of maf{x) should be less thai\ﬁx'

5 Application to Rate Control Example

In this section we apply the results in the previous sections to investigate the stability of the rate control
problem described in Section 2 with a single resource. We consider the following class of users’ utility
functions:

Ua(x) = —éi a>0. (29)

xa’

In particular,a= 1 has been found useful for modeling the utility function of Transmission Control Protocol
(TCP) algorithms [15]. This class of utility functions in (29) has been used extensively in engineering
literature [1, 12, 15]. We say that a usgrwith utility function Uy, (x) is greedier than another usgrwith
utility function Uy, (x) if a2 > a;. One can interpret the notion of greed here using the notion of elasticity
of demand [25]. With the utility functions of the form in (29) one can easily show that the elasticity of the
demand decreases wittas follows. Given a price, the optimal ratet(p) of the user that maximizes the
net utility Ua(x) — /3 p(y)dy is given by p*ﬁ. The price elasticity of the demand, which measures how
responsive the demand is to a change in price, is defined to be the percent change in demand divided by the
percent change in price [25]. In our case the price elasticity of demand is given by

p dx(p) p -1 1y

e o p 1+a

x(p) dp  pra l+a

(30)

Therefore, one can see that the price elasticity of demand decreases? with the largera is, the less
responsive the demand is.
The class of resource price functions that we consider is of the form:
y b

p(y) = (6) , whereb >0 (31)

This kind of marking function arises if the resource is modeleldll A81 /1 queue with a service ra@packet

per unit time and a packet receives a mark with a congestion indication signal if it arrives at the queue to find
at leastb packets in the queue. One can easily verify that these utility functions and resource price functions
satisfy the assumption in Sections 3 and 4.

3When comparing the price elasticity, typically the absolute value of (30) is used.
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5.1 Homogeneous Users

Using the utility function and resource price function of (29) and (31), respectively, (8) can be rewritten as

_ b
2xt =K<X(i)a—X(t—T) (X“CT)> ) . (32)

The theorems in subsection 3.1 can be directly applied to study the dynamical behavior of (32) which is
essentially described by the underlying discrete time difference equation

Ynt1 = F(Yn) (33)

1 Xn\ P

—Xﬁﬂzxn(g) L %0 >0 (34)
b a

Xo1 = (%) (35)

Consider the dynamical behavior of map given by (35). It has a fixed point
X = Cab | (36)

and the market equilibrium price is given gy = C*%fa%. The market equilibrium price can be obtained
from thatx* = p**ﬁla. This expression of equilibrium flow shows thatincreases with decreasirgg This

is the reason that we characterize the user with smaljgeedier. The eigenvalue at this fixed point, which
is interestingly independent of the fixed point, is

_b+1

M) = =

(37)
Suppose thaa > b+ 1. Then, the fixed point* is locally attracting. In fact¢ can be shown to bglobally
stable as follows. According to the Sharkovsky cycle coexistence ordering [23] the most general condition
for the fixed pointx* to be globally attracting is that the second iterati@rof the mapF does not have a
fixed point in relevant state interval other thénandx* is locally attracting. This in turn implies the global
delay independent stability of (32). It is interesting to note that when the utility function of user is given by
Ui(x) = —)—1( as has been suggested for TCP algorithms [15], the delay independent stability of the system
cannot be ensured by a price function of the form in (31).

Our results have the following interpretation. If the functions/ (x) andx- p(x) have an intersecting
point that is a stable fixed point, then the communication delays are irrelevant for system stability, and user
rate and resource price converge to the system optimum. Furthermore, our results tell us that the stability of
system depends critically on the user utility functions, more specifically on the paraanfetea given price
function. This can be seen from the eigenvalig) = —%. Larger values ob mean that the slope of
the price function is steeper, which in turn implies that the price varies more widely in response to a change
in ratex. Hence, in order to maintain the stability of system, user demand should be less ekstie
response of user to a change in price should be less dramatic. Thus, this presents a fundamental trade-off
between the elasticity of user demand and responsiveness of price function. In other words, in order to
keep the stability of system, if one wants to increase the responsiveness of one, then the responsiveness of
the other must be sacrificed. This trade-off can also be seen from the definition of the discrete time map
F(y) = f(g(y)). The derivative of (-) evaluated at the equilibrium is given by

df dg ()

570, = a5
vy dgt(y) |, dy |

d_yF (¥)

(38)
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_1 b
~ b+ W) C(bw) - (—3) y &

—ab
y*=Cat+b+1
b+1
a

by the chain rule, whergt(y) = )F%. Here the first term in the right hand side gives the slope of the
resource price function as a function of the flow rate, while the second term is a function only of user’s
utility function, namely%g—l(y) = —%y—%‘ . Therefore, (38) clearly describes the trade-off between user’s
price elasticity of demand and the responsiveness of resource price function for stability.

The above results have the following practical implications. Characterizing the exact stability conditions
of the system with a given choice of utility and price functions is not easy. In addition, the round-trip delays
of connections tend to vary widely. Therefore, one approach to designing a stable system is to select a pair
of user utility and price functions in such a way the communication delay does not affect the stability of the
system. This is, however, not to say that the dynamics of the system do not depend on the delay.

Our results also provide us with the following design guideline for the AQM mechanism and end user
algorithms for efficient use of network resources. Note that from (36) the fixed pasrgtrictly increasing
in b and is strictly decreasing e Therefore, in order to increase the utilization at the fixed point, we should
increase the rati§. However, this ratio cannot be increased arbitrarily without losing the stability from (37).
Therefore, in order to achieve high utilization of the resource and maintain the stability of the system, the
parameteb should be selected as large as possible and the paraastteuld be selected just large enough
so that/A(x*)| is smaller than one. However, having the eigenvalue close to -1 comes at the price of a larger
settling time. In order to reduce the settling time, the ratig sifiould be lowered. Therefore, the selection
of parameters andb presents a fundamental trade-off between stability, settling time, and utilization of the
system. This is numerically demonstrated in the following section.

We now study what effects the load of the system,the number of users in the system, has on the
stability of the system. Since the load on a resource is beyond the control of a network manager, ideally the
stability of the system should not depend on the load. Suppose that théMeMte 1, homogeneous users
in the system. Since users are assumed to be homogeneous, we denote the rate ofxdt)s&vdpssume
that utility function of the users is of the form in (29) and the price function used at the resource is that of
(31). Then, the end user algorithm is given by

KN (t) = k (x(N>(t)u;(t) XN (¢ —T). p(N-xN(t — T))

. LI ) NN (E-T)

where a superscrigN) is used to denote the dependenceNorirollowing similar steps as in the single flow
case above, the discrete time difference equation corresponding to (33) - (35) of single flow case yields

1
ny _ [ (C/N)P)*
Xnt1 = ( b+ | (39)
Xn
b
Then, from (39) the fixed point™* is (£)** 4 and the eigenvalue is given B§N) (xN)*) = — L and

is independent oN. Therefore, the stability of the system does not depend on the number of users in the
system. This can also be explained using the price elasticity of demand. Since, given a utility function of

4Here we assume that the fixed point is smaller tBan
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the form in (29) for some > 0, the price elasticity of the demand is constant forxal O from (30), one
would expect the stability of the system to be independent of the operating peirthe fixed point, and
capacity, but only on the choices of the utility and price functions that determine the responsiveness of the
users and resource, respectively.

Clearly, the network designer can rescale the price function by a sicalar,

_yv. ()P
Py =v- (&) - (40)
wherey > 0. When the price function is of the form in (40), the fixed point of the system Niffows

_b
is given byx* = y‘ﬁ) (%) Hatb - Furthermore, the value gfdoes not change the eigenvalue at the fixed

point,i.e., the stability condition does not dependprHence, if the number of flows traversing the resource
is known, then the resource can select an appropriate valugoathat the fixed point of the system achieves
high utilization. However, smaller values pfeduces the responsiveness of the price function.

5.1.1 Natureof period doubling bifurcation

In this subsubsection we investigate the nature of emerging period doubling bifurcation as different param-
eters in utility and cost functions are varied. Nonlinear stability analysis of period doubling bifurcation is
important from the point of view of ensuring graceful degradation and avoiding a catastrophic collapse in
case of loss of stability. To this end we need to evaluate

+% (F"(x))? (41)

atx = x* anda = b+ 1, whereF® is the third-order derivative [6]. In order for the period doubling
bifurcation not to be subcriticak (F) evaluated ak = X anda = b+ 1 needs to be non-negative. Since
F'(x*) = —1 whena = b+ 1, this is equivalent to showing that the Schwarzian derivative is non-positive,
i.e.,

E(F)= %F(?’)(x)

F@ 3 /F"\?
sF-5-3(F) <o @2)

Computing higher-order derivatives for the map) gives

b/a
en_btl(b+1 C 43)
a a Xb;l+2
b+1/b+1 b+1 cbh/a
P(yt) — — T[T~ Jr- ~
FEx) - ( - +1>< ; +2> g (44)

Substituting (43) and (44) in (42) yields

2
SF) = CE+CE+2) 3 (0t+1
X2 2 X
a’— (b+1)2
- 2a?x2
=0.

Therefore, one can see that (41) is non-negative.

This implies that under the instability conditidre.,% > 1, a period doubling bifurcation is guaranteed
to be not subcritical when it occurs. Hence, when the system loses stability, the magnitude of oscillation
in rate will gradually increase with parameters and the system will not experience a sudden appearance of

oscillation with a large magnitude.
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5.2 Heterogeneous Users

With the above utility and resource price functions, the underlying discrete time map from (25) is given by

1 — o\ Zj€||xj7n>bl>
Xﬁnﬂ X (I;( G

1 . AN
= Xinr1 =X ' (z (z’%lx'”> ) (45)

ler;

D=

Note thatx .1 is strictly decreasing in each gfy, j € l.
We defineby, . = maXer, by andC' = mini¢,C for all i € I, and assume that users are ordered by
increasinga;, i.e., & > a, > --- > ay. Let x* be the unique solution of the optimization problem. We

assume thaf"x* < C. A sufficient condition for this is thaf > |I;|. Let o = —max % Suppose
thatDo = [\, D}, where
DiO = [EXI* ) axi*] )
o is some finite constant larger one, ghib a positive constant such that
F(Bx*) < ax® andpx* < F(ax") . (46)

Lemma 1 Suppose thata> bi, ..+ 1for alli € |. Then, any3 such thai*/° < B < @° satisfies (46).

Proof: The proof is given Appendix D [

Now, fork=1,2,---, we define

_~K
b — 4 MLaE®x, B %], kodd w
|_|iN:1[B0 X, ﬁokx,-*] ., keven

Lemma 2 Suppose thata bl ,,+1forallk=1,2,---. ThenF (Dx_1) C D C int(Dx_1), where in{Dy_1)
is the interior of Q_1, andN_oDyx = {x*}.

Proof: The proof is given in Appendix E. n

Theorem 5.1 Suppose thatja> bl .+ 1 for all i € |. If the initial functionsg lie in C([0, —1], int(Dy)),
then Xt) converges to*xasymptotically for all T> 0 andk; > 0.
Proof: The theorem follows from Lemma 2 and Theorem 5. n

Now note that asx increaseslf(a) goes to 0 Hence, since the rates of the users are in practice con-
strained by the link capacities, we can see that starting from any arbitrary rate vector satisfying the capacity
constraint, the rates convergextacasymptotically from the above results.
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6 Effectsof Non-Responsive Traffic

Some of applications in the Internet, such as real-time streaming, cannot react to congestion as fast as
responsive flows and hence adopt a different transport layer protocol that adapts to congestion state much
slower. Since their reaction times are much larger than those of responsive flows, for modeling purposes
in the time scale of interest they can be modeled as non-responsive flows, whose rates do not vary. In this
section, we analyze the effect of the presence of these non-responsive flows. As non-responsive traffic has
no dynamics and contributes to aggregate rate presented to the resource, the dynamics of the model given
by (34) and (35) gets modified. Here we only consider a single flow case. However, similar results can be
shown for multiple heterogeneous user case.

1 <Xn+q>b
— =X ——— ] , % >0
¥, T\ C

c : 48
Xn+1—<m> ) (48)

whereq is the aggregate load from non-responsive flows.
The unique fixed point for this system will be given as the solution of following equation:

Xa+1(X+ q)b — Cb
- X% (x+q)=C

@)

= X+0=

(49)

at+l
X'b
It is clear from (49) that as the amount of non-responsive trafficcreases, the solution(q) of (49)
decreases which is intuitive. Now we will analyze the eigenvalue of (48) to look into the effects of non-
responsive traffic on stability. Computing the eigenvali(e*(q)) gives the following:

b
. Ca 1 b
}\OI(X (q)) = _Z [ arl b + 1 M] (50)
S I LT I | M
Substituting (49) fofx+ q) in (50) yields
) Cal1 b3
N(x(q) = “a ? F
! Y dxex()
1 bx*
-~ |1+
oo o
X=x"(d))

This expression can be verified by using the expression of fixed point in the absence of non-responsive
traffic from (36) which yields the same expression as the eigenvalue in the responsive traffic only case given
by (37). From the earlier observation that the fixed point decreases with the load of non-responsive traffic
g, it can be easily seen that second term in the eigenvalue will decreasq,\aitid hence eigenvalue will
become smaller in magnitude rendering the system stable. This demonstrates that the stability of the system
improves withg. A similar observation has been made in the context of TCP-RED [17].

Although (51) tells us qualitatively that the stability of the system improves with increagiitgloes
not give us quantitative answers as to how the trade-off between the stability and responsiveness of the user
or resource price is changed. Here we study the improvement in stability by computing the supremum of
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the values ob that result in a stable system for a fixed valuex@ir the infimum of the values @& that lead
to a stable system for a fixed valuelof

From (48) one can see that§f > x*(q), thenx,.1 < x*(g) and similarlyx, < x*(q) implies that, ;1 >
X*(q). Letxy =B-x* and

~ + q
52
B=Srg- (52)
We denotex*(q) simply byx* when there is no confusion. Then, we can rewrite (48)
s = (s ) (Be)
1= a
" \Boe +a)
b
ax b ,; _1
1Gol
= X [375[3 a
1
—x (@) (53)
For stability it suffices to have
~ 1 - 1
(B°B)* <pifp>1 and (f°)" >p ifp<1
SincefPB = 1 = B whenp = 1, a locally sufficient condition fod(x*)| < 1is
dy(B)
aB | <0, (54)
wherey(B) = BPBL 2. By substituting (52)
d x* + )R-
d @)= d (B * 9)°B
dp dg (¢+qP
_ BA(Bx +9)° Y(bBx* + (1—-a)(Bx* +0))
- ] (55)
(x*+0)
Thus, in order to satisfy (54) we need
bx +(1—a)(x*+q) <0
or equivalently
bt+1l<at (a;*l)q. (56)

Whenq = 0, i.e., there is no non-responsive traffic, (56) yiells- 1 < a, which is the necessary and suf-
ficient condition for global stability given in subsection 5.1. Sirde) is decreasing im, the ratio—— ‘(‘ 5

increases witlg. Hence, it is clear that the value afthat satisfieb+1—a= @19 \which is given by

x(q)
%, is decreasing il Thus, (56) hints at the trade-off between the responsiveness of the user and

resource price and stability similarly as in the case only with elastic traffic discussed in subsection 5.1.
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Figure 1: Plot of (a) inffa> 0] |A(X*(a,q))| < 1} and (b) sugb > 0| |A(x*(b,q))| < 1}.

In order to quantify the impact of the presence of non-responsive traffic, in the first case, we first fix the
value ofb, i.e.,the resource price function, and compute the infimum of all valuestioat lead to a stable
system with increasing value of Fig. 1(a) plots infa > 0| |A(X(a,q))| < 1} with increasing value of
g. The value computed from the eigenvalue in (51) is showr'aand the value calculated from (56) is
shown as+'. The figure shows that these two values are identical. As expected from (51) the smallest value
of a that leads to a stable system decreases witfihis also confirms that adding non-responsive traffic
has different effects from simply reducing the system capacity, which in fact nitesffect the stability
condition.

In the second experiment we fix the valueacdnd study the supremum of all valuestothat result in
stability. Fig. 1(b) plots these values as a functiorgofAgain, the values computed from (51) and (56)

are shown a&' and’+’, respectively. The figure demonstrates the with increasing valggtled system
becomes more stable and can tolerate more responsive resource price function.

7 Numerical Examples
In this section we present numerical examples to validate our results presented in the previous section.

7.1 Homogeneous Users

Fig. 2 plotsx(t) for C=5,T =200,k =0.2,b =5, and various values @ The value of parametexris set
to 2,6.1, and 10, respectively. Note that= 2 yields an eigenvalue% = —3, which violates the stability
condition. This is illustrated in Fig. 2. As one can see the system does not converge to the optimal value of
2.73. On the other hand, the valueaof 6.1 leads to a stable system and the rate converges to the optimal
value of 1.945 as demonstrated in the figure. When we further increase the value &0 one can see
that the utilization at the fixed point decreases with a larger valae Hbwever, the settling time improves
with increasinga. Thus, this presents another trade-off between settling time and resource utilization as
mentioned in subsection 5.1.

In the second example we take two homogeneous usersawitt8, price function withb =5, and
link capacityC of 5. It is clear that for these values afandb rate control algorithm is unstable since

1
% = 2> 1. The optimal rates for both users in the absence of delay is givdrtb;((%)S) ° = 1.6637.
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Plot of x(t) (b = 5, T = 2000, k = 0.2)
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Figure 2: Plot of(t) fora= 2, 6.1, and 10.

Their self imposed upper rate limit will b8/2 = 2.5. The lower limit on the solution according to the

period two orbit of magr will be given byF(2/5) = (%)% =0.7368.
Fig. 3(a) shows the rate waveform for a delayTof 1, which is not sufficient to send the system into
the unstable mode, and hence both rates converge to their optimal value of 1.6637 (Fig. 3(b)). However,
when delay is increased = 10, system begins to oscillate as shown in Fig. 3(c). The upper limit of 2.5
and lower limit of 0.7368 can be verified. Finally, in Fig. 3(d), which shows the same wavefofin=&0,
the waveform is more square-like compared to last figure. In the limit with increasing delay this waveform
approaches a square waveform oscillating between the period two orbit of corresponding map.
It is also evident that in both of the oscillating cases the period of the waveform is approximately twice
of the delay and the interval between consecutive times when the waveformg/@nossy = 1.6637 is
more than the delay itself. Typically, these oscillating orbits are very difficult to describe as they vary from
sinusoidal to square waves with increasing value of delay. This phenomena has been studied earlier in [3].
Clearly, these numerical solutions confirm the upper and lower limits for the trajectories for large enough
communication delays. In particular, these periodic orbits remind of a particular periodic solution class
devised specifically for delay-differential equations, nantligwly Oscillating Periodic (SOR)rbits [19,
24]. Roughly, an SOP is a periodic orbit with its consecutive zeros (zero corresponds to the fixgdipoint
our case) separated by more than one normalized time unit. The time unit used in our context corresponds
to a round-trip time, which arises naturally as a measure for network performance and stability. This also
supports the view that round-trip time may be the most useful time scale from the point of view of stability
and oscillations [7]. For dynamical (35) we have following conjecture regarding the existence of an SOP:

Conjecturel SOP: For all0 < v < 1/Tp, where § is given by (18) in linear stability context, (14) has at
least one slowly oscillating periodic solution with perio@v? > 2. Moreover, Tv) — 2 asv — 0.

Although proving the existence of an SOP is technically complicated and its asymptotic behavior is
even more challenging, we believe that these slowly oscillating periodic orbits are useful for the study of
networks and networked control systems to understand the stability and oscillation behavior in the presence
of non-negligible delays.
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Figure 3: (a) Map given by (35) for above scenario, (b) Rate waveform for the delay=ot, (c) for the
delay of T =10, and (d) for the delay of = 50.

7.2 Heterogeneous Users

In this subsection we present a numerical example with two heterogeneous users. In this example we set the
resource price parameter o= 2.0 and users’ utility function parametersdo= 3.1 anda, = 4.1 We set

the delayT to 100 and 500. Sinca > b+ 1,i = 1,2, our results state that the system will converg& to

Fig. 4 plotsx(t),i = 1,2, for T = 100 and 500. As one can see, the system converges to the fixed point of

the discrete-time map, which ¥ for both delays. One can also see the synchronization of users’ rates in
both cases.

7.3 Non-responsive Traffic

The example in this subsection illustrates the effects of non-responsive traffic. There is a single responsive
flow with a = 2.4 that traverses a link witG = 10. The parameter of price function is setiate- 5 for the
simulation with a delay oT = 200 in the system. In the first case, there is no non-responsive flow, while in
the second case we introduce non-responsive flow qwth2.0. Fig. 5 plotsx(t) in both cases. As one can

easily see, the system exhibiting oscillatory behavior without non-responsive traffic, becomes stabilized by

the introduction of non-responsive flow. Hence, this demonstrates that the presence of non-responsive flow
enhances the stability of system.
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a=24,b=5T=200,C=10,k=1
T T T

L L L L L
0 500 1000 1500 2000 2500 3000
time
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8 Discussion

In this section we discuss the implications of the results presented in the previous sections on the fairness
of the rate control algorithms. In practice achieving high utilization at bottlenecks is an important issue.
We have suggested that this may be achieved by dynamically adjusting one of control parameters at the
routers to control the desired utilizati@ng.,parametey in (40). Kunniyur and Srikant [16] have proposed

a dynamic mechanism that utilizes a virtual queue associated with each link. The idea behind this approach
is to adapt the virtual queue capacity in order to maintain certain desired utilization at the bottlenecks. This
allows the end users using the algorithm in (4) to solve the SYSTEM problem of maximizing the aggregate
utility of the users in (1).

We have suggested in subsection 5.1 that such a dynamic mechanism, where the shape of the price
function is preserved but the price function is rescaled by a constant, may not change the stability conditions
on the users’ utility functions. This implies that the stability of the system improves with increasihg
utility functions assuming that the similar results extends to more general multiple bottleneck cases, which
we are currently investigating. One consequence of this would be that the system stability improves with
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the fairness among the users. Before considering the general case, let us consider an example. Consider the

user 1 user 2
1 / /
O 2 O
user 3 \
(a)

Plot of x, vs. a

(b)
Figure 6: Example. (a) topology, (b) plot ®f(a).

example shown in Fig. 6(a), where there are three users that share two links in the network. The capacity
of both links is assumed to be one. Suppose that all users have the same utility fufigtjon a‘,—i,a > 0.

The optimal rates*(a) that solve the SYSTEM problem in (1) for a givarare plotted in Fig. 6(b). Since

X; (a) = x5(a), we only plottedx; (a) andxj(a). As one can see, asincreasesx'(a),i = 1, 2, 3, converge

to 0.5, which is the max-min fair allocation. This can be easily explained by the closed form solution of the

problem. After a little algebra, one can show tRdha) = %B wheref3 = 2T, Hence, as | 0 (a1 ), we

have limy o = 2 (limage B = 1) and limyox;(a) = 0.6 (liMare X5 () = 0.5)> One can also attain similar
results for general multiple bottleneck casks,,the solutions to the SYSTEM problem converge to the
max-min fair allocation aa 1 «. This suggests that both (max-min) fairness among the users and system
stability improves asiincreases.

9 Conclusions

We showed that dynamical stability of rate control problem for a simple one resource case is determined
by the interaction of underlying utility and price functions. In particular, we demonstrated a fundamental
trade-off between users’ price elasticity of demand and the responsiveness of the resource. We have proved
that when the users’ utility or resource price function is too responsive in relation to the other, it leads to
network instability. We explicitly characterized this for a class of utility functions. Furthermore, we showed
another trade-off between the global stability of system and the utilization of the resource. These results
offer some guidelines for jointly designing the end users algorithms and AQM mechanisms at the routers
in the presence of a communication delay between end users and network elements. We illustrated that

S5Note that the limit of solutions to the SYSTEM problem with 0 is the solution to the NETWORK problem with = w for
alli €1, i.e.,proportionally fair allocation [12].
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discrete-time framework arises as a natural tool to study the dynamics of delayed rate control schemes. It
also hints at the structure of periodic trajectories and their bounds.

Finally, we conjecture that SOP orbits may be relevant to study of the structure of periodic orbits arising
in engineering applications. These periodic orbits have been studied extensively in mathematics community
and also arise when the delay is state-dependent, which is a useful context in networking [7]. These SOP
orbits support the earlier belief that the round-trip time may be the most relevant time scale for network
stability studies.
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Appendices

A Proof of Theorem 2
Before proving the theorem we will state a lemma which is the key to the proof of Theorem 2.
Lemma 3 Suppose that an interval J is mapped by F into itself. If none of the endpoints of the intédyal F

is fixed point then for every € X; = C([—1,0],J) there exists a finite = to(¢, v, K) such that §(t) € F(J)
forallt > tg.
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Proof: From Theorem 1 it is clear tha?g, e Jforallt > 0. The claim here is that after certain tirget
will be limited by F(J) C J.

First, assume thap(0) € F(J). Then it can be shown thaf(t) € F(J) for all t > to by contradiction.
Suppose that this is not true and tgbe the first time whery(t ) leaves the intervalF (J). In particular
assume that it leaves from the right end,, every right-sided neighborhood ®€tontains a point; such that
Ypl(tr) > supF (J). Then, the same neighborhood also contains a potgt t, < to+ 1, such thajy(tz) >

supF (J) andy}(tz) > 0. Asyj(t) € J for all t € [to — 1,1o], we havey(tp) = “Y2)10. “We=D)—v()) <
from (14). This contradicts the earlier assumption (&) > 0. The other case wheg% ) leaves the
interval from the left end can be handled similarly.

Now assume tha(0) ¢ F(J). In particular, letg(0) > supF(J). Claim here is thay(t) is de-
creasing for allt € [0,%], wherety < « is the first point withyy(to) = su pF(J). We first argue that

to < o by contradiction. Suppost = c and, henceyy(t) > supF(J) for allt > 0. From (14) we

have y(ty) = XMDI@ ) v)) g pecausef (gL(y(t, — 1))) < supF(J). Then there exists a
limit y = Iimt_,ooy‘(f,(t) > supF (J) due to Bolzano-Weierstrass theorem [5] which says that every strictly
decreasing sequence which is bounded from below has a limitly isnot a fixed point of mag-,
K($)(¥— F(g1(y))) := 8> 0. This tells us from (14) thay(f) = W@V VO) o _ 3 for Jarge

Vv
enought. This implies that(t) — —e ast — e, which is a contradiction, because this means g}

crosses sub(J) for some finitet. Hence,ly < . Now, we invoke the first part of proof where system is
restarted at timg with y(tg) = supF (J) andy(t) € J Vt € [t, — 11tp]. Using the same argument we can show
thaty(t) € F(J) for all t > to. The other case can be handled similarly. n

Now we provide the proof for Theorem 2 using this lemma. For@ryX;, definem=inf{q(s), s€
[-1 0} andM = sup{@(s), se [-10]}. Clearly,[m M] C %. LetJ be the smallest closed invariant
interval containingim M] which is a subset of. Then, from the existence of fixed point of the mfap
JOFWJ)DF(FWJ)) D... andNi»oF'(J) = x*. Using the invariance result and Lemma 3 repeatedly
one can find arbitrarily small estimates for the range of trajectories with large enotiphs, the theorem
follows.

B Proof of Theorem 4

Before we state the invariance theorem we first prove a proposition which establishes orthant invariance for
a vector under the multiplication with a positive diagonal matrix.

Proposition 2 (Orthant-Invariance) For a diagonal positive matrix & (N*N and an arbitrary vector
v € ON, Kv remains in the same orthant as v.

Proof: Any vectorv can be expressed as a linear combination of basis vefgdrsr v= Zic;g. Clearly,
due to the diagonal structure of positive matkix Kv = 2k cig which means that all the coefficients
retain their original sign even after the multiplication wkKh This ensures the fact that they remain in the
same orthant. [

Clearly, diagonal structure of positive gain matkix) is useful to determine the directions of right
hand side of (24). We note here that diagonal structure gives us more than required in the sense that a
non-diagonal positive(-) can ensure that the right hand side of (24) stays directed towards the interior of a
convex domain on any boundary point.

Lettyp > O be the first time at whicl’(tp) € D and the solutiory’(t) leaves the domaib for t > t,.
This implies thawy" (to) is directed towards the outside of the domain. Now, sincethe first such point
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at which the trajectory leaves the doma F (¥’ (to — 1)) lies in the domairD. Therefore, the vectors
F(V(to— 1)) — ¥ (to) andk (¥’ (to)) (F(¥’(to — 1)) — " (to)) will both be directed towards the inside of the
domainD because& (Y’ (tp)) > 0 andD is convex. This holds because of the orthant-invariance property of
vectors under the multiplication with positive diagonal matrix as shown in Proposition 2 and the assumption
that D is a product space. Howeves' (to) = k(Y (to)) (F(¥"(to—1)) —¥*(to)) from (24), which is a
contradiction.

C Proof of Theorem 5

We will first prove a lemma which will be used to prove the theorem.

Lemma4 LetV be any open product space containingZDF (Dp) and contained in pand arbitrary
initial functions@ € Yp,. (i) If ¢(0) is in closure of the set V, &), theny,, is in the closure of V for all
t > 0. (ii) If ¢(0) is notin the closure of V then there exists a finite tirety(¢, Do, K(-)) such thaty, € oV
andyj, € cl(V) for all t > to with 0V denoting the boundary of V.

Proof:  First, assumep(0) € cl(V). Then, one can show thgf(t) € 0V for all t > 0 following a similar
argument in the proof of Theorem 4.

Now suppose thap(0) ¢ cl(V), and letty the first time such thaf(to) € 0V. Then, one can show that
Yy € cl(V) for all t > to, again, following a similar argument in the proof of Theorem 4.

Suppose that we begin with(0) ¢ cl(V) andy, ¢ cl(V) for all imet > 0. Also, letM be the maximal
open product space containivgsuch thatM Nncl({Y(t),t > 0}) = 0. Note that it is possible foM to
coincide withV. SinceM is maximal such set there exists a sequdnce- 1,2, ---, such thav‘(f,(ti) —Yo €

K(y‘vf)(ti)) [F(y‘é(ti —-1)) —V(’p(ti)], which form the right hand
side of (24) at these time instants. BecalMke Dy andF (M) C D, these vectors are bounded away from
zero,i.e.,there exists somé& > 0 such thatr;| > 6, and are directed strictly towards the inside of domain

M. Since the origins of the vectorsconverge to the poing € dM andr;’s point to the inside oM, there
must exist some such thag(t') € M, which is a contradiction. -

Now we provide an easy proof for Theorem 5. Since it is possible to construct a sequence of nested open
product spaces;1 C U; such thatF (U;) C Ui+1 andnisoU; = {y*}, by repeated application of Lemma 4

there exists a sequengg} — c such thatyy(t) € cl(U;) andy(t) remains inside due to the invariance
theorem foit > t;. As Ni>oU; = {y*}, asymptotic convergence and implied stability yofollows.

D Proof of Lemmal

From (45) we have

Note that sinc& > a > 1,

b > €l by i S el b L Z'Gh X by
Z oP (#) < Zo(bmax( i J) :Gbmaxlgi (%) 57)

ler; ler;
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Therefore,

where the second inequality follows froon< — maX” for alli € |. Therefore, iff < @°, thenp satisfies
the second condition in (46).
Similarly,

where the first inequality follows from th& < 1. Hence, |f[3 <dorp>avo, thenF (Bx*) < ax* and
satisfies the first condition in (46).

E Proof of Lemma?2

We first show thaDy. 1 C int(D), for aII k=0,1,---. This can be easily shown as follows. We know from
the proof of Lemma 1 thgd < @° and[3 <. Hence D1 C int(Dg). Now similarly as before, sindg < a°

we havea® < B and becausé < 0( o’ < B WhICh foIIows from that— 1 < 0 < 0. By repeating

this we ge’rﬁ0 < p’ andﬁ0 <p° for oddkand|3 <a° and|3 <@ for evenk, proving that
Dk+1 C int(Dy). The fact thatny oDk = {x*} follows trivially from that lim_.., o = 0 becauséa]| < 1.

Hence, Iinp(_,ooa =1=Ilim e [3
Now we prove thaF(Dk) C Dyy1,k=0,1,---. Here we prove this only for the case whéres even.
The other case can be proved similarly. Following the same approach in the proof of Lemma 1 we have

Fia”) - (o) (z (Zf))

ler;
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Sincea® > 1 (becausé is even),

S () <) () 00 () e

ler I€ri

Therefore,

B

% . %\ b -1

E (@ %) = a"k)(i*) 3 (Iz.ackb. (Z%TX,> ) a
ok blmax zjell x¥ b\ —

()5 (27)')

= (ack & XI*
K\ O
O *
> (a%) x
gkt
=0° X .

~ —ak _~k+1
Similarly one can show th&t(Bcy xX*) < |3° ’ X*. This completes the proof of the lemma.
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