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Abstract

We adopt the optimization framework for rate allocation problem proposed by Kelly and character-
ize the stability condition with anarbitrary communication delay in the case of single resource. We
demonstrate the existence of a fundamental trade-off between users’ price elasticity of demand and the
responsiveness of resource through a choice of price function as well as between system stability and
resource utilization. We investigate the effects of non-responsive traffic on system stability and show that
the presence of non-responsive traffic enhances the stability of system. We also investigate the system
behavior after the system loses its stability.

Keyword – Economics, Control theory, Mathematical programming/optimization

1 Introduction

With the unprecedented growth and popularity of the Internet the problem of rate/congestion control is
emerging as a more crucial problem. Poor management of congestion can render one part of a network
inaccessible to the rest and significantly degrade the performance of networking applications. The fact
that the Internet is now in the public domain, and thus in a potentially non-cooperative environment, has
stimulated much work on designing rate control mechanisms based on some form of pricing mechanism to
ensure that users do not misbehave.

Kelly [12] has suggested that the problem of rate allocation for elastic traffic can be posed as one of
achieving maximum aggregate utility of the users and proposed an optimization framework for rate alloca-
tion in the Internet. Using the proposed framework he has shown that the system optimum is achieved at the
equilibrium between the end users and resources. Based on this observation researchers have proposed var-
ious rate-based algorithms that solve the system optimization problem or its relaxation [12, 18]. However,
the convergence of these algorithms has been established only in the absence of feedback delay, and the
implications of feedback delay have been left open as well as any trade-off that may exist between stability
and selected utility and cost functions. Modeling the communication delay is especially important when
the delay is non-negligible,e.g.,multi-hop mobile wireless networks. Tan and Johari have studied the case
with homogeneous users,i.e.,same round-trip delays and same form of utility functions, and provided local
stability conditions in term of users’ gain parameters and communication delays. In general their results
state that the product of gain parameter and communication delays should be no larger than some constant.
Similar results have been obtained in [4] in the context of single flow and single resource and [2] with more
general utility functions in the context of single bottleneck. The stability conditions state that the product
of the delay and gain parameter of end user algorithms needs to be smaller than some constant that depends
on the utility function of the users. However, these results focus on characterizingsufficientconditions for
stability and, as a result, do not point at a close relationship between system stability and the parameters at
the end users and network elements as is done in this paper.
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In this paper we study the problem of designing a robust rate control algorithm in the presence of a
communication delay between network resources and end users. However, unlike in the previous studies
where the authors give the conditions for stability of the system, we establish adelay-independentstability
criterion for system optimization problem in the presence of an arbitrary delay. Our approach is consistent
with the philosophy that network protocols must be simple and robust given the complexity and scale of
the Internet. This also provides a fresh way of looking at the issue of communication delay than traditional
approaches. A natural question that arises in this setting is whether or not it is possible to design a system that
is stable with an arbitrary communication delay. If it is possible, what are the necessary and/or sufficient
conditions for the stability? In addition, what is the impact of the non-responsive traffic on the system
stability? The last question is emerging as an important issue with a growing interest of implementing real-
time applications on top of User Datagram Protocol (UDP), which are not as responsive as elastic traffic.

Our analysis is based on the invariance-based global stability results for nonlinear delay-differential
equations [9, 10, 19]. This kind of global stability results are different from that based on Lyapunov or
Razumikhin theorems used in [2, 4, 27] or from passivity approach [28], and our set up also hints at the
structure of emerging periodic orbits (such as their periodicity and amplitude) in the case of loss of stability.
Generally speaking, our results can be summarized as follows. First, there is a close relationship between the
stability of a delay-differential equations that describes network dynamics and an underlying discrete time
map. Second, if the user and resource curves have a stable market equilibrium, which is captured by the
underlying discrete time map, then corresponding dynamical equation for flow optimization will converge
to the optimal point in the presence of an arbitrary delay. This result essentially shows that stability is
related to utility and price curves in a fundamental way. In particular, for a given price curve, it is possible
to design stable user utility functions such that the ensuing dynamical system converges to the optimal flow
irrespective of communication delay. Conversely, if the underlying market equilibrium is unstable then
it is possible to find a large enough delay for which the optimal point loses its stability and gives way
to oscillations. In practice, this gives rise to a fundamental trade-off between the responsiveness of end
users and network resources. In other words, given the responsiveness of network resource, there is a limit
on how aggressivelyselfishend users can react to feedback in order to ensure delay-independent network
stability. Our results reveal another trade-off between delay-independent network stability and resource
utilization. These results provide an interesting perspective for designing end user algorithms and active
queue management (AQM) mechanisms.

It is worth noting that in general characterizing the exact necessary and sufficient conditions for stability
with a delay is difficult. Hence, our results provide asimpleand robustway of dealing with the problem
of widely varying feedback delay in communication networks through a clever choice of the users’ utility
functions and price functions. We also study the oscillatory orbits that appear when the system loses stability
by explicitly giving the bounds on their amplitude. It is shown that these bounds are derived from an
underlying discrete-time map that goes through a period doubling bifurcation with the loss of stability.
Finally, we investigate how the presence of non-responsive traffic affects the system stability. Our analysis
indicates that the presence of non-responsive traffic, which in fact can be thought of as the limiting case
of elastic traffic with decreasing responsiveness, improves the system stability. This is consistent with our
earlier results that the less responsive users are, the more stable system is.

This paper is organized as follows. Section 2 describes the optimization problem for rate control. Sec-
tion 3 studies the single flow case, which is followed by the multiple heterogeneous users case in Section 4.
We illustrate how our results can be applied to the rate control problem in networks in subsections 5. The
effects of non-responsive flows are investigated in Section 6.
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2 Background

In this section we briefly describe the rate control problem in the proposed optimization framework. Con-
sider a network with a setL of resources or links and a setI of users. LetCl denote the finite capacity of
link l � L . Each user has a fixed routeri , which is a non-empty subset ofL . We define a zero-one matrixA,
whereAi�l � 1 if link l is in useri’s routeri andAi�l � 0 otherwise. When the throughput of useri is xi , user
i receives utilityUi�xi�. The utility Ui�xi� is an increasing, strictly concave and continuously differentiable
function ofxi over the rangexi � 0.1 Furthermore, the utilities are additive so that the aggregate utility of
rate allocationx � �xi � i � I � is ∑i�I Ui�xi�. Let U � �Ui���� i � I � andC � �Cl � l � L�. The rate control
problem can be formulated as the following optimization problem:
SYSTEM(U,A,C):

maximize ∑
i�I

Ui�xi� (1)

subject to ATx�C � x� 0

The first constraint in the problem says that the total rate through a resource cannot be larger than the
capacity of the resource. Instead of solving (1) directly, which is difficult for any large network, Kelly in
[12] has proposed to consider the following two simpler problems.

Suppose that each useri is given the price per unit flowλi. Givenλi , useri selects an amount to pay per
unit time,wi, and receives a flowxi �

wi
λi

.2 Then, the user’s optimization problem becomes the following
[12].
USERi�Ui ;λi� :

maximize Ui

�
wi

λ i

�
�wi (2)

over wi � 0

The network, on the other hand, given the amounts the users are willing to pay,w� �wi� i � I �, attempts to
maximize the sum of weighted log functions∑i�I wi log�xi�. Then the network’s optimization problem can
be written as follows [12].
NETWORK(A,C;w) :

maximize ∑
i�I

wi log�xi� (3)

subject to ATx�C � x� 0

Note that the network does not require the true utility functions�Ui���� i � I �, and pretends that useri’s
utility function is wi � log�xi� to carry out the computation. It is shown in [12] that one can always find
vectorsλ� � �λ�i � i � I ��w� � �w�

i � i � I �, andx� � �x�i � i � I � such thatw�
i solvesUSERi�Ui ;λ�i � for all

i � I , x� solvesNETWORK�A�C;w��, andw�
i � x�i � λ�i for all i � I . Furthermore, the rate allocationx� is

also the unique solution toSYSTEM�U�A�C�.
Assume that every user adopts a rate-based flow control. Letwi�t� andxi�t� denote useri’s willingness

to pay per unit time and rate at timet, respectively. Now suppose that at timet each resourcel � L charges
a price per unit flow ofµl �t� � pl �∑i:l�ri

xi�t��, wherepl ��� is an increasing function of the total rate going
through it. Consider the system of differential equations

d
dt

xi�t� � κi�wi�t��xi�t� ∑
l�L

µl �t�� (4)

1Such a user is said to have elastic traffic.
2This is equivalent to selecting its ratexi and agreeing to paywi � xi �λi .
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whereµl �t� � pl �∑i:l�ri
xi�t��. These equations can be motivated as follows. Each user first computes a

price per unit time it is willingness to pay, namelywi�t�. Then, it adjusts its rate based on the feedback
provided by the resources in the network to equalize its willing to pay and the total price. The feedback
from a resourcej � J can also be interpreted as a congestion indicator, requiring a reduction in the flow
rates going through the resource. For more detailed explanation of (4), refer to [14].

Kelly et al. have shown that under some conditions onpl ���� l � L , the above system of differential
equations converges to a point that maximizes the following expression

U�x� � ∑
i

Ui�xi��∑
l

� ∑i:l�ri
xi

0
pl�y�dy� (5)

Note that the first term in (5) is the objective function in ourSYSTEM(U, A, C)problem. Thus, the algorithm
proposed by Kellyet al. solves a relaxation of theSYSTEM�U�A�C� problem.

The analysis of the convergence of the rate control algorithm, however, does not model the commu-
nication delay that is present between the resources and the end users. There has been some work done
on studying the stability of the system in the presence of communication delay. Tan and Johari [11] have
analyzed the case where every user has the same round-trip delay and log utility function and given the con-
ditions on local stability in terms of the gain parameterκi and and communication delayDi . Moreover, they
have shown the convergence rate of the system in the case of single-user single-resource. More recently Deb
and Srikant [4] have investigated the stability of the system in the context of single flow and single resource.
They have provided a sufficient condition for stability. However, as will be shown in this paper, the provided
sufficient condition is not necessary and can be very restrictive depending on the range in which the initial
condition lies. Alpcan and Basar [2] have also studied the stability of a system with a single resource and
multiple flows and provided a sufficient condition for stability.

In this paper we investigate the global stability of the system. More specifically, we are interested in
characterizing the condition on the users’ utility functions and resource price functions in such a way that
the system is guaranteed to be stable regardless of the communication delay or users’ gain parametersκi.
We also study the trade-off between the responsiveness of resource price functions and end users’ utility
functions, which can be captured using the notion of price elasticity of demand.

3 Stability Condition: Single-Flow, Single-Resource

In this section we first consider a flow traversing a single resource. The rate control problem can be formu-
lated as the following net utility optimization problem [12]:

max
x

U�x��
� x

0 p�y�dy (6)

s. t. x�C

wherex is the rate,U�x� is the utility of the user when it receives a rate ofx, p�x� is the price per unit flow
when the rate isx, andC is the capacity of the resource. The proposed end user algorithm in the absence of
delay is given by the following differential equation [14].

d
dt

x�t� � κ �w�t��x�t�µ�t�� (7)

wherew�t� is the price per unit time user is willing to pay,µ�t� � p�x�t��, andκ�κ � 0, is a gain parameter.
The case wherew�t� is a fixed constant,i.e., U�x� � log�x�, is studied in [13]. In this paper we consider
general utility functions that satisfy a set of assumptions to be stated shortly. An example of a family of
utility functions that satisfy such assumptions is given in Section 5.
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The model used for design of end user rate control algorithm described here [13] does not explicitly
address the case where the total demand of the users exceeds the link capacity. In practice total rate of the
users (or at least the feedback from the resource) is limited by the link capacity. We prevent the resource
feedback signal from exceeding the link capacity by making the following assumption:

Assumption 1 We assume that the rate of the flow is bounded from above by the link capacity C.

Therefore, throughout the rest of the paper we implicitly assume that when the rate of the flow reaches the
link capacity, the time derivative is given by min�ẋ�t��0�. This assumption can be lifted if the solution to the
optimization problem in (6) is smaller than the link capacity and communication delay is sufficiently small.

Using the end user algorithm given in [14] we assume thatw�t� � x�t� �U
�

�x�t��. Now, suppose that
congestion signal generated at the resource,i.e., p�x�t��, is returned to the user after a fixed round trip delay
T. In the presence of delay the interaction is given by the following delayed differential equation

d
dt

x�t� � κ
�

x�t�U
�

�x�t���x�t�T�p�x�t�T�
�

(8)

After normalizing time byT and replacingt � s�T, (8) becomes

d
Tds

x�s� � κ
�

x�s�U
�

�x�s���x�s�1�p�x�s�1��
�

ν
d
ds

x�s� � x�s�U
�

�x�s���x�s�1�p�x�s�1�� (9)

whereν � 1
Tκ . It is (9) we are interested in studying from the stability point of view. ForT �� 1, this

equation can be seen as following singular perturbation

ν
d
dt

x�t� � g�x�t��� f �x�t�1�� (10)

of general nonlinear difference equation with continuous argument given byg�x�t�� � f �x�t �1��� t � 0,
whereg�x� � x�U

�

�x� and f �y� � y� p�y� in the context of (9). Under certain natural invertibility conditions
on g���, it leads to a much studied equation [24]

x�t� � F�x�t�1��� t � 0 (11)

whereF��� � g�1� f ����. For the solution of (11) to be continuous fort ��1, along with the continuity ofF
and initial conditionφ���, a so-called consistency condition limt��0φ�t� � F�φ��1�� is required [10, 24]. It
turns out that a great deal about the asymptotic stability of (10) can be learned from the asymptotic behavior
of following difference equation, withZ� denoting the set of positive integers:

xn�1 � F�xn�� n� Z� (12)

The concave utility functions and resource price functions assumed in [12, 14] do not satisfy the as-
sumptions in [9], and hence we cannot directly apply their results. However, the general approach used in
the paper for establishing the stability can be extended to study the convergence of (8). In the following sub-
section we first establish general convergence results for one dimensional case described here and a bound
on the range of system when the system loses its stability. In Section 5 we illustrate how our results in sub-
section 3.1 can be applied to study the convergence of the system described in this section to the optimum
with utility and resource price functions given in the section.
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3.1 Convergence Results

In this subsection we establish the conditions for convergence of the system in (9) regardless of the commu-
nication delayT. Consider the following substitution:

y�t� � x�t�U
�

�x�t�� :� g�x�t�� and f �x�t�� :� x�t�p�x�t���

We first make the following assumptions on the functionsg�x� and f �x�.

Assumption 2 (i) The function g�x� is strictly decreasing with�g
�

�x� � 0 for all x � 0, (ii) the function
f �x� is strictly increasing for all x� 0, and (iii) both g�x� and f�x� are Lipschitz continuous on�ε � ∞�,
whereε is an arbitrarily small positive constant.

This allows us the following change of coordinate:

x�t� � g�1�y�t��� ẋ�t� � ẏ�t�
g� �g�1�y�t���

(13)

νẏ�t� � g
�

�g�1�y�t����y�t�� f �g�1�y�t�1����

where the inverseg�1��� exists from Assumption 2. Letκ�y�t�� :� �g
�

�g�1�y�t���. Clearly, κ�y�t�� � 0
under Assumption 2. Using this substitution in (13) we get the following form.

νẏ�t� � κ�y�t��
�

f �g�1�y�t�1����y�t�
�

(14)

We study (14) and show that there is a close correspondence between invariance and global stability proper-
ties of the discrete-time map

yn�1 � f �g�1�yn�� :� F�yn� (15)

and those of (14). In particular, we will prove that ifyn�1 � F�yn� has a fixed point then (14) will have a
uniformly constant solution for all possible time delaysT � 0 if the initial function’s range is contained in
the immediate basin of attraction of this fixed point. The proofs are based on the invariance property of the
underlying mapF��� and the monotonicity of functiong���. The mapF�y� is strictly decreasing because
g�1�y� is strictly decreasing under Assumption 2 and a composition of a strictly increasing function and a
strictly decreasing function is a strictly decreasing function.

Assumption 3 Suppose now that I� �x : x� ε� is a closed invariant interval under F. In particular let
I � �a� b� be compact.

Let X :�C���1�0�� ℜ ��, andXI :� �φ� X : φ�s� � I 	 s� ��1�0��. Under this assumption, we have
invariance for the solution of (14) for all timet � 0 and for allν� 0. Since the functions involved in (14) are
Lipschitz continuous by assumption, solutions do exist for allt � 0 and are unique for any initial function
φ�XI , whereI is the assumed closed invariant interval underF. Furthermore, the invariance property of the
solutions, which is stated below (Theorem 1), ensures that they stay positive and bounded by the initial set
they start in, which is assumed to be invariant under mapF. For the proofs of the results in this paper refer
to [21].

Theorem 1 (Invariance) Ifφ� XI , the corresponding solution y�t� � y�t;φ� satisfies y�t� � I for all t � 0.
It means that set I is invariant under (14).
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Proof: : Let t0 be the first time when solutiony�t;φ� leavesI with φ� XI . In particular, we can assume
that y�t0� � b and every right hand neighborhood oft0 will have a t1 � t0 such thaty�t1� � b. Then, we
can find a pointt2� t0 � t2 � t0�1� such thaty�t2� � b and ẏ�t2� � 0. Sincey�t2�1� � b, we have ˙y�t2� �
κ�y�t2��� f �g�1�y�t2�1����y�t2��

ν � 0 from (14) and Assumption 3 thatI is invariant underF, i.e., f�g�1�y�t2�
1���� b. This contradicts with the earlier assumption that ˙y�t2�� 0.

Similarly, suppose thaty�t0� � a and the trajectory exits from left end of the interval. Then, every right
hand neighborhood oft0 will have at1 � t0 such that 0� y�t1�� a due to the smoothness of solutions, and
we can findt2� t0 � t2 � t0 �1� such that 0� y�t2� � a and ẏ�t2� � 0. From thaty�t2� 1� � a, we have

ẏ�t2� �
κ�y�t2��� f �g�1�y�t2�1����y�t2��

ν � 0 from (14) and Assumption 3. This, however, contradicts the assumed
negativity ofẏ�t2�� 0. Hence, the theorem follows.

Next theorem considers the case when mapF has an attracting fixed pointy� with immediate basin of
attractionJ0 : Fny0 
 y� for anyy0 � J0. Let XJ0 �C���1�0��J0�. Then, the following theorem holds.

Theorem 2 (Stability) For anyν � 0 andφ� XJ0, limt�∞ yν
φ�t� � y�.

Proof: The proof is given in Appendix A

The above theorem tells us that if the initial function lies inXJ0, then the ratex�t� converges to the
solution of (6) regardless of the value ofT or κ. Hence, it establishes a strong convergence result in the
presence of a communication delay.

3.2 Linear Instability

In the previous subsection we have demonstrated that the system in (9) converges with an arbitrary delay
under Assumptions 2 - 3 if the initial condition lies in the specified invariant set. In this subsection we
study the case where the map defined by (15) loses stability and goes through a period doubling bifurcation
with its eigenvalueλ :� dF

dx �x�x� ��1, wherex� is an unstable fixed point of mapF . We describe how the
instability of underlying discrete-time map is translated to the instability of delay-differential equation in
(14).

Assuming that the mapF given by (35) is locally smooth, it is possible to find conditions for linear
instability of the fixed point of the mapy� and that of constant functiony�t� � y� for the delay-differential
equation in (14). In order fory�t� � y� to be locally asymptotically stable for allT � 0, following variational
equation should have its zero solution stable.

z
�

�t� � κ�y�t��F
�

�y�t�T��
���
y�y�

z�t�T��
�

κ
�

�y�t�� �F�y�t�T���y��κ�y�t��
����

y�y�
z�t�

� κ�y�t��F
�

�y�t�T��
���
y�y�

z�t�T�� κ�y�t���y�y� z�t� (becauseF�y�� � y� )

:� Bz�t�T��Az�t� (16)

whereB� κ�y��F �

�y�� andA��κ�y��. Now in order to determine the stability ofy�t� � y�, we can apply
the following well known results [20].

(1) Eq. (16) is stable for allT � 0 only if:

A� 0 and�A� �B� (17)

(2) In case when the above condition in (17) is violated we have partial stability for some values of time
delays:

�B� �A� and T � T� :�
cos�1��A

B�

B2�A2 � (18)
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For our case it follows from (16) thatA :��κ�y�� is always negative, which holds due to the fact that
κ��� is always positive. The second conditionκ � κ�F�

� is crucial to stability of (14). Clearly, for the case
when F

�

� �1 (period doubling condition for the mapF) the linear stability condition given by (17) is
violated and for a large enoughT the constant solutiony�t� � y� will not be stable. Thus, we know that in
unstable situation solutions will be more complex than a constant function and will stay within the interval
they initially start from due to the invariance results given by Theorem 1.

Theorem 3 Let I :� �a�b� be a closed interval such that F�I� :� �a1�b1� � I. Let the initial condition
φ�t� � XI be the solution of (14). Now, if the points a1 and b1 are fixed points of F, then for all sufficiently
smallε� 0 there exists a finite T� T�φ�ε�κ� such that y�t� � �a1� ε�b1� ε� for all t � T.

Proof: The proof follows the same arguments used in the proof of Theorem 1 except that boundary
considered here isb1 � ε from right. In the interval�b1 � ε�b� solution will be strictly decreasing until
it reaches the pointb1 � ε. Afterwards from invariance theorem it stays bounded byb1 � ε from above.
Similar reasoning follows for lower bound.

Above theorem essentially gives bounds for the interval which will contain the solution asymptotically.
Now suppose thaty�t� is a solution of (14) under the instability condition that mapF

�

�y�� � �1. Due to
invariance theorem we know that 0� liminft�∞ y�t� � m� limsupt�∞ � M ��∞.

Now based on the theory developed in [8] we make following observations:

(1) If the solutiony�t� is strictly monotone thenm� M � y� because of the boundedness of solutions.

(2) If m �� M then the solutiony�t� is oscillating. In particular, the solutions will have a sequence of maxima
at times�tn� and minima at times�sn�. Clearly,y

�

�tn� � y
�

�sn� � 0 for all tn andsn. This implies from (14)
that y�tn� � F�y�tn�1�� andy�sn� � F�y�sn�1��. This shows interesting discrete time map structures in
the solution of delay-differential equation (14).

(3) If y�t� does not converge toy� then it oscillate around it. This holds due to the fact that image of the
interval �m�M� underF contains�m�M�. Hence, it will have a fixed pointy�.

From (1) through (3) above we conclude that solutions either converge to the fixed point or oscillate
around it.

3.3 Note on Lyapunov Function for Single User with Single Resource

In this subsection, we study the stability of the underlying discrete time model which in turn determines the
stability of the delay-differential equation, using Lyapunov theory for discrete time maps [22]. Interestingly,
the class of Lyapunov functions that were originally proposed by Kelly [12] for the systems with no delay
appears to be useful for underlying discrete time maps of the delay-differential equations.

Consider the following (Lyapunov) functions for discrete time maps of interest:

L�x� �� �U�x��c�x�� �U�x���c�x���� (19)

wherex� is the maximizer ofU�x�� c�x� andc�x� �
� x

0 p�y�dy, which exists for utility and cost functions
in [12]. Clearly, function in (19) is strictly positive everywhere except forx � x�, where it is zero, and
convex. We also know thatx� is the only fixed point of the discrete time mapF�x�� � x� given by (15), and
is also the unique solution ofL��x� � 0 due to extremality condition.
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In order to argue that (19) is a Lyapunov function for the underlying discrete time system we need
to show that change inL��� is strictly negative along the discrete time mapF��� starting from any initial
condition except forx� x� or

∆L�x� :� L�F�x���L�x�� 0� 	x� 0� x �� x� (20)

If we look at the differential of∆L�x�, it is clear that∆L��x� has at least one zero atx� x�.

∆L��x�
��
x�x� � L��F�x��F ��x�

��
x�x�� L��x�

��
x�x�

� L��x��F ��x���L��x�� � 0

In order to study the nature ofx� we will need the second derivative of∆L�x� evaluated atx� x�.

∆L���x�
��
x�x� � L���F�x��

�
F ��x�

�2
���
x�x�

� L��F�x��F ���x�
��
x�x� � L���x�

��
x�x�

� L���x���
�
F ��x��

�2
�1� (21)

becauseF�x�� � x� andL��x�� � 0 due to the fact thatx� is the unique minimizer ofL. Depending on the
magnitude ofF��x�� we have three cases to consider: (i)�F��x���� 1, (ii) �F ��x���� 1, and (iii) �F��x���� 1.
In the first two cases, we assume that∆L��x� has a unique zero atx� x� (i.e.,∆L��x� is monotonic) and show
under this assumption that in the first two casesx� is either a global maximizer or a global minimizer of
∆L�x�, leading to either global stability or the lack thereof for the discrete time systemF���. One can show
numerically that the utility and resource price functions used in Section 5 satisfy this assumption under a
mild condition. Also, we conjecture that this assumption holds for a large set of utility and resource price
functions. We discuss the aforementioned three cases:

(i) For �F ��x��� � 1, ∆L���x�� � 0 asL���x�� � 0 due to the convexity ofL���. This implies thatx� is a
maximizer of∆L��� and since∆L�x�� � 0,∆L�x� uniformly negative over positive real axis except forx� x�.
This gives us uniform asymptotic stability for the mapF���.

(ii) For �F ��x��� � 1, ∆L���x�� � 0 asL���x�� � 0 due to the convexity ofL���. This means thatx� is a
minimizer of ∆L���, and since∆L�x�� � 0, its uniformly positive over positive real axis except forx � x�.
This shows instability for the mapF���.

(iii) In the case where�F��x���� 1, x� becomes neutrally stable. This is essentially the bifurcation point
from stable to unstable behavior. Hence, parametersρ at which�F��x��ρ��ρ��� 1 are critical from stability
point of view and give the region of stable operation.

Hence, we see that�F��x���� 1 is crucial to the stability of the whole system. In particular the case when
F ������1 is more interesting as it indicates the birth of oscillations through period doubling bifurcation.

Next we describe a sufficient condition that guarantees the existence of a unique global attractor under
the above Lyapunov function. In order forx� to be the global maximum it suffices to show that∆L��x� � 0
for all 0� x� x� and∆L��x�� 0 for all x� x�. To this end we rewrite∆L��x� as follows:

∆L��x� � L��F�x��F ��x��L��x�

�
�F ��x�
F�x�

�g�F�x��� f �F�x����
1
x
�g�x�� f �x��

�
�1
x

�
�xF��x�

F�x�
� f �F�x��� f �x��� �g�x�� f �x��

�
(22)

where the last equality follows from thatF�x� � g�1� f �x��.

Assumption 4 Suppose that0� �xF��x�
F�x� � 1 for all x � 0.

9



Under the above assumption one can see from (22) that a sufficient condition to have∆L��x� � 0 for all
0� x� x� is

f �F�x��� f �x� � g�x�� f �x�

since bothf �F�x�� f �x� andg�x�� f �x� are positive. This is equivalent to

g�1� f �F�x��� � g�1�g�x�� � x

becauseg��� is assumed to be monotonically decreasing. From the definition of the mappingF��� one can
see thatg�1� f �F�x��� � F�F�x��. Therefore, a sufficient condition is thatF2�x� � x for all 0 � x � x�.
Similarly, one can show that a sufficient condition for the other case,i.e.,∆L��x� � 0 for all x� x�, is that
F2�x�� x.

Proposition 1 Suppose that Assumption 4 holds. Then, a sufficient condition for the existence of a unique
global stable equilibrium under the above Lyapunov function is that F2�x�� x for all x� x� and F2�x�� x
for all 0� x� x�.

One can easily show that Assumption 4 and the above conditions in Proposition 1 hold with the utility and
price functions used in Section 5 under a stability condition.

4 Stability Conditions: Multiple-Flow, Multiple-Resource

Let Il be the set of users traversing resourcel � L , i.e., Il � �i � L � l � ri�. We assume thatpl ���� l � L �
are strictly increasing and continuously differentiable. Suppose that the feedback information from the
resources to the end users is delayed byT � 0. Following Kelly’s rate control formulation [12], the rate of
i-th user now evolves according to the following delay-differential equation

d
dt

xi�t� � κi�xi�t�U
�

�xi�t���xi�t�T��∑
l�ri

µl �t�T��� (23)

whereµl �t�T� � pl �∑ j�Il xj�t�T��. After normalizing time in (23) byT and using the substitutionyi �
xiU

�

�xi� :� gi�xi�, the dynamic equation fori-th user can be rewritten as

xi�t� � g�1
i �yi�t��� ẋi�t� �

ẏi�t�

g
�

i�g
�1
i �yi�t���

νẏi�t� � κig
�

i�g
�1
i �yi�t����yi�t�� fi�g

�1�y�t�1����

whereν � 1
T , y�t�1� � �y1�t�1�� � � � �yN�t�1��, and

fi�g
�1�y�t�1��� � g�1

i �yi�t�1��

	
∑
l�ri

pl �∑
j�Il

g�1
j �yj�t�1���



�

We can write the above in the following matrix form:

νẏ�t� � κ�y�t���F�y�t�1���y�t�� (24)

whereκ��� is state dependent diagonal gain matrix withκii ��κ ig
�

i�g
�1
i �yi�t���. Clearly, this decomposition

is possible due to the fact that the utility of a user is a function only of its own rate and does not depend
on those of other users. The mapF��� given by (25) is a multidimensional one step nonlinear map which is
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crucial for understanding the stability of the system. We note that this system of differential equations has a
natural underlying difference map structure similarly as in the single-flow, single-resource case.

yn�1 � F�yn�� n� Z��yn � ℜ n
� and Fi�y� � fi�g

�1
1 �y1�� ����g

�1
N �yN�� (25)

The importance of this multidimensional one step map will be evident when it will be shown that global
stability of this map is a sufficient condition for the global stability of the delay-differential system given by
(24).

4.1 Convergence Results

For the case of multiple users with heterogenous utility functions we will need to prove the global conver-
gence in a multidimensional space. Our approach builds upon the approach used by Verriest and Ivanov [26].
The basic idea behind this approach is to use invariance and continuity properties of the underlying map for
the differential equation and find a sequence of bounds using convex sets, which converge to the singleton
with the solution to (5). Hence, the convergence is derived from the underlying map, which provides the
bounds for the trajectories of the delay-differential system. Following this plan, we will first prove the in-
variance of system given by (24) when the underlying map given by (25) has a convex invariance set that is
a product space. The assumption of existence of a convex invariance set is natural in rate control problem
as will be illustrated in the next section using a family of utility and resource price functions.

Before we present the convergence results, we state an assumption that we make ongi��� and fi���, i � I .

Assumption 5 (i) The function gi�xi� is strictly decreasing with�g
�

i�xi� � 0 for all xi � 0, (ii) the function
fi�x� is strictly increasing in each component for all x� 0, and (iii) both gi�xi� and fi�x� are Lipschitz
continuous onℜ � and ℜ N

�, respectively.

It can be seen that under this assumptionκ��� is strictly positive definite matrix, which turns out to be an
important property to prove the convergence results for the system given by (24).

Our first result states that the setC���1�0��D� is invariant under the action generated by (24), provided
thatD is closed, convex and invariant underF in (25).

Theorem 4 (Invariance) Suppose that D is a closed, convex, invariant domain under F��� given as a product
space, i.e., D� ∏N

i�1proji�D� where proji��� denotes the i-th component projection operator. Then, for any
initial function φ�C���1�0��D� :� XD the resultingyν�t� from (24) belongs to the domain D for all t� 0
andν � 0, where the superscriptν is used to denote the dependence onν � 1

T .

Proof: The proof is given in Appendix B.

Now, using the invariance property, we turn to the asymptotic property of delay-differential equation
under the natural assumption that the underlying map is stable. The lack of convexity of an imageF�D� of a
convex setD forbids the direct application of techniques developed by Verriest and Ivanov [26]. Instead our
approach is to construct a series of convex coverings of imageF�Dn� and look at their asymptotic behavior.
In particular, we construct a sequence of product spaces which seem to be the most reasonable choice for
the networking problems. These product spaces are obviously convex and if we can prove that they contain
their images, then the invariance follows. Also, due to the monotonicity property of mapF���, which follows
from Assumption 5, the coordinates of these product spaces and their images can be computed explicitly. To
recapitulate we want to construct a series of convex closed domains�Dn� such that under certain stability
conditions thatF�Dn�� Dn�1 � int�Dn�, whereint�Dn� denotes the interior ofDn, and�y�� � 
n�0Di, all
the solutions of the map given by (25) will converge toy� asymptotically.

11



Assumption 6 Multidimensional map F: ℜ N 
 ℜ N has an arbitrary fixed point y� and there exists an
open convex neighborhood int�D0�, which is an open product space. Also, assume that there is a sequence
of closed convex domains Dn�n� 0, that are product spaces, such that F�Dn��Dn�1� int�Dn� and�y���

n�0Dn.

Let YD0 �C���1�0�� int�D0�� be a subset of initial functions andyνφ a solution of (24) constructed through
φ�YD0.

Theorem 5 (Stability) All solutions starting with initial functionsφ�YD0 converge to y� for all ν � 0.

Proof: The proof is given in Appendix C.

Theorem 5 establishes that the attracting fixed point is stable in setD0. The basic tool these theorems
give us is to look at a delay-differential equation as a discrete map which is much more convenient to study
and intuitive from implementation point of view due to the discrete nature of computation elements. The
study of underlying maps give us more insight than the equations themselves as shown in the next section.

4.2 Note on Lyapunov Function for a General Network

In this subsection, we study the stability of the underlying discrete time model using Lyapunov theory for
discrete time maps [22] similarly as in Section 4.2 for one flow with single resource case. Consider the
following (Lyapunov) function for a discrete time map of interest:

L�x� ��

�
∑

i
Ui�xi��∑

l

� ∑i:l�ri
xi

0
pl �y�dy��∑

i
Ui�x

�
i ��∑

l

� ∑i:l�ri
x�i

0
pl �y�dy�

�
(26)

wherex� is the unique maximizer of∑i Ui�xi��∑l
� ∑i:l�ri

xi

0 pl �y�dy, which exists for utility and cost functions
used in [12]. Clearly,L�x� is convex and strictly positive everywhere except for atx� x�, where it is zero.

In order to show the stability of the underlying discrete time system we need to show that the change in
L���

∆L�x� :� L�F�x���L�x�

is strictly negative along the discrete time mapF���, starting from any initial condition except for atx� x�.
In other words,

∆L�x�� 0 for all x� 0� x �� x��

Before we analyze the nature of change in our Lyapunov function, let us define the following. This
notation will help us carry over the intuition of one dimensional case in Section 4.2.

L���� � ∇ L��� or Gradient ofL���

L����� � Hessian ofL���

F ���� � Jacobian of multidimensional mapF���

F ����T � Transpose ofF����

If we look at the gradient of∆L�x�, it is clear that∆L��x� has at least one zero atx� x�.

∆L��x�
��
x�x� � F ��x�TL��F�x��

��
x�x� � L��x�

��
x�x�

� F ��x��TL��x���L��x�� � 0

12



In order to study the nature of the extremal∆L�x�� we need the second-order derivative or Hessian of∆L�x�
evaluated atx� x�.

∆L���x�
��
x�x� � F ��x�TL���F�x��F ��x�

��
x�x�� L���x�

��
x�x� � Λ�x��x�x�

� F ��x��TL���x��F ��x���L���x�� (27)

becauseF�x�� � x�. The last termΛ�x�� goes away because it consists of the second-order derivative of map
F��� multiplied byL��x���� 0�. The stability of this system is dependent on the magnitude of eigenvalues
of F �T�x��F ��x��. Clearly, in order forx� to be a (local) maximizer of∆L��� (27) must be negative definite.

A simple example of a sufficient condition for (27) to be negative definite is

λmaxF
��x��TF ��x��� λminI (28)

whereλmin andλmax are minimum and maximum eigenvalues ofL���x��, respectively. Note thatL���x��� 0
asL��� is a convex function, and hence bothλmin andλmax are positive. HereI denotes theN�N identity
matrix. The condition in (28) implies that the singular value of matrixF��x� should be less thanλmin

λmax
.

5 Application to Rate Control Example

In this section we apply the results in the previous sections to investigate the stability of the rate control
problem described in Section 2 with a single resource. We consider the following class of users’ utility
functions:

Ua�x� ��
1
a

1
xa � a� 0� (29)

In particular,a� 1 has been found useful for modeling the utility function of Transmission Control Protocol
(TCP) algorithms [15]. This class of utility functions in (29) has been used extensively in engineering
literature [1, 12, 15]. We say that a useru1 with utility function Ua1�x� is greedier than another useru2 with
utility function Ua2�x� if a2 � a1. One can interpret the notion of greed here using the notion of elasticity
of demand [25]. With the utility functions of the form in (29) one can easily show that the elasticity of the
demand decreases witha as follows. Given a pricep, the optimal ratex��p� of the user that maximizes the

net utility Ua�x��
� x

0 p�y�dy is given byp�
1

1�a . The price elasticity of the demand, which measures how
responsive the demand is to a change in price, is defined to be the percent change in demand divided by the
percent change in price [25]. In our case the price elasticity of demand is given by

p
x��p�

dx��p�
dp

�
p

p�
1

1�a

�
�1

1�a
p�

1
1�a�1

�
�1

1�a
� (30)

Therefore, one can see that the price elasticity of demand decreases witha,3 i.e., the largera is, the less
responsive the demand is.

The class of resource price functions that we consider is of the form:

p�y� �
� y

C

�b
� whereb� 0 (31)

This kind of marking function arises if the resource is modeled asM�M�1 queue with a service rateC packet
per unit time and a packet receives a mark with a congestion indication signal if it arrives at the queue to find
at leastb packets in the queue. One can easily verify that these utility functions and resource price functions
satisfy the assumption in Sections 3 and 4.

3When comparing the price elasticity, typically the absolute value of (30) is used.
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5.1 Homogeneous Users

Using the utility function and resource price function of (29) and (31), respectively, (8) can be rewritten as

d
dt

x�t� � κ

	
1

x�t�a �x�t�T�

�
x�t�T�

C

�b



� (32)

The theorems in subsection 3.1 can be directly applied to study the dynamical behavior of (32) which is
essentially described by the underlying discrete time difference equation

yn�1 � F�yn� (33)
1

xa
n�1

� xn

�xn

C

�b
� xn � 0 (34)

xn�1 �

�
Cb

xn
b�1

� 1
a

(35)

Consider the dynamical behavior of map given by (35). It has a fixed point

x� �C
b

a�b�1 � (36)

and the market equilibrium price is given byp� �C�
b�1�a�
1�a�b . The market equilibrium price can be obtained

from thatx� � p��
1

1�a . This expression of equilibrium flow shows thatx� increases with decreasinga. This
is the reason that we characterize the user with smallera greedier. The eigenvalue at this fixed point, which
is interestingly independent of the fixed point, is

λ�x�� ��
b�1

a
� (37)

Suppose thata� b�1. Then, the fixed pointx� is locally attracting. In fact,x� can be shown to beglobally
stable as follows. According to the Sharkovsky cycle coexistence ordering [23] the most general condition
for the fixed pointx� to be globally attracting is that the second iterationF2 of the mapF does not have a
fixed point in relevant state interval other thanx�, andx� is locally attracting. This in turn implies the global
delay independent stability of (32). It is interesting to note that when the utility function of user is given by
U1�x� � �1

x as has been suggested for TCP algorithms [15], the delay independent stability of the system
cannot be ensured by a price function of the form in (31).

Our results have the following interpretation. If the functionsx �U
�

�x� andx � p�x� have an intersecting
point that is a stable fixed point, then the communication delays are irrelevant for system stability, and user
rate and resource price converge to the system optimum. Furthermore, our results tell us that the stability of
system depends critically on the user utility functions, more specifically on the parametera, for a given price
function. This can be seen from the eigenvalueλ�x�� � �b�1

a . Larger values ofb mean that the slope of
the price function is steeper, which in turn implies that the price varies more widely in response to a change
in ratex. Hence, in order to maintain the stability of system, user demand should be less elastic,i.e., the
response of user to a change in price should be less dramatic. Thus, this presents a fundamental trade-off
between the elasticity of user demand and responsiveness of price function. In other words, in order to
keep the stability of system, if one wants to increase the responsiveness of one, then the responsiveness of
the other must be sacrificed. This trade-off can also be seen from the definition of the discrete time map
F�y� � f �g�1�y��. The derivative ofF��� evaluated at the equilibrium is given by

d
dy

F�y�

����
y�
�

d f
dg�1�y�

����
y�

dg�1�y�
dy

����
y�

(38)
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� �b�1�

�
g�1�y�

�b

Cb �

�
�

1
a

�
y�

1�a
a

�����
y��C

�ab
a�b�1

� �
b�1

a

by the chain rule, whereg�1�y� � y�
1
a . Here the first term in the right hand side gives the slope of the

resource price function as a function of the flow rate, while the second term is a function only of user’s
utility function, namelyd

dyg
�1�y� ��1

ay�
1�a

a . Therefore, (38) clearly describes the trade-off between user’s
price elasticity of demand and the responsiveness of resource price function for stability.

The above results have the following practical implications. Characterizing the exact stability conditions
of the system with a given choice of utility and price functions is not easy. In addition, the round-trip delays
of connections tend to vary widely. Therefore, one approach to designing a stable system is to select a pair
of user utility and price functions in such a way the communication delay does not affect the stability of the
system. This is, however, not to say that the dynamics of the system do not depend on the delay.

Our results also provide us with the following design guideline for the AQM mechanism and end user
algorithms for efficient use of network resources. Note that from (36) the fixed pointx� is strictly increasing
in b and is strictly decreasing ina. Therefore, in order to increase the utilization at the fixed point, we should
increase the ratioba. However, this ratio cannot be increased arbitrarily without losing the stability from (37).
Therefore, in order to achieve high utilization of the resource and maintain the stability of the system, the
parameterb should be selected as large as possible and the parametera should be selected just large enough
so that�λ�x��� is smaller than one. However, having the eigenvalue close to -1 comes at the price of a larger
settling time. In order to reduce the settling time, the ratio ofb

a should be lowered. Therefore, the selection
of parametersa andb presents a fundamental trade-off between stability, settling time, and utilization of the
system. This is numerically demonstrated in the following section.

We now study what effects the load of the system,i.e., the number of users in the system, has on the
stability of the system. Since the load on a resource is beyond the control of a network manager, ideally the
stability of the system should not depend on the load. Suppose that there areN�N� 1� homogeneous users
in the system. Since users are assumed to be homogeneous, we denote the rate of a user byx�t�. We assume
that utility function of the users is of the form in (29) and the price function used at the resource is that of
(31). Then, the end user algorithm is given by

ẋ�N��t� � κ
�

x�N��t�U
�

a�t��x�N��t�T� � p�N �x�N��t�T�
�

� κ



� 1

x�N��t�a
�x�N��t�T�

	
N �x�N��t�T�

C


b
�
� �

where a superscript�N� is used to denote the dependence onN. Following similar steps as in the single flow
case above, the discrete time difference equation corresponding to (33) - (35) of single flow case yields

x�N�n�1 �

	
�C�N�b

x�N�n
b�1


 1
a

� (39)

Then, from (39) the fixed pointx�N�� is
�

C
N

� b
a�b�1 ,4 and the eigenvalue is given byλ�N��x�N��� � �b�1

a and
is independent ofN. Therefore, the stability of the system does not depend on the number of users in the
system. This can also be explained using the price elasticity of demand. Since, given a utility function of

4Here we assume that the fixed point is smaller thanC.
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the form in (29) for somea� 0, the price elasticity of the demand is constant for allx� 0 from (30), one
would expect the stability of the system to be independent of the operating point,i.e., the fixed point, and
capacity, but only on the choices of the utility and price functions that determine the responsiveness of the
users and resource, respectively.

Clearly, the network designer can rescale the price function by a scalar,i.e.,

p�y� � γ�
� y

C

�b
� (40)

whereγ� 0. When the price function is of the form in (40), the fixed point of the system withN flows

is given byx� � γ�
1

1�a�b
�

C
N

� b
1�a�b . Furthermore, the value ofγ does not change the eigenvalue at the fixed

point, i.e., the stability condition does not depend onγ. Hence, if the number of flows traversing the resource
is known, then the resource can select an appropriate value ofγso that the fixed point of the system achieves
high utilization. However, smaller values ofγ reduces the responsiveness of the price function.

5.1.1 Nature of period doubling bifurcation

In this subsubsection we investigate the nature of emerging period doubling bifurcation as different param-
eters in utility and cost functions are varied. Nonlinear stability analysis of period doubling bifurcation is
important from the point of view of ensuring graceful degradation and avoiding a catastrophic collapse in
case of loss of stability. To this end we need to evaluate

E�F� �
1
3

F�3��x��
1
2

�
F ���x�

�2
(41)

at x � x� and a � b� 1, whereF�3� is the third-order derivative [6]. In order for the period doubling
bifurcation not to be subcritical,E�F� evaluated atx � x� anda � b�1 needs to be non-negative. Since
F ��x�� � �1 whena � b�1, this is equivalent to showing that the Schwarzian derivative is non-positive,
i.e.,

S�F� �
F�3�

F �
�

3
2

�
F ��

F �

�2

� 0 � (42)

Computing higher-order derivatives for the mapF��� gives

F �� �
b�1

a

�
b�1

a
�1

�
Cb�a

x
b�1

a �2
(43)

F�3��x�� � � �
b�1

a

�
b�1

a
�1

��
b�1

a
�2

�
Cb�a

x
b�1

a �3
(44)

Substituting (43) and (44) in (42) yields

S�F� �
�b�1

a �1��b�1
a �2�

x2 �
3
2

	
b�1

a �1

x


2

�
a2� �b�1�2

2a2x2

� 0 �

Therefore, one can see that (41) is non-negative.
This implies that under the instability condition,i.e.,b�1

a �1, a period doubling bifurcation is guaranteed
to be not subcritical when it occurs. Hence, when the system loses stability, the magnitude of oscillation
in rate will gradually increase with parameters and the system will not experience a sudden appearance of
oscillation with a large magnitude.
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5.2 Heterogeneous Users

With the above utility and resource price functions, the underlying discrete time map from (25) is given by

1
xai

i�n�1
� xi�n

	
∑
l�ri

�
∑ j�Il xj �n

Cl

�bl



� xi�n�1 � x
� 1

ai
i�n

	
∑
l�ri

�
∑ j�Il xj �n

Cl

�bl

� 1

ai

(45)

Note thatxi�n�1 is strictly decreasing in each ofxj �n� j � I .
We definebi

max � maxl�ri bl andCi � minl�ri Cl for all i � I , and assume that users are ordered by
increasingai , i.e., a1 � a2 � �� � � aN. Let x� be the unique solution of the optimization problem. We

assume thatATx� �C. A sufficient condition for this is thatCl � �Il �. Let σ � �maxi�I
bi

max�1
ai

. Suppose

thatD0 � ∏N
i�1Di

0, where

Di
0 � �βx�i � αx�i � �

α is some finite constant larger one, andβ is a positive constant such that

F̂�βx��� αx� andβx� � F̂�αx�� � (46)

Lemma 1 Suppose that ai � bi
max�1 for all i � I . Then, anyβ such thatα1�σ � β� ασ satisfies (46).

Proof: The proof is given Appendix D

Now, for k� 1�2� � � �, we define

Dk �

��
� ∏N

i�1�α
σk

x�i � β
σk

x�i � � k odd

∏N
i�1�β

σk

x�i � ασk
x�i � � k even

(47)

Lemma 2 Suppose that ai �bi
max�1 for all k �1�2� � � �. Then,F̂�Dk�1��Dk� int�Dk�1�, where int�Dk�1�

is the interior of Dk�1, and
∞
k�0Dk � �x��.

Proof: The proof is given in Appendix E.

Theorem 5.1 Suppose that ai � bi
max�1 for all i � I . If the initial functionsφ lie in C��0� �1�, int(D0)),

then x�t� converges to x� asymptotically for all T� 0 andκi � 0.

Proof: The theorem follows from Lemma 2 and Theorem 5.

Now note that asα increases,F̂�α� goes to 0. Hence, since the rates of the users are in practice con-
strained by the link capacities, we can see that starting from any arbitrary rate vector satisfying the capacity
constraint, the rates converge tox� asymptotically from the above results.

17



6 Effects of Non-Responsive Traffic

Some of applications in the Internet, such as real-time streaming, cannot react to congestion as fast as
responsive flows and hence adopt a different transport layer protocol that adapts to congestion state much
slower. Since their reaction times are much larger than those of responsive flows, for modeling purposes
in the time scale of interest they can be modeled as non-responsive flows, whose rates do not vary. In this
section, we analyze the effect of the presence of these non-responsive flows. As non-responsive traffic has
no dynamics and contributes to aggregate rate presented to the resource, the dynamics of the model given
by (34) and (35) gets modified. Here we only consider a single flow case. However, similar results can be
shown for multiple heterogeneous user case.

1
xa

n�1
� xn

�
xn�q

C

�b

� xn � 0

xn�1 �

	
Cb

�xn�q�bxn


 1
a

� (48)

whereq is the aggregate load from non-responsive flows.
The unique fixed point for this system will be given as the solution of following equation:

xa�1�x�q�b �Cb

� x
a�1

b �x�q� �C

� x�q�
C

x
a�1

b

(49)

It is clear from (49) that as the amount of non-responsive trafficq increases, the solutionx��q� of (49)
decreases which is intuitive. Now we will analyze the eigenvalue of (48) to look into the effects of non-
responsive traffic on stability. Computing the eigenvalueλq�x��q�� gives the following:

λq�x��q�� � �
C

b
a

a

�
1

x
a�1

a �x�q�
b
a

�
b

x
1
a �x�q�

a�b
a

������
x�x��q�

(50)

Substituting (49) for�x�q� in (50) yields

λq�x��q�� � �
C

b
a

a

�
1

C
b
a

�
bx

a�b�1
b

C
a�b

a

������
x�x��q�

� �
1
a

�
1�

bx
a�b�1

b

C

������
x�x��q�

(51)

This expression can be verified by using the expression of fixed point in the absence of non-responsive
traffic from (36) which yields the same expression as the eigenvalue in the responsive traffic only case given
by (37). From the earlier observation that the fixed point decreases with the load of non-responsive traffic
q, it can be easily seen that second term in the eigenvalue will decrease withq, and hence eigenvalue will
become smaller in magnitude rendering the system stable. This demonstrates that the stability of the system
improves withq. A similar observation has been made in the context of TCP-RED [17].

Although (51) tells us qualitatively that the stability of the system improves with increasingq, it does
not give us quantitative answers as to how the trade-off between the stability and responsiveness of the user
or resource price is changed. Here we study the improvement in stability by computing the supremum of
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the values ofb that result in a stable system for a fixed value ofa or the infimum of the values ofa that lead
to a stable system for a fixed value ofb.

From (48) one can see that ifxn � x��q�, thenxn�1 � x��q� and similarlyxn � x��q� implies thatxn�1 �
x��q�. Let xn � β �x� and

β̃ �
xn�q
x��q

� (52)

We denotex��q� simply byx� when there is no confusion. Then, we can rewrite (48)

xn�1 �

�
C

β̃�x��q�

� b
a

�βx���
1
a

�

�
C

x��q

� b
a

β̃�
b
a β�

1
a x��

1
a

� x�β̃�
b
a β�

1
a

� x�
�

β̃bβ
�� 1

a
(53)

For stability it suffices to have

�
β̃bβ

� 1
a
� β if β � 1 and

�
β̃bβ

� 1
a
� β if β � 1

Sinceβ̃bβ � 1� β whenβ � 1, a locally sufficient condition for�λq�x���� 1 is

dγ�β�
dβ

����
β�1

� 0 � (54)

whereγ�β� � β̃bβ1�a. By substituting (52)

d
dβ

γ�β� �
d
dβ

�βx��q�bβ1�a

�x��q�b

�
β�a�βx��q�b�1�bβx���1�a��βx��q��

�x��q�b (55)

Thus, in order to satisfy (54) we need

bx���1�a��x��q�� 0

or equivalently

b�1� a�
�a�1�q

x�
� (56)

Whenq � 0, i.e., there is no non-responsive traffic, (56) yieldsb�1 � a, which is the necessary and suf-
ficient condition for global stability given in subsection 5.1. Sincex��q� is decreasing inq, the ratio q

x��q�

increases withq. Hence, it is clear that the value ofa that satisfiesb�1�a � �a�1�q
x��q� , which is given by

b�1�q�x��q�
1�q�x��q� , is decreasing inq. Thus, (56) hints at the trade-off between the responsiveness of the user and

resource price and stability similarly as in the case only with elastic traffic discussed in subsection 5.1.
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Figure 1: Plot of (a) inf�a� 0 � �λ�x��a�q��� � 1� and (b) sup�b� 0 � �λ�x��b�q��� � 1�.

In order to quantify the impact of the presence of non-responsive traffic, in the first case, we first fix the
value ofb, i.e., the resource price function, and compute the infimum of all values ofa that lead to a stable
system with increasing value ofq. Fig. 1(a) plots inf�a � 0 � �λ�x��a�q��� � 1� with increasing value of
q. The value computed from the eigenvalue in (51) is shown as�x�, and the value calculated from (56) is
shown as���. The figure shows that these two values are identical. As expected from (51) the smallest value
of a that leads to a stable system decreases withq. This also confirms that adding non-responsive traffic
has different effects from simply reducing the system capacity, which in fact doesnot affect the stability
condition.

In the second experiment we fix the value ofa and study the supremum of all values ofb that result in
stability. Fig. 1(b) plots these values as a function ofq. Again, the values computed from (51) and (56)
are shown as�x� and ���, respectively. The figure demonstrates the with increasing value ofq the system
becomes more stable and can tolerate more responsive resource price function.

7 Numerical Examples

In this section we present numerical examples to validate our results presented in the previous section.

7.1 Homogeneous Users

Fig. 2 plotsx�t� for C� 5�T � 200�κ � 0�2, b� 5, and various values ofa. The value of parametera is set
to 2�6�1, and 10, respectively. Note thata� 2 yields an eigenvalue�b�1

a ��3, which violates the stability
condition. This is illustrated in Fig. 2. As one can see the system does not converge to the optimal value of
2.73. On the other hand, the value ofa� 6�1 leads to a stable system and the rate converges to the optimal
value of 1.945 as demonstrated in the figure. When we further increase the value ofa to 10 one can see
that the utilization at the fixed point decreases with a larger value ofa. However, the settling time improves
with increasinga. Thus, this presents another trade-off between settling time and resource utilization as
mentioned in subsection 5.1.

In the second example we take two homogeneous users witha � 3, price function withb � 5, and
link capacityC of 5. It is clear that for these values ofa and b rate control algorithm is unstable since

5�1
3 � 2� 1. The optimal rates for both users in the absence of delay is given byx� �

��
2
5

�5
� 1

9
� 1�6637.
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Figure 2: Plot ofx�t� for a� 2, 6.1, and 10.

Their self imposed upper rate limit will beC�2 � 2�5. The lower limit on the solution according to the

period two orbit of mapF will be given byF�2�5� �
�

2
5

� 1
3 � 0�7368.

Fig. 3(a) shows the rate waveform for a delay ofT � 1, which is not sufficient to send the system into
the unstable mode, and hence both rates converge to their optimal value of 1.6637 (Fig. 3(b)). However,
when delay is increased toT � 10, system begins to oscillate as shown in Fig. 3(c). The upper limit of 2.5
and lower limit of 0.7368 can be verified. Finally, in Fig. 3(d), which shows the same waveform forT � 50,
the waveform is more square-like compared to last figure. In the limit with increasing delay this waveform
approaches a square waveform oscillating between the period two orbit of corresponding map.

It is also evident that in both of the oscillating cases the period of the waveform is approximately twice
of the delay and the interval between consecutive times when the waveforms crossy�t� � y� � 1�6637 is
more than the delay itself. Typically, these oscillating orbits are very difficult to describe as they vary from
sinusoidal to square waves with increasing value of delay. This phenomena has been studied earlier in [3].

Clearly, these numerical solutions confirm the upper and lower limits for the trajectories for large enough
communication delays. In particular, these periodic orbits remind of a particular periodic solution class
devised specifically for delay-differential equations, namelySlowly Oscillating Periodic (SOP)orbits [19,
24]. Roughly, an SOP is a periodic orbit with its consecutive zeros (zero corresponds to the fixed pointy� in
our case) separated by more than one normalized time unit. The time unit used in our context corresponds
to a round-trip time, which arises naturally as a measure for network performance and stability. This also
supports the view that round-trip time may be the most useful time scale from the point of view of stability
and oscillations [7]. For dynamical (35) we have following conjecture regarding the existence of an SOP:

Conjecture 1 SOP: For all0� ν � 1�T0, where T0 is given by (18) in linear stability context, (14) has at
least one slowly oscillating periodic solution with period P�ν�� 2. Moreover, T�ν�
 2 asν 
 0.

Although proving the existence of an SOP is technically complicated and its asymptotic behavior is
even more challenging, we believe that these slowly oscillating periodic orbits are useful for the study of
networks and networked control systems to understand the stability and oscillation behavior in the presence
of non-negligible delays.
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Figure 3: (a) Map given by (35) for above scenario, (b) Rate waveform for the delay ofT � 1, (c) for the
delay ofT � 10, and (d) for the delay ofT � 50.

7.2 Heterogeneous Users

In this subsection we present a numerical example with two heterogeneous users. In this example we set the
resource price parameter tob � 2�0 and users’ utility function parameters toa1 � 3�1 anda2 � 4�1 We set
the delayT to 100 and 500. Sinceai � b�1� i � 1�2, our results state that the system will converge tox�.
Fig. 4 plotsxi�t�� i � 1�2, for T � 100 and 500. As one can see, the system converges to the fixed point of
the discrete-time map, which isx� for both delays. One can also see the synchronization of users’ rates in
both cases.

7.3 Non-responsive Traffic

The example in this subsection illustrates the effects of non-responsive traffic. There is a single responsive
flow with a� 2�4 that traverses a link withC � 10. The parameter of price function is set tob� 5 for the
simulation with a delay ofT � 200 in the system. In the first case, there is no non-responsive flow, while in
the second case we introduce non-responsive flow withq� 2�0. Fig. 5 plotsx�t� in both cases. As one can
easily see, the system exhibiting oscillatory behavior without non-responsive traffic, becomes stabilized by
the introduction of non-responsive flow. Hence, this demonstrates that the presence of non-responsive flow
enhances the stability of system.
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8 Discussion

In this section we discuss the implications of the results presented in the previous sections on the fairness
of the rate control algorithms. In practice achieving high utilization at bottlenecks is an important issue.
We have suggested that this may be achieved by dynamically adjusting one of control parameters at the
routers to control the desired utilizatione.g.,parameterγ in (40). Kunniyur and Srikant [16] have proposed
a dynamic mechanism that utilizes a virtual queue associated with each link. The idea behind this approach
is to adapt the virtual queue capacity in order to maintain certain desired utilization at the bottlenecks. This
allows the end users using the algorithm in (4) to solve the SYSTEM problem of maximizing the aggregate
utility of the users in (1).

We have suggested in subsection 5.1 that such a dynamic mechanism, where the shape of the price
function is preserved but the price function is rescaled by a constant, may not change the stability conditions
on the users’ utility functions. This implies that the stability of the system improves with increasingai of
utility functions assuming that the similar results extends to more general multiple bottleneck cases, which
we are currently investigating. One consequence of this would be that the system stability improves with
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the fairness among the users. Before considering the general case, let us consider an example. Consider the
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Figure 6: Example. (a) topology, (b) plot ofx�i �a�.

example shown in Fig. 6(a), where there are three users that share two links in the network. The capacity
of both links is assumed to be one. Suppose that all users have the same utility functionUi�xi� �

�1
a�xi

�a� 0.
The optimal ratesx��a� that solve the SYSTEM problem in (1) for a givena are plotted in Fig. 6(b). Since
x�1�a� � x�2�a�, we only plottedx�1�a� andx�3�a�. As one can see, asa increases,x�i �a�� i � 1, 2, 3, converge
to 0.5, which is the max-min fair allocation. This can be easily explained by the closed form solution of the
problem. After a little algebra, one can show thatx�1�a� �

β
1�β , whereβ � 2

1
1�a . Hence, asa � 0 (a � ∞), we

have lima�0β � 2 (lima�∞ β � 1) and lima�0x�1�a� � 0�6 (lima�∞ x�1�a� � 0�5).5 One can also attain similar
results for general multiple bottleneck cases,i.e., the solutions to the SYSTEM problem converge to the
max-min fair allocation asa � ∞. This suggests that both (max-min) fairness among the users and system
stability improves asa increases.

9 Conclusions

We showed that dynamical stability of rate control problem for a simple one resource case is determined
by the interaction of underlying utility and price functions. In particular, we demonstrated a fundamental
trade-off between users’ price elasticity of demand and the responsiveness of the resource. We have proved
that when the users’ utility or resource price function is too responsive in relation to the other, it leads to
network instability. We explicitly characterized this for a class of utility functions. Furthermore, we showed
another trade-off between the global stability of system and the utilization of the resource. These results
offer some guidelines for jointly designing the end users algorithms and AQM mechanisms at the routers
in the presence of a communication delay between end users and network elements. We illustrated that

5Note that the limit of solutions to the SYSTEM problem witha � 0 is the solution to the NETWORK problem withwi � w for
all i � I , i.e.,proportionally fair allocation [12].
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discrete-time framework arises as a natural tool to study the dynamics of delayed rate control schemes. It
also hints at the structure of periodic trajectories and their bounds.

Finally, we conjecture that SOP orbits may be relevant to study of the structure of periodic orbits arising
in engineering applications. These periodic orbits have been studied extensively in mathematics community
and also arise when the delay is state-dependent, which is a useful context in networking [7]. These SOP
orbits support the earlier belief that the round-trip time may be the most relevant time scale for network
stability studies.
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Appendices

A Proof of Theorem 2

Before proving the theorem we will state a lemma which is the key to the proof of Theorem 2.

Lemma 3 Suppose that an interval J is mapped by F into itself. If none of the endpoints of the interval F�J�
is fixed point then for everyφ� XJ �C���1�0��J� there exists a finite t0 � t0�φ�ν�κ� such that yνφ�t� � F�J�
for all t � t0.
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Proof: From Theorem 1 it is clear thatyν
φ� J for all t � 0. The claim here is that after certain timet0 it

will be limited by F�J�� J.
First, assume thatφ�0� � F�J�. Then it can be shown thatyν

φ�t� � F�J� for all t � t0 by contradiction.

Suppose that this is not true and lett0 be the first time whenyν
φ�t� leaves the intervalF�J�. In particular

assume that it leaves from the right end,i.e.,every right-sided neighborhood oft0 contains a pointt1 such that
yν

φ�t1�� supF�J�. Then, the same neighborhood also contains a pointt2� t0 � t2 � t0�1� such thatyν
φ�t2��

supF�J� and ẏν
φ�t2� � 0. As yν

φ�t� � J for all t � �t0�1� t0�, we have ˙y�t2� �
κ�y�t2��� f �g�1�y�t2�1����y�t2��

ν � 0
from (14). This contradicts the earlier assumption that ˙y�t2� � 0. The other case whereyν

φ�t� leaves the
interval from the left end can be handled similarly.

Now assume thatφ�0� �� F�J�. In particular, letφ�0� � supF�J�. Claim here is thatyνφ�t� is de-

creasing for allt � �0� t0�, where t0 � ∞ is the first point withyν
φ�t0� � supF�J�. We first argue that

t0 � ∞ by contradiction. Supposet0 � ∞ and, hence,yν
φ�t� � supF�J� for all t � 0. From (14) we

have ẏ�t2� �
κ�y�t2��� f �g�1�y�t2�1����y�t2��

ν � 0 becausef �g�1�y�t2 � 1��� � supF�J�. Then there exists a

limit y � limt�∞ yν
φ�t� � supF�J� due to Bolzano-Weierstrass theorem [5] which says that every strictly

decreasing sequence which is bounded from below has a limit. Asy is not a fixed point of mapF,

κ�y��y� f �g�1�y��� :� δ� 0. This tells us from (14) that ˙y�t� � κ�y�t��� f �g�1�y�t�1����y�t��
ν � � δ

2ν for large
enought. This implies thatyν

φ�t�
�∞ ast 
 ∞, which is a contradiction, because this means thatyνφ�t�

crosses supF�J� for some finitet. Hence,t0 � ∞. Now, we invoke the first part of proof where system is
restarted at timet0 with y�t0� � supF�J� andy�t� � J 	t � �to�1 t0�. Using the same argument we can show
thaty�t� � F�J� for all t � t0. The other case can be handled similarly.

Now we provide the proof for Theorem 2 using this lemma. For anyφ� XJ0, definem� inf�φ�s�� s�
��1 0�� and M � sup�φ�s�� s� ��1 0��. Clearly, �m M� � J0. Let J

�

be the smallest closed invariant
interval containing�m M� which is a subset ofJ0. Then, from the existence of fixed point of the mapF,
J
�

� F�J
�

� � F�F�J
�

�� � � � � and
i�0Fi�J
�

� � x�. Using the invariance result and Lemma 3 repeatedly
one can find arbitrarily small estimates for the range of trajectories with large enought. Thus, the theorem
follows.

B Proof of Theorem 4

Before we state the invariance theorem we first prove a proposition which establishes orthant invariance for
a vector under the multiplication with a positive diagonal matrix.

Proposition 2 (Orthant-Invariance) For a diagonal positive matrix K� ℜ N	N and an arbitrary vector
v� ℜ N, Kv remains in the same orthant as v.

Proof: Any vectorv can be expressed as a linear combination of basis vectors�ei� or v� Σiciei . Clearly,
due to the diagonal structure of positive matrixK, Kv � Σikii ciei which means that all the coefficientsci

retain their original sign even after the multiplication withK. This ensures the fact that they remain in the
same orthant.

Clearly, diagonal structure of positive gain matrixκ��� is useful to determine the directions of right
hand side of (24). We note here that diagonal structure gives us more than required in the sense that a
non-diagonal positiveκ��� can ensure that the right hand side of (24) stays directed towards the interior of a
convex domain on any boundary point.

Let t0 � 0 be the first time at whichyν�t0� � D and the solutionyν�t� leaves the domainD for t � t0.
This implies thatνẏν

�t0� is directed towards the outside of the domain. Now, sincet0 is the first such point
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at which the trajectory leaves the domainD, F�yν�t0�1�� lies in the domainD. Therefore, the vectors
F�yν�t0�1��� yν�t0� andκ�yν�t0���F�yν�t0�1���yν�t0�� will both be directed towards the inside of the
domainD becauseκ�yν�t0��� 0 andD is convex. This holds because of the orthant-invariance property of
vectors under the multiplication with positive diagonal matrix as shown in Proposition 2 and the assumption
that D is a product space. However,νẏν

�t0� � κ�yν�t0�� �F�yν�t0�1�� �yν�t0�� from (24), which is a
contradiction.

C Proof of Theorem 5

We will first prove a lemma which will be used to prove the theorem.

Lemma 4 Let V be any open product space containing D1 � F�D0� and contained in D0 and arbitrary
initial functionsφ�YD0. (i) If φ�0� is in closure of the set V, cl�V�, thenyν

φ is in the closure of V for all
t � 0. (ii) If φ�0� is not in the closure of V then there exists a finite time t0 � t0�φ�D0�κ���� such thatyν

φ� ∂V
andyν

φ� cl�V� for all t � t0 with ∂V denoting the boundary of V .

Proof: First, assumeφ�0� � cl�V�. Then, one can show thatyν
φ�t� � ∂V for all t � 0 following a similar

argument in the proof of Theorem 4.
Now suppose thatφ�0� �� cl�V�, and lett0 the first time such thatyν

φ�t0� � ∂V. Then, one can show that
yν

φ� cl�V� for all t � t0, again, following a similar argument in the proof of Theorem 4.
Suppose that we begin withφ�0� �� cl�V� andyν

φ �� cl�V� for all time t � 0. Also, letM be the maximal
open product space containingV such thatM 
 cl��yνφ�t�� t � 0�� � /0. Note that it is possible forM to
coincide withV. SinceM is maximal such set there exists a sequenceti � i � 1�2� � � �, such thatyν

φ�ti�
 y0 �

∂M. Consider a sequence of finite vectorsri �
κ�yν

φ�ti ��

ν

�
F�yν

φ�ti �1���yν
φ�ti�

�
, which form the right hand

side of (24) at these time instants. BecauseM�D0 andF�M��D1, these vectorsri are bounded away from
zero, i.e., there exists someδ� 0 such that�ri � � δ, and are directed strictly towards the inside of domain
M. Since the origins of the vectorsri converge to the pointy0 � ∂M andri ’s point to the inside ofM, there
must exist somet

�

such thatyν
φ�t

�

� �M, which is a contradiction.

Now we provide an easy proof for Theorem 5. Since it is possible to construct a sequence of nested open
product spacesUi�1 �Ui such thatF�Ui� �Ui�1 and
i�0Ui � �y��, by repeated application of Lemma 4
there exists a sequence�ti� 
 ∞ such thatyν

φ�ti� � cl�Ui� andyν
φ�t� remains inside due to the invariance

theorem fort � ti. As
i�0Ui � �y��, asymptotic convergence and implied stability fory� follows.

D Proof of Lemma 1

From (45) we have

F̂i�αx�� � �αx�i �
� 1

ai

	
∑
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∑ j�Il x�j
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�bl

� 1
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�bl
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Note that sinceα � α � 1,
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αbl
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αbi
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(57)
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Therefore,

F̂i�αx�� � �αx�i �
� 1
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αbl
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�bl
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ai
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� α�
bi
max�1

ai x�i
� ασx�i

where the second inequality follows fromσ � �bi
max�1

ai
for all i � I . Therefore, ifβ � ασ, thenβ satisfies

the second condition in (46).
Similarly,
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where the first inequality follows from thatβ � 1. Hence, ifβ
σ
� α or β � α1�σ, thenF̂�βx�� � αx� and

satisfies the first condition in (46).

E Proof of Lemma 2

We first show thatDk�1 � int�Dk�, for all k � 0�1� � � �. This can be easily shown as follows. We know from
the proof of Lemma 1 thatβ� ασ andβ

σ
� α. Hence,D1� int�D0�. Now similarly as before, sinceβ� ασ

we haveασ2
� β

σ
, and becauseβ

σ
� α, ασ � β

σ2

, which follows from that�1 � σ � 0. By repeating

this we getασk�1
� β

σk

andασk
� β

σk�1

for oddk andβ
σk�1

� ασk
andβ

σk

� ασk�1
for evenk, proving that

Dk�1 � int�Dk�. The fact that
∞
k�0Dk � �x�� follows trivially from that limk�∞ σk � 0 because�σ� � 1.

Hence, limk�∞ ασk
� 1� limk�∞ β

σk

.
Now we prove thatF̂�Dk� � Dk�1�k � 0�1� � � �. Here we prove this only for the case wherek is even.

The other case can be proved similarly. Following the same approach in the proof of Lemma 1 we have
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� 1 (becausek is even),
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Therefore,
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Similarly one can show that̂Fi�β
σk

x��� β
σk�1

x�i . This completes the proof of the lemma.
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