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Wave-based motion sensors, such as radar and sonar, are designed to detect

objects within a direct line-of-sight of the sensor. As a result, surveillance of a cavity

with multiple internal partitions generally demands use of a network of sensors. In

the first part of the dissertation, we propose and test a new paradigm of sensing

that can work in such cavities using a single sensor. The sensor utilizes the time

reversal invariance and spatial reciprocity properties of the wave equation, and the

ray chaotic nature of most real world cavities. Specifically, classical analogs of

the quantum fidelity and the Loschmidt echo are developed. The sensor was used

to detect perturbations to local boundary conditions of an acoustic cavity, and

the medium of wave propagation. This result opens up various real world sensing

applications in which a false negative cannot be tolerated.

The sensor is also shown to quantitatively measure perturbations that change

the volume of a wave chaotic cavity while leaving its shape intact. Volume changes

that are as small as 54 parts in a million were measured using microwaves with



5cm wavelength inside a one cubic meter wave chaotic cavity. These results open up

interesting applications such as monitoring the spatial uniformity of the temperature

of a homogeneous cavity during heating up / cooling down procedures, etc.

The second part of the dissertation is dedicated to improving the performance

of time reversal (TR) mirrors, which suffer from dissipation. TR mirrors can, under

ideal circumstances, precisely reconstruct a wave disturbance which happened at

an earlier time, at any given later time. TR mirrors have found applications in

imaging, communication, targeted energy focusing, sensing, etc. Two techniques

are proposed and tested to overcome the effects of dissipation on TR mirrors. First,

a tunable iterative technique is used to improve the temporal focusing of a TR

mirror. Second, the technique of exponential amplification is proposed to overcome

the effect of dissipation on TR mirrors. The applicability of these techniques is

tested experimentally using an electromagnetic TR mirror, and numerically using a

model of the star graph.
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Chapter 1

Introduction

1.1 Motivation

Traditional wave-based motion sensors, such as radar and sonar, are designed

to detect objects within a direct line-of-sight from the sensor. The presence of

multiple reflections from surrounding objects usually confounds the sensor. Thus,

the spatial coverage of these sensors is usually limited to objects within their direct

line-of-sight. As a result, surveillance of a cavity with multiple internal partitions

and complicated boundary conditions generally demands use of a network of sensors,

in which each sensor actively monitors a section of the cavity.

It is interesting to explore the possibility of using a single sensor to monitor

all parts of a complex cavity. Such a wave-based sensor that utilizes more than just

ballistic returns would work by broadcasting a brief pulse of radiation to interrogate

the cavity. The multiple reflections from different parts of the cavity are recorded

to ”fingerprint” a given configuration of the cavity at a given time. Using the

information from all the reflections, one could imagine a sensing scheme that can

detect a perturbation to the cavity under surveillance.

It may also be important to design sensors that are extremely sensitive to al-

most any kind of perturbation to the cavity under surveillance. This means that the

sensors are very suitable to applications in which false negatives cannot be tolerated.
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Examples of practical situations where such sensitive detection capabilities are ben-

eficial include, but are not limited to, the following: strict surveillance of the interior

of an unoccupied building, scrutiny of a potentially harmful re-arrangement of ob-

jects inside an enclosure being transported, supervision of a tightly sealed chamber

for gas leaks, inspection of a confined fluid for hazardous turbulence, etc. In each of

these circumstances, false negatives may not be tolerated and it is essential to have

a sensitive detection mechanism with broad spatial coverage.

1.2 Ray Chaos and Wave Chaos

The possibility of using a single sensor to monitor all parts of a complex cavity

becomes a reality in the limit of a wave chaotic cavity. Wave chaotic cavities are

classically ray chaotic. Ray chaos is characterized by the fact that ray trajectories in

a cavity can be sensitively dependent on their initial conditions; the chaos arises due

to complicated and/or non-smooth boundary conditions of a cavity or due to ray-

splitting or mode-conversion, which result in more degrees of freedom than constants

of motion for the Newtonian point particles that could be imagined to be tracing

out the rays in the cavity [1]. Furthermore, ray trajectories in ray chaotic cavities

are spatially ergodic (i.e. a ray trajectory visits every corner of the cavity, and

eventually gets arbitrarily close to its source).

Wave chaos (quantum chaos) is the study of properties of waves (quantum

waves), whose wavelength is much smaller than a typical size of the cavity, propa-

gating in classically ray chaotic cavities [1, 2]. Therefore, the cavity is wave chaotic
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if it is classically ray chaotic, and the wavelength of the waves are much smaller

than the size of the cavity. In this wave chaotic limit, small perturbations to the

cavity can be detected using various techniques.

In the sense that is usually defined, chaos is a property associated with nonlin-

ear dynamical systems [1], and linear wave systems cannot be chaotic [3]. However,

wave systems whose classical (very short wavelength) limit is ray chaotic show inter-

esting properties [2]. Because, in the limit where the wavelength is small compared

to the characteristic size of the enclosure, wave propagation inside the enclosure

can be modeled using ray trajectories. Therefore, the underlying ray chaos mani-

fests itself on the properties of waves propagating in the ray chaotic cavities in the

semi-classical limit.

The background material for most of this dissertation is the study of waves

propagating inside wave chaotic cavities. Most real world cavities have ray chaotic

trajectories, and can be considered wave chaotic for wavelengths that are much

smaller than the enclosure dimensions. In related work, our research group has

created a Random Coupling Model (RCM) to understand the frequency-domain

and time-domain properties of wave chaotic systems using the impedance concept

[4, 5, 6, 7, 8], and this model had been tested through experiments on a microwave

resonator [9, 10, 11].

Wave chaos is frequently studied in the context of quantum mechanical waves.

However, the concepts developed using quantum mechanical waves can generally be

extended to classical waves. There are two mathematically equivalent quantities that

quantify perturbations to a quantum mechanical system, and are widely celebrated
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in the wave chaos research community: these are the quantum fidelity and the

Loschmidt echo [12, 13, 14]. The classical extensions of these two concepts are the

cornerstones for the sensors that are proposed and tested in this dissertation.

1.3 Extending the Concepts of Loschmidt echo and Quantum Fi-

delity to Classical Waves

1.3.1 Extending the Quantum Fidelity

The sensing technique based on the classical (acoustic, electromagnetic, etc)

extension of quantum fidelity can be described as follows. A brief pulse is broadcast

into a wave chaotic cavity, and the response signal, which we call sona 1, is collected.

The sona essentially consists of multiple reflections of the original pulse inside the

cavity. The sona can be collected before and after an alleged perturbation event;

then, signal processing techniques such as cross correlation and mutual information

can be used to compare the two sonas collected. It is appealing to explore if such

signal comparisons allow the detection of perturbations to the cavity under surveil-

lance. Exploration of this detection task leads to the following questions, which are

answered in this dissertation. What kinds of perturbations can be detected in the

cavity? Is there a possibility of distinguishing perturbations that happen at different

locations within the cavity? What is the smallest perturbation that can be reliably

detected?

1The word sona comes from the Latin word sonabilis, which means resonant. The sona refers

to the entire response signal from the resonant cavity.
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However, the concept of quantum fidelity, which quantifies the sensitivity of the

dynamics of a quantum mechanical system to small perturbations of its Hamiltonian,

is already well developed [13, 14]. Besides, the idea of quantifying perturbations to a

system using a ”propagation comparison” of two different final states of the system

obtained from a given initial state is not new, per se. For instance, the concept of

quantum fidelity has been applied to classical waves as in the study of the scattering

fidelity of acoustic waves, which is, practically speaking, the correlation between sona

signals as a function of time [14, 15]. The relative merits of the cross correlation and

mutual information of acoustic signals in the context of underwater source detection

has been studied, for example, in Ref. [16]. The work in this dissertation is new

in that the scattering fidelity concept is used to detect, and in some cases quantify,

practical perturbations to real world cavities.

1.3.2 Extending the Loschmidt Echo

The Loschmidt echo is mathematically equivalent to the quantum fidelity as

it is shown in Sec. 2.2. However, its realization is quite different. The Loschmidt

echo is an overlap between the initial and final states of a quantum mechanical sys-

tem. A perturbation is applied sometime before the generation of the final state

of the system. The initial state is propagated forward in time using the unper-

turbed Hamiltonian of the system for time t. This gives an intermediate state of

the system. Then the system is perturbed and described by a new Hamiltonian.

The intermediate state is propagated backward in time using the new perturbed
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Hamiltonian of the system for the same time duration t. This gives the final state

of the system. The overlap (correlation) between the initial and final states is called

the Loschmidt echo, and it is indicative of the strength of the perturbation. The

Loschmidt echo was used to quantify contrived perturbations to local boundaries of

quantum mechanical systems [12]. The Loschmidt echo also makes connection to

spin-echo experiments widely used in nuclear magnetic resonance [17].

The sensing technique based on the classical (acoustic, electromagnetic, etc)

extension of the Loschmidt echo can be implemented as follows. A brief pulse is

broadcast into the cavity, and the resulting sona signal is recorded. The digitized

sona is time reversed and broadcast back into the cavity. Due to the time reversal

invariance of the wave equation, the original pulse is reconstructed in a time reversed

fashion at the original location of the source. This reconstruction can be achieved

periodically using a single sona signal. Thus, two brief time-reversed pulses, which

are reconstructed before and after a supposed perturbation, can be compared effi-

ciently to detect the perturbation. The questions that arose in the discussion of the

sensing technique based on the classical extension of the quantum fidelity are also

of interest in the study of this detection technique as well. Finally, it is fascinating

to compare the relative merits of the sensing techniques that are based on the ex-

tension of the quantum fidelity, and the techniques that are based on the extension

of the Loschmidt echo.

Through my work, the concepts of quantum fidelity and Loschmidt echo have

been successfully extended to acoustic and electromagnetic waves to realize practical

sensors [18, 19, 20]. Chapter 2 and 3 of this dissertation present those results.
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1.4 Time Reversal Mirrors

The concept of the Loschmidt echo has been extended to classical waves using

”time-reversal mirrors” for acoustics [21, 22] and electromagnetics [23, 24, 25]. Ide-

ally, time reversal (TR) mirrors operate by collecting and recording a propagating

wave as a function of time, and at some later time they propagate it in the opposite

direction in a time-reversed manner. Experimentally, it is not generally possible to

mirror all waves in this manner. Experimental TR mirrors can however be realized

in the special case of confined systems with highly reflective walls (so called ’bil-

liard’ systems) and classically chaotic ray dynamics such as those considered in this

dissertation. Under these conditions a single-channel TR mirror can very effectively

approximate the conditions required to measure the Loschmidt echo using classical

waves [25, 26]. The experimental set up for the measurement of the Loschmidt echo

can be further simplified by exploiting the spatial reciprocity of the wave equation

[22, 18, 19].

TR mirrors face two limitations, which cause them to have less than ideal per-

formance. These are limited spatiotemporal coverage of recording and transmitting

channels, and dissipation. There have been techniques developed as extensions of

the typical TR procedure in order to partially overcome the effects of dissipation.

One such technique is the so called iterative TR [27]; the technique enables im-

proved TR focusing even in the presence of loss. The technique of perfect inverse

filter is claimed to achieve a better time reversed focusing than standard time re-

versal techniques [28, 29]; the perfect inverse filter works by multiplying the sona
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signal in the frequency domain by the inverse of the transfer function of the cavity.

In Chapter 4 of this dissertation, the iterative TR technique is enhanced by intro-

ducing a parameter that tunes its convergence [30]. In Chapter 5 of the dissertation,

a technique of exponential amplification of the sona signal is shown to counter the

effects of dissipation on TR mirrors; this is the case even in cavities with moderately

inhomogenous spatial distribution of loss.

1.4.1 Applications of Time Reversal Mirrors

TR mirrors have found a wide range of practical applications in various fields.

These include: non destructive imaging, development of virtual sources in geo-

physics, electromagnetic weapons, super-resolution wave focusing, imaging, local-

ization, and communication.

Acoustic TR mirrors have been used to carry out non-destructive imaging of

solids to detect micro-fractures [31, 32, 33]. This work relies on the fact that micro-

fractures generate acoustic nonlinearities. The micro-fractures can be considered

as sources of the higher harmonic waves recorded in the system. TR mirrors are

then used to time reverse and broadcast these higher harmonics back into the solid.

Using a scanning laser vibrometer, the harmonics can be seen focusing on the lo-

cation of the micro fractures. Another application of non-destructive imaging of

elastic objects uses the interaction of acoustic and electromagnetic waves [34]. Ref-

erence [34] images mechanical flaws using the modulation of electromagnetic waves

scattered from an object that is acoustically illuminated, and hence mechanically
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affected. TR mirrors are used to improve the sensitivity of the imaging and obtain

information about the location of flaws within the target.

TR has also drawn interest in the field of geophysics. TR mirrors have been

used to realize virtual sources underground; the virtual sources enable imaging geo-

logical formations beyond a seismically opaque geological stratum [35]. In [36], the

localization of tremor sources is demonstrated by playing a movie of the devastating

event unfold backward in time by using a computer model of the earth. Outside

geophysics, Ref.[37] looks at source localization applications of electromagnetic TR.

The potential application of TR in developing electromagnetic weapons is

investigated in [38]. In this work, a leaky reverberation chamber (with an aperture)

is used to focus a high power electromagnetic signal with an 18dB gain over a regular

directive antenna with an aperture. I have been co-authoring a manuscript with Sun

K. Hong et. al. of the Naval Research Laboratory to extend this work in a new

direction. Our objective is to focus an arbitrary waveform at some distance away

from a leaky reverberation chamber. The manuscript is under preparation.

Regarding super-resolution time reversed focusing, there has already been

some experimental success in achieving focusing beyond the diffraction limit [39];

this work relied on designing an antenna structure that accomplishes conversion be-

tween evanescent and propagating modes, which has theoretical backing [40]. The

diffraction limit in time reversed focusing has also been overcome by introducing an

”acoustic sink” at the port [41]. This work could have future applications in the field

of microwave microscopy as detailed in Chapter 6 of the dissertation. A detailed

theoretical treatment of super-resolution time-reversed acoustic focusing is provided
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in [42]. A theoretical foundation for an experimental design of electromagnetic TR

mirrors with a sub-wavelength focusing is provided in [43].

TR mirrors have been applied to improve the contrast and resolution of an

imaging technique called Microwave-Induced Thermo-Acoustic Tomography Imag-

ing [44]. Microwave-Induced Thermo-Acoustic Tomography Imaging is a biological

tissue imaging technique that rivals conventional ultrasound and microwave imag-

ing systems for malignant tumors. On the other hand, imaging of a target in a

cluttered environment using an electromagnetic TR mirror is demonstrated in [45]

assuming perfect knowledge of the Green’s function of the background environment.

The feasibility of building 3D images using a TR chaotic cavity is demonstrated in

[46].

Improved acoustic communication in air is enabled using TR mirrors [47]. A

numerical study of the possibility of improved indoor communication using electro-

magnetic TR is done in [48]. The promising application of electromagnetic TR in

the field of communication (for instance in Multiple Input Multiple Output systems,

etc) is explored in [49].

A different paradigm in the implementation of TR mirrors is introduced in

[50]. In this work, TR of ultra wide band (i.e. 3 − 10GHz bandwidth) impulses is

demonstrated in the frequency domain using affordable electronic circuit systems.

This could enhance the competitiveness of TR mirrors in various applications such

as communications.

TR has also found its applications in industry. Notably some of Mathias Fink’s

collaborators in France have started a company, (www.sensitiveobject.fr), whose
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products heavily rely on TR technology. One of their products is a 2D, flat, touch-

sensitive keyboard that can be customized to activate different devices in a living

room. This product associates the ”sona” generated when a spot on the keyboard is

touched with a particular duty to be executed. Therefore, their products are relying

on the reproducibility of a sona signal despite some uncontrollable changes that

may happen to the touch-sensitive keyboard cavity; in this sense, they are using a

different general perspective from that presented in this dissertation.

Historically, practitioners of time-reversed techniques have ignored the small

changes in sona and reconstructed pulses due to perturbations. The practitioners

have been mainly relying on the robustness of the time-reversed pulse to study

other phenomena discussed above such as communication and localization. In this

dissertation, we adopt the opposite perspective and focus on the cause of small

changes to the signals due to the tiniest perturbations.

1.5 Outline of the Dissertation

As shown in Fig. 1.1, the dissertation revolves around the core concepts of

Loschmidt echo and quantum fidelity applied to classical waves propagating in com-

plex enclosures. Chapter 1 introduces the background material on ray chaos, wave

chaos, and time reversal. This is the background to understand the Loschmidt echo

and quantum fidelity concepts, and their classical extensions. The concepts are ex-

tended to classical waves such as acoustic and electromagnetic waves to realize a

new paradigm of practical sensors. The sensors are designed to rely on informa-
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Figure 1.1: Outline of the dissertation. Chapter 1 introduces the back-
ground material on ray chaos, wave chaos, and time reversal. Chapter
1 introduces the extension of the Loschmidt echo and quantum fidelity
to classical waves to realize practical sensors; this is the core of the dis-
sertation. Chapter 2 formally defines the Loschmidt echo and quantum
fidelity. Chapters 2 and 3 focus on the sensing problem. Chapters 4
and 5 propose techniques to improve the performance of time reversal
mirrors which extend the Loschmidt echo to classical waves. Chapter 6
provides a conclusion, and directions for future work.

tion from multiple reflections, and can detect perturbations that are outside their

line-of-sight. This capability makes the sensors reasonable alternatives to existing

sensors such as radar and sonar. The downside is that the sensors may suffer from

false positives even though they have minimal false negatives.

The dissertation can be divided into two main parts. The first part consists of

Chapters 2 and 3. These chapters focus on the design and test of the sensors inside
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real world cavities. Chapter 2 proposes four sensing techniques that are based on

the extensions of the Loschmidt echo and quantum fidelity. The performance of

these sensing techniques are thoroughly compared after defining a Figure of Merit

of the sensing techniques. The sensing techniques are compared for various kinds of

perturbations that are made inside an acoustic resonator cavity. The perturbations

include the following: i) perturbations to local boundary conditions of the cavity at

different ranges from the sensor, ii) perturbations to the medium of wave propagation

inside the cavity, and iii) global perturbations.

Chapter 3 is conceptually an extension of the work in Chapter 2. Chapter 3

focuses on perturbations that can not only be detected but also quantified. In partic-

ular, perturbations which change the volume of a cavity while leaving its geometric

shape intact are considered. These volume changing perturbations are quantified in-

side an electromagnetic pseudo-integrable cavity using different sensing techniques.

The results are also supported by a numerical simulation inside a representative

wave chaotic cavity. The nature of fidelity decay for volume changing perturbations

is also discussed Chapter 3; this is relevant to the existing literature on fidelity decay

regimes for different classes of perturbations [14].

The second part of the dissertation includes Chapters 4 and 5. These chapters

propose and test techniques which improve the performance of TR mirrors. The

performance of TR mirrors suffers from dissipation, and the techniques introduced

partially counteract dissipation’s adverse effects. Chapter 4 introduces tunability to

the convergence of the iterative TR technique. The iterative time reversal technique

improves the spatiotemporal focusing of waves using TR mirrors. The tunability of
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the iterative technique is demonstrated both experimentally, and using a numerical

simulation of a representative wave chaotic system. Chapter 5 introduces the ex-

ponential amplification technique to improve the performance of TR mirrors. The

technique works best when the loss is distributed uniformly in the cavity. However,

it is also shown that the exponential amplification technique can partially mitigate

the effect of dissipation in cases with inhomogenous spatial loss distributions.

Finally, Chapter 6 provides a conclusion that ties all the results together. In

addition, future directions for research in TR mirrors, and fidelity are outlined. For

instance, the possibility of beating the diffraction limit using time reversal mirrors

[39], opens up new opportunities in the development of super resolution microwave

microscopes using time reversal mirrors.
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Chapter 2

Sensing Small Changes in a Wave Chaotic Scattering System

In this chapter, classical analogs of the quantum mechanical concepts of the

Loschmidt echo and quantum fidelity are developed with the goal of detecting small

perturbations in a closed wave chaotic region. Sensing techniques that employ a

one-recording-channel time-reversal-mirror, which in turn relies on time reversal

invariance and spatial reciprocity of the classical wave equation, are introduced. In

analogy with quantum fidelity, we employ scattering fidelity techniques which work

by comparing response signals of the scattering region, by means of cross correlation

and mutual information of signals. The performance of the sensing techniques is

compared for various perturbations induced experimentally in an acoustic resonant

cavity. The acoustic signals are parametrically processed to mitigate the effect of

dissipation and to vary the spatial diversity of the sensing schemes. In addition to

static boundary condition perturbations at specified locations, perturbations to the

medium of wave propagation are shown to be detectable, opening up various real

world sensing applications in which a false negative cannot be tolerated.

Detecting small changes inside enclosures with complicated boundary condi-

tions can be of practical importance. The small changes inside such enclosures can

either be perturbations of the boundary conditions or the medium of wave propa-

gation. Examples of practical situations where such sensitive detection capabilities
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are beneficial include the following: strict surveillance of the interior of an unoccu-

pied building, scrutiny of a potentially harmful re-arrangement of objects inside an

enclosure being transported, supervision of a tightly sealed chamber for gas leaks,

inspection of a confined fluid for hazardous turbulence, etc. In each of these circum-

stances, false negatives may not be tolerated and it is essential to have a sensitive

detection mechanism with broad spatial coverage.

A traditional approach of monitoring a complicated enclosure is to use a net-

work of several wave-based sensor units each monitoring a limited region of the

enclosure. Our approach is to use a single, cost effective wave based sensor unit

that can monitor the complicated enclosure as a whole. Unlike traditional sen-

sors, the sensor is not confounded by multiple reflections. Instead it actually takes

advantage of, and works better using, the information of ray trajectories that er-

godically explore the cavity through multiple reflections before collapsing back onto

the sensor. The sensor can also ”see around corners”.

2.1 Introduction

In the limit where the wavelength is small compared to the characteristic

size of the enclosure, wave propagation inside the enclosure can be modeled using

ray trajectories. The irregularities in the boundaries of the enclosure results in

sensitive dependence of the trajectories of the rays on their initial conditions. This

property is known as ”ray chaos”. As usually defined, chaos is a property associated

with nonlinear dynamical systems, and linear wave systems cannot be chaotic [3].
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However, wave systems whose classical (small wavelength) limit is ray chaotic show

interesting properties. The study of such wave systems is called ”wave chaos” or

”quantum chaos” [2]. In related work, we have created a random coupling model

to understand the frequency-domain and time-domain properties of wave chaotic

systems [4, 5, 6, 7], and this model has been tested through experiments on a

microwave resonator [9, 10].

The underlying ray chaos in a wave chaotic system promises to be useful

in detecting small changes to the system. In this chapter, two classes of sensing

techniques, which take advantage of the sensitive dependence of wave trajectories

on small changes to the system, are studied. The first class of sensing techniques is

based on a ”propagation comparison” of two distinct wave excitations of the system.

The second class of sensing techniques exploits time reversal invariance and spatial

reciprocity of the wave equation; it works by comparing pulses reconstructed using

a time reversal of the wave excitations of the system. These sensing techniques

are tested experimentally, and their performance under various circumstances is

compared quantitatively.

In this chapter, the quantum mechanical concepts of fidelity and Loschmidt

echo are extended to classical waves with the goal of sensing perturbations to a

scattering environment. The physical theory behind these quantum mechanical

concepts is briefly discussed in Sec. 2.2. Sec. 2.3 is a summary of the literature in

related areas. The operation of four different acoustic sensing techniques tested in

an enclosed stairwell is explained in Sec. 2.4. In this section, an indicator value of

perturbation is defined for each sensing technique. The details of signal processing
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done to mitigate the effect of dissipation, and to alter the spatial range sensitivity

of the sensors is also included in Sec.2.4. Sec. 2.5 explains a method to standardize

the indicator values of perturbation of the different sensing techniques to enable

consistent comparisons. The performance of the sensing techniques for perturbations

made at different locations in the stairwell is summarized in Sec. 2.6. Sec. 2.7

contains some comments on the relative merits of these different sensing techniques

and discusses some of the experimental limitations. Finally, a brief conclusion is

presented in Sec. 2.8.

2.2 Theory

Wave chaotic systems have wave scattering properties that are quite sensitive

to small perturbations of the scattering environment. One can define two mathemat-

ically equivalent measures of this sensitivity in the context of quantum mechanics;

these are the quantum fidelity and the Loschmidt echo (LE) [13, 14]. Each of these

mathematically equivalent quantities measures the sensitivity of the dynamics of a

quantum mechanical system to small perturbations of its Hamiltonian.

The LE can be defined as follows. A system is prepared in a given initial

state |Ψ(0) >, propagated forward in time under an unperturbed time-reversible

Hamiltonian H to some time t, |Ψ(t) >= U(t)|Ψ(0) > where U(t) = exp(−iHt/h̄)

is the time evolution operator. At that time the evolution is stopped and the

Hamiltonian is perturbed by a small amount H ′, so that H → H +H ′. The system

is then propagated backward in time under the perturbed Hamiltonian H +H ′ to

18



create another state U ′(−t)U(t)|Ψ(0) > where U ′(−t) = exp[i(H + H ′)t/h̄]. The

overlap of this forward and backward propagated state with the initial state is known

as the Loschmidt echo (LE), LEH′(t) =< Ψ(0)|U ′(−t)U(t)|Ψ(0) >.

The formula above for the LE can also be interpreted as the overlap of two

different final states of the system which started out from the same initial state, Ψ(0),

but have been propagated forward in time with different Hamiltonians, namely H

andH+H ′. Such a different interpretation of the same quantity defines the quantum

fidelity. The quantum fidelity is unity in the absence of perturbations (i.e. H ′ = 0)

for any H and t. However, in the presence of perturbations the quantum fidelity

will decay with t at a rate depending on H and the perturbation. It is worth

noting that despite their mathematical equivalence the implementation details of

the computation or measurement of these quantities can be quite different, as we

shall see below.

The theoretical equivalence of the Loschmidt echo and quantum fidelity mo-

tivates the exploration of their classical wave analogs with the goal of developing

a practical perturbation sensor. In this chapter we experimentally investigate two

classes of sensing techniques which extend these two quantum mechanical concepts

to classical waves. The chapter devises a tunable sensor that overcomes the effects

of dissipation in classical waves, and as a consequence, also creates a sensor with

adjustable spatial range coverage. A statistical Figure of Merit is defined to com-

pare the relative merits of the different sensing techniques developed. The Figure of

Merit defined also helps to choose an optimum set of parameters for sensing a given

perturbation.
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The classical wave analog of the Loschmidt echo is implemented using a time

reversal procedure which involves the following steps. Suppose that there is a cavity

whose response to incident input signals can be characterized by a linear, causal,

time invariant system. Let the reflected system response to an incident impulse be

s(t); the corresponding Fourier Transform of the impulse response (i.e. the transfer

function) is denoted by ŝ(ω), which is a function of the Fourier frequency transform

variable ω (in what follows we consider ω to be real). The first step of the time

reversal procedure is to inject a narrow band, pulse modulated, incident input signal

a(t) into the system and to retrieve the resulting reflected output b(t). The Fourier

Transforms of these signals obey the relation b̂(ω) = ŝ(ω)â(ω), where, because b(t)

and a(t) are real, ŝ∗(ω) = ŝ(−ω). After recording b(t), consider time reversing it and

reinjecting it as an incident signal b(−t); the Fourier Transform of b(−t) is b̂(−ω).

The system’s response to b(−t) is denoted by b′(t). The Fourier Transform of b′(t)

is given by b̂′(ω) = ŝ(ω)b̂(−ω) = ŝ(ω)ŝ(−ω)â(−ω) = |ŝ(ω)|2â(−ω). This expression

is examined for different loss mechanisms in the system as follows.

For a lossless system, the scattering transfer function obeys the relation |ŝ(ω)|2 =

1. Thus, in the lossless case, b̂′(ω) = â(−ω) holds, which implies that b′(t) = a(−t).

This means that a time reversed version of the original input, a(t), is recovered

after b(−t) is injected into a lossless system. Thus, for the lossless case, the classical

analog of the Loschmidt echo is unity, and the time reversal procedure described

here is ’perfect’.

For a system that is lossy, |ŝ(ω)|2 generally is less than unity and depends on ω.

As a result, the exact time reversed version of the original pulse is not expected to be
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reconstructed for the lossy case. This result will be used to justify the experimental

imperfection of the time reversal procedure explained in Sec. 2.4.2.2.

Next, consider a special case of a lossy system which has uniform loss. To

motivate the definition of uniform loss, first consider a lossless situation in which

temporally sinusoidal waves inside the scattering region are described by the wave

equation [∇2 + (ω/v)2]Ψ = 0, where v is the wave velocity, and the dependent vari-

able Ψ is subject to a lossless ω-independent boundary condition on the boundaries

of the scattering region. In this lossless case, the assumed solution to the scattering

problem is described by a scattering coefficient ŝ0(ω), where |ŝ0(ω)|2 = 1; here, the

subscript zero denotes the lossless case. Now assume that loss is added uniformly in

space to the medium, but not to the boundary conditions. For small loss and a wide

range of loss mechanisms, this modifies the wave equation within the scattering

region via the replacement ω → ω + iγ. Furthermore, we assume that any ω-

dependence of the loss rate γ is negligible within the frequency bandwidth of the in-

cident pulse a(t). Since the only ω-dependence of the scattering problem is assumed

to occur in the wave equation, the transfer function of the uniformly lossy system,

ŝ(ω), is given by ŝ(ω) = ŝ0(ω+ iγ). Therefore, for the uniform loss case, the Fourier

Transform of b′(t) defined above is given by b̂′(ω) = ŝ0(ω + iγ)ŝ0[−(ω + iγ)]â(−ω).

Once again, ŝ0(ω + iγ)ŝ0[−(ω + iγ)] generally depends on ω, and hence the time

reversal procedure is not expected to work perfectly even in the uniform loss case;

in other words that b′(t) is generally different from a(−t).

However, we now argue that, if the uniform loss in the system is compen-

sated by applying a proper time exponential amplification to b(t), the time rever-
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sal procedure will still work. The exponential amplification involves multiplying

b(t) by exp 2γt. The time reversed version of this exponentially amplified signal

is b(−t) exp−2γt, with a corresponding Fourier Transform b̂[−(ω + i2γ)]. The

Fourier Transform of the response of the system to b(−t) exp−2γt is given by

b̂′(ω) = ŝ(ω)b̂[−(ω+ i2γ)]. Here, ŝ(ω) can be written as ŝ0(ω+ iγ) and b̂[−(ω+ i2γ)]

can be written as ŝ[−(ω + i2γ)]â[−(ω + i2γ)]. After substituting these expressions

and simplifying we get b̂′(ω) = ŝ0(ω+ iγ)ŝ0[−(ω+ iγ)]â[−(ω+ i2γ)]. The expression

ŝ0(ω+ iγ)ŝ0[−(ω+ iγ)] is identically one for γ = 0 and all as this is the lossless case.

For arbitrary γ we note that the product is an analytic function of ω. Thus, by ana-

lytic continuation it is also equal to one for any γ. Therefore, b̂′(ω) = â[−(ω+ i2γ)].

In the time domain, b′(t) = a(−t) exp−2γt. If the time duration of the original

input signal, a(t), is short compared with 1/γ, then , b′(t) ≈ a(−t). Therefore,

if the loss in the system is uniform, then the time reversal procedure is expected

to approximately work with the help of the exponential amplification. This is our

motivation to use exponential amplification, described in Sec. 2.4.3, assuming that

the loss in the system roughly approximates the case of a uniform loss over the

bandwidth of the original input signal.

While uniform loss does not strictly apply when there are reflection losses at

the boundaries (generally these depend on angle of incidence), we still might expect

that the uniform loss case applies approximately. To justify this expectation, we

think of ŝ(ω) as resulting from multiple ray paths originating from the port and

then returning to it after following paths that bounce from the scatterer boundaries

multiple times. Insofar as the loss over such a path is approximately proportional to
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the path length (travel time), the uniform loss approximation is expected to apply.

Furthermore, if these paths are long and involve many reflections, their complicated,

chaotic, nature implies that the net reflection loss would involve an average of the

losses over many different incidence angles of the rays on the boundary. Thus,

approximately ergodic behavior of chaotic rays implies a self-averaging process over

different incidence angles and approximately uniform loss for long ray paths.

2.3 Previous Related Work

The idea of quantifying perturbations to a system using either a ”propagation

comparison” of two different final states of the system obtained from a given initial

state, or a comparison of an initial state with a final state of the system obtained

by a time reversal mirror has been explored previously. The concept of quantum

fidelity which quantifies the sensitivity of the dynamics of a quantum mechanical

system to small perturbations of its Hamiltonian is well developed [13, 14]. The

Loschmidt echo makes connection to spin-echo experiments widely used in nuclear

magnetic resonance [17].

The concept of the Loschmidt echo has been extended to classical waves using

”time-reversal mirrors” for acoustics [21, 22] and electromagnetics [23, 24, 25]. Ide-

ally, time-reversal mirrors operate by collecting and recording a propagating wave as

a function of time, and at some later time they propagate it in the opposite direction

in a time-reversed manner. Experimentally, it is not generally possible to mirror all

waves in this manner. Experimental time-reversal mirrors can however be realized
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in the special case of confined systems with highly reflective walls (so called ’bil-

liard’ systems) and classically chaotic ray dynamics such as those considered here.

Under these conditions a single-channel time-reversal mirror can very effectively ap-

proximate the conditions required to measure the Loschmidt echo using classical

waves [25, 26]. The experimental set up for the measurement of the Loschmidt echo

can be further simplified by exploiting the spatial reciprocity of the wave equation

[18, 19]. Time-reversal mirrors have found a wide range of practical applications

such as crack imaging in solids [31], and improved acoustic communication in air

[47], among other things. Recently, it was proposed that time reversal mirrors could

also be applied to quantum systems. [29]

On the other hand, the concept of quantum fidelity has been applied to clas-

sical waves as in the study of the Scattering Fidelity of acoustic waves, which is,

practically speaking, the correlation between signals as a function of time [15, 51,

52, 53, 54]. The relative merits of the cross correlation and mutual information of

acoustic signals in the context of underwater source detection has been studied, for

example, in Ref. [16].

2.4 Experiments

The goal of our experiment is to test the sensitivity of different sensing tech-

niques to small perturbations of a monitored acoustic cavity. A two story tall stair-

well of dimensions 6m deep x 2.5m wide x 6.5m high serves as our enclosure under

surveillance. [See Fig. 2.1] A Samson C01U microphone and a desktop computer
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speaker that are about 1m apart are set up inside the stairwell, and are controlled

by a laptop computer that is stationed outside the enclosure. This is the common

experimental setup for all the sensing techniques tested. In general, the sensing

techniques rely on measurements before and after a perturbation to the cavity. In

Sec. 2.6, results on three different classes of perturbations are presented; these are:

i) static boundary condition perturbations (i.e., insertion of an object) at six speci-

fied locations in the cavity, ii) perturbation of the medium of wave propagation in

the cavity, and iii) global perturbation to the cavity. Next, the peculiarities of each

sensing technique is discussed, and an indicator value of perturbation is defined for

each sensing technique.

2.4.1 Sensing based on ”Propagation Comparison”

The sensing techniques that rely on ”propagation comparison” work as follows.

The first step is to broadcast a short pulse of a carrier signal into the cavity [See

Fig. 2.2(a)]. In the experiment discussed here, an acoustic pulse with a carrier

frequency of 7kHz and a Gaussian envelope with time width of 1ms is broadcast

into the stairwell. A typical input signal is shown in Fig. 2.3(a).The carrier wave

has a wavelength that is much smaller than the typical size of the cavity so that

the semiclassical limit applies. The time duration and envelope of the pulse are

chosen to keep the bandwidth of the pulse narrow enough to minimize the additive

background noise in the cavity, which cannot be mitigated by simple band pass

filtering. A center frequency and bandwidth of the pulse which result in a relatively
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Figure 2.1: The experiment is conducted inside a stairwell with cin-
derblock walls and tile floors. The locations of perturbations chosen to
exemplify short, medium, and long range detection attempts, both at
concealed and nonconcealed locations, with respect to the sensor, are
labeled with letters A to F. The inset shows the perturbing object that
is introduced at the various locations A through F.
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strong coupling of the pulse energy into the cavity are chosen.

The second step of these sensing techniques is recording the response of the

cavity to the stimulus pulse; this response is called the sona signal. Fig. 2.3(b) shows

a typical sona signal from the stairwell. The sona is band pass filtered using a pass-

band that matches the bandwidth of the original pulse. The sona effectively contains

multiple reflections of the pulse off different parts of the stairwell and extends in

time for many pulse durations. A baseline sona signal is recorded by the microphone

before perturbing the cavity [See Fig. 2.2(b)]. For the case of ’boundary condition

perturbation’, the stairwell is perturbed by inserting a cylindrical perturbing object,

which has just about 0.1% of the total volume of the stairwell. The perturber,

which is shown as an inset in Fig. 2.1, is placed at one of the six perturbation

locations labeled A through F in Fig. 2.1. Then, the pulse is rebroadcast into the

perturbed stairwell [See Fig. 2.2(c)], and the resulting perturbed sona is recorded

by the microphone [See Fig. 2.2(d)]. The baseline sona, which is collected before

the perturbation, and the perturbed sona, which is collected after the perturbation,

are compared in one of the following ways giving rise to two sub-classes of sensing

techniques by ”propagation comparison”. We refer to these techniques as Sensing

by Cross Correlation (SCC) and Sensing by Mutual Information (SMI).

2.4.1.1 Sensing by Cross Correlation (SCC)

One way of comparing the sonas before and after perturbation involves com-

puting the maximum of their cross correlation. As can be seen in Eq. 2.1 and Eq. 2.2
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Figure 2.2: Schematic operation of a sensor based on propagation com-
parison. An acoustic pulse is broadcast into the stairwell in (a) and (c).
The resulting sona signals are recorded in (b) and (d). In (c) and (d),
the cavity is perturbed. The sensor works by comparing the baseline and
perturbed sonas through either cross correlation or mutual information.
The red rectangle, which is at the bottom right corner of the schematic
of the stairwell, schematically shows the speaker and microphone.
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below, this approach is inspired by the Scattering Fidelity [15, 51, 52, 53, 54]. Con-

sider two time-domain sona signals that are represented as vectors, X and Y , of

voltage sample values that can be indexed in time. The cross correlation, (X ∗Y )[n]

(Eq. 2.1), of these two signals is computed by finding their magnitude-normalized

dot product while applying an index shift, n, between the signals; the cross correla-

tion is a function of the index shift applied between the signals.

(X ∗ Y )[n] =

∑m=l
m=1X[m]Y [m+ n]

∥X∥∥Y ∥
(2.1)

Here, the numerator of the right hand side represents the dot product between the

sona vectors X and Y , whose contents are shifted by index n with respect to each

other; for a given value of n, l is the maximum index in which both X[l] and Y [l+n]

have a well defined value. The denominator represents the product of the magnitudes

of the sona vectors X and Y . The maximum of the cross correlation values (taken

over all possible index shifts, n) is used as an indicator value of perturbation, ISCC ,

for the sensing technique SCC;

ISCC = Maximumn{(X ∗ Y )[n]} (2.2)

If there is no perturbation in the cavity, the indicator value of perturbation for SCC

(ISCC) is expected to be 1; otherwise ISCC is generally a number between 0 and 1.

The reason for applying an index shift between the sonas while computing their

normalized dot product, and later considering the maximum of the cross correlation,

is as follows. The sona signals measured before and after the perturbation are

digitized using slightly different time bases. In general, this is due to variations

in data acquisition triggering. Thus, it is essential to align the sona signals by
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applying an appropriate relative index/time shift between them before considering

the resulting correlation value; typically, a relative time shift of at most 20ms (i.e.

an index shift of at most 880) is applied between the sonas.

2.4.1.2 Sensing by Mutual Information (SMI)

An alternative method of comparing the two sona signals is to measure their

mutual information. In the context of this computation, each sona is considered

as a random variable, X, taking on different voltage values as time increases. A

histogram of the voltage values of a sona can be constructed using equally spaced

bins. The size of these bins in Volts is determined by the inherent voltage fluctua-

tions due to measurement noise. For this experiment, different bin sizes were tried

and 1mV (which is also the measurement noise level) is chosen as it resulted in an

optimal detection capability of the SMI technique. Thus, slightly different voltage

values of the sona, which are all within an interval whose width is the typical noise

level, are considered as a single voltage value for the purpose of construction of the

histogram. The probability mass function, p(x), of the sona is readily derived from

the histogram constructed; p(x) represents the probability that sona X has a voltage

value of x. The entropy of the sona signal, which quantifies the information content

of the sona in bits, is denoted as H(X).

H(X) = −
∑
xϵX

p(x) log2 p(x) (2.3)

All the voltage values that the sona could take on after the binning process are

considered in this formula for the entropy.
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The mutual information of sonas X and Y , which are considered as random

variables, is denoted by I(X;Y ), and serves as the indicator value of perturbation,

ISMI , for the SMI technique.

ISMI = I(X;Y ) =
∑
xϵX

∑
yϵY

p(x, y) log2(
p(x, y)

p(x)p(y)
) (2.4)

The mutual information can be described as the difference between the sum of the

individual entropies of the sonas and their joint entropy I(X;Y ) = H(X)+H(Y )−

H(X, Y ). The calculation is similar to that of the entropy except that now the

joint probability mass function of sonas X and Y , p(x, y), is involved (Eq. 2.4); the

marginal probability mass functions of X and Y are denoted by p(x) and p(y). The

joint probability mass function p(x, y) assigns the probability that sona X and Y

take on voltage values x and y respectively at the same time. Once again, the bins

have a size on the order of the noise level in the data.

As discussed in Sec. 2.4.1.1, the sona signals X and Y , which are collected

under slightly different time bases, are time aligned based on their maximum corre-

lation value before their correlation is considered as an indicator value of perturba-

tion. By the same token, the computation of the joint probability p(x, y) of event

(X = x, Y = y), which is used in determining the mutual information (Eq. 2.4) of

two sona signals X and Y , is done after the sonas are aligned with respect to their

time index. The alignment can be achieved by finding a time index shift between

the sona signals which maximizes their mutual information.

The mutual information is zero if the two signals being compared are statisti-

cally independent. In general, the mutual information takes on values ranging from
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zero to a maximum value, which is the entropy value of a sona signal in the case

of two identical sonas. A typical sona signal in these experiments has an entropy

of about 5 bits; whereas, the mutual information between two sonas collected from

two nominally identical configurations of the stairwell is typically about 2 bits.

2.4.2 Sensing based on Time Reversed Wave Propagation

The extension of the Loschmidt echo to classical waves is tested by using

a one channel time reversal mirror for acoustic waves in the same stairwell. As

in the experiment discussed above, an acoustic pulse with 7kHz center frequency

and a Gaussian envelope of 1ms time width is broadcast into the stairwell. [See

Fig. 2.4(a)] The resulting sona is measured by the microphone and digitized as

shown in Fig. 2.4(b). The digitized and band-pass filtered sona is time reversed

before it is broadcast back into the stairwell through the speaker. [See Fig. 2.4(c)]

To carry out a full and complete time-reversed wave propagation process, the time

reversed sona should be broadcast back into the stairwell from the location of the

microphone, where the sona was collected. However, spatial reciprocity of the wave

equation is employed which allows us to broadcast the time reversed sona from the

speaker at its original location without the need to interchange the location of the

two transducers. The time reversed sona propagates in the cavity and reconstructs

as a time reversed pulse at the location of the microphone, where it is recorded. [See

Fig. 2.4(d) and Fig. 2.3(c)] The time reversed pulse is periodically generated using

the same time reversed sona signal and possibly different conditions of the cavity
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Figure 2.3: (a) The OP broadcast into the stairwell, (b) sona, (c) a
baseline time reversed reconstructed pulse (BRP), (d) a perturbed time
reversed reconstructed pulse (PRP). All parts show an acoustic signal
(in volts) vs time.
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monitored. If a perturbation occurs [See Fig. 2.4(e)], the resulting reconstructed

time reversed pulse shown in Fig. 2.4(f) will be different from the reconstructed

pulse shown in Fig. 2.4(d).

In general, the sensing techniques based on time reversal work by comparing

two time reversed pulses reconstructed under baseline and perturbed conditions of

the cavity; hence, such sensing techniques are called Chaotic Time Reversal Sensors

(CTRS). The time reversed pulses reconstructed under a baseline and a perturbed

condition of the cavity are referred to as a Baseline Reconstructed Pulse (BRP) and

a Perturbed Reconstructed Pulse (PRP), respectively. A typical BRP and PRP are

shown in Fig. 2.3(c) and Fig. 2.3(d) respectively. The comparison between BRP and

PRP, which have a brief time duration, is computationally inexpensive and can be

done in a number of different ways. Two representative methods of comparing these

signals which give rise to two versions of the CTRS, namely CTRS1 and CTRS2,

are discussed. CTRS1 is based on the comparison of the peak to peak amplitude of

BRP and PRP. Alternatively, CTRS2 is based on the computation of a normalized

correlation of the brief pulses PRP and BRP with a time reversed version of the

original pulse, which is shown in Fig. 2.3(a).

2.4.2.1 Chaotic Time Reversal Sensor 1 (CTRS1)

Comparison of the BRP and PRP based solely on their peak to peak amplitude

is computationally the simplest and most efficient. The ratio of the peak to peak

amplitudes of the PRP to BRP is defined as an indicator value of perturbation for
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Figure 2.4: Schematic operation of the CTRS, which is based on the
extension of the LE to classical waves. A sequence of steps illustrated
in (a)(d) are carried out to measure the BRP. Using the sona collected
in (b), the steps illustrated in (e) and (f) are carried out to measure the
PRP. The CTRS works by comparing the baseline and perturbed pulses
collected.
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CTRS1, ICTRS1.

ICTRS1 =
PkPkAmplitudePRP

PkPkAmplitudeBRP

(2.5)

This ratio is expected to be about 1 if the perturbed condition of the cavity is the

same as its baseline condition. In the case of an actual perturbation, the ratio is

a number smaller than 1. The contrast in the amplitude of BRP and PRP can be

seen in Fig. 2.3(c) and Fig. 2.3(d).

2.4.2.2 Chaotic Time Reversal Sensor 2 (CTRS2)

An alternative method to compare BRP and PRP is based on a normalized

correlation that is analogous to the definition of the Loschmidt echo. Consequently,

this method involves the use of the Original Pulse (OP), which is broadcast into the

cavity in order to collect the sona. The OP broadcast by the speaker is measured in

a separate experiment carried out in an anechoic chamber whose walls are acoustic

absorbers. Fig. 2.3(a) shows a typical measured OP. Once the OP is measured and

digitized it is numerically time reversed resulting in the Reversed Original Pulse

(ROP). In principle, the ROP is expected to be identical to the BRP. However,

this is not the case because the one channel acoustic time reversal mirror is not

perfect. The imperfections are due to the finite time recording of the sona [55],

and the dissipation in the cavity [18]; the imperfection of the time reversal process

due to loss is also discussed in Sec. 2.2. Additive noise from the cavity within the

bandwidth of the OP also plays a role in the incongruity of the ROP and BRP.

The correlation of the ROP and the BRP is used to quantify the overall limita-
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tions of the time reversal mirror. If the experiment were ideal, in the sense that the

sona were recorded for an infinite amount of time in a non-dissipative and noiseless

system, this correlation would be 1 for a ray chaotic system; in these experiments

this correlation is roughly 80%. This correlation is used below to normalize the cor-

relation of the ROP and the PRP. The ratio of these two correlations is the indicator

value of perturbation for the CTRS2 technique, ICTRS2.

ICTRS2 =

<PRP,ROP>
∥PRP∥∥ROP∥
<BRP,ROP>
∥BRP∥∥ROP∥

(2.6)

Here, pulses PRP, ROP, and BRP are considered as vectors of voltage values that

can be indexed in time. Thus, the numerator of ICTRS2 is the dot product of PRP

and ROP divided by the product of their magnitudes. Likewise, the denominator

of ICTRS2 is the dot product of BRP and ROP divided by the product of their

magnitudes. Note that the quantity in the numerator of this ICTRS2 is analogous

to the definition of the Loschmidt echo. The normalization in the denominator is

needed to ensure that ICTRS2 is 1 in the absence of a perturbation. In the presence

of a perturbation the ICTRS2 is a number between 0 and 1.

Yet another way of comparing the BRP and PRP is their correlation, <

BRP, PRP > /(∥BRP∥∥PRP∥). However, we have experimentally demonstrated

that such an approach does not yield a reliable indication of whether a perturbation

has happened or not. In other words the correlation of two time reversed pulses

that are reconstructed before and after perturbation is not statistically distinguish-

able from the correlation of two time reversed pulses that are reconstructed under

nominally identical conditions of the cavity. Hence, this third variety of the CTRS
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is not discussed further.

2.4.3 Effects of Dissipation and Processing the Sona Signal

The sensing techniques discussed so far face the problem of dissipation of

classical waves which effectively limits the sensitivity and spatial coverage of the

sensor. The dissipation brings about an exponential decay of the signal set up by

the initial broadcast of the acoustic pulse. This exponential decay is seen in the

envelope of the sona signal recorded, from which the 1/e decay time is estimated.

[Fig. 2.5(a)] A typical 1/e decay time of the sona signals collected from the stairwell

is about 0.1 seconds. This measured 1/e decay time, τ , is reasonably consistent with

the 60dB decay time of the stairwell estimated from Sabine’s formula.

T60dB =
cV∑

m Smαm

(2.7)

Here, the parameter c = 0.161s/m. Applying Sabine’s formula involves estimating

the volume of the cavity, V ≈ 93m3. In addition, the surface area, S, of each of

the constituent materials of the interior of the cavity is estimated. The correspond-

ing frequency dependent absorption coefficient, α, of the materials is found from

the literature [56], and the summation in Eq. 2.7 is carried out over all the con-

stituent materials, m, of the interior of the cavity. The interior of the stairwell has

approximately 129m2 of painted concrete block and 46m2 of concrete floor; these

constituent materials are known to have an absorption coefficient of 0.08 and 0.02

respectively for 4kHz sound waves. Using these rough estimates, the 60dB decay

time for 4kHz sound waves in the stairwell is 1.3s. From this, one estimates a 1/e
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decay time of 0.09 seconds for 4kHz sound waves in the stairwell, which is close to

the measured τ = 0.1s at 7kHz.

The exponential decay of the sona can be numerically mitigated by applying

an exponential amplification A(t, F ) to the portion of the sona signal that has a

signal to noise ratio of at least 1.

A(t, F ) = exp
Ft

τ
(2.8)

The time dependent amplifying function, A(t, F ), is a function of parameter F ,

and it uses the measured value of the 1/e decay time, τ , of the sona signal being

amplified. The parameter F typically takes on values of either 0, 1, or 2. If F = 0,

there is no exponential amplification of the sona. [See Fig. 2.5(a)] If F = 1, the

resulting exponential amplification removes the effects of dissipation that happened

during the time-forward propagation of the acoustic pulse up to the collection of

the sona. [See Fig. 2.5(b)] If F = 2, the resulting exponential amplification removes

the effects of dissipation that the sona has suffered up to its collection during time-

forward propagation and also the dissipation that it will suffer as it goes through

the stairwell again in a time reversed manner. [See Fig. 2.5(c)]

The motivation for applying exponential amplification is to make the sona

signal closer to what it would be in the non-dissipative case. Working in the ap-

proximately non-dissipative case can expand the range of the sensor. In addition,

the range of the sensor can be changed to some extent with choice of parameter value

F . In Sec. 2.6.3, we shall see that global perturbations to the stairwell are detected

best when the sonas are exponentially amplified to approximate the non-dissipative
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case. The exponential amplification is also motivated by the theoretical results in

Sec. 2.2.

Another possibility of tuning the sensor involves applying a rectangular time-

gating window function to the sona. Such a window is a function of two parameters:

start time (tSTART ) and stop time (tSTOP ) (See Fig. 2.5(c)). The motivation for time-

windowing the sona to change the sensitivity and spatial coverage of the sensor is

founded on a ’ray propagation model’ of the problem. Rays that bounce back from

perturbation locations in the vicinity of the sensor get recorded at the beginning of

the sona. In contrast, rays that bounce back from perturbation locations farther out

from the sensor are recorded towards the end of the sona. This simple generalization

of the complex ray trajectory dynamics in the stairwell motivates the possibility of

windowing the sona to change the spatial sensitivity of the sensor. Thus, the tSTART

tSTOP parameters of the rectangular window are varied to explore this possibility

of tuning the sensor’s sensitivity to perturbation at various locations within the

stairwell.

The rectangular time window has a rise and fall time that is designed to keep

the bandwidth of the windowed sona invariant. Particularly, the rise and fall times

are both on order of magnitude of the time width of the original acoustic pulse that

generated the sona (i.e. 1ms). Before a sona is windowed, it is exponentially ampli-

fied with a given F value. The amplitude of the windowed sona is then uniformly

scaled to fit into the voltage dynamic range of linear output of the speaker, which

is −0.4V to 0.4V . This range was determined by an experiment in an anechoic

chamber with the microphone and speaker.
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Figure 2.5: (a) A typical measured exponentially decaying sona signal,
(b) exponentially amplified sona with F = 1, (c) exponentially amplified
sona with F = 2 after rectangular windowing between times tSTART and
tSTOP .
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To summarize, the sona signal is processed using the three parameters dis-

cussed above: exponent F , tSTART , and tSTOP . Each of the sensing techniques

discussed so far are done with various values of these parameters. For sensing tech-

niques based on time reversal of wave propagation, the sona is processed with the

appropriate parameters before it is time reversed and broadcast back into the cavity.

On the other hand for the sensing techniques based on ”propagation comparison”,

both of the sonas being compared are processed by the same exact parameter values

before the computation of mutual information or cross correlation of the processed

sonas are carried out.

As a caveat, the following special procedures are taken for the case of the

SMI technique to improve its detection performance. The windowed sonas are not

uniformly scaled to fit into the dynamic range of −0.4V to 0.4V (mentioned above).

Furthermore, the voltage values of the processed sonas are rounded off to 3 significant

figures both before and after the sonas are processed (using exponential amplification

and windowing); in other words, the binning of the sonas with a bin size of 1mV is

done both before and after processing the sonas.

2.4.4 Investigation of the Tunability of the Range of the Sensor

So far, four sensing techniques have been introduced, and a mechanism to

tune the range of a sensor using three parameters is established. The parameters

are designed to compensate for the effects of dissipation and to alter the spatial range

of the sensor, to some extent. The following experiments were done to investigate
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the problem of perturbation detection at short, medium and long range.

Six different locations of perturbations, which are labeled A through F in

Fig. 2.1, were chosen in the stairwell. These locations were chosen so that there are

two representative locations for short (perturbation locations A and B), medium

(perturbation locations C and D) and long range (perturbation locations E and F)

detection attempts, respectively. Each pair of representative locations were chosen

so that there is an example of a location that is concealed from the sensor (B, D,

and F), and a location that is almost within the line of sight of the sensor, or at

least within a couple of reflections from the sensor (A, C, and E). For each sensing

technique, the baseline (unperturbed) situation involves the absence of the perturber

in the stairwell, while the perturbed situation has the perturbing object located at

one of the six locations A through F.

The detection experiment was systematically performed at each perturbation

location using all the sensing techniques introduced above. The experiment was

carefully designed to allow all the sensing techniques to be applied to a single in-

stance of perturbation at a given location. All the sensing techniques were operated

with the same set of parameter values. This experimental scheme allows for the

following considerations. An optimal set of parameter values can be identified for a

given sensing technique at a given perturbation location. The effectiveness of a sens-

ing technique, which is operating at its optimal parameter values, can be gauged at

different perturbation locations. The optimal detection capability of different sens-

ing techniques can be compared at a given perturbation location. Standardization

of these comparisons is discussed in the data analysis section.
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2.5 Data Analysis

In the experiment section, the measurement and calculation of four different

indicator values of perturbation (i.e. ICTRS1, ICTRS2, ISCC , and ISMI) corresponding

to the four sensing techniques were introduced. Each of those indicator values

have their own inherent uncertainty in their measurement and calculation. The

range of values that the indicators take on is not uniform. Even though ICTRS1,

ICTRS2, and ISCC have the same range of values (i.e. 0 to 1), the dependence of

their value on the perturbation is not necessarily the same. All these complications

make the comparison of the different sensing techniques, solely using their respective

indicator values of perturbation, a difficult task. This problem is solved by defining

a standardized Figure of Merit (FOM) that can be calculated from the typical

statistics of the indicator values of any of the techniques.

In the absence of perturbation, ICTRS1, ICTRS2, and ISCC should ideally be 1.

Whereas, ISMI should have a particular value, which is closest to the typical entropy

of the sona in bits, in the absence of perturbation. However, this is not always the

case due to measurement uncertainties and noise that propagate through the steps

of the computation of the indicators. Consider a control experiment of detection, in

which we do not induce any perturbation to the cavity under surveillance. In such

a control experiment, the resulting indicator values fluctuate somewhere around the

ideally expected value of 1 (for CTRS1, CTRS2 and SCC), or somewhere around

a value close to the entropy of the sona in bits (for SMI). The statistics of these

control indicator values of perturbation are considered for each sensing technique.
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Particularly, the mean, µ, and standard deviation, σ, of the control indicator values

of perturbation are calculated.

If an indicator value of perturbation is much smaller than the mean of the

control indicator values compared to their standard deviation, then there is a statis-

tically significant detection. Thus, the following Figure of Merit(FOM) is defined.

FOM =
µ− I

σ
(2.9)

The FOM , is the ratio of the difference between the observed indicator value, I,

and the mean, µ, of the control indicator values to the standard deviation, σ, of

the control values. The observed indicator value of a perturbation, I, for a given

instance of perturbation may itself fluctuate around some value due to noise. This

results in the FOM fluctuating as well. Therefore, the FOM is averaged over 25

different realizations. Such an average FOM , < FOM >, also has a propagated

uncertainty, δ<FOM>, associated with it. The difference between the average FOM

and the uncertainty in the average FOM is defined as the Lower-bound of the Figure

of Merit, FOML.

FOML =< FOM > −δ<FOM> (2.10)

To use an abundance of caution, the FOML is used to ultimately decide whether or

not there is a statistically reliable detection. Heuristically, if FOML is greater than

2, then we conclude that there is a statistically reliable detection.

The FOML is calculated for detection attempts using different parameter val-

ues. In what follows, the FOML is plotted, using a contour plot, as a function of

tSTART and tSTOP parameters of the rectangular time-windowing function applied
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Figure 2.6: Contour plots of the lower bound on the FOM (FOML)
as a function of start time (tSTART ) and stop time (tSTOP ) parameters
of the rectangular time windowing function applied to the sona. The
plots show detection attempts at perturbation location A (indicated in
Fig. 2.1) using F = 0. (a) FOML for CTRS1, (b) FOML for CTRS2,
(c) FOML for SCC, (d) FOML for SMI.
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to the sona. [See Fig. 2.6]These plots are done for a given value of the F parameter

used to amplify the sona. Such plots are also annotated by the sensing technique

that was used to generate the FOML and also the location of the perturbation that

is being detected.

2.6 Results

2.6.1 Results on Detection of Perturbations at Specified Locations

The experiments performed can be summarized as follows. Detection attempts

were made using four different sensing techniques at six different perturbation loca-

tions in the stairwell, which are labeled A through F in Fig. 2.1. The six perturbation

locations are chosen to be representative of short, medium and long range detection

both in a concealed and non-concealed sections of the stairwell with respect to the

sensor. Each of the detection attempts using each technique were done using vari-

ous parameter values. Particularly, the F parameter, which controls the exponential

amplification, takes on values of 0, 1 or 2. The tSTART and tSTOP of the windowing

function each take on 7 equally spaced values ranging from 0 seconds to the time

at which a typical sona’s Signal to Noise Ratio(SNR) becomes 1, which is roughly

0.7 seconds. Therefore, there are (7 ∗ (7− 1))/2 = 21 plausible pairs of tSTART and

tSTOP values that constitute a rectangular sona windowing function of non-zero time

width.

The FOML (Eq. 2.10), which is a function of tSTART and tSTOP , is plotted as a

contour plot for a specified F value, sensing technique and perturbation location. In
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Figure 2.7: Contour plots of the lower bound on the FOM (FOML) as
a function of start time (tSTART ) and stop time (tSTOP ) parameters of
the rectangular windowing function applied to the sona. (a) Long range
detection at location F, indicated in Fig.. 2.1, using CTRS1 with F = 0,
(b) long range detection at location F using CTRS1 with F = 1, (c) long
range detection at location F using CTRS1 with F = 2.

48



such contour plots, only the lower right triangle of the plane is used. Overall, since

there are 6 perturbation locations, 4 sensing techniques and 3 F -values, there are 72

such contour plots for the set of experiments carried out. In this results section, a

select group of these plots, which illustrate general trends, will be presented. A table

that summarizes all the results is also included. [See Table 2.1] Given a perturbation

location and sensing technique, the table shows the maximum FOML value over all

parameter values tried in these experiments. The table also shows the percentage

of parameter values that gave a FOML greater than 2, which is a conservative

estimate of statistically reliable detection. The table gives an overall sense of the

effectiveness of the sensing techniques, because it presents their performance in

detecting perturbations at different ranges from the sensor.

In Fig. 2.6, the FOML is plotted for detection attempts at perturbation loca-

tion A (shown in Fig. 2.1) without exponential amplification of the sona (i.e. F = 0).

Figs. 2.6(a), (b), (c), and (d) demonstrate that the techniques of CTRS1, CTRS2,

SCC, and SMI, respectively, allow for a short range and non-concealed perturbation

detection over a wide range of parameter values (i.e. FOML is greater than 2 for a

large number of rectangular windowing functions). The SMI technique has relatively

smaller FOML values compared to the other techniques. Overall, all the sensing

techniques work without the need for exponential amplification and windowing of

the sona when the perturbation is in the vicinity of the sensor.

Here, Fig. 2.6(c) illustrates the connection between the calculations of the

SCC technique and the traditional Scattering Fidelity [15, 51, 52, 53, 54], which has

inspired the SCC technique. In Fig. 2.6(c), there is no exponential amplification
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(i.e. F = 0). Therefore, the FOML values plotted near the diagonal-line of the

”tSTART , tSTOP contour plane” essentially come from a set of ISCC values which can

be plotted as Scattering Fidelity versus time of the baseline and perturbed sona

signals being compared. We see that the optimal parameter region in Fig. 2.6(c) is

not near the diagonal-line of the contour plane; thus, the generalized SCC technique

does indeed offer greater flexibility with its three adjustable parameters (tSTART ,

tSTOP , F ), especially for perturbations that are further from the sensor, and/or

hidden.

The need to process the sona comes into play when a medium or long range

detection is attempted. In Fig. 2.7, the results of long range detection at concealed

perturbation location F [See Fig. 2.1] are presented. The FOML for the CTRS1

technique is plotted with F = 0, F = 1, and F = 2 in Figs. 2.7(a), (b), and

(c) respectively. In contrast to Fig. 2.6(a) (which shows results for short range

detection by CTRS1 with F = 0), a smaller set of windowing parameters allow long

range detection by CTRS1 with F = 0. Therefore, successful long range detection

demands a judicious choice of windowing parameters with F = 0. If there is an

exponential amplification with F = 1 or F = 2, there is, in this case, a slightly

larger set of windowing parameters that can be used to do long range detection.

However, as can be seen in Fig. 2.7, the right choice of the windowing parameters

is more important in doing long range and concealed detection using CTRS1 than

the value of F ; this is also generally true for the CTRS2 and SCC. In general, the

percentage of parameter values that allow detection decreases as the perturbation

location gets farther away from the sensor, as seen in Table 2.1.
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Figure 2.8: Contour plots of the lower bound on the FOM (FOML) as a
function of tSTART and tSTOP parameters of the rectangular windowing
function applied to the sona. In all plots, an exponential amplification of
F = 1 is applied to the sona. The three plots shown here show detection
attempts at different locations of perturbations illustrated in Fig. 2.1.
(a) short range detection at location A, (b) medium range detection at
location C, (c) long range detection at location E.
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Perturbation location shown in Fig. 2.1
Sensing technique A B C D E F
CTRS1 Maximum FOML value 28.9 24.6 17.8 16.0 20.1 9.9

% of FOML value > 2 97% 81% 73% 71% 67% 46%
CTRS2 Maximum FOML value 21.7 18.0 9.9 11.5 13.1 5.8

% of FOML value > 2 90% 63% 67% 32% 48% 13%
SCC Maximum FOML value 32.7 33.1 33.1 22.3 30.2 7.9

% of FOML value > 2 100% 95% 87% 78% 87% 24%
SMI Maximum FOML value 8.3 11.2 12 8.3 15.2 3.5

% of FOML value > 2 76% 71% 89% 54% 76% 6%

Table 2.1: The maximum FOML over all the parameter values tried is shown for each
of the four sensing techniques detecting a perturbation at each of the six perturbation
locations indicated in Fig. 2.1. In addition, the percentage of parameter values which
gave a FOML that is greater than 2 is also shown.

The possibility of associating a set of optimal detection parameter values with

detection of a perturbation at a particular location was investigated next. In gen-

eral, as the perturbation location is farther away from the sensor, the optimal de-

tection parameters space either shrinks and/or moves to the upper right corner of

the ”tSTART , tSTOP plane”. Fig. 2.8 illustrates this phenomena for the case of short,

medium and long range detection attempts at perturbation locations A, C and E

[See Fig. 2.1] respectively by the SCC. The broad swath of parameter space that

is optimal for detection at short range [See Fig. 2.8(a)] shrinks as the perturbation

location moves farther away from the sensor [See Figs. 2.8(b),(c)]; it also moves to

the upper right corner of the plane in this case. Even though this is a consequence

of the fact that the waves that bounced off the farthest perturbation location take

a longer time to get back to the sensor, it is not a trivial consequence as there are

multiple reflections of all the waves within the cavity.
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2.6.2 Results on Detection of Perturbations of the Medium of Wave

Propagation in the Cavity

So far, the results of experiments which involve detection of perturbations at

six different locations in the stairwell, illustrated in Fig. 2.1, are presented. Such

perturbations essentially change the boundary conditions of the cavity at a localized

region. A different kind of perturbation involves perturbation of the medium of

wave propagation in the cavity: For example, creating air currents will perturb

acoustic wave propagation. Such perturbations naturally start out locally and may

spread out throughout the medium filling the cavity in a complex manner. This

motivates yet another kind of perturbation to the cavity which is global in nature.

As a significant amount of time elapses, both the boundaries of the cavity and

the medium within may undergo complex and spatially extensive changes due to

uncontrollable thermal variations (giving rise to convection currents, for example).

Next, we present the results of experiments which investigate the possibility of

detecting a relatively localized perturbation to the medium of wave propagation in

the cavity, and also a global perturbation to the cavity.

The medium of wave propagation in the stairwell is perturbed by remotely

activating a fan which is stationed inside the stairwell about 2m away from the

sensor. The air currents induce a phase shift, ∆ϕ, in the sound waves that pass

through the part of the cavity in which the air is perturbed.

∆ϕ ≈ ∆v

v
kLpath (2.11)

Here, v is the speed of sound, ∆v is the speed of the wind, k is the wave number
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of the sound wave, and Lpath is a typical path length of travel of the sound wave

through the moving air. Taking v = 343m/s, ∆v = 2m/s, k = 2π
5
cm, Lpath = 1m,

gives ∆ϕ = 0.23π. Such a significant phase shift degrades the reconstruction of the

time reversed pulse during the operation of the CTRS. This is because the coherent

superposition of the time reversed sona is thwarted due to the phase shift that waves,

which pass through the moving air, experience.

The following experiment is done to study the detectability of perturbations

of the medium of wave propagation by CTRS1. A pulse is broadcast into a quies-

cent stairwell, and a sona is collected. The time reversed sona is then periodically

broadcast into the stairwell 30 times over 9 minutes. The resulting time reversed

reconstructed pulses are saved. Then, the air in the cavity is perturbed by remotely

activating a mechanical fan for 15 seconds; the fan had been stationed inside the

stairwell in the vicinity of the sensor. After the fan is turned off, the time reversed

sona is broadcast into the stairwell 30 more times over 9 minutes. The resulting

30 additional reconstructed pulses are also saved. In this experiment, the very first

time reversed reconstructed pulse is considered as a Baseline Reconstructed Pulse

(BRP). All the other pulses are considered as a Perturbed Reconstructed Pulse

(PRP). Then, the indicator value of perturbation for CTRS1, ICTRS1, (Eq. 2.5) is

constructed for each of the 59 PRP, BRP pairings. Finally, ICTRS1 is plotted versus

time as shown in Fig. 2.9.

Fig. 2.9(a), (b), and (c) show the cases when the sona is exponentially amplified

with parameter F = 0, F = 1, and F = 2, respectively. In all cases, the sonas are

windowed with tSTART = 0s and tSTOP = 0.3s. From Fig. 2.9, it is clear when
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Figure 2.9: Indicator values of perturbation for CTRS1, ICTRS1, vs
measurement number (approximately 18s elapse between each measure-
ment). Halfway in the displayed time interval, a mechanical fan is briefly
activated in the stairwell perturbing the medium of wave propagation.
Each of the plots correspond to cases in which the sona is exponentially
amplified by different F values. In all cases, the sonas are windowed
with tSTART = 0s and tSTOP = 0.3s: (a) F = 0, (b) F = 1, and (c)
F = 2.
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the medium perturbation occurred (i.e. halfway in the displayed time axis between

index 30 and 31). The dynamic nature of the perturbation is exhibited in the plots

because the ICTRS1 increases as the air currents damp out and the perturbation in

the vicinity of the sensor relaxes. In Fig. 2.9(a) there is no exponential amplification,

hence the dynamic perturbation is no longer sensed after about 3 minutes, which

is roughly the time that it takes for the air in the vicinity of the sensor to calm

down. The ICTRS1 indicator ends up with a smaller static value after 3 minutes in

Fig. 2.9(a) in part because after the fan is activated its blades took on a different

position, which by itself is a static perturbation. However, if there is exponential

amplification, ICTRS1 changes non-monotonically as shown in Fig. 2.9(b) and (c),

because the sensor is now sensitive to what happens farther out, both from the

fan and the sensor. In other words, the medium of wave propagation perturbation

eventually spreads out in the cavity initiating a more global perturbation. In the

next sub-section, global perturbations are studied in detail.

To summarize, the general results presented in this sub-section based on the

ICTRS1 technique are also observed in the other three techniques. It is also important

to note the practical implication of these results. The medium of wave propagation

can be perturbed in a variety of circumstances of interest. For instance: the dynamic

nature of these perturbations means that one can verify that a cavity had been

perturbed by a fast moving object even after the object has left the cavity, based

solely on the air turbulence the fast moving object induced.
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Global perturbation
Sensing technique F = 0 F = 1 F = 2
CTRS1 Maximum FOML value 12.5 13.0 33.0

% of FOML value > 2 100% 95% 90%
CTRS2 Maximum FOML value 15.2 12.3 23.0

% of FOML value > 2 100% 95% 90%
SCC Maximum FOML value 40.3 56.8 40.6

% of FOML value > 2 100% 100% 100%
SMI Maximum FOML value 13.8 5.1 3.1

% of FOML value > 2 95% 90% 38%

Table 2.2: The maximum FOML over all the windowing parameter values tried
is shown for each of the four sensing techniques detecting a global perturbation
with a given value of the exponential amplification parameter F . In addition, the
corresponding percentage of windowing parameter values which gave a FOML that
is greater than 2 is also shown.

2.6.3 Results on Detection of Global Perturbations to the Cavity

Experimentally inducing a uniform global perturbation to a cavity is not sim-

ple. A possible global perturbation is to allow the boundaries of the stairwell and its

medium to undergo thermal changes through time. If sufficient time elapses, three

sides of the stairwell are exposed to the outside environment, and undergo some

thermal changes that approximate global perturbations.

The procedure of the global perturbation experiment in the stairwell is very

similar to the procedure of the experiments performed to detect perturbations at

the six locations illustrated in Fig. 2.1. The perturbation simply involves allowing

about 2 hours to elapse in between collection of baseline and perturbed sonas (time

reversed pulses).

First, the same set of parameter values and techniques are used to analyze

this global perturbation as in the case of the six local perturbations discussed in

Sec. 2.6.1. The results are summarized in Table. 2.2. The table presents results for
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Figure 2.10: The lower bound on the FOM (FOML) vs the exponen-
tial amplification parameter F for detection of global perturbation using
CTRS1, CTRS2, and SCC. The CTRS based techniques work best when
F is close to 2, and SCC works best when F is close to 1.

each of the 3 different exponential amplification parameter F values used (0, 1, and

2) separately.

From Table. 2.2, it is seen that global perturbations can be detected by almost

any of the windowing parameters tried. This supports the intuition that the effect

of global perturbations leaves a signature throughout the sona signals. This raises

the following question. Are global perturbations detected best when exponential

amplification is applied to approximate the non-dissipative case?

If the answer is yes, then it is expected that F = 1 is optimum for the SCC
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technique and F = 2 is optimum for the CTRS1 and CTRS2 techniques. This

hypothesis is tested by repeating the experiment discussed above using a different

set of parameter values. Here, F values ranging from 0 to 3 with increment of

0.1 are used (as opposed to using just F = 0, 1, and 2). On the other hand, no

windowing is applied to the sona to simplify the experiment. As shown in Fig. 2.10,

the FOML has a maximum around F = 1 and F = 2 for SCC and CTRS2 (and also

CTRS1) techniques, respectively. Therefore, global perturbations are best detected

by CTRS and SCC when the sona is exponentially amplified to approximate the

non-dissipative case.

2.6.4 Miscellaneous Results

In this subsection, we discuss miscellaneous results that are relevant to the

sensing techniques discussed so far. These results are obtained by using almost

the same basic experimental set up used so far. The only difference is that the

original acoustic pulse broadcast does not have a Gaussian envelope; instead, it has

a rectangular envelop as can be seen in Fig. 2.13.

Particularly, the above mentioned experimental procedure to reconstruct a

time reversed pulse is used to investigate the following issues [19]. The robustness

of the acoustic time reversal mirror is investigated by broadcasting a time reversed

sona after numerically modifying its phase information. The long term drift induced

by uncontrollable environmental changes to the cavity is studied by reconstructing

time reversed pulses successively over a long time period using a single sona signal
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recorded at an earlier time(this is similar to the studies on the global perturbations

discussed in Sec. 2.6.3). Finally, the feasibility of detecting changes to the configu-

ration of objects inside a cavity is demonstrated as follows. A time reversed pulse is

reconstructed in a stairwell with a given configuration of objects, then the same sona

signal is used to reconstruct a time reversed pulse after we rotate a rectangular box

to a new orientation in the stairwell. The time reversed pulses reconstructed before

and after the perturbation to the cavity are compared with a goal of detecting the

perturbation.

2.6.4.1 Effect of Phase Noise Added to the Sona

The robustness of the time reversal mirror to phase noise/manipulation that

corrupts the sona signal is studied. We performed an experiment in which the digi-

tized sona signal is numerically modified before it is time reversed and broadcasted

back into the cavity it was collected from. Specifically, the sona is Fourier trans-

formed to get its magnitude and phase information in the frequency domain (with a

frequency step of 2Hz between data points). Gaussian distributed random numbers

with zero mean and a given standard deviation, which is systematically varied from

0 to π, are added to the phase of the Fourier transform of the sona. The unaltered

magnitude information, and the modified phase information are used to generate

a modified sona signal using inverse Fourier transform. This modified sona is then

time reversed and broadcasted into the cavity, and the peak to peak amplitude of

the reconstructed pulse is measured.

60



Figure 2.11: A plot of peak-to-peak amplitude (PPA) of the recon-
structed pulse amplitude in volts versus the standard deviation of the
Gaussian phase noise distribution in radians. Gaussian distributed ran-
dom numbers with zero mean and a standard deviation, which is system-
atically varied between 0 and π, are added to the phase of the Fourier
transform of the sona signal. This effectively scales the reconstructed
pulse by a Gaussian function of the standard deviation of the underlying
phase noise.
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The peak to peak amplitude of the reconstructed pulse is observed to diminish

as the standard deviation of the phase noise is increased (see Fig. 2.11). This result

is also seen using a theoretical model that applies similar phase noise to the sona

signal.

Because the system is linear, the effect of phase noise on the sona can be

directly calculated. The sona can be expressed as a Fourier transform as S(t) =∫
dωS(ω) exp(iωt). With added phase noise, distributed as P∆θ(θ) =

1√
2π(∆θ)2

exp −θ2

2(∆θ)2
,

the modified sona becomes Snoisy(t) =
∫
dωS̃(ω)

∫
dθ exp iωt exp iθP (θ). Carrying

out the integral over the random variable leads to Snoisy(t) =
∫
dωS̃(ω) exp iωt exp −(∆θ)2

2
.

Clearly the sona signal is reduced in magnitude by an amount that depends on the

width of the Gaussian distribution ∆θ.

The degradation of the sona signal translates into degradation of the recon-

structed pulse, as shown in Fig. 2.11. The peak-to-peak amplitude of the recon-

structed pulse versus width of the Gaussian phase noise distribution is fit to a

Gaussian function as Vp−p(∆θ) = V0 + A exp −B(∆θ)2

2
, and the three parameters V0,

A, and B are allowed to vary. The result shows an excellent fit with V 0 = 0.14V ,

A = 1.58V , and B = 1.14. The value of B is very close to the expected value of 1,

while the offset value V0 is the background level in the extremely noisy limit.

2.6.4.2 Long-Term Drift of the Reconstructed Pulse

As the time reversed sona signal is periodically broadcast into the cavity,

the reconstructed time reversed pulse consistently reproduces itself up to some sta-
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Figure 2.12: Long term drift in the PPA in volts of the reconstructed
time reversed pulse in the stairwell. The PPA exhibits a drift as the re-
verberant cavity and air medium go through thermally-induced changes
in time.

tistical measurement fluctuation. Particularly, we look at the fluctuations in the

peak-to-peak amplitude of the reconstructed pulse as a single time reversed sona is

periodically broadcasted into a nominally unperturbed cavity every 10s over a time

period of 20min (see Fig. 2.12). For short time periods, the statistical variation

of the peak-to-peak amplitude is about ±2%. However, there are uncontrollable

changes to the cavity over long time periods, such as thermal expansion or per-

haps changes in temperature of the air, and these play a role in the drift of the

reconstructed time reversed pulse amplitude on longer time scales (> 10min).

2.6.4.3 Effect of a Volume-Preserving Perturbation

Finally, we test the feasibility of the acoustic time reversal mirror to detect

volume preserving perturbations to the cavity by comparing reconstructed pulses
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before and after a specific perturbation of the scattering environment. The pertur-

bation we perform involves rotating a rectangular cardboard box (with a volume

of 30x60x80cm3), located inside the stairwell, by 90 degrees. The reconstructed

time-reversed pulses before and after perturbation are compared in one of the fol-

lowing ways: (1) the peak-to-peak amplitude of the two pulses are compared, or

(2) the normalized cross correlation between the two reconstructed pulses is cal-

culated. The peak-to-peak amplitude of the reconstructed pulse drops from 1.11V

to 0.92V upon the perturbation; this is a reduction by 17% (see Fig. 2.13), which

is significant compared to the typical statistical fluctuation of about ±2% between

nominally identical reconstructed pulses (Fig. 2.12). On the other hand, the nor-

malized cross correlation of the pulses before and after perturbation is 93%. From

this and many other measurements [18, 20] it is clear that monitoring the decrease

in the peak-to-peak amplitude of the reconstructed time-reversed pulse is not only

computationally simpler but it is also a statistically more reliable mechanism to

detect perturbations.

2.7 Discussion

The results summarized in Table 2.1 indicate that SCC, CTRS1 and CTRS2

perform reliably in detecting perturbations at different ranges. The SMI performs

detection as well, despite its relative weakness. The SCC has the highest FOML

across the board, which is its main advantage. However, the SCC also has the broad-

est optimal parameter space, which may be a disadvantage if one is interested in
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Figure 2.13: The effect of a volume preserving perturbation on the
reconstructed time reversed (TR) pulse. The TR pulses (a) before
(PPA = 1.11V ) and (b) after (PPA = 0.92V ) perturbation have a
normalized correlation of 93%, but the PPA drops by 17%. The per-
turbation is done by rotating a rectangular box (30cmx60cmx80cm) by
ninety degrees inside the reverberant cavity (stairwell).
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associating a given perturbation location with a narrow distinct optimal parameter

space; such an association can be useful to localize the perturbation.

Another shortcoming of the SCC, and also the SMI, is their higher computa-

tional cost. The lower bound on the computational resources needed to compare two

sona signals using the SCC or SMI roughly scales with the length of the sona signals.

[See Eq. 2.1 to Eq. 2.4] Besides, it is important to note that we have implemented

the SMI by calculating the mutual information with the so called ”equidistant bin-

ning estimator” technique which is the simplest method computationally [57]; if the

SMI were to be implemented using other more complicated ”mutual information es-

timators”, its higher computational cost would overshadow any other benefits. This

computational problem inherent in the SCC and SMI methods can be mitigated

only by considering narrow windows of the sona signals. In contrast, the CTRS

based sensing techniques have a small fixed computational cost in comparing the

time reversed pulses regardless of the values of the parameters used to process the

sona. Particularly, CTRS1 is the most computationally efficient sensing technique

as it relies on a simple peak to peak amplitude measurement of the reconstructed

time reversed pulses. However, the CTRS requires analogizing and broadcasting a

time reversed sona signal.

It is worth emphasizing that the SCC technique is motivated by the Scatter-

ing Fidelity [15, 51, 52, 53, 54]. As mentioned in Sec. 2.4.1, the SCC technique

implicitly calculates the Scattering Fidelity for the case of no exponential amplifi-

cation (i.e. F = 0) as long as a set of tSTART and tSTOP windowing parameters

are used which effectively result in the sliding of a narrow rectangular-time-window
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Figure 2.14: SF of sonas before and after a perturbation as a function
of time. The SF plotted here is averaged over 25 realizations. The
width of the time window over which the ISCC and hence the SF is
computed is 0.1s. The six SF curves are labeled A through F; the labels
correspond to the locations of the perturbations illustrated in Fig. 1.
For example, the slowest decaying SF curve comes from sonas measured
before and after perturbing the cavity at location F in Fig. 1. The rates
of fidelity decay are generally indicative of the relative distance of the
perturbations from the sensor.
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across the baseline and perturbed sona signals being compared. Fig. 2.14 shows the

25-realization-averaged Scattering Fidelity versus time measured for the six local

perturbations illustrated in Fig. 2.1. The Scattering Fidelity (SF ) is simply cal-

culated using Eq. 2.1 and Eq. 2.2 as follows: SF (t∗) = ISCC(t∗), where t∗ is the

middle of the time-window formed by the parameters tSTART and tSTOP , and where

F = 0.

It is clear that the Scattering Fidelity decays the fastest for short-range per-

turbations (i.e. perturbation locations A and B in Fig. 2.1), whereas the slowest

Scattering Fidelity decay is for the long-range and concealed perturbation (i.e. per-

turbation location F). When the Scattering Fidelity decay of concealed and non-

concealed perturbations that are at about the same distance from the sensor is

compared, it turns out that non-concealed perturbations (i.e. A, C, and E) result in

a faster Scattering Fidelity decay. These results agree with our earlier observations

regarding the dependence of the optimum parameter space (in the ”tSTART , tSTOP

contour plane” of the FOML) on the perturbation location; (i.e. long range and

concealed perturbations are detected better if we look at the end of the sona.)

The exact mathematical equivalence between the quantum mechanical quan-

tities Loschmidt echo and quantum fidelity is not quite replicated in their classical

analogs developed here, namely the ICTRS2 and ISCC . It is important to note that

the overlap between the classical wave systems is done only at a single point in

space where the microphone is located; in addition, there is dissipation in the clas-

sical system.
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2.8 Conclusion

The direct analogy of the quantum mechanical concepts of Loschmidt echo

and quantum fidelity give rise to the sensing techniques CTRS2 and SCC presented

here. In addition, the CTRS1 and the SMI techniques are developed in parallel.

The CTRS based techniques, which rely on a time reversal mirror, offer a computa-

tionally cheap alternative to the SCC and SMI techniques that are based on a more

traditional ”propagation comparison” concept.

A systematic set of experiments are done to detect perturbations at six differ-

ent locations in an enclosed stairwell using these sensing techniques. The processing

of the sona signals by exponential amplification and time windowing allowed long

range detection at concealed locations in the cavity; such detection endeavors would

not have been possible without such processing of the sona, especially the time win-

dowing. The optimal parameter space of the sensing techniques is also seen to be

related to the perturbation location. Even though there may not be a one to one

correspondence between an optimal parameter space and a perturbation location

(which would enable exact localization of the perturbation), the current results in-

dicate that one can at least rule out candidate locations for a detected perturbation

by looking at the optimal parameter space found.

In addition to detection of static boundary perturbations at given locations,

perturbations to the medium of wave propagation are also shown to be detectable.

Detection of such perturbations opens up a wide range of applications. It is also

shown that by using exponential amplification of the sona, one can see how the
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initially localized medium perturbation spreads out into other parts of the cavity.

The extreme case of global perturbations, which can be experimentally realized by

allowing the cavity to undergo thermally induced changes, is also investigated. It is

shown that the global perturbations are detected best when the sona is exponentially

amplified to approximate the lossless case.
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Chapter 3

Quantifying Volume Changing and Shape Preserving Perturbations

In this Chapter, the sensors introduced in Chapter 2 are used to quantita-

tively measure perturbations that change the volume of a wave chaotic cavity while

leaving its shape intact. The sensors work in the time domain by using either scat-

tering fidelity of the transmitted signals or the Loschmidt echo. The sensors were

tested experimentally by inducing volume changing perturbations to a one cubic

meter pseudo-integrable, real-world cavity. Perturbations which caused a volume

change that is as small as 54 parts in a million were quantitatively measured. These

results were obtained by using electromagnetic waves with a wavelength of about

5cm, therefore, the sensor is sensitive to extreme sub-wavelength changes of the

boundaries of a cavity. The experimental results were compared with Finite Differ-

ence Time Domain (FDTD) simulation results, and good agreement was found 1.

Furthermore, the sensor was tested using a frequency domain approach on a numer-

ical model of the star graph, which is a representative wave chaotic system. These

results open up interesting applications such as: monitoring the spatial uniformity

of the temperature of a homogeneous cavity during heating up / cooling down pro-

cedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity

by another fluid, etc.

1The simulation in Sec. 3.3.2 was carried out by Professor Franco Moglie at the ”Dipartimento

di Ingegneria dell’Informazione” in the ”Universita Politecnica delle Marche” in Ancona, Italy
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3.1 Introduction

Most sensors such as SONAR rely on direct line of sight information. In that

case, monitoring a cavity which has an irregular geometric shape, including hidden

regions, may require installing multiple sensors throughout the cavity for a com-

prehensive coverage. However, most real world cavities have irregular shapes. This

irregularity has the benefit of facilitating the creation of ray chaotic trajectories. The

study of waves propagating inside these ray chaotic cavities, in the semi-classical

limit, is called wave chaos [2]. Wave chaos is essentially the manifestation of the un-

derlying ray chaos on the properties of the waves whose wavelength is much smaller

than the typical dimensions of the cavity. Ray chaos is characterized by sensitive

dependence of ray trajectories to initial conditions. The effect of perturbations on

waves propagating in such cavities was studied using the concept of the scattering

fidelity for some specific experimental set ups [15, 53]. Scattering fidelity is a nor-

malized correlation between two cavity response signals as a function of time; the

response signals are typically collected before and after a perturbation to the cavity.

However, the practical sensing application of the scattering fidelity concept had not

been explored. In Chapter 2, wave chaotic sensing techniques that allow a compre-

hensive spatial coverage using a single sensor were introduced [18, 20, 19]. These

techniques rely on the wave chaotic nature of most real world cavities. When a pulse

is broadcast into a cavity to probe it, the response signal consists of reflections that

bounced from almost all parts of the cavity; this is due to the underlying spatial

ergodicity of ray trajectories in ray chaotic cavities. Therefore, the response signal
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essentially ”fingerprints” the cavity, and it enables the detection of changes to the

cavity.

The wave chaotic sensing techniques in Chapter 2 were not used to quantify

any kind of perturbation [18, 20, 19]. Local and global perturbations to the bound-

aries of the cavity, and perturbations to the medium of wave propagation within

the cavity, were all shown to be detectable [20]. However, the quantification of

a perturbation was not accomplished. On the other hand, a remarkably sensitive

quantification of a perturbation which involved translation of a sub-wavelength ob-

ject over sub-wavelength distances was successfully demonstrated [58]. However,

the quantification was based on an empirical law that is specific to the system and

perturbation at hand. This is because the effect of the perturbation on the dynam-

ics of the waves propagating inside the wave chaotic cavity is not straightforward

[58]. In this Chapter, we focus on a single class of perturbation whose effect can be

theoretically predicted, and propose two time domain techniques to measure that

particular kind of perturbation in any cavity.

In this chapter, we focus on quantifying volume changing perturbations (VCP)

to a wave chaotic scattering system. A VCP changes the volume of a cavity, but it

may slightly change its shape as well. A special kind of VCP is a volume changing

and shape preserving perturbation (VCSPP). In Sec. 3.2, the theoretical prediction

of the effect of VCSPPs is discussed. Sec. 3.2 proposes two time domain techniques

to quantify VCPs. As Chapter 2, these techniques are based on the scattering

fidelity and the Loschmidt echo. Sec. 3.3 presents the experimental test of these

two VCSPP sensing techniques, along with a head-to-head numerical validation.
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The experimental test is carried out inside a pseudo-integrable, real world cavity

using electromagnetic waves. Sec. 3.4.2 provides a test of the sensing techniques

in a numerical model of the star graph, which is a quasi-1D wave chaotic system.

Sec. 3.4.2 also shows the relative merits of approaching the problem in the frequency

domain. Sec. 3.5 discusses practical applications of the VCSPP sensor, and Sec. 3.6

provides a conclusion.

3.2 Theory and Approach

Consider a generic wave chaotic cavity with volume V1, which is considered

as a baseline system (see Fig. 3.1(a)). The schematics in Fig. 3.1(a)&(b) illustrate

the cavity as a stadium billiard, but the cavity is considered generic throughout

Sec. 3.2. Suppose that the baseline cavity is perturbed such that each of its three

length dimensions increase by a factor of P . This amounts to a VCSPP, by a

factor of P 3; the perturbed cavity has a volume of V2 = P 3V1 (see Fig. 3.1(b)).

Fig. 3.1(a)&(b) show a brief pulse being broadcast into the cavity. The response

signal to the pulse is called the sona. The sona from the baseline cavity (which

is referred to as baseline sona) and the sona from the perturbed cavity (which is

referred to as perturbed sona) are expected to be related, under certain conditions

which are discussed later in this section. For instance, if P > 1, a signal feature

in the perturbed sona is expected to be delayed by a factor of P compared to its

appearance in the baseline sona. The sensor is designed to enable the measurement

of the value of P , which effectively quantifies the VCSPP, by using the theoretically
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predicted effects of the VCSPP on the dynamics of the waves. Another practically

useful capability of the sensor is to check if the perturbation is indeed a VCSPP,

and not just merely a VCP.

As opposed to the resource intensive frequency domain sensing, it is practi-

cally preferable to use a time domain interrogation of the baseline and the perturbed

cavity by measuring the sonas. However, it is useful to look at the problem in the

frequency domain to understand the limitations of the time domain approach. Con-

sider the scattering parameters of the cavities as a function of frequency. The

|S12|2 as a function of frequency of the baseline and the perturbed 2-port cavity are

schematically shown in Figs. 3.1(c)&(d). We expect a precise mathematical relation-

ship between the scattering parameters of the baseline and perturbed cavities as a

function of frequency. Particularly, if P > 1, the baseline spectrum can be obtained

by stretching out the perturbed spectrum by a factor of P along its frequency axis.

This is precisely the prediction about the effect of VCSPPs on the dynamics of the

waves.

Now, we can describe the time domain approach further, and point out its

limitations. When a cavity is monitored for a VCSPP, a pulse is periodically broad-

cast into it, and a sona is collected. It is generally preferred to use the same probing

pulse (i.e. the same center frequency, bandwidth, amplitude, and shape) so that

only the changes in the system show up when looking at the sonas. When a VC-

SPP (with P > 1) occurs, the transmission spectrum |S12|2 of the system shrinks

along the frequency axis by a factor of P as shown in Figs. 3.1(c)&(d). The prob-

ing pulse frequency coverage is schematically shown in the frequency domain in
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Figure 3.1: Schematic illustrating Volume Changing & Shape Preserving
(VCSP) perturbations. (a) Sona is collected from a baseline cavity of
volume V1. (b) Sona is collected from a perturbed cavity of volume V2.
(c) Pulse exciting the resonances of the baseline system. (d) The same
pulse exciting the perturbed resonances of the perturbed system.

Figs. 3.1(c)&(d). The baseline and the perturbed sonas are a result of the probing

pulse exciting resonances of the cavity. The resonances excited by the probing pulse

in the baseline and perturbed cavity are not all the same. Suppose that there is a

significant overlap between the resonances excited by the probing pulse in the base-

line and perturbed cavity. Under this condition, we expect that the baseline sona

can be numerically stretched out by a factor of P along its time axis to approximate

the perturbed sona.

As in Chapter 2 [20], there are two classes of time domain sensing techniques

that can be used to quantify VCSPPs. The first technique relies on the scattering

fidelity [14]. Consider two sonas X and Y , which are real voltage versus time signals.
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The scattering fidelity (SF ) of X and Y is simply their normalized correlation as a

function of time, t [14];

SF (t) =

∑m=t+∆t
m=t X[m]Y [m]√∑m=t+∆t

m=t X[m]2
∑m=t+∆t

m=t Y [m]2
(3.1)

where ∆t in Eq. 3.1 is typically chosen to be the time scale it takes the waves

to traverse the cavity, at the very least, once (i.e. in order of magnitude of the

ballistic flight time). The SF (t) of two sonas can take real values ranging from 1

(i.e. perfect correlation at time t) to −1 (i.e. perfect anti-correlation at time t). If

SF (t) is 0, then the sonas are not correlated at time t. The SF of the baseline and

the perturbed sonas is not expected to stay close to 1 throughout time. However, the

SF of the perturbed sona and the baseline sona whose time axis is scaled using the

optimum stretching/squeezing factor is expected to stay close to 1 throughout time.

The optimum stretching/squeezing factor is expected to approximate P , which is

also related to the magnitude of the perturbation.

The second technique to quantify VCSPPs utilizes the Loschmidt echo through

classical time reversal mirrors [21]. To see the operation of a time reversal mirror,

consider a two port cavity. Suppose that a pulse is broadcast into the baseline cavity

through port 1, and a baseline sona is recorded through port 2. If the baseline

sona is time reversed and broadcast back into the cavity through port 2, a time-

reversed version of the original pulse reconstructs at port 1. The reconstructed pulse

approximates the time reversed version of the original pulse broadcast into the cavity.

However, if the time reversed baseline sona is broadcast into a perturbed cavity, then

the reconstructed pulse will more poorly approximate the time reversed version of
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the original pulse. The time axis of the baseline sona needs to be scaled using the

optimum factor before it is time reversed and broadcast into the perturbed cavity;

this is assuming that the perturbation is VCSPP. The optimum stretching/squeezing

factor is expected to result in a reconstructed pulse that best approximates the

original pulse. Once again, the optimum stretching/squeezing factor is expected to

be P .

3.3 Testing the Quantitative Sensor in the Time Domain

3.3.1 Experimental Setup

The cavity that is used to test the sensing techniques is an approximately 1m3

(i.e. dimensions of 1.27m x 1.27m x 0.65m) aluminum box that has scatterers and

interior surface irregularities which facilitate the creation of ray chaotic trajectories.

The cavity is pseudo-integrable because it has parallel walls which may support

integrable modes in addition to the chaotic modes. Overall, the cavity represents

a real world case in which the sensor would operate. There are two ports that

connect the cavity to a microwave source and an oscilloscope. Each port consists

of a monopole antenna of length ≈ 1cm, and diameter ≈ 1mm. The monopole

antennas are mounted on the wall of the cavity. An electromagnetic pulse with

a center frequency of 7GHz, and a Gaussian envelope of standard deviation 1ns

is typically broadcast into the cavity through port 1. The resulting sona signal is

collected at port 2 by the oscilloscope, and it is digitally filtered to minimize noise.

Experimentally inducing a VCSPP can be more challenging than inducing
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a VCP, which may slightly change the shape of the enclosure. VCSPPs can be

realized by changing the speed of wave propagation within the cavity (i.e. changing

the electrical volume). The speed of light (for the electromagnetic experiment at

7GHz) within the cavity can be changed by filling up the cavity with different

gases which have similar dissipation and dispersion properties. For example, the

relative dielectric constant (ϵr) of air (at ≈ 50% relative humidity), nitrogen gas,

and helium gas are ϵr,air = 1.000635, ϵr,N2 = 1.000547, ϵr,He = 1.000065, respectively,

at a temperature of 200C [59, 60]. As discussed later in Sec. 3.3.2, it was shown

that the slightly different dissipation values of these gases does not change the sona

signal in any perceivable way. However, the slightly different speed of light values

of these gases was seen to significantly change the sonas collected.

The experimental procedure for filling up the cavity with different gases is as

follows (see Fig. 3.2). There is a gas inlet on the top wall of the cavity. The gas inlet

was connected to a gas tank via a plastic tube and a long copper tube coil. The

long copper tube coil allowed the gas to reach room temperature before it gets into

the cavity. There was a pressure regulator in between the gas tank and the copper

tube to control the rate of flow of the gas. There were three gas outlets near the

top wall of the cavity, and three gas outlets near the bottom wall of the cavity. The

diameter of the gas inlet and outlets was just about a fifth of the wavelength, so

that no significant microwave leakage occurred. Depending on the density of the gas

which was being pumped into the cavity, half of the outlets (near the top or bottom

wall) were closed off with tape. This procedure helped to displace the existing gas

and retain the gas being pumped into the cavity.

79



Figure 3.2: Schematic of the experimental set up to induce VCSPPs
in an electromagnetic cavity, and the equipment needed to implement
an electromagnetic time reversal mirror. The VCSPP is induced by
filling the cavity with helium or nitrogen gas. The gas transfer is carried
out using a long copper tube that helps to warm the gases up to room
temperature. There is a gas inlet, and six gas outlets on the walls of the
cavity. The cavity has two antennas that are connected to a microwave
source and an oscilloscope. The electromagnetic time reversal is carried
out as follows. First, the original pulse is broadcast through antenna 1
(1), and the resulting sona is collected at antenna 2 (2). Next, the time
reversed sona is injected into the system at antenna 1 (3) to retrieve the
reconstructed time reversed pulse at antenna 2 using spatial reciprocity
(4). Experimental data are shown for each step.
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As detailed in Sec. 3.3.4, sona signals were collected from the cavity both

during and after the gas transfer process. The sona signals that were collected

during the gas transfer indicate when the cavity is fully filled with the new gas.

The sona signals that were collected after the gas transfer were used to measure the

VCSPP that was induced.

3.3.2 Finite Difference Time Domain (FDTD) Simulations

The experiment described in Sec. 3.3.1 was modeled by a Finite Difference

Time Domain (FDTD) code 2. The FDTD code solves Maxwell’s Equations inside a

3D numerical model of the 1m3 cavity. The code for this simulation was optimized

for parallel computers and for the simulation of reverberation chambers [61, 62].

The FDTD simulation of the cavity enabled a direct comparison of experimental

and simulation results.

The FDTD simulation formed a 3D model of the experimental cavity by using

spatial cubic cells with an edge length of ∆x ≈ 3.49mm, and the cavity consisted of

364∗364∗188 cells. The smallest time step taken to propagate solutions of Maxwell’s

Equations through the cells was ∆t = 6ps. Therefore, the Courant’s number for

computational stability was c∆t
√
3√

ϵr∆x
≈ 0.89 < 1 for all the media (ϵr) considered,

where c is the speed of light in vacuum [63]. The model of the cavity also had

two ports, with antennas that have similar characteristics to the ones used in the

experiment. The electromagnetic pulse broadcast into the model was also similar

2The simulation in Sec. 3.3.2 was carried out by Professor Franco Moglie at the ”Dipartimento

di Ingegneria dell’Informazione” in the ”Universita Politecnica delle Marche” in Ancona, Italy
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to the one broadcast experimentally (i.e. center frequency of 7GHz, and width of

1ns). The maximum and minimum of the ratio of the wavelength to the cubic cell

dimension were 14 and 11 respectively.

In the experiment, the main source of dissipation is ohmic loss from the alu-

minum walls of the cavity. In the simulation, the walls were assumed to be lossless

for simplicity. Instead, an equivalent loss was introduced within the medium of wave

propagation to achieve the same quality factor as the experimental cavity [61]. To

accomplish this, a uniform conductivity of 10−5S was introduced throughout the

interior of the cavity model.

As mentioned in Sec. 3.3.1, the experiment relies on changing the electrical vol-

ume (at 7GHz) within the cavity by changing the gases filling the cavity. The gases

used were air, nitrogen gas, and helium gas. For typical laboratory atmospheric con-

ditions, the electromagnetic loss in air at 7GHz can be mainly attributed to oxygen

molecules [64, 61]. The specific attenuation of oxygen is 0.007dB/km whereas the

specific attenuation of water vapor is just 0.003dB/km at 7GHz. The conductivity

of air is estimated to be 4.3∗10−9S [61]. Therefore, the dissipation inside the cavity

filled by helium gas or nitrogen gas was roughly modeled by introducing an equiva-

lent loss of 10−5S − 4.3 ∗ 10−9S = 9.9957 ∗ 10−6S uniformly throughout the cavity

(once again, the walls were assumed to be lossless in the model). It was shown that

sonas that are collected from the cavity model with 10−5S conductivity, and sonas

that are collected from the cavity model with 9.9957 ∗ 10−6S are almost exactly

identical. This simulation result proved that the difference in loss among air (at

≈ 50% relative humidity), nitrogen gas, and helium gas is not significant.
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As will be discussed later in Sec. 3.3.4, the gases that experimentally filled the

cavity are not pure. The effective ϵr of the gases that filled the cavity are different

from the ϵr values for pure gases. The simulation of the cavity that is filled with

helium, nitrogen or air is done by using the effective ϵr values. This makes the

experimental and simulation results to look similar (comparable). The ϵr values

used to simulate cavity filled with air, nitrogen and helium are 1.000576, 1.000547,

and 1.00017 respectively. This values were chosen based on the experimental results

that will be discussed in Sec. 3.3.4. The values were determined by anchoring the

effective ϵr of nitrogen to the value for pure nitrogen gas, and finding the effective

ϵr values for the other gases. Because, the experimental result gives us the ratio of

two effective ϵr values.

3.3.3 Sensitivity of the Quantitative Sensor

It was shown that the minute conductivity differences (i.e. 0.05%) among air,

nitrogen gas, and helium gas do not affect the nature of the sonas collected from

the cavity filled by any of these gases. However, it was also shown that the minute

differences in ϵr (at 7GHz) of these gases (which is also 0.05%) do affect the sonas.

This will be shown by first deriving an expression for the minimum volume changing

perturbation that can be measured. Then, it will be shown that the VCSPP which

is induced when either of these three gases is displaced by another one, can be

measured using our experimental set up.

Consider using the sensing technique based on scattering fidelity, which was
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introduced in Section 3.2. The technique relies on comparing the baseline and per-

turbed sonas as a function of time. In Sec. 3.3.3, it is assumed that the perturbation

increases the volume by a factor of P 3, where P > 1. At time t = 0, the sonas are

expected to be similar for small enough ∆t (see Eq. 3.1), hence SF (t = 0) ≈ 1.

At any other time t, there may be a perceptible difference between the sonas. Any

particular signal feature in the baseline sona at time t is expected to be seen in the

perturbed sona at time t + tgap(t), where tgap(t) = P ∗ t− t; here, tgap(t) is defined

as the time gap that develops between two identical features in the baseline and

perturbed sona at time t, where t is measured within the baseline sona. This is

because the baseline sona stretched out along its time axis by a factor of P should

approximate the perturbed sona, as discussed in Sec. 3.2.

The minimum volume changing perturbation that can be quantified is the

minimum of P 3 = ( t+tgap(t)

t
)3. On the other hand, when the SF of the baseline and

perturbed sona is computed at any time t (see Eq. 3.1), there are two necessary

conditions that should be satisfied in order to be able to measure the perturbation.

First, the signal-to-noise-ratio (SNR) of the baseline sona at time t should be well

above 1. This is because the SF of the baseline and perturbed sonas (when the

SNR is close to 1) would simply be the correlation of two noisy signals. Second,

tgap(t) should be, conservatively, greater than half of the period of the oscillations

in the sona signals. Otherwise, if tgap(t) is much smaller than half a period of the

sona oscillations, the SF (t) will not be convincingly lower than its maximum value

at t = 0 (which is ≈ 1 for the appropriate ∆t value in Eq. 3.1), hindering reliable

measurement of the perturbation. These two conditions guarantee that the SF (t)
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of the baseline and perturbed sona can be used to measure the perturbation. The

minimum of P 3 = ( t+tgap(t)

t
)3 subject to these two conditions is (1 + T/2

TNoiseLevel
)3,

where T is the period of sona oscillations and TNoiseLevel is the time at which the

SNR of the sona approaches 1.

Therefore, the minimum perturbation that can be quantified by the sensor (i.e.

(1+ T/2
TNoiseLevel

)3) depends on the wavelength of the waves used to probe the cavity, the

dissipation in the cavity and the SNR of the system. The SNR in turn depends on

the noise in the system, and the dynamic range of the wave generation and detection

equipment. The equipments used in this experiment are shown in Fig. 3.2. For the

electromagnetic experimental set up that is probing the 1m3 cavity discussed in this

work, using a 5cm wavelength waves, a VCSPP that is as small as 4 parts in 105

can be measured.

Getting back to the experimental set up shown in Fig. 3.2, the VCSPP was

induced by changing the gas filling the cavity from air to nitrogen gas or to helium

gas. This results in ≈ 0.05% change in the ϵr of the gases, which is equivalent to a

VCSPP of at least 13 parts in 105. Therefore, the experimental system is expected

to detect the change in electrical volume induced when one of these gases displaces

the other inside the cavity (assuming that the gasses are pure).
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3.3.4 Results from the Experiment and the FDTD Simulation

3.3.4.1 Sensing Using Scattering Fidelity

The air in the cavity at ≈ 200C and ≈ 50% relative humidity, was system-

atically displaced with nitrogen gas at room temperature. The nitrogen gas was

pumped into the cavity at 30psi gauge pressure as the air flowed out through the

gas outlets of the cavity. Every two minutes, the flow was stopped, and 10 nominally

identical sonas (which are actually almost identical) were measured from the cavity,

and these were averaged together. The averaging is done after aligning the sonas to

eliminate the adverse effects of trigger jitter in the data acquisition system. In this

manner, five averaged sonas were collected from the cavity as the cavity was filled

with more and more pure nitrogen gas. Each of these five sonas were compared with

a sona that was collected from the original cavity filled with air. The comparison

was done by computing the scattering fidelity (see Eq. 3.1) of the sona from airy

cavity and a sona from a partially air-filled cavity. Fig. 3.3 shows these scatter-

ing fidelities. The concentration of nitrogen increases with the number of minutes

of nitrogen inflow into the cavity. Therefore, Fig. 3.3 shows scattering fidelities of

VCSPPs which get progressively stronger.

Fig. 3.3 shows that it can take several minutes to displace the air in the cavity

with pure nitrogen. Therefore, we do not expect the ϵr of the nitrogen gas that filled

the cavity to be the same as the literature value for pure nitrogen gas. The same

conclusion applies to the other gases filling the cavity. There are several reasons

for the expected discrepancy between the literature value of ϵr and the effective ϵr
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Figure 3.3: Scattering fidelity of sona signal from a cavity that is filled
with air (baseline), and sona from a perturbed cavity that had 2, 4, 6, 8,
and 10 minutes of nitrogen gas inflow. The perturbation gets stronger
as the concentration of nitrogen gas increases in the perturbed cavity.
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of the gases filling the cavity experimentally. The helium and nitrogen gases are of

industrial quality, which is not perfectly pure. Besides, the cavity is not necessarily

air tight; this could lead to leakage of air into the cavity when the cavity is not

pressurized. Finally, the ϵr of the gases is a function of temperature and relative

humidity (for the case of air) [60]. Therefore, deviations of laboratory temperature

and relative humidity from 200C and 50% could impact the effective ϵr value of the

gases.

The scattering fidelity of a VCSPP shows oscillation whose period is inversely

related to the strength of the perturbation (see Fig. 3.3). The oscillation in the

scattering fidelity can be explained by specifically examining the scattering fidelity

of sona from the air filled cavity, and sona from the nitrogen gas filled cavity (see

Fig. 3.4(a)). Here, both of the sonas were obtained by averaging over 100 nominally

identical sona samples. For times relatively close to t = 0, the difference in the

speed of light between air and nitrogen does not show up when signals that traveled

through these two gases are compared (see Fig. 3.4(b)). However, at t ≈ 4µs, a

phase shift of half a period (i.e. 0.07ns for the probing pulse centered at 7GHz)

develops between the two signals (see Fig. 3.4(c)). Thus, the scattering fidelity

between the two sonas becomes ≈ −1. The relative phase shift between the two

sonas increases to one full period at about 8µs, and hence the scattering fidelity

recovers to almost 1 (see Fig. 3.4(d)). However, as can be seen in Fig. 3.4(d), in

addition to the phase shift that develops between the individual oscillations of the

two sonas, a relative phase shift starts to develop between the envelopes of the sona

signals. Thus, the scattering fidelity of VCSPPs is not expected to oscillate between
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Figure 3.4: (a) Examining the scattering fidelity oscillation for VCSPPs
using sona from air filled cavity and sona from nitrogen filled cavity.
Each of the sonas are averaged over 100 sona samples. (b) The sonas
near t = 0 have fidelity of 1. (c) The sonas are out of phase by half
a period around t = 4µs. (d) The sonas are out of phase by a period
around t = 8µs. Besides, the phase shift between the envelopes of the
sonas becomes significant.

1 and −1 indefinitely. Rather, it is expected to decay while oscillating. However,

we do not anticipate to see this fidelity decay with our measurement system for this

particular perturbation because the SNR of the sonas approaches unity after about

10µs.

The speed of light at 7GHz in pure nitrogen gas was faster than it was in the

laboratory air (which had about 50% relative humidity). Therefore, as discussed in

Sec. 3.2, the VCSPP can be quantified by finding the optimum stretching factor to
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be applied on the sona that is collected from the cavity filled with nitrogen. The

goal is to recover the scattering fidelity of the stretched ”nitrogen-sona” and the

”air-sona” to 1 (Note that ”air-sona” refers to the sona that is collected from the

cavity which is filled with air, and likewise for the other gases). This was achieved by

using a stretching factor given by (4µs+0.07ns)/4µs; because, tgap = 0.07ns (≈ half

a period of oscillation of the sona) at t = 4µs (SF ≈ −1) based on the discussion in

Sec. 3.3.3. The resulting scattering fidelity is plotted in red (see Fig. 3.5 ) with the

scattering fidelity of the unmodified sonas which is shown in blue. The optimum

stretching factor is (4µs + 0.07ns)/4µs ≈ 1.000018. Whereas,
√

ϵr,Air

ϵr,N2
≈ 1.000044

is the expected value of P . In other words, ideally a 44ppm (parts per million)

change across each electrical dimensions of the cavity is expected, however, an 18ppm

change is measured. The discrepancy is consistent with the fact that the nitrogen

gas that filled the cavity has an effective ϵr that is probably much closer to the

effective ϵr of air. Therefore, the electrical volume change induced by the VCSPP is

successfully measured. The fact that the shape of the cavity was preserved (during

the displacement of the air by nitrogen gas) can also be seen from Fig. 3.5. If

the shape of the cavity were not preserved, it would not be possible to recover the

scattering fidelity of the two sonas through simple numerical stretching of one of

the sonas, along the time axis. Hence, displacing air with nitrogen gas is not just

a VCP, but is also a VCSPP. Later, a VCP induced by displacement of air with

helium, which is not VCSPP, will be discussed.

The fidelity decay, which is expected to be superimposed on the fidelity oscil-

lations, of VCSPPs can be seen for a stronger VCSPP. The VCSP should be strong
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Figure 3.5: Undoing the effect of a VCSPP. The sona that was collected
from the cavity filled with nitrogen was stretched out optimally to recover
the scattering fidelity to 1 throughout the times when the SNR is robust.
The optimum stretching factor quantified the VCSP. The fact that the
scattering fidelity was recovered proved that the perturbation was VCSP.

enough to bring about a significant phase shift between the envelopes of the sonas

before their SNR deteriorates. For our experimental set up, such a strong VCSPP

can be achieved by displacing the air in the cavity by helium gas. The scattering

fidelity of sona from a cavity that is filled with air and sona from a cavity that is

filled with helium is plotted in Fig. 3.6 in blue. Based on the definition in Sec. 3.3.3,

tgap = 0.07ns (which is half the period of sona oscillation) at time t = 0.35µs. Thus,

the optimum stretching factor was chosen to be (0.35µs+0.07ns)/0.35µs = 1.0002.

The optimum value was chosen to maximize the average value of the resulting scat-

tering fidelity. Since the speed of light at 7GHz is higher in helium than in air, it

was the ”helium sona” that was stretched out along its time axis. The scattering

fidelity of the stretched ”helium sona” and the ”air sona” is also shown in Fig. 3.6
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in red. Once again, the stretching factor (0.35µs+0.07ns)/0.35µs = 1.0002 approx-

imates
√

ϵr,Air

ϵr,He
≈ 1.000285. In other words, a 285ppm change across each electrical

dimensions of the cavity is expected, and a 200ppm change is measured. This shows

that the change in electrical volume which was induced by replacing the air in the

cavity with helium was quantified successfully, considering the fact that the effective

ϵr of the helium and air gases is probably closer than expected. However, unlike the

case in Fig. 3.5, the effect of the VCP could not be undone perfectly. The scattering

fidelity of the stretched ”helium sona” and the ”air sona” was not close to 1 through-

out time; instead it shows a fidelity decay. The scattering fidelity of ”helium sona”

and ”air sona” is expected to oscillate between 1 and −1 (as the phase shift between

the fast oscillations of the sonas increases in a similar fashion to the illustration in

Fig. 3.4(b-d)) and decay to 0 (as the phase shift between the complicated envelopes

of the sonas increases). This decay is seen experimentally in Fig. 3.6. However,

there must be another fidelity decay superimposed on the fidelity decay that can be

attributed to a VCP; because the fidelity decay could not be undone by numerically

stretching out one of the sonas.

A FDTD simulation of the experiment was performed to better understand

the form of the scattering fidelity when comparing ”helium sona” and ”air sona”.

As discussed in Sec. 3.3.2, differences in the dissipation of helium gas and air are so

minute that they do not need to be considered. The scattering fidelity of ”helium

sona” and ”air sona”, which were obtained from the FDTD model by broadcasting

the 7GHz pulse used experimentally, are shown in Fig.3.7. The simulation results

show that the effect of the VCSPP can be undone by applying the optimum stretch-

92



Figure 3.6: Scattering fidelity of sona from a cavity filled with air and
sona from a cavity filled with helium. The fidelity oscillations and decay
can be seen. The effect of the VCP could not be completely undone
by stretching the ”helium sona”, so, the perturbation is not VCSP. The
buoyant force of helium gas can slightly change the shape by flexing the
walls of the cavity.

ing factor (i.e. (0.35µs + 0.07ns)/0.35µs = 1.0002) to the ”helium sona”. The

scattering fidelity of the ”air sona” and the stretched ”helium sona” is shown in red

in Fig.3.7; it is close to 1 which shows that the effect of the perturbation can be

undone by simple numerical stretching.

The difference in the results in Fig. 3.6 and Fig. 3.7, shows that experimentally

displacing air with helium induces another kind of perturbation other than a volume

changing perturbation. Such additional perturbation was not seen when nitrogen

was pumped into the cavity at the same pressure setting (i.e. 30psig) as was used

for pumping helium into the cavity. This discrepancy can be explained by the fact

that helium gas has a significant buoyancy force which slightly flexes the walls of the

cavity (about 1m2 area, and 3mm thick aluminum sheets); because, from previous
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Figure 3.7: Scattering fidelity of sona from a cavity filled with air and
sona from a cavity filled with helium. The sonas are generated from the
FDTD model of the cavity.

work on this cavity, it was shown that a flexing of one of the walls of the cavity can

cause a significant shape changing perturbation [25]. The result shown in Fig. 3.6

demonstrates that it is possible to verify if the shape of the cavity remained intact

while its electrical volume changed. This verification can be simply done by checking

if the scattering fidelity can be recovered to 1 throughout time. The capability to

detect changes to the shape of the cavity during a volume changing perturbation

(which could be induced by a spatially uniform heating or cooling of a homogenous

cavity) can have several applications as was pointed out in Sec. 3.1.

3.3.4.2 Sensing Using Time Reversal

So far, only one of the sensing techniques introduced in Sec. 3.2 is demon-

strated to quantify volume changing perturbations. In addition to the scattering

fidelity technique, time reversal mirrors can be used to quantify volume changing
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Figure 3.8: Plot of peak-to-peak amplitude of time-reversed pulse in a
cavity filled with Helium vs ”squeezing” factor used to scale the time
axis of the sona which is collected from a cavity filled with Nitrogen.

perturbations. When a sona signal that is collected from the cavity filled with

nitrogen is time reversed and broadcast into the cavity filled with helium, the recon-

structed time reversed pulse is not expected to be ideal. This is because the time

reversed sona would be traversing an effectively smaller cavity. Note that in this

particular case, the baseline cavity is electrically larger than the perturbed cavity.

Based on the discussions in Sec. 3.2, the baseline sona should be squeezed along its

time axis using an optimum factor to recover the maximum amplitude time reversed

pulse. When the optimally squeezed ”nitrogen sona” is time reversed and broadcast

into the cavity filled with helium, the reconstructed time reversed pulse is expected

to better approximate the original pulse.

As detailed in Chapter 2, the improvement in the quality of the time reversed

reconstructed pulse can be measured in various ways [20]. Here, the simplest mea-

sure (the peak-to-peak-amplitude (PPA) of the reconstructed pulse) of the quality
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of the time reversed pulse is used. Fig. 3.8 shows the PPA of the time reversed re-

constructed pulse obtained when the ”nitrogen sona” is numerically squeezed along

its time axis by varying amounts. The optimum squeezing factor of 0.9998 approx-

imates
√

ϵr,He

ϵr,N2
≈ 0.99976. This means that a 240ppm change is expected, but a

200ppm change across each electrical dimensions of the cavity was measured. Once

again, the small discrepancy can be explained by the fact that the gases in the cavity

are not perfectly pure. This shows that the time reversal technique can also be used

to quantify volume changing perturbations. Time reversal mirrors can also be used

to detect when a volume changing perturbation slightly changes the shape of the

cavity. In this case, when the ”nitrogen sona” is time reversed and broadcast into

the cavity filled with nitrogen, the PPA of the reconstructed time reversed pulse was

about 1.13V . However, when an optimally squeezed ”nitrogen sona” is broadcast

into the cavity filled with helium gas, the optimal value of the PPA is only about

0.85V . This indicates that the perturbation, which is induced when the nitrogen

gas inside the cavity is displaced with helium gas, is not just a volume changing

perturbation but also a shape changing perturbation. Once again, this is due to the

relatively strong buoyant force of helium gas which can flex the walls of the cavity.

To summarize, either of the two time domain sensing techniques introduced in

Sec. 3.2 can be used to identify and quantify a VCSPP. However, the sensing tech-

nique based on time reversal can have an advantage because it is computationally

cheaper [20]. This advantage is more readily capitalized when an acoustic time re-

versal mirror is used. Because, the equipment for the electromagnetic time reversal

mirror (which includes an Arbitrary Waveform Generator) is more expensive than
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the equipment needed for the sensing technique based on scattering fidelity.

3.3.5 Limitation of the Time Domain Approaches to Measure VC-

SPP

Based on the discussion in Sec. 3.2, there should be an overlap between the

resonances excited in the baseline and perturbed system, for the time domain sens-

ing techniques to work. Thus, both of the time domain sensing techniques (based

on scattering fidelity and time reversal mirrors) face a limitation regarding the max-

imum VCSPP that can be measured. This limitation can be improved by increasing

the bandwidth of the pulse that is used to probe the cavity. Doing so would effec-

tively make the time domain technique closer to the frequency domain interrogation

of the system, which does not face a limit on the maximum VCSPP that can be

measured. In a similar spirit, using a pulse with a flat bandwidth (such as a chirp)

may also be helpful.

The regime of VCSPP strengths that cannot be measured using the time

domain techniques is estimated as follows. Suppose that the probing pulse excites

resonances with frequencies ranging from fmin to fmax, with the center frequency

at f = fmin+fmax

2
. The probing pulse is considered to excite frequencies from fmin

to fmax with at least the conventionally defined minimum power level, which is

chosen based on the given noise power (which is −30dBm for the system described

in Sec. 3.3.1). The VCSPP changes the volume of the cavity by a factor of P 3,

where P > 1 for simplicity. Once again, the VCSPP has the effect of scaling the
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|S12|2(f) of the cavity along the frequency axis by a factor of P . If fmax

P
< fmin,

then the VCSPP certainly cannot be measured by using this probing pulse in the

time domain because there would be no overlap between the resonances excited in

the baseline and perturbed cavities.

Next, the conditions for the maximum VCSPP that can be measured are

formulated. Assume that the pulse has a constant magnitude (for example, with

only about 10dB allowance for power fluctuations) around an fϵ neighborhood of

f in the frequency domain (i.e. f − fϵ to f + fϵ). For reasons to be explained

later, fϵ should be a frequency value which satisfies fϵ < f − fmin, and fϵ ≫ ∆f ,

where ∆f is the mean spacing between the resonant frequencies of the baseline

cavity. If f+fϵ
P

> f , the following conditions hold. The resonances excited in the

baseline cavity between f and f + fϵ are also excited (with the same magnitude)

in the perturbed cavity between f
P
(which can be shown to be greater than f − fϵ

for P > 1) and f+fϵ
P

. This means that there is common information content (i.e.

resonances excited) inside the baseline and perturbed sonas. In other words, the

baseline and perturbed sonas contain information that is equivalent to a frequency

domain interrogation of the system over a narrow bandwidth. To retrieve this

common information, the baseline and perturbed sonas can be band-pass filtered

with a pass-band from f to f +fϵ and with a pass-band from f
P
to f+fϵ

P
respectively.

The value of fϵ is predetermined from the shape of the pulse. The sonas can be band

pass filtered with an educated guess for P , and the resulting filtered sonas can be

compared after stretching out the baseline sona along the time axis with the same

educated guess for P . This iterative process can be repeated until the optimum
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value of P which quantifies the VCSPP is determined: here, the objective optimal

result is the maximization of the average value of the resulting scattering fidelity of

the two sonas.

Therefore, the maximum VCSPP that can be measured is P 3 where P ≈ f+fϵ
f

,

for fϵ that satisfies the above mentioned requirements.

In the experiments discussed in Sec. 3.3.1, the strongest VCP that was induced

in the laboratory had P ≈ 1.0002. This was for comparison of cavities filled with

air (at ≈ 50% relative humidity) and helium gas at 200C. The bandwidth and

center frequency of the probing pulse were 1GHz and 7GHz respectively. The

mean spacing between the resonant frequencies of the baseline cavity is given by

∆f = λ3

V
f
8π

≈ 22kHz; where V is the volume of the baseline cavity, f = 7GHz

is the center frequency of the pulse, and λ is the wavelength. The pulse had a

Gaussian envelope, hence a conservative estimate for fϵ is 10MHz (i.e. 1% of

the bandwidth, and about 500 resonances between f and f + fϵ). Therefore, the

maximum VCSPP that can be measured in the cavity introduced in Sec. 3.3.1 is

P ≈ 7GHz+10MHz
7GHz

≈ 1.001 (using the 7GHz pulse). Clearly, the strongest VCSPP

that was achieved in the laboratory (i.e. P ≈ 1.000018 for nitrogen gas vs the air),

and the strongest VCP (i.e. P ≈ 1.0002 for helium gas vs the air) are both much

smaller than the conservative estimate for the maximum VCSPP that could have

been measured (i.e. P ≈ 1.001).

The case of a strong VCSPP perturbation, which cannot be measured using

the time domain techniques, is best considered using a simulation tool that can be

easily interrogated in the frequency domain as well. Sec. 3.4 discusses such strong
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perturbations, and shows how they can be quantified using a frequency domain

approach.

3.4 Sensing Using Frequency Domain Information

In Sec. 3.2, it was mentioned that VCSPPs can be quantified using information

obtained in the time domain or frequency domain. The time domain approach is

generally more practical in applications. However, the frequency domain approach

does not have limitations on the maximum perturbation value that can be quantified.

This frequency domain approach is used to measure VCSPPs on a quasi-1D system

called the star graph. We use the star graph because it is a type of quantum graph

that has generic properties of wave chaotic systems [65], but is relatively simple to

understand and simulate. Besides, the star graph can be directly implemented in

the frequency domain as discussed in Sec. 3.4.1.

3.4.1 The Star Graph Model

The star graph is numerically modeled as a set of interconnected transmission

lines as shown, schematically, in Fig. 3.9 [30]. The system is a one port system,

hence, the input signal is injected into the driving transmission line and the output

signal is also retrieved from the same line. The driving transmission line has zero

length. The driving transmission line is connected with a number of transmission

lines which are all connected in parallel with each other. The transmission line

properties (for a line labeled by i) are length (Li), characteristic admittance (Yci),
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Figure 3.9: Schematic of the star graph model. There areN transmission
lines that are connected in parallel, and a driving transmission line of
zero length. Each of the N lines (labeled by i) can have unique length
(Li), characteristic admittance (Yci), frequency dependent propagation
constant (γi(ω)), and reflection coefficient (Γi). The driving line has a
characteristic admittance of Ycd.

frequency dependent complex propagation constant (γi(ω)), and complex reflection

coefficient (Γi) (for reflection from the terminations of the lines that are not con-

nected to the driving line). The driving line has zero length, thus its only adjustable

property is its characteristic admittance (Ycd).

This one port system is modeled by using the analytically derived expression

for its scattering parameter as a function of frequency, S11(ω). The scattering pa-

rameter, S11(ω), can be expressed in terms of the characteristic admittance of the

driving line (Ycd) and the input admittance (Yi) of each of the other transmission

lines while looking towards them,

S11(ω) =
Ycd −

∑i=N
i=1 Yi(ω)

Ycd +
∑

i Yi(ω)
, (3.2)

where N is the number of transmission lines connected in parallel. The input ad-
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mittance of each transmission line (labeled by i), Yi(ω), can be expressed in terms

of the above mentioned properties of the line,

Yi(ω) = Yci(
1− Γie

2γi(ω)Li

1 + Γie2γi(ω)Li
). (3.3)

Once the scattering parameter of the system is computed over a broad fre-

quency range, the response to any time domain input signal can be calculated. This

is done by Fourier transforming the input signal to the frequency domain, multi-

plying it by the scattering parameter (S11(ω)) and inverse Fourier transforming the

product back to the time domain. This establishes the star graph model as a time

domain simulation of this quasi-1D system. However, in this section we are mainly

interested in the frequency domain representation of the star graph using its scat-

tering parameter. The frequency domain approach will be shown to be effective in

quantifying strong perturbations that could not have been measured otherwise.

3.4.2 Quantifying Strong Perturbations to the Star Graph

As discussed in Sec. 3.2, the scattering parameter of a cavity can be used

to quantify a VCSPP. The star graph is a quasi-1D system. A perturbation that

changes the length of all of the lines of the star graph by the same proportion (i.e.

with constant P ) effectively changes its volume while leaving its shape intact (i.e. it

is a VCSPP). The effective volume of a star graph with N lines is given by 2
∑i=N

i=1 Li

[66]. Therefore, for a VCSPP perturbation that scales the length by a factor of P ,

the effective volume of the star graph also changes by a factor of P . This is different

from the case of the 3D cavity discussed in Sec. 3.3 (i.e. the volume of the 3D cavity
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changes by P 3).

The baseline star graph was set up using the following parameter values. There

were 10 lines whose length is given by Li = 0.3⌈10
√
i⌉ m (for i ranging from 1 to 10).

Each of these lines had a characteristic admittance, Yci, of 1S. The characteristic

admittance of the driving line was chosen such that Ycd =
∑i=10

i=1 Yci = 10S in order

to eliminate prompt reflection of signals injected through the driving line. The

propagation constant of the lines is a function of the frequency, ω, and was given

by γi(ω) = ıω
c
with i = 1, ..., N , where c is the speed of light in vacuum; thus,

the lines themselves were considered to be lossless (i.e. γi(ω) does not have a real

part). However, energy was dissipated during reflections from the terminations of

the lines. The reflection coefficient from the termination of the lines was given by

Γi = e
−0.3⌈10

√
i⌉2

cτ with i = 1, ..., N , where τ = 1.5µs. The amount of dissipation was

designed to be independent of the size of the star graph, which is changed by a

VCSPP. However, the dissipation introduced through non-unit values of Γi can be

interpreted as an equivalent loss that could be introduced through γi(ω) (i.e. by

introducing 1
cτ

as the real part of γi(ω) = ıω
c
+ 1

cτ
). Thus, if the dissipation were

modeled using γi(ω), τ = 1.5µs would be interpreted as the time it takes the signals

to decay by 1/e as they propagate along the lines. As a result, the typical 1/e

decay time of the sona from the star graph was ≈ 1.5µs, a value typical of our 3D

experiment.

The perturbed star graph was set up using identical values of parameters as

the baseline star graph, except for the length, Li. The lengthes of the perturbed star

graph were chosen to be PLi, where P is the perturbation strength. The driving
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line has zero length in both the baseline and perturbed star graphs.

3.4.2.1 Using the Time Domain Approaches

A Gaussian pulse of width 1ns and center frequency 7GHz was used to gen-

erate a baseline and perturbed sona from the baseline and perturbed star graphs.

The time domain sensing technique which is based on scattering fidelity was applied

to quantify a perturbation of strength P = 1.0002. Fig. 3.10 shows the scattering

fidelity of the baseline and perturbed sonas before (blue) and after (red) optimally

stretching the baseline sona. This demonstrates that the scattering fidelity sensing

technique can be used to quantify a VCSPP in the quasi-1D chaotic system. The

result gives the clearest evidence to the discussion of fidelity decay induced by VC-

SPPs in Sec. 3.3.4.1 (i.e. the results shown in Figs. 3.5 and 3.6). VCSPPs induce a

scattering fidelity oscillation that is superimposed on a fidelity decay (see Fig. 3.10).

The application of the time domain sensing technique which is based on time

reversal is presented in Fig. 3.11. Fig. 3.11 shows the PPA of the time reversed

pulse reconstructed using the baseline sona scaled with different factors along its

time axis. The optimal PPA was obtained when the sona was scaled by a factor

exactly equal to the stretching of the transmission line lengths (i.e. 1.0002).

The perturbation strength of P = 1.0002 was shown to be detectable using

time domain techniques in the star graph set up described. However, as the pertur-

bation got stronger, the shortcoming of the time domain techniques was revealed.
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Figure 3.10: Scattering fidelity of baseline and perturbed sonas from the
star graph before (blue) and after (red) optimally scaling the baseline
sona along its time axis. The perturbation is a VCSPP with P = 1.0002.

Figure 3.11: Peak-to-peak amplitude (PPA) of time reversed pulse recon-
structed inside the perturbed star graph using the baseline sona which
is scaled along its time axis by different scaling factors.
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For perturbation strength values, P , ranging from 1.0002 to 1.14, the SF (t) of the

perturbed sona and the optimally scaled (along the time axis) baseline sona was

examined. For each P , the SF (t) was averaged over time, t (from 0s to 10µs, which

is the duration of the sonas). The closeness of the average SF (t) to 1 indicates

the success of the time domain technique to undo the effect of the VCSPP, and to

measure it. Fig. 3.12 shows the average value of SF (t) (for optimally scaled base-

line sona) versus log10(P ); the standard deviations of SF (t) taken over t are also

shown as an error bar in Fig. 3.12. As P increased beyond about 10.025 ≈ 1.06, the

effectiveness of the time domain sensing technique starts to deteriorate.

Based on the discussion in Sec. 3.3.5, the maximum VCSPP that can be

measured using time domain techniques in this realization of the star graph is

P ≈ f+fϵ
f

≈ 7GHz+200MHz
7GHz

≈ 1.03. The value of fϵ defined in Sec. 3.3.5 was chosen to

be 200MHz to satisfy the requirement that fϵ >> ∆f . The mean spacing between

resonant frequencies of the baseline star graph is ∆f = c

2
∑i=N

i=1 Li
≈ 2MHz, where N

is the number of lines in the star graph [66]. Thus, about 100 resonances exist in the

baseline star graph between f = 7GHz and f − fϵ = 6.8GHz, and fmin ≈ 6GHz

for the Gaussian pulse with 1GHz bandwidth (and noiseless simulation). The con-

servative estimate for the maximum VCSPP that can be measured (i.e. P ≈ 1.03

or log10(P ) ≈ 0.012) is consistent with the result illustrated in Fig. 3.12, which

suggests that a VCSPP of P ≈ 10.025 ≈ 1.06 might be quantifiable.
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Figure 3.12: The average SF (t) of the baseline sona and perturbed sonas,
which are optimally scaled by P (perturbation magnitude) along their
time axis. The sonas were collected from the baseline star graph, and a
perturbed star graph (VCSPP with P ). The average SF (t) was taken
from time t = 0s to t = 10µs of the sonas; error bars show the associated
standard deviation.

3.4.2.2 Using the Frequency Domain Approach

The limitation of the time domain approach was discussed in Sec. 3.3.5, and

demonstrated using the star graph in Sec. 3.4.2.1. As shown in Fig. 3.12, for a

strong perturbation such as P = 1.14, the time domain sensing techniques fail to

undo the effect of the VCSPP, and hence to measure it. Here, a frequency domain

approach is used to illustrate how the VCSPP with P = 1.14 can be measured.

Fig. 3.13(a) shows the |S11|2(ω) of the baseline (blue) and perturbed (red)

star graphs. The |S11|2(ω) of the perturbed star graph (larger in size by a factor of

P = 1.14) is compressed along the frequency axis compared to the baseline’s case.

This effect was predicted in Sec. 3.2, and schematically illustrated in Fig. 3.1. The

frequency domain approach to measure VCSPP involves optimally scaling the fre-
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Figure 3.13: Quantifying a volume changing perturbation in the fre-
quency domain. (a) The |S11|2(ω) of the baseline (blue) and a perturbed
(red) star graph for perturbation strength P = 1.14. (b) The |S11|2(ω)
of the baseline star graph (blue), and the |S11|2(ω) of the perturbed
star graph (black) after optimal frequency scaling which measures the
VCSPP.

quency axis of the scattering parameter of the perturbed system (star graph in this

case) to align it with the scattering parameter of the baseline system. Fig. 3.13(b)

shows the |S11|2(ω) of the baseline star graph (blue) and the optimally stretched

|S11|2(ω) of the perturbed star graph (black). The optimal frequency scaling factor

was P = 1.14, which also successfully measures the VCSPP induced on the base-

line star graph. To conclude, given the scattering parameters of a baseline and a

perturbed system, one can check if a VCSPP happened, and quantify it.
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3.5 Discussion

The development of this quantitative sensor opens up possibilities for several

potentially useful applications. For example, when a cavity that has a homogenous

material make up is cooled down (or warmed up), it is interesting to check if the

temperature stays uniform throughout all parts of the cavity. The sensor developed

in this paper would allow one to check if the volume of the cavity is decreasing (or

increasing) while the shape is intact; the sensor would also allow one to measure by

how much the volume (and hence the temperature) of the cavity is changing. This

is one possible application of VCSPP sensor which can practically compete with the

traditional option of installing thermometers throughout the cavity. Another possi-

ble application of the VCSPP sensor is monitoring to check if a fluid has displaced

another fluid uniformly throughout a cavity. Since the speed of the waves inside

different fluids can be different, the displacement of the fluid can change the volume

of the cavity, as seen by the waves. This assumes that other wave properties (such

as dissipation and dispersion) of the two fluids are similar.

3.6 Conclusion

Quantifying a generic perturbation to a wave chaotic enclosure is a challenge

because the effect of a perturbation on the dynamics of waves is not generally very

well understood. However, the effect of a perturbation that changes the volume but

keeps the shape intact can be theoretically predicted. The theoretical prediction is

most clear in the frequency domain. Thus, quantifying volume changing perturba-
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tions is best done in the frequency domain. Nonetheless, time domain approaches

can be preferred for practical purposes. The time domain approach is limited by a

maximum perturbation that can be measured. This limitation was demonstrated

using a simulation of a star graph, which is a representative wave chaotic system.

The time domain approach can work using either scattering fidelity techniques or

the Loschmidt echo. Quantification of a volume changing perturbation was experi-

mentally demonstrated using these techniques. The volume changing perturbation

was induced experimentally by changing the electrical volume of the cavity. The

results of the experiment were compared with FDTD simulation results of the cavity

and good agreement was found.
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Chapter 4

Iterative Time Reversal with Tunable Convergence

Time reversal mirrors were introduced and used for sensing applications in

Chapters 2 and 3. In this chapter, we propose and test a tunable iterative technique

for improving the temporal focusing of a time reversal mirror [30]. A single am-

plification parameter is used to tune the convergence of the iteration. The tunable

iterative technique is validated by tests on the experimental electromagnetic time

reversal mirror. The technique is also tested on the star graph numerical model,

which was first introduced in Chapter 3.

The iterative technique can potentially be used in many applications which

already utilize time reversal. Some examples of these applications are: the improve-

ment of communication systems [48, 49], and the sharpening of targeted energy

focusing [38]. These applications would benefit from enhanced spatiotemporal fo-

cusing.

4.1 Introduction

Spatiotemporal focusing of waves has applications in fields such as imaging

and communication. Time reversal (TR) mirrors have been used to focus waves in

both space and time [21]. An ideal TR mirror consists of a wave source located

inside a lossless medium that is completely enclosed by a surface of transceivers.
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The transceivers record and absorb the signal initially broadcast by the source.

Later, the transceivers rebroadcast a time reversed version of the recorded waves in

a coordinated fashion. Because of the TR invariance of the lossless wave equation,

the waves undo all phase shifts acquired while propagating forward in time and

focus on the location of the source and reconstruct a time reversed version of the

original signal. In practice, TR mirrors have several limitations that result in loss of

information about the waves broadcast by the source. These limitations include i)

limited coverage by the transceivers, and ii) dissipation during the wave propagation

(which breaks TR invariance) [26, 18].

The first limitation of TR mirrors can be overcome by the use of a reflecting

wave chaotic cavity with partial spatial coverage of the transceivers, along with a

long recording time [26]. However, the limitation due to dissipation persists, and

leads to increasing loss of information as the recording time increases.

The loss of information during the reconstruction results in temporal and

spatial sidelobes of the reconstructed pulse. In Chapter 2, we used the exponential

amplification technique to partially undo the adverse effects of dissipation. The

objective in Chapter 2 was to enhance the range of the TR based sensors, which

suffered from dissipation [18, 20]. However, this technique does not directly improve

the temporal focusing of the reconstructed pulse. In fact, as will be described

in Chapter 5, it worsens the temporal focusing of the reconstructed pulse upon

recording. However, Chapter 5 will also show that the temporal focusing can be

restored (and actually enhanced) if exponential de-amplification is carried out on the

digitized reconstructed pulse. In any event, the exponential amplification technique
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is not applicable if the temporal focusing of the reconstructed pulse is demanded in

real time (and not after manipulations of the digitized reconstructed pulse). This

may be a requirement for applications such as electromagnetic weapons [38], where

energy needs to be focused at a target in real time. On the other hand, Ref.[27]

has introduced an iterative TR technique which has been shown to be effective in

eliminating the spatiotemporal sidelobes of the reconstructed pulse. The iterative

TR enables spatiotemporal focusing in real time.

In this chapter, we introduce a single parameter into the iterative TR tech-

nique, [27]. The parameter is designed to compensate for loss. By tuning this

parameter, we can substantially improve the accuracy and convergence of the itera-

tive focusing technique. This is demonstrated both experimentally and numerically.

Sec. 4.2 outlines the algorithm of the tunable iterative TR mirror. Sec. 4.3 and

Sec. 4.4 describe the experimental set up of the electromagnetic TR mirror, and

simulation set up of the star graph, which are used to test the tunable iterative

technique, respectively. Sec. 4.5 presents the experimental and numerical results.

Sec. 4.6 discusses modifications to the iterative algorithm to overcome experimental

challenges. Sec. 4.6 further discusses potential applications of the tunable iterative

technique. Sec. 4.7 is the conclusion.
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4.2 The Iterative Time Reversal Algorithm with a Convergence Pa-

rameter

The iterative TR algorithm was first introduced using acoustic waves [27].

Here, an improvement to the algorithm is introduced. From now on, a signal, X, is

assumed to be frequency dependent by default. The inverse Fourier transform of X

is denoted as F−1[X], which is a time domain signal.

Consider a regular TR mirror operation that involves broadcasting an original

pulse, F−1[O], into a cavity with a single port. Denote the scattering parameter of

the system by H. We call the response signal received at the port the sona, F−1[S].

Thus, S1 = HO + b0, where the subscript on S indexes the iteration, and b0 is

additive white Gaussian noise (AWGN). For a regular TR (which is the first step of

the iteration), the sona, F−1[S1], is time reversed (phase conjugated, as S∗
1 , in the

frequency domain) and broadcast back into the cavity to retrieve the reconstructed

pulse at the first iteration, F−1[R1] = F−1[HS∗
1 + a1] = F−1[HH∗O∗ +Hb∗0 + a1].

Here, a1 is AWGN that is picked up during the recording of F−1[R1]. Note that in the

ideal case b0 = a1 = 0 (no noise) and |H|2 = 1 (no cavity losses), and F−1[R1] is thus

equal to F−1[O∗] (i.e., a time reversed original signal). However, if losses are present

|H|2 is frequency dependent and less than unity. The iterative algorithm calculates

a new sona signal, F−1[Sn+1], by subtracting a correction signal, F−1[Cn], from the

previous sona, F−1[Sn], (i.e. F−1[Sn+1] = F−1[Sn] − F−1[Cn]); and, the algorithm

uses the newly calculated sona, F−1[Sn+1], to generate a new reconstructed pulse,

F−1[Rn+1], iteratively (i.e. F−1[Rn+1] = F−1[HS∗
n+1+an+1]). The correction signal
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can be interpreted as the part of the sona that resulted in the sidelobes during the

reconstruction. The correction signal is obtained by first computing the sidelobes

in F−1[Rn] which are given by F−1[Rn − O∗]. Then, the sidelobes during the nth

reconstruction, F−1[Rn − O∗], are time reversed and broadcast into the system to

determine the correction signal, F−1[Cn] = F−1[H(Rn − O∗)∗k + bn]. Once again,

bn is AWGN that is picked up while F−1[Cn] is recorded, and k is a new real scalar

parameter discussed below. k is independent of frequency.

The advantage of introducing the parameter k is revealed by the expression for

the nth iterated reconstructed pulse Rn that is derived from the previous equations:

Rn = [1− (1−HH∗k)n−1]O∗ +HH∗(1−HH∗k)n−1O∗

+
n−1∑
j=0

(1−HH∗k)jHb∗n−1−j −
n−2∑
j=0

(1−HH∗k)jHH∗kan−1−j + an (4.1)

Note that for k = 1, Eq. 4.1 reduces to the result in Ref.[27]. The goal of the

algorithm is to make Rn converge to O∗ (i.e. the phase conjugated version of the

original pulse) as n increases. The first two terms in Eq. 4.1 show that the conver-

gence of the iteration can be hastened if k is chosen to make HH∗k as close to 1 as

possible over the bandwidth of the pulse. In addition, the first two terms dictate the

following condition for the convergence of the iteration: HH∗k should be smaller

than 2 for all frequencies within the bandwidth of the pulse. On the other hand, the

third and fourth terms in Eq. 4.1 show that the iteration may diverge if HH∗k > 2

over the bandwidth of the AWGN (i.e. an and bn). Therefore, heuristically, the

optimum k value for the fastest convergence of the iteration is chosen as 2
max(HH∗)

,

where max(HH∗) is the maximum of HH∗ taken over the bandwidth of both the
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pulse and the AWGN after filtering. Using k ≪ 2
max(HH∗ ) is a conservative approach

which guarantees that the Rn will continue to approach O∗ regardless of the value

of n. Choosing k ≈ 2
max(HH∗)

generally speeds up the convergence; however, there is

a risk of divergence at higher n values if the measured value of max(HH∗) was un-

derestimated. max(HH∗) is determined from an initial reference experiment which

measures H of the system in the frequency domain. The tunable iterative TR al-

gorithm can be carried out with the optimum k value after the H of the system is

measured.

One may argue that the need for the initial reference experiment renders the

iterative technique useless because once H is measured in the frequency domain, the

inverse filter technique [28, 27] could be used instead. The inverse filter technique

computes F−1[(H−1O)∗] and broadcasts it into the cavity to achieve spatiotemporal

focusing of F−1[H(H−1O)∗] = F−1[O∗]. Unlike the inverse filter technique, the

initial reference experiment is done to approximately determine solely max(HH∗).

Therefore, the iterative technique is still preferable because it does not require an

extremely accurate determination of H over a large dynamic range. Besides, in

the case of a multi-port experiment where H is a large matrix, the inverse filter

technique suffers from the computational cost and instability of matrix inversion

[27]. From Eq. 4.1, it can be shown that as n → ∞, the expression for Rn approaches

HH−1O∗ = O∗, which is equivalent to the result of the inverse filter technique [27].
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4.3 The Electromagnetic TR Mirror Experimental Setup

The tunable iterative TR method was tested on a 1m3 aluminum box resonant

cavity with interior scatterers, which was first introduced in Sec. 3.3.1. The box had

two electrical ports that were connected to an oscilloscope, and a microwave source

(see Fig. 4.1). Spatial reciprocity between the two ports simplifies the experiment

because the connections to the oscilloscope and the source need not be exchanged.

Fig. 4.1 illustrates how the two steps of the regular TR (i.e. the 1st step of the

iterative algorithm) were carried out [25]. Although our derivation above assumed

a 1-port situation, it is expected that the results will also apply on this 2-port

configuration [27]. For a 1-port system, the S11 scattering parameter is considered

as H in Eq. 4.1. Whereas, for a 2-port system, the S12 scattering parameter is

considered as H in Eq. 4.1.

4.4 The Star Graph Model

The tunable iterative TR technique was also tested using simulation of the

star graph. The star graph was first introduced in Sec. 3.4.1. It is a linear system

consisting of a driving transmission line that is connected to a number of transmis-

sion lines. The lines are all connected in parallel. A sketch of the star graph is

shown in Fig. 3.9.

The following parameters of the star graph were chosen to create an under-

coupled cavity [11]. For an under-coupled cavity, energy loss due to dissipation

dominates energy loss due to poor coupling. We chose to set up the star graph
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Figure 4.1: Schematic of the electromagnetic time reversal (TR) mirror
experiment. The 1st step of the tunable iterative TR mirror operation
involved the following. First, the original pulse (F−1[O]) was broadcast
through antenna 1 (1), and the resulting sona (F−1[S1]) was collected at
antenna 2 (2). Next, the time reversed sona (F−1[S∗

1 ]) was injected into
the system at antenna 1 (3) to retrieve the reconstructed time reversed
pulse (F−1[R1]) at antenna 2 using spatial reciprocity (4). Experimental
data are shown for each step.
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as an under-coupled cavity because, we are trying to clearly illustrate how the

iterative technique mitigates the adverse effects of dissipation. The experimental

cavity considered in Sec. 4.3 is also an under-coupled cavity.

There were 50 transmission lines in the star graph set up, excluding the driving

line. The lines had length Li =
√
i m where i labels each line ranging from 1 to 50.

The driving line had zero length. All of the lines had a characteristic admittance

Yci = 1S, except the driving line which had a characteristic admittance of Ycd =∑i=50
i=1 Li = 50S. The choice of the characteristic admittances eliminated prompt

reflections when signals were injected through the driving line. Each of the 50

transmission lines had a reflection coefficient of Γi = 1 at their terminations. The

frequency dependent propagation constants of the lines were given by γi(ω) = ıω
c
+αi

where c is the speed of light, and αi is the loss constant on line i. The loss constant

on each of the 50 lines was αi =
1
cτ

where τ = 0.5µs. τ signifies the equivalent 1/e

voltage decay time of the waves on the lines.

The pulse is injected through the driving line. After the pulse reverberates

through the lines connected in parallel, it comes back out through the driving line to

form the model sona. This simple quasi-1D system captures the essence of multiple

pulse trajectories inside complicated 3D scattering systems [65].

The scattering parameter, S11, of this 1-port system (with the port at the

driving line) can be analytically determined from the characteristic admittance, the

propagation constant, and the terminal reflection coefficient of the lines (see Eq.3.2

and the discussion in Sec.3.4.1). Thus, the response to any time domain input

signal can be determined by Fourier transforming the input signal, multiplying it
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Figure 4.2: The experimental time reversed pulse reconstructed after 25
iterations (i.e. F−1[R25]) using k = 110 (red) is overlaid on the pulse
reconstructed without the iterative technique (i.e. F−1[R1]) (blue); the
inset on the top right corner shows a close up view of how the sidelobes
are suppressed by the iterative technique experimentally. The inset on
the bottom right corner shows a close up view of the suppression of
the sidelobes after 25 iterations in the noiseless numerical model using
k = 2.5.

120



by S11, and inverse Fourier transforming to get the time domain representation of

the output signal. Here, the S11 is considered as the transfer function H shown in

Eq. 4.1.

4.5 Results

4.5.1 Experimental Result

The tunable iterative algorithm was applied to the electromagnetic TR mirror

illustrated in Fig. 4.1. A pulse, F−1[O], with a center frequency of 7GHz and a

Gaussian envelope of 1ns standard deviation was used. In Fig. 4.2, the reconstructed

pulse with 1 iteration (i.e. F−1[R1] in blue), and after 25 iterations (i.e. F−1[R25] in

red) are compared; the iteration was performed using k = 110. The inset at the top

right corner of Fig. 4.2 shows a close up view of the resulting sidelobe suppression.

Other iterations were also performed using different values of k. However,

only the iterations performed with k ≤ 110 were expected to converge (i.e. achieve

Rn → O∗ as n increases). This is because theH of the 2-port cavity shown in Fig. 4.1

was directly measured, and 2
max(HH∗)

≈ 110 within the bandwidth of the pulse and

the AWGN. All the iterations performed with k ≥ 115 resulted in a divergence of

the iteration. A divergence of the iteration is characterized by the domination of Rn

by a single frequency component for large values of n; typically, Rn is dominated by

a frequency where HH∗ achieved its maximum. In the time domain, the divergence

of the iteration corresponds to an increase in the temporal sidelobes of F−1[Rn] for

large values of n.
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4.5.2 Comparison with Numerical Result

The simulation was also carried out using a 1ns long, 7GHz input pulse. The

inset at the bottom right corner of Fig. 4.2 shows the corresponding close up view

for the result from the star graph model after 25 iterations with k = 2.5. This

particular simulation did not have AWGN. The scattering parameter, S11 = H, of

the 1-port star graph is accessible from its definition (see Eq.3.2 and the discussion

in Sec.3.4.1). For the star graph set up described, 2
max(HH∗)

≈ 2.5.

Both for the experimental and simulation results, F−1[Rn] consisted of an ap-

proximation of the 1ns long pulse and the unwanted ≃ 10µs long temporal sidelobes.

For each F−1[Rn], a quantity called the energy ratio, ERn, was calculated. ERn is

the ratio of the energy of the 1ns long pulse within F−1[Rn] to the temporal sidelobe

energy of F−1[Rn]. The temporal sidelobe energy was integrated over the ≃ 10µs

long sidelobes of F−1[Rn]. ERn is a figure of merit and quantifies the temporal fo-

cusing of the reconstructed time reversed pulse at the nth iteration. The average of

this ratio, < ERn >n=1:100, was taken for values of n ranging from n = 1 to n = 100,

for different values of k. This was done on the experimental and simulation data.

The test of the iterative TR on the star graph was also run for different noise levels.

The noise levels were specified by the standard deviation (σ) of the AWGN (i.e. an

and bn noises at each iteration n had the same σ).

A normalized k is defined as k̂ = max(HH∗)k. Based on the discussion in

Sec. 4.2, < ERn >n=1:100 is expected to be higher for values of k̂ < 2 than for values

of k̂ > 2. For values of k̂ > 2, the Rn becomes dominated by a single frequency
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Figure 4.3: The average ratio of the main pulse energy to sidelobe en-
ergy (i.e. < ERn >n=1:100) is plotted against normalized k (i.e. k̂)
for different noise levels that are labeled by the standard deviation (σ)
of the AWGN introduced in the numerical model. The average value
(i.e. < ERn >n=1:100) was taken over the ratios computed for the first
100 iterations. In addition, similar data from the experiment (shown in
Fig. 4.1) is plotted as red circles. The k value is normalized by mul-
tiplying it by the maximum of HH∗ (magnitude square of the transfer
function) of the system over the bandwidth of the pulse and the noise
after filtering.
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Figure 4.4: The improvement of ERn is shown as a function of n for
exemplar k̂ values used in the experiment. For values of k̂ > 2, the iter-
ation is expected to diverge eventually. The convergence of the iteration
can be tuned using k̂ (equivalently. k).

component for large n values; therefore, the < ERn >n=1:100 is expected to be lower

for values of k̂ > 2.

Fig. 4.3 shows the < ERn >n=1:100 versus k̂ for simulations run with different

noise levels, and for the experiment. The experimental result shows very clear

similarity to the simulation results. Fig. 4.4 shows ERn versus n for the experimental

data at selected values of k̂. For example, at k̂ = 2.1, the ERn steadily improves until

about n = 45, and it crashes as Rn starts to get dominated by a single frequency

component. Fig. 4.4 illustrates that the convergence of the iterative TR can be

tuned using k.
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Fig. 4.3 also demonstrates that the optimum k is roughly 2
max(HH∗)

. The tun-

able iterative TR performed best for k̂ ≈ 2, both for the simulation with different

noise levels, and the experiment. This is in agreement with the convergence condi-

tion for Eq. 4.1 as discussed in Sec. 4.2.

4.6 Discussion

4.6.1 Overcoming Dynamic Range Limitations

Despite the elegance of the discussion leading to Eq. 4.1, there were some ex-

perimental challenges in realizing the tunable iterative TR algorithm. In this section,

the technique that is used to overcome the experimental challenge is discussed.

As shown in Fig. 4.1, an arbitrary waveform generator (AWG) was used in

conjunction with a microwave source to realize the TR mirror operation. There

was a limited dynamic range (i.e. 8 bits) offered by the AWG to represent signals.

This made generating F−1[(Rn−O∗)∗] using the AWG and recording the appropriate

F−1[Cn] using the oscilloscope a challenge because, in a very lossy or poorly coupled

systems, HH∗ ≪ 1 for most frequency values. The cavity shown in Fig. 4.1 was

an example of a poorly coupled system due to the radiation characteristics of the

monopole antennas used. Therefore, |Rn|2 ≪ |OO|2 for most frequency values in

these systems. Consequently, F−1[(Rn − O∗)∗] is approximately equal to F−1[−O]

in these systems. When we attempt to generate F−1[(Rn −O∗)∗] ≈ F−1[−O] using

the AWG, it essentially generates just F−1[−O] due to the limited dynamic range

of the equipment.
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Based on the derivation in Sec. 4.2, if (Rn − O∗)∗ is reduced to −O due to

the limited dynamic range of the instrumentation, then Cn (which is defined as

Cn = H(Rn − O∗)∗k + bn) reduces to −HOk + bn = −S1k + bn. Consequently, the

sona update equation, which is Sn+1 = Sn − Cn, reduces to Sn+1 = Sn + S1k − bn.

This makes the iterative TR algorithm ineffective because, the sona does not change

as the iteration progresses, other than picking up AWGN.

This experimental problem was overcome by introducing a single amplitude

scaling factor, Ωn, which is dynamically determined at each iteration n. Ωn is

determined from the ratio of the maximum amplitudes of F−1[Rn] and F−1[O∗].

Then instead of F−1[(Rn −O∗)∗], the AWG is programmed to generate F−1[(Rn −

ΩnO
∗)∗], which has a smaller dynamic range.

Ωn is a real number smaller than 1. Hence, the generated F−1[(Rn −ΩnO
∗)∗]

is lacking some information about O∗ (specifically (1 − Ωn)O
∗). Consequently, Cn

(which is H(Rn−ΩnO
∗)∗k+bn) is lacking (1−Ωn)HO. So, the sona update equation

(Sn+1 = Sn − Cn) needs to be amended before the iteration continues. Otherwise,

Sn+1 losses some information about (1−Ωn)HO as well. The amended sona update

equation is Sn+1 = Sn − Cn + (1− Ωn)HO = Sn − Cn + (1− Ωn)S1.

To summarize, the limited dynamic range of the AWG was overcome by in-

troducing a dynamically determined scaling constant Ωn at each iteration. This

resulted in the generation of the low dynamic range signal, F−1[(Rn − ΩnO
∗)∗], by

the AWG instead of F−1[(Rn−O∗)∗], which has a high dynamic range. To compen-

sate for the adverse effects of this modification to the algorithm, the sona update

equation is amended to be Sn+1 = Sn − Cn + (1 − Ωn)S1. Despite these internal
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changes to the algorithm, there is no change on the structure of Eq. 4.1. The exper-

imental results were obtained using this technique to overcome the limited dynamic

range of the AWG.

4.6.2 Potential Applications

The main goal of the iterative TR is to improve the spatiotemporal focusing

of the reconstructed pulse. The iterative technique can be useful in applications

where TR mirrors have already been employed, but could benefit from an enhanced

focusing. The tunable iterative technique introduced in this chapter is advantageous

because it can speed up the convergence of the iteration.

Here is a description of a scenario where the tunable iterative TR can be

applied. Suppose that there are two points in space labeled A and B. There is

a capability to transmit and record waves at point A, and there is only access to

record waves at point B. The regular TR mirror broadcasts a pulse from point A and

records the sona at point B. Then, it broadcasts the time reversed sona from point A,

and it records the reconstructed time reversed pulse at point B (taking advantage of

spatial reciprocity). Finally, the spatiotemporal focusing of the reconstructed pulse

can be improved using the iterative TR.

The scenario becomes even more interesting if the access to record waves at

point B expires. For example the recording device that was covertly placed at

point B could run out of battery-supplied energy. In this special scenario, the

tunability of the iterative TR is an advantage. Because, the optimum sona that can
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achieve sharp spatiotemporal focusing at point B can be synthesized using as few

iterations as possible. There is even a possibility of remotely scanning the recording

device to neighboring points of B, and quickly synthesizing optimum sonas that can

achieve focusing at any selected nearby point. Clearly, the capability to speed up

the convergence of the regular iterative TR is a practical advantage.

An example of a real world application that is based on the scenario described

above is the realization of virtual sources in geophysics [35, 36]. Continuing with

the discussion above, the reconstructed pulse at point B diverges out after it spa-

tiotemporally focuses on B. This effectively makes point B a virtual source of waves.

In geophysics, TR mirrors have been used to realize virtual sources which image

geological formations beyond a seismically opaque geological stratum [35]. If the

tunable iterative TR technique is applied, the virtual sources may be better lo-

calized in space. Finally, the tunable iterative TR can also be useful to enhance

spatially focused, peak field generation inside reverberation chambers [67].

4.7 Conclusion

The iterative time reversal technique was demonstrated experimentally using

electromagnetic waves in a microwave wave chaotic cavity, and by using a simulation

of a star graph. A new amplification parameter is introduced into the iterative

algorithm to control the rate of convergence of the iteration. The optimum value

of this parameter is dictated by the scattering properties of the system over the

bandwidth of the pulse and the noise.
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Chapter 5

Mitigating the Effect of Non-Uniform Loss on Time Reversal Mirrors

Using Exponential Amplification

In Chapter 4, the tunable iterative technique was introduced. The technique

overcomes the adverse effect of dissipation on the real-time spatiotemporal wave

focusing of time reversal mirrors. The focusing was quantified in Sec. 4.5.1 using

the ratio of pulse to temporal sidelobe energy. In this Chapter, we are less in-

terested in achieving a real-time spatiotemporal wave focusing using time reversal

mirrors. Instead, we are mainly interested in the capability to easily identify the re-

constructed time reversed pulse after it is digitized. The ability to precisely identify

the reconstructed pulse after digitization may be important in applications such as

communication.

Here, the performance of time-reversal mirrors is quantitatively defined as the

correlation between the original pulse and the time reversed version of the recon-

structed pulse. The adverse effect of dissipation on this performance of time-reversal

mirrors is investigated. The technique of exponential amplification is proposed to

overcome the effect of dissipation in the case of uniform loss distributions, and, to

some extent, in the case of non-uniform loss distributions. A numerical model of a

star graph was employed to test the applicability of this technique on realizations of

the star graph with various spatial distributions of loss. The numerical results are
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also verified by an experimental result from an electromagnetic time-reversal mirror.

5.1 Introduction

Time reversal (TR) mirrors can, under ideal circumstances, precisely recon-

struct a wave disturbance which happened at an earlier time, at any given later

time. TR mirrors have found numerous applications since the earliest experimental

demonstrations of TR using acoustic waves [21]. More recently, TR mirrors have

been realized using electromagnetic waves [23, 25] expanding their applicability.

TR mirrors have applications in communications [48, 49], imaging [45, 44], source

localization [36], non-destructive evaluation [32, 33], and sensing [18, 20, 25]. In

applications such as communications, it may be vital that the reconstruction of the

wave disturbance (before or after numerically processing) is of high quality. In this

chapter, we will see how this can be achieved despite the presence of inhomogeneous

loss in the system.

TR mirrors are used to focus waves both in space and time. An ideal TR

mirror consists of a wave source located inside a lossless medium that is completely

enclosed by a surface of transceivers. A TR mirror operates in two steps. In step

one, the transceivers record and absorb the signal broadcast by the source. In step

two, the transceivers rebroadcast time reversed versions of the recorded waves. The

waves broadcast in step two eventually focus on the location of the source and

reconstruct a time reversed version of the original signal, which was broadcast in

step one: this is possible because of the TR invariance property of the lossless wave
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equation. This ideal TR mirror uses the so called closed TR cavity [68]. However, it

is not generally practical, for example, to build a closed TR cavity, whose interior is

completely covered with transceivers. Therefore, practical TR mirrors have several

limitations, which result in an imperfect reconstruction of the original signal. These

limitations include i) limited spatial coverage by the transceivers, and ii) dissipation

during the wave propagation (which breaks TR invariance of the wave equation)

[26, 18].

The first limitation of TR mirrors can be overcome by the use of a reflecting

wave chaotic cavity with partial spatial coverage and transceivers that have a long

recording time [26, 18]. However, the limitation due to dissipation persists, and

leads to increasing loss of information as the recording time increases.

As described in Chapter 4, the technique of iterative TR was proposed to

improve the performance of TR mirrors, which suffer from the limitations of dissi-

pation and incomplete spatial coverage of transceivers [27]. However, the iterative

technique may not converge fast enough, despite a recent result showing the tun-

ability of its convergence [30]. The faster alternative to the iterative technique is the

inverse filter technique [28, 27], which was introduced in Sec. 4.2. But, the inverse

filter technique is computationally costly and potentially unstable [27].

In Chapter 2, the technique of exponential amplification was initially used to

overcome an adverse effect of dissipation. Specifically, the spatial range of the TR

sensing techniques was limited due to dissipation. The exponential amplification

technique was used to extend the spatial range of the sensing techniques [18, 20].

In this Chapter, yet another application of the exponential amplification tech-
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nique is proposed. The application involves improving the performance of TR mir-

rors, which suffer from dissipation. The performance of TR mirrors is defined as

the normalized correlation between the original pulse and the time reversed version

of the reconstructed pulse. The technique of exponential amplification can compete

with the iterative TR technique in improving this performance of TR mirrors, to

some extent. The relative advantage of the exponential amplification technique is

that it is faster to implement, as it does not rely on iterative steps. It is also cheaper

computationally.

In Sec. 5.2, the theory supporting the exponential amplification technique,

which is first discussed in Sec. 2.2, is summarized. The performance of TR mirrors

is also defined in Sec. 5.2. In Sec. 5.3, the exponential amplification technique was

used to improve the performance of an electromagnetic TR mirror. Particularly, it

is shown that the technique can improve the performance of a TR mirror for the

case of uniform spatial loss distribution. Above and beyond the uniform loss case,

Sec. 5.4 investigates the limits of applicability of the exponential amplification in

systems with inhomogeneous loss distributions. The investigation was carried out

using a numerical model of the star graph, which is introduced in Sec. 3.4.1. Sec. 5.5

provides a conclusion.

5.2 Theory

Sec. 2.2 first introduced the theory supporting the exponential amplification

technique. To summarize, a cavity with transfer function ŝ(ω) was considered.
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When a brief pulse, a(t), is broadcast into the cavity, the response is b(t). In the

frequency domain, these signals obey b̂(ω) = ŝ(ω)â(ω). A time reversed version of

b(t) is denoted as c(t) in this section. When c(t) is broadcast back into the cavity,

a reconstructed pulse is obtained which is denoted as d(t). Sec. 2.2 provides a

derivation supporting the following results. If the cavity is lossless, a(t) is the same

as a time reversed version of d(t) which is denoted here as e(t). Thus, the TR mirror

works perfectly in a lossless cavity.

Even if the cavity is lossy, it is shown that the TR mirror can be perfected

assuming uniform loss. Suppose that the uniform loss is represented by a 1/e voltage

decay time (i.e. τ). In this case, the signal b(t) is exponentially amplified by e2t/τ ,

time reversed, and broadcast back into the cavity. c̃(t) denotes the signal obtained

after exponentially amplifying b(t), and time reversing it. Similarly, d̃(t) denotes the

reconstructed pulse obtained when c̃(t) is broadcast back into the cavity. The time

reversed version of d̃(t) is denoted by ẽ(t). Sec. 2.2 analytically predicts ẽ(t)e−2t/τ

which is equal to a(t) for a uniform loss that is characterized by τ .

Here, we define a new signal (ê(t)) that can be synthesized from ẽ(t). ê(t)

is called the corrected reconstructed pulse. ê(t) is obtained by multiplying ẽ(t) by

e−2t/τ . In this Chapter, the performance (η) of the TR mirror is defined based on

the normalized correlation between the corrected reconstructed pulse (ê(t)), and the

original pulse (a(t)).

η =

∑t=T
t=0 a(t)ê(t)√∑t=T

t=0 a(t)2
∑t=T

t=0 ê(t)2
(5.1)

Each of the signals a(t) and ê(t) have a duration of T . The two signals are assumed
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to be perfectly aligned to maximize η. Based on the result from Sec. 2.2, a(t) = ê(t)

if the system is uniformly lossy with a 1/e voltage decay time, τ . Therefore, the

performance of the TR mirror is expected to be perfect (i.e. η = 1) based on this

analysis of the application of the exponential amplification technique. However,

the analysis does not model the effect of noise and limited dynamic range on the

exponential amplification technique.

If the exponential amplification is not applied to b(t), the performance, η, can

still be calculated using the signals a(t) and e(t), instead of using a(t) and ê(t). But,

if the system is lossy, and exponential amplification is not applied, then it is not

expected that η = 1.

In Sec. 5.3, this theory, which assumes uniform loss distribution, is success-

fully tested in an experimental system that approximates the case of uniform loss

distribution. However, it is also expected that the theory applies for the case of

moderately non-uniform loss distribution. The applicability of the exponential am-

plification technique to mitigate the effect of non-uniform loss is studied in Sec. 5.4.

5.3 Overcoming the Effect of Spatially Uniform Loss: Experimental

Test

The electromagnetic TR mirror involves a one cubic meter aluminum box that

has scatterers inside it, and two ports. The experimental TR mirror operates as

shown in Fig. 5.1. The original pulse was broadcast into the cavity using port 1,

and the response signal, which we call ”sona”, was collected using port 2. The
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original pulse had a carrier frequency of 7GHz and a Gaussian envelope with a

standard deviation of 1ns. The sona was recorded for about 6.5µs with a signal to

noise ratio (SNR) greater than 1. During the second step of the TR mirror operation,

the sona signal was time reversed and broadcast back into the cavity using port 1;

this made use of the spatial reciprocity property of the wave equation [18]. Finally,

a reconstructed pulse, which approximates a time reversed version of the original

pulse was collected at port 2. The reconstructed pulse (and its temporal sidelobes)

was collected over a 10µs duration. The first 6.5µs included a direct recording of

the time reversed sona being injected into the cavity. The last 3.5µs was a recording

of the reconstructed pulse diverging out from port 2, and reverberating throughout

the cavity.

Based on Eq. 5.1, η can be calculated as the normalized correlation between the

following two aligned signals: i) the time reversed version of the reconstructed pulse

with its temporal sidelobes (which was a 10µs long recording), and ii) the original

pulse broadcast (by considering the 1ns long Gaussian envelope to be located at

t = 3.5µs of a 10µs long signal of nearly zero voltage values). Note that these two

signals are equivalent to the aligned a(t) and e(t) signals introduced in Sec. 5.2. If

the TR mirror were perfect, η would be 1. However, as can be seen in part 4 of

Fig. 5.1, the reconstructed pulse has temporal sidelobes which result in η < 1. The

sidelobes arise due to the limitations of practical TR mirrors discussed in Sec. 5.1,

which include limited spatial coverage of transceivers and dissipation.

Generally, the sona signal shows an exponential decay which is caused by

dissipation and coupling. The experimental system discussed here is strongly under-
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Figure 5.1: Schematic of the electromagnetic time reversal (TR) mirror
experiment, without exponential amplification. During step 1 of the
TR mirror, the original pulse is broadcast through antenna 1 (as shown
in part 1), and the resulting sona is collected at antenna 2 (as shown
in part 2). During step 2 of the TR mirror, the time reversed sona is
injected into the system at antenna 1 (as shown in part 3) to retrieve the
reconstructed time reversed pulse at antenna 2 using spatial reciprocity
(as shown in part 4). Experimental data are shown for each step.
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coupled [11], which means that the effect of dissipation dominates the effect of

coupling. Therefore, the 1/e voltage decay constant (τ) which is related to the

unloaded quality factor can be readily determined by a line fit to the log of the sona

energy as a function of time. The exponential amplification can then be applied

to the sona signal before it is time reversed and broadcast into the cavity. The

exponential amplification is carried out by multiplying the sona signal by the time

dependent amplifying function

A(t, F ) = exp(
Ft

τ
) (5.2)

where t is time in seconds, and F is a fudge factor. Assuming a precise determination

of τ , using F = 1 compensates only for the effect of dissipation on the sona during

step 1 of the TR mirror operation; whereas, using F = 2 compensates for the effect

of dissipation on the sona during both step 1 and step 2 of the TR mirror operation

[20]. The theoretical discussion in Sec. 5.2 predicts that F = 2 to maximize η.

The exponential amplification is applied to the part of the sona whose signal to

noise ratio is, at the very least, greater than 1 (i.e. the 6.5µs long sona in this

experiment). Besides, the function A(t, F ) is typically terminated by a smooth

ramp down function whose time span is at least as wide as the time duration of the

original pulse, which is 1ns; this prevents additional frequency components from

entering into the sona.

Suppose that the sona is exponentially amplified using A(t, F ), before it is

time reversed and broadcast into the electromagnetic cavity. The reconstructed

pulse obtained with F > 0 sona amplification will have more sidelobes than the re-
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Figure 5.2: The reconstructed TR pulse obtained from a sona that was
exponentially amplified with F = 2 (blue) had significant sidelobes. The
corrected reconstructed pulse (red) was obtained by multiplying the time
reversed version of the reconstructed TR pulse by A(t−3.5µs, F = −2).
The corrected reconstructed pulse is displayed here after time reversing
it. A(t, F ) = 1 if t < 0. The inset shows a close up of the reconstructed
pulses, which are the same before and after the correction.
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constructed pulse obtained with F = 0 sona amplification. However, these sidelobes

can be numerically suppressed by manipulating the reconstructed waveform, which

is digitized, as follows. For example, Fig. 5.2 shows the reconstructed waveform

obtained using sona that is amplified with A(t, F = 2) (in blue); the reconstructed

waveform has unwanted temporal sidelobes which are a result of the exponential

amplification applied to the sona. These sidelobes were corrected as follows. The

10µs long reconstructed waveform was time reversed so that the 1ns long Gaus-

sian pulse is located at about t = 3.5µs; this waveform was then multiplied by

A(t− 3.5µs, F = −2) to get the corrected reconstructed waveform (i.e. ê(t)) intro-

duced in Sec. 5.2. A(t, F ) = 1 for t < 0 by convention. In Fig. 5.2, the corrected

reconstructed waveform is time reversed and plotted (in red) to highlight its rela-

tionship with the reconstructed waveform. The corrected reconstructed waveform

is expected to have a better normalized correlation with the original pulse because

of the exponential amplification with F = 2, as predicted in Sec. 5.2.

Several values of F were used to carry out the operation of the TR mirror

assisted by exponential amplification. For each F value, the performance of the

electromagnetic TR mirror, η, is shown in Fig. 5.3. It is shown that the performance

of the TR mirror is enhanced by using exponential amplification with F ≈ 2 for a

good determination of τ of the sona; particularly, η increases from ≈ 63% at F = 0

to ≈ 73% at F = 2. This result agrees with the theoretical prediction in Sec. 5.2.

The fact that the η < 1 even for F ≈ 2 can be explained by the fact that the

TR mirror only has one recording channel, whereas the theory assumes that all the

waves are captured. Thus, the exponential amplification technique only overcomes
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the limitation of TR mirror emanating from dissipation, and not the problem of

insufficient spatial coverage of recorders. The noise, which is not considered in the

theory, also affects the performance of TR mirrors as it was seen in Sec. 4.5.2.

As shown in Fig. 5.3, the exponential amplification achieves η that is as high

as 73% for the experimental set up described. This compares with η ≈ 78% which is

achieved by the tunable iterative technique of Chapter 4 on the same experimental

set up described in Sec. 4.3. Therefore, the iterative technique performs better than

the exponential amplification technique when both of them use their respective

optimum parameters. Nonetheless, the exponential amplification has an advantage

because of its speed, and computational simplicity.

The result in this section proves that the exponential amplification improves

the performance, η, of TR mirrors with uniform spatial loss. The one cubic meter

aluminum cavity has a homogenous material make up, and can be assumed to have

a uniform spatial distribution of loss.

5.4 Overcoming the Effect of Spatially Non-Uniform Loss: Numerical

Test

The exponential amplification technique is derived assuming uniform loss dis-

tribution. The case of non-uniform loss distribution is better handled with tech-

niques such as the inverse filter, and the iterative TR [28, 27], which do not assume

uniformity of loss. However, it is expected that the exponential amplification can be

applied in cavities with moderately inhomogeneous loss distributions. The applica-
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Figure 5.3: The performance (η) of the electromagnetic TR mirror as a
function of F parameter used to exponentially amplify the sona signal.
The optimum value of the fudge factor, F , is around F = 2 as expected
for a precise determination of τ of the sona.
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bility of the exponential amplification technique was studied as the inhomogeneity

of the spatial distribution of loss was increased. The simulations in this section were

designed to supplement the experimental results in Sec.5.3.

5.4.1 Simulation Setup

The numerical model is based on the star graph, which is introduced in

Sec. 3.4.1. It is a quasi-1D chaotic system which consists of a driving transmis-

sion line that feeds a number of transmission lines, which are all connected to each

other in parallel. It is a one port system. Thus, the original pulse is injected through

the driving transmission line, and the sona is also collected from the same line. The

original pulse has the same characteristics as the one used in the experiment de-

scribed in Sec. 5.3.

There are 500 transmission lines in the star graph set up. Their length is

given by Li =
√
i m for i ranging from 1 to 500. The driving line has a length of 0

m. The characteristic admittances of the 500 lines are Yci = 1S. The driving line

has a characteristic admittance of Ycd =
∑i=500

i=1 Yci = 500S; this set up eliminates

prompt reflection of signals injected through the driving line. The terminal reflection

coefficients, Γi, of the 500 lines are all set to 1. The dissipation is introduced through

the frequency dependent propagation constant of the lines, γi(ω) = ıω
c
+ αi, where

c is the speed of light and αi is the loss constant of line i.

αi specifies that the voltage waves decay on line i as e−αiz, where z is distance

measured along line i in meters. The spatial inhomogeneity of loss on the star graph
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is modeled as follows. The αi of each of the 500 lines is randomly chosen from the

probability density function (pdf).

pn,λ(α) =
αn

λn+1n!
exp(−α/λ) (5.3)

The pdf has two parameters, n and λ, which define the mean (µα = λ + λn) and

standard deviation (σα =
√
λ(λ+ λn)) of α values. This particular pdf is chosen

for the following two reasons. First, the coefficient of variation (R = σα/µα) can be

easily varied while keeping µα constant. Keeping the average spatial loss constant

simplifies the problem, and helps us focus on the effect of increasing spatial loss

inhomogeneity. Besides, the main motivation for using the exponential amplification

in the case of non-uniform loss is: if the 1/e decay constants (i.e. τ) of the different

modes are not extremely different, we can use a single average τ value. Thus, it

is not interesting to vary the average loss (effectively τ) here. In this set up µα is

chosen as 1
cτ
, where τ = 1.5µs. The second reason to use this particular pdf is that

its support is the set of positive numbers, which should be the case as α should

always be positive on the transmission lines. Fig. 5.4 shows plots of the pdf for

different values of R, where µα ≈ 0.002.

The numerical values of the parameters of the star graph were chosen to achieve

the following objective. The experimental result in Sec. 5.3 was based on an under-

coupled cavity. An under-coupled cavity is characterized by the domination of

energy loss due to dissipation over energy loss due to coupling [11]. If the cavity is not

under-coupled, the advantage of the exponential amplification technique cannot be

easily seen because there are no strong internal dissipation effects to be compensated
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Figure 5.4: The probability density function (pdf) in Eq. 5.3 is plotted
for different R = σα/µα values where µα ≈ 0.002. R is a measure of loss
inhomogeneity. The pdf is plotted for R = 0.2 (blue), R = 0.5 (black),
and R = 1 (red).

in an over-coupled cavity. Thus, the star graph was set up to create an under-coupled

cavity, where we can clearly see the advantage of the exponential amplification. To

accomplish under-coupling, 500 lines were used in the star graph to increase the

back-reflection coefficient of the waves that are trying to leave the star graph. This

forces the waves to reverberate inside the star graph for longer, which decreases the

coupling loss by two orders of magnitude compared to the dissipation loss.

5.4.2 Simulation Results

A TR mirror was implemented on the star graph by broadcasting the original

pulse, collecting a sona, exponentially amplifying the sona with A(t, F ), time re-

versing the amplified sona, and broadcasting it back into the star graph. The recon-

structed pulse was collected, and it was time reversed and multiplied by A(t−x,−F ).
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Figure 5.5: The performance (i.e. η) of the TR mirror in a star graph
as a function of F parameter for various degrees of loss inhomogeneities
characterized by R. Loss inhomogeneity increases with R. The optimum
F value is always around F = 2 for the τ value that is well determined
from the sona.
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Figure 5.6: The maximum performance of the TR mirror in a star graph
as a function of loss inhomogeneity, R. The maximum η is taken over all
F values tried between 0 and 6 as shown in Fig. 5.5. R is the coefficient
of variation of the loss, which increases with the loss inhomogeneity.

Here, x is the time when the 1ns Gaussian pulse was expected within the time re-

versed version of the reconstructed waveform. The signals were collected over a span

of 10µs without noise.

The performance (η) of the TR mirror is plotted versus F as shown in Fig. 5.5.

This entire process was repeated for star graphs with different degree of loss inho-

mogeneity characterized by R. R = 0 represents uniform spatial loss distribution.

As R increases, the loss inhomogeneity increases. For each R value, 25 realizations

of the star graph were generated; so, there are error bars included on the η vs F

plots for each R value, as shown in Fig. 5.5.
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For each R value shown in Fig. 5.5, the maximum η was taken over all F

values attempted. The maximum η achieved is plotted as a function of the loss

inhomogeneity (R) in Fig. 5.6. Fig. 5.6 demonstrates that the exponential ampli-

fication technique achieves a high performance, η, for small values of R, which are

close to uniform loss distributions. The exponential amplification is still applicable

in cavities with more inhomogeneous loss distributions. However, its effectiveness

declines with increasing loss inhomogeneity as expected.

5.5 Conclusion

The exponential amplification improves the performance of time reversal mir-

rors best if the loss is uniformly distributed in space. However, even under condi-

tions in which the loss is not uniformly distributed, the exponential amplification

mitigates the adverse effect of non-uniform loss on the performance of time rever-

sal mirrors. This technique may be advantageous to use in time reversal mirror

based communication applications because even if the reconstructed pulse will have

more sidelobes during the recording, the processed reconstructed pulse will closely

replicate the shape of the original pulse.
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Chapter 6

Conclusion and Future Directions

6.1 Final Conclusions

This dissertation has achieved two major milestones. These are: i) the devel-

opment of novel wave-based sensors with minimal false negatives and comprehensive

spatial coverage [18, 19, 20], and ii) the enhancement of the spatiotemporal wave

focusing of time reversal mirrors [30]. The sensing techniques developed in Chap-

ters 2 and 3 have the potential to be successfully utilized in real world applications.

This potential is demonstrated by the rigorous experimental tests presented in this

dissertation. The tunable iterative time reversal technique, which is presented in

Chapter 4, has the potential to be integrated into existing applications of time re-

versal mirrors in various fields. The exponential amplification technique, which is

discussed in Chapter 5, initiates a new perspective to improve time reversal mirrors

which suffer from dissipation. Overall, this dissertation establishes the ground work

to study a plethora of fascinating research problems. Some of the research problems

that can be studied as an extension of this dissertation are outlined in Sec. 6.2
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6.2 Future Work

6.2.1 Types of Perturbations that can be Detected

The sensors that are developed in Chapter 2 are extremely sensitive by nature.

In principle, they can detect various kinds of small perturbations to the cavity. It

is interesting to quantitatively establish the limits of sensitivity of these sensors for

different classes of perturbations. For instance, in Sec. 3.3.3, the smallest measurable

VCSPP was formulated. It is shown that a VCSPP that is induced by walls of

the cavity moving over a sub-wavelength distance (∆x) can be detected, where

∆x
λ

≈ 3 ∗ 10−4. In a similar spirit, the possibility of detecting other classes of

perturbations that have a sub-wavelength size can be investigated using the following

two approaches.

6.2.1.1 Use of Evanescent Waves to Detect a Sub-Wavelength Per-

turbation

The work on time reversed focusing that beats the diffraction limit [39] inspires

the possibility of designing a sensor that can detect sub-wavelength perturbations.

The idea relies on the theoretical possibility of conversion between propagating and

evanescent modes in a time reversal experiment [40]. The experimental set up

to accomplish surveillance of the movement of a sub-wavelength ”target object”

is illustrated in Fig. 6.1(a). The ray chaotic enclosure contains the wave source

element and the time reversal mirror. The evanescent-wave ”generator” shown in the
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illustration could for example be a bundle of thin copper wires, which have proven

to allow conversion of evanescent waves to propagating waves and vice versa [39].

During the time-forward operation of the time reversal mirror, propagating waves get

converted to evanescent waves and back again to propagating waves by the duo of the

evanescent-wave ”generator” and the target object (see Fig. 6.1(b)). The evanescent

waves fall off exponentially in space, hence a small change in position of the target

object will have a big influence on the evanescent-to-propagating conversion process.

If the target object does not move before the time-reversed operation of the time

reversal mirror (see Fig. 6.1(c)), a perfectly time reversed version of what happened

in the first step should occur. Otherwise, we expect the change of position of the

target object with respect to the evanescent wave generator to be detectable.

Possible problems with this scheme include the lack of sensitivity to such a

small change. Therefore, the general idea may have to be first tested by placing both

the evanescent wave ”generator” and the target object near the source antenna. This

will guarantee that almost all the ray trajectories, which pass through the vicinity

of the source, will experience the effect of the changed evanescent-to-propagating

conversion process.

This idea of detecting sub-wavelength perturbations using evanescent-propagating

mode conversion can be investigated using different platforms. A High Frequency

Simulation Software (HFSS) and/or CST Microwave Studio simulation can be set

up to test this idea first. Ultimately, the idea can be tested in the electromagnetic

resonator cavity using a time reversal mirror experimental set up schematically il-

lustrated in Fig. 6.1.

150



Figure 6.1: a) Illustration of a ray-chaotic enclosure that contains a
time reversal mirror(TRM), a wave source, an evanescent-wave ”gener-
ator”, and a sub-wavelength target object that is under surveillance. b)
The time-forward operation of the time reversal mirror: the propagating
waves emanating from the source get converted into evanescent waves
by the evanescent wave ”generator”, and back to propagating waves by
the target object that is being monitored. c) In the time-reverse opera-
tion of the TRM, the propagating waves that start out at the TRM and
reach the target object get converted to evanescent waves and back to
propagating wave before reconstructing the source signal at the source
location.
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6.2.1.2 Direct Approach to Test the Detectability of Sub-Wavelength

Perturbations

The one cubic meter electromagnetic cavity, which is introduced in Sec. 3.3.1,

provides a controllable platform to test the effect of sub-wavelength perturbations

(if such small perturbations are detectable at all). To be exact, the size of the cav-

ity is much bigger than a typical wavelength of microwaves used, and at the same

time it is not likely that there will be an uncontrollable sub-wavelength change in

the boundaries of the cavity over the span of time the experiment is carried out.

Therefore, one can induce controlled sub-wavelength perturbations to the cavity,

and check if these perturbations can be detected by any of the sensing techniques

developed in Chapter 2. Specific examples of such controlled sub-wavelength per-

turbations include: an aluminum pole (with sub-wavelength dimensions) that can

be precisely motor-stepped into the cavity through a hole on the wall, a small mag-

netic object inside the cavity that can be moved by magnets from outside, etc.

Regarding perturbers that can be moved around inside the cavity: both cases of

moving a sub-wavelength perturber across a super-wavelength distance, and moving

a sub-wavelength perturber over a sub-wavelength distance can be investigated. If

these perturbations can be detected, the regime of fidelity decay [14] the perturba-

tions induce can be examined (there is more discussion about the fidelity decay in

Sec. 6.2.4).
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6.2.2 Coupling Perturbations

While pursuing the design of sensors that extend the concepts of Quantum

Fidelity and the Loschmidt Echo in Chapters 2 and 3, several research questions

of general interest crop up. Perturbations, whose detection is of practical interest,

usually happen inside the cavity. On the other hand, the ramifications of ”coupling

perturbations” to the antenna feeding energy into a chaotic cavity is of fundamental

interest. Our research group had previously developed a model called the Random

Coupling Model(RCM), which describes the statistical behavior of chaotic resonant

cavities [4, 5, 6, 7]. Most of the perturbations that can be applied to chaotic cav-

ities using the RCM cannot be directly realized experimentally; however, coupling

perturbations can be performed both in the RCM and experimentally. Thus, the

experimental investigation of coupling perturbations is interesting because the re-

sults can be compared directly with theory; for this purpose, a study of the RCM

predictions of coupling perturbations can be performed. Such perturbations have

not been studied before, to our knowledge.

Experimental Technique to Perform Coupling Perturbations

The effect of coupling perturbations on the classical analogs of the Loschmidt

Echo and the Quantum Fidelity was preliminarily investigated in the electromag-

netic cavity. Electromagnetic energy was coupled into this cavity using an antenna

whose radiation impedance (and hence the coupling) was adjusted electronically.

This was accomplished by using a varactor diode that was connected to the center
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conductor and ground of a coaxial transmission line that slightly protrudes into the

cavity through a small hole on the wall of the cavity (See Fig. 6.2). The center con-

ductor of the coax, which couples the microwaves into the cavity, was biased using

a DC voltage to ultimately bias the varactor diode. The bias voltage applied on the

varactor diode changed its capacitance. The loop of wire, which protrudes into the

cavity while carrying the diode, was designed to have a length of at least half of

the wavelength of the microwaves; this guarantees that the current distribution on

this radiating loop of wire changes significantly as the capacitance of the diode is

changed. The change in the current distribution guarantees a change in the radia-

tion impedance and hence the coupling into the cavity. One can quantify the change

in coupling by measuring the radiation impedance of the antenna in two extreme

cases: reverse bias, and forward bias. Based on previous work in our group on a

dipole antenna that extends down to the bottom of a quasi-2D cavity, the radiation

impedance is shown to be a function of the antenna current profile function u(x, y)

[8]. Based on this result for an antenna in a quasi-2D cavity, we hypothesize that a

change in the current distribution of the antenna in the 3D cavity may result in a

change in the radiation impedance.

Once an antenna with an adjustable coupling, (over a range of frequencies),

is designed, the usual experiments to detect perturbations can be carried out. Par-

ticularly, manifestation of the coupling perturbations on the following calculations

can be sought. The fidelity between sona signals collected before and after the

perturbation can be studied as a function time; this study may perhaps reveal a

new fidelity decay regime for coupling perturbations. A time reversal experiment
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Figure 6.2: A schematic of an antenna, whose radiation impedance can
be adjusted by applying a bias voltage on the constituent diode. The an-
tenna is inserted into the one cubic meter electromagnetic cavity through
a hole on the wall of the cavity.
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can also be performed before and after a coupling perturbation, and the resulting

reconstructed time reversed pulses can be compared. All these experimental results

can be compared with results from the time domain version of the Random Cou-

pling Model (RCM). The time domain version of the RCM was developed by our

group to describe a generic wave chaotic cavity [6], and it is possible to do coupling

perturbations in this computer model.

A preliminary experiment was performed using the antenna shown in Fig. 6.2.

The S11(ω) parameter of the antenna changed as the bias DC voltage on the antenna

was increased. A one-port time reversal experiment was carried out using this

antenna. The peak-to-peak amplitude of the reconstructed pulse decreased as the

bias DC voltage was increased during step 2 of the time reversal mirror.

6.2.3 The Role of Chaos

The operation of the sensors fundamentally assumes that the cavity under

surveillance is wave chaotic. Thus, it is worth investigating the operation of the

sensors for cavities with different Lyapunov exponents [1]. This study is important

because it helps define the applicability of the sensors to different kinds of cavities.

Experiment to Study the Role of Chaos on the Performance of the

Sensors

The design of the sensors assumes that the cavity under surveillance is wave

chaotic. The vitality of this assumption can be examined by modifying the walls of
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the cavity (which is first introduced in Sec. 3.3.1) to effectively change the Lyapunov

exponent of the underlying ray chaos. Introducing curved walls or scatterers in the

cavity evidently increases the largest Lyapunov exponent. Whereas, removing the

existing flat panel scatterers inside the cavity and perhaps making sure the interior

of the cavity is as smooth as possible will bring the cavity closer to approximating

the integrable case. The largest Lyapunov Exponent of a given configuration of the

cavity can be calculated using a software model that relies on calculation of ray

trajectories given the physical dimensions of the cavity’s boundaries. This work will

give insight into the following issues: the robustness of the time reversal mirror in

a system that may approximate an integrable system, and the overall performance

of the sensing techniques in cavities with different Lyapunov exponents.

6.2.4 A Study of Fidelity Decay

The sensors that extend the Quantum Fidelity to classical waves rely on a

direct comparison of two sona signals which are collected before and after a pertur-

bation. The comparison between these two sonas can be described using a single

number such as their cross correlation or mutual information. Another approach

that is commonly taken is to examine the fidelity between the sona signals as a

function of time, commonly known as the ”scattering fidelity” in the literature [14].

The scattering fidelity, which starts close to 1, is normally expected to decrease with

time.

There are different regimes of fidelity decay that had been identified and dis-
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cussed for different kinds of perturbations [14]. For instance, for sufficiently small

perturbations, fidelity decays as a Gaussian function of time, which is called the

”perturbative decay regime” [14]. On the other hand, there is a perturbation de-

pendent exponential decay of the fidelity, which is derived from Random Matrix

Theory; this is called the ”Fermi golden rule decay regime” [14]. It is fascinating to

look for new regimes of fidelity decay. So far, exponential decay of fidelity has not

been observed experimentally. It also remains to be seen if local and global coupling

to loss channels result in different regimes of fidelity decay.

Techniques to Calculate Fidelity Decay for Different Kinds of Pertur-

bations

The comparison between two sona signals collected before and after a pertur-

bation can be done as follows. First, the two sona signals are aligned in time. Then,

corresponding portions of the sonas, with some chosen interval-length in time, are

compared. The comparison is done by computing the cross correlations of the por-

tions of the sonas which share the same start and stop time on the common time

axis the two sonas share. Each such correlation value obtained tells us the scattering

fidelity of those two sonas at some point in time, which is the time stamp of the

portion of the sonas used to obtain that particular correlation value. In this manner,

the fidelity between two sonas as a function of time can be plotted. Typically, the

fidelity between two sona signals starts at one and decreases with time.

Different regimes of fidelity decay can be expected depending on the type of
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perturbation applied. The following kinds of perturbations can be attempted with

the goal of finding new regimes of fidelity decay. The first kind of perturbation that

will be used is the introduction of absorbing channels. This can be accomplished

by putting microwave absorbing patches on the walls of the electromagnetic cavity.

The size of the absorbers can be chosen to be either on the order of the wavelength,

or much larger than the wavelength; these two cases perhaps will allow us to look

at different regimes of fidelity decay induced by the introduction of local and global

absorbing channels. It will be interesting if any of these perturbations result in an

exponential fidelity decay, which has not been experimentally observed before.

In addition to the experimental approach, the fidelity decay can also be studied

using the analytical computer models such as the time domain Random Coupling

Model and the star graph model (which was first introduced in Sec. 3.4.1).

6.2.5 Sensing Assisted by the Iterative Time Reversal and Exponen-

tial Amplification

In Chapter 4, it was stated that the iterative technique can be useful in ap-

plications in which time reversal mirrors have already been employed, but could

benefit from an enhanced focusing. An example of such application of time reversal

mirrors is sensing as introduced in Chapter 2.

As described in Sec. 2.4.3, the sona signals are exponentially amplified to ex-

tend the spatial range of sensors based on time reversal mirrors. However, we know

from Chapter 5 that the exponential amplification of the sona results in significant
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temporal sidelobes on the reconstructed pulse. It is true that the techniques in

Chapter 5 can be applied to remove these unwanted sidelobes (induced by exponen-

tial amplification) from the reconstructed pulse, after it is digitized. However, the

main advantage of the sensing techniques based on time reversal (i.e. Sec. 2.4.2)

over the sensing techniques based on direct propagation comparison (i.e. Sec. 2.4.1)

is the following. The reconstructed time reversed pulse does not even have to be

fully digitized; we only need to measure its peak-to-peak-amplitude (PPA) using a

simple circuit. This is a huge computational advantage of the sensing techniques

based on time reversal mirrors. However, for this advantage to materialize, the re-

constructed pulse should stand out from its temporal sidelobes; otherwise, it is not

possible to easily measure its PPA. Therefore, if exponential amplification is applied

to extend the range of the sensors, the sensing techniques based on time reversal

may lose their computational advantage. In this situation, the iterative time reversal

technique can be used to suppress the temporal sidelobes of the reconstructed pulse

obtained from an exponentially amplified sona. This will allow the reconstructed

pulse to stand out from its suppressed temporal sidelobes, as its PPA is measured in

real time. Therefore, the sensing techniques based on time reversal mirrors can re-

tain their computational advantage using the iterative technique, while they extend

their range using the exponential amplification technique.

More concretely, the following sensing experiment can be performed using the

iterative and exponential amplification techniques. Collect a sona from a cavity.

Exponentially amplify the sona to increase the range of the sensor. Time reverse,

and broadcast the exponentially amplified sona back into the cavity. Collect the
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reconstructed pulse, which has temporal sidelobes induced by the exponential am-

plification. These temporal sidelobes inhibit the simple measurement of the PPA

of the pulse. At this point, apply the iterative time reversal technique, which is de-

scribed in Chapter 4, to perfect the exponentially amplified sona. It is vital that the

cavity is not perturbed as the iterative process is carried out. The tunable iterative

technique may be preferable as it takes less time to complete. The resulting optimal

sona has two properties: i) it has more information about the parts of the cavity

far away from the sensor because it is exponentially amplified, and ii) it does not

result in temporal sidelobes of the reconstructed pulse because it is treated by the

iterative technique. Finally, time reverse and broadcast this optimal sona periodi-

cally, and monitor the PPA of the reconstructed pulses to detect perturbations. A

preliminary test of this procedure was carried out using the star graph model, which

is introduced in Sec.3.4.1. The preliminary simulation results were promising, and

should lead to successful experiments.

6.2.6 Super-Resolution Time Reversed Focusing

Time reversed wave focusing with a sub-wavelength resolution can be realized

using electromagnetic waves. This work may enable the development of a super-

resolution microwave microscope.

Imagine a two port, electromagnetic, time reversal experiment with antenna

1 and antenna 2 in a wave chaotic enclosure. The brief pulse broadcast by antenna

1 is picked up by antenna 2 as a sona. The time reversed sona is then re-injected
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Figure 6.3: When the time reversed sona converges on antenna 1, it also
is followed by a diverging wave due to impedance mismatch. The two
waves interfere resulting in a sinc waveform which is the cause of the
diffraction limit for wave focusing. Courtesy: Original figure from M.
Fink (http://ohd2007.esisar.inpg.fr/ppt/INV2.pdf).
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back into the cavity through antenna 2. This time reversed sona undoes its original

path and collapses on antenna 1 (see Fig. 6.3). However, the impedance mismatch

at antenna 1 means that a portion of the energy of the time reversed pulse that

reconstructs at antenna 1 passes through and then diverges back into the cavity.

This results in the imperfection of the time reversal mirror, because a time-reversed

version of this diverging waveform was not there in the first part of the procedure.

This imperfection can be corrected by adding a ”sink” at antenna 1 [40]. The sink

can be realized by simply injecting a π-shifted and time-reversed pulse at antenna

1 at the exact time that the reconstruction of the time reversed pulse happens.

The amplitude of this π-shifted pulse will be adaptively chosen so as to completely

cancel out the diverging waveform that results. This will guarantee that after the

time reversed reconstruction of the pulse at antenna 1, there is no signal propagating

in the cavity. This means that the time reversal mirror is indeed perfect.

So far we have described how the diverging wave comes about, and how it

can be cancelled out in order to make the time reversal mirror perfect. One of the

problems with the diverging wave is that it interferes with the converging wave (i.e.

the time reversed sona collapsing on antenna 1), and the resulting spatial side-lobes

degrade the spatial resolution of the time reversed reconstruction. Therefore, using

the π-shifted pulse (”sink”) to cancel out the diverging wave can improve the spatial

resolution of the reconstruction.

The procedure mentioned above can be simulated using CST Microwave Stu-

dio and/or High Frequency Simulation Software (HFSS); such simulations will give

insight into the experiment. If the experiment is successful (i.e. if the diverging
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wave is canceled out), there will be no microwave energy after the pulse reconstruc-

tion at a separate pick up antenna that can be put anywhere else in the cavity. A

successful demonstration of the principle of super-resolution time reversed focusing

will open the door to the pursuit of exciting applications such as the development

of super-resolution microwave microscopes using time reversal mirrors.
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Appendix A

Setting up the Electromagnetic Time Reversal Mirror

The electromagnetic time reversal mirror which is utilized in Chapters 3, 4,

and 5 of this dissertation consists of the following instruments: an Agilent Digital

Storage Oscilloscope (DSO 91304A), a Tektronix Arbitrary Waveform Generator

(AWG 7052), and an Agilent PSG Vector Signal Generator (PSG E8267D) (i.e.

microwave source). The code used to automate the control of these instruments is

provided in the Wiki page of our research group (www.anlage-wiki.physics.umd.edu);

there is also a documentation and user’s guide to the code. Here, only the most

important conceptual aspects of the code are summarized.

A.1 Signal Acquisition through Aligned Averaging

The trigger time jitter in oscilloscopes can be a notorious problem. The prob-

lem diminishes the advantage of the default averaging functionality of most oscillo-

scopes. This is because, the sample signals that are being automatically averaged

by the oscilloscope may not always be exactly in phase. As a result, the default

averaging functionality of the oscilloscope cancels out the contributions of some of

the sample signals that are out of phase with each other.

The Tektronix TDS6804B oscilloscope which had been used for preliminary

experiments has a 2ps time jitter. The time jitter of the oscilloscope was charac-
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terized by using a 400MHz square wave trigger signal. The square wave crossed

0V as it rise with the steepest slope. A histogram of zero crossing time values was

constructed. The standard deviation of the histogram characterizes the time jitter,

which is 2ps for the Tektronix TDS6804B oscilloscope. Similarly, the time jitter

for the Agilent DSO 91304A oscilloscope was measured to be about 0.2ps. A time

scale of 50ps/div and a voltage scale of 50mV/div was used while characterizing the

time jitter of these oscilloscopes. Even though the time jitter, which is characterized

by the standard deviation of the histogram, of these oscilloscopes is much smaller

than the typical period (≈ 140ps) of the waves considered, the default averaging

functionality of the oscilloscopes can suffer from a jitter problem.

The solution to this problem is real-time aligned averaging by software. At

every instant that a sample signal is acquired, it is aligned with a running sum

of the signals by maximizing its cross correlation with the running sum. After

the alignment, the sample signal is added into the running sum of the signals. This

process is continued until the specified number of sample signals is collected. Finally,

the running sum can be divided by the number of samples to obtain the averaged

signal. This scheme was implemented successfully to maximize the signal to noise

ratio of the averaged signal.

A.2 Notch Filtering

The time reversal mirror uses an AWG which drives a microwave source. The

AWG generates in-phase and quadrature signals. These signals are used to do I/Q
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modulation of a carrier frequency generated by the microwave source. This process

introduces a coherent residual signal that is unwanted in the final RF output of

the microwave source. This unwanted signal is a continuous wave at the carrier

frequency specified. Unless this coherent residual signal is removed from the recorded

signals, the signal to noise ratio is compromised. A notch filter was successfully

implemented to solve this problem.

The notch filter was implemented in the time domain. A continuous wave sig-

nal is contrived to match the frequency, phase and amplitude of the coherent residual

signal described above. This contrived continuous wave signal is then subtracted

from the signal (that has coherent residual signal) to obtain the notch filtered signal.

The notch filtering is shown to improve the signal to noise ratio of a typical sona

signal collected from the electromagnetic cavity introduced in Chapter 3. At the

beginning of the sona, the ratio of the signal energy to noise floor energy was 20dB

before notch filtering and 30dB after notch filtering.
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Appendix B

Modeling the Star Graph

The star graph model can be used as a representative wave chaotic cavity [65].

It can be implemented as a network of transmission lines that are all connected in

parallel at a single node. Since it is a quasi 1D system, it can be used to generate

results with a relatively small amount of computational time. This contrasts with

the computationally expensive task of solving full wave equations in 3D cavities. The

star graph can be used to test theories that are common to all wave chaotic cavities

[65]. However, the star graph cannot be directly used to validate experimental

results in a head-to-head manner. For such needs, the 3D model of the cavities need

to be implemented. The star graph model, which is introduced in Sec. 3.4.1, was

implemented using a code that will be provided in the Wiki page of our research

group (www.anlage-wiki.physics.umd.edu). Here, the most important aspects of the

code is summarized.

B.1 Frequency Domain Implementation

The star graph is modeled using the frequency domain for results in this dis-

sertation. The frequency domain approach uses the analytical determination of the

scattering parameter of the 1-port system as detailed in Sec. 3.4.1. The response to

any time domain input signal can be readily calculated using the scattering param-
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eters after Fourier transforming the input signal. Consequently, the star graph can

only have linear elements if this frequency domain implementation is used.

B.2 Time Domain Implementation

The time domain approach is an alternative approach to model the star graph.

Even though this implementation was not used for results in this dissertation, it has

been shown that its results agree with the results from the frequency domain imple-

mentation of the star graph if the same specification of the star graph is provided

to both implementations. The time domain approach has an advantage over the

frequency domain approach because it can be readily extended to model nonlinear

elements (such as a diode) on the star graph.

The algorithm for the time domain implementation of the star graph uses the

following parameters to define the system. Each of the N transmission lines of the

star graph are labeled by i = 1 to i = N . The driving transmission line is labeled

by i = 0, and it has zero length. The reflection coefficient from the terminations of

each of the lines is Γi for i = 1 to i = N . In the time domain implementation of

the star graph, loss is readily introduced by choosing values of Γi < 1. The one-way

propagation time from the node of the star graph to the termination on transmission

line i is denoted by ti, where i ranges from 1 to N . The characteristic impedance of

the ith transmission line is given by Zci for i ranging from 0 to N . The voltage wave

incident on the node from the ith transmission line is Vi+. Whereas, the voltage

wave that is leaving the node and propagating on the ith transmission line is Vi−.

169



The total voltage at the node is denoted by VN(t), and it is

VN(t) = Vi+(t) + Vi−(t), (B.1)

where i ranges from 0 to N . The current on the ith transmission line is denoted by

Ii(t), and it is given by

Ii(t) =
1

Zci

[Vi+(t)− Vi−(t)], (B.2)

where i ranges from 0 to N . The total current at the node should be zero.

i=N∑
i=0

Ii(t) = 0 (B.3)

At the terminations of the the transmission lines denoted with i ranging from 1 to

N , the outgoing and incoming voltage waves are related as follows.

Vi+(t) = ΓiVi−(t− 2ti), i = 1, 2, ..., N (B.4)

Consider the following sum
∑i=N

i=0
1

Zci
(Vi+(t)+Vi−(t)). Using Eq. B.1, the sum

is equal to VN(t)
∑i=N

i=0
1

Zci
. Next, Eq. B.2 can be used to substitute an expression

for Vi−, which is 1
Zci

Vi− = 1
Zci

Vi+− Ii, into the summation considered. The resulting

expression is
∑i=N

i=0 (
2

Zci
Vi+(t)− Ii) = VN(t)

∑i=N
i=0

1
Zci

. At this point, Eq. B.3 can be

used to eliminate the second term on the left hand side to get

2
i=N∑
i=0

Vi+(t)

Zci

= VN(t)
i=N∑
i=0

1

Zci

. (B.5)

This equation can be solved for VN(t) if Vi+(t) is given for all i ranging from 0 to

N .

For a given input signal on the driving line (i.e. V0+(t)), the output signal

can be determined as follows. At the beginning (i.e. t = 0), there are no incoming
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voltage waves from the lines labeled with i ranging from 1 to N (i.e. Vi+(t = 0) = 0

for i = 1, 2, ..., N). So, Eq. B.5 can be used to solve for VN(t = 0) using the ingoing

voltage through the driving line (i.e. V0+(t = 0)). Once the node voltage is known,

the voltage waves that are immediately outgoing from the node can be determined

using Eq. B.1 for all the lines. These voltages should be stored for each of the lines

i ranging from 1 to N ; because they are used to determine the voltage incoming

towards the node after time 2ti using Eq. B.4 for i = 1, 2, ..., N . Once the incoming

voltages (i.e. Vi+(t)) are determined, VN(t) can be solved for. This iteration can

be continued to calculate the voltage waves that leave the node towards the driving

line (i.e. V0−(t)) for all times.
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