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Non-destructive testing (NDT) methods are particularly valuable in the quality 

assurance (QA) process since they do not interfere with production of concrete and 

reduce testing time and cost. NDTs can provide early warnings in meeting strength 

requirements at early ages of concrete as well as long term strength. NDTs are also 

valuable in providing evaluation of health of in-service infrastructures such as bridge 

and pavement. 

 

The results of this study can be used for potential adoption of an NDT-based QA plan. 

Their adoption in QA will provide the opportunity to test a larger portion of concrete 

during assessment without a significant increase in QA cost and testing time. To 

achieve that purpose, the selected NDTs should be fast, accurate, reliable and simple 



 

 

to run. The NDT methods explored in this study included infrared thermography, 

ultrasonic pulse velocity (UPV), fundamental resonance frequency, rebound hammer, 

ground penetrating radar (GPR), and ultrasonic pulse echo (UPE).  

 

Different sets of NDTs were selected in each experimental study undertaken in this 

dissertation appropriate to the research objectives and goals in each case. For strength 

gain monitoring, (i.e., maturity modeling during early ages of hydration), the suggested 

NDTs need to provide an assessment of the mechanical properties of concrete. To 

assess the concrete quality during production and/or construction the selected NDTs 

should rapidly identify potential issues concerning uniformity and/or the presence of 

production and placement defects. For evaluating the condition of concrete bridge 

decks with asphalt overlays, GPR response was used to detect layer thickness and 

concrete quality and to evaluate reinforcement condition. For addressing the transition 

from lab to field results, machine learning modeling was used to predict the structure 

condition. Therefore, two artificial neural network (ANN) models were proposed and 

assessed in this study to predict the condition of bridge decks in Maryland and 

Massachusetts.  

 

Thus, the objectives of this research were to identify and assess alternative NDT 

methods that can be used in: i) monitoring and/or estimating strength gain (i.e., maturity 

modeling) in concrete; ii) evaluating concrete uniformity and production quality; iii) 

detecting and measuring the extent of delamination in concrete slab representing small 

scale field conditions; iv) evaluating GPR in assessing the condition of pavement 



 

 

layers, concrete quality and reinforcement in bridge decks; and v) employing machine 

learning modeling to predict the condition of bridge decks.  
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Chapter 1. Introduction  

1.1 Summary 

 

Quality assurance (QA) and quality control (QC) are key elements in highway 

construction in order to ensure that the target level of quality of materials and structures 

is achieved. Identifying lack of compliance in regard to (i) either the desired level of 

quality during construction early on, or (ii) at a later time when the structure is in 

service for premature deterioration and damage, may provide effective response and 

fast remedies, potentially limiting loss of life and/or litigation.  

 

The oldest and simplest method used by transportation agencies to detect flaws 

and damages in a concrete structure is the visual surveys. But visual observations 

(which are still used in practice by several DOTs for bridge decks, precast concrete and 

sound walls) are time consuming and subjective, and their accuracy depends on the 

investigator's expertise and training. This approach can only detect deteriorations that 

can be seen on the surface of a concrete member (e.g., bridge deck, bridge abutments, 

sound walls, concrete traffic barriers, and other precast concrete elements). Due to the 

aging of the U.S. infrastructure, identifying other methods that can provide quick, 

unbiased, and timely assessment in terms of condition and analysis is essential.  

 

Non-destructive techniques (NDTs) in QA involve non-invasive methods to 

evaluate the condition of materials and structural members. Non-destructive techniques 

are able to evaluate the cover depth, concrete properties, internal flaws, and 

reinforcement location and properties. Among the advantages of NDT over the 

destructive testing, in many cases, are shorter testing time, lower inspection costs and 

higher inspection rates versus destructive testing. Additional benefits include the 

availability of real-time results as production goes on, and reduction in bias that can 

occur in subjective visual inspections. 

 

Previous studies have explored to some extent specific NDTs in terms of 

accuracy and precision. However, in order to define NDT-based acceptance for QA/QC 

purposes, further assessment is often needed in order to identify quality acceptance 

thresholds for concrete properties.  Figure 1.1 presents the components of a QA 

program where NDTs may be adopted (i.e., highlighted sections). 

 

One of the objectives of this study was to investigate and assess how specific 

non-destructive testing methods (NDTs) can be incorporated in the QA process of 

concrete construction. Particularly, it aimed to test the NDTs’ ability to provide 

accuracy and repeatability in laboratory samples in small scale highway structures such 

as concrete slabs and bridge decks. The study plan considered a variety of different 
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experiments designed to assess the response of the selected NDTs. Multiple NDTs were 

employed to test concrete at different stages (i.e., during the hydration process for 

adoption in maturity modeling) and/or compare the response on flawed concrete 

elements as opposed to sound concrete. The results of different NDTs were compared 

for (i) evaluating the repeatability and performance of each method in identifying 

specific defects (such as cracking, delamination, honeycombing, segregation, voids), 

and (ii) assessing the possibility of integrating “blended” NDTs in QA. Specifically, 

the experimental studies focused on a) strength gain monitoring of concrete and 

maturity modeling; b) identifying segregation and honeycombing in concrete 

production; c) detecting delamination in small scale reinforced concrete members; and 

d) assessing pavement layer and reinforcement condition of bridge decks. In each of 

these experimental studies a combination of destructive and non-destructive tests was 

employed to assess the mechanical properties and/or response of NDTs to defective 

versus sound concrete. Furthermore, the development of “master curves” for strength 

gain (i.e., maturity modeling) was achieved by developing the transfer functions in 

relation to proportioning, composition and mixture properties. The NDTs included in 

this study included infrared thermography (IRT), ultrasonic pulse velocity (UPV), 

resonant frequency, rebound hammer, ground penetrating radar (GPR), and ultrasonic 

pulse echo (UPE). These NDTs were selected based on past studies assessment, and 

the ranking of these methods in a recent FHWA national study for developing NDT 

based QA plans (Goulias, 2017c). The criteria for their selection included accuracy and 

repeatability, level of operator training, ease of use, and cost. 

 

The second objective was to assess the conditions of bridge decks in the field 

and predict their performance condition. For the assessment aspect, Ground Penetration 

Radar (GPR) was used in an in-service bridge, for the prediction aspect the national 

bridge inventory (NBI) database of FHWA was used. By predicting the condition of 

bridge decks, frequency of timely inspections and optimized allocation of resources 

can be achieved to improve the maintenance and rehabilitation strategies of the 

highway network.  

Finally, for predicting the future condition of bridge decks, two different 

machine learning (ML) methods, long-short term memory (LSTM) and convolutional 

neural network (CNN) were employed to classify the sequences of bridge condition 

ratings. The objective was to develop sequential models by employing these methods 

to consider Maryland bridge deck condition data, identify the best predictive models 

and test their transferability with data from another state (i.e., Massachusetts). The 

accuracy of the developed models for predicting bridge deck conditions was high, 

ranging from more than 80% all the way to 97% depending on the model and the 

various hyperparameters used in each case.  The sequence-to-sequence convolutional 

neural network classification model outperformed the remaining ML models and the 

models developed in previous studies. The transferability of the ML models to other 

regions of similar bridge and climatic conditions was confirmed with the successful 

model response for the Massachusetts data providing high predictive accuracy and thus 

validating model response.  
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In the first part of each chapter, the literature review on these non-destructive 

methods is provided. It includes background and a summary of the importance of these 

NDTs in quality assurance based on previous studies findings and recommendations 

(Goulias, 2019). Then the design of the experiments for assessing such NDTs in 

concrete and concrete members are presented along with the results and modeling from 

the laboratory experimentation. The analysis based on the GPR field data on an existing 

bridge structure is included, followed by the machine learning modeling for predicting 

bridge deck conditions. Finally, the conclusions and recommendation for future studies 

are presented. 

 

 

 
 

 Figure 1.1. Components of a QA program for concrete products incorporating 

NDT (Goulias, 2019). 

1.2 Organization of the dissertation 

Chapter 1 includes the summary and key objectives of the research.  

 

Source Materials Approvals & 

Certifications; 
QC Procedures; 
Technicians’ Certifications; 

Laboratory Certifications; 
Production Procedures; 
Record Keeping Procedures. 

 

             Precast Production 
Pre-pour operation inspections  
Concrete pour operation, inspection & 

testing; 
Post-pour inspection & testing. 

 

 

SHA Manufacturer Plant 

Approval 

QC Plan Approval 

     
Plant Inspection & Certification 

NPCA and/or PCI; 
SHA 

Routine QA 

Inspection/Testing 

Product Delivery 

Product Inspection 
& 

 Acceptance Testing 

Product Acceptance 

Rejection/ Rework 



 

 

 

4 

Chapter 2 provides a brief introduction of the NDTs used in this study and 

describes the non-destructive evaluation during strength gain of concrete. This chapter 

includes the following sections: (1) detailed evaluation of strength gain for a specific 

mixture, (2) model development for predicting concrete properties based on multiple 

mixtures, and (3) development of the “master curve” modeling approach for concrete 

maturity. The primary results of this section were presented in 99th and 100th 

Transportation Research Board meeting (Saremi et al., 2020; Saremi & Goulias, 2021) 

and published in a major referred journal (Saremi and Goulias, 2020), while the 

remaining results of this chapter are submitted to refereed journals.   

Chapter 3 presents the experimental testing for assessing concrete production 

quality with NDTs. In this chapter, honeycombing and segregation, which are two 

common failings deficiencies during mixing and placing of concrete, are evaluated by 

NDTs such as UPV, resonant frequency, and rebound hammer. To assess the 

repeatability of the selected NDTs, statistics between data on defected concrete samples 

and sound samples are compared. This chapter was also presented in 101st 

Transportation Research Board meeting (Saremi et al., 2022a) and published in a major 

refereed journal (Saremi et al., 2022b) 

Chapter 4 presents the experimental results and analysis on a concrete slab with 

internal defects (delamination) to evaluate NDT response, such as ultrasonic pulse 

echo, ground penetrating radar (GPR) and rebound hammer, in terms of accuracy in 

identifying the location and dimensions of defects. Simulation with finite element 

method was also carried out to simulate UPE wave propagation in a defected concrete 

slab. 

Chapter 5 provides the results and analysis from a real case study of an existing 

in-service bridge deck with GPR. In this research asphalt overlay thickness, concrete 

cover depth and reinforcement condition were assessed. This chapter is also published 

in a major refereed journal (Goulias et al., 2020).  

Chapter 6 presents the machine learning models to predict the performance of 

bridge decks based on the national bridge inventory (NBI) database which includes 

data collected during the past three decades through the long-term bridge performance 

(LTBP) program. The ML modeling is submitted to a major referred journal as well. 

Chapter 7 summarizes the finding and conclusions of the study and provides 

recommendations for future research. 
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Chapter 2. Monitoring the Strength Gain of Concrete by 

Means of NDT for Potential Adoption in Quality 

Assurance (QA) 

2.1. Introduction  

Estimating the compressive strength of concrete at each stage of construction is 

one of the most critical aspects in providing safety and revenue. Failure in determining 

the suitable time for removing formwork and applying load on concrete structures leads 

to catastrophic failures and in some cases loss of life. Collapse of the Skyline Plaza in 

Fairfax County, Virginia, due to premature shoring removal, or the Willow Island 

cooling tower collapse in West Virginia due to premature loading and inadequately 

cured concrete are only some examples of unsuccessful estimation of concrete strength 

gain (Carper, 1987).  

Chemical interaction among concrete ingredients (i.e., cement hydration) is 

causing strength gain. The hydration of the cement in the presence of water, and thus 

strength gain, has been modeled through the maturity concept as a function of 

temperature and time. The interaction between cement and water, as well as other 

ingredients in concrete, such as admixtures, is governed through chemistry kinetics and 

represents an exothermic reaction. Thus, during the early ages of concrete hydration 

strength gain can be monitored through concrete temperature. For typical concrete 

mixtures about 85% of the hydration process is complete within the first 28 days (Uddin 

et al., 2013). Measuring the temperature of concrete during the curing process is 

typically achieved using embedded wired or wireless thermal sensors (Azenha et al., 

2011; Upadhyaya et al., 2014). Hansen and Surlaker (2006) also used Radio Frequency 

Identification maturity tags (RFID) in monitoring concrete maturity, while Ghods et al. 

(2017) developed an application for smartphones.  

Although maturity has been successful in monitoring the concrete hydration 

process, it does not always guarantee successful results. For example, in situations 

where concrete mixtures are not well mixed or properly placed, honeycombing, 

segregation, or excessive bleeding may occur (Graveen et al., 2003). While the cement 

and water interaction may proceed, such effects may produce variable strength within 

the concrete structure that might not be detectable from the maturity monitoring. 

Therefore, for QA/QC purposes, monitoring the strength gain by another method is 

necessary. Even though destructive tests such as compressive tests of cylinders (ASTM 

C39) can be used, NDT methods provide the benefits of (i) sampling a large portion of 

concrete within the structure capturing thus in-place strength variability, and/or, (ii) 

assessing the quality of a higher number of samples (i.e., testing frequency), which is 

particularly important in the production of manufactured concrete such as precast and 

pre-stressed members (Goulias, 2017c).   
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Following the recommendations of a FHWA study, the need to develop an NDT 

based QA process for highway materials was identified (Goulias, 2017c). Therefore, it 

was the objective of this study to identify and assess alternative NDT methods that can 

be used in monitoring and/or estimating strength gain in concrete, and thus could be 

adopted in an NDT based QA process. For these NDTs to be used in QA/QC and/or in 

acceptance testing specifications, they should be fast, accurate, reliable, and simple to 

run for both owners and concrete producers. The alternative NDTs explored in this 

study included: infrared thermography (IRT); ultrasonic pulse velocity (UPV); and 

fundamental resonance frequency. The use of infrared thermography (IRT) for 

monitoring surface temperature of concrete for structures such as pavements, buildings 

and tunnels has been explored in past studies (Solla et al., 2014). Its use in monitoring 

the hydration process and strength gain has been studied to a limited degree (Azenha 

et al. 2011). For mass concrete structural elements, a significant temperature gradient 

is expected from the interior to the surface of concrete, while for thin concrete members 

such a difference is negligible (Upadhyaya et al., 2014). Some studied the use of 

ultrasonic pulse velocity (UPV) to assess the ability of maturity to properly predict in-

place strength (Graveen et al. 2003; Krauß et al., 2006; Gebretsadik, 2013). In early 

concrete ages the wave propagation velocity is dependent on the concrete density and 

thus strength. Therefore, UPV can be employed to validate the maturity strength 

predictions.  

In addition to wave propagation velocity, the fundamental resonance frequency 

of concrete can be used to calculate the dynamic modulus of elasticity and related to 

compressive strength. Such approach is more appropriate for lab and field samples 

casted and cured on site next to the concrete structure. Past studies explored the ability 

of resonance frequency testing as well to measure the dynamic modulus of concrete 

during the early curing time (Jin and Li, 2001; Azenha et al., 2010). A summary of the 

principles behind each NDT method is presented in Chapter 1, while a more detailed 

description is available in standard NDT handbooks (Malhotra et al., 2003) and 

pertinent ASTM standards.    

The initial assessment whether NDTs can be successfully used in maturity 

modeling was investigated using a typical concrete mix used in infrastructure projects 

in the northeast region of US. The results are presented in the following section and 

published (Saremi and Goulias, 2020). Follow-up experimentation on additional 

mixtures validated such findings and the analysis, and the results are presented as well 

herein.  

2.2. Background & Literature Review on NDTs 

A summary of the principles and operation of each NDT used in these 

experiments is provided in the following subsections.  

2.1.1  Infrared Thermography (IRT) 

Any material that has a temperature above absolute zero (-273°C or 0°K) emits 

IR radiation (Solla et al., 2014, Omar et al., 2017). The emitted infrared radiation from 
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most materials is within the wavelength spectrum of 2 to 15 microns (µm). The 

intensity of radiation is correlated with the material’s absolute temperature. Therefore, 

the temperature can be indirectly determined by measuring the emitted IR radiation 

(Clemena et al., 1978). 

Infrared thermography is a thermal imaging method that includes a camera to 

capture the emission from the material, converts the energy into an electric signal, and 

produces an image that provides the distribution of temperature on the surface of the 

material. The emitted radiation per unit area is calculated through the Stefan–

Boltzmann equation (Ede, 1967): 

4E T=                                                                                                (2-1) 

where E is the energy flux (𝑊𝑚−2), 𝜎 is Stefan-Boltzmann constant (5.67 ×
10−8   𝑊𝑚−2𝐾−4), 𝜀 is the emissivity (defined as the ratio between the thermal energy 

radiated from the material and a black body), and T is the surface temperature (K). In 

civil engineering, IRT has been used for finding source of energy loss in heating, 

ventilation, and air conditioning (HVAC) systems, finding the location of plumbing 

clogs, or providing quality control and detecting the structural defects such as 

delamination (Maierhofer et al., 2006), overlay debonding (Tsubokawa et al., 2007), 

voids in concrete structures and tunnels, voids in shallow tendon ducts (Maierhofer et 

al., 2006), near surface cracks in asphalt and concrete pavements (Solla et al., 2014), 

and detection of segregation/honeycombing in concrete. The objective is finding the 

areas with temperature differential due to external temperature effects (i.e., air 

temperature and heat transfer at the interface of materials). However, when IRT is used 

to determine the temperature of concrete during curing, the source of the heat is the 

hydration itself.  Since the reaction of cement with water is exothermic, the inner 

temperature of concrete continuously changes, even with constant curing temperature 

in the lab. Using IRT in determining the temperature of concrete during hydration can 

be a faster approach relative to other methods since (1) every pixel is equivalent to a 

temperature sensor; (2) no direct contact is needed; and (3) a large area can be examined 

in real-time. The IRT camera used in this study, Figure 2.1, has a resolution of 80×60 

equivalent to 4800 measuring sensors and an accuracy of about ±2℃ (±3.6℉). 
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Figure 2.1 Infrared thermography camera measuring the temperature of a 

concrete sample. 

2.1.2. Ultrasonic Pulse Velocity (UPV) 

In ultrasonic wave propagation method, three types of mechanical waves are 

generated:  compression waves (also known as longitudinal or P-waves); shear waves 

(transverse or S-waves); and surface waves (Rayleigh waves). The propagation of 

compression waves is similar to the propagation of sound waves in air. Compression 

waves have the highest propagation velocity while surface waves have the lowest 

(Malhotra and Carino, 2003). The ultrasonic pulse velocity (UPV) transducers emit all 

these waves at the same time. An UPV is illustrated in Figure 2.2. The UPV transducers 

are placed in the following configurations on the concrete samples: direct mode, when 

the transducers are placed at the opposite sides of the sample; semi-direct, when the 

transducers are placed at surfaces with a right angle; and indirect, when both 

transducers are on the same surface of the sample. In a structure, depending on the 

feature of interest and accessibility, one can choose the desired configuration of testing.   
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For sound concrete and direct method of testing (i.e., compression waves) the 

speed of propagation is provided by Equation 2-2: 

𝑉𝑝 =
𝐿

∆𝑡
                                                                                                         (2-2) 

where Vp is the propagation velocity in concrete, L is the shortest distance between 

transducers (in case of direct mode, L is equal to the length of the concrete sample), ∆t 
is the travel time of the wave. The pulse velocity of compression waves in concrete is 

correlated to concrete’s elastic properties and density. Equation 2-3 demonstrate the 

relationship among concrete properties and compression wave velocity (ASTM C597).  

Equation 2-3 can be rewritten to calculate dynamic modulus, 𝐸𝑑, from pulse velocity 

and concrete properties.  

𝑉𝑝 = √
𝐸(1−𝜈)

𝑝(1+𝜈)(1−2𝜈)
 or  𝐸𝑑 =

(1+𝜈)(1−2𝜈)

(1−𝜈)
𝜌𝑉𝑝

2                                           (2-3) 

where 𝐸𝑑 is dynamic modulus, 𝜈 is dynamic Poisson’s ratio, 𝜌 is density, Kg/m3, and 

Vp is ultrasonic pulse velocity, m/s. 

The wave velocity in concrete is a function of its elastic properties (dynamic 

modulus and Poisson's ratio) and density, and typically ranges between 3700 to 4200 

m/s (Malhotra and Carino, 2003). Concrete properties such as aggregate size and 

gradation, cement and water-cement ratio, admixtures, uniformity, and age of concrete 

can affect the pulse velocity. In addition, transducer contact, temperature of concrete, 

moisture and curing condition, and the presence of reinforcement will affect pulse 

velocity as well. Several researchers have attempted to develop models relating 

concrete strength to ultrasonic pulse velocity (Turgut, 2004; Tanyidizi et al., 2008; 

Uysal et al., 2011; Santhanam et al., 2012; Rao, 2016), providing good relationships.  

2.1.3. Resonant Frequency 

In fundamental resonance frequency testing the concrete sample is impacted 

with a small hammer and the response frequency is monitored with an accelerometer. 

A frequency analyzer is used to monitor the wave propagation in the frequency domain. 

A resonance frequency testing gauge is shown in Figure 2.3. When the sample is not 

constrained and free to vibrate, the resonance frequency is detected and related to the 

dynamic modulus of elasticity and density of the concrete. Different locations of the 

impactor (hammer) and accelerometers are used to determine concrete properties (i.e., 

dynamic modulus). In a longitudinal mode, the hammer strikes the sample at the 

opposite side of the sample (Figure 2.4). The longitudinal dynamic modulus can be 

calculated from Equation 2-4 (ASTM C215). 

 
2( ')E DM n=                                                                                               (2-4) 

where E is the dynamic modulus, Pa, 𝑛′ is the fundamental longitudinal frequency, in 

Hz, and D is 5.093 (
𝐿

𝑑2
), in 𝑚−1, for a cylinder, or 4 (

𝐿

𝑏𝑡
), in 𝑚−1, for a prism. In 
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transverse mode of testing, the hammer strikes the sample at the middle of it (Figure 

2.4). The dynamic modulus of elasticity from transverse frequency can be calculated 

from Equation 2-5. 

𝐸𝑑 = 𝐶𝑀𝑛
2                                                                                     (2-5) 

where, 𝐸𝑑 is dynamic modulus of elasticity (MPa), C = 0.9464(L3T/bt3), M is the mass 

of the beam (Kg), and n is the fundamental transverse frequency (Hz). The term, C, is 

dependent on the length, L, of the specimen, the width, b, the height, t, and a correction 

factor, T. T depends on the radius of gyration, K, length of the specimen, L, and the 

Poisson’s ratio, 𝜈. The dynamic modulus of elasticity typically varies from 14 GPa for 

low quality concrete at early ages to 48 GPa for sound and fully cured concrete 

(Malhotra and Carino, 2003). 

Historically, the resonance frequency method was used to assess durability 

effects and concrete deterioration. However, this method can be used to monitor 

changes in dynamic modulus with increasing age of concrete (i.e., hardening and thus 

strength). Factors such as age, moisture content and curing conditions will affect the 

dynamic modulus (Malhotra and Carino, 2003). Kesler and Higuchi (1953) concluded 

that in a similar curing condition the dynamic modulus of elasticity increases with 

increasing strength. The resonant frequency testing devices used in this study were 

resonant test gauge (RTG) or Emodumeter (E-meter). 

 

 

Figure 2.2. Ultrasonic pulse velocity (UPV) testing setup 
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Figure 2.3. Resonant frequency test gauge used to measure laboratory-made 

samples 

 

 

 

 
Figure 2.4. Transverse and longitudinal mode configuration in resonant 

frequency testing (ASTM C215) 

 

2.1.4. Rebound Hammer 

The rebound hammer test is used to evaluate the uniformity of concrete across 

a concrete member or to estimate the in-place strength of concrete. For a given concrete 

mixture, the rebound number is a function of factors such as concrete stiffness, moisture 

content at the surface, quality of surface finishing, and other parameters (ASTM C805). 

The rebound hammer consists of a spring-loaded steel hammer that, when released, 
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impacts a metal plunger in contact with the concrete surface. The spring-loaded 

hammer must travel with a consistent and reproducible speed. The rebound number 

depends on the rebound distance of the hammer after it strikes the plunger, or it is based 

on the ratio of the hammer speed before and after impact.  

Various studies examined the effects of testing conditions on the results 

(Demirdag et al., 2009; Mahmoudipour, 2009). Mahmoudipour (2009) indicated that 

the rebound hammer test results on cylinders can be combined with UPV testing to 

successfully estimate compressive strength of concrete.  Amini et al. (2019) combined 

results of UPV and rebound hammer to successfully estimate concrete strength 

properties (i.e., R2= 0.94) for various mixtures. The rebound hammer used in this study 

was the Silver Schmidt Hammer (Figure 2.5) with impact energy of 0.735 Nm, suitable 

for concrete with compressive strength between 5 to 30 MPa (Proceq, 2017).  

 
 

Figure 2.5. Schmidt rebound hammer 

2.3 Initial Assessment of Concrete Strength Gain Monitoring with NDTs 

2.3.1 Experimental Testing 

For assessing hydration and strength gain of concrete during early ages (i.e., 

within 28 days), a combination of destructive and non-destructive tests was conducted 

on 100 x 200 mm (4×8 in) concrete cylinders. The properties of the initial concrete 

mixture are presented in Table 2-1. The selected concrete represents a typical mixture 

used in building construction and highway applications in Maryland and the 

surrounding regions. The cylinders were cured in standard lab conditions (temperature 

and moisture) for 28 days. Table 2-2 shows the testing plan. The time-temperature 

history of concrete during curing was recorded every half an hour with two iButton 

sensors embedded into cylinders. All cylinders were kept in a water bath during the 28 

days of curing. The iButton sensors and their locations are illustrated in Figure 2.6. 

After 28 days, the iButtons were removed and placed in a data reader and the data were 

retrieved. The recorded temperatures from the iButton sensors were identical in almost 

all cases, while any differences observed were not more than half of a degree Celsius. 

Thus, in the analyses the average values were used.  

Table 2-1. Concrete proportioning and properties. 
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Cement 

Type 

Water 

Cement 

Ratio 

Admixtures1 
Unit Weight 

(𝑘𝑔/𝑚3) 

28 days 

Compressive 

Strength 

(MPa) 

Air 

Content 

Slump  

(mm) 

AEA2 HRWR3 μ4 CV μ CV μ CV μ CV 

Portlan

d 

cement, 

type II 

0.44 0.8 % 0.5% 2415 3% 31 3.5% 
3.5

% 

7.9

% 
13 

24

% 

1 Percentage relative to water 
2 Air entrainer 
3 High-range water reducer 
4 Mean 
 

Table 2-2. Testing plan & replicates/repetition of each test. 

 Age (days) 

Tests 1 2 3 7 14 28 

Compression  3 3 3 3 3 3 

Infrared 

Thermography 
10 16 10 3 3 3 

Resonance 

Test Gauge 
5 5 5 5 5 5 

E-meter 5 5 5 5 5 5 

Ultrasonic 

Pulse Velocity 
10 10 10 10 10 10 

 

 

2.3.2 Results 

The recorded temperature from the iButtons during the curing period is shown 

in Figure 2.7. In this figure the sudden drop in temperature after about 24 hours 

corresponds to unmolding and transferring the dried samples to the water for curing. 

The average of absolute slope of the temperature change is shown in Table 2-3. As 

expected, the temperature variation during the first 24 hours is higher, and thus the 

monitoring frequency of temperature during the initial period should be higher. 

As concrete matures, compressive strength increases. One of the methods to 

estimate the in-place strength of concrete is calculating the maturity index (MI). The 

most common method of calculating the maturity index in construction and commercial 

maturity meters is the temperature-time product, described in Equation 2-6. This is also 

known as the Nurse-Saul maturity function (ASTM C1074, 2017; Upadhyaya et al., 

2014).  

  
( ) ( )a oM t T T t= −                                                                                    (2-6) 

where: 
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M(t) = the temperature-time factor at age t, degree-days or degree-hours 

∆t = time interval, days or hours 

𝑇𝑎 = average concrete temperature during time interval ∆t, °C, and, 

𝑇𝑜  = datum temperature, °C, temperature below which the chemical reaction ceases. 

 

Table 2-3. Slope of temperature change during curing period intervals 

Age 1 day 2 days 3 days 7 days 14 days 28 days 

Average of temperature 

slope (℃/ℎ𝑟) 
0.6 0.1 0.1 0.1 0.1 0.1 

 

 

 

 

 

 

(a) (b) 

 

Figure 2.6. (a) iButtons for temperature monitoring, (b) location within the 

cylinder 

In measuring concrete temperature and calculating the temperature-time factor, 

time intervals of half an hour were considered for the first seven days. After that, 

intervals of one hour were used since a lower change in temperature is observed. During 

the 28 days, 100×200 mm (4×8 in) cylinders were tested in compression according to 

ASTM C39 and the testing schedule of Table 2-2. The strength-maturity relationship 

was developed based on the average compressive strength of three cylinders and the 

temperature-time factor of the cylinders with the iButtons. The results are shown in 

Figure 2.8. As expected, the compressive strength increased with curing age. 

To assess whether infrared thermography can provide strength predictions 

through the maturity approach, the relationship between the temperature-time factors 

calculated from the iButtons data and that from the infrared thermography was 

examined. To this aim, the temperature-time product was calculated from temperatures 

50 mm 
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recorded with an infrared camera and using the Nurse-Saul maturity function. Figure 

2.9 shows the infrared image of a cylinder after the mold removal. The temperature of 

the cylinder is relatively uniform through the cylinder surface, and equal to 20.2℃ as 

shown in the infrared camera “target” circle location. When comparing the temperature 

data recorded from the embedded iButtons and the infrared thermography, it should be 

noticed that the iButtons measure the internal concrete temperature, while the infrared 

camera measures the surface concrete temperature. However, since these are small 

samples (cylinders) and at controlled curing conditions (room temperature and water 

bath) no significant temperature gradient is expected from the surface to the inner 

portion of the samples (as opposed to large mass concrete samples exposed to field 

conditions). The IRT and iButton measurements were cross checked at 40 points and 

the results showed the differences between two temperatures can be as small as 0.2oC 

or as large as 2.8oC. The maturity indices calculated from both temperature sensing 

methods are shown in Figure 2.9. As can be observed the two approaches provided 

identical results (i.e., no difference on MI calculated from the two sensing methods) at 

early ages of 1 to 7 days, which is the primary reason for using maturity for predicting 

early strength. Comparing the temp-time factor at 6 ages shows the temp-time factor 

calculated from iButton can be 8% larger than that calculated from IRT. Therefore, 

even though internal temperature is more desirable for evaluating the hydration of 

concrete, especially in mass concrete structural elements, for thin concrete members 

using an infrared camera to record the temperature-time history is possible and 

beneficial due to the speed of data collection and its non-destructive characteristics. 

 

 

 

 

 
(a) 
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(b) 

 Figure 2.7. Temperature - time history of concrete during (a) 28 days curing 

period, and (b) first 24 hours. 

 
Figure 2.8. Compressive strength versus temperature-time factor during 28 days 

of curing 
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                  (a)                                                          (b)  

Figure 2.9. a) Temperature through IRT, b) Maturity Index calculated from 

iButtons and IRT data. 

Thus, the use of IRT during production is particularly valuable in QA/QC since 

concrete strength development is based on lab and field cured cylinders (i.e., small 

samples with minimal temperature gradient between the surface and interior 

temperature). Furthermore, in mass concrete structural elements the interior concrete 

temperature will be higher than the surface temperature, and thus maturity prediction 

using IRT will be on the conservative side (i.e., lower MI and strength prediction values 

than the actual field values in the structure).  

As indicated in past studies, it is highly recommended in the QA/QC process to 

couple and verify concrete strength predictions from the maturity approach with non-

destructive testing (Goulias, 2019). Similarly, ASTM C1074 indicates that the 

temperature monitoring and maturity index modeling should be accompanied by at 

least one other test for estimating the in-place strength of concrete. Therefore, the UPV 

and resonance frequency methods were employed in this study to monitor the strength 

gain of concrete.   

Table 2-4 shows the compressive strength results versus ultrasonic pulse 

velocity, while Figure 2.10 presents the relationship of UPV with the temperature-time 

product. Once the Maturity Index (i.e., relationship of temperature-time product and 

concrete strength) has been established from laboratory samples for a specific concrete 

mixture, UPV can be used for assessing and correlating the results to compressive 

strength without: (i) having to install and monitor temperature sensors during concrete 

production; and, (ii) test companion samples for compressive strength representing the 

field conditions for verification purposes.  

 

 

Table 2-4. Average of UPV and compressive strength of cylinders 
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Age 

Average of 

Compressive 

Strength (MPa) 

UPV 

 

Minimum 

(m/s) 

Maximum 

(m/s) 
Average 

(m/s) 

Standard 

Deviation 

(m/s) 

Coefficient 

of 

Variation% 

1 15.44 3785.8 4130.0 4005.9 126.20 3.15 

2 20.42 4151.2 4291.0 4211.6 41.76 0.99 

3 22.94 4261.8 4343.4 4306.9 28.06 0.65 

7 26.07 4193.9 4458.8 4364.4 87.04 1.99 

14 30.78 4406.4 4553.9 4476.7 56.91 1.27 

28 30.82 4540.0 4632.9 4589.2 30.71 0.67 

 

 

 
Figure 2.10. Relationship between UPV and temperature-time product. 

The hardening process of concrete is also reflected in the dynamic modulus 

determined from the resonance frequency testing. Similar to compressive strength, 

dynamic modulus obtained from this NDT method is also expected to increase during 

the hardening and strength gain process. For comparative purposes two different testing 

units were used in this study: the Resonance Test Gauge (RTG) and the Emodumeter 

(E-Meter). The resonance frequency tests were performed according to ASTM C215 

and the results are shown in Table 2-5. The average dynamic moduli from each device 

were related to both compressive strength and the temperature-time product, shown in 

Figures 2.11 and 2.12, respectively. As expected, an increase in dynamic modulus with 

hardening of concrete was observed. Even though the dynamic moduli from the two 

devices are very close at early ages (i.e., day 2 and 3), after 7 days of curing the E-

meter provides systematically higher dynamic moduli values, Table 2-5. 

As in the case of UPV, once the relationship between temperature-time factor 

(MI) and concrete strength has been established from laboratory samples, dynamic 

modulus testing can be used for assessing in-place field conditions. Therefore, the 

results can be correlated to compressive strength without (i) having to install and 

monitor temperature sensors in concrete, and (ii) test companion samples for 

y = 170.33ln(x) + 3503.4
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compressive strength representing the field conditions. The results show that the use of 

UPV and resonant frequency method provide: (i) the ability to test a larger portion of 

cast-in-place concrete without significant increase in QA/QC cost and testing time; and 

(ii) real time monitoring of construction quality (in this case strength). 

Table 2-5. Dynamic moduli during the curing period from NDT devices 

Age 

Dynamic Moduli from E-Meter Dynamic Moduli from RTG 

Min 

(GPa) 

Max 

(GPa) 

Average 

(GPa) 

Coefficient 

of 

Variation 

% 

Min 

(GPa) 

Max 

(GPa) 
Average  

Coefficient 

of 

Variation 

% 

1 30.39 30.66 30.47 0.39 29.94 29.94 29.94 0.00 

2 31.97 32.10 32.07 0.19 31.64 31.64 31.64 0.00 

3 33.32 33.60 33.49 0.35 33.13 33.13 33.13 0.00 

7 35.86 36.30 36.03 0.44 35.51 35.85 35.64 0.52 

14 37.60 37.76 37.67 0.22 37.11 37.45 37.18 0.41 

28 38.67 38.97 38.76 0.35 37.64 37.98 37.91 0.40 

Note: number of repetitions (n) =5 

 

 
Figure 2.11. Compressive strength versus average dynamic modulus. 
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Figure 2.12. Dynamic modulus versus temperature-time product. 

 

2.4 Validation of Concrete Strength Gain Monitoring with Additional Concrete 

Mixtures 

2.4.1. Experimental Testing and Results 

In order to validate the proposed approach of relating maturity to alternative 

NDTs for strength predictions in QA, different mixtures were prepared. Some mixtures 

included in the experimental testing representing typical concrete used in the 

construction of infrastructure projects in the region (Mix 1 to 8), others could deviate 

from a typical mix (Mix 9 to11). The typical mixtures must meet proportioning and 

acceptance requirements similar to the typical MD7 (Maryland designation 7). The 

deviation from MD7 was intentionally in order to observe the effect of different 

parameters on NDT response. Thus, such alternative mixtures, Table 2-6, were 

generated by fine tuning adjustments in proportioning of typical MD7 (MDSHA). 

These mixtures could as well represent potential mixture proportioning variability 

during production in regard to water to cement ratio, ranging from 0.43 to 0.50.  The 

concrete ingredients include coarse aggregate (#57), fine aggregate, cement, water, and 

admixtures, such as air entraining admixture (AEA) and high-range water reducer 

(HRWR). Air entraining admixtures provide resistance to freeze-thaw, while 

decreasing strength. High-range water reducers provide concrete strength at lower 

water content with acceptable workability (Arras et al., 2019).  

Cylinders of 100×200 mm were prepared from each mixture and tested with 

UPV, RTG and for compressive strength at different hardening ages. The same process 

explained in the last section for hardening and temperature monitoring was followed 
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during curing of these 11 mixtures. The samples were tested with UPV and RTG, and 

monitored with IRT, on 1, 3, 7, 14, and 28 days after production. Some of these 

mixtures were also tested by a rebound hammer. Since maturity index, MI, is mixture 

specific, the results for each mixture are presented separately in Table 2-7. Table 2-7 

includes the best fit equations (in logarithmic form of 𝑦 = 𝑎 𝑙𝑛(𝑥) + 𝑏) and their R2s 

among ultrasonic pulse velocity, dynamic modulus, or compressive strength and 

maturity index (temperature-time factor). Since calculating the dynamic modulus form 

UPV needs information on Poisson’s ratio, the dynamic modulus was obtained from 

RTG, and UPV data was used independently. The pulse velocity itself is a significant 

characteristic that can hold useful information about concrete independent from its 

shape or dimension (Philleo ,1955). 

For all three mixtures a very good relationship between UPV and the 

temperature-time factor or dynamic modulus and temperature-time factor is observed 

with an R2 ranging between 0.86 to 0.99. Since these mixtures were specifically 

designed to present small variations in proportioning, such relationships are similar in 

form and shape. This implies that potentially a “master curve” concept may be defined 

and used for UPV and/or dynamic modulus versus MI representing a family of similar 

concrete mixtures. A shift factor of the individual concrete mixture’s UPV and/or 

dynamic modulus versus MI relationships may be then developed in function of 

mixture specific concrete ingredients and proportioning.   

 

Table 2-6.  Concrete mix proportion and properties 

Mixtures WAEA/Wcement 
WHRWR/ 

Wcement 

Fresh 

Unit 

Weight 

(kg/m3) 

w/c 
Air 

content 

Slump 

(mm) 

Average of 

28-day 

Compressive 

Strength 

(MPa) 

Mix 1 0.16% 0.11% 2352 0.44 4.0% 25 38 

Mix 2 0.40% 0.24% 2418 0.44 3.6% 15 31 

Mix 3 0.40% 0.24% 2274 0.45 6.5% 98 31 

Mix 4 0.40% 0.24% 2336 0.43 4.6% 111 31 

Mix 5 0.40% 0.24% 2287 0.45 5.4% 76 25 

Mix 6 0.40% 0.24% 2271 0.45 6.0% 146 22 

Mix 7 0.40% 0.24% 2278 0.45 5.8% 105 23 

Mix 8 0.40% 0.24% 2271 0.45 6.1% 76 25 

Mix 9 0.40% 0.24% 2253 0.48 6.2% 130 19 

Mix 10 0.40% 0.32% 2258 0.48 5.4% 175 25 

Mix 11 0.40% 0.40% 2232 0.50 5.6% 226 26 

 

 

 

 

 

Table 2-7. Mix-specific relationships between UPV or dynamic modulus and 

Temp-Time factor. 
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Mix 

No. 

UPV vs. Temp-Time 

(y = a Ln (x) + b) 
DM (RTG) vs. Temp-Time 

(y = a’ Ln (x) + b’) 

Compressive Strength vs. Temp-

Time 
(y = a” Ln (x) + b”) 

a b R2 a' b' R2 a" b" R2 

1 68.25 4003.10 0.99 4.46 14.89 0.95 6.91 -4.34 0.97 

2 170.33 3503.42 0.95 2.69 21.27 0.97 5.04 0.07 0.95 

3 166.08 3405.43 0.86 2.91 16.5 0.97 NA* NA* NA* 

4 230.33 3242.31 0.96 3.36 17.39 0.96 NA* NA* NA* 

5 228.10 3070.10 0.92 2.12 19.30 0.97 3.99 -0.29 0.98 

6 210.71 3174.50 0.96 1.92 19.70 0.96 3.14 1.80 0.99 

7 230.63 3165.97 0.97 2.18 20.01 0.95 1.76 3.51 0.92 

8 274.6 2876.5 0.92 2.73 15.93 0.97 3.69 2.53 0.90 

9 197.24 3140.23 0.94 2.17 15.04 0.95 3.01 -0.17 0.98 

10 240.38 3153.38 0.99 2.51 17.67 0.99 3.21 4.60 0.99 

11 255.64 3138.14 0.95 2.64 16.79 0.96 1.42 17.61 0.99 

* Not enough data points. 

 

2.4.2 Developing Master Curves for UPV and Dynamic Modulus 

The following steps were taken in order to develop the master curve for UPV 

and/or dynamic modulus: 

1.  The coefficient of Ln(x), “a” and/or “a`”, is set to constant value, i.e., a = average of 

coefficient “a” and/or “a`” of all equations. Then, new coefficients “b” and/or “b`” for 

each mix are calculated and corresponding R2s are shown in Table 2-8. After this step, 

all the mixes will have the same shape (Figure 2.13). 

2. One mixture is selected as the reference mix. As can be seen in Figure 2.13, Mix 5 is 

representing a typical MD 7 mix with test results very close to the center of the all-

mixes’ results. Therefore, Mix 5 is selected as the reference mix. 

3. The vertical shift factors, which are the difference between the intercepts of governing 

equations of any mix and reference mix (Mix 5), are calculated. Examples are shown 

in Figure 2.13. The resulting master curves from shifting the results (dynamic modulus 

and/or UPV) are shown in Figure 2.14. 

4. The characteristics of the mix most related to the shift factor are found by Pearson’s 

correlation analysis. Table 2-9 includes the shift factors of each mix next to their curing 

and hardening properties. The Pearson’s correlation coefficients are summarized in 

Table 2-10. The parameters with higher absolute value of Pearson’s correlation 

coefficient are selected to be the predictors of shift factors. To find the relationships, 

linear regression method is employed (Equation 2-7).  

𝑦 = 𝛽0 + 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑋3𝛽3 + 𝜀           (2-7) 

where y is response variable, x is independent variable (predictor), 𝛽 is unknown 

variable, and 𝜀 is residuals. In a linear model, the parameters enter linearly, however, 
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the predictors themselves do not have to be linear. Here, the objective is finding 𝛽 (i.e., 

𝛽0, 𝛽1, 𝛽2, and 𝛽3) to minimize the residual error (𝜀), further details can be found in 

Faraway (2004). Primary bivariate analysis on shift factors and each of these selected 

variables are showing that the best relationships among most of them has a polynomial 

format. To describe the shift factors, polynomial relationships (second degree) for each 

shift factor (UPV or dynamic modulus) are found (Table 2-11 and Table 2-12). In 

selecting the best models, R-squared, P-value, residual standard error, and simplicity 

of the model are considered (i.e., highest R-squared and P-value less than 0.05). 

Residual standard error (RSE), also known as the model sigma, is a variant of the 

RMSE (root mean squared error) attuned for the number of predictors in the model. 

The lower the RSE, the better the model. In practice, the difference between RMSE 

and RSE is very minor, especially for large multivariate data. These models are 

highlighted in table 2-11 and 2-12 and described as following: 

𝛿𝑈𝑃𝑉 = 357.91(𝐶𝑆)2 + 229.99𝐶𝑆 − 14.4𝐴2 + 176.97𝐴 − 54.71𝑇2 + 154.53𝑇 −
59.81                                           

                                                                                                                           (2-8) 

𝛿𝐷𝑀 = 4.6(𝐶𝑆)
2 + 0.28𝐶𝑆 + 0.51(𝑈𝑊)2 − 4.51𝑈𝑊 − 1.45𝑊𝐶2 + 0.48𝑊𝐶 −

0.55                                                                                   

                                                                                                                           (2-4) 

where 𝛿𝐷𝑀 and 𝛿𝑈𝑃𝑉 are the shift factors of dynamic modulus and UPV, respectively, 

CS is compressive strength, MPa, UW is unit weight (Kg/m3), A is air content, T is 

average temperature (oC) of curing period, and WC is water-cement ratio.  

In Figure 2.15, the predicted shift factors of UPV and dynamic modulus are 

compared with the actual values. Since the number of data is limited in relation to the 

number of variables, deviation from the line of equality (y=x) is expected. 

 

 

 

 

 

 

 

 

 

Table 2-8. Modified equations of best fit for each mix. 

Mix No. UPV vs. Temp-Time DM (RTG) vs. Temp-Time 



 

 

 

24 

(y = a* Ln (x) + b) (y = a`** Ln (x) + b`) 

b R2 b R2 

1 2915.7 0.82 16.86 0.95 

2 3243.0 0.95 22.17 0.97 

3 3131.8 0.91 18.42 0.96 

4 3299.8 0.96 21.44 0.95 

5 3089.6 0.92 17.38 0.97 

6 3107.0 0.96 16.82 0.96 

7 3197.9 0.97 18.42 0.95 

8 3128.1 0.92 17.09 0.97 

9 3009.0 0.94 13.45 0.95 

10 3233.5 0.99 17.73 0.99 

11 3288.1 0.95 17.44 0.96 

*a = 224.26, **a` = 2.5 

 
(a) 

 
(b) 

Figure 2.13. Relationship between a) UPV, and b) dynamic modulus and Temp-

Time factor with the constant “a”. 

 

  

  

 

Shift factor of Mix 4  

Shift factor of Mix 1  

 

  

  

 

Shift factor of Mix 4  

Shift factor of Mix 9  
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(a) 

 

(b) 

Figure 2.14. Master curves for a) UPV, b) dynamic modulus. 
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Table 2-9. Shift factors and curing and hardening properties of each mixture. 

Mix 

Shift 

Factor 

(DM) 

Shift 

Factor 

(UPV) 

Initial 

Temper

ature 

Slump 

Average 

Temper

ature 

Air 

Content 

Unit 

Weight 

W-C 

Ratio 

Compre

ssive 

Strength 

1 0.52 173.9 25.3 25 20.5 0.04 2352 0.44 38 

2 -4.70 -156.90 26.80 15 22.90 0.036 2418 0.44 30.83 

3 -0.98 -38.57 17.00 98 21.99 0.065 2274 0.45 30.96 

4 -4.02 -181.88 16.00 111 21.70 0.046 2336 0.43 30.48 

5 0.00 0.00 24.00 76 23.38 0.054 2287 0.45 25.26 

6 0.56 -21.19 23.30 146 23.43 0.060 2271 0.45 22.42 

7 -1.00 -107.98 23.00 105 22.62 0.058 2278 0.45 23 

8 0.45 -28.90 23.50 76 22.75 0.061 2271 0.45 25.3 

9 3.98 77.53 16.50 130 21.80 0.062 2253 0.48 19.24 

10 -0.24 -142.04 16.00 175 21.47 0.054 2258 0.48 25.36 

11 0.02 -199.82 15.00 226 19.94 0.056 2232 0.5 26.51 

 

Table 2-10. Pearson’s correlation coefficient among shift factors and mix 

properties. 

Mix Properties 
Shift factor 

(UPV) 

Shift Factor 

(DM) 

Initial Temperature 0.38 -0.19 

Slump -0.42 0.33 

Average Temperature 0.03 -0.14 

Air Content 0.08 0.60 

Unit Weight 0.00 -0.69 

W-C Ratio -0.15 0.54 

Compressive Strength 0.12 -0.49 

 

Table 2-11. Models for predicting UPV shift factor. 

Model 

Number 

Coefficients Performance 

Interce

pt 

Compressive 

Strength 
Unit Weight Air Content 

Average 

Temperature R2 RSE 
P-

value 
a* b* a b a b a b 

1 -59.81 426.79 464.11 134.62 
-

392.67 
-36.75 

-

42.21 
-35.93 395.65 0.95 60.8 0.19 

2 -59.81 357.91 229.99 0 0 -14.40 
176.9

7 
54.71 154.53 0.91 57.06 0.05 

3 -59.81 137.77 -169.0 
-

349.81 

-

714.24 
479.38 

-

738.6

1 

0 0 0.81 80.88 0.16 

*The equations are in the form of ax2+bx. 

 

Table 2-12. Models for predicting dynamic modulus shift factor. 
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Model 

Number 

Coefficients Performance 

Interce

pt 

Compressive 

Strength 
Unit Weight Air Content W-C Ratio 

R2 RSE 

P-

value 

a* b* a b a b a b 

1 -0.55 3.72 -1.36 -0.80 -10.80 2.91 -6.30 -1.34 -0.56 0.94 1.32 
0.23 

2 -0.55 1.73 -5.33 -5.32 -19.85 9.14 -16.97 0 0 0.93 1.01 0.03 

3 -0.55 4.6 0.28 0.51 -4.51 0 0 -1.45 0.48 0.94 0.94 0.02 

4 -0.55 4.95 -0.41 0.47 -4.82 0 0 0 0 0.91 0.90 0.003 

*The equations are in the form of ax2+bx. 

 

  
(a) (b) 

 Figure 2.15. Comparison of observed a) UPV, b) dynamic modulus shift factor 

and predicted shift factors. 

2.4.3. Rebound Hammer on Selected Mixes 

In order to assess rebound number response, rebound hammer was tested on 

Mix 5 to 8, which have the same mix component but slightly different fresh and 

hardened properties. Testing was performed at age of 3, 7, 14, and 28 days of curing 

along with destructive compressive strength. More than 5 repetitions on each sample 

were performed following ASTM C805. The relationship between the rebound number 

for each mix are displayed in Figure 2.16, and for all mixes together in Figure 2.17. 

These two figures show that even though the type and amount of coarse aggregate, and 

other components are the same, compaction and quality of production as well as curing 

condition of samples play a significant role in concrete strength. The difference 

between the average compressive strength at age 28 days of Mix 5 and 8 with Mix 6 

and 7 also confirm this result. Therefore, deriving mix-specific relationships between 

rebound number and compressive strength for each mix is essential. Table 2-13 

includes the averaged rebound number of three samples and their corresponding 

averaged compressive strength. Comparison of the results from Table 2-13 shows that 

the standard deviation of rebound hammer and compressive strength can be equal to 

2.5 versus 1.5 for the mixes with similar composition. 

 

Table 2-13. Rebound Number and Compressive Strength of four mixes at age 28 

days. 



 

 

 

28 

Test Mix 5 Mix 6 Mix 7 Mix 8 

28-days Averaged Rebound Number 33.57 28.03 32.86 30.20 

28-days Averaged Compressive Strength (MPa) 25.26 22.42 23.00 25.30 

 

 

 
Figure 2.16. Correlation between compressive strength and rebound number of 

each mix. 
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Figure 2.17. Relationship between compressive strength and rebound number of 

Mix 5 to Mix 8. 

2.4.4. Compressive Strength Modeling 

 Experimental relationships among compressive strength and other properties, 

such as temperature-time factor, UPV, and dynamic modulus have been developed 

through studies (Qasrawi, 2000; Turgut, 2004; Tanyidizi et.al., 2008; Uysal et.al., 

2011; Santhanam et. al., 2012; Amini et al., 2019;). Some of these models are presented 

in Table 2-14 and the root mean squared error (RMSE) is calculated based on this 

study’s data (N=41). It should be noted that some of these models are developed based 

on specific mixes. For example, Tanyidizi et al. (2008) developed the relationship for 

self-consolidating concrete (SCC). Lower RMSE of Amini et al. (2019) and Turgut 

(2004) models are validating that the relationship between compressive strength and 

UPV is non-linear (Tharmaratnam & Tan, 1990). 

Table 2-14. RMSE of compressive strength from literature and this study’s data. 

Research Amini et al. 

(2019) 
Turgut (2004) Tanyidizi et 

al. (2008) 
Qasrawi 

(2000) 
Malhotra 

& 

Carino 

(2003) 

Model 
𝐶𝑆
= 0.7237𝑒0.8𝑉  

𝐶𝑆
= 0.0872𝑒1.29𝑉  

𝐶𝑆
= 0.2291𝑉2

+ 5.939𝑉
+ 0.258 

𝐶𝑆
= 36.72𝑉
− 129.077 

𝐶𝑆
= 33𝑉
− 109.6 

RMSE 5.16 6.21 9.52 10.52 12.16 

* CS= Compressive strength (MPa), V= UPV (km/s) 
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Similar to UPV, experimental relationships have been developed to relate 

compressive strength to dynamic modulus of elasticity (Kesler & Higuchi, 1953; 

Sharma & Gupta, 1960; Hansen, 1986; Arras et al., 2019).  

In this study testing results of 11 mixes at different ages were used to develop 

a relationship between compressive strength and UPV, dynamic modulus, and the 

temperature-time factor. Linear regression method, as explained earlier, was employed 

to find the best fit based on higher R2, lower p-value, residual standard error, AIC 

(Akaike’s information criteria), and BIC (Bayesian information criteria). AIC and BIC 

are indices representing the complexity of a model, higher AIC and BIC represent 

higher levels of complexity. Generally, simple models may be more practical.  Some 

of the models with higher performances are presented in Table 2-15. Considering all 

aforementioned factors, Model 4 seems to be a better representation of the data 

(Equation 2-9). 

𝐶𝑆 = 1.36 𝑙𝑛(𝑀𝐼) − 6.76𝑙𝑛 (𝑉) + 1.29 𝐷𝑀 + 30.92                   (2-9) 

where CS is compressive strength (MPa), MI is maturity index (temperature-time 

factor), °C-day, V is UPV, m/s, and DM is dynamic modulus of elasticity, GPa. Figure 

2.18 compares the observed and predicted compressive strength from Equation 2-9. In 

this figure, the residuals for each value are shown to verify the randomness of residuals 

hypothesis. 

Table 2-15. Models for predicting compressive strength. 

 Term Model 1 Model 2 Model 3 Model 4 

C

o

e

f

fi

c

i

e

n

t 

Intercept -23.01 -49.79 -18.65 30.92 

Temp-Time 0.00298 - - - 

Ln (Temp-Time) - 1.38 1.35 1.36 

UPV 0.00047 - -0.0016 - 

Ln (UPV) - -8.76 - -6.76 

Dynamic Modulus 1.34 - 1.29 1.29 

Ln (Dynamic Modulus) - 40.11 - - 

P

e

r

f

o

r

m

a

n

c

e 

R2 0.92 0.91 0.92 0.93 

Standard Residual Error 1.99 2.13 1.91 1.91 

P-value 3.73e-20 4.37e-19 7.56e-

21 

7.21e-

21 

AIC 178.63 184.10 175.08 174.98 

BIC 187.20 192.67 183.65 183.55 
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(a) 

 

(b) 

Figure 2.18. Model developing for compressive strength prediction, a) 

relationship between predicted and actual compressive strength, b) residuals of 

the model versus fitted values. 

2.5. Testing Repeatability 

Testing repeatability was assessed within operator and between operators for 

each NDT and compressive strength testing. For this purpose, Mix 3 and Mix 4 results 

are presented as example in Table 2-16. The samples from each mixture were prepared 

and tested with significant monitoring and training to minimize variation in both 

sample preparation and testing. Each NDT was performed by at least 3 operators at 
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each curing age. Thus, the coefficient of variation within operator represents the 

variation in testing by a specific operator averaged over various ages. The coefficient 

of variation between operators was calculated based on the pooled data of all operators 

and averaged over all concrete ages. Similarly, for compressive strength when one 

operator tested the samples, the coefficient of variation corresponds to within operator 

variability, while when three operators performed the tests, the coefficient of variation 

represents the between operator variability. Thus, in this case the pooled data were used 

as well for calculating the coefficient of variation. As can be observed from Table 2-

16, both within and between operators’ variability for UPV and RTG were low, and 

either below or close to the recommended target repeatability. These target coefficient 

of variations are reported in past studies for potential adoption of NDT in QA. Within 

operator repeatability in compressive strength testing was at low levels, however 

between operators was a little higher than within operator. In regard to rebound 

hammer, both within and between operators’ variability was lower than what was 

reported in many studies. However as shown earlier, the rebound number between the 

four mixtures with the same components and similar compressive strength presented a 

significant difference. This turns out to be within the target repeatability reported in 

past studies, however not necessarily acceptable for adoption in a QA plan. 

Table 2-16. Testing Repeatability of Mix 3 and Mix 4. 

Test Within Operator 

CV (%) 

Between Operator 

CV (%) 

Target Repeatability 

Mix 3 Mix 4 Mix 3 Mix 4 

IRT 1.3 1.4 3.5 3.5 1 to 2%** 

UPV 0.9 0.7 1.3 1.2 3%** 

RTG 0.4 0.2 2.6 2.0 1 to 3%** 

Compressive Strength 0.4 0.8 1.8 3.32 1 to 4%*** 

Rebound Hammer 4.2 3.8 4.3 6.4 10 to 15%** 

*CV = coefficient of variation 

** Malhotra and Carino (2003), Goulias (2016). 

*** ACI 214.3R-88 Rating System 

 

2.6. Summary & Conclusions 

The adoption of quick, easy to run and reliable NDT methods in the QA/QC 

process provides several benefits. This study explored the use of alternative NDTs for 

monitoring and estimating concrete strength gain at early ages. Historically, maturity 

modeling has been successfully used in monitoring the hydration process in concrete, 

yet it does not always guarantee successful results. For this reason, it has been 

recommended that maturity monitoring is coupled with additional lab and in-place 

testing for verifying strength predictions.  

This study examined alternative NDT methods that can be used in monitoring 

and/or estimating strength gain in concrete, and thus can be adopted in an NDT based 

QA process. These NDTs included: infrared thermography (IRT), ultrasonic pulse 
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velocity (UPV), fundamental resonance frequency, and rebound hammer. The 

measured parameters from these NDT methods were successfully related to the 

temperature-time history of concrete during hydration, and thus related to strength.  

Results of UPV and resonant frequency method showed that concrete properties 

can be measured with minimum variation and high reliability. The second part of the 

study included more mixes to evaluate the repeatability and reproducibility of the 

results. All the mixtures had the same format of relationships among UPV and RTG 

responses and maturity index. This led to developing a generalized model or “master 

curve” to predict concrete properties at different ages based on maturity index and most 

relevant parameters (such as compressive strength, unit weight, etc.). The NDT data 

and maturity index of these mixtures was also used to develop a model for predicting 

compressive strength with high R2 (i.e., 0.93). 

While all NDTs considered in this approach related well to strength predictions 

and modulus, the rebound hammer presented higher variability levels associated 

potentially with concrete surface irregularity, presence of coarse and/or fine particles 

in the vicinity of concrete surfaces, as well as operator training and expertise. The 

findings of this study can be further validated with concrete mixtures from other 

infrastructure applications.  Infrastructure agencies can use the methodology to assess 

the potential adoption of these and other NDTs in a QA plan elsewhere. 

   



 

 

 

34 

Chapter 3.  Assessing Concrete Uniformity with NDTs in 

Quality Assurance.  

3.1 Introduction 

The objective of this experimentation was to provide an assessment of the 

response of the selected NDTs in regard to the presence of honeycombing and 

segregation for laboratory prepared concrete samples. Such concrete defects are 

encountered in situations where concrete mixtures are not well proportioned and/or 

properly mixed and consolidated (Graveen et al., 2003). Various NDT methods have 

been explored over the years for assessing concrete quality. Some of them include 

ground penetrating radar (GPR), ultrasonic wave propagation methods, resonant 

frequency methods, rebound hammer, infrared thermography, image analysis and other 

(Davis et al., 1998; Malhotra & Carino, 2004; Breul et al., 2008; Johnson et al., 2010). 

However, limited studies focused on using NDTs in detecting honeycombing and 

segregation during production and/or in the quality assurance process. Image analysis 

of hardened concrete has been explored in a couple of studies for detecting 

inhomogeneity in concrete (Breul et al., 2008; Johnson et al., 2010). This method 

focuses on the spatial distribution of aggregates to detect segregation. However, the 

presence of fine particles and/or the presence of hardened cement paste on the concrete 

surface may shadow such effects. Furthermore, the suggested approach does not 

provide a quantifiable measure of the degree of segregation within the concrete 

member.  

The use of ultrasonic pulse velocity (UPV) in assessing the mechanical 

properties and quality of concrete has been examined by various studies (Goulias & 

Ali,1998; Chang et al., 2006; Petro & Kim, 2012; Bogas et al., 2013). UPV is related 

to the dynamic elastic modulus and correlated to concrete strength and static modulus. 

It has been also used to accurately detect cracking and other defects in concrete 

materials and structures by examining the effects on the transmission time (Komlos et 

al., 1996; Zhu et al., 2011; Azari et al., 2014). While UPV has been used for forensic 

assessment of concrete structures, it has never been incorporated into the QA process 

of concrete during production. The resonant frequency of concrete has also been related 

to the dynamic elastic modulus and correlated to concrete strength and static modulus 

(Hassan & Jones, 2012; Sajid & Chouinard, 2017; Saremi & Goulias, 2020). The 

presence of defects (i.e., cracking, poor bonding between aggregates and cement paste) 

leads to a lower resonant frequency associated with lower stiffness (Leśnicki, 2011; El-

Newihy, 2017; Yang & Gupta, 2018). So far, this method has been used for assessing 

laboratory produced concrete samples while in construction its use is limited. As in the 

case of UPV, this NDT has never been incorporated into the QA process of concrete as 

well. Nevertheless, during concrete production such methods could be adopted in 

QA/QC as a laboratory assessment of concrete strength, stiffness and uniformity at 



 

 

 

35 

early stages of production (i.e., 1, 7, 14 days, without having to wait for the 28 days 

strength results).  

Segregation has been identified as a significant concern in past studies for a 

variety of mixtures due to the potential variability in strength within a concrete structure 

(Safawi et al., 2004; Gao et al., 2019; Yim et al., 2020). Gao et al. (2019) used rebound 

hammer and chloride permeability tests on segregated samples to assess the severity of 

the segregation on self-consolidating concrete. Early detection of these defects will 

assure better quality control during concrete production and casting. 

The objective of this experimentation was to document the response of UPV, 

RTG, and rebound hammer in terms of their ability in identifying and comparing 

defective concrete (e.g., segregated and honeycombed) with sound concrete based on 

laboratory produced samples. The specific objectives included: 

(i) comparing the response of UPV and RTG between the control “sound” 

concrete and beam samples with honeycombing for providing an initial set of 

recommendations on whether such methods can be used in QA. 

(ii) comparing the response of NDT and chloride permeability among 

concrete samples with different level of segregation. 

(iii) assessing whether the reported levels of accuracy and repeatability in 

the literature were reproducible and within acceptable levels for potential inclusion of 

these methods in an NDT-based QA plan.  

(iv) providing an initial set of feedback on the applicability of these NDTs 

when alternative levels of segregation and honeycombing are observed. 

3.2. Experimental Program 

Honeycombing and segregation in concrete can be the result of deviation from 

mix design or improper mixing and placement of concrete. In this study, in order to 

evaluate the effect of sample preparation, different samples with different methods 

were prepared and their properties were evaluated. Table 3-1 includes the samples 

description. As shown, six different mixtures were used for this investigation, three for 

honeycombed samples and their controls [76×76×305 mm (3×3×12 in.) or 

150×150×500 mm (6×6×21 in.)], and three for segregated samples [150×150×500 mm 

(6×6×21 in.)]. To evaluate the effect of honeycombing, samples were prepared from 

each concrete batch, by (i) following the standard practice of ASTM C192 (control), 

and (ii) deviating from the standard for producing poorly mixed concrete 

(honeycombed). The control mix represents a typical concrete used in building 

construction and highway applications in Maryland and the surrounding regions. In 

sample 1H-H, the honeycombed part is almost half of the beam, while in samples 2H-

M and 3H-L, the honeycombed part is located in the middle third of the beams (Figure 

3.1). The honeycombed concrete was mixed in the mixer for only one minute. A 

partition was held at the boundary of honeycombed and sound concrete while pouring 
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the concrete into the mold, then removed before consolidation, so they bond. In more 

fluid concrete (i.e., higher slum) the paste fills the voids during hardening and reduces 

the level of honeycombing. Therefore, the honeycombed samples can be divided to 

three levels of low, medium, and high depending on the mix fluidity (slump).  

 According to ASTM C192, vibrating is one of the consolidation methods, 

strongly recommended for concrete with a slump less than 25 mm (1 in.). In the 

laboratory scale samples, internal vibration is not recommended. ASTM C192 suggests 

filling molds layer by layer while vibrating. The upper layer should be added when the 

surface of concrete becomes smooth and large air bubbles cease to break through the 

top surface. Determining the appropriate time for adding the upper layer and finishing 

the consolidation is a crucial step in that over-consolidation leads to segregation. Either 

higher amplitude or longer duration of vibration causes the severe segregation of fresh 

concrete. In order to assess the segregation, samples were prepared from concrete with 

high fluidity with prolonged consolidation time, about 4 minutes. High fluidity in 

concrete can be achieved by incorporating a high amount of high-range water reducer 

(HRWR) and higher water-cement ratio. Excess HRWR and water reduces the friction 

among particles and increases the level of segregation. Therefore, regarding the amount 

of HRWR and water in mixes, segregation levels can be categorized as low, medium 

and high. In a segregated sample, heavier components of concrete such as coarse 

aggregate gather in the bottom of the element, while lighter components such as fine 

aggregate and paste stay at top of the element. Therefore, properties of concrete were 

expected to vary at different locations of samples. Thus, the tests such as UPV and 

rebound hammer were repeated at top, middle, and bottom of each sample (Figure 3.2). 

Table 3-1. Mix properties of samples. 

Mix Sample(s) 
WAEA

5/

Wcement 

WHRWR
6/ 

Wcement 

Water-

Cement 

Ratio 

Coarse 

Aggregate/ 

Fine 

Aggregate 

Air 

Content 

Slump 

(mm) 

Fresh 

Unit 

Weight 

(Kg/m3) 

1 
1H1-H2, 

1C3 
0.18% 0.12% 0.44 1.38 5% 100 2410 

2 
2H-M2, 

2C 
0.39% 0.24% 0.44 1.38 7% 120 2300 

3 
3H-L2, 

3C 
0.39% 0.24% 0.45 1.38 6% 165 2260 

4 4S4-H 0.39% 0.39% 0.50 1.39 5.5% 226 2230 

5 5S-M 0.39% 0.31% 0.48 1.39 5.5% 175 2250 

6 6S-L 0.39% 0.24% 0.45 1.39 7% 108 2260 
1H=Honeycombed, 2H, M, L= High, Medium, Low, 3C=Control, 4S=Segregated 
5Air entrainer agent, 6High-range water reducer 
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Sample 1H 76×76×305 mm (3×3×12 in.) 

 
Sample 2H 76×76×305 mm (3×3×12 in.) 

 
Sample 3H 150×150×500 mm (6×6×21 in.) 

(a) (b) 

Figure 3.1. Honeycombing in concrete (a) Presence of honeycombing in a 

sample, (b) Location of honeycombing in different samples 

 

 

(a) (b) 

Figure 3.2. Dimension and preparation of segregated samples, a) location of the 

cores, b) cores from top and bottom of the sample. 

 

3.2.1. UPV Testing 

For honeycombed samples, the indirect or direct testing mode of UPV was used, 

depending on the surface shape of the sample. Control concrete samples were tested 

following the same testing modes. For indirect mode, the distance between the 

transducers is recommended to be from 100 mm to 200 mm (Malhotra & Carino, 2004). 

Top 

Bottom 
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The transmitter was placed in the sound portion of the concrete beam and the receiver 

was in the honeycombed portion while maintaining the spacing between the transducers 

at 150 mm (6”). For segregation, the direct mode of UPV testing was used on the 

beams. Location of transducers at top, middle, and bottom of the segregated samples 

are shown in Figure 3.2. The transmission times of pulse traveling between two 

transducers were collected for the honeycombed, the segregated and the control 

samples at curing ages. During curing age, i.e., the first 28 days, samples were kept 

submerged in water at room temperature. The UPV test was repeated at least three 

times at each location for all ages to assess the repeatability of the test.    

3.2.2. Resonant Test Gauge 

The resonant frequency data were collected according to ASTM C215. For this, 

a Resonance Test Gauge (RTG) was used, Figure 3.3(b). Resonant frequencies were 

collected on the samples in the longitudinal and transverse modes.  The dynamic 

moduli from resonant frequency of the samples are compared to assess the effect of 

honeycombing or segregation on mechanical properties of the samples. 

3.2.3. Rebound Hammer Testing 

In order to assess the concrete uniformity, the rebound hammer test was 

performed at every 1 in. of the segregated samples. The testing grid was selected in a 

way to avoid the edges at least by 1 in. and avoid repeating the test at the same location 

since the rebound hammer may leave chips where it hit (Figure 3.4). The rebound 

hammer testing was repeated three times at each age of age 3, 7, and 28 days (Figure 

3.4), and rebound number was averaged over each one-third of the sample. The rebound 

number can be different at top, middle, and bottom of the samples since it is very 

sensitive to the type and distribution of coarse aggregate. Due to the rough surface of 

honeycombed samples, the rebound hammer was not performed on those samples.  

3.2.4. Chloride Permeability 

Since presence of air voids affects the permeability of concrete, the resistance 

to chloride ion penetration was obtained in accordance with ASTM C1202. Chloride 

permeability of cores taken from top and bottom of the samples (Figure 3. 2), at age 28 

days, were also compared to evaluate the severity of the segregation for the samples. 

In this method, the cored samples with dimensions shown in Figure 3.2, have been in 

vacuum condition overnight. Then, subjected to 60 V dc, while one end of the specimen 

is immersed in a sodium chloride solution (3.0% NaCl), and the other end is immersed 

in a sodium hydroxide solution (0.3 mol/L NaOH). The total charge is calculated from 

the integration of area under current (in amperes) versus time (in seconds) or Equation 

3-1: 

𝑄 = 900(𝐼0 + 2𝐼30 + 2𝐼60 +⋯+ 2𝐼300 + 2𝐼330 + 𝐼360)                          (3-1) 

where Q is the charge passed (coulombs), 𝐼0 is the current (amperes) immediately after 

voltage is applied, and 𝐼𝑡 is the current (amperes) t minutes after voltage is applied.  



 

 

 

39 

Even though there is some criticism of the chloride permeability test in regard 

to measurements affected by high voltage leading to an increase in temperature, and 

thus affects physical and chemical properties including permeability (Bryant, 2014), it 

is still used in many studies since it is relatively quick and easy to perform. 

 

 

(a) (b) 

Figure 3.3. Testing (a) UPV in indirect mode on the control sample and (b) RTG 

in direct mode on the control sample 

 

 

 

(a) (b) 

Figure 3.4. Rebound hammer a) testing on a segregated sample, b) testing grids. 

 

Acceleromete
r 

Hammer 

PC with software 
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3.3. Analyses & Results 

3.3.1. Effect of Honeycombing on Ultrasonic Pulse Velocity and Dynamic 

Modulus 

The average velocities of the replicate measurements on the control and 

honeycombed samples are shown in Figure 3.5. The differences in UPV results were 

significant for mixtures 1 and 2, and more pronounced at early ages (7 to 14 days of 

curing), while for mixture 3 the difference was in the range of 100-150 m/s. This 

represents the combined effects of larger sample size and the lower degree of 

honeycombing for mixture 3H-L (due to higher slump). Larger beam specimens 

provide the opportunity for the transmission waves to propagate to a larger region of 

the cross section of the beam where the presence of large air voids might be minimal 

(Hobbs, 1991). As indicated above, the degree of honeycombing in mixture 3 was 

lower than those in mixtures 1 and 2 (i.e., representing better concrete mixing 

conditions and thus producing lower voids due to honeycombing). Considering that 

just the effects of moisture in UPV may be of the order of 50 m/s, the presence of low 

levels of honeycombing in concrete provide little impact on pulse velocity, like those 

for mixture 3. In terms of QA, lower levels of honeycombing might not be of concern 

since the effects on concrete quality might be minimal. The impact of 50 to 100 m/s 

between sound and honeycombed concrete for mixture 3 is insignificant. 

Honeycombing effects on UPV were more prominent for the beams of mixture 1 since 

the defective area was at the edge of the beam, affecting the contact quality as well 

between the transducers and the concrete surface. 

Resonant frequency testing provides an assessment of the variation in concrete 

stiffness through the dynamic modulus of elasticity. Thus, the presence of 

honeycombing will affect the dynamic modulus (Ed). The dynamic modulus of 

elasticity (Ed) was calculated from the transverse resonant frequency, Equation 1-5, for 

the beams prepared with mixture 1, (i.e., 1H-H and 1C) since in these beams the 

honeycombed area was at one end of the sample, Figure 3.1. This provided the 

opportunity to compare Ed measured primarily in the honeycombed area and compare 

it to the control mix. For the beams where the honeycombed area was in the middle 

third (designated with 2H-M and 3H-L, Figure 3.1) the longitudinal resonant frequency 

was used for calculating Ed, Equation 1-4. The change in dynamic modulus with age 

for the honeycombed and control concrete are shown in Figure 3.6. As expected, the 

dynamic modulus increases with curing time due to the hardening of concrete, 

increasing thus the stiffness. Also, for the honeycombed concrete a lower stiffness is 

observed in relation to the control concrete mixture. The differences in dynamic 

modulus of the controlled and honeycombed concrete beams were significant for 

mixtures 1 and 2, while for mixture 3 such a difference was smaller. As discussed in 

the UPV testing results, this represents the lower degree of honeycombing for mixture 

3. 
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3.3.2. Effect of Segregation on Ultrasonic Pulse Velocity and Dynamic 

Modulus 

Segregation produces non-uniform distribution of particles within a mixture 

and thus variable properties within a concrete member. Due to this effect, the pulse 

velocity from mixture to mixture will fluctuate in relation to the degree of segregation 

in each one, and throughout the concrete specimen with depth (Komlos et al., 1996). 

The pulse velocities were calculated from the transmission time measured in the direct 

testing mode. The results of UPV on segregated samples, measured at top, middle, and 

bottom of the samples are shown in Figure 3.7. As expected, the ultrasonic pulse 

velocity increases with curing age due to the hydration. The results show that pulse 

velocity is higher at bottom of the sample than the middle and top. The UPV differences 

are shown in Table 3-2. The difference between UPV at top and bottom is higher for 

the highly segregated sample (Sample 4S-H) than the other samples (5S-M and 6S-L).  

Longitudinal and transverse frequencies and dynamic moduli of each sample 

are shown in Table 3-2 as well. As can be seen, the samples have very similar transverse 

frequency, since the wave propagation in samples this large is less affected by 

distribution of the air voids. However, differences in weight and dimension led to minor 

differences in dynamic modulus of elasticity of samples.  
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(a) 

 

(b) 

 

(c) 

Figure 3.5. Pulse velocities for honeycombing and control concrete, a) Mix 1, b) 

Mix 2, c) Mix 3. 
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(a) 

 

(b) 

 

(c) 

Figure 3.6. Dynamic modulus of honeycombed and control samples, a) Mix 1, b) 

Mix 2, c) Mix 3. 
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(a) Sample 4S-H 

 
(b) Sample 5S-M 

 
(c) Sample 6S-L 

Figure 3.7. UPV results at top, middle, and bottom of the segregated samples, a) 

Sample 4S-H, b) Sample 5S-M, c) Sample 6S-L. 
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Table 3-2. UPV and resonant frequency results on segregated samples. 

Sample 
Age 

(days) 

𝑉𝑡𝑜𝑝   

(m/s) 

𝑉𝑚𝑖𝑑  

(m/s) 

𝑉𝑏𝑜𝑡  
(m/s) 

UPV 

Difference 

(𝑉𝑏𝑜𝑡 − 𝑉𝑡𝑜𝑝) 

(m/s) 

Long. 

Freq. 

(Hz) 

Trvs. 

Freq. 

(Hz) 

Long. 

Modulus 

(GPa) 

Trvs. 

Modulus 

(GPa) 

4S-H 

1 3509.9 4562.3 4814.8 1305.0 2109 - 26.25 - 

3 3874.7 4706.0 4969.7 1095.0 2266 4219 30.37 30.93 

7 3964.4 4848.9 5029.0 1064.6 2263 4261 30.35 31.62 

28 4130.9 4995.4 5257.0 1126.1 2308 4394 31.66 33.72 

5S-M 

1 3902.6 4107.7 4528.1 625.6 2109 - 29.60 - 

3 4193.6 4375.8 4787.3 593.7 2266 4141 34.25 31.33 

7 4312.8 4523.4 4782.3 469.5 2263 4172 34.25 31.88 

28 4536.2 4686.1 5072.3 536.2 2352 4305 37.30 34.09 

6S-L 

1 3922.8 4215.9 4631.0 708.1 2109 - 27.99 - 

3 4200.2 4570.0 4913.2 713.0 2266 4063 32.44 28.76 

7 4354.1 4584.0 4897.2 543.1 2263 4172 32.42 30.39 

28 4612.1 4858.6 5047.8 435.7 2352 4305 35.14 32.46 

 

3.3.3. Chloride Permeability and Rebound Number of Segregated Samples 

Chloride permeability is a measure of density/porosity and durability of 

concrete, which is highly affected by the quality of the mixing, compaction, curing 

condition and presence of air voids. In this study, chloride permeability testing was 

performed to find the degree of segregation. Figure 3.8 shows the setup of chloride 

permeability testing (ASTM C1202) and the threshold of permeability. The current and 

temperature during permeability testing on core samples taken from top and bottom of 

the segregated samples is shown in Figure 3.9. For the top cores the current and 

temperature increase with time, whereas in bottom cores, the current reduces with time. 

The total charge of each sample was calculated and summarized in Table 3.3. The 

charge difference percentage (∆𝐶%) is calculated from: 

∆𝐶 =
𝐶𝑡𝑜𝑝−𝐶𝑏𝑜𝑡

𝐶𝑡𝑜𝑝
× 100         (3-2) 

where 𝐶𝑏𝑜𝑡 and 𝐶𝑡𝑜𝑝 are the total charges (coulomb) at bottom and top of the samples, 

respectively. Comparing the results to the threshold of the charges (Figure 3.8) the two 

samples with higher water-cement ratio (i.e., Sample 4S-H and 5S-M) have high 

permeability. As expected, higher water-cement ratio produces a more porous 

cementitious paste in concrete. 

Segregated samples were tested by rebound hammer at different ages according 

to the pattern shown in Figure 3.4. The average values of the rebound number on each 

section (i.e., top, middle, or bottom) after eliminating the outliers (ASTM C805) is 

shown in Figure 3.10. The difference between the average rebound number at top and 

bottom of the samples is very significant. Also, in most cases the rebound number is 

able to assess the hardening and strengthening of concrete. It should be noted that 1 
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unit of rebound number is about 1 MPa of compressive strength. The rebound number 

difference percentage (∆𝑅%) is calculated from: 

∆𝑅 =
𝑅𝑏𝑜𝑡−𝑅𝑡𝑜𝑝

𝑅𝑏𝑜𝑡
× 100         (3-2) 

where 𝑅𝑏𝑜𝑡 and 𝑅𝑡𝑜𝑝 are the average rebound number at bottom and top of the samples, 

respectively. Figure 3.11 compares the difference in measurements by UPV, rebound 

hammer, and chloride permeability at top and bottom of the segregated samples. The 

higher the difference between measurements at top and bottom, the higher is the 

segregation level. As can be seen, for Sample 4S-H and 5S-M, the results are in 

agreement, where Sample 4S-H has higher ∆𝐶%, ∆𝑉%, and ∆𝑅% than Sample 5S-M 

(i.e., 77%, 21%, and 22% versus 70%, 11%, and 8%). However, for Sample 6S-L, even 

though both ∆𝑉% and ∆𝐶% (9% and 56%, respectively) are smaller than for those 

values of Sample 4S-H (21% and 77%) and Sample 5S-M (11% and 70%), ∆𝑅% has 

an opposite relationship (i.e., 29% versus 22% and 8%). Even though less variability 

in data for Sample 6S-L was expected, rebound hammer showed high variability (29%) 

between top and bottom of the sample. This variability can be due to the level of 

uncertainty related to the method, and effect of moisture and surface finish on the 

rebound number. 

 

 

Charge 

(Coulomb) 

Permeability 

> 4000 High 

2000 – 4000 Moderate 

1000 - 2000 Low 

100 - 1000 Very Low 

< 100 Negligible 
 

(a) (b) 

Figure 3.8. Chloride permeability testing, a) setup for cores taken from 

segregated samples, b) thresholds. 
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(a) Sample 4S-H 

 
(b) Sample 5S-M 

 
(c) Sample 6S-L 

Figure 3.9. Change in current and temperature of the a) Sample 4S, b) Sample 

5S, c) Sample 6S. 

Table 3-3. Results of chloride permeability test on cores taken from segregated 

samples. 

Sample 
Chloride permeability Charge (Coulomb) 

Top Bottom Difference 

4S-H 6448 1515 76.50% 

 5S-M 5159 1535 70.25% 

6S-L 3583 1568 56.24% 
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(a) Sample 4S-H 

  
(b) Sample 5S-M 

  
(c) Sample 6S-L 

Figure 3.10. Rebound number at top, middle, and bottom of the sample at age 3, 

7, and 28 days (n=15). 
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Figure 3.11. Variation of different test results at top, middle, and bottom of the 

samples. 

 

3.4. Testing Repeatability 

In addition to the ability of an NDT method to be able to provide measurable 

output regarding concrete uniformity and presence of defects, testing repeatability 

should be assessed (MacLeod, 1971; Wu et al., 2008; Breysse, 2012). The common 

sources producing variability in NDT testing may be attributed to a variety of factors 

and including mix proportions and batch to batch variability; variability in casting 

conditions; homogeneity of the concrete within the member and/or specimen; 

arrangement of instrumentation and training of the operator; as well as external factors 

like air temperature and humidity. While quantifying the contribution of all these 

parameters on testing variability requires an extensive and systematic study under 

controlled conditions (i.e., a factorial experiment considering the effects of various 

levels of such factors), in this study the repeatability of UPV and RTG on the 

honeycombed, segregated, and sound concrete was assessed based on replicate 

measurements on the same samples.  

Table 3-4(a) presents the coefficient of variation, CV%, of UPV from repeated 

measurements on concrete samples from mixtures 1, 2, and 3, while Table 3-4(b) 

presents the CV% results for the dynamic modulus determined with RTG. These 

measurements were obtained from a single operator and/or three operators. UPV 

repeatability on sound concrete has been reported at 2% to 3% level from past studies, 

while repeatability on defective concrete can be up to 20% (Goulias, 2017c; Malhotra 

& Carino, 2004). For the tests conducted in this study, the control concrete samples 

provided a testing variability on replicates of around 2% or lower. However, for 

honeycombed concrete the location of the honeycombed area with the concrete beams 
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had a significant impact on reflecting the ability of the operator to identify proper 

contact between the defective area and the transducers. For the concrete beams 

designated with 1H-H the honeycombed area was at one end of the sample, and thus 

such variability was higher reflecting the variable and irregular surface characteristics 

in the defective area. For the honeycombed beams designated with 2H-M where the 

defective area was in the middle third of the beams good transducer contact with the 

concrete surfaces provided much lower variability in repeated measurements. Overall, 

the honeycombed specimens have higher testing variability compared to the sound 

concrete. The poor bonding between concrete ingredients and the presence of higher 

and random voids results in higher inhomogeneity of concrete, and thus affects UPV 

and resonant frequency repeatability. However, due to the larger effect of smoothness 

of contact area between the UPV transducers and the concrete, the surface roughness 

has a higher impact on UPV measurements than RTG ones. Thus, the coefficient of 

variation is higher for UPV than RTG. 

Table 3-4. Coefficient of variation of a) UPV, b) dynamic modulus of Mixture 1, 

2, and 3 

(a) 
 Sample 

Age (days) 1H-H 1C 2H-M 2C 3H-L 3C 

7 19.93% 0.67% 0.37% 0.23% 0.69% 0.76% 

14 9.75% 2.11% 0.86% 1.26% 0.47% 0.67% 

28 9.97% 1.55% 0.22% 0.61% 0.2% 0.05% 

(b) 

 Sample 

Age (days) 1H-H 1C 2H-M 2C 3H-L 3C 

7 4.26% 0.00% 0.00% 0.00% 0.98% 0.39% 

14 2.32% 0.32% 0.93% 0.00% 1.24% 0.69% 

28 2.40% 0.00% 1.13% 0.00% 0.00% 0.00% 

 

To quantify the “within” and “between” operator’s variability in testing results, 

repeated measurements were conducted on the concrete beams of mixtures 4, 5, and 6 

at age 7 days. The coefficient of variation for the measurements pertinent to UPV and 

RTG dynamic modulus are presented in Tables 3-5. These results indicate that in 

almost all cases, the between operator variability in repeated testing is higher than when 

a single operator has performed the tests. The within operator testing repeatability is of 

the order of 1.0% for UPV and 0% for RTG dynamic modulus. The corresponding 

testing repeatability between operators is of the order of less than 2.2% for UPV and 

1.0% for RTG dynamic modulus. Similar to the conclusions from the previous 

mixtures, the segregated samples with higher fluidity (4S-H and 5S-M) show higher 

variability in results than Sample 6S-L does. Honeycombed specimens have inherently 

higher non-homogeneity than segregated specimens, and this is reflected as well in the 

repeatability of the NDT measurements. 
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Table 3-5. Coefficient of variation of a) UPV, b) dynamic modulus of Mixture 3 

and Mixture 4. 

(a) 

Age 

(days) 

Coefficient of variation in UPV- 

within operator 
Coefficient of variation in UPV- 

between operators 

4S 5S 6S 4S 5S 6S 

3 0.3% 1.19% 0.46%    

7 1.08% 1.22% 0.54% 2.19% 1.27% 1.12% 

28 0.32% 0.99% 0.65%    

 

(b) 

Age 

(days) 

Coefficient of variation in UPV- 

within operator 
Coefficient of variation in UPV- 

between operators 

4S 5S 6S 4S 5S 6S 

3 0.00% 0.00% 0.00%    

7 0.00% 0.00% 0.00% 0.28% 0.94% 0.10% 

28 0.00% 0.00% 0.00%    

 

3.5. Summary & Conclusions 

As mentioned earlier, following the recommendations of a recent national study 

in developing NDT based QA process for concrete materials, this research investigated 

whether the proposed NDTs are responsive in detecting the presence of honeycombing 

and segregation at early ages. These NDTs included UPV, resonant frequency testing, 

and rebound hammer. In addition to NDTs, chloride permeability test was used to 

assess the degree of deficiency in the segregated concrete. The overall study findings 

include: 

● Ultrasonic pulse velocity (UPV) is an effective method to detect 

honeycombing. Overall, pulse velocity was lower in concrete with 

honeycombing in relation to the control sound concrete. This reflects the 

presence of large voids in concrete and partially hydrated paste due to improper 

mixing producing lower density and stiffness. Similarly, RTG is able to detect 

honeycombing in concrete. 

● UPV and rebound hammer are able to detect segregation. UPV and rebound 

number are highly sensitive to the distribution of coarse aggregate and air voids. 

Variability in testing results at various locations of a concrete element can be 

representative of segregation. The variation of UPV within a segregated sample 

(top vs. bottom) can be as low as 9% in a more mature and less segregated 

sample, or as high as 27% in a greener and/or higher fluidity concrete mix. 

Similarly, the difference in rebound number can be in the range of 10% to 38% 

and reduces through time. 
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● Comparison of transverse and longitudinal dynamic modulus suggests that the 

dynamic modulus from the transverse and longitudinal testing mode are almost 

equal for all three segregated samples, with lower values for  sample (6S-L) 

having the lowest dynamic modulus of elasticity in most cases. Since RFA is 

evaluating the sample response as a whole, and in converting resonant 

frequency to dynamic modulus of elasticity (Equation 2 and/or 3), non-

uniformity in mass is not considered. Thus, the effect of segregation cannot be 

very well reflected by this method.  

● The increase in UPV, dynamic modulus, and/or rebound number through time 

reflects the hardening process of concrete, which depending on the mix, 

presents different rates. This is also associated with the effects of mixing and 

placement on the strength of the concrete. 

● Chloride permeability testing was used to identify level of segregation by means 

of porosity which is correlated to the level of fluidity (slump). The order of 

observed segregation is: Sample 4S-H > Sample 5S-M > Sample 6S-L. The 

difference in chloride permeability and UPV at top and bottom of the samples 

was in agreement, and to some degree the difference in the observed rebound 

number results.  

● Repeatability of UPV and RTG were within the acceptable levels for almost all 

cases. The variability of testing results for both “within” and “between” 

operators were at comparable levels. Overall, the honeycombed specimens have 

shown higher testing variability compared to sound concrete. In regard to QA, 

such methods provide acceptable levels of repeatability and in agreement to 

those levels reported in past studies. 

This study provides encouraging results in regard to the potential adoption of 

UPV, resonant frequency, and rebound hammer in QA and QC of concrete at early 

ages. While the overall study findings are transferable elsewhere where similar 

concrete mixtures and testing procedures are used, further steps for adopting such 

NDTs in QA/QC will require to validate the study findings with: additional concrete 

mixtures; higher control on production variability, alternative levels of segregation and 

honeycombing; assess sampling size effects; identify required testing frequencies.  

While the focus of this study was on the QA of concrete production rather than 

in assessing field conditions, the transition from laboratory assessment of the concrete 

mixtures to field testing in structures will require further investigation since many 

factors (such as site-specific conditions, presence of moisture, presence of reinforcing 

steel bars, geometry of the concrete element), will affect the response of such NDT 

methods. An intermediate transition between laboratory to field conditions could be the 

use of cores collected from structural elements. 
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Chapter 4.  Delamination and Void detection in Concrete 

with NDTs  

4.1. Introduction 

During years of service, the reinforcement in bridge decks or reinforced 

concrete pavements will corrode if they are not protected from moisture and chlorides 

(i.e., salt/deicing agents). Corroded steel will expand such that a separation within the 

depth of the slab is produced. This separation or gap is called delamination. 

Delamination is a serious form of deterioration in concrete slabs. It can be localized or 

may extend over a large area. Delaminated areas should be identified and assessed in 

time to preserve structural capacity. Delamination in concrete slabs is not visible at the 

surface. Historically, methods such as chain drag and hammer sounding are used to 

find locations of delamination. Chain drag includes dragging several lengths of heavy 

chain over the concrete surface. Hammer sounding is tapping on the surface. In both 

methods, the inspector must identify hollow locations based on the reflected sound. 

These methods must be performed in a quiet environment, and the results can be biased 

and dependent on the inspector’s hearing ability and training. Therefore, the use of 

NDT in assessing delamination is strongly recommended to overcome these 

shortcomings (Malhotra and Carino, 2003; Gucunski et al., 2013). 

 

Clemena and McKeel (1987) used infrared thermography along with chain 

dragging and hammer sounding on several bridge decks to identify the delaminated 

areas and found the results very promising. Sansalone and Carino (1989) used impact 

echo (IE) to detect defects such as delamination in concrete. Impact echo includes 

striking the surface of the tested object and measuring the response at a nearby location. 

Gucunski et al. (2013), as part of the State Highway Research Program (SHRP 2), 

employed a combination of NDTs to detect delamination. Among those NDTs, impact 

echo, chain dragging and hammer sounding, ultrasonic pulse echo (UPE), infrared 

thermography (IRT), and ground-penetrating radar showed promising results for 

detecting delamination. 

 

Delamination in bridge decks can be projected by change in the dielectric 

constant of the concrete surface (Maser & Rawson, 1992) and/or an increase in the 

attenuation levels of the signal through depth of the deck (Romero et al., 2000; Goulias 

et al., 2020). These two phenomena can happen due to presence of excessive moisture 

and chloride ions in active corrosion in concrete reinforcement (Barnes & Trottier, 

2002). Martino et al. (2015) showed that GPR and half-cell potential (HCP) indicated 

the same areas of deterioration for over 90% of the surface area, while GPR and impact 

echo agreed in about 80% of cases. That is because GPR is better correlated with half-

cell potentials or active corrosion. 

In order to evaluate the performance of NDT methods, Maierhofer et al. (2008) 

employed GPR and UPE tomography on samples with different concrete properties for 
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data fusion. Janku et al. (2019) employed IRT, GPR and UPE to detect delamination 

in slabs with artificial embedded delamination. Further, Lin et al. (1990) employed 

finite element analysis to check the responses of thin layers (e.g., concrete structures 

with steel liners and post-tensioned concrete structures containing thin metal or plastic 

tendon ducts) containing voids. Lin et al. (2018) employed finite element simulation to 

evaluate ultrasonic imaging for multi-layer concrete structures. Their result was also 

confirmed by experimental data from a three-layer structure. Datta and Kishoret (1996) 

simulated the wave propagation of UPV in isotropic and orthotropic media with or 

without flaw. They analyzed the sensitivity of harmonics to different types of flaws, 

wave propagation, and scattering around flaws.  

 

Due to a limited number of studies and evaluations of UPE in detecting 

delamination, in this study, a concrete slab with two artificial embedded delamination 

areas was produced and evaluated by rebound hammer, UPE, and GPR. At early ages, 

rebound hammer testing was coupled with infrared thermography for: (i) monitoring 

concrete maturity and (ii) developing a blended NDT during curing. A companion 

cylinder was added to the experimental testing with 2 iButtons for time temperature 

history monitoring. The results of the study showed that UPE can detect the 

delaminated area accurately. However, the rebound hammer and GPR methods were 

less successful in detecting delamination. The main reason was the high quality of the 

concrete around the delaminated area, while in a delaminated bridge deck, corrosion 

would degrade the quality of the concrete in that area.  

 

Simulation is a significant design tool that can be used to improve engineering 

practices. The simulation can empower engineers to evaluate and assess the reliability 

of the design or quality. The advantages of employing finite element simulation in 

engineering practices include: (1) producing a much more detailed set of results than 

experimental investigations in a faster manner, (2) saving time and energy associated 

with making prototypes before construction, (3) reducing the costs associated with 

experimental investigation and human error.  However, to rely on simulation results 

can be misleading. Therefore, in this study, a combination of experimental and 

numerical analyses was performed to assess the reliability of UPE in detecting 

delamination. 

 

4.2. Background & Literature Review on the NDTs 

A summary of the principles and operation of each NDT used in this study is 

provided in the following subsections.  

4.2.1. Ground Penetrating Radar (GPR) 

Ground penetrating radar (GPR) employs electromagnetic waves to detect layer 

thickness, material quality, presence of rebar, and any abnormality beneath the surface 

(Figure 4.1). The GPR transmitter antenna emits electromagnetic waves in the 

microwave band through materials and layers. The reflection signal is received by the 
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same antenna in a monostatic system, or by a receiver antenna in a bi-static system. A 

change in dielectric constant of material during propagation and reflection is a sign of 

variation in the homogeneity of the material (Lahouar et al., 2002), materials with 

different dielectric properties (e.g., asphalt, concrete, rebars), and/or the presence of 

defects (e.g., voids, cracking, delamination in concrete). The antennas are transducers 

that convert electrical current into electromagnetic waves that propagate in the medium 

and vice versa: converting the electromagnetic wave into electrical impulses. Further 

details on data pre-processing and processing are presented in Chapter 5. 

 
Figure 4.1. Ground penetrating radar and electromagnetic wave transmission 

and reflection in a GPR survey (Worksmart, Inc.). 

4.2.2. Ultrasonic Pulse Echo (UPE) 

In a manner similar to UPV, ultrasonic pulse echo (UPE) employs ultrasonic 

(acoustic) stress waves to detect objects, interfaces, and anomalies (Figure 4.2b & c). 

In a conventional pulse-echo method, a stress pulse is introduced by a transmitter into 

an object from an accessible surface. The transmitted pulse into the test object is 

reflected by flaws or interfaces. The surface response caused by the arrival of reflected 

waves, or echoes, is received by either the transmitter acting as a receiver (in a true 

pulse-echo method) or by a second transducer located near the pulse source (in a pitch–

catch method). The receiver output is displayed on a time-domain waveform display 

device. 

 

The behavior of stress waves such as P-Wave or S-Wave is very similar to that 

of light waves. When a light wave is incident on a boundary between dissimilar media, 

reflection and refraction happens. An example of reflection and refraction of a P-wave 

is shown in Figure 4.3. In this case, the angle of refraction, β, is a function of the 

incident angle, θ, and the ratio of wave speed in different materials, C2/C1, (see 

Equation 4-1 known as Snell’s law).  

 

𝑠𝑖𝑛 𝛽 =
𝐶2

𝐶1
𝑠𝑖𝑛 𝜃           (4-1) 

 

However, in case of the stress waves, the mode of propagation can be changed 

as well when striking a boundary at an oblique angle (see Figure 4.3b). The relative 

amplitudes of reflected waves depend on the discrepancy in specific acoustic 

impedances at the interface, the angle of incidence, the distance of an interface from 
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the pulse source, and attenuation along the wave path. Further details can be found in 

Malhotra and Carino (2003). 

 

UPE employs a synthetic aperture focusing technique (SAFT). The SAFT is 

often used in active imaging systems (e.g., radar) with measurements taken in several 

positions and then combined to obtain a synthetic aperture. Nine sensors on one side 

act as transmitters, while the other nine sensors act as receivers. Advantages of UPE 

over UPV include a) UPE can be used when the structural element (concrete element) 

is accessible only from one side, b) low-frequency transducers (50 – 200 kHz) can be 

employed to overcome high scattering of the transmitted pulses, c) no coupling agent 

is needed between the transducer and the surface of the element. UPE can be used for 

thickness measurement, flaw detection, and integrity testing of piles (Malhotra and 

Carino, 2003). In a system where the transmitter and transducer are one unit, round-

trip travel time can be used to measure the velocity of wave propagation (Equation 4-

2). 

 

𝐿 =
1

2
∆𝑡 𝑉𝑝                                                                                            (4-2) 

 

where Vp is the P-wave velocity in concrete, L is the depth, and ∆t is the round-trip 

travel time. However, the UPE used in this study (Figure 4.2), emits shear waves (S-

waves), whose velocity is proportional to P-wave velocity by α, shown in Equation 4-

3. 

 

𝛼 =
𝑉𝑠

𝑉𝑝
= √

(1−2𝜐)

2(1−𝜐)
                                                                                  (4-3) 

 

where Vs and Vp are S-wave and P-wave velocity (m/s), respectively, and 𝜐 is Poisson’s 

ratio. For Poisson’s ratio of 0.2, α is 0.61. 

 

Kozlov et al. (1997) used ultrasonic echo for thickness measurement and flaw 

detection in concrete with one-side access. They showed the possibility of receiving a 

concrete cross section at depths of up to one meter and to detect hollow defects with 

diameters of more than 50 mm. Janku et al. (2019) employed UPE, IRT, and GPR to 

detect delamination in laboratory-made slabs. IRT was only used for identifying the 

location of the delaminated parts, while 2 GPRs, and pulse echo were employed to 

measure the depth of the delamination. UPE was not very successful in detecting small 

delamination with shallow depths. While the accuracy of GPRs was about 1 mm to 5 

mm, the measured depth by UPE could be twice the real depth. 
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(a) (b) (c) 

Figure 4.2. Ultrasonic pulse echo (UPE), a) measurement unit, b) detecting a 

void at depth D (Misak et al., 2019), c) pulse inversion at a boundary (Pundit 2 

operation instruction, 2017). 

 

 

  
(a) Reflection and refraction (b) Mode conversion 

Figure 4.3. The behavior of a P-wave incident on an interface between two 

dissimilar media: a) reflection and refraction, b) mode conversion (Malhotra & 

Carino, 2003). 
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4.3. Materials & Methods 

4.3.1. Materials 

The selected concrete represents a typical mixture used in building construction 

and highway applications in Maryland and the surrounding regions. The mix 

proportions and properties are presented in Table 4-1. 

 
Table 4-1. Mix proportions and mix properties. 

Materia

l 

Cement 

(Kg/m3) 

Coarse 

Aggregate 

(#57) 

(SSD in 

Kg/m3) 

Fine 

Aggreg

ate 

(SSD in 

Kg/m3) 

Water-

Cement 

Ratio 

(Kg/m3) 

WAEA/

Wcemen

t 

WHRWR/ 

Wcement 

28-day 

Compressive 

Strength 

(MPa) 

378 1013 730 0.45 0.4% 0.24% 24 
1SSD=Saturated surface dry 
2AEA=Air entraining admixture 
3HRWR=High range water reducer 

 
In selecting the material for making sheets and embedding them as artificial 

delamination in the concrete slab, two main factors should be considered: (1) the 

material should have a dielectric constant lower than concrete’s dielectric constant 

(𝜀𝑟 = 5 𝑡𝑜 10), and closer to the dielectric constant of air (i.e., 𝜀𝑟 = 1); (2) the material 

should not absorb water and be sturdy enough to resist the load of poured concrete. 

Considering these two factors, plexiglass was selected to be used as the material 

(dielectric constant = 3.4). In an initial study, a small piece of plexiglass was embedded 

in a concrete beam with dimensions of 150 𝑚𝑚 × 150 𝑚𝑚 ×  530 𝑚𝑚 (6 𝑖𝑛 ×
6 𝑖𝑛 × 21 𝑖𝑛), shown in Figure 4.4. This beam was tested with UPV in direct and semi-

direct configuration of transducers as explained in Chapter 2. In the direct mode, UPV 

transducers were placed at two sides of the beam with the delaminated area in the 

middle. In this method, transmission velocity is expected to be lower when 

delamination is present. Therefore, the transmission time and distance (width of the 

beam) were measured every 5 cm (2 in.) to find the location of the delaminated area. 

The location of each measurement is shown with the arrows in Figure 4.5a. Each 

measurement was repeated three times. In the semi-direct method, one transducer is 

placed at one side and the other one is on the adjacent side and moved away at 5cm 

intervals. In this case, the distance between the transducers is the direct distance which 

is calculated from the Pythagorean theorem. Each measurement was repeated from the 

other side, as well. Figure 4.2b shows the location of the transducers. The velocity of 

wave propagation is expected to be constant for all locations unless there is an 

obstruction in the material (e.g., delamination). The ability of UPV in detecting 

delamination based on the results and analysis of this study are presented in section 4.3 

“Results & Discussion”. 
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(a) (b) 

Figure 4.4. Delamination in concrete beam, a) formwork and artificial 

delamination, b) dimension of beam and location of delamination. 

 

  

(a) (b) 

Figure 4.5. UPV measurements on delaminated beam, a) direct method, b) semi-

direct method. 

4.3.2. Dimensions of Samples & Materials 

To assess the accuracy and precision of NDT in detecting delamination, a 1020 

mm (length) × 610 mm (width) × 130 mm (depth) concrete slab was cast in the 

laboratory. Figure 4.6 shows the plan view of the slab with metal mesh and delaminated 

areas and dimensions. To simulate delamination, two plexiglass sheets with 2.3 mm 

thickness at depth of 9 cm were used (Figure 4.6).  The objectives of using two sheets 

were assessing the sensitivity of the NDTs to the delamination dimension and assessing 

whether NDTs will be able to differentiate well between the two delaminated areas. 

Two wood strips were used to support the wire mesh and plexiglass in place. Figure 

4.7 shows the formwork and finished slab. For collecting the NDT measurements and 

assessing repeatability, 2 cm grids in “X” direction and 10 cm grids in “Y” direction 

were identified. 
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Figure 4.6. Concrete slab with embedded plexiglasses, a) top view, b) side view. 
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(a) 

 
(b) 

Figure 4.7. Concrete slab, a) formwork, b) finished product. 

Note: the origin (0,0) is shown as a black dot. 

 

4.3.3. Monitoring the Strength Gain 

In order to monitor the curing process and 28-day compressive strength of the 

concrete, a companion cylinder was cast. The slab was cured in field conditions. To 

simulate the curing in field conditions, the cylinder was kept in water for 7 days, and 

then removed from water and cured at room temperature for another 21 days. Two 

thermocouples (iButtons) were embedded in the cylinder and the temperatures of the 

cylinder and the slab were checked regularly with an infrared camera to ensure 

adequate curing. At ages of 1, 2, 3, 7, and 28 days, the cylinder was tested with 
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ultrasonic pulse velocity (UPV). The cylinder was tested with the rebound hammer at 

ages of 3, 7, and 28 days and then tested for destructive compressive strength.  

 

4.3.4. NDT on Concrete Slab 

For testing the concrete slab with UPE, a horizontal grid with a distance of 2 

cm (X direction), and another grid (Y direction) with a distance of 10 cm were 

specified. The UPE manufacturer recommendations and past studies suggested 

measurements at every 10 cm for detecting delamination, and at 2 cm intervals for 

thickness detection (Proceq Manual). Considering the dimension of the specimen, both 

10 cm and 2 cm increments through the x-axis direction were considered for 

comparative analysis.  UPE measurements were collected during curing (i.e., 1, 2, 3, 7 

days), at 28 days and at 60 days to account for hardening and the effects of moisture.  

 

At every measurement location, UPE reports the two-way travel time of the 

shear wave through concrete. Shear wave velocity is calculated based on the 

relationship between compressive wave and shear wave velocity. Their relationship is 

described in Equation 4-3. 

 

The Quantum mini-dual frequency GPR unit was used in this study in detecting 

concrete slab delamination.  This GPR unit features a 1000 MHz antenna for analyzing 

structures as deep as 1800 mm (72 in), as well as a 2000 MHz antenna for high 

resolution with fine analysis of shallow targets. For this study, the 2000 MHz antenna 

was used due to the scale of the slab. The GPR was moved through lines 1 to 4 in the 

direction of the X-axis (Figure 4.4b). UPE and GPR testing on the concrete slab are 

shown in Figure 4.8. In conducting non-destructive testing, care should be taken in 

avoiding edges, since the reflections from side walls would interfere with reflections 

from the back wall. Therefore, a margin of at least 2 cm (0.8 in.) was considered from 

the slab edges. 

 

Two different rebound hammers were used to test the hardness of the slab, i.e., 

Proceq and Humbolt. These two rebound hammers were applied at the intersection of 

each grid, spaced at 10 cm through the X and Y-axes. This procedure was repeated 

three times at each location at the age of 28 days.  

 

 

 
 

(a) (b) 
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Figure 4.8. NDT on concrete slab, a) ultrasonic pulse echo (UPE), b) ground 

penetrating radar (GPR). 

 

4.3.5. Theory of Lamb Waves and Finite Element Method (FEM)  

Because of the implementation of UPE wave propagation in simulation and 

analysis, the theory of the Lamb waves is reviewed in this section. 

 Lamb waves propagate in solid surfaces. Lamb waves, also known as plate 

waves, can exist in a thin plate-like medium, directed by free upper and lower surfaces. 

The entry angle, frequency, and structural geometry can affect their propagation 

characteristics.  Lamb waves, in thin, isotropic, and homogeneous plates, regardless of 

the mode, can generally be described in a form of Cartesian tensor notation as (Su & 

Ye, 2009; Marković et al., 2018): 

 

𝜇. 𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇). 𝑢𝑗,𝑗𝑖 + 𝜌. 𝑓𝑖 = 𝜌. 𝑢̈𝑖           𝑖, 𝑗 = 1,2,3                               (4-4) 

 

where ui is the displacement, fi is the and body force, 𝜌 is density, 𝜇 is the shear modulus 

of the plate, and 𝜆 is Lamb constant. Equation 4-4 can be decomposed into two 

equations uncoupled parts by applying Helmholtz decomposition under plane strain 

condition (see Equation 4-5a and Equation 4-5b).  
𝜕2𝛷

𝜕𝑥1
2 +

𝜕2𝛷

𝜕𝑥3
2 =

1

𝑠𝐿
2

𝜕2𝛷

𝜕𝑡2
        (Governing longitudinal wave modes)          (4-5a) 

𝜕2𝛹

𝜕𝑥1
2 +

𝜕2𝛹

𝜕𝑥3
2 =

1

𝑠𝑆
2

𝜕2𝛹

𝜕𝑡2
        (Governing longitudinal wave modes)          (4-5b) 

where: 

𝛷 = [𝐴1 𝑠𝑖𝑛 (𝑝𝑥3) + 𝐴2 𝑐𝑜𝑠 (𝑝𝑥3)]. 𝑒𝑥𝑝 [𝑖(𝑘𝑥1 −𝜔𝑡)]                     (4-6a) 

𝛹 = [𝐵1 𝑠𝑖𝑛 (𝑞𝑥3) + 𝐵2 𝑐𝑜𝑠 (𝑞𝑥3)]. 𝑒𝑥𝑝 [𝑖(𝑘𝑥1 − 𝜔𝑡)]                      (4-6b) 

𝑝2 =
𝜔2

𝑐𝐿
2 − 𝑘

2, 𝑞2 =
𝜔2

𝑐𝑇
2 − 𝑘

2, 𝑘 =
2𝜋

𝜆𝑤𝑎𝑣𝑒
                                                (4-6c) 

with the following designation: A1, A2, B1, B2 are four constants determined by the 

boundary condition, k is the wave number, 𝜔 is circular frequency and 𝜆𝑤𝑎𝑣𝑒 is the 

wavelength of the wave. Longitudinal velocity cL and transverse (shear) velocity cS are 

defined by: 

𝑐𝐿 = √
𝐸(1−𝜐)

𝜌(1+𝜐)(1+2𝜐)
= √

2𝜇(1−𝜐)

𝜌(1−2𝜐)
                                                                      (4-7) 

𝑐𝑆 = √
𝐸

2𝜌(1+𝜐)
= √

𝜇

𝜌
                                                                                       (4-8) 

In plane strain condition, the displacement in the wave propagation direction 

(x1) and normal direction (x2) can be described as: 

 

𝑢1 =
𝜕𝛷

𝜕𝑥1
+

𝜕𝛹

𝜕𝑥3
                                                                                             (4-9a) 

 

 𝑢2 = 0                                                                                                        (4-9b) 
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 𝑢3 =
𝜕𝛷

𝜕𝑥3
−

𝜕𝛹

𝜕𝑥1
                                                                                            (4-9c) 

 

However, the conditions which correspond to the propagation of lamb waves 

are:  

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡),   𝑡𝑖 = 𝜎𝑗𝑖𝑛𝑗 ,   𝜎31 = 𝜎33 = 0  at  𝑥3 = ±
𝑑

2
= ±ℎ (4-10) 

 

where d is the plate thickness, and h is the half plate thickness. After applying the 

boundary condition (i.e., Equation 4-8) to Equation 4-9, the general description of 

Lamb waves in an isotropic and homogeneous plate are obtained as: 

 
𝑡𝑎𝑛𝑡𝑎𝑛 (𝑞ℎ) 

𝑡𝑎𝑛𝑡𝑎𝑛 (𝑝ℎ) 
=

4𝑘2𝑞𝑝𝜇

(𝜆𝑘2+𝜆𝑝2+2𝜇𝑝2)(𝑘2−𝑞2)
                                                          (4-11) 

 

Applying Equation 4-6c, 4-7, and 4-8 into the Equation 4-11, and considering 

that trigonometric function tangent is defined with “sine” and “cosine” which have 

symmetric and anti-symmetric properties, respectively. Equation 4-11 can be split into 

two parts with uniquely symmetric and anti-symmetric characteristics, respectively. 

The symmetric and antisymmetric modes of the Lamb wave in a plate are: 

 
𝑡𝑎𝑛𝑡𝑎𝑛 (𝑞ℎ) 

𝑡𝑎𝑛𝑡𝑎𝑛 (𝑝ℎ) 
= −

4𝑘2𝑞𝑝

(𝑘2−𝑞2)2
                for symmetric modes                       (4-12a) 

 
𝑡𝑎𝑛𝑡𝑎𝑛 (𝑞ℎ) 

𝑡𝑎𝑛𝑡𝑎𝑛 (𝑝ℎ) 
= −

 (𝑘2−𝑞2)2

4𝑘2𝑞𝑝
                for antisymmetric modes                 (4-12b) 

 

Equations 4-12a and 4-12b are known as the Reyleigh-Lamb equations. 

 

The finite element method includes discretization of the area into finite 

elements. The element’s displacement values are defined based on their nodal values 

from the shape functions of the selected element (Datta & Kishore, 1996). Depending 

on the problem, i.e., whether it is time-dependent or time-independent, two forms of 

finite element methods are defined. For the former state, the explicit type of finite 

element method is used, while for the latter, the implicit finite element is employed. In 

this study, the dynamic explicit form of finite element was used since the effect of 

acceleration of Lamb wave propagation is pronounced and cannot be neglected. The 

relationship between body force (F) and acceleration (A) is defined by Newton’s 

second law in matrix form: 

 

𝐹 = 𝑀. 𝐴                           (4-13) 

 

where, M is the mass matrix. The parameters in Equation 4-10 can be expressed as 

following: 

 

𝐹𝑖
𝑚 = −∫ (𝜎𝑖𝑗Φ𝑀,𝑗)𝑑Ω

0

Ω
+ ∫ 𝑓𝑖Φ𝑀𝑑Ω

0

Ω
+ ∫ 𝑔𝑖Φ𝑀𝑑Γ𝑆

0

Γ𝑆
                         (4-14a) 
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𝑀𝑀𝑁 = ∫ (𝜌Φ𝑀Φ𝑁)𝑑Ω
0

Ω
                                                                                 (4-14b)  

 

𝐴𝑖
𝑁 = 𝑢̈𝑖

𝑁(𝑡)                                                                                                    (4-14c) 

 

where 𝐹𝑖
𝑚 is body force, 𝜎𝑖𝑗 is the stress, 𝛷𝑀 and 𝛷𝑁 are base functions, 𝑓𝑖 represents 

the component of the body force, 𝑔𝑖  represents the components of the tractions on part 

of the boundary 𝛤𝑆, 𝑀𝑀𝑁 is the mass matrix, 𝜌 is the mass density, 𝑢̈𝑖
𝑁 is the second 

derivative of displacement, u, 𝐴𝑖
𝑁 is the acceleration, t is the time, 𝛺 is the space 

domain, 𝛤𝑆 is the boundary domain (Wu & Gu, 2012). The equations defined in 

Equation 4-14 (a, b, c) are a system of second-order ordinary differential equations in 

time, whether linear or nonlinear. For solving this system in explicit form, a central 

difference method is used to approximate the acceleration, velocity, and displacement. 

These, as time derivatives, are approximated by the finite difference method, expressed 

in vector form as: 

 

{
 

 
𝜕𝑡𝑢𝑛+1/2

ℎ = (𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ)/∆𝑡 ≈  𝑢̇𝑛+1/2
ℎ

𝜕𝑡2𝑢𝑛
ℎ = (𝜕𝑡𝑢𝑛+1

2

ℎ − 𝜕𝑡𝑢𝑛−1
2

ℎ )/∆𝑡 = (𝑢𝑛+1
ℎ − 2𝑢𝑛

ℎ + 𝑢𝑛−1
ℎ )/∆𝑡2 

𝑢̈𝑛
ℎ ≈ (𝑢̇𝑛+1/2

ℎ − 𝑢̇𝑛−1/2
ℎ )/∆𝑡

                       (4-15) 

 

{
𝜕𝑡𝑢𝑛+1/2

ℎ = 𝜕𝑡𝑢𝑛−1/2
ℎ + 𝜕𝑡2𝑢𝑛

ℎ∆𝑡

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + 𝜕𝑡𝑢𝑛+1/2
ℎ ∆𝑡

                                                                        (4-16) 

 

where u is displacement, 𝑢̇ and 𝑢̈ are velocity and acceleration, respectively, ∆𝑡 is time 

intervals from total time (T) equally divided to N subintervals (i.e., T/N or 𝑡𝑛+1 − 𝑡𝑛). 

 

Dynamic finite element modeling in 3D ABAQUS was developed for the slab 

with the geometry described in Section 4.2.2 and Figure 4.6 to simulate the UPE testing 

with lamb wave propagation in the delaminated area. It should be noted that the 

plexiglass was considered as embedded in concrete (Figure 4.9). To apply load, there 

are two methods: load control and displacement control conditions. The disadvantage 

of the load control condition is stress concentration which leads to response divergence. 

Therefore, in this study, the displacement control condition was used, and a harmonic 

unit load was applied based on the location of the sensor, as presented in Figure 4.10. 

The responses at two points, the first one at x=28 cm and y= 20 cm (i.e., Point 1), and 

the second one at x=72, and y=20 cm (Point 2). In addition, the applied load history is 

also shown in Figure 4.11. In these analyses, the wave propagation when the center of 

the UPE is placed on top of a delaminated area (Point 1) and when the smaller 

delamination is partially covered under the UPE (Point 2) are compared with the 

experimental results. 

 

In this simulation concrete is assumed to be a linear-elastic material with 

characteristics described in Table 4-2. This table also includes the material 

characteristics of the plexiglass used as delamination. 
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Table 4-2. Concrete and plexiglass mechanical properties 

Concrete 

Compressive 

strength 

Modulus of 

elasticity 
Poisson’s ratio Density 

2400 N/cm2 

(3480 psi) 

2302500 N/cm2 

(3340 ksi) 
0.15 

0.0024 kg/cm3  

(0.09 lb/in3) 

Plexiglass 

Tensile strength 
Modulus of 

elasticity 
Poisson’s ratio Density 

7142.37 N/cm2  

(10360 psi) 

310344.72 N/cm2 

450 ksi  
0.35 

0.0012 kg/cm3 

(0.04 lb/in3) 

 

 

  
 

Figure 4.9. Different views of discretized (meshed) slab with embedded 

plexiglasses in ABAQUS 

 

 

 

(a) Top view (b) Side view 
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(c) Location of applied load (Point 1 and Point 2) 

Figure 4.10. Schematic of position of the sensors and the load during finite 

element analysis. 

 
Figure 4.11. Input unit pulse 

4.4 Results & Discussion  

4.4.1. Detecting Delamination with Ultrasonic Pulse Velocity 

The direct UPV testing was repeated three times on the beam sample 

(150 𝑚𝑚 × 150 𝑚𝑚 ×  530 𝑚𝑚) at 5 cm intervals and average velocity at each 

location shown in Figure 4.12a. In this figure, the true location of the delamination and 

the estimated ones are shown by solid and dashed lines, respectively. Based on UPV 

measurements, the velocity starts to decrease at 10 cm from the edge of the beam and 

starts to increase again at about the 45 cm mark, while in reality, as shown in Figure 

4.4b, the delamination starts at 12 cm from the edge and continues for 30 cm. In the 

semi-direct measurements, the results of measuring pulse velocity from right-to-left is 

plotted in along with left-to-right direction in Figure 4.12b. The measurements are 

dependent on position of the transducers, so the variation in these measurements is 
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expected since the delamination changes the wave propagation in a non-uniform way. 

In calculating the extent of the delamination in this method, the velocity is constant 

while there is no delamination or anomaly in the concrete. In Figure 4-12b, the UPVs 

measured at sound areas (point 1 to 2, and 9 to 10) start to decline after point 2, and 

before point 9. Thus, these locations can be considered as the start and end of the 

delamination. With this method the estimated length of the delaminated area is 35 cm 

in length, starting at 10 cm distance from the edge. This is only a rough estimate; for 

more accurate estimation the measurements should be repeated between these points 

and their preceding or next point, depending on their location. For example, the 

measurements can be repeated between x=10 cm and x=15 cm at 1 cm increments, and 

between x=40 cm and x=45 cm at 1 cm increments.  

 

Comparing the extent and the location of the delamination in Figures 4.12a, and 

4.12b shows only a few centimeters difference in estimation. These values show that 

UPV can give a good estimate of the location and extent of the delamination.  

 

In addition to direct and semi-direct measurements, the indirect method, where 

both transducers are located on the same surface, was also employed to find the depth 

of the delamination. Even though the minimum distance of 10 cm (4 in) between 

transducers was compiled, only the surface wave was detected, and the surface wave’s 

(Rayleigh waves) velocity was measured. Therefore, for cases where the concrete 

element is only accessible from one side, such as concrete slabs in pavements or bridge 

decks, use of ultrasonic pulse echo is suggested.  

 

 

 
(a) 

1 
2 9 

10 
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(b) 

Figure 4.12. Determining the location of delamination with UPV, a) direct 

measurement, b) semi-direct measurement. 

 

4.4.2. Monitoring Maturity and Strength Gain of Concrete 

Figure 4.13 presents the average temperature-time history of concrete measured 

by the embedded iButtons in the accompanying cylinder. Table 4-3 shows the 

temperature of the water bath in which the cylinder was cured, the temperature of the 

cylinder at top, middle, and bottom, and the temperature at 5 points in the surface of 

the slab, all measured with IRT. These 5 points are the intersections of line number 5 

on the x-axis with 5 lines parallel to y-axis (Figure 4.7). The last column of Table 4-3 

shows the difference between the surface temperature of the cylinder and the slab, with 

the slab having a higher average temperature.  It seems that the difference between 

temperatures is minimal when the concrete surface is dry (at age 28 days). The 

objective of curing slabs and companion cylinders in the same or similar conditions is 

so that the data collected from the cylinder are transferable to those from the slab. It is 

perceived that any two samples made from the same mix, and compacted and cured in 

a similar way, should have similar properties such as wave propagation velocity and 

strength. The Maturity index (temperature-time factor) was calculated with Equation 

2-6 and the results are shown in Figure 4.14.  The maturity index from the iButton and 

the infrared thermography camera are in good agreement for the cylinder, which 

confirms the accuracy of IRT in assessing concrete temperature. 
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Figure 4.13. Temperature history of concrete cylinder by iButton during 

hydration 

  

 
Figure 4.14. Maturity index of concrete from iButton sensors and infrared 

thermography (IRT) on the cylinder 
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Table 4-3. Temperature of the slab, cylinder, cylinder submerging water 

measured by IRT. 

 Temperature (0C) 

Age Water 
Cylinder 

Average 
Slab 

Average Difference 
Top Mid Bot 1 2 3 4 5 

1 21.1 22.5 22.8 22.9 22.7 22.5 23.9 24.4 25 24.5 24.06 1.3 

2 19.6 18.9 18.8 19 18.9 22 22 21.1 21.5 21.5 21.62 2.7 

3 17.6 18.3 18.6 18.5 18.5 19 19.8 20.5 20.8 20.8 20.18 1.7 

4 16.9 17.6 17.9 17.6 17.7 19.5 19.2 19.2 19.1 19.3 19.26 1.6 

5 18.3 19.1 19.1 19.5 19.2 20.4 20.8 20.4 20.5 20.7 20.56 1.3 

6 16.5 17.3 17.4 17.6 17.4 19.6 19.5 19.6 19.5 19.5 19.54 2.1 

7 16.5 16.9 16.6 17 16.8 18.8 18.8 18.7 18.6 18.8 18.74 1.9 

28 - 17.7 17.7 17.6 17.7 17.3 17.4 17.7 18.4 18.2 17.8 0.1 

 
 The UPV testing results for the cylinder at ages of 1, 2, 3, 7, and 28 days are 

presented in Table 4-4, while Figure 4.15 presents the relationship between UPV and 

the temperature-time factor. At ages 3, 7, and 28 days the concrete cylinder was also 

tested with the rebound hammer and the results are shown in Table 4-5. As expected, 

for the first week of curing, the UPV and rebound number are increasing with increase 

in age of the concrete. At 28 days the concrete was dry, which led to a slight decrease 

in UPV at the age of 28 days. The results of maturity and UPV and rebound number 

are in agreement with the findings of Chapter 2. 

 

 
Figure 4.15. Relationship between UPV and temp-time factor 
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Table 4-4. Compressive and shear wave velocity of concrete 

Age  

(days) 

Compressive wave velocity from UPV-on the cylinder 

(m/s) 

1 3815.8 

2 4124.3 

3 4306.3 

7 4521.2 

28 4505.1 

 
Table 4-5. Rebound hammer and compressive strength on the cylinder. 

Age 
Rebound number 

(avg.) 

Coefficient of 

variation 

Compressive 

Strength (MPa) 

3 20.5 7.1% NA 

7 26.2 7.9% NA 

28 41.3 11.9% 23.81 

 

4.4.3. UPE  

By plotting the two-way travel time of shear wave (in s) for each location, an 

area-scan of the slab can be obtained. Figure 4.16 shows the area-scan of the slab, after 

removing outliers at edges, at ages 1, 2, 3 and 7 days. At these ages, the data (two-way 

travel times) were collected at every 10 cm. As mentioned earlier, this increment is 

suggested by the manufacturer for detecting delamination. The black rectangles in the 

figure are added to show the location of the actual delamination and the orange 

rectangles show the location of the wood strips. As can be seen, by comparing the 

results at different ages, the presence of surface moisture affects the response of UPE.  

However, the regions of sound concrete locations (i.e., no delamination) corresponding 

to higher travel times (see Figure 4.2) can be identified, with some scatter. 

 

Figure 4.17 shows the area-scan at ages 28 and 60 days with 2 cm and 10 cm 

intervals of the UPE measurements. It should be noted that, due to the dimension of the 

UPE apparatus, the first value (0,0) in the A-scan is measured at 6 cm from the edge of 

the slab. Even though the slab is not completely dry after 28 and/or 60 days, the surface-

dry condition has provided improved results relative to the earlier ages. Figure 4.17 

also shows how the resolution of the area-scan is affected by reducing the measurement 

increments. However, in all cases the dimensions of the wood strips shown in the 

results are higher than their actual dimensions. The reason is that the dimension of the 

wood strips (2 cm) is less than the UPE measurement increments. This implies that the 

measurement intervals should vary from case to case and the suggested interval of 10 

cm does not apply to all cases. To assess the behavior of the waves at the boundary 

conditions (i.e., around slab edges), signals of two locations with coordinates of (0, 0.5 

m) and (0.2 m, 0.4 m) were compared at ages 7, 28 and 60 days, Figure 4.18. In this 
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figure, “Edge” refers to location at (0, 0.5 m) and “Middle” to location (0.2 m, 0.4 m). 

The two-way travel times are also reported in μs. In this figure the two-way travel time 

from the backwall corresponds to the strongest signal. The effect of surface moisture 

can be identified in Figure 4.18 where day 7 has a higher range of amplitude. As 

concrete dries, the strongest reflection signals are more distinctive move towards higher 

depths. 

 

Mode conversion (change in amplitude sign) in signals happens upon 

encountering a new layer or change in material type. In order to identify the mode 

conversion in UPE signals, signals at two locations, top of the delaminated area (i.e., 

X, Y = 18 cm, 22cm), and top of sound concrete (i.e., X, Y = 76 cm, 46 cm) were 

selected and compared. For the delaminated concrete, change in the mode is expected 

to happen upon entering the delamination, and for the sound concrete, at the bottom of 

the slab. The signals, shown in Figure 4.19, are marked at their interfaces, i.e., 95 μs 

for the delaminated area (Figure 4.19a) and 131 μs for the sound area (Figure 4.19b). 

In the former case, this is the two-way travel time from the delaminated area, and in 

the latter case, this time corresponds to two-way travel time to the backwall. The mode 

conversions at these points, where the interfaces are located, are very clear and show 

change in layer properties vibrantly. These points are shown in Figure 4.19 for better 

clarification. The depth of delamination can be calculated based on these time 

differences; more explanation in this regard is provided in the next section. 

  
(a) (b) 

  
(c) (d) 

Figure 4.16. A-scan (two-way travel times) measured by UPE at early ages. 
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Note: black and orange rectangles represent delamination locations formwork wood 

strips, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 4.17. A-scan (two-way travel times) measured at later ages, a) at age 28 

days with 2-cm increments, b) at age 28 days with 10-cm increments, c) at age 60 

days with 2-cm increments, d) at age 60 days with 10-cm increments. 

Note: black and orange rectangles represent delamination locations formwork wood 

strips, respectively. 

 



 

 

 

75 

  
(a) 7 days 

  
(b) 28 days 
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(c) 60 days 

Figure 4.18. Signals of edge and middle locations at age a) 7 days, b) 28 days, 

and c) 60 days. The backwalls are shown by the vertical lines. 

Note: edge at (0, 0.5 m) and middle location at (0.2 m, 0.4 m) 
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(b) 

Figure 4.19. Mode conversion of the signals at the interface, a) delaminated area 

with depth at 95 μs, b) sound area with backwall at 131 μs. 

 

The average shear wave velocity at the sound area of the slab is calculated from 

two-way travel time and the known thickness of the slab (i.e., 13 cm). For each age, 

the average values of shear wave velocity are reported in Table 4-6. The depth of the 

delamination at any location is calculated based on the velocity. The accuracy of the 

measurements is calculated based on the difference of calculated depth and actual depth 

relative to the actual depth (9 cm). The results are presented in Table 4-6. From Table 

4-6 it can be seen that the accuracy tends to increase with concrete drying and maturing. 

 

The ratio of the average shear wave velocity to the UPV at ages of 1 to 28 days 

changes from 0.52 to 0.46, which is equivalent to Poisson’s ratio of 0.31 to 0.36 (see 

Equation 4-3). From Table 4-6, the effect of delamination extension is evident: while 

the estimated depth is very close to the actual depth (i.e., up to 1 cm difference) for the 

larger delamination (255 mm × 280 mm), the estimated depth of the smaller 

delamination fluctuates more (up to 2.4 cm). Nevertheless, estimating the depth with 

accuracy of 1 to 2 cm can be reflected as “good” accuracy, considering the possible 

movement of the delamination sheet during concrete pouring and placement.  
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Table 4-6. Average shear velocity and depth of delamination from UPE. 

Age 

Average shear 

wave velocity 

in concrete 

(m/s) 

Average depth 

for the larger 

delamination 

(cm) 

Relative 

Differenc

e % 

Average depth 

for the smaller 

delamination 

(cm) 

Relative 

Difference

% 

1 1965.5 8.0 11% 6.6 27% 

2 1972.7 8.3 8% 6.9 16% 

3 1995.8 9.1 2% 8.7 3% 

7 2117.0 8.6 5% 8.8 4% 

28 2064.0 9.2 2% 9.1 2% 

60 2068.7 9.2 2% 9.7 5% 

 

4.4.4. GPR  

The larger delaminated area (at depth 9 cm) appeared more clearly in GPR 

results after 60 days of concrete placement. Presence of moisture makes the results 

challenging to interpret unless STFT (short-time Fourier transform) signal processing 

and migration analysis are conducted (Goulias et al., 2015). Figure 4.20 shows the B-

scans through four measuring paths, in the X- direction, in which line X-1 and X-2 are 

above the delaminated area, line X-4 is above the sound concrete, and line X-3 is 

partially above both areas (Figure 4.7). As can be seen, in survey line X-1 high 

reflections appear at a depth of 9 cm at the location of the larger delaminated area, 

whereas in both survey lines X-1 and X-2, high reflections appear at a depth of 9 cm 

where the larger and smaller delaminated areas exist. Metal mesh and the smaller 

delaminated area did not appear as strong reflections in the B-scan.  

According to Spagnolini (1997) the minimum thickness for a layer to be 

detectable is calculated from:  

𝐷𝑚𝑖𝑛 =
𝜆0

2√𝜀𝑟
                                                                                         (4-16)        

where 𝜆0 is the wavelength of the EM in the air and the 𝜀𝑟 is permittivity of the target. 

In case of a GPR with a central frequency of 2000 MHz the wavelength of the EM in 

the air (𝜆0 = 𝐶/𝑓), is 15 cm. Therefore, the minimum thickness of the plexiglass (𝜀𝑟 

=3.2) must be 1.47 cm. However, since detecting delamination at early stages was the 

focus of this study, a thinner layer of 0.23 cm representing delamination was selected. 

In addition, according to the literature (Barnes & Trottier, 2002) the attenuation in 

electromagnetic waves is more pronounced in the presence of corrosion, which was not 

present in this case. 
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a) b) 

 

 

 

 
c) d) 

Figure 4.20. B-scan (radargram) of the slab at age 60 days through a) line 1, b) 

line 2, c) line 3, and d) line 4 of Figure 4.4b. 

  

4.4.5. Rebound Hammer  

The results of repeated measurement by two rebound hammers, Proceq and 

Humbolt, on the slab are presented in Table 4-7 and Table 4-8. Each cell of the table is 

the average of three rebound numbers at the corresponding X and Y. Therefore, the 

highlighted gray cells are rebound numbers at the delaminated areas. For example, the 

rebound number from Proceq at a point with x=10 cm and y=20 cm is 43.3 (see Figure 

4-3 and Figure 4-4 for more details). 
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Only Proceq showed a slight difference in average rebound number above the 

delaminated area and the sound area (41.3 versus 42.6). The difference between 

average rebound numbers, (i.e., equal to 1.3), is equivalent to about 1 MPa in 

compressive strength. It should be noted that, in the field, the delaminated area is not 

filled with solid materials as in this study and this difference is expected to be higher. 

 
Table 4-7. Rebound number on the slab from Proceq rebound hammer. 

 Y distance (cm) from the origin (0,0) 

X distance (cm) 10 20 30 40 50 60 70 80 90 

50 45.0 43.5 42.3 42.7 40.3 42.3 41.7 41.0 43.8 

40 43.7 47.2 46.0 41.2 43.2 43.0 40.8 41.3 43.3 

30 41.5 42.8 44.3 42.3 40.3 44.5 39.0 42.0 42.7 

20 44.7 40.5 39.3 42.2 43.0 39.5 44.8 39.3 42.3 

10 37.5 43.3 41.5 44.3 43.5 41.0 45.8 39.0 38.0 

 

Table 4-8. Rebound number on the slab from Humbolt rebound hammer. 

 Y distance (cm) from the origin (0,0) 

X distance (cm) 10 20 30 40 50 60 70 80 90 

50 29 28 27 26 27 29 27 28 26 

40 31 33 33 27 29 28 26 28 28 

30 28 30 30 29 28 32 27 28 27 

20 31 29 30 27 27 27 29 29 29 

10 27 31 29 31 31 32 28 27 25 

 

4.4.6. Finite Element  

The results presented here are the outcomes of more than 100 trial and errors in 

ABAQUS in order to refine the mesh size, concrete properties, and Lamb wave 

properties. Selecting the mesh size is a trade-off between the accuracy of the model and 

time of analysis. The mesh size was fine-tuned to have a relatively high accuracy with 

a shorter time of analysis. 

Considering the explanation in the previous sections, the dynamic explicit 

analysis was carried out.  The explicit dynamic integration algorithm's maximum 

temporal discretization was set to 0.001 𝜇s to ensure a consistent time increment for 

the FE analysis in this work. The consistent time increment allows wave frequencies to 

be discretized correctly, reducing waveform disturbances. The simulation lasts 200 

micro seconds to guarantee that all essential wave reflections from the delamination 

and specimen bottom are captured. The largest element was 1/10 of the shortest 

wavelength. The focused images with one constant velocity (i.e., 3238 m/s) are shown 

in the following graphics (Figure 4.21) for the ultrasonic data of the FE simulation with 

delamination. 
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The screenshots of stress wave propagation in FE models are shown in the 

Figure 4.22. Wave propagation is complicated by reflection and refraction at the 

delamination interface. Even though much of the energy is found above delamination, 

some of it is transmitted into the concrete specimen beneath it, allowing imaging of the 

specimen. 

 

 
Figure 4.21. Wave propagation snapshots resulting from FEM simulation after 

excitation of the transducers at the location of the larger delamination Point 1. 

 

 
a) T=10 s 
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b) T=100 s 

Figure 4.22. Wave reflection and refraction around the delamination, after a) 10 

s, b) 100 s. 

 

The recorded displacement control wave was obtained using the received 

sensor. The comparison of experimental responses from repeated UPE measurements 

at a specific location showed agreement at the time of pulse conversion (i.e., depth of 

delamination and backwall), but showed randomness at other times. Figure 4.23 depicts 

an example of UPE repletion at a specific location (x=20 cm, y=40 cm). Therefore, in 

comparison of the experimental and finite element results the focus is on these critical 

points (delamination and backwall locations). The minor differences between the two 

pulses are justifiable since the actual properties of the concrete slab can be different 

from the tested samples and assumed values (i.e., Poisson’s ratio). In addition, the 

plexiglass can be moved under the concrete weight. 

 

Figure 4.24 shows the comparison between experimental wave and simulated 

wave by finite element at Point 1. This figure shows that the experimental and 

numerical results are in agreement at the location of the delamination and backwall in 

time of wave conversion and amplitude of the waves at those events. The minor 

differences between the two waves can be due to the assumptions/errors made in 

determining concrete compressive strength or plexiglass movements while pouring 

concrete. 
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Figure 4.23. UPE repetition at a specific location (x=20 cm, y=40 cm). 

 

 
 

Figure 4.24. Comparison of signals at a delaminated location at Point 1 (x=28 

cm, y=20 cm). 
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Backwall 
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In addition, the wave propagation over the concrete slab surface and thickness 

are illustrated in Figure 4.25. In this figure and figures 4.26 to 4.28 the location of the 

transducer is at Point 1. Figure 4.26 demonstrates vertical wave propagation over the 

slab’s thickness at different sections in x-direction. Figure 4.25 and Figure 4.26 show 

the wave propagation through the depth of the slab. Even though refraction and 

reflection of the energy happens at the location of the delamination, a fraction of the 

wave propagates through the delamination to the backwall. As a result, in Figure 4.24 

there are two distinct wave peaks which are at the locations of the delamination and 

backwall. 

 

Figure 4.27 shows radial wave propagation in X and Y directions. The radial 

wave propagations show the interaction between the concrete and the plexiglass and 

the reflection and refraction of the Lamb wave around the delamination. In addition, 

the wave reflections at the edges (Figure 4.27b) verify the uncertainties in results of 

methods work based on wave propagation (discussed in Figure 4.18 explanation). 

 

Figure 4.28 shows the shear stress at contact surfaces of the plexiglass and the 

slab surface. It should be noted in a case where there is only one material (e.g., sound 

concrete) there is no fluctuation in the stress curve, and the relationship between the 

stress and time is a quadratic relationship. 

 

 
(a) 
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(b) 

Figure 4.25. Wave propagation simulation by finite element, a) plan view of the 

slab, b) side view of the slab. 

 

 
Figure 4.26. Vertical wave propagation over the slab’s thickness at different 

sections in x-direction (along the length of the slab). 
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a) Radial wave propagation in y-direction 

 
b) Radial wave propagation in x-direction 

Figure 4.27. Radial wave propagation in y and x directions 
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Figure 4.28. Stress change at the contact surface of the plexiglass and slab at 

Point 1. 

 
The results and wave propagation at Point 2 (specified in Figure 4.7 and Figure 4.10) 

are also shown in Figure 4.29 and Figure 4.30. At this location, since there is no 

delamination, only the backwall is observed in wave reflections (i.e., one distinct peak 

in Figure 4.29). Figure 4.30 shows the wave propagation and dissipation in the slab in 

vertical and horizontal directions. However, this point is in the vicinity of the smaller 

delamination, so the edges of the smaller delamination can be seen in vertical and radial 

wave propagation simulation (red parts in Figure 30).  
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Figure 4.29. Comparison of signals at a sound concrete location (Point 2; x=72, 

and y=20 cm). 

 
a) Vertical wave propagation 

Backwall 
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b) Radial wave propagation in y-direction 

 
c) Radial wave propagation in x-direction 

 

Figure 4.30. Vertical and radial wave propagation in the slab 
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4.5 Summary & Conclusions 

In this study, a variety of non-destructive testing was employed to evaluate a 

concrete slab in terms of voids and delamination. To this end, a concrete slab with 

artificially embedded delamination was tested with UPV, UPE, GPR, and two rebound 

hammers.  As the results of testing on a small beam in this study suggested, the UPV 

can be employed to find the location and extent of the delamination or void in a concrete 

element when both sides of the concrete element are accessible. Since in evaluating 

concrete slabs in bridge decks or rigid pavements this may not always be possible, 

another form of UPV, such as UPE can be used.  The advantages of UPE over UPV 

include using smaller transducer size with the same frequency and dry versus lubricated 

contact. In this experiment UPV was used on the companion cylinder to monitor the 

strength gain and to estimate the compression wave velocity in concrete.  

 

UPE and GPR were introduced in other studies as NDTs that can be used to 

detect delamination, however the accuracy of these methods in the field often lacks a 

proper assessment due to limited and constrained access within the concrete to be able 

to verify the “ground truth” conditions. While GPR has been used more extensively, 

UPE testing with such multisensory devices has been limited. Therefore, the main 

objective of this study was to evaluate the accuracy of GPR and UPE in controlled 

laboratory conditions. The results show that UPE can estimate the depth of 

delamination with a deviation of 0.1 to 2.4 cm, and the accuracy is highly dependent 

on the level of maturity of the concrete and whether it is moist or dry. On the other 

hand, when thin delamination occurs (i.e., representing early ages of this distress) 

and/or absence of reinforcement corrosion, GPR is not able to accurately detect such 

effects.  Furthermore, the potential impact of the presence of moisture needs STFT and 

migration analysis, which is further discussed in the next chapter.  

 

Another objective of this study was assessing whether a rebound hammer could 

be sensitive for detecting delamination. The corrosion in concrete and the hollowness 

due to delamination leads to a decrease in compressive strength. Therefore, a decrease 

in rebound number at delaminated areas is expected. However, in this study, since the 

concrete was relatively new and the delaminated area was not hollow (i.e., represented 

by plexiglass) the effects on rebound number were negligible. 

 

In order to simulate the Lamb wave propagation in the concrete slab, a linear-

elastic finite element model was built in ABAQUS. Two points on the slab, one above 

the delaminated area and another one on a sound concrete, were used to compare the 

responses of the UPE and finite elements. The finite element simulated the wave 

propagation in concrete and around delamination and the results of reflected pulses 

from the experiment and numerical models were compared. This comparison showed 

a very good agreement between the two methods. The minor discrepancies can be due 

to the possible movement of the plexiglass or the variability between the slab and the 

cylinder which were used in determining the concrete properties.  
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Chapter 5. Condition Assessment of Bridge Decks with 

Ground Penetrating Radar  

5.1.  Bridge Deck Inspection & GPR 

Concrete bridge decks are inspected regularly for condition assessment. Pre-

stressed bridge deck members are vital components of the concrete bridge 

superstructure. Their condition may affect the overall bridge performance as well as 

the safety and smooth operation of traffic. Condition assessment of bridge decks is 

examined and compared in time to the original design and construction quality. Often, 

the original design plans and construction records may not be available for older 

structures. Therefore, in addition to detecting the defects, inspectors need to collect 

information on rebar location, concrete cover depth, and thickness of overlays is needed 

(Cheilakou et al., 2012). 

In terms of bridge deck condition, objectives of inspections include detection 

of defects, such as cracking, corrosion of the rebars, delamination, assessment of cover 

depth and thickness of any overlays (Cheilakou et al., 2012). Conventional testing 

methods, and in some cases destructive in nature, for bridge deck inspection include 

visual surveys, coring, chain drag, half-cell potential, chloride resistivity, and, 

sounding. The shortcomings of these methods are: (i) time consuming in nature, labor 

intensive, and costly, (ii) require extensive traffic control during inspection, and (iii) 

raise significant concerns on the safety of inspectors and the driving public while in-

situ testing is taking place. Thus, agencies are now looking into adopting non-

destructive testing, NDT, methods for condition assessment. Contrary to conventional 

and destructive tests, several of the NDT methods are fast and less expensive 

alternatives of inspection. Ground Penetrating Radar (GPR) is one of these NDTs 

identified as rapid and reliable (Gucunski et al., 2013). 

GPR employs electromagnetic waves to detect layer thicknesses, material 

quality, presence of rebar and any abnormality beneath the surface. GPR emits 

electromagnetic waves towards the pavement materials and collects the reflections. 

Any variation in dielectric constant due to detection of new material or deterioration 

can be reflected in the response signal. Variation in dielectric properties of materials 

implies not only potential deterioration but also moisture concentration. (Goulias et al., 

2015; Goulias, 2017a). Accuracy of GPR in detecting abnormalities and interfaces for 

bridge decks has been extensively studied and reported in numerous past studies 

(Gucunski et al., 2013; Martino et al., 2014; Gagarin et al., 2017, 2020). GPR can be 

used to accurately determine the quality and thickness of layers (e.g., asphalt, concrete 

cover or unbound aggregate), rebar location and conditions (sound or corroded), 

structural features (piers, bracing beams), defects (such as cracking, delamination, 

voids, honeycombing, segregation) and moisture concentration (Hugenschmidt et al., 

2006; Simi et al., 2012; Goulias, 2017b; Gagarin et al., 2017).  Maser (1991) used GPR 
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on 32 asphalt overlaid decks in New England. Comparison of GPR data with “ground 

truth” conditions before rehabilitation and right after removing the asphalt overlay 

showed high consistency between variation of dielectric constant and deteriorated 

areas. Romero et al. (2000) used GPR to develop a contour map for concrete 

replacement, specifying which areas need to be replaced with new concrete. Alani et 

al. (2013) employed GPR for studying two bridge decks in the UK to evaluate the 

location and spacing of rebars, estimate cover depth of concrete, and identify sub-

surface defects. They concluded that repeatability of GPR surveys was very consistent 

and accurate with ground truth conditions and assessed how the presence of moisture 

was influencing GPR response. Similarly, another study on bridge decks (Goulias et 

al., 2015) assessed the accuracy of GPR surveys in relation to ground truth conditions 

and examined the impact of the presence of moisture on signal reflection using Short 

Time Fourier Transfer (STFT) analysis.   

In order to expand the laboratory testing of GPR in concrete elements with 

defects, the testing results of a pre-stressed bridge deck in the south-eastern portion of 

Sicily, Italy, were analyzed. Objective of that study undertaken in cooperation with the 

University of Catania, in Italy, was to survey with GPR the current conditions, such as 

thickness of the asphalt overlay, depth of the rebars and deterioration of the 

reinforcement. The GPR results were verified by boring holes on key locations and 

surveys on open joints in the proximity of the bridge pillars. The open joints are often 

the source of significant moisture infiltration in bridge deck layers and materials with 

potential consequences on concrete degradation and reinforcement corrosion. The GPR 

unit used in that study was equipped with two antennas of 600 and 2000 MHz 

frequencies. The higher the frequency the higher the resolution however lower the 

penetration depth is. Thus, the use of both frequencies provided both accuracy and 

depth of penetration. Depth of penetration depends on several factors, and among them, 

central frequency and resistivity of materials. Since bridge deck thickness is finite, the 

GPR with dual frequencies of 600 MHz and 2000 MHz was appropriate for the survey. 

Such GPR units are commonly available to highway agencies in Italy and around the 

world with minimal cost. The devices are simple to run and are supplied with user 

friendly software for data analysis, facilitating thus the interpretation of results.   

With GPR surveys it is always necessary to have proper calibration following 

the manufacturer’s guidelines. Furthermore, “ground truth” information from 

construction drawings or cores is desired in order to verify initially the GPR response. 

In this study for the forensic investigation of this older bridge, no drawings or as-built 

construction data were available. Thus, construction drawings from similar bridges 

constructed in that time period in the region with the same pre-stressed method and 

construction techniques were used as described later in the manuscript. In addition to 

these, the geometric characteristics of the bridge deck (such as top and bottom deck 

elevation, geometric dimensions of the bridge deck surface, longitudinal and transverse 

curvatures and slopes, surface defects and other features) were verified with remote 

sensing methods such as Terrestrial Laser Scanning (TLS) and reported elsewhere 

(Cafiso et al., 2018). To further complement the “ground truth” information, 

inspections on open joints and drilled boring holes at the bridge deck were used in order 
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to verify in various locations overlay thickness, concrete cover, depth of the 

reinforcement, and potentially detect, when possible, any corrosion or delamination. 

 

5.3.  GPR Wave Propagation Principles 

As mentioned earlier, the GPR transmitter antenna emits electromagnetic waves 

in the microwave band through materials and layers. The reflection signal is received 

by the same antenna in a monostatic system, or by a receiver antenna in a bi-static 

system. The change in the dielectric constant of materials during the propagation and 

reflection is a sign of either a variation in the homogeneity of the material (Lahouar et 

al., 2002), or materials with different dielectric properties (e.g., asphalt, concrete, 

rebars), and/or the presence of defects (e.g., voids, cracking, delamination in concrete). 

Most GPR systems are equipped with a receiving and transmitting system suitable for 

working with different frequencies simply by changing the type of antenna. The 

antennas are transducers that convert electrical current into electromagnetic waves that 

propagate in the medium, and vice versa convert the electromagnetic wave into 

electrical impulses. The principles of GPR for each specific detection purpose stated 

above are briefly explained next. 

 

5.3.1. Overlay Thickness 

Thickness of the asphalt layer (overlay) can be calculated by two methods: two-

way travel time, Equation 1, (Goulias et al., 2016), or the common midpoint method 

(Lahouar et al., 2002) when multiple GPR channels are available.  

𝐷 = 𝑐. 𝛥𝑡/2√𝜀𝑟                                                                           (5-1) 

where:  

𝛥t = travel time  

c = speed of light in air  

𝜀𝑟 = relative permittivity equal to 𝜀𝑟 =
𝜀

𝜀0
  

             where 𝜀 is the permittivity of material and 𝜀0 is the permittivity of vacuum, 

8.89 × 10−12𝐹/𝑚  

D = thickness of the layer   

Since overlays are thin layers, it is often challenging to differentiate the 

reflection from the top and bottom of the layer. This problem mostly appears when the 

layer thickness is comparable to the wavelength of the received EM pulse. This 
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represents the “thin layer problem” (Zhao et al., 2015). For lower resolutions, signal 

processing techniques, known as super-resolution techniques, need to be applied. 

Antennas with a center frequency of 2000 MHz can provide a sufficient resolution to 

measure a minimum layer thickness less than 2.5 cm (1 in.) with an accuracy of 0.25 

cm (0.1 in.) (ASTM D4748). For the bridge deck in this study the overlay thickness is 

about 3 to 4 cm, so the 2000 MHz antenna is deemed to be capable of accurately 

detecting such overlay with sufficient resolution. Thus, the two-way travel time method 

was employed. 

5.3.2. Concrete Cover & Rebar Location 

The thickness of the concrete cover is an indication of the construction quality. Bridge 

deck areas with insufficient cover are often associated with higher levels of corrosion, 

potential presence of delamination, and higher concentrations of moisture. Concrete 

cover plays a significant role in protecting the rebars from corrosion. When GPR 

approaches above a rebar, Figure 5.1, the two-way travel time versus travel distance 

has a parabolic shape, Equation 2 (Al-Qadi et al., 2005). 

𝑡2 =
4

𝑣2
𝑥2 −

8𝑥0

𝑣2
𝑥 + 𝑡0

2 +
4𝑥0

2

𝑣2
                                                         (5-2) 

where t is two-way travel time, x is the travel distance, v is the EM wave speed 

in concrete, and 𝑑0 = 𝑣𝑡0/2. When the reflected parabolic shape is fit to Equation 1, 

the distance from the apex to the surface is the cover depth.  

 

 
Figure 5.1. GPR travel time and distance for a rebar in concrete (Al-Qadi et al., 

2005). 

 

5.3.3. Corrosion of Rebar 

The attenuation of the signal reflection amplitude from a rebar in relation to the 

remaining reflections indicates corrosion potential. GPR has been proven to be 
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successful in detecting active corroded areas in many studies (Cady and Gannon, 1992; 

Barnes and Trottier, 2000; Barnes et al., 2008; Sultan and Washer, 2017). ASTM 

D6087 recommends two approaches for detecting deterioration at the top of reinforcing 

rebars; “the bottom deck reflection attenuation technique;” and, the “top reinforcing 

reflection attenuation technique”. Both approaches employ signal reflection 

amplitudes. In the “bottom deck reflection attenuation technique” deterioration is 

detected based on the relative reflection amplitudes from the surface and the bottom of 

the bridge deck. In the “top reinforcing reflection attenuation technique” the relative 

reflection amplitudes from the top layer of reinforcement are used to assess 

deterioration. Further details of both methods are provided in ASTM D6087. The 

attenuation of signals that can be observed in B-scans are due to the variation in 

amplitude of the reflected signals. ASTM D6087-15 suggests that reflections with 6 to 

8 dB less than the maximum amplitude observed represent potentially corroded areas. 

Dinh et al. (2014) showed that the deriving correlation coefficient between time series 

data of GPR acquired at different time slots, can be one of the methods for detecting 

corrosion of the rebars. In that method, the GPR time series data at any age of a bridge 

deck should be compared with the reference time series data of the same bridge deck. 

The reference data can be acquired at early ages when the bridge deck and rebar are 

still sound and healthy. Generally, since the correlation coefficient varies from 0 to 1, 

when a correlation coefficient between a specific age and the reference data is closer 

to 1 indicates healthier rebars and bridge deck (Dinh et al., 2014). Martino et al. (2014) 

proposed a statistical model to evaluate the condition of the rebars. The model 

suggested that the amplitude histogram for a healthy bridge deck is quite symmetric 

and almost perfectly normal.  

 

5.3.4. Effect of Moisture 

The dielectric constant of pavement materials ranges from 4 to 10, whereas the 

dielectric constant of water is 81. Thus, the presence of moisture will locally alter the 

reflection and transmission pattern (Maser, 1996; Goulias et al., 2015; Goulias, 2017a). 

Presence of moisture leads to an increase in wave attenuation and a decrease in the 

velocity of the electromagnetic wave (Li et al., 2015). Goulias and Scott (2015), used 

Short Time Fourier Transform analysis, STFT, to identify the areas with moisture 

concentration. It indicated that the presence of moisture appears in the form of time 

delay in the time domain of GPR data, Figure 2, and reduces the frequency and energy 

of the signal. Figure 5.2 illustrates an analytical waveform of moist versus dry concrete 

in the time domain diagram. It also indicates that the back-surface reflection of the 

moist deck is delayed versus the dry bridge deck, and that moisture related dispersion 

reduces the bottom surface signal energy. With two dimensional STFT analysis (a 

frequency versus time representation of the amplitude versus time information), 

reduced high frequency content and reduced signal amplitudes are observed (both 

caused by moisture dispersion phenomena).  Thus, a time delay associated with the 

presence of moisture is observed.  By using these analyses, a relative moisture map for 

the examined bridge deck can be generated, differentiating high moisture content areas 

from lower ones. 
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Figure 5.2. Schematic example of waveform of time domain bridge deck GPR, 

comparison of wet vs. dry. (Goulias and Scott, 2015) 

 

5.4. Characteristic of Surveyed Bridge Deck & GPR Data Collection 

The GPR data were collected on a bridge closed to traffic on the Siracusana 

state road 124 (SS 124). The state road SS 124 is an Italian highway that crosses the 

south-eastern portion of Sicily in the east-west direction. The bridge was constructed 

and opened to traffic in the early ‘90s. The bridge is supported by a series of pillars that 

are about 32 meters apart. In each section bound by two pillars, the deck consists of 5 

cross and 4 longitudinal beams. Along the bridge deck examined are two open joints at 

88 and 185 m from the starting point. The bridge consists of two lanes both of which 

are 3.75 meters wide. The width of the entire roadway is 9.45 meters where 7.50 meters 

is the width of the travel lanes while the shoulders have a width of about 1 meter. A 

section of the bridge with a length of approximately 320 meters was examined with 

GPR (i.e., georadar). In order to map the surface of the bridge deck (Figure 5.3b) a grid 

was created consisting of 5 longitudinal GPR surveys that covered the entire roadway, 

and 21 transversal surveys, Figure 5.3. The longitudinal alignment with path numbers 

1, 3 and 5 were surveyed from the start point to the end point, as shown in Figure 5.3a, 

while paths 2 and 4 were surveyed in the opposite direction. The transverse survey 

paths have perpendicular direction and were investigated on the central portion of the 

bridge, covering the entire cross section between the longitudinal alignments 1 and 3. 

The first two transverse alignments were at the first visible joint, joint 1, while the 

subsequent alignments were three meters from the previous one. Assessing the GPR 
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accuracy in thickness detection was achieved through site inspections on the two open 

joints by directly measuring layer thicknesses, and by drilling inspection holes 4 cm 

deep at a distance of 16 m from joint 1, Figure 5.4a and Figure 5.4b, respectively. 

Bridge design and construction drawings for these types of precast concrete bridges 

built in the region of Catania at the same time and using the same designs were also 

considered for complementing the “ground truth” conditions. The near ground-coupled 

georadar GPR system used in this study consisted of transmitting and receiving 

components, a wave reading and a graphic return system. The georadar belongs to the 

University of Catania Road Testing Laboratory, "TILAB".  It is equipped with 2 

antennas of 2000 and 600 MHz frequencies that can provide high resolution 

measurements. The georadar was capable of investigating depths of a few meters from 

the road surface.  

 

 

 
(a) (b) 

Figure 5.3. GPR Surveys and bridge deck joints, a) Survey alignments, b) 

Overall view of survey paths (image source: Google©2020). 
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Joint 2 
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(a)  (b) 

Figure 5.4. Open joint measurements and drilled holes, a) Open joint 1, b) 

Drilled holes. 

 

 

5.5. Signal Processing 

Before any post processing analysis for detecting thickness, cover depth, rebar 

location, and other condition parameters, preliminary processing of the raw signals is 

needed in order to filter out possible noise. The signal processing included the 

following. 

5.5.1. Time-zero Correction 

For air-coupled and near ground-coupled GPR the gap of air between the 

antenna(s) and the surface of the pavement under investigation should be eliminated in 

order to compare the reflection time, and depth of inhomogeneity at different locations 

of the survey path. To this aim, a fixed and unique point as a time-zero reference for 

the GPR data should be selected. Since in this study a near ground-coupled GPR was 

employed, in contrast with an air-coupled which is usually mounted on a fast-moving 

vehicle, the fluctuations were negligible. Therefore, the distance between antenna and 

the ground surface has been measured and considered as a gap that should be removed 

to find the reference point. After the time-zero correction is applied, the distance to the 

surface of the inspected area (asphalt overlay in this case) is equal to zero.   
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5.5.2. Band-pass Filtering 

Human-induced or antenna ringing noises should be removed by filtering in 

order to improve visual quality of the data. Filtering methods can be simple such as 

band-pass filters, or more complex involving domain and transfer filters. The higher 

complexity filter does not necessarily produce better results. In the frequency domain, 

low or high-pass filters are common. In a low-pass filter only low-frequency 

components of the data are considered. This approach is effective in producing noise 

reduction. On the contrary, in a high-pass filter only high-frequency components of the 

data are considered. This approach is suitable for removing signal drifts and low 

frequencies. A band-pass filter is a combination of low and high-pass filters. The range 

of frequency components considered are defined as the “pass region” (Jol, 2008). These 

filters remove noise for frequencies higher or lower than the GPR main frequency. The 

selected range should not be too narrow to avoid losing useful data. Cassidy and Jol 

(2009) suggested that the pass region should be set symmetrically around the peak 

signal frequency with a bandwidth equal to 1.5 times the peak value. Thus, for an 

antenna with a central frequency of 2000 MHz the band-pass would be at least 500 to 

3500 MHz (bandwidth equal to 1.5 x 2,000=3,000 MHz, centered and symmetric 

around the central frequency of 2,000 MHz, thus providing a bandpass of 500 to 3500 

MHz). 

 

5.5.3. Background Removal 

The “non-target” environment, such as rocks, sands and cavities, and 

electromagnetic devices like cell phones add noise to the reflected signal. Different 

filtering methods can be used for removing those background noises in order to increase 

signal-to-noise ratio (SNR) and produce a high-quality image. In most cases, the noisy 

components periodically appear in the horizontal axis. Thus, a Clear-X filtering 

algorithm is used to remove unwanted components along the x-axis (Hashim et al., 

2011). This process is called background removal and the method used is subtracting 

the mean value of the amplitude (or median in some cases) from each A-scan as 

described in Equation 3 (Benedetto et al., 2017).  

𝑦′(𝑛) = 𝑦(𝑛) −
1

𝐾
∑ 𝑦𝑘(𝑛)
𝐾
𝑘=1                                                              (5-3) 

with 𝑦(𝑛) and 𝑦′(𝑛) being the amplitude of the 𝑛𝑡ℎ sample of the processed and raw 

trace respectively, and with n ranging from 1 to N. After applying the background 

removal by the average of the amplitude for each A-scan, the probability distribution 

of amplitude is obtained which would be symmetric along the A-scan. 
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5.6. Analysis & Results 

5.6.1. Asphalt Overlay Thickness 

To determine the thickness of the overlay and its uniformity the analysis was 

carried out at the vicinity of the joints. Figure 5.5 shows the thickness detection at the 

two open joints 1 and 2. Since a high frequency antenna gives a better resolution the 

signal from the 2000 MHz antenna was used. From the B-Scan of joint 1, Figure 5.5a, 

three different interfaces are detected at depths of 3, 6 and 10 cm for the location 

milepost 86 preceding joint 1, and at depths of 4, 8 and 11 cm after joint 1, at milepost 

89. The A-scan at these locations, Figures 5.6a and 5.6b, provide the signal amplitude 

peaks at the aforementioned depths. The one to two cm difference between the depths 

of the various layers at the locations before and after joint 1, verified as well with the 

“ground truth” inspection surveys at the vicinity of the joint, can be associated with 

long term permanent damage or as-built construction quality. For example, long term 

deterioration in concrete, rebar corrosion and presence of delamination as well as 

cracking may very well affect a portion of the bridge deck producing such variability 

in measured thicknesses from one section to the next of the joint. In terms of 

construction quality and uniformity, joints represent a transition from one section to 

the next of the bridge deck. Thus, one to two cm deviation from the specified target 

design features may very well reflect “as-built” construction quality and/or specified 

tolerances. The layer thicknesses from the GPR scans have been validated by physically 

measuring such thicknesses at the open joints and the drilled holes, Figure 5.4. 

 

(a)  
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(b)  

Figure 5.5. GPR B-Scan with depth of asphalt overlay at location close to a) joint 

1, and b) joint 2. 

  
(a)  (b)  

Figure 5.6. A-scan of GPR for locations close to a) joint 1, and b) joint 2. 

Note: red, blue, and green traces correspond to mileposts 86, 89 and 185, 

respectively. 

 

5.6.2. Cover Depth and Reinforcement Condition 

The bridge under investigation is supported by a series of pillars that are about 

32 meters apart. The hyperbolas identified in the radargram indicate the location of the 
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rebars that have a curved pattern with nadir at the pillars. An attenuation of the signal 

is observed at specific locations of the rebars reflecting the presence of moisture and 

deterioration/corrosion. To quantify the potential effects of the presence of open joints 

on signal attenuation (i.e., infiltration of moisture producing corrosion and concrete 

deterioration) the A-scans at different locations of the radargram were examined and 

compared. These were located near the pillars (joint 1) and in the center distance 

between two consecutive pillars. First the responses at two locations were compared: 

one 3 meters before joint 1, milepost 84; and the second one 3 meters after joint 1, 

milepost 91. The distance of 3 m was chosen so that any interference from the presence 

of the pillar is negligible. In Figure 5.7a the vertical lines represent the respective 

locations of the analyzed traces. The A-scans in Figure 5.7b reveal similar results for 

the two locations. However, the depth of reinforcement at milepost 84 is at 20 cm while 

for milepost 91 is at 21 cm. Below the reinforcement the signal starts to attenuate faster 

for milepost 91 relative to milepost 84.  

Next the signals of two other locations were examined, one in close proximity 

to the pillar and the second one halfway between the pillars.  This analysis was carried 

out considering the first open joint, joint 1, above the pillar. The objective was to assess 

whether the presence of pillars or open joints had an influence on signal response.  

In Figure 5.8a the vertical lines represent the positions of the analyzed signal 

traces at mileposts 72 and 86. The green line is located at 86 meters from the starting 

point of the GPR surveys and corresponds to the first open joint. The red line is at 72 

meters and represents the middle point between the pillars. The depths of the 

hyperbolas are respectively 24 cm and 14 cm, thus there is a difference of 10 cm. The 

same difference of 10 cm was detected on all the successive pillars of the longitudinal 

surveys.  

Signal traces for these two locations are shown in Figure 5.8b. Consequently, 

the two signals are similar up to the depth of 10 cm in terms of amplitude and location 

of positive and negative peaks. After this depth the signal of the location close to the 

pillar (open joint 1) begins to attenuate faster than the signal of the farther away location 

from the pillar. Since milepost 86 is close to the open joint, the water infiltration 

produces corrosion and concrete deterioration in this location.  

From the comparison of signal traces at locations away from the open joints and 

pillars it is concluded that the detected GPR signal is not influenced, and thus there is 

no signal interference affecting the curvilinear form of the hyperboles in the radargram. 

Thus, due to the curvature shape of the reinforcement present in these pre-stressed 

concrete slabs the concrete cover has the highest thickness at pillars, around 24 to 25 

cm, and the lowest in the middle between two pillars, at about 14 cm. 
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(a) 

 

(b) 

Figure 5.7. GPR signal at the proximity of joint 1. a) B-scan, b) A-scan. 

Note: red and blue signal traces correspond to mileposts 

     84 and 91, respectively. 
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(a) 

 
      (b)  

Figure 5.8. GPR signal at mileposts 72 (green) and 86 (red). a) B-scan, b) A-scan. 

 

5.6.3. Rebar Conditions 

It is expected that potential corrosion of the reinforcement will considerably 

decrease the amplitude of the reflected signal. Another factor influencing this 

amplitude is the depth of the examined object (rebar). In order to assess if the observed 
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signal attenuation was caused by rebar corrosion, consecutive hyperboles at the same 

depths were compared.  

Examining the B-scan of Figures 5.9a and 5.9b it can be observed that there are 

missing hyperbolas in some locations. Example locations of missing hyperbolas 

include at around 7 m from the pillar, Figure 5.9, at mileposts 28 m to 29 m from the 

starting location of the GPR survey. The A-scans of Figure 5.10 indicate that corrosion 

of the rebars is present in this same area. The signal amplitudes at a depth of 17 cm at 

mileposts 28.7 m and 29.2 m are 0.2 and 0.02 volts respectively. Therefore, such a 

difference in decibels (calculated from 𝐴𝑑𝑏 = 20 × 𝑙𝑜𝑔𝐴, where 𝐴𝑑𝑏 is the reflection 

amplitude in decibels, A is the reinforcement reflection amplitude) is more than 20 dB, 

which surpasses the threshold identified by ASTM C6087-15 (i.e., 6 to 8 dB). The time 

delay in signal propagation at milepost 28.7 from the starting location of the GPR 

survey and at depths of 21 cm and 24 cm indicates the presence of moisture. Presence 

of moisture and corrosion of rebars in the proximity of the pillars is expected since the 

joints are open and thus moisture can easily penetrate and reach the exposed rebars. 

5.7. Summary & Conclusion 

In this study, a bi-static GPR system was employed in order to inspect the bridge 

deck of an old precast concrete bridge in south Italy due to concerns of its condition. 

The pre-stressed bridge deck slabs placed on the pillars had exposed joints. Therefore, 

the layers’ thicknesses detected by GPR could be directly measured at those locations. 

Furthermore, drilled inspection holes provided additional verification of layer 

thicknesses at other locations for ground truth evaluation. The analysis approach of the 

reflected signals proposed in this study provided significant conclusions on the 

condition of the bridge deck. At the open joint locations, material deterioration and 

reinforcement corrosion were detected from signal attenuation due to environmental 

exposure and moisture concentration. Overlay thickness and curvature of the 

reinforcement throughout the bridge spans was detected as well, along with the location 

of missing rebars.  
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(a)  

 

(b)  

Figure 5.9. GPR signal at mileposts 28.7 and 29.2m, a) B-Scan, b) Enlarged B-

scan. 
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Figure 5.10. GPR signal at mileposts 28.7 m (red) and 29.2 m (blue), A-Scan. 
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Chapter 6. Development of Alternative Sequence 

Classification Networks for Predicting Condition Rating 

of Bridge Decks  

6.1. Introduction 

The deterioration and required maintenance of critical infrastructure 

components, such as highways and bridges, requires billions of dollars of federal 

funding for many years (Fiocco, 1998; ASCE 2021; FHWA, 2021). Bridge inspection 

and data collection are a crucial part of Bridge Management System (BMS) for 

effective maintenance and rehabilitation investments. Regularly scheduled bridge 

inspections are currently the norm in the US since they provide valuable information 

in current condition and input for life cycle assessment. Furthermore, the Federal 

Highway Administration (FHWA) requires the regular inspection of such critical 

infrastructure components. The condition survey data of US bridges are stored in the 

National Bridge Inventory (NBI) database since 1992. Such database can be used to 

build data-driven models to predict the condition of highway bridges. Accurate 

condition predictions of bridges will provide reliable input for effective management 

and rehabilitation strategies and optimal allocation of resources and increased safety. 

 

Current efforts in predicting condition ratings of bridges include base models, 

survival models, and machine learning, ML, models. Base models are deterministic 

statistic-based models using historical data of bridge condition ratings from one set of 

bridges to forecast the condition of similar bridges. Survival models are probabilistic 

deterioration models based on a combination of survival analysis and Markov chain 

theory. In survival analysis, the remaining life of a bridge structure is calculated 

statistically. Thus, in the case of bridge deck condition the remaining life, in terms of 

deterioration to change into the following lower level of condition, is statistically 

determined. ML models are developed to forecast bridge conditions using deep 

learning algorithms. Under the Federal highway long-term bridge performance (LTBP) 

program an interactive web-based tool, InfoBridge, was developed that utilizes the 

three methods to predict the condition index of bridges (FHWA, 2021). 

 

Contrary to the base and survival models, ML models (i) can predict the 

condition rating of bridge decks with different length of input data, and (ii) can capture 

highly complex relations between variables and features (i.e., parameters affecting 

bridge performance), that otherwise may be challenging when relying on just 

engineering judgment.  

 

Machine learning methods have been used in civil engineering applications 

such as concrete strength prediction (Chou et al., 2014; Yu et al., 2018; Nguyen et al., 



 

 

 

109 

2019), structural damage recognition (Mangalathu & Jeon, 2019) and other areas.  Gao 

& Elzarka (2021) utilized a Decision Tree algorithm for scheduling culvert inspection 

based on their condition. Khalef & El-adaway (2021) employed natural language 

processing (NLP) and machine learning classifiers, such as K-nearest neighbor (KNN), 

support vector machine (SVM), decision tree, XGBoost, and others, to identify 

significant changes in federal aviation administration (FAA) contracts. 

 

 Huang (2010) used artificial neural network (ANN) to predict the bridge 

deterioration by pattern classification with accuracy of 75.39%. Nguyen and Dinh 

(2019) employed ANN on NBI data, by using only 8 parameters as input features to 

predict the condition rate of the bridge decks with accuracy of 73.6%. A sensitivity 

analysis also showed that most important predicting features are the age of the structure 

and the design load. Liu and Zhang (2020) developed a model to forecast bridge deck 

conditions from 26 NBI features and 2 climate factors (i.e., annual number of freeze-

thaw cycles and annual number of snowfalls). The study generated a convolutional 

neural network (CNN) which is useful when dealing with sequential data. However, to 

avoid inconsistency among condition ratings in the NBI database bridges with 

ascending condition rating were eliminated. Assaad & El-adaway (2020) employed 

artificial neural network (ANN) and K-nearest neighbor to predict the bridge deck 

condition. They showed that ANN can outperform the K-nearest neighbor model on 

Missouri NBI data by providing an accuracy of 91.44% versus 89.88%.  

 

Objective of this study was to develop alternative ML algorithms that better 

capture the highly complex relations between variables and features (i.e., parameters 

affecting bridge performance), by using sequential classification models and deep 

learning. Both long short-term memory (LSTM) and convolutional neural network 

(CNN) were utilized to predict the condition rating of bridge decks.  Data quality and 

processing, network architecture and performance assessment approaches are 

presented along with the models and study findings. In this study, a preliminary 

statistical analysis was performed on the NBI data to find the most relevant predictors. 

In addition, wider range of data (bridges of the states of Maryland and Massachusetts) 

were used in order to develop predicting model responsive to wider range of conditions. 

Selected models developed in this study outperformed those from previous studies. The 

results of sequence-to-sequence classification of a CNN on a subset of data (bridges 

with at least 10 records of condition index) showed the accuracy of more than 97% in 

estimating bridge condition. 

 

6.2. National Bridge Inventory (NBI) database 

The NBI database includes data from 617,084 bridges nationwide collected 

since 1992 (FHWA, 2020). From these, 5402 are located in Maryland. While several 

engineering features are measured and included in the database, the intervals of 

inspection are usually determined by the individual states and should be conducted at 

least every 24-months. The NBI features can be categorized in one of the following 

classes: bridge identification, age, geometric data, navigation data, bridge 
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classification, load rating and posting, proposed improvements, inspection data and 

condition ratings. Condition ratings are used to describe the existing, in-place bridge as 

compared to the as-built condition. Condition ratings are evaluated for deck, 

superstructure, substructure, and culvert. In this study, bridge deck condition rating was 

the focus of the analysis. While the NBI contains 137 features, some of these are 

correlated (FHWA 1995). For example, age can be calculated based on the inspection 

year and year built, or year reconstructed and year built. Therefore, a subset of these 

features was considered in this study, Table 6-1. 

 

6.3. Neural Network for Sequence Data 

After reviewing the NBI data for the above features, the format of the data was 

formulated to sequence data points for each bridge. These sequences do not qualify for 

time series forecasting due to the limited number of data points in some cases. On the 

other hand, ML can be trained to find bridges with similar conditions and behavior and 

predict the future condition. To this end, long short-term memory (LSTM) modeling 

was used, which is a form of recurrent neural network (RNN) and convolutional neural 

network (CNN) for sequence-to-one classification, and sequence-to-sequence 

classification. Figure 6.1 presents the models used for bridge sequence classification. 
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Table 6-1. Description of NBI features selected for analysis. 

Category No. Feature Description 
Item 

Number 

Data 

Type 

Identification 

 

1 Structure Number 
Unique code for each 

bridge 
8 - 

2&3 
Longitude and 

latitude 
 16 & 17 Num(a) 

Classification 

4 Toll Toll statues 20 Cat(b) 

5 Maintenance 
Agencies responsible for 

the maintenance 
21 Cat 

Inspection 

 

6 Date of inspection Date of inspection 90 Num 

7 

Designated 

Inspection 

Frequency 

 

Number of months 

between designated 

inspections. 

91 Num 

Age and Service 

 

8 
Traffic lanes on the 

structure 

The number of lanes 

being carried by the 

structure 

28A Num 

9 
Average daily 

traffic (ADT) 

Average daily traffic for 

the route. 
29 Num 

10 
Year of average 

daily traffic 

The year represented by 

the ADT. 
30 Num 

11 
Percent of Truck 

Traffic 
 109 Num 

12 Age 

Calculated from the 

difference between the 

current year (2020) and 

inspection year. 

-- Num 

Load Rating 

and Posting 
13 Design load 

indicate the live load for 

which the structure was 

designed 

31 Cat 

Structure Type 

and Material 

 

14 Structure kind 
Type of structure for the 

main span(s) 
43A Cat 

15 Structure Type 

The predominant type of 

design and/or type of 

construction 

43B Cat 

16 

Deck Structure 

Type 

 

The type of deck system 

on the bridge (only 

concrete; class 1 and 2) 

107 Cat 

17 

Surface Type, 

Membrane Type, 

Deck Protection 

Wearing surface and 

protective system of the 

bridge. 

108 (A, 

B, C) 
Cat 

Geometric 18 Structure Length 
Represent the length of 

the structure. 
49 Num 

Condition 19 
Condition Rating 

of Deck 

Describes the overall 

condition rating of the 

deck. 

58 Cat 

(a)Numerical 
(b)Categorical 
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Figure 6.1. Summary of neural network models used for bridge sequence classification. 

 

6.3.1. Long Short-Term Memory (LSTM) 

This method classifies sequence data using a long short-term memory (LSTM) 

network. An LSTM network is a type of recurrent neural network (RNN) that learns 

long-term dependencies between time steps of sequence data. The structure of a LSTM 

cell is shown in Figure 6.2. The main difference between the RNN and LSTM is the 

presence of the gating system which controls the flow of information. The activation 

function of the gates is the sigmoid function with outputs of 0 and 1. The governing 

equations are (Wang et al., 2018): 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)      (6-1) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)      (6-2) 

 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)      (6-3) 

 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ (𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)    (6-4) 

 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ (𝑐𝑡)        (6-5) 

 

Where: W is the weight and b is the bias; i, f, and o denote the input gate, forget gate, 

and output gate, respectively; c denotes memory cell and h denotes hidden vector 

sequence; 𝜎 is the activation function. Although the equations of the gates have the 

same form, the weight matrices are different in values and in their functions. Input gate 

controls information flowing into memory cell ct. Forget gate controls information of 

the last memory cell ct-1 accumulated in the current memory cell ct. The output gate 

influences information flowing into the hidden state ht. With the system of gating units, 

the gradient is well controlled, thus preventing the gradients vanishing, or exploding 

problem, which is a major issue for RNNs. 

 

The LSTM model inputs sequence data into a network and makes predictions 

based on the individual time steps of the sequence data. One of many advantages of 

LSTM is that the length of each sequence can be different, considering the difference 
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in record length for each bridge or feature in the NBI data. Thus, such an ML approach 

is suitable for this modeling. 

 

 
Figure 6.2. Long short_term memory cell (Wang et al., 2018). 

 

6.3.1.1. Network Architecture 

The long short-term memory (LSTM) network modeled in this study includes 

a sequence input layer, a BiLSTM layer, a fully connected layer, a softmax layer, and 

a classification layer. Each layer is briefly described next: 

 

● Sequence Input Layer: A sequence input layer inputs sequence data to a network. 

● BiLSTM Layer: As opposed to conventional RNN, which as a forward network 

can only exploit input data, in LSTM, a bidirectional layer can be employed. A 

bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies 

between time steps of time series or sequence data in both forward and backward 

directions. Figure 6.3 presents a BiLSTM layer.  
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Figure 6.3. Bidirectional long short_term memory layer (Wang et al., 2018). 

 

● Softmax Layer: A softmax layer applies a softmax function to the input. A Softmax 

layer is used when there are multiple classes as output. In the softmax layer, input, 

which is a vector x of k real numbers, is normalized into a probability distribution 

consisting of k probabilities proportional to the exponentials of the input numbers.  

● Classification Layer: A classification layer computes the cross-entropy loss for 

multi-class classification problems with mutually exclusive classes. For typical 

classification networks, the classification layer must follow the softmax layer. In 

the classification layer, the train network takes the values from the softmax function 

and assigns each input to one of the K mutually exclusive classes, which refer to 

condition ratings in this study (0 to 9). The cross-entropy function is defined from 

(Bishop, 2006): 

 

𝑙𝑜𝑠𝑠 = −∑ ∑ 𝑡𝑖𝑗
𝐾
𝑗=1

𝑁
𝑖=1 ln 𝑦𝑖𝑗     (6-6) 

 

where N is the number of samples, K is the number of classes, 𝑡𝑖𝑗 is the indicator that 

the ith sample (i.e., bridge) belongs to the jth class (i.e., condition rating), and 𝑦𝑖𝑗 is the 

output for sample i for class j, which in this case, is the value from the softmax function. 

That is the probability that the network associates the ith input with class j. Given a 

bridge (bridge i), 𝑦𝑖𝑗 vector includes the probabilities of that bridge belonging to each 

class (j). For example, y= (0.1, 0.1, 0, 0.1, 0, 0.2, 0, 0, 0, 0.5) means the probability that 

bridge i has a condition rating of 9 is 0.5, and that is the most probable class. Therefore, 

bridge i is classified as a bridge with a condition rating of 9.  

6.3.1.2. Optimization Algorithm (Solver) 

For improving the performance of the neural network, the loss should be 

minimized. A solution for this optimization problem is changing and updating the 
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parameters in order to find the minimum for the loss function. A gradient-based model 

updates the parameters in the direction of the steepest descent. The amount of the 

update or size of each step is called the “learning rate”. The learning rate can be 

constant for all epochs or can be reduced in uniform intervals. Stochastic gradient 

descent (SGD) performs a parameter (weights) update for each set of input and output 

that are present in the training set. The only problem is that its convergence behavior 

is usually unstable, especially for relatively larger learning rates and when the training 

datasets contain diverse examples. In a stochastic gradient descent approach with 

momentum, the convergence properties are improved. The momentum term has 

physical meanings. Momentum improves SGD to follow the dimensions in which 

gradients point in the same direction and avoid those dimensions in which gradients 

keep on changing directions (Ruder, 2016).  

 

Another optimization method is adaptive moment estimation (ADAM), a 

method for efficient stochastic optimization that only requires first-order gradients with 

little memory requirement (Kingma and Ba, 2014). The method computes individual 

adaptive learning rates for different parameters from estimates of first and second 

moments of the gradients.  

6.3.1.3. Sequence-to-one and Sequence-to-Sequence classification using LSTM 

To train a deep neural network to classify the sequence data, a sequence-to-one 

or sequence-to-sequence LSTM network can be used. A sequence-to-sequence LSTM 

network can be employed to make different predictions for each individual time step 

of the sequence data. The architecture of sequence-to-sequence LSTM network used in 

this study is similar to sequence-to-one LSTM architecture, except a conventional 

LSTM layer is used instead of the BiLSTM layer. Contrary to sequence-to-one 

classification where the class of each sequence is the latest condition rating, in 

sequence-to-sequence classification input at each time step is labeled with the next 

inspection’s condition rating. Architecture of both LSTM networks is shown in Figure 

6.4. 

 

 

Figure 6.4. Architecture of LSTM networks. 

6.3.2. Convolutional Neural Network (CNN) 

There are three types of layers in a convolutional neural network: convolutional 

layers, pooling layers, and fully connected layers:  

● Convolutional Layers (CONV): Convolutional neural network is a particular type 

of neural network developed for applying on two-dimensional image data. 

However, it can be employed for one-dimensional and three-dimensional data. 

Similar to a traditional neural network, a convolution is a linear operation which 
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includes the multiplication of a set of weights with the input. Since this technique 

was designed for two-dimensional data, the multiplication is done for an array of 

input data and a two-dimensional array of weights, called a filter or a kernel. The 

filters are the “neurons” of the layer. They have input weights and output values. 

The input size is a fixed square called a patch or a receptive field. A convolution is 

the application of a filter to an input that results in an activation. Repeated 

application of the same filter to an input result in a map of activations called a 

feature map. A given filter scans across the entire previous layer and moves one 

time step at a time. Each position results in an activation of the neuron and the 

outputs are collected in the feature map. Every filter is a small window (with width 

and height, a.k.a. filter size), which extends through the full depth of the input 

volume. For example, a typical filter on the first layer of a CONV might have size 

5x5x87 (i.e., 5 width and height, and 87 features). As the filter slides over the width 

and height of the input volume a 2-dimensional activation map is produced that 

gives the responses of that filter at every spatial position. A small filter size such as 

1×1, 2×2, or 3×3 is simple and captures information from local data. Whereas a 

large filter size such a 5×5 filter is making the model more computationally 

expensive. 

● Pooling Layers: After convolutional layer(s), pooling layers are used to generalize 

or compress the feature representations. Thus, by down-sampling the previous 

layers feature map, the overfitting of training data is reduced. There are two 

common techniques applied in a pooling layer, taking the average or the maximum 

of the input data to create its feature map. 

● Fully Connected Layers (FC): Fully connected layers are the normal flat feed-

forward neural network layer. Fully connected layers connect every neuron in one 

layer to every neuron in another layer.  

● Dropout Layer: A relatively small and noisy training data set can lead to overfitting 

problems. In that case, the neural network learns from the noise in the data, which 

results in poor performance of the model when evaluated by a new data set (e.g., a 

testing data set). A dropout layer randomly drops data from input or sets input 

elements to zero. By doing so, the network architecture among iterations is changed 

and overfitting is avoided (Srivastava et al., 2014).  

6.3.2.1. Sequence-to-Sequence Classification Using 1-D Convolutions (Temporal 

Convolutional Network, TCN) 

Potential benefits of using temporal convolutional networks (TCN) can be: a) 

better computation parallelism (in contrast to RNN, where the predictions for later time 

steps must wait for their predecessors to complete); b) better control over the receptive 

field size (i.e., the receptive field size is more adjustable by stacking more dilated casual 

convolutional layer or increasing the filter size); c) better control of the network's 

memory footprint during training (contrary to LSTM, which take up a lot of memory 

to store partial results for its multiple cell gates. In a TCN the filters are shared across 

a layer; and d) more stable gradients (Bai et al., 2018).  
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A TCN architecture, shown in Figure 6.5, consists of multiple residual blocks, 

each containing two sets of dilated causal convolution layers with the same dilation 

factor, followed by normalization, ReLU activation, and spatial dropout layers. In a 

residual block, the value at the beginning of the block (x) is directly added to the end 

of the block (𝑥 + 𝐹(𝑥)). A 1-by-1 convolution layer is included on the input for when 

input and output do not have the same dimension, and a final activation function is 

applied. While some of the layers were explained in the previous section, the remaining 

are described next. 

 

● Dilated Casual Convolution: In order to enable very deep models (i.e., when there 

is more than one hidden layer) with a relatively reduced number of parameters, a 

suitable approach is to stack many convolution layers with small receptive fields. 

The main building block of a temporal convolutional network is a dilated causal 

convolution layer which operates over the time steps of each sequence. In this 

context, "causal" means that an output at time t is convolved only with data from 

time t and earlier in the previous layer, and no information is leaked from future 

to the past (Bai et al., 2018). To achieve large receptive field sizes the dilation 

factor of subsequent convolution layers is increased exponentially. Dilation is 

equivalent to bringing a fixed step between every two adjacent filter taps. For 

dilation factor (d) equal to 1, the dilated convolutional layer acts like a regular 

convolutional layer. When d increases, the convolutional layer captures a wider 

range of input from the previous layer (Bai et al., 2018). 

● Instance Normalization: In order to give equal weight/importance to each feature, 

the continuous features should be normalized. The instance normalization function 

normalizes the input by first calculating the mean μ and the variance σ
2
 for each 

observation over each input channel in each training example. Then it calculates 

the normalized activations as: 

 

𝑋̂ =
𝑋−𝜇

√𝜎2+𝜀
          (6-7) 

where 𝜀 is a very small value to avoid zero in the denominator.  
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Figure 6.5. Architecture of temporal convolutional network (TCN). 

 

● Rectifier Linear Unit (ReLU): In a neural network, the activation function is 

responsible for transforming the summed weighted input from the node into the 

activation of the node or output for that input. The rectified linear unit (ReLU) is a 

simple and quick activation function. The ReLU is a piecewise linear function that 

returns the input if the input is positive or returns zero, otherwise. Equation 6-8 

describes the ReLU. 

𝑓𝑅𝑒𝐿𝑈(𝑥) = {
𝑥        𝑥 > 0
0        𝑥 < 0

                                (6-8) 

The rectified linear activation function overcomes the vanishing gradient 

problem, allowing models to learn faster and perform better. The gradient of the 

loss function approaches zero, so-called vanished, when a lot of layers use specific 



 

 

 

119 

activation functions such as the sigmoid function. The equation of the sigmoid 

function is as following: 

𝑆(𝑥) =
1

1+𝑒−𝑥
         (6-9) 

As can be seen in Equation 6-9, the sigmoid function projects a large input 

space into a small output space between 0 and 1. Thus, even a large change in the 

input will appear only as a small change in the output. 

● Spatial Dropout: As explained in the previous section, the role of dropout layer is 

avoiding overfitting. However, when adding the dropout layer before the 1 × 1 

convolutional layer, generally increases the training time but does not prevent 

overfitting. Since the adjacent feature maps can be correlated, if only one of them 

is dropped, the outputs can still be correlated. On the other hand, in a spatial dropout 

layer, the adjacent cells in the dropped-out feature map are either all 0 (dropped-

out) or all active. This method improves the performance of the model by keeping 

out the dependent cells (Tompson et al., 2015).  

6.4. Data Pre-processing 

As mentioned earlier, the performance of the alternative ML models was tested 

on Maryland bridges.  In this study, concrete bridge decks with cast-in-place concrete 

and precast concrete were identified in the NBI deck structure type (item 107). The 

condition rating system is often qualitative and depends on the inspector's expertise and 

opinion. Din and Tang (2016) reported some of the challenges associated with the NBI 

data and employed spatial and temporal processing to identify outliers. The study 

concluded that one of the most important issues was reported increases in condition 

rating with no inputs in reconstruction or rehabilitation. In a machine learning 

approach, if these variations are not specified and identified, the model can be 

misleading or not accurate. Therefore, such instances require particular attention during 

the review of the dataset to be used in ML modeling. An example of such occurrence 

in increase of condition rating is shown in Figure 6.6.  For example, for this bridge the 

condition rating increased from 5 to 6 and then again from 4 to 7. The first one can be 

due to either maintenance or difference in the inspector's judgment, but the second 

increase is believed to be due to maintenance.  Thus, review of the dataset in ML 

modeling is an important step. In order to keep as much as possible of the useful 

information and a suitable size of the dataset for the analysis, the missing values can 

be inferred. Random forest is an approach that can be used to estimate missing data of 

continuous and/or categorical data. In this method, a random forest model is built for 

each variable. Then the model was used to predict missing values in the variable based 

on the observed values. The advantage of random forest method includes a) handling 

non-normally distributed data; and b) developing non-linear relationships among 

variables (Hong and Lynn, 2020). For example, the missing data of latitude, longitude, 

ADT, and year ADT were substituted by a combination of available records outside the 

NBI database and random forest estimates. For example, since there have been none, 

or more than one set of latitude and longitude for a specific bridge, latitude and 

longitude reported for bridges in a specific county were used. Random forest was 
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employed to predict ADT and year ADT based on the bridge latitude, longitude, and 

available ADT data from historic traffic counts in the State.   

 

 Longitude and latitude of bridges were initially selected since the location of 

the bridge can be related to climate and weather conditions. Freeze and thaw cycles and 

thermal fatigue (related to changes in diurnal and night temperature) affect deck 

performance and condition. Total annual snowfall (SNOW, in millimeters) and number 

of days with snowfall greater than 1 inch (25 mm) (DSNW) were parameters selected 

from the National Centers for Environmental Information (NOAA) data base. Based 

on the longitude and latitude of each station in Maryland, the data of the closest station 

to each bridge was used to extract SNOW and DSNW for each year. 

 

In the NBI database, bridges may have data with length of 1 to 27 records. 

Figure 6.7 provides the distribution of such records, while Figure 6.8, provides the 

distribution of bridges with different lengths of data sequence after removing bridges 

with irregular condition records. 

 

In order to implement categorical data such as “Toll” or “Deck Structure Type”, 

one-hot encoding was employed. In the one-hot encoding method, the column 

including the categorical data is replaced by numerical columns, consisting of 0 and 1. 

Basically, each column is the response to the question of whether the case belongs to 

each category or not. For example, for feature “Deck Structure Type”, a column 

representing code 2 (concrete precast panel), includes 1 when the deck structure type 

is concrete precast panel, and 0 for other cases. This approach changes the number of 

columns/ features from 19 to 87. The continuous variables, except condition ratings, 

are normalized in order to assign equal weight/importance to each feature. 

 

 

Figure 6.6. Variation in deck condition rating of a bridge for 27 years. 
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Figure 6.7. Distribution of sequence length of Maryland’s bridges. 

 
Figure 6.8. Distribution of sequence length of Maryland’s bridges after data 

cleaning. 

6.4.1. Dimensionality Reduction 

Curse of dimensionality (Taylor, 1993) is a phenomenon when the number of 

features is relatively high in relation to the observations. The high dimensionality may 

lead to increase in time or memory requirement for analysis processing, or overfitting 

problems and decrease in testing accuracy. In order to reduce the number of features, 

feature selection method is employed using scores or statistical methods. The features 

are divided into categorical data and numerical data since for each type of data the 

method is different. The data type for each feature was presented in Table 1. For 

categorical data two statistical approaches were employed to select the most related 

features to the output: the Pearson’s chi-squared hypothesis test; and the mutual 
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information approach. Pearson's chi-squared statistical hypothesis is an example of a 

test for independence between categorical variables. The chi-square test of 

independence compares the observed frequencies of a categorical data with the 

expected frequencies of the categorical data. The null hypothesis in this case is that the 

input and output are independent. If the p-value of the test result is less than or equal 

to a significance level, the null hypothesis is rejected, and the variables are dependent. 

The mutual information approach is a measure of the dependencies between variables 

while decreasing the entropy or surprise from the dataset transformation. The results of 

Pearson’s chi-squared test and mutual information are shown in Figure 6.9. The bars 

represent the score of the features under assessment. From the Pearson’s chi-squared 

the most relevant features include load, maintenance, deck protection, structure type, 

and membrane. From the mutual information method, the most relevant features 

include deck protection, load, structure kind, structure type, and surface type. Thus, the 

common features selected by both methods (i.e., load, deck protection, and structure 

type) can be selected, or build two models with features selected from each method and 

then compare the results.   

 

For selecting the most relevant numerical features, analysis of variance 

(ANOVA) was employed. ANOVA uses the F-test to compare between-group 

variability to within-group variability. Equal variance between groups means that 

feature has no significant impact on the response and can be removed from model 

training. The p-values for each feature are shown in Table 6-2. The selected features 

from this method are those with low p-values, which include age, inspection frequency, 

inspection year, year ADT, and ADT.  

 

Based on the selected features from such approaches three data sets, see Table 

6-3, were prepared to train the models. The model with the highest accuracy will 

identify which features are the most relevant.   

  

 
 

(a) Pearson’s chi-squared (b) Mutual information 

Figure 6.9. Score of categorical features, with (a) Pearson’s chi-squared & (b) 

Mutual information. 

Table 6-2. P-values of numerical features. 
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LAT LONG Lanes ADT Year 

ADT 

Truck Age Year of 

Inspection 

Length Inspection 

Frequency 

2.34e-20 2.29e-18  4.85e-33  5.50e-42 3.55e-43 2.51e-27 0.0 4.07e-61 1.12e-26 0.00e+00 

 

Table 6-3. Datasets from the data reduction analysis. 

Dataset  Features 

Maryland 

NBI_1 

Selected numerical features + 

selected categorical features (from 

chi-squared method) 

Age, Inspection Frequency, Inspection Year, Year 

ADT, ADT, Length, Load, Maintenance, Protection, 

Structure Kind, and Membrane. 

Maryland 

NBI_2 

Selected numerical features + 

selected categorical features (from 

mutual information method) 

Age, Inspection Frequency, Inspection Year, ADT, 

Year ADT, Length, Protection, Load, Structure Kind, 

Structure Type, and Surface Type. 

Maryland 

NBI_3 

Selected numerical features + 

selected categorical features 

(common between two methods) 

Age, Inspection Frequency, Inspection Year, Year 

ADT, ADT, Length, Load, Protection, and Structure 

Kind. 

 

6.5. Results of ML Modeling 

The results of the alternative ML models explored in this study are presented 

next. 

6.5.1. Long-Short Term Memory (LSTM): Sequence-to-one Classification 

The input data for this model includes the sequences for each bridge and the 

latest condition rating for each bridge is the class of that sequence. Therefore, there are 

10 classes corresponding to condition ratings of 0 to 9. The bridges selected for learning 

should have data reported for at least two years, in which the length of input is 1. The 

shape of the data is shown in Figure 6.10. In this example, the length of the sequences 

of the first and second bridge are 4 and 6, respectively. Some features like structure 

length are expected to stay constant through the years and others like ADT are expected 

to change through time.  

 

During training, the training data are split into mini batches, during data 

cleaning, cases with only one data point are eliminated resulting in a dataset with about 

3600 bridges. The size of the training data, validation data, and testing data was 70%, 

10%, and 20%, respectively. The architecture of the network was shown in Fig. 4. To 

tune the parameters and find the best approach to classify NBI data, different case 

scenarios were tried. The best result was obtained when ADAM was used as a solver 

with a base learning rate of 0.001.  To find the dataset with the highest performance, 

the three datasets introduced in Table 3 were trained by Sequence-to-one LSTM. The 

accuracy of testing on Maryland NBI_1, Maryland NBI_2, and Maryland NBI_3 was 

84.4%, 84.94%, and 82.23%, respectively. Therefore, Maryland NBI_2 was selected 

to train the other models as well.  
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Figure 6.10. Input data for LSTM for a bridge with length of sequence of 4 and 

6. 

The confusion matrix for sequence-to-one LSTM on Maryland NBI_2 with 

variable sequence lengths is shown in Figure 6.11. This confusion matrix shows for 

cases with condition rating greater than 3, the predicted class is within the range of 

actual class ±1. Therefore, even when the total accuracy of the model is at 82.5%, the 

incorrect predicted values (i.e., false positive or false negative) do not significantly 

impact the bridge management decisions. As Liu and Zhang (2020) suggested, the 

bridges with condition ratings less than 3 can be combined as one class or removed. 
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Figure 6.11. Confusion matrix for sequence-to-one LSTM for Maryland NBI_2 with 

variable sequence lengths. 

 

6.5.2. Long-Short Term Memory (LSTM): Sequence-to-Sequence 

Classification 

In this model the same data set was used as in the LSTM sequence-to-one 

classification. Figure 6.12 indicates how the data are labeled in a sequence-to-sequence 

classification. In this example, the bridge condition rating sequence has a length of 10 

since the data have been collected biennially for 20 years. Each condition rating in the 

sequence (input) is labeled with the condition rating of the next inspection, (i.e., the 

class of each inspection rating is next year’s condition rating). Table 6.4 summarizes 

the results of ML modeling with sequence-to-sequence LSTM. The results of training 

with sequence-to-sequence LSTM showed that SGDM is a better solver for 

optimization in this case, Table 6-4.  

Figure 6.13 shows an example of surveyed and predicted condition rating for a 

bridge with length of 26 time-steps. Except the condition rating of the first year, all 

remaining predictions were equal to those reported in the dataset.  

 

 

Figure 6.12. Labeling the sequence of condition rating sequence-to-sequence 

classification. 

Table 6-4. Trial of sequence-to-sequence LSTM with different parameters 

Trial No. Solver Mini-batch Size Epochs Base Learning Rate Testing Accuracy 

1 SGDM 32 50 0.01 85.10% 
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2 ADAM 32 50 0.001 78.0% 

 

 

Figure 6.13. Comparison of predicted and actual condition rating of a bridge deck by 

sequence-to-sequence LSTM. 

6.5.3. Convolutional Neural Network: Sequence-to-One Classification 

The drawback of CNN sequence-to-one classification relative to LSTM is that 

the sequences should have similar length. Therefore, only bridges with sequence length 

of 10 or more with inspection intervals of 24 months were selected, resulting in about 

3000 bridges. The first 10 data points of each sequence are selected to prepare a three-

dimensional input (bridges, time steps, features). Figure 6.14 shows a schematic of the 

input data. The frequency of sampling is 0.5 year-1, so that the total period is 18 years, 

and the condition rating for the 20th year is the class of the sequence. The layers include 

two CNN followed by a dropout layer for regularization, then a pooling layer. After the 

CNN and pooling, the learned features are flattened to one long vector and pass through 

a fully connected layer before the output layer is used to make a prediction. The fully 

connected layer is for providing a buffer between the learned features and the output to 

understand the learned features before making a prediction. For this model, first a 

standard configuration of 64 parallel feature maps (number of filters) followed by 128 

and 256 feature maps, and a kernel size (filter size) of 3 was used. The feature maps 

are the number of times the input is processed or interpreted, whereas the kernel size 

(number of filters) is the number of input time steps considered, as the input sequence 

is read or processed onto the feature maps. The efficient ADAM version of stochastic 

gradient descent is then used to optimize the network, and the categorical cross entropy 

loss function is used, given that learning a multi-class classification problem is 

underway. A fully connected layer (dense layer) with 100 neurons and ReLU activation 

was added before the softmax layer.  
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The accuracy of testing for this model was 69.37%, Table 6-5, Trial No.1. 

Different parameters were tried to find the optimum architecture. Table 6-5 includes 

the summary of the various trials. To mention that trial No.4 is similar to the model 

proposed by Liu and Zhang (2020) providing similar performance. The filter size 

controls the number of time steps considered in each “read” of the input sequence, that 

is then projected onto the feature map (via the convolutional process). A large kernel 

size means a less rigorous reading of the data, which may result in a more generalized 

snapshot of the input. Figure 6.15 shows the architecture of Trial 6 with the highest 

accuracy.  

 
Figure 6.14. Input data preparation for sequence-to-one CNN (Liu and Zhang, 

2020). 

 

Table 6-5. Summary of the trials and results of the CNN sequence-to-one 

classification. 

Trial 

No.  

Number of filters Size of filters No. of 

FCs 

(Neurons) 

Max 

Pooling 

Testing 

Accuracy CONV1 CONV2 CONV3 CONV1 CONV2 CONV3 

1 64 128 256 3 3 3 1 (100) Yes 69.37% 

2 64 128 256 3 3 3 3 (100) Yes 69.71% 

3 64 128 256 3 3 3 3 (500) Yes 70.65% 

4 64 128 256 3 3 3 3 (500) No 81.35% 

5 128 128 - 5 5 - 3 (500) No 81.41% 

6 32 128 - 5 5 - 3 (500) No 82.83% 
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Figure 6.15. Architecture of sequence-to-one classification built in Trial 6. 

6.5.4. Temporal Convolutional Network (Sequence-to-Sequence CNN) 

Even though TCN can perform on data with different lengths, for sake of 

simplicity the lengths were kept uniform. Thus, the same data used in the sequence-to-

one CNN were also used in the sequence-to-sequence CNN. However, the labeling was 

similar to the sequence-to-sequence LSTM classification (Figure 6.12). The TCN 

model was formed of 4 blocks, and input channels equal to the number of features. The 

mini-batch size was 100 and the dropout factor was 0.05. In contrast to other methods, 

the learning rate was not constant. The initial learning rate was 0.001 and after every 

12 epochs it dropped by a 0.1 factor. Three different filters were tried with size of 3. 

The number of filters shows a significant impact on accuracy of testing. By changing 

the number of filters from 100 to 150 and then to 300, the accuracy increases from 

94.04% to 95.22% and 95.99%. This is because a larger number of filters provides the 

ML algorithm the opportunity to consider the data through a greater window and learn 

from similar cases. The ML algorithm was also tested when condition rating was 

considered as the only input as well. The accuracy of testing of this model (with 300 

filters) was 95.95%. This implies that the ML algorithm learns from condition rating 

per-se more than any other variable.  

 

To compare the performance of the different models, the Maryland NBI_2 data 

was split manually (as opposed to randomly) and the alternative networks were trained 

and tested. The results are shown in Table 6-6. The first portion of the Table presents 

the results of models where training sequences with different length is possible, while 

the second portion is related to the results of models with sequence length of 10. The 

network architectures are comparable with the best-case scenarios of each model tested 

in the previous sections. Even though different optimization methods (solver) were 

tried for each model, Table 6-6 presents those with the highest testing accuracy. The 

results indicate that in addition to the network considered, performance depends on 

whether constant sequence length or variable sequence length is used. Furthermore, for 

the sequence-to-one LSTM model on input sequences with variable lengths, ADAM 



 

 

 

129 

outperforms SGDM with a difference of 5.5%. On the other hand, in the case of 

constant length sequences, SGDM method outperforms ADAM solver by 3.3%. The 

results showed that even though sequence-to-sequence CNN should be able to train 

dataset with different sequence length, a low accuracy was observed and thus the model 

was not considered. Sequence-to-sequence LSTM provided better performance than 

sequence-to-one LSTM, and sequence-to-sequence CNN performed better than 

sequence-to-one CNN. Overall, sequence-to-sequence CNN provided better accuracy. 

 

 

 

 

 

 

 

 

 

Table 6-6. Alternative Model Performance 

Model Data Accuracy of Testing 

LSTM (Sequence-to-One) Variable Length (>1) 83.18% 

LSTM (Sequence-to-Sequence) Variable Length (>1) 88.93% 

Model Data Accuracy of Testing 

LSTM (Sequence-to-One) Constant Length=10 88.87% 

LSTM (Sequence-to-Sequence) Constant Length=10 89.16% 

CNN (Sequence-to-One) Constant Length=10 86.41% 

CNN (Sequence-to-Sequence) Constant Length=10 95.22% 

 

6.6. Assessing ML Models Response with Additional Data 

In order to evaluate the proposed models with data from other states, the bridge 

data of the state of Massachusetts (MA) were added to the database. In order to 

randomize the results, in the first step, the location data and state codes are eliminated 

as the previous case. The number of bridges included in this section from Maryland 

(MD) and Massachusetts (MA) data after data cleaning is 16,052 with different length 

of data, and 2,461 with length of at least 10 records. In order to find the most relevant 

data to this dataset, ANOVA, Pearson’s chi-square, and mutual information was 

performed on the data and the same features showed high relevance and score. 

However, primary analysis with sequence-to-one LSTM showed that instead of the 

second group (Table 6-3) the first group of the features provided better accuracy for 

the testing dataset. The accuracies of testing on this database with previous ML models 

are summarized in Table 6-7 for comparison purposes. One of the reasons for the 

decrease in LSTM modeling can be the length of the Massachusetts data. Majority of 

MA data have a short length (i.e., more than 7700 bridges have only 4 or less records 

of evaluation).  Figure 6.16 shows the confusion matrix for sequence-to-one LSTM on 

sequences with lengths higher than 10 (first scenario in Table 6-7). Similar to the 

previous modeling with the Maryland NBI_2 dataset (Figure 6.11), the confusion 
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matrix shows for cases with condition rating greater than 3, the predicted class is within 

the range of actual class ±1. To investigate the effect of the location and weather, 

longitude and latitude of the bridges were added to the training and testing data. 

However, no further improvement was observed. 

 

Figure 6.16. Confusion matrix of sequence-to-one LSTM for MD and MA 

bridges (variable lengths) 

 

 

Table 6-7. Alternative Model Performance with MD and MA data. 

Model Data Accuracy of Testing 

LSTM (Sequence-to-One) Variable Length (>1) 82.51% 

LSTM (Sequence-to-Sequence) Variable Length (>1) 84.90% 

Model Data Accuracy of Testing 

LSTM (Sequence-to-One) Constant Length=10 80.51% 

LSTM (Sequence-to-Sequence) Constant Length=10 85.60% 

CNN (Sequence-to-One) Constant Length=10 92.18% 

CNN (Sequence-to-Sequence) Constant Length=10 97.23% 

  

6.7. Summary & Conclusions 

In this study alternative ML models were explored using the NBI database. 

These included long short-term memory (LSTM) and convolutional neural network 

(CNN) with sequence-to-one and sequence-to-sequence classification to predict the 

condition rating of bridge decks. The objective was predicting bridge deck condition 



 

 

 

131 

rating based on a sequence of condition ratings and variables in NBI that affect 

performance. In sequence-to-one classification, the condition rating of the last bridge 

deck assessment was the class of the whole sequence, whereas in sequence-to-sequence 

classification the class of each condition rating was its condition rating at the next 

assessment. Sequence-to-sequence classification models outperformed the sequence-

to-one classification that past studies have focused on. Thus, the proposed models 

outperformed those developed in previous studies in terms of accuracy in prediction. 

While bridges from the state of Maryland were initially used in this study the State of 

Massachusetts bridge deck data were added from NBI to assess the validity of these 

models to a wider set of bridges and region. As expected, expanding the data with 

bridge decks from other regions affected model response, yet provided acceptable level 

of accuracy. Such effects are attributed to the impact of wider set of climatic effects on 

materials and structures’ performance; wider range of materials and mixtures used; 

alternative construction and quality control practices and specifications; variations in 

design standards for the same type of bridge deck and structures; and other material 

and construction practices. Further ML modeling can address transferability to other 

regions and bridge deck types, and assessing the effect of introducing new data from 

sources other than NBI. 
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Chapter 7. Conclusions and Recommendations 

In this study, alternative non-destructive testing (NDT) methods were examined 

for potential adoption in the QA of concrete. The objective of the research was to assess 

the accuracy and precision of these methods in detecting concrete quality and flaws or 

features within concrete members. The integration of these NDTs in QA will overcome 

some shortcomings of conventional destructive methods since the NDTs are quick, 

inexpensive, impose less disruption to traffic and structure since they do not require 

cores, and can be repeated with minimal impact on cost and testing time.  

Other specific objectives included: a) developing relationships between 

maturity index and those concrete properties that are obtained from NDT, which can 

decrease or possibly eliminate the number of concrete samples tested in compressive 

strength and other destructive tests; b) assessing non-uniformity in conventional 

concrete by employing different NDTs, and eventually using chloride permeability 

tests; c) assessing NDTs in detecting and locating defects in a concrete slab; d) 

expanding the laboratory study with field results in assessing GPR response in 

evaluating a deteriorated bridge deck; and e) predicting the condition of infrastructures 

such as bridges with high accuracy to decrease the frequency of testing and thus the 

associated cost and effort.  

a) Relationships between maturity index and concrete properties from NDT 

 

Chapter 2 presented the results of extensive experiments, which were a combination of 

destructive and non-destructive tests on 11 concrete mixtures, were presented. The tests 

included compressive strength, infrared thermography (IRT), ultrasonic pulse velocity 

(UPV), fundamental resonance frequency, and rebound hammer. The results showed 

strong relationships between UPV and resonance frequency with maturity index. Also, 

the same was concluded when IRT was used instead of embedded sensors. The strong 

relationships of UPV and resonance frequency with maturity index led to developing a 

generalized model, or “master curve” concept, to predict concrete properties at different 

ages based on maturity index and defining transfer functions using the most relevant 

parameters (such as compressive strength, unit weight, and other). The NDT data and 

maturity index of these mixtures was also used to develop a model for predicting 

compressive strength with high R2 (i.e., 0.93). It should be noted that even though the 

NDTs, such as UPV, IRT, and resonant frequency, have high accuracy and precision 

in predicting compressive strength, rebound hammer results did not provide the same 

repeatability level for the laboratory samples.  

 

b) Assessing non-uniformity in concrete with NDTs 

 

In Chapter 3 experiments on a series of concrete samples were designed to evaluate the 

accuracy and precision of NDTs, such as UPV, IRT, and resonance frequency, in 

assessing concrete uniformity. Various concrete samples with different mixtures and 
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production procedures were prepared to represent honeycombing and segregation in 

concrete. UPV was the most accurate NDT in identifying honeycombing and 

segregation within concrete. Since the voids in honeycombed and segregated samples 

are localized, resonant frequency was not able to identify the defected samples and/or 

the defect extent as accurately as UPV. The limitation in sample size and dimension 

ratio makes the method more disadvantageous for this detection purpose. For the 

segregated concrete samples rapid chloride permeability (RCP) and rebound hammer 

testing were also performed. The rapid chloride permeability was performed to relate 

density and permeability to the degree of segregation and NDT response. The 

difference in chloride permeability was in total agreement with UPV difference at the 

top and bottom of the segregated samples and to some degree with the rebound number 

results. Rebound hammer showed good relationship with the results of UPV and RCP. 

This could be the result of the high sensitivity of the rebound hammer to the presence 

of coarse aggregate at the vicinity of the concrete surface. 

 

c) Detecting delamination in concrete with NDTs  

 

The results of the experimentation in evaluating ultrasonic pulse echo (UPE) and 

ground penetrating radar (GPR) response in detecting delamination in concrete slab 

was presented in Chapter 4. Alternative NDTs, such as IRT and UPV, were only used 

to estimate the shear wave velocity in concrete from similarly cured concrete samples. 

The measurements with UPE were repeated from day 1 to day 60. Testing was repeated 

two or three times a day to evaluate the repeatability of each method. The accuracy of 

UPE in detecting delamination depth and extent was improved as the concrete surface 

dried. UPE was able to estimate the depth of delamination with a deviation of 0.1 to 

2.4 cm. GPR only showed minor evidence of presence of delamination. This was due 

to the dielectric properties of the selected material representing delamination (i.e., 

plexiglas), limited thickness of both the delamination layer and dimensions of the slab. 

The presence of rebar also contributed to such limitation. Rebound hammer was also 

performed on the concrete slab since a decrease in rebound number at delaminated 

areas (due to hollowness) was expected. However, in this study, since the concrete was 

relatively fresh and the delaminated area was not hollow (i.e., represented by 

plexiglass) the effects on rebound number were negligible. To simulate the Lamb wave 

propagation in the concrete slab, a linear-elastic finite element model (FEM) was built 

in ABAQUS. The results of the finite element simulation were compared with the 

experimental results. FEM not only provides a quantitative means of assessing the NDT 

performance, but also provides the means of modeling complex field conditions and 

reducing the need for costly experimental testing. The depth of the delamination 

identified by FEM was comparable to the experimental results and the minor 

discrepancies that can be due to the possible movement of the plexiglass or the 

discrepancies between the concrete actual properties and assumed values in FEM.  
 

d) Evaluating bridge deck health with GPR 

 

In order to evaluate GPR response in bridge deck condition assessment, two GPR 

antennas with frequencies of 600 MHz and 2000 MHz were used on an older bridge. 
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The experimental results of this study were used to identify the thickness of the asphalt 

overlay on the concrete deck, and the location and condition of the reinforcement. The 

results were validated with ground truth data obtained from drilled holes and open 

bridge deck joint surveys. This study indicated that the location and the extent of the 

asphalt overlay thickness and corroded reinforcement can be determined with accuracy 

of 1 to 2 cm. In addition, the condition of the reinforcement was assessed and the 

location of the corroded or missing rebars were identified through a series of B-scans. 

The use of GPR in health monitoring and assessing the condition of bridge 

superstructure and substructure is recommended to avoid a potential disastrous collapse 

of the bridge, with substantial cost and safety consequences.  

 

e) Predicting bridge deck condition with Machine Learning  

Transition from lab to field conditions where more complex conditions may be 

encountered between causes and effects needs extensive testing and analysis. As it was 

shown in this study, field validation of NDT testing requires the use of “ground truth” 

data in order to compare and assess the accuracy. The demanding cost and effort, and 

the many other factors involved in field investigations and discussed in this study, are 

the impulses for the need to predict the condition of infrastructure in conjunction with 

routine field assessment. To better capture the complex relationships and sequence 

nature of the features affecting bridge deck condition, and thus provide improved 

predictions from past ML studies using such databases, this study employed sequential 

long short-term memory (LSTM) and convolutional neural networks (CNN) modeling. 

The advantage of this approach is that the input length (i.e., number of condition 

observations from previous years) is not fixed. Thus, it can consider all the NBI data 

recorded every year, and/or a flexible set of sequence, while traditional ML 

classification models explored in past studied were based on sequential observations 

with a fixed length of data. The accuracy of the developed models for predicting bridge 

deck conditions was high, ranging from more than 80% all the way to 97% depending 

on the model and the various hyperparameters used in each case.   

 

In terms of future work, the findings of this study need to be validated and 

expanded by performing sensitivity analysis on sample dimension, concrete mixture 

proportion, and types. Also, other NDTs that can be incorporated in QA, for both field 

and laboratory conditions (i.e., impact echo), should be considered in future studies. 

Thus, the important findings presented in chapters 2 and 3 can be further expanded to 

develop universally accepted models for maturity modeling and acceptance of concrete 

uniformity for QA.  With respect to GPR for detecting very thin layers of delamination, 

alternative materials with variable dielectric properties should be used in laboratory 

samples. Degree of reinforcement corrosion should be also considered. To overcome 

sample size limitation and improve GPR detection for such thin layer samples, stepped 

frequency GPR (SF-GPR) can be employed. In terms of field condition assessment, 

further testing on deteriorated bridge decks, including some core testing, should be 

considered. With respect to enhancing ML modeling for predicting bridge deck 

condition, data from a variety of diverse geographical regions should be selected. 

Similarly, alternative bridge deck type structures may be considered. Every year new 

data is added to the NBI database, so the proposed ML algorithms should be updated 
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with the new data for further fine tuning and enhancing the proposed models’ prediction 

accuracy. Finally, other machine learning algorithms, such as time series forecasting 

and model ensemble techniques, can be developed to further improve condition rating 

predictions for a longer period of time. 
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