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The first essay examines the events of May 6, 2010: the “Flash Crash”. The

Flash Crash, a brief period of extreme market volatility on May 6, 2010 raised

questions about the current structure of the U.S. financial markets. Audit-trail data

from U.S. Commodity Futures Trading Commission (CFTC) is used to describe the

structure of the E-mini S&P 500 stock index futures market on May 6. In this

study, three questions are asked. How did High Frequency Traders (HFTs) trade

on May 6? What may have triggered the Flash Crash? What role did HFTs play in

the Flash Crash? There is evidence which supports that HFTs did not trigger the

Flash Crash, but their responses to the unusually large selling pressure on that day

exacerbated market volatility.

The second essay examines the relationship between mutual fund trading and

liquidity consumption in financial markets. Using Thompson Mutual Funds holdings

data and the Trade and Quotes (TAQ) data, we relate the mutual fund trading to

liquidity consumption. Mutual fund trading is positively correlated with liquidity



consumption. Mutual fund sensitivity to liquidity consumption differs based on

mutual fund investment style. Large trades reveal the trading activity of actively

managed mutual funds whereas the trading activity of index funds can be explained

by small trades. This is consistent with a plausible explanation that index funds

need to use small trades to rebalance their portfolios and information motivates the

large trades of active mutual funds.

The third essay tests the predictions of trading game invariance using the

sample of trades from TAQ dataset from 1993 to 2008. The theory of trading

game invariance predicts that the distribution of trade sizes as a fraction of trading

volume should vary across stocks proportionally to their trading activity in -2/3

power and that the number of trades should vary across stocks proportionally to

their trading activity in 2/3 power. The data supports predictions of the invariance

theory. For the number of trades, the estimated power coefficient of 0.69 (with

standard errors of 0.001) is especially close to the predicted one of 2/3 on the

subsample before 2001. These estimates increases to 0.79 (with standard errors of

0.004) after 2001 following a structural break related to a reduction in tick size and

a consequent spread of algorithmic trading. Furthermore, the entire distribution

of trade size shifts with the trading activity in a manner predicted by invariance

theory. When trade sizes are adjusted for differences in trading activity, then their

distribution is stable across stocks and similar to the distribution of a log-normal

variable, truncated at the 100-share threshold.
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1. FLASH CRASH AND HIGH FREQUENCY TRADING 1

1.1 Introduction

On May 6, 2010, in the course of about 30 minutes, U.S. stock market indices,

stock-index futures, options, and exchange-traded funds experienced a sudden price

drop of more than five percent, followed by a rapid rebound. This brief period of

extreme intraday volatility, commonly referred to as the “Flash Crash”, raises a

number of questions about the structure and stability of U.S. financial markets.

A survey conducted by Market Strategies International between June 23-29,

2010 reports that over 80 percent of U.S. retail advisors believe that “overreliance

on computer systems and high-frequency trading” were the primary contributors to

the volatility observed on May 6. Secondary contributors identified by the retail

advisors include the use of market and stop-loss orders, a decrease in market maker

trading activity, and order routing issues among securities exchanges.

Testifying at a hearing convened on August 11, 2010 by the Commodity Fu-

tures Trading Commission (CFTC) and the Securities and Exchange Commission

(SEC), representatives of individual investors, asset management companies, and

market intermediaries suggested that in the current electronic marketplace, such an

1 THIS CHAPTER DOES NOT REPRESENT THE VIEWS OF THE COMMODITY FU-
TURES TRADING COMMISSION, ITS COMMISSIONERS OR STAFF.



event could easily happen again.

In this paper, we describe trading in the bellwether E-mini Standard & Poor’s

(S&P) 500 equity index futures market on the day of the Flash Crash. We use

audit-trail, transaction-level data for all regular transactions in the June 2010 E-

mini S&P 500 futures contract (E-mini) during May 3-6, 2010 between 8:30 a.m. CT

and 3:15 p.m. CT. This contract is traded exclusively on the Chicago Mercantile

Exchange (CME) Globex trading platform, a fully electronic limit order market.

For each transaction, we use data fields that allow us to identify the price, quantity

and time of execution, the account id of the buyer and seller, order id, order type

(market or limit), as well as the initiating side of the transaction (resting limit order

or executable limit/market order).

Based on patterns of intraday volume, intraday inventory levels, and direction

of trade, we classify each of more than 15,000 trading accounts that participated in

transactions on May 6 into one of six categories which we name: High Frequency

Traders (high volume and low inventory), Intermediaries (low inventory), Funda-

mental Buyers (consistent intraday net buyers), Fundamental Sellers (consistent

intraday net sellers), Small Traders (low volume), Opportunistic Traders (all other

traders not classified).

We investigate three questions. How did High Frequency Traders and other

categories trade on May 6? What may have triggered the Flash Crash? What role

did the High Frequency Traders play in the Flash Crash?

We find that on May 6, the 16 trading accounts that we classify as HFTs traded

over 1,455,000 contracts, accounting for almost a third of total trading volume on

2



that day. Yet, net holdings of HFTs fluctuated around zero so rapidly that they

rarely held more than 3,000 contracts long or short on that day.

We also find that HFTs did not change their trading behavior during the

Flash Crash. On the three days prior to May 6, and on May 6 itself—including

specifically the period where prices were rapidly going down, the HFTs seem to

exhibit the same trading patterns. Specifically, HFTs aggressively take liquidity

from the market when prices were about to change and actively keep inventories

near a target inventory level.

During the Flash Crash, High Frequency Traders initially bought contracts

from Fundamental Sellers. After several minutes, HFTs proceeded to sell contracts

and compete for liquidity with Fundamental Sellers. In this sense, the trading of

HFTs, appears to have exacerbated the downward move in prices. In addition,

HFTs appeared to rapidly buy and sell contracts from one another many times,

generating a “hot potato” effect before Fundamental Buyers were attracted by the

rapidly falling prices to step in and take these contracts off the market.

Each transaction in the Globex system results from a match of a executable

order with a resting order. The CME audit-trail dataset explicitly labels the exe-

cutable side of the transaction as aggressive and the non-executable side as passive.

We find that approximately 46% of the volume High Frequency Traders trade is

aggressively executed. For each category of traders, we define the aggressiveness

imbalance of each trader category as the difference between the number of contracts

aggressively bought and the number of contracts aggressively sold. We find that

prices are more sensitive to the aggressiveness imbalances of High Frequency Traders

3



and Opportunistic Traders than to the aggressiveness imbalances of Fundamental

Buyers and Fundamental Sellers that take liquidity from the market. This may

be due to High Frequency Traders ability to anticipate and react to price changes.

Fundamental Traders do not have a large perceived price impact given their aggres-

siveness imbalance, possibly due to their desire to minimize their price impact and

reduce transaction costs.

We find evidence of a significant increase in the number of contracts sold by

Fundamental Sellers during the Flash Crash. Specifically, between 1:32 p.m. and

1:45 p.m. CT—the 13-minute period when prices rapidly declined—Fundamental

Sellers were net sellers of more than 80,000 contracts while Fundamental Buyers were

net buyers of only about 50,000 contracts. This level of net selling by Fundamental

Sellers is about 15 times larger than their net selling over the same 13-minute interval

on the previous three days, while this level of net buying by the Fundamental Buyers

is about 10 times larger than their buying over the same time period on the previous

three days.

In contrast, between 1:45 p.m. and 2:08 p.m. CT—the 23-minute period

of the rapid price rebound of the E-mini—Fundamental Sellers were net sellers of

more than 110,000 contracts and Fundamental Buyers were net buyers of more than

110,000 contracts. This level of net selling by Fundamental Sellers is about 10 times

larger than their selling during same 23-minute interval on the previous three days,

while this level of buying by the Fundamental Buyers is more than 12 times larger

than their buying during the same interval on the previous three days.

The imbalance between Fundamental Buyers and Fundamental Buyers ob-

4



served during the Flash Crash was many times larger than the inventories of High

Frequency Traders. Opportunistic traders picked up the majority of the imbalance

between Fundamental Buyers and Fundamental Sellers.

The CFTC-SEC May 6 report finds that the Flash Crash was triggered by

a 75,000 contract sell program executed by a Fundamental Seller. Because net

holdings of the HFTs were so small (rarely greater than 3000 contracts) relative

to the selling pressure from the Fundamental Sellers on May 6, HFTs could have

neither caused nor prevented the fall in prices without dramatically altering their

trading strategies.

Nearly 40 years before the Flash Crash, Black (1971) conjectured that irre-

spective of the method of execution or technological advances in market structure,

executions of large orders would always exert an impact on price. Black also con-

jectured that liquid markets exhibit price continuity only if trading is characterized

by large volume coming from small individual trades.

This chapter proceeds as follows. In Section 1.2, we review the relevant liter-

ature. In Section 1.3, we summarize the public account of events on May 6, 2010.

In Sections 1.4 and 1.5, we describe the E-mini S&P 500 futures contract and pro-

vide a description of the audit-trail, high frequency data we utilize. In Section 1.6,

we describe our trader classification methodology. In Section 1.7, we present our

analysis of the trading strategies of High Frequency Traders and Intermediaries.

In Section 1.8, we describe the behavior of Fundamental Buyers and Sellers. In

Section 1.9, we examine the activity of Opportunistic traders. In Section 1.10, we

present the aggressivness imbalance regressions. In Section 1.11, we present our

5



interpretation of the Flash Crash. Section 1.12 concludes the paper.

1.2 Literature

Nearly 40 years ago, when exchanges first contemplated switching to fully au-

tomated trading platforms, Fischer Black surmised that regardless of market struc-

ture, liquid markets exhibit price continuity only if trading is characterized by a

large volume of small individual trades. Black (1971) also stated that large order

executions would always exert an impact on price, irrespective of the method of

execution or technological advances in market structure.

At that time, stock market “specialists” were officially designated market mak-

ers, obligated to maintain the order book and provide liquidity.2 In the trading pits

of the futures markets, many floor traders were unofficial, but easily identifiable

market makers. Both the stock market specialists and futures market floor traders

enjoyed a proximity advantage compared to traders who participated away from the

trading floor. This advantage allowed specialists and floor traders to react more

quickly to incoming order flow compared to other traders. Trading environments in

which market makers are distinct from other traders are examined in the theoretical

models of Kyle (1985) and Glosten and Milgrom (1985).

As markets became electronic, a rigid distinction between market makers and

other traders became obsolete. Securities exchanges increasingly adopted a limit

order market design, in which traders submit orders directly into the exchange’s

electronic systems, bypassing both designated and unofficial market makers. In

2 Large orders were executed “upstairs” by block trading firms.
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today’s electronic markets, High Frequency Traders enjoy a latency advantage which

allows them to react to changes in order flow more quickly than other traders. This

occurred because of advances in technology, as well as regulatory requirements.

Theoretical models of limit order markets include, among others, Parlour (1998),

Foucault (1999), Biais, Martimor and Rochet (2000), Goettler, Parlour, and Rajan

(2005, 2009), and Rosu (2009).

As more data became available, empirical research has confirmed a number of

empirical regularities related to such issues as multiple characterizations of prices,

liquidity, and order flow. Madhavan (2000), Biais, Glosten and Spatt (2005), and

Amihud, Mendelson and Pedersen (2005) provide surveys of empirical market mi-

crostructure studies.

Most recently, Cespa and Foucault (2008) and Moallemi and Saglam (2010)

propose theoretical models of latency - an increasingly important dimension of elec-

tronic trading. As low-latency, electronic limit order markets allowed for the pro-

liferation of algorithmic trading strategies, a number of research studies aimed to

examine algorithmic trading. Hendershott, Jones, and Menkveld (2010) and Hen-

dershott and Riordan (2009) examine the impact of algorithmic traders in stock

markets and find their presence beneficial. Chaboud et al (2009) study algorithmic

traders in foreign exchange markets and reach similar conclusions. Hasbrouck and

Saar (2010) and Brogaard (2010) examine certain types of algorithmic traders and

find that they have a positive effect on market quality.

Another strand of literature examines optimal execution of large orders — a

particular form of algorithmic trading strategies designed to minimize price impact

7



and transaction costs. Studies on this issue include Bertsimas and Lo (1998), Alm-

gren and Chriss (1999,2000), Engle and Ferstenberg (2007), Almgren and Lorenz

(2006), and Schied and Schonenborn (2007).

Separately, Obizhaeva and Wang (2006) and Alfonsi and Schied (2008) study

optimal execution by modeling the underlying limit order book. Brunnermier and

Pedersen (2005), Carlin et al (2007), and Moallemi et al (2009) integrate the pres-

ence of an arbitrageur who can “front-run” a trader’s execution. The majority of

these studies find that it is optimal to split large orders into multiple executions to

minimize price impact and transaction costs.

The effects of large trades on a market have also been thoroughly examined

empirically by a multitude of authors starting with Kraus and Stoll (1972) who

utilized data from the New York Stock Exchange.3 These studies generally find that

the execution of large orders exerts both permanent and temporary price impact,

while reducing market liquidity.

1.3 Market Events on May 6, 2010: The Flash Crash

On May 6, 2010, major stock indices and stock index products rapidly dropped

by more than 5 percent and then quickly recovered. The extreme intraday volatility

in stock index prices is presented in Figure 1.1.

Between 13:45 and 13:47 CT, the Dow Jones Industrial Average (DJIA), S&P

500, and NASDAQ 100 all reached their daily minima. During this same period, all

3 See, among others, Holthausen et al (1987, 1990), Chan and Lakonishok (1993, 1995), Chiy-
achantana et al (2004), Keim and Madhavan (1996, 1997), and Berkman (1996).
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30 DJIA components reached their intraday lows. The DJIA components dropped

from -4% to -36% from their opening levels. The DJIA reached its trough at 9,872.57,

the S&P 500 at 1,065.79, and the NASDAQ 100 at 1,752.31. The E-mini S&P 500

index futures contract bottomed at 1,056.00.4

During a 13 minute period, between 13:32:00 and 13:45:27 CT, the front-month

June 2010 E-mini S&P 500 futures contract sold off from 1127.75 to 1,070.00 , (a

decline of 57.75 points or 5.1%). At 13:45:27, sustained selling pressure sent the

price of the E-mini down to 1062.00. Over the course of the next second, a cascade

of executed orders caused the price of the E-mini to drop to 1056.00 or 1.3%. The

next executed transaction would have triggered a drop in price of 6.5 index points

(or 26 ticks). This triggered the CME Globex Stop Logic Functionality at 13:45:28.

The Stop Logic Functionality pauses executions of all transactions for 5 seconds,

if the next transaction were to execute outside the price range of 6 index points

either up or down. During the 5-second pause, called the “Reserve State,” the

market remains open and orders can be submitted, modified or cancelled, however,

execution of pending orders are delayed until trading resumes.

At 13:45:33, the E-mini exited the Reserve State and the market resumed

trading at 1056.75. Prices fluctuated for the next few seconds. At 13:45:38, price of

the E-mini began a rapid ascent, which, while occasionally interrupted, continued

until 14:06:00 when the price reached 1123.75, equivalent to a 6.4% increase from

that day’s low of 1056.00. At this point, the market was practically at the same

4 For an in-depth review of the events of May 6, 2010, see the CFTC-SEC Staff Report entitled
Preliminary Findings Regarding the Market Events of May 6, 2010.
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price level where it was at 13:32:00 when the rapid sell-off began.

Trading volume of the E-mini increased significantly during the period of ex-

treme price volatility. Figure 1.2 presents trading volume and transaction prices on

May 6, 2010 over 1 minute intervals.

During the period of extreme market volatility, a large sell program was exe-

cuted in the June 2010 E-mini S&P 500 futures contract. “ At 2:32 p.m., against

this backdrop of unusually high volatility and thinning liquidity, a large fundamen-

tal trader (a mutual fund complex) initiated a sell program to sell a total of 75,000

E-Mini contracts (valued at approximately $4.1 billion) as a hedge to an existing

equity position...This large fundamental trader chose to execute this sell program

via an automated execution algorithm (Sell Algorithm) that was programmed to

feed orders into the June 2010 E-Mini market to target an execution rate set to 9%

of the trading volume calculated over the previous minute...The execution of this

sell program resulted in the largest net change in daily position of any trader in

the E-Mini since the beginning of the year (from January 1, 2010 through May 6,

2010). Only two single-day sell programs of equal or larger size one of which was by

the same large fundamental trader were executed in the E-Mini in the 12 months

prior to May 6. When executing the previous sell program, this large fundamental

trader utilized a combination of manual trading entered over the course of a day

and several automated execution algorithms which took into account price, time,

and volume. On that occasion it took more than 5 hours for this large trader to

execute the first 75,000 contracts of a large sell program.” 5

5 see Findings Regarding the Market Events of May 6, 2010
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1.4 CME’s E-mini S&P 500 Equity Index Contract

The CME S&P 500 E-mini futures contract was introduced on September 9,

1997. The E-mini trades exclusively on the CME Globex trading platform in a fully

electronic limit order market. Trading takes place 24 hours a day with the exception

of short technical break periods. The notional value of one E-mini contract is $50

times the S&P 500 stock index. The tick size for the E-mini is 0.25 index points or

$12.50.

The number of outstanding E-mini contracts is created directly by buying and

selling interests. There is no limit on how many contracts can be outstanding at

any given time. At any point in time, there are a number of outstanding E-mini

contracts with different expiration dates. The E-mini expiration months are March,

June, September, and December. On any given day, the contract with the nearest

expiration date is called the front-month contract. The E-mini is cash-settled against

the value of the underlying index and the last trading day is the third Friday of the

contract expiration month. Initial margin for speculators and hedgers(members)

are $5,625 and $4,500, respectively. Maintenance margins for both speculators and

hedgers(members) are $4,500. Empirically, it has been documented that the E-mini

futures contract contributes the most to price discovery of the S&P 500 Index.6

The CME Globex matching algorithm for the E-mini offers strict price and

time priority. Specifically, limit orders that offer more favorable terms of trade (sells

at lower prices and buys at higher prices) are executed prior to pre-existing orders.

6 See, Hasbrouck (2003).
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Orders that arrived earlier are executed before other orders at the same price. This

market operates under complete price transparency and anonymity. When a trader

has his order filled, the identity of his counterparty is not available.

1.5 Data

We utilize audit trail, transaction-level data for all outright transactions in the

June 2010 E-mini S&P 500 futures contract. These data come from the Computer-

ized Trade Reconstruction (CTR) dataset, which the CME provides to the CFTC.

We examine transactions occurring from May 3, 2010 through May 6, 2010, when

the markets of the underlying equities of the S&P 500 index are open and before

the daily halt in trading, i.e. weekdays between 8:30 a.m. CT and 3:15 p.m. CT.

Price discovery typically occurs in the front month contract; the June 2010 contract

was the nearby, most actively traded futures contract on May 6.

For each transaction, we use the following data fields: date, time (transactions

are recorded by the second), executing trading account, opposite account, buy or

sell flag, price, quantity, order ID, order type (market or limit), and aggressiveness

indicator (indicates which trader initiated a transaction). These fields allow us to

identify two trading accounts for each transaction: a buyer and seller, identify which

account initiated a transaction, and whether the parties used market or limit orders

to execute the transaction. We can also group multiple executions into an order.

Table 1.1 provides summary of statistics for the June 2010 E-Mini S&P 500 futures

contract during May 3-6, 2010.
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According to Table 1.1, limit orders are the most popular tool for execution

in this market. In addition, according to Table 1.1, trading volume on May 6

was significantly higher compared to the average daily trading volume during the

previous three days.

1.6 Trader Categories

Financial markets are composed of traders that have different holding horizons

and trading strategies. Some traders accumulate a position and hold it overnight.

Other traders will accumulate a position and offset it within minutes. Yet another

group of traders establish and offset a position within a matter of seconds.

Motivated by this and the absence of any designations in the E-mini market,

we designate individual trading accounts into six categories based on their trading

activity. Our classification method, which is described in detail below, produces

the following categories of traders: High Frequency Traders (16 accounts), Inter-

mediaries (179 accounts), Fundamental Buyers (1263), Fundamental Sellers (1276),

Opportunistic Traders (5808) and Small Traders (6880).

We define Intermediaries as short horizon investors who follow a strategy of

buying and selling a large number of contracts to stay around a relatively low target

level of inventory. Specifically, we designate a trading account as an Intermediary

if its trading activity satisfies the following two criteria. First, the account’s net

holdings fluctuate within 1.5% of its end of day level. Second, the account’s end of

day net position is no more than 5% of its daily trading volume. Together, these two
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criteria select accounts whose trading strategy is to participate in a large number of

transactions, but to rarely accumulate a significant net position.

We define High Frequency Traders as a subset of Intermediaries, who indi-

vidually participate in a very large number of transactions. Specifically, we order

Intermediaries by the number of transactions they participated in during a day (daily

trading frequency), and then designate accounts that rank in the top 7% as High

Frequency Traders. This cutoff captures the significant difference in magnitude of

trading activity between High Frequency Traders and Intermediaries. Once we des-

ignate a trading account as a HFT, we remove this account from the Intermediary

category to prevent double counting. 7

We define as Fundamental Traders trading accounts which mostly bought or

sold in the same direction during May 6. Specifically, to qualify as a Fundamental

Trader, a trading account’s end of day net position on May 6 must be no smaller

than 15% of its trading volume on that day. This criterion selects accounts that

accumulate a significant net position by the end of May 6. Fundamental traders are

further separated into Fundamental Buyers and Sellers, depending on whether their

end of day net position is positive or negative, respectively. These traders appear

to hold their positions for longer periods of time.

We define Small Traders as trading accounts which traded no greater than 9

contracts on May 6.

We classify the remaining trading accounts as Opportunistic Traders. Oppor-

7 To account for a possible change in trader behavior on May 6, we classify HFTs and Interme-
diaries using trading data for May 3-5, 2010. We use data for May 6, 2010 to designate traders
into other trading categories.
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tunistic Traders may behave like Intermediaries (both buying and selling around

a target net position) and at other times may behave like Fundamental traders

(accumulating a directional long or short position).

Figure 1.3 illustrates the grouping of all trading accounts that transacted on

May 6 into six categories of traders. The panels of Figure 1.3 presents individual

trading accounts trading volume (vertical axis) and net position scaled by market

trading volume (horizontal axis) for May 3-6.

Figure 1.3 shows that different categories of traders occupy quite distinct, al-

beit overlapping, positions in the “ecosystem” of a liquid, fully electronic market.

HFTs, while very small in number, account for significant portion of trading vol-

ume. However, HFTs do not accumulate a large net position. Intermediaries also

do not accumulate a large net position but trade much less volume than HFTs.

Fundamental Traders accumulate directional positions. Some Fundamental Traders

acquire large positions by executing many small-size orders, while others execute

fewer large-size orders. Fundamental Traders which accumulate net positions by

executing smaller orders may be disguising their trading activity in order to avoid

being taken advantage of by the market. Opportunistic Traders at times act like

Intermediaries (buying a selling around a given inventory target) and at other times

act like Fundamental Traders (accumulating a directional position).

More formally, Table 1.2 presents descriptive statistics for these categories of

traders and the overall market during May 3-5, 2010 and on May 6, 2010.

In order to characterize market participation of different categories of traders,

we compute their shares of total trading volume. Table 1.2 shows that HFTs account
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for approximately 34% of total trading volume during May 3-5 and 29% of trading

volume on May 6. Intermediaries account for approximately 10.5 % of trading

volume during May 3-5 and 9% of trading volume on May 6. Trading volume of

Fundamental Buyers and Sellers accounts for about 12% of the total trading volume

during May 3-5. On May 6, Fundamental Buyers account for about 12% of total

volume, while Fundamental Sellers account for 10% of total volume. We interpret

the composition of this market as approximately 20% fundamental demand and 80%

intermediation.

In order to further characterize whether categories of traders were primarily

takers of liquidity, we compute the ratio of transactions in which they removed liq-

uidity from the market as a share of their transactions.8 According to Table 1.2,

HFTs and Intermediaries have aggressiveness ratios of 45.68% and 41.62%, respec-

tively. In contrast, Fundamental Buyers and Sellers have aggressiveness ratios of

64.09% and 61.13%, respectively.

This is consistent with a view that HFTs and Intermediaries generally provide

liquidity while Fundamental Traders generally take liquidity. The aggressiveness

ratio of High Frequency Traders, however, is higher than what a conventional defi-

nition of passive liquidity provision would predict.9

8 When any two orders in this market are matched, the CME Globex platform automatically
classifies an order as ‘Aggressive’ when it is executed against a ‘Passive’ order that was resting
in the limit order book. From a liquidity standpoint, a passive order (either to buy or to sell)
has provided visible liquidity to the market and an aggressive order has taken liquidity from the
market. Aggressiveness ratio is the ratio of aggressive trade executions to total trade executions.
In order to adjust for the trading activity of different categories of traders, the aggressiveness ratio
is weighted either by the number of transactions or trading volume.

9 This finding is consistent with that of Menkveld et al (2009). One possible explanation for the
order aggressiveness ratios of HFTs is that some of them may actively engage in “sniping” orders
resting in the limit order book. Cvitanic and Kirilenko (2010) model this trading behavior and
conclude that under some conditions this trading strategy may have impact on prices. Similarly,
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In order to better characterize the liquidity provision/removal across trader

categories, we compute the proportion of each order that was executed aggressively.10

Table 1.3 presents the distribution of ratios of order aggressiveness.

According to Table 1.3, the majority of High Frequency Traders’ executed

orders are entirely passive. Prior to May 6, about 79% of High Frequency Trader and

Intermediary orders are resting orders. Executable limit orders are approximately

18% of total HFT orders and 20% of orders for Intermediaries.

As expected, Fundamental Traders utilize orders that consume more liquidity

than the orders of HFTs and Intermediaries. During May 3-5, executable orders

comprise 46% of the Fundamental Buyers’ orders and 47% of the Fundamental

Sellers’ orders. On May 6, Fundamental Sellers use resting orders more often (59%)

and executable orders less often (40%), whereas Fundamental Buyers use executable

orders more often (63%) and resting orders less often (45%).

Moreover, during May 3-5, the average order size for both Fundamental Buyers

and Sellers is approximately the same - about 15 contracts, while on May 6, the

average executable order size of Fundamental Sellers (about 25 contracts) is more

than 2.5 times larger than the average executable order size of Fundamental Buyers

(about 9 contracts).

For all trader categories, order size exhibits an inverse U-shaped aggressiveness

Hasbrouck and Saar (2009) provide empirical support for a possibility that some traders may have
altered their strategies by actively searching for liquidity rather than passively posting it.

10 The following example illustrates how we compute the proportion of each order that was ex-
ecuted aggressively. Suppose that a trader submits an executable limit order to buy 10 contracts
and this order is immediately executed against a resting sell order of 8 contracts, while the re-
mainder of the buy order rests in the order book until it is executed against a new sell order of 2
contracts. This sequence of executions yields an aggressiveness ratio of 80% for the buy order, 0%
for the sell order of 8 contracts, and 100% for the sell order of 2 contracts.
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pattern: smaller orders tend to be either entirely aggressive or entirely passive. In

contrast, larger orders result in both passive and aggressive executions. The number

of trades per order also follows a similar pattern with larger orders being filled by a

greater number of trade executions.

1.7 High Frequency Traders and Intermediaries

Together HFTs and Intermediaries account for over 40% of the total trading

volume. Given that they account for such a significant share of total trading, we

find it essential to analyze their trading behavior.

1.7.1 HFTs and Intermediaries: Net Holdings

Figure 1.4 presents the net position holdings of High Frequency Traders during

May 3-6, 2010.

According to Figure 1.4, HFTs do not accumulate a significant net position

and their position tends to quickly revert to a mean of about zero. The net position

of the HFTs fluctuates between approximately ±3000 contracts.

Figure 1.5 presents the net position of the Intermediaries during May 3-6,

2010.

According to Figure 1.5, Intermediaries exhibit trading behavior similar to

that of HFTs. They also do not accumulate a significant net position. Compared

to the HFTs, the net position of the Intermediaries fluctuates within a more narrow

band of ±2000 contracts, and reverts to a lower target level of net holdings at a
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slower rate.

On May 6, during the initial price decline, HFTs accumulated a net long

position, but quickly offset their long inventory (by selling) before the price decline

accelerated. Intermediaries appear to accumulate a net long position during the

initial decrease in price, but unlike HFTs, Intermediaries did not offset their position

as quickly. The decline in the net position of the Intermediaries occurred when the

prices begin to rebound.

1.7.2 HFTs and Intermediaries: Profits and Losses

In addition, we calculate the profits and losses of High Frequency Traders

and Intermediaries on a transaction by transaction basis by employing the following

formula.

PLy =
i∑

t=0

[yt−1 ×∆pt] (1.1)

Where yt−1 represents the net position of a trader at the time of market trans-

action t and ∆pt represents the change in price since the last transaction in the

market. This measure is calculated from the first transaction of our sample where

t = 0 through the last transaction, i. Our measure of profitability makes the as-

sumption that trading accounts begin the day with no position. In addition, this

measure is comprised of both realized gains and unrealized gains.

Figure 1.6 shows the profits and losses of High Frequency Traders on May

3-6.
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High Frequency Traders are consistently profitable although they never accu-

mulate a large net position. This does not change on May 6 as they appear to have

been even more successful despite the market volatility observed on that day.

Figure 1.7 shows the profits and losses of Intermediaries on May 3-6.

Intermediaries appear to be relatively less profitable than HFTs. During the

Flash Crash, Intermediaries also appeared to have incurred significant losses. This

consistent with the notion that the relatively slower Intermediaries were run over

by the decrease in price.

Overall, HFTs do not accumulate a significant net position and their position

tends to quickly revert to a mean of about zero. Combined with their large share

of total trading volume (34%), HFTs seem to employ trading strategies to quickly

trade through a large number of contracts, without ever accumulating a significant

net position. These strategies may be operating at such a high speed, that they do

not seem to be affected by the price level or price volatility.

In contrast to HFTs, Intermediaries tend to revert to their target inventory

levels more slowly. Because of this, on May 6, Intermediaries may have gotten

caught on the wrong side of the market as they bought when prices rapidly fell.

1.7.3 HFTs and Intermediaries: Net Holdings and Prices

We formally examine the second-by-second trading behavior of HFTs and

Intermediaries by examining empirical regularities between their net holdings and
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prices. Equation 1.2 presents this in a regression framework.

∆yt = α + ϕ∆yt−1 + δyt−1 +
20∑
i=0

[βt−i ×∆pt−i/0.25] + ϵt (1.2)

where yt denotes portfolio holdings of HFTs or Intermediaries during second t,

where t = 0 corresponds to 8:30:00 CT. We utilize the price midpoint of an interval

to calculate Price changes, ∆pt−i, i = 0, ..., 20 are in ticks (0.25 index points) and

the change in inventories, ∆yt, is in the number contracts. We interpret δ and ϕ as

long-term and short-term mean reversion coefficients.11

Table 1.4 presents estimated coefficients of the regression above. Panels A

and B report the results for May 3-5 and May 6, respectively. The t statistics are

calculated using the Newey-West (1987) estimator.

The first column of Panel A presents regression results for HFTs during May 3-

5. The coefficient estimate for the long-term mean reversion parameter is -0.005, and

is statistically significant. This suggests that HFTs reduce 0.5% of their position in

one second. This long-term mean reversion coefficient corresponds to an estimated

half-life of the inventory holding period of 137 seconds. In other words, holding prices

constant, HFTs reduce half of their net holdings in 137 seconds. This is significantly

smaller than the specialist inventory half-life measures of Hendershott and Menkveld

(2010) who employ NYSE dataset from 1994-2005. This may be due to a dramatic

increase in speed of intermediation over the last few years. Another explanation

may be that this result is due to the fact that market makers are designated in

11 Dickey-Fuller tests verify that HFT holdings level, Intermediary holdings level, as well as first
differences are stationary. This is consistent with the intraday trading practices of HFTs and
Intermediaries to target inventory levels close to zero. Results are available upon request.
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equity markets and we classify our traders with a specific set of criteria. 12

Changes in net holdings of HFTs are statistically significantly positively re-

lated to changes in prices for the contemporaneous price change and the first 4 lags.

The estimated coefficients are positive, consistently decaying from the high of 32.089

for the contemporaneous price to the low of 3.909 for the price 4 seconds prior. This

can be interpreted as follows: a one tick increase in current price corresponds to a

increase of about 32 contracts in the net holdings of HFTs. Moreover, a one tick

increase in the current price corresponds to an increase of up to 67 contracts during

the next 4 seconds.

In contrast, estimated coefficients for lagged prices 10 to 20 seconds prior to

the current holding period are negative and statistically significant. These estimated

coefficients fall within a much more narrow range of -2.208 and -5.860. This, in

turn, means that a one tick increase in price 10 to 20 seconds before corresponds to

a maximum cumulative decrease in net holdings of about 39 contracts.

We interpret these results as follows. HFTs appear to trade in the same

direction as the contemporaneous price and prices of the past four seconds. In

other words, they buy, if the immediate prices are rising. However, after about ten

seconds, they appear to reverse the direction of their trading - they sell, if the prices

10-20 seconds before were rising.

These regression results suggest that, possibly due to their speed advantage or

superior ability to predict price changes, HFTs are able to buy right as the prices

12 We calculate the estimated half-life of the inventory holding period as ln(0.5)
(δ) .
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are about to increase.13 HFTs then turn around and begin selling 10 to 20 seconds

after a price increase.

The second column of Panel A presents regression results for the Intermedi-

aries on May 3-5. Similarly to HFTs, the long term mean reversion coefficient for

the Intermediaries is -0.004 and is statistically significant. This suggests that the

Intermediaries reduce their net holdings by 0.4% after one second. The half-life of

their inventory is 173 seconds.

In marked contrast to HFTs, coefficient estimates for the contemporaneous

price and the price one second before are negative (and significant) at -13.540 and -

1.218, respectively. However, at prices 3 to 8 seconds prior, the estimated coefficients

are positive and significant.

These coefficients could be interpreted as follows. The Intermediaries sell when

the immediate prices are rising, and buy if the prices 3-8 seconds before were rising.

These regression results suggest that, possibly due to their slower speed or inability

to anticipate possible changes in prices, Intermediaries buy when the prices are

already falling and sell when the prices are already rising.

Panel B presents the results of equation 1.2 on May 6. The first column of

Panel B shows the results for HFTs. The coefficient for the lagged change in holdings

parameter is positive but statistically insignificant at the 5% level. The coefficients

for contemporaneous and 1st lagged price changes are positive at 10.808 and 4.625,

respectively.

13 We also introduce lead price changes up to 10 seconds in this regression framework. Prior to
May 6, lead price change coefficients are positive and significant up to three seconds for HFTs
while they are negative and significant for Intermediaries. Results are available upon request.
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This result may suggest that that on May 6, HFTs repeatedly reversed the

direction of their trading (e.g., become contrarian, switching from buying to selling,

or otherwise) significantly sooner than during May 3-5.

The second column of Panel B reports the results for the change in holdings of

Intermediaries on May 6th. The contemporaneous price change estimate is -8.164.

The lagged price change coefficients become positive for the next 3 lagged price

changes, decaying from 6.635 to 1.138.

We interpret the difference in results between these two samples to a change

in Intermediary behavior during the Flash Crash. This may be due to a reduction

in liquidity provision from this trader category during the Flash Crash.

1.7.4 HFTs and Intermediaries: Liquidity Provision/Removal

We consider Intermediaries and HFTs to be very short term investors. They do

not hold positions over long periods of time and revert to their target inventory level

quickly. Observed trading activity of HFTs can be separated into three parts. First,

HFTs seem to anticipate price changes (in either direction) and trade aggressively

to profit from it. Second, HFTs seem to submit resting orders in the direction

of the anticipated the price move. Third, HFTs trade to keep their inventories

within a target level. The inventory-management trading objective of HFTs may

interact with their price-anticipation objective. In other words, at times, inventory-

management considerations of HFTs may lead them to aggressively trade in the

same direction as the prices are moving, thus, taking liquidity. At other times, in

order to revert to their target inventory levels, HFTs may passively trade against
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price movements and, thus, provide liquidity.

In order to examine the liquidity providing and taking behavior of HFTs and

Intermediaries, we separate their changes in holdings into aggressive changes (those

incurred via aggressive acquisitions) and passive changes (those incurred via passive

acquisitions). Specifically, when traders submit marketable orders into the order

book, they are considered to be aggressive. Conversely, the traders’ resting orders

being executed by a marketable order result in passive execution.

Table 1.5 presents the regression results of the two components of change in

holdings on lagged inventory, lagged change in holdings and lagged price changes

over one second intervals. Panel A and Panel B report the results for May 3-5 and

May 6th, respectively.

The dependent variable in the first column of Panel A is the aggressive change

in holdings of HFTs on May 3-5. The short term and long term mean reversion

coefficients are statistically significant, -0.042% and -.005%, respectively. In other

words, HFTs aggressively reduce 0.5% of their holdings in one second. The coeffi-

cient estimates for price changes are positive for the contemporaneous and first 4

lagged prices, decaying from 57.778 to 3.290. This can be interpreted as follows: a

one tick increase in current price corresponds to an aggressive increase of position

of about 58 contracts by HFTs. Moreover, a one tick increase in the current price

corresponds to an increase of up to 99 contracts during the next 4 seconds.

The second column of Panel A presents the regression results for the passive

change in holdings of HFTs on May 3-5. The coefficient for lagged change in hold-

ings is 0.036 and statistically significant. The long term mean reversion estimate is
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-0.001, which is smaller than the coefficient from the aggressive holdings change re-

gression. The coefficient estimates for the price changes are almost always negative.

The contemporaneous and first lagged price changes are negative and statistically

significant; ranging from -25.689 for the contemporaneous price change to -5.371 for

the 1st lagged price change.

Given the difference in magnitude between the aggressive and passive long

term mean reversion coefficients, we interpret these results as follows, HFTs may

be reducing their positions and reacting to anticipated price changes by submitting

marketable orders. In addition, passive holdings changes of HFTs reflect liquidity

provision.

The dependent variable in the third column of Panel A is the aggressive hold-

ings change of the Intermediaries on May 3-5. The coefficients for lagged change in

holdings and lagged inventory level are 0.007 and -0.002, respectively. This result

corresponds to Intermediaries reducing 0.2% of their holdings aggressively in one

second. The coefficients for the current and lagged price changes are positive; de-

creasing from 6.377 for the current price change to 1.007 for the 10th lagged price

change.

These estimates are smaller than the estimates for HFTs. Accordingly, we

interpret these results as evidence suggesting that Intermediaries are slower than

HFTs in responding to anticipated price changes.14

The fourth column of Panel A presents the results for the passive position

14 We also introduce lead price changes up to 10 seconds into this regression framework. Price
change coefficients are positive and significant for the aggressive trading of High Frequency Traders
before May 6. Results are available upon request.
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change component of Intermediaries’ activity. The coefficient estimates for lagged

change in holdings and lagged level of holding of Intermediaries are -0.013 and -

0.002, respectively. These coefficients are similar to those we observe from the

passive trading of Intermediaries. The coefficient estimates for price changes are

statistically significant and negative through the 3rd lag. The coefficients range

from -19.917 for the current price change to -1.117 for the 3rd lagged price change.

Our interpretation of these results suggests that given the similar passive and

aggressive mean reversion coefficients, Intermediaries use primarily marketable or-

ders to move to their target inventory level. The passive holdings change for Interme-

diaries is also contrarian to price fluctuations, suggesting that the passive holdings

change can be a good proxy for the liquidity provision of Intermediaries.

In summary, the larger coefficient for the Aggressive long term mean reversion

parameter, suggests that HFTs very quickly reduce their inventories by submitting

marketable orders. They also aggressively trade when prices are about to change.

Over slightly longer time horizons, however, HFTs sometimes act as providers of

liquidity.

The first column of Panel B presents the results for aggressive holdings change

of HFTs on May 6th. Only the coefficient on the current price change is positive and

statistically significant; 23.703. The second column of Panel B shows the results for

passive holdings change of HFTs. The contemporaneous price coefficient, -12.895, is

statistically significant.

These results are qualitatively similar to those we observe on the 3 days prior

to May 6. Therefore, we interpret these results as evidence that HFTs did not
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significantly alter their behavior during the Flash Crash. However, they may have

executed their trading strategies faster as price volatility increased.

The third column of Panel B presents the results for the aggressive positions

change of Intermediaries. The contemporaneous price change coefficient is 4.939 and

statistically significant. The fourth column in Panel B displays the results for passive

holdings change of Intermediaries. The contemporaneous price change coefficient is

-13.103 and statistically significant.

The coefficients on price changes for the Intermediary passive holdings change

regression are smaller than those we observe prior to May 6th. We interpret this as

a possible decrease in liquidity provision by Intermediaries during the Flash Crash.

1.7.5 HFTs and Intermediaries: The Flash Crash

To examine these participants’ activity at an even higher resolution during

the Flash Crash. We employ equation 1.2 during the 36-minute period of the Flash

Crash - starting at 13:32 p.m. and ending at 14:08 p.m. CT. We partition this

sample into two sub samples, the price crash (DOWN, 13:32-13:45 p.m. CT) and

recovery (UP, 13:45-14:08 CT), presented in Panels A and B, respectively of Table

1.6.

The first column of Panel A presents the results for aggressive holdings change

of HFTs on May 6 during the rapid price decline. The long term mean reversion co-

efficient is -0.008 and statistically insignificant. The contemporaneous price change

coefficient is positive and statistically significant at 24.226.

The second column of Panel A presents passive change in holding of HFTs
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during the price decline. The long term mean reversion coefficient is positive but

statistically insignificant. The contemporaneous price coefficient is 8.533 and statis-

tically significant.

We interpret these results as follows: As the price of the E-mini contract

declined, High Frequency Traders were the counterparties to Opportunistic Traders’

aggressive buying. However, the aggressive buying of Opportunistic Traders did

not affect the direction of the price move. In addition, HFTs did not alter their

behavior significantly when prices were rapidly going down. The shorter duration

of statistical significance on price change coefficients may be a function of the price

volatility observed during the Flash Crash.

The third column of Panel A presents the results for Intermediaries’ aggressive

position change on May 6th during as the price of the E-mini decreased rapidly.

Price change coefficients are positive and statistically significant through the 2nd

lag, ranging from 8.251 to 4.257.

The fourth column of Panel A presents the results for the passive position

changes of Intermediaries during the decrease in price. The long term mean rever-

sion coefficient is -0.012 and statistically significant. The coefficient for the contem-

poraneous price change is -9.603 and statistically significant.

These findings are not much different from those we obtain in previous regres-

sions. Accordingly we interpret these results as evidence that Intermediaries did not

seem to alter their trading strategies significantly as the price of the E-mini contract

declined.

The dependent variable in the first column of Panel B is HFTs aggressive po-
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sition change while the prices are rapidly going up. The long term mean reversion

coefficient is -0.005 and statistically significant. The coefficient for the contem-

poraneous price change is -0.251 and statistically insignificant. These results are

quantitatively different than those we observe in previous regressions.

We interpret this lack of statistical significance in the relationship between

HFT aggressive net position changes and prices as being related to the increase in

market volatility and the influx of Fundamental Buyers who bought as the price of

the E-mini contract recovered after the trading pause.

The results in the second column of Panel B present the relation between

prices and passive net position changes of HFTs when the prices were on their way

up. The long term mean reversion coefficient is again insignificant. The statisti-

cally significant contemporaneous price change coefficient, -9.107, is similar to past

regressions of passive holdings changes but differs from the result of 8.533 during

the price decline.

We interpret these results as a continuation in liquidity provisions by HFTs as

the price of the E-mini contract recovered to levels observed before the Flash Crash.

The third column of Panel B presents the regression results for the aggressive

position change of Intermediaries. The long term mean reversion coefficient is -0.004

and is statistically significant. Coefficients are statistically significant and positive

for the contemporaneous and first lagged price change at 2.912 and 2.150, respec-

tively. This is smaller than the same coefficient during the regression of Intermediary

aggressive holdings changes during the crash.

The fourth column of Panel B lists the regression results where the passive
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position changes of Intermediaries during the price recovery of the E-mini contract.

Although the contemporaneous price coefficient is negative and statistically signifi-

cant, the magnitude of this coefficient, -4.105, is considerably smaller the coefficient

observed in the fourth column of Panel A.

We attribute this decrease in magnitude of contemporaneous price change to a

decrease in liquidity provision by Intermediaries during this time period. However,

the relatively smaller decrease in the aggressive holdings change coefficient compared

to that of HFTs may be due to the increase in aggressiveness of Intermediaries who

sought to offset their disadvantageous positions during the Flash Crash.

1.7.6 HFTs and Intermediaries: The Hot Potato Effect

A basic characteristic of futures markets is that they remain in zero net supply

throughout the day. In other words, for each additional contract demanded, there

is precisely one additional contract supplied. End of day open interest presents a

single reading of the levels of supply and demand at the end of that day.

In intraday trading, changes in net demand/supply result from changes in

net holdings of different traders within a specified period of time, e.g., one minute.

These minute by minute changes in the net positions of individual trading accounts

can be aggregated to get a minute by minute net change in holdings for our six

trader categories. To change their net position by one contract, a trader may buy

one contract or may buy 101 contracts and sell 100 contracts.

We examine the ratio of trading volume during one minute intervals to the

change in net position over one second intervals to study the relationship between
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High Frequency Trader trading volume and changes in net position. We calculate

the same metric for Intermediaries and find that although High Frequency Traders

are active before and during the Flash Crash, they do not significantly change their

net positions.

Figure 1.8 presents the ratio of trading volume to net position change.

We find that compared to the three days prior to May 6, there was an unusually

level of HFT “hot potato” trading volume — due to repeated buying and selling

of contracts accompanied a relatively small change in net position. The hot potato

effect was especially pronounced between 13:45:13 and 13:45:27 CT, when HFTs

traded over 27,000 contracts, which accounted for approximately 49% of the total

trading volume, while their net position changed by only about 200 contracts.

We interpret this finding as follows: the lack of Opportunistic and Funda-

mental Traders, as well as Intermediaries, with whom HFTs typically trade just

before the E-mini price reached its trough, resulted in higher trading volume among

HFTs, creating a hot potato effect. It is possible that during the period of high

volatility, Opportunistic and Fundamental Traders were either unable or unwilling

to efficiently submit orders. In the absence of their usual trading counterparties,

HFTs were left to trade with other HFTs.

1.8 Fundamental Traders

Trading volume of the Fundamental Buyers and Sellers accounts for about

10-12% of the total trading volume both during May 3-5 and on May 6. However,
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Fundamental traders typically remove more liquidity from the market than they

provide. As a result, a sizable program executed by the Fundamental traders is

more likely to have a significant impact on the market.

In this section we examine the trading behavior of Fundamental traders. We

ask the following question: Was the trading behavior of Fundamental Buyers and

Sellers different on May 6, especially during the period of extreme price volatility?

Table 1.7 presents the average number of contracts bought and sold by different

categories of traders during two time periods on May 3-5 and on May 6. For both

May 3-5 and May 6, the period between 1:32 p.m. and 1:45 p.m. CT is defined as

‘UP’ and the period between 1:45 p.m. and 2:08 p.m. CT is defined as ‘DOWN’.

According to Table 1.7, there a significant increase in the number of contracts

sold by the Fundamental Sellers during the period of extreme price volatility on

May 6 compared to the same period during the previous three days.

Specifically, between 1:32 p.m. and 1:45 p.m. CT, the 13-minute period when

the prices rapidly declined, Fundamental Sellers sold more than 80,000 contracts

net, while Fundamental Buyers bought approximately 50,000 contracts net. This

level of net selling by the Fundamental Sellers is about 15 times larger compared

to their net selling over the same 13-minute interval on the previous three days,

while the level of net buying by the Fundamental Buyers is about 10 times larger

compared to their net buying over the same time period on the previous three days.

In contrast, between 1:45 p.m. and 2:08 p.m. CT, the 23-minute period of the

rapid price rebound, Fundamental Sellers sold more than 110,000 contracts net and

Fundamental Buyers bought more than 110,000 contracts net. This level of selling
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by the Fundamental Sellers is about 10 times larger compared than their selling over

the same 23-minute interval on the previous three days, while this level of buying

by the Fundamental Buyers is more than 12 times larger compared to their buying

over the same time period on the previous three days.

In order to visualize the activity of Fundamental and Opportunistic Traders,

we calculate the change in net position of these traders during the time surrounding

the Flash Crash.

As the price of the E-mini contract decreased, there was also an imbalance in

trading activity between Fundamental Buyers and Sellers. Opportunistic Traders

appear to have picked up the excess selling pressure. The price of the E-mini contract

recovered as Fundamental Buyers entered the market.

1.9 Opportunistic Traders

Opportunistic Traders comprise approximately a third of trading accounts

active on May 6. Accordingly, the trading behavior of Opportunistic Traders, espe-

cially during the Flash Crash, warrants discussion. These trading accounts’ behavior

differs from that of other trader categories.

1.9.1 Opportunistic Traders: Net Holdings

Opportunistic traders seem to exhibit mean reverting behavior similar to that

of HFTs and Intermediaries, but also establish large net positions like Fundamen-

tal Traders. Figure 1.10 illustrates this point by presenting the net holdings of
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Opportunistic traders on May 3-6.

Opportunistic traders increased their net position by approximately 70,000

contracts during the Flash Crash. This buying pressure came at an opportune time

as prices had already fallen significantly.

1.9.2 Opportunistic Traders: Profits and Losses

Figure 1.11 shows the profits and losses of Opportunistic Traders on May 3-6.

The buying activity of Opportunistic Traders during the Flash Crash could

have translated into substantial profits as a large portion of their buying was dur-

ing the price rebound. However, it is important to note the assumptions of this

calculation. We assume that traders begin the day with no preexisting position.

Accordingly, the massive swings in profits and losses are a function of the large net

position Opportunistic Traders established during the Flash Crash.

1.10 Aggressiveness Imbalance and Prices

We utilize the aggressiveness imbalance indicator to estimate the sensitivity of

prices to the aggressiveness imbalances of various trader categories. Aggressiveness

Imbalance is an indicator designed to capture the direction of the removal of liquidity

from the market. Aggressiveness Imbalance is constructed as the difference between

aggressive buy transactions minus aggressive sell transactions.

Figure 1.12 shows the relationship between price and cumulative Aggressive-

ness Imbalance (aggressive buys - aggressive sells).
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In addition, we calculate aggressiveness imbalance for each category of traders

over one minute intervals. For illustrative purposes, the Aggressiveness Imbalance

indicator for HFTs and Intermediaries are presented in Figures 1.13 and 1.14, re-

spectively.

According, to Figures 1.13 and 1.14, visually, HFTs behave very differently

during the Flash Crash compared to the Intermediaries. HFTs aggressively sold on

the way down and aggressively bought on the way up. In contrast, Intermediaries

are about equally passive and aggressive both down and up.

More formally, we estimate sensitivity of prices to the aggressiveness imbal-

ances of different categories of traders. The estimates are obtained by running the

following minute-by-minute regressions:

∆Pt

Pt−1 × σt−1

= α +
5∑

i=1

[λi ×
AGGi,t

Shri,t−1 × 100, 000
] + ϵt (1.3)

The dependent variable in the regression is the price return scaled by the

previous period’s volatility.15 The independent variables in the regression are the

aggressiveness imbalance for each trader category scaled by the category’s lagged

share of market volume times 100,000. The Newey West (1987) estimator t is em-

ployed.Estimated coefficients are presented in Table 1.8.

Panel A of Table 1.8 presents regression results for the period May 3-5. The

specification fits quite well with an R2 of 36% and all estimated price sensitivity

coefficients are statistically significant at 5% level.

15 For the estimate of volatility, we use range - the natural logarithm of the maximum price over
the minimum price.
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HFTs and Opportunistic traders have the largest coefficients at 5.37 and 7.6,

respectively. The coefficient of the Intermediaries is the lowest at 0.83. The co-

efficient for Fundamental Sellers (1.36) is about equal to that of the Fundamental

Buyers (1.31).

Panel B of Table 1.8 presents regression results for May 6. The model seems

to have a better fit with an R2 of 59%. All slope coefficients are again statistically

significant at 5% level. The coefficient for HFTs is smaller at 3.23. In contrast, the

coefficients of the Intermediaries (5.99) is more than seven times larger on May 6

compared to the previous three days. The coefficient of Opportunistic traders on

May 6 (7.49) is about the same as it is during May 3-5. However, the coefficient of

Fundamental Sellers (0.53) is nearly double that of the Fundamental Buyers (0.53).

We interpret these results as follows. High Frequency Traders have a large,

positive coefficient possibly due to their ability to anticipate price changes. In

contrast, Fundamental Traders have much smaller coefficients, which is likely due to

their explicit trading strategies that try to limit market impact, in order to minimize

transaction costs.

To illustrate the fit of these regressions, we use the estimated coefficients from

the aggressiveness imbalance regression during May 3-5 to fit minute-by-minute price

changes on May 6 (Figure 1.15). According to Figure 1.15, the fitted price (marked

line) is quite close to the actual price (solid line).
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1.11 Discussion: The Flash Crash

We believe that the events on May 6 unfolded as follows. Financial markets,

already tense over concerns about the European sovereign debt crisis, opened to

news concerning the Greek government’s ability to service its sovereign debt. As

a result, premiums rose for buying protection against default on sovereign debt

securities of Greece and a number of other European countries. In addition, the

S&P 500 volatility index (“VIX”) increased, and yields of ten-year Treasuries fell

as investors engaged in a “flight to quality.” By mid-afternoon, the Dow Jones

Industrial Average was down about 2.5%.

Sometime after 2:30 p.m., Fundamental Sellers began executing a large sell

program. Typically, such a large sell program would not be executed at once, but

rather spread out over time, perhaps over hours. The magnitude of the Fundamental

Sellers’ trading program began to significantly outweigh the ability of Fundamental

Buyers to absorb the selling pressure.

HFTs and Intermediaries were the likely buyers of the initial batch of sell or-

ders from Fundamental Sellers, thus accumulating temporary long positions. Thus,

during the early moments of this sell program’s execution, HFTs and Intermediaries

provided liquidity to this sell order.

However, just like market intermediaries in the days of floor trading, HFTs

and Intermediaries had no desire to hold their positions over a long time horizon.

A few minutes after they bought the first batch of contracts sold by Fundamental

Sellers, HFTs aggressively sold contracts to reduce their inventories. As they sold
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contracts, HFTs were no longer providers of liquidity to the selling program. In

fact, HFTs competed for liquidity with the selling program, further amplifying the

price impact of this program.

Furthermore, total trading volume and trading volume of HFTs increased

significantly minutes before and during the Flash Crash. Finally, as the price of

the E-mini rapidly fell and many traders were unwilling or unable to submit orders,

HFTs repeatedly bought and sold from one another, generating a “hot-potato”

effect.

Yet, Fundamental Buyers, who may have realized significant profits from this

large decrease in price, did not seem to be willing or able to provide ample buy-side

liquidity. As a result, between 2:45:13 and 2:45:27, prices of the E-mini fell about

1.7%.

At 2:45:28, a 5 second trading pause was automatically activated in the E-

mini. Opportunistic and Fundamental Buyers aggressively executed trades which

led to a rapid recovery in prices. HFTs continued their strategy of rapidly buying

and selling contracts, while about half of the Intermediaries closed their positions

and got out of the market.

In light of these events, a few fundamental questions arise. Why did it take so

long for Fundamental Buyers to enter the market and why did the price concessions

had to be so large? It seems possible that some Fundamental Buyers could not dis-

tinguish between macroeconomic fundamentals and market-specific liquidity events.

It also seems possible that the opportunistic buyers have already accumulated a

significant positive inventory earlier in the day as prices were steadily declining.
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Furthermore, it is possible that they could not quickly find opportunities to hedge

additional positive inventory in other markets which also experienced significant

volatility and higher latencies. An examination of these hypotheses requires data

from all venues, products, and traders on the day of the Flash Crash.

1.12 Conclusion

In this paper, we analyze the behavior of High Frequency Traders and other

categories of traders during the extremely volatile environment on May 6, 2010.

Based on our analysis, we believe that High Frequency Traders exhibit trading

patterns inconsistent with the traditional definition of market making. Specifically,

High Frequency Traders aggressively trade in the direction of price changes. This

activity comprises a large percentage of total trading volume, but does not result

in a significant accumulation of inventory. As a result, whether under normal mar-

ket conditions or during periods of high volatility, High Frequency Traders are not

willing to accumulate large positions or absorb large losses. Moreover, their con-

tribution to higher trading volumes may be mistaken for liquidity by Fundamental

Traders. Finally, when rebalancing their positions, High Frequency Traders may

compete for liquidity and amplify price volatility.

Consequently, we believe, that irrespective of technology, markets can become

fragile when imbalances arise as a result of large traders seeking to buy or sell

quantities larger than intermediaries are willing to temporarily hold, and simulta-

neously long-term suppliers of liquidity are not forthcoming even if significant price
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concessions are offered.

We believe that technological innovation is critical for market development.

However, as markets change, appropriate safeguards must be implemented to keep

pace with trading practices enabled by advances in technology.
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Tab. 1.1: Market Descriptive Statistics

May 3-5 May 6th

Volume 2,397,639 5,094,703
# of Trades 446,340 1,030,204
# of Traders 11,875 15,422

Trade Size 5.41 4.99
Order Size 10.83 9.76

Limit Orders % Volume 95.45% 92.44%
Limit Orders % Trades 94.36% 91.75%

Volatility 1.54% 9.82%
Return -0.02% -3.05%

This table presents summary statistics for the June

2010 E-Mini S&P 500 futures contract. The first

column presents averages calculated for May 3-5,

2010 between 8:30 and 15:15 CT. The second column

presents statistics for May 6t, 2010 between 8:30 to

15:15 CT. Volume is the number of contracts traded.

The number of traders is the number of trading ac-

counts that traded at least once during a trading day.

Order size and trade sizes are measured in the number

of contracts. The use of limit orders is presented both

in percent of the number of transactions and trading

volume. Volatility is calculated as range, the natu-

ral logarithm of maximum price over minimum price

within a trading day.
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Tab. 1.4: HFTs and Intermediaries: Net Holdings and Prices

Panel A: May 3-5 Panel B: May 6

∆ NP HFT ∆ NP INT ∆ NP HFT ∆ NP INT
Intercept -1.637 -0.529 Intercept -3.222 0.038

(-3.758) (-3.632) (-3.429) (0.138)
∆NPHFTt−1 -0.006 ∆NPHFTt−1 0.011

(-0.735) (1.248)
NPHFTt−1 -0.005 NPHFTt−1 -0.005

(-11.505) (-7.229)
∆NPINTt−1 -0.006 ∆NPINTt−1 -0.035

(-0.673) (-2.570)
NPINTt−1 -0.004 NPINTt−1 -0.008

(-10.043) (-8.426)
∆Pt 32.089 -13.540 ∆Pt 10.808 -8.164

(18.380) (-21.992) (5.142) (-7.274)
∆Pt−1 17.178 -1.218 ∆Pt−1 4.625 6.635

(12.983) (-2.708) (3.639) (9.784)
∆Pt−2 8.357 2.160 ∆Pt−2 -1.520 2.734

(7.376) (5.107) (-1.384) (4.433)
∆Pt−3 5.086 2.525 ∆Pt−3 -1.360 1.138

(4.998) (6.013) (-0.978) (3.031)
∆Pt−4 3.909 2.654 ∆Pt−4 -1.815 0.487

(3.656) (6.583) (-1.680) (1.270)
∆Pt−5 1.807 2.499 ∆Pt−5 -0.228 -0.768

(1.578) (5.898) (-1.680) (-1.857)
∆Pt−6 -0.078 2.163 ∆Pt−6 -0.312 -0.312

(-0.072) (5.448) (-0.223) (-0.826)
∆Pt−7 -1.002 1.842 ∆Pt−7 -5.037 -0.617

(-0.975) (4.969) (-3.555) (-1.257)
∆Pt−8 -1.756 1.466 ∆Pt−8 -1.775 -0.359

(-1.535) (3.901) (-1.319) (-1.044)
∆Pt−9 -1.811 0.453 ∆Pt−9 -1.678 -1.105

(-1.672) (1.252) (-1.432) (-2.736)
∆Pt−10 -3.899 0.525 ∆Pt−10 -1.654 -0.387

(-3.795) (1.366) (-1.188) (-0.936)
∆Pt−11 -4.728 -0.026 ∆Pt−11 -1.076 -0.628

(-4.752) (-0.071) (-0.903) (-1.221)
∆Pt−12 -3.456 0.152 ∆Pt−12 0.706 -1.171

(-3.321) (0.431) (0.477) (-2.163)
∆Pt−13 -3.799 0.267 ∆Pt−13 2.261 -0.617

(-3.772) (0.738) (1.354) (-1.457)
∆Pt−14 -4.769 0.317 ∆Pt−14 -2.664 -0.270

(-4.708) (0.822) (-2.346) (-0.735)
∆Pt−15 -2.735 -0.195 ∆Pt−15 0.428 -0.833

(-2.613) (-0.544) (0.330) (-2.442)
∆Pt−16 -2.208 -0.642 ∆Pt−16 -0.683 0.227

(-2.123) (-1.830) (-0.385) (0.638)
∆Pt−17 -2.517 -0.100 ∆Pt−17 -0.657 0.293

(-2.522) (-0.261) (-0.469) (0.783)
∆Pt−18 -4.358 0.044 ∆Pt−18 0.446 -0.769

(-3.989) (0.117) (0.264) (-2.124)
∆Pt−19 -4.215 0.568 ∆Pt−19 -2.629 -0.296

(-4.090) (1.530) (-2.072) (-0.793)
∆Pt−20 -5.860 -0.120 ∆Pt−20 -1.073 -0.706

(-5.987) (-0.343) (-0.781) (-1.576)
#obs 72837 72837 #obs 24275 24275

Adj −R2 0.0194 0.0263 Adj −R2 0.0101 0.0390

This table displays estimated coefficients of the following regression: ∆yt = α+ϕ∆yt−1+δyt−1+
∑20

i=0[βt−i×∆pt−i/0.25]+ϵt. The

dependent variable is changes in holdings of High Frequency Traders and Intermediaries, respectively. Both changes in holdings,

∆yt, and lagged holdings, yt − 1, are in the number of contracts. Price changes, ∆pt − i, are in ticks. Estimates are computed

for second-by-second observations. The t statistics are calculated using the Newey-West (1987) estimator. t values reported in

parentheses are in bold if the coefficients are statistically significant at the 5% level.
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Tab. 1.5: HFTs and Intermediaries: Liquidity Provision/Removal

Panel A: May 3-5 Panel B: May 6

∆ A HFT ∆ P HFT ∆ A INT ∆ P INT ∆ A HFT ∆ P HFT ∆ A INT ∆ P INT
Intercept -1.285 -0.352 -0.344 -0.185 -2.863 -0.359 -0.246 0.284

(-2.855) (-1.291) (-3.040) (-1.515) (-3.242) (-0.670) (-1.277) (1.212)
∆NPHFTt−1 -0.042 0.036 -0.003 0.014

(-4.931) (6.805) (-0.286) (1.770)
NPHFTt−1 -0.005 -0.001 -0.004 -0.001

(-9.619) (-3.204) (-5.701) (-2.924)
∆NPINTt−1 0.007 -0.013 -0.003 -0.032

(1.623) (-1.683) (-0.531) (-2.557)
NPINTt−1 -0.002 -0.002 -0.003 -0.004

(-6.150) (-6.182) (-4.540) (-4.824)
∆Pt 57.778 -25.689 6.377 -19.917 23.703 -12.895 4.939 -13.103

(29.925) (-28.850) (17.751) (-32.937) (7.411) (-5.281) (7.807) (-8.502)
∆Pt−1 22.549 -5.371 5.791 -7.009 -1.118 5.744 3.909 2.726

(16.181) (-7.829) (17.521) (-18.574) (-0.946) (4.171) (9.102) (5.343)
∆Pt−2 9.614 -1.258 4.752 -2.592 -2.661 1.141 1.659 1.075

(8.089) (-1.826) (15.125) (-7.739) (-2.613) (1.101) (5.187) (2.279)
∆Pt−3 5.442 -0.356 3.642 -1.117 -1.151 -0.209 0.536 0.602

(5.142) (-0.586) (12.586) (-3.383) (-0.890) (-0.175) (2.288) (1.675)
∆Pt−4 3.290 0.619 3.114 -0.460 -2.814 0.999 0.229 0.258

(2.937) (0.949) (10.888) (-1.366) (-2.739) (0.994) (1.004) (0.690)
∆Pt−5 1.926 -0.119 2.591 -0.092 -0.690 0.461 0.161 -0.929

(1.664) (-0.170) (8.656) (-0.266) (-0.556) (0.489) (0.546) (-1.822)
∆Pt−6 -0.987 0.909 2.038 0.125 -1.824 1.512 0.053 -0.365

(-0.872) (1.374) (7.017) (0.373) (-1.475) (1.344) (0.210) (-1.058)
∆Pt−7 -0.291 -0.711 2.101 -0.258 -2.688 -2.350 -0.516 -0.102

(-0.257) (-1.065) (8.333) (-0.812) (-2.295) (-1.754) (-2.345) (-0.244)
∆Pt−8 -0.977 -0.779 1.740 -0.274 -2.216 0.441 -0.625 0.267

(-0.797) (-1.159) (6.540) (-0.850) (-1.910) (0.394) (-2.668) (0.815)
∆Pt−9 -0.732 -1.078 1.158 -0.705 -0.801 -0.877 -0.099 -1.007

(-0.643) (-1.697) (4.541) (-2.259) (-0.732) (-0.896) (-0.364) (-2.525)
∆Pt−10 -2.543 -1.356 1.007 -0.483 -2.958 1.304 -0.513 0.125

(-2.370) (-2.246) (3.858) (-1.538) (-2.519) (1.253) (-1.949) (0.291)
∆Pt−11 -3.536 -1.193 0.425 -0.451 -1.099 0.023 -0.867 0.239

(-3.356) (-1.963) (1.612) (-1.463) (-1.090) (0.024) (-3.152) (0.509)
∆Pt−12 -2.523 -0.934 0.207 -0.054 0.974 -0.268 -0.396 -0.775

(-2.328) (-1.436) (0.781) (-0.178) (0.878) (-0.203) (-1.514) (-1.532)
∆Pt−13 -2.130 -1.669 0.502 -0.235 1.169 1.093 -0.293 -0.324

(-2.040) (-2.712) (1.868) (-0.786) (0.904) (0.716) (-1.181) (-0.838)
∆Pt−14 -4.387 -0.382 0.107 0.210 -1.249 -1.415 -0.450 0.180

(-4.154) (-0.631) (0.396) (0.630) (-1.223) (-1.253) (-1.892) (0.522)
∆Pt−15 -1.965 -0.770 0.099 -0.294 1.006 -0.579 -0.535 -0.298

(-1.834) (-1.231) (0.368) (-0.934) (0.922) (-0.638) (-2.153) (-0.857)
∆Pt−16 -2.434 0.226 -0.182 -0.460 -1.300 0.617 0.215 0.012

(-2.190) (0.391) (-0.673) (-1.528) (-1.028) (0.560) (0.859) (0.037)
∆Pt−17 -2.185 -0.332 0.238 -0.338 -1.707 1.051 -0.239 0.532

(-2.019) (-0.545) (0.884) (-1.066) (-1.521) (0.948) (-0.957) (1.595)
∆Pt−18 -3.259 -1.099 0.311 -0.267 0.482 -0.036 0.051 -0.820

(-2.862) (-1.739) (1.255) (-0.824) (0.440) (-0.035) (0.229) (-2.537)
∆Pt−19 -3.585 -0.631 0.544 0.024 -0.746 -1.883 -0.265 -0.0311

(-3.297) (-1.014) (2.085) (0.077) (-0.761) (-1.542) (-1.070) (-0.0782)
∆Pt−20 -4.621 -1.240 0.211 -0.331 -0.535 -0.538 -0.501 -0.205

(-4.493) (-2.144) (0.863) (-1.114) (-0.521) (-0.570) (-2.276) (-0.484)
#obs 72837 72837 72837 72837 24275 24275 24275 24275

Adj −R2 0.0427 0.0260 0.0202 0.0631 0.0252 0.0270 0.0457 0.0698

This table presents estimated coefficients of the following regression: ∆yt = α+ ϕ∆yt−1 + δyt−1 +
∑20

i=0[βt−i ×∆pt−i/0.25] + ϵt. Dependent variables

are changes in Aggressive and Passive holdings of High Frequency Traders and Intermediaries. Changes in holdings, ∆yt, and lagged holdings, yt − 1, are

in the number of contracts. Price changes, ∆pt− i, are in ticks. Estimates are computed for second-by-second observations. The t statistics are calculated

using the Newey-West (1987) estimator. t values reported in parentheses are in bold if the coefficients are statistically significant at the 5% level.
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Tab. 1.6: Aggressive and Passive Holdings: Flash Crash

Panel A: Down Panel B: Up

∆ A HFT ∆ P HFT ∆ A INT ∆ P INT ∆ A HFT ∆ P HFT ∆ A INT ∆ P INT
Intercept -0.614 7.792 -1.320 9.992 2.111 -1.880 1.484 -1.477

(-0.080) (2.306) (-0.440) (3.291) (0.676) (-0.647) (1.319) (-1.837)
∆NPHFTt−1 -0.023 -0.014 0.025 -0.026

(-0.748) (-0.744) (0.996) (-1.130)
NPHFTt−1 -0.008 0.0010 -0.005 -0.001

(-1.947) (0.370) (-2.258) (-0.336)
∆NPINTt−1 -0.043 -0.005 0.053 0.008

(-1.585) (-0.133) (2.563) (0.426)
NPINTt−1 -0.0003 -0.012 -0.004 -0.0009

(-0.079) (-2.812) (-2.366) (-0.654)
∆Pt 24.226 8.533 8.251 -9.603 -0.251 -9.107 2.912 -4.105

(2.833) (1.275) (3.864) (-2.618) (-0.142) (-4.378) (4.257) (-6.296)
∆Pt−1 2.397 9.540 8.821 2.075 -0.993 6.350 2.150 2.934

(0.557) (1.710) (6.132) (0.977) (-0.621) (2.773) (4.446) (5.790)
∆Pt−2 -4.273 3.669 4.257 0.298 -3.043 -0.445 0.402 0.457

(-0.915) (0.839) (2.307) (0.214) (-1.937) (-0.222) (1.039) (0.893)
∆Pt−3 -2.891 1.747 0.759 -0.138 0.814 -1.763 -0.099 0.283

(-0.681) (0.569) (0.865) (-0.130) (0.392) (-0.686) (-0.330) (0.610)
∆Pt−4 -2.040 -5.780 -2.175 0.009 -2.391 3.192 0.109 0.128

(-0.510) (-2.053) (-2.012) (0.007) (-1.769) (2.022) (0.386) (0.316)
∆Pt−5 -4.990 -5.326 0.070 -1.314 0.586 1.898 0.007 -0.657

(-1.046) (-0.911) (0.060) (-1.302) (0.403) (1.088) (0.019) (-1.350)
∆Pt−6 -7.924 6.621 -1.187 0.266 -0.426 2.800 0.282 -0.749

(-1.847) (1.994) (-1.206) (0.228) (-0.345) (1.515) (0.873) (-1.676)
∆Pt−7 6.843 -11.357 0.597 -1.384 -4.091 -3.299 -0.708 -0.753

(1.651) (-2.454) (0.640) (-1.266) (-2.690) (-1.401) (-2.157) (-1.605)
∆Pt−8 -6.903 6.837 -2.720 1.184 -0.049 -0.676 -0.401 0.183

(-1.542) (1.562) (-2.498) (0.892) (-0.032) (-0.365) (-1.205) (0.529)
∆Pt−9 0.624 -7.531 -1.732 -0.761 0.219 -0.115 -0.444 -0.709

(0.128) (-1.623) (-1.385) (-0.646) (0.189) (-0.082) (-1.244) (-1.899)
∆Pt−10 2.024 -3.278 -2.189 -0.300 -1.380 0.609 -0.299 -0.302

(0.324) (-0.583) (-1.611) (-0.194) (-0.920) (0.291) (-0.962) (-0.778)
∆Pt−11 0.412 4.367 -5.216 -1.190 -0.157 1.102 -0.607 0.200

(0.068) (1.076) (-4.948) (-0.739) (-0.135) (0.607) (-1.593) (0.449)
∆Pt−12 1.442 2.883 -2.684 1.850 0.700 -0.379 0.092 -0.986

(0.220) (0.577) (-1.984) (1.479) (0.527) (-0.163) (0.288) (-2.480)
∆Pt−13 17.340 -9.284 -0.385 -4.370 2.551 3.614 -0.212 0.429

(3.049) (-1.613) (-0.221) (-2.344) (1.351) (1.418) (-0.643) (1.027)
∆Pt−14 -11.389 -1.530 -1.904 2.974 0.378 -3.094 0.036 -0.349

(-2.531) (-0.226) (-1.627) (1.775) (0.304) (-1.571) (0.108) (-1.080)
∆Pt−15 8.706 -2.304 -4.375 -1.206 1.317 -1.904 -0.297 0.043

(1.281) (-0.332) (-4.377) (-0.783) (0.862) (-1.287) (-0.791) (0.100)
∆Pt−16 -3.908 -1.352 2.906 0.625 -1.480 0.541 0.372 0.234

(-0.642) (-0.229) (2.064) (0.369) (-0.903) (0.261) (1.036) (0.682)
∆Pt−17 6.351 -2.788 -0.147 -1.420 0.765 1.750 -0.241 0.725

(1.055) (-0.652) (-0.096) (-0.915) (0.505) (0.921) (-0.589) (1.792)
∆Pt−18 -8.521 -3.988 0.475 0.578 0.675 2.813 0.084 -0.584

(-1.642) (-0.647) (0.375) (0.356) (0.452) (1.533) (0.252) (-1.695)
∆Pt−19 6.899 -11.448 1.279 -3.649 -1.076 -3.171 -0.098 -0.086

(0.990) (-2.068) (0.936) (-1.830) (-0.835) (-1.773) (-0.300) (-0.195)
∆Pt−20 -14.611 6.997 -1.574 4.375 0.945 -1.366 -0.488 0.102

(-3.011) (1.226) (-1.404) (2.650) (0.678) (-0.922) (-1.486) (0.194)
#obs 808 808 808 808 1347 1347 1347 1347

Adj −R2 0.0423 0.0593 0.1779 0.0739 0.0084 0.0583 0.0655 0.0816

This table displays the results of the regression of ∆yt = α+ ϕ∆yt−1 + δyt−1 +
∑20

i=0[βt−i ×∆pt−i/0.25] + ϵt over one second intervals. The dependent

variables are aggressive and passive holdings changes of High Frequency Traders and Intermediaries. Changes in holdings (∆yt) and lagged holdings(yt−1)

are defined in contracts. The price changes (∆pt − i) are defined in ticks. DOWN period is defined as the interval between 13:32:00 (CT) and 13:45:28

(CT). UP period is defined as the interval between 13:45:33 (CT) and 14:08:00 (CT). The t statistics are calculated using the Newey-West (1987) estimator.

t values reported in parentheses are in bold if the coefficients are statistically significant at 5% level.
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Tab. 1.7: Trading Volume During the Flash Crash

Panel A: May 3-5

DOWN UP
Sell Buy Sell Buy

High Frequency Traders 23,746 23,791 40,524 40,021
Intermediaries 6,484 6,328 11,469 11,468

Fundamental Buyers 3,064 7,958 6,127 14,910
Fundamental Sellers 8,428 3,118 15,855 5,282

Opportunistic Traders 20,049 20,552 37,317 39,535
Small Traders 232 256 428 504

Panel B: May 6th

DOWN UP
Sell Buy Sell Buy

High Frequency Traders 152,436 153,804 191,490 189,013
Intermediaries 32,489 33,694 47,348 45,782

Fundamental Buyers 28,694 78,359 55,243 165,612
Fundamental Sellers 94,101 10,502 145,396 35,219

Opportunistic Traders 189,790 221,236 302,417 306,326
Small Traders 1,032 947 1,531 1,473

This table presents the number of contracts sold and bought by trader categories during DOWN

and UP periods. DOWN period is defined as the interval between 13:32:00 and 13:45:28 CT. UP

period is defined as the interval between 13:45:33 and 14:08:00 CT. Panel A reports the average

number of contracts bought and sold between May 3 and May 5, 2010 during the DOWN and

UP periods in the day. Panel B reports the number of contracts bought and sold on May 6,

2010 during the DOWN and UP periods.
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Tab. 1.8: Aggressiveness Imbalance and Prices

May 3-5 May 6

Intercept -0.01 0.01
(-0.19) (0.31)

High Frequency Traders 5.37 3.23
(6.43) (3.37)

Intermediaries 0.83 5.99
(1.08) (5.08)

Fundamental Buyers 1.31 0.53
(4.32) (2.20)

Fundamental Sellers 1.36 0.92
(5.81) (6.40)

Opportunistic Traders 7.60 7.49
(9.74) (10.61)

# of Obs 1210 404

Adj-R2 0.36 0.59

This table presents estimated coefficients of the following regression: ∆Pt

Pt−1×σt−1
= α +∑5

i=1[λi × AGGi,t

Shri,t−1×100,000
] + ϵt. The dependent variable is the return scaled by volatility

over one minute interval. Independent variables are the aggressiveness imbalances of
trader categories scaled by their market share times 100,000. t-values are corrected for
serial correlation, up to three lags, using the Newey-West (1987) estimator. t-values,
reported in parentheses, are in bold if the coefficients are statistically significant at the
5% level.
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Fig. 1.1: U. S. Equity Indices on May 6, 2010

1,020

1,040

1,060

1,080

1,100

1,120

1,140

1,160

1,180

9,800

10,000

10,200

10,400

10,600

10,800

11,000

8:30 9:20 10:10 11:00 11:50 12:40 13:30 14:20

S
&

P
 5

0
0

D
JI

A

Time

DJIA

E-Mini S&P 500

S&P 500 Index

This figure presents end-of-minute transaction prices of the Dow Jones Industrial Average

(DJIA), S&P 500 Index, and the June 2010 E-Mini S&P 500 futures contract on May 6, 2010

between 8:30 and 15:15 CT.
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Fig. 1.2: Prices and Trading Volume of the E-Mini S&P 500 Stock Index Futures Contract
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This figure presents minute-by-minute transaction prices and trading volume of the June

2010 E-Mini S&P futures contract on May 6, 2010 between 8:30 and 15:15 CT. Trading

volume is calculated as the number of contracts traded during each minute. Transaction

price is the last transaction price of each minute.
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Fig. 1.3: Trading Accounts Trading Volume and Net Position Scaled by Market Trading
Volume
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This figure presents trader categories superimposed (as shaded areas) over all individual trading

accounts ranked by their trading volume and net position scaled by market trading volume. The

figures reflect trading activity in the June 2010 E-Mini S&P 500 futures contract for May 3-6,

2010.
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Fig. 1.4: Net Position of High Frequency Traders
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This figure presents the net position of High Frequency Traders (left vertical axis) and

transaction prices (right vertical axis) in the June 2010 E-Mini S&P 500 futures contract

over one minute intervals during May 3, 4 , 5, and 6 between 8:30 to 15:15 CT. Net

position is calculated as the difference between total open long and total open short

positions of High Frequency Traders at the end of each minute. Transaction price is the

last transaction price of each minute.
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Fig. 1.5: Net Position of Intermediaries

1180

1185

1190

1195

1200

1205

-2000

-1500

-1000

-500

0

500

1000

1500

2000

8:31 9:21 10:11 11:01 11:51 12:41 13:31 14:21 15:11

P
ri

c
e

N
e
t 

P
o

s
it

io
n

Time

May 3

INT NP

Price

1155

1160

1165

1170

1175

1180

1185

-2000

-1500

-1000

-500

0

500

1000

1500

2000

8:31 9:21 10:11 11:01 11:51 12:41 13:31 14:21 15:11

May 4

1145

1150

1155

1160

1165

1170

1175

-2000

-1500

-1000

-500

0

500

1000

1500

2000

8:31 9:21 10:11 11:01 11:51 12:41 13:31 14:21 15:11

May 5

1020

1040

1060

1080

1100

1120

1140

1160

1180

-2000

-1500

-1000

-500

0

500

1000

1500

2000

8:31 9:21 10:11 11:01 11:51 12:41 13:31 14:21 15:11

May 6

This figure presents the net position of Intermediaries (left vertical axis) and transaction

prices (right vertical axis) in the June 2010 E-Mini S&P 500 futures contract over one

minute intervals during May 3, 4, 5, and 6 between 8:30 to 15:15 CT. Net position is

calculated as the difference between total open long and total open short positions of

Intermediaries at the end of each minute. Transaction price is the last transaction price

of each minute.
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Fig. 1.6: Profits and Losses of High Frequency Traders
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This figure presents the profits and losses of High Frequency Traders (left vertical axis)in

the June 2010 E-Mini S&P 500 futures contract reported over one minute intervals dur-

ing May 3, 4, 5, and 6 between 8:30 to 15:15 CT. Profits and losses are calculated by

multiplying lagged net position by the change in price.
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Fig. 1.7: Profits and Losses of Intermediaries
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This figure presents the profits and losses of Intermediaries (left vertical axis)in the June

2010 E-Mini S&P 500 futures contract reported over one minute intervals during May 3,

4, 5, and 6 between 8:30 to 15:15 CT. Profits and losses are calculated by multiplying

lagged net position by the change in price.
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Fig. 1.8: Hot Potato Volume
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This figure shows the price and the scaled trading volume by HFTs
and Intermediaries over one second intervals. Scaled trading volume
is calculated as the 5 second moving average of contracts traded over
absolute value net holdings. Price reflects the last transaction price
during an interval. Prices and scaled trading volumes are reported from
13:44 to 13:46 CT.
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Fig. 1.9: Change in Net Position of Fundamental and Opportunistic Traders
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This figure presents the change in net position of Fundamental and Opportunistic Traders

(left vertical axis) and transaction prices (right vertical axis) in the June 2010 E-Mini S&P

500 futures contract over one minute intervals on 6 between 13:19 to 14:09 CT. Net position

is calculated as the difference between total open long and total open short positions of

Opportunistic Traders at the end of each minute. Transaction price is the last transaction

price of each minute.
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Fig. 1.10: Net Position of Opportunistic Traders
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This figure presents the net position of Opportunistic Traders (left vertical axis) and

transaction prices (right vertical axis) in the June 2010 E-Mini S&P 500 futures contract

over one minute intervals during May 3, 4, 5, and 6 between 8:30 to 15:15 CT. Net position

is calculated as the difference between total open long and total open short positions of

Opportunistic Traders at the end of each minute. Transaction price is the last transaction

price of each minute.
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Fig. 1.11: Profits and Losses of Opportunistic Traders
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This figure presents the profits and losses of Opportunistic Traders (left vertical axis)in the

June 2010 E-Mini S&P 500 futures contract reported over one minute intervals during May

3, 4, 5, and 6 between 8:30 to 15:15 CT. Profits and Losses are calculated by multiplying

the lagged net position by the change in price.
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Fig. 1.12: Total Aggressiveness Imbalance
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This figure presents the total aggressiveness imbalance and prices in the June 2010 E-

Mini S&P 500 futures contract over one minute intervals between 8:30 to 15:15 CT on

May 6, 2010. Aggressiveness Imbalance is calculated as cumulative total aggressive Buy

transactions minus cumulative total aggressive Sell transactions at the end of each minute.

Price is the last transaction price for each minute.
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Fig. 1.13: Aggressiveness Imbalance of High Frequency Traders
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This figure presents the Aggressiveness Imbalance of High Frequency Traders (HFTs)

and prices in the June 2010 E-Mini S&P 500 futures contract over one minute intervals

between 8:30 to 15:15 CT on May 6, 2010. Aggressiveness Imbalance of HFTs is calculated

as cumulative HFT aggressive Buy transactions minus cumulative HFT aggressive Sell

transactions at the end of each minute. Price is the last transaction price for each minute.
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Fig. 1.14: Aggressiveness Imbalance of Intermediaries
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This figure presents the Aggressiveness Imbalance of Intermediaries and prices in the

June 2010 E-Mini S&P 500 futures contract over one minute intervals between 8:30 to

15:15 CT on May 6, 2010. Aggressiveness Imbalance of Intermediaries is calculated as

cumulative aggressive Buy transactions of Intermediaries minus cumulative aggressive Sell

transactions of Intermediaries at the end of each minute. Price is the last transaction price

for each minute.
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Fig. 1.15: Fitted Price Based on Aggressiveness Imbalance
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This figure presents actual and fitted prices in the June 2010 E-Mini S&P
500 futures contract over one minute intervals between 8:30 to 15:15 CT
on May 6, 2010. The Solid line is the last actual transaction price for
each minute. The Marked line is the fitted price calculated by apply-
ing estimated coefficients from the aggressiveness imbalance regressions
(Equation (1.3)) using data for May 3-5, 2010 to realized Aggressive
Imbalances of different trader categories on May 6, 2010.
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2. MUTUAL FUNDS AND LIQUIDITY CONSUMPTION

2.1 Introduction

The way institutions trade in the financial markets has always been intriguing

for researchers. Institutions are regarded as sophisticated and well-informed partici-

pants who significantly affect the prices and volatility. According to the Investment

Company Institute, as of February 2011 Mutual Fund Industry size is $12 trillion of

which equity funds hold $ 5.6 trillion. Institutions of this size have significant effect

on market liquidity. This paper investigates the relationship between mutual fund

trading and liquidity consumption in financial markets.

Price fluctuations are affected by not only the direction of trading but also

the availability and the consumption of liquidity in financial markets. Liquidity

consumption by institutions in an illiquid market is likely to cause higher volatility

than liquidity provision in a liquid market.

Characterizing the liquidity sensitivity of institutions can help us understand

the interactions of market participants and their effect on price volatility. In this

study, we characterize the mutual fund sensitivity to liquidity consumption in the

US Equity Markets. Mutual Funds are required to report their quarterly stock hold-

ings with Securities Exchange Commission (SEC) through 13-F filings. However,



the changes in stock holdings show the direction of mutual fund net trading, not

their liquidity sensitivity. To calculate the mutual fund sensitivity to liquidity con-

sumption, we use the information in the NYSE Trades and Quotes (TAQ) Dataset

which reports the tick by tick data for all exchange listed stocks.

There are three main findings. First, mutual fund trades are generally corre-

lated with order imbalance, suggesting that they trade in the same direction with

liquidity consumption. Second, mutual fund liquidity sensitivity differs based on

their investment styles. The liquidity sensitivity of growth-oriented funds is higher

than the value oriented and passively managed funds. This is consistent with a hy-

pothesis that information motivated trader consumes more liquidity. Third, trades

of actively managed funds can be explained by larger trades consuming liquidity

whereas small trades reveal the trades of index funds. Although explanations such

as following other traders in the market can not be ruled out, this evidence supports

a plausible explanation that information-motivated orders submitted by actively

managed funds tend to be large and index funds need only small adjustments to

track the index.

We use the method developed by Campbell, Ramadorai and Schwartz (2010),

henceforth CRS, to estimate the liquidity sensitivity of mutual funds over different

trade sizes. CRS develop a statistical method to explore the relationship between

institutional trading and net order imbalance across different trade sizes. Their re-

sults show that trades under $2,000 or over $30,000 indicate institutional trading.

However, we document that actively managed fund trades are correlated with larger

trade sizes whereas small trades indicate index fund trades, suggesting that institu-
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tions with different investment styles can be accounted for the relationship between

institutional trading and different trade sizes.

In August 2007, hedge funds received margin calls due to reduced stocks prices.

Their liquidity needs required correlated sell pressure which further reduced the

prices and led to a “liquidity spiral” (Brunnermeier 2009). The liquidity demand

of an institution can be affected not only by its own liquidity shock but also the

liquidity shocks of other institutions in the market. Another and the most recent

example of a liquidity crisis is the “May 6: The Flash Crash”. According to the SEC-

CFTC Joint Staff Report, buy-side of the S&P 500 E-Mini Futures limit order book

was depleted throughout the day and market liquidity completely disappeared in

just a matter of minutes during the crash. Orders removing liquidity from the book

amplified the crisis and increased the volatility. These events alone have showed that

characterizing the liquidity sensitivity of institutions has important implications for

market stability.

This chapter is organized in the following way: Section II introduces the data

and variables. Section III characterizes the liquidity sensitivity of institutions. Sec-

tion IV concludes.

2.2 Literature

There is an extensive literature on institutional trading and the behavior of

mutual funds. One line of this literature explores the effect of institutional trading

on prices and the performance of institutions. Wermers (1999) shows that mutual
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funds earn abnormal returns from herding and their trades do not destabilize the

prices. Nevertheless, these herds might be consuming extraordinary liquidity in the

market while they build their positions. By executing large trades versus small

trades, it is possible that they make the market less liquid for smaller traders.

Grinblatt, Titman, and Wermers (1997), Chen, Jagadesh and Wermers (2000) and

Bennett, Sias and Starks (2003) find that institutions add value by picking the

high performing stocks.Da, Gao and Jagannathan (2009) argue that growth-oriented

funds add value by informational trades but GNI funds add value by providing

liquidity.

Another line of literature explores the trading patterns and transactions costs

of institutions. Keim and Madhavan (1997) study the transaction costs of institu-

tions. They find that transactions costs are different for different investment styles.

CRS argue that aggregate trading patterns of institutions contrarian in the long run

stabilizes the prices. They implicitly assume that the trading patterns of institu-

tions are independent of their own liquidity shocks. The “liquidity spiral” phenom-

ena showed that it is crucial to model the liquidity shocks when characterizing the

trading patterns. In a theory paper, Wang (93) argues that liquidity shocks are one

reason why uniformed trader trades with informed trader. If an uninformed trader

cannot distinguish information-driven trade from liquidity-driven trade, then she

has the incentive to trade with informed traders. Chordia et all (2002) and Gross-

man and Miller (1988) explore the determinants of market liquidity and conclude

that order flows reduce the market liquidity.

Finance literature is generally silent on the trade initiation decision by institu-
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tions, more specifically the choice between liquidity providing orders versus liquidity

demanding orders executed by institutions. The liquidity need of an institution is

the immediacy to trade. Every financial transaction has one buyer and one seller.

However, two parties are not symmetric in terms of immediacy to trade. The party

that initiates the transaction demands liquidity from the other side. The simplest

example is a market order hitting a limit order resting in the limit order book. The

market order is an order which specifies the number of shares to be traded at the best

available price. On the other hand, limit order specifies the number of shares to be

traded at a particular price. Traders who have immediacy to trade tend to choose

market orders over limit orders. On the other hand, by strategically submitting

limit orders, traders may reduce their price impact and transactions costs.

2.3 Data

The data used in this study come from 4 different sources: the Center for

Research on Security Prices (CRSP), Trade and Quotes (TAQ) data, Thomson

Mutual Fund Holdings Data and CRSP Mutual Funds Dataset.

2.3.1 CRSP Dataset

Shares outstanding, returns, shares code and exchange code information come

from the Center for Research in Security Prices (CRSP) dataset. Only the common

stocks listed on NYSE, AMEX and NASDAQ are included in this study. The sample

spans from March 1993 to December 2006. The daily volatility of a certain stock
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is calculated as the standard deviation of the past 20 days of return. The average

quarterly volatility is calculated as the average daily volatility over the quarter. The

PERMNO identification from CRSP files is used to match the datasets.

2.3.2 NYSE Trades and Quotes Dataset

NYSE Trade and Quotes (TAQ) Dataset reports the time and date of each

trade along with the number of shares traded and the execution price for all the

exchange listed stocks. TAQ data does not classify the trades as buy-initiated or

sell-initiated trades. To achieve this classification, we use the method developed

by Lee and Ready (1993). This method looks at the midpoint of bid-ask spread

and the price of transaction. A trade is classified as buy (sell) if the price is higher

(lower) than the midpoint of the bid-ask spread. If the transaction price is equal to

the midpoint of bid-ask spread, then this method looks at the previous transaction

price. Price increasing (decreasing) trades are classified as buy (sell). Furthermore,

Lee and Ready (1993) suggest using the last recorded movement in prices to classify

trades if there is no price change. After assigning each trade as buy or sell, we follow

closely the method developed by CRS (2009). Specifically, buy and sell trades are

placed into 19 different trade size bins. (The lower cut-offs are $0, $2000, $3000,

$5000, $7000, $9000, $10,000, $20,000, $30,000, $50,000, $70,000, $90,000, $100,000,

$200,000, $300,000, $500,000, $700,000, $900,000 and $1 M.). After scaling shares

traded with the daily number of shares outstanding reported in CRSP, within each

bin, the quarterly buy (sell) volume is calculated as the aggregation of all buy (sell)

trades. Using separate trade sizes is useful to characterize the trade size choices
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of institutions. The data is aggregated to the quarterly level to match the mutual

funds data set which is in quarterly frequency. The difference between quarterly

buy and sell volume within a certain trade size bin is the net order imbalance in

that bin and denoted by Netji,t for stock i, quarter t and bin j. The total quarterly

order imbalance is simply the sum of these order imbalances and denoted by Neti,t

for stock i and quarter t.

2.3.3 Mutual Fund Holdings Dataset:

All Mutual Funds in the US are required to report their end of quarter port-

folios (number of shares they own for each stock) through 13-F filing. This data

is available on WRDS (Wharton Research Data Services) along with other char-

acteristics of the funds such as investment style and total net assets. Mutual fund

ownership for a particular stock is calculated as the number of common stocks owned

by the mutual funds as a fraction of shares outstanding. Mutual fund ownership and

change in mutual fund ownership variables are calculated separately for Growth, Ag-

gressive Growth, Growth and Income (GNI) and Index Fund categories. The change

in mutual fund ownership in a given quarter represents the mutual fund net trading

amount and direction. This data is matched with TAQ data to infer the liquidity

sensitivity of the mutual funds trades.

2.3.4 CRSP Mutual Fund Data:

CRSP Mutual Fund data contains the monthly return on asset (rt), total net

assets (TNAt) of Mutual Funds. The dollar amount mutual fund investor flow at
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the monthly frequency is calculated in the following way:

$Flowt = TNAt − (1 + rt)× TNAt−1

The quarterly mutual fund investor flow in a given quarter is the sum of

monthly flows in the quarter. CRSP Mutual Holdings data is matched with the

holdings dataset by fund names and fund tickers. Later, the individual mutual

fund flows are aggregated and scaled by the aggregate lagged TNA to calculate the

aggregate quarterly mutual fund flow. The Flow variable is computed separately

for Index, GNI, Growth and Aggressive Growth Fund categories.

2.3.5 Descriptive Statistics and Variable Construction:

Mutual fund quarterly net trades (∆y) are calculated as the quarterly change

in aggregate ownership for each stocks and fund category. The past return (Rett−1)

is defined as lagged quarterly return. To capture the possible asymmetry between

high performing and poor performing stocks, we define Ret+t−1 and Ret−t−1 below.

Ret+t−1 = Max{Rett−1, 0} and Ret−t−1 = Max{−Rett−1, 0}

Similarly, the mutual fund investor flows are formulated as positive and neg-

ative flows to identify possible asymmetries in the way institutions react to the flows.

Flow+
f = Max{Flowf , 0} and Flow−

f = Max{−Flowf , 0}

f = {Growth,Agg.Growth,GNI, Index}
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The quant crises in August 2007 provided evidence that institutional trading is cor-

related with liquidity shocks to the other institutions. Hence, the natural approach

is to formulate the mutual fund flows that other institutions receive.

EFlow+
f =

∑
i ̸=f Max{Flowi, 0} and EFlow−

f =
∑

i ̸=f Max{−Flowi, 0}

f = {Growth,Agg.Growth,GNI, Index}

A quick look at the flow variables reveals high degree of correlation among

mutual fund industry flows. To address the multicollinearity problem, the flow vari-

ables are orthogonalized by regression EFlow+
f on Flow+

f and EFlow−
f on Flow−

f

and residuals are used for further analysis.

Trade initiation decision of institution may also depend on the price volatil-

ity. Kyle (1985) shows that price impact is increasing with volatility. When price

volatility increases, the traders may strategically place resting limit orders to reduce

their price impact. If the offsetting orders, on the other hand, are unlikely to come

to the market place, the risk-averse informed trader may choose to submit market

orders to ensure trade execution. The quarterly price volatility is the mean of daily

price volatility which is the standard deviation of return over the past 20 trading

days. The stocks are divided into 5 size categories by the market capitalizations

based on the NYSE stocks cutoffs. The trades are signed as buy and sell by the

Lee and Ready (1993) algorithm with the prevailing quote assumed to be posted

2 seconds before the trade took place. The 2 seconds rule is consistent with 1-2

seconds rule developed by Piwowar and Wei (2006). The net order imbalance scaled
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by shares outstanding is calculated separately for separate trade size bins as the

difference between buy and sell volumes.

Table 2.1 reports the summary statistics for the study. Panel A describes the

stock level variables. The sample starts from March 1993 and ends in December

2006. There are 247,564 stock quarters in the sample. In the sample, there is a sell

pressure in the small stocks and buy pressure in the large stocks. The net order

imbalance ranges from -0.014 for smallest category to 0.0144 for the largest category.

Index fund trading tends to correspond to the behavior in the net order imbalance.

On average mutual funds are net sellers in the sample period. The mutual fund

ownership is mostly concentrated in the larger stocks, consistent with the idea that

institution hold large stocks for liquidity and corporate control purposes (Lo and

Wang (2000)). The Ret+t and Ret−t variables decrease monotonically as the market

capitalization increases, matching nicely the behavior of price volatility which is 0.04

for smallest category and 0.0241 for the larger category.

Panel B describes the mutual fund investment style level variables. During the

sample period, mutual funds are net receivers of investor flows. Index fund receives

2.98% inflow of TNA on average per quarter. Aggressive growth fund has 0.43%

inflow of TNA which is the lowest among all mutual funds.
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2.4 Mutual Fund Trading and Order Imbalance

2.4.1 Basic Framework

Institutional trades that remove liquidity from the book add the order im-

balance calculations. If mutual funds generally consume liquidity then quarterly

mutual fund trades and order imbalance variables should be positively correlated.

To account for spurious correlation between these two variables, other effects such

as high frequency momentum strategies should also be controlled. Following CRS,

regression approach is used to control for other variables that might be correlated

with order imbalance.

A trader buying on the up tick and selling on the down tick may appear to

consume liquidity at quarterly frequency even if she only uses resting orders. Includ-

ing Rett in the regression framework should control for high frequency momentum

strategies. Other variables such as Log(B/M)t−1, V olatilityt−1 and Rett−1 also in-

cluded to account for trading strategies that may resemble liquidity consumption

even if these strategies involve resting orders but somehow correlate with order

imbalance.

The natural first step to analyze the liquidity sensitivity of a mutual fund

category is to estimate the following regression:

∆yi,t = α + ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t−1+

γ4Log(B/M)i,t−1 + γ5Log(MarketCap)i,t−1 + β ×Neti,t + ϵi,t

(2.1)

This equation reveals how much of the variation in mutual fund trades can be ex-
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plained by various variables including order imbalance. The β coefficient character-

izes the liquidity sensitivity of mutual funds, a positive coefficient implying that they

trade in the same direction with liquidity consumption. Table 2.2 reports the results

from the equation (2.1) for different mutual fund categories for all stocks in the sam-

ple. The specifications include time-fixed effects and t statistics are calculated from

the standard errors clustered at the stock level. Peterson (2008) shows that stan-

dard errors clustered by stock are unbiased whether the stock effect is temporary

or permanent. Adj − R2 of the regressions range from 0.71 for Index fund to 0.21

for Growth Funds. The mutual fund holdings have statistically significant mean

reversion in the short and the long-run. The investment style differences among

mutual funds appear in the coefficients. The coefficients on Rett and Rett−1 are

positive and significant for growth oriented funds. Same coefficients for GNI funds

are negative. Growth-oriented funds buy momentum stocks whereas value oriented

funds follow contrarian investment strategies. Positive coefficient for Rett−1 of Index

funds indicates that they tend to buy recent winners and sell recent losers. Negative

coefficient for Rett of Index funds is consistent with the idea that they are contrar-

ian within the same quarter. The coefficients for V olatilityt−1 describes the mutual

funds’ preference for volatility. All the funds except GNI sell high volatility stocks

and buy lower volatility stocks. The coefficients for Log(B/M)t−1 are positive for

GNI and Index Fund suggesting that these funds buy value stocks and sell growth

stocks. On the other hand, growth-oriented funds buy growth funds and sell value

stocks. The coefficient for Log(MarketCap)t−1 is positive for all mutual funds, in-

dicating they buy larger stocks. This finding is consistent with Gompers and Metric
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(2001) who argue that institutions have special interest for large stocks.

All the coefficients for Nett are positive except the one for index funds. The

positive coefficient indicates that mutual funds are positively correlated with the

trades buying at the ask and selling at the bid price. The liquidity sensitivity

coefficient for the index fund is further analyzed in the next section. The coefficients

are larger for growth-oriented firms than value-oriented firms, suggesting that growth

oriented funds are more sensitive to liquidity consumption than value oriented funds.

2.4.2 Basic Framework Across Stock Size Categories

Since mutual funds have special interest for holding larger stocks, their trading

strategy and liquidity sensitivity may differ for different size categories. To explore

the liquidity sensitivity of mutual funds across different stock sizes, equation (2.1),

excluding the Log(Market Cap)t−1 variable, is run for 5 different stock size cate-

gories. The categories are defined by NYSE market capitalization cutoff points.

Table 2.3 reports the results. The adjusted-R2 of the regression is fairly large

and monotonically increases from small stocks to the large stocks. The degree of

trade detectability is especially high for the index funds mostly because their signif-

icant mean reversion in the short horizon. The liquidity sensitivity coefficients for

index funds is monotonically increasing from -0.001 to 0.006. Keim (1999) shows

that “9-10 Fund,” a fund tracking the CRSP 9-10 Index, generates excess returns

over the index by deviating from tracking the index to potentially reduce transac-

tions costs. The results in table 2.3 are consistent with the idea that index funds

may avoid or even take advantage of transactions costs in illiquid stocks at expense
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of closely following the index and they demand liquidity in larger stocks whereas

supply liquidity in smaller stocks.

The liquidity sensitivity coefficients of actively managed funds are positive in

all stock size categories and they tend to be higher for larger stocks. Transaction

costs in smaller stocks are higher, making liquidity consumption expensive. Institu-

tions trying to minimize the transactions costs may restrict their liquidity demand

in smaller stocks. Furthermore, liquidity sensitivity coefficients of growth oriented

funds are larger than their counterparts for GNI fund. This difference is larger for

smaller stocks. GNI funds are more likely to hold mature firms that have high earn-

ings and pay dividends. Growth-oriented funds on the other hand invest in stocks

that do not usually pay dividends but have large investments with risky future cash

flows. Growth-oriented funds tend to rely on fundamental and technical analysis

to acquire information about the future performance of stocks. The future perfor-

mance of small-cap stocks is more uncertain than large-cap stocks simply because

stock price of small cap stocks is not as informative as large cap stocks. Growth-

oriented funds may invest in discovering the true value of the small cap stocks and

produce information. Acting on this information, growth-oriented funds are more

likely to initiate trades and demand immediacy even in small and illiquid stocks.

2.4.3 Sensitivity of Mutual Fund Trading to Order Imbalance

The natural next step is to analyze the sensitivity of mutual fund trading to

order imbalance across stock and fund level characteristics. The following regression
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is considered for this purpose:

∆yi,t = α + ρyi,t−1 + ϕ∆yi,t−1 + γ1Rett−1,i + γ2Rett,i + γ3V olatilityt−1,i

+γ4Log(B/M)t,i + γ5Log(Market Cap)i,t−1 +Nett,i × [β1 + β2Log(Market Cap)i,t−1

+β3Log(B/M)i,t−1 + β4yi,t−1 + β5Flow+
t + β6EFlow+

t + β7Flow−
t

+β8EFlow−
t + β9RET+

i,t−1 + β10RET−
i,t−1 + β10V olatilityi,t−1] + ϵi,t

(2.2)

The equation relates the mutual fund trading activity to the stock character-

istics such as recent return, book-to-market and volatility as well as the net order

imbalance and several cross-terms to explain the shifts in the liquidity sensitivity.

Table 2.4 reports the results from the equation (2.5) for all the entire sam-

ple. The results for stock variables reveal important characteristics of mutual fund

trading at the quarterly frequency. The positive coefficients on the Rett−1 variable

suggest that growth-oriented and index funds are momentum-traders, buying re-

cent winners and selling recent losers. GNI funds, on the other hand, appear to be

contrarians, buying the recent losers and selling the recent winners. The negative

coefficient for volatility suggests that mutual funds dislike the high volatility stocks

and sell them. Growth-oriented funds also sell the ones that become value stocks

and buy the ones which become growth stocks. GNI funds do the opposite, selling

growth stocks and buying value stocks.

The cross terms with the Nett variable show the sensitivity of mutual fund to

liquidity consumption across stock and fund characteristics. Aggressive growth fund

trades in low book-to-market stocks are revealed by liquidity consumption in those
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stocks. On the other hand, the trades of GNI funds in high book-to-market stocks are

explained by liquidity consumption in these stocks. Similarly, when experienced buy

flows, liquidity sensitivity of actively managed mutual funds increases. Index funds,

however, reduce liquidity sensitivity in response to the flows. This is consistent with

the following intuition. When index funds receive inflows, they buy S&P 500 future

contracts to get immediate exposure to the index. Later, they buy the stocks which

constitute the index slowly through liquidity providing trades. Actively managed

funds, on the other hand, act on the information they acquire and pick stocks in

which they invest. When they receive inflows, they initiate trades to buy the stocks

they have already picked before the price moves away. The positive coefficient for the

Ret+t−1×Nett for aggressive growth funds show that liquidity consumption indicate

the trades of these funds. The negative coefficient for the Ret+t−1 × Nett for GNI

funds show that their trades are negatively correlated with liquidity consumption in

these stocks. Since aggressive growth funds follow a momentum strategy and GNI

funds follow a contrarian strategy, aggressive growth funds buy high performing

stocks and GNI funds sell them. These results support a plausible explanation that

in a likely transaction between these two funds, aggressive growth funds demand

liquidity whereas GNI funds supply liquidity.

Mutual Funds also differ in the way they respond to the flows which go to

the other funds. Growth funds tend to reduce their liquidity sensitivity whereas

aggressive growth funds raise their liquidity sensitivity. If the aggressive growth

funds try to buy the stocks before the mutual funds which experience inflow, they

demand more immediacy from the market. The results are consistent with front-
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running or herding explanation. This strategy by aggressive growth funds may make

market less liquid for the other institutions by raising the transactions costs.

Next, I compare the sensitivity of mutual funds to liquidity consumption in

different market capitalization categories. Table 2.5 reports the results for different

size categories. Growth-oriented funds, when received inflows, generally increase

liquidity sensitivity in the larger stocks. Buying large stocks in response to flows

allows the funds to reduce transactions costs as the larger stocks are more liquid.

Higher liquidity sensitivity of growth-oriented funds for high performing stocks is

concentrated in small stocks. Wermers (1995) show growth-oriented mutual funds

buy small high performing stocks in herds. My results support a hypothesis that

these herds are associated with liquidity consumption in markets when buying high

performing small stocks.

Aggressive growth funds’ liquidity sensitivity increases when other mutual

funds receive outflows. If this is associated with front running, aggressive growth

funds make the market less liquid on the sell side for other traders. Other funds,

however, tend to reduce their liquidity sensitivity when other mutual funds are ex-

periencing outflows. This behavior may help the market liquidity especially at the

time when others receive adverse liquidity shock. Index funds reduce liquidity sen-

sitivity in response to the inflows especially in the largest stock category. This is

consistent with a plausible explanation. Index funds following S&P 500 index can

trade S&P 500 Futures when they receive inflow to get an exposure to the index.

On the sell side, nevertheless, this is not possible since selling S&P Futures con-

tract does not generate cash immediately. They may utilize stock lending facilities
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to generate cash that they need to satisfy redemption. Index Funds, interestingly,

increase liquidity consumption as the volatility increases in small stocks. When the

volatility of the stock increases, institutions demand more risk premium and sell the

stock. Thus, it is intriguing to find that trades of index funds can be explained by

volatility.

2.5 Information in Trade Sizes

The equation 2.1 does not consider the information in different trade sizes.

The general version of the sensitivity of mutual fund trading over different trade

sizes is:

∆yi,t = α + ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t

+γ4Log(B/M)i,t +
19∑
j=1

[βj ×Netji,t] + ϵi,t

(2.3)

where j is the index for trade sizes.

Estimating the equation 2.3 with simple linear regression is troublesome be-

cause net order imbalance is small stocks are rarely traded in large trade sizes and

the information in the trade sizes is highly correlated which leads to the multi-

collinearity in the linear model. CRS estimate a smooth function which captures

the relationship between institutional trading and various trade sizes . In this study,

we choose to estimate this regression with a simpler function to assign the estimated

coefficients meaning. To check the robustness, the analysis is done with the Nel-

son and Siegel (1987) function that CRS use and the results are qualitatively very
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similar.

βj = b01 + b02 × Log(Zj) (2.4)

where Zj is the midpoint of the trade size bin. After plugging 2.4 into 2.3, the

regression specification becomes:

∆yi,t = α + ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t+

γ4Log(B/M)i,t + b01 ×Net(i, t) + b02 ×
19∑
j=1

Log(Zj)×Netji,t + ϵi,t

(2.5)

Net Slope variable,
∑19

j=1 Log(Zj)×Netji,t, is simply a sum of order imbalances

weighted by their trade sizes. The parameter b02, therefore, measures the sensitiv-

ity of correlation between order imbalance and institutional trading with respect to

different trade sizes. The equation 2.5 is run for 5 different stock size categories

across different mutual fund styles. Table 2.7 reports the results of the regression

which includes Net Slope variable. t statistics clustered at the stock level are re-

ported in parentheses. The coefficients for Net Slope variable are negative for all

size categories. Their trading strategy is correlated more with small trade sizes than

larger trade sizes. There are two competing explanations for this finding. First, in-

dex funds need immediacy in small trades because they need small adjustments to

track the index. Hence, the coefficient for Net Slope variable captures the liquidity

demand of Index fund over different trade sizes. Second, Index funds follow in-

vestors who submit small orders and the negative coefficients for Net Slope variable
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reveal their trading strategy with respect to the trade size choices. Following small

trades may lead to random trading strategies for index funds which in turn result

in significant deviations from the underlying index. It is conceivable to argue that

for index funds, tracking the index is more important than adopting a statistical

trading strategy to create value. Hence, the results for the index fund can be in-

terpreted as liquidity demand sensitivity. This suggests that index fund demand

liquidity demand is higher for small trade sizes.

The Net Slope coefficients for actively managed funds are positive in general.

They tend to be higher for growth-oriented funds rather than value oriented funds.

Compared to small trades, larger trade sizes tend to explain the trades of these

mutual funds. The trades of actively managed funds are more likely to be correlated

with larger trade sizes then small trade sizes. This relationship might be caused

by mutual funds following liquidity consumption in larger trade sizes. If private

information has a short life, then informed traders have urgency to trade and demand

liquidity in larger trade sizes. Growth-oriented funds invest heavily in fundamental

and technical analysis to produce information about financial securities to become

informed traders. The results are consistent with the idea that growth-oriented funds

submit larger trades for information-related reasons. Nevertheless, the hypothesis

that actively managed mutual funds follow a trading strategy that follows large

orders cannot be rejected.

Figure 2.1 displays the estimated order imbalance coefficients , βj, from 2.5

over different trade sizes for index and GNI funds. The coefficients for index fund

are monotonically decreasing over trade sizes. Their trading strategy is generally
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correlated with order imbalances in small trade categories. Employing a strategy

which involves trading in the same direction with small orders may cause large index

tracking errors. The more likely explanation for this result is that index funds need

immediacy especially in small trade sizes because they need small adjustments in

their portfolio to closely follow the index. The coefficients for GNI funds, on the

other hand, are increasing over trade sizes. Order imbalance in larger trades reveal

GNI trading activity more than that in small trade sizes.

Figure 2.2 displays the estimated order imbalance coefficients from the equa-

tion 2.5 over different trade sizes for Growth and Aggressive Growth funds. Similar

to the results from GNI funds, trades of growth-oriented funds positively correlate

with order imbalances in large trade sizes. Such relationship may be a result of

certain trading strategy sensitive to large orders. Another plausible interpretation

would be that these coefficients indeed reveal the liquidity demand of the institutions

over different trade sizes. The distinction between these two interpretations can not

be tested in the data because separating these two hypothesis require observations

in higher frequency such daily trades of mutual funds. Although the large order

following strategy explanations can not be ruled out, these results are consistent

with the following intuition: The trades of growth-oriented funds are motivated by

the changes in the expected stocks returns. The information they have might be

short-lived, therefore, they have to quickly rebalance their portfolio and submit large

trades before price moves away. Index Funds, however, submit smaller trades to re-

duce transactions costs and follow volume-weighted average price (VWAP) trading

strategies.
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The results of CRS show that trades under $2,000 or over $30,000 indicate

institutional trading. However, we document that actively managed funds are cor-

related with larger trade sizes whereas index fund trading is revealed by small trade

sizes, suggesting that institutions with different investment styles can be accounted

for the correlation of institutional trading and various trade sizes.

2.6 Conclusion

The sensitivity of mutual fund trading to liquidity consumption is studied.

Mutual Funds are not only different in their investment strategy but also in their

sensitivity to liquidity consumption. The three main results stand out.

• Mutual fund trades correlate with order imbalance, suggesting they trade in

the same direction with liquidity consumption.

• Mutual fund liquidity sensitivity differs based on their investment styles. The

liquidity sensitivity of growth-oriented funds is higher than the value oriented

and passively managed funds. This is consistent with the hypothesis that

information motivated trader consumes more liquidity.

• Actively managed fund trading can be explained by larger trades consuming

liquidity whereas small trades reveal the trades of index funds. This evidence

supports the plausible explanation that information-motivated orders submit-

ted by actively managed funds tend to be large and index funds need only

small adjustments to track the index.
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Tab. 2.1: Descriptive Statistics

Panel A: Stock Level Statistics

Size

Small 2 3 4 Large All

Nett -0.0140 -0.0011 0.0093 0.0160 0.0144 -0.0052
Index ∆yt -0.0001 0.0002 0.0001 0.00003 0.0001 -0.00001

Agg. Growth ∆yt -0.0002 -0.0006 -0.0011 -0.0011 -0.0007 -0.0005
Growth ∆yt -0.0003 -0.0002 -0.0003 -0.0012 -0.0012 -0.0004

GNI ∆yt -0.0001 -0.0002 -0.0002 -0.0001 0.0000 -0.0001
Index yt 0.0090 0.0127 0.0110 0.0101 0.0143 0.0103

Growth yt 0.0080 0.0212 0.0258 0.0228 0.0123 0.0133
GNI yt 0.0255 0.0609 0.0704 0.0714 0.0555 0.0412

Agg Growth yt 0.0020 0.0070 0.0153 0.0327 0.0512 0.0100
V olatilityt−1 0.0431 0.0297 0.0269 0.0241 0.0224 0.0365
Log(B/M)t−1 -0.4954 -0.7791 -0.8705 -0.9046 -1.0791 -0.6504

Rett−1 0.0359 0.0412 0.0384 0.0399 0.0357 0.0373
Ret+t−1 0.1269 0.1142 0.1047 0.0957 0.0831 0.1171
Ret−t−1 -0.0911 -0.0730 -0.0663 -0.0558 -0.0474 -0.0799

# of Obs. 147,757 37,081 25,105 20,180 17,441 247,564

Panel B: Fund Level Statistics

Index Fund GNI Growth Agg. Growth All

Flow 0.0298 0.0054 0.0098 0.0043 0.0123
Flow+ 0.0413 0.0212 0.0264 0.0366 0.0314
Flow− 0.0115 0.0158 0.0166 0.0324 0.0191

TNAt ($ Millions) 219,589 492,908 685,450 172,546 392,623

Table reports the descriptive statistics for the sample from 1993 to 2006. Panel A presents the stock
level variables at the quarterly frequency. Order Imbalance (Nett), stock ownership (yt) and change in
ownership (∆yt) are scaled by shares outstanding. V olatilityt is calculated as the standard deviation of
daily returns over the last 20 trading days. Panel B presents the quarterly mutual fund level variables
at the investment style category. Flow variables are scaled by investment style aggregate lagged TNA.
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Tab. 2.2: Basic Regression I

Index Fund GNI Fund Growth Fund Agg. Growth

Intercept -0.01 -0.01 -0.03 -0.01
-66.18 -43.45 -42.39 -27.31

yt−1 -0.11 -0.05 -0.06 -0.11
-47.5 -29.29 -40.85 -53.21

∆yt−1 -0.62 -0.31 -0.31 -0.26
-179.25 -53.11 -85.48 -55.65

Rett 0.0003 -0.0003 0.0028 0.0029
6.83 -6.02 17.94 28.13

Rett−1 -0.0008 -0.0007 0.0028 0.0022
-17 -15.1 18.16 22.24

V olatilityt -0.0049 0.0004 -0.0274 -0.0030
-9.62 0.72 -15.5 -3.48

Log(B/M)t−1 0.0004 0.0002 -0.0003 -0.0003
23.48 9.8 -6.98 -11.86

Log(Market Cap)t−1 0.0002 0.0005 0.0004 0.0001
32.88 39.44 15.05 10.55

Nett -0.0011 0.0025 0.0274 0.0127
-2.86 5.99 18.74 14.53

Time Fixed Effects Yes Yes Yes Yes
# of Stocks 10,570 10,570 10,570 10,570

# of Obs 247,564 247,564 247,564 247,564
Adj −R2 0.72 0.21 0.24 0.21

Table reports the regression results from the equation :

∆yi,t = α + ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t + γ4Log(B/M)i,t +
γ5Log(Market Cap)i,t−1 + β ×Neti,t + ϵi,t

t statistics calculated from stock level clustered standard errors are reported below the coefficients.
Quarterly time fixed effects are included in all specifications. Sample runs from 1993 to 2006.
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Tab. 2.3: Basic Regression II

Panel A

Index Fund GNI Fund

Small 2 3 4 5 Small 2 3 4 5

Intercept -0.005 -0.009 -0.007 -0.004 -0.005 -0.001 -0.003 -0.005 -0.007 -0.012
-48.66 -31.3 -21.51 -16.99 -15.55 -9.7 -10.71 -9.77 -12.28 -17.96

yt−1 -0.104 -0.122 -0.102 -0.069 -0.146 -0.104 -0.102 -0.078 -0.054 -0.037
-37.33 -15.99 -10.93 -8.76 -9.84 -18.69 -16.27 -17.23 -14.76 -10.91

∆yt−1 -0.594 -0.517 -0.581 -0.711 -0.625 -0.331 -0.268 -0.281 -0.291 -0.260
-129.26 -51.41 -41.97 -56.08 -35.6 -29.6 -18.42 -19.76 -24.75 -21.24

Rett 0.0004 0.0001 -0.0004 -0.00001 -0.0001 0.000 0.000 -0.001 -0.003 -0.005
7.12 0.47 -2.57 -0.03 -0.47 -0.54 -1.9 -5.14 -6.7 -8.23

Rett−1 -0.0004 -0.001 -0.001 -0.0002 0.0005 0.0001 -0.0002 -0.0005 -0.001 -0.005
-6.76 -5.42 -8.29 -1.45 2.63 3.05 -1.63 -2.07 -2.99 -7.75

V olatilityt−1 -0.013 -0.005 0.001 -0.002 -0.004 -0.004 -0.016 -0.024 -0.031 -0.033
-22.5 -2.59 0.51 -0.71 -1.82 -12.87 -7.00 -5.48 -5.19 -3.1

Log(B/M)t−1 0.00019 0.00054 0.00025 0.00006 0.00001 0.00002 -0.00002 0.00019 0.00022 0.00023
11.41 11.99 5.87 1.14 0.39 1.61 -0.35 2.28 1.93 1.72

Nett -0.001 0.001 0.002 0.002 0.006 0.0003 0.003 0.008 0.015 0.018
-2.30 1.30 2.23 2.00 4.15 0.77 2.65 4.65 5.37 4.3

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.68 0.80 0.83 0.82 0.94 0.26 0.23 0.22 0.26 0.42

Panel B

Growth Fund Agg. Growth Fund

Intercept -0.013 -0.031 -0.034 -0.031 -0.024 -0.004 -0.011 -0.012 -0.010 -0.004
-30.22 -31.14 -29.14 -25.24 -21.89 -20.41 -21.2 -19.49 -16.59 -11.31

yt−1 -0.056 -0.064 -0.063 -0.063 -0.075 -0.116 -0.106 -0.114 -0.115 -0.134
-26.34 -20.77 -16.65 -16.48 -13.9 -33.03 -24.65 -25.56 -19.02 -16.5

∆yt−1 -0.313 -0.288 -0.280 -0.302 -0.341 -0.261 -0.236 -0.250 -0.271 -0.287
-62.34 -34.81 -28.89 -25.64 -20.58 -37.21 -23.68 -23.24 -20.07 -15.66

Rett 0.001 0.004 0.007 0.011 0.011 0.001 0.006 0.008 0.010 0.007
8.99 7.58 9.05 10.36 9.8 14.71 16.7 15.15 14.83 10.98

Rett−1 0.002 0.005 0.007 0.010 0.009 0.001 0.006 0.009 0.010 0.006
14.87 9.19 9.61 9.72 8.25 14.81 18.44 15.68 12.56 8.02

V olatilityt−1 -0.038 -0.064 -0.031 -0.031 -0.010 -0.010 0.006 0.004 0.022 0.003
-23.59 -7.02 -1.81 -2.38 -1.08 -14.58 1.02 0.48 2.43 0.59

Log(B/M)t−1 -0.0002 -0.001 -0.001 -0.001 -0.001 -0.0002 -0.001 -0.001 -0.001 -0.001
-3.36 -5.7 -6.3 -5.33 -4.38 -5.66 -6.8 -8.84 -6.08 -5.12

Nett 0.013 0.039 0.054 0.045 0.061 0.005 0.023 0.020 0.019 0.016
7.59 9.47 10.67 7.66 8.77 5.55 9.57 6.67 5.48 3.67

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.21 0.27 0.29 0.32 0.40 0.22 0.22 0.26 0.28 0.30

Table reports the regression results for 5 different stock size categories from the equation :

∆yi,t = α+ ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t + γ4Log(B/M)i,t + β ×Neti,t + ϵi,t

Stock size cut-off points are calculated from NYSE market capitalization cut-off points.t statistics calculated from stock level

clustered standard errors are reported below the coefficients. Quarterly time fixed effects are included in all specifications.

Sample runs from 1993 to 2006.
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Tab. 2.4: Sensitivity of Mutual Funds to Liquidity Consumption

Index Fund GNI Fund Growth Fund Agg Growth Fund

Intercept -0.01 -0.01 -0.03 -0.01
-67.24 -43.51 -41.73 -27.48

yt−1 -0.11 -0.05 -0.06 -0.11
-48.08 -30.37 -40.24 -53.72

∆yt−1 -0.62 -0.31 -0.31 -0.26
-178.82 -53.19 -85.49 -55.90

Rett 0.000 -0.0002 0.003 0.003
6.28 -5.50 18.56 28.43

Rett−1 -0.001 -0.001 0.003 0.002
-16.81 -14.85 16.66 21.84

V olatilityt−1 -0.0035 -0.0005 -0.03 -0.004
-7.11 -0.97 -15.56 -4.64

Log(B/M)t−1 0.0004 0.0002 -0.0003 -0.0003
23.65 9.94 -6.18 -11.43

Log(Market Cap)t−1 0.0003 0.0005 0.0004 0.0002
33.65 39.42 14.56 10.90

Nett 0.01 -0.04 -0.08 -0.05
1.51 -7.38 -4.50 -4.81

Nett × Log(MarketCap)t−1 -0.0002 0.0023 0.0043 0.0023
-0.84 7.75 4.57 4.87

Nett × Log(B/M)t 0.0007 0.0017 0.0006 -0.0019
1.88 4.17 0.46 -2.49

Nett × yt−1 -0.02 0.14 0.26 0.34
-0.47 2.52 6.42 7.68

Nett × Flow+
t -0.07 0.05 0.34 0.09

-8.09 3.07 7.44 5.66

Nett × EFlow+
t -0.0030 0.01 -0.12 0.04

-0.65 2.69 -5.06 4.07

Nett × Flow−
t -0.20 -0.0024 0.05 0.03

-10.98 -0.15 0.97 1.61

Nett × EFlow−
t -0.05 -0.05 -0.27 0.11

-7.64 -8.89 -4.87 6.01

Nett × Ret+t−1 -0.0036 -0.0076 0.0033 0.0129
-2.52 -5.36 0.64 6.32

Nett × Ret−t−1 -0.0021 0.01 0.03 0.01
-0.76 2.42 2.62 1.70

Nett × V olatilityt−1 0.07 0.0003 -0.04 -0.02
4.86 0.02 -0.68 -0.80

Time Fixed Effects Yes Yes Yes Yes
# of Stocks 10,570 10,570 10,570 10,570
# of Obs 247,564 247,564 247,564 247,564
Adj −R2 0.72153 0.210473 0.237293 0.214624

Table reports the regression results for the entire sample from the Equation 2.2. t statistics calculated from stock level

clustered standard errors are reported below the coefficients. Quarterly time fixed effects are included in all specifications.

Sample runs from 1993 to 2006.
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Tab. 2.5: Sensitivity of Mutual Funds to Liquidity Consumption: Size Categories

Index Fund GNI Fund

Small 2 3 4 Large Small 2 3 4 Large

Intercept -0.005 -0.009 -0.007 -0.004 -0.005 -0.001 -0.003 -0.005 -0.007 -0.012
-48.8 -31.59 -21.51 -16.57 -15.66 -9.68 -10.67 -10 -12.17 -17.08

yt−1 -0.103 -0.123 -0.105 -0.069 -0.139 -0.101 -0.102 -0.077 -0.052 -0.035
-37.09 -15.42 -11.05 -8.31 -9.08 -17.29 -16.24 -16.29 -12.88 -8.89

∆yt−1 -0.593 -0.516 -0.581 -0.711 -0.625 -0.330 -0.268 -0.281 -0.291 -0.261
-129.33 -51.01 -42.01 -55.91 -35.74 -29.56 -18.45 -19.77 -24.77 -21.35

Rett 0.0003 0.0001 -0.0004 0.0000 -0.0001 -0.00001 -0.0003 -0.0013 -0.0030 -0.0050
6.64 0.8 -2.48 0.14 -0.34 -0.39 -1.8 -5.05 -6.75 -7.8

Rett−1 -0.00030 -0.00066 -0.00106 -0.00016 0.00028 0.00005 -0.00026 -0.00062 -0.00183 -0.00594
-5.26 -5.29 -7.45 -0.87 1.4 1.57 -1.94 -2.45 -3.47 -7.85

V olatilityt−1 -0.01117 -0.0061 0.001168 -0.00103 -0.00425 -0.00399 -0.01577 -0.02545 -0.03409 -0.03468
-19.8 -2.96 0.54 -0.31 -1.73 -11.52 -6.73 -5.54 -5.63 -3.01

Log(B/M)t−1 0.00019 0.00054 0.00024 0.00006 0.000004 0.00002 -0.00002 0.00015 0.00001 0.00019
10.91 12.06 5.54 1.2 0.1 1.88 -0.29 1.73 0.11 1.17

Nett -0.00351 0.007614 0.003486 0.006063 0.011081 0.000856 0.000622 0.017059 0.021889 0.03028
-2.23 2.3 1.15 1.72 1.94 1.04 0.24 4.04 3.4 2.22

Nett × Log(B/M)t−1 -0.00007 0.00239 0.00106 -0.00044 0.00084 0.000306 0.000982 0.004096 0.011749 0.002748
-0.15 2.33 0.98 -0.33 0.54 0.99 0.74 2.02 3.45 0.62

Nett × yt−1 0.092 0.022 0.157 -0.036 -0.299 0.270 0.145 -0.147 -0.094 -0.089
1.29 0.19 1.22 -0.25 -1.63 1.83 0.91 -1.19 -0.79 -0.56

Nett × Flow+
t -0.041 -0.046 -0.025 -0.035 -0.048 -0.025 0.021 -0.148 0.128 -0.317

-3.09 -1.94 -0.99 -1.32 -1.2 -1.77 0.6 -1.99 1.14 -1.83

Nett × EFlow+
t 0.005 -0.001 0.005 0.008 0.024 0.007 -0.019 -0.001 0.008 0.063

0.91 -0.1 0.33 0.49 1.18 2.15 -1.59 -0.03 0.26 1.23

Nett × Flow−
t -0.037 -0.120 -0.094 -0.044 -0.006 -0.022 0.022 -0.004 0.104 -0.223

-1.27 -2.44 -2.07 -0.93 -0.14 -2.07 0.66 -0.05 0.99 -1.58

Nett × EFlow−
t 0.018 -0.044 -0.023 -0.005 -0.024 0.003 -0.019 -0.039 -0.053 0.070

1.8 -2.14 -1.1 -0.23 -0.98 0.83 -1.57 -1.99 -1.57 1.54

Nett × Ret+t−1 0.001 -0.005 -0.006 -0.008 -0.001 -0.001 0.002 0.014 0.004 -0.019

0.4 -1.23 -1.28 -1.33 -0.16 -1.23 0.42 1.56 0.28 -0.97

Nett × Ret−t−1 -0.009 -0.003 0.018 -0.008 -0.019 0.001 0.005 0.027 -0.012 -0.089

-2.59 -0.48 2.61 -0.92 -1.66 0.72 0.7 1.93 -0.6 -3.00
Nett × V olatilityt−1 0.091 -0.008 -0.033 -0.013 0.111 -0.003 0.016 -0.103 0.145 0.441

5.48 -0.16 -0.7 -0.18 0.87 -0.32 0.29 -1.08 1.1 1.79

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.68 0.80 0.83 0.82 0.94 0.27 0.23 0.22 0.26 0.42

Table reports the regression results for Index and GNI funds from the equation

∆yi,t = α+ ρyi,t−1+ϕ∆yi,t−1+ γ1Rett−1,i+ γ2Rett,i+ γ3V olatilityt−1,i+ γ4Log(B/M)t−1,i+Nett,i× [β1+

β2Log(B/M)i,t−1+β3yi,t−1+β4Flow++β5EFlow++β6Flow−+β7EFlow−+β8RET+
i,t−1+β9RET−

i,t−1+

β10V olatilityLi,t−1] + ϵi,t .

t statistics calculated from clustered standard errors are reported below the coefficients. Quarterly

time fixed effects are included in all specifications. Sample runs from 1993 to 2006.
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Tab. 2.6: Trade Sensitivity of Mutual Funds II: Size Categories

Growth Fund Agg. Growth Fund

Intercept -0.013 -0.031 -0.033 -0.031 -0.025 -0.004 -0.011 -0.011 -0.010 -0.004
-30.72 -31.02 -28.27 -24.41 -21.78 -20.84 -20.6 -18.84 -16.03 -10.44

yt−1 -0.051 -0.064 -0.063 -0.064 -0.068 -0.108 -0.105 -0.114 -0.117 -0.137
-24.1 -20.71 -15.95 -14.9 -10.73 -30.09 -24.58 -25.48 -17.43 -12.64

∆yt−1 -0.312 -0.287 -0.280 -0.302 -0.342 -0.261 -0.236 -0.250 -0.269 -0.286
-62.35 -34.76 -29.01 -25.69 -20.78 -37.35 -23.72 -23.25 -19.96 -15.85

Rett 0.0015 0.0044 0.0066 0.0105 0.0103 0.00135 0.0061 0.0082 0.0097 0.0071
9.45 7.9 8.65 9.8 9.59 15.03 16.53 14.88 14.88 10.76

Rett−1 0.00228 0.00520 0.00750 0.01165 0.01130 0.00124 0.00647 0.00923 0.01020 0.00681
13.43 9.22 10.01 11.06 9.77 14.12 18.36 15.75 13.3 8.96

V olatilityt−1 -0.03783 -0.06522 -0.02927 -0.01937 -0.00829 -0.01008 0.00674 0.007439 0.029644 0.00411
-21.76 -6.99 -1.72 -1.43 -0.88 -13.59 1.24 0.87 3.34 0.84

Log(B/M)t−1 -0.00018 -0.00092 -0.00140 -0.00134 -0.000922 -0.00018 -0.00063 -0.00105 -0.00088 -0.00046
-3.41 -5.61 -6.21 -5.15 -4.66 -6.32 -6.45 -8.08 -5.23 -4.07

Nett -0.00674 0.030131 0.034338 0.047451 0.09994 -0.00201 0.009372 0.012841 0.013113 0.009376
-1.67 2.66 2.38 3.32 5.45 -1.1 2.05 2.09 1.93 1.22

Nett × Log(B/M)t−1 -0.00078 0.00654 0.00458 0.00673 0.00514 -0.001 0.000024 -0.00691 -0.00232 -0.00244
-0.54 1.46 0.77 0.9 0.59 -1.81 0.01 -2.16 -0.5 -0.46

Nett × yt−1 0.444 0.219 0.039 -0.013 -0.387 0.483 0.467 0.010 0.035 0.073
6.57 2.75 0.42 -0.1 -2.19 5.89 5.36 0.1 0.28 0.33

Nett × Flow+
t 0.025 -0.060 0.716 0.814 0.203 0.0002 0.038 0.174 0.296 0.090

0.46 -0.41 3.94 4.17 0.88 0.01 0.81 2.61 4.71 0.91

Nett × EFlow+
t -0.108 -0.090 0.184 0.020 0.268 0.033 -0.018 0.101 0.006 0.059

-4.14 -1.28 1.86 0.16 1.69 2.48 -0.53 2.18 0.12 0.95

Nett × Flow−
t 0.147 -0.085 0.241 0.387 -0.091 -0.011 -0.066 0.120 0.138 0.014

2.18 -0.55 1.4 1.98 -0.41 -0.54 -1.31 1.98 2.05 0.2

Nett × EFlow−
t -0.135 0.064 -0.333 -0.719 -0.125 0.082 0.114 0.108 0.208 0.222

-1.9 0.37 -1.76 -4.09 -0.6 3.75 2.11 1.47 2.49 2.32

Nett × Ret+t−1 0.009 -0.003 -0.046 -0.077 -0.130 0.007 -0.010 -0.021 -0.037 -0.031

1.65 -0.15 -1.68 -2.61 -3.3 4.33 -0.85 -1.24 -1.46 -1.38

Nett × Ret−t−1 0.012 0.013 -0.008 0.097 0.031 0.016 -0.006 -0.014 -0.011 0.042

1.28 0.41 -0.19 1.95 0.55 2.92 -0.33 -0.55 -0.4 1.13
Nett × V olatilityt−1 0.0004 0.005 0.214 -0.624 0.331 -0.032 0.060 -0.154 -0.223 -0.046

0.01 0.02 0.67 -2.01 0.91 -1.34 0.45 -0.76 -1.12 -0.18

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.22 0.27 0.29 0.32 0.40 0.22 0.23 0.27 0.28 0.30

Table reports the regression results for Growth and Aggressive Growth funds from the equation

∆yi,t = α+ ρyi,t−1+ϕ∆yi,t−1+ γ1Reti,t−1+ γ2Reti,t+ γ3V olatilityi,t−1+ γ4Log(B/M)i,t−1+Nett,i× [β1+

β2Log(B/M)i,t−1+β3yi,t−1+β4Flow++β5EFlow++β6Flow−+β7EFlow−+β8RET+
i,t−1+β9RET−

i,t−1+

β10V olatilityi,t−1] + ϵi,t .

t statistics calculated from clustered standard errors are reported below the coefficients. Quarterly

time fixed effects are included in all specifications. The stocks are divided into 5 size categories by the

market capitalizations based on the NYSE stocks cutoffs. Sample runs from 1993 to 2006.
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Tab. 2.7: Trade Size Regression

Panel A

Index Fund GNI Fund

Small 2 3 4 Large Small 2 3 4 Large

Intercept -0.005 -0.009 -0.007 -0.004 -0.005 -0.001 -0.003 -0.005 -0.007 -0.012
-48.48 -31.34 -21.54 -17.05 -15.58 -9.71 -10.71 -9.74 -12.22 -18.01

yt−1 -0.105 -0.123 -0.103 -0.069 -0.145 -0.104 -0.102 -0.078 -0.054 -0.038
-38.02 -16.11 -11.01 -8.76 -9.79 -18.68 -16.28 -17.24 -14.78 -11.18

∆yt−1 -0.593 -0.517 -0.581 -0.711 -0.626 -0.331 -0.268 -0.281 -0.291 -0.260
-129.14 -51.41 -41.94 -56.1 -35.66 -29.6 -18.41 -19.77 -24.75 -21.25

Rett 0.0002 0.00004 -0.0004 0.00002 -0.00003 -0.0002 -0.0003 -0.001 -0.003 -0.005
3.93 0.29 -2.52 0.13 -0.15 -0.56 -1.87 -5.16 -6.79 -8.78

Rett−1 -0.0004 -0.0007 -0.0011 -0.0002 0.0005 0.0001 -0.0002 -0.001 -0.002 -0.005
-7.3 -5.42 -8.21 -1.35 2.67 2.52 -1.9 -2.31 -3.42 -8.32

V olatilityt−1 -0.011 -0.006 -0.00006 -0.003 -0.005 -0.004 -0.016 -0.024 -0.029 -0.027
-20.79 -2.82 -0.02 -1.13 -2.02 -12.20 -6.99 -5.21 -4.82 -2.91

Log(B/M)t−1 0.0002 0.0005 0.0003 0.0001 0.00003 0.00002 -0.00002 0.0002 0.0002 0.0002
12.38 12.07 6.13 1.41 0.70 1.61 -0.35 2.19 1.77 1.35

Nett 0.033 0.017 0.020 0.021 0.027 0.000 0.001 -0.006 -0.013 -0.107
12.74 3.29 3.15 2.2 2.53 0.28 0.13 -0.53 -0.64 -3.54

Net Slopet -0.003 -0.001 -0.002 -0.002 -0.002 -0.0002 0.0002 0.001 0.002 0.010
-13.08 -3.14 -2.90 -1.99 -2.01 -0.11 0.33 1.21 1.37 4.13

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.68 0.80 0.83 0.82 0.94 0.26 0.23 0.22 0.26 0.42

Panel B

Growth Fund Agg. Growth Fund

Intercept -0.013 -0.031 -0.034 -0.031 -0.024 -0.004 -0.011 -0.011 -0.010 -0.004
-30.23 -31.15 -28.95 -25.02 -21.81 -20.39 -20.81 -19.12 -16.19 -11.11

yt−1 -0.056 -0.064 -0.060 -0.060 -0.071 -0.116 -0.104 -0.110 -0.111 -0.129
-26.12 -20.96 -16.05 -15.98 -13.59 -32.92 -24.07 -24.58 -18.61 -16.01

∆yt−1 -0.313 -0.288 -0.281 -0.305 -0.346 -0.261 -0.237 -0.253 -0.273 -0.291
-62.43 -34.82 -29.04 -26.14 -21.2 -37.28 -23.84 -23.5 -20.41 -16.19

Rett 0.001 0.004 0.007 0.010 0.010 0.001 0.006 0.008 0.009 0.007
9.39 7.46 8.97 10.07 9.1 14.9 16.85 15.14 14.71 10.48

Rett−1 0.002 0.005 0.007 0.009 0.009 0.001 0.006 0.009 0.009 0.006
14.95 9.19 9.5 9.52 8.23 14.87 18.44 15.52 12.53 7.99

V olatilityt−1 -0.038 -0.065 -0.022 -0.015 0.003 -0.010 0.007 0.009 0.029 0.009
-23.55 -7.17 -1.29 -1.06 0.35 -14.6 1.34 1.08 3.37 1.71

Log(B/M)t−1 -0.0002 -0.001 -0.001 -0.001 -0.001 -0.0002 -0.001 -0.001 -0.001 -0.001
-3.52 -5.65 -6.64 -6.06 -5.08 -5.83 -6.8 -8.98 -6.53 -5.48

Nett -0.007 0.074 -0.097 -0.220 -0.236 -0.006 -0.041 -0.089 -0.115 -0.131
-0.90 3.16 -3.01 -4.87 -3.93 -1.27 -2.66 -4.4 -4.32 -3.16

Net Slopet 0.002 -0.003 0.013 0.022 0.024 0.001 0.005 0.009 0.011 0.012
2.37 -1.46 4.75 5.91 5.00 2.3 4.21 5.38 5.03 3.62

# of Stocks 8195 3130 2109 1325 722 8195 3130 2109 1325 722
# of Obs 147,757 37,081 25,105 20,180 17,441 147,757 37,081 25,105 20,180 17,441

Adj −R2 0.21 0.27 0.29 0.32 0.40 0.22 0.23 0.27 0.28 0.30

Table reports the regression results for 5 different stock size categories from the Equation 2.5. Net Slopet is calculated

as
∑19

j=1 Log(Zj) × Netji,t. Zj is the mid point of trade size bin. Stock size cut-off points are calculated from NYSE

market capitalization cut-off points.t statistics calculated from stock level clustered standard errors are reported below the

coefficients. Quarterly time fixed effects are included in all specifications. Sample runs from 1993 to 2006.
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Fig. 2.1: Trade Size Liquidity Sensitivity Coefficients I
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Figure plots the liquidity sensitivity coefficients (βj) for Index and GNI funds from the equation

∆yi,t = α+ ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t−1

+ γ4Log(B/M)i,t−1 +
∑19

j=1[βj ×Netji,t] + ϵi,t

where βj = b01 + b02 × Log(Zj) and Zj is the midpoint of the trade size bin. Quarterly time

fixed effects are included in all specifications. The stocks are divided into 5 size categories by

the market capitalizations based on the NYSE stocks cutoffs. Sample runs from 1993 to 2006.
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Fig. 2.2: Trade Size Liquidity Sensitivity Coefficients II

 0.1

 0.05

0

0.05

0.1

0.15

Trade Size

Growth Fund

S1

S2

S3

S4

S5

0

0.02

0.04

0.06

Agg. Growth Fund

S1

S2

S3

 0.06

 0.04

 0.02

0

Trade Size

S2

S3

S4

S5

Figure plots the liquidity sensitivity coefficients (βj) for Index and GNI funds from the equation

∆yi,t = α+ ρyi,t−1 + ϕ∆yi,t−1 + γ1Reti,t−1 + γ2Reti,t + γ3V olatilityi,t−1

+ γ4Log(B/M)i,t−1 +
∑19

j=1[βj ×Netji,t] + ϵi,t

where βj = b01 + b02 × Log(Zj) and Zj is the midpoint of the trade size bin. Quarterly time

fixed effects are included in all specifications. The stocks are divided into 5 size categories by

the market capitalizations based on the NYSE stocks cutoffs. Sample runs from 1993 to 2006.
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3. TRADING GAME INVARIANCE IN THE TAQ DATASET

3.1 Introduction

Even a quick look at financial markets reveals a significant variation in how

securities are traded. During a month, hundred thousands of large orders are exe-

cuted for some securities, but only a few small orders arrive to the marketplace for

others. Kyle and Obizhaeva (2011) develop the hypothesis of market microstructure

invariance which describes how the distribution of trade sizes and trade arrival rates

should vary across stocks with different levels of trading activity. We examine the

predictions of this hypothesis using the Trade and Quote (TAQ) dataset for the

period from 1993 to 2008.

The main idea of the trading game invariance is that trading games played in

different securities are fundamentally the same. The only difference between these

games is the time horizon, called a “trading day”, over which trading games are

played. Trading days are short for actively traded stocks, perhaps corresponding

to a few minutes; and trading days are long for inactively traded stocks, perhaps

corresponding to a few months. This invariance hypothesis generates testable pre-

dictions concerning how the arrival rate of trades and the distribution of their sizes

vary with trading activity across stocks and across time for the same stock: Market



microstructure invariance hypothesizes that a one percent increase in trading activ-

ity can be decomposed into an increase in the arrival rate of trades by two-thirds of

one percent and an increase in trade size of one-third of one percent. Thus, trade

size as a fraction of average daily volume decreases by two-thirds of one percent.

Market microstructure invariance conjectures that the shape of the distribution of

trade size adjusted by trading activity is invariant across stocks and time. “Trading

activity” is defined as the product of average dollar volume and daily standard de-

viation of returns (“volatility”). The product of dollar volume and volatility better

capture the risk transferring taken place in the market than dollar volume.

The TAQ dataset contains tick-by-tick data recorded on the consolidated tape

for all listed stocks from 1993. For each stock and each month, we calculate the num-

ber of trades per month and construct an empirical distributions of trade sizes (in

shares). We describe the distribution of trade sizes by a list of attributes, including

the means trade size, ten equally-spaced “trade-weighted” percentiles of trade size

based on the distribution of trade sizes, and ten equally-spaced “volume-weighted”

percentiles based on their contribution of trade size deciles to total trading volume.

The “volume-weighted” deciles put more weight on larger and economically more

significant trades than trade-weighted deciles, thus allowing us to examine the right

tail of distributions of trade size in more detail. Our goal is to study whether the

cross-sectional variation in the constructed variables is consistent with predictions

of the invariance theory.

Our tests show that microstructure invariance explains the cross-sectional vari-

ation in the arrival rates of trades. We regress the logarithm of the number of trades
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on the logarithm of trading activity and find the coefficient equal to 0.74 for the

entire sample from 1993 to 2008, 0.69 for the subsample from 1993 to 2001, and 0.79

for the subsample from 2001 to 2008 with standard errors smaller than 0.015. These

estimate of 0.69 for the panel 1993-2001 is remarkably close to 2/3, the coefficient

value predicted by the invariance theory. The higher coefficient of 0.79 after 2001

appear to be due to a structural break related to a reduction in tick size, which

occurred in 2001 and unevenly affected small and large stocks. For example, the

larger than predicted coefficient of 0.79 is consistent with the interpretation that

order shredding has occurred more intensely for actively traded stocks than inac-

tively traded ones. Our results also clearly reject alternative hypotheses of invariant

bet size and invariant bet frequency. According to these models, the estimated

coefficient should be close to either zero or one.

Our tests show that trading game invariance also provides a good explanation

for the cross-sectional variation in the distribution of trade sizes. We regress the

logarithm of the constructed attributes of the distribution of trade size (as a fraction

of trading volume) on the logarithm of the trading activity. When we use the mean

of distribution on the left-hand side, our estimates are equal to -0.74 before 2001

and -0.79 after 2001. When we use the trade-based percentiles, the coefficients range

from -0.74 to -0.81. For the volume-weighted percentiles, the coefficients range from

-0.51 to -0.80. These estimates are closer to the value of−2/3 predicted by invariance

theory than to the coefficients of 0 and -1 predicted by alternative models.

To further investigate the share of the distribution of trade sizes, we examine

empirical distributions of trade sizes graphically. According to the invariance the-
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ory, the distribution of trade sizes for any stock can be transformed, by a proper

adjustment for differences in trading activity (i.e. multiplying by trading activity in

two-third power), into a single distribution, common across stocks and across time.

Can we observe this prediction in the data? For ten volume and four price volatility

groups, we plot the distributions of the logarithms of the trades sizes, normalized

as suggested by invariance theory. We find that these distributions are indeed quite

stable across all subgroups. Furthermore, they closely resemble the bell-shaped

density function of a normal random variable, suggesting that the normalized trade

sizes are distributed as a log-normal random variable. Note that if we adjust trade

sizes according to alternative models, then the means of the resulting distributions

are much less stable across volume groups. This is further evidence in favor of the

invariance theory.

Our finding that the distribution of trade sizes looks similar to log-normal has

important economic implications.The variance of the log-normal is so large that a

one standard deviation increase in trade size is approximating a factor of five. It

suggests that the order flow is dominated by really large orders and that small orders

are much smaller than large orders.

Our plots reveal, however, some systematic differences among empirical distri-

butions for stocks with different levels of trading volume and volatility. Statistical

tests reject the hypothesis that trade sizes are distributed as a log-normal random

variable. We conjecture that various market frictions, such as a minimum tick size

and a minimum lot size round of 100 shares, significantly distort trading patterns

in a manner that leads to deviation from the invariance theory.
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Market frictions are changing over time. Hendershott et al. (2010) and Chor-

dia et al. (2009) discuss the recent transformation of trading activity after the

decimalization of 2001 and a consequent spread of algorithmic trading. With the

goal to examine these issues more closely, we plot distributions of normalized trade

sizes for stocks sorted into ten volume and four price volatility in years 1993, 2001,

and 2008.

Our distributions look similar to bell-shaped distributions being truncated

from below at the 100-share threshold. The effect of the minimum lot size is espe-

cially pronounced after the reduction in tick size in 2001. For example, 100-share

trades accounted for 16% of all trades executed before 2001 and 50% of trades ex-

ecuted after 2001. This number reaches 70% in 2008. Effectively, many orders,

even the largest ones, are now being shredded into sequences of 100-share trades.

This practice is facilitated by the fast electronic interfaces and algorithmic trading.

came along with the introduction of electronic interface and algorithmic trading.

Since the minimum lot size restriction and relative tick size certainly influence order

shredding algorithms, they have to be taken into account when one tests the invari-

ance theory. Invariance theory makes predictions about intended orders rather than

actual TAQ “prints” generated by order shredding algorithms. Prior to 2001, some

traders used electronic interfaces to submit orders, but this practice became much

more pervasive after the tick size was cut in 2001. Furthermore, cutting the tick size

provides added incentives to shred orders by placing scaled limit orders at different

price points separated by only one cent. Since order shredding after 2001 is likely to

affect active and inactive stock differently, with perhaps more order shredding for
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more active stocks, we are not surprised that empirical tests after 2001 show results

that appear to deviate from invariance theory.

A minimum tick size of one penny and a minimum round-lot trade size of 100

shares have different effects on trade sizes observed in TAQ data. Higher returns

volatility and higher share price make the penny tick size a less binding constraint.

Therefore, we expect to see more evidence of order shredding in more volatile stocks

and higher priced stocks. This should show up as a lower mean and median order

size than predicted by invariance trades, with larger trades replaced by small trades

equal to or greater in size than one hundred shares. Higher returns volatility and

higher share price make the one hundred share minimum trade size more binding.

We therefore expect to see more evidence of missing odd lots or trades rounded up

to one hundred shares in the data. In fact, we see both of these effects.

A number of other market frictions can complicate testing the invariance the-

ory using the TAQ dataset. Trade size tend to cluster at some “even” quantity

levels (e.g., Alexander and Peterson (2007)). For example, there are more trades of

5000 shares than 4000 or 6000 shares, and far more than 4900 or 5100 shares. Some

of this clustering is a result of various regulations. For example, from 1988 to 2001,

Nasdaq market makers were required to fix the minimum quotation size at the level

of 1,000-share for Nasdaq-listed stocks during the 1988-2001 period. This restriction

is clearly reflected in our plots as a disproportionate number of 1,000-share trades

for Nasdaq-listed during that period. These types of market frictions are certainly

not captured by the invariance theory. An interesting topic for the further research

is to design better econometric tests that will account for various market frictions.
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Our paper adds to the results in Kyle and Obizhaeva (2011) that documented

strong evidence for the invariance hypothesis using a sample of portfolio transition

trades. Portfolio transition trades represent a special subset of market transactions

with unique properties that make them especially valuable for testing invariance

hypothesis, since the data makes it possible to observe actual orders intended for

execution rather then sequences of executed trades where sizes may have been ad-

justed after the orders were placed. In contrast, our tests are based on a broader

sample of trading data. Its broad coverage comes, however, at the expense of having

to deal with data distorted by order shredding and ex post adjustments to order

size.

There has been a literature on what determines trading frequency and trade

sizes. Glosten and Harris (1988) found that average trade size (in shares) is neg-

atively related to market depth. Brennan and Subrahmanyam (1998) documented

that trade sizes (in dollars) are also related to other stock characteristics such as re-

turn volatility, the standard deviation of trading volume, market capitalization, the

number of analysts following stocks, the number of institutional investors holding

stocks, and the proportion of shares hold by them. Interestingly, the R-squared in

their cross-sectional regressions is about 0.92, which is very similar to the R-squared

in our regressions even when we restrict the power coefficient to be equal to 2/3,

as implied by the invariance theory, leaving only a constant term to estimate. The

similarity of R-squared indicates that the inclusion of additional explanatory vari-

ables does not help much in explaining the cross-sectional variations of the average

trade sizes. The invariance theory explains a large percentage of the cross-sectional
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variation in trade size.

The remainder of this paper states the implications of trading game invariance,

discusses the issues arising when these implications are tested using the Trades and

Quotes dataset, and then describes results of empirical tests.

3.2 Testable Implications of Trading Game Invariance

In Kyle and Obizhaeva (2011), traders are thought as playing trading games.

They arrive to the market and execute orders. Innovations in their order flow follow

a compound Poisson process with arrival rate of γ innovations per day. A typical

innovation in this order flow, called a “bet,” is a random variable Q̃ with a zero

mean. A positive value of Q̃ represents buying, and a negative value of Q̃ represents

selling.

The invariance theory is formulated using the concept of “bet size” to measure

risk transferred by a bet. “Bet size” is a random variable defined as the product

of dollar bet value (dollar share price P times share quantity Q̃) and volatility σ

(percentage standard deviation of returns per day),

B̃ = Q̃ · P · σ. (3.1)

In a similar spirit, “trading activity” is defined as the product of daily volume V ,

share price P , and daily volatility σ,

W = V · P · σ =
ζ

2
· γ · E|B̃|. (3.2)
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According to this measure of trading activity, active stocks are stocks with high

volatility and high dollar trading volume per calendar day. Inactive stocks are

stocks with low volatility and low dollar trading volume per calendar day. The last

equality follows from the definition of expected trading volume V over a day as the

product of expected arrival rate of bets and absolute value of bet size,

V =
ζ

2
· γ · E|Q̃|, (3.3)

The parameter ζ is a “volume multiplier,” which shows how much of additional

non-bet volume is generated endogenously as a response to bets. Non-bet volume

includes trading by market makers, high frequency traders, and other arbitragers

who intermediate among long-term bets.

Invariance theory describes how market microstructure characteristics like bet

size and bet arrival rate vary with different levels of trading activity. Its main idea

is that trading games are the same across stocks, up to some Modigliani-Miller

transformation, except for the speed with which these games are being played. This

speed is related to the level of trading activity: Trading games are played faster in

active stocks and slower in inactive stocks. This claim is equivalent to the existing

of a market microstructure invariant which can be represented as a random variable

Ĩ, with the same distribution across stocks and across time. The random variable Ĩ

has a distribution defined by

Ĩ ≈ B̃

γ1/2
, (3.4)
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which can be interpreted as the signed standard deviation of gains or losses on a

bet in units of time rescaled so that one bet is expected to arrive per tick on the

rescaled clock. Trading game invariance generates the following testable predictions

concerning how bet arrival rate and bet size vary with trading activity:

γ = E
[ζ
2
· |Ĩ|

]−2/3

·W 2/3, (3.5)

˜|Q|
V

≈ E
[ζ
2
· |Ĩ|

]−1/3

·W−2/3 · Ĩ . (3.6)

Under the identifying assumption that ζ is constant across stocks and across time,

equation (3.5) and equation (3.6) imply that when the number of bets γ and bet size

Q̃ are normalized for differences in trading activity, the quantity γ·W−2/3 and the distribution of
˜|Q|
V
·

W 2/3, are invariant across stocks and across time.

This model says that changes in daily trading activity come from both changes

in unsigned bet size and changes in bet frequency. In particular, the invariance of

trading games requires that a one percent increase in trading activityW is associated

with an increase of 2/3 of one percent in bet arrival frequency γ and an upward shift

by 1/3 of one percent of the entire distribution of bet size B̃. The latter implication

is equivalent to saying that distributions of (unsigned) trade sizes |Q̃| as a fraction

of trading volume V shifts downwards by 2/3 of one percent when trading activity

increases by one percent.
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Alternative Models. We consider two alternative models considered by Kyle and

Obizhaeva (2011): the Model of Invariant Bet Frequency and the Model of Invariant

bet Size. The model of Invariant Bet Frequency assumes that the variation in trading

activity comes entirely from variation in bet sizes B̃, while the number of bets γ

over a calendar day remai ns invariant across stocks. This model generates testable

predictions concerning how (unsigned) bet size should varies with trading activity.

Both trading frequency and the entire distribution of trade sizes,

γ ·W 0 and
˜|Q|
V

·W 0,

are invariant across stocks and across time, even if no adjustments for differences in

trading activity W are made (represented by the exponent of zero).

The model of Invariant Bet Size assumes that the variation in trading activity

comes entirely from variation in the number of bets γ placed over a calendar day.

The distribution of bet size B̃ over a calendar day remains the same across stocks.

This model also generates testable predictions concerning how (unsigned) bet size

should varies with trading activity. The trading frequency and the entire distribution

of trade sizes, normalized for differences in trading activity,

γ ·W−1 and
˜|Q|
V

·W 1,

are invariant across stocks and across time.

All three models imply specific relationships between the number of bets γ
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and the distribution of bet sizes B̃ per calendar day on one side and the measure of

trading activity W on the other side. The only difference between these predictions

is the exponent of trading activity. We discuss next how to test which of three

models describes best the transactions data in the TAQ database.

Testing Theories Using the TAQ Dataset. The TAQ database contains a time-

stamped record of trades printed for NYSE and NASDAQ stocks. We can thus

estimate trade frequency γ looking at the average number of prints per a calendar

day and we can estimate the distribution of trade size |Q̃| examining the empirical

distribution of (unsigned) print sizes in the TAQ database. Equipped with this

data, we can test the predictions of the invariance theory and alternatives. There

are, however, several important problems that may present obstacles for our tests.

The assumption that the inventory of traders follows a compound Poisson pro-

cess implies that their trades are independently distributed. In actual trading, one

independent trading decision often generates multiple reports of order executions,

since orders may be broken down into smaller pieces for execution and executed

against several different counter-parties and at several different prices. The TAQ

database gives a time-stamped records of trades as printed for NYSE and NASDAQ

stocks. It allow us to observe neither independent intended orders nor the number

of prints into which initial order has been split. At the same time, order shredding

algorithms may vary across stocks in a complex manner, for example, as a function

of stock price (based on tick size) or the 100 share minimum lot size constraint.

Dealing with various market frictions is another issue in designing good empir-
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ical tests, because market frictions most likely affect trading patterns. For example,

there have been various restrictions on trade sizes during the period from 1993 to

2008. These restrictions certainly affect observed trade sizes and trading frequency.

If trades cannot be smaller than 100 shares, then intended orders with less than 100

shares will be either not submitted at all or rounded up to satisfy a minimum lot size

requirement. This restriction is expected to be especially binding for low-volume

stocks with small orders traded at high price levels. Another binding restriction

could be the fixing of market-maker minimum quotation sizes at the level of 1,000

shares at Nasdaq from 1988 to 2001. As we will see, this restriction is consistent

with the clustering of Nasdaq trades at a level of 1,000 shares seen in the data,

especially for Nasdaq stocks. Another important market friction is the tick size, or

a minimum increment by which price can move. When tick size as a fraction of

price volatility is large, traders tend to submit larger orders since fewer price levels

are available. The minimum tick size was reduced from 1/8 of a dollar (12.5 cents)

to 1/16 of a dollar (6.25 cents) in 1997 and to one cent in 2001.

In this study, we provide evidence on how these frictions influence our results.

Exploring these frictions in more detail is an interesting issue for future research.

3.3 Data

3.3.1 Data Description

The NYSE TAQ database contains trade and quotes reported on the consol-

idated tape by each CTA participants for all stocks listed on exchanges starting
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from year 1993. Since we examine the distribution of unsigned trades, our analysis

employs exclusively data on trades. We leave the interesting issues about signed

trades, which may be reconstructed if we use both trades and quotes, for future

research. For each trade, the TAQ data records the time, exchange, ticker symbol,

number of shares traded, execution price, trade condition, and other parameters.

This database is of a large size. Its subset from 1993 to 2008 contains over 19 billion

records with over 5 million records per month in 1993 and over 500 million records

per month in 2008.

We transform the raw TAQ data into another dataset, convenient for our sub-

sequent analysis. We first remove bad records from the trades data using standard

filters. The TAQ database provides information about the quality of recorded trades

in their condition and correction codes. We eliminate trades with a condition codes

of 8, 9, A, C, D, G, L, N, O, R, X, Z or with correction codes greater than 1. The

correction code of 8 indicates, for example, that the trade was canceled.

The remaining trades are aggregated in a specific way. These trades are placed

into 55 bins that we construct based on the number of shares traded. “Even” bins

correspond to the orders of even sizes, i.e., trades with the following numbers of

shares traded: 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 10000, 15000,

20000, 25000, 30000, 40000, 50000, 60000, 70000, 75000, 80000, 90000, 100000,

200000, 300000, 400000, 500000. “Odd” bins correspond to the trades with odd

sizes, i.e., when the number of shares is in-between even bins. We chose these size

bins so that their size grows approximately at a log-rate. The selection of these

bins also reflects our intention to treat separately trades with even sizes, because
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these trades are especially frequent in the data. For each day and each symbol, we

store the number of trades in each size bin. Once we assign a given trade to an

appropriate size bin, we assume its size (in shares) is equal to a midpoint of that

bin. If trade size is larger than 500,000 shares, it is assigned to the 55th bin and its

size is assumed to be 1,000,000 shares. The aggregation of the data into size bins

allows us to capture the main properties of trade size distribution and implement our

analysis in a more efficient way. This convenience comes, however, at the expense

of introducing additional noise into our analysis, which may affect our results.

For each day and each symbol, we also store other variables such as the open

price, the close price, the number of trades per day, the dollar volume per day, the

share volume per day, the close-to-close return, and the volatility defined as the

standard deviation of returns over the past 20 trading days.

Since many stocks do not have enough transactions per day, to build a good

empirical approximation for a theoretical distribution of trade sizes for individual

stocks, we therefore aggregate our daily data by month. We sum up the number

of trades within each bin and construct empirical distributions of trade sizes (in

shares) for each stock and each month in the sample.

The theoretical distributions of trade sizes can be of quite a general form. We

define several attributes of these distributions with the intention to capture their

shapes. These variables are estimated from the empirically observed distributions.

The attributes include the average number of trades per day. We also consider

the average trade size and its various percentiles based on trade size distribution.

We refer to these percentiles as trade-weighted percentiles. For example, the xth
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trade-based percentile corresponds to a trade size such that trades with sizes above

this threshold constitute x% of all trades for a given stock in a given month. Note

that trade-based percentiles effectively put the same weight onto trades of different

sizes. This approach tends to emphasize small trades. For example, if there are

99 trades executed in 100-share lot and one large trade executed in 100,000-share

lot, then the distribution of trade sizes will mostly concentrate at 100-share level.

All trade-weighted percentiles below the 99th percentile will be equal to 100 shares.

The total trading volume, however, is determined by one large trade.

Since large trades are economically more important than small ones, we need

to investigate the right tail of trade size distributions in more detail as well. We

therefore also consider percentiles based on trades’ contributions to total volume.

The contribution to the total volume by trades from a given trade size bin is cal-

culated based on its midpoint. We refer to these percentiles as volume-weighted

percentiles. The xth volume-based percentile corresponds to a trade size such that

trades with sizes above this threshold constitute x% of total trading volume. In the

previous example, the 99th volume-based percentile will correspond to the 100,000-

share trade. It is worth mentioning that the volume-weighted distributions have an

easy interpretation. Essentially, their plots show the actual distribution of trading

volume across bins with trades of different sizes.

We report our results for distributions of both types because volume-weighted

distributions allow us to focus on economically important trades. Of course, if we

know a trade-weighted distribution of trade sizes, then we can easily calculate a

volume-weighted distribution as well. For example, we will see that the distribution
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of trade sizes is close to be log-normal. It can be easily shown that if a random

variable ln(z̃) is normally distributed as N(µ, σ2) and another random variable ỹ

has the z̃-weighted density function of z̃, then the logarithm of this random log-

normally distributed variable ln(ỹ) is distributed as N(µ + σ2, σ2). Applying this

fact to our situation, we know that if trade size is distributed as a log-normal variable

with the density of its logarithm being N(µ, σ2), then the volume-weighted density

is also log-normal with its logarithm being N(µ+ σ2, σ2). Thus, the only difference

between these distributions is the shift in the means.

Our monthly data is matched with the CRSP data set for the purpose of acquir-

ing share and exchange codes for stocks in the sample. Only common stocks listed

on the NYSE (New York Stock Exchange), AMEX (American Stock Exchange) or

NASDAQ from year 1993 through year 2008 are included in our study. Stocks that

had splits in a given month are eliminated from the sample in that month. Our

data is also augmented with the data on the average daily volume (in dollars and in

shares), the average price, and historical volatility for each stock and each month.

Our final sample includes 1,107,990 stock-month observations. For each 192 months

between 1993 and 2008, there are observations on about 5,800 stocks traded.

3.3.2 Descriptive Statistics

Table 1 provides a description of the data. Panel A reports statistics for the

subsample from February 1993 to December 2000. Panel B reports statistics for

the subsample from January 2001 to December 2008. We report these statistics

separately, because the properties of the data have changed substantially following
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the decimalization in 2001. Statistics are calculated for all securities in aggregate

as well as separately for ten groups of stocks sorted by average daily dollar volume.

Instead of dividing the securities into ten deciles with the same number of securities,

volume break points are set at the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th and 95th

percentiles of trading volume for the universe of stocks listed in NYSE with CRSP

share codes of 10 and 11. Group 1 contains stocks in the bottom 30th percentile

by dollar trading volume. Group 10 contains stocks in the top 5th percentile. It

approximately corresponds to the universe of S&P100 stocks. Smaller percentiles for

the more active stocks make it possible to focus on the stocks which are economically

the most important. For each month, the thresholds are recalculated and stocks are

reshuffled across groups.

Panel A of Table 3.1 reports the statistical properties of trades and securities

before 2001. For the entire sample of stocks, the average trading volume is $6.28

million per day, ranging from $0.14 million for the lowest volume deciles to $181.98

million for the highest volume deciles. The average volatility for the entire sample

is equal 4.1% per day. The volatility tends to be higher for smaller stocks. The

volatility is 4.6% for the lowest volume decile and 3.3% for the highest volume

group. Thus, the measure of trading activity, equal to the product of volume and

volatility, increases from 0.14× 0.046 to 181.98× 0.033, a factor of 913.

The average trade size is equal to $23,598 before 2001, ranging from $11,428

for low-volume stocks to $88,450 for for high-volume stocks, corresponding to a de-

crease from 8% to 0.05%, if considered as a fraction of daily volume. The median is

much lower than the mean. This is consistent with the existence of several large or-
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ders that make the distribution of trade sizes positively skewed. The trade-weighted

median ranges from $5,706 for low-volume stocks to $28,440 for high-volume stocks,

corresponding to a decrease from 4% to 0.02% of daily volume from lowest to high-

est volume group. Note that the invariance theory predicts that the shape of the

distribution of trade size as a fraction of volume, |Q|/V , should be similar across

stocks. The only difference is that its mean is shifted downwards by two-thirds

of the increase in a trading activity. Since from lowest to highest decile, trading

activity increases by a factor of 913, a back-of-the-envelope calculation suggests

that the distributions of trade sizes as a fraction of volume traded for low-volume

stocks should be shifted downwards relative to high-volume stocks by a factor of

913−2/3 ≈ 0.01. This is roughly similar to the differences in the means and medians

between low-volume and high-volume groups.

The average number of trades per day is 143 for the entire sample and mono-

tonically increases from 16 to 2951 over the volume groups. The actual increase in

number of trades is a factor of 2951/16=184.43. The invariance theory predicts that

average number of trades should increase by two-thirds of the increase in a trading

activity, i.e., 9132/3 ≈ 100. While this back-of-the envelope calculation suggests

that number of trades increases more than our model predicts, potentially reflect-

ing a more intensive order shredding in high-volume groups, further investigation is

certainly warranted.

Trading is a subject to various restrictions. The minimum lot size, for example,

is equal to 100 shares. Many orders are therefore executed in 100-share lots. These

trades correspond to 16% of all trades executed or 2% of volume traded before 2001.
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The 100-share trades represent 14% of trades for low-volume stocks and 25% for

high-volume stocks. We see that the 100-share restriction is more binding for high-

volume stocks. This happens because stocks with high volume usually have high

prices, thus making 100-share threshold more significant in dollar terms. Another

interesting observations is the large share of 1,000-share trades, especially for low-

volume stocks, before 2001. This reflects the requirement for Nasdaq market makers

to post quotes for at least 1,000 shares prior to 1997. The data also shows that even

lots, corresponding to even-share bins with exact number of shares such as 100, 200,

300 shares etc. traded, account for more than 50% of volume traded and about 80%

of trades executed. The prevalence of these trades validates our choice of trade size

bins with the even-share trades being placed in separate bins.

Panel B of Table 3.1 reports the statistical properties of trades and securities

for our sample after 2001. The difference between the data before and after 2001 is

striking. After 2001, the average daily volume is over $19 million which is three times

larger than before 2001. The average number of trades is 1761, having increased by

a factor of 12, and the average trade size is only $7,945, a decrease by a factor of

3, compared to the earlier sample. A back-of-the-envelope calculation based on the

invariance theory suggest that cross-sectional differences in trade frequencies and

trade sizes after 2001 can be consistent with this theory as well.

The descriptive statistics show that order shredding and the minimum lot size

became very important after 2001. The 100-share trades constitute, on average, 50%

of all trades executed and accounts for 18% of volume traded in the latter sample.

The migration of trades to smaller trade sizes continues throughout the period from
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2001 to 2008. For example, we observe that 100-share trades represent about 70%

of trades and account for 35 % of volume in 2008 (unreported). This indicates that

order shredding can make it difficult for us to test the invariance theory using the

data after 2001.

3.4 Results

All three invariance models make distinctively different predictions concerning

the differences in the distributions of trade sizes and their frequencies across stocks.

We use the TAQ dataset to determine which of the models is more reasonable in

describing the data. We run our tests both based on trading frequencies and on

trade sizes.

3.4.1 Tests Based on Trading Frequency

According to the theory of trading game invariance as well as the two alter-

native models, the number of trades will be constant across stocks if normalized

appropriately for differences in trading activity W . Three models differ only in the

suggested normalization. The theory of trading game invariance says that the num-

ber of trades per day γ has to be normalized with the trading activity W in a power

of -2/3,

ln(γ ×W−2/3). (3.7)
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Alternative theories of invariant bet size and bet frequency propose other adjust-

ments, namely

ln(γ ×W 0) and ln(γ ×W−1). (3.8)

Figure 3.1 plots the logarithm of average number γ of trades per day, nor-

malized according to three models, against the logarithm of trading activity W , for

each stock traded in April 1993, April 2001, and April 2008. Trading activity W is

the product of average daily dollar volume and daily volatility for a given stock in

a given month. We consider these three years for robustness because, as we have

already mentioned, the trading process has changed significantly over the period un-

der consideration. We also consider separately the NYSE-listed and Nasdaq-listed

stocks for April 1993, as these two are also significantly different due to differences

in market frictions.

If one of these theories correct, the plot of points should fall on a horizontal

line. Figure 3.1 clearly shows that the theory of trading game invariance fits the

data very well. Especially for the NYSE stocks traded in April 1993, all observations

are lined up across a horizontal line. These pattern become slightly less pronounced

after 2001.

When the number of trades is normalized according to the theory of invariant

bet frequency, all observations are lined up across a line with a positive slope. This

fact is easy to explain. This model assumes that differences in the trading activity

come entirely from differences in trade sizes. In real data, however, changes in

trading activity are partially explained by changes in trading frequency. Thus, this
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model tends to underestimate the number of trades for high-volume stocks and

overestimate it for low-volume stocks.

When the number of trades is normalized according to the theory of invariant

bet size, the results are the opposite. All observations are lined up along the line

with a negative slope. Again, this fact is easy to explain. This model attributes

differences in the trading activity entirely to differences in the trading frequencies.

Some fraction of these differences comes, however, from differences in trade sizes.

This model therefore tends to overestimate the number of trades for high-volume

stocks and underestimate it for low-volume stocks.

The three theoretical models make distinctly different predictions concerning

how arrival rates of trades vary with the level of activity. The predictions of the

models can be nested into a simple linear regression,

ln
[
γ
]
= α+ aγ × ln

[Wi

W∗

]
+ ϵ̃. (3.9)

The equation relates the average number of trades γ per day to the level of trading

activity W , defined as the product of average daily dollar volume Vi × Pi and the

standard deviation σi of daily returns. The scaling constant W∗ = (40)(106)(0.02)

corresponds to the measure of trading activity for an arbitrary benchmark stock

with price $40 per share, trading volume of one million shares per day, and daily

volatility of 2% per day. In the regression, the model of trading game invariance

predicts aγ = 2/3, the model of invariant bet frequency predicts aγ = 0 and the

model of invariant bet size predicts aγ = 1. We run monthly regressions and report
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the Fama-MacBeth estimates with their Newey-West standard errors computed with

3 lags in Table 3.2. The first three columns of the table report the results for stocks

and the entire sample period as well as for the two subsamples, before and after

2001. The next six columns report the results for the NYSE/AMEX-listed stocks

and the NASDAQ-listed stocks.

The estimate of aγ is equal to 0.74 for the entire sample with the standard

errors of 0.011. As we see, it is far from to the value of 2/3 predicted by the

invariance theory. A statistical test, however, rejects this theory with F-test of 44

and p-value of 0.001, due to very small standard errors. Note that alternative models

are rejected with overwhelming margins. The magnitude of the F-tests indicates that

if we do a Bayesian analysis, then almost regardless of our priors, we will conclude

that the theory of trading game invariance provides a most likely explanation of the

cross-sectional differences in trading frequencies than the other two theories.

When we break the sample into two subsamples before and after 2001, we

observe that the results are closer to the predictions of the invariance theory in the

first part of the sample. The point estimate of αγ is equal to 0.69 before 2001 and

0.79 after 2001. The increase in coefficients can be most likely attributed to the fact

that order shredding is more intensive for high-volume stocks.

Table 3.3 presents estimates of the monthly regressions

ln
[
γ
]
= α+

2

3
ln
[Wi

W∗

]
+b1×ln

[ Vi

(106)

]
+b2×ln

[ Pi

(40)

]
+b3×ln

[ σr,i

(0.02)

]
+ ϵ̃. (3.10)

This regression imposes the restriction that the coefficient a0 = 2/3 as predicted
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by the model of trading game invariance. It then allows the coefficient on the

three components of Wi to vary freely. Thus, the model of trading game invariance

predicts b1 = b2 = b3 = 0. The model of invariant bet frequency predicts b1 = b2 =

b3 = −2/3, and the model of invariant bet size predicts b1 = b2 = b3 = 1/3. Table

3.3 reports the Fama-MacBeth estimates and Newey-West standard errors based on

monthly regressions.

The table reports that the estimate of b̂1 = 0.18 for the coefficient on vol-

ume Vi, the estimate b̂2 = −0.3 for the coefficient on price Pi, and the estimate of

b̂3 = −0.41 for the coefficient on volatility σr,i. The corresponding standard errors

imply that these estimates are significantly different from zero. Thus, the number

of trades increases faster with trading volume and slower with dollar volatility than

suggested by the invariance theory. Note that although we have here three explana-

tory variables, the increase in the R-square relative to the univariate regressions is

small, but statistically insignificant.

3.4.2 Tests Based on Trade Size

Figure 3.2 and Figure 3.3 show the trade-weighted and volume-weighted dis-

tributions of normalized trade sizes for the NYSE-listed and the NASDAQ-listed

stocks traded in April 1993. Our choice of the month April guarantees that trade

size distribution figures are not influenced by seasonality in the market, because

trade sizes tend to cluster less before the end of calendar quarter, as showed by

Moulten (2005). We present the distributions from year 1993 only for illustrative

purposes and closely examine data from 1993 to 2008 later.
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Trade sizes are normalized as implied by the three models. These models

predict that if trade sizes are adjusted appropriately for differences in the trading

activity W , then their distributions will be similar across stocks. The models differ

only in the adjustment they suggest. The theory of trading game invariance says

that trade size |Q|/V should be normalized with the trading activity W raised to

the power of 2/3,

ln(
|̃Q|
V

×W 2/3). (3.11)

Alternative theories of invariant bet size and bet frequency propose other adjust-

ments,

ln(
|̃Q|
V

×W 1) and ln(
|̃Q|
V

×W 0). (3.12)

Note that we calculate the trade size |Q| based on the mid-point of its trade size

bin. The empirical stock-level distributions of normalized trade sizes are pooled

together for April 1993, averaged across stocks in each volume group, and plotted

on the figures. The subplots of the trade-weighted distributions have the frequency

of normalized trades on the vertical axis. The subplots with the volume-weighted

distributions have the volume contribution of these trades on the vertical axis. We

also superimpose the normal distribution with the same mean and the same vari-

ance equal to the mean and the variance of normalized trade sizes for the entire

sample. We superimpose different distributions for trade-based and volume-based

distributions. These superimposed distributions make it easy to interpret the re-

sults. Indeed, if the theories are correct, then distributions of normalized trade sizes

should be identical across volume groups. They should also coincide with the super-
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imposed normal distributions, if trade sizes are distributed as a log-normal random

variable.

The three plots in the first column of figure 3.2 reveal that both the trade-

weighted and volume-weighted distributions of trades, normalized according to the

theory of trading game invariance, seem to be stable across volume groups. The sup-

port of these distributions is clearly similar for both low-volume and high-volume

stocks. This suggests that the data fit the theory of trading game invariance quite

well. These empirical distributions are also quite similar to the superimposed nor-

mal distributions, implying that the normalized trade sizes are indeed distributed

similarly to a log-normal random variable.

Note that the distributions of trade sizes for the NASDAQ-listed stocks in

Figure 3.3 are less smooth than those for the NYSE-listed stocks in Figure 3.2.

We will see that this happens because of a particular market regulation existing at

NASDAQ in the 90s. NASDAQ dealers were restricted to quote prices for at least

1,000 shares. This led to a disproportionably large fraction of 1,000-share trades at

NASDAQ. These 1,000-share trades are responsible for the spikes on the graphs for

the NASDAQ-listed stocks.

The second and third columns of figures 3.2 and 3.3 show that the distributions

of trade sizes, normalized as suggested by alternative models, are not stable across

volume groups. The theory of invariant bet frequency, for example, understates the

magnitude of trade sizes for high-volume stocks. This happens because the high

volume partially stems from high trading frequency, while this theory assumes that

all variation in trading activity comes entirely from the variation in trade sizes.
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The theory of invariant bet size, in contrast, overstates the magnitude of trade

sizes for high-volume stocks. It assumes that all variations in trading activity come

entirely from variations in trading frequency. We know, however, that it partially

comes from variations in trade sizes. To summarize, alternative theories provide

much worse explanations for observed variations in trade sizes comparing to the

invariance theory.

It is also interesting to examine more closely the parameters of the superim-

posed normal distributions. For the NYSE-listed stocks, the distribution superim-

posed on the trade-weighted distributions has the mean of -1.01 and the variance

of 1.78; the distribution superimposed on the volume-weighted distributions has

the mean of 0.97 and the variance of 2.69. As mentioned in the previous section,

when if trade sizes are distributed as log-normal random variables, then both the

trade-weighted and volume-weighted distributions should be similar to that of nor-

mal random variables with the same variances but different means. These means

should be such that the mean of volume-weighted distribution is equal to the mean

of the trade-weighted distribution plus its variance. So, if normalized trade sizes

are indeed distributed as log-normal random variables, then the volume-weighted

distributions should be similar to the trade-weighted ones but shifted upwards. The

magnitude of this upward shift should be equal to the variance. We can easily check

whether these relations hold in our data. The volume-weighted mean of 0.97 is only

slightly higher than the trade-weighted mean of -1.01 plus the variance of 1.78. But,

the variance of 2.69 for the volume-weighted distributions is much higher than the

variance of 1.78 for the trade-weighted distributions. We conclude that although
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the normalized trade sizes do seem to be distributed similarly to log-normal random

variables, there are some deviations. These deviations might be consistent with

the existence of some market frictions. For example, the log-normal distribution

might be truncated at some level from below. When we examine distributions of

normalized trade sizes in more detail, we will see that they are, indeed, truncated

from below by a minimum lot size restricted to be 100 shares. Truncated trades are

small in size and economically insignificant. This truncation thus will significantly

affect the trade-weighted distributions but not the volume-weighted distributions,

potentially resulting in a higher variance of the latter.

Next, we proceed to the tests how the data on trade sizes fit the model of

trading game invariance using a regression analysis framework.

Table 3.4 shows the estimates based on the data between February 1993 and

December 2000 from the following regression,

ln
[Q̃i

Vi

]
= ln

[
q̄
]
+ aQ × ln

[Wi

W∗

]
+ ϵ̃i, (3.13)

where the left-hand side ln
[
Q̃i

Vi

]
is the mean or the pth (20th, 50th and 80th) per-

centiles of the stock-level distributions of the logarithms of trade sizes as a fraction

of daily volume. In particular, for each stock in a given month, we construct the

empirical distribution of the logarithms of trade sizes over the logarithms of our

trade-size bins. We then calculate various attributes of these empirical distribu-

tions. The means and the percentiles are calculated both for the trade-weighted

distributions and the volume-weighted distributions. We run these regressions for
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each month and report the Fama-MacBeth estimates with their Newey-West stan-

dard errors. In the regression, the model of trading game invariance predicts that

aQ = −2/3, the model of invariant bet frequency predicts that aQ = 0, and the

model of invariant bet size predicts that aQ = −1.

Table 3.4 shows that the estimates of αQ range from -0.80 for the 20th percentile

to -0.74 for the 80th percentile of trade-weighted distributions. Its estimate based on

the mean is equal to -0.76. These coefficients are not too different from the value of

-2/3 predicted by the theory of trading game invariance. Although the hypothesis

aQ=-2/3 is rejected, the F-tests suggest that the theory of trading game invariance

has a better fit than other two theories for all the percentiles and the means of

the trade size distributions. If we apply a Bayesian analysis, we will conclude that,

almost regardless of our priors, the theory of trading game invariance is the most

probable one.

The estimates of αQ from the volume-weighted distributions are lower than

those from the trade-weighted distributions, ranging between -0.69 to -0.51. We

know that the volume-weighted distributions better describe the behavior of the

large trades, while the trade-weighted distributions focus more on small trades. It

seems that the size of smaller (larger) trades, as a fraction of volume, decreases with

trading activity at a slower (faster) rate than the invariance theory predicts.

Although we use only one explanatory variable lnW , the R-square of our

regressions is fairly large, ranging between 0.90 and 0.93 for trade-weighted distri-

butions. A similarly high R-squared has been documented in Brennan and Sub-

rahmanyam (1998) in regressions with multiple explanatory variables such as the
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market depth, returns volatility, the standard deviation of trading volume, market

capitalization, the number of analysts following stocks, the number of institutional

investors holding stocks, and the proportion of shares hold by them and others. The

similarity of R-squares suggests that these additional variables do not add too much

additional explanatory power to the regression relative to our measure of trading

activity W . Note also that the R-square is much lower for the volume-weighted dis-

tributions. One possible explanation for these lower R-squares is that our trade-size

bins are much wider for larger trades, for instance, our thresholds are 100, 200, 300,

400, 500 shares for small trades and 100000, 200000, 300000, 400000, 500000 shares

for large trades. In our analysis, each trade is assigned with a trade size equal to

a mid-point of a corresponding bin. This procedure mechanically adds more noise

into the regressions based on the volume-weighted distributions. Also, we expect

that only a small number of large trades per month do not allow us to reconstruct

a smooth distribution of trades in the right tail.

Table 3.5 reports the estimates from the same regressions as in Table 3.4 but

for the sample from January 2001 to December 2008. As before, the estimates of

αQ are close to -2/3 as predicted by the model of trading game invariance. These

estimates, however, are somewhat more negative than -2/3, indicating that the trade

size, as a fraction of trading volume, decreases with increasing trading activity at a

faster rate than the invariance theory suggests.

There is one noticeable difference between our results before and after 2001.

After 2001, the estimates for the trade-weighted and volume-weighted percentiles

are quite similar to each other. We believe that that the decimalization in 2001 and
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technological improvements in trading that allowed algorithmic traders to execute

a large number of trades over a fairly short period of time, have resulted in a

substantial amount of order shredding. Large trades became very infrequent because

most of them are shredded now into sequences of 100-share trades. This made

trade-weighted and volume-traded distributions more similar to each others after

2001 than before that. Since we expect order shredding to be more significant

among high-volume stocks, the realized trade sizes will be lower for high-volume

stocks than predicted by the invariance theory. This tilt might be reflected in lower

estimates of αQ after 2001.

Nevertheless, the data on the distributions of trade sizes support the model of

trading game invariance and soundly reject assumptions made in alternative models.

The reason is that the variation in trading activity in real markets is associated

with both variations in trading frequency and trade sizes; neither remains constant

as trading activity changes. Our analysis so far also suggests that a number of

market frictions might have distorted our results and that the further investigation

is warranted.

3.4.3 Market Frictions

Trade sizes and frequencies are certainly affected by various market frictions

such as the minimum lot size, the clustering of trade sizes, the relative tick size, and

the propensity for order shredding. These frictions might have distorted our results

so far. In this section, we focus exclusively on the theory of trading game invariance.

Our goal is to better understand how various market frictions affect observed trade
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sizes and trade frequencies. With this goal in mind, we examine the distributions

of the logarithms of the trade sizes normalized according to the invariance theory

as ln(Q
V
×W 2/3) over various subsets of stocks.

As before, we consider ten volume groups. We also split our sample into four

price volatility groups. For our purposes, “price volatility” Pσr is the standard devi-

ation of daily change in prices expressed in dollars. In particular, each month we di-

vide all observations into four equally-sized groups based on the variable Pσr/W
1/3.

This variable is equal to the price volatility Pσr normalized according to the theory

of trading game invariance for the difference in trading activity W . Normalized

price volatility is an important sorting variable because the effects of at least two

market frictions are expected to depend on its levels.

First, the normalized price volatility Pσr/W
1/3 is inversely related to a concept

of the relative tick size. Usually, the relative tick size is defined as the tick size

(in cents) divided by the price volatility Pσr. According to the invariance theory,

however, it is more reasonable to define the relative tick size as the tick size (in

cents) divided by the price volatility over a trading day equal to H calendar days,

i.e.,

Relative Tick Size :=
Tick Size

Pσr

√
H

∼
( Pσr

W 1/3

)−1

, (3.14)

where H is related to a speed with which trading games are being played. According

to the invariance theory, it is proportional to W 2/3. The relative tick size is therefore

inversely proportional to normalized price volatility.

This clearly shows that the normalized relative tick size is inversely related
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to normalized price volatility. When the relative tick size is low, stocks can be

traded at finer price levels. Their trade sizes are expected to be small and their

trading frequencies are expected to be high. Indeed, as an order walks up the limit

order book with limit orders placed at a finer grid, more prints of smaller sizes will

be generated. Thus, trade size is expected to decrease and trading frequency is

expected to increase with the normalized price volatility.

Second, the normalized price volatility Pσr/W
1/3 is also related to a concept

of minimum lot size of 100 shares. This is easy to see if we calculate the normalized

100-share trade as a fraction of trading volume. Effectively, we can normalize 100-

share trade size as suggested by the invariance theory and get,

Normalized 100-share Trade :=
100

V
×W 2/3 ∼

( Pσr

W 1/3

)
. (3.15)

The minimum lot size is proportionally related to the normalized volatility.

When the normalized price volatility is high, the 100-share constraint is expected

to be more binding. In other words, for high-volatility stocks, the realized trade

sizes will be “too high” and realized trading frequency will be “too low”, as many

small trades will not be even submitted to the system. As we see, the effect of the

100-share threshold is opposite to the effect of the relative ticks size. We see that

the 100-share effect is more pronounced in the trade-weighted data.

It is interesting to examine the distributions of normalized trade sizes over

different volume and volatility groups as well as over different time periods.

Figure 3.4 shows the trade-weighted distributions of the logarithms of the
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normalized trade sizes for 10 × 4 groups sorted by volume and price volatility for

the NYSE listed stocks in April 1993. Trade sizes are normalized as suggested

by the theory of trading game invariance. To show the composition of trades, we

highlight 100-share trades in light grey and 1,000-share trades in dark grey. We

also superimpose a normal distribution with the same mean and the same variance,

calculated based on the entire sample. If the invariance theory holds and trade sizes

are distributed log-normally, then distributions should be identical across stocks and

they should coincide with the superimposed normal distribution.

For most subgroups, the distributions are indeed close to the normal one.

There is also a clear truncation from below at the 100-share threshold. A visual

inspection suggests that holding the price volatility constant, the support of the

distributions stays reasonably constant across volume groups. Holding the volume

constant, however, the distributions change across volatility groups. When price

volatility increases, the 100-share trades, shown in light grey, shift to the right

and the number of average trades decreases. This indicated that the 100-share

constraint is becoming more binding and small orders are not even being placed

into the system. As for the tick size effect, when volatility increases, the relative

tick size decreases making trade sizes smaller and trade frequency greater. We do

not, however, observe these patterns. Obviously, the 100-share effect dominates the

effect of the relative tick size. Note also that 100-share trades are placed close to

each other on the charts, usually located in one or two adjacent columns. It means

that there is not a lot of variation in the measure of trading activity W within the

groups. The only exception is the first volume group, where the variation in W is
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quite significant and the 100-share trades are spread over more than four columns.

The trade sizes seem to deviate from the log-normal distribution when price

volatility is low. In this case, there are too many 100-share trades and trade sizes

are lower than suggested by the invariance theory. Otherwise, the distribution of the

logarithms of the normalized trade sizes closely fit the truncated normal distribution.

Figure 3.5 is similar to Figure 3.4 but it shows the volume-weighted distribu-

tions of the logarithms of the normalized trade sizes for the NYSE-listed stocks in

April 1993. The volume-weighted distributions put more weight onto large trades

and allow us to examine in more detail the right tail of the distributions. These

charts have an intuitive interpretation. They represent the distribution of trading

volume across trade size bins.

We see that for most subgroups, the distributions of trade sizes are much closer

to the imposed normal distribution for the volume-weighted distribution rather than

for the trade-weighted distributions. There is a simple explanation. The distortions

related to the minimum lot size have almost no effect on the volume-weighted dis-

tributions. Numerous 100-share trades contribute very little to the overall volume

traded. The 100-share trades almost disappear from the charts and the 100-share

constraint thus becomes invisible.

The volume-weighted distributions, by and large, provide a supportive evi-

dence for the invariance theory, but there are a number of caveats. For low-volume

stocks, large trades are somewhat smaller than they should be according to the in-

variance theory. There are also too few really large orders in the right tail of these

distributions.
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Figure 3.6 is similar to Figure 3.4 but it shows the trade-weighted distributions

of the logarithms of the normalized trade sizes for the NASDAQ-listed stocks in April

1993.

The first thing to notice is a large fraction of 1,000-share trades, shown in dark

grey. The clustering of these trades certainly distorts the distribution of trade sizes

for NASDAQ-listed stocks, creating spikes and potentially contaminating the results

of our analysis. A number of 1,000-share trades is especially significant in high-

volume groups. Note that a disproportionably large number of 1,000-share trades is

not observed after 2001 (unreported). This distortion most likely corresponds to the

restriction on the minimum quotation sizes existing at NASDAQ since mid-1988.

The Securities and Exchange Commission made it mandatory for market makers

to have the quotation size of at least 1,000 shares. This rule affected mostly large

stocks. For small stocks, the rule was slightly different. After 1996, this restriction

has been gradually removed, first for a subset of securities and then for all securities

traded at NASDAQ. We expect that this regulatory market friction is the reason

why our results for the NASDAQ stocks are worse than those for the NYSE stocks

before 2001.

Apart of the 1,000-share trades, the empirical distributions of trade sizes are

reasonably close to the superimposed normal distribution. This is true especially

for low-volume stocks with many stocks placed in those groups. For high-volume

groups, the number of stocks decreases significantly and the empirical distributions

are not very smooth.

Figure 3.7 shows the trade-weighted distributions of the logarithms of the
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normalized trade sizes for 10 × 4 groups sorted by volume and price volatility for

stocks traded in April 2001. Figure 3.8 shows the same distributions for stocks

traded in April 2008. One striking pattern clearly appears in the figures. Starting

2001, the distributions of trade sizes is becoming dominated by 100-share trades,

shown in light grey on the plots. The block-order market seems to be disappearing.

The NYSE implemented a new pricing scheme on January 29, 2001, reducing

the tick size from 1/16 to 1/100. The NASDAQ started to use decimal pricing

on April 9, 2001. After decimalization and a consequent introduction of electronic

interfaces, order shredding has become much more prevalent. Large trades are now

broken into numerous small trades. It is not infrequent to see a million-share trade

being shredded into a sequence of 100-share trades. In 2008, for example, the 100-

share trades constitute about 70% of all trades executed and 35% of the volume

traded. Both figures clearly show these changes.

In our sample, the trade size has decreased significantly over time. The distri-

butions of normalized trades were centered around -1.01 and -0.18 for the NYSE and

the NASDAQ-listed stocks in April 1993 (Figures 3.4 and 3.6). The log of average

trade size as fraction of daily volume decreases from -1.31 in April 2001 to -2.66

in April 2008. The trading frequency, in contrast, has exploded. For high-volume

low-volatility stocks, for example, the average number of trades has increased from

938 trades per month in April 1993 to 74,420 trades per month in April 2008.

The extent of order shredding makes it difficult to test the invariance theories

using the TAQ dataset after the decimalization of 2001, unless one makes particular

assumptions about the order shredding algorithms and how they depend on the
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trading activity W . Note that the invariance theory is formulated for intended

orders or “ideas”, independently arriving to the market. The TAQ dataset, however,

contains prints. Thus, we effectively make an assumption that ideas generate the

same number of prints, regardless of trading activity W . This assumption may not

hold after 2001. Orders in actively-traded stocks may be shredded into more traders

comparing to orders in actively-traded stocks.

Figure 3.10 shows how the trading process changed over time from a different

angle. It shows the dynamics of the normalized number of trades per month and the

distribution of normalized trade sizes over time between 1993 and 2008. As before,

we normalize number of trades and their size according to the theory of trading game

invariance. The figure shows the number of trades as well as the 20th, 50th and 80th

percentiles for trade-weighted and volume-weighted distributions. High-volume and

low-volume stocks are examined separately.

We see that the normalized numbers of trades have increased and the nor-

malized trade sizes have decreased significantly over time, even after adjustment

for the invariance theory. For the high-volume stocks stocks, the normalized trade

size distributions were stable until 2001 and then shifted downwards. For the low-

volume stocks, the normalized trade sizes are decreasing gradually after 1997. These

changes probably represent the impact of the reduction in tick sizes. If we recollect

the history, both NYSE and NASDAQ went from 1/16 quotations to the decimal

pricing in 2001. Earlier in 1997, NASDAQ had also announced the change from

1/8 to 1/16. Most of NASDAQ-listed stocks are placed into the low-volume group.

These earlier changes at NASDAQ might therefore explain the decrease in trade
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sizes for low-volume group prior to 2001. Interestingly, with the exception of the

volume-weighted distributions for large stocks, the effects of changes seem to start

stabilizing in 2007 and 2008.

The effect of order shredding is certainly not uniform across stocks. Figure 3.10

shows that the number of trades has increased more significantly for high-volume

stocks than for low-volume stocks. The distributions of trade sizes have changed in

a different manner as well. For high-volume stocks, the distribution of trade sizes

is somewhat tighter after 2001. For low-volume stocks, the distribution is stable

and even widen for larger trades, as shown by the volume-weighted distributions.

Comparing the trade size percentiles of low-volume and high-volume stocks, we

observe that the latter have slightly larger trade sizes in trade-weighted distributions

but smaller trade sizes in volume-weighted distributions. Order shredding might

influence more significantly trading in high-volume stocks.

Figure 3.10 shows the dynamics of coefficients from monthly regressions for

trading frequency (3.9) and for trade sizes (3.13). The coefficients predicted by the

theory of trading game invariance are superimposed on the plots.

Panel A shows that the estimates of coefficients from (3.9) are not only close

to the predicted aγ = 2/3 on average but also for each month between 1993 and

2008. These coefficients are especially close to the predicted value before 2001 and

they are slightly higher after 2001. This increase indicates that order shredding,

which started to prevail after decimalization in 2001, is more intensive in high-

volume stocks, probably because algorithmic trading is concentrated primarily in

these stocks.
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Panel B and C show the estimates of coefficients from (3.13) for the percentiles

and means of the stock-level distributions of trade sizes. Again, we see that each

month the estimates are quite close to aQ = −2/3 predicted by the invariance theory.

Before 2001, the coefficients tend to be closer to the predicted ones. After 2001,

order shredding seems to contaminate the transaction data making the coefficients

deviate from the values predicted by the invariance theory. In the recent period,

the volume-weighted percentiles start behaving more similar to the trade-weighted

percentiles, as the market for block traders has been disappearing.

3.5 Conclusions

We employ the TAQ dataset to test the theory of trading game invariance

introduced by Kyle and Obizhaeva (2011). The theory puts forward the idea that

financial markets have a particular structure. Securities are traded in such a way

that trading games played by traders are the same across stocks. The only difference

between these games is the speed with which these games are being played. In other

words, the time clock may run at a different pace for different stocks. When trading

games, equivalent in a trading time, are considered in a calender time, several specific

cross-sectional patterns naturally appear. For example, if one stock has the trading

activity that is one percent higher than another stock, then the invariance theory

makes one prediction which can be expressed in two equivalent ways: Trade sizes,

as a fraction of daily volume, should be two-third of one percent smaller and its

number of trades per day should be two-third of one percent larger.
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We test these predictions using the data on (unsigned) trades in the TAQ

dataset from 1993 to 2008. Our tests based on trading frequencies show that the

estimated coefficient 0.69 is remarkable close to the predicted value of 2/3, especially

before 2001. After decimalization in 2001 and a consequent spread of algorithmic

trading, the coefficient is slightly higher, possibly reflecting a more intensive order

shredding in high-volume securities. Our tests based on the distribution of trade

sizes also provide evidence in favor of the invariance theory. We find, for exam-

ple, that the distributions of trade sizes, normalized according to this theory, are

quite stable across stocks and that these distributions are similar to a log-normal

distribution truncated from below at the level of 100 shares.

Why order sizes are log-normally distributed is an interesting question for the

future research. There may be several explanations. Traders may be symmetric

and each of them may be drawing quantities to trade from the same log-normal

distribution. Alternatively, each trader may have a natural trade size, related to

his own size, if for example large hedge funds submit large orders and small retail

investors submit small orders. Although the distribution of trades may look normal

if conditioning on the type of a trader, the variation in sizes of traders themselves

may turn this distribution into a log-normal one.

There are several other issues that require further investigation. The invari-

ance theory is formulated in terms of “bets” or “ideas” arriving to the market

independently. We do not observe these ideas in the TAQ dataset; rather we ob-

serve realized prints. These prints are influenced by various market frictions such as

minimum lot size or relative tick size as well as by order shredding, which became
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particularly prevailing after recent technological changes in the trading process. The

interesting topic for further research, therefore, is how to design better econometric

tests dealing with these issues.

So far, the predictions of the invariance theory about the cross-sectional pat-

tern in trade frequencies and trade sizes have found support in the samples of trades

from the portfolio transition dataset and the TAQ dataset. It would be interest-

ing to see whether the predictions concerning quantities and frequencies also hold

in the datasets containing changes in holdings of mutual funds or other reporting

institutional traders as well as transactions from other markets.
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Tab. 3.2: OLS Estimates of Number of Trades.

All Stocks NYSE/AMEX NASDAQ

93/08 93/00 01/08 93/08 93/00 01/08 93/08 93/00 01/08

α 7.10 6.15 8.04 6.95 6.07 7.81 7.24 6.17 8.30
(0.199) (0.052) (0.155) (0.188) (0.027) (0.168) (0.222) (0.078) (0.152)

aγ 0.74 0.69 0.79 0.70 0.64 0.76 0.77 0.71 0.83
(0.011) (0.002) (0.011) (0.013) (0.002) (0.012) (0.013) (0.002) (0.012)

Adj-R2 0.92 0.91 0.94 0.94 0.93 0.95 0.92 0.90 0.94
# Obs 5,801 6,698 4,914 2,051 2,199 1,904 3,750 4,499 3,010

Model of Trading Game Invariance: H0: aγ = 2/3

F-Test 44.2 92.9 122.4 6.3 260.9 62.4 58.5 336.2 193.0
p-Value <0.001 <0.001 <0.001 0.0129 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Frequency: H0: aγ = 0

F-Test 4646.2 81391.5 5245.6 2994.2 141943.9 4317.6 3465.8 112044.3 5160.2
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Size: H0: aγ = 1

F-Test 581.5 16432.1 384.9 556.1 45201.6 441.2 322.6 19561.5 227.4
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table presents the Fama-MacBeth estimates α and aγ from monthly regres-
sions

ln
[
γ1,i

]
= α+ aγ × ln

[Wi

W∗

]
+ ϵ̃i.

Each observation corresponds to the stock i with γ1,i being the average number
of trades per day and the trading activity Wi being the product of the average
daily dollar volume Vi×Pi and the standard deviation σi of daily returns in a
given month. The scaling constant W∗ = (40)(106)(0.02) corresponds to the
measure of trading activity for the benchmark stock with price $40 per share,
trading volume of one million shares per day, and daily volatility of 0.02. Adj-
R2 is the adjusted R2 averaged over monthly regressions. # Obs is the number
of stocks averaged over monthly regressions. The Newey-West standard errors
computed with 3 lags from the Fama-MacBeth regressions are in parentheses.
F-statistics and p-values are calculated from the Fama-MacBeth regressions
with Newey-West correction for three different models. The estimates are
reported for the entire sample from February 1993 to December 2008 as well
as for two subsamples, before and after 2001.
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Tab. 3.3: OLS Estimates of Number of Trades: Robustness Check.

All Stocks NYSE/AMEX NASDAQ

93/08 93/00 01/08 93/08 93/00 01/08 93/08 93/00 01/08

α 2.07 2.51 1.64 3.30 3.94 2.67 1.25 1.98 0.52
(0.157) (0.057) (0.262) (0.196) (0.057) (0.302) (0.188) (0.116) (0.225)

b1 0.18 0.14 0.23 0.13 0.08 0.18 0.22 0.16 0.28
(0.011) (0.003) (0.014) (0.013) (0.003) (0.016) (0.014) (0.007) (0.013)

b2 -0.30 -0.35 -0.24 -0.26 -0.34 -0.17 -0.31 -0.34 -0.28
(0.012) (0.006) (0.010) (0.017) (0.006) (0.010) (0.008) (0.006) (0.010)

b3 -0.41 -0.46 -0.36 -0.45 -0.49 -0.41 -0.44 -0.41 -0.47
(0.022) (0.036) (0.016) (0.023) (0.013) (0.042) (0.015) (0.016) (0.022)

Adj-R2 0.95 0.94 0.96 0.96 0.95 0.97 0.96 0.94 0.97
# Obs 5,801 6,698 4,914 2,051 2,199 1,904 3,750 4,499 3,010

Model of Trading Game Invariance: H0: b1 = b2 = b3 = 0

F-Test 872.8 3072.4 324.1 1448.6 2692.0 504.8 1015.5 5496.5 299.7
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Frequency: H0: b1 = b2 = b3 = −2/3

F-Test 1287.2 14521.5 1475.1 1245.5 14023.5 1108.9 3324.7 6546.2 3465.7
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Size: H0: b1 = b2 = b3 = 1/3

F-Test 2013.4 14062.9 1429.0 1226.0 13580.6 1074.2 3272.5 6339.5 3357.3
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table presents the Fama-MacBeth estimates α, b1, b2 and b3 from monthly regression

ln
[
γ1,i

]
= α+ aγ × ln

[Wi

W∗

]
+ b1 × ln

[ Vi

106

]
+ b2 × ln

[Pi

40

]
+ b3 × ln

[ σi
0.02

]
+ ϵ̃i.

Each observation corresponds to the stock i with γ1,i being the average number of trades per day and the
trading activity Wi being the product of the average daily dollar volume Vi×Pi and the standard deviation
σi of daily returns in a given month. The scaling constant W∗ = (40)(106)(0.02) corresponds to the trading
activity of the benchmark stock with price $40 per share, trading volume of one million shares per day,
and volatility of 0.02. Variables Vi, Pi and σi are the average trading volume (in shares), average price,
and average daily volatility. Adj-R2 is the adjusted R2 averaged over monthly regressions. # Obs is the
number of stocks averaged over monthly regressions. The Newey-West standard errors computed with 3
lags from the Fama-MacBeth regressions are in parentheses. F-statistics and p-values are calculated from
the Fama-MacBeth regressions with Newey-West correction for three different models. The estimates are
reported for the entire sample from February 1993 to December 2008 as well as for two subsamples, before
and after 2001.
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Tab. 3.4: OLS Estimates of Trade Sizes, February 1993 - December 2000.

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

α -7.22 -8.47 -7.26 -6.24 -4.72 -6.39 -4.93 -3.38
(0.033) (0.039) (0.045) (0.036) (0.073) (0.053) (0.084) (0.087)

aQ -0.76 -0.80 -0.76 -0.74 -0.59 -0.69 -0.61 -0.51
(0.006) (0.008) (0.006) (0.005) (0.003) (0.002) (0.004) (0.006)

Adj-R2 0.93 0.90 0.91 0.91 0.75 0.87 0.75 0.61
#Obs 6,698 6,698 6,698 6,698 6,698 6,698 6,698 6,698

Model of Trading Game Invariance : H0: aQ = −2/3

F-Test 254 269 319 226 503 93 180 644
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Frequency : H0: aQ = 0

F-Test 17074 10030 19319 21827 30332 97083 21820 7261
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Size: H0: aQ = −1

F-Test 91674 50968 102846 120269 220002 584391 151664 63056
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table presents the Fama-MacBeth estimates α and aQ from the monthly regressions of the mean trade size
of its percentiles on the measure of trading activity W for the sample from February 1993 to December
2000. The coefficients α and aQ are based on monthly regressions

ln
[ |Qi|
Vi

]
= ln

[
q̄
]
+ aQ × ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribution of
(unsigned) trade sizes |Qi|, as a fraction of daily volume Vi in a given month. The means and percentiles are
calculated both based on the distributions of trade size themselves (trade-weighted distribution) and based
on the contribution to total trading volume (volume-weighted distribution). Each observation corresponds to
the stock i with γi being the average daily number of trades and the trading activity Wi being the product
of the average daily dollar volume Vi × Pi and the standard deviation σi of daily returns. The scaling
constant W∗ = (40)(106)(0.02) corresponds to the trading activity of the benchmark stock with price $40
per share, trading volume of one million shares per day, and volatility of 0.02. Variables Vi, Pi and σi are the
average trading volume (in shares), average price, and average daily volatility. Adj-R2 is the adjusted R2

averaged over monthly regressions. #Obs is the number of stocks averaged over monthly regressions. The
Newey-West standard errors computed with 3 lags from the Fama-MacBeth regressions are in parentheses.
F-statistics and p-values are calculated from the Fama-MacBeth regressions with Newey-West correction
for three different models.
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Tab. 3.5: OLS Estimates of Trade Sizes, January 2001 - December 2008.

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

α -8.69 -9.42 -8.98 -8.07 -6.82 -8.55 -7.35 -5.56
(0.103) (0.044) (0.111) (0.162) (0.079) (0.188) (0.242) (0.237)

aQ -0.79 -0.79 -0.79 -0.81 -0.74 -0.80 -0.80 -0.72
(0.005) (0.007) (0.004) (0.008) (0.008) (0.012) (0.025) (0.030)

Adj-R2 0.93 0.90 0.92 0.93 0.86 0.91 0.87 0.77
# bs 4,914 4,914 4,914 4,914 4,914 4,914 4,914 4,914

Model of Trading Game Invariance : H0: aQ = −2/3

F-Test 636 266 935 314 85 118 29 3
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.086

Model of Invariant Bet Frequency : H0: aQ = 0

F-Test 25116 11432 37000 10574 7994 4286 1056 565
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Model of Invariant Bet Size: H0: aQ = −1

F-Test 128423 58963 189234 53135 43978 21713 5347 3226
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table presents the Fama-MacBeth estimates α and aQ from the monthly regressions of the mean trade size
o its percentiles on the measure of trading activity W for the sample from January 2001 to December 2008.
The coefficients α and aQ are based on monthly regressions

ln
[ |Qi|
Vi

]
= ln

[
q̄
]
+ aQ × ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the distribution of
(unsigned) trade sizes |Qi|, as a fraction of daily volume Vi in a given month. The means and percentiles are
calculated both based on the distributions of trade size themselves (trade-weighted distribution) and based
on the contribution to total trading volume (volume-weighted distribution). Each observation corresponds to
the stock i with γi being the average daily number of trades and the trading activity Wi being the product
of the average daily dollar volume Vi × Pi and the standard deviation σi of daily returns. The scaling
constant W∗ = (40)(106)(0.02) corresponds to the trading activity of the benchmark stock with price $40
per share, trading volume of one million shares per day, and volatility of 0.02. Variables Vi, Pi and σi are the
average trading volume (in shares), average price, and average daily volatility. Adj-R2 is the adjusted R2

averaged over monthly regressions. #Obs is the number of stocks averaged over monthly regressions. The
Newey-West standard errors computed with 3 lags from the Fama-MacBeth regressions are in parentheses.
F-statistics and p-values are calculated from the Fama-MacBeth regressions with Newey-West correction
for three different models.
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Fig. 3.1: Comparison of Three Models based on Number of Trades
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Figure shows the logarithm of normalized number N of trades across
different levels of the logarithm of trading activity W . For the model
of trading game invariance, the number γ of trades is normalized as
N = γ/W 2/3. For the model of invariant bet frequency, the number of
trades is shown as N = γ, without any adjustment. For the model of
invariant bet size, the number of trades is normalized as N = γ/W . Four
subsamples are considered: NYSE-listed stocks in April of 1993, Nasdaq-
listed stocks in April of 1993, stocks in April of 2001 and in April of 2008.
Trading activity W is calculated as the product of average daily dollar
volume and daily returns standard deviation in that month.
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Fig. 3.9: Trading Patterns for Small and Large Stocks, February 1993 - December 2008.
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Figure shows the dynamics of average number of trades per month and the 20th, 50th and 80th
percentiles for normalized trade size from 1993 to 2008. Trade-weighted percentiles and volume-
weighted percentiles are shown for stocks in volume group 1 and volume groups 9 and 10. Volume
groups are based on average dollar trading volume with thresholds corresponding to 30th, 50th,
60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-
listed stocks. Volume group 1 (group 10) has stocks with the lowest (highest) trading volume. For
each trade, the normalized trade size is calculated based on the midpoint of a trade size bin, in which
a trade locates, and normalized according to the model of trading game invariance, i.e. ln( |Q|

V
×W 2/3),

where |Q| is a midpoint of a trade size bin in shares, V is the average daily volume in shares, and
W is the measure of trading activity equal to the product of dollar volume and returns standard
deviation. The stock-level distributions of normalized trade sizes are averaged across stocks for
volume groups 1 and 9/10 in a given month. The trade-weighted and volume-weighted percentiles
are plotted on this figure. W is calculated as the product of dollar volume and returns standard
deviation. W∗ is the measure of trading activity of the benchmark stock.
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Fig. 3.10: Dynamics of OLS Estimates, February 1993 - December 2008.
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Figure shows the dynamics of coefficients from regressions of number of trades and various percentiles
on the measure of trading activity W from 1993 to 2008. Panel A shows the coefficient aγ from
monthly regressions

ln
[
γ
]
= ln

[
q̄
]
+ aγ × ln

[Wi

W∗

]
+ ϵ̃i,

where γ is the number of trades per month. The model of trading game invariance predicts aγ = 2/3
and alternative models predict that aγ = 0 or aγ = 1. Panel B shows the coefficient aQ from monthly
regressions

ln
[Q̃i

Vi

]
= ln

[
q̄
]
+ aQ × ln

[Wi

W∗

]
+ ϵ̃i,

where the left-hand side is the pth (20th, 50th and 80th) percentiles of the distribution of trade sizes
Q̃i. The model of trading game invariance predicts aQ = −2/3 and alternative models predict that
aQ = 0 or aQ = −1. Panel C shows the coefficient aQ from similar monthly regressions but these
regressions are based on percentiles Qp

i , where percentiles are calculated based on the contribution
to total trading volume. The model of trading game invariance predicts aQ = −2/3 and alternative
models predict that aQ = 0 or aQ = −1. W is calculated as the product of dollar volume and returns
standard deviation. W∗ is the measure of trading activity of the benchmark stock.
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