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1 IntroductionA number of methods [1, 2, 3, 4, 8, 10] have been used to identify objects and discriminateregions in infrared imagery. A relatively simple method is that of Bhanu and Holben [3],who use a relaxation scheme to automatically set a threshold to separate \hot" and \cold"regions of an image. This requires that the objects of interest be quite prominent. Somemethods use the physics of objects in the image. Aggarwal and Nandhakumar [1] use infraredemission information together with visible reectivity information to separate regions basedon thermal properties.A paradigm often used for the extraction of objects from their backgrounds is the de-tection/segmentation/feature extraction/recognition paradigm (e.g. [10]). It is particularlyattractive in situations for which reduced computational complexity is critical, because thestages successively reduce the complexity of the problem to manageable proportions. Thechief disadvantage is that the stages introduce errors which cannot always be recti�ed bylater stages. Frequently such algorithms are particularly sensitive to imperfect segmenta-tions. Bhanu gives a survey of such algorithms in [2]. Such algorithms often do not takedirect advantage of knowledge of the geometry of objects, relying instead on derivative fea-tures such as moments. For applications in which segmentation is particularly di�cult,this can be ine�ective as many commonly used features require that an intact silhouette bepresent.In an attempt to reduce the dependence of the algorithm on the segmentation scheme,a number of authors (e.g. [4, 8]) have used the known geometry of objects of interest toguide the separation of object from background, an approach sometimes called model-basedvision. The approach combines the segmentation/feature extraction/recognition stages intoone matching process in the hope of improving performance. It is used in [4], in whichan energy minimization scheme is used to match templates to image regions. Contoursmoothness, edge sharpness, and object shape are all taken into account during optimization,though their relative weights change as the optimization proceeds. One advantage of suchapproaches is that performance degrades gracefully as the quality of the silhouette degrades.An alternative to simply choosing an intuitively appealing matching function is to develop1



an image model and object model that allow the application of a standard test of goodness of�t, preferably one that can be proven optimal (e.g. [5, 9]). This is the general approach takenin this paper. It di�ers from Margalit, Reed, and Gagliardi [9] in that a more complex imagemodel is required, and from Grimson [5], in that it does not rely on an apriori edge �nderwhich might function poorly for low contrast objects. Grimson obtains empirical backgroundprobability distributions for ensembles of edges, and uses them to estimate the number ofedge correspondences required to ensure a low false alarm rate. The method requires a setof images containing \false" objects similar to the images to be tested, in order to estimatethe probability of false correspondences. The method was developed for the identi�cation ofparts in a manufacturing environment. The method developed here is more general, in thatthe estimated probability distributions describe probe values, which are a more primitiveconstruct than edge correspondences. One advantage of this is that probability distributionscan be estimated using only the image with which the algorithm is being tested.In this paper, image and target models that allow the calculation of the probability of anobserved image section are developed. These models are used to de�ne an algorithm whichapplies the generalized likelihood ratio test to test for the presence of the desired objects.Such an approach has the advantage that the designer knows where to look to improve thealgorithm; since the generalized likelihood ratio is well accepted, although not optimal, theimage model must be improved if performance is to be improved.The image model we have used requires that a speci�c type of probe be de�ned, wherethe de�nition is chosen to correspond with the authors' intuition of what probe functionwill best di�erentiate objects of interest from their backgrounds. The probability densityfunction of the probe, or the parameters of this function, is then estimated from the image.The pattern of probes used to search for a given object corresponds to the silhouette ofthe object, as determined from a CAD model. The probability density function of probevalues corresponding to targets cannot be reasonably estimated from the image, because thelocations of targets are not assumed known, and because targets occur infrequently, whichwould cause sample sizes to be small.Explicit temperature predictions for the scene might be used to predict grey levels, butthis would require data that we cannot assume to be known. Accurate prediction of outdoor2



temperatures requires knowledge of recent thermal history, including whether the objectin question is under direct sunlight or precipitation, and the magnitudes of internal heatsources. It is shown in the body of the paper that the variation in irradiation between anobject receiving direct sunlight and a shaded object can dwarf variations due to materialproperties. While knowledge of such information might be realistic in controlled manufac-turing environments, it is not realistic for noncooperative targets.Algorithm designers may take a number of steps to decrease the computational com-plexity of an algorithm, including prescreening to eliminate large areas of the image fromconsideration, and decision trees to quickly sort through the set of candidate hypotheses.If these measures are applied appropriately, they should introduce relatively small amountsof error, as compared to the fundamental limitations of the matching scheme itself. Thematching scheme should be the heart of the algorithm. Unfortunately, matching schemestend to be based on heuristic measures that reect the intuition of the algorithm designer.While intuition can yield e�ective algorithms, the inherent di�culty in communicating in-tuitive insights, and the absence of a standardized data set for comparison purposes, makesit di�cult to evaluate the relative merits of di�erent algorithms.Developers of object recognition algorithms have su�ered from a lack of images on whichto design and test their algorithms. In particular, image sets have often consisted of too fewimages for adequately understanding of the performance limitations of the algorithm. Thealgorithm described in this paper has been tested on a set of approximately two thousandimages acquired from a terrain model board, encompassing a wide variety of target andbackground conditions. A description of the image set and algorithm performance resultsare presented in the paper.The paper is organized as follows. Section 2 discusses the rationale for not making explicituse of the apparent temperature information given by the infrared imager, but rather treatingapparent temperature values as grey levels. Section 3 introduces a simple image model, andpresents experimental results to justify its use. Section 4 demonstrates how the image modeldescribed in Section 3 can be used to perform a generalized likelihood ratio test for a givenset of known objects. Section 5 presents experimental results of the recognition algorithmdescribed in Section 4. Section 6 discusses conclusions and future work.3



2 Problems with the Thermal Prediction ApproachThe image model approach taken here is in contrast to methods used by Nandhakumarand Aggarwal [1] in that it does not directly use knowledge about thermal interactionsbetween background elements and objects of interest to help in their extraction. The reasonthat thermal prediction information is not used in our approach is that we do not wish toassume that a coregistered visible wavelength image is available. Also, the characterizationsof objects required for thermal predictions to be accurate are much more detailed than wewould like to assume in our scenario. Presumably such an approach would involve calculatingthermal predictions for both man-made objects and background terrain. In our scenario, itwould be reasonable to assume some knowledge about the background terrain, such as thegeneral locations of �elds and forests, an elevation map on the scale of tens of meters, someidea about the types of vegetation present, and recent meteorological history. It would alsobe reasonable to assume that exact representations of the objects of interest are available.If this were all the necessary information, thermal prediction could be a great aid to objectrecognition in outdoor scenes. However, the temperatures of vehicles depend greatly on theirrecent activity, because vehicles have quite strong internal heat sources including the engineand heater, internal friction, friction on wheels and tracks, etc. For a vehicle that has beenrecently operated, these heat sources dominate the vehicle's signature. Prediction of vehicletemperature thus requires knowledge of the vehicle's movement, engine status, etc. We donot wish to assume that such knowledge is available. For backgrounds the problem is alsomore complicated because the exact locations of tree lines and the spatial variations in thedensities and types of vegetation are crucial for prediction, but are presumably unavailable.Signi�cant signal variation can be observed even from relatively uniform sparse �elds ofgrass. Temperature prediction is useful if these types of conditions can be controlled, as inindoor scenes, for example.The thermal prediction approach could be less ambitious, and only predict probabilitydensity functions (PDFs) of temperature, or simply reasonable temperature ranges. Theusefulness of the latter approach is somewhat questionable, as there are often signi�cantoverlaps between natural and background objects, and even when a man-made object stands4



out, it is not necessarily the object of interest, so that discrimination based on shape isstill necessary. While the pdf's of object and background temperature would be useful,prediction would require estimating a priori probabilities such as the probability that avehicle has moved recently, that its engine is on, that it is shaded by foliage cover, etc. Forthe background, we would similarly need to know the probability that the soil in the areais of a given quality, that the trees are of a given species, etc. All of the above mentionedfactors are �rst order e�ects of the object and background temperature.To demonstrate the di�culty of �nding man-made objects in natural scenes based onpredicted temperature, a simple thermal model was created to predict the temperatures ofmaterials given meteorological data. The aim was to show that the e�ects of conditions thatcannot be assumed known can be strong enough that the range of temperatures which agiven material can have overlaps the temperature ranges of other materials. In particular,the surface of a steel slab on top of soil can have temperatures similar to those of naturalmaterials such as soil, sand, rock, and wood. A more complex model would identify moresets of conditions that produce overlap; for our purposes, a simple model su�ces.The simulation involves a simple slab of material placed on top of dry soil. A �nitedi�erence model is applied to the material and the soil. Because the soil has low thermaldi�usivity, conduction is assumed to occur only in the vertical direction. The surface e�ectsconsidered are down-welling irradiation, direct and di�use solar radiation, free convection,and emission from the material. Solar radiation, air temperature, and down-welling irra-diation were obtained from recorded meteorological �les. For simplicity, these parameterswere kept constant while the �nite di�erence model was allowed to reach steady state. Theresults for materials in direct sunlight, in the shade, and at night are shown in Table 1.Clearly, whether the object to be recognized is shadowed is more important than its ma-terial composition. Of course, objects with internal heat sources might easily exceed thetemperature ranges shown. Vegetation was not included in the table because of the crucialrole played by evapo-transpiration in the regulation of plant temperature. It can be seenthat steel, because of its lower emissivity, has a signi�cantly lower apparent temperaturethan the other materials. Since man-made objects, often made of steel, typically have stronginternal heat sources, it can be seen that these objects have the greatest range of possible5



apparent temperature values.Table 1: Predicted temperature and apparent blackbody temperature of materials.Material Sun Shade NightDry Soil 298.5 282.9 280.3Sand 297.9 282.9 280.5Steel 302.6 289.5 287.4Granite 290.2 288.5 277.9Fir 298.2 282.9 280.4Material Sun Shade NightDry Soil 294.3 278.9 276.4Sand 290.2 275.5 273.2Steel 207.2 198.3 196.9Granite 282.7 281.0 270.7Fir 292.0 276.9 274.5The heat equation is written as� 1�� @T@t = @q@t +r2Twhere T is temperature, t is time, � is thermal di�usivity, and q is input energy. The thermaldi�usivity breaks down as � = k=�cpwhere � is the material density, k is the thermal conductivity, and cp is the speci�c heat ofthe material.Since we are considering a large at surface and uniform volume in which the heat owis exclusively vertical, a one dimensional approximation can be used. The �nite di�erenceequations can be obtained by discretizing the above equation asT t+1m � T tm��t = T tm�1 � 2T tm + T tm+1�x2following the notation in [7], where the external heat ux term has been dropped. Forinternal nodes at which external heat ux is zero, the �nite di�erence model is simply [7]T t+1m = F (Tm+1t+ Tm�1t) + (1 � 2F )T tm6



where Tmt is the temperature at the mth node at time t, and the Fourier number F isF � ��t=(�x)2where �x is the vertical spacing of the nodes, and �t is the time step used by the �nitedi�erence model. At the surface node, the equation isT t+10 = 2FT t1 + (1� 2F )T t0 + Tinwhere Tin is the temperature change due to energy exchange at the exposed surface. Itbreaks down as Tin = �t(Pe + Pc + Pir)f�x�cpg�1Pe = �"�fT t0g4Pc = hfTa � T t0gwhere " is the emissivity of the surface material, � is the Stefan-Boltzmann constant, his the free convection coe�cient of air, Ta is the ambient air temperature, and Pir is theirradiation onto the surface due to direct and di�use solar, as well as down-welling irradiation.The meteorological parameters, including Pir, were taken from recorded data �les and thematerial constants were obtained from tables in [7].The apparent temperature of an object is the temperature of a blackbody that wouldproduce the same emission as the object. Thus, objects with low emissivities have lowerapparent temperatures than objects at the same temperature with higher emissivities. Theformula is Tap = "1=4Tacwhere Tap is the apparent temperature and Tac is the actual temperature.3 The Probe Image ModelThe image model used by Margalit, Reed, and Gagliardi [9] assumes that the pixel grey levelsof an infrared image can be modeled as a Gaussian with slowly varying local mean. For theirpurposes it was unnecessary to model how the local mean varied, as they were concerned7



with small targets containing only a few pixels. For our purposes, statistical characterizationof the background jumps is crucial.Our assumption, which will be justi�ed later, is that the di�erence in grey level betweentwo pixels at a distance d apart can be modeled as a zero mean Gaussian, with variance amonotonically nondecreasing function of d. Such a random variable will be called a probe,and denoted by J . Each probe J will be correlated with neighboring probes, a fact forwhich our algorithm must account. The variances of the probes, and their correlations withneighboring probes, will vary from image to image, and thus will be calculated locally. Thealgorithm will then make use of this background distribution to search for desired objects.Consider an image formed by calculating the value of a probe of a given distance andgiven direction centered at each pixel of an input image. Thus for an input image fxijgwhere the �rst subscript denotes the vertical axis and the second the horizontal, the probeimage fyijg for probes of distance d in the horizontal direction isyij = xi+d;j � xi�d;jThen the random �eld Y = fyi;j; (i; j)�!g, where ! is the pixel grid, is modeled as a �eldof correlated zero mean Gaussians. This correlation is measured for probe images formed ineach principal direction. A whitening �lter can be applied based on the correlation values,resulting in a �eld of uncorrelated zero mean Gaussians. Thus, locally, each probe value,after whitening, may be treated as an independent identically distributed (IID) sample of arandom variable. This greatly simpli�es the hypothesis test used to test for the presence ofthe target objects. The role of the Gaussian assumption is only to assert that the whitening�lter, which causes the pixels to be uncorrelated, also causes the pixels to be independent.The recognition algorithm uses the actual local histogram as a sample probability densityfunction rather than �tting a Gaussian to the histogram, thus reducing the algorithm'sdependence on the Gaussian assumption.The Gaussian assumption was tested by performing Kolmogorov-Smirnov tests of the con-formity of sample histogram to a Gaussian distributions. The resulting average, minimum,and maximum K-S test values are recorded in Table 2.8



Table 2: Kolmogorov-Smirnov test comparison of empirical probe pdfs vs. Gaussian distri-bution. Direction Jump Size Average Minimum Maximum1 1 0.09613 0.08042 0.106491 2 0.08048 0.05586 0.105401 3 0.06439 0.03850 0.106781 4 0.05153 0.03038 0.106801 5 0.04418 0.03017 0.105701 6 0.04037 0.03201 0.105591 7 0.03961 0.03391 0.106581 8 0.03990 0.03523 0.106021 9 0.04101 0.03659 0.105991 10 0.04223 0.03755 0.10662Direction Jump Size Average Minimum Maximum2 1 0.09696 0.08160 0.105362 2 0.08432 0.06148 0.105732 3 0.07203 0.04626 0.105202 4 0.06165 0.03534 0.105622 5 0.05431 0.03102 0.105822 6 0.04823 0.03296 0.105492 7 0.04502 0.03354 0.105882 8 0.04327 0.03367 0.104582 9 0.04269 0.03502 0.105372 10 0.04264 0.03672 0.10519Direction Jump Size Average Minimum Maximum3 1 0.10075 0.09855 0.106503 2 0.09902 0.09606 0.106883 3 0.09543 0.09192 0.105833 4 0.09167 0.08601 0.106103 5 0.08807 0.08128 0.104803 6 0.08459 0.07674 0.105083 7 0.08110 0.07237 0.105323 8 0.07787 0.06762 0.105713 9 0.07458 0.06271 0.105773 10 0.07211 0.06010 0.10524Direction Jump Size Average Minimum Maximum4 1 0.09554 0.07952 0.106654 2 0.07952 0.05508 0.106314 3 0.06359 0.03736 0.105254 4 0.05104 0.03022 0.105294 5 0.04412 0.03041 0.105484 6 0.04064 0.03195 0.105484 7 0.04003 0.03423 0.107114 8 0.04042 0.03553 0.106094 9 0.04155 0.03707 0.105284 10 0.04271 0.00000 0.105359



Figure 1: Histogram of probe image.4 The Likelihood RatioThe IID background distribution makes it easy to calculate P (J j B), the probability of agiven set J of probes given that the set is drawn from the background distribution. Theimage is assumed to be locally stationary. For each probe, a local histogram is computedand used to calculate the parameters of an assumed Gaussian distribution. Alternatively,the local histogram itself may be used as the pdf of the probe. Making use of the IID natureof the probes allows us to write P (J j B) =Yi P (Ji)where P (Ji) is the pdf of the probes.The pdfs of probes associated with a target are more problematic. As previously dis-cussed, prediction of target signatures requires a great deal of information which we do notwish to assume known. Absence of this knowledge makes signature prediction virtually im-possible. However, the geometry of the situation provides some hope. The target shape ispresumed to be known exactly; in particular, its silhouette shape is known. Since a probethat straddles the edge of the target represents a di�erence in temperature between a metalobject and natural vegetation, it is reasonable to hope that the probe will show a jumpdiscontinuity of some signi�cance. The strength of the jump discontinuity will vary greatlyaccording to environmental and target conditions. For this reason, we will only use probesthat straddle the silhouette of our hypothesized target, and we will assume that the mag-10



nitudes of these probes follow a uniform distribution over the discrete alphabet of possibleprobe values. This is essentially a worst case distribution [11].Consider a set of probes that straddle a given target silhouette. Then the likelihood ratiomay be written as L(J) = kQ p(ji)where K is a constant. If a uniform cost function may be assumed for all of the potentialhypotheses, then the generalized likelihood ratio test may be implemented. The test willthen choose the target pose hypothesis that produces the largest L(J), and will declare thathypothesis if this L(J) exceeds a threshold, but declare \no target" if it does not.A common technique used to make tests of this type more robust is the use of � Wind-sorized statistics [13] to prevent abnormally large probe values from distorting the results.In this technique, probe values that exceed a threshold will be treated as if they were equalto the threshold. For the case of infrared imagery, the horizon typically causes a large jumpin apparent temperature. Hence, L(J) for silhouette hypotheses that run along this roughlyhorizontal line will be quite large, even if the probes corresponding to the target side arenonexistent. Using � Windsorized statistics decreases the e�ect of the horizon pixels, as wellas the e�ect of other edges.Finding the maximum L(J) is identical to �nding the minimum P (J j B). De�ning � asthe value of the threshold for line processes, we haveP (J j B) = P (� ) k fi : Ji � �g k [Y i : ji < �P (Ji)]or � logP (J j B) = � k fi : Ji � �g k log P (� )�Xi logP (Ji)Since � will be in the tail of the distribution, and it is assumed that for targets a large pro-portion of the probes will exceed the distribution, the above equation may be approximatedas � log P (J j B) / � k fi : Ji � �g kIn other words, the test simply counts the number of probes along the silhouette thatexceed a threshold. The problem becomes one of binary template matching, a subjectdiscussed extensively in the literature (e.g. [14]).11



The knowledge of the background distribution allows estimation of the false alarm rateassociated with a choice of the threshold � . Choosing a desired false alarm rate allowscomparison of likelihood functions that are generated with di�erent numbers of probes.De�ne (� ) as the probability that a background probe exceeds � . Then(� ) = P [Ji > � ] = 1� Fi(� )where Fi() is the cumulative distribution function of Ji. If #(� ) is de�ned as the number ofprobes that must exceed � in order for the hypothesis to be declared, then the false alarmrate � , which is de�ned as the probability that a background image portion will be declaredto be a target, will be � = 1�B(#(� ); 1� Fi(� ); N)Here N is the number of probes used to test the hypothesis and B(k; p; n) is the cumula-tive distribution function of a binomial random variable, where n is the number of Bernoullitrials, p is the probability associated with each Bernoulli trial, and k is the number of trialswith positive result. The independence of the probes allows each probe to be treated as aBernoulli random variable.It would be undesirable to simply choose the threshold � and #(� ) a priori. Instead wechose a desired false alarm threshold �, allowed � to vary over the alphabet of possible probevalues, and for each value of � used the #(� ) that gives the desired � . Thus for each imageportion presented to the algorithm, a range of � values was calculated. Since a numberof hypotheses need to be compared in the generalized likelihood ratio test, the algorithmactually varies � , determines the actual number of probes that exceed � , determines the falsealarm rate associated with these numbers, and chooses the � that provides the lowest falsealarm rate. If this lowest false alarm rate is the minimum among all the hypotheses, andis lower than the chosen false alarm rate threshold �, then the object is declared to be atarget.Note that the actual false alarm rate will not be equal to the � value chosen in thealgorithm. Actually, � would be the false alarm rate associated with one a priori choice of� , if there were only one silhouette hypothesis, and if each test were independent. Since thealgorithm tests the same silhouette centered at neighboring pixels, it is clear that these tests12



are not independent. Also, the tests for di�erent silhouettes are not independent, nor are thetests performed at di�erent � s. This makes the calculation of the predicted false alarm raterather complex, especially when one takes into account the changing size of the silhouettesas a function of range.One of the parameters to be chosen is the probe distance. There are many factors thatinuence this choice, some of which are not obvious. These include the following:1) The quantization of a sharp edge results in an intermediate pixel that has a valuebetween those of the object and its background. This means that the probe shouldstraddle at least one pixel.2) The blur kernel of the sensor optics further reduces the sharpness of the edge. Theblur kernel size depends on how the sensor is focused.3) Extremely tight probes would make the algorithm quite sensitive to range error, aswell as error in the assumption that the targets are on a level surface.4) Since the variance of the background probes monotonically increases with probe dis-tance, tighter probes provide stronger matches for a given edge strength.5) As probe distances increase, the probability that a given probe straddles the silhou-ettes of other target hypotheses increases; thus the number of probes that di�erentiatebetween two hypotheses is reduced.An easy solution that addresses the �rst four of the above concerns is to vary the probedistance for each probe to determine the distance that gives the strongest probe. This meansthat at a give jump discontinuity, the probe will be stronger if it is well centered on the jumpand somewhat weaker if it is not, but a jump that is not perfectly located is still allowed toinuence a hypothesis.4.1 Implementation considerationsThe most obvious steps that can be taken to decrease computation time are the introductionof an e�ective prescreener, and the use of a decision tree scheme to quickly sort through13



the hypotheses. In our implementation, an extremely simple contrast box prescreener wasused to reduce the number of candidate pixels, but no decision tree was used. The reasonwas that the algorithm should have a matching function that separates hypotheses in someoptimal way, and the prescreener serves only to eliminate some hypotheses at some locations.Algorithm speed was also increased by applying hypotheses at coarse resolution, and movingup to full resolution only if the coarse resolution test result warranted it. No attempt wasmade to choose optimal settings of thresholds at di�erent resolutions; the purpose was onlyto reduce computation time.The algorithm allows great reductions in computation time if certain calculations areperformed and their results stored prior to the actual testing of hypotheses. The basicalgorithm raster scans the image, and at each pixel, tests the �t of each silhouette hypothesis.To prohibit overlap of targets, the best �t hypothesis within a neighborhood is retained, andnearby hypotheses with lower likelihood ratios are eliminated. The probes used for a givenhypothesis are centered at the pixels of the silhouette of that hypothesis.We choose a set of probe thresholds �i such that there are an equal number of probesin the background between each value of �i. A great deal of computation can be saved ifprobe images are constructed, and then scaled so that only the subscripts (\labels") of thethresholds are stored. In other words, a probe image is constructed in which the alphabet isthe set of labels, and pixel value j means that the probe at that pixel exceeds thresholds �ifor i 2 [0; j]. This means that the signi�cance of the probe in a certain direction at a certainpixel is calculated only once, rather than every time a silhouette hypothesis uses that pixel.This is especially important because the conversion requires oating point calculations whilelookups in the probe signi�cance image require only integer operations. On the other hand,this method requires more memory use, since a probe signi�cance image must be stored foreach principal direction used.The introduction of an intermediate step in the calculation of the probe signi�cance imagecan save even more calculation. As described earlier, the size of the probe at each pixel ineach direction is optimized to give the greatest signi�cance. This is done by calculatingprobe signi�cance for varying probe sizes, choosing the most signi�cant, and then storingthat result. The results are probe signi�cance images in which optimization over probe size14



has already been performed, so that this optimization adds almost no computational cost tothe algorithm.The creation and storage of cumulative binomial distribution tables also saves a greatdeal of computation time. These tables are indexed by the total number of probes, thenumber of probes that exceed or equal the threshold label being tested, and the thresholdlabel. Because the � values chosen are quite low, there are computer precision problemsassociated with these tables; namely, the value returned from a table is often zero. For thisreason, an approximation is used for the cumulative binomial distribution that holds for thetail end values [12], namelyPfX � Kg � b(k; n; p)� (k + 1)(1� p)K + 1� (n+ 1)pwhere b(k; n; p) = 0B@ nk 1CA � pk(1 � p)n�kThe above expression allows logarithms to be taken, thus avoiding the underow problem.4.2 Occlusion performanceThe performance of the algorithm when a target is partially occluded can be easily deter-mined. Since the algorithm looks only at the silhouette, and all points along the silhouetteare treated equally, occlusion simply reduces the number of probes that actually straddlethe target. If it is assumed that the probes that are occluded do not, by chance, straddle asharp discontinuity in the background which causes it to exceed the threshold, then occlusioneliminates a subset of the probes, requiring the remaining probes to be stronger if the objectis to be declared a target. Thus the algorithm has the desirable property that it degradesgracefully as occlusion is increased; and partial occlusion can be compensated by strongeredges on the portion of the silhouette that remains visible.Figure 2 shows the fraction of probes associated with a hypothesis that can give negativeresults but still allow the algorithm to declare the hypothesis, for a given number of probesand given �. Of course, it makes no di�erence to the algorithm whether the probes givenegative results because a portion of the target is occluded or because a portion of the15



target silhouette has low contrast. Figure 2 shows that for a given �, as the number ofprobes decreases, a larger percentage of them must be positive for the algorithm to declarethe hypothesis. This is due to the constant false alarm rate (CFAR) nature of the algorithm.The implication is that detection performance su�ers as range increases. The imagery usedto evaluate the algorithm had a 2:3�1:7 degree �eld of view with 640�480 pixels. Considera target pose that is 5 meters wide by 3 meters high. The silhouette would consist of 250probes at one kilometer, but only 50 probes at �ve kilometers.
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Figure 2: Fraction of positive probes required to declare a target as a function of contrast.16



5 Experimental ResultsIn order to test the performance of the algorithm, it was run on six real FLIR images, aswell as about 2000 images obtained from a scale model terrain board. The real FLIR imagesshow high contrast white hot targets in an environment with relatively low clutter. Figure 3shows two of the FLIR images. The results were scored only for those targets for whichCAD models were available. Algorithm detections on vehicles for which CAD models wereunavailable were ignored. The result was that for the nine target recognition opportunities,all were recognizable with an � threshold that eliminated any false alarms. Of course, if thethreshold were lowered, some false detections would be reported.The terrain board images are quite di�cult in that the background contains a largenumber of target-like objects, and many of the targets are di�cult for human observers torecognize because they have quite low contrasts. Figure 4 shows the sample terrain boardimages. The detection vs. false alarm curves for the algorithm are shown in Figure 5, togetherwith confusion matrices for some values of �. In order to estimate detection performance forprominent objects, the images were rescored using only those targets that were painted withhigh reectivity paints, in other words, those targets whose simulated temperatures were thehighest. These results are shown in Figure 6.Four vehicles were chosen to be objects for the image model, based on the availability ofCAD models for the vehicles. The CAD models were ray traced to determine their silhouettesat increments of �ve degrees in azimuth. The elevation angle was assumed to be zero. Thesesilhouettes were used as the hypothesis silhouettes in the images.The set of terrain board images were produced in 1990 by personnel of the U.S. ArmyNight Vision and Electronic Sensors Directorate [6]. The simulated infrared images wereobtained by capturing images of a scale model terrain board using a camera sensitive in thevisible region of the spectrum, and an 8 bit digitizer. The grey levels of the image were thenreversed, so that grey level i became grey level 255�i. This provides a reasonable simulationof the appearance of infrared imagery, as discussed below. The targets were painted so thatwhen inverted, the target signatures correspond to those typically found in infrared imagery.The advantage of using terrain board imagery is that conditions can be controlled, allowing17



(a) (b)
(c) (d)Figure 3: Recognition results on real FLIR images (a) and (c). The recognized targetsare highlighted in (b) and (d). Only targets for which CAD models were available wereconsidered for experiments.repetition of experiments and choice of operating conditions. Background objects can beplaced at will, allowing the user to increase clutter or occlusion. Terrain board imagery canalso be gathered much more cheaply than real imagery. The drawback, of course, is thatinverted video is not a perfect approximation of infrared imagery. In order to justify use ofthis imagery to test the algorithm, a test was made to see if the probe image model, whichmatched nicely with a set of actual FLIR imagery, also matched the inverted visible imagerycaptured from the terrain board. Table 2 shows the results of the Kolmogorov-Smirnov test18



(a) (b)
(c) (d)Figure 4: Recognition results on NVL Terrain Board images. (a) and (c) are typical imagesfed to the algorithm. Recognized targets are outlined in (b) and (c). Note the presence oftwo false alarms in (b) and one in (d).on a set of terrain board images. Since the probe image model applies to the terrain boardimages, it is reasonable to test the algorithm on this set of images.The defensibility of the notion of using inverted visible imagery as a simulation of infraredimagery depends on the application. Clearly, the approach of Aggarwal and Nandhakumar[1], which uses infrared and visible imagery together to estimate the thermal properties ofobjects in the image, would not be well served by this imagery, not just because the in-19
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Figure 5: Detection and recognition probabilities on the entire terrain board data set.
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Figure 6: Detection and recognition probabilities on high contrast targets in terrain boardimagery.frared and visible would be essentially the same, but because they rely on relatively subtlephenomenology present in infrared imagery. For algorithms that do not make use of ther-modynamic phenomena, the emphasis is on the structure of the objects in the image; theexact grey level values of speci�c objects are not signi�cant, as long as the contrast betweenobjects and their surrounding backgrounds is great enough. Under certain conditions, asshown below, image inversion is a good approximation to the di�erence between visible andinfrared images. In any case, the di�erence is that the structure of objects remains the20



same, while grey level values change signi�cantly. If one is looking for structure and notattributing any signi�cance to grey levels other than using signi�cant changes in grey levelto mark locations where there is probably either a change in material or a jump in physicallocation, then image inversion is a su�cient model for testing algorithms. The majority ofobject recognition algorithms fall into this category.Consider a set of objects that are di�use radiators and can be modeled as grey bodies,which means that reectivity and emissivity are related as e = 1 � r, and the absorptivitya = e. Over a somewhat narrow temperature range, the radiance may be treated as a linearfunction of temperature, as R = ceT . For steady state conditions, the irradiation on asurface q can be written asq = R + Cv + Cd = ceT + h(T � Ta) + g(T � Tg)where Cv is energy convected from the surface, Cd is energy conducted away from the surface,h is the convection coe�cient, and g is a constant related to the thermal di�usivity of thematerial. For dry soils the last term plays a minor role, and so may be dropped. Solving fortemperature and using R = ceT givesR = ce(Ta + q � ceTah+ ce )Since, for grey bodies, the reected energy is proportional to 1 � e, the radiance shouldbe a linear function of e for inversion to be valid. Figure 7 shows a plot of the radianceas a function of emissivity. Clearly for the conditions outlined, inversion is a reasonableapproximation. The conditions tend to hold best for mineral substances, soils and rocks, andnot well for vegetation. Thin foliage such as leaves and grass blades, because of transpiration,tends toward the ambient air temperature. Soils and rocks tend to have emissivities between.85 and .95, hence that part of the curve is the most important. Of course, the descriptionabove does not apply to objects with internal heat sources. For our experimental setup,those objects were deliberately painted so that inversion would produce reasonable resultsin the infrared, rather than making them accurate in the visible.21
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Figure 7: Radiance vs. emissivity at 300K.6 ConclusionsThis paper provides a parametric image model for infrared images, and an associated objectrecognition scheme. The goal of the work is to use knowledge about the geometry of theset of permissible objects to extract those objects. The algorithm degrades gracefully underdecreasing contrast and increasing occlusion. It should be noted that the method allowsprobes to be de�ned in any way that assigns a single value to the probe, and causes theprobes to have a distribution that is similar to Gaussian. Preliminary experiments suggestthat almost any simple combination of sums and di�erences of grey level values meets thiscriterion. Also, probes of di�erent types can be combined easily using the likelihood function.Thus, for example, one might use a corner detector at appropriate regions of the silhouette,and edge operators on the standard edges. The probabilities of each probe can be calculatedfrom the local background region as described in the body of the paper.References[1] J.K. Aggarwal, and N. Nandhakumar, \Multisensor fusion for automatic scene inter-pretation", in Analysis and Interpretation of Range Images, R. Jain and A. Jain, eds.,Springer-Verlag, 1990. 22
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