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This project studied the influence of agricultural management strategies (such as tillage 

and fertilizer choice) on nitrogen (N) cycling pathways. Soil samples and leachate samples from 

a series of experimental plots at the Wye Research and Education Center were analyzed using a 

combination of traditional chemical N measures (DON, PMN, NOx, NH3, TN, and microbial 

biomass C & N) and novel mass spectrometry techniques (FT-ICR-MS) to characterize shifts in 

organic matter composition and quantity over time and under three different cover cropping 

regimes. Analysis of these samples indicate that the DOM (dissolved organic matter) 

composition of leachate changed significantly with increasing sampling depth. However further 

research is needed to fully investigate the potential impacts of cover cropping and time on soil 

and leached DOM and DON.  Soil samples were also collected at the Farming Systems Project in 

Beltsville, MD and at several of the University of Minnesota’s Outreach farms. These samples 

were analyzed for their abundance of 16S, nirK, nirS, nxrA, and amoA AOB to characterize the 

nitrifying and denitrifying microbial communities under a combination of management 

strategies. While the findings were not significant, they indicate that fertilization and tillage may 

have an impact on the nitrification and denitrification communities.   
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Chapter 1 - Introduction and Literature Review 

Nitrogen (N) cycling has been widely researched for decades as it is an important limiting 

nutrient in temperate ecosystems, is crucial for plant development, and is imperative for 

sustaining crop productivity (Hou et al., 2012; Leghari et al., 2016; Wagner et al., 2015). Early 

developments in the field of study led to the discovery of the Haber-Bosch process in the early 

1900s, allowing for the successful synthesis of inorganic ammonia (NH3) (Rouwenhorst et al., 

2021). This in turn revolutionized agricultural practices internationally, as N could now be easily 

supplemented in nutrient deficient fields. However, over time concerns of the environmental 

impacts of inorganic N additions and over-fertilization came into focus. By the mid-20th century, 

eutrophication was recognized as a common water pollution problem in North America and 

Europe (Rodhe, 1969). Additional studies of the impact of fertilization have indicated that 

additional N in agricultural fields is closely tied to approximately 75% of the United States’ 

production of nitrous oxide (N2O), a powerful greenhouse gas with 300x the warming potential 

of carbon dioxide (CO2) (US EPA, 2021a). The research within this thesis provides a better 

understanding of nitrification and less researched N cycling pathways, and the impact that 

common agricultural management strategies (tillage and fertilization regimes) have on organic N 

pools and transformations.   

The first component of this research focuses on organic N held within and leached from 

conventionally tilled (CT) agricultural soils in Maryland, USA. Organic N refers to the fraction 

of compounds in soil organic matter (SOM) that contain N, and accounts for a small but active 

portion of agricultural soils (Chantigny, 2003; McGill et al., 1986). For decades, research into 

SOM focused on the study of humic substances: complex compounds thought to represent the 

largest (~60%) pool of SOM and to be the endpoint of SOM degradation (Adey & Loveland, 
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2007; Trevisan et al., 2010). These substances (fulvic acid, humic acid, and fulvin) were thought 

to control SOM cycling, improving soil fertility and structure, and affecting plant root structure 

and nutrient uptake (Trevisan et al., 2010). However, in 2015 a paper by Lehmann & Kleber 

challenged the common understanding of SOM cycling. They put forward that humic substances 

were much less prevalent in most soils, and that the majority of studied humic substances were a 

lab artifact resulting from the traditional required alkaline extraction process. Instead, SOM 

exists as progressively decomposing compounds within soil, a subset of which (such as free 

amino acids) can be utilized by plants and microorganisms as a source of C and N (Kleber & 

Johnson, 2010; Lehmann & Kleber, 2015). Furthermore, recent studies indicate that smaller, 

labile soil organic nitrogen (SON) may be an important source of N for plants regardless of 

inorganic N additions. The long-term understanding was that microbes and plants utilized 

inorganic over organic N sources, and that organic N was only important in in nutrient limited 

environments (Healey et al., 2004). Organic N dynamics in forests indicate that this might not 

always be the case, and microbes may utilize organic N more often than previous assumed 

(Kalbitz et al., 2011). Further research is needed to understand these dynamics and the role of 

organic N as a potential nutrient source.  

There are several common methods to characterize organic N in soils and water. Briefly:  

1) Dissolved Organic Nitrogen (DON). This is the most common method of determining the 

quantity of small organic molecules present in leachate and water samples. It is calculated 

by first analyzing filtered samples (0.45um) for NO3-N and NH4-N (the sum of which 

represents the pool of dissolved inorganic N (DIN)) and the total concentration of N in the 

sample (TN). DON concentration is then determined as the difference between TN and DIN. 

The inorganic fractions are conventionally analyzed via flow injection analysis while 
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methods to determine TN vary. Common methods include UV oxidation, dialysis 

pretreatment, persulfate digestion, and catalytic thermal decomposition (Lee & Westerhoff, 

2005; Tirendi et al., 2002; Shimadzu Corporation, 2010). DON may be responsible for up to 

70% of soluble N in N-limited soils (Prendergast-Miller et al., 2015), and accounts for a 

significant portion of leached N despite its utilization by plants and microbes. There is a 

wide range of leached DON values in the literature and the amount of DON is strongly 

impacted by land use (i.e.: forest vs. pasture vs. agriculture) (Van Kessel et al., 2009). One 

study of Australian cotton fields reported that 40% of leached N from the soil was DON 

(MacDonald et al., 2017), while another study of Chilean forests indicated that leachate 

samples contained 94-96% leachate (Hedin, 1995). The conversion of land to agricultural 

use can also influence leached DON. A study of the Chesapeake Bay observed a significant 

positive relationship between the area of upstream cropland and organic N in stream water 

samples (Jordan et al., 2010). Additional studies indicate that leached agricultural urea and 

poultry litter runoff are both major contributors of N in local waterways, and agricultural 

watersheds can be considered as areas of DON production (Davis et al., 2016; Osburn et al., 

2016)  

2) Extractable Organic Nitrogen (EON) or Soil DON. These terms refer to the pool of N 

compounds that can be extracted from soils and is calculated in a similar manner to leachate 

or water DON. Soils are extracted with a given solution – common extractants include KCl, 

K2SO4, CaCl2, and water – and analyzed for NO3-N, NH4-N, and TN. Soil DON is then 

calculated as the difference between extractable TDN and DIN (Chantigny, 2003). Both 

storage and extraction can have a strong impact on a soil sample’s EON (Ros et al., 2010). 

Similar patterns have been observed between leached DON and EON under a variety of land 
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uses. As with leached DON, studies have reported higher concentrations of water extractable 

ON (WEON) in forest soils when compared to crop land. Agricultural WEON represents a 

small fraction of soil total N (25 ugL-1 – 10mgL-1, or 0.1-3%) and can be strongly impacted 

by field management strategies (Ros et al., 2009). Studies have shown that WEON increases 

with the addition of N fertilizer (+118%  in EON following fertilizer application), and the 

incorporation of crop residues can increase EON by 22% (Chantigny, 2003; Ros et al., 2009, 

2010).  

3) Potentially Mineralizable Nitrogen (PMN). This refers to the subset of organic N that is 

readily mineralized to plant available, inorganic N (NO3-N and NH4-N). PMN is commonly 

determined by incubating a soil sample in a microcosm and analyzing the change in NH4-N 

concentration before and after incubation. The additional NH4-N that is produced during 

incubation is attributed to the mineralization of OM and used to estimate the amount of 

readily mineralized N present in the SOM (Waring & Bremner, 1964). There are several 

methodologies to determine PMN, with varying incubation lengths (7, 28, and 56 days) and 

conditions (aerobic and anerobic). The 7-day anaerobic protocol is the most common as it is 

a simple methodology and takes the least amount of time to analyze. Studies of PMN indicate 

that it is impacted by agricultural management strategies. A 2018 meta-analysis of 43 

independent studies indicated that additional N fertilizer can lead to an average increase in 

PMN; systems fertilized with inorganic N reported 22% higher PMN and systems fertilized 

with manure reported 34% higher PMN when compared with non-fertilized systems (Mahal 

et al., 2018). Conservation practices can also lead to an increase in PMN. No-till farming 

systems have reported an average 11% increase in PMN compared to conventionally tilled 

systems, while studies of leguminous cover crops reveal 211% greater PMN when compared 
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to systems without cover crops. Furthermore, studies of diverse rotations of three or more 

crops indicated 44% greater PMN compared to continuous cropping systems (Mahal et al., 

2018). 

4) Microbial Biomass C and N. This is the amount of C and N present within the soil 

microbial community, and can be used to assess the size of the soil microbial community 

(Lori et al., 2017). It is determined by calculating the difference between K2SO4 extractable 

total carbon (TC) and TN before and after chloroform fumigation (Vance et al., 1987). By 

fumigating a fresh soil sample, the microbes are killed and lysed. It is assumed that any net 

change in N or C can be attributed to the microbial community, but a conversion factor is 

used in final reporting of microbial C and N (DeLuca et al., 2019), because empirical 

evidence showed that not all cells are lysed and the extractability of microbial C and N in the 

fumigated samples varies among soil types (Dictor et al., 1997). Microbial biomass can 

account for 1-5% of SOM and is impacted by agricultural management strategies (e.g.: 

tillage and cover cropping) in agricultural systems (Cookson et al., 2008). A meta-analysis of 

56 studies researching the impact of organic farming techniques indicates that organic 

systems had an average 41% greater microbial biomass C and 51% greater microbial biomass 

N compared to conventional systems (Lori et al., 2017).  

The second study in this thesis focuses on the composition of the N-cycling microbial 

community. N-cycling has traditionally been thought of as consisting of several microbially 

mediated, sequential transformations (Figure 1.1) (Kuypers et al., 2018). 
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Figure 1.1. Diagram of Agricultural N-cycling Dynamics 

 

  
Figure 1.1. The various microbially mediated N transformations that occur in agricultural fields. Emphasis 

is placed on potential N2O leaks.  
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Nitrification:  

Nitrification is the transformation of NH4
+ to NO3

- and is traditionally considered a two-step 

process mediated by different bacterial communities.  

1) Ammonia Oxidation – (NH4
+ → NO2

-). This step begins with NH4
+ which can come from 

a variety of sources (decomposition and mineralization of plant residue, microbially 

mediated fixation of atmospheric N, or supplemental N fertilizer) (Kuypers et al., 2018). 

The subsequent transformation is mediated by bacteria (Nitrosomonas & Nitrosospira 

spp.) or archaea (Nitrososphaera & Nitrosoarchaeum spp.) with the ability to produce the 

enzyme ammonia monooxygenase (amoA), which transforms NH4
+ into NH2OH. Nitrous 

oxide (N2O) can be produced as a by-product of this reaction if oxidation is incomplete. 

The bacteria or archaea also can produce the enzyme hydroxylamine oxidoreductase 

(hao) which converts the resulting NH2OH into nitrite (NO2
-) (Peng et al., 2021; Yin et 

al., 2018). 

2) Nitrite Oxidation – (NO2
-
→ NO3

-). This step is meditated by a different subset of bacteria 

(Nitrobacter & Nitrospira spp.) that can produce the nitrate oxidoreductase enzyme (nxr), 

which converts NO2
- into plant available (nitrate) NO3

- (Cabello et al., 2009). 

Denitrification: 

Denitrification refers to the transformation of NO3
- to N2 and is also microbially mediated. 

Denitrifiers generally contain all the enzymes necessary for complete denitrification and, though 

there is a wide variety of denitrifying genera, most denitrifying microbes fall into one of the 

following classes: Alphaproteobacteria (32%), Betaproteobacteria (28%), and 
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Gammaproteobacteria (28%) (Jones et al., 2008). There are several intermediate 

transformations: 

1) Nitrate reduction – (NO3
- → NO2

-). During this step, NO3
- is transformed into NO2

- via 

the enzyme nitrate reductase (nar) (Alvarez et al., 2014). This step requires anerobic 

conditions as enzyme synthesis is inhibited by the presence of oxygen.  

2) Nitrite reduction – (NO2
- 
→ NO). During this step NO2 is converted to nitric oxide (NO) 

using the enzyme nitrite reductase (nir). There are two common forms of nir that are 

often targeted when studying the denitrifying community: nirS which encodes for a heme 

form of the enzyme, and nirK which encodes for the less common copper form of the 

enzyme (Alvarez et al., 2014). 

3) Nitric oxide reduction (NO→ N2O). During this step NO is converted to nitrous oxide 

(N2O) by nitric oxide reductase (nor). This step is responsible for many of the N-N bonds 

present in nature, and often occurs quickly after nitrite reduction as NO is toxic to cells 

(Alvarez et al., 2014). 

4) Nitrous oxide reduction (N2O → N2). During this step N2O is converted into dinitrogen 

(N2) via nitrous oxide reductase (nosZ). As with the other denitrification enzymes, this 

activity is strongly inhibited by the presence of O2. Given that this step transforms N2O, 

nosZ gene expression has been frequently studied in relation to N2O emissions, and lower 

rates of gene expression are correlated with increases in emission rates (Kong et al., 

2021).  

Recent studies of Nitrospira sp. have redefined our understanding of nitrification. In 2015, 

unique samples of Nitrospira sp. with the ability to completely oxidize NH4
+ to NO3

- were 

isolated in in aquaculture filters (Van Kessel et al., 2015). In the years since its discovery, it has 
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been isolated from a plethora of systems (i.e.: wastewater treatment plants, freshwater 

ecosystems, and both agricultural and forest soils) (Xu et al., 2020). Comammox Nitrospira sp. 

cannot be classified based on 16S rRNA sequencing, instead functional gene markers need to be 

amplified and sequenced. Previous studies have identified two clades of comammox Nitrospira 

(Clade A and Clade B), with slight niche differences between the two clades (Koch et al., 2018; 

Xu et al., 2020). There are still unknowns about comammox Nitrospira sp., including their role 

in agricultural N-cycling. So far studies indicate that Nitrospira sp. may play an important role in 

oligotrophic environments but might be out competed by traditional N-cycling bacteria in 

fertilized soils (Sakoula et al., 2021; Xu et al., 2020). 
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Abstract: 

 

For decades, soil organic matter (SOM) research focused on the dynamics of complex 

organic acids (i.e.: fulvic and humic acids). Recent studies have shown, however, that these 

compounds are lab artifacts and that dissolved organic matter (DOM) exists as smaller, free 

molecules within the soil matrix. It also accounts for up to 70% of N in surface waters (Lehmann 

& Kleber, 2015; Osburn et al., 2016). Fourier transform ion cyclotron mass spectrometry (FT-

ICR-MS) and traditional chemical N measures (NO3-N, NH4-N, total dissolved N (TN), total 

dissolved C (TC), microbial biomass C and N, dissolved organic N (DON), and potentially 

mineralizable N) were used to determine the chemical composition and amount of leached and 

extractable DOM and DON in agricultural fields. Using a series of Repeated Measure ANOVAs 

and Pearson correlations, we investigated the impact of three cover cropping strategies (cereal 

cover, a mixed cereal and leguminous cover, and fallow) and sampling date on the DOM and 

DON pools. We also studied the impact of sampling depth on the composition of leached DOM 
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and DON and found that the relative percentage of recalcitrant compounds and the 

photodegradability of DOM and DON increased with depth. Traditional chemical soil N 

measures (K2SO4 extractable TN (F=11.437, p=0.043), water extractable TN (F=10.676, 

p=0.04), and DON (F=10.901, p=0.046)) significantly increased with sampling date and, though 

not significant, the percentage of labile DOM declined slightly from June to late July. Though 

not statistically significant, plots with a mixed cover crop reporting slightly higher percentages of 

soil protein and leached free amino sugars compared to the other cover class treatments. Further 

study that includes later sampling dates are needed to determine the significance of temporal and 

cover-based trends, but that this line of research could have lasting impact on how we understand 

organic N cycling dynamics and could eventually be used to inform N fertilizer and cover-

cropping recommendations.  

 

Introduction: 

 

Nitrogen (N) is frequently a limiting nutrient in plant growth, and as such is often 

supplemented in agricultural soils through inorganic (nitrate (NO3
-) and ammonia (NH3

+)) and 

organic (manure) fertilizer additions (Bundy & Meisinger, 1994). Early agricultural research 

focused on developing technologies and strategies for feeding the world’s ever-growing 

population. These successful efforts resulted in the increase in international food productivity 

during the second half of the 20th century, with an estimated 12-13% increase in the food supply 

of several African and East Asian nations between 1960 and 1990 (Pingali, 2012). However, 

over fertilization has also acidified agricultural soil (Žurovec et al., 2021) and leached N into 

local waterways (Dybowski et al., 2020) causing unforeseen environmental issues.  

These developments have highlighted the need to better understand agricultural N 

dynamics and has led to an increase in studies of organic N dynamics and the role of organic 
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matter as underestimated source of N in agricultural fields. Research focused on organic nutrient 

availability has underscored the positive impact of cover-cropping and legumes on soil health 

and organic C and N accumulation (Ebelhar et al., 1984; Mitchell, 1977; Utomo et al., 2010; Wei 

et al., 2018). Other studies have investigated alternative tillage and no-till practices, noting 

substatntial increases in mineralizable N (Mahal et al., 2018) and microbial soil diversity under 

minimum tillage (Li et al., 2020). Despite the growing wealth of studies investigating the 

impacts of management on organic matter (OM) cycling, many of these studies rely on 

traditional chemical analysis (i.e.: extractable dissolved organic matter (DOM) and dissolved 

organic N (DON), potentially mineralizable N (PMN), and Bradford Protein Assays). While 

these measures provide insight into the size and reactivity of OM pools, they do not provide 

information on the chemical composition of OM or the mechanims of OM cycing.  

Advancements in NMR (nuclear mass resonance spectroscopy) and mass spectrometry 

provide a more complete picture of the composition of DOM and DON samples. Studies have 

also been published utilizing Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS) 

to characterize OM in wetlands, freshwater, and marine environments, and is a powerful tool for 

understanding the complexities of leached OM and soil OM (D’Andrilli et al., 2015; Tfaily et al., 

2015). This form of analysis can capture thousands of compounds a given sample and can 

determine the molecular formula for each (Wilson & Tfaily, 2018). However, FT-ICR-MS data 

is qualitative in nature and, while it provides incredibly detailed insight into the composition of 

organic compounds within a sample, it cannot quantify the size of the DOM or DON pool. As 

such, FT-ICR-MS is often paired with traditional, quantitative DOM measures to contextualize 

the dataset. 



17 
 

 Early FT-ICR-MS research began in 1973 and was primarily utilized to characterize 

complex organic mixtures with a focus on sources of fuel such as petroleum and pyrolysis 

biomass derived liquids  (Marshall & Chen, 2015; Yan et al., 2016). In the decades since, FT-

ICR-MS has been used to study OM in peatland and wetland soils as well as glacial, marine, and 

freshwater ecosystems (D’Andrilli et al., 2015; Hanson et al., 2018; Solihat et al., 2019; Wilson 

& Tfaily, 2018). Preliminary studies indicate that it has potential to be a powerful tool to 

understand agricultural organic N cycling and could be used to inform sustainable soil 

management techniques (Kwiatkowska-Malina, 2018). However, few studies have applied FT-

ICR-MS analysis to explore agricultural N cycling.   

Our study was designed to investigate this knowledge gap and apply both traditional 

chemical N and OM measures with FT-ICR-MS techniques to investigate the chemical 

composition of soil organic N throughout the growing season in Maryland corn fields. We also 

examined the potential impact of cover cropping on the amount and composition of soil organic 

N and organic N leached from agricultural fields. We had several hypotheses:  

1) The presence of N-fixing leguminous cover crops are known to increase available N 

(Kermah et al., 2018), and will increase soil organic N. This will subsequently lead to 

a higher proportion of labile N-containing compounds in leachate and soil samples 

from the plots with a mixed leguminous and cereal cover crop than under a cereal 

cover or left fallow. 

2) The OM present in the soil would act as a source of nutrients for the growing corn 

and we will observe a decrease the relative proportion of labile N-containing 

compounds throughout the growing season. 
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3) Leaching has repeatedly been reported as a major pathway of DON loss in 

agricultural systems, and studies have shown that up to 61% of lost DON can be 

attributed to lignin, a highly photodegradable organic compounds (Benner & Kaiser, 

2011; Li et al., 2018). As such, we hypothesize that leached DOM and DON would 

be primarily comprised of lignin and that deeper samples would have a higher 

proportion of recalcitrant, highly photodegradable, and lignin-like compounds. 

 

Experimental Procedures: 

 

Sample Site and Collection:  

In Summer of 2019, composite 0-20cm soil samples were collected from a series of 

30x60 ft (9.14m x 18.28 m) research plots located at the Wye Research and Education Center 

(REC). This UMD Research Station was established in Queenstown, MD in 1982 and has had a 

long history of agricultural research on Maryland’s Eastern Shore (College of Agriculture and 

Natural Resources, 2021). The study site itself is level (0-2% slope) and soils are characterized 

as Mattapex-Butlertown  (MqA) silt loam with a 0 – 2% slope (Soil Survey Staff).  

A subset of six plots were selected from a subset of a plots on 6-acre long-term study 

established in 2019, all of which were under corn (Zea mays L.) production during the 2019 field 

season and soybeans (Glycine max L.) the previous year. All the plots were conventionally tilled 

(CT) and received inorganic fertilizer. On 3/18/2019 the 6-acre field received a broadcast 

application of 12000 lbs of high Calcium lime at a rate of 2000 lbs/ ac. Urea ammonium nitrate 

(UAN) fertilizer was applied twice: 15 gals (or 49lbs N) was applied during planting on 

6/4/2019, and 240 gals (782 lbs N) was applied via sidedress application on 6/19/2019. The plots 



19 
 

differed in cover crop treatments: two received a mixed cover of crimson clover (Trifolium 

incarnatium L.) and rye (Secale cereale L.), two received a cereal rye cover, and two were left 

fallow over the winter.  

Soil samples were taken twice during the summer: shortly before planting (June 3rd) and 

when the corn had reached the V6 stage (July 18th). To collect each composite soil sample, the 

study plot was divided into a grid of nine 10ft x 20ft (3.04m x 6.09m) rectangles (Figure 2.1). 

From there, 3 individual 0-20cm cores were collected from each of the grid quadrants. This 

resulted in 27 cores per plot, which were combined and sieved (4mm) together while in the field. 

In total, 12 composite soil samples were collected over the growing season. Prior to planting, 

suction cup lysimeters were installed in the center of each of the plots at 3 different depths 

(30cm, 60cm, and 90cm) (Figure 2.2) and the resulting 18 lysimeters were sampled three times 

during the growing season (June 3rd, June 18th, and July 16th). Due to varied field conditions 

and precipitation, samples were not able to be collected from each lysimeter at every sampling 

date (Figure 2.3). Over the field season, 37 leachate samples were collected in total. All samples 

were returned to the lab and refrigerated at 4oC for later analysis. 

 

Chemical Analysis:  

 Within 24 hours of sampling, 5g dry equivalent of each refrigerated, field moist soil 

sample was placed in 12, 50mL centrifuge tubes (Figure 2.1). Soils in three of those tubes were 

extracted with water by adding 50mL of deionized water to the samples and periodically shaken 

to resuspend the soil particles for 24 hours. The supernatant was collected via vacuum filtration 

through 40um filter paper, acidified to pH<2 using sulfuric acid, and stored at 4oC for later 

analysis.  
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Figure 2.1. The soil sampling method and sample preparation for chemical analysis (water extractable NH4-N, NO3-N, TN 

& TC, KCl extractable NH4-N and NO3-N, K2SO4 extractable TN & TC, PMN, and Microbial Biomass C & N). Soil DON 

was calculated by subtracting the DIN from the total N concentration in the soil water extracts. PMN was calculated by 

determining the difference in NH4-N between the anaerobically incubated KCl extracts and fresh field moist soil samples. 

Soil microbial biomass C and N was determined by determining the average difference in C and N between the fumigated 

and fresh field moist K2SO4 extracts and correcting for extraction efficiency by dividing the value by 0.45. A portion of each 

composite soil sample was shipped to our collaborators in Arizona for FT-ICR-MS analysis.   

Figure 2.1: Soil Sample Collection and Preparation for Analysis 
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Figure 2.2: Leachate Sample Collection and Preparation for Analysis 

Figure 2.2. The leachate sampling method and sample preparation for chemical analysis (NH4-N, NO3-N, TN & 

TC). A portion of each leachate sample was shipped to our collaborators in Arizona for FT-ICR-MS analysis.   
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Figure 2.3: Precipitation at the Wye REC (Summer 2019) 

Figure 2.3. Daily precipitation data gathered using a NOAH IV Precipitation Gauge at the Wye Research and Education center during the summer of 2019. The 

three sampling dates are noted on the graph with arrows, indicating the date as well as what types of samples (soil or leachate) were collected on the given date. 
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The soils in a second another set of three centrifuge tubes were extracted with 50mL of 2M KCl, 

by shaking for one hour with a fixed speed reciprocal shaker (280rpm) and collecting the 

supernatant via gravimetric filtration with Whatman 42 filter paper (Vance et al., 1987; Maynard 

& Kalra, 1993). A third set of 3 analytical soil replicates were incubated anaerobically at 40oC 

with 10mL of water for 7 days (Waring & Bremner, 1964). The samples were then shaken with 

40mL of 2.5M KCl using a fixed speed reciprocal shaker (280 rpm) and the supernatant was 

collected via gravimetric filtration with Whatman 42 filter paper. A fourth set of 3 analytical 

replicates was extracted with 25mL of 0.5M K2SO4, shaken for one hour with a fixed speed 

reciprocal shaker (280rpm), and the supernatant was collected via gravimetric filtration with 

Whatman 42 filter paper. A final set of 3 analytical replicates (5g dry equivalent of field moist 

soil) was weighed into 50mL glass beakers and fumigated in a desiccator under a vacuum with 

chloroform for 48 hours to determine microbial biomass C and N. The fumigated soils were then 

shaken with a fixed speed reciprocal shaker (280rpm) with 0.5M K2SO4 for one hour, and the 

supernatant was collected by gravimetric filtration with Whatman 42 filter paper (Vance et al., 

1987). All KCl and K2SO4 extracts were stored frozen at  -20oC for later analysis. 

The water extractions and KCl solutions were analyzed for NO3
 – N and NH4

 – N using a 

Lachat Quickchem Flow Injection Analyzer (Harbridge, 2007a; Harbridge, 2007b), and all the 

solutions were analyzed for their total nitrogen (TN) and total carbon (TC) content using a 

Shimadzu TOC Analyzer (Shimadzu Corporation, 2010) (Figure 2.1). The leachate samples were 

filtered via vacuum filtration through 40um filter paper, acidified to pH<2 using sulfuric acid, 

and stored at 4oC until they analyzed for NO3-N, and NH4-N using a Lachat Quickchem Flow 

Injection Analyzer (Harbridge, 2007a; Harbridge, 2007b) and were analyzed for TN and TC with 

a Shimadzu TOC Analyzer (Shimadzu Corporation, 2010) (Figure 2.2).  
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Potential mineralizable N was determined by subtracting the average NH4-N 

concentration of the non-incubated KCl extractions from the average NH4-N concentration of the 

samples that were incubated for 7 days. The resulting change in NH4-N represents the pool of 

organic N in the soil that is readily converted into a plant available form (Waring & Bremner, 

1964). Microbial biomass C and N was determined by comparing the average C and N values of 

non-fumigated 0.5M K2SO4 extractions with those of the samples that had been fumigated with 

chloroform and applying the conversion factors in equations 1 and 2 (Vance et al., 1987). 

Biomass C = ΔC / 0.45                                                (1) 

 

Biomass N = ΔN / 0.45                                                (2) 

 

 

FT-ICR-MS Analysis:  

 

To prepare the soil samples for FT-ICR-MS analysis, 100mg of soil was weighed into a 

2mL capped centrifuge tube. Given the cost and time for FT-ICR-MS analysis, replicates were 

not used for this portion of the study. Each sample was initially extracted with 1mL of de-ionized 

water and shaken with an orbital sharker (20rpm) for 2 hours  (Figure 2.1) (Tfaily et al., 2015). 

The solution was allowed to settle and then centrifuged for 10 minutes at 4430g to collect the 

supernatant. Organic compounds in the resulting solution (Figure 2.1) and the leachate (Figure 

2.2) samples were isolated with solid phase extraction (SPE) (Dittmar et al., 2008). To improve 

ionization efficiency, the DOM isolates were mixed with MeOH, to create a resulting solution 

that is 33% sample and 66% MeOH. The soil fraction of the water extraction samples underwent 

a second extraction using 1mL of chloroform and shaken with the orbital shaker (20rpm) for 2 

hours (Tfaily et al., 2015).  
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Figure 2.4: Compound Classification in a Van Krevelan Diagram 

Figure 2.4: Classification ranges depicted for each of the biogeochemical organic compound 

classes in a standard Van Krevelan diagram.  
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The resulting solution was centrifuged for 10 minutes at 4430g and injected directly into the FT-

ICR-MS. By sequentially extracting the samples first with water and then with chloroform, we 

were able to capture both the pool of free organic compounds, as well as the semi-polar and non-

polar compounds that are captured in a chloroform extraction (Tfaily et al., 2018).  

The soil water, chloroform, and leachate samples were ionized with electrospray 

ionization (ESI) and analyzed with a Bruker 9.4T FT-ICR. The resulting data was processed with 

Formularity Version 1.0. Using a compound identification algorithm and the FR-ICR-MS peaks, 

the database assigned a chemical formula and determined the number of C, H, O, N, S, and P 

atoms present with each compound (Tolić et al., 2017). These matches were used to calculate the 

O/C ratio and H/C for each of the compounds which, in turn, was used to broadly classify the 

compounds present into the categories in Table 1 and Figure 2.4 (Tfaily et al., 2015).  

 

 

Table 2.1.  Adapted from AminiTabriz et al, (2020). The ranges were used to determine the 

biogeochemical classification of the DOM and DON compounds within the samples.  

 

Compound Class O/C range H/C Range 

Lipid 0.0 – 0.3 1.5 – 2.5 

Unsaturated Hydrocarbon 0.0 – 0.3 1.0 – 1.6 

Condensed Hydrocarbon 0.0 – 0.4 0.2 – 0.8 

Lignin 0.29 – 0.65 0.7 – 1.5 

Protein 0.3 – 0.6 1.5 – 2.3 

Carbohydrate 0.5 – 0.7 0.8 – 2.5 

Amino Sugar 0.5 – 0.7 0.8 – 2.5 

Tannin 0.65 –1.00 0.8 – 1.5 

 

 

The FT-ICR-MS peaks were also used to calculate each sample’s double bond 

equivalency (DBE) and aromaticity index (AI) (Equations 3&4) (Koch & Dittmar, 2006). 

 

      DBE = 1 + ½ (2C – H + N + P)    (3) 

 

     AI = (1 + C – O – S – 0.5H) / (C – O – S – N – P)  (4) 
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The number of C atoms can be divided by the number of rings and double C bonds in a 

compound to determine the relative stability. High DBE/C ratios can indicate the presence of 

stable, aromatic structures (Koch & Dittmar, 2006). Similarly, the AI of a sample can indicate 

whether a compound is easily photodegradable; an AI ≥ 0.67 indicates the presence of more 

recalcitrant, aromatic structures. Conversely lability can be indicated by a compound’s H/C ratio; 

highly labile compounds are classified as having a H/C > 1.5 (D’Andrilli et al., 2015). 

 

Data Analysis:  

 

The FT-MS-R Exploratory Data Analysis Tool (FREDA) was used to visualize the 

spread of the data with Van Krevelan diagrams (Figure 2.4) and conduct Principal Coordinates 

Analysis (PCoA) on the FT-ICR-MS dataset. The statistical package JMP Pro 15 was used for 

multivariate analysis. Pearson Correlations, Repeated Measure ANOVAs, and Multiple 

Regression Analysis were performed to ascertain the impact of sampling date and cover-

cropping treatments on the composition of DOM and DON pool. Similar analysis was used to 

assess the relationship between the FT-ICR-MS data, photodegradability metrics, and traditional 

N measure gathered through chemical analysis (microbial biomass C and N, PMN, DON, TDN, 

and KCl and water extractable NO3-N and NH4-N).  

 

Results:  

 

Leachate Chemical Analysis: 

 

Repeated Measure ANOVAs to investigate the impact of sampling date and cover 

cropping on traditional chemical N measures reveal little difference in DIN measures among the 

cover crop treatments (Table 2.2). Though not significant (p=0.05) there was an increase in NO3-

N (F=3.010, p=0.087) and TN (F=3.619, p=0.058) with date (Figure 2.5a & c).  
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Leachate Chemical Analysis 

# Depth Date Cover 

NO3-N 

(mg/L) 

NH3-N 

(mg/L) 

TC 

(mg/L) 

TN 

(mg/L) 

DIN 

(mg/L) 

DON 

(mg/L) 

15 

30 

1 Mixed 0.17 0.04 12.37 4.72 0.21 4.51 

18 

2 

Cereal 0.05 0.005 18.82 1.20 0.05 1.15 

20 Fallow 5.51 0.07 10.93 6.24 5.58 0.66 

21 Mixed 1.71 -0.004 41.9 6.99 1.70 5.28 

22 Fallow 1.51 0.009 14.27 2.63 1.51 1.11 

25 Mixed 3.34 -0.003 10.92 4.34 3.34 1.00 

28 

3 

Cereal 311.72 12.60 5.40  324.31  

31 Mixed 16.35 0.02 6.44 19.27 16.37 2.90 

32 Fallow 126.88 0.27 3.32 130.3 127.15 3.15 

34 Cereal 103.27 0.11 5.53  103.38  

37 Mixed 219.79 5.49 8.22  225.28  

13 

60 

1 Cereal 0.62 -0.02 2.71 3.00 0.60 2.40 

26 2 Mixed 0.09 0.007 11.82 1.57 0.10 1.47 

29 

3 

Cereal 48.31 0.27 3.84 51.52 48.59 2.93 

35 Cereal 13.65 0.35 7.99 14.34 14.00 0.34 

38 Mixed 21.24 0.13 5.24 22.26 21.37 0.89 

14 

90 

1 

Cereal 0.22 -0.003 2.62 1.30 0.21 1.09 

16 Fallow 2.67 -0.02 2.73 9.10 2.64 6.46 

17 Cereal 1.75 0.04 2.13 5.34 1.80 3.54 

19 

2 

Cereal 0.90 -0.005 12.79 2.83 0.90 1.93 

23 Fallow 2.64 -0.03 2.08 2.78 2.61 0.17 

24 Cereal 3.41 0.04 2.8 3.61 3.45 0.16 

27 Mixed 3.94 0.08 6.81 4.21 4.02 0.19 

30 

3 

Cereal 21.69 0.00 2.13 23.09 21.69 1.40 

33 Fallow 7.30 -0.01 1.34 8.666 7.29 1.38 

36 Cereal 219.93 6.46 6.72  226.39  

39 Mixed 16.87 0.00 4.48  16.87  

Table 2.2: The sample number, sampling depth, sampling date and cover cropping strategy 

along with several traditional chemical N measures for each of the leachate samples.  
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Soil Chemical Analysis 

Plot Date Cover 
Avg. Water Extractable (mg/L) 

Avg. KCl 

extractable (mg/L) 
 

Avg. K2SO4 

extractable (mg/L) 

Microbial 

Biomass 

NO3-N NH4-N TC TN DIN DON NO3-N NH4-N PMN TC TN C N 

1 

1  

Cereal 
0.17 +/- 

0.01 
-0.02 

+/- 0.01 
3.32 +/- 

0.19 
5.44 +/- 

0.06 
0.15 5.29 

0.17 +/- 
0.07 

0.54 +/- 
0.01 

1.29 
42.84 

+/- 3.37 

0.98 +/- 

0.73 
-69.63 4.93 

2 Fallow 
0.28 +/- 

0.01 
-0.03 

+/- 0.00 
3.65 +/- 

0.41 
6.35 +/- 

0.14 
0.25 6.11 

0.36 +/- 
0.01 

0.53 
+/- 0.01 

2.69 
40.71 

+/- 2.48 

1.66 +/- 

0.00 
59.93 4.88 

3 Mixed 
0.23 +/- 

0.00 
-0.03 

+/- 0.00 
3.63 +/- 

0.30 
9.00 +/- 

0.18 
0.20 8.80 

0.29 +/- 
0.02 

0.57 +/- 
0.02 

2.39 
44.00 

+/- 4.29 

1.34 +/- 

1.05 
-30.78 5.75 

4 Fallow 
0.20 +/- 

0.01 

-0.03 

+/- 0.00 

3.39 +/- 

0.14 

6.78 +/- 

0.06 
0.17 6.61 

0.31 +/- 

0.02 

0.54 +/- 

0.02 
1.95 

38.56 
+/- 1.31 

1.66 +/- 
0.15 

152.96 5.60 

5 Cereal 
0.18 +/- 

0.01 
-0.03 

+/- 0.01 
3.51 +/- 

0.20 
6.25 +/- 

0.05 
0.14 6.11 

0.23 +/- 
0.00 

0.54 +/- 
0.01 

1.79 
42.53 

+/- 1.80 

1.59 +/- 

0.06 
221.63 7.62 

6 Mixed 
0.17 +/- 

0.02 
-0.03 

+/- 0.00 
3.77 +/- 

0.21 
6.95 +/- 

0.13 
0.14 6.80 

0.26 +/- 
0.01 

0.61 +/- 
0.02 

1.60 
40.28 

+/- 1.83 

1.66 +/- 

0.04 
290.89 7.20 

1 

3  

Cereal 
0.46 +/- 

0.12 
-0.03 

+/- 0.05 
3.39 +/- 

0.12 
10.69 

+/- 0.17 
0.43 10.26 

0.63 +/- 
0.04 

0.55 +/- 
0.05 

0.93 
20.10 

+/- 0.66 

2.59 +/- 

0.04 
223.93 5.03 

2 Fallow 
0.31 +/- 

0.01 
-0.01 

+/- 0.00 
3.76 +/- 

0.55 
8.27 +/- 

0.80 
0.30 7.97 

0.38 +/- 
0.01 

0.58 +/- 
0.09 

1.54 
23.53 

+/- 0.70 

2.14 +/- 

0.06 
195.78 5.09 

3 Mixed 
0.95 +/- 

0.01 
0.00 +/- 

0.02 
3.44 +/- 

0.18 
8.42 +/- 

0.88 
0.94 7.47 

1.12 +/- 
0.02 

0.50 +/- 
0.01 

0.65 
22.47 

+/- 1.10 

3.22 +/- 

0.04 
193.78 5.14 

4 Fallow 
1.99 +/- 

0.05 
0.00 +/- 

0.00 
3.18 +/- 

0.24 
15.16 

+/- 2.12 
1.99 13.17 

2.17 +/- 
0.05 

0.61 +/- 
0.01 

0.71 
23.69 

+/- 0.26 

5.42 +/- 

0.05 
243.70 5.86 

5 Cereal 
1.41 +/- 

0.03 
-0.01 

+/- 0.00 
2.71 +/- 

0.08 
12.45 

+/- 0.23 
1.40 11.05 

1.57 +/- 
0.06 

0.57 +/- 
0.03 

1.03 
21.52 

+/- 0.98 

4.18 +/- 

0.03 
203.04 4.83 

6 Mixed 
0.82 +/- 

0.14  

-0.01 
+/- 0.01 

2.84 +/- 
0.06 

9.60 +/- 
1.22 

0.81 8.79 
0.91 +/- 

0.00 
0.57 +/- 

0.02 
0.75 

21.97 

+/- 1.59 

3.04 +/- 

0.02 
-3.52 4.74 

Table 2.3: The plot, sampling date, and cover cropping strategy along with several traditional chemical N measures for each of the soil samples. 
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Figure 2.5: Leachate Chemical Analysis Interaction Plots 

Figure 2.5: Interaction plots illustrating the comparisons made with the Repeated Measure 

ANOVAs to investigate the impact of sampling date and cover class on NO3-N, NH4-N, TN, 

DON, and TC.  

TC  
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TC  

Figure 2.6: Soil Chemical Analysis Interaction Plots 

 TC  

Figure 2.6: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of 

sampling date and cover class on water extractable NO3-N, NH4-N, KCl extractable NO3-N, NH4-N, water extractable TN and DON, 

K2SO4 extractable TC and TN, water extractable TC, Microbial biomass C and N, and PMN.  
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Dissolved organic nitrogen significantly decreased throughout the sampling season (F=5.940, 

p=0.036) and – though not significant- there was a minor interaction between cover cropping 

strategy and date (F=0.209, p=0.209) (Figure 2.5d). There was a wider range of DON values at 

the beginning of the sampling season (Table 2.2), with the highest DON reported in the fallow 

plots, followed by the mixed and cereal cover plots. Variability between the cover crops 

treatments decreased over time, and similar DON values were reported across all cover cropping 

treatments by the third sampling date (Figure 2.5d). Total carbon also varied with date (F=3.039, 

p=0.084), although there was not a consistent increase or decrease (Figure 2.5e). 

 

Soil Chemical Analysis: 

There was a significant increase in K2SO4 extractable TN (F=11.437, p=0.043), water 

extractable TN (F=10.676, p=0.04), and DON (F=10.901, p=0.046) over time (Table 2.3 and 

Figure 2.6 e, h, & f). Though not significant, there was also an observed increase in soil water 

extractable DIN measures over time (NO3-N, F= 5.5782, p=0.0992; NH3-N, F=10.021, 

p=0.0507) (Figure 2.6 a & b). Significant decreases were observed in the K2SO4 extractable TC 

pool (F=715.212, p=0.0001) and PMN (F=38.752, p=0.008) (Figure 2.6 g & l). Cover class did 

not influence the chemical N measures, and there was little change in either Microbial Biomass 

C or N (Table 2.3 and Figure 2.6 j & k).  

 

Leachate DOM:  

 

All the DOM samples were primarily composed of lignin (48 - 66% of compounds in the 

DOM pool). There was more variability in relative percentages of the other compounds present 

(Table 2.4).  
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Sampling Depth Cover Cropping Strategy 

Figure 2.7: Leachate DOM Van Krevelan Diagrams 

Figure 2.7. The figure is comprised of two sets of Van Krevelan diagrams illustrating the DOM 

composition of the leachate samples. One separates the DOM based on the sampling depth of the 

leachate, and one separates the samples based upon the cover cropping strategy of the given sample 

plot. The graphs are also color coded based upon the aromaticity of the compounds (red indicating 

highly labile and green indicating highly recalcitrant). 
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 Leachate DOM Composition 

# 

   

Peaks 

 Relative Percentage   

Depth Date Cover Lip. 

Unsat 

Hydro 

Con 

Hydro Pro. 

Amino 

Sugars Carb. Lig. Tan. 

Comp. 

NA DBE/C 

% 

AI 

15 

30 

 

1 Mixed 3979 1.0 0.7 4.8 4.9 2.2 4.1 48.4 7.2 26.8 0.5 +/- 0.2 1.0 

18 

2 

Cereal  3687 1.0 0.8 2.7 4.8 1.8 3.0 52.8 7.3 25.9 0.5 +/- 0.1 0.7 

20 Fallow 3574 1.0 0.6 5.2 3.0 1.2 2.8 53.5 9.8 23.0 0.5 +/- 0.1 0.7 

21 Mixed 4012 0.7 0.6 4.8 3.6 2.6 3.9 49.0 7.8 27.1 0.5 +/- 0.2 0.9 

22 Fallow 3866 0.6 0.6 4.5 3.9 1.4 3.5 50.6 9.2 25.8 0.5 +/- 0.2 0.9 

25 Mixed 3899 0.6 0.6 2.3 5.5 1.8 2.2 49.3 7.8 29.8 0.5 +/- 0.1 0.7 

28 

3 

Cereal  3386 1.2 0.6 1.5 8.6 1.8 0.5 57.9 6.5 21.4 0.5 +/- 0.1 0.2 

31 Mixed 4347 0.7 0.5 4.5 4.0 2.0 3.5 48.5 7.3 29.1 0.5 +/- 0.2 0.8 

32 Fallow 3494 0.9 0.5 3.7 4.7 1.4 2.5 55.3 7.4 23.6 0.5 +/- 0.1 0.7 

34 Cereal  3573 0.6 0.5 3.0 6.0 1.3 1.9 57.6 8.5 20.7 0.5 +/- 0.1 0.4 

37 Mixed 4342 1.1 0.7 2.5 6.3 2.5 1.8 50.6 7.0 27.5 0.5 +/- 0.1 0.6 

13 

60 

1 Cereal  2993 1.9 1.2 0.8 8.5 1.3 1.0 56.6 4.7 24.1 0.4 +/- 0.1 0.2 

26 2 Mixed 3540 1.1 0.7 0.9 6.3 2.1 1.5 52.5 8.3 26.7 0.4 +/- 0.1 0.3 

29 

3 

Cereal  2874 1.2 1.3 0.4 8.4 1.1 0.7 61.9 3.6 21.6 0.4 +/- 0.1 0.1 

35 Cereal  3248 1.5 0.9 3.2 4.2 1.3 2.9 53.6 8.3 24.1 0.5 +/- 0.1 0.6 

38 Mixed 2386 1.6 0.9 0.5 5.7 0.9 0.6 63.4 7.3 19.3 0.5 +/- 0.1 0.1 

14 

90 

1 

Cereal  3560 2.0 1.0 1.7 9.3 1.7 1.0 53.8 4.9 24.6 0.4 +/- 0.1 0.3 

16 Fallow 1255 3.9 0.6 0.3 12.0 1.9 1.5 52.4 1.8 25.7 0.4 +/- 0.1 0.1 

17 Cereal  2767 1.4 1.1 0.6 8.8 1.2 1.3 59.4 4.5 21.8 0.4 +/- 0.2 1.1 

19 

2 

Cereal  1650 1.3 0.6 0.4 6.2 0.4 0.2 66.2 4.0 20.7 0.4 +/- 0.1 0.2 

23 Fallow 1189 3.6 0.6 0.3 4.8 1.2 0.9 61.1 2.1 25.3 0.4 +/- 0.1 0.1 

24 Cereal  2675 1.6 0.5 0.6 11.0 2.0 0.9 55.6 6.0 21.9 0.4 +/- 0.1 0.3 

27 Mixed 1935 2.9 0.8 0.6 7.2 1.3 1.2 59.8 2.0 24.1 0.4 +/- 0.1 0.3 

30 

3 

Cereal  2879 2.1 0.9 1.3 7.4 0.9 0.5 58.3 4.4 24.3 0.4 +/- 0.1 0.1 

33 Fallow 1352 3.1 0.7 0.2 4.7 0.4 0.7 59.6 2.5 28.0 0.4 +/- 0.1 0.0 

36 Cereal  2541 1.5 1.1 0.6 6.9 0.7 0.6 64.7 3.7 20.3 0.4 +/- 0.1 0.2 

39 Mixed 1816 3.0 0.8 0.8 6.7 1.5 1.0 56.0 1.4 28.8 0.4 +/- 0.1 0.3 

Table 2.4: The sample number, sampling date, cover cropping strategy, DOM FT-ICR-MS peaks (indicating the total number of unique compounds), 

the relative percentage of each compositional class (lipids, unsaturated hydrocarbons, condensed hydrocarbons, proteins, amnio sugars, 

carbohydrates, lignin, tannins, and unclassifiable compounds), the average DBE/C ratio and the percentage of compounds with an AI> 0.67. 
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Leachate DOM Pearson Correlations 

 % AI 

Avg 

DBE/C DON DIN TN TC 

NH4-

N 

NO3-

N 

Comp. 

NA Tan. Lig. Carb. 

Amino 

Sugars Pro. 

Con 

Hydro. 

Unsat 

Hydro. Lip. 

Depth -0.62 -0.82 -0.27 -0.14 -0.15 -0.44 -0.10 -0.14 -0.22 -0.81 0.61 -0.72 -0.48 0.55 -0.80 0.37 0.76 

Lip. -0.62 -0.84 -0.02 -0.21 -0.22 -0.46 -0.12 -0.21 0.09 -0.84 0.34 -0.52 -0.27 0.42 -0.64 0.13  
Unsat 

Hydro -0.28 -0.25 -0.08 0.01 0.01 -0.27 0.04 0.01 -0.31 -0.33 0.41 -0.39 -0.35 0.28 -0.42  
Con 

Hydro. 0.79 0.80 0.18 -0.02 0.00 0.54 -0.09 -0.02 0.31 0.76 -0.71 0.91 0.44 -0.66  

Pro. -0.46 -0.72 0.21 0.11 0.10 -0.48 0.18 0.11 -0.30 -0.52 0.25 -0.61 0.06  
Amino 

Sugars 0.50 0.14 0.41 0.05 0.04 0.44 0.09 0.05 0.50 0.36 -0.82 0.56   

Carb. 0.85 0.63 0.30 -0.22 -0.20 0.61 -0.25 -0.22 0.47 0.65 -0.81  
 

Lig. -0.67 -0.36 -0.31 0.17 0.17 -0.41 0.15 0.18 -0.72 -0.54    

Tan. 0.61 0.87 -0.12 0.07 0.08 0.44 0.02 0.07 0.01   
Comp. 

NA 0.33 -0.02 0.18 -0.29 -0.30 0.25 -0.25 -0.29    

NO3-N -0.13 0.23 0.04 1.00 1.00 -0.18 0.92     

NH4-N -0.16 0.13 0.02 0.92 0.88 -0.11      

TC 0.49 0.42 0.19 -0.18 -0.18       

TN -0.11 0.25 0.11 1.00         

DIN -0.13 0.23 0.04        

DON 0.27 -0.05         

Table 2.5: The results of Pearson Correlations comparing the sampling depth, the relative percent of highly photodegradable compounds (AI>0.67), the 

average DBE/C ratio, the amount of DON, TN, TC, NH4-N, and NO3-N, and the relative percentage of each compositional class (lipids, unsaturated 

hydrocarbons, condensed hydrocarbons, proteins, amnio sugars, carbohydrates, lignin, tannins, and unclassifiable compounds) within the leachate DOM 

samples. Bolded values within the chart indicate statistically significant correlations (p<0.5).  
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Figure 2.8: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of 

sampling date and cover class on the relative percentage of each compositional class (lipids, amino sugars, carbohydrates, lignin, 

proteins, tannins, unsaturated hydrocarbons, condensed hydrocarbons, and the relative percentage of N containing compounds) 

within the leachate DOM samples. 

Figure 2.8: Leachate DOM Interaction Plots 
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Protein and tannins comprised the next largest fraction of DOM in almost all the leachate 

samples; 89% of samples had protein as the 2nd or 3rd largest DOM fraction and 85% of samples 

had tannins as the 2nd or 3rd largest DOM fraction. In all samples there were compounds that 

could not be assigned a biochemical compound classification, accounting for 19-29% of 

compounds within the DOM samples.  

Van Krevelan diagrams indicate fewer unique compounds (represented as individual 

points on the diagrams) in 90cm leachate samples and illustrate a general change of DOM 

composition with increasing sampling depth (Figure 2.7). A higher proportion of compounds are 

plotted in the center rectangle (lignin) of the Van Krevelan diagram for the 90cm samples 

compared to the 60cm and 30cm diagrams. In comparison, fewer compounds were plotted in the 

two top right rectangles (amino sugars and carbohydrates) with increasing depth. Pearson 

correlations were conducted to determine the statistical significance of this shift in DOM 

composition (Table 2.5). There was a significant (p < 0.05) increase in the relative percentage of 

lipids (r=0.76), lignin (r= 0.61), and proteins (r=0.55) with depth, and a decrease in the relative 

percentage of amino sugars (r=-0.48), condensed hydrocarbons (r=-0.80), carbohydrates (r=-

0.72), and tannins (r=-0.88) with increasing sampling depth (Table 2.5). Depth also had a 

significant negative relationship with TC (r =-0.44), the relative percent of highly 

photodegradable compounds (AI> 0.67) (r=-0.62), and the average DBE/C of the sample (r=-

0.82), indicating that more recalcitrant compounds were observed in leachate samples collected 

from deeper in the soil profile. 

There was a slight shift in the composition of leached DOM throughout the growing 

season (Table 2.4 and Figure 2.8). Though not statistically significant, there was an observed 

decrease in the relative percentage of lipids (F=2.539, p=0.138), amino sugars (F=1.546, 
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p=0.249), proteins (F=3.773, p=0.053), and carbohydrates (F=3.377, p=0.084) (Figure 2.8 a, b, c, 

& e). There was a slight increase in the relative percentage of lignin (F=1.263, p=0.322) (Figure 

2.8d). Van Krevelan diagrams comparing the composition of samples under the different cover 

cropping strategies appear very similar in spread (Figure 2.7), and Repeated Measure ANOVAs 

indicate that the values for most of the composition classes were similar between the cover 

cropping treatments, with exception to amino sugars, proteins, and lignin (Figure 2.8). Though 

not significant (F=2.758, p=0.125), amino sugars comprised a higher relative percentage of 

leached DOM in cover cropped plots with the highest values reported in the mixed cover plots 

(Figure 2.8b). Proteins comprised a higher relative percentage (F=3.362, p=0.106) of leached 

DOM in fallow plots at the beginning of the sampling season and quickly declined through time 

(cover*time, F=2.524, p=0.096) (Figure 2.8e). At all sampling dates, the cereal cover plots 

reported the highest relative percentage of lignin followed by fallow and mixed cover plots. 

Analysis of the photodegradability metrics also revealed a slight decrease in percentage of highly 

aromatic compounds over time (F=1.748, p=0.228) (Figure 2.9a). 

Data points clustered by sampling depth in PCoA; most of the 30cm samples are loosely 

clustered (Figure 2.10). Samples also clustered more based upon cover class at lower sampling 

depths, indicating that cover class may have more influence over composition of leached DOM 

at lower depths (Figure 2.10). 

 

Leachate DON:  

Fourteen to thirty one percent of identified compounds were present in the DON pool. As 

with the DOM pool, the majority of DON was comprised of lignin (70 - 91% of the N containing 

compounds across all the leachate samples) (Table 2.6).  
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Figure 2.9: Leachate Photodegradability Interaction Plots 

Figure 2.9: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of 

sampling date and cover class on the relative percentage highly photodegradable compounds (AI>0.67) and the average DBE/C 

ratio within the leachate DOM and DON samples. 
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Figure 2.10: Leachate DOM PCoA 

Figure 2.10. The above figure illustrates the results of the Principal Coordinate 

Analysis conducted on the FT-ICR-MS dataset. The shapes of the data points 

indicate the cover cropping strategy of the sample plot, and the points are shaded 

based on the sampling depth of the leachate.  
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None of the DON samples contained carbohydrates or unsaturated hydrocarbons. There was 

variability in the other biochemical classes between the leachate samples (Table 2.6).  

Van Krevelan diagrams (Figure 2.12) and Pearson correlations (Table 2.7) reveal a 

similar relationship between sampling depth and the DON composition as was seen in the DOM 

pool. As sampling depth increased, fewer datapoints clustered in the amino sugar and 

carbohydrate regions of the Van Krevelan diagrams and a relatively higher proportion of 

datapoints clustered in the central, lignin region (Figure 2.12). Depth was significantly correlated 

(p<0.05) with a decrease in TC (r=-0.44), total peaks (r=-0.82), the relative percentage of N 

containing compounds (r=-0.80), and tannins (r=-0.87), as well as an increase in the relative 

percent of amino sugars (r=-0.46) (Table 2.7). There was also an increase in the relative percent 

of lipids (r=0.56), lignin (r=0.36), and proteins (r=0.48) and a decrease in the relative percent of 

condensed hydrocarbons (r=-0.77) with depth (Table 2.7). As with DOM, sampling depth was 

negatively correlated with photodegradability metrics (average DBEC, r=-0.82; percent of 

compounds with AI> 0.67, r=-0.62) (Table 2.7). 

There were non-significant decreases in the relative percent of lipids (F=1.821, p=0.206) 

and proteins (F=2.134, p=0.171) (Figure 2.11 a & d) in the N-containing DOM compounds, and 

an increase in the relative percent of lignin (F=1.599, p=0.249) (Figure 2.11c). Unlike the overall 

DOM pool, there was also a decrease in the percentage of condensed hydrocarbons (F=3.151, 

p=0.097) (Table 2.6 and Figure 2.11e). Cover cropping did not influence most of the 

compositional classes, but amino sugars comprised a higher percentage (F=3.246, p=0.083) of 

cover cropped plots (Mixed>Cereal>Fallow) (Figure 2.11b). The percentage of highly aromatic, 

recalcitrant N- containing compounds also decreased over time (F=1.748, p=0.228) (Figure 

2.9b).  
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Leachate DON Composition 

# 

   Relative Percentage   

Depth Date Cover Lig. 

Con. 

Hydro. Other Lip. Tan. Pro. 

Amino 

Sugars DBE/C 

% 

AI 

15 

30 

1 Mixed 74.0 10.3 0.3 0.7 5.8 4.7 4.3 0.5 +/- 0.2 2.5 

18 

2 

Cereal 77.7 5.7 0.3 1.5 5.4 4.1 5.3 0.5 +/- 0.2 1.8 

20 Fallow 77.3 7.5 0.0 1.3 8.0 3.1 2.9 0.5 +/- 0.2 1.8 

21 Mixed 74.0 9.6 0.1 0.9 6.4 4.2 4.8 0.4 +/- 0.2 2.2 

22 Fallow 73.2 9.1 0.5 0.6 7.6 4.5 4.4 0.4 +/- 0.2 2.3 

25 Mixed 77.7 5.4 0.3 0.8 7.0 4.5 4.3 0.5 +/- 0.2 1.9 

28 

3 

Cereal 81.1 3.6 0.5 1.0 7.3 4.8 1.7 0.5 +/- 0.1 0.5 

31 Mixed 75.1 8.5 0.4 0.8 6.6 3.9 4.7 0.5 +/- 0.2 2.0 

32 Fallow 80.5 6.7 0.5 1.2 5.5 3.6 2.1 0.5 +/- 0.2 1.9 

34 Cereal 82.4 5.4 0.1 0.1 7.1 2.8 2.2 0.5 +/- 0.2 1.1 

37 Mixed 77.5 6.1 0.3 1.5 6.5 4.3 3.8 0.5 +/- 0.2 1.5 

13 

60 

1 Cereal 81.4 2.0 0.7 2.1 4.0 6.6 3.3 0.5 +/- 0.2 0.6 

26 2 Mixed 78.0 2.5 0.8 2.3 7.4 3.9 5.2 0.5 +/- 0.2 0.8 

29 

3 

Cereal 87.2 0.8 0.5 0.5 3.4 6.1 1.5 0.5 +/- 0.1 0.4 

35 Cereal 77.6 6.6 0.4 1.8 5.4 5.2 3.1 0.5 +/- 0.2 1.7 

38 Mixed 89.3 0.7 0.2 1.3 4.9 2.6 1.1 0.5 +/- 0.1 0.2 

14 

90 

1 

Cereal 80.2 2.7 0.7 1.5 3.7 7.1 4.1 0.5 +/- 0.2 0.9 

16 Fallow 75.8 1.6 3.2 8.6 3.2 6.5 1.1 0.5 +/- 0.2 0.5 

17 Cereal 85.2 2.0 0.5 1.0 3.8 5.9 1.8 0.5 +/- 0.2 0.5 

19 

2 

Cereal 89.5 2.1 0.8 0.0 3.0 2.9 1.7 0.5 +/- 0.1 0.8 

23 Fallow 81.1 1.3 3.1 6.1 3.1 4.8 0.4 0.5 +/- 0.2 0.4 

24 Cereal 81.3 2.7 0.2 1.3 4.4 7.8 2.5 0.5 +/- 0.2 1.3 

27 Mixed 75.0 2.6 2.0 4.9 2.3 9.1 4.2 0.4 +/- 0.2 0.9 

30 3 Cereal 84.3 1.5 0.5 3.8 3.1 5.6 1.2 0.5 +/- 0.1 0.3 

33 Fallow 83.5 1.3 2.5 6.8 3.4 2.5 0.0 0.5 +/- 0.2 0.0 

36 Cereal 90.9 1.1 0.2 0.7 2.3 3.9 1.0 0.5 +/- 0.1 0.5 

39 Mixed 69.8 4.2 2.3 7.6 2.3 9.1 4.9 0.4 +/- 0.2 1.0 

Table 2.6: The sample number, sampling date, cover cropping strategy, DOM FT-ICR-MS peaks (indicating 

the total number of unique compounds), the relative percentage of each compositional class (lignin, condensed 

hydrocarbons, unclassifiable compounds, lipids, tannins, proteins, and amino sugars), the average DBE/C ratio 

and the percentage of compounds with an AI> 0.67. 
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Leachate DON Pearson Correlations 

 

DON 

Frac. 
% AI 

Avg 

DBE/C DON DIN TN TC 

NH4-

N 

NO3- 

N Tan. Lig. 

Amino 

Sugars Pro. 

Con 

Hydro. Lip. 

N 

peaks 

Depth -0.80 -0.62 -0.82 -0.27 -0.14 -0.15 -0.44 -0.10 -0.14 -0.87 0.36 -0.46 0.48 -0.77 0.56 -0.90 
N 

peaks 0.88 0.70 0.85 0.14 0.31 0.32 0.45 0.24 0.31 0.83 -0.30 0.52 -0.37 0.76 -0.70  

Lip. -0.68 -0.46 -0.72 0.09 -0.24 -0.25 -0.32 -0.18 -0.24 -0.52 -0.29 -0.22 0.41 -0.37   
Con 

Hydro. 0.49 0.84 0.69 0.23 -0.03 -0.02 0.59 -0.07 -0.03 0.68 -0.67 0.63 -0.22    

Pro. -0.47 -0.14 -0.70 -0.03 -0.19 -0.21 -0.25 -0.09 -0.20 -0.50 -0.36 0.24   
Amino 

Sugars 0.14 0.57 0.22 0.00 -0.25 -0.26 0.52 -0.19 -0.25 0.42 -0.73    

Lig. 0.02 -0.50 -0.04 -0.19 0.24 0.25 -0.34 0.18 0.25 -0.35     

Tan. 0.74 0.57 0.80 -0.01 0.17 0.17 0.40 0.16 0.17      

NO3-N 0.56 -0.13 0.23 0.04 1.00 1.00 -0.18 0.92     

NH4-N 0.48 -0.16 0.13 0.02 0.92 0.88 -0.11     

TC 0.26 0.49 0.42 0.19 -0.18 -0.18      

TN 0.57 -0.11 0.25 0.11 1.00       

DIN 0.56 -0.13 0.23 0.04        

DON 0.08 0.27 -0.05        
Avg 

DBEC 0.83 0.62        

% AI 0.46  
    

  

Table 2.7: The results of Pearson Correlations comparing the sampling depth, the relative percent of N containing peaks, relative percent of highly 

photodegradable compounds (AI>0.67), the average DBE/C ratio, the amount of DON, TN, TC, NH4-N, and NO3-N, the relative percentage of each 

compositional class (tannins, lignin, amino sugars, proteins, condensed hydrocarbons, lipids) with the leached DON and the number of N peaks. 

Bolded values within the chart indicate statistically significant correlations (p<0.5).  
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Figure 2.11: Leachate DON Interaction Plots 

Figure 2.11: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to 

investigate the impact of sampling date and cover class on the relative percentage of each compositional class 

(lipids, amino sugars, lignin, proteins, condensed hydrocarbons and tannins) within the leachate DON 

samples. 
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Sampling Depth Cover Cropping Strategy 

Figure 2.12: Leachate DON Van Krevelan Diagrams 

Figure 2.12. The figure is comprised of two sets of Van Krevelan Diagrams illustrating the DON composition of 

the leachate samples. One separates the DON based on the sampling depth of the leachate, and one separates the 

samples based upon the cover cropping strategy of the given sample plot. The graphs are also color coded based 

upon the aromaticity of the compounds (red indicating highly labile and green indicating highly recalcitrant). 
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Analysis of the DON fraction reveals both a significant temporal effect (F=5.140, p=0.035) and 

sampling date and cover interaction (F=4.105, p=0.040) (Figure 2.8i). 

 

 

Soil DOM:  

 

There were differences in DOM composition between the two soil extractions techniques 

(Table 2.8). Of the classifiable compounds, water extracted DOM was primarily comprised of 

lignin (11 - 30%), followed by lipids (3-10%), proteins (5 - 22%), tannins (0.6 – 4%), 

unsaturated hydrocarbons (0.8 – 4%), condensed hydrocarbons (1 - 3%), amino sugars (1 – 3%), 

and carbohydrates (0.4 – 1%). In comparison, the chloroform extractable DOM was primarily 

lipids (6 – 29%) followed by proteins (3 – 11%), lignin (2– 9%), unsaturated hydrocarbons (0.3 – 

1%), condensed hydrocarbons (0.2 – 2%), amino sugars (0.3 – 1.5%), carbohydrates (0 – 1.6%), 

and tannins (0 – 1%). A large portion of all samples were not identified in either extraction 

(water extractable: 39 – 70%; chloroform extractable: 56 – 83%). Comparison via Van Krevelan 

diagrams visually confirms this difference in DOM composition: the compounds in the water 

extractable soil DOM are heavily clustered in the center region (lignin) of the plot while the 

compounds in the chloroform extractable soil DOM are clustered in the upper left region (lipids) 

of the plot (Figure 2.16). 

There was no correlation between microbial biomass N, but microbial biomass C was 

correlated with changes in DOM composition in both the water and chloroform extractions 

(Tables 2.9 and 2.10). In water extractable DOM, there was a positive correlation between 

proteins (r=0.67), amino sugars (r=0.65), and tannins (r=0.65) and a negative correlation with 

unsaturated hydrocarbons (r=-0.65), carbohydrates (r=-0.65), and photodegradability (% of 

AI>0.67, r=-0.65) (Table 2.9). 
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 Soil DOM Composition 

# Date Plot Peaks Extract. Cover 

 Relative Percentage 

DBE/C 

 

Lip, 

UnSat. 

Hydro. 

Con. 

Hydro. Pro. 

Amino 

Sugars Carb. Lig. Tan. 

Comp. 

NA 

% 

AI 

40 

1 

1 4276 

Water 

Cereal 9.7 3.7 1.9 5.4 0.9 1.2 12.5 0.6 64.1 0.3 +/- 0.2 3.1 

41 2 4317 Fallow 7.2 3.7 2.9 5.1 1.0 1.2 14.3 1.5 63.3 0.4 +/- 0.2 4.7 

42 3 4056 Mixed 5.4 2.3 2.7 4.7 1.2 1.2 11.0 1.5 70.0 0.4 +/- 0.2 5.0 

43 4 3127 Fallow 6.5 1.2 1.9 21.5 2.9 0.4 24.9 3.8 37.1 0.4 +/- 0.2 0.4 

44 5 3443 Cereal 5.6 0.8 2.3 19.6 2.6 0.6 25.4 4.4 38.8 0.4 +/- 0.2 0.1 

45 6 3740 Mixed 5.7 1.8 1.7 19.6 2.9 0.8 23.0 4.0 40.6 0.4 +/- 0.2 0.4 

46 

3 

1 2771 Cereal 7.2 0.7 1.3 19.7 2.5 0.5 23.9 3.0 41.3 0.3 +/- 0.2 0.7 

47 2 2979 Fallow 5.7 1.2 1.9 19.8 2.2 0.4 29.9 4.4 34.5 0.4 +/- 0.20 0.5 

48 3 9750 Mixed 3.0 0.8 2.3 7.5 1.2 0.7 14.0 2.4 68.0 0.4 +/- 0.2 0.9 

49 4 3121 Fallow 5.5 1.2 2.8 19.5 2.7 0.5 29.6 4.2 34.0 0.4 +/- 0.20 0.4 

50 5 3228 Cereal 6.8 1.8 1.1 21.6 3.2 0.4 23.4 2.7 39.0 0.3 +/- 0.20 0.3 

51 6 3739 Mixed 5.3 1.3 2.5 18.8 2.6 0.6 28.1 4.20 36.7 0.4 +/- 0.20 0.2 

40 

1 

1 1944 

Chlor. 

Cereal 5.7 0.8 1.9 3.3 0.6 1.6 2.2 0.6 83.4 0.3 +/- 0.3 3.3 

41 2 970 Fallow 23.5 1.1 0.2 5.7 0.3 0.5 5.1 0.1 63.5 0.2 +/- 0.2 0.3 

42 3 2163 Mixed 18.9 0.9 1.0 10.2 1.5 0.4 6.0 0.8 60.3 0.2 +/- 0.2 1.2 

43 4 1987 Fallow 19.8 0.4 0.5 7.6 0.9 0.3 8.0 0.7 62.0 0.2 +/- 0.2 0.8 

44 5 1067 Cereal 29.0 0.5 0.3 8.4 1.2 0 3.6 0.4 56.7 0.2 +/- 0.1 0.7 

45 6 2090 Mixed 22.9 0.4 1.4 6.3 0.7 0.2 5.6 0.7 62.0 0.2 +/- 0.2 1.7 

46 

3  

1 758 Cereal 29.8 1.1 0.3 6.6 0.4 0.9 5.4 0 55.5 0.2 +/- 0.2 0.3 

47 2 651 Fallow 19.4 0.8 0.2 3.1 0.3 0.3 2.6 0.2 73.3 0.2 +/- 0.2 0.6 

48 3 1846 Mixed 18.3 0.3 1.8 5.5 0.7 0.2 5.6 1.1 66.4 0.3 +/- 0.2 2.7 

49 4 1759 Fallow 20.0 0.4 1.3 7.3 0.9 0.4 5.3 0.6 63.9 0.2 +/- 0.2 2.0 

50 5 1163 Cereal 17.1 0.3 1.7 4.8 0.7 0.4 4.7 1.0 69.2 0.3 +/- 0.2 3.3 

51 6 1882 Mixed 16.7 1.6 1.5 11.1 1.3 0.5 8.7 0.4 58.2 0.3 +/- 0.2 1.0 

Table 2.8: The sample number, sampling date, plot number, DOM FT-ICR-MS peaks (indicating the total number of unique compounds), extraction method 

(water or chloroform), cover cropping strategy, the relative percentage of each compositional class (lipids, unsaturated hydrocarbons, condensed 

hydrocarbons, proteins, amino sugars, carbohydrates, lignin, tannins, and unclassifiable compounds), the average DBE/C ratio and the percentage of 

compounds with an AI> 0.67. 
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Soil Water DOM Pearson Correlations 

 

Micro. 

Bio. N 

Micro. 

Bio. C 

K2SO4 

TN 

K2SO4 

TC PMN 

KCl 

NH4-

N 

KCl 

NO3-

N DON DIN 

Water 

TN 

Water 

TC 

Water 

NH4-

N 

Water 

NO3-

N 

% 

AI DBEC 

CHOS -0.30 -0.74 -0.49 0.59 0.59 -0.26 -0.39 -0.40 -0.36 -0.40 0.23 -0.39 -0.36 0.93 0.06 

CHONS -0.29 -0.74 -0.51 0.59 0.58 -0.34 -0.40 -0.42 -0.38 -0.43 0.26 -0.41 -0.38 0.94 0.10 

CHOSP -0.30 -0.78 -0.52 0.58 0.44 -0.35 -0.40 -0.47 -0.37 -0.46 0.18 -0.33 -0.37 0.85 0.02 

CHONSP -0.22 -0.71 -0.57 0.58 0.58 -0.41 -0.47 -0.39 -0.46 -0.42 0.29 -0.57 -0.46 0.93 0.07 

Lip. -0.24 -0.39 -0.35 0.33 0.23 -0.03 -0.31 -0.22 -0.29 -0.24 -0.09 -0.39 -0.29 0.32 -0.69 

UnSat. Hydro. -0.26 -0.65 -0.43 0.57 0.52 -0.10 -0.33 -0.41 -0.30 -0.40 0.14 -0.29 -0.30 0.78 -0.08 

Con. Hydro. 0.07 -0.37 0.01 0.30 0.30 -0.10 0.06 -0.08 0.08 -0.05 0.22 -0.01 0.09 0.47 0.81 

Pro. 0.27 0.67 0.40 -0.44 -0.38 0.48 0.29 0.40 0.27 0.39 -0.31 0.19 0.27 -0.88 -0.46 

Amino Sugars 0.33 0.65 0.43 -0.38 -0.35 0.53 0.34 0.45 0.32 0.43 -0.39 0.15 0.32 -0.82 -0.48 

Carb. -0.08 -0.65 -0.50 0.62 0.49 -0.23 -0.38 -0.42 -0.37 -0.42 0.34 -0.42 -0.36 0.90 0.23 

Lig. 0.18 0.57 0.47 -0.51 -0.40 0.52 0.35 0.44 0.35 0.43 -0.26 0.33 0.34 -0.82 -0.20 

Tan. 0.45 0.66 0.35 -0.36 -0.29 0.48 0.23 0.28 0.22 0.28 -0.05 0.23 0.22 -0.82 0.02 

Comp. NA -0.23 -0.58 -0.40 0.42 0.34 -0.54 -0.29 -0.40 -0.28 -0.38 0.29 -0.21 -0.28 0.82 0.39 

DBEC -0.03 -0.12 0.14 -0.06 0.06 -0.21 0.15 -0.04 0.16 0.00 0.28 0.29 0.15 0.25  
% AI -0.24 -0.69 -0.47 0.57 0.66 -0.26 -0.37 -0.30 -0.36 -0.32 0.35 -0.40 -0.35   

Water NO3-N -0.24 0.30 0.98 -0.67 -0.65 0.30 1.00 0.84 1.00 0.90 -0.65 0.77    
Water NH4-N -0.46 0.15 0.77 -0.76 -0.71 0.19 0.76 0.55 0.78 0.61 -0.50     

Water TC 0.43 0.13 -0.62 0.52 0.60 -0.03 -0.64 -0.51 -0.65 -0.56      
Water TN -0.22 0.33 0.92 -0.70 -0.57 0.48 0.90 0.99 0.89       

DIN -0.25 0.29 0.98 -0.67 -0.66 0.30 1.00 0.84        
DON -0.21 0.33 0.87 -0.68 -0.53 0.51 0.85         

KCl NO3-N -0.24 0.33 0.99 -0.69 -0.66 0.29          
KCl NH4-N 0.29 0.31 0.33 -0.13 -0.13           
PMN 0.23 -0.29 -0.69 0.78            

K2SO4 TC 0.50 -0.36 -0.76             
K2SO4 TN -0.22 0.42              

Micro. Bio. C 0.47               

Table 2.9: The results of Pearson Correlations comparing the sulfur containing compounds, the relative percentage of each compositional class in the soil water extractions (lipids, 

unsaturated hydrocarbons, condensed hydrocarbons, proteins, amino sugars, carbohydrates, lignin, tannins, and unknown compounds), the average DBE/C ratio, the relative 

percent of highly photodegradable compounds (AI>0.67), water extractable NO3-N, NH4-N, TC, TN, DIN, and DON, KCl extractable NO3-N, NH4-N, PMN, K2SO4 TC and TN, 

and microbial biomass C and N. Bolded values within the chart indicate statistically significant correlations (p<0.5).  
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Soil Chloroform DOM Pearson Correlations 

 

Micro. 

Bio. N 

Micro. 

Bio. C 

K2SO4 

TN 

K2SO4 

TC PMN 

KCl 

NH4-N 

KCl 

NO3-N DON DIN 

Water 

TN 

Water 

TC 

Water 

NH4-N 

Water 

NO3-N % AI DBEC 

CHOS -0.59 -0.16 0.00 -0.21 -0.05 -0.56 0.05 -0.05 0.02 -0.04 -0.10 0.10 0.02 0.27 0.32 

CHONS 0.34 -0.03 0.19 0.30 -0.14 0.22 0.31 0.12 0.33 0.16 -0.12 0.16 0.33 0.69 0.62 

CHOSP -0.29 -0.49 -0.18 0.13 -0.31 -0.31 -0.08 -0.27 -0.05 -0.23 -0.21 0.12 -0.05 0.71 0.77 

CHONSP -0.30 -0.13 0.19 -0.11 -0.44 -0.17 0.29 0.06 0.30 0.11 -0.34 0.38 0.30 0.93 0.84 

Lip. 0.46 0.62 0.03 -0.08 0.19 0.05 -0.07 0.14 -0.12 0.09 0.32 -0.42 -0.11 -0.71 -0.87 

UnSat. Hydro. -0.47 -0.63 -0.22 -0.08 0.10 -0.04 -0.25 -0.06 -0.23 -0.10 -0.11 -0.16 -0.23 -0.44 -0.04 

Cond. Hydro. -0.17 -0.21 0.34 -0.16 -0.55 0.12 0.43 0.17 0.45 0.23 -0.52 0.51 0.45 0.89 0.89 

Pro. 0.26 -0.21 0.04 0.11 0.08 0.13 0.03 0.18 0.02 0.15 -0.19 -0.23 0.03 -0.38 -0.10 

Amino Sugars 0.36 -0.32 -0.02 0.27 0.05 0.09 0.02 0.08 0.04 0.07 -0.24 -0.11 0.04 0.01 0.17 

Carb. -0.53 -0.58 -0.19 0.04 -0.16 -0.17 -0.13 -0.09 -0.11 -0.10 -0.20 -0.07 -0.11 0.33 0.53 

Lig. -0.11 -0.06 0.19 -0.17 -0.07 0.05 0.17 0.20 0.15 0.20 -0.32 0.03 0.15 -0.26 0.08 

Tan. 0.08 0.06 0.28 -0.01 -0.27 -0.06 0.37 0.11 0.38 0.17 -0.28 0.41 0.38 0.76 0.62 

Comp. NA -0.38 -0.32 -0.10 0.07 -0.10 -0.09 -0.03 -0.23 0.01 -0.19 -0.03 0.35 0.00 0.64 0.56 

DBEC -0.38 -0.49 0.14 0.00 -0.38 -0.09 0.25 0.00 0.28 0.06 -0.52 0.38 0.28 0.84  

% AI -0.17 -0.08 0.32 -0.11 -0.48 0.00 0.42 0.13 0.44 0.20 -0.46 0.49 0.44   

Water NO3-N -0.24 0.30 0.98 -0.67 -0.65 0.30 1.00 0.84 1.00 0.90 -0.65 0.77    

Water NH4-N -0.46 0.15 0.77 -0.76 -0.71 0.19 0.76 0.55 0.78 0.61 -0.50     

Water TC 0.43 0.13 -0.62 0.52 0.60 -0.03 -0.64 -0.51 -0.65 -0.56      

Water TN -0.22 0.33 0.92 -0.70 -0.57 0.48 0.90 0.99 0.89       

DIN -0.25 0.29 0.98 -0.67 -0.66 0.30 1.00 0.84        

DON -0.21 0.33 0.87 -0.68 -0.53 0.51 0.85         

KCl NO3-N -0.24 0.33 0.99 -0.69 -0.66 0.29          

KCl NH4-N 0.29 0.31 0.33 -0.13 -0.13           

PMN 0.23 -0.29 -0.69 0.78            

K2SO4 TC 0.50 -0.36 -0.76             

K2SO4 TN -0.22 0.42              

Micro. Bio. C 0.47               

Table 2.10: The results of Pearson Correlations comparing the sulfur containing compounds, the relative percentage of each compositional class in the soil chloroform extractions (lipids, unsaturated 

hydrocarbons, condensed hydrocarbons, proteins, amino sugars, carbohydrates, lignin, tannins, and unknown compounds), the average DBE/C ratio, the relative percent of highly photodegradable 

compounds (AI>0.67), water extractable NO3-N, NH4-N, TC, TN, DIN, and DON, KCl extractable NO3-N, NH4-N, PMN, K2SO4 TC and TN, and microbial biomass C and N. Bolded values within 

the chart indicate statistically significant correlations (p<0.5).  
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Figure 2.13: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of sampling date and 

cover class on the relative percentage of each compositional class (lipids, amino sugars, carbohydrates, lignin, proteins, tannins, unsaturated 

hydrocarbons, condensed hydrocarbons, and the relative percentage of N containing compounds) within the leachate DOM samples. 

Figure 2.13: Soil Water DOM Interaction Plots 
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Figure 2.14: Soil Chloroform DOM Interaction Plots 

Figure 2.14: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of sampling date and 

cover class on the relative percentage of each compositional class (lipids, amino sugars, carbohydrates, lignin, proteins, tannins, unsaturated 

hydrocarbons, condensed hydrocarbons, and the relative percentage of N containing compounds) within the leachate DOM samples. 
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Soil Water Extractions Soil Chloroform Extractions 

c 

Figure 2.15: Soil DOM and DON Photodegradability Interaction Plots 

d 

e f g h 

Figure 2.15: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to investigate the impact of 

sampling date and cover class on the relative percentage highly photodegradable compounds (AI>0.67) and the average DBE/C 

ratio within the Soil Water extractable and Soil Chloroform extractable DOM and DON samples. 
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  Figure 2.16: Soil Extractable Organic Matter Van Krevelan Diagrams 

(by Cover Cropping Strategy) 

Water Extractable Soil DOM Chloroform Extractable Soil DOM 

Figure 2.16. The above figure is comprised of two sets of Van Krevelan Diagrams illustrating the composition of the 

extractable soil organic matter composition of the leachate samples. One set represents the water extractable DOM 

pool while the other set represents the chloroform extractable DOM pool. The graphs are also color coded based upon 

the aromaticity of the compounds (red indicating highly labile and green indicating highly recalcitrant). 
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In the chloroform extractions a similar decrease in unsaturated hydrocarbons (r=-0.63) and 

carbohydrates (r=0.58) was reported, along with a positive correlation with the relative 

percentage of lipids (r=0.62) (Table 2.10). Potentially mineralizable N was associated with a 

shift in composition as well, significantly correlated with an increase in S containing compounds 

(CHOS, r=0.59; CHONS, r=0.60; CHONSP, r=0.58) as well as with an increase in 

photodegradability (relative percentage AI>0.67, r=0.66) (Table 2.10).  

 

There was no temporal change in the composition of soil DOM (Figures 2.13 and 2.14) . 

The only trend visible in the chloroform extractable DOM pool was an increase in the relative 

percentage of lignin in cover cropped plots, and a decrease in the lignin pool in the fallow plots 

(sampling date* cover, F=4.645, p=0.121) (Table 2.8 and Figure 2.14d). Though not significant, 

cover had a slight impact on the relative percentages of chloroform extractable lignin (F=1.940, 

p=0.288), condensed hydrocarbons (F=5.028, p=0.110), and proteins (F=1.840, p=0.301) (Figure 

2.14 d, h, & e). In each of these examples, the cereal and fallow plots had similar values, while 

the mixed cover plots reported higher relative percentages for the given compound classes. 

Clearer trends were observed in the water extractable DOM pool (Table 2.8 and Figure 2.13). 

Though non-significant, there was a slight decrease in the relative percentage of water 

extractable lipids (F= 2.426, p=0.217), amino sugars (F=2.667, p=0.201), carbohydrates 

(F=3.282, p=0.168), unsaturated hydrocarbons (F=1.905, p=0.261) (Figure 2.13 a, b, c, & g) and 

the overall percentage of highly aromatic compounds (F=2.949, p=0.184) (Figure 2.15a). There 

was also a slight increase in lignin (F=4.741, p=0.118) and proteins (F=2.216, p=0.233) (Figure 

2.15 d & e). Cover did not have much impact on the DOM composition, and Van Krevelan 

diagrams (Figure 2.16) of the DOM under the three cover classes reveal similar compositions 

among the treatments. 
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There was considerable variability in PCoA coordinates that represented the June water 

extractable DOM samples, but the July water extractable DOM coordinates were tightly 

clustered (Figure 2.17). The influence of the cover cropping on the DOM composition may have 

lessened throughout the growing season.  There was evidence for more clustering by cover 

cropping in the PCoA of chloroform extractable DOM (Figure 2.18). There coordinates varied 

more between fallow and cereal covered plots, with less variability in the mixture. This trend is 

presumably due to the inclusion of legumes in the mixed cover crop. 

 

 

Soil DON:  

 

There were similar temporal trends in the DON composition as to the overall DOM pool 

(Table 2.11), but nothing of statistical significance in the chloroform extractable pool (Figure 

2.20). In the water extractable pool there was a significant increase in the relative percentage of 

lignin (F=11.467, p=0.043) and a slight increase in tannins (F=7.345, p=0.073) over time (Figure 

2.19 c & f). Though not significant, there was a decrease in lipids (F=4.362, p=0.128) (Figure 

2.19a) and the percentage of aromatic compounds (F=3.420, p=0.162) (Figure 2.15b). Cover 

class had no clear impact on DON composition.  

There was no correlations between either water or chloroform extractable DON and 

either cover cropping strategy (Figures 2.19 and 2.20, Tables 2.12 and 2.13) but there was 

significantly more N peaks (p<0.05) from plots cover cropped with legumes (Figure 2.14i). 

There was also a significant relationship between microbial biomass C and water extractable 

DON composition (p<0.05): a decrease in condensed hydrocarbons (r=-0.59) and lipids (r=-

0.75), an increase in in proteins (r=0.70) and amino sugars (r=0.73) (Table 2.12).  
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Figure 2.17: Soil Water Extractable DOM PCoA 

Figure 2.17. The above figure illustrates the results of the Principal Coordinate 

Analysis conducted on the soil water extractable DOM FT-ICR-MS dataset.  The 

shapes of the data points indicate the cover cropping strategy of the sample plot, 

and the points are shaded based on the sampling date.  
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Figure 2.18 Soil Chloroform Extractable DOM PCoA 

Figure 2.18. The above figure illustrates the results of the Principal Coordinate 

Analysis conducted on the soil chloroform extractable DOM FT-ICR-MS dataset.  

The shapes of the data points indicate the cover cropping strategy of the sample 

plot, and the points are shaded based on the sampling date.  
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Soil DON Composition 

# Date Plot Cover Extract. 

Relative Percentage   

Lig. 

Con. 

Hydro. Other Lip. Tan. Pro. 

Amino 

Sugars DBE/C 

% 

AI 

40 

1 

1 Cereal 

Water 

24.0 6.0 3.9 28.2 0.5 16.9 3.3 0.3 +/- 0.2 2.7 

41 2 Fallow 32.2 11.4 3.7 18.9 1.5 11.8 3.0 0.4 +/- 0.2 6.7 

42 3 Mixed 30.4 13.1 5.4 19.1 2.0 11.6 4.7 0.4 +/- 0.2 8.7 

43 4 Fallow 36.9 3.0 1.0 6.2 2.1 32.9 10.8 0.4 +/- 0.2 1.1 

44 5 Cereal 38.6 2.0 1.0 6.5 3.5 32.8 9.3 0.4 +/- 0.2 0.2 

45 6 Mixed 33.8 2.5 0.8 5.4 4.7 32.0 9.5 0.4 +/- 0.2 1.1 

46 

3 

1 Cereal 38.7 3.9 1.1 8.9 1.7 30 9.35 0.4 +/- 0.2 1.3 

47 2 Fallow 46.2 3.8 0.8 4.4 3.2 27.1 7.8 0.4 +/- 0.2 1.5 

48 3 Mixed 45.1 8.4 1.0 7.8 5.1 16.8 6.7 0.4 +/- 0.2 2.0 

49 4 Fallow 46.8 5.2 1.0 3.4 4.2 24.4 8.3 0.4 +/- 0.2 0.8 

50 5 Cereal 35.1 2.2 0.5 5.6 3.1 32.4 11.4 0.4 +/- 0.2 0.5 

51 6 Mixed 47.2 4.6 0.7 4.1 5.3 23.2 7.6 0.4 +/- 0.2 0.1 

40 

1 

1 Cereal 

Chlor. 

6.8 18.8 3.4 22.2 9.4 18.0 6.8 0.3 +/- 0.3 3.3 

41 2 Fallow 12.5 0 0 37.5 4.2 37.5 4.2 0.2 + /- 0.2 0.3 

42 3 Mixed 22.0 7.6 3.8 33.3 9.9 9.1 7.6 0.2 +/- 0.2 1.2 

43 4 Fallow 25.8 4.1 4.1 36.1 10.3 12.4 4.1 0.2 +/- 0.2 0.8 

44 5 Cereal 22.6 0 3.2 45.2 9.7 16.1 3.2 0.2 +/- 0.1 0.7 

45 6 Mixed 17.4 9.2 4.6 37.6 11.9 10.0 3.7 0.2 +/- 0.0 1.7 

46 

3 

1 Cereal 10.0 0 0 30 0 45 0 0.2 +/- 0.2 0.3 

47 2 Fallow 13.3 6.7 6.7 26.7 6.7 20 6.7 0.2 +/- 0.2 0.6 

48 3 Mixed 23.4 12.3 6.1 26.3 14.9 11.4 3.5 0.3 +/- 0.2 2.7 

49 4 Fallow 14.6 7.3 6.4 39.1 9.1 13.6 4.6 0.2 +/- 0.2 2.0 

50 5 Cereal 21.6 9.5 8.1 28.4 13.5 10.8 2.7 0.3 +/- 0.2 3.3 

51 6 Mixed 20.0 4.7 0 29.4 4.7 14.1 11.8 0.3 +/- 0.2 1.0 

Table 2.11: The sample number, sampling date, plot number, DOM FT-ICR-MS peaks (indicating the total number of unique 

compounds), extraction method (water or chloroform), cover cropping strategy, the relative percentage of each compositional 

class (lignin, condensed hydrocarbons, unclassifiable compounds, lipids, proteins, and amino sugars), the average DBE/ ration 

and the percentage of compounds with an AI> 0.67. 
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Soil Water DON Pearson Correlations 

 

DON 
Frac. 

Micro. 
Bio. N 

Micro. 
Bio. C 

K2SO4 
TN 

K2SO4 
TC PMN 

KCl 
NH4-
N 

KCl 
NO3-
N DON DIN 

Water 
TN 

Water 
TC 

Water 
NH4-
N 

Water 
NO3-
N 

% 
AI 

Avg. 
DBEC 

N 

Peaks -0.48 -0.20 -0.20 0.07 -0.07 -0.23 -0.52 0.13 -0.27 0.14 -0.19 -0.01 0.34 0.14 0.13 0.53 

Lig. 0.19 -0.06 0.46 0.63 -0.74 -0.55 0.18 0.53 0.48 0.52 0.50 -0.20 0.63 0.52 -0.52 0.75 

Cond. 

Hydro -0.32 -0.31 -0.59 -0.21 0.30 0.45 -0.29 -0.12 -0.11 -0.12 -0.11 0.30 -0.13 -0.12 0.92 0.38 

Lip. -0.18 -0.25 -0.75 -0.58 0.60 0.44 -0.39 -0.46 -0.47 -0.44 -0.47 0.22 -0.42 -0.44 0.68 -0.38 

Tan. 0.00 0.26 0.45 0.51 -0.46 -0.52 0.33 0.45 0.28 0.45 0.32 -0.20 0.53 0.44 -0.49 0.63 

Pro. 0.22 0.41 0.70 0.19 -0.25 -0.29 0.32 0.09 0.18 0.07 0.16 -0.20 -0.01 0.07 -0.80 -0.38 
Amino 
Sugar 0.07 0.31 0.73 0.40 -0.41 -0.37 0.31 0.31 0.39 0.28 0.38 -0.33 0.16 0.28 -0.72 -0.17 

DBEC -0.02 -0.21 0.07 0.47 -0.46 -0.23 0.04 0.44 0.31 0.45 0.35 0.01 0.58 0.44 0.08 

% AI -0.29 -0.17 -0.56 -0.42 0.51 0.71 -0.17 -0.34 -0.20 -0.34 -0.24 0.44 -0.38 -0.34  
Water 

NO3-N 0.24 -0.24 0.30 0.98 -0.67 -0.65 0.30 1.00 0.84 1.00 0.90 -0.65 0.77   
Water 
NH4-N 0.07 -0.46 0.15 0.77 -0.76 -0.71 0.19 0.76 0.55 0.78 0.61 -0.50   
Water 
TC -0.37 0.43 0.13 -0.62 0.52 0.60 -0.03 -0.64 -0.51 -0.65 -0.56 

 

  
Water 
TN 0.27 -0.22 0.33 0.92 -0.70 -0.57 0.48 0.90 0.99 0.89    
DIN 0.24 -0.25 0.29 0.98 -0.67 -0.66 0.30 1.00 0.84     
DON 0.27 -0.21 0.33 0.87 -0.68 -0.53 0.51 0.85      
KCl 
NO3-N 0.21 -0.24 0.33 0.99 -0.69 -0.66 0.29       
KCl 
NH4-N 0.48 0.29 0.31 0.33 -0.13 -0.13        

PMN -0.05 0.23 -0.29 -0.69 0.78         
K2SO4 
TC -0.10 0.50 -0.36 -0.76          
K2SO4 
TN 0.25 -0.22 0.42           
Micro. 

Bio. C -0.10 0.47            
Micro. 
Bio. N -0.06             

Table 2.12: The results of Pearson Correlations comparing the number of N peaks, the relative percentage of each compositional class (lignin, condensed hydrocarbons, lipids 

tannins, proteins, and amino sugars), the average DBE/C ratio, the relative percent of highly photodegradable compounds (AI>0.67), water extractable NO3-N, NH4-N, TC, TN, 

DIN, and DON, KCl extractable NO3-N, NH4-N, PMN, K2SO4 extractable TC and TN, and microbial biomass C and N. Bolded values within the chart indicate statistically 

significant correlations (p<0.5).  
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Soil Chloroform DON Pearson Correlations 

 

DON 

Frac. 

Micro. 

Bio. N 

Micro. 

Bio. C 

K2SO4 

TN 

K2SO4 

TC PMN 

KCl 

NH4-

N 

KCl 

NO3-

N DON DIN 

Water 

TN 

Water 

TC 

Water 

NH4-

N 

Water 

NO3-

N % AI DBEC 

N Peaks 0.92 0.06 -0.29 0.09 0.22 -0.17 0.15 0.20 0.07 0.22 0.10 -0.17 0.21 0.22 0.62 0.76 

Lig. 0.30 0.31 0.18 0.10 0.04 0.06 -0.14 0.10 0.00 0.08 0.02 -0.17 0.07 0.08 -0.01 -0.03 

Cond. Hydro 0.73 -0.20 -0.29 0.01 0.05 -0.34 0.02 0.11 -0.10 0.14 -0.05 -0.14 0.42 0.14 0.87 0.83 

Other 0.52 0.12 0.42 0.41 -0.21 -0.26 0.26 0.44 0.30 0.45 0.34 -0.09 0.58 0.44 0.59 0.21 

Lip. -0.24 0.76 0.40 0.00 0.40 0.42 0.22 -0.03 0.00 -0.04 -0.01 0.26 -0.47 -0.04 -0.48 -0.57 

Tan. 0.72 0.30 0.18 0.13 0.16 -0.10 -0.03 0.21 -0.09 0.22 -0.03 -0.08 0.31 0.21 0.69 0.45 

Pro. -0.71 -0.32 0.02 -0.14 -0.14 0.14 -0.27 -0.19 -0.02 -0.22 -0.06 0.19 -0.36 -0.22 -0.52 -0.46 

Amino Sugar 0.16 -0.24 -0.69 -0.12 0.08 0.02 0.18 -0.10 -0.12 -0.05 -0.11 -0.18 0.24 -0.06 0.01 0.36 

DBEC 0.82 -0.38 -0.49 0.14 0.00 -0.38 -0.09 0.25 0.00 0.28 0.06 -0.52 0.38 0.28 0.84  

% AI 0.82 -0.17 -0.08 0.32 -0.11 -0.48 0.00 0.42 0.13 0.44 0.20 -0.46 0.49 0.44   

Water NO3-N 0.48 -0.24 0.30 0.98 -0.67 -0.65 0.30 1.00 0.84 1.00 0.90 -0.65 0.77    

Water NH4-N 0.41 -0.46 0.15 0.77 -0.76 -0.71 0.19 0.76 0.55 0.78 0.61 -0.50     

Water TC -0.42 0.43 0.13 -0.62 0.52 0.60 -0.03 -0.64 -0.51 -0.65 -0.56      

Water TN 0.33 -0.22 0.33 0.92 -0.70 -0.57 0.48 0.90 0.99 0.89       

DIN 0.48 -0.25 0.29 0.98 -0.67 -0.66 0.30 1.00 0.84        

DON 0.29 -0.21 0.33 0.87 -0.68 -0.53 0.51 0.85         

KCl NO3-N 0.46 -0.24 0.33 0.99 -0.69 -0.66 0.29          

KCl NH4-N 0.15 0.29 0.31 0.33 -0.13 -0.13           

PMN -0.34 0.23 -0.29 -0.69 0.78            

K2SO4 TC 0.00 0.50 -0.36 -0.76             

K2SO4 TN 0.35 -0.22 0.42              

Micro. Bio. C -0.16 0.47               

Micro. Bio. N -0.05                

Table 2.13: The results of Pearson Correlations comparing the number of N peaks, the relative percentage of each compositional class (lignin, condensed 

hydrocarbons, lipids tannins, proteins, and amino sugars), the average DBE/C ratio, the relative percent of highly photodegradable compounds (AI>0.67), water 

extractable NO3-N, NH4-N, TC, TN, DIN, and DON, KCl extractable NO3-N, NH4-N, PMN, K2SO4 extractable TC and TN, and microbial biomass C and N. 

Bolded values within the chart indicate statistically significant correlations (p<0.5).  
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Figure 2.19: Soil Water DON Interaction Plots 

Table 2.19: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to 

investigate the impact of sampling date and cover class on the relative percentage of each compositional class 

(lipids, amino sugars, lignin, proteins, condensed hydrocarbons, and tannins) within the soil water extractable 

DON samples. 
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  Figure 2.20: Soil Chloroform DON Interaction Plots 

Figure 2.20: Interaction plots illustrating the comparisons made with the Repeated Measure ANOVAs to 

investigate the impact of sampling date and cover class on the relative percentage of each compositional class 

(lipids, amino sugars, lignin, proteins, condensed hydrocarbons, and tannins) within the soil chloroform 

extractable DON samples. 
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Potentially mineralizable N was again correlated with an increase in the relative percent of 

recalcitrant compounds (r=0.71). 

 

 

Discussion:  

 

 

Leachate DOM and DON Composition: 

 

Although the composition of DOM and DON varied between samples, lignin represented 

the largest fraction of the organic pool in every leachate sample (Table 2.4). This is consistent 

with many previous studies of DOM (Heinz et al., 2015; Li et al., 2018; Wagner et al., 2015). A 

highly recalcitrant compound class, lignin is more resistant to microbial degradation than other 

DOM fractions and has also long been utilized as a tracer for terrestrial DOM (Nebbioso & 

Piccolo, 2013). Previous studies of porewater and soil-derived DOM report high relative 

percentages of aromatic lignin-like or lignin-derived compounds, and one study reporting that it 

accounted for 61% of DON in agricultural runoff (Jiang et al., 2017; Li et al., 2018; Nebbioso & 

Piccolo, 2013). It is therefore unsurprising that lignin accounted for at least 48.4% of leached 

DOM and 69.8% of leached DON in our study. Tannins also comprised large fractions of DOM 

in almost all of the leachate samples. Derived from vascular and non-vascular plants, tannins are 

another highly aromatic DOM fraction and, after lignin, are a major source of biologically 

produced polyphenols (Arbenz & Avérous, 2015). Though tannins have been increasingly 

studied as an alternative source of macromolecular architectures for chemical development, they 

have been understudied in agricultural soils (Arbenz & Avérous, 2015) .  

Though a large percentage of the leached DOM and DON were composed of recalcitrant 

compounds, proteins made up 12% of leached DOM compounds (Table 2.4). Proteins and other 

high H/C and low O/C compounds are considered more bioavailable and can serve as a readily 
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available nutrient pool for microbes and plants (D’Andrilli et al., 2015). The number of unique N 

containing compounds (r =-0.90) and the lability of the DOM decreased with sampling depth; the 

relative percentage of highly recalcitrant, lignin-like compounds had a significant (p<0.05) 

positive relationship with sampling depth (Table 2.5). This may indicate that more of the 

bioavailable DOM fraction does not leach through the soil profile and is retained in the soil 

closer to the surface. Additionally, this may indicate that labile DOM is being degraded at soil 

depths closer to the surface. Studies have shown that soil microbial activity decreases with 

increasing depth, with the majority of activity confined to the top few centimeters of the soil 

profile (Tate, 1979). This activity, in turn, in a known control on soil OM degradation and 

chemical composition, as soil microbes preferentially use bioavailable organic compounds in the 

soil solution as a source of N (Ros et al., 2010). Therefore, it may be that the labile fraction of 

DOM and DON present in our plots is being taken up by microbes before it has the opportunity 

to leach from the soil profile, leading to a higher relative proportion of recalcitrant compounds in 

the 90cm leachate samples. This finding supports one of our initial hypotheses: that leachate 

samples would be primarily composed of lignin, but that we would observe a shift in 

composition with increasing sampling depth. 

Although less abundant in the 90cm samples, labile DOM still accounted for an average 

of 17 ± 5% of leached organic compounds. Previous studies of leached OM have observed 

similar trends. In DOM from citrus grove runoff approximately 14% of DON compounds were 

biolabile (Li et al., 2018). While there is still need for further research into the impact of leached 

agricultural DON, studies of DON and non-purgeable organic carbon leached from landfills and 

soils amended from manure indicate that leached DON could contribute significant amounts of 

labile N to downstream aquatic systems, increase the risk of eutrophication in those waters 
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(Bolyard & Reinhart, 2017; Jensen et al., 2000). Studies show that photodegradation of more 

recalcitrant leached compounds may also have an important role to play in the transformation of 

DOM and the leaching of nutrients from agricultural fields (Li et al., 2018). In contrast, our 

dataset indicates <1% of DOM compounds in the leachate samples are highly photodegradable, 

and as depth increased, the percentage of highly photodegradable DOM decreased.  

 

Soil DOM and DON Composition: 

Though not one of our hypotheses, there was a distinct difference in DOM and DON 

composition between the two extraction methods. Lipids comprised the most classifiable 

compounds in all of the chloroform extracted samples. In comparison, the composition of the 

water extractable DOM was more similar to that of the leachate samples: with lignin as the most 

abundant compound in the water extract. Regardless of extraction methodology, protein was 

either the 2nd or 3rd largest functional group (Table 2.4). This difference is widely supported by 

past literature; studies have shown that extraction methodology and extraction solution can 

impact the organic compounds that one is able to capture during FT-ICR-MS analysis (Tfaily et 

al., 2015). Chloroform has been used in previous studies as a tool to investigate the lipid fraction 

of DOM, as it preferentially extracts non-polar compounds (McKee & Hatcher, 2015). In 

comparison, water extracts a wider range of compounds and is slightly selective for 

carbohydrates and compounds with high O/C ratios (Tfaily et al., 2015). 

Although not significant for all the compositional classes, sampling date had an impact 

on the overall composition of soil DOM. Over time, there was a slight decrease in the relative 

percentage of the labile, readily available classes (i.e.: proteins, amino sugars, lipids) and an 

increase in the relative percentage of more complex, recalcitrant compounds (i.e.: lignin). As 
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plant material decomposes, the more labile fraction is used preferentially by plants and microbes 

as a source of C and N (Healey et al., 2004; Lehmann & Kleber, 2015). Previous studies have 

correlated the abundance of lipids, and small, labile compounds with the increased microbial 

activity and the biodegradation of SOM (Hanson et al., 2018). It is likely that the smaller organic 

compounds in our plots were utilized during the growing season resulting in shifts in DOM 

composition. The shift may also explain the increase in highly photodegradable compounds, as 

recalcitrant compounds (such as lignin and both classes of hydrocarbons) are more susceptible to 

photodegradation (Li et al., 2018). As DOM composition shifted and the relative percentage of 

lignin increased, the percentage of highly photodegradable compounds increased as well. This 

indicates that we can accept our second hypothesis – that the chemical composition of OM 

would shift throughout the growing as the corn plants utilized the labile N fraction as a source of 

N. However, the trends we observed were not statistically significant, and further sampling dates 

may provide more clarity on these trends. Previous seasonal studies of DOM observed temporal 

changes in arable soils, with the largest differences occurring between spring and fall (Rosa & 

Debska, 2018).  The post-harvest sample set might have exhibited a more drastic, statistically 

significant DOM shift, but we were unable to process these data due to COVID restriction.  

 

Cover Cropping: 

Cover cropping did not have much impact on the composition of soil or leached DOM. 

We are therefore unable to accept our first hypothesis with any statistical significance: that the 

inclusion of a leguminous cover crop will increase the relative proportion of labile in DON and 

DON. The presence of legumes may partially be responsible for a subtle shift in DOM 

composition between the plots (Figures 2.10 and 2.14). The cereal and fallow plots had similar 

soil DOM compositions but differed from mixed cover plots. The mixed plots had more N peaks 
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(indicating a higher number of N containing compounds) and higher relative percentages of 

lignin, condensed hydrocarbons, and proteins. Legume cover crops have been shown to increase 

to overall and available C and N (Wu et al., 2017). The increase of N peaks may, therefore, be 

explained by the increase in SOM under leguminous cover (Wei et al., 2018). Though this does 

not account for the higher percentage of recalcitrant compounds, this would also explain the 

higher relative percentage of proteins in the plots. Additionally, leached DOM from plots that 

included a leguminous cover had a higher relative percentage of amino sugars.  The inclusion of 

legumes in cover cropping strategies can lead to the enrichment of amino sugar and amino acid 

N in agricultural soils (Praveen-Kumar et al., 2002). Since the legumes in the mixed cover could 

lead to a higher concentration of amino sugars in the soil, leachate from the mixed cover plots 

would contain a higher relative percentage of amino sugars compared to the other cover 

treatments. 

However, the potential influence of legumes in our study was subtle. This could be due in 

part to the fertilization regime of our study. The entire field received a combined 831 lbs of N 

from UAN regardless of cover cropping treatment. Past studies have shown that additional N 

fertilizer can inhibit N fixation and nodulation in legumes (Tanner & Anderson, 1964), one study 

reporting a 23% decrease in N fixation in soybeans when in the presence of a 0.01M NO3
- 

solution (Arrese-Igor et al., 1997). It is possible that the abundance of supplemental N sources in 

our plots reduced the potential effect of the leguminous cover crop. Additionally, it is worth 

noting that, though the plots used in our study were part of an intended long-term study, they 

were sampled in the first year the plots were established. While studies have noted positive short 

term effects of cover-cropping – decreasing soil pH and slightly increasing soil organic C – 

many studies indicate that it can take years of continued management to observe significant 
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effects of cover-cropping on soil fertility properties (Basche et al., 2016; Mukherjee & Lal, 

2015). Therefore, it may be that we would have observed more distinct differences in DOM and 

DOM composition due to cover cropping if we were able to sample once the plots had been 

established for several more years.  

 

Conclusion: 

While FT-ICR-MS analysis revealed several trends in DOM and DON composition of 

our samples, we were not able to report any significant temporal shifts or any significant impact 

made from cover-cropping. Our first hypothesis postulated that the presence of N-fixing, 

leguminous cover crops would lead to a higher proportion of labile N – containing compounds in 

the mixed cover crop plots. Our analysis indicates that the inclusion of red-clover in the cover 

crop had a slight effect on DOM composition, increasing the number of N peaks (indicating a 

higher proportion of N containing organic compounds within the samples) and increasing the 

relative percentages of lignin, condensed hydrocarbons, and proteins. However, this shift was not 

statistically significant and further study in is needed to determine if the effect would be more 

pronounced after multiple years of cover-cropping management.  

Our second hypothesis anticipated a temporal shift in the composition of soil OM within 

our plots. As a corn plant grows, it utilizes N from the surrounding soil to fulfill its nutrient 

requirements. We then hypothesized that the OM present in the soil would act as a source of 

nutrients, and that we would observe a decrease in the relative proportion of labile organic N 

throughout the growing season. This was somewhat supported by our study, as we observed a 

slight decrease in the relative percentage of proteins, amino sugars, and lipids, and a slight 

increase in the relative percentage of recalcitrant, lignin-like compounds. However, this shift was 
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not statistically significant, and additional sampling dates would be needed to determine the 

significance of the decrease in the percentage of labile DOM throughout the growing season.  

Our third and final hypothesis predicted that, as previous studies have indicated that 

lignin is a major component of leachate, leached DOM and DON will be primarily composed of 

lignin. Furthermore, we hypothesized that the composition of organic compounds within the 

leachate samples would shift with increasing depth, and that we would observe a higher 

proportion of recalcitrant, lignin-like compounds at lower sampling depths. This was supported 

by our study, as lignin accounted for at least 48.4% of leached DOM and 69.8% of leached DON 

in our study. We also observed the expected composition shift with increasing sampling depth, 

and the relative percentage of lignin (r=0.61) had a significant (p<0.05) positive correlation with 

increasing sampling depth. We are therefore able to accept our final hypothesis as sampling 

depth had a significant impact on the composition of leached DOM.  

Additional research is needed to confirm the trends we have observed, this study 

indicates that DOM and DON composition may vary over the growing season and with depth. 

This could have potential impacts on how we understand organic N cycling, and better inform 

fertilizer recommendations and field management practices. Current N fertilizer 

recommendations are often based on yield goals; until 2005 the commonly accepted method of 

estimating the fertilizer needed for a field was developed in 1973 and suggested that farmers 

apply 1.2lbs of fertilizer for every expected bushel of corn (Morris et al., 2018). Since then, 

additional methods have been developed: farmers utilize soil N tests to inform N 

recommendations, can use regression models to determine the maximum economic return of 

various N application rates, and can use plant measurements such as chlorophyll content and 

corn stalk nitrate content to inform fertilizer application. However, many of these metrics may be 
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underestimating the contribution of organic N as a source of nutrients in agricultural fields 

(Morris et al., 2018). While more research is needed, the slight temporal shifts in DOM and 

DON composition indicate that plants and microbes are utilizing this organic pool of nutrients 

throughout the growing season. Therefore, while we are not prepared to make any 

recommendations at this time, further investigation into the line of research may help to improve 

N fertilizer recommendations and prevent over-fertilization.  
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Abstract: 

 

Nitrous oxide (N2O) is a powerful greenhouse gas, accounting for 7% of total emissions 

in the United States. Agricultural contributes the largest percentage, accounting for ~75% of 

emissions in the United States. These emissions are inextricably linked to soil N cycling as N2O 

is created as an intermediate in nitrification and denitrification. Past research has focused 

primarily on denitrification, as it was thought to be the major contributor of atmospheric N2O. 

However, recent studies indicate that nitrification might have a greater role to play in N2O 

emissions and indicate that there could be microbes present in agricultural fields that are capable 

of completely oxidizing ammonia (NH4
+). This project quantified functional genes associated 

with nitrification (nxrA and amoA AOB) and dentification (nirS and nirK) to investigate impact 

of agricultural management on alternative N cycling pathways. Soil samples were collected from 

three of the University of Minnesota’s Research Farms and from the Farming System’s Project in 

Beltsville, MD. Samples were collected from experimental plots under a range of systems to 

compare the impact of tillage and fertilization (fertilized v. not fertilized, inorganic v. organic 

fertilizer, and tilled v. no-till plots). Comparison of the average gene abundance of 16S rRNA 
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and the selected functional genes revealed variation among the sites. Analysis of the nitrifier 

community indicates that management had limited impact. Nitrification gene abundance was 

lower in non-fertilized plots when compared to fertilized plots. Analysis of the denitrification 

community yielded mixed results. However, nirK and nirS abundances were higher in no-till 

plots than conventionally tilled plots, and the nirS:nirK ratio was higher in the Beltsville sites 

than in the Minnesota plots.  

 

Introduction:  

 

Nitrous oxide (N2O) is a powerful greenhouse gas, with 300x the warming potential of 

CO2 and accounts for approximately 7% of total greenhouse gas emissions in the United States 

(Billings & Tiemann, 2014; US EPA, 2021a). Additionally, stratospheric N2O leads to the 

production of nitrogen oxide which subsequently reacts with ozone, contributing to ozone 

depletion (Stolarski et al., 2015). There has been limited success in curbing N2O emissions; 

vehicle emission regulations and the Clean Air Act of 1990 led to a small decrease in 

atmospheric N2O from energy production. However, recent publications by the EPA show little 

change in total N2O emissions, reporting 466.81 MMT CO2 equivalent of N2O emission in 2019 

(US EPA, 2021b).  

Nitrous oxide is a common by-product of wastewater treatment, fuel combustion, and 

plastic production. However, agriculture is responsible for the majority (75%) of modern N2O 

emissions, as N2O production is a key step in soil N cycling (US EPA, 2021a). N2O is created as 

an intermediate step in nitrification and denitrification and has repeatedly been shown to be 

influenced by a variety of biotic and abiotic environmental factors. Both nitrification and 

denitrification are microbially mediated processes and microbial abundance and community 

composition can have an impact on N2O emissions (Žurovec et al., 2021). Abiotic factors such as 
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temperature, soil moisture, soil pH, and mineral N availability have been shown to influence 

microbial N-cycling and N2O emissions. Increases in temperature and soil moisture can lead to 

increases in soil organic N mineralization and nitrification which can lead to a subsequent 

increase in N2O (Aliyu et al., 2021; Daly & Hernandez-Ramirez, 2020). Results also indicate that 

soil moisture may be a strong determinant of the roles of nitrification and denitrification as N2O 

sources as nitrification requires an aerobic soil environment, while denitrification requires an 

anerobic soil environment. Studies have shown that in soils with greater than 60% of water filled 

pore spaces (WFPS) denitrification can account for up to 80% of N2O production, and pulse N2O 

emission events are often triggered by weather events in which soil moisture passes this 60% 

WFPS threshold (Aliyu et al., 2021). Lower soil pH has also been correlated with increased N2O 

emissions because pH shifts in the microbial community and hinders the synthesis of enzymes 

crucial to N2O reduction (Žurovec et al., 2021). Additionally, the use of fertilizer has been 

repeatedly reported to increase N2O emissions (Daly & Hernandez-Ramirez, 2020; Ding et al., 

2013). One study of long term (18 year) plots showed an 106% increase of background N2O 

emissions in fields with a history of compost application and a 46-76% increase of background 

N2O emissions in a history of inorganic fertilizer application when comparted to non-fertilized 

control plots (Ding et al., 2013). Another study indicated that by adding organic amendments to 

non-fertilized plots the activity of overall soil microbial community can increase from an initial 

0.1-2% activity to 40% activity within minutes, leading to increases in N2O emissions from 

nitrification (Benckiser et al., 2015). However, it is worth noting that several studies have 

indicated wide variation in the spatial distribution of N-cycling microbial communities in arable 

and wetland soils, which can lead to location specific N2O fluxes (Correa-Galeote et al., 2013; 

Philippot et al., 2009). The uneven application of organic amendments, urea, and nitrification 
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inhibitors can lead to uneven nutrient availability and have been shown to enhance potential 

spot-wise nitrification and N2O emissions (Benckiser et al., 2015).  

Recent studies have begun to apply molecular techniques, quantifying microbial 

functional genes to gain a better understanding of dynamics within and the influence of abiotic 

factors on the nitrifying and denitrifying microbial communities (Garbeva et al., 2007). By 

targeting genes that encode for specific enzymes, researchers can better focus on pertinent 

members of the microbial community and investigate links between functional gene abundance, 

process rates, and N2O emissions. Most studies of agricultural N2O have focused on 

denitrification as it was thought to be the more important N2O production pathway compared to 

nitrification (Bakken et al., 2012). However, recent functional gene studies have suggested that 

nitrification could play an overlooked role in N2O emissions (Wei et al., 2014). One Minnesota 

study reported that the ratio of two nitrification genes nxrA and amoA AOB could explain 78% of 

variance in cumulative NO2
- and 79% of the variance in N2O emissions (Breuillin-Sessoms et al., 

2017). Other studies have investigated the impact of agricultural management strategies on 

microbial populations, several reporting that N additions can have a significant influence on 

microbial community composition.  

Inorganic N fertilizer has been shown to increase the abundance of both nitrifying (amoA 

AOB) and denitrifying (nirS, nirK, and nosZ) genes (Kong et al., 2021). Studies of organic N 

fertilizer have reported similar increases in denitrifying gene abundance (nosZ) but have also 

reported substantial decreases in potential ammonia oxidizing bacteria activity and decreases in 

N2O emissions up to 14% (Kong et al., 2021). Tillage has also been noted as a factor that can 

influence N-cycling microbes with no-till (NT) treatments shifting the dominant nitrite oxidizing 

bacteria (NOB) populations from nxrA (Nitrobacter sp.) to nxrB (Nitrospira sp.) (Breuillin-
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Sessoms et al., 2017). Furthermore, studies of Nitrospira sp. (traditionally thought of as a 

nitrification species) have identified a novel subset of the genus capable of complete ammonia 

oxidation, harboring all the enzymes needed to convert ammonia (NH4
+) to nitrite (NO2

-) and 

NO2
-
 to nitrate (NO3

-) (Van Kessel et al., 2015). Originally isolated from aquaculture filters in 

2015 (Van Kessel et al., 2015), comammox Nitrospira have been detected in soil. Nitrospira 

could play an important role in nutrient limited, oligotrophic soils (Kits et al., 2017; Li et al., 

2019) but might be outcompeted by traditional nitrifying communities in nutrient rich 

environments (Xu et al., 2020). However, there is still much unknown about the role of 

Nitrospira and its potential impact on N2O emissions.  

 Our study aims to target nitrification and denitrification functional genes to investigate 

the impact of management strategies on these novel N-cycling pathways. We had several 

hypotheses: 

1) Previous studies have indicated that long-term management strategies (e.g. tillage and 

fertilization regime) (Breuillin-Sessoms et al., 2017; Kong et al., 2021) can impact the 

composition of the bacterial population in agricultural soils. We hypothesize that as 

organic, no-till systems often manipulate the landscape less than conventionally fertilized 

and tilled fields, the abundance of nitrite-oxidizing and denitrification genes will increase 

under no-till, organic management.  

2) Comammaox Nitrospira has been increasingly observed in agricultural and forest soils, 

and we anticipate that comammox bacteria will be present in all the soil samples, though 

they will be in lower abundance compared to the traditional nitrifiers. 
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3) Fertilizer additions are known to increase nitrification activity within soils (Kong et al., 

2021) and we hypothesize that the inclusion of either manure or inorganic fertilizer will 

increase the overall abundance of nitrification genes (nxrA and amoA AOB).  

 

Experimental Procedures: 

 

Study Site and Sample Collection:  

In collaboration with the USDA and the University of Minnesota, composite 0-20 cm soil 

samples were collected via push probe in late Fall 2019 from plots at the USDA’s Farming 

Systems Project in Beltsville, MD (sampled 10/29), the University of Minnesota’s Research and 

Outreach Centers in St. Paul (sampled 11/6) and Rosemount (sampled 10/28), MN, and the Sand 

Plain Research Farm in Becker, MN (sampled 11/1).  

 All the plots were part of long-term agricultural research projects with histories of N2O 

research and all were under corn (Zea mays L.) production during the 2019 growing season. An 

additional archival sample from the Becker, MN site was included that was taken on 10/1/2018 

in plots under potato production. There was variation in the management strategies at each site 

and among several of the Beltsville plots (Tables 3.1 and 3.2). The Rosemount plots were silt 

loam Waukegan (fine-silty over skeletal mixed, superactive, mesic Typic Hapludoll) and 

received 120 kg N ha-1 of urea-based fertilizer prior to the start of the growing season. A series 

of 6 plots – 3 under no-till (NT) and 3 under conventional tillage (CT) – were used for this study. 

The St. Paul site is also classified as Weaukegan silt loam soils (fine-silty over skeletal mixed, 

superactive, mesic Typic Hapludoll), and 3 CT, non-fertilized (NF) plots were used for the study. 

The soils at the Becker site differed from the other Minnesota site and are classified as loamy 

sand Hubbard soils (sandy, mixed, frigid, Entic Hapludolls). At the Becker site, a subset of NF, 
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CT plots were selected for our study (samples were taken from 4 plots in 2019 and 1 plot in 

2018). The source plot for the 2018 Becker sample was tilled (on 5/4/2018) and had herbicide 

applied (on 5/23/2018) before planting. We were unable to obtain the records for the exact 

tillage, fertilizer application, and herbicide application dates at the Minnesota sites for 2019. 

The Beltsville plots were located on silt loam soils (Christiana (fine, kaolinitic, mesic 

Typic Paleudults), Matapeake (fine-silty, mixed, semiactive, mesic, Typic Hapludults), Keyport 

(fine, mixed, semiactive, mesic Aquic Hapludults), and Mattapex (fine-silty, mixed, active, 

mesic Aquic Hapludults)). A subset of 9 plots were selected for our study: 3 CT plots and 3 NT 

plots that received inorganic NPK fertilizer and 3 organic plots. For the context of this study, the 

organic plots were determined as soils that relied on organic fertilizers (manure) and utilized 

cultural weed management (instead of herbicides). We were unable to obtain the records for the 

exact tillage, fertilizer application, and herbicide application dates at the Beltsville sites for 2019. 

After collection, soils were immediately stored at -40oC for later analysis, with exception 

to the archival sample. The 2018 Becker sample was air dried, sieved, and stored before being 

shipped to University of Maryland in December of 2019 for further analysis.  

 

Sample Preparation:  

DNA was extracted from the soil samples using a Qiagen DNeasy PowerMax soil kit 

(Qiagen, Hilden, Germany). Following the manufacturer’s directions, 0.25g of defrosted soil was 

added to PowerBead tubes and shaken with a series of proprietary solutions using an MP 

FastPrep-24 bead beating grinder and lysis system for 45 seconds at 5.5 ms-1 and an Eppendorf 

Centrifuge 5430 at 10,000g for 3 minutes (in order to collect the supernatant after each solution 
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Maryland Study Site Information 

Treatment Location Soil Type 

# of 

plots Crop Rotation 

Primary 

Tillage 

Weed 

Control Fertilizer Source 

FSP – NT Beltsville, 

MD 

Silt loam  

• Christiana (fine, 

kaolinitic, mesic 

Typic Paleudults) 

• Matapeake (fine-

silty, mixed, 

semiactive, mesic, 

Typic Hapludults) 

• Keyport (fine, 

mixed, semiactive, 

mesic Aquic 

Hapludults) 

• Mattapex (fine-silty, 

mixed, active, mesic 

Aquic Hapludults)  

 

3 Corn (Zea mays 

L.)/ Rye cover 

(Secale cereale 

L.)/ Soybean 

(Glycine max 

L.) / Winter 

Wheat 

(Triticum 

aestivum L.)/ 

Soybean 

(Glycine max 

L.) 

None Herbicides Inorganic 

NPK 

(Cavigelli 

et al., 

2008) FSP – CT 3 Chisel Till 

FSP – 

Org3 

3 Corn (Zea mays 

L.) / Rye cover 

(Secale cereale 

L.)/ Soybean 

(Glycine max 

L.) / Winter 

Wheat 

(Triticum 

aestivum 

L.)/Vetch cover 

(Vicia villosa 

L.) 

Disk/ 

Moldboard 

plow/ 

Chisel 

plow 

Cultural 

(Rotary Hoe/ 

Between 

Row 

Cultivator) 

Manure, 

K2SO4 

 

Table 3.1. Study site information about the Maryland sampling site. Includes: treatment, location, soil type, number of plots sampled, crop rotation, tillage strategy, weed control 

strategy, and fertilizer applied in 2019. 
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Minnesota Study Site Information 

Treatment Location Soil Type 

# of 

plots 

Crop 

Rotation 

Primary 

Tillage Weed Control Fertilizer Source 

Sand Plain 

– 2018 

Becker, 

MN 

Loamy sand  

• Hubbard 
(sandy, 

mixed, 

frigid, Entic 
Hapludolls) 

1 Rye (Secale 

cereale L.)/ 

Potato 

(Solanum 

tuberosum 

L.)/Soybean 

(Glycine max 

L.) & Wheat 

(Triticum 

aestivum L.) 

Chisel & disc 

plow  

Herbicides 

(0.5#/ac 

SencorDF + 

1.0pt/ac Linex 

+ 1.5pt/ac 

Prowl H2O) 

(applied pre-

planting)  

None (Breuillin-

Sessoms 

et al., 

2017) 

 

Sand Plain 

– 2019 

4 

St. Paul St. Paul, 

MN 

Silt loam 

• Waukegan/ 
(fine-silty 

over sandy 

or sandy-
skeletal, 

mixed, 

superactive, 
mesic Typic 

Hapludolls ) 

3 Continuous 

corn (Zea 

mays L.) 

Conventionally 

Tilled 

Herbicides 

(Glyphosphate) 

(applied pre-

planting) 

None (Breuillin-

Sessoms 

et al., 

2017) 

 

Rosemount 

– NT 

Rosemount, 

MN 

Silt loam  

• Waukegan 
(fine-silty 

over skeletal 

mixed, 
superactive, 

mesic Typic 

Hapludoll) 

3 Corn (Zea 

mays 

L.)/Soybean 

(Glycine max 

L.)  

None Herbicides 

(Glyphosphate) 

(applied pre-

planting) 

Urea (120 kg N 

ha-1 applied via 

sidedress 

application 

when corn was 

approx.. 20cm 

high.  

(Breuillin-

Sessoms 

et al., 

2017; 

Venterea 

et al., 

2016) 

Rosemount 

– CT  

3 Moldboard 

(after corn), 

chisel till (after 

soy) 

Table 3.2. Study site information about the Minnesota sampling sites. Includes: treatment, location, soil type, number of plots sampled, crop rotation, tillage strategy, weed 

control strategy, and fertilizer applied in 2019. 
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Gene  Process  Enzyme Microbe Primer Sequence Amp 

size 

(bp) 

Thermocycling 
Conditions 

Source 

nxrA Nitrite 
Oxidation 

Nitrite 
Oxido-
reductase 
alpha 
subunit 

Nitrite 
oxidizing 
bacteria 
(Nitrobacter 
sp.) 

F1norA / 
R2norA 

5'-CAG ACC GAC GTG TGC GAA 

AG-3' / 5' -TCC ACA AGG AAC 

GGA AGG TC-3' 

322 Initialization: 94C (3 min.) 
Cycling: 94C (30s), 55C 
(45s), 72C (45s) for 35 cycles. 
Elongation: 72C (5 min.) 

(Breuillin-
Sessoms et 
al., 2017; 
Wertz et al., 
2008) 

nxrB Nitrite 

oxidizing 
bacteria 
(Nitrospira 
sp.) 

nxrB169f /  

nxrb638r 

5' - TAC ATG TGG TGG AAC A - 3' 

/ 5' - CGG TTC TGG TCR ATC A - 

3' 

485 Initialization: 95C (5 min.) 

Cycling: 95C (40s), 56.2C 
(40s), 72C (90s) for 35 cycles. 
Elongation: 72C (10 min.) 

(Breuillin-

Sessoms et 
al., 2017; 
Pester et al., 
2014) 

nirK Nitrification  
& de- 
nitrification 

Nitrite 
reductase 
(copper 

form) 

Nitrifying & 
denitrifying 
bacteria  

nirK876 / 
nirK1040 

5' -ATY GGC GGV AYG GCG A - 3' 

/  5'- GCC TCG ATC AGR TTR TGG 

TT-3' 

165 Initialization: 95C (5 min.) 
Cycling: Two step 
touchdown. 95C (15s) 

annealing temperature started 
at 63C (60s) and lowered 1C 
each cycle for the first 6 
cycles, 72C (30s). A total of 
46 cycles. Elongation: 72C 
(10 min.) 

(Henry et al., 
2004) 

nirS Nitrite 
reductase 
(heme 
form) 

nirSCD3aF / 
nirSR3cd 

5' – AAC GYS AAG GAR ACS GG - 

3' / 5'- GAS TTC GGR TGS GTC 

TTS AYG AA- 3' 

400 (Hristova & 
Six, 2006) 

16S Protein 

Synthesis 

30S 

ribosomal 
subunit 

Wide range of 

bacteria and 
archaea 

Eub 338F / 

Eub518R 

5' - ACT CCT ACG GGA GGC AGC 

AG - 3' / 5' -ATT ACC GCG GCT 

GCT GG - 3' 

200 Initialization: 95C (5 min.) 

Cycling: 95C (5s), 55C (15s), 
72C (10s) for 40 cycles. 

(Fierer et al., 

2005) 

amoa 

(AOA) 

Ammonia 

Oxidation 

Ammonia 

mono-
oxygenase 

Ammonia 

oxidizing 
archaea 

CrenAmoAQ-

F / 
CrenAmoMo
dR 

5′‐GCA RGT MGG WAA RTT CTA 

YAA - 3' / 5′‐AAG CGG CCA TCC 

ATC TGT A – 3’ 

124 (Mincer et al., 

2007) 

amoa 

(AOB) 

Ammonia 
oxidizing 
bacteria 

amoA-1F / 
amoA-2R 

5'-GGG GTT TCT ACT GGT GGT-3' 

/ 5'-CCC CTC KGS AAA GCC TTC 

TTC-3'  

491 Initialization: 94C (5 min.) 
Cycling: 60C (90s), 72C 
(90s), 94C (60s) for 42 cycles. 
Elongation: 72C (10 min.) 

(Aoi et al., 
2004) 

amoa 

(Coma

mmox) 

Complete 
Ammonia  
Oxidation 

Ammonia 
mono-
oxygenase 

Comammox 
Nitrospira 
Clades  
A & B 

Comaa or 
Comab 244F / 
659R 

Clade A: 5’ -ATY AAY TGG GTS 

AAY TA -3’/ 5’ – ARA TCA TSG 

TGC TRT G – 3’ Clade B:  5’ – TAY 

TTC TGG ACR TTY TA – 3’/ 5’ – 

ARA TCC ARA CDG TGT G – 3’ 

4

15 

Initialization: 94C (5 min.) 
Cycling: 94C (30s), 52C 
(45s), 72C (60s) for 25 cycles. 
Elongation: 72C (10 min.) 

(Klotz et al., 
2017; Lin et 
al., 2020) 

Table 3.3. A series of commonly studied functional genes associated with N cycling microbes. For each gene, the table lists the process associated with the gene, the enzyme 

the gene encodes, common microbes that harbor the gene, the corresponding primer set and sequence we used in this study, the amplicon size, the needed thermocycling 

conditions, and the source of information. 
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addition). DNA was quantified using a Quibit 2.0 Flurometer and stored at -20oC for later 

analysis.  

 

Q-PCR:  

Functional genes related to N cycling were identified and selected for further analysis. 

These nitrification and denitrification genes, the enzymes they encode, and the primers and 

thermocycling conditions commonly used to amplify them, are listed in Table 3.3. Primers were 

tested for each functional genes by conducting a conventional PCR with a subset of the samples 

of extracted DNA: 10uL of GoTaq Green Master Mix 2x (Promega, Madison, WI, USA), 5uL of 

water, 1uL of forward primer, 1uL of reverse primer, 1uL of 1000ug uL-1 bovine serum albumin 

(BSA), and 2uL of extracted DNA into each well. Successful amplification was checked via gel 

electrophoresis using an Amersham Pharmacia Biotech Rig set at 120v, 70mA, and run for 40 

minutes. Invitrogen SYBR Safe DNA gel stain (Invitrogen, Waltham, MA, USA) was used in 

conjunction with the Green Master Mix to stain the DNA during the gel electrophoresis, and 

UVP BioDoc-It Imaging System was used to take pictures of the resulting gels under UV light. 

Of the initial list of functional genes, nxrA, nirK, nirS, amoA AOB, and 16S rRNA were selected 

for further study. 

E. coli Q-PCR standards were created using a TOPO TA Cloning Kit (Invitrogen, 

Waltham, MA, USA) with a pCR 2.1-TOPO Vector following the manufacturer’s guidelines. 

Briefly, a subset of DNA extracts were PCR amplified using the following mix: 9.3uL water, 

5uL of 5x Colorless GoTaq Reaction Buffer, 1.8uL of 25mM MgCl2, 1.3uL of Forward and 

Reverse Primer, 0.5uL of 2.5mM dNTP Mix, 4uL of 0.4% BSA, 0.1uL of Taq DNA Polymerase, 

and 2uL of 2.5ng uL-1 DNA in each well. Next, 4ulLof amplified PCR product for each of the 
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functional genes was added to a 0.65mL tube along with 1uL of salt solution and 1uL of TOPO 

Vector. The reaction was allowed to incubate at room temperature (22-23oC) for 5 minutes while 

a tube of OneShot TOP10 (Invitrogen, Waltham, MA, USA) chemically competent E.coli cells 

was allowed to thaw on ice. The ligation reaction (2uL) was added to the E.coli, flipped to mix, 

and incubated on ice for 5 additional minutes. The E. coli cells were then heat shocked in a 42oC 

water bath for 30 seconds, after which 250uL of room temperature SOC was added to the 

shocked cells. The resulting cell suspension was capped and incubated at 37oC for 1 hour while 

shaking. For each of the cell suspensions, 2 Luria broth plates with ampicillin were treated with 

40ul of 40 mg mL-1 X-gal 1 hour before plating and allowed to warm at 37oC for 30 minutes 

before plating. The resulting transformed cells were plated on the prepared growth media; for 

each cell suspension 50uL the mixture was added to one plate while 100uL of the mixture was 

added to a second plate. All plates were incubated overnight at 37oC.  

The following day, the plates were checked for growth, and a subset of white, 

successfully transformed colonies were re-streaked onto new Luria broth plates with ampicillin. 

These were allowed to incubate overnight at 37oC. The resulting growth was tested for 

successful transformation by PCR amplification for each colony in question, using a standard 

reaction mix. 

A subset of the clones that had successfully amplified were regrown in tubes containing 

6mL of Luria broth with ampicillin. These were incubated overnight at 37oC. The following day, 

1mL of overnight culture was combined with 400uL of glycerol and preserved at -80oC in a 

cryotube. Plasmids were extracted from the remaining 5mL of overnight culture using the 

Qiagen QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany). The resulting plasmids were 

quantified using a Quibit 2.0 Flurometer, linearized using FastDigest Eco321(Thermoscientific, 
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Waltham, MA, USA), cleaned with a Qiagen QIAquick PCR Purification Kit (Qiagen, Hilden, 

Germany), and re-quantified using a Quibit 2.0 Flurometer. The resulting plasmids were diluted 

to 2.5ng ul-1, which was in turn used to create a serial dilution (2.5x10-1 ng ul-1, 2.5x10-2 ng ul-1, 

2.5x10-3 ng ul-1, 2.5x10-4 ng ul-1, and 2.5x10-5 ng ul-1) that would serve as a potential standard set 

for the Q-PCR analysis.  

 Each of the standards were tested and optimized for Q-PCR using a mastermix that 

contained: 10uL KicqStart SYBR Green qPCR ReadyMix with ROX (Sigma-Aldrich, St. Louis, 

MO, USA), 6uL of water, 1uL of each primer, and 2uL of sample. An Applied Biosystems 

StepOnePlus Real-Time PCR System was used for all Q-PCR assays and each sample was run in 

triplicate for genes: nxrA, nirK, nirS, amoA AOB, and 16S rRNA.  

 

Data Analysis: 

JMP Pro 15 was used for multivariate analysis (Pearson Correlations) and one-way 

ANOVAs to explore the impact of management strategy and sampling location on the abundance 

of functional genes. Analysis was conducted on the raw gene abundance data as well as on 

several ratios (nxrA:amoA AOB, nirS:nirK) to better understand the dynamics among the 

populations. The abundance of each functional gene was also divided by 16S rRNA gene 

abundance to determine the relative proportion of each functional gene to overall bacterial 

abundance, effectively normalizing the dataset and allowing comparison among sampling sites. 

For each functional gene or gene ratio, we conducted multiple One-Way ANOVAs to 

compare the abundances or ratios: 

1) between the Maryland and Minnesota soils (MD v. MN) 

2) among all the sampling sites (Site Diff (all)) 

3) among the Minnesota sampling sites (Site Diff (MN)) 
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4) between all no-till (NT) and conventionally tilled (CT) plots across all the sampling 

sites (NT v. CT (all)) 

5) between the NT and CT plots across all the Minnesota sampling sites (NT v. CT 

(MN)) 

6) between the NT and CT plots at the Rosemount, MN site (NT v. CT (Rosemount)) 

7) between the NT and CT plots at the Beltsville, MD site (NT v. CT (Beltsville)) 

8)  between the fertilized (F) and non-fertilized (NF) plots across all the sample sites (F 

v. NF (all)) 

9) between the F and NF plots across the Minnesota sample sites (F v. NF (MN)) 

10) between the organic and inorganically fertilized plots at the Beltsville, MD site 

(Organic v. Inorganic (Beltsville)).  

Pearson correlations were conducted to determine the significance of the shifting 

microbial community and any potential relationships between the nitrifiers and denitrifiers we 

were able to amplify, comparing the raw (16S, nxrA, amoA AOB, nirS, and nirK) and normalized 

(nxrA:16S, amoA AOB:16S, nirS:16S, and nirK:16S) gene abundances. For all the One-Way 

ANOVA and Pearson Correlation Analyses each data point represented the gene abundance or 

gene ratio for one of the sampled plots at a site (instead of a mean value across the treatments at 

a given site). 

 

Results: 

 

 

Microbial Abundance: 

 

Overall, 16S rRNA gene abundance was significantly lower in the Beltsville samples 

compared to the group of Minnesota samples (F= 16.375, p=0.0006), indicating a relatively 
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smaller bacterial community at the Maryland site (Table 3.4 & Figure 3.2a). 16S rRNA gene 

abundance varied across the Minnesota sites, but most sites had similar 16S rRNA gene 

quantities. One exception was the Becker 2018 sample, which was the lowest of the Minnesota 

samples and much lower than the Becker sample from the following year (Figure 3.1a). Though 

not significant, it is also worth noting that the no-till plots had a greater 16S rRNA gene 

abundance than the corresponding conventionally tilled plots at both the Rosemount and 

Beltsville sites (Figures 3.1a and 3.2a and Table 3.4)  

 

Nitrification Functional Genes: 

  

Although five different nitrification genes were planned for this study, we had difficulty 

cloning standards in order to quantify amoA AOA (ammonia oxidizing archaea) and nxrB (nitrite 

oxidizing Nitrospira sp.). Furthermore, we were unable to amplify Clades A&B of Comammox 

Nitrospira from the soil samples. Our analysis focuses on amoA AOB (ammonia oxidizing 

bacteria) and nxrB (nitrite oxidizing Nitrobacter sp). Site location had a significant effect on the 

abundance of nxrA and amoA AOB (nxrA, F=6.4514, p=0.0021; amoA AOB, F=4.6975, p=0.009) 

(Table 3.4). The Beltsville samples had significantly lower nxrA (F=15.261, p=0.0008) and 

amoA AOB (F=8.054, p=0.010) gene abundances than the Minnesota samples (Figures 3.1 b & c, 

3.2 b & c, Table 3.4). When normalized to account for the 16S rRNA gene at the sites, there were 

no significant differences in nitrification genes by site or between the Maryland and Minnesota 

samples (Table 3.5). Although not significant (p<0.05), lower normalized nitrification gene 

counts were observed at the non-fertilized Minnesota sites when compared to fertilized plots 

(Figure 3.3 a & b).  
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Figure 3.1. Average 16S rRNA gene, amoa AOB, nxrA, nirK, and nirS gene abundance 

(average gene copy number per gram of wet soil) for each of the treatments in the 

Minnesota sites. 

 

Figure 3.1: Microbial Abundance in Minnesota Plots 
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Figure 3.2. Average 16S rRNA, amoA AOB, nxrA, nirK, and nirS microbial 

abundances (average gene copy number per gram of wet soil) for each of the 

Beltsville treatments. 

 

Figure 3.2: Microbial Abundance in Beltsville Plots 
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Functional Gene Abundance One-Way ANOVA Summary Table 

 16S  nxrA AOB nirS nirK 

 F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value 

MD v. MN 16.375 1, 21 0.001 15.261 1,21 0.001 8.054 1,21 0.010 0.001 1, 21 0.974 11.923 1,21 0.002 

Site Diff. (all) 6.473 4, 18 0.002 6.451 4,18 0.002 4.698 4,18 0.009 8.037 4,18 0.001 7.328 3,19 0.002 

Site Diff (MN) 1.118 2, 11 0.361 1.181 2,11 0.343 2.585 2,11 0.120 11.608 2,11 0.002 2.117 2,11 0.167 

NT v. CT (all) 2.000 1, 21 0.172 0.884 1,21 0.358 0.203 1,21 0.657 1.889 1, 21 0.184 1.407 1,21 0.249 

NT v. CT (MN) 2.239 1, 12 0.160 0.633 1,12 0.442 0.969 1,12 0.344 1.788 1, 12 0.206 1.817 1,12 0.203 
NT v. CT 

(Rosemount) 10.298 1, 4 0.033 3.647 1,4 0.129 0.004 1,4 0.950 5.768 1,4 0.074 8.500 1,4 0.043 

NT v. CT 

(Beltsville) 0.040 1, 7 0.848 0.075 1,7 0.792 0.007 1,7 0.937 0.209 1,7 0.661 2.983 1,7 0.128 

F. v. NF (all) 5.562 1, 22 0.028 2.623 1,21 0.120 0.001 1,21 0.972 3.034 1, 21 0.096 2.328 1,21 0.142 

F v. NF (MN) 0.358 1, 12 0.561 0.003 1,12 0.954 2.275 1,12 0.157 3.031 1, 12 0.107 0.000 1,12 0.987 

Organic v. 

Inorganic 

(Beltsville) 2.760 1, 8 0.135 0.520 1,8 0.492 1.092 1,8 0.327 0.014 1,8 0.909 0.352 1,8 0.569 

Table 3.4. Summary table of One-Way ANOVA values for 16S rRNA, nxrA, amoa AOB, nirS, and nirK gene abundance (average gene copy 

number per gram of wet soil). Bolded values indicate significant (p<0.05) differences. 
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Although also not significant, higher nxrA:16S rRNA was observed in the CT plots when 

compared to the corresponding NT plots at Rosemount and Beltsville (Figures 3.3b and 3.4b). 

Regarding the effect of tillage on the nitrification community, there were no clear trends in the 

AOB:16S rRNA sample set. The Rosemount NT plots had a lower average AOB:16S rRNA that 

the Rosemount CT plots (Figure 3.3a), however the wide range of the Rosemount CT values led 

to a large SE for the sample plots and there was not statistically significant difference between 

the Beltsville NT and CT averages. Though not significant, largest treatment difference at the 

Beltsville site was between the NT and organic plots (Table 3.5, Figure 3.4); the organic plots 

had relatively higher average nxrA:16S rRNA and slightly lower average AOB:16S rRNA 

(Figure 3.4 a& b) that the NT plots. The nxrA:amoA AOB gene ratio was higher at the Beltsville 

sites (F=11.751, p=0.003) when compared to the Minnesota samples (Table 3.5). There was less 

variation in the ratio across Minnesota samples (0.6-9.0), compared to Beltsville (1.7 – 51.8) 

(Figures 3.3e and 3.4e,). 

 

Denitrification Functional Genes: 

Similar to the 16S rRNA and other functional gene abundance, sampling site (F=6.059, 

p=0.003) and state (F=11.923, p=0.002) had a significant impact on the abundance of nirK gene 

copy numbers but did not impact nirS gene copy number (Table 3.4). Though not significant, the 

NT plots in both Beltsville and Rosemount had higher average nirS and nirK abundance than the 

corresponding CT plots at the respective sites (Table 3.4, Figures 3.1 d &e and 3.2 d & e). When 

normalized using 16S rRNA gene abundance additional trends emerged. There was significantly 

higher nirS:16S rRNA ratios (F=46.754, p=<0.0001) in Beltsville plots compared to the 

Minnesota samples.  
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Figure 3.3. Ratios of amoA AOB: 16S rRNA, nxrA:16S rRNA, nirK:16S rRNA, 

nirS:16S rRNA, nxrA: amoA AOB, and nirS:nirK gene abundances for each of 

the treatments at the Minnesota study sites. 

 

Figure 3.3: Microbial Abundance Ratios in Minnesota Plots 
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Figure 3.4. Ratios of amoA AOB: 16S rRNA, nxrA:16S rRNA, nirK:16S rRNA, 

nirS:16S rRNA, nxrA: amoA AOB, and nirS:nirK gene abundances for the 

Beltsville treatments. 

 

Figure 3.4: Microbial Abundance Ratios in Beltsville Plots 



97 
 

Additionally, though not statically significant the Beltsville NT plots also had lower nirS:16S 

rRNA ratios averages than the CT plots (Figure 3.4d). The ratios of nirS:16S rRNA and 

nirK:16S rRNA were higher in organic plots compared to conventional and no-till (Table 3.5). 

The nirS: nirK ratio differed between sampling site (F=8.203, p=0.0006) and state (F=32.959, p= 

<0.0001), with the highest ratios observed in the Beltsville plots (Figure 3.4f). Though not 

significant, higher nirS:nirK values were observed in the NF Minnesota plots when compared to 

fertilized plots from the Minnesota sites (Figure 3.3f). A comparison of tillage treatments 

indicates conflicting trends, there was a slightly higher but not statistically significant difference 

in nirS: nirK ratio in NT plots at Beltsville (F=2.326, p=0.17), but a higher nirS:nirK ratio in the 

CT plots at Rosemount (F=19.291, p=0.012) (Figures 3.3f and 3.4f). 

 

Overall Microbial Community Composition: 

PCoA coordinates clustered based on sample site location (Figure 3.5), consistent with 

the One-Way ANOVAs on individual gene abundances (Table 3.4). There was also weak 

clustering based on management strategy: the non-fertilized plots loosely clustered in the center 

and top right quadrant and the no-till data points clustered loosely in the two left hand quadrants.  

However, sampling site seems to have the strongest influence on clustering, as the points are 

more strongly grouped by sampling location. Pearson correlations to investigate the composition 

of the bacterial populations show that 16S rRNA gene abundance was significantly correlated to 

increases in all the functional genes (p<0.05) (nxrA, r=0.91; nirS, r= 0.54; amoA AOB, r=0.55) 

(Table 3.6). The abundance of nitrification genes nxrA and amoA AOB were strongly correlated 

to one another (r=0.71, p=0.0001), while nxrA was weakly positively correlated to the abundance 

of nirS (r=0.42, p=0.05) (Table 3.6). When normalized with the 16S rRNA gene abundance, 

there no significant correlations between the functional genes.  
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Normalized Functional Gene Abundance and Gene Ratios  

One-Way ANOVA Summary Table 

 nxrA:16S AOB:16S nirS:16S nirK:16S 

 F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf p-value F 

ndf, 

ddf 

p-

value 

MD v. MN 0.894 1,21 0.355 3.949 1,21 0.060 46.754 1,21 <0.0001 1.266 1,21 0.273 

Site Diff. (all) 1.033 4,18 0.417 2.013 4,18 0.136 12.111 4,18 <0.0001 0.730 3,19 0.547 

Site Diff (MN) 1.837 2,11 0.205 1.217 2,11 0.333 10.243 2,11 0.003 1.604 2,11 0.245 

NT v. CT (all) 0.877 1,21 0.360 1.631 1,21 0.216 0.025 1,21 0.876 0.323 1,21 0.576 

NT v. CT (MN) 3.332 1,12 0.093 3.476 1,12 0.087 0.325 1,12 0.579 0.050 1,12 0.826 

NT v. CT (Rosemount) 0.440 1,4 0.543 0.455 1,4 0.537 1.060 1,4 0.362 1.950 1,4 0.235 

NT v. CT (Beltsville) 0.118 1,7 0.741 0.053 1,7 0.824 0.147 1,7 0.713 0.279 1,7 0.614 

F. v. NF (all) 2.300 1,21 0.144 0.294 1,12 0.593 3.474 1,21 0.076 1.025 1,21 0.323 

F v. NF (MN) 1.729 1,12 0.213 2.653 1,12 0.129 1.573 1,12 0.234 0.683 1,12 0.425 
Organic v. Inorganic 

(Beltsville) 4.149 1,8 0.076 1.263 1,8 0.294 1.071 1,8 0.331 1.813 1,8 0.215 

 nxrA:AOB nirS:nirK 

 F 

ndf, 

ddf 

p-

value F 

ndf, 

ddf 

p-

value 

MD v. MN 1.266 2,21 0.243 32.959 1,21 <0.001 

Site Diff. (all) 0.730 3,19 0.547 11.158 2,19 0.000 

Site Diff (MN) 1.344 2,11 0.301 8.999 2,11 0.005 

NT v. CT (all) 0.309 1,21 0.584 0.299 1,21 0.590 

NT v. CT (MN) 0.088 1,12 0.771 0.325 1,12 0.579 

NT v. CT (Rosemount) 0.389 1,4 0.567 19.291 1,4 0.012 

NT v. CT (Beltsville) 1.046 1,7 0.341 2.326 1,7 0.171 

F. v. NF (all) 1.547 1,21 0.227 2.584 1,21 0.123 

F v. NF (MN) 3.010 1,12 0.108 3.425 1,12 0.089 
Organic v. Inorganic 

(Beltsville) 0.340 1,8 0.576 0.132 1,8 0.726 

Table 3.5. Summary table of One-Way ANOVA values for 16S rRNA normalized nxrA, amoa AOB, nirS, and nirK gene 

abundance as well as for the nxrA:amoA AOB and nirS:nirK ratios. Bolded values indicate significance (p<0.05). 
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Figure 3.5. The above figure illustrates the results of the Principal Coordinate Analysis conducted on the entire dataset to explore 

trends in the overall community composition of each soil sample. Shapes are used to differentiate the sample site location of each 

plot, and the points are shaded to indicate the combination of management strategies.  

 

Figure 3.5: PCoA of Microbial Community Composition 
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Functional Gene Pearson Correlations 

 

nirK: 

16S 

nirS: 

16S 

AOB: 

16S 

nxrA: 

16S nirK nirS AOB nxrA 

16S -0.45 -0.54 0.20 -0.21 0.89 0.54 0.55 0.91 

nxrA -0.50 -0.52 0.39 0.11 0.91 0.42 0.71  
AOB -0.41 -0.41 0.90 0.28 0.65 0.21   

nirS 0.29 0.26 -0.01 -0.12 0.51    
nirK -0.51 -0.44 0.29 -0.02     

nxrA:16S 0.02 0.29 0.34      
AOB:16S -0.30 -0.30       

nirS:16S 0.81        

Table 3.6. Pearson Correlations comparing the 16S rRNA, nxrA, amoa AOB, nirS, and nirK gene 

abundance (average gene copy number per gram of wet soil) as well as 16S rRNA normalized 

nxrA, amoa AOB, nirS, and nirK gene abundances. Bolded values indicate significance (p<0.05) 
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 Historical N2O Emissions (µg N g-1soil) in Minnesota Sample Sites 

 Initial urea-N concentration (µg N g-1) 

 0 100 250 500 1000 

Becker, MN 1.21  1.37  14.3  37.9  12.1  

Rosemount -

CT  1.05  2.23  2.48  2.49  13.2  

Rosemount-

NT  1.1  1.39  1.18  1.42  30.5  

St. Paul 0.95  1.09  1.07  8.66  21.5  

Table 3.7. Historical N2O emission data for the Minnesota sample sites, under different fertilization 

regimes. Data adapted from (Breuillin-Sessoms et al., 2017). 
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There was a weak relationship between nxrA:16S rRNA and the other normalized functional 

genes: nirS:16S (r=0.29 p= 0.18) and AOB:16S (r=0.34, p=0.11) (Table 3.6). Though not 

significant, nirS:16S was also weakly negatively correlated with AOB:16S (r=-0.30, p=0.17) 

(Table 3.6). 

 

Discussion:  

 

N2O Emissions: 

 

Though N2O data were not collected from all plots during the 2019 sampling season, all 

sampling sites have a long-term N2O emissions data. Values reported from the Minnesota sites in 

2017 indicate a range of N2O emissions (Table 3.7) among the study sites and among the various 

management strategies (Breuillin-Sessoms et al., 2017). Generally, the historical data indicates 

that N2O emissions increased with higher N fertilizer application rates. At the Rosemount site 

N2O emissions were slightly higher in CT plots than NT plots when receiving 100-500 µg N g-1. 

Nitrous oxide emissions also varied by site, the Becker site reported the highest N2O emissions at 

most fertilization levels, followed by the Rosemount and St. Paul sampling sites. Values reported 

from the Beltsville site show that the highest emissions were recorded in the organic plots 

followed by the chisel and no-till plot. Although this difference was statistically significant on 

some sampling days, cumulative emission records indicate no statistically significant differences 

in N2O emissions among the treatments (Djurickovic, 2010).  

 

 

Microbial Abundance: 

 

Abundance of 16S rRNA genes per gram of soil varied greatly between sampling sites 

and between the Maryland and Minnesota samples. This variation could be due to a wide variety 
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of environmental factors including: soil type, rainfall, temperature, and soil pH (Cao et al., 

2016). The Becker 2018 sample had lower 16S rRNA and functional gene abundances, which is 

likely due to the sample having been previously sieved and dried, and storage conditions are 

known to effect microbial community analysis (Rubin et al., 2013). 16S abundance was also 

correlated to tillage regime, matching what has been observed in the literature and reporting 

higher relative abundances (RAs) in NT plots. Tillage is known to homogenize soils, and 

previous studies have indicated that long-term no-till management can increase fungal and 

bacterial abundance and bacterial richness (Sengupta & Dick, 2015; Sun et al., 2016). Though it 

was not observed in our study, organic farming practices have also been known to have a 

positive effect on soil microbial biomass (C and N) as well as increase total phospholipid fatty 

acids (PLFAs) (Lori et al., 2017).  

 

Nitrification Functional Genes:  

 

Though comammox Nitrospira have been observed in agricultural soil samples, we were 

not able to amplify the corresponding functional genes from any of our samples. We must 

therefore reject our second hypothesis: that we would observe comammox Nitrospira in all of the 

soil samples, though they would be in lower abundance than traditional nitrifiers. This could 

indicate that comammox Nitrospira was not present in any of our plots. However, this could also 

be due to our choice of primer sets. A recent study evaluated the effectiveness of the two most 

common primer sets used to amplify comammox Nitrospira and found that the set that we used 

(comA/B- 244f/659r) was effective in amplifying samples with high relative abundances but that 

it was not sensitive to clades with a lower RA (Lin et al., 2020). Previous studies that have 

successfully isolated comammox Nitrospira from agricultural soils have indicated lower RAs 
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compared to more traditional nitrifiers, and the comammox Nitrospira might be outcompeted in 

high nutrient (NH3
+) environments (Xu et al., 2020). 

Analysis of the successfully amplified nitrification functional genes reveal some 

differences in the nitrifying community in relation to management strategy. These differences 

were not significant but are supported by similar findings from the literature. Long-term 

fertilization has repeatedly been shown to increase nitrifiers, especially ammonia-oxidizing 

bacteria (Aliyu et al., 2021; Sun et al., 2015). The non-fertilized plots in our study had slightly 

lower nxrA:16S rRNA ratio and much lower amoA AOB:16S rRNA ratio when compared to the 

other fertilized Minnesota plots. While not significant, this supports our third hypothesis: that 

fertilizer applications (either manure-based or inorganic fertilizer) will increase the overall 

abundance of nitrification genes (amoA AOB and nxrA). 

The potential impact of tillage was mixed, and conflicts with trends reported in previous 

studies. Though not significant, nxrA:16S rRNA was higher in the CT plots than in comparable 

NT plots at both Beltsville and Rosemount, indicating that tillage may have increased the relative 

proportion of nitrifiers (Figures 3.3 b &c, 3.4 b & c). Past studies have reported the opposite 

trend, and this does not support our initial hypothesis (that greater nxrA gene abundance would 

be observed in the no-till plots). One study of long-term experimental plots in France found that 

no-till soils had greater nxrA gene abundance and potential nitrite oxidation (Attard et al., 2010). 

Furthermore, the ratio between nxrA and amoA AOB has been used as an indicator for 

nitrification activity, one previous study reported that it explained 79% of variance in cumulative 

N2O emissions (Breuillin-Sessoms et al., 2017). Though not significant, no-till plots in Beltsville 

did have higher nxrA: amoA AOB than the Beltsville CT plots (Figure 3.4e). This indicates that 

there might be tighter coupling between the communities of ammonia oxidizers and nitrite 
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oxidizers. Nitrous oxide emissions due to nitrification in agricultural soils has often been referred 

to metaphorically as a leaky pipe. In this scenario total N2O emissions are proportional to N-

cycling, and nitrification is mediated by two distinct microbial populations: ammonia oxidizers 

(amoA) and nitrite oxidizers (nxr) (Xing et al., 2011). Leaks (referring to additional N2O 

emissions) can occur when these two populations of nitrifiers within the soil system are not 

coupled (Breuillin-Sessoms et al., 2017). For example, if there are more ammonia oxidizers 

present in the soil than nitrite oxidizers, a leak is created and the imbalance of microbial activity 

can lead to a build-up of nitrite, and as a by-product of increased ammonia oxidation can 

increase N2O emissions. Our data therefore suggests that, while not statistically significant, the 

nitrifying populations are more tightly coupled at the Beltsville NT plots compared to the CT 

plots. This is also supported by historical N2O emission data from the Beltsville plots. While not 

statistically significant, the N2O emissions at these sample sites reported lower N2O emissions in 

the NT sites compared to the CT sites (Breuillin-Sessoms et al., 2017; Djurickovic, 2010). 

However, the same trend was not observed between the CT and NT treatments in Rosemount 

(Figure 3.3e). Further research is needed, but this indicates that while there may not have been a 

substantial difference in the size of the overall nitrifying community between tillage practices, 

no-till management may still increase potential nitrite oxidation and subsequently decrease 

overall N2O emissions.  

 

Denitrification Functional Genes:  

 

In our study, we measured nirS and nirK functional genes that each correspond to one of 

the two common forms of nitrate reductase within denitrifying communities. Unlike nitrification, 

the full pathway for denitrification can be found in one organism, with common denitrifiers 
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containing all the requisite enzymes for complete denitrification (Jones et al., 2008). As such, 

each sample’s nirS and nirK abundances can act as a proxy to represent the abundance of general 

denitrifiers with nirS and denitrifiers with nirK within each plot. 

There were no significant differences between the denitrification gene abundances. 

However, several of the trends that were observed are supported by past studies. The ratio of 

nirK:16S rRNA was consistently higher in no-till plots comparted to tilled plots at both 

Rosemount and Beltsville, and previous studies have repeatedly indicated that no-till 

management can increase soil denitrification activity and gene abundance (Wang & Zou, 2020). 

This in turn has been correlated with an increase in N2O emissions in multiple studies (Billings 

& Tiemann, 2014; Kong et al., 2021; Wang & Zou, 2020). Analysis of nirS gene abundance at 

our study sites, however, yielded contradictory results; CT plots had slightly higher nirS:16S 

rRNA abundance than NT plots at both Rosemount and Beltsville (Figures 3.3d and 3.4d). 

However, comparing the Beltsville samples to historical N2O data it is worth noting that the 

nirS:16S rRNA ratio follows the same trend as N2O past N2O emissions in the plot. Though not 

significantly different, the organic plots had the highest nirS:16S rRNA ratio, followed by the CT 

plots, and NT plots. Similarly, though not statistically significant, the historical N2O data 

indicates that the highest emissions were recorded in the organic plots followed by the CT and 

NT plots. Further investigation is needed to explore this relationship.  

 Comparison of the two denitrifying genes, indicates much greater nirS abundance in 

comparison to nirK, and higher nirS: nirK in all the Beltsville plots when compared to the 

Minnesota plots. NirS encodes the more common heme form of nir (Alvarez et al., 2014); 

therefore, nirS would have a greater abundance in all our plots. The difference in the ratio of 

nirS: nirK could potentially be explained by differences in field conditions and environmental 
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factors. The niches of nirS and nirK have been studied, and both have been noted to be 

influenced differentially by soil pH, soil water content, total soil carbon, and soil development 

(Bowen et al., 2018; Herold et al., 2018; Szukics et al., 2010). The Beltsville and Minnesota sites 

have very different climates: Beltsville receives and average of 1110mm of precipitation and has 

an average temperature of 12.8oC, while the Minnesota sites are drier on average (879mm of 

precipitation) and colder (6.4oC). This difference can in turn influence soil formation, available 

water in the soil, and a wide range of other soil properties (Doula & Sarris, 2016). Additionally, 

this could indicate that the Minnesota sites have a lower pH, as loss of nirS abundance has been 

linked to decreases in pH and is more sensitive to pH change than nirK (Herold et al., 2018).  

 

Conclusion: 

 

The results of this study were mixed, and we are unable to accept our hypotheses with 

any statistical significance. Our first hypothesis postulated that, as previous studies have shown 

that long-term management can have impact on soil microbial populations, we would expect a 

greater abundance of nitrite oxidizing and denitrification genes in less manipulated (no-till and 

organic) plots. Comparison of the nxrA and amoA AOB gene abundance under different tillage 

regimes in our plots yielded mixed results. Treatment had no clear difference among the 16S 

rRNA normalized amoA AOB values in the Beltsville plots. Furthermore, while it is not 

statistically significant, the amoA AOB:16S rRNA at the Rosemount, MN site and the nxrA:16S 

rRNA ratios at both Beltsville and Rosemount were higher in conventionally tilled plots than 

non-tilled plots. This contradicts what have been observed in past literature. Additional research 

is needed to understand this relationship further.  

We also must reject our second hypothesis: that we would expect to observe comammox 

Nitrospira in all of our soil samples. This could indicate that it may not be as ubiquitous in soils 
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as other studies indicate, or that successful amplification requires alternative primers to amplify 

comammox bacteria in environments where it would have lower relative abundances. Further 

study in needed, as other studies have begun to isolate comammox Nitrospira in agricultural 

soils, and it may yet prove to have an important role to play in agricultural N cycling.  

Although we are unable to accept our third and final hypothesis with any statistical 

significance, the data from our study does support our prediction. As fertilizer application is 

known to increase nitrification activity within soils, we anticipated that additional N (from 

manure or inorganic fertilizer) would increase the abundance of nitrification genes (nxrA and 

amoA AOB). While not significant, the non-fertilized Minnesota plots reported both lower amoA 

AOB:16S rRNA and nxrA:16S rRNA ratios. While gene and microbial abundance is not a proxy 

for microbial activity, this would indicate smaller nitrifying communities in non-fertilized plots 

(compared to fertilized plots).  

 Throughout our analysis, we found that sampling site had the largest impact on overall 

functional gene abundance. Comparing the Maryland samples to the Minnesota samples, there 

were statistically significant differences in 16S rRNA, nxrA, amoA AOB, and nirK abundance 

(Table 3.4). Comparing all 5 independent sites, there were significant differences in the 

abundance of 16S rRNA and all the studied functional genes (Table 3.4). While there were less 

significant differences among the sites once normalized with 16S rRNA abundance, there was 

still wide variation in the microbial community composition of the various sites. This indicates 

that, while more research is needed, the site-specific environmental factors may have more 

control over soil microbial communities and N2O emissions than management techniques. 

Current management recommendations to limit N2O emissions are broad: extension agencies 

suggest that farmers use less fertilizer, using split application of fertilizer to increase the plant 
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use efficiency, incorporating N-fixing legumes into crop rotations, minimizing tillage, and 

preventing fields from becoming water-logged (Sudmeyer et al., 2014). Additionally, farmers 

have increasingly used nitrification inhibitors such as 3,4-dimethylpyrazole phosphate (DMPP) 

and dicyandiamide (DCD) to decrease N2O emissions by targeting ammonia-oxidizing bacteria 

and archaea and decreasing a soil’s net nitrification rate (Chen et al., 2015). While this research 

does not discount these approaches, it emphasizes the heterogenous nature of field work and 

indicates that farm managers may want to take a more targeted, site-specific approach to limit 

agricultural N2O emissions.  
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 9.76E+19 9.76E+19 16.375 0.0006 Till 1 1.91E+19 1.91E+19 2.240 0.1604 

Error 21 1.25E+20 5.96E+180   Error 12 1.03E+20 8.54E+18   
C. 

Total 22 2.23E+20    

C. 

Total 13 1.22E+20    

            
Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 4 1.31E+20 3.29E+19 6.473 0.002 Till 1 3.14E+19 3.14E+19 10.298 0.0326 

Error 18 9.14E+19 5.18E+18   Error 4 1.22E+19 3.05E+18   
C. 

Total 22 2.23E+20    

C. 

Total 5 4.36E+19    

            
Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 2.06E+19 1.03E+19 1.118 0.361 Till 1 1.98E+16 1.98E+16 0.040 0.8477 

Error 11 1.01E+20 9.19E+18   Error 7 3.49E+18 4.99E+17   
C. 

Total 13 1.22E+20    

C. 

Total 8 3.51E+18    

            
NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 1.94E+19 1.94E+19 2.000 0.172 Fert 1 4.66E+19 4.66E+19 5.562 0.0281 

Error 21 2.03E+20 9.69E+18   Error 21 1.76E+20 8.39E+18   
C. 

Total 22 2.23E+20    

C. 

Total 22 2.23E+20    

            
F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 3.52E+18 3.52E+18 0.358 0.561 Org 1 2.80E+18 2.80E+18 2.760 0.1352 

Error 12 1.18E+20 9.84E+18   Error 8 8.13E+18 1.02E+18   
C. 

Total 13 1.22E+20    

C. 

Total 9 1.09E+19    

Table S1. One- Way ANOVA Table for 16S rRNA abundance.  
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F 

MD 1 2.28E+30 2.28E+30 15.261 0.0008 Till 1 1.54E+29 1.54E+29 0.6329 0.4418 

Error 21 3.14E+30 1.49E+29   Error 12 2.92E+30 2.43E+29   
C. 

Total 22 5.42E+30    

C. 

Total 13 3.07E+30    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F 

Site 4 3.19E+30 7.98E+29 6.4514 0.002 Till 1 6.28E+29 6.28E+29 3.6465 0.1288 

Error 18 2.23E+30 1.24E+29   Error 4 6.89E+29 1.72E+29   
C. 

Total 22 5.42E+30    

C. 

Total 5 1.32E+30    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F 

Site 2 5.43E+29 2.71E+29 1.181 0.343 Till 1 7.07E+26 7.07E+26 0.0751 0.7919 

Error 11 2.53E+30 2.30E+29   Error 7 6.59E+28 9.41E+27   
C. 
Total 13 3.07E+30    

C. 
Total 8 6.66E+28    

            

NT v. CT (all) F. v. NF (all) 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob > 
F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob > 
F 

Till 1 2.19E+29 2.19E+29 0.884 0.358 Fert 1 6.01E+29 6.01E+29 2.6234 0.1202 

Error 21 5.20E+30 2.48E+29   Error 21 4.81E+30 2.29E+29   
C. 

Total 22 5.42E+30    

C. 

Total 22 5.42E+30    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F 

Fert 1 8.80E+26 8.80E+26 0.003 0.954 Org 1 1.19E+28 1.20E+28 0.5196 0.4915 

Error 12 3.07E+30 2.56E+29   Error 8 1.84E+29 2.30E+28   
C. 

Total 13 3.07E+30    

C. 

Total 9 1.96E+29    

Table S2. One- Way ANOVA Table for nxrA gene abundance. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 1.28E+30 1.28E+30 8.054 0.010 Till 1 2.47E+29 2.47E+29 0.969 0.344 

Error 21 3.33E+30 1.58E+29   Error 12 3.06E+30 2.55E+29   
C. 

Total 22 4.60E+30    

C. 

Total 13 3.31E+30    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 4 2.35E+30 5.88E+29 4.698 0.009 Till 1 2.28E+27 2.28E+27 0.004 0.950 

Error 18 2.25E+30 1.25E+29   Error 4 2.05E+30 5.13E+29   
C. 

Total 22 4.60E+30    

C. 

Total 5 2.05E+30    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 1.06E+30 5.29E+29 2.585 0.120 Till 1 2.01E+25 2.01E+25 0.007 0.937 

Error 11 2.25E+30 2.04E+29   Error 7 2.07E+28 2.95E+27   
C. 
Total 13 3.31E+30    

C. 
Total 8 2.07E+28    

            

NT v. CT (all) F. v. NF (all) 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Till 1 4.40E+28 4.40E+28 0.203 0.657 Fert 1 2.68E+26 2.68E+26 0.001 0.972 

Error 21 4.56E+30 2.17E+29   Error 21 4.60E+30 2.19E+29   
C. 

Total 22 4.60E+30    

C. 

Total 22 4.60E+30    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 5.27E+29 5.27E+29 2.275 0.157 Org 1 1.50E+28 1.50E+28 1.092 0.327 

Error 12 2.78E+30 2.32E+29   Error 8 1.10E+29 1.38E+28   
C. 

Total 13 3.31E+30    

C. 

Total 9 1.25E+29    

 

 

 

 

 

 

 

 

Table S3. One- Way ANOVA Table for amoA AOB gene abundance. 

 



118 
 

 

 

 

 

 

 

MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 7.54E+14 7.54E+14 0.001 0.974 Till 1 1.61E+18 1.61E+18 1.788 0.206 

Error 21 1.45E+19 6.92E+17   Error 12 1.08E+19 8.98E+17   
C. 

Total 22 1.45E+19    

C. 

Total 13 1.24E+19    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 4 9.31E+18 2.24E+18 8.037 0.0007 Till 1 4.88E+17 4.88E+17 5.768 0.074 

Error 18 5.21E+18 2.90E+17   Error 4 3.38E+17 8.46E+16   
C. 
Total 22 1.45E+19    

C. 
Total 5 8.26E+17    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 
Sum of 
Sq Mea Sq 

F 
Ratio Prob>F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Site 2 8.40E+18 4.20E+18 11.608 0.002 Till 1 6.22E+16 6.22E+16 0.209 0.661 

Error 11 3.98E+18 3.62E+17   Error 7 2.08E+18 2.97E+17   
C. 

Total 13 1.24E+19    

C. 

Total 8 2.14E+18    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 1.20E+18 1.20E+18 1.889 0.184 Fert 1 1.83E+18 1.83E+18 3.034 0.096 

Error 21 1.33E+19 6.35E+17   Error 21 1.27E+19 6.05E+17   
C. 

Total 22 1.45E+19    

C. 

Total 22 1.45E+19    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 2.50E+18 2.50E+18 3.031 0.107 Org 1 4.19E+15 4.19E+15 1.092 0.327 

Error 12 9.89E+18 8.24E+17   Error 8 2.41E+18 3.02E+17   
C. 

Total 13 1.24E+19    

C. 

Total 9 2.42E+18    

Table S4. One- Way ANOVA Table for nirS gene abundance. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 4.63E+13 4.63E+13 11.923 0.002 Till 1 1.05E+13 1.05E+13 1.817 0.203 

Error 21 8.15E+13 3.88E+12   Error 12 6.96E+13 5.80E+12   
C. 

Total 22 1.28E+14    

C. 

Total 13 8.01E+13    

      

NT v. CT (Rosemount) Site Diff. (all) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 3 6.85E+13 2.29E+13 7.328 0.002 Till 1 2.78E+13 2.78E+13 8.500 0.043 

Error 19 5.92E+13 3.12E+12   Error 4 1.31E+13 3.27E+12   
C. 
Total 22 1.28E+14    

C. 
Total 5 4.09E+13    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Site 2 2.23E+13 1.11E+13 2.117 0.167 Till 1 4.17E+11 4.17E+11 2.983 0.128 

Error 11 5.79E+13 5.26E+12   Error 7 9.78E+11 1.40E+11   
C. 

Total 13 8.01E+13    

C. 

Total 8 1.39E+12    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 8.03E+12 8.03E+12 1.407 0.249 Fert 1 1.28E+13 1.28E+13 2.328 0.142 

Error 21 1.20E+14 5.70E+12   Error 21 1.15E+14 5.48E+12   
C. 

Total 22 1.28E+14    

C. 

Total 22 1.28E+14    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 1.87E+09 1.87E+09 0.000 0.987 Org 1 1.86E+11 1.86E+11 0.352 0.569 

Error 12 8.01E+13 6.68E+12   Error 8 4.23E+12 5.28E+11   
C. 

Total 13 8.01E+13    

C. 

Total 9 4.41E+12    

Table S5. One- Way ANOVA Table for nirK gene abundance. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 2.72E+10 2.72E+10 3.949 0.060 Till 1 3.20E+10 3.20E+10 3.4755 0.0869 

Error 21 1.45E+11 6.88E+09   Error 12 1.10E+11 9.20E+09   
C. 
Total 22 1.78E+11    

C. 
Total 13 1.42E+11    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 
Sum of 
Sq Mea Sq 

F 
Ratio 

Prob> 
F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Site 4 5.31E+10 1.33E+10 2.013 0.136 Till 1 1.12E+10 1.12E+10 0.4549 0.537 

Error 18 1.19E+11 6.59E+09   Error 4 9.83E+10 2.46E+10   
C. 

Total 22 1.72E+11    

C. 

Total 5 1.09E+11    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 2.58E+10 1.29E+10 1.217 0.333 Till 1 16004363 16004362 0.0532 0.8242 

Error 11 1.17E+11 1.06E+10   Error 7 2.11E+09 3.01E+08   
C. 

Total 13 1.42E+11    

C. 

Total 8 2.12E+09    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 1.24E+10 1.24E+10 1.631 0.216 Fert 1 2.37E+09 2.37E+09 0.2941 0.5933 

Error 21 1.59E+11 7.59E+09   Error 21 1.69E+11 8.06E+09   
C. 

Total 22 1.72E+11    

C. 

Total 22 1.72E+11    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 2.58E+10 2.58E+10 2.653 0.129 Org 1 7.29E+08 7.29E+08 1.2626 0.2937 

Error 12 1.17E+11 9.72E+09   Error 8 4.62E+09 5.77E+08   
C. 

Total 13 1.42E+11    

C. 

Total 9 5.35E+09    

Table S6. One- Way ANOVA Table for amoA AOB:16S rRNA 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 1.510362 1.51036 46.754 <0.0001 Till 1 0.002816 0.002816 0.324 0.579 

Error 21 0.67839 0.0323   Error 12 0.104127 0.008677   
C. 

Total 22 2.188752    

C. 

Total 13 0.106943    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio Prob>F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 4 1.60E+00 3.99E-01 12.111 <0.0001 Till 1 0.001621 0.001621 1.060 0.362 

Error 18 5.93E-01 3.29E-02   Error 4 0.00612 0.00153   
C. 

Total 22 2.19E+00    

C. 

Total 5 0.007741    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 0.06958 0.03479 10.243 0.003 Till 1 0.011763 0.011763 0.147 0.713 

Error 11 0.037363 0.003397   Error 7 0.559683 0.079955   
C. 

Total 13 0.106943    

C. 

Total 8 0.571446    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 0.00261 0.00261 0.025 0.876 Fert 1 0.310668 0.310668 3.474 0.076 

Error 21 2.186141 0.104102   Error 21 1.878083 0.089433   
C. 

Total 22 2.188752    

C. 

Total 22 2.188752    

F v. NF (MN) 
      

Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob > 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 0.012394 0.012394 1.573 0.234 Till 1 0.101749 0.101749 1.071 0.331 

Error 12 0.094549 0.007879   Error 8 0.760025 0.095003   
C. 

Total 13 0.106943    

C. 

Total 9 0.861774    

Table S7. One- Way ANOVA Table for nirS:16S rRNA.. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 2.01E+09 2.01E+09 0.894 0.355 Till 1 5.06E+09 5.06E+09 3.3321 0.0929 

Error 21 4.72E+10 2.25E+09   Error 12 1.82E+10 1.52E+09   
C. 

Total 22 4.92E+10    

C. 

Total 13 2.33E+10    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 4 9.18E+09 2.29E+09 1.033 0.417 Till 1 1.12E+09 1.12E+09 0.4399 0.5434 

Error 18 4.00E+10 2.22E+09   Error 4 1.02E+10 2.54E+09   
C. 
Total 22 4.92E+10    

C. 
Total 5 1.13E+10    

      

NT v. CT (Beltsville) Site Diff (MN) 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Site 2 5.83E+09 2.91E+09 1.837 0.205 Till 1 3.96E+08 3.96E+08 0.1181 0.7412 

Error 11 1.74E+10 1.59E+09   Error 7 2.35E+10 3.36E+09   
C. 

Total 13 2.33E+10    

C. 

Total 8 2.39E+10    

NT v. CT (all) 
      

F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 1.97E+09 1.97E+09 0.877 0.356 Fert 1 4.85E+09 4.85E+09 2.2997 0.1443 

Error 21 4.72E+10 2.25E+09   Error 21 4.43E+10 2.11E+09   
C. 

Total 22 4.92E+10    

C. 

Total 22 4.92E+10    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 2.93E+09 2.93E+09 1.729 0.213 Org 1 8.45E+09 8.45E+09 4.1493 0.076 

Error 12 2.03E+10 1.69E+09   Error 8 1.63E+10 2.04E+09   
C. 

Total 13 2.33E+10    

C. 

Total 9 2.47E+10    

Table S8. One- Way ANOVA Table for nxrA:16S rRNA.. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 1.09E-07 1.09E-07 1.266 0.273 Till 1 1.64E-09 1.64E-09 0.050 0.826 

Error 21 1.80E-06 8.58E-08   Error 12 3.91E-07 3.26E-08   
C. 

Total 22 1.91E-06    

C. 

Total 13 3.93E-07    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 3 1.97E-07 6.58E-08 0.730 0.547 Till 1 3.51E-08 3.51E-08 1.950 0.235 

Error 19 1.71E-06 9.01E-08   Error 4 7.19E-08 1.80E-08   
C. 
Total 22 1.91E-06    

C. 
Total 5 1.07E-07    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F Source DF 

Sum of 
Squares 

Mean 
Square 

F 
Ratio 

Prob 
> F 

Site 2 8.87E-08 4.44E-08 1.604 0.245 Till 1 5.40E-08 5.40E-08 0.279 0.614 

Error 11 3.04E-07 2.77E-08   Error 7 1.35E-06 1.93E-07   
C. 

Total 13 3.93E-07    

C. 

Total 8 1.41E-06    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 2.89E-08 2.89E-08 0.323 0.576 Fert 1 8.89E-08 8.89E-08 1.025 0.323 

Error 21 1.88E-06 8.96E-08   Error 21 1.82E-06 8.67E-08   
C. 

Total 22 1.91E-06    

C. 

Total 22 1.91E-06    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 2.12E-08 2.12E-08 0.683 0.425 Org 1 2.64E-07 2.64E-07 1.813 0.215 

Error 12 3.72E-07 3.10E-08   Error 8 1.17E-06 1.46E-07   
C. 

Total 13 3.93E-07    

C. 

Total 9 1.43E-06    

Table S9. One- Way ANOVA Table for nirK:16S rRNA.. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 2707746 2707746 32.959 <0.001 Till 1 5108.31 5108.3 0.325 0.579 

Error 21 1725269 82156   Error 12 188413.2 15701.1   
C. 

Total 22 4433015    

C. 

Total 13 193521.5    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 2827859 942620 11.158 0.0002 Till 1 12963.25 12963.2 19.290 0.012 

Error 19 1605155 84482   Error 4 2687.986 672   
C. 

Total 22 4433015    

C. 

Total 5 15651.23    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 120113.6 60056.8 8.999 0.005 Till 1 382071.1 382071 2.326 0.171 

Error 11 73407.85 6673.4   Error 7 1149676 164239   
C. 

Total 13 193521.5    

C. 

Total 8 1531748    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 62240 62240 0.299 0.590 Fert 1 485712.8 485713 2.584 0.123 

Error 21 4370775 208132   Error 21 3947302 187967   
C. 

Total 22 4433015    

C. 

Total 22 4433015    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 42969.49 42969.5 3.425 0.089 Org 1 33385.9 33386 0.132 0.726 

Error 12 150552 12546   Error 8 2025867 253233   
C. 

Total 13 193521.5    

C. 

Total 9 2059252    

Table S10. One- Way ANOVA Table for nirS:nirK rRNA.. 
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MD v. MN NT v. CT (MN) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

MD 1 1.09E-07 1.09E-07 1.266 0.243 Till 1 0.49753 0.49753 0.088 0.771 

Error 21 1.80E-06 8.58E-08   Error 12 67.59068 5.63256   
C. 

Total 22 1.91E-06    

C. 

Total 13 68.08821    

            

Site Diff. (all) NT v. CT (Rosemount) 

Source DF 

Sum of 

Sq Mea Sq 

F 

Ratio 

Prob> 

F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 3 1.97E-07 6.58E-08 0.730 0.547 Till 1 1.388016 1.38802 0.389 0.567 

Error 19 1.71E-06 9.01E-08   Error 4 14.25986 3.56497   
C. 

Total 22 1.91E-06    

C. 

Total 5 15.64788    

            

Site Diff (MN) NT v. CT (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Site 2 13.36908 6.68454 1.344 0.301 Till 1 254.3303 254.33 1.046 0.341 

Error 11 54.71913 4.97447   Error 7 1702.53 243.219   
C. 

Total 13 68.08821    

C. 

Total 8 1956.86    

            

NT v. CT (all) F. v. NF (all) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Till 1 45.8348 45.835 0.309 0.584 Fert 1 216.6422 216.642 1.547 0.227 

Error 21 3112.172 148.199   Error 21 2941.364 140.065   
C. 

Total 22 3158.006    

C. 

Total 22 3158.006    

            

F v. NF (MN) Organic v. Inorganic (Beltsville) 

Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F Source DF 

Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Fert 1 13.65338 13.6534 3.010 0.108 Org 1 88.7565 88.756 0.340 0.576 

Error 12 54.43483 4.5362   Error 8 2087.702 260.963   
C. 

Total 13 68.08821    

C. 

Total 9 2176.458    

Table S11. One- Way ANOVA Table for nxrA:amoA AOB rRNA.. 
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