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Quantum systems are prone to noises. Accordingly, many techniques are developed to

cancel the action of a quantum operation, or to protect the quantum information against the

noises. In this dissertation, I discuss two such schemes, namely the recovery channel and the

quantum error correction, and various scenarios in which they are applied.

The first scenario is perfect recovery in the Gaussian fermionic systems. When the relative

entropy between states ρ and σ remains unchanged under a channel, then perfect recovery of

state ρ can be achieved, using σ as the reference state. It is realized by the Petz recovery map.

We study the Petz recovery map in the case where the quantum channel and input states are

fermionic and Gaussian. Gaussian states are convenient because they are totally determined by

their covariance matrix and because they form a closed set under so-called Gaussian channels.

Using a Grassmann representation of fermionic Gaussian maps, we show that the Petz recovery

map is also Gaussian and determine it explicitly in terms of the covariance matrix of the reference



state and the data of the channel. As a by-product, we obtain a formula for the fidelity between

two fermionic Gaussian states. This scenario is based on the work [1].

The second scenario is approximate recovery in the context of quantum field theory. When

perfect recovery is not achievable, the existence of a universal approximate recovery channel

is proven. The approximation is in the sense that the fidelity between the recovered state and

the original state is lower bounded by the change of the relative entropy under the quantum

channel. This result is a generalization of previous results that applied to type-I von Neumann

algebras in [2]. To deal with quantum field theory, the type of the von Neumann algebras is not

restricted here. This induces qualitatively new features and requires extra proving techniques.

This result hinges on the construction of certain analytic vectors and computations/estimations of

their Araki-Masuda Lp norms. This part is based on the work [3].

The third scenario is applying quantum error correction codes on tensor networks on hy-

perbolic planes. This kind of model is proposed to be a toy model of the AdS/CFT duality, thus

also dubbed holographic tensor network. In the case when the network consists of a single type

of tensor that also acts as an erasure correction code, we show that it cannot be both locally con-

tractible and sustain power-law correlation functions. Motivated by this no-go theorem, and the

desirability of local contractibility, we provide guidelines for constructing networks consisting

of multiple types of tensors which are efficiently contractible variational ansatze, manifestly (ap-

proximate) quantum error correction codes, and can support power-law correlation functions. An

explicit construction of such networks is also provided. It approximates the holographic HaPPY

pentagon code when variational parameters are taken to be small. This part is based on the work

[4].

Supplementary materials and technical details are collected in the appendices.
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Chapter 1: Introduction

Quantum systems are delicate and prone to various kinds of noises from the environment.

Systems of our interest are usually idealized to be isolated, so that their evolution is determined

solely by the system Hamiltonian as designed. However, in nature any system is inevitably

coupled to the environment. Coupling to the environment on the one hand enables controls over

the system, so that quantum channels can be performed on a system. On the other, it is also this

coupling to the environment that introduces unavoidable noise to the system. Therefore, to make

practical use of quantum systems, we need to deal with undesired quantum operations when they

occur, which amounts to studying whether or in what circumstances they could be undone. This

naturally introduces the idea of quantum recovery channels. Or, we wish to develop methods to

store quantum information in a noise-resistant way. This idea leads to the theory of quantum error

correction code(QECC) [5]. Under certain conditions, a perfect recovery channel does exist. It

is named Petz recovery channel and will be better introduced in Section (1.1.1). QECCs are an

important class of examples where perfect recovery is achievable and the Petz recovery channel

can be constructed explicitly [6].

In this dissertation, I present three scenarios where the above frameworks are applied or

extended. The form of the Petz recovery channel is in general complicated. To get a better

understanding, in Chapter (2) I study the relatively simple system of Gaussian fermions and
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obtain an explicit form of the Petz recovery channel. In Chapter (3), I extend my study from

systems with finite degrees of freedom to those with infinite ones, i.e. quantum field theory

(QFT). and from perfect recovery to the more realistic approximate recovery. In Chapter (4), I

study the approximate QECC in the context of anti de Sitter spacetime/ conformal field theory

duality (AdS/CFT).

These three scenarios are chosen in line with my long term goal of studying the reconstruc-

tion problem in AdS/CFT. It was suggested in [7] that the duality can be viewed as a quantum

channel so the reconstruction in AdS/CFT is a problem of finding an appropriate recovery chan-

nel. Most of the concrete AdS/CFT models are based on the large N limit of gauge theories,

where the physical fields are approximately free. So I start my research with Gaussian fermion

systems in (2), which are also known as generalized free fermions. To treat quantum gravity

properly, it is necessary to deal with quantum field theories as the proper description of matter in

curved spacetime. Therefore, in Chapter (3) I try to extend the theory of approximate recovery

to QFTs. The approximate QECC studied in Chapter (4) are toy models of AdS/CFT duality.

My effort concentrates in trying to capture more realistic features of AdS/CFT, especially the

power-law decay of the primary opeartors two-point functions in the boundary CFT. They are

steps towards my final goal.

1.1 Perfect recovery in finite system: Petz recovery channel of Fermionic Gaus-

sian systems

The motivation for studying recovery channels comes not only from the intrinsic delicate

nature of quantum systems, but also from the intensive interaction between quantum information

2



and many other fields of physics, such as quantum field theory and topological quantum matter.

The Petz recovery map has important applications in many of these circumstances. For example,

one can show that strong subadditivity of the von Neumann entropy implies the averaged null

energy condition (ANEC) in relativistic quantum field theories in Minkowski spacetime [8]. The

strong subaddativity can be written in terms of the monotonicity of relative entropy, S(ρABC‖ρA⊗

ρBC) ≥ S(ρAB‖ρA ⊗ ρB), under the channel of tracing out part C. The saturation of the ANEC

bound requires achieving the equality in the above inequality, which is the same condition as the

existence of a perfect recovery map, whose forward channel is an inclusion in the null direction.

This is the same setup as the example studied in Section (3.4.2) of Chapter (3). Another example

is provided by quantum error correction, say in the context of topological quantum matter, where

the Petz map serves as a universal reversal operation that generates no more than twice the error

of the optimal reversal operation[6]. The Petz map also arises in the structure of quantum Markov

states [9], and such Markov states have been used to construct thermal states of quantum many-

body systems [10]. These examples make an explicitly calculable form of the Petz recovery map

important in its own right. In Chapter (2), we solve this problem for the special case of Gaussian

fermionic states and channels, they are together collectively called fermionic Gaussian systems.

1.1.1 Perfect recovery channel and its existence

We start by stating what a legitimate quantum operation is. Rotating a rigid body or break-

ing a chinaware plate are examples of classical operations. They can be reversed or not for

obvious reasons. On the quantum level, an operation needs to satisfy the complete positivity

(CP) condition and the trace preserving (TP) condition to be compatible with the principles of
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quantum mechanics. Such a compatible operation is called a quantum channel or a CPTP map.

Given only this abstract definition, it is less obvious under what conditions we can reverse a given

quantum channel. It turns out that for certain channels and input states satisfying an information

theoretic criterion, it is possible to perfectly reverse the channel and recover the initial state. The

operation that implements this perfect reversal is called Petz recovery channel [11, 12].

Mathematically, recovering one particular state is trivial. Let N be a channel and ρ a state.

We just need to discard N (ρ), the state contaminated by errors, and replace it with a fresh new

state ρ. This is a legitimate quantum channel but is too specific to be practical. At the same time,

when we perform the recovery, we wish to preserve the entanglement between the system to be

recovered and the environment, if there initially were entanglement between them. The naive

state substitution recovery clearly breaks the entanglement. What we really want is to develop

a recovery method that can apply to a set of states we are interested in. In this process we do

not want to mess up one state in this set with another. This is why in the discussion of recovery

channels, we need to introduce a reference state, rather than just focusing on one state. It is in

the same set as the interested state ρ. We need the presence of another state to compare with so

that we can determine whether the error channel harms the distinguishability between the states

ρ and σ.

The quantum error correction is a concrete example of a recovery channel. There, the

family of the interested states is the so-called “code subspace”, i.e. the states that represent

the logical information. The reference state in the QECC context is another state in the code

subspace. It is sometimes taken as the maximally mixed state in the code subspace. To see this,

we note that the quantum error correction condition, 〈ψi|E†aEb|ψj〉 = Cabδij , imposes a similar

requirement. That is, if two states were initially orthogonal to each other, they should be still

4



orthogonal after errors occur. So that this set of errors will not mix up different states, thus can be

corrected with respect to this set of states. The very non-trivial mathematical result of quantum

recovery is that, if the states in a set all satisfy the perfect recovery condition, then the form of

the recovery map, though explicitly dependent on the reference state, is actually independent of

the choice of reference states. Also, this recovery map can recover any state in this set. This is

exactly the more practical recovery method we look for.

The Petz recovery channel first originated from considering the notion of sufficiency of

channels over von Neumann algebras[11, 12]. A channel N between two algebras N : M → N

is called “sufficient” with respect to a family of states θ, if there exists a channel R : N → M

such that for any φ ∈ θ, R ◦ N (φ) = φ.1 R is called a recovery channel because it recovers the

initial state from the action of the channel N . It turns out that sufficiency over θ is equivalent to

sufficiency over any pair of the states in θ. A channelN is sufficient for a pair of states {ρ, σ} ∈ θ

if and only if

S(ρ||σ) = S(N (ρ)||N (σ)). (1.1)

S(ρ||σ) is the relative entropy defined as

S(ρ||σ) = tr(ρ log ρ)− tr(ρ log σ) (1.2)

1The notion of “sufficiency” is inherited from the literature of mathematical statistics. A statistic is any quantity
computed from a given sample of probabilistic distribution. A set of statistics is sufficient with respect to a statistical
model and its unknown parameter if no other statistic that can be calculated from the same sample provides any
additional information as to the value of the parameter. A set of statistics R is sufficient for a parameterized family
of distributions if and only if for each pair of probability distributions µ and ν from the family, the classical relative
entropy obeys S(µ‖ν) = S(µR‖νR), where µR, νR are these distributions restricted to R. To draw analogy to
quantum cases, the samples of the distribution are analogous to density matrices. The concept of statistic is thought
of as a manipulation of a given sample. So its quantum analogy is a quantum channel. The analog of classical
relative entropy is the quantum relative entropy.
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if supp(ρ) ⊆ supp(σ), and +∞ otherwise. The intuition is that the relative entropy measures

the difference between two states. If such a channel N does not lose this distinguishability,

then a perfect recovery channel is achieveable, this channel is called “Petz recovery channel”.

Mathematically, the relative entropy is non-increasing under any quantum channel. So if N is

recoverable, the relative entropy should be unchanged under N , as well as its recovery channel.

When the perfect recovery condition is satisfied, for density matrices of finite dimensional

Hilbert space and a quantum channel N : M → N , Petz recovery channel takes the following

explicit form on the support of N (σ): [9]

Pσ,N (X) = σ
1
2N ∗

(
N (σ)−

1
2XN (σ)−

1
2

)
σ

1
2 . (1.3)

Here supp(N (σ)) = {O|tr(ON (σ)) 6= 0}. N ∗ : N → M is defined to be the adjoint map

of N such that 〈A,N (B)〉 = 〈N ∗(A), B〉 for any A ∈ N,B ∈ M . When the channel is in

its Krauss representation N (·) =
∑

aE
†
a(·)Ea, the adjoint map takes the explicit form N ∗(·) =∑

aEa(·)E†a. The inner product here takes the usual Hilbert-Schmidt form: 〈A,B〉 = tr(A†B).

Note that if we restrict the input to Pσ,N to be in supp (N (σ)), then the operator inverseN (σ)−
1
2

is well defined. Eq. (1.1) is obtained if and only if Pσ,N ◦ N (σ) = σ and Pσ,N ◦ N (ρ) = ρ.

A variant of the Petz recovery man, named “rotated recovery map” was introduced in [13].

It is defined as

Rt
σ,N (X) ≡

(
Uσ,t ◦ Pσ,N ◦ UN (σ),−t

)
(X), (1.4)

where Pσ,N is the Petz recovery map and Uσ,t(·) ≡ σit(·)σ−it is a one-parameter group, where

σit is a partial isometry. This means that if X ∈ supp(σ), then σit is an isometry, if X /∈
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supp(σ), then σitXσ−it = 0. Especially, σi0 = Pσ, which is the support projector of the state σ.

This rotated recovery map is of interest because it appears in several works that strengthen the

monotonicity of the relative entropy(e.g. [2, 13]), and helps to give a refined description of the

recoverablity. It is physically interesting to investigate as it might give a stronger constraint for

energy conditions in quantum field theory[14].

1.1.2 Fermionic Gaussian systems

The main effort of Chapter (2) is to characterize the Petz recovery map Pσ,N for fermionic

Gaussian channels and states via the Grassmann representation for fermionic Gaussian channels.

It turns out that in this case Pσ,N is also a Gaussian channel. The same result is established for

Rt
σ,N as well. We provide an explicitly calculable expression which might be useful, for example,

for studying error correction in Majorana fermion systems or for studying free fermionic field

theories.

Gaussian states are thermal states of Hamiltonians which are quadratic in creation and

annihilation operators for both bosonic and fermionic operators. More precisely, a state ρ is

Gaussian if it has the form ρ = e−βH/tr(e−βH) for some quadratic H and inverse temperature β.

The ground state of H , which is the limiting case as β → ∞, is considered a Gaussian state as

well. We denote canonical creation and annihilation operators by c†, c. They can be either bosonic

or fermionic. The bosonic case could represent, for example, a system of photons, to which the

subject of quantum optics is dedicated (e.g.[15]). The fermionic case could describe, for example,

electrons or quarks. Here we consider the fermionic case. In either case, Gaussian states have

a closure property such that certain so-called Gaussian channels send Gaussian input states to
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Gaussian output states. The set of Gaussian channels includes many common operations such

as tracing over subsystems and evolving under quadratic Hamiltonians. Furthermore, Gaussian

states can be conveniently prepared in experiments [16] and described by the covariance matrix

G. A more detailed discussion is presented in Section (2.1.1).

1.1.3 Main result

To state the main result, letG(σ) denote the covariance matrix of the reference state σ. Let a

Gaussian channel N act on a Gaussian state with covariance matrix G(ρ). The covariance matrix

of the output Gaussian state takes the form G(N (ρ)) = BG(ρ)BT + A, where A,B are matrices

encoding the action of channel N (see Section (2.1.2) for details). Our main result is that the

corresponding A,B matrices for the recovery channel Pσ,N are

BP =
√
I2n + (G(σ))2BT

(√
I2n + (G(N (σ)))2

)−1

,

AP = G(σ) −BPG(N (σ))BT
P .

(1.5)

Based on the above result, the rotated recovery map can be characterized by the matrices

AR,t = Bσ,tAPB
T
σ,t, BR,t = Bσ,tBPBN (σ),−t, (1.6)

in which Bσ,t = e−2t arctanG(σ)
, BN (σ),−t = e2t arctanG(N (σ)) . It is noteworthy that Eq. (1.5) is

analogous to that for bosonic Gaussian states[17].

The work introduced in this section is based on [1]. The full derivation is in Chapter (2).

The corresponding supplementary materials are collected in Appendix (A). I performed the full
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derivations and analysis presented in the corresponding sections.

1.2 Approximate recovery in infinite systems: universal approximate recovery

channel in quantum field theory

Although the perfect recovery in Chapter (2) gives compact elegant results, nature is not

always perfect. When the relative entropy does change under a certain channel, perfect recovery

is no longer achievable. In this case, we want to find a universal formula, to recover the channel

approximately. At the same time, approximate recovery does have both theoretical and practical

vaule. Consider the case in which one logical qubit is encoded into n physical qubits. If we

restrict to the perfect recovery, no QECC can correct more than n/4 arbitrary errors happening

on the physical qubits[18]. However, if approximate recovery is allowed, the logical qubit infor-

mation can still be approximately achieved until up to b(n− 1)/2c physical qubits have arbitrary

errors [19]. Another scenario of interest, the AdS/CFT duality, is approximate if only finite order

in the gravitational constant G is considered. So if recovery channels are applied in this context,

they have to be approximate.

It turns out that for finite systems, a universal approximate recovery channel does exist. It

was proven in [2] that

S(ρ‖σ)− S(N (ρ)‖N (σ)) ≥ −2 logF (ρ, (Rσ,N ◦ N )(ρ)). (1.7)

Here S(ρ‖σ) is the relative entropy between ρ and σ. F is the fidelity. It is a measurement of how

close two quantum states are. For finite dimensions, it is defined in Eq. (2.42). Fidelity in infinite

9



dimensions is defined in Eq. (3.23). Lemma (3.2.1) collects some important properties and other

forms of fidelity. Rσ,N is the desired approximate recovery channel that will be specified in

Chapter (3). To characterize the deviation from perfect recovery, the natural parameter is the

relative entropy difference before and after applying the channel, the LHS of the inequality. This

lower bounds the fidelity between the original state and the recovered state, thus also characterizes

the extent of the approximation of the recovery channel.

The main effort of Chapter (3) is to generalize the result Eq.(1.7) from finite dimensional

Hilbert spaces to the uncountably infinite dimensional Hilbert spaces of quantum field theory.

While quantum computers typically manipulate finite dimensional Hilbert spaces, many applica-

tions of error correction to field theory and gravity go beyond this simple setting and a general

treatment requires more sophisticated tools, including tools from the theory of operator algebras.

Operator algebraic approaches have a long tradition in treating quantum field theory, see e.g.

[20]. One might hope to approximate any of these physical systems by finite quantum systems,

but this point of view can obscure crucial physical features that are more naturally expressed in

a less restrictive approach. At the same time, the operator algebra approach is so general that

expressing proofs of fundamental quantum information results in this language exposes the core

nature of such proofs and ends up simplifying the approach in many situations. Indeed, many of

the original theorems in quantum information have their origin in the study of operator algebras.

1.2.1 Main result

In Chapter (3), the results of [2], pertaining to the approximate reversibility of quantum

channels, are generalized from a type-I von Neumann algebra2 setting to general von Neumann

2Direct sums of matrix algebras or the algebra of all bounded operators on a separable Hilbert space.
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algebras, stated as Theorem (3.1.2). At the heart of these results is a strengthened version of the

monotonicity [21] of relative entropy (Theorem (3.1.1)). Chapter (3) deals with the sub-algebra

case which involves a simple quantum channel called an inclusion. General quantum channel

cases are treated in a different work [22].

Along the way, we prove two theorems that might be of independent interest. Theorem

(3.2.1) concerns the computations of the derivatives of the “sandwiched” and “Petz” relative

Renyi entropies for two nearby states. We call this result a first law because of its similarity to

the first law of entanglement entropy in the setting of AdS/CFT [23, 24]. Theorem (3.2.2) pertains

to a regularization procedure for relative entropy that produces states with finite relative entropy

and also allows for continuous extrapolation of relative entropy when removing the regulator. The

vectors that result from this procedure are important here because they lead to extended domains

of holomorphy that allow us to proceed towards the proof of strengthened monotonicity with a

similar argument as in the finite dimensional setting.

We will also discuss an application to the study of the quantum information aspects of

quantum field theory that require this general von Neumann algebra setting. In the field the-

ory context, new results using operator algebra methods have made it possible to make rigorous

statements about the dynamics of interacting theories. For example, in Section (3.4.2), we con-

jecture that the quantum null energy condition, a bound on the local null energy density (proven

in [25, 26]), can be derived from the strengthened monotonicity result that we derive in Chapter

(3).

The work introduced in this section is based on [3]. The corresponding supplementary ma-

terials are collected in Appendix (B). I independently proposed this research topic and developed

my approach of the proof in Section (3.3).

11



1.3 Approximate quantum error correction model of AdS/CFT: a model with

power-law correlations

Chapter (4) presents a model of approximate quantum error correction codes, aiming to

characterize some features of the AdS/CFT duality, especially the power-law decay of the two-

point correlation functions of primary operators in CFT. QECC is actually an important class of

quantum recovery channels. To see this connection, it is worthwhile to point out that the quantum

error condition[5], 〈ψi|E†aEb|ψj〉 = Cabδij , is a sufficient condition the perfect recovery condition

[11, 12]. Also, the standard error correction protocol, where we perform the syndrome measure-

ment, then do the correcting operation depending on the syndrome measurement outcome, is

equivalent to the Petz recovery channel [6]. So the AQEC model in this chapter is a concrete

example of the approximate recovery presented in Chapter (3). The model is built on a tensor

network that tiles the hyperbolic spatial surface of the AdS3 spacetime.

1.3.1 Tensor network models of AdS/CFT

Tensor networks are powerful tools to elucidate many-body physics [27, 28] and quantum

gravity[29, 30]. More recently, they have also been used to study quantum error correction both

in the context of holography[31, 32, 33] and beyond[34, 35, 36, 37]. For the former category, it

was proposed that the Multiscale Entanglement Renormalization Ansatz (MERA) [38] resembles

a discretized version of the AdS/CFT correspondence [29]. At the same time, the AdS/CFT

correspondence itself is believed to implement semi-classical bulk physics as a quantum error

correction code (QECC) [39], where the bulk low-energy subspace defines a code subspace. A
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number of models of this correspondence have been given using tensor networks [31, 32, 33, 40,

41, 42, 43]. See [44] for a recent review.

While these constructions (MERA[38], HaPPY [31], random tensor networks [32], etc.) all

capture some desirable features of the AdS/CFT correspondence, it is somewhat unclear how to

unify these features under a single framework. MERA is an efficient variational ansatz capable of

capturing the correlations and entanglement of the ground state while realizing an approximate

quantum error correction code [45]. However, it does not fully capture the correct symmetries

[46, 47, 48] of AdS/CFT and is somewhat at odds with gravitational expectations for entropy

bounds [49]. These flaws are amended in the hyper-invariant tensor network [50]. However, in

neither construction is there a clear physical picture of entanglement wedge reconstruction or

code properties. For example, in MERA it is not clear how explicit logical operations can be

realized on the boundary, or, equivalently, how to reconstruct some bulk operator from boundary

operators. Although one can study cursory properties of the code[45], its decoding and error

correction properties are far from manifest. As for the hyper-invariant tensor network, it is not

clear how it should be interpreted as a QECC.

The HaPPY code [31] on the other hand, being a stabilizer code, is a clear-cut QECC with

well-defined logical and decoding operations[33, 35, 37]. It also excels in reproducing the de-

sirable features of subregion duality and bulk reconstruction. However, it is very limited as a

variational ansatz for studying many-body quantum states. Even with interacting bulk Hamilto-

nians, the boundary correlations cannot be made consistent with those of a CFT[51]. In most

cases, boundary connected two-point functions are vanishing. Nevertheless, it is possible to pro-

duce some non-trivial correlations with localized operators only on some specific locations on

the boundary. The fraction of these locations on the boundary goes to 0 as the boundary of this
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network extends outward [52]. In the limit of large bond dimension, random tensor networks

[32] can also produce a QECC and can sustain power-law decaying correlations. In principle,

given a suitably chosen tessellation of the (hyperbolic) bulk, they also capture the symmetries of

an underlying geometry. However, the randomness and the large bond-dimension limit inherent

in their definition make it difficult for these networks to function as variational ansatze usable for

many-body physics. Code properties and decoding also remain underexplored in this picture.

1.3.2 Main result

In Chapter (4), we bridge these gaps by creating what we call a hyper-invariant MERA

(HMERA) tensor network that combines the features of MERA and those of a holographic

QECC. The HMERA inherits some nice features of MERA. HMERA serves as a variational

ansatz for wavefunctions on quantum many-body systems. Each external leg on a HMERA rep-

resents a qubit. When calculating the norm of the wavefunction, we need two copies of tensor

networks, as ket and bra (its dual tensor). The inner product is then calculated by performing

the tensor contraction. Similarly, correlation functions can be calculatead by contracting two

copies of tensor networks, with operators inserted on the corresponding legs. HMERA is a type

of tensor network whose index contractions with its dual tensor can be efficiently performed, just

as MERA. 3 As a(n approximate) QECC, the network is able to support the correct power-law

behaviour for the two-point function, as well as features of subregion duality/bulk reconstruc-

tion. We provide a set of general construction guidelines for building these HMERA networks

3Usually a (m,n) tensor T ν1...νnµ1...µm can be viewed as a map from n sites to m sites. Its dual tensor is T ∗µ1...µm
ν1...νn ,

obtained from T by upper indices lowered, lower indices uppered and each entry complex conjugated. It is a
map from m sites to n sites. Doing the tensor contraction T ∗µ1...µm

ν′
1...ν

′
n

T ν1...νnµ1...µm = T ∗T ν1...νnν′
1...ν

′
n

gives a n to n map.
Specifically, a (m, 0) tensor Tµ1...µm defines a state on m sites. And its contraction with its dual T ∗µ1...µmTµ1...µm

gives a number, which corresponds to the norm squared of this state.
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and provide one explicit example which is manifestly a quantum error correction code and well-

approximates the HaPPY pentagon code[31] if we choose some of the variational parameters to

be small. We also discuss some general constraints such codes follow. In particular, we prove a

no-go theorem, which states that locally contractible HMERAs constructed from any single kind

of quantum erasure correction code must contain trivial correlation functions. Hence our explicit

construction, with two distinct types of tensors, is one of the simplest possible networks to exhibit

power-law correlations.

The work introduced in this section is based on [4]. I proposed the idea of analyzing the

constraints to the isometries on the tensor networks based on the tiling structure. This developed

into the no-go theorem (4.2.1). I also performed the full detailed analysis of the explicit HMERA

model, collected in Appendix (C).
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Chapter 2: Petz recovery channel in Fermionic Gaussian systems

This chapter presents the full story of the Petz recovery channel of Fermionic Gaussian

systems. It is organized as follows: Section (2.1) is a detailed introduction to Gaussian states

and Gaussian channels with fermionic degrees of freedom. In Section (2.2), we construct the

Petz recovery map and its rotated version explicitly using the Grassmann representation of the

Gaussian map to get Eq. (1.5),(1.6). In Section (2.3), we present a result giving the fidelity

between two fermionic Gaussian states, which is an application of the methods developed in

Section (2.2) and provides a different formula from that in Ref.[53]. Section (2.4) is a brief

summary of this chapter. The supplementary materials of this chapter are collected in Appendix

(A). Some identities for Grassmann integrals are presented in Appendix (A.1). Appendix (A.2)

is a collection of calculation details. Appendix (A.3) discusses the treatment of singular matrices

involved in the derivation.

2.1 Fermionic Gaussian states and channels

We first give a brief introduction to the fermionic Gaussian state and fermionic Gaussian

channels. Here we mainly follow the results of Ref. [54]. Some other reviews that introduce

different aspects of Gaussian states and channels can be found in Refs. [55, 56, 57, 58]. Interested

readers can refer to the references therein.
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2.1.1 Fermionic Gaussian States

Dirac and Majorana Operators, Grassmann Variables

We start by considering a Hamiltonian quadratic in complex (Dirac) fermionic creation/

annihilation operators:

H =
n∑

i,j=1

c†iKijcj + c†iAijc
†
j + ciA

†
ijcj. (2.1)

Here c† ’s and c’s satisfy the canonical anti-communication relation

{c†i , cj} = δij, {ci, cj} = {c†i , c
†
j} = 0. (2.2)

The matrix K is Hermitian and A is anti-symmetric, so that the Hamiltonian is Hermitian.

It is standard to transform Eq. (2.1) into a basis of Majorana fermions:

γ2i−1 = (ci + c†i ), γ2i = i(ci − c†i ), (2.3)

which satisfy the anti-commutation relation

{γi, γj} = 2δij Î . (2.4)
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After ignoring the diagonal terms1, Eq. (2.1) can be written as

H =
i

2

2n∑
i,j=1

γiMijγj, (2.5)

where

M =
1

4
=(K)⊗ I2 +

1

2
<(A)⊗ σx −

i

4
<(K)⊗ σy +

1

2
=(A)⊗ σz. (2.6)

Here σ’s are the Pauli matrices and M is manifestly real and antisymmetric.

The most general form of the operators composed of 2n Majorana operators, denoted as

C2n, should be the complex span of the monomials γiγj...γk:

X = αÎ +
2n∑
p=1

∑
1≤a1<a2<...<ap≤n

αa1a2...apγa1γa2 ...γap , (2.7)

where α = 2−ntrX is fixed. For example, the Hamiltonian in Eq. (2.5) H ∈ C2n, where only the

coefficients of order 2 terms are non-zero and purely imaginary.

To work efficiently with operators built from the Majorana fermions, it is convenient to

utilize a Grassman calculus. Grassmann variables are mathematical objects following the anti-

commutation rule

θiθj + θjθi = 0, θ2
i = 0. (2.8)

For n Grassmann variables {θ1, θ2, ...., θn}, denote the complex span of the monomials of these

1The diagonal terms contribute as a number which is the total self-energy of all the modes. It can be absorbed in
a redefinition of the zero of energy.
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variables as Gn. A general element f ∈ Gn takes the form

f = α +
n∑
p=1

∑
1≤a1<a2<...<ap≤n

αa1a2...apθa1θa2 ...θap . (2.9)

The similarity between Eq. (2.7) and Eq. (2.9) indicates that there is a natural isomorphism

ω : C2n → G2n such that

γiγj...γk 7−→ θiθj...θk, Î 7−→ 1. (2.10)

So each Majorana operator X can be mapped via ω to a polynomial of Grassmann variables

ω (X, θ). We will abbreviate ω (X, θ) as X(θ) and call it the Grassmann representation of the

operator X .

Majorana and Grassmann representation of Gaussian states

Fermionic Gaussian states are in general thermal states for some Hamiltonian of the form

in Eq. (2.5),

ρ ≡ tr
(
e−βH

)−1
e−βH = Z−1

ρ exp

(
i

2
β

2n∑
i,j=1

γiMijγj

)
. (2.11)

This is the Majorana representation of fermionic Gaussian states.

Any real 2n × 2n antisymmetric matrix can be transformed into the following block-

diagonal form:

M = OT

B ⊗
0 −1

1 0


O, (2.12)

where O ∈ SO(2n) and B = diag(β1, β2, ...βn). The βi’s are the Williamson eigenvalues of the

real antisymmetric matrix M .
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The covariance matrix of a Gaussian state is defined as

Gij =
i

2
tr(ρ[γi, γj]). (2.13)

Here G is antisymmetric and can be transformed into the block-diagonal form with the same

matrix O as in Eq. (2.12). Its set of Williamson eigenvalues {λ1, λ2, ..., λn} are related to βi’s via

[59]

λi = − tanh (ββi) . (2.14)

This induces the matrix equation 2

G = i tanh (iβM) . (2.15)

Since Gaussian states represent the non-interacting limit of the corresponding fermionic degrees

of freedom, all higher order correlation functions are totally determined by the matrix elements

of G by Wick’s theorem.

One can use the isomorphism Eq. (2.10) to get the Grassmann representation of the density

operator in Eq. (2.11). 3 It turns out that the covariance matrix G plays a role in the Grassmann

representation4:

ρ(θ) =
1

2n
exp

(
i

2
θTGθ

)
. (2.16)

2Eq. (2.15) can be found in e.g Ref [53]. We verify a generalization of it in Section (A.2.1) for the completion
of the context. A bosonic version of this relation between covariance matrix and the Hamiltonian can be found in
Ref. [60].

3The isomorphism Eq. (2.10) can only be used when the operator is written in the form of Eq. (2.7). In this case
there are no identical operators in each monomial so the γi’s and θi’s are interchangeable.

4One can define displacement operatorD(µ) in terms of Grassmann variables µi’s [61]. However,the expectation
value of observables in the displaced states would involve the product of Grassmann numbers, whose physical
meanings are ambiguous to the author. Though an important completion of the theory, we do not consider it here.
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The full notational conventions and some useful formula are in Appendix (A.1).

Eq. (2.16) is a more convenient definition of the Gaussian state, because the matrix G is

always bounded by GTG ≤ I according to Eqs. (??). The Majorana representation Eq. (2.11)

looks singular in the zero temperature limit β → ∞, while in the Grassmann representation,

this limit corresponds to λi → ±1. This reflects the physical situation that at zero temperature,

negative energy modes are occupied and positive energy modes are empty.

2.1.2 Fermionic Gaussian Channels

A linear map N : C2n → C2n is Gaussian if and only if it admits an integral representation

N (X)(θ) = C

∫
exp[S(θ, η) + iηTµ]X(µ)DηDµ, (2.17)

where

S(θ, η) =
i

2
(θT , ηT )N

θ
η

 ≡ i

2
(θT , ηT )

 A B

−BT D


θ
η

 =
i

2
θTAθ +

i

2
ηTDη + iθTBη.

(2.18)

Here A,B,D are 2n × 2n complex matrices and A,D can be taken to be antisymmetric.

C is a complex number.

To have the linear map be a valid quantum channel, the CPTP conditions should be satisfied.

It turns out that the CP condition translates to C ≥ 0 and requirement that the matrix N in Eq.

(2.18) be real and satisfy NTN ≤ I . The TP condition is equivalent to C = 1 and the matrix

D = 0. A map is unital if it preserves the identity, which means N (I) = I . The unital condition
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is equivalent to C = 1 and A = 0.

One important ingredient is how to translate the description of quantum channels from the

operator representation, e.g., a unitary time evolution written as eiHtρe−iHt, to the path integral

representation defined in Eq. (2.17). 5 This is achieved by making use of the Choi-Jamiolkowski

duality between linear maps and states. The duality says that for any linear map E : C2n → C2n,

there is an isomorphism J such that J (E) ∈ C2n ⊗ C2n takes the form

J (E) =
∑
l

E(Vl)⊗ V ∗l , (2.19)

where Vl’s are a complete set of bases for the linear spaces C2n, which are the monomials of

γiγj...γk.

To get a compact formula, one uses the isomorphism I : C2n ⊗ C2n → C4n such that

γp1 ..γpi ⊗ γ′q1 ...γ
′
qj
7−→ γp1 ...γpiγq1+2n...γqj+2n, where 1 ≤ p1 < ... < pi ≤ 2n and 1 ≤ q1 <

... < qj ≤ 2n. This isomorphism induces a mapN1⊗f N2 : C4n → C4n such that for monomials

N1 ⊗f N2

(
γp1 ...γpiγq1+2n...γqj+2n

)
= N1 (γp1 ...γpi)N2

(
γq1+2n...γqj+2n

)
. (2.20)

The definition can be extended to polynomials of C4n by linearity.

Now let a linear map E : C2n → C2n be parity preserving, which means it sends even(odd)

order monomials to even(odd) order monomials, then the operator ρE ∈ C4n dual to E is defined

as

ρE =
(
E ⊗f Î

)
(ρI) , (2.21)

5We draw an analogy of this procedure to transforming from a Hamiltonian formalism to a Lagrangian formalism,
as is suggested by the title of Ref. [54].
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where

ρI =
1

22n

2n∏
i=1

(
Î + iγiγ2n+i

)
. (2.22)

Intuitively, this is a maximally entangled state in the sense that each mode of γi is linked to

γ2n+i. One can work out the form of the density matrix explicitly to show it is the density matrix

of a maximally entangled state up to some one-site local unitaries. One can now make use of

Eq.(2.10) to write Eq. (2.21) in the Grassmann representation. The isomorphism is such that

γ1, ..., γ2n 7→ θ1, ..., θ2n and γ2n+1, ..., γ4n 7→ η1, ..., η2n. Given the integral representation of the

map E , a straightforward calculation of Eq. (2.18) will give

ρE(θ, η) =
C

22n
exp (S(θ, η)) (2.23)

as the operator representation of a map. Conversely, if one knows the operator representation

of the map E , one can calculate Eq. (2.21) explicitly and perform the isomorphism Eq. (2.10) to

achieve a form similar to Eq. (2.23), so that the integral representation can be read out.

We conclude this section by mentioning an important property of the composition of two

Gaussian channels. If E1 and E2 are CP fermionic Gaussian maps, then the composite map E2 ◦E1

is still a CP Gaussian map. Similarly, the composition of two TP Gaussian maps is still a TP

Gaussian map. The proof of the results listed in this section can be found in Ref. [54].

2.2 Construction of the Petz recovery map

In this section we give the explicit construction of the Petz recovery map, so that the result

claimed in the introduction is obtained: the Petz recovery map of a Gaussian channel with a
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Gaussian reference state is a Gaussian channel itself, and has its information specified in the

Grassmann integral representation as in Eq. (1.5). Readers who are interested in the calculation

details throughout this section can refer to Appendix A.2.

It is obvious from Eq. (1.3) that Pσ,N is composed of three linear maps [17]: Pσ,N =

N3 ◦ N2 ◦ N1, where

N1 : X 7→ N (σ)−
1
2XN (σ)−

1
2 ,

N2 : X 7→ N ∗(X),

N3 : X 7→ σ
1
2Xσ

1
2 .

(2.24)

The approach to the construction of Pσ,N is therefore straightforward. We first find the Grass-

mann representations of the three separate maps in Eq. (2.24). Since they each admit an integral

representation as in Eq. (2.17), the three separate maps are Gaussian linear maps. So it follows

that the Petz map is Gaussian. Then we find the formula to combine the three maps together, thus

obtaining an explicit expression for the Petz recovery map.

2.2.1 Separate construction of three linear maps

The linear maps N1 and N3 are of similar form: they represent an operator sandwiched

by a Hermitian Gaussian state. Their integral representations are obtained by the map-operator

duality described in Section (2.1.2).

We present the construction of N3, since that for N1 follows in a similar way. The details

of the calculation are collected in Appendix (A.2.2).

Consider N3 : X 7→ σ
1
2Xσ

1
2 where σ is a Gaussian state with covariance matrix G(σ).
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Using Eq. (2.12), define γ̃i =
∑

j Oijγj and γ̃2n+i =
∑

j Oijγ2n+j where i, j goes from 1 to 2n.

So the Gaussian state σ can be written as

σ =
1

2n

n∏
i=1

(
Î − iλ(σ)

i γ̃2i−1γ̃2i

)
. (2.25)

One can write σ
1
2 as:

σ
1
2 =

1

2
n
2

n∏
i=1

1√
1 + λ

(σ
1
2 )2

i

(
Î − iλ(σ

1
2 )

i γ̃2i−1γ̃2i

)
, (2.26)

where

λ
(σ

1
2 )

i = −λ(σ)−1
i

(√
1− λ(σ)2

i − 1

)
. (2.27)

The Choi-Jamiolkowski dual of N3 can be explicitly calculated via Eq. (2.21) after substi-

tution γi → θi, γi+2n → ηi. Comparing with Eqs. (2.18), (2.23) and making use of Eq. (A.16),

one can read out that the linear mapN3 : X 7→ σ
1
2Xσ

1
2 corresponds to the following Grassmann

integral representation:

A3 = G(σ), B3 =
√
I2n + (G(σ))2, C3 =

1

2n
, D3 = −G(σ). (2.28)

One can calculate NT
3 N3 = I together with C3 > 0 to see that N3 is a CP map, where N3 is

defined as in Eq. (2.18).

A similar calculation gives the Grassmann integral representation forN1 : X 7→ N (σ)−
1
2XN (σ)−

1
2 ,
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A1 = −G(N (σ)), B1 =
√
I2n + (G(N (σ)))2, C1 = 2n det

(
I2n +

(
G(N (σ))

)2
)− 1

2
, D1 = G(N (σ)).

(2.29)

We haveNT
1 N1 = I and C1 > 0 so thatN1 is completely positive as well. Here we have assumed

that λ(σ) 6= ±1 so N (σ)−
1
2 is invertible. We discuss this in detail in Appendix (A.3.1).

N2 is the adjoint map of a given Gaussian linear mapN . As stated in the introduction, N ∗

is defined via 〈A,N (B)〉 ≡ 〈N ∗(A), B〉, where 〈A,B〉 = tr(A†B). So

tr
(
X†N (Y )

)
= tr

(
N ∗(X)†Y

)
. (2.30)

One can obatian the following Grassmann integral representation of the adjonit map N ∗

for a general Gaussian linear map N :

AN ∗ = D†, BN ∗ = B†, CN ∗ = C†, DN ∗ = A†. (2.31)

For the case that N is a quantum channel, i.e. A,B are real, C = 1 and D = 0, we get

A2 = 0, B2 = BT , C2 = 1, D2 = −A (2.32)

The adjoint map of a quantum channel is a completely positive and unital map. This can be

explicitly verified by the integral representation of N ∗ in Eq.(2.32). The calculation for this part

is in Appendix (A.2.3).
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We summarize the integral representation of the three maps:

A1 = −G(N (σ)), B1 =

√
I2n + (G(N (σ)))

2
, C1 = 2n det

(
I2n +

(
G(N (σ))

)2
)− 1

2
, D1 = G(N (σ));

A2 = 0, B2 = BT , C2 = 1, D2 = −A;

A3 = G(σ), B3 =

√
I2n + (G(σ))

2
, C3 =

1

2n
, D3 = −G(σ).

(2.33)

2.2.2 Composition of three linear maps

Consider two Gaussian linear maps which are specified byA1, B1, C1, D1 andA2, B2, C2, D2.

The combination of the two Gaussian linear maps is still a Gaussian linear map. We can read-

ily calculate the corresponding A2◦1, B2◦1, C2◦1, D2◦1, by performing the Dθ,Dβ integral in the

expression

N2 ◦ N1(X)(α) =

∫
DβDθDηDµ exp

(
S2 (α, β) + iβT θ

)
exp

(
S1 (θ, η) + iηTµ

)
X(µ).

(2.34)

Using Eq. (A.6c) twice to integrate first over θ then β, and comparing with the form in

Eq.(2.18), one can find

A2◦1 = A2 +B2

(
D2 + A−1

1

)−1
BT

2 , B2◦1 = B2

(
D2 + A−1

1

)−1
A−1

1 B1,

C2◦1 = C1C2(−1)nPf (A1) Pf
(
D2 + A−1

1

)
, D2◦1 = D1 +BT

1 D2

(
D2 + A−1

1

)−1
A−1

1 B1.

(2.35)
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Here we have assumed the invertibility of the matrices A1 and
(
D2 + A−1

1

)
.

One can make use of Eq.(2.35) twice to obtain the Gaussian map for the combination of

three Gaussian linear maps. We have to do the Grassmann integration four times so we assume

the following matrices are invertible: G(N (σ)), A +
(
G(N (σ))

)−1, BT
(
A+

(
G(N (σ))

)−1
)−1

B

and
(
BT
(
A+

(
G(N (σ))

)−1
)−1

B

)−1

+ G(σ). (Label this set of assumptions as 1′ − 4′.) This

is equivalent to assuming the invertibility of G(N (σ)), A+
(
G(N (σ))

)−1, B, and I2n +
(
G(N (σ))

)2.

(Label them as 1 − 4.) We discuss these assumptions in Appendix (A.3.1). One can show that

the independent assumptions are 1, 3, 4. It turns out that 1, 3 can be overcome by continuity

arguments when these matrices are singular. Assumption 4 is related to the requirement that

N (σ) be invertible. When it is not invertible, we can only determine the Petz recovery map on

the support of N (σ).

After a fair amount of algebra, (collected in Appendix (A.2.4).) one can find that the com-

position of the three maps in Eq. (2.24) gives a Gaussian linear map whose integral representation

is

BP =
√
I2n + (G(σ))2BT

(√
I2n + (G(N (σ)))2

)−1

, AP = G(σ)−BPG(N (σ))BT
P , CP = 1, DP = 0.

(2.36)

Note that the form of AP guarantees that the reference state σ can always be recovered: Pσ,N ◦

N (σ) = σ. It is obvious that the Petz recovery map is trace preserving since CP = 1, DP = 0.

Complete positivity follows from the complete positivity of the three separate maps. So the Petz

recovery map is indeed a quantum channel. The form of Eq. (2.36) is quite analogous to that for

bosonic Gaussian states obtained in [17].6

6It is plausible to argue that the differences between the formula of the Petz recovery map for bosons and fermions
mainly arise from the fact that the covariance matrix for boson is block-diagonalized by J ∈ SP (2n), while for
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2.2.3 Rotated recovery map

The definition of the rotated recovery map in Eq.(1.4) explicitly shows that it is a compo-

sition of three maps. So we can make use of the techniques developed above to construct the

rotated recovery map.

We first construct the isometry map Uσ,t. It is the same method as the construction of

N1 and N3. The first step is the Majorana representation of the operator σit. It is defined by

exponential series:

σit =
∞∑
k=0

(it)k

k!
(log σ)k (2.37)

in which σ is written in the form as in Eq.(2.25). In this subsection, we assume that σ and N (σ)

are strictly positive operators. This corresponds the constraints of the Williamson eigenvalues

|λ(σ)
i | < 1 and |λ(N (σ))

i | < 1, so that ambiguities such as 0is or the points lying on the radius of

convergence are not discussed here. We can further expand log σ since ||iλ(σ)
i γ̃2i−1γ̃2i|| < 1 with

|λ(σ)
i | < 1. After doing the contraction and the re-summation, the result is

σit =
1

2itn

n∏
i=1

1

2

(
(1− λ(σ)

i )it + (1 + λ
(σ)
i )it

)
Î +

1

2

(
(1 + λ

(σ)
i )it − (1− λ(σ)

i )it
)

(−iγ̃2i−1γ̃2i).

(2.38)

This agrees with the result of naive analytic continuation from σk, k ∈ Z+.

The second step is to perform the calculation that is similar to Eq.(A.21) to read off the

fermion O ∈ SO(2n) plays this role, see Eq. (2.12). In this work we do not further our discussion to deriving Eq.
(2.36) based on above group theoretical arguments.
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Grassmann representation of this isometry. It turns out that

Aσ,t = Dσ,t = 0, Cσ,t = 1. (2.39)

In the bases that G(σ) is block diagonalized, the matrix Bσ,t is block diagonalized for each mode

as well. In each block, the entries are

Bblock,i
σ,t =


1
2

((
1−λ(σ)i

1+λ
(σ)
i

)it
+

(
1−λ(σ)i

1+λ
(σ)
i

)−it)
i
2

((
1−λ(σ)i

1+λ
(σ)
i

)it
−
(

1−λ(σ)i

1+λ
(σ)
i

)−it)

− i
2

((
1−λ(σ)i

1+λ
(σ)
i

)it
−
(

1−λ(σ)i

1+λ
(σ)
i

)−it)
1
2

((
1−λ(σ)i

1+λ
(σ)
i

)it
+

(
1−λ(σ)i

1+λ
(σ)
i

)−it)
 (2.40)

Making use of the Eq.(A.16) and noticing that log
(

1−x
1+x

)
= −2arctanhx for |x| < 1, we

can write Bσ,t in a basis independent manner as Bσ,t = e−2t arctanG(σ) . One can show that Uσ,t is

indeed a valid quantum channel.

The last step is to combine three quantum channels in Eq.(1.4) into one, using Eqs.(2.35)

twice. The singular matrices we encounter can be treated by continuity argument as if they were

invertible, as is discussed in Section (2.2.2) and (A.3.1). It is straightforward to get

AR,t = Bσ,tAPB
T
σ,t, BR,t = Bσ,tBPBN (σ),−t, CR,t = 1, DR,t = 0. (2.41)

2.3 Fidelity between two fermionic Gaussian states

In this section we give a formula for the fidelity of two fermionic Gaussian states in terms

of their covariance matrices. This is an immediate application of the quantum map techniques

developed above.
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Fidelity is a measure of the similarity between two quantum states. We take the definition

of the fidelity between ρ and σ to be

F (ρ, σ) = tr
(√

σ
1
2ρσ

1
2

)
. (2.42)

Fidelity is symmetric in the two argument, F (ρ, σ) = F (σ, ρ), and it is bounded by 0 ≤

F (ρ, σ) ≤ 1 [62]. Two states are identical if and only if F (ρ, σ) = 1 and are orthogonal to

each other if and only if F (ρ, σ) = 0.

We can first make use of the map N3 : X 7→ σ
1
2Xσ

1
2 . For the square root of a Gaussian

operator, the construction is the same as that of σ
1
2 described in Eq. (A.18), and its covariance

matrix is obtained by applying Eq. (A.16) to Eq. (2.27). After a straightforward calculation, we

get

F (ρ, σ) =
1

2
n
2

det(I2n −G(ρ)G(σ))
1
4 det

(
I2n +

√
I2n +

(
G̃(σρ)

)2
) 1

4

(2.43)

where G̃(σρ) ≡
(
G(σ) +G(ρ)

) (
I2n −G(σ)G(ρ)

)−1.

We present the calculation details in Appendix (A.2.5). A variation of the formula for the

fidelity for fermionic Gaussian states can be found in [53].7 A similar formula for the fidelity of

bosonic Gaussian states can be found in Refs. [60],[63].

2.4 Summary

In Chapter (2), we constructed the Petz recovery map for Gaussian quantum channels with

a Gaussian reference state in which the degrees of freedom are fermionic. Using the Lagrangian

7The authors do not derive the equivalence of Eq.(2.43) and the one in [53]. But a numerical test for the fidelity
between random Gaussian states gives the same result for the two formula.
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representation of Gaussian linear maps, we are able to express the Petz recovery map in terms of

the covariance matrix of the reference state, and the matrices A,B that encode the information

of the Gaussian quantum channel. The main result is collected in Eq. (2.36). The corresponding

result for the rotated Petz channel is presented in Eq. (2.41). As an immediate application of

the techniques, we derived a formula for the fidelity of two arbitrary fermionic Gaussian states in

terms of their covariance matrices, which is shown in Eq. (2.43). The supplementary materials

are collected in Appendix (A).
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Chapter 3: Universal approximate recovery channel in quantum field theory

In this chapter we present the proof of the main theorems. We start by charifying the nota-

tions. Section (3.1) gives an introduction to the Tomita-Takesaki theory, as well as the inclusion

of von Neumann algebras. The Theorems (3.1.1) and (3.1.2) are proven in Section (3.2). In Sec-

tion (3.3) we present an alternative strategy of proving the main theorem (3.1.1). The chapter is

concluded by two applications of the theorems in Section (3.4): (1) the case of type-I algebras

and (2) the half-sided modular inclusion.

Notations and conventions: Calligraphic letters A,M, . . . denote von Neumann algebras. Cal-

ligraphic letters H ,K , . . . denote more general linear spaces or subsets thereof. Sa = {z ∈ C |

0 < <(z) < a} denotes an open strip, and we often write S = S1. We typically use the physicist’s

“ket”-notation |ψ〉 for vectors in a Hilbert space. The scalar product is written

(|ψ〉, |ψ′〉)H = 〈ψ|ψ′〉 (3.1)

and is anti-linear in the first entry. The norm of a vector is sometimes written simply as ‖|ψ〉‖ =:

‖ψ‖. The action of a linear operator T on a ket is sometimes written as T |φ〉 = |Tφ〉. In this

spirit, the norm of a bounded linear operator T on H is written as ‖T‖ = sup|ψ〉:‖ψ‖=1 ‖Tψ‖.
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3.1 Basic definitions and main results

3.1.1 Tomita-Takesaki theory

Here we outline some elements of von Neumann algebra theory relevant for this work; for

details, see [64, 65, 66]. A von Neumann algebra, A, is a subspace of the set of all bounded

operators B(H ) containing the unit operator 1 that is closed under: products, the star operation

denoted a∗ and limits in the ultra-weak operator topology. States on A are linear functionals that

are positive, ρ(a∗a) ≥ 0, normalized, ρ(1) = 1, and “normal” i.e., continuous in the ultra-weak

operator topology. The set of normal states is contained in the “predual” A? of A, i.e. the set

of all ultra-weakly continuous linear functionals on A. One defines the support projection πA

associated to a state ρ as the smallest projection π = πA(ρ) in A that satisfies ρ(π) = 1. Faithful

states by definition have unit support projection.

We will work with the von Neumann algebra in a so called standard form, (A,H , J,P\),

whereA acts on the Hilbert space H and where there is an anti-linear, unitary involution J and a

self-dual “natural” cone P\ left invariant by J . The existence and detailed properties of a normal

form are proven in [67]; here we only mention: One has JAJ = A′ where A′ ⊂ B(H ), the

“commutant”, is the von Neumann algebra of all bounded operators on H that commute withA.

The natural cone defines a set of vectors in the Hilbert space that canonically represent states on

A via

A? 3 ρ 7→ |ξρ〉 ∈P\ , ρ(·) = ωξρ(·) ≡ 〈ξρ| · |ξρ〉 (3.2)

and where we use the notation ωψ(·) ≡ 〈ψ| · |ψ〉 ∈ A? for the linear functional on A induced by

a vector ψ ∈ H . The vector in the natural cone representing ωψ will also be denoted by |ξψ〉. It
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is known that it is related to |ψ〉 by a partial isometry v′ψ ∈ A′,

|ξψ〉 = v′ψ|ψ〉. (3.3)

Furthermore, it is known that1 proximity of the state functionals implies that of the vector repre-

sentatives in the natural cone and vice versa, in the sense that

‖ξφ − ξψ‖ ‖ξφ + ξψ‖ ≥ ‖ωφ − ωψ‖ ≥ ‖ξφ − ξψ‖2 (3.4)

holds.

We now introduce the modular operators that are central to our discussion of relative en-

tropy [68, 69] and non-commutative Lp-spaces [70]. This is most straightforward if we a have

cyclic and separating vector |η〉 for the algebra A, meaning that {a|η〉 : a ∈ A} is dense in H

and that a|η〉 = 0 implies that a = 0. Then Tomita-Takesaki theory establishes that one can

define an anti-linear, unitary operator J and a positive, self-adjoint operator ∆η by the relations

J∆1/2
η a |η〉 = a∗ |η〉 , ∀a ∈ A (3.5)

∆η is in general unbounded. J can be used in this case to define a standard form, with P\ given

by the closure of {aJaJ |η〉 : a ∈ A}, but we emphasize that a standard form exists generally

even without a faithful state |η〉. From now on, we regard such a standard form, hence J , as fixed.

We will continue to take η ∈P\.

We will also need the concept of relative modular operator ∆φ,ψ [68]. In a slight gener-

1For the case of matrix algebras, the second inequality is known as the Powers-Störmer inequality.
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alization of the above definitions, let |φ〉, |ψ〉 ∈ P\. Then there is a non-negative, self-adjoint

operator ∆φ,ψ characterized by

J∆
1/2
φ,ψ (a |ψ〉+ |χ〉) = πA(ψ)a∗ |φ〉 , ∀ a ∈ A , |χ〉 ∈ (1− πA′(ψ))H (3.6)

The non-zero support of ∆φ,ψ is πA(φ)πA(ψ)H , and the functions ∆z
φ,ψ are understood via the

functional calculus on this support and are defined as 0 on 1−πA(φ)πA(ψ). We can similarly de-

fine relative modular operators for vectors outside of the natural cone, for a detailed discussion of

such matters see e.g., [70], Appendix C. For example, we may use the well known transformation

property of the modular operators ∆u′φ,v′ψ = v′∆φ,ψv
′∗ where v′, u′ ∈ A′ is a partial isometry

(with appropriate initial and final support), to define:

∆φ,ψ ≡ v′ψ
∗
∆ξφ,ξψv

′
ψ , |ψ〉, |φ〉 ∈H . (3.7)

Similarly we can define the relative modular operators for the commutant in direct analogy. We

will often denote it by ∆′φ,ψ.

When |ψ〉 = |φ〉 we will denote these operators as ∆φ,φ ≡ ∆φ. This is the non-relative

modular operator already discussed from which we can define modular flow:

ς tφ(a) = ∆it
φa∆−itφ ∈ A , (3.8)

where a ∈ A and we have taken φ to be cyclic and separating. The modular flow can also be
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extracted from the relative modular operators:

∆it
φ,ψa∆−itφ,ψ = ς tφ(a)πA

′
(ψ) (3.9)

for any ψ ∈H .

The modular operators satisfy various relations that we need to draw on below and we

simply quote these here (recall that η ∈P\):

∆−zψ,η = (∆′η,ψ)z , J∆−zξψ ,η = ∆z̄
η,ξψ

J , ∆−itψ,ηa∆it
η ∈ A (3.10)

for t ∈ R, z ∈ C and a ∈ A and where these equations make sense when acting on vectors in

appropriate domains – we are more specific about this when we get to use these equations. The

Connes cocycle (Dψ : Dφ)t is the partial isometry from A defined by (t ∈ R)

(∆−itψ,φ∆it
φ ) = ∆−itψ,η∆

it
φ,ηπ

A′(φ) ≡ (Dψ : Dφ)−tπ
A′(φ). (3.11)

According to [68, 69], if πA(φ) ≥ πA(ψ), the relative entropy may be defined as

S(ψ|φ) = − lim
α→0+

〈ψ|∆α
φ,ψψ〉 − 1

α
, (3.12)

otherwise, it is by definition equal to +∞. The relative entropy only depends on the functionals

ωψ, ωφ but not on the particular choice of vectors that define them.
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3.1.2 Inclusions of von Neumann algebras and Petz map

Now consider a von Neumann subalgebra B of A. It is convenient to take B to be in a

standard form (B,K , JB,P
\
B). In this representation B acts on a (potentially) different Hilbert

space K and to distinguish these representations we define the embedding ι : B → A as a

∗-isomorphism of von Neumann algebras from B to the range ι(B) ⊂ A.

Normal states ρ on B are induced from states on A in the obvious way: ρ|B ≡ ρ ◦ ι ≡ ι+ρ,

so ι+(A?) ⊂ B?. We adopt the convention that the corresponding support projection will be

labelled in the following manner:

πB(ρ) ≡ πB(ρ ◦ ι) , ρ ∈ A? (3.13)

and we have

πA(ρ) ≤ ι(πB(ρ)), (3.14)

where for two self-adjoint elements a, b ∈ A we say that a ≤ b if a−b is a non-negative operator.

Given ρ, σ ∈ A?, we may define the relative entropy SA(ρ|σ) ≡ S(ρ|σ) as above, and we put

SB(ρ|σ) ≡ S(ρ ◦ ι|σ ◦ ι). (3.15)

By monotonicity of the relative entropy [21], we have SA(ρ|σ)− SB(ρ|σ) ≥ 0.

Given a faithful state σ ∈ A?, an isometry Vσ : K → H can be naturally defined as

follows [71, 72, 73]:

Vσb
∣∣ξBσ 〉 := ι(b)

∣∣ξAσ 〉 , b ∈ B , (3.16)
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where we use the notation |ξBσ 〉 for the vector representative of the state σ ◦ ι ∈ B? in the natural

cone of the algebra B and |ξAσ 〉 for the vector representative of the state σ ∈ A? in the natural

cone of the algebra A. As reviewed in Appendix (B.1), this embedding Vσ commutes with the

action of b,

Vσ (b |χ〉) = ι(b)Vσ |χ〉 , χ ∈ K , b ∈ B (3.17)

and satisfies V ∗σ ι(b)Vσ = b for all b ∈ B as well as Vσ(K ) = πK H for some projector VσV ∗σ ≡

πK ∈ ι(B)′.

We now recall the concept of approximate sufficiency. First, recall that a linear mapping

α : A → B is called a “channel” if it is completely positive, ultra-weakly continuous and α(1) =

1, see [73].

Definition 3.1.1. Following [12, 73] we say that the inclusion B ⊂ A is ε-approximately sufficient

for a set of states S ⊂ A?, if there exists a fixed channel

α : A → B, (3.18)

called the “recovery channel ”, for which the recovered state is close to the original state in the

sense that

‖ρ− ρ ◦ ι ◦ α‖ ≡ sup
a∈A:‖a‖≤1

|ρ(a)− ρ ◦ ι ◦ α(a)| ≤ ε, , ∀ ρ ∈ S . (3.19)

Here we take all ρ ∈ S to be normalized ρ(1) = 1.

Note that if A ⊂ B is ε-sufficient for S , then A ⊂ B is ε-sufficient for the closed convex

hull of states conv(S ).

39



We would now like to construct an α that works as a recovery map for a set of states that

are close in relative entropy under restriction to the sub-algebra. We take the relative entropy to

compare to a fixed state σ ∈ A?. That is, we consider the set

R(σ)
δ = {ρ ∈ A? : ρ(1) = 1 , ρ ≥ 0 , SA(ρ|σ)− SB(ρ|σ) ≤ δ} (3.20)

The required recovery channel is related to the so-called Petz map, which is defined in the

sub-algebra context (and faithful σ) as (see e.g., [73], sec. 8):

ασ(·) = JBV
∗
σ JA (·) JAVσJB (3.21)

It maps operators on H to operators on K , and furthermore

ασ(A) ⊂ B. (3.22)

As shown in [73], prop. 8.3 this map satisfies the defining properties of a recovery channel used

in def. (3.1.1) – in fact, in the subalgebra context considered here it is equal to the generalized

conditional expectation introduced even earlier by [74]. In the non-faithful case there is a slightly

more complicated expression that we will discuss below in Lemma (3.1.1).
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3.1.3 Main theorems

Given two states ρ, σ ∈ A?, the fidelity is defined as [75]:

F (σ, ρ) ≡ sup
u′∈A′:u′u′∗=1

| 〈ξσ|u′ξρ〉 |. (3.23)

Some of its properties in our setting are discussed in Lemma (3.2.1) below.

One of the two main theorems we would like to establish is:

Theorem 3.1.1 (Faithful case). Montonicity of relative entropy can be strengthened to

SA(ρ|σ)− SB(ρ|σ) ≥ −2

∫ ∞
−∞

lnF (ρ, ρ ◦ ι ◦ αtσ)p(t) dt, (3.24)

where we assume that ρ, σ are normal, σ is faithful and where αtσ : A → B is the rotated Petz

map, defined as

αtσ(a) = ςσ,B−t

(
JBV

∗
σ JAς

σ,A
t (a)JAVσJB

)
. (3.25)

p(t) is the normalized probability density defined by

p(t) =
π

cosh(2πt) + 1
. (3.26)

ςσ,At resp. ςσ,Bt are the modular flows of σ on A resp. of σ ◦ ι on B.

We may extend this theorem to the case where σ is non-faithful. The basic idea is contained

in the following lemma:

Lemma 3.1.1. Consider a sub-algebra ι(B) ⊂ A, of a general von Neumann algebra, and a normal
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state σ with support projectors πA(σ), πB(σ) and πA′(σ) ≡ JAπ
A(σ)JA, π

B′(σ) ≡ JBπ
B(σ)JB.

Then the following statements hold:

(i) The projected sub-algebras, are (σ-finite) von Neumann sub-algebras,

ιπ(Bπ) ⊂ Aπ, (3.27)

Aπ = πA(σ)AπA(σ)πA
′
(σ) , Bπ = πB(σ)BπB(σ)πB

′
(σ) (3.28)

acting respectively on Hπ = πA(σ)πA
′
(σ)H and Kπ = πB(σ)πB

′
(σ)K . The projected

inclusion is defined as:

ιπ(b) ≡ Φ−1
A ◦ ι ◦ ΦB(b) b ∈ Bπ, (3.29)

where we defined the (ultra weakly continuous) *-isomorphism of von Neumann algebras

ΦB : Bπ → πB(σ)BπB(σ) via ΦB(bπB
′
(σ)) = b (3.30a)

ΦA : Aπ → πA(σ)AπA(σ) via ΦA(aπA
′
(σ)) = a. (3.30b)

The projected algebras are in a standard form. For example the standard form of Aπ is

(Aπ,Hπ, JA, π(σ)π′(σ)P\) where JA maps the subspace Hπ to itself.

(ii) The relative entropy satisfies

S(ρ|σ) = S(ρ ◦ Φ|σ ◦ Φ) , S(ρ ◦ ι|σ ◦ ι) = S(ρ ◦ Φ ◦ ιπ|σ ◦ Φ ◦ ιπ) (3.31)
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for all states such that πA(ρ) ≤ πA(σ), where Φ ≡ ΦA.

(iii) Consider a channel on the projected algebras:

απ : Aπ → Bπ (3.32)

We can construct a new cannel on the algebras of interest α : A → B via:

α(a) ≡ ΦB ◦ απ ◦ Φ−1
A (πA(σ)aπA(σ)) + σ(a)(1− πB(σ)). (3.33)

Then for all ρ ∈ A? with πA(ρ) ≤ πA(σ) we have:

ρ(a) = ρ(πA(σ)aπA(σ)) and ρ ◦ ι ◦ α(a) = ρ ◦ ι ◦ α(πA(σ)aπA(σ)) , ∀a ∈ A

(3.34)

and

F (ρ, ρ ◦ ι ◦ α) = F (ρ ◦ Φ, ρ ◦ ι ◦ α ◦ Φ) = F (ρ ◦ Φ, ρ ◦ Φ ◦ ιπ ◦ απ) (3.35)

Similarly:

‖ρ− ρ ◦ ι ◦ α‖ = ‖ρ ◦ Φ− ρ ◦ Φ ◦ ιπ ◦ απ‖. (3.36)

(iv) The explicit form of the resulting Petz map coming from the inclusion ιπ(Bπ) ⊂ Aπ is:

αtσ(a) ≡ ΦB

(
ςσ;B
−t

(
JB(V (ιπ)

σ )∗JAς
σ,A
t (a)JAV

(ιπ)
σ JB

))
+ σ(a)(1− πB(σ)), (3.37)
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where the embedding V (ιπ)
σ is defined for the projected inclusion as

V (ιπ)
σ

(
b
∣∣ξBσ 〉) = ιπ(b)

∣∣ξAσ 〉 , b ∈ Bπ, (3.38)

and where |ξAσ 〉 and |ξBσ 〉 are now cyclic and separating for Aπ and Bπ respectively.

Proof. The proof of this lemma uses standard properties of support projectors and is left to the

reader.

Note that the modular automorphism groups in (3.37) can be understood as being associated

to the non-cyclic and separating vector |ξAσ 〉 (resp. |ξBσ 〉) for the original algebra A (resp. B),

which are however defined to project to zero away from the Hπ (resp. Kπ) subspace. So, for

example ςσt=0(a) = πA
′
(σ)πA(σ)aπA(σ). Similarly V (ιπ)

σ can be understood in this way, as being

defined on the subspaces Kπ and projecting to zero away from this subspace via:

V (ιπ)
σ

(
πB(σ)b

∣∣ξBσ 〉+ |ζ〉
)

= ι(πB(σ))ι(b)
∣∣ξAσ 〉 , b ∈ B , |ζ〉 ∈ (1− πB′(σ)πB(σ))K

(3.39)

An obvious corollary is:

Corollary 3.1.1.1 (Theorem 1 in the non-faithful case). Theorem (3.1.1) continues to hold when

σ is non-faithful but still πA(ρ) ≤ πA(σ). The recovery map is now given by (3.37).

From this result one can characterize approximately sufficiency using relative entropy:

Theorem 3.1.2. Consider a set of normal states S on a general von Neumann algebra A with a

subalgebra B. If S contains a state σ such that for all ρ ∈ S the following condition holds:

S(ρ|σ) <∞ and SA(ρ|σ)− SB(σ|ρ) ≤ δ, (3.40)

44



then there exists a universal recovery channel αS such that A ⊂ B is ε-approximately sufficient

for S . (Here δ = − ln(1− ε2/4).)

The explicit form of the recovery map is:

αS : A 3 a 7→
∫ ∞
−∞

αtσ(a) p(t)dt ∈ B, (3.41)

where αtσ was given in (3.37). We can make sense of the later integral as a Lebesgue integral of

a weakly measurable function with values in B, thought of as a Banach space.

Remark 1. Less powerful antecedents of Theorems. (3.1.1), (3.1.2) can be found in [13, 76, 77,

78, 79, 80].

An example of a set of states that satisfy the assumptions in Theorem (3.1.2) is simply

S = R(σ)
δ (3.20) for any state σ. If we were to additionally assume that A is σ-finite then we

could also pick S to be any closed convex set of states such that

ρ1,2 ∈ S , πA(ρ1) ≤ πA(ρ2) =⇒ SA(ρ1|ρ2) <∞ and SA(ρ1|ρ2)− SB(ρ1|ρ2) ≤ δ.

(3.42)

To see this, note that the σ-finite condition imposes that all families of mutual orthogonal projec-

tors inA are at most countable. This is satisfied for von Neumann algebras that act on a separable

Hilbert space, and is equivalent to the assumption that there is a faithful state in A?. Then (3.42)

is sufficient for finding a σ that works with Theorem (3.1.2) due to the following basic result:

Lemma 3.1.2. Given a closed convex subset of normal states S ⊂ A? for a σ-finite von Neumann
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algebra A then we can always find a σ ∈ S such that:

πA(ρ) ≤ πA(σ) , ∀ρ ∈ S (3.43)

Proof. We apply Zorn’s lemma. Consider the following set of projectors:

ΠS = {π(ρi)− π(ρj) : ρi,j ∈ S , π(ρj) ≤ π(ρi)} (3.44)

where the later condition requires a proper subset. These differences are still projectors since

(π(ρi) − π(ρj))
2 = π(ρi) − π(ρj) by the inclusion condition which implies that π(ρj)π(ρi) =

π(ρi).

If ΠS is the empty set then it must be the case that π(ρi) = π(ρj) for all ρi,j ∈ S , since

otherwise we could use convexity to show a contradiction:

π

(
ρi + ρj

2

)
− π(ρi) ∈ ΠS . (3.45)

So in this case (3.43) is trivial.

We may thus assume from now on that ΠS is non-empty. By Zorn’s lemma we can pick

a maximal family of mutually orthogonal projectors from ΠS , where family means a subset of

ΠS , and maximal means that there are no other orthogonal families of projectors that are strictly

larger under the order of inclusion. Call the maximal family qmax. By the σ-finite condition, it is

a countable family

qmax = {π(ρin)− π(ρjn) : n = 1, 2 . . .}. (3.46)
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Given qmax we define:

σ =
∞∑
n=1

2−nρin (3.47)

The infinite sum converges in the linear functional norm and so by convexity and closedness of

S we find that σ ∈ S . The support projector for this state satisfies:

π(σ)H =
∞⊕
n=1

π(ρin)H (3.48)

(understood as a direct sum in the norm topology.) By the maximality condition we can show

(3.43). To see this, suppose that this is not true for some ρk then:

Bσ ⊂ π

(
σ + ρk

2

)
−π(σ) ∈ ΠS and

(
π

(
σ + ρk

2

)
− π(σ)

)
⊥ (π(ρin)− π(ρjn)) (3.49)

for all n. This contradicts the maximality of qmax, which is absurd.

3.2 Proof of main theorems

Our eventual goal in this section is to prove our main results, Theorems (3.1.1) and (3.1.2).

As discussed above, without loss of generality we can take σ to be faithful and so we will assume

this from now on.

The proof is divided into several steps. In subsec. (3.2.1), we first fix some notation and

recall basic facts about the vectors that we are dealing with. In subsec. (3.2.2), we introduce the

non-commutative Lp-space by Araki and Masuda [70] and explain its – in principle well-known

– relation to the fidelity. We make certain minor modifications to the standard setup and prove a

simple but important intermediate result which we call a “first law”, Theorem (3.2.1). In subsec.
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(3.2.3), we motivate the definition of certain interpolating vectors that will be of main interest

in the following subsections and in subsec. (3.2.4) we prove some of their basic properties.

Subsec. (3.2.5) is the most technical section. It introduces certain regularized (“filtered”) versions

of our interpolating vectors and their properties. Our definition of filtered vectors involves a

certain cutoff, P , that is defined in terms of relative modular operators. A quite general result of

independent interest is that the relative entropy behaves continuously as this cutoff is removed,

Theorem (3.2.3). Armed with this technology, we can then complete the proofs in subsec. (3.2.6)

using an interpolation result for Araki-Masuda Lp spaces, Lemma (3.2.7).

3.2.1 Isometries Vψ for general states, notation

Since the two states σ, ρ play a central role in Theorem (3.1.1) we will use a special notation

for the vectors that represent these states in their respective natural cones:

|ηA〉 ≡
∣∣ξAσ 〉 , |ηB〉 ≡

∣∣ξBσ 〉 , |ψA〉 ≡
∣∣ξAρ 〉 , |ψB〉 ≡

∣∣ξBρ 〉 (3.50)

where |ηA〉 ∈H (|ηB〉 ∈ K ) are cyclic and separating for A (B).

We will also choose to label various objects, such as support projectors, and the modular

operators discussed below, for the most part with the vector rather than the linear functional as

we did in Section (3.1). This will be convenient since we will occasionally have to work with

vectors that do not necessarily live in the natural cone. For example, given a |χ〉 ∈H we define:

πA
′
(χ) ≡ πA

′
(ω′χ) , πA(χ) ≡ πA(ωχ) (3.51)
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where ω′χ ∈ A′? is the induced linear functional of |χ〉 ∈H on the commutant. For vectors |ξ〉 in

the natural cone we have a symmetry between the support projectors πA(ξ) = JAπ
A(ξ)JA. We

use similar notation for objects associated to the algebras B. When the only algebra in question

is A, we write

π(χ) ≡ πA(χ), π′(χ) ≡ πA
′
(χ). (3.52)

We have already recalled that a general vector |χ〉 ∈ H is related to a unique vector in the

natural cone inducing the same linear functional onA. More precisely, there is a partial isometry

in v′χ ∈ A′ such that

|χ〉 = v′χ
∗ |ξχ〉 , v′χv

′
χ
∗

= πA
′
(χ) , v′χ

∗
v′χ = πA

′
(χ) (3.53)

Now consider a vector |ψA〉 = |ξAψ 〉 ∈ P\
A and define a corresponding vector in K using

|ψB〉 ≡ ξBψ ∈P\
B. The vector Vη |ψB〉 ∈ H induces the same linear functional on ι(B) as |ψA〉,

where we use exchangeably the notation Vη = Vσ for the embedding (3.16). Thus there exists a

partial isometry u′ψ;ηin ι(B)′, with implied initial and final support, relating the two vectors

Vη |ψB〉 = u′ψ,η
∗ |ψA〉 . (3.54)

Combining this with (3.17) we have for b ∈ B

Vηb |ψB〉 = ι(b)u′ψ,η
∗ |ψA〉 . (3.55)

Since this notation is cumbersome we will simply define a new isometry Vψ : K → H that is
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defined with reference to |ψ〉

Vψ ≡ u′ψ,ηVη . (3.56)

It will also be convenient to have Vχ defined for states |χ〉 ∈ H that are not necessarily in the

natural cone. In that case, we extend this definition further:

Vχ ≡ v′χ
∗
u′ξχ;ξηVη . (3.57)

These satisfy

Vχb
∣∣ξBχ〉 = ι(b) |χ〉 . (3.58)

3.2.2 Lp spaces, fidelity and relative entropy

In this part we introduce various quantum information measures that will be useful to char-

acterize sufficiency. We have already seen the importance of relative entropy and the fidelity.

What we need are quantities interpolating between them. These will be provided by the non-

commutative Lp norm associated with a von Neumann algebra, with reference to a state/vector.

There exist different definitions of such norms/spaces in the literature; here we basically fol-

low the version by Araki and Masuda [70], suitably generalized to non-faithful states. Such a

generalization was considered up to a certain extent by [81], see also [82] for related work.

Definition 3.2.1. [70] Let M be a von Neumann algebra in standard form acting on a Hilbert

space H . For 1 ≤ p ≤ 2 the Araki-Masuda Lp(M, ψ) norms, with reference to a fixed vector
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|ψ〉 ∈H , are defined by2:

‖ζ‖Mp,ψ = inf
χ∈H :‖χ‖=1,πM(χ)≥πM(ζ)

‖∆1/2−1/p
χ,ψ ζ‖ (3.59)

where the definition above only depends on the functional ωψ but not the choice of vector repre-

sentative, |ψ〉.

Remark 2. 1) The norm is always finite for this range of p. We will use the Lp norms mostly for

the commutant algebra A′ of A. Then,

‖ζ‖A
′

p,ψ =
∥∥πA(ψ)ζ

∥∥A′
p,ψ
, (3.60)

due to the (possibily) restricted support of the relative modular operator.

2) For 1 ≥ α ≥ 1/2, the quantity 1
α−1

ln ‖η‖2α
2α,ψ is sometimes called the “sandwiched

Renyi entropy” (between |η〉, |ψ〉). It is in general different from the “usual” Renyi-Petz entropy,

1
α−1

ln〈ψ|∆1−α
ψ,η ψ〉. Both quantities, as well as the Lp norms, can be defined or more general

values of the parameters but are not needed here.

When p = 2, the Lp norm becomes the projected Hilbert space norm:

‖ζ‖A
′

2,ψ =
∥∥πA(ψ)ζ

∥∥ . (3.61)

Taking a derivative at p = 2 will give the relative entropy comparing ζ with ψ as linear functionals

2The Araki-Masuda norms were originally defined assuming a faithful normal reference state. For the most part
we will only ever need the definition of the norm (3.59) for vectors in the Hilbert space, along with some simple
consequences of this variational formula. Thus we will not need the full machinery developed by [70], except at
some crucial steps in the interpolation argument below that we will highlight. When this is the case we will apply
their results for a faithful state and prove that one can extrapolate to the case at hand.
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on A, see below.

At p = 1 we have the following lemma:

Lemma 3.2.1. 1. At p = 1 the Araki-Masuda norm (3.59) relative to A′ becomes the fidelity

‖φ‖1,ψ = F (ωψ, ωφ) ≡ sup
u′∈A′:(u′)∗u′=1

| 〈ψ|u′ |φ〉 |, (3.62)

where ωφ, ωψ ∈ A are the induced linear functionals for |φ〉, |ψ〉, respectively.

2. The fidelity may also be written as

F (ωψ, ωφ) = sup
x′∈A′:‖x′‖≤1

| 〈ψ|x′ |φ〉 |. (3.63)

3. It is related to the linear functional norm (Fuchs-van-der-Graff inequalities) by

1− F (ωψ, ωφ) ≤ 1

2
‖ωψ − ωφ‖ ≤

√
1− F (ωψ, ωφ)2. (3.64)

Proof. While these results are standard, we include the proof in the Appendix (B.2.1) because we

also treat the non-faithful case for the generalized Araki-Masuda norm in (3.59) which has not

explicitly appeared elsewhere as far as we are aware. Note that an argument conditional on other

– unproven in the non-faithful case – properties of Araki-Masuda norms was given in [81].

We will also need the following result that is potentially of independent interest.

Theorem 3.2.1 (First Law for Renyi Relative Entropy). Consider a one parameter family of vec-
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tors |ζλ〉 ∈H for λ ≥ 0, which are normalized ‖ζλ‖ = 1 and satisfy

lim
λ→0+

‖ζλ − ψ‖2

λ
= 0, (3.65)

where |ψ〉 = |ζ0〉. Then:

1) The Petz-Renyi relative entropy satisfies:

lim
λ→0+

1

λ
ln 〈ζλ|∆x(λ)

ψ,ζλ
|ζλ〉 = 0 , 0 ≤ x(λ) ≤ 1− ε, (3.66)

where ε > 0 and there is no other constraint on x(λ).

2) The sandwiched Renyi relative entropy satisfies:

lim
λ→0+

1

λ
ln ‖ζλ‖A

′

p(λ),ψ = 0 , 1 ≤ p(λ) ≤ 2, (3.67)

with no other constraint on how the function p(λ) behaves under the limit.

In order to prove this, we first prove the following lemma:

Lemma 3.2.2. Given two normalized vectors |ψ〉, |ζ〉 ∈H , we have:

1) For compact subsets K of the complex strip {0 ≤ Rez < 1}, there exists a constant CK

such that:

0 ≤ Re
(
1− 〈ζ|∆z

ψ,ζ |ζ〉
)
≤ CK ‖ζ − ψ‖2 (3.68)

for all z ∈ K. CK is independent of |ψ〉, |ζ〉.
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2) We also have for 1 ≤ p ≤ 2:

0 ≤ 1− 〈ζ|∆2/p−1
ψ,ζ |ζ〉 ≤ 1−

(
‖ζ‖A

′

p,ψ

)2

≤ 1−
(
〈ζ|∆1−p/2

ψ,ζ |ζ〉
)2/p

, (3.69)

and we have the elementary bound:

1−
(
〈ζ|∆1−p/2

ψ,ζ |ζ〉
)2/p

≤ 2

p

(
1− 〈ζ|∆1−p/2

ψ,ζ |ζ〉
)
. (3.70)

Proof. (1) This is demonstrated by an application of Harnack’s inequality (see e.g. [83], sec. 2,

Theorem 11) which applies to any h(z) that is harmonic and non negative in some connected

open set O: for all compact subsets K ⊂ O there exists a constant 1 ≤ C(K,O) <∞ such that:

h(z) ≤ C(K,O)h(w) , ∀z, w ∈ K, (3.71)

where notably this constant is independent of the particular h satisfying the assumptions.

We work with the real part of two holomorphic functions in two strips:

h1(z) = Re(1− 〈ψ|∆z
ψ,ζ |ζ〉) , O1 = {z ∈ C : −1/2 < Re(z) < 1/2} (3.72a)

h2(z) = Re(1− 〈ζ|∆z
ψ,ζ |ζ〉) , O2 = {z ∈ C : 0 < Re(z) < 1}. (3.72b)

These functions are continuous on the closure of the above strips and they are non-negative since

for normalized vectors | 〈ψ|∆z
ψ,ζ |ζ〉 |, | 〈ζ|∆z

ψ,ζ |ζ〉 | ≤ 1 by an easy application of the Hadamard

three lines theorem – these facts are standard results of Tomita-Takesaki theory for the relative

modular operators. There is no need for any of the vectors to be in the natural cone.
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We can thus apply Harnack’s inequality. Using the fact that:

h1(0) =
1

2
‖ψ − ζ‖2, (3.73)

and picking the compact subset K1 ⊂ O1 with 0 ∈ K1 we have:

0 ≤ h1(z) ≤ 1

2
C(K1, O1)‖ψ − ζ‖2 ∀ z ∈ K1. (3.74)

We have to relate this to h2(z) which is what we are most concerned with. We can relate the

two functions using the Cauchy-Schwarz inequality where the two defining strips overlap, 0 ≤

Rez ≤ 1/2:

Re
(
−〈ζ|∆z

ψ,ζ |ζ〉+ 〈ψ|∆z
ψ,ζ |ζ〉+ 〈ζ| ψ〉 − 1

)
≤
∣∣(|ζ〉 − |ψ〉 ,∆z

ψ,ζ |ζ〉 − |ψ〉
)∣∣

≤ ‖ζ − ψ‖
(
Re
(
1 + 〈ζ|∆z+z̄

ψ,ζ |ζ〉 − 2 〈ψ|∆z
ψ,ζ |ζ〉

))1/2

≤ ‖ζ − ψ‖
(
Re
(
2− 2 〈ψ|∆z

ψ,ζ |ζ〉
))1/2

, (3.75)

which translates to:

h2(z) ≤ 1

2

(
‖ζ − ψ‖+

√
2h1(z)

)2

, (3.76)

so that

0 ≤ h2(z) ≤ 1

2

(
1 +

√
C(K1, O1)

)2

‖ψ − ζ‖2 ∀ z ∈ K1 ∩O2. (3.77)

We can split the compact set K in the statement of the lemma into two compact pieces

K1 = K ∩ {z ∈ C : 0 ≤ Rez ≤ 1/4} and K2 = K ∩ {z ∈ C : 1/4 ≤ Rez ≤ 1}. These satisfy
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Ki ⊂ Oi : i = 1, 2. Repeatedly applying Harnack’s inequality as above gives the following

upper bound for CK :

1

2
max

{(
1 +

√
C({0} ∪K1, O1)

)2

, C({1
4
} ∪K2, O2)

(
1 +

√
C({0, 1

4
}, O1)

)2
}
, (3.78)

where it was necessary to add the points {0, 1/4} since they may not have been in the original K.

(2) This result is basically the well-known Araki-Lieb-Thirring inequality [84], for a proof

in the von Neumann algebra setting see [81], Theorem 12, forLp norms based on a not necessarily

cyclic and separating vector |ψ〉.

Proof of Theorem (3.2.1). (1) is a consequence of Lemma (3.2.2) (1): We can take K = [0, 1− ε]

which satisfies the assumptions of this lemma so:

0 ≤ lim
λ→0+

(
1− 〈ζλ|∆x(λ)

ψ,ζλ
|ζλ〉
)

λ
≤ lim

λ→0+
CK
‖ζλ − ψ‖2

λ
= 0. (3.79)

Then using differentiability of ln(x) at x = 1 and the chain rule we show (3.66).

(2) Here we need Lemma (3.2.2) (1) with K = [0, 1/2]. Applying Lemma (3.2.2) (2):

0 ≤ lim
λ→0+

(
1− ‖ζλ‖A

′

p(λ),ψ

)
λ

≤ lim
λ→0+

2

p(λ)

(
1− 〈ζλ|∆1−p(λ)/2

ψ,ζλ
|ζλ〉
)

≤ lim
λ→0+

2CK
‖ζλ − ψ‖2

λ
= 0. (3.80)

Again differentiability of ln(x) at x = 1 and the chain rule gives (3.67).

56



3.2.3 Exact recoverability/sufficiency

This section is meant as an informal summary of some of the results given in [71, 72],

defining the exact notion of recoverability or sufficiency. We will focus only on the properties

associated to sufficiency that we make contact with in this paper, and we will also treat only the

case of faithful linear functionals and drop all support projectors here.

By definition, the quantum channel ι : B → A is exactly reversible for at least two fixed

states ρ, σ if there exists a recovery channel α : A → B such that:

ρ ◦ ι ◦ α(a) = ρ(a) , ∀a ∈ A, (3.81)

and similarly for σ. Since the relative entropy is monotonous [21] under both α, ι, we must have

SA(ρ, σ) = SB(ρ, σ), see (3.15) for our notation. Representing σ, ρ by vectors in the natural

cone as in (3.50) and using a standard integral representation of the relative entropy based on the

spectral theorem and the elementary identity (x, y > 0)

ln y − lnx =

∫ ∞
0

(
1

x+ β
− 1

y + β

)
dβ , (3.82)

we get that

SA(ρ|σ)− SB(ρ|σ) =

∫ ∞
0

〈ψB|
(
V ∗ψ

1

β + ∆ηA,ψA

Vψ −
1

β + ∆ηB,ψB

)
|ψB〉 dβ (3.83)

vanishes. Known properties of the modular operators imply that the integrand is positive [71, 72,
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73]. Therefore,

V ∗ψ
1

β + ∆ηA,ψA

|ψA〉 =
1

β + ∆ηB,ψB

|ψB〉 (3.84)

for all β > 0, which can be integrated against a specific kernel that we will not write to arrive at

a statement about the relative modular flow:

V ∗ψ∆it
ηA,ψA

|ψA〉 = ∆it
ηB,ψB

|ψB〉 =⇒ |ψA〉 = ∆−itηA,ψA
Vψ∆it

ηB,ψB
|ψB〉 . (3.85)

Further manipulations give a derivation that the Petz map is a perfect recovery channel, although

we will not go through this. Here we simply note that it is a reasonable guess at this point

that for the approximate version of recoverability, one must require that |ψA〉 must be close to

∆−itηA,ψA
Vψ∆it

ηB,ψB
|ψB〉 in some metric. We will use the non-commutative Araki-MasudaLp norms

to provide such a metric.

3.2.4 Interpolating vector

Motivated by the above discussion we consider the following vector in H :

|Γψ(z)〉 = ∆z
ηA,ψA

Vψ∆−zηB,ψB |ψB〉 , (3.86)

defined at first for purely imaginary z, and assuming at first that |ψ〉, |η〉 are in the natural cone

(of A), see (3.50) for our notation.

Remark 3. The vector defined here is similar in spirit but does not quite coincide with the inter-

polating vector considered by [2]. It seems possible to consider other vectors instead, and we

briefly comment on this in Appendix (3.3).
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Our first result will be an analytic continuation of the vector (3.86) into a strip:

Theorem 3.2.2. 1. There is a vector-valued function |Γψ(z)〉 that is holomorphic in the strip

S1/2 = {0 < Re(z) < 1/2}, weakly continuous in the closure of the strip and has the

following explicit form at the top and bottom edges:

|Γψ(1/2 + it)〉 = ∆it
ηA,ψA

JAVηJB∆−itηB,ψB
|ψB〉 (3.87a)

|Γψ(it)〉 = ∆it
ηA,ψA

Vψ∆−itηB,ψB
|ψB〉 . (3.87b)

The norm of the vector |Γψ(z)〉 is bounded by 1 everywhere in the closure of S1/2, and∣∣Γψ(0)
〉

= |ψA〉.

2. On the top edge of the strip S1/2 this vector induces the the following state on A:

(|Γψ(1/2 + it)〉 , a+ |Γψ(1/2 + it)〉) ≤ 〈ψ| ι(αtη(a+)) |ψ〉 = ωψ ◦ ι ◦ αtη(a+), (3.88)

where a+ is any non-negative self-adjoint element in A, and where αtη is the rotated Petz

map (3.25) for the state σ induced by |η〉.

Remark 4. 1) A variant of this theorem holds when |ψ〉 is replaced by a unit vector |χ〉 that is not

necessarily in the natural cone. In this case, we should define

|Γχ(z)〉 = v′χ
∣∣Γξχ(z)

〉
(3.89)

with v′χ as in (3.53). The limiting values (3.87b), (3.87a) at the boundaries of the strip are then

readily computed using (3.54). In particular, (3.87b) takes the same form as before as seen using
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(3.57), (3.58), which also implies
∣∣Γχ(0)

〉
= |χ〉. (3.88) follows from (3.7).

2) The proof shows that we would have equality in (2) if πA′(ψ) = 1, i.e. if |ψ〉 is cyclic

for A.

Proof. Let us use in this proof the shorthands ∆ηB,ψB = ∆η,ψ;B and ∆ηA,ψA = ∆η,ψ;A.

(1) Given an a′ ∈ A′, consider the function:

g(z) =
(

∆
z̄−1/2
η,ψ;A a

′ |ηA〉 , JAVηJB∆
−z+1/2
η,ψ;B |ψB〉

)
, (3.90)

which using Tomita-Takesaki theory is analytic in the strip S1/2, continuous in the closure, and

bounded by:

|g(z)| ≤ max
0≤θ≤1/2

‖(∆′η,ψ;A)θa′ηA‖ ‖(∆η,ψ;B)θψB‖, (3.91)

where θ = Re(1/2−z). The maximum is achieved by continuity and compactness of the interval.

This bound is however not uniform over vectors a′ |ηA〉 ∈ H with norm 1. For this, we need

to use the Phragmén-Lindelöf theorem. Our function has the following form at the edges of the

strip (t ∈ R):

g(1/2 + it) = (a′ |ηA〉 , |Γψ(1/2 + it)〉) (3.92a)

g(it) = (a′ |ηA〉 , |Γψ(it)〉) , (3.92b)

where we made use of the expressions/definitions in (3.87a) and (3.87b) respectively. The first
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equation above is rather trivial but the second equation requires some lines of algebra:

g(it) =
(

∆
−it−1/2
η,ψ;A a′ |ηA〉 , JAVη∆−itψ,η;Bπ

B(ψ) |ηB〉
)

=
(

∆
−it−1/2
η,ψ;A a′ |ηA〉 , JAVηb |ηB〉

)
, b = ∆−itψ,η;Bπ

B(ψ)∆it
η;B ∈ B

=
(

∆
−it−1/2
η,ψ;A a′ |ηA〉 , JAι(b) |ηA〉

)
=
(
∆−itη,ψ;Aa

′ |ηA〉 , ι(b)∗ |ψA〉
)

=
(
∆−itη,ψ;Aa

′ |ηA〉 , Vψb∗ |ψB〉
)

=
(
∆−itη,ψ;Aa

′ |ηA〉 , Vψ∆−itη,ψ;B |ψB〉
)
, (3.93)

where in the first line we used (3.6), in the second we inserted ∆it
η;B for free giving rise to b which

is in A from the last equation in (3.10), we used (3.16) in the third line after which we passed

∆
−1/2
η,ψ;A to the right which is allowed since this vector is now in the domain of this operator. We

used (3.58) in line four and finally b can be rewritten as:

πB
′
(ψ)b = ∆−itψ;Bπ

B(ψ)∆it
η,ψ;B (3.94)

using (3.11). This finally leads to (3.92b). Since both expressions in (3.87a) and (3.87b) involve

products of partial isometries we have the following bound on the edges of the strip:

|g(it)|, |g(1/2 + it)| ≤ ‖a′ηA‖, (3.95)

which then extends inside the strip via the Phragmén-Lindelöf theorem. That theorem also re-

quires the (weaker) bound we derived in (3.91) and it applies inside the closure of the strip. Since

A′ |ηA〉 is dense in the Hilbert space we can extend the definition of g(z) to the full Hilbert space,

at which point it is a continuous anti-linear functional on all vectors, weakly (hence strongly)
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holomorphic in S1/2. This then defines a vector in H which is then our definition of (3.86) on

the strip S1/2. The bound on the norm of this vector follows also from Phragmén-Lindelöf the-

orem. For the continuity statements we further need the limit of g(z), as a′ |η〉 approaches an

arbitrary vector, to be uniform in z. This follows easily from the uniform boundedness of g(z)

and the Banach-Steinhaus principle.

(2) The final property (3.88) follows from a short calculation:

(
JAVηJB∆−itη,ψ;B |ψB〉 ,∆

−it
η,χ;Aa+∆it

η,χ;AJAVηJB∆−itη,ψ;B |χB〉
)

=
(
JAVηJB∆−itη,ψ;B |ψB〉 , ς

t
η(a+)πA

′
(ψ)JAVηJB∆−itη,ψ;B |χB〉

)
=
(
JAVηJB∆−itη,ψ;B |ψB〉 , ς

t
η;A(a+)

1/2
πA
′
(ψ)ς tη;A(a+)

1/2
JAVηJB∆−itη,ψ;B |ψB〉

)
≤
(
|ψB〉 ,∆it

η,ψ;BJB
(
V ∗η JAς

t
η,A(a+)JAVη

)
JB∆−itη,ψ;B |ψB〉

)
=
(
|ψB〉 , αtη;A(a+) |ψB〉

)
= ωψ ◦ ι ◦ αtη(a+), (3.96)

where we used (3.9) in the second line, the positivity of ς tη(a+) in the third line, the bound

πA
′
(ψ) ≤ 1 in the fourth line, the fact that V ∗η A′Vη ⊂ B′ (see (B.7)) and again (3.9) for the B

algebra in the fifth line.

3.2.5 Strengthened monotonicity

3.2.5.1 Basic strategy

We will apply interpolation theory to the vector
∣∣Γψ(z)

〉
, following the basic strategy of

[2]. By Theorem (3.2.2) (2) we get the rotated Petz recovered state on the top of the strip at

z = 1/2 + it, so we need to interpolate to the L1(A′, ψ) norm there where it becomes the fidelity
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by Lemma (3.2.1) (1). Close to z = 0 we will need to approach the p = 2 norm (the π(ψ)

projected Hilbert space norm) by (3.61) where we will show that we can extract the difference in

relative entropy. A generalized sum rule, using sub-harmonic analysis, relates the z = 0 limit to

an integral over the fidelities of the z = 1/2 + it vector.

Extracting the relative entropy difference is the most difficult part of the proof and requires

some modifications to the basic strategy. We proceed by extending the domain of holomorphy

to a larger strip so that we can take derivatives at z = 0 easily. This requires defining a class of

states with filtered spectrum for the relative modular operator. We then approach the original state

as a limit. After a continuity argument, we show that this is sufficient to prove a strengthened

monotonicity statement for all states with finite B relative entropy.

3.2.5.2 Filtering and continuity

Our first task will be to extend |Γψ(z)〉 holomorphically into the larger strip {−1/2 <

Rez ≤ 1/2}. This might not be possible for general |ψ〉, so to make progress we work with

vectors that have approximately bounded spectral support for the relative modular operator ∆η,ψ.

Thus we now introduce a filtering procedure that produces from |ψ〉 a vector |ψP 〉 with approxi-

mately bounded spectral support.

For convenience, we work with |η〉, |ψ〉 ∈ H in the natural cone, and consider a related

vector |ψP 〉 (which is not in the natural cone of A), defined by:

|ψP 〉 =

∫ ∞
−∞

fP (t)∆it
η,ψ |ψ〉 dt = f̃P (ln ∆η,ψ) |ψ〉 , (3.97)

where f̃P is the Fourier transform of a certain function fP and provides a kind of damping.
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All modular operators and support projections in this subsection refer to A, and since we only

consider one algebra in this subsection, we drop the subscripts to lighten the notation. Note that

ln ∆η,ψ is defined on π′(ψ)π(ψ)H since ∆η,ψ is only invertible there. Away from this subspace

the operator acts as 0.

We take fP to have the following properties, motivated by the desire to prove nice continu-

ity statements as P → ∞. Since we want to think of P as a cutoff, we take fP to be a scaling

function:

fP (t) = Pf(tP ), (3.98)

and now specify properties of f(t). (Note that the Fourier transform satisfies f̃P (p) = f̃(p/P ).)

Definition 3.2.2. We call the function f in (3.98) a smooth filtering function if it satisfies the

following properties.

(A) The Fourier transform of f

f̃(p) =

∫ ∞
−∞

e−itpf(t)dt (3.99)

exists as a real and non-negative Schwarz-space function. This implies that the original

function f is Schwarz and has finite L1(R) norm, ‖f‖1 <∞.

(B) f(t) has an analytic continuation to the upper complex half plane such that the L1(R) norm

of the shifted function has ‖f(·+ iθ)‖1 <∞ for 0 < θ <∞.

Note that the Fourier transform of the shifted function satisfies:

˜f(·+ iθ)(p) = f̃(p)e−θp. (3.100)
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Examples of such smooth filtering functions include Gaussians as well as the Fourier transform

of smooth functions f̃ with compact support. The norms satisfy:

‖f̃P‖∞ = ‖f̃‖∞ ≥ f̃(0) , ‖fP‖1 = ‖f‖1 ≥ ‖f̃‖∞, (3.101)

where the later inequality is well-known as the Hausdorff-Young inequality.

We now establish some properties of the resulting vector |ψP 〉:

Lemma 3.2.3. The filtered vector |ψP 〉 defined in (3.97) based on a smooth filtering function f ,

has the following properties:

1. limP→∞ |ψP 〉 = f̃(0) |ψ〉 strongly.

2. There exists aP ∈ A such that |ψP 〉 = aP |ψ〉 , and

‖aP‖ ≤ ‖f‖1, (3.102)

such that aPπ(ψ) = aP .

3. The induced linear functional on A′ is dominated by

ω′ψP ≤ ‖f‖
2
1 ω
′
ψ, (3.103)

and π′(ψP ) ≤ π′(ψ).

4. There exists a′P ∈ A′ such that |ψP 〉 = a′P |η〉 , and ‖a′P‖ ≤ ‖f(·+ iP/2)‖1.
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5. The induced linear functional on the algebra A is dominated by

ωψP ≤ ‖f(·+ iP/2)‖2
1 ωη. (3.104)

We need property (A) of def. (3.2.2) for (1-3) and property (B) for (4-5).

Proof. (1) Letting Eη,ψ(dλ) be the spectral resolution of ln ∆η,ψ, we have

‖ψP − f̃(0)ψ‖2 =

∫
R

(
f̃(λ/P )− f̃(0)

)2

〈ψ|Eη,ψ(dλ)ψ〉 . (3.105)

We can take the pointwise limit P → ∞ using dominated convergence (since f̃ is a bounded

function); this immediately gives the statement.

(2) We insert ∆−itψ π′(ψ) next to |ψ〉 in the first expression of (3.97) and find

aP =

∫
R
fP (t)∆it

η∆−itψ,ηdt. (3.106)

This is an integral over Connes-cocycles, hence defines an element of A. The operator norm is

bounded by

‖aP‖ ≤
∫
R
|fP (t)|‖∆it

η∆−itψ,η‖ dt ≤
∫
R
|fP (t)| dt = ‖fP‖1 = ‖f‖1, (3.107)

since ∆it
η∆−itψ,η are isometries.

(3) We establish this via

〈ψP | a′+ |ψP 〉 = 〈ψ| a′+
1/2
a∗PaPa

′
+

1/2 |ψ〉 ≤ ‖aP‖2 〈ψ| a′+ |ψ〉 , a′+ ∈ A′ , a′+ ≥ 0, (3.108)
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which gives (3.103) after using the bound (3.102). The bound on the support projectors follows

since π′(ψP ) is the smallest projector π′ ∈ A′ that satisfies ω′ψP (1 − π′) = 0. But π′ = π′(ψ)

satisfies this since 0 ≤ ω′ψP (1− π′(ψ)) ≤ ‖f‖2
1ω
′
ψ(1− π′(ψ)) = 0.

(4) Note that ∆
1/2
ψ,η |η〉 = J |ψ〉 = |ψ〉 since |ψ〉 is in the natural cone. Then, shifting the

integration contour as is legal by def. (3.2.2) (A),

|ψP 〉 =

∫ ∞
−∞

fP (t)∆it
η,ψ∆

1/2
ψ,η |η〉 dt =

∫ ∞
−∞

fP (t+ i/2)∆it
η,ψ∆−itη |η〉 dt. (3.109)

Note that ∆it
η,ψ∆−itη is a Connes-cocycle for A′, and hence an element of A′. Now define

a′P =

∫ ∞
−∞

fP (t+ i/2)∆it
η,ψ∆−itη dt ∈ A′. (3.110)

Since the Connes-cocycle is isometric, the norm of a′P may be bounded by

‖a′P‖ ≤
∫ ∞
−∞
|fP (t+ i/2)| ‖∆it

η,ψ∆−itη ‖ dt =

∫ ∞
−∞
|f(t+ iP/2)| dt = ‖f(·+ iP/2)‖1. (3.111)

(5) We have 〈ψP | a+ |ψP 〉 = 〈η| a1/2
+ a′P

∗a′Pa
1/2
+ |η〉 ≤ ‖a′P‖2 〈η| a+ |η〉 , which gives the

statement in view of (4).

We would now like to see how the relative entropy between |η〉, |ψP 〉 behaves in the limit

P → ∞. We will find the conditions on f for which the relative entropy converges to that

between |η〉, |ψ〉 as P →∞.

Theorem 3.2.3. Suppose |ψ〉, |η〉 are states on a von Neumann algebra A, assumed to be in the

natural cone, and suppose |ψP 〉 is given by (3.97) with scaling function (3.98) satisfying property
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(A) of def. (3.2.2) and f̃(0) = 1. Then:

1. S(ψP |η) <∞.

2. We have

−2 ln (‖f‖1) + lim sup
P→∞

S(ψP |η) ≤ S(ψ|η) ≤ lim inf
P→∞

S(ψP |η). (3.112)

3. The relative entropy behaves continuously for P →∞,

lim
P→∞

S(ψP |η) = S(ψ|η), (3.113)

iff the Fourier transform of the scaling function, f̃(t), is a Gaussian centered at the origin.

Remark 5. The above statements hold even if S(ψ|η) = ∞ with limits understood as liv-

ing on the compactified real line. So for example in this case (3.112) or (3.113) implies that

limP→∞ S(ψP |η) =∞.

Proof. (1) In view of (3.103), [69], Theorem 3.6, Eq. (3.7), applied to the algebra A′, gives:

1

∆′ψP ,η + β
≥ 1

‖f‖2
1∆′ψ,η + β

(3.114)

for all β > 0.3 The following type of integral representation for the relative entropy is well-

3When applying [69], Theorem 3.6, Eq. (3.7) to the commutant A′ using (3.6), where one switches A ↔ A′ as
well as any support projectors π ↔ π′. Note further that [69], Theorem 3.6 refers to the natural cone but the specific
representative of the linear functional does not affect the modular operators above since ∆′ξ′ψP ,η

= ∆′ψP ,η using the

notation (3.53) (now for the commutant).
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known, see e.g. [73]:

S(ψP |η) =

∫ ∞
0

〈ψP |

(
− 1

∆−1
η,ψP

+ β
+

1

β + 1

)
|ψP 〉 dβ, (3.115)

and integral converges iff the relative entropy is finite. The bound in (3.114) can be used to bound

(3.115) from above due to the first equation in (3.10) and this gives:

S(ψP |η) ≤ 2 ln(‖f‖1) 〈ψP | ψP 〉+

∫ ∞
0

〈ψP |

(
− 1

∆−1
η,ψ + β

+
1

β + 1

)
|ψP 〉 dβ

= 2 ln(‖f‖1) 〈ψP | ψP 〉 − 〈ψ| ln ∆η,ψ

(
f̃P (ln ∆η,ψ)

)2

|ψ〉 . (3.116)

Using the spectral decomposition of ln ∆η,ψ, we can write

〈ψ| ln ∆η,ψ

(
f̃P (ln ∆η,ψ)

)2

|ψ〉 = −
∫ ∞
−∞

p
(
f̃(p/P )

)2

〈ψ|Eη,ψ(dp) |ψ〉 . (3.117)

This integral converges because pf̃(p/P )2 is uniformly bounded, by the Schwartz condition in

def. (3.2.2) (A). Thus the right hand side of (3.116) is finite and so we have shown (1).

(2) Let us continue by first assuming that S(ψ|η) <∞. Strong convergence of ψP , Lemma

(3.2.3) (1), guarantees that limP 〈ψP | ψP 〉 = 1 since f̃(0) = 1. Now the integral on the right

hand side of (3.117) can be split into two parts:

lim
P→∞

∫ ±∞
0

|p|
(
f̃(p/P )

)2

〈ψ|Eη,ψ(dp) |ψ〉 =

∫ ±∞
0

|p| 〈ψ|Eη,ψ(dp) |ψ〉 , (3.118)

where we have applied the dominated convergence theorem to each term using the facts that

f̃P (p) is bounded and that the relative entropy is finite. Taking the lim sup on both sides of
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(3.116) gives the first inequality in (3.112). Lower semi-continuity of relative entropy [69] gives

the second inequality.

If instead S(ψ|η) =∞, then we find from lower semi-continuity:

lim sup
P→∞

S(ψP |η) ≥ lim inf
P→∞

S(ψP |η) =∞, (3.119)

thus the limit must exist on the extended positive real line where it is infinite. This shows (2).

(3) Note that ‖f‖1 ≥ ‖f̃‖∞ ≥ f̃(0) = 1 so we get the continuity in (3.113) iff the

Hausdorff-Young inequality is saturated and f̃(0) = ‖f̃‖∞. It was shown by Lieb [85] that

the only functions that saturate the Hausdorff-Young bound are in fact Gaussians. The condition

f̃(0) = ‖f̃‖∞ then simply means the Gaussian f̃ must be centered at the origin.

3.2.5.3 Updated interpolating vector

We now consider again our interpolating vector (3.86). With the intention to extend the

domain of holomorphy, we consider the filtered states |ψP 〉 instead of |ψ〉. Although |ψP 〉 is not

in the natural cone, we can still define
∣∣ΓψP (z)

〉
in view of Remark (4) (1). This will however by

itself not be sufficient: It turns out that we also have to apply a projector ΠΛ to our vectors, so we

consider

ΠΛ

∣∣ΓψP (z)
〉
, ΠΛ ≡

∫ Λ

−Λ

EψP (dλ), (3.120)

where EψP (dλ) is the spectral decomposition of ln ∆ψP , so that limΛ→∞ΠΛ = π(ψP )π′(ψP ) in

the strong sense. We intend to send the regulators Λ, P → ∞, and in that process we will tune

f̃(0) to maintain ‖ |ψP 〉 ‖ = 1, and require (A) and (B) of def. (3.2.2). With those changes in
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place, we claim the following updated version of Theorem (3.2.2).

Lemma 3.2.4. 1. The vector valued function z 7→ ΠΛ

∣∣ΓψP (z)
〉

can be continued analytically

to the extended strip −1/2 < Rez < 1/2. It is bounded and weakly continuous in the

closure.

2. Its norm is bounded above by 1 in the closed upper half strip {0 ≤ Rez ≤ 1/2} and we

have the following estimate in the lower half strip {−1/2 ≤ Rez ≤ 0}:

∥∥ΠΛΓψP (z)
∥∥ ≤ (‖f(·+ iP/2)‖1e

Λ/2
)−2Rez

. (3.121)

3. We have

d

dz

(
ΠΛ

∣∣ΓψP (z̄)
〉
,ΠΛ

∣∣ΓψP (z)
〉) ∣∣∣∣

z=0

= 2
d

dz

〈
ψP
∣∣ΓψP (z)

〉∣∣∣∣
z=0

(3.122a)

= −2 (SA(ψP |η)− SB(ψP |η)) . (3.122b)

Proof. In order for the proof to run in parallel with that of Theorem (3.2.2), we consider in-

stead of |ψP 〉 the corresponding vector |ξψP 〉 in the natural cone of A. By Remark (4) (1), and

transformation formulas such as ∆z
ψP

= v′ψP
∗∆z

ξψP
v′ψP (which give corresponding transformation

formulas for ΠΛ), we find that ΠΛ,ψP

∣∣ΓψP (z)
〉

= v′ψPΠΛ,ξψP

∣∣ΓξψP (z)
〉
. The partial isometry v′ψP

is evidently of no consequence for the claims made in this lemma. By abuse of notation, we can

assume without loss of generality for the rest of this proof that |ψP 〉 is in the natural cone.

(1) Then, as in the proof of Theorem (3.2.2), we also use the shorthand ∆ηB,ψP B = ∆η,ψP ;B
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etc. With these notations understood, let us write out

ΠΛ

∣∣ΓψP (z)
〉

=
(
ΠΛ∆z

ψP A
) (

∆−zψP A∆z
η,ψP ;A

)
VψP∆−zη,ψP ;B

∣∣ψP B〉, (3.123)

which is initially defined only for purely imaginary z. We now consider the bracketed operator

above: ∆−zψP∆z
η,ψP

. It is well known that the majorization condition (3.104) ensures that this

operator has an analytic continuation to the strip −1/2 < Rez < 0. For completeness we give

this argument here using a similar approach as in the proof of Theorem (3.2.2).

Thus, we define, dropping temporarily the subscriptA as all quantities refer to this algebra:

G(z) =
(
c∗
∣∣ψP〉+ |ζ〉 ,∆−zψP∆z

η,ψP
d′
∣∣η〉) =

(
∆−z̄ψP c

∗∣∣ψP〉,∆z
η,ψP

d′ |η〉
)
, (3.124)

where: c ∈ A, d′ ∈ A′ and |ζ〉 ∈ (1 − π′(ψP ))H . This function is holomorphic in the lower

strip {−1/2 < Rez < 0} and is continuous in the closure due to Tomita-Takesaki theory. As in

the proof of Theorem (3.2.2) we can easily derive an upper bound on |G(z)| that is not uniform

with c, d′. We can then improve this to a uniform bound using the Phragmén-Lindelöf theorem

by checking the top and bottom edges of the strip. At the top we have:

|G(it)| ≤
∥∥c∗∣∣ψP〉∥∥ ‖d′ |η〉‖ , (3.125)
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and at the bottom we need the following calculation:

G(−1/2 + it) =
(

∆it
ψP

∆
1/2
ψP
c∗
∣∣ψP〉,∆it

η,ψP
∆
−1/2
η,ψP

d′ |η〉
)

=
(

∆it
ψP

∆
1/2
ψP
c∗
∣∣ψP〉,∆it

η,ψP
Jd′
∗
J∆−itψP

∣∣ψP〉)
=
(

∆it
ψP

∆
1/2
ψP
c∗
∣∣ψP〉,∆it

η Jd
′∗J∆−itψP ,η

∣∣ψP〉)
=
(
∆it
ψP
c∗
∣∣ψP〉, J (∆it

η Jd
′∗J∆−itψP ,η

)∗
J
∣∣ψP〉)

=
(
∆it
ψP
c∗
∣∣ψP〉,∆it

η,ψP
d′∆it

η

∣∣ψP〉) . (3.126)

Consequently,

|G(−1/2 + it)| ≤
∥∥π(ψP )c∗

∣∣ψP〉∥∥∥∥π′(ψP )d′∆it
η

∣∣ψP〉∥∥ ≤ ∥∥c∗∣∣ψP〉∥∥∥∥ς ′tη(d′)∣∣ψP〉∥∥
≤ ‖f(·+ iP )‖1

∥∥c∗∣∣ψP〉∥∥ ∥∥∥ς ′tη(d′)∣∣η〉∥∥∥ = ‖f(·+ iP )‖1

∥∥c∗∣∣ψP〉∥∥ ∥∥d′∣∣η〉∥∥
(3.127)

where in the first line we dropped the support projectors and defined modular flow onA′, ς ′tη(d′) =

∆−itη d′∆it
η . In the second line we finally used the majorization condition (3.104) that is true for

these filtered states. These bounds at the edges of the strip, and the weaker bound derived earlier,

can be extended into the full strip such that G(z)‖f(·+ iP )‖2z
1 is holomorphic and bounded by 1

everywhere for −1/2 ≤ Re(z) ≤ 0. Since c∗
∣∣ψP〉 + |ζ〉 and d′

∣∣η〉 for all c ∈ A and d′ ∈ A′ are

dense, we can extend the definition of the operator ∆−zψP∆z
η,ψP

to the entire Hilbert space where it

remains bounded,

‖∆−zψP∆z
η,ψP
‖ ≤ ‖f(·+ iP )‖−2Rez

1 . (3.128)

Since the limit on G(z) as c∗
∣∣ψP〉 and d′

∣∣η〉 approaches two general vectors in the Hilbert space
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and is uniform in z, we get the same continuity statement for ∆−zψP∆z
η,ψP

in the weak operator

topology. We also get holomorphy for this operator in the interior of the strip. Note that since

∆−zψP∆z
η,ψP

= (DψP : Dη)−izπ
′(ψP ) for the Connes-cocycle (DψP : Dη)−iz ∈ A holds along

z = it for real t, it continues to take this form in the lower strip.

Now let us turn to the first bracketed operator in (3.123), ΠΛ∆z
ψP

, which is a holomor-

phic operator (and thus continuous in the strong operator topology) in the entire strip due to the

projection on a bounded support of the spectrum of ln ∆ψP . In fact, the operator norm satisfies

‖ΠΛ∆z
ψP
‖ ≤ e−ΛRez for Rez ≤ 0. Finally we analyze the following vector appearing in (3.123),

∆−zη,ψP ;B
∣∣ψP B〉 which is holomorphic in {−1/2 < Rez < 0} and strongly continuous in the

closure of this region due to Tomita-Takesaki theory. This vector is also norm bounded by 1.

At this stage, we can combine the above holomorphy statements in (3.123) showing that this

vector is analytic in the lower strip {−1/2 < Rez < 0}. For the continuity statement in z, note

that an operator that is uniformly bounded and continuous in the weak operator topology such

as ∆−zψP ,η∆
z
η, acting on a strongly continuous vector ∆−zη,ψP ;B

∣∣ψP B〉 gives a weakly continuous

vector. Similarly, an operator that is continuous in the strong operator topology ΠΛ∆z
ψP

acting on

a weakly continuous vector – the output of the last statement – gives a weakly continuous vector.

Now we use the vector-valued edge of the wedge theorem (see e.g. [86], Appendix A), in

conjunction with Theorem (3.2.2), which already establishes an analytic extension to the upper

strip 0 < Rez < 1/2. We thereby extend ΠΛ

∣∣ΓψP (z)
〉

holomorphically to the full strip −1/2 <

Rez < 1/2.

(2) The bound (3.121) follows by combining the operator norm bounds above.

(3) Holomorphy at z = 0 allows us to take the derivative in (3.122a) on the bra and ket

separately and it is easy to see that they give the same contribution. The equality in (3.122a) also
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relies on ΠΛ

∣∣ψP〉 =
∣∣ψP〉. The second line (3.122b) follows by working with the right hand side

of in (3.122a) and taking the derivative as a limit along z = it for t→ 0. This gives:

lim
t→0

(〈
ψP A

∣∣∆it
η,ψP ;AVψP∆−itη,ψP ;B

∣∣ψP B〉− 1
)
/(it)

= lim
t→0

(〈
ψP A

∣∣∆it
η,ψP ;A

∣∣ψP A〉− 1
)
/(it) + lim

t→0

(〈
ψP B

∣∣∆−itη,ψP ;B
∣∣ψP B〉− 1

)
/(it)

=− SA(ψP |η) + SB(ψP |η), (3.129)

where the later limits can be shown to exist when the ψP relative entropies are finite, as is indeed

the case by Theorem (3.2.3) (1), see [73], Theorem 5.7. The first equality in (3.129) can be

shown more explicitly by subtracting the two sides and observing that this is an inner product on

two vectors. After applying the Cauchy-Schwarz inequality, one again uses the finiteness of ψP

relative entropy, by Theorem (3.2.3) (1), to show that this difference vanishes in the limit:

lim
t→0

∣∣(∆−itη,ψP ;A
∣∣ψP A〉− ∣∣ψP A〉, VψP∆−itη,ψP ;B

∣∣ψP B〉− ∣∣ψP A〉)∣∣2
t2

≤ lim
t→0

2Re
(
1−

〈
ψP A

∣∣∆it
η,ψP ;A

∣∣ψP A〉)
t

2Re
(
1−

〈
(ψPB

∣∣∆−itη,ψP ;B
∣∣ψP B〉)

t
= 0. (3.130)

3.2.5.4 Lp norms of updated interpolating vector

We now study Lp norms of the updated interpolating vector (3.120) and its limits as P,Λ→

∞, z → 0 and p→ 1 or p→ 2. First we consider p = 1.
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Lemma 3.2.5. 1. The L1(A′, ψP )-norm of (3.120) for z = 1/2 + it satifsfies:

lim
Λ→∞

‖ΠΛΓψP (1/2 + it)‖A
′

1,ψP
= ‖ΓψP (1/2 + it)‖A

′

1,ψP
≤ F (ωψP , ωψP ◦ ι ◦ αtη) (3.131)

where αtη is the rotated Petz map defined in (3.25).

2. We have

lim
P→∞

F (ωψP , ωψP ◦ ι ◦ αtη) = F (ωψ, ωψ ◦ ι ◦ αtη) (3.132)

Proof. (1) For the first equality, we need an appropriate continuity property of the L1-norm which

is provided in Lemma (B.2.1), Appendix (B.2.2). It shows that strong convergence of the vectors

implies the convergence of the L1 norm. For the limit Λ → ∞, this follows from the strong

convergence of ΠΛ to π′(ψP )π(ψP ). In fact, we can drop these support projectors because by

definition π′(ψP )
∣∣ΓψP (z)

〉
=
∣∣ΓψP (z)

〉
and also because the Lp norms satisfy (3.60).

Next, Lemma (3.2.1) (1) gives ‖ΓψP (1/2 + it)‖A
′

1,ψP
= F (ωψP , ωΓt), where we use the

shorthand |Γt〉 ≡ |ΓψP (1/2 + it)〉. Now we use the majorization condition on ωΓt (3.88), in

conjunction with the concavity of the fidelity [75]:

F (ωψP , ωψP ◦ ι ◦ αtη) = F (ωψP , ωΓt + (ωψP ◦ ι ◦ αtη − ωΓt))

≥ F (ωψP , ωΓt) + F (ωψP , (ωψP ◦ ι ◦ αtη − ωΓt))

≥ F (ωψP , ωΓt) (3.133)

This completes the proof of (1).

(2) We use the fact that, where the fidelity F (ωψP , ωψP ◦ ι ◦ αtη) is concerned, we can pick
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another vector that gives the same linear functional. We can replace:

F (ωψP , ωψP ◦ ι ◦ αtη) =
∥∥∆it

η;AJAVηJB∆−itη;BψPB
∥∥A′

1,ψP
. (3.134)

Then, in view of Lemma (B.2.1), Appendix (B.2.2), we only need establish the strong conver-

gence of
∣∣ψP B〉 and of

∣∣ψP A〉 as P →∞, and this follows by combining Lemma (3.2.3) (1) and

Eq. (3.4) [remembering the notations (3.50)].

Next, we consider simultaneously approaching p = 2 and z = 0.

Lemma 3.2.6. We have

lim
θ→0

1

θ
ln ‖ΠΛΓψP (θ)‖A

′

pθ,ψP
= lim

θ→0

1

2θ
ln (ΠΛ |ΓψP (θ)〉 ,ΠΛ |ΓψP (θ)〉) (3.135)

= − (SA(ψP |η)− SB(ψP |η))

with pθ = 2/(1 + 2θ).

Proof. Define the normalized vector

|ζθ〉 ≡
ΠΛ

∣∣ΓψP (θ)
〉

‖ΠΛΓψP (θ)‖
. (3.136)

We can then use Lemma (3.2.4), (3.122a) to show that:

lim
θ→0+

‖ζθ − ψP‖2

θ
= 0. (3.137)
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So we can apply the “first law” (3.67) for the Lp norms in Lemma (3.2.1) to |ζθ〉, to conclude

lim
θ→0+

1

θ
ln ‖ζθ‖A

′

pθ,ψP
= 0, (3.138)

since pθ = 2/(1+2θ) satisfies the assumptions of Lemma (3.2.1). The Lp norms are homogenous

so we can pull out the normalization:

lim
θ→0+

1

θ
ln ‖ΠΛΓψP (θ)‖A′pθ,ψP = lim

θ→0+

1

θ
ln ‖ΠΛΓψP (θ)‖, (3.139)

and this gives the desired answer after applying (3.122a) again.

The last ingredient that we will need is an interpolation theorem for the Araki-Masuda Lp

norms on a von Neumann algebra:

Lemma 3.2.7. Let |G(z)〉 be a H -valued holomorphic function on the strip S1/2 = {0 < Rez <

1/2} that is uniformly bounded in the closure, |ψ〉 ∈H a possibly non-faithful state of a sigma-

finite von Neumann algebraM in standard form acting on H . Then, for 0 < θ < 1/2,

1

pθ
=

1− 2θ

p0

+
2θ

p1

(3.140)

with p0, p1 ∈ [1, 2], we have

ln ‖G(θ)‖Mpθ,ψ (3.141)

≤
∫ ∞
−∞

dt
(

(1− 2θ)αθ(t) ln ‖G(it)‖Mp0,ψ + (2θ)βθ(t) ln ‖G(1/2 + it)‖Mp1,ψ
)
,
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where

αθ(t) =
sin(2πθ)

(1− 2θ)(cosh(2πt)− cos(2πθ))
, βθ(t) =

sin(2πθ)

2θ(cosh(2πt) + cos(2πθ))
. (3.142)

Proof. See Appendix (B.3). In the commutative setting this is closely related to the Stein inter-

polation theorem [87]. In the non-commutative setting, a proof appears for type I factors and

the usual non-commutative Schatten Lp norms in [2]. We will make sure that it works in the

setting of the Araki-Masuda Lp norms defined in (3.59) with reference to a possibly non-faithful

state.

3.2.6 Proof of Theorems 3.1.1 and 3.1.2

We close out this long section by combining the above auxiliary results into proofs of the

main theorems.

Proof of Theorem (3.1.1). Given the two normal states ρ, σ we consider as above representers

|ψ〉, |η〉 in the natural cone. From this we construct the filtered vector |ψP 〉 as in (3.97). We then

apply Lemma (3.2.7) with p1 = 2, p0 = 1,M = A′, |G(z)〉 = ΠΛ

∣∣ΓψP (z)
〉

and use that the L2

norm is actually the (projected) Hilbert space norm, see Eq. (3.61), so

‖ΠΛΓψP (it)‖A
′

2,ψP
= ‖ΠΛΓψP (it)‖ ≤ 1. (3.143)
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Taking the limit θ → 0+ with the aid of Lemma (3.2.6) we have:

SA(ψP |η)− SB(ψP |η) ≥ −2 lim
Λ→∞

∫ ∞
−∞

β0(t) ln ‖ΠΛΓψP (1/2 + it)‖A
′

1,ψP
dt

= −2

∫ ∞
−∞

β0(t) ln ‖ΓψP (1/2 + it)‖A
′

1,ψP
dt

≥ −2

∫ ∞
−∞

β0(t) lnF
(
ωψP , ωψP ◦ ι ◦ αtη

)
dt, (3.144)

where the limit exits due to Lemma (3.2.5) (1) and where we have used the monotonicity of ln.

Taking the limit P →∞we get in view of Lemma (3.2.5) (2), Theorem (3.2.3) (3) for a Gaussian

filtering function satisfying (A) and (B) of def. (3.2.2) and lower semi-continuity of the B relative

entropy that

SA(ψ|η)− SB(ψ|η) ≥ −2

∫ ∞
−∞

β0(t) lnF
(
ωψ, ωψ ◦ ι ◦ αtη

)
dt. (3.145)

We can then re-write the answer in terms of the original states ρ, σ and we arrive at (3.24). (Recall

that we are using αtη = αtσ interchangeably.)

Theorem (3.1.1) forms the basis of the next proof:

Proof of Theorem (3.1.2). Since all states ρi ∈ S have finite relative entropy with respect to

σ ∈ S we learn that π(ρi) ≤ π(σ). This implies, via Lemma (3.1.1), (in particular (3.36)) that

if ιπ(Bπ) ⊂ Aπ is ε-approximately sufficient for Sπ then ι(B) ⊂ A is ε-approximately sufficient

for S . Here

Sπ = {ρ ◦ Φ ∈ (Aπ)? : ρ ∈ S }, (3.146)

and we have used (3.30b). The recovery channel αS is derived from the recovery channel for
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ιπ(Bπ) ⊂ Aπ. This later recovery channel αSπ then pertains to the “faithful” version of this

theorem, and is derived from Theorem (3.1.1), as we will show below. In this way we can

proceed by simply assuming that σ is faithful for A, now without loss of generality. In particular

we may take (3.41) to be determined by the faithful Petz map in (3.25).

In the faithful case we first check that the map (3.41) is indeed a recovery channel. This

follows since αtσ are recovery channels for each t ∈ R ( generalizing the results in [11] to non-

zero t) and so the weighted t integral is also clearly unital and completely positive.

We now check the continuity property of (3.41). The integral is rigorously defined as

follows. For all a ∈ A the function t 7→ αtσ(a) is continuous in t in the ultra-weak topology (thus

Lebesgue measurable) and bounded on R. So

B? 3 ρ 7→
∫
R
p(t)ρ(αtσ(a))dt ∈ C (3.147)

gives a continuous linear functional and thus defines an element in B (the continuous dual of the

predual) that we call αS (a). Continuity in the linear functional norm follows from the conver-

gence of the following integral:

∫
R
p(t)‖αtσ(a)‖ dt ≤ ‖a‖. (3.148)

This also guarantees that the resulting operator αS (a) =
∫
R p(t)α

t
σ(a)dt is a bounded operator:

‖αS (a)‖ = sup
ρ∈A?

|
∫
R p(t)ρ(αtσ(a))dt|

‖ρ‖
≤
∫
R
p(t)‖αtσ(a)‖dt ≤ ‖a‖. (3.149)
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We need to check the ultraweak continuity of a 7→ αS (a). For all ρ ∈ B? we define the integral

∫
R
p(t)ρ ◦ αtσ dt (3.150)

in much the same way as above, as a Lebesgue integral on continuous functions valued in A?.

That is, the evaluation of this expression on a ∈ A defines an ultraweakly continuous functional

on A. This follows since the sequence

∫
R
p(t)ρ ◦ αtσ(an)dt (3.151)

converges to the integral of the pointwise limit by the dominated convergence theorem, as p(t)|ρ◦

αtσ(a)| ≤ p(t)‖ρ‖‖a‖ is integrable. Putting all the pieces together we find that

a 7→ αS (a) =

∫ ∞
−∞

p(t)αtη(a) dt (3.152)

is ultraweakly continuous, since for all ρ ∈ B?,

ρ

(∫
R
p(t)αtσ(an − a)

)
dt ≡

∫
R
p(t)ρ(αtσ(an − a))dt =

∫
R
p(t)ρ ◦ αtσ(an − a)dt (3.153)

converges to zero whenever an → a ultraweakly.

The proof is then completed by rewriting Theorem (3.1.1) using the concavity of fidelity.

For this, we require a version of Jensen’s inequality for the convex functional σ 7→ F (ρ, σ) on
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normal states on A with respect to the measure p(t)dt. This would give us

∫
R
F (ρ, ρ ◦ ι ◦ αtσ)p(t)dt ≤ F

(
ρ,

∫
R
ρ ◦ ι ◦ αtσ p(t)dt

)
(3.154)

where ρ is a state in A?. Then Theorem (3.1.1) becomes:

−2 lnF (ρ, ρ ◦ ι ◦ αS ) ≤ SA(ρ|σ)− SB(ρ|σ), (3.155)

which implies that B is ε-approximately sufficient as claimed by the theorem.

We are not aware of a proof for Jensen’s inequality for convex functionals of a Banach

space valued random variable that would apply straight away to the case considered here. In

particular, it is not evident that the integrals in question can be approximated by Riemann sums

in the general case, as was done in [2]. So we now demonstrate (3.154) by a more explicit

argument using the detailed structure of the fidelity.

Consider the Hilbert space Y = L2(R; H ; p(t)dt) ∼= H ⊗̄L2(R; p(t)dt) of strongly mea-

surable square integrable functions valued in H . Vectors |Υ〉 in this space are (equivalence

classes of) functions t 7→ |Υt〉. Y is evidently a module for A. We denote this von Neumann

algebra byA⊗1 since it acts trivially in the second L2 tensor factor of Y . Now define the fidelity

as:

FA⊗1(Ψ,Υ) = sup
Y ′∈(A⊗1)′ , ‖Y ′‖≤1

|〈Ψ|Y ′ |Υ〉| . (3.156)

We next formulate a lemma that will allow us to complete the proof.
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Lemma 3.2.8. Let |Υ〉 , |Ψ〉 ∈ Y induce linear functionals on A⊗ 1 such that

〈Υ| a+ ⊗ 1 |Υ〉 ≤ σ(a+), 〈Ψ| a+ ⊗ 1 |Ψ〉 ≤ ρ(a+). (3.157)

where a+ is an arbitrary non-negative element in A and σ, ρ states on A. Then if |Υt〉 , |Ψt〉 are

strongly continuous then F (Υt,Ψt) is continuous, and we have

F (σ, ρ) ≥
∫
R
F (Υt,Ψt)p(t)dt. (3.158)

Proof. If |Υt〉 , |Ψt〉 are strongly continuous then F (Υt,Ψt) is continuous in t by (B.45), and

since the fidelity is the L1 norm, see Appendix C.

The idea is now to construct a suitable family of elements y′t ∈ A′. This family should be

chosen at the same time so as to satisfy: (i) ‖y′t‖ ≤ 1, (ii) t 7→ y′t is strongly continuous, (iii) in the

sup definition of the fidelity, (3.63) we are suitably close to saturating the supremum in the sense

that F (Υt,Ψt) is approximately |〈Υt|y′tΨt〉|. Then (ii) implies that y′t|Ψt〉 is weakly measurable

and thus strongly measurable by the Pettis measurability theorem, see e.g. [88], Theorem 3.1.1.4

By (i) we then see that the map y′t|Ψt〉 is in the Hilbert space Y because boundedness y′t clearly

implies that it is square integrable. (ii) holds for instance if the function y′t is continuous in the

norm topology, and we will attempt to choose it in this way. Then y′t, as a function, will define

an element Y in (A⊗ 1)′ that can be used in the variational principle (3.156). We must therefore

4This theorem applies even without assuming H to be separable since the image {y′t|Ψt〉 : t ∈ R} is a separable
open subset of H , in the norm topology, by strong continuity.
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have, using concavity of the fidelity in the same manner as in (3.133),

F (σ, ρ) ≥ FA⊗1(Ψ,Υ) ≥
∣∣∣∣∫

R
〈Υt|y′t|Ψt〉p(t)dt

∣∣∣∣ , (3.159)

using the variational principle (3.156) to obtain the last inequality, and using that the fidelity only

depends on functionals in the first. The evident strategy is now to make our choice (iii) of of

the function y′t in such a way that the right side is close to the right side of (3.158), while being

continuous in the operator norm topology and while satisfying ‖y′t‖ < 1, so that (i) and (ii) hold

as discussed.

To this end, consider the open unit ball inA′ in the norm topology,A′1 ≡ {x′ ∈ A′ : ‖x′‖ <

1}. For all t we define next a subset X ′t ⊂ A′1 by

X ′t ≡ A′1 ∩ {x′ ∈ A′ : |〈Ψt|x′ |Υt〉 − F (Ψt,Υt)| < ε}. (3.160)

This set is open in the norm topology because the second set on the right hand side of (3.160) is

open in the weak operator topology and so it is open in the norm topology, too. It is non empty

since we know that in the sup definition of fidelity it is sufficient to take ‖x′‖ < 1 and still achieve

F (Ψt,Υt).

We will be interested in the norm closures X ′t . What we then need to do is select a function

from this set y′t ∈ X ′t that varies continuously in the operator norm. This problem can be solved

by the Michael selection theorem [89]. Indeed, we can consider the mapping t ∈ R→ X ′t ∈ 2A
′

as a map from the paracompact space R to subsets of A′ thought of as a the Banach space (with

the operator norm). If it can be shown that the sets X ′t are nonempty closed and convex and that
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this map is “lower hemicontinuous”, then by the Micheal selection theorem, there is a continuous

selection y′t ∈ X ′t as we require.

We have seen that the sets are closed and nonempty. Convexity follows from

|〈Ψ| p1x
′
1 + p2x

′
2 |Υ〉 − F (p1 + p2)| ≤ p1 |〈Ψ|x′1 |Υ〉 − F |+ p2 |〈Ψ|x′2 |Υ〉 − F |

‖p1x
′
1 + p2x

′
2‖ ≤ p1‖x′1‖+ p2‖x′2‖ (3.161)

where the first equation is schematic but is hopefully clear, and where p1, p2 ≥ 0, p1 + p2 = 1.

This implies that X ′t is convex and hence its closure is also convex.

Lower hemicontinuity at some point t is the property that for any open set V ⊂ A′ that

intersects X ′t there exists a δ such that X ′t′ ∩ V 6= ∅ for all |t− t′| < δ. We see this for the case at

hand as follows. Take V satisfying the assumption, and note that V ∩ X ′t is also non empty. Pick

a y′ ∈ V ∩ X ′t . There exists an ε′ < ε such that:

|〈Ψt| y′ |Υt〉 − F (Ψt,Υt)| < ε′ < ε. (3.162)

Then, by the strong continuity of |Υt〉 resp. |Ψt〉 and continuity of F (Ψt,Υt), we see that this

condition is stable: Given ε− ε′ > 0 there does indeed exist a δ such that

|〈Ψt′ | y′ |Υt′〉 − F (Ψt′ ,Υt′)| < ε , ∀|t− t′| < δ (3.163)

which implies that y′ ∈ V ∩ X ′t′ ⊂ V ∩ X ′t′ as required.
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From Michael’s theorem we therefore get the desired norm continuous y′t satisfying

|〈Ψt|y′t|Υt〉 − F (Ψt,Υt)| ≤ ε (3.164)

for all t. Using that the fidelity is real and (3.159) and that ε can be made arbitrarily small then

readily implies the lemma.

We now use this lemma with |Υt〉 := |Γψ(i/2 + t)〉, which is weakly continuous by Theo-

rem (3.2.2) (1). Actually, it is even strongly continuous since it is given by the product of bounded

operators and ∆it
η;A,∆

it
η;B, which are strongly continuous as they are 1-parameter groups of uni-

taries generated by a self-adjoint operator by Stone’s theorem, see e.g. [90], sec. 5.3. We also

take |Ψt〉 = |ψ〉, which is obviously strongly continuous as it is just constant. Then |Υ〉 induces a

state dominated by ρ ◦ ι ◦ αS , by Theorem (3.2.2) (2), and |Ψ〉 induces ρ by definition, and |Υt〉

induces ρ ◦ ι ◦ αtσ. We thereby arrive at the concavity result (3.154), and this concludes the proof

of Theorem (3.1.2).

3.3 An alternative strategy for proving Theorem 3.1.1

It is conceivable that our approach based on the vector (3.86) can be modified by choosing

other interpolating vectors, and this may lead to new insights relating the argument to somewhat

different entropic quantities. Here we sketch an approach which seems to avoid the use of Lp-

norms, thus leading potentially to a substantial simplification. To this end, we consider now a

vector

|Ξψ(z, φ)〉 = ∆z
ψ,ξ;B∆−zη,ξ;B∆z

η,φ;A|ψ〉, (3.165)
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similar to vectors considered in [91]. Here, |ξ〉 is some vector such that πB′(ξ) ⊃ πB
′
(ψ), and

where in this section we find it more convenient to think of B as defined on the same Hilbert

space as A. The vector (3.165) does not depend on the precise choice of |ξ〉 (but on the vector

|η〉 in the natural cone of A, although we suppress this).

(3.165) is defined a priori only for imaginary z. But if we consider the set of states

majorizing |ψ〉, defined as C (ψ,A′) = {|φ〉 ∈ H : ‖a′ψ‖ ≤ cφ‖a′φ‖ ∀a′ ∈ A′}, then

for |φ〉 in this dense linear subspace of H , it has an analytic continuation to the half strip

S1/2 = {0 < Rez < 1/2} that is weakly continuous on the boundary. This can be demon-

strated by the same type of argument as in [91], prop. 2.5, making repeated use of the following

lemma by [91], Lemma 2.1:

Lemma 3.3.1. Suppose |G(z)〉 is a vector valued analytic function for z ∈ S1/2, and A is a self-

adjoint positive operator. Then Az|G(z)〉 is an analytic function of z ∈ S1/2 if ‖AzG(z)‖ is

bounded on the boundary of S1/2.

For example, we may write ∆z
η,φ;A|ψ〉 = ∆z

η,φ;A∆−zψ,φ;A∆z
ψ,φ;A∆−zψ;A|ψ〉, at first for imag-

inary z = it. Using the relations (3.10), (3.11), u′(z) = ∆z
ψ,φ;A∆−zψ;A = (Dψ : Dψ)∗−iz̄;A′ is

a Connes-cocycle for A′. The condition |φ〉 ∈ C (ψ,A′) ensures that it has an analytic con-

tinuation from z = it to S1/2, as an element of A′ that is strongly continuous on the bound-

ary of S1/2 – this is standard and a proof proceeds as that of Lemma 3.2.4, (1). Similarly,

v(z) = ∆z
η,φ;A∆−zψ,φ;A = (Dη : Dψ)−iz,A is a Connes-cocycle for A.

Then, for imaginary z = it we get ∆z
η,φ;A|ψ〉 = u′(z)v(z)|ψ〉, which has an analytic

continuation to S1/2 as v(z)|ψ〉 is analytic there by Tomita-Takesaki theory. One next applies the

lemma with |G(z)〉 = ∆z
η,φ;A|ψ〉 and Az = ∆−zη,ψ;B (chosing |ξ〉 = |ψ〉 here). The conditions
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are verified using standard relations of relative Tomita-Takesaki theory as given e.g. in [70],

Appendix C, such as (3.10), (3.11): At the upper boundary, z = 1/2 + it, one finds |G(1/2 +

it)〉 = u′(1/2 + it)JAv(it)∗JA|η〉 which is of the form b′|η〉 for b′ ∈ A′ ⊂ B′, and one finds

A1/2+it = ∆it
ψ,η;B′JB′Sψ,η;B′ . Together, this gives,

A1/2+it|G(1/2 + it)〉 = ∆it
ψ,η;B′JB′ [u

′(1/2 + it)JAv(it)∗JA]∗|ψ〉, (3.166)

which is bounded for real t. On the other hand, at the lower boundary Ait|G(it)〉 is bounded by

definition. Continuing this type of argument gives the following lemma.

Lemma 3.3.2. For |φ〉 ∈ C (A′, ψ), |Ξψ(z, φ)〉 is analytic in the interior of the strip S1/2 and

weakly continuous on the boundary.

The relationship with other approaches can be seen through the quantity

g(z) = inf
|φ〉∈C (A′,ψ),‖φ‖=1

‖Ξψ(z, φ)‖. (3.167)

In the setup of finite-dimensional v. Neumann subfactors described in sec. 3.4.1, we can write

|Ξψ(z, φ)〉 = (ρzBσ
−z
B ⊗ 1C)σ

z
Aρ

1/2
A τ−zA (3.168)

If we take z = θ real then the infimum over τA (the density matrix representing |φ〉) readily yields

an Lp-norm for pθ = 2/(2θ + 1),

g(z) =
(

tr
∣∣∣(ρzBσ−zB ⊗ 1C)σ

z
Aρ

1/2
A

∣∣∣pθ)1/pθ
. (3.169)
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We recognize this again as (3.183) corresponding to an expression also studied by [2].

The strategy is now the following. First, Lemma B.3.1 also applies to the holomorphic

Hilbert-space valued function |Ξψ(z, φ)〉 (because z 7→ ln ‖Ξψ(z, φ)‖ is subharmonic). So we

have for 0 < θ < 1/2 that

ln ‖Ξψ(θ, φ)‖ ≤
∫ ∞
−∞

(
αθ(t) ln ‖Ξψ(it, φ)‖1−2θ + βθ(t) ln ‖Ξψ(1/2 + it, φ)‖2θ

)
dt. (3.170)

Since ∀t ∈ R, ‖Ξψ(it, φ)‖ ≤ 1, αθ(t) > 0, we can drop the first term under the integral. Then,

we want to divide by θ and take the infimum over |φ〉 ∈ C (A′, ψ), ‖φ‖ = 1. The next lemma

will allow us to deal with the second term under the integral. Since |φ〉 ∈ C (A′, ψ), we can write

|ψ〉 = a|φ〉, where a ∈ A is self-adjoint, see [66], 5.21. Then:

Lemma 3.3.3. We have

‖Ξψ(1/2 + it, φ)‖2 = ωψ ◦ ι ◦ αtη(a2) (3.171)

for all |φ〉 ∈ C (A′, ψ).

Proof. On the left hand side of (3.171), we may choose |ξ〉 = |η〉. It is most convenient to work

with state vectors in the natural cones, for notations see (3.50). Define b = ∆
1/2
ψ,η;B∆

−1/2
η;B , which

is affiliated to the algebra B and extend the definition (3.173) to affiliated operators. Then we can
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write

‖Ξψ(1/2 + it, φ)‖2

=‖∆1/2
ψ,ξ;B∆

− 1
2
−it

η,ξ;B ∆
1
2

+it

η,φ;AaφA‖
2

=‖JBς−tη;A
(
ς tη;B (b)

)
JAaηA‖2

=〈ηA|ς tη;B(b∗b)JAς
t
η;A
(
a2
)
|ηA〉

=〈ηB|ς tη;B(b∗b)JBαη(ς
t
η;A
(
a2
)
)|ηB〉

=〈ηB|b∗bJBς−tη;B
(
αη
(
ς tη;A

(
a2
)))
|ηB〉

=〈ηB|b∗JBς−tη;B
(
αη
(
ς tη;A

(
a2
)))

b|ηB〉

=〈ψB|αtη(a2)|ψB〉 = ωψ ◦ ι ◦ αtη(a2).

(3.172)

(The choice πA′(ψ) = J2
A ≤ πA

′
(φ) ≤ πA

′
(η) = 1 guarantees the supports of vectors on A′ are

multiplied in the correct way, so we keep the πA′’s implicit in the derivation – everything should

be understood to happen on πA′(ψ).) In the derivation we used the definition of the Petz recovery

map, see e.g. [73] proof of prop. 8.4, such that ∀ a ∈ A, b ∈ B,

〈ηA|bJAa|ηA〉 = 〈ηB|bJBαη(a)|ηB〉. (3.173)

Thus, we have (3.171). We obtain the claim in the lemma by taking the infimum in the set

C (A′, ψ) on both sides of (3.171) and using (3.62).

The lemma and concavity of ln allows us to conclude from (3.170) that

lim
θ→0+

1

θ
ln ‖Ξψ(θ, φ)‖ ≤ ln ‖aζS ‖2 = ln ‖∆1/2

ζS ,φψ‖
2, (3.174)
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where |ζS 〉 is a vector representative of ωψ ◦ ι ◦ αS ∈ A? and αS the recovery channel (3.41).

Note that taking the infimum over |φ〉 ∈ C (ψ,A′) on the right side yields 2 lnF (ωψ, ωψ ◦ ι◦αS )

On the other hand, it is plausible to expect that for the term on the left side of (3.170), we obtain

inf
φ∈C (A′,ψ)

lim
θ→0+

1

θ
ln ‖Ξψ(θ, φ)‖ = −SA(ψ|η) + SB(ψ|η). (3.175)

If this latter equation could be demonstrated – which is possible at a formal level5 – then it is

clear that we would obtain an alternative proof of thm. 3.1.2 (though not of thm. 3.1.1).

When attempting to demonstrate (3.175) (or equivalently (3.176)), one is facing similar

technical difficulties as in the proof strategy described in the previous sections. There, we were

forced to introduced suitably regularized versions |ψP 〉 of the vector in question. Thus, while the

strategy discussed here nicely avoids the use of Lp-spaces up to a certain point, it is not clear

whether their use can be altogether avoided. We think that this would be an interesting research

project.

3.4 Examples and applications

Here we illustrate our method and results in two representative examples.

5 It is relatively straightforward to see that this equation would follow from the equation

lim
θ→0+

1

2θ

(
1− ‖Ξψ(θ, φ)‖2

)
= 〈ψ| ln ∆η,ψ;B|ψ〉 − 〈ψ| ln ∆η,φ;A|ψ〉. (3.176)

which is easier to check as it does not contain an infimum.
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3.4.1 Example: finite type-I algebras

To compare our method to that of [2] in the subalgebra case, we work out our interpolating

vector (3.86) in the matrix algebra case. Thus let A = Mn(C) and B = Mm(C), C = B′ ∩ A,

embedded as the subalgebra b 7→ ι(b) = b ⊗ 1C where n = m × k and these integers label the

size of the matrices. We will work in the standard Hilbert space (H 'Mn(C) ' Cn∗⊗Cn) and

identify state functionals such as σ with density matrices. So for example σA ∈ Mn(C), and we

assume for simplicity that this has full rank (faithful state).

H 'Mn(C) is both a left and right module for A,

l(m1) |m2〉 = |m1m2〉 r(m1) |m2〉 = |m2m1〉 , (3.177)

and the inner product on H is the Hilbert-Schmidt inner product. The natural cone of A is

defined to be the subset of positive semi-definite matrices in H . The modular conjugation and

relative modular operators (of A) associated with this natural cone are:

J
∣∣m〉 =

∣∣m∗〉 ∆η,ψ = l(σA)r(ρ−1
A ), (3.178)

where we invert the density matrix ρA on its support. The natural cone vectors correspond to the

unique positive square root of the corresponding density matrix, now thought of as pure states in

the standard Hilbert space. So |ψA〉 =
∣∣ρ1/2
A
〉

and |ψB〉 =
∣∣ρ1/2
B
〉
. The embedding is:

Vη = r(σ
1/2
A )T ∗r(σ

−1/2
B ) , T ∗(mB) = mB ⊗ 1C (3.179)
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Using these replacements it is easy to compute our interpolating vector (3.86) |Γψ(z)〉 by starting

with the expression in (3.87a)

|Γψ(z)〉 =
∣∣∣σzA(σ−zB ρzB ⊗ 1C)ρ

1/2−z
A

〉
(3.180)

and

∆
1/2−z
ψ |Γψ(z)〉 =

∣∣∣ρ1/2−z
A σzA(σ−zB ρzB ⊗ 1C)

〉
. (3.181)

The Lp(A′, ψ) norms can be computed using the well known correspondence between these

norms and the sandwiched relative entropy discussed in [81]. This gives:

‖|Γψ(θ)〉‖A
′

p,ψ =
(

tr
∣∣∣ρ1/p−1/2
A Γψ(θ)

∣∣∣p)1/p

=
(

tr
∣∣∣ρθAσθA(σ−θB ρθB ⊗ 1C)ρ

1/2−θ
A

∣∣∣pθ)1/pθ
, (3.182)

where in the last equation we set p = pθ and used 1/pθ − 1/2 = θ, and where |ψ〉 = | ρ1/2
A 〉.

Similarly, we have

∥∥∥∆
1/2−θ
ψ |Γψ(θ)〉

∥∥∥A′
pθ,ψ

=
(

tr
∣∣∣ρ1/2
A σθA(σ−θB ρθB ⊗ 1C)

∣∣∣pθ)1/pθ
(3.183)

and we recognize this later expression as [2], Eq. (25) with α there given by pθ/2.

3.4.2 Example: half-sided modular inclusions

Half-sided modular inclusions were introduced in [92, 93] and consist of the following

data: An inclusion B ⊂ A of von Neumann algebras acting on a common Hilbert space H ,

containing a common cyclic and separating vector |η〉. Furthermore, for t ≥ 0, it is required that
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∆it
η,AB∆−itη,A ⊂ B, hence the terminology “half-sided.” This situation is common for light ray

algebras in chiral CFTs, where |η〉 is the vacuum.

Wiesbrock’s theorem [92, 93] is the result that for any half-sided modular inclusion, there

exists a 1-parameter unitary group U(s), s ∈ R with self-adjoint, non-negative generator which

can be normalized so that

∆−itη,A∆it
η,B = U(e2πt − 1) (3.184)

for t ∈ R. Furthermore, the unitaries ∆it
η,A, U(s) fulfill the Borchers commutation relations

[94] and in particular B = U(1)AU(1)∗, JAU(s)JA = U(−s). For any a > 0, the inclusion

Aa = U(a)AU(a)∗ ⊂ A is then also half sided modular.

For a half-sided modular inclusion, the embedding is trivial, Vη = 1. Using this in-

formation, one can easily show that in the case of the half-sided modular inclusions Aa =

U(a)AU(a)∗ ⊂ A, the rotated Petz recovery channel, denoted here as αta : B → A to emphasize

the dependence on a, is:

αtη(x) ≡ U(a(1 + e−2πt))∗xU(a(1 + e−2πt)). (3.185)

Theorem (3.1.1) therefore gives the following corollary, conjectured in [14], after a change of

integration variable.

Corollary 3.4.0.1. Let B ⊂ A be a half-sided modular inclusion with respect to the reference

vector |η〉, so B = Aa = U(a)AU(a)∗. Then we have

1

a
[SA(ωψ|ωη)− SAa(ωψ|ωη)] ≥

∫ ∞
a

lnF (ωψ, U(y)ωψU(y)∗)2 dy

y2
. (3.186)
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For a half-sided modular inclusion, Vψ = u′ψ;η ∈ B′ [from (3.57)] is the partial isometry

that takes |ψA〉 in the natural cone P\
A (defined w.r.t. |η〉) to the state representer in P\

B (also

defined w.r.t. |η〉). The interpolation vector (3.86) thereby becomes in the case of half sided

modular inclusions

|Γψ(z)〉 = ∆z
ηA,ψA

∆−zηB,ψB |ψ〉 . (3.187)

The vector (3.187) is similar to a vector studied in [14] in order to prove the quantum null energy

condition (QNEC). Based on this and some preliminary calculations we speculate here that the

QNEC can be understood in terms of the strengthened monotonicity result in Theorem (3.1.1).

Conjecture 3.4.1. The limit a→ 0 of Theorem (3.1.1) in the case of a half-sided modular inclu-

sion Aa = U(a)AU(a)∗ ⊂ A leads to a saturation of the bound:

lim
a→0

2

a

∫ ∞
−∞

lnF (ρ, ρ ◦ αta)p(t)dt =
d

da
SAa(ρ|σ)

∣∣∣∣
a=0

. (3.188)

This is a more refined version of a conjecture appearing in [14]. A corollary to this conjec-

ture, if proven, would be a new proof of the QNEC since the recovery channel is translationally

invariant so applying the same result to a further translated null cut one can use monotonicity of

the fidelity to prove that d
da
SAa(ρ|σ) is monotonic in a as required by the QNEC.
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Chapter 4: Approximate quantum error correction model of AdS/CFT

This chapter presents the analysis of quantum error correction models for AdS/CFT. We

provide some basic definitions in Section (4.1). In Section (4.2), we discuss the constraints

necessary for the HMERA to exhibit non-trivial correlation functions. We state a no-go theorem

which requires that an HMERA with non-trivial correlators must necessarily contain more than

one type of tensor. In Section (4.3), we, therefore, turn to the construction of models with multiple

types of tensors, giving both general guidelines for constructions and an explicit realization (with

additional details in Appendix (C)). Finally, in Section (4.4) we finish with a summary of this

chapter.

4.1 Definitions

Typically, a MERA in the literature often refers to a multi-scale tensor network consisting

of two types of tensors, the disentangler and isometry. However, the broader definition of MERA

can extend to more general tensor networks such as the HaPPY code[31], the hyper-invariant

tensor network[50], and other similar network geometries. To avoid this potential ambiguity,

here we define MERA networks that are consistent with some hyperbolic tiling hyper-invariant

MERAs, or HMERAs. We use MERA to specifically refer to the constructions described in [38].

Definition 4.1.1. A hyper-invariant MERA (HMERA) is a tensor network built on the dual graph
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Figure 4.1: An example of a tensor whereN−` legs are contracted. Straight lines denote identity
operators.

on a uniform hyperbolic tessellation such that the tensor layouts are consistent with the discrete

symmetries of the tessellation.

Examples of such HMERAs include the HaPPY code and hyper-invariant tensor networks.

In these constructions, all tensors associated with the tiles, vertices and edges are chosen to be

the same. However, one can, in general, place different tensors in various locations as long as

they have the right degrees, i.e., the number of dangling edges; see e.g. Figure (4.5) below for

an example. The usual MERA (see for example figure 7 of [49]), on the other hand, is not an

HMERA because the underlying tiling is not uniform.

Definition 4.1.2. A tensor of degree N with constant bond dimension on each leg is `-isometric

if contracting N − ` legs of the tensors with its conjugate transpose yields I⊗`. In addition, it is

permutation-invariant if it is `-isometric for any such (N − `)-leg contractions.

Graphically, this property is shown in Figure (4.1).

One can use such isometries as encoding isometries of quantum error correction codes.

Here we call something a code when it encodes at least one logical degree of freedom (more

generally, k of them). This, for example, rules out the k = 0 codes which simply encode a

state. The encoded logical degree of freedom is often referred to as the bulk degree of freedom

in holographic tensor networks. We use these terms interchangeably in this work.

Isometric properties can also be translated into error correction properties. If a degree N
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tensor is permutation invariant `−isometric, then it can also serve as an encoding isometry for an

[[n, k, d]] code where n = N − k, k ≥ 1, and d ≥ `− k+ 1 [37]. This is because when any `− k

leg subsystem is maximally mixed, the map onto a subsystem is also a code that corrects at least

that many erasures. Therefore any operation that alters the logical information must have support

over at least ` − k + 1 sites. Here we use this notation to denote a code over n qudits each with

size given by the bond dimension of the tensor. If the tensor is not permutation invariant, then the

resulting code can still correct such erasure on the specific ` − k legs required by the isometry.

However, in this case no conclusive statement can be made about code distances in general.

Conversely, it is also straightforward to find examples of tensors with such isometric prop-

erties. For instance, any non-degenerate code with d = `+1 satisfies the property that the reduced

density matrix on ` qubits is maximally mixed. This yields a permutation invariant `-isometry.

The tensor that corresponds to this code is at least a k + `-isometry.

Definition 4.1.3. An HMERA is regular if it is built from a regular hyperbolic tessellation. If the

tensors over different tiles in this network are identical and permutation-invariant, then we say it

is completely regular.

Note that a (1-)uniform tiling can be regular or semi-regular. For example, the semi-regular

pentagon-hexagon code (Figure 17a of [31]) and the hybrid holographic Bacon-Shor code[33] are

completely semi-regular HMERAs. Here we focus on regular tilings where all polygonal tiles

are identical. A completely regular tensor network will have individual tensors that obey the

symmetries of the tiling. A completely regular HMERA is then a tensor network constructed by

gluing together tensors that are also manifestly erasure correction codes. The HaPPY pentagon

code and the holographic Steane code[35] are such completely regular HMERAs.
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Definition 4.1.4. An HMERA is locally contractible if each tensor contracts to an isometry.

There are cases in which groups of tensors together contract to an isometry while each

tensor as its own fundamental unit does not; see, for example, [50]. If the (groups of) tensors in

the network do not contract to isometries, then it becomes more difficult to contract the network

exactly when one computes quantities such as expectation values. This often leads to a much

more costly algorithm, although there are instances where approximate contractions can also be

performed in polynomial time[95, 96].

Lemma 4.1.1. A completely regular HMERA is locally contractible only if it has tensors that are

least 2-isometric.

Proof. For a given layer of the hyperbolic tiling, there is at least one tile which has two edges

facing inwards whereas all others have one edge facing inwards. As a result, the dual network

contains loops. A tensor on this tile will have at least two legs facing inwards. If there are only

1-isometries, then it is impossible to contract this tensor from the outside, thus breaking local

contractibility.

Note that it is possible to generate completely regular tree tensor networks where all tensors

are identical 1-isometries that are locally contractible. This lemma also ensures that a 5 qubit code

is the simplest tensor that can be used as a building block for a locally contractible and completely

regular HMERA that is also a non-trivial QECC. This is because the quantum Singleton bound

requires that n− k ≥ 2(d− 1). Complete regularity along with 2-isometry now ensure that each

tensor block has d ≥ 3. To encode a non-trivial amount of logical information, we also need

k ≥ 1. Hence this puts n ≥ 4 + k ≥ 5. Hence the simplest building block for such a HMERA is

indeed the [[5, 1, 3]] code.
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4.2 General Constraints and no-go theorem

When considering the holographic code, a “good” non-degenerate QECC that corrects two

or more erasure errors necessarily has a trivial connected 2-point function on the boundary. This

is because in order for the erasures to be correctable, they must contain none of the encoded

logical information. Therefore, for non-degenerate codes, the state ρAB on the erased systems

A,B on the boundary must be maximally mixed. Such states have zero mutual information

between the two erasures. Hence, for unit norm operators OA, OB acting on A,B respectively,

1

2
(〈OAOB〉 − 〈OA〉〈OB〉)2 ≤ I(A : B) = 0. (4.1)

This is, for example, the case for most two-site combinations in the HaPPY code. Therefore, to

produce non-trivial correlation functions, one would have to consider a “bad” code with proper-

ties that are usually undesirable for quantum error correction. Additionally, it is difficult for it to

properly capture the correct behaviour of subregion duality in holography.

This is not to say that it is impossible to produce a useful holographic code with non-trivial

correlations. For example, degenerate codes may still sustain non-trivial two point functions

while having the same code distance as a non-degenerate code. That is, let {|̄i〉} be an orthonor-

mal basis for the code subspace; treating OA, OB as two single-site errors, the Knill-Laflamme

condition is still satisfied,

〈̄i|OAOB|j̄〉 = CABδij, (4.2)

as long as CAB has off-diagonal elements while terms like 〈̄i|OA |̄i〉 can vanish. Such is the case

for the Shor code[97] but not for the [[5, 1, 3]] code.
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Another option is to consider approximate quantum error correction codes (AQECC), where

the Knill-Laflamme condition is only satisfied approximately. This is a more natural approach be-

cause AdS/CFT should be described by an AQECC when the gravitational coupling is finite[98,

99]. In this case, it is possible to have a code that has “bad” erasure correction properties in

general, but is nevertheless sufficiently close to a “good” code, such that it reproduces the de-

sired behaviours like entanglement wedge reconstruction to leading order while also supporting

correlation functions which become nontrivial as a result of 1/N corrections.

It might seem straightforward to construct such (A)QECCs using the same techniques of

[33], where one replaces a code by its “noisy” counterparts. However, it is more difficult to

maintain both non-trivial correlation functions and exact contractibility at the same time. On the

one hand, exact contractibility requires (Lemma (4.1.1)) that the tensor be at least 2-isometric,

meaning that certain two-site subsystems need to be maximally mixed. Heuristically, this very

property makes it harder for the tensor network to sustain non-trivial two-point functions. On the

other hand, adding “noisy” terms to the tensor network tends to spoil said isometric properties,

making it easier to support non-trivial correlations but harder to contract exactly. Therefore, the

challenge to building an exactly contractible (A)QECC model with non-trivial correlations is in

balancing these two opposing forces such that each tensor is just good enough an error correction

code, or, more generally, isometry, to give exact contractibility, but not so good as to require

trivial correlation functions on the boundary.

The tension between contractibility and non-trivial correlation function in these holographic

codes can be summarized in the following theorem. The simplest efficiently contractible con-

struction which captures the discrete symmetries of the hyperbolic space is a locally contractible

regular HMERA.
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Theorem 4.2.1. A locally contractible and completely regular HMERA always contains a trivial

connected boundary two-point function.

Proof. Consider a regular tiling of the Poincare disk with Schlafli symbol {p, q}, which tiles the

plane with polygons of p edges with each vertex of the polygon adjacent to q p-gons.

Let us tile the space as follows. We start by having the central tile (top layer) then gradually

add more tiles layer by layer by radiating outwards. The first layer consists of the p polygons

whose edges are immediately adjacent to the central tile. Of the polygon in a layer, those that

have edges facing toward the center we call edge polygons (EPs). We then repeat the process by

adding more EPs for the polygons in the outer layers. Finally, we finish by adding polygons that

have a vertex facing the center which fills the gap between EPs, which we call the vertex polygons

(VPs). They have two edges facing inwards. If the tiles in an outer layer are immediately adjacent

to a tile in the inner layer, then outer tiles are the“descendants” of the inner tile, which is the

“ancestor.”

To construct a completely regular HMERA, for each tile we now place the same tensor

with p in-plane legs on the centroid of each polygon such that its legs are perpendicular to the p

polygon edges. For two polygons that share a common edge, the two tensor legs that cross this

edge are contracted. By lemma 4.1.1, the tensors are also at least 2-isometric for the network to

be locally contractible.

Case 1 (q > 3) : For q > 3, no two adjacent polygons in the same layer can have the same

ancestor. Thus for q > 3, all tiles can be divided into the above two categories1.

1For q > 3 but odd, there are edges of VPs that are neither inward nor outward facing. However, we can take
such legs to be outward facing choosing some sequence of adding tiles. For instance, when two adjacent tensors are
connected on the same layer (two nearby polygons share a common edge that is neither inward nor outward facing),
we can take one of them to be EP which has one inward facing edge and the other to be VP which has two.
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Each EP has one inward facing leg that connects to the direct ancestor, and each VP has

two. Note that a VP cannot have direct ancestors that are only VPs. This is by construction,

where we always add VP after growing EPs. Therefore, for a VP, at least one of its direct ances-

tor/descendent is an EP.

Note that we will only focus on operator insertions where the operator is not proportional

to the identity. This is because the connected two-point function for identity operators always

vanishes. Then, for a single operator insertion on the boundary, it is either inserted on a tensor on

EP or a VP. If the former, then the coarse-graining ascending super-operator can be reduced to

contracting the 1-isometry with one operator insertion (Figure 4.2a). Because the tensor corrects

at least two located errors d ≥ 3, this contraction is zero. One can see this by first tracing the

other p− 2 legs without operator insertions, which reduces to the identity map tensoring a single

operator insertion of the form tr[Oρ] where ρ ∝ I . We can then decompose the operator O into

a part that is proportional to the identity and a part that is traceless. The first part coarse-grains

to an operator proportional to the identity; they do not contribute to non-trivial correlations. The

tensor contraction of the second part vanishes by tracelessness. Because the network always has

EPs in its outer layer, this is sufficient to show that the state generated by the network contains

trivial correlation functions.

For completeness, let us also examine operator inserted on VPs. If the boundary operator

is inserted on a VP, then either the tensor contracts to 0, when d > 3, or it produces a weight 2

operator on the parent layer. The former again is trivial. For the latter case, because the graph

is simple, the 2 operators must be passed onto 2 different tensors in the parent layer. At least

one of these tensors is on an EP because they are immediate ancestors of a VP. They have a

weight 1 insertion on each tensor, which makes the EP tensor contraction vanish also (Figure
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Figure 4.2: Left: for inserted operators not proportional to the identity (red dot), such components
are found on EPs and are contracted to 0. Right: an operator inserted on a VP tensor can be
coarse-grained to a weight 2 operator insertion. It can then be decomposed as sum over weight 1
operators contracted on EPs.

4.2b). The only non-trivial term from such contractions is if the parent contains only one EP

and that an identity operator is pushed to the parent EP while a weight one operator is pushed

to the parent VP. However, this cannot always be true because the contraction terminates on a

“top tensor” whose descendents are EPs only. Therefore, there must exist a layer for which both

parents are EPs. Hence for q > 3, we do not have any non-trivial super ascending operator.

Therefore a two-point function is trivial as long as the two insertions are sufficiently far apart on

the boundary.

Case 2 (q = 3): By construction, each descendent of the central tile is immediately adjacent

to two others in the same layer. Therefore, for a tensor network on this tiling to be contractible

at all, it has to be at least a 3-isometry. Again, we drop the bulk indices for convenience. Adding

the completely regularity condition, this implies d ≥ 4. Thus for any operator inserted on a VP,

which has only 2 edges facing inwards, insertion on these sites will vanish. Because there are

VPs in this tiling, there will be two-point functions that are trivial.
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In other words, if one constructs a tensor network out of a single type of code that corrects

erasures exactly and demands it to be efficiently contractible, then some correlation functions of

this network must be trivial.

Indeed, we see that this is true for both the hyper-invariant tensor network and MERA

where at least two types of tensors are used in its construction. This is also true for the pentagon

and the heptagon code. In fact, we see that there are trivial correlation functions in [52] even for

localized two-point function and that the (pairs of) sites with non-trivial correlators are sparse in

the infinite-layer limit[51].

Note that here we have only focused on locally contractible completely regular HMERAs.

It is in general possible to allow a completely regular HMERA to still be efficiently contractible

by taking groups of tensors to contract to an isometry. We call such tensor networks quasi-locally

contractible. One may worry that the local contractibility is too restrictive a requirement, and

that there may be quasi-locally contractible networks that are completely regular. However, if

a completely regular HMERA is quasi-locally contractible, then we can group the tensors into

isometries. If the grouping produces another uniform tiling of the hyperbolic space, then it is

simply a locally contractible uniform HMERA but with a different component tensor. By the

above theorem it cannot have non-trivial correlations. If the network admits grouping of tensors

into different isometries which correspond to a non-regular tessellation of the hyperbolic plane,

then it is equivalent to an HMERA with multiple component tensors similar to MERA or the

hyper-invariant tensor network, which are not completely regular.

The intuition of the above result is essentially that one has put too much “isometric-ness”
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into the network. By requiring the tensor network to be completely regular we force each tensor

to be permutation invariant. This then forces every two-site subsystem on each tensor to be

maximally mixed. As we have mentioned above, such properties prevent a non-trivial two-point

function. It is clear that we then need to dial down the amount of “isometric-ness” in the network

to avoid this no-go result.

One can achieve this by removing different restricting clauses in the theorem while still

having a satisfactory HMERA. For instance, this is possible by relaxing a completely regular net-

work to a regular one. In doing so, we may relinquish some of the local symmetries of the tensor

by not requiring permutation invariance. Such tensors can only be isometries when contracted in

certain directions (e.g. the isometries in MERA). Alternatively, we can allow more than one type

of tensor in the network while still demanding that all types have the same degree. For such kind

of networks, one can selectively reduce the “isometric-ness” of some tensors such that we still

maintain local contractibility. Of course, we also give up some symmetries in the network. Or,

one can take a combination of these two approaches. The latter will be the approach we take in

the next section.

Going beyond regular and locally contractible HMERA, one can give up regularity entirely

by going to semi-regular or k-uniform tessellations where different shaped tiles can map to dif-

ferent tensors. Local contractibility can also be relaxed to quasi-local contractibility, e.g., in the

hyper-invariant tensor network, while still retaining an exactly contractible ansatz.
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4.3 HMERA model

4.3.1 General Construction Guidelines

In this section, we consider a construction that uses more than one type of tensors while

preserving a regular tessellation. Although it can be tricky to prepare a tensor network with

desired properties using only one type of tensor, it is much easier with two or more.

Let us begin with a regular tiling of the hyperbolic plane with Schlafli symbol {p, q}. We

choose p, q such that the suitable isometries which we will describe in more detail later exist. In

addition, all tiles except the one at the center can be divided into two types: the polygons with

one edge facing the center, or edge polygons (EP), and polygons with a vertex/two edges facing

the center, or vertex polygons (VP)2.

Correspondingly, we need two types of isometries, the 1(+k1)-isometries of degree p+ k1,

which we assign to the EPs, and 2(+k2)-isometries of degree p + k2, which are assigned to the

VPs. For the top tensor living in the central tile, we assign a k0-isometry which encodes k0

qudits into p qudits. From the error correction perspective, the top tensor does not exactly correct

any erasure errors, but it may correct them approximately. By construction, we will assume

that p, q are suitably chosen such that these types of isometries exist (we will give an example

of such a choice in the next paragraph). k0, k1, k2 ≥ 0 are the number of “bulk” or logical

degrees of freedom we want to assign to each tile. For the tensor network to be a non-trivial

code, we want k0 + k1 + k2 > 0. We then orient the remaining p tensor legs such that each

leg is perpendicular to the polygon edges. The bulk legs will be left uncontracted while the two

2This construction method will not apply to the cases where some polygons are neither EP nor VP, e.g. when q is
odd. However, for q ≥ 5, one can circumvent this difficulty by preferentially designating such polygons to be either
VPs or EPs. For q = 3 the situation is much worse and it is unclear if such a simple modification is sufficient.
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in-plane legs of each tensors that lie on the same edge of a polygon will be contracted through the

usual tensor contraction procedure[27, 31, 33]. This then produces a tensor network that maps

the bulk degrees of freedom onto the boundary degrees of freedom. For the sake of convenience,

when we refer to isometries from now on we will automatically drop the (+k) bulk degrees of

freedom and only consider in-plane legs unless otherwise specified.

For a slightly more concrete example, consider the {5, 4} tiling of the hyperbolic plane by

pentagons in Figure (4.5), where the VPs are labelled by squares and EPs are labelled by disks.

The top tensor, a (0(+1))-isometry of degree 6, is denoted by a pentagon. Then for each VP,

we can assign a (2(+1))-isometry and for each EP a (1(+1))-isometry, both of degree 6. This

will allocate k0 = k1 = k2 = 1 bulk qubit degree of freedom for each pentagonal tile. Such

isometries clearly exist. One example is to take a [[5, 1, 3]] code for the VP and a [[5, 1, 2]] code

for the EP. For the top tensor, more generic encoding isometries V : C2 → (C2)⊗5 would suffice.

For example, we can turn a non-additive [[6, 0, 2]] code into a [[5, 1]] code which does not correct

any erasure error by taking one of the tensor legs to be the bulk leg. Of course, while these

isometries satisfy the necessary conditions we outlined, they need not be sufficient.

The error-correction properties of the code, e.g. the physical representations of logical

operators, can also be easily derived using operator pushing. See [31, 33] for details. The pushing

rules follow from the isometric properties of the tensors, where an `-isometry of degree p can

push any operator supported on ` legs to the remaining p− ` legs. Therefore, the support of each

logical operators can also be derived by following these local pushing rules in the tensor network.

See Figure (4.3) for an example in the {5, 4} tiling where the relevant isometries are given by the

[[5, 1, 2]] and [[5, 1, 3]] stabilizer codes3.

3The operator pushing in Figure (4.3) also holds for the approximate code we construct in Section (4.3.2). How-
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Figure 4.3: Left: a logical operator on the central (top) tensor is supported on all boundary
degrees of freedom (red and green nodes). However, if one constructs a code that approximates
the HaPPY code, then a logical operator can be pushed along the green arrows to a subregion
of the boundary (green nodes) with a small error. Right: a similar pushing for certain logical
operators closer to the boundary produce operators that are supported on a subregion. The logical
operator can be reconstructed approximately on green nodes and can be reconstructed exactly on
the union of green and red nodes.

Conversely, if all logical operators of some bulk region can be “cleaned” off of a boundary

subregion, i.e. there exists a representation of the logical operators such that they act trivially

on said subregion, then the erasure of this subregion also does not affect the encoded logical

information in that bulk region. Specific code properties will, of course, depend on the details of

the isometries and the network one uses.

Furthermore, because these isometries are QECCs that correct no more than e erasure er-

rors, where e = 1 for EPs and e = 2 for VPs, they will not (exactly) correct any erasure errors

on the boundary. Equivalently, this implies that an inserted weight one operator (such as a Pauli

error) on the boundary will generally coarse-grain to a non-trivial (not zero or identity) operator

on the more coarse-grained layers. This allows us to define non-trivial ascending/descending su-

ever, in Figure (4.3)b, only the logical Z operator can be supported on 4 legs of the imperfect code.
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peroperators in a way similar to that of the MERA[100]. These are mappings that take operators

to operators, corresponding to coarse/fine-graining a particular operator along the renormaliza-

tion group direction. However, a key difference is that these superoperators can be different on

different layers. Therefore we only take them to be similar to their MERA counterparts in an

average sense. Suppose such a coarse-graining (ascending) superoperator averaged over the lay-

ers is given by S̄(·) which admits spectral decomposition with eigenvalues λ̄α and corresponding

eigen-operators ψ̄α, then, we can reuse the same argument as is used to derive the MERA power-

law correlation functions. See Section 3 of[100] for example.

Consider inserting operators ψ̄α, ψ̄β on the boundary sites indexed by i, j. Then the corre-

lation function is expected to behave as

〈ψ̄α(i)ψ̄β(j)〉 ≈ Cαβλ̄
l
αλ̄

l
β =

Cαβ
|i− j|∆α+∆β

. (4.3)

Here Cαβ = tr[Ψ̄(α, β)ρ̄] is the expectation value of a localized coarse-grained operator Ψ̄(α, β)

evaluated against the reduced state ρ̄ supported on a few sites which is approximately a fixed

point4 of the coarse-graining S̄(ρ̄) ≈ ρ̄, and under its dual fine-graining descending superoperator

S̄∗(ρ̄) ≈ ρ̄. Equivalently, one can keep coarse-graining the operators Ψ̄(α, β) using the ascending

superoperators all the way up to the top tensor then evaluate Cαβ against the top tensor5. l ∼

log |i− j| is the number of layers of coarse-graining needed before ψ̄αψ̄β becomes localized, and

∆α = log λ̄α. The specifics of these super-operators will depend on both the network structure

4The existence of a fixed point is an additional assumption we make for the model. It seems physically rea-
sonable that, for such a tensor network with a large number of layers with the same average ascending/descending
superoperators, there should be a fixed point.

5The top tensor may encode global information of the state[101], but its impact on a few-site reduced state is
washed out by the ascending/descending superoperators, so we expect that ((4.3)) should not depend on the choice
of top tensor.
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and the tensor isometries we use.

Note that this heuristic argument, by itself, does not imply the model can be used to ap-

proximate the ground states of CFTs whereby ∆ are fit to the correct primary operators. Our

statement is simply that such networks should support power-law correlations, as opposed to

other completely regular HMERAs which Theorem (4.2.1) ensures do not.

Thus far, the method described constructs a quantum code which, in general, does not cor-

rect for erasures of subregions. In addition, the logical operators are not necessarily represented

transversally. While such properties are not desirable for fault-tolerance, the latter is not a con-

cern for models of AdS/CFT6. As for the former, holographic codes in general should correct

for erasures of boundary subregions, at least approximately, in the large N limit. Therefore, if

one wants more similarity with holography, it is not enough for such tensor networks to simply

be a “bad code”, rather it also has to be “close” to a good holographic code with proper erasure

correction properties like [31]. To this end, we have to take a bit more care in constructing the

isometric tensors such that they are also close to good erasure correction codes with larger code

distances.

4.3.2 An Explicit Construction

We now present a concrete example of HMERA that is both efficiently contractible and

permits non-trivial boundary correlations on all sites. We will construct isometries using a tunable

parameter θ such that the code reduces to two copies of the [[5, 1, 3]] “perfect” code when θ = 0.

It well approximates the HaPPY code when θ small, but can now produce power-law decaying

6In fact, it would be extremely unusual if all bulk operators can be represented transversally on the boundary,
i.e. that they are simple tensor products of boundary operators acting on disjoint subregions, because the smearing
function is highly non-trivial.
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correlations and can in principle sustain a non-flat entanglement spectrum. We base our model on

a tensor product of two copies of the HaPPY pentagon code. To circumvent the no-go theorem

(4.2.1), we substitute some of the perfect codes in the network with imperfect codes which we

now construct.

First we construct a 1(+0)-isometry tensor associated with the edge polygons which we

call the imperfect code. The imperfect code is illustrated graphically in Figure (4.4). This is but

one way of constructing such isometries which are manifestly close to a perfect code for some

parameters. In practice, one can easily construct other tensors over larger bond dimensions with

more variational parameters. However, we choose this simple construction for the sake of clarity.

The imperfect code is a superposition of the double copy perfect tensor together with

weight-2 Z-type errors inserted7. A weight-1 Z error is inserted in each copy, but no two er-

rors are inserted on the same leg of different copies. Here i, j = 1, 2, ..., 5 are labelling legs in

which errors are inserted. All different possible insertion configurations are summed up. To have

this imperfect tensor be a 1-isometry (see Definition (4.1.2)), the parameters should satisfy the

following relation:

cos θ2 +
∑
i 6=j

sin θ2
ij = 1. (4.4)

To retain the original symmetry of the perfect tensor, we usually choose the parameterization

sin θij = sin θ√
20

. Both the perfect and the imperfect tensor being isometries guarantees the effi-

ciently contractible property of our HMERA model.

Treating each leg as a qudit, we can show that this imperfect tensor defines a [[5, 0, 2]]4

code but approximates two copies of the perfect code (Appendix (C.3)). It exactly reduces to

7The added terms with Z errors help tilt the perfect code away from a stabilizer code. In doing so, it adds magic,
which is necessary at all scales of the tensor network to produce a low energy state of a CFT[102].
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Figure 4.4: The construction of the imperfect code where each line on the left hand side represents
two physical qubits. Each 5-pronged diagram on the right hand side is a perfect code. In the
second line i, j label the legs in which Z errors are inserted on each copy respectively.

two copies of the 5 qubit perfect code when θ = 0, and therefore inherits all its error correction

properties approximately when θ is small. In the tensor network notation, each leg has bond

dimension 4 and the code sub-algebra is supported on any three legs of this tensor when θ = 0.

However, when θ small but nonzero, it only approximates the double-copy perfect code.

We can also construct the top tensor in a similar fashion by super-imposing the same codes

with different choices of the code subspace. For instance, let V be the perfect code encoding

isometry, then we may construct a tensor that approximates the perfect code for small φi 6=0 with

encoding map VT such that,

VT = cosφ0V +
5∑
i=1

sinφiPiV (4.5)

where cos2 φ0 +
∑

i sin
2 φi = 1 and Pi ∈ {X, Y, Z} are the same Pauli operators acting on site i.

For the sake of symmetry, let us choose φi = φ0 = φ. We can then take two tensor copies of this

code as the top tensor we use in the network.
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Figure 4.5: The illustration of the HMERA tensor network. The first several layers of substitution
is explicitly shown. The circles represent the imperfect tensors defined in Figure (4.4), while the
squares represent the tensor product of two perfect tensors.

To construct the full tensor network, we specify the positions of the substitution and re-

place those perfect codes with their imperfect counterparts. This is explicitly shown in Figure

(4.5). First we choose a pentagon as the origin and replace it by an imperfect double copy top

tensor ((4.5)). From the origin we can label each pentagon uniquely by the number of edges we

need to cross to reach it from the origin. The collection of pentagons that are assigned to the same

number a is called a “layer”. Apart from the top tensor, if a particular pentagon tile has only one

edge connected to the previous layer, we replace the two tensor copies of the perfect code on it

by the imperfect code (Figure (4.4)).

The variational parameters of this model are given by the logical degrees of freedom, the

top tensor skewing parameter φ, and θτ where in principle each imperfect code is labelled by τ .

For a more symmetric construction, we can set θτ = θ, ∀τ .

This network again supports a power-law decaying correlation function. Heuristically, it
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should contain at least one type of scaling operator with ∆ ≈ log λ̄, where λ̄ as the average of

the dominant eigenvalue of the coarse-graining super operators over the layers:

λ̄ ≈
∏
a

λpaa . (4.6)

The index a labels different types of super operators and pa denotes the probability of type a

super operator contributing to the coarse-graining process. It can be shown that one can choose

the variational parameters such that λa < 1. The detail distributions of pa and the details on the

different superoperators can be found in Appendix (C).

This HMERA model effectively “interpolates” between the usual MERA (or hyper-invariant

tensor network model) and the HaPPY code model of holographic quantum error correction

codes. By tuning these variational parameters, it mimics the former by introducing some varia-

tional parameters, power-law correlation functions while reproduces the approximate code prop-

erties of latter in reconstructing bulk operators on the boundary. Furthermore, because it is an

approximate holographic quantum error correction code for small θ, φ, it also approximately re-

tains all properties of the HaPPY code such as the Ryu-Takayanagi formula, entanglement wedge

reconstruction, and other error correction properties.

4.4 Summary

In this chapter, we have examined some general properties needed to construct a holo-

graphic quantum error correction code that can support power-law decaying correlation func-

tions. By also demanding the network to be locally contractible, we found that it is impossible to

satisfy both these requirements simultaneously in a completely regular HMERA. Instead, one has
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to introduce more than one type of tensors in order to construct a satisfactory variational ansatz

that is also exactly contractible. This statement also coincide with the general observation that

so far all the MERA-like variational ansatze presented contain at least two types of tensors. We

have also provided general guidelines for constructing approximate holographic quantum error

correction codes with the aforementioned properties. In particular, we gave one explicit construc-

tion where the tensor network approximated two copies of the HaPPY pentagon code in certain

regimes of the parameter space.

It is also desirable, both from AdS/CFT and from many-body physics, for such an ansatz

to capture the CFT entanglement spectrum. We have not investigated this in detail, but we can

provide some general speculations using heuristic arguments. As shown in Appendix (C.2),

cuts through any edge of a perfect tensor have a tendency to flatten the entanglement spectrum

while cuts through more than one edge of the imperfect tensors tend to be the opposite. As

the entanglement of a subregion is tied to minimal cuts through the tensor network, for large

enough boundary regions, we expect such a cut to contain both types of edges after averaging

over the different types of tensors that can be contained in the bulk region affecting the given

bulk subregion. Therefore, the overall entanglement spectrum should be somewhere in between

the behaviour shown in Figure (C.6) and Figure (C.7). Thus the tensor network should be able to

accommodate non-flat spectrums.
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Chapter 5: Summary and Outlook

5.1 Summary

In this dissertation, I present three scenarios where recovery methods are applied to differ-

ent quantum systems. They are the perfect recovery in Gaussian fermionic systems in Chapter

(2), the approximate recovery in quantum field theory in Chapter (3), and the approximate QECC

in the context of AdS/CFT in Chapter (4). The logic behind this arrangement is to develop from

finite systems to infinite systems, from perfectly recoverable to approximately recoverable, trying

to capture nature more and more realistically.

In Chapter (2), I deal with the perfect recovery in Gaussian fermionic systems. When

both the channel and the reference state are Gaussian, using the Lagrangian representation of

Gaussian linear maps, the Petz recovery map can be expressed in terms of the covariance matrix

of the reference state, and the matricesA,B that encode the information of the Gaussian quantum

channel in Eq. (2.36). A similar expression for the rotated Petz map is obtained in Eq. (2.41). As

a side product, a new formula for the fidelity of two arbitrary fermionic Gaussian states is derived

in terms of their covariance matrices, shown in Eq. (2.43).

In Chapter (3), the main effort is put to generalize the results of the approximate reversibil-

ity of quantum channels in [2] from a type-I von Neumann algebra setting to general von Neu-

mann algebras. This is stated as Theorem (3.1.2). This chapter concentrates on the sub-algebra
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case where the corresponding channel is called an inclusion. A strengthened version of the mono-

tonicity [21] of relative entropy, stated in Theorem (3.1.1), guarantees the existence of such an

approximate channel. To prepare for the proof of the main theorems, a regularization method,

stated as Theorem (3.2.2), is developed to produce states with finite relative entropy. It also allows

for continuous extrapolation of relative entropy when removing the regulator. Theorem (3.2.2)

is at the core of the proof of Theorem (3.1.1) because it leads to extended domains of holomor-

phy so that derivatives can be performed at the domain which is otherwise on the boundary of

holomorphic regions.

In Chapter (4), the goal is to clarify the general properties needed to construct a holographic

quantum error correction code that can support power-law decaying correlation functions. It turns

out that it is impossible to be both locally contractible and have power-law decaying correlation

functions in a completely regular HMERA. This is summarized as a no-go theorem in Theorem

(4.2.1). We provide general guidelines for circumventing this no-go theorem and constructing

approximate holographic quantum error correction codes with the aforementioned properties. In

particular, one explicit construction is given where the tensor network approximates two copies

of the HaPPY pentagon code in certain regimes of the parameter space of the building block

isometries. Some general speculations are also provided to argue that our HMERA model can

capture entanglement spectra of generic CFTs in Appendix (C.2). The entanglement entropy of

a CFT for a single region takes a universal form depending on the central charege of the theory.
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5.2 Outlook

The results in this dissertation have various implications and applications . At the same

time, the subjects presented here leave much to be explored and to be extended to further research.

The results in Chapter (2) should be useful for studying error correction in Majorana

fermion systems (e.g. [103]), or for constructing fermionic recovery maps in experiments. Also,

it is desirable to generalize the formula to approximate Gaussian states as a step towards interact-

ing systems. An important interacting Majorana model is the Sachdev-Ye-Kitaev (SKY) model

(e.g.[104]). It is conjectured to have a dual gravity description of 2 dimensional AdS spacetime.

At the same time, the methods of obtaining the A, B matrices are of particular use. This is an

efficient way to describe the channels in large systems. For example, it could be used to study the

purification or thermalization problems of fermionic Gaussian systems. One particularly interest-

ing channel is the so-called “modular flow”, which is the unitary group generated by the operator

logarithm of the density matrices. It is of general interest to discuss in which circumstances mod-

ular flows are local. The Gaussian fermion system provides a simple and neat playground and

the methods of representing the action of modular flows have been partially obtained during the

calculation of the rotated Petz map.

The results in Chapter (3) have profound implications for both entanglement structures of

quantum field theories and the constraints on interacting dynamic systems. As stated in the main

text, the quantum null energy condition is related to the strengthened monotonicity inequality,

which is illustrated in Section (3.4.2). It is interesting to investigate the implications of this

inequality in the context of AdS/CFT, for example, whether the particular form of the recovery

channel or the informational quantity of fidelity has a certain geometric interpretation. It is also of
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research interest to examine the relation between this strengthened inequality and the monogamy

of mutual information (MMI). The latter is an informational inequality that is only valid for

semi-classical holographic states, thus defining the so-called holographic entropy cone [105]. It

turns out MMI can be saturated for certain holographic states, so that the remainder term of the

inequality obtained in this chapter is always supershaowed by that in the MMI inequality in the

context of holography. It is a feasible question to ask the reason for this in holography, and

whether this observation can have geometric implications.

The HMERA network constructed in Chapter (4) can in principle serve as a variational

ansatz, but much work is needed to establish its utility. In particular, one would need to develop

an optimization algorithm and analyze its complexity in a similar procedure to [100]. This is

left for future work. I am optimistic that the construction methods described in this dissertation

can be generalized to create other HMERA-like variational ansatze which are also QECCs. In

particular, because AdS/CFT is tied to AQECCs, we hope that such HMERA models can provide

computable examples that help us understand some aspects of holography beyond leading order.

They may also serve as useful tools for intuition building for small N , where the tensor network

remains valid and well-defined despite being in the regime where gravity is strongly coupled and

highly quantum.

The idea of quantum recovery definitely goes beyond the three scenarios presented in this

dissertation. From a pure informational theoretical point, it is always desirable to construct uni-

versal approximate channels that can achieve better recovery results. From an applicational point

of view, ideas of the recovery channel can be applied to gravitational theories to address some of

the most concerning questions in science. For example, it would be of great interest to see if the

information encoded in the Hawking radiation can be recovered to reveal the characteristics of
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matter before falling into the balck hole. As addressed at the very beginning of the dissertation,

my major motivation was using ideas of quantum recovery in AdS/CFT duality. Specifically,

applying the recovery channel to a subregion in the AdS spacetime might enable us to construct

explicit examples of the entanglement wedge reconstruction, thus revealing more details of the

microscopic theories of gravity[7]. An intersting scenario is how to express the operators in the

region inside the entanglement wedge but outside the causal wedge, considering the perturbations

around the classical geometry. A promising playground is the aforementioned SYK model. With

the techniques of calculating fermionic systems studied in Chapter (2), as well as the quantum re-

covery techniques studied throughout this dissertation, obtaining the explicit bulk reconstruction

in the SYK/AdS2 duality should be achievable in the near future.
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Appendix A: Supplementary materials of Chapter 2

A.1 Grassmann Calculus Identities

We list some useful formula for Grassmann integral in this section. The integral of a single

Grassmann variable is defined as follows:

∫
dθ ≡ 0,

∫
θdθ ≡ 1. (A.1)

For multiple Grassmann variables,

∫
θ1θ2...θ2ndθ2n...dθ2dθ1 = 1. (A.2)

The integral is performed from the interior to the exterior.

One usually abbreviates the integral measure Dθ ≡ dθ2n...dθ2dθ1. Commonly one writes

θ = (θ1, ..., θn)T for multiple variables so

θTAη ≡
2n∑

j,k=1

θjAjkηk. (A.3)
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If one makes the following changes of variables

ηi =
∑
j

Rijθj, (A.4)

the corresponding measure changes as

Dη = det(R)−1Dθ. (A.5)

One can obtain it by requiring that Eq. (A.2) still holds for the set of variables ηi’s.

The following formula are useful for the calculation:

tr(XY ) = (−2)n
∫
DθDµeθ

TµX(θ)Y (µ), (A.6a)

∫
Dθ exp

(
i

2
θTMθ

)
= inPf(M), (A.6b)

∫
Dθ exp

(
i

2
θTMθ + ηTBθ

)
= inPf(M) exp

(
− i

2
ηTBM−1BTη

)
(A.6c)

where Pf stands for the Pfaffian. Pfaffian is a polynomial defined for an anti-symmetric matrix A

such that Pf(A)2 = det(A). For the odd dimensional case, Pf(A) ≡ 0 since det(A) = 0. For the

even dimensional case, the Pfaffian for a 2n× 2n anti-symmetric matrix B is defined as

Pf(B) ≡ 1

2nn!

∑
σ∈S2n

sign(σ)
n∏
i=1

Bσ2i−1,σ2i , (A.7)

124



where σ stands for a certain permutation as an element of the permutation group S2n, and sign(σ)

denotes the parity of the given permutation.

Note that Eq. (A.6c) holds when M is invertible. However, if M is not invertible, there

is a well-defined limit of the right hand side that makes the equality holds. We show this by an

explicit calculation.

We work in the bases where the covariance matrix G is in its block diagonal form

M = diag (λ1, ..λp, 0, ..., 0)⊗

 0 1

−1 0

 (A.8)

where the diagonal matrix is n dimensional so it has (n − p) zero Williamson eigenvalues. For

simplicity, we take B = I , while general B can be transformed into this form by redefining

η̃ = BTη.

Calculating the Grassmann integral explicitly gives

∫
Dθ exp

(
ηT θ +

i

2
θTMθ

)
=(−1)n

p∑
k=1

ik
∑

σ1,...,σk

(
k∏
i=1

λσi

)
η2σ̄k+1−1η2σ̄k+1

...η2σ̄p−1η2σ̄p

(
n∏

i=p+1

η2i−1η2i

)
,

(A.9)

where σ1, ..., σk label a certain choice of k items from a total number of p and σ̄k+1, ..., σ̄p are the

corresponding left (p− k) items.

Consider

M(ε) = diag (λ1, ..λp, εp+1, ..., εn)⊗

 0 1

−1 0

 , (A.10)
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where all εp+1, ..., εn 6= 0. Now M(ε) is invertible so we can use Eq. (A.6c) to get

∫
Dθ exp

(
ηT θ +

i

2
θTM(ε)θ

)
= inPf(M(ε)) exp

(
− i

2
ηTM−1(ε)η

)
=(−1)nin

p∏
i=1

λi
(
1− iλ−1

i η2i−1η2i

) n∏
j=p+1

εj
(
1− iε−1

j η2j−1η2j

)
=(−1)nin

p∏
i=1

(λi − iη2i−1η2i)
n∏

j=p+1

(εj − iη2j−1η2j) .

(A.11)

We can now take the limit εp+1, ..., εn → 0 and it is straight forward to verify

(−1)nin
p∏
i=1

(λi − iη2i−1η2i)
n∏

i=p+1

(−iη2i−1η2i)

=(−1)n
p∑

k=1

ik
∑

σ1,...,σk

(
k∏
i=1

λσi

)
η2σ̄k+1−1η2σ̄k+1

...η2σ̄p−1η2σ̄p

(
n∏

i=p+1

η2i−1η2i

)
.

(A.12)

This limit does not depend how (εp+1, ..., εn) approaches (0, 0, ..., 0) in a (n − p) dimensional

space, so it is well-defined. We have verified that

lim
(εp+1,...,εn)→(0,0,...,0)

∫
Dθ exp

(
ηT θ +

i

2
θTM(ε)θ

)
=

∫
Dθ exp

(
ηT θ +

i

2
θTMθ

)
. (A.13)

So ifM is not invertible in Eq. (A.6c), we can still write the right hand side formally, which

is understood as the unique value obtained by a perturbing and limiting procedure described above

and is independent of how we perform the perturbation. Formally, the integration in Eq. (A.6c)

can be viewed as a matrix-valued function ofM , and the above derivation shows that this function

is continuous when M is singular.
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A.2 Calculation Details

A.2.1 Two relations for matrix function

We show two matrix function relations whose arguments are anti-symmetric matrices. They

are similar to those matrix functions for bosons found in [60].

Consider an odd function f : R→ R and an even function g : R→ R whose Talyor series

exist at x = 0. The corresponding function acting on a matrix M is defined via Talyor series.

Due to the odd/even property of the function f and g, only the odd powers of f and the even

powers of g in the Talyor series remain.

Let an anti-symmetric matrix be the argument of the function

X = OT

χ⊗
0 −1

1 0


O, (A.14)

where O ∈ SO(2n) and χ = diag (χ1, χ2, ..., χn).

Now define the induced functions f∗ and g∗ acting on a matrix such that if X takes the form

of (A.14),

f∗(X) ≡ OT

f(χ)⊗

0 −1

1 0


O, g∗(X) ≡ OT (g(χ)⊗ I2)O. (A.15)

Here f(χ) = diag (f(χ1), ..., f(χn)), g(χ) = diag (g(χ1), ..., g(χn)).

127



We want to show

f∗(X) = −if(iX), g∗(X) = g(iX). (A.16)

Direct calculation gives

− if(iX)

=
∞∑
k=0

−i
(2k + 1)!

f (2k+1)(0)

iOT

χ⊗
0 −1

1 0


O


2k+1

=
∞∑
k=0

(−1)k

(2k + 1)!
f (2k+1)(0)OT

χ2k+1 ⊗

0 −1

1 0


2k+1

O

=
∞∑
k=0

1

(2k + 1)!
f (2k+1)(0)OT

χ2k+1 ⊗

0 −1

1 0


O

=OT

f(χ)⊗

0 −1

1 0


O = f∗(X).

(A.17)

The same calculation gives the second formula in Eq.(A.16).

A.2.2 Construction of N1, N3

We present the calculation details for the construction of N3 in this part, while that for N1

follows in a similar way so is largely omitted.

128



One can write the ansatz for σ
1
2 :

σ
1
2 =

n∏
i=1

ci

(
Î − iλ(σ

1
2 )

i γ̃2i−1γ̃2i

)
. (A.18)

ci and λ(σ
1
2 )

i are obtained by requiring σ
1
2σ

1
2 = σ. So

c2
i =

1

2

(
1 + λ

(σ
1
2 )2

i

) , λ(σ)

2
= 2c2

iλ
(σ

1
2 ). (A.19)

One can solve to get Eq. (2.26) and Eq. (2.27).

Note that Eq. (2.27) has a well defined limit

lim
λ(σ)→0

λ(σ
1
2 ) = 0. (A.20)

It indeed gives the right answer when λ(σ) = 0. So we will not single out this seemingly singular

case in the following derivation.
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The Choi-Jamiolkowski dual of N3 is

σ
1
2ρIσ

1
2 ⊗f Î

=
1

23n

n∏
i=1

1

1 +

(
λ

(σ
1
2 )

i

)2

(
Î − iλ(σ

1
2 )

i γ̃2i−1γ̃2i

)(
Î + iγ̃2i−1γ̃2i−1+2n

)

×
(
Î + iγ̃2iγ̃2i+2n

)(
Î − iλ(σ

1
2 )

i γ̃2i−1γ̃2i

)
=

1

23n

n∏
i=1

Î + i

(
1− λ(σ

1
2 )2

i

)(
1 + λ

(σ
1
2 )2

i

)−1

(γ̃2i−1γ̃2i−1+2n + γ̃2iγ̃2i+2n)

−
(

2iλ
(σ

1
2 )

i

)(
1 + λ

(σ
1
2 )2

i

)−1

(γ̃2i−1γ̃2i − γ̃2i−1+2nγ̃2i+2n) + γ̃2i−1γ̃2iγ̃2i−1+2nγ̃2i+2n

=
1

23n

n∏
i=1

Î + i

√
1− λ(σ)2

i (γ̃2i−1γ̃2i−1+2n + γ̃2iγ̃2i+2n)− iλ(σ)
i (γ̃2i−1γ̃2i − γ̃2i−1+2nγ̃2i+2n)

+γ̃2i−1γ̃2iγ̃2i−1+2nγ̃2i+2n.

(A.21)

The second equality is obatined by expanding the product into 16 terms, doing contractions using

the anti-commutation rules and rearrangement.

Substitute γi with θi, γi+2n with ηi and let θ̃2i ≡
∑

aO2i,aθa, η̃2i ≡
∑

aO2i,aηa, etc. One

can write

(
σ

1
2ρIσ

1
2

)
(θ, η)

=
1

23n

n∏
i=1

(
Î − iλ(σ)

i θ̃2i−1θ̃2i

)(
1 + iλ

(σ)
i η̃2i−1η̃2i

)(
1 + i

√
1−

(
λ

(σ)
i

)2

θ̃2i−1η̃2i−1

)

×

(
1 + i

√
1−

(
λ

(σ)
i

)2

θ̃2iη̃2i

)
.

(A.22)
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Comparing with (2.18), (2.23) and making use of (A.16), one can read out that the linear

map N3 : X 7→ σ
1
2Xσ

1
2 corresponds to the Grassmann integral representation in Eq. (2.28).

One can also obtain σ−
1
2 by writing down an ansatz and calculating σ−

1
2σ

1
2 = I . The result

is

σ−
1
2 = 2

n
2

n∏
i=1

(√
1−

(
λ

(σ)
i

)2
)− 1

2

√1 +

(
λ

(σ
1
2 )

i

)2
− 1

2 (
1 + iλ

(σ
1
2 )

i γ̃2i−1γ̃2i

)
. (A.23)

After a similar calculation, one can verify that N1 : X 7→ N (σ)−
1
2XN (σ)−

1
2 has the

Grassmann integral representation which is specified in Eq. (2.29).

A.2.3 Construction of N2

In this part we constructN2, which is the adjoint map of a given Gaussian quantum channel

N . We first consider the case when N is just a Gaussian map. If N is specified by matrices
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A,B,D and complex number C, one can explicitly write

tr(X†N (Y ))

=C(−2)n
∫
DθDµeθ

TµX(θ)

∫
exp[S(µ, η) + iηT ξ]Y (ξ)DηDξ

=C(−2)n
∫
DθDµDηDξ exp[θTµ+ iηT ξ +

i

2
µTAµ+

i

2
ηTDη + iµTBη]X†(θ)Y (ξ)

=C(−2)n
∫
DθDµDηDξ exp[−iθT µ̃+ η̃T ξ − i

2
µ̃TAµ̃− i

2
η̃TDη̃ − iµ̃TBη̃]X†(θ)Y (ξ)

=C(−2)n
∫
DθDµ̃Dη̃Dξ exp[−iθT µ̃+ η̃T ξ − i

2
µ̃TAµ̃− i

2
η̃TDη̃ − iµ̃TBη̃]X†(θ)Y (ξ)

=(−2)n
∫
Dη̃Dξeη̃

T ξ

(
C

∫
exp[iµ̃T θ − i

2
µ̃TAµ̃− i

2
η̃TDη̃ − iµ̃TBη̃]X†(θ)Dµ̃Dθ

)
Y (ξ)

≡tr(N ∗(X)†Y ).

(A.24)

In the third line we relabel µ̃i = iµi, η̃i = iηi. The third line goes to the fourth because the

measure is changed by a factor i−4n = 1. Note that exp[S(µ, η) + iηT ξ] and integral measures

are even in Grassmann numbers, so X†(θ) is interchangeable with these pieces. However X†(θ)

and Y (ξ) are arbitrary operators, so are not interchangeable.

The Grassmann variables are mapped from Majorana operators which are hermitian, so

they should be real. Since (Dθ)† = dθ1...dθ2n = (−1)n(2n−1)Dθ, the hermitian conjugate of

Dµ̃Dθ gives an overall factor of (−1)2n(2n−1) = 1. One gets

N ∗(X)(η̃) =

(
C

∫
exp[iµ̃T θ − i

2
µ̃TAµ̃− i

2
η̃TDη̃ − iµ̃TBη̃]X†(θ)Dµ̃Dθ

)†
= C†

∫
exp[iµ̃T θ +

i

2
µ̃TA†µ̃+

i

2
η̃TD†η̃ + iη̃TB†µ̃]X(θ)Dµ̃Dθ.

(A.25)
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Comparing with Eq. (2.17) and Eq. (2.18), we get

AN ∗ = D†, BN ∗ = B†, CN ∗ = C†, DN ∗ = A†. (A.26)

According to Eq. (2.32), N ∗ as the adjoint of a quantum channel is obviously unital as A2 = 0,

C2 = 1. To see it is completely positive, note

N2 =

 0 BT

−B −A

 =

0 1

1 0


−A −B

BT 0


0 1

1 0

 = −JNJ (A.27)

where J ≡

0 1

1 0

,

NT
2 N2 = JNTNJ ≤ J2 = I. (A.28)

So the adjont map of a completely positive map is still completely positive.
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A.2.4 Composition of three maps

Substitute Eq. (2.33) into Eq. (2.35), one explicitly gets

A2◦1 = −BT
(
A+

(
G(σ)

)−1
)−1

B,

B2◦1 = BT
(
A+

(
G(N (σ))

)−1
)−1 (

G(N (σ))
)−1
√
I2n + (G(N (σ)))

2
,

C2◦1 = 2n det
(
I2n +

(
G(N (σ))

)2
)− 1

2
(−1)nPf

(
−G(N (σ))

)
Pf
(
−A−

(
G(N (σ))

)−1
)
,

D2◦1 = G(N (σ)) −
√
I2n + (G(N (σ)))

2
A
(
A+

(
G(N (σ))

)−1
)−1 (

G(N (σ))
)−1
√
I2n + (G(N (σ)))

2
.

(A.29)

The following pieces are useful for further calculations:

−D3 − A−1
2◦1 =

(
BT
(
A+

(
G(N (σ))

)−1
)−1

B

)−1

+G(σ)

= B−1
(
A+

(
G(N (σ))

)−1
+BG(σ)BT

) (
BT
)−1

= B−1
((
G(N (σ))

)−1
+G(N (σ))

) (
BT
)−1

,

A−1
2◦1B2◦1 = −B−1

(
A+

(
G(N (σ))

)−1
) (
BT
)−1

BT
(
A+

(
G(N (σ))

)−1
)−1

×
(
G(N (σ))

)−1
√
I2n + (G(N (σ)))

2

= −B−1
(
G(N (σ))

)−1
√
I2n + (G(N (σ)))

2
.

(A.30)
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One can then explicitly calculate

AP = A3 +B3

(
D3 + A−1

2◦1
)−1

BT
3

= G−
√
I2n + (G(σ))

2
BT
((
G(N (σ))

)−1
+G(N (σ))

)−1

B

√
I2n + (G(σ))

2
, (A.31a)

BP = B3

(
D3 + A−1

2◦1
)−1

A−1
2◦1B2◦1 =

√
I2n + (G(σ))

2
BT

(√
I2n + (G(N (σ)))

2

)−1

, (A.31b)

CP = det
(
I2n +

(
G(N (σ))

)2
)− 1

2
Pf
(
−G(N (σ))

)
× Pf

(
−A−

(
G(N (σ))

)−1
)

Pf
(
−BT

(
A+

(
G(N (σ))

)−1
)−1

B

)
× Pf

((
−BT

(
A+

(
G(N (σ))

)−1
)−1

B

)−1

−G(σ)

)
, (A.31c)

DP = D2◦1 +BT
2◦1D3

(
D3 + A−1

2◦1
)−1

A−1
2◦1B2◦1

= G(N (σ)) −
√
I2n + (G(N (σ)))

2
A
(
A+

(
G(N (σ))

)−1
)−1 (

G(N (σ))
)−1
√
I2n + (G(N (σ)))

2

−
√
I2n + (G(N (σ)))

2 (
I2n + AG(N (σ))

)−1
BG(σ)BT

(√
I2n + (G(N (σ)))

2

)−1

= −
(
G(N (σ))

)−1
+

√
I2n + (G(N (σ)))

2 (
G(N (σ))

)−1
(
A+

(
G(N (σ))

)−1
)−1

×
(
G(N (σ))

)−1
√
I2n + (G(N (σ)))

2

−
√
I2n + (G(N (σ)))

2 (
G(N (σ))

)−1
(
A+

(
G(N (σ))

)−1
)−1 (

G(N (σ)) − A
)

×
(
I2n +

(
G(N (σ))

)2
)−1

√
I2n + (G(N (σ)))

2

= −
(
G(N (σ))

)−1
+

√
I2n + (G(N (σ)))

2 (
G(N (σ))

)−1
(
I2n +

(
G(N (σ))

)2
)−1

√
I2n + (G(N (σ)))

2

= 0. (A.31d)

CP can be calculated by first calculating its square as Pf (A)2 = det (A). It’s straightfor-

ward then that C2
P = 1. We choose CP = 1 because the composition of completely positive maps

should still be completely positive. So one can verify that AP , BP , CP and DP are indeed as
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specified in Eq. (2.36). With CP = 1 and DP = 0, it is explicit that the Petz recovery map is

trace preserving.

A.2.5 Fidelity calculation

We can obtain the Grassmann representation of σ
1
2ρσ

1
2 by direct calculation,

σ
1
2ρσ

1
2 (θ) =C

∫
exp[S(θ, η) + iηTµ]

1

2n
exp

(
i

2
µTG(ρ)µ

)
DηDµ

=
(−1)n

22n
Pf(G(ρ))Pf(G(ρ)−1 −G(σ)) exp

(
i

2
θTG(σ

1
2 ρσ

1
2 )θ

)
,

(A.32)

in which S,C are specified in Eq. (2.28) and

G(σ
1
2 ρσ

1
2 ) ≡ G(σ) +

√
I +G(σ)2

(
G(ρ)−1 −G(σ)

)−1
√
I +G(σ)2. (A.33)

Note that

√
I2n + (G(σ))2

(
G(ρ)−1 −G(σ)

)−1
√
I2n + (G(σ))2 +G(σ)

=
√
I2n + (G(σ))2

((
G(ρ)−1 −G(σ)

)−1
+
(
G(σ) + (G(σ))−1

)−1
)√

I2n + (G(σ))2

=
√
I2n + (G(σ))2

(
G(σ) + (G(σ))−1

)−1 (
(G(ρ))−1 + (G(σ))−1

) (
(G(ρ))−1 −G(σ)

)−1
√
I2n + (G(σ))2

=

(√
I2n + (G(σ))2

)−1 (
G(σ) +G(ρ)

) (
I2n −G(σ)G(ρ)

)−1
√
I2n + (G(σ))2.

(A.34)
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We denote δ ≡
√
σ

1
2ρσ

1
2 , so

δ(θ) =

(
(−1)n

22n
Pf(G(ρ))Pf(G(ρ)−1 −G(σ))

) 1
2

n∏
i=1

1√
1 + λ(δ)2

exp

(
i

2
θTG(δ)θ

)
. (A.35)

By applying Eq. (A.16) to Eq. (2.27), we get

G(δ) =
(
G(σ

1
2 ρσ

1
2 )
)−1

(√
I +

(
G(σ

1
2 ρσ

1
2 )
)2

− I

)
. (A.36)

The fidelity of two states ρ and σ is merely the trace of the operator δ. Since only the

coefficient of Î in Eq. (2.7) or (2.9) contributes to the trace via αX = 2−ntrX , we focus on that

coefficient

(
(−1)n

22n
Pf(G(ρ))Pf(G(ρ)−1 −G(σ))

) 1
2

n∏
i=1

1√
1 + λ(δ)2

=
1

2n
det(I −G(ρ)G(σ))

1
4 det

(
I −G(δ)2

)− 1
4

=
1

2n
det(I −G(ρ)G(σ))

1
4 det

(
1

2

(
I +

√
I +

(
G(σ

1
2 ρσ

1
2 )
)2
)) 1

4

=
1

2n
det(I −G(ρ)G(σ))

1
4 det

(
1

2

(
I +

√
I +

(
G̃(σρ)

)2
)) 1

4

.

(A.37)

The last line makes use of Eq. (A.34). Noting that the dimension of I is 2n, we arrive at the final

result in Eq. (2.43).
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A.3 Treatment of Singular Matrices

As part of the construction of the Petz recovery map and the derivation of the fidelity for-

mula, the inverses of several matrices appear. In the calculations in Appendix (A.2), we assumed

all relevant matrices to be invertible. Here these assumptions are analyzed.

A.3.1 Singular matrices in the construction of Petz recovery map

As discussed in Section.(2.2), we assume

G(N (σ)), A+
(
G(N (σ))

)−1
, BT

(
A+

(
G(N (σ))

)−1
)−1

B,

(
BT
(
A+

(
G(N (σ))

)−1
)−1

B

)−1

+G(σ)

(A.38)

are invertible (1′ − 4′). We claimed 1′ − 4′ is equivalent to assuming

G(N (σ)), A+
(
G(N (σ))

)−1
, B, I +

(
G(N (σ))

)2
(A.39)

are invertible (1 − 4). The equivalence between 1 − 3 and 1′ − 3′ is obvious. Eq. (A.30) shows

1′ − 4′ implies that
(
G(N (σ)) +

(
G(N (σ))

)−1
)

is invertible, which is equivalent to 4 with the help

of 1′. One can show 1− 4 implies 4′ just by reversing the derivation in Eq. (A.30). So 1′− 4′ and

1− 4 are equivalent. We work with 1− 4 hereafter.

We next show that 1, 3 or 1, 4 imply 2. A neccessary condition for N to be completely

positive is ATA + BBT ≤ I . If B is invertible, then we have ATA < I − BBT < I , so

||A|| < 1. However, since ||G(N (σ))|| ≤ 1, ||minλ(G(N (σ)))
−1

|| ≥ 1, A +
(
G(N (σ))

)−1 can

not have zero eigenvalue so it is invertible. In general ||A|| ≤ 1, and ||minλ(G(N (σ)))
−1

|| > 1
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when I +
(
G(N (σ))

)2 is invertible. So A +
(
G(N (σ))

)−1 is invertible for the same reason. So the

independent assumptions are 1, 3 and 4.

We first assume that I +
(
G(N (σ))

)2 is invertible. The construction of the Petz recovery

map, i.e., given G(σ), A, B(or equivalently G(σ), B, G(N (σ))), find AP , BP , CP and DP , can

be viewed as a function R12n2 → R4n2 for AP , BP , DP and R12n2 → R for CP . The matrix

multiplication is continuous in its entries just by the continuity of multiplication and adddition.

The matrix inverse is known to be continuous when the inverse exists[106].1 So the function(
G(σ), B,G(N (σ))

)
→ (AP , BP , CP , DP) is continuous when I +

(
G(N (σ))

)2 is invertible. This

continuity guarantees that if we do perturbation G(N (σ)) → G(N (σ))(ε1), B → B(ε2) so that

G(N (σ))(ε1) andB(ε2) are invertible, then carry on the derivation in Appendix (A.2.4), and finally

take the limit ε1 → 0 and ε2 → 0, we will get a well-defined result as in Eq. (2.36).

We then turn to the assumption 4. As is shown in Eq.(A.23), if 4 does not apply,N (σ)−
1
2 is

not well-defined andN (σ) can be written asN (σ)A⊗|ψ(N (σ))〉〈ψ(N (σ))|Ā. HereA is some region

in the full Hilbert space H while Ā is its complement. In this case N (σ) only have support on

A. This contradicts with the assumption in [11, 12] that the state N (σ) is faithful, which means

tr (ON (σ)) = 0 does not imply O = 0. So usually we assume that N (σ)−
1
2 is well-defined. If

N (σ) takes the form ofN (σ)A⊗|ψ(N (σ))〉〈ψ(N (σ))|Ā, we can still determine the form of the Petz

recovery map on A.[9, 17]

One might worry that if I +
(
G(N (σ))

)2 approaches a singular limit, then BP or AP could

be unbounded in Eq. (2.36). Actually BP will still be bounded, as well as AP . This can be

argued by the complete positive of the composite of completely positivity maps. We give a

1By continuity of matrix calculation we mean that each entry of the output matrix when viewed as a multivariable
function of the entries of the input matrices is continuous.
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detailed analysis here. To simplify the discussion, when I +
(
G(N (σ))

)2 is singular, we take

N (σ) = |ψ(N (σ))〉〈ψ(N (σ))|H and the discussion can be easily generalized. We first consider the

case that σ has full support on H.2 We can show that a valid quantum channel that takes such

σ to N (σ) can only be a swap, i.e. B = 0 and A = G(N (σ)). Consider the monotonicity of the

relative entropy. S(ρ||σ) ≥ S(N (ρ)||N (σ)) actually implies that if supp(ρ) ⊆ supp(σ), then

supp(N (ρ)) ⊆ supp(N (σ)). Because otherwise the RHS is +∞ while the LHS is finite so the

inequality does not hold. However, since N (σ) = |ψ(N (σ))〉〈ψ(N (σ))|H is pure, for any ρ with

supp(ρ) ⊆ supp(σ), N (ρ) = N (σ). Since ρ is arbitrary, we can conclude that the only quantum

channel that does the job is the swap described above. So in the formula for BP , BT is strictly

a zero matrix so BP = 0 regardless of the singularity of I +
(
G(N (σ))

)2. If σ is a different pure

state from N (σ), then B is an orthogonal matrix with BBT = I . A proper limiting procedure

(for example as described in the last part of Appendix (A.1)) shows that BP = BT , which means

that the recovery map rotates the state back. If σ and N (σ) are two identical pure states, we can

still show that for each mode BP = BT , AP = 0 or BP = 0, AP = G(N (σ)). So in any case BP

is bounded and so is AP .

A.3.2 Singular matrices in the derivation of fidelity formula

As presented in (A.2.5), in the derivation of the fidelity formula, we assume that G(ρ) and

I −G(σ)G(ρ) are invertible. If we make use of Eq. (A.34), we might as well assume that G(σ) and√
I + (G(σ))

2 are invertible. However, as discussed in Eq. (A.13) and in (A.3.1), the continuity

property of the Grassmann integral and the final form guarantees that Eq. (2.43) is well-defined

2This depends on the choice of the family of states θ discussed in the introduction. We can always choose σ to
be the state with the largest support in the family θ. If σ is mixed in some region in Hilbert space A, and pure in its
complementary Ā, then the considerations below apply for A and Ā respectively and BP is still bounded.
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by a limiting treatment if G(σ), G(ρ) or
√
I + (G(σ))

2 are singular. So the physical one is the

singularity of the matrix I −G(σ)G(ρ).3

We can show that I − G(σ)G(ρ) being singular implies the fidelity F (ρ, σ) = 0. One can

make use of the trace formula Eq. (A.6a) to calculate

tr(ρσ)

=
(−2)n

22n

∫
DθDµeθ

Tµ exp

(
i

2
θTG(ρ)θ

)
exp

(
i

2
µTG(σ)µ

)
=

1

2n
Pf(G(ρ))Pf(G(ρ)−1 −G(σ)) =

1

2n
det
(
I −G(ρ)G(σ)

) 1
2 .

(A.40)

So when I −G(σ)G(ρ) is singular, we have tr(ρσ) = 0. However tr(ρσ) = tr(σ
1
2ρσ

1
2 ) and σ

1
2ρσ

1
2

is a positive semidefinite operator so all its eigenvalues λ(σ
1
2 ρσ

1
2 )

i ≥ 0. So tr(σ
1
2ρσ

1
2 ) = 0 implies

that σ
1
2ρσ

1
2 = 0 since the only case is that all its eigenvalues are 0. Then naturally its square root

is 0 so the fidelity F (ρ, σ) = 0.

3Equivalently I −G(ρ)G(σ), as they share the same spectrum.
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Appendix B: Supplementary materials of Chapter 3

B.1 Isometric embedding

We work with σ ∈ A? faithful which implies that σ ◦ ι ∈ B? is faithful. Thus the corre-

sponding vectors |ξAσ 〉, |ξBσ 〉 in the natural cones are cyclic and separating. By a trivial calculation,

one sees that Vσ defined in (3.16) is a norm-preserving (densely defined) map from K to H .

So the map extends to the full Hilbert space as an isometric embedding V ∗σ Vσ = 1K . A similar

argument shows that:

VσV
∗
σ = πK ∈ B(H ) (B.1)

where this equation applies on the subspace of H that is generated by B:

ι(B) |ξAσ 〉 = πK H ≡ πB
′
(σ)H (B.2)

In other words, |ξAσ 〉 is not cyclic for ι(B) and πB′(σ) defines the associated support projector for

the commutant algebra.

The embedding satisfies:

Vσb |χ〉 = bVσ |χ〉 , χ ∈ K , b ∈ B (B.3)
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since we can approximate any |χ〉 = limn cn
∣∣ξBσ 〉 ∈ K for suitable cn ∈ B, and take the limit on

both sides of:

Vσbcn
∣∣ξBσ 〉 = ι(bcn) |ξσ〉 = ι(b)ι(cn) |ξσ〉 = ι(b)Vσcn

∣∣ξBσ 〉. (B.4)

Thus,

〈χ1|V ∗σ ι(b)Vσ |χ2〉 = 〈χ1|V ∗σ Vσb |χ2〉 = 〈χ1| b |χ2〉 (B.5)

for all vectors |χ1,2〉 ∈ K , or:

V ∗σ ι(B)Vσ = B. (B.6)

The commutant satisfies:

V ∗σA′Vσ ⊂ B′ (B.7)

which can be verified via a short calculation for a′ ∈ A′ and b ∈ B:

[V ∗σ a
′Vσ, b] = [V ∗σ a

′Vσ, V
∗
σ ι(b)Vσ] = V ∗σ [πK a′πK , ι(b)]Vσ = 0 (B.8)

where we used the fact that πK ∈ ι(B)′ and A′ ⊂ ι(B)′.

B.2 Fidelity

B.2.1 Proof of Lemma 3.2.1 (Fidelity and the Araki-Masuda norm)

Proof. (1) In this proof, all L1 norms are taken relative to the commutant A′ as in

‖φ‖1,ψ = inf
χ∈H :‖χ‖=1,π′(χ)≥π′(φ)

‖(∆′χ,ψ)−1/2φ‖, (B.9)
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from (3.59), and we want to relate this to the fidelity,

F (ωψ, ωφ) = sup
x′∈A′:‖x‖≤1

| 〈ψ|x′ |φ〉 | (B.10)

where φ, ψ are normalized vectors. This relation is proven in [70], lem. 5.3 for a cyclic and

separating vector |ψ〉. We will now remove this condition. The linear functional that appears in

(B.10) A′ can be written using a polar decomposition

〈ψ| · |φ〉 = 〈ξ| · u′ |ξ〉 (B.11)

for some ξ in the natural cone and a partial isometry u′ with initial support (u′)∗u′ = π′(ξ). This

polar decomposition has the property that the largest projector in A′ that satisfies 〈ξ|x′p′u′ |ξ〉 =

0 for all x′ is p′ = 1− π′(u′ξ) = 1− u′(u′)∗.1 Thus:

〈ψ|x′(1− u′(u′)∗) |φ〉 = 0 , ∀x′ ∈ A′ (B.12)

and since A′ |ψ〉 = π(ψ)H we derive that the final support projector satisfies:

(1− u′(u′)∗) |φ〉 ∈ (1− π(ψ))H (B.13)

1Proof: Certainly 1 − u′(u′)∗ satisfies this. Suppose p′ is larger and still satisfies this. Pick x′ = (u′)∗, then
〈ξ| (u′)∗p′u′ |ξ〉 = 0, but then p′ ≤ 1 − π′(u′ξ) which is a contradiction. Note that the largest projector in A′ that
satisfies 〈ξ| p′x′u′ |ξ〉 = 0 for all x′ is p′ = 1− π′(ξ) = 1− (u′)∗u′.
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Consider

((x′)∗ |ψ〉 , (u′)∗ |φ〉) = (|ξ〉 , π′(ψ)x′π′(ξ) |ξ〉) = (|ξ〉 , π′(ψ)x′ |ξ〉)

=
(
J(∆′ξ,ψ)1/2 |ψ〉 , J(∆′ξ,ψ)1/2(x′)∗ |ψ〉

)
=
(
(∆′ξ,ψ)1/2(x′)∗ |ψ〉 , (∆′ξ,ψ)1/2 |ψ〉

)
(B.14)

where in the second line we used (3.6) and in the third we used the anti-unitarity of J . The above

relation can be rewritten as:

((x′)∗ |ψ〉+ |ζ〉 , π(ψ)(u′)∗ |φ〉) =
(
(∆′ξ,ψ)1/2((x′)∗ |ψ〉+ |ζ〉), (∆′ξ,ψ)1/2 |ψ〉

)
(B.15)

where we have freely added ζ ∈ (1 − π(ψ)π′(ξ))H since π(ψ)(u′)∗ |φ〉 is in the subspace

π(ψ)π′(ξ)H , and this subspace is also the support of ∆′ξ,ψ. Now since the vector on the left of

(B.15) is dense: π′(ξ)A |ψ〉 + (1 − π(ψ)π′(ξ))H = H we learn that (∆′ξ,ψ)1/2 |ψ〉 is in the

domain of (∆′ξ,ψ)1/2 and

∆′ξ,ψ |ψ〉 = π(ψ)(u′)∗ |φ〉 , (B.16)

so that

u′∆′ξ,ψ |ψ〉 = π(ψ)u′(u′)∗ |φ〉 = π(ψ) |φ〉 , (B.17)

where we used (B.13). The next step is to show that

‖φ‖1,ψ = ‖π(ψ)φ‖1,ψ = ‖u′∆′ξ,ψψ‖1,ψ = ‖ξ‖2, (B.18)
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which implies that

‖φ‖1,ψ = sup
x′∈A′:‖x′‖≤1

| 〈ξ|x′ |ξ〉 | = sup
x′∈A′:‖x′‖≤1

| 〈ψ|x′ |φ〉 | = F (ωψ, ωφ). (B.19)

This is what we wanted to derive.

The later equality in (B.18) is fairly standard, but for completeness we go through this.

Without loss of generality we take χ in (B.9) such that u′∆′ξ,ψ |ψ〉 is in the domain of (∆′χ,ψ)−1/2

and also such that π′(χ) ≥ π′(u′∆′ξ,ψ |ψ〉) = π′(u′ξ) and ‖ |χ〉 ‖ = 1. We would like to use the

following result that we will justify later (for now the reader should feel free to verify this for

type-I algebras with density matrices):

(∆′χ,ψ)−1/2u′∆′ξ,ψ |ψ〉 = (∆′χ,ξ)
−1/2u′ |ξ〉 = (∆′χ,ξ)

−1j(u′)∗ |χ〉 (B.20)

where j(u′) = Ju′J and all the domains in the above equation are appropriate. Now apply the

Cauchy-Schwarz inequality:

‖ξ‖2 = ‖π′(χ)u′ξ‖2 = ‖∆1/2
ξ,χ j(u

′)∗χ‖2 = 〈χ| j(u′)(∆′χ,ξ)−1j(u′)∗ |χ〉 (B.21)

≤ ‖(∆′χ,ξ)−1j(u′)∗χ‖‖j(u′)∗χ‖ ≤ ‖(∆′χ,ψ)−1/2u′∆′ξ,ψψ‖. (B.22)

Taking the infimum over all such χ we find that:

‖ξ‖2 ≤ ‖u′∆′ξ,ψψ‖1,ψ = ‖φ‖1,ψ. (B.23)

The other inequality is found since the optimal vector in the infimum is |χ〉 = u′ |ξ〉 /‖ |ξ〉 ‖
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where (B.20) becomes:

(∆′χ,ψ)−1/2u′∆′ξ,ψ |ψ〉 = u′ |ξ〉 ‖ξ‖ (B.24)

which implies that:

‖φ‖1,ψ = ‖u′∆′ξ,ψψ‖1,ψ ≥ ‖ξ‖2 (B.25)

and this establishes equality. We now only need to prove (B.20). To do this we will analytically

continue the equation:

(∆′χ,ψ)−zu′(∆′ξ,ψ)z |ξ〉 = π(ψ)(∆′χ,ξ)
−zu′(∆′ξ,ξ)

z |ξ〉 = π(ψ)(∆′χ,ξ)
−zu′ |ξ〉 (B.26)

away from z = is for s real. We simply take an inner product with a dense set of vectors

a |χ〉+ |ζ〉 where a ∈ A and |ζ〉 ∈ (1− π′(χ))H :

(
(∆′χ,ψ)−z̄(a |χ〉+ |ζ〉), u′(∆′ξ,ψ)z |ξ〉

)
=
(
(∆′χ,ξ)

−z̄π(ψ)(a |χ〉+ |ζ〉), u′ |ξ〉
)

(B.27)

since we know that |ξ〉 is in the domain of (∆′ξ,ψ)1/2 (since we established that |ψ〉 is in the

domain of ∆′ξ,ψ) it is clear that we can analytically continue the two functions above into the strip

0 < Rez < 1/2 with continuity in the closure (using standard results in Tomita-Takesaki theory.)

Agreement along z = is implies agreement in the full strip. Setting z = 1/2 we have a uniform

bound (with ‖a |χ〉 ‖ ≤ 1) on the left hand side since we started with the assumption that the

left hand side of (B.20) exists. On the right hand side this establishes the fact that u′ |ξ〉 is in the

domain (∆′χ,ξ)
−1/2 and the first equality in (B.20). The second equality in (B.20) is immediate.

We have thus finished the proof that (B.9) and (B.10) are equal.
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(2) Our next task is to show that it is sufficient to vary over unitaries in (B.10) and relate

this to (3.62). Note that for a bounded operator we have the polar decomposition x′ = u′p′ where

u′ is unitary and ‖p′‖ ≤ 1. Such a self adjoint operator can always be written as (v′ + (v′)∗)/2

where v′ = p′ + i
√

1− (p′)2. So:

x′ =
1

2
u′v′ +

1

2
u′(v′)∗ =

1

2
w′ +

1

2
y′ (B.28)

for unitaries w′, y′ ∈ A′. Then | 〈ψ|x′ |φ〉 | ≤ 1
2

(| 〈ψ|w′ |φ〉 |+ | 〈ψ| y′ |φ〉 |). Thus

| 〈ψ|x′ |φ〉 | ≤ sup
u′∈A′:u′(u′)∗=1

| 〈ψ|u′ |φ〉 | (B.29)

since the right hand side is larger than both terms with w′ and y′ above. Taking the sup over the

left hand side:

sup
u′∈A′:u′(u′)∗≤1

| 〈ψ|u′ |φ〉 | ≤ sup
x′∈A′:‖x′‖≤1

| 〈ψ|x′ |φ〉 | ≤ sup
u′∈A′:u′(u′)∗=1

| 〈ψ|u′ |φ〉 | (B.30)

where the first inequalities is because the set of unitaries is a subset of operators bounded by 1.

This implies equality and we see that the L1 norm is equivalent to the Uhlmann fidelity of two

linear functionals:

F (ωψ, ωφ) = ‖φ‖1,ψ , ωψ = 〈ψ| · |ψ〉 , ωφ = 〈φ| · |φ〉 ∈ A?. (B.31)

Thus it is clear the fidelity is independent of the vector representation. We take the norms of φ, ψ

to be 1.
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(3) Finally, we want to relate the fidelity to the norm of the linear functional difference:

‖ωψ − ωφ‖ ≡ sup
x∈A;‖x‖≤1

|ωψ(x)− ωφ(x)| (B.32)

Since A ⊂ B(H ):

‖ωψ − ωφ‖ ≤ sup
x∈B(H );‖x‖≤1

| 〈ψ|x |ψ〉 − 〈φ| (u′)∗xu′ |φ〉 | = 2

√
1−

∣∣〈ψ∣∣u′φ〉∣∣2 (B.33)

We calculate the last equality as follows. The two normalized vectors ψ, u′φ live in a two dimen-

sional subspace, which without loss of generality can be chosen as:

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉 , u′
∣∣φ〉 = eiϕ(sin(θ/2) |0〉+ cos(θ/2) |1〉) (B.34)

where
〈
ψ
∣∣u′φ〉 = eiϕ sin(θ). We can then take x to be an operator in this subspace. Note that:

|ψ〉 〈ψ| −
∣∣u′φ〉〈u′φ∣∣ = cos θσ3 (B.35)

such that the maximum is achieved for x = σ3 = diag(1,−1) which has an operator norm of 1.

So the norm of this linear functional is 2 cos θ, giving the last equality in (B.33). Taking the inf

over u′ in (B.33), we have:

‖ωψ − ωφ‖ ≤ 2
√

1− F (ωψ, ωφ)2. (B.36)

In the other direction we can pick φ and ψ to live in the natural cone without loss of
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generality, and then we have ‖ωψ−ωφ‖ ≥ | |φ〉− |ψ〉 |2 = 2(1−〈ψ| φ〉) where the later quantity

is real since both vectors are in the cone. We use the inequality (3.69) for p = 1 that we reproduce

here:

‖φ‖1,ψ ≥ 〈φ| (∆
′
ψ,φ)1/2 |φ〉 = 〈φ| ψ〉 , (B.37)

so

1

2
‖ωψ − ωφ‖ ≥ 1− F (ωψ, ωφ) (B.38)

Altogether, we have

1− F (ωψ, ωφ) ≤ 1

2
‖ωψ − ωφ‖ ≤

√
1− F (ωψ, ωφ)2. (B.39)

Note that the fidelity lies between 0 and 1 and:

0 ≤ ‖ωψ − ωφ‖ ≤ 2 (B.40)

where equality is achieved on the left iff the two linear functionals are the same and on the right

if the support of the two linear functionals are orthogonal. We can see this as follows. Note that

for ‖x‖ ≤ 1:

|ωψ(x)| ≤ ‖x‖ωψ(1) ≤ 1 (B.41)

so that |ωψ(x) − ωφ(x)| lies between 0 and 2. Equality is achieved for x = π(ψ) − π(φ) with

orthogonal support.
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B.2.2 Proof of Lemma B.2.1 (Continuity of fidelity)

In this section, all L1 norms refer to the commutant algebra A′, as in (lem. 3.2.1):

‖ψ‖1,φ = F (ωψ, ωφ) ≡ sup
u′∈A′

|〈ψ|u′ |φ〉| , (B.42)

where the supremum is over partial isometries u′.

Lemma B.2.1. For a v. Neumann algebra A in standard form acting on a Hilbert space H and

any |ψi〉, |φi〉 ∈H ,

∣∣∣ ‖ψ1‖1,φ1
− ‖ψ2‖1,φ2

∣∣∣ ≤ ‖φ1 − φ2‖+ ‖ψ1 − ψ2‖ . (B.43)

Proof. The variational expression (B.42) immediately allows one to deduce the triangle inequal-

ity for the L1-norms. Note that:

sup
u′∈A′

|〈ψ1|u′ |ψ2〉| ≤ sup
u∈B(H )

|〈ψ1|u |ψ2〉| = ‖ψ1‖ ‖ψ2‖ , (B.44)

and that ‖ψ‖1,φ = ‖φ‖1,ψ are further trivial consequences of the variational definition. For nor-

malized vectors ψ1, ψ2, φ1, φ2 we derive for the L1-norms relative to A′:

∣∣∣ ‖ψ1‖1,φ1
− ‖ψ2‖1,φ2

∣∣∣ ≤ ∣∣∣ ‖ψ1‖1,φ1
− ‖ψ1‖1,φ2

∣∣∣+
∣∣∣ ‖ψ1‖1,φ2

− ‖ψ2‖1,φ2

∣∣∣
≤ ‖φ1 − φ2‖1,ψ1 + ‖ψ1 − ψ2‖1,φ2 ≤ ‖φ1 − φ2‖+ ‖ψ1 − ψ2‖ (B.45)

where to go to the second line we used the reverse triangle inequality twice, and in the last step

151



we used (B.44).

B.3 Proof of lemma 3.2.7 (Hirschman’s improvement)

Proof. (1) First assume that ωψ is faithful and we may assume |ψ〉 ∈ P\
M by invariance of the

Lp-norms. Then |ψ〉 is cyclic and separating and the standard theory developed in [70] applies.

We use the notation S1/2 = {0 < Rez < 1/2}.

Denote the dual of a Hölder index p by p′, defined so that 1/p+ 1/p′ = 1. [70] have shown

that the non-commutative Lp(M, ψ)-norm of a vector |ζ〉 relative to |ψ〉 can be characterized by

(dropping the superscript on the norm)

‖ζ‖p,ψ = sup{|〈ζ|ζ ′〉| : ‖ζ ′‖p′,ψ ≤ 1}. (B.46)

They have furthermore shown that when p′ ≥ 2, any vector |ζ ′〉 ∈ Lp
′
(M, ψ) has a unique

generalized polar decomposition, i.e. can be written in the form |ζ ′〉 = u∆
1/p′

φ,ψ |ψ〉, where u is a

unitary or partial isometry fromM. Furthermore, they show that ‖ζ ′‖p′,ψ = ‖φ‖p′ . We may thus

choose a u and a normalized |φ〉, so that

‖G(θ)‖p(θ),ψ = 〈u∆
1/p(θ)′

φ,ψ ψ|G(θ)〉, (B.47)

perhaps up to a small error which we can let go zero in the end. Now we define pθ as in the

statement, so that

1

p′θ
=

1− 2θ

p′0
+

2θ

p′1
, (B.48)
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and we define an auxiliary function f(z) by

f(z) = 〈u∆
2z̄/p′1+(1−2z̄)/p′0
φ,ψ ψ|G(z)〉, (B.49)

noting that

f(θ) = ‖G(θ)‖pθ,ψ (B.50)

by construction. By Tomita-Takesaki-theory, f(z) is holomorphic in S1/2. For the values at the

boundary of the strip S1/2, we estimate

|f(it)| = |〈u∆
−2it(1/p′1−1/p′0)
φ,ψ ∆

1/p′0
φ,ψ ψ|G(it)〉|

≤ ‖u∆
−2it(1/p′1−1/p′0)
φ,ψ ∆

1/p′0
φ,ψ ψ‖p′0,ψ‖G(it)‖p0,ψ

≤ ‖∆−2it(1/p′1−1/p′0)
φ,ψ ∆

1/p′0
φ,ψ ψ‖p′0,ψ‖G(it)‖p0,ψ

≤ ‖φ‖p′0‖G(it)‖p0,ψ

≤ ‖G(it)‖p0,ψ.

(B.51)

Here we used the version of Hölder’s inequality proved by [70], we used ‖a∗ζ‖p′0,ψ ≤ ‖a‖‖ζ‖p′0,ψ

for any a ∈ A, see [70], lem. 4.4, and we used ‖∆−2it(1/p′1−1/p′0)
φ,ψ ∆

1/p′0
φ,ψ ψ‖p′0,ψ ≤ ‖φ‖

p′0 which we

prove momentarily. A similar chain of inequalities also gives

|f(1/2 + it)| ≤ ‖G(1/2 + it)‖p1,ψ. (B.52)

To prove the remaining claim, let |ζ ′〉 = ∆z
φ,ψ|ψ〉 and z = 1/p′ + 2it. Then we have, using the
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variational characterization by [70] of the Lp′(M, ψ)-norm when p′ ≥ 2:

‖ζ ′‖p′,ψ = sup
‖χ‖=1

‖∆1/2−1/p′

χ,ψ ∆z
φ,ψψ‖

= sup
‖χ‖=1

‖∆1/2−1/p′−2it
χ,ψ ∆

1/p′+2it
φ,ψ ψ‖

= sup
‖χ‖=1

‖∆1/2−1/p′

χ,ψ (Dχ : Dφ)2tπ
M(φ)∆

1/p′

φ,ψ ψ‖

≤ sup
‖χ‖=1,a∈A,‖a‖=1

‖∆1/2−1/p′

χ,ψ a∆
1/p′

φ,ψ ψ‖

≤ sup
a∈A,‖a‖=1

‖a∆
1/p′

φ,ψ ψ‖p′,ψ.

(B.53)

Using [70], lem. 4.4, we continue this estimation as

≤ sup
a∈A,‖a‖=1

‖a‖‖∆1/p′

φ,ψ ψ‖p′,ψ = ‖φ‖p′ , (B.54)

which gives the desired result.

Next, we use the Hirschman improvement of the Hadamard three lines theorem [107, 108].

Lemma B.3.1. Let g(z) be holomorphic on the strip S1/2, continuous and uniformly bounded at

the boundary of S1/2. Then for θ ∈ (0, 1/2),

ln |g(θ)| ≤
∫ ∞
−∞

(
βθ(t) ln |g(1 + it)|2θ + αθ(t) ln |g(it)|1−2θ

)
dt, (B.55)

where αθ(t), βθ(t) are as in lem. 3.2.7.

Applying this to g = f gives the statement of the theorem.

(2) Let us now extend this result to the case where ρ = ωψ is not faithful. We employ the

154



following common trick where we use case (1) above for the modified functional

ρε ≡ (1− ε)ρ+ εσ, (B.56)

where σ is any faithful normal state, which exists sinceM is assumed to be sigma-finite. Then ρε

in (B.56) with 0 < ε < 1 is now a faithful state. We take the unique cyclic and separating vector

representative in the natural cone and denote it as |ψε〉.

Lemma B.3.2. For 1 ≤ p ≤ 2 and ρε the family of states (B.56), we have limε→0+ ‖ζ‖p,ψε =

‖ζ‖p,ψ.

Proof. Since ρε/(1 − ε) > ρ, it follows that ∆ψε,χ ≥ (1 − ε)∆ψ,χ. Therefore, by standard

properties of the modular operator, ∆−1
χ,ψε
≥ (1− ε)∆−1

χ,ψ. By Löwner’s theorem [109] applied to

the operator monotone (for 1 ≤ p ≤ 2) function f(x) = x1/p−1/2, we have

∆
1/2−1/p
χ,ψε

≥ (1− ε)1/p−1/2 ∆
1/2−1/p
χ,ψ . (B.57)

Taking the infimum on (B.57) gives

‖ζ‖p,ψ ≤ inf
χ∈H :‖χ‖=1,π(χ)≥π(ζ)

ζ∈D(∆
1/2−1/p
χ,ψε

)

‖∆1/2−1/p
χ,ψ ζ‖ ≤ (1− ε)1−2/p ‖ζ‖p,ψε . (B.58)

The first inequality holds because the domain restriction gives a smaller class of states over which

one takes the infimum and the second inequality is (B.57). We therefore obtain

‖ζ‖2
p,ψ − ‖ζ‖2

p,ψε ≤ O(ε). (B.59)

155



Now we use a variational characterization of the Lp-norms proven in paper II, prop. 1, for 1 ≤

p ≤ 2.

‖ζ‖2
p,ψ = −sin(2π/p)

π
inf

x:R+→M′

∫ ∞
0

[‖x(t)ζ‖2 + t−1FM′(y(t)ω′ζy(t)∗, ω′ψ)2]t−2/p′dt, (B.60)

where y(t) = 1 − x(t), the infimum is taken over all step functions x : R+ → M′ with finite

range such that x(t) = 1 for t ∈ [0, c] for some c > 0, and x(t) = 0 for sufficiently large t. We

also use the notation (xωx∗)(b) = ω(x∗ax). For any fixed δ > 0 a step function may be chosen

so that the infimum is achieved up to δ. It follows that, with this choice,

‖ζ‖2
p,ψε − ‖ζ‖

2
p,ψ

≤ δ − sin(2π/p)

π

∫ ∞
c

[FM′(y(t)ω′ζy(t)∗, ρ′ε)
2 − FM′(y(t)ω′ζy(t)∗, ρ′)2]t−1−2/p′dt

≤ δ + sinc(2π/p′) c−2/p′
(

sup
t≥c
‖y(t)ζ‖2

)
‖ρ− ρε‖1/2 ≤ δ +O(ε1/2),

(B.61)

using the continuity of the fidelity, lem. B.2.1 together with (1/2)‖ρ′ − ρ′ε‖ ≤ ‖ψ − ψε‖ ≤

‖ρ−ρε‖1/2 from (3.4) in the second step, and using (B.56) in the third step. If we chose ε so small

that the ε-dependent terms in (B.59), (B.61) are each less than δ, we get | ‖ζ‖2
p,ψε
−‖ζ‖2

p,ψ| < 2δ.

Therefore, since δ > 0 can be arbitrarily small, the lemma is proven.

Using this lemma in conjunction with [70], lem. 6 (2) gives ‖ζ‖p,ψ ≤ ‖ζ‖. Then, since

|G(z)〉 is assumed to be bounded in the Hilbert space norm, we have ‖G(z)‖p,ψ ≤ C inside the

closed strip {0 ≤ Rez ≤ 1}. Now taking the limit ε → 0 of case (1) for the vector |ψε〉 using

the lemma and the dominated convergence theorem to take the limit under the integral in (3.141)

concludes the proof of (2).
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Appendix C: Supplementary materials of Chapter 4

This appendix provides the details of the HMERA model constructed in Section (4.3).

C.1 Super-operators

Recall that tensor networks of this type can yield a power-law decaying correlation as

shown in (4.3) where the scaling dimensions are given by Eq. (4.6). To preview the results

of this subsection, the different types of superoperators are depicted in Figure (C.4) and their

corresponding probabilities are presented in Eq. (C.8). As long as we show that (1) the only

eigen-operator for eigenvalue 1 is the identity operator; (2) for each type of superoperator all the

other eigenvalues indeed have absolute value less than 1, we can conclude it produces a decaying

connected two-point function that is roughly a power law.

We start by investigating the properties of each tensor individually, as the superoperators

interpolating between layers are composed of them. The perfect tensor defines a 2-isometry

depending on the state of the logical qubit. See the left panel of Figure (C.1). As the two copies

form a direct product, studying a single copy suffices. Most generally, we initialize the logical

qubit in the state |φ〉 = cosα|0〉+ eiβ sinα|1〉 and denote the corresponding isometry as Wp. By

distinguishing the inward 2 legs from the others, the original rotational symmetry breaks down

to the reflection symmetry 1 ↔ 2, 3 ↔ 5. Except for the top few layers, the incoming operator

157



of Wp will at most be weight 2, and will have support either on 3, 4 or 4, 5. This motivates us

to view Wp(·)W †
p as a super-operator sending a weight 2 operator to another weight 2 operator.

Studying the case in which operators have support on legs 3 and 4 would suffice because of the

reflection symmetry. If the operator is weight 1, say X3, we view it as a weight 2 operator X3I4,

etc. The identity operators together with Pauli matrices on both legs form a set of bases of weight

2 operators. The super-operator can be viewed as a 16 × 16 matrix in such bases. The right

panel of Figure (C.1) illustrates how to determine one entry of the super operator. One can easily

calculate the eigen-operators and the eigenvalues of this superoperator. It turns out that there is

only one eigenvalue with norm 1, whose eigen-operator is the identity operator, as expected. All

the other eigenvalues, though complex, have norm less than 1. This is manifestly seen in Figure

(C.2). Since for the tensor product of two matrices, the eigenvalues are pairwise products of each

matrix, we conclude that for the double copy of 2-isometries, all but one eigenvalue have norm

less than 1 as well.

Figure C.1: Left: The perfect tensor on the pentagon defines a 2-isometry. Right: An example of
how the super-operator defined by Wp(·)W †

p acting on a weight 2 operator. The prefactor 〈X̄〉 is
the expectation value of the logical X̄ operator in state |φ〉.

We then investigate the properties of the imperfect code defined in Figure (4.4). This

defines a 1-isometry. We denote the isometry as WI . In this case, the original five-fold rotational

symmetry breaks down to the reflection symmetry 2 ↔ 5, 3 ↔ 4. It turns out that one can have
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Figure C.2: Eigenvalues of the super-operator defined by Wp(·)W †
p . This is depicted on the

complex plane with parameter α = π
3
, β ∈ (0, 2π). The outer dashed one is the unit circle. This

manifestly shows that all but one eigenvalues have norm less than 1.

weight 1 or 2 operator fed into the super-operator defined by WI(·)W †
I . In the weight 1 case, one

can solve for its eigenvalues and eigen-operators. In the weight 2 case, operators can have support

on leg 2, 3 or 3, 4 or 4, 5. In this case no eigen-operator can be defined because the operator weight

changes. Instead, we calculate the operator norm after applying the super-operator WI(·)W †
I .

The identity operator together with Pauli matrices of one qubit forms the bases of operators. For

weight 2 operators, this is a Hilbert space of 256 dimensions. Since the bases operators all have

norm 1, to show that the super-operatorWI(·)W †
I result in decaying two point functions, we show

the resulting operators have norm less than 1, except for the identity operators on 4 qubits. For

operators inserted on leg 2, 3, numerical results in Figure (C.3) explicitly verifies this property.

Inserting the operators in legs 3, 4 turns out to produce the same figure. Inserting the operators in

legs 4, 5 is the same as inserting in 2, 3 by symmetry.

With the properties of perfect and imperfect codes above, we can already conclude that our
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Figure C.3: The norms of weight 2 operators inserted on leg 2, 3 with respect to the parameter θ
in the range θ ∈ (0, π

2
). We plot all 255 bases after the action of super-operator WI(·)W †

I . This
explicitly shows that they have norm strictly less than 1 when θ > 0.

model can produce decaying yet non-vanishing two point correlations. Furthermore, we would

like to identify different types of super-operators. They are collectively depicted in Figure (C.4).

We draw the dual graph so that the isometries are on the nodes. We summarize them in the

following. A weight 1 operator can be coarse-grained either into a weight 1 operator via an

imperfect code (panel 1), or into a weight 2 operator via a perfect tensor (panel 2). A weight 2

operator can be coarse-grained into a weight 1 operator via an imperfect tensor (panel 3), or into

a weight 2 operator via a product of imperfect tensors (panel 4), or into a weight 3 tensor via a

product of perfect and imperfect tensor (panel 5). A weight 3 operator may remain “stable” as

weight 3 (panel 6 and 7), or “shrink” to weight 2 (panel 8).

Since the operator weight may change, it is not feasible to solve for the eigen-operators of

super operators defined on an individual layer. It is possible to calculate the eigenvalue and the

eigen-operators for the procedure during which a weight 1 operator increases to weight 3 then

decreases to weight 1, i.e., defining a super-operator across multiple layers. However the number
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Figure C.4: This shows the different superoperators during the coarse-graining process. The
coarse-graining goes from bottom to top in each panel. Blue circles and diamonds represent
imperfect and perfect tensors respectively. The red circles mark the legs on which the operators
act. The irrelevant legs are depicted in dashed lines. The first row shows the cases of weight 1
operators, the second row for weight 2 and the third for weight 3.
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of layers involved depends largely on particular processes. We adopt a different strategy to calcu-

late the probability of each type of super-operator appearing in a typical coarse graining process.

For a given insertion point, the total coarse-graining process is fixed. We randomize the insertion

point at the boundary for a generic operator so we can calculate these probabilities as an average

over different coarse-graining processes1. An assumption is that the two operators inserted at the

cut-off boundary are well-separated, i.e., N ∼ log |i − j| � 1, so the two insertions will be

coarse-grained separately before they meet at the top few layers. It is this part that contributes to

the long range behaviour of the correlation. Also, the notion of taking the average super-operator

with said probability distribution make more sense when N is large.

The types of super-operators and their corresponding probabilities depend primarily on the

graph structure of the tensor network. We start by reviewing the formulae for the number of

perfect tensors g(n) and imperfect tensors f(n) in each layer. One node is chosen as the center

and is labelled layer 0. Then if we need to go across a minimal number of n edges to reach from

the center to a particular node, it is assigned to layer n. The labelling procedure is unique and

unambiguous in this model. This setup is familiar in the literature [31] and we reproduce its result

here for readability:

f(n) =
5−
√

5

2

(3 +
√

5

2

)n[
1 +O

((3−
√

5

3 +
√

5

)n)]
,

g(n) =
3
√

5− 5

2

(3 +
√

5

2

)n[
1 +O

((3−
√

5

3 +
√

5

)n)]
.

(C.1)

We work in the case where n is large so we can set the factors in the square brackets to 1. The

1This is similar to the strategy in [100], where the authors averaged over the super-operators, which can also be
viewed as an averaging over different coarse-graining processes.
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number of total layers N can be calculated more precisely as

N ≈ log |i− j|
log(3+

√
5

2
)
. (C.2)

Now we are able to calculate the probability of a weight 1 operator expanding to weight 2.

There are two situations. If the weight 1 operator is at the start of the coarse-graining process,

the probability of it spreading is the same as the probability of inserting an operator on legs that

are directly connected to a perfect code.

P0(1→ 2) =
3g(n)

4f(n) + 3g(n)
= 3− 6√

5
, P0(1→ 1) =

4f(n)

4f(n) + 3g(n)
=

6√
5
− 2. (C.3)

This only affects the initial step and does not impact the final result in Eq. (C.8). If the weight

1 operator appears during coarse-graining process, then it has a different probability. The reason

is that the weight 1 operator necessarily came from the superoperator of an imperfect code. See

Figure (C.5) for an illustration. So this is the conditional probability of connecting to a perfect

code at layer n, given that it is connected to imperfect code at layer n+ 1.

P (1→ 2|1) =
g(n)

2f(n) + g(n)
=
√

5− 2, P (1→ 1|1) =
2f(n)

2f(n) + g(n)
= 3−

√
5. (C.4)

If the operator is weight 2, then its behaviour is more complicated as it depends on the

previous two coarse-graining steps. Suppose an operator has just expanded from weight 1 to 2

by passing through a perfect code, it may either remain weight 2, shrink to weight 1, or expand

to weight 3. The illustrations are depicted in the second row of Figure (C.4). Ignoring the case

where the operator weight remains constant, as it does not involve any transitions, from the graph
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Figure C.5: These figures illustrate the possible insertions of weight 1 operators. If the operator is
inserted at the boundary, it can appear on any leg randomly. If it is a result of the coarse-graining,
it can only appear on solid lines which connect to imperfect tensor in the layer n + 1. It can not
appear on dashed lines while being weight 1 in generic cases.

one finds that when looking at layer n, there are f(n − 2) cases that corresponds to the panel 3

of Figure (C.4) and 2g(n− 1) cases that corresponds to the panel 5 of Figure (C.4). So this leads

to the conditional probabilities:

P (2→ 2|1→ 2) =
f(n− 2)

g(n)
=
√

5− 2, P (2→ 3|1→ 2) =
2g(n− 1)

g(n)
= 3−

√
5. (C.5)

If an operator has just shrunk from weight 3 or stayed as weight 2, it will necessarily shrink to

weight 1. This is illustrated in panel 3, 4, 8 in Figure: (C.4).

P (2→ 1|2→ 2) = P (2→ 1|3→ 2) = 1. (C.6)

For a weight 3 operator, it is similar to the behaviour of weight 1 operator. It may stay

weight 3 or shrink to weight 2 then to weight 1. This depends on which tensor these legs connect

to in the next layer. Similar to weight 2 cases, if they both connect to imperfect tensors, the

weight would shrink to 2; if they connect to 1 perfect and 1 imperfect tensor, the weight would

remain to be 3. The illustrations are collected in the third row of Figure (C.4). So we have the
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following conditional probabilities:

P (3→ 2|3) =
f(n− 2)

g(n)
=
√

5− 2, P (3→ 3|3) =
2g(n− 1)

g(n)
= 3−

√
5. (C.7)

With all these conditional probabilities, we are able to calculate the unconditional proba-

bilities of different types of super-operators appearing in a sufficiently long and typical coarse-

graining process. We take p(1 → 1) = x, p(3 → 3) = y. Then p(1 → 2) = p(1→2|1)
p(1→1|1)

x from

the conditional probabilities in Eq. (C.4). Similarly p(3 → 2) = p(3→2|3)
p(3→3|3)

y from Eq. (C.7). Next

we have p(2 → 1) = p(1 → 2) and p(2 → 3) = p(3 → 2). This is because when the total

number of the layers N is large enough and intermediate coarse-graining processes dominate. If

an operator remains weight 1 through several layers, it always begins with a transition 2→ 1 and

ends with a transition 1→ 2. The same happens for the weight-3 case. The remaining unknown

p(2→ 2) can be obtained from the normalization condition and from the conditional probability

in Eq. (C.5), such that p(2 → 2) = p(2→2|1→2)
p(2→3|1→2)

p(2 → 3). This yields two equations of x, y and

we can solve for them to obtain Eq. (C.8).

The resulting probabilities are,

p(1→ 1) =
3
√

5

5
− 1 ≈ 34.16%, p(1→ 2) = 1− 2

√
5

5
≈ 10.56%,

p(2→ 1) = 1− 2
√

5

5
≈ 10.56%, p(2→ 2) =

9
√

5

5
− 4 ≈ 2.49%, p(2→ 3) = 5− 11

√
5

5
≈ 8.07%,

p(3→ 2) = 5− 11
√

5

5
≈ 8.07%, p(3→ 3) =

14
√

5

5
− 6 ≈ 26.10%.

(C.8)

When N is sufficiently large, there are approximately p(i → j)N layers in which the coarse-
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graining operation is sending a weight-i operator to weight-j. These are precisely the probabili-

ties pa’s in Eq. (4.6).

In summary, we have shown that each super-operator has a dominant singular value 1 with

only the identity operator as its sole eigen-operator; all other singular values are less than 1. By

averaging such super-operators, our HMERA model produces power-law decaying correlation

functions. The probabilities of each type of super operator are further calculated in Eq. (C.8).

This allows us to estimate the average eigenvalue λ̄ that appears in in Eq. (4.3) and (4.6).

C.2 Non-flat entanglement spectrum

It was pointed out in [110, 111] that, to leading order, the density matrix obtained from the

gravitational path integral evaluated with fixed area RT surface has a flat entanglement spectrum.

This implies that the Renyi entropies of the resulting density matrix is identical to all orders. It

is consistent with the existing QECC constructions [31, 32], yet in contradiction to any real CFT

models [112]. In this section, we show that the tensor sub-networks in our proposed approximate

QECC model can obtain non-flat entanglement spectra.

Here we consider two examples. In Figure (C.6) and (C.7) we calculate explicitly the eigen-

values of some reduced density matrices of three sites at the boundary. As each leg represents a

qudit or a pair of qubits, the density matrices are of dimension 64. With two legs contracted, they

both have rank 16. If the θ parameter is 0, the eigenvalues are indeed flat, i.e. all the non-zero

ones are 1/16. In the figures we turn on θ to a generic random non-zero value and the spectrum

is no longer flat. While they are insufficient to show that the entanglement spectrum is non-flat

for all subsystems in the actual HMERA, we can gain some intuition from such toy examples.
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Figure C.6: The reduced density matrix of the sites labelled by yellow rectangle are calculated.
Its corresponding Schimdt coefficients are plotted on the left. The legs that are labelled by red
crosses are contracted to compute the reduced density matrix in the tensor network.

C.3 Imperfect Tensor Properties

The imperfect tensor itself is an approximate quantum error correction code that inherits

the code properties of two copies of the [[5, 1, 3]] code in the small θ regime. For any value of

θ 6= 0, it is also an exact 1-isometry when the logical qubits are fixed to be the |00〉 state. While

its isometric properties can be verified by showing all single-qudit (single-leg) reduced density

matrices are maximally mixed, they can also be verified through tensor contraction. The latter

technique also generalizes to other stabilizer codes without matrix computations.
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Figure C.7: The eigenvalues of another reduced density matrix. The legends are the same as
those in Figure. (C.6).

Figure C.8: Contraction of two imperfect tensors (blue, left) with their logical states fixed in |0̄〉

can be decomposed into contractions of perfect tensors with non-trivial operator insertions in the

cross terms.

Proof. The imperfect tensor can be expanded as the sum over diagonal terms and cross terms (Fig-

ure (C.8)). Because we have chosen the coefficients to be normalized, the diagonal terms sum to

the identity operator. It remains to show that the cross terms vanish.

168



Figure C.9: Examples of cross terms that are present in the contraction. The four diagrams shown

here represent the four types of terms that are relevant to us. All other terms are variations of these

terms with Z operators in different places.

The cross terms consist of the type of tensor contractions shown in Figure (C.9). All of

them contain factors of the following two types: ones with a single Z insertion (type-1) and ones

with weight-2 ZZ insertions (type-2).

The stabilizer group of the double copy perfect code is 〈Si ⊗ I, I ⊗ Sj〉, where Si, i ∈

{1, . . . , 4} are the original 5 qubit code stabilizer generators. Suppose we can find a stabilizer

element, S = S ′ ⊗ I , that only acts non-trivially on the 4 contracted legs and anti-commute

with the inserted operator O, then by the commutation relation in Figure (C.10), the terms in

Figure (C.9) will vanish.

Indeed, this can be trivially done for terms of type-1 — let us treat the uncontracted leg(s)

and the one potential Pauli Z error insertion within the contraction as two located errors. Because

the 5 qubit code detects two errors, there must exist stabilizers of the 5 qubit code that anticom-

mute with any insertion of Pi ⊗ Pj where P ∈ {I,X, Y, Z}. Therefore, all terms in Figure (C.9)

vanish except for the last one where both of them are type-2 factors.

For type-2 contraction with ZZ insertions, the above argument no longer works because
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Figure C.10: If S = S ′⊗ I and {S ′, O} = 0, then the tensor contraction with operator O inserted
is trivial.

the code doesn’t detect any three errors. To show that it vanishes, we do an exhaustive search of

all stabilizers that will anti-commute with the terms with ZZ insertions.

The stabilizer group of the 5 qubit code is

S = 〈XZZXI, IXZZX,XIXZZ,ZXIXZ〉. (C.9)

Without loss of generality, let the first qubit be the uncontracted leg of the perfect tensor, then

the only stabilizer elements from the 5 qubit code that act trivially on the uncontracted legs are

IXZZX, IY XXY, IZY Y Z where we ignore the potential minus signs. These anti-commute

with all weight-2 Z insertions except IZIIZ, IIZZI . However, recall that the state |0̄〉 is also

stabilized by Z̄ = ZZZZZ. A representation of Z̄ is IIY ZY , which anti-commutes with both

IZIIZ and IIZZI . Therefore all cross-terms vanish.

Note that other logical states are not stabilized by both Z̄Ī and ĪZ̄. As there are no other

stabilizers that anti-commute with IZIIZ, IIZZI , the tensor is not a 1-isometry when it is in

other logical states.
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Because the imperfect code in the |00〉 state is a 1-isometry, any two qubits associated with

one leg must be maximally entangled with the rest of the system. Because any leg is maximally

mixed, it contains no information of the logical state. Thus, the code corrects any one qudit

erasure error; it is a [[5, 0, 2]]4 code on dimension-4 qudits.
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