
The Center for Auditory and Acoustic Research (CAAR) is a consortium of researchers from six universities working in partnership with Department of
Defense laboratories and industry. CAAR is funded by the Office of Naval Research through a 1997 Department of Research Initiative.

Web site  http://www.isr.umd.edu/CAAR/

Center for Auditory
and Acoustic Research

MASTER'S THESIS

Real-time Blind Separation and Deconvolution of Real-world 
signals

by Yu Mao
Advisor: P.S. Krishnaprasad

CAAR MS 2003-1
(ISR MS 2003-5)



ABSTRACT

Title of Thesis: REAL-TIME BLIND SEPARATION

AND DECONVOLUTION OF

REAL-WORLD SIGNALS

Degree candidate: Yu Mao

Degree and year: Master of Science, 2002

Thesis directed by: Professor P. S. Krishnaprasad
Department of Electrical and Computer Engineering

We present a reallistic and robust implementation of Blind Source Separation

and Blind Deconvolution. The algorithm is developed from the idea of natraul

gradient learning, wavlet filtering and denoising, and the characteristic of different

sound source. Several hardware pieciecs are integrated, including a mobile robot,

NT workstation and DSP chip to achieve the real time separation of real world

signal. Besides, a method of judging the separation performance without knowing

the mixing matrix ( mixing filter ) is proposed and verified.



REAL-TIME BLIND SEPARATION AND DECONVOLUTION

OF REAL-WORLD SIGNALS

by

Yu Mao

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2002

Advisory Committee:

Professor P. S. Krishnaprasad, Chairman
Professor Shihab Shamma
Professor Carlos Berenstein



c©Copyright by

Yu Mao

2002



DEDICATION

To my parents Zaisha Mao, Junxian Zhou and my husband Fumin Zhang for

their encouragement and support throughout my life.

ii



ACKNOWLEDGEMENTS

I would to thank my advisor, Dr. P.S. Krishanprasad for all his guidance

and encouragement. He consistently challenged me to do my best. I would also

thank Dr. Shihab Shamma and Dr. Carlos Berenstein for being my committee

members. Everybody in the ISL lab has contributed his or her part in this robot

project. I need to thank them all, especially Sean Anderson and Fumin Zhang for

the motion control and sound card programming, and Cliff Knoll for providing the

communication utility between the robot and python board.

iii



TABLE OF CONTENTS

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Analysis and Comparsion of BSS/BSD Algorithms 4
2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Filtering and de-noising . . . . . . . . . . . . . . . . . . . . 6

2.2 Error functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Cumulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . 8
2.2.4 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Stochastic gradient method . . . . . . . . . . . . . . . . . . 10
2.3.2 Natural gradient method . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Non-holonomic learning . . . . . . . . . . . . . . . . . . . . 12
2.3.4 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Variation in modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 How sound spread in closed space . . . . . . . . . . . . . . . 19
2.4.2 Filter convolution model . . . . . . . . . . . . . . . . . . . . 19
2.4.3 State space model . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Blind deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Learning under state-space model . . . . . . . . . . . . . . . 22
2.5.2 Learning under the filter deconvolution model . . . . . . . . 25
2.5.3 Kuicnet approach . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



3 Sub-band Based ICA Algorithm 29
3.1 Filter-bank structure in the human ear . . . . . . . . . . . . . . . . 30
3.2 Sub-band ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Use adaptive basis selection in the wavelet packet . . . . . . 34
3.3.2 Selecting the bands to perform ICA . . . . . . . . . . . . . . 34
3.3.3 Introducing the convolution model into the sub-band algorithm 35

4 Working with Real World Signal 36
4.1 Hardware and environment . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Styrofoam head and robot . . . . . . . . . . . . . . . . . . . 38
4.1.2 Windows NT workstation . . . . . . . . . . . . . . . . . . . 38
4.1.3 DSP processor . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Python board . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5 Room environment . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Considerations for a real time implementation . . . . . . . . . . . . 40
4.2.1 Data communication . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Optimizing the code for speed and memory size . . . . . . . 41
4.2.3 Tuning parameters for the best performance . . . . . . . . . 42
4.2.4 Smoothing between blocks . . . . . . . . . . . . . . . . . . . 43

4.3 Performance evaluation criterion . . . . . . . . . . . . . . . . . . . . 43

5 Experimental Results 46
5.1 The effect of source type on performance . . . . . . . . . . . . . . . 46
5.2 The effect of source distance and angle . . . . . . . . . . . . . . . . 49
5.3 The effect of room acoustics . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Over-complete and under-complete mixtures . . . . . . . . . . . . . 54
5.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . 56

A Software Structure 59
A.1 Connection between Coreco board and NT Host . . . . . . . . . . . 59
A.2 Sub-band ICA algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B Project Directory 67

Bibliography 70

v



LIST OF TABLES

4.1 Comparison of two kind of performance index . . . . . . . . . . . . 45

5.1 Simulation result of sub-band ICA algorithm on different type of
sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Simulation result of real-time separation of real-world recording on
different type of sources . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Performance index of sub-band ICA on real-world recording on dif-
ferent source angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Performance index of sub-band deconvolution on real-world record-
ing on different source angle . . . . . . . . . . . . . . . . . . . . . . 54

vi



LIST OF FIGURES

3.1 The model of human ear . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The block diagram of Subband ICA algorithm . . . . . . . . . . . . 33

4.1 The block diagram of the hardware setting for this project . . . . . 37

5.1 The separation of two man’s voice . . . . . . . . . . . . . . . . . . . 47
5.2 The separation of voice and music . . . . . . . . . . . . . . . . . . . 48
5.3 The layout of Experiment . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Comparing the instantaneous mixing model and the real-world mix-

ing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Separation of real-world mixture in in position A . . . . . . . . . . 51
5.6 Separation of real-world mixture in position B . . . . . . . . . . . . 52
5.7 Result of deconvolution algorithm in position A and B . . . . . . . 53
5.8 Impulse response of demixing filter . . . . . . . . . . . . . . . . . . 55

A.1 Host program and server program . . . . . . . . . . . . . . . . . . . 60
A.2 Circular buffer and wavelet filter bank . . . . . . . . . . . . . . . . 64
A.3 Master DSP program and slave DSP program . . . . . . . . . . . . 66

vii



Chapter 1

Introduction

1.1 Background

In many application, there is more than one signal source in a system and the

system introduces noise and different time delays from the signal sources to the

observer(or sensor). It is desirable to separate mixtures and recover the original

data as closely as possible. In most cases, the original source and the system

transfer function are unknown. Such a separation problem is called Blind Source

Separation/Deconvolution (BSS/BSD), depending on whether the delay effect is

considered in the model or not.

The BSS(BSD) problem has been receiving increasing attention in the last

decade because of applications in speech enhancement and recognition, biomedical

signal analysis, image processing and telecommunication.

In the work I will discuss here the major concern is with the case of natu-

ral sound sources mixed in the process of air transmission in a closed space and

received by a group of microphones in the same space. Different models and separa-

tion/deconvolution algorithms are analyzed and compared in such an environment

1



and a new algorithm that makes use of the statistical distribution characteristics of

natural sound combined with a frequency domain analysis is used to achieve better

results in recovering original data in real time. Many open questions, including

extension to time varying systems, changing number of sources, noise reduction,

signal extraction and varying receiver location, are addressed to achieve a practical

and robust solution.

1.2 Overview

In an environment with n sound sources, m sensors are placed. The goal is to sepa-

rate sound from different sources and recover the original signals. We represent the

sources as s1(t), s2(t), ..., sn(t). Since the sound sources are physically independent

of each other, we assume the signals are mutually statistically independent. The

original signals s1(t), s2(t), .., sn(t) are unobservable. The m outputs from sensors

are denoted by x1(t), x2(t), ...xm(t). These also intensity functions of time and they

are linear combination of sources.

The model can be written as xi(t) =
∑n

j=1 sj(t)aij + ni(t), i = 1, 2, ..., m, where

ni(t) is observation noise. The matrix {aij} represents the mixing in the envi-

ronment. Since the environment may be changing, {aij} in general is a func-

tion of time. Let x = [x1(t), x2(t), ..., xm(t)]T be the observation data vector,

s = [s1(t), s2(t), ..., sn(t)]T the source vector and A = {aij} be a time-varying

matrix. We have the vector form

x = As (1.1)

A related task is blind deconvolution where we suppose the mixing channel has

delay. In this model the observation x(k) is assumed to be produced from s(k) in

2



the following manner

x(k) =
∞∑

p=−∞
Hps(k − p) (1.2)

Where each Hp is an n × m matrix of unknown mixing coefficients at lag p.

The goal is to calculate y(k) = [y1(k) · · · ym(k)]T of possibly scaled and delayed

estimates of the source signals in s(k) from x(k) using a causal FIR filter given by

y(k) =
L∑

p=0

Wp(k)x(k − p) (1.3)

where Wp(k), 0 ≤ p ≤ L is a (m × n) matrix satisfy

W (z)H(z) = PΛ(z)

where P is a permutation matrix and Λ(z) is a diagonal matrix with λiz
−τi as the

diagonal entries.

There are several important assumptions about this BSS/BSD model:

1. The source signals are mutually statistically independent for each sample.

2. At most one of the source signals has a Gaussian distribution.

3. Each source signal is a stationary stochastic process.

4. Besides being stationary, the signals are all ergodic so that time averages can

be used to estimate statistical distributions.

In Chapter 2 different ways to solve the BSS/BSD problem will be analyzed.

In Chapter 3 an improved subband-based Independent Component Analysis (ICA)

algorithm will be discussed. In Chapter 4 we describe the real world environment

and provide details on implementation of a real-time ICA algorithm for real-world

signals. In Chapter 5 the test results will be discussed and some conclusions are

drawn.

3



Chapter 2

Analysis and Comparsion of

BSS/BSD Algorithms

The essential goal of BSS/BSD problem is to recover unknown source signals from

mixed observations.

In this chapter the instantaneous mixing model described below will be used

unless stated otherwise:

x = As + n (2.1)

where s is the vector of original signals, x is the observed signals, A is the unknown

mixing matrix, a simplified representation of environment, and n is the observation

noise.

The corresponding separated system should be:

y = Wx (2.2)

where W is the separation matrix and y is the recovered signal.

4



2.1 Preprocessing

Before applying the ICA algorithm on the data some preprocessing of the data can

help to reduce the noise, accelerate the convergence speed and reduce computation.

The typical ways are:

2.1.1 Whitening

Before ICA, the standard Principle Component Analysis (PCA) algorithm can be

applied on the data. PCA produces uncorrelated signals. This is closer to the final

goal of ICA, independent signals, as compared to the raw source data.

Denote the covariance matrix of sources as

Rss = Es(t)sT (t) (2.3)

where Rss is a positive definite diagonal matrix. The covariance matrix of the

observed signal is

Rxx = Ex(t)xT (t) = HRssH
T (2.4)

PCA searches for an orthogonal matrix Q such that the components of

y(t) = Qx(t)

are uncorrelated. In other words the covariance matrix of the output y is diagonal.

Ryy = E[y(t)yT (t)] = QRxxQ
T = V (2.5)

In the case where the original signals are Gaussian, PCA results in independent

output. In general further computation is required on y to obtain independent

output components.

Let

x̃(t) = V −1/2QT x(t) (2.6)

5



such that

Ex̃(t)x̃T (t) = I (2.7)

Thus

y = Wx̃(t) (2.8)

extracts the independent signals, where W is the separating matrix.

In the work of Koehler, Lee and Orglmeister [15], the mixed signal is further

decorrelated by fourth order statistics before the ICA algorithm is applied. Let

W4 = (E[||x̃||2x̃x̃T ])−1/2 (2.9)

and

x̂ = W4x̃ (2.10)

is the input for core ICA algorithm.

2.1.2 Filtering and de-noising

If the frequency range of signals is known a band pass filter can be used to remove

all the noise with spectrum outside of that frequency range. While if noise is

narrow-band a band stop filter can be used to remove it.

For white noise, thresholding combined with a wavelet method is effective. The

method proposed by David Donoho [10], removes Gaussian noise and produces an

estimation that is balanced between the two goals of smoothness and small bias.

This method produces very good results in the presence of noise and will be

further discussed in Chapter 3.

6



2.2 Error functions

Since the signals from different sources are assumed to be independent, the goal of

the BSS problem is equivalent to achieving independent output by multiplying the

observed signals with an invertible matrix or applying a filter on the observation.

However the definition of independence

P (x1, x2, ..., xn) = P (x1).P (x2)...P (xn) (2.11)

is not directly usable in an error function because the statistical distribution of

the original signal is unknown and cannot be estimated from the mixed signal.

Different approaches have been thus suggested to achieve an implementable error

function as below.

2.2.1 Cumulant

Jutten and Herault, inspired by neurobiological research, first proposed this heuris-

tic learning algorithm to solve the BSS problem using the cumulant as the loss

function[14].

In contrast with PCA, which decorrelates signals based on the covariance ma-

trix, in ICA higher order statistics are used to find the independent components.

The error function for PCA is:

L(W ) = y2
m(k) (2.12)

The convergence of E(dwik

dt
) = 2qmiE(yi(t, f)yk(t, f)) = 0 means yi(t, f) and

yk(t, f) are uncorrelated, as we can see from section 2.1.1 about prewhitening.

To achieve the independence between yi(t, f) and yk(t, f), we use two different

7



nonlinear and odd functions

dWik

dt
= af(yi(t, f))g(yk(t, f))

tanh(y) and y3 are the commonly used non-linear functions.

2.2.2 Kurtosis

Kurtosis is a measure of how far a statistical distribution is away from a Gaussian

distribution. According to the Central Limit Theorem, the sum of n independent

identically distributed random variables has a Gaussian distribution as n goes to

infinity. For n independent but not identically distributed random variables, if

their PMF’s satisfy certain conditions, then the central limit theorem still holds.

A Gaussian random variable has kurtosis equal to 0. The closer kurtosis is to

0, the closer the random variable is to a Gaussian random variable. Kurtosis can

then be used as a cost function for separation and deconvolution. It is used more

effectively for deconvolution and will be discussed later in Section 2.5.

2.2.3 Kullback-Leibler divergence

The Kullback-Leibler divergence ( also called relative entropy) between two statis-

tical distributions is defined as

D(p ‖ q) =
∫

p(x) log(p(x)/q(x))dx

Although it is not symmetric and does not satisfy the triangle property, Kullback-

Leibler divergence is still considered a measure of “distance” between two statistical

distributions.

To achieve independent output means to minimize the K-L divergence between

the joint distributions of the estimated sources y and the product of the marginal

8



distributions of the yi

D
fy‖f̃y

=
∫ ∞

−∞
fy(y) log(

fy(y)∏n
i=1 f̃yi

(yi)
) = −H(y) +

n∑
i=1

h̃(yi)) (2.13)

where H(.) is entropy of the joint probability distribution.

It can be shown that the above error function is consistent with the following

[9]:

I(y, x) = H(y)− H(y/x) (2.14)

where I(y, x) is the mutual information in output y about input x, H(y) is the

entropy of y, H(y/x) is the entropy of output y that did not come from input x.

We thus have

∂

∂W
I(y, x) =

∂H(y)

∂W
(2.15)

since H(y/x) does not depend on W .

2.2.4 Maximum likelihood

To estimate one set of data from another set, the likelihood function is highly

useful. It is defined as a product of factors obtained by marginalizing over the

latent variable. In this case

p(x|A) =
n∏

i=1

pi(xi|A) (2.16)

In our goal is to achieve W = A−1

p(y|x, W−1) =
n∏

i=1

pi(yi|x, W−1) (2.17)

From this we take the negative log likelihood as error function

l(y, W ) = − log |det(W )| −
n∑

i=1

log pi(yi) (2.18)

9



L(W ) = E[l(y, W )] (2.19)

Here W ∈ Gl(n), the matrix Lie group of n × n nonsingular matrices.

Remark: In [16] David Mackay proved this error function is consistent with

K-L distance.

2.3 Learning algorithms

2.3.1 Stochastic gradient method

For the cost function L(W ), the algorithm derived from steepest descent method

is:

dW

dt
=

dL(W )

dW
(2.20)

The error function L(W ) usually contains the expectation operation which

can not be implemented in the process of learning. Since the original signal is

considered to be ergodic, time average can be used to replace the expectation.

2.3.2 Natural gradient method

The natural gradient algorithm was proposed by Shunichi Amari in 1995. In [1]

Amari proved this algorithm possesses the equivariance property and achieves the

Fisher Efficiency.

An ideal property for a learning algorithm is covariance or equicovariance, which

means the algorithm should give the same results independent of the units in

which quantities are measured. The steepest descent rule does not give a covariant

algorithm, because the two sides of the equation are not consistent in dimension.

10



Suppose

∆wi = µ
∂L

∂wi

(2.21)

Then choose µ of a particular dimension will only result in a covariant algorithm

if all the wi have the same dimension. However if we take

∆wi = µ
∑
j

Mij
∂L

∂wi
(2.22)

where M is a matrix whose (i, j)th element has dimension [wiwj ], then the

algorithm is covariant. There are two ways to get such matrices, namely metric

method and curvature method.

Newton’s algorithm is an example of getting M from curvature. In this algo-

rithm we have

A = −∇∇L and M = A−1

In the natural gradient algorithm we get the matrix M from metrics.

The steepest descent direction of a function in a Riemannian space is given by

−∇̃L(w) = −G−1(w)∇L(w) (2.23)

where G is the Riemannian metric and ∇L(w) is the standard gradient. Using

equation 2.18 and 2.19, by taking derivative on both sides we have:

dl = −d(log |det(W )|) −
n∑

i=1

d(log pi(yi)) (2.24)

= −tr(dWW−1) + φ(y)Tdy (2.25)

where

φi(yi) = − d

dyi
log(pi(yi))

The Riemannian metric of a statistical model is defined by the Fisher information

matrix [9]. That is.

gij(w) = E{∂ log p(x, w)

∂wi

∂ log p(x, w)

∂wj
} (2.26)

11



Then

dX = dWW−1 (2.27)

is to be viewed as an element of the cotangent space to Gl(n) at the identity I.

Define the co-metric

〈dX, dX〉I = tr(dXdXT ) (2.28)

then

〈dW, dW 〉W = tr((dWW−1)(dWW−1)T ) (2.29)

With respect to this metric we get the gradient

∆W = [I − φ(y(t))yT (t)]W (2.30)

The natural gradient algorithm is given by the following :

Wt+1 = Wt − η(t)F{y(t), Wt} (2.31)

where

F{y(t), Wt} = [I − φ(y(t))yT (t)]W (2.32)

2.3.3 Non-holonomic learning

In the last section we derived the natural gradient algorithm. However, this learn-

ing algorithm can not distinguish W with ΛW , where Λ is a diagonal matrix with

nonzero diagonal entries. Thus given W , the equivalence class SW = {W ′|W ′ =

ΛW} is a n-dimensional subspace of S, where S = {W} = Gl(n). Shunichi Amari,

T.P. Chen and A. Chichocki found a way to improve learning performance by

adding non-honolomic constraints to the natural gradient algorithm in [3].

Three kinds of possible constraint may be used to restrict the search direction

of the above algorithm.

12



1. hard restriction

fi(W ) = 0, i = 1, ..., n

with the typical and most simple choice

fi(W ) = Wii − 1

2. soft restriction

E(fi(yi)) = 0, i = 1, ..., n

The typical choice is

fi(yi) = y2
i − 1

which guarantees the variation of the recovered signals are 1.

3. non-holonomic constraint

Define ∆Xt = ∆WtW
−1
t . Then the constraints are given by

∆Xii = 0, i = 1, ...n

This constraint implies that the trajectories of the dynamics are always or-

thogonal to SW while not being restricted to a fixed sub-manifold.

Any matrix can be uniquely represented by the sum of two matrices, a diagonal

matrix and a matrix with all diagonal elements zero.

Thus we can write

Gl(n) = A + B (2.33)

13



where

A = {A ∈ Rn×n|A = diag{a1, a2, ..., an}}

B = {B ∈ Rn×n|b11 = b22 = ... = bnn = 0}

Claim

[B,B] = sl(n) (2.34)

where

[B,B] = {x ∈ B, y ∈ B, [x, y] = xy − yx}

Proof:

Suppose Z ∈ sl(n) i.e.
∑n−1

i=1 zii = znn.

Denote Iij as a n × n matrix with the (i, j)th element as 1 and other elements

as 0. Denote Ji as a n× n matrix with the (i, i)th element as 1 and other element

as 0. Then

Iij ∈ A, Ji ∈ B (2.35)

Z =
∑

i=1...n,j=1...n,i�=j

zijIij +
∑

i=1..n

ziiJi (2.36)

Since

Ji = [Iij , Iji], j ∈ 1...n, j �= i (2.37)

Z =
∑

i=1..n,j=1...n,i�=j

zijIij +
∑

i=1...n−1,k �=i,k∈1...n

zii[Iik, Iki] (2.38)

So any matrix belonging to sl(n) can be generated from linear combinations of

B and [B,B].

This shows that with the non-holonomic constraints, W can still be moved

freely in the n2 dimensional vector space, and thus we will not miss any possible

solution.

14



2.3.4 EM algorithm

The EM(Estimate and Minimize) algorithm is widely used in image deconvolution.

The algorithm can achieve good result in image processing because the distribution

of all image can fit into one model. This is not true for sound signals can not. H.

Attias applied the EM idea to develop the so called independent factor method [6].

The EM method is based on maximizing the log-likelihood with respect to the

parameters of the generative model describing those data. In the separation model,

instead of the likelihood E[log p(y|W )], we consider the likelihood of complete data

E[log p(y, x, q|W )], where q denotes the parameters of a distribution model.

The algorithm consist of two steps in one iteration[6]:

(E) Given the observed data and the current model, calculate the expected

value of the complete-data likelihood.

(M)Minimize the error function, i.e. maximize the corresponding averaged

likelihood with respect to W .

A more generalized EM algorithm making use of ICA is the Seesaw algorithm:

1. Fix the parameter of the generative model, use one or several iterations of

ICA rules, then update the posterior estimation using the new separating

matrix W.

2. Fix the separation matrix, use single step of EM followed by updating the

posterior estimation using the new value of parameters in generative model.

With the separation matrix fixed, the source signal can be reconstructed from

the sensor signal. In the existence of noise, a Least Mean Square or Maximum

aposterior probability estimator can be used to recover the source signal.

15



2.3.5 Stability analysis

A stationary point of the algorithm in the above algorithms is characterized by

the fact that the update of W has zero-mean. Therefore any invertible stationary

point should be a solution of

E[G(Wx)] = E[G(y)] = 0 (2.39)

The separating stationary points are characterized as follows. Starting with the

regular case, let

Λr = diag(λ1, ..., λn) (2.40)

with each scalar λi being a solution of

E[ϕi(λisi)λisi] = 1, i = 1, ..., n (2.41)

Because of the independence assumption and the zero-mean assumption, it is then

easily checked,that E[Gr(Λrs)] = 0. Therefore the matrix W = λrA
−1 is such that

y = Wx = λrs is a separating matrix and is a stationary point of equation 2.31

with W (t + 1) = W (t) = Wo.

With the stationary points characterized we now study their stability. If these

stationary points are not stable they can not be attractors in terms of specific

moments of the source distributions. The definition of these moments depends on

the non-linear functions used in the function G.

Asymptotic analysis yields two types of stability conditions. The first type is a

source-wise condition expressing that the estimation of the scale of each source

should be stable. The second type of conditions is pair-wise. The scale stability

condition for the ith source is found to be:

1 + E[ϕ′
i(yi)y

2
i ] > 0, 1 ≤ i ≥ n (2.42)

16



One often uses non-linear functions ϕi which are non-decreasing and thus have a

positive derivative. In this case, the scale stability conditions are readily met. The

pair-wise stability conditions turn out to depend on the non-linear functions ϕi’s

and on the distributions of the sources via the moments. Define:

ki = E[ϕ′
i(yi)]E[y2

i ] − E[ϕi(yi)yi] (2.43)

According to Jean-Francois Cardoso [7], The pair-wise stability conditions are:

(1 + ki)(1 + kj) > 1, 1 ≤ i < j ≥ n (2.44)

1 + ki > 0, 1 ≤ i ≥ n (2.45)

For the natural gradient learning algorithm, we consider the learning equation

in its continuous time version as

Ẇ (t) = µ(t)[I − ϕ(y(t))yT (t)]W (t) (2.46)

where Ẇ denotes time derivative of the matrix W (t). We consider the expected

version of the learning equation

Ẇ (t) = µ(t)E[I − ϕ(y(t))yT (t)]W (t) (2.47)

By linearizing it at the equilibrium point, we have the variational equation

δẆ (t) = µ(t)
∂E[I − ϕ(y(t))yT (t)]W

∂W
δW (2.48)

Only when all the eigenvalues of the operator (∂E[I−ϕ(y(t))yT (t)]W )/(∂W ) have

negative real parts is the equilibrium asymptotically stable. Therefore, we need to

evaluate all the eigenvalues of the operator. Since I −ϕ(y(t))yT (t) is derived from

the gradient dl as in 2.31, we need to calculate its Hessian d2l

d2l =
∑ ∂L(y, W )

∂wij∂wkl
dwijdwkl (2.49)

17



in terms of dX. The equilibrium is stable if and only if the expectation of the

above quadratic form is positive definite. Define

σ2
i = E[y2

i ] (2.50)

ki = E[ϕ̇i(yi)] (2.51)

mi = E[y2
i ϕ̇(yi)] where ϕ̇ = dϕ/dy (2.52)

The separating solution is a stable equilibrium of the learning equation if and only

if [2]:

mi + 1 > 0 (2.53)

ki > 0 (2.54)

σ2
i σ

2
j kikj > 1 (2.55)

for all i, j, where i �= j.

It is not difficult to show that the stationary point does exist. However, global

convergence results are not available for n >= 2 case.

2.4 Variation in modeling

All the above methods assume an instantaneous linear mixing model. However,

this model does not truly reflect how sound transfers and mixes when it travels

through air. In this section, we will explore more complex models that simulate

this process more truthfully.

18



2.4.1 How sound spread in closed space

At normal pressure and standard conditions of humidity, the speed of sound is a

function of temperature[13]:

s = (331.4 + 0.6t) m/s (2.56)

In a typical sized room, successive reflections are too close together to be audible

as separate events. For a mid-frequency sound wave with given source and receiver

position the room acoustic effect can be seen as a linear time invariant system

producing a sum of attenuated, filtered, and delayed versions of the original signal.

Now we consider the intensity of the reflected signal. Intensity is defined as the

amount of sound energy flowing across a unit area surface in a second and follows

an inverse square law with distance. Thus reflected sound is weaker than sound

coming from the source directly because it travels longer distance.

Consider how sound spreads in a room. The audio character of the room is

decided by the shape and layout of the room, the position and direction of both the

source and receivers, and the absorption characteristics of the boundaries. Most

materials absorb more high frequency energy than low frequency energy and thus

the reflected sound is a low-pass filtered version of the original signal.

The instantaneous mixing model does not show the room acoustics exactly,

that’s why we need to look at convolution model.

2.4.2 Filter convolution model

The most common model [5] is one in which the observation x(k) is assumed to

be produced from s(k) as

x(k) =
∞∑

p=−∞
Hps(k − p) (2.57)

19



where Hp is an n×m dimensional matrix of unknown mixing coefficients at lag

p. The goal is to calculate y(k) = [y1(k) · · ·ym(k)]T of possibly scaled and delayed

estimates of the source signals in s(k) from x(k) using a causal FIR filter given by

y(k) =
L∑

p=0

Wp(k)x(k − p) (2.58)

where Wp(k), 0 ≤ p ≤ L is a (m×n) dimensional matrix. We have W (z)H(z) =

PΛ(z) where P is a permutation matrix and Λ(z) is a diagonal matrix with λiz
−τi

on the diagonal entry.

2.4.3 State space model

A state space model is intended to express convolution in real world. Let

X(k + 1) = AX(k) + BS(k) + Pn(k) (2.59)

u(k) = CX(k) + DS(k) (2.60)

The transfer function is

H(z) = C(zI − A)−1B + D (2.61)

and the demixing model is

x(k + 1) = Ax(k) + Bu(k) + Ln(k) (2.62)

Y (k) = Cx(k) + Du(k) (2.63)

The transfer function of the demixing system is

W (z) = C(zI − A)−1B + D (2.64)

As we can see, it’s more general than the convolution model mentioned before

in section 2.4.2[20].

20



2.5 Blind deconvolution

It has been shown that BSS/BSD problems are closely related in structure[11].

The similarity between BSS/BSD makes it possible to solve BSD problem using

ideas and methods for BSS.

Consider the n-dimensional source separation task with H as a circulant matrix

with the first row

H1 = [h0 · · ·h−M 0 · · ·0 hM · · ·h1] (2.65)

Then

xi(k) =
M∑

p=−M

hps[i−p]n(k) (2.66)

where [.]n denotes the mod-n operation. Thus x(k) is obtained from the circular

convolution of the channel impulse response hj ,−M ≤ j ≤ M , and the source

sequence. To extract the source sequence, define a demxing matrix W (k) as

W (k)ij =




wi−j(k) if [|i − j|]n ≤ L

0 otherwise
(2.67)

The goal is to adjust W (k) such that

lim
k→∞

W (k)H = PΛ (2.68)

where P is a permutation matrix with a single entry in any row or column and Λ

is a diagonal nonsingular matrix.

Since the product of two circulant matrices is also a circulant matrix, W (k) as

defined above is adequate to separate the source sequence.

As the dimension of H(z) goes to infinity, the central part of circulant matrix

becomes a Toepliz matrix so circulant convolution becomes convolution as long as

the sequence defining the matrices are absolutely summable.

21



Hence

xi(k) =
∞∑

j=−∞
hjs(k + i − j) (2.69)

yi(k) =
∞∑

j=−∞
wj(k)xi−j(k) (2.70)

This is a model for BSS problem. Thus with proper changes to the blind

separation algorithm, we can get an algorithm to solve the single channel blind

channel deconvolution problem.

If the problem is considered in the frequency domain, convolution becomes

multiplication and the deconvolution problem in time domain becomes an instan-

taneous demixing problem in the frequency domain. That is, for

X(f) = AfS(f) (2.71)

We are looking for Wf such that

Y (f) = Wfx(f) (2.72)

is the closest estimation of S(f). In section 3.3.3 we will derive a deconvolution

algorithm from this idea.

2.5.1 Learning under state-space model

The state-space model can also be used to describe a blind separation and decon-

volution system. Although theoretically transfer function models are equivalent

to state-space models, it is difficult to exploit any common features that may be

present in real dynamic systems by using transfer function. State-space models

also make it much easier to deal with the stability problem and the realization

problem and enable more general descriptions than FIR filtering.

22



Suppose the mixing model is described by a stable linear state discrete system

X (k + 1) = ĀX(k) + B̄S(k) + (k) (2.73)

u(k) = C̄x̄(k) + D̄s(k) + θ(k) (2.74)

where s(k) is a m-dimensional source vector, u(k) is the n-dimensional sensor

signals, x̄ is the state vector of the system, ξP (k) is the process noise, and θ(k) is

the sensor noise of the mixing system. The transfer function of the system without

noise is

H(z) = C̄(zI − Ā)−1B̄ + D̄ (2.75)

The demixing model is another linear state-space system

x(k + 1) = Ax(k) + Bu(k) + LξR(k) (2.76)

y(k) = Cx(k) + Du(k) (2.77)

where ξR(k) is the reference model noise. The goal is to adjust A,B,C,D,L such

that

W (z) = C(zI − A)−1B + Dy(k) = W (z)H(z) = PΛ(z) (2.78)

where P is a permutation matrix and Λ(z) is a diagonal matrix with λiz
−τi as the

diagonal elements.

If the matrix D̄ is full rank, the inverse system exists.

Parameter C, D can be learned with same scheme as described in the FIR

filter model. We estimate the state vector based on Kalman filter method instead

of directly adjusting the A, B matrices.

x(k + 1) = Ax(k) + Bu(k) + Kr(k) + ξR(k) (2.79)

where K is the Kalman filter gain matrix, r(k) is the innovation vector. In this case

no explicit residual r(k) is available because the expected output y(k) should be

23



the original signal which is unknown. Here we use an estimation technique known

as hidden innovation defined by

r(k) = ∆y(k) = ∆Cx(k) + ∆Du(k) (2.80)

The hidden innovation indicates the direction to adjust the output of the demixing

system and is used to generate an aposterior state estimate. Now the common

Kalman filter can be used as follows to estimate the state vector x(k).

1. Compute the Kalman gain matrix

K(k) = P (k)C(k)T [C(k)P (k)CT (k) + R(k)]−1 (2.81)

2. Update the state vector using the hidden innovation

x̂(k) = x(k) + K(k)r(k) (2.82)

3. Update the error covariance matrix

P̂ (k) = [I − K(k)C(k)]P (k) (2.83)

4. Evaluate the error covariance matrix ahead

P (k) = A(k)P̂ (k)A(k)T + Q(k) (2.84)

with initial condition P(0)=I, where I is the identity matrix. Here Q(k), R(k)

are the covariance matrices of the noise vector ξR and output measurement

noise nk respectively.

The state-space idea is appealing to people in the field of controls because it

makes clever use of the Kalman filter. However, the idea is expensive in computa-

tion and thus not practical in real situations.

24



2.5.2 Learning under the filter deconvolution model

Generally speaking the same cost function can be used for both the separation

problem and the deconvolution problem as long as the filter coefficient sequence

has a bounded L2 norm.

The following are different algorithms derived from different error functions:

1. Minimize mutual information between outputs

I(Y, X) = H(Y ) − H(Y/X) (2.85)

where I(Y, X) is the mutual information contained in the output Y about

the input X, H(y) is the entropy of Y .

H(Y/X) is the entropy of the output Y that did not come from the input

X. Then

∂

∂ω
I(Y, X) =

∂

∂ω
H(Y ) (2.86)

since H(Y/X) does not depend on ω.

2. Minimize the Kullback divergence between the output and the product of

marginal output

D
fY ‖f̃Y

=
∫ ∞

−∞
fY (Y ) log(

fY (Y )∏n
i=1 f̃yi

(yi)
) = −H(Y ) +

n∑
i=1

h̃(yi)) (2.87)

where H(·) is the entropy of a probability function.

3. Maximum likelihood [6]

θ = [A, n], θ−1 = [A−1,−A−1n] (2.88)

where n is observation noise.

px(x, θ) =| detA |−1 g[A−1(x − n)] (2.89)

25



According to S. Amari, S. C. Douglas, A. Cichocki and H. H. Yang [5], the

most effective form is

J(w(z, k)) = −
m∑

i=1

log pi(yi(k)) − 1

2πj

∮
log |detW (z, k)|z−1dz

Define

ϕi(yi) = − d

dyi
log pi(yi)

Then

d(−
m∑

i=1

log pi(yi(k))) =
m∑

i=1

ϕi(yi(k))dyi(k) = ϕT (y(k))dx(z, k)y(k)

Similarly

d(
1

2πj

∮
log |detW (z, k)|z−1dz) =

1

2πj

∮
tr(dW (z, k)W−1(z, k))z−1dz = tr(dX0(k))

Thus the natrual gradient deconvolution algorithm is

Wp(k + 1) = Wp(k) + µ[Wp(k) − ϕ(y(k))uT
p (k)] (2.90)

with

up(k) =
∞∑

q=−∞
W T

q (k)y(k − p + q) (2.91)

In a practical implementation, one can approximate the doubly infinite filter

with a FIR causal filter given by

y(k) =
L∑

p=0

Wp(k)x(k − p) (2.92)

We now have

Wp(k + 1) = Wp(k) + µ[Wp(k) − ϕ(y(k − L))u∗T (k − p)] (2.93)

with

u(k) =
L∑

q=0

W ∗T
L−q(k)y(k + q) (2.94)

26



We now show the same equation 2.93 can be deducted from the natural gradient

ICA in the frequency domain. First we have

X(f) = AfS(f) (2.95)

Where X(f) and S(f) are the Fourier transform of the mixtures and the original

sources at frequency f . We are looking for Wf such that

Y (f) = WfX(f) (2.96)

is the closest estimation of S(f).

The learning rule from the natural gradient algorithm [4] is

∆W = µ[I − ϕ(y)y∗T ]W (2.97)

Rewriting the same equation in the frequency domain we have

∆Wf = µ[I − fft(ϕ(y))Y ∗T
f ]Wf (2.98)

Since the assumption of independence is also valid in the frequency domain, all

the deductions we have done before are still valid and the frequency domain ICA

algorithm has the same form as the above equation 2.93.

Now apply the Fourier transform to both sides of 2.98 to get

∆W (z) = µ[W (z) − ϕ(y) ∗ y∗T ∗ W (z)] (2.99)

With

up = [y(t − p)∗T ∗ W (z)]∗T (2.100)

=
∑

W T
q y(k − p + q) (2.101)

We have

∆W (z) = µ[W (z) − ∑
ϕ(y − L) ∗ u∗T

p ] (2.102)

This is exactly the same format in [5] as mentioned above in 2.93.

27



2.5.3 Kuicnet approach

According to the Central Limit Theorem, the sum of n independent identically

distributed random variables has a Gaussian distribution as n goes to infinity.

For n independent but not identically distributed random variables, if their PMF’s

satisfy certain conditions, then the central limit theorem still holds. Define kurtosis

of a random variable as

E(y(k)4) − 3(E(y(k)2)2) (2.103)

Obviously a Gaussian random variable has kurtosis equal to 0. One can verify

that the closer the kurtosis is to 0, the closer the random variable is to a Gaussian

random variable. Kurtosis can then be used as a cost function for separation and

deconvolution.

For the single channel problem[12] we have

w(k + 1) = w(k) + µ[|y(k − L)|2y(k − L)u∗(k) − |y(k − L)|4w(k)] (2.104)

where

u(k) =
L∑

j=0

w∗
L−j(k)y(k − j) (2.105)

Alternatively

w(k + 1) = w(k) + µ[y∗(k)fT (y(k)) − F (y(k))]w(k) (2.106)

where

y(k) = [y(k) · · ·y(k − L)]T (2.107)

F (y(k)) = {diag|y(k)|4, · · · , |y(k − L)|4} (2.108)

f(y(k)) = [|y(k)|2y(k) · · · |y(k − L)|2y(k − L)]T (2.109)

28



Chapter 3

Sub-band Based ICA Algorithm

In last chapter we introduced several methods of blind separation and blind de-

convolution. By theoretical deduction and experimental result we showed that

the most effective method is the non-holonomic algorithm proposed by Shunichi

Amari, T. P. Chen and A. Chichocki.

In this chapter the algorithm is further developed by making use of wavelets. A

more robust and faster algorithm, namely the sub-band ICA algorithm is pre-

sented. In section 1, a brief introduction to the human hearing system is given.

This system is the inspiration for the sub-band ICA algorithm. In s section 2, the

process of sub-band ICA is described in detail. In section 3, several problems of

the sub-band ICA implementation are discussed. The sub-band ICA algorithm is

extended to solve the deconvolution problem.

The idea of subband-based ICA idea comes from the fact that humans process

acoustic signals on different frequency bands independently. This method devel-

oped by Yuan Qi, P.S. Krishnaprasad and S. Shamma [18] provides robust perfor-

mance in the presence of noise and reduces the computational complexity. This

idea enables a real-time separation method.

29



3.1 Filter-bank structure in the human ear

It is well known that sound waveform spreading in the air is transformed in vi-

brational mechanical energy in the middle ear, then further in to the vibration of

the basilar membrane located inside the cochlea. Since the basilar membrane is

narrow and stiff near the base, and wider and softer near the end. High frequencies

excite the base portion more strongly than the end portion; on the contrary low

frequencies excite the base portion more weakly than the end portion. High and

low frequency disturbances arrive at their respective peak basilar membrane points

nearly simultaneously. This leads to the assumption that the basilar membrane

acts like a filter bank. The vibration of the basilar membrane produces motion

of the stereocilia which then cause the response of the auditory nerves. Thus the

entire process of human hearing starts with a filtering action. The engineering

model of ear is showed in Figure 3.1

Much work has been done to develop the bank model. For example, in [13],

Dudley used a bank of ten bandpass filters, each with a frequency width s of 300Hz,

to process a human voice ranging from 300-3000Hz.

3.2 Sub-band ICA

The outline of the algorithm is described as the following:

1. Each component, xj(n), of the observation x(n) is filtered through a filter

bank, resulting in a subband signal. Two possible choices of the filter bank

are a cochlea filter or an orthogonal Daubechies wavelet packet. Since wavelet

packet is easier to implement and provide linearity, the Daubechies wavelet

packet is used in the final implementation.

30



Figure 3.1: The model of human ear

31



2. The power of the decomposed signal in each band is computed and ordered.

3. The ICA learning algorithm is applied on the bands with the strongest power

4. The soft-thresholding algorithm is applied to the subband decomposed sig-

nals.

5. The overall demixing matrix W is received from the demixing matrix of each

of the subbands, by using the competitive learning rule to cluster the rows

of the demixing matrices on different sub-bands.

Figure A.3 shows the structure of the sub-band ICA method.

The sub-band ICA algorithm improves the performance of ICA in the presence

of noise. If the noise is narrow-band, then good separation can be performed on

the noise free sub-bands. If the noise is broad band, ICA is performed on those

sub-bands with strongest power, i.e. largest signal to noise ratio(SNR).

Since the wavelet coefficients are typically Laplace distributed, the sub-band signal

has a more peaky and heaviky tailed distribution than the original signal. And

thus the sub-band based ICA converges to the demixing matrix with faster speed.

The sub-band based separation idea has also been proposed by Hyung-Min Park

[17]. In Park’s work the learning is performed in the frequency domain and actu-

ally incooparates the convolution model and the idea of speech recognition. The

method proposed by Yuan Qi, P.S. Krishnaprasad and S. Shamma is more general,

and less computationally demanding.

32



Figure 3.2: The block diagram of Subband ICA algorithm

33



3.3 Implementation of the algorithm

3.3.1 Use adaptive basis selection in the wavelet packet

Sub-band ICA enhances the separation capability of standard ICA by decomposit-

ing the signal into different frequency bands. The design of the filter bank can

greatly affect the performance. For example, we should not divide the signal into

two bands where it should be continuous in the time-frequency plane. The filter

bank design should vary according to different signal properties. The solution to

this problem is to apply the adaptive basis selection algorithm [8] on the summa-

tion of all the mixed signals to get the best bases. This algorithm ensures a filter

bank that does not not split any of the signals into improper frequency bands.

3.3.2 Selecting the bands to perform ICA

The ICA algorithm does not need to be applied on every band coming out of the

filter bank. In reality, the mixing matrix for different frequency bands varies from

one to the other. In BSS, however, only one mixing matrix is used in the model.

Estimating the mixing matrix of the bands with strongest power and then taking

the average will produce the best separation result. From the experiment on human

voice, we find the strongest one-quarter of the total bands always contain around

sixty percent of total energy. For music signals the energy spread more evenly,

but one-quarter to one-half of total bands is still able to produce good separation

result. The amount of computation is greatly reduced.

34



3.3.3 Introducing the convolution model into the sub-band

algorithm

The convolution model provides a much better simulation of how sounds are mixed

in the process of traveling. By introducing this model into the sub-band algorithm

we can expect it to produce better separation performance, although with a heavier

computation load.

THus after sub-band filtering, instead of applying the non-holonomic ICA al-

gorithm, we apply the natural gradient algorithm describe in Chapter 2,

Wp(k + 1) = Wp(k) + µ(k)[Wp(k) − f(y(k − L)u∗T (k − p)] (3.1)

where

u(k) =
L∑

q=0

W ∗T
L−Q(k)y(k − q) (3.2)

The mixing filter W for signals in different frequency bands are not exactly the

same. According to Ben Gold[13], the surface of any object has different reflection

absorption characteristics to sound waves of different frequencies. In addition,

waves of different frequencies show different diffusion when there is an obstacle in

the path of transmission. So instead of taking a weighted average on the demixing

matrices to get an overall demxing matrix as we did in sub-band ICA, we should

separate the mixture in each sub-band by it’s own demixing matrix and then

recover the original signal by going through an inverse filter bank. Unfortunately,

this method is too complex in computation. The experiment shows that applying

the deconvolution filter for the sub-band with highest energy will work reasonabley

well to recover the original signals.

35



Chapter 4

Working with Real World Signal

In Chapter 2 and Chapter 3, the theoretical aspects of BSS/BSD algorithms were

discussed. Here we explore the implementation side. An integrated system, in-

cluding a mobile sensor platform and computation unit is built, and a real time

ICA algorithm is implemented on the system to process signals recorded by the

sensors. In Section 1 the hardware setting and environment are described; in Sec-

tion 2 specific problems related to real-time processing are discussed; in Section

3 a new criterion to evaluate the performance of separation without knowing the

mixing matrix is introduced and verified.

4.1 Hardware and environment

To give an overview of the hardware environment in this project, we first mention

the hardware used in the sequence of data flow:

1. Styrofoam head equipped with two microphones and amplifiers. The micro-

phones are mounted approximately at the ears and are used to collect sound

data.

36



2. Nomadic Technology Super Scout II mobile robot. This is the mobile plat-

form that carries the sensors and transfers data to computing unit.

3. Windows NT workstation. The Windows NT workstation acting as bridge

between the mobile robot and computing unit.

4. DSP processor. Which actually execute the ICA algorithm

Figure 4.1: The block diagram of the hardware setting for this project

The capability and functions of the hardware components are described respec-

tively below.

37



4.1.1 Styrofoam head and robot

The task of collecting data is performed by Nomadic Super Scout II mobile robot.

A Styrofoam head is mounted on the robot. In the position of its ears, two mi-

crophones are installed to simulate the human auditory perception. A specially

designed amplifier is used to transfer the signal from the microphones to a proper

level for the sound card on the robot. The amplifier needs a DC power supply that

can either be provided by batteries or the power supply of robot.

Data is sampled at a rate of 8KHz, and is transfered as blocks containing 512

data elements. Each data element is represented in PCM format as a 16 bit signed

integer.

The robot is equipped with a set of touch sensors and sonar sensors, and a

dedicated board to control the motors and sensors. At the top level is a PC/104

embedded PC. RedHat Linux runs as the host operating system. The robot is

connected to a wireless network via an IEEE 802.11 network card.

4.1.2 Windows NT workstation

Windows NT provide a versatile platform to cooperate among the console appli-

cation, TI code composer, the robot and MATLAB. In this project, Windows NT

acts as the bridge between data collector and the computing unit. The workstation

here is Gateway E-5200 machine with the Windows NT operating system and will

be called “the host” in the following. A console program runs on the Windows NT

machine, which communicate between the robot and DSP processor. It is referred

to as the “host program”.

38



4.1.3 DSP processor

The DSP we use in this project is the TMX320C6701 float point digital signal

processor, which has a 167 Mhz clock rate and allows four float point arithmetics,

two fixed point arithmetics and two multiplications to happen at the same time.

The processing power helps the complicated ICA algorithm to be implemented in

real time.

In the design of this project, the DSP processors are responsible for executing

the ICA or deconvolution algorithm, denoising the input data, and calculating the

separated output. The computation task is divided between two DSP processors.

The master DSP perform the following tasks: communicate with the host ap-

plication; reads the input data stream; passes the data through a wavelet filter

bank; denoises it; puts the intermediate data into shared RAM for the slave DSP

to read, and reads the output of the slave DSP when it is ready, ; implements the

wavelet reconstruction, multiplies by the separation matrix to produce the output.

The slave DSP calculate the separation matrix from the data it finds in the shared

RAM and puts the the new separation matrix into the shared RAM for the master

DSP to read.

The task of the master DSP is performance critical to ensure a continuous sound

output. All the computation has to be performed at a speed faster than the the

speed at which sound data is collected. If the data processing is not fast enough,

some data will be lost. The task of the salve DSP, however, is not that urgent.

In a realistic environment, the mixing matrix is not changing very fast. A separa-

tion matrix calculated from data collected 1/10 second ago will still work well to

separate the current data.

39



4.1.4 Python board

The Python/C6 multi-DSP board installed on the NT machine can support up to

four 6701 DSP chips. A maximum of 4MB of shared-RAM between the C60 can

serve for inter-DSP communication.

A set of APIs are provided to communicate between the host machine and the

DSP chips. The C60 Native API provides DSP programmers direct control over

the resources. The C60 Host API allows an application on the host to handle basic

I/O operations with the Python/C6, and must be used in conjunction with a C60

Native API application running on the Python/C6’s DSPs.

4.1.5 Room environment

In this experiment, the reflection from the wall and objects in the room cannot be

neglected. The robot will be put in the center area of a 10 × 12 empty space and

slowly moved in circle of radius two to three feet. Around the empty space are

walls and tables that will scatter and reflect sound. The separated data is played

out through a speaker in another area of the room and thus will not produce any

interference with the room acoustics.

4.2 Considerations for a real time implementa-

tion

All the algorithms we discussed in previous section are designed for off-line ex-

periment. But here we will conduct the experiment in real-time. A continuous

output of the separated sound signal is desired, with as little delay as possible.

Thus several adjustments to the algorithm need to be made.

40



4.2.1 Data communication

A program on the robot builds the socket connection with the host program, reads

the data from a buffer, and periodically sends the data to the host through the

socket.

The host program is responsible for the following tasks: 1. building socket connec-

tions with the data collecting process on the robot and the data play-out process;

2. loading the sub-band ICA program on to the DSP chips, and communicating

control message and display information to the DSP chips. The main structure of

the host program is a loop waiting for command input from console. The process-

ing functions are used as call-back functions from a dynamic link library. When

message arrives, such structure produce the fastest response to a message coming

from DSP.

4.2.2 Optimizing the code for speed and memory size

Many tools were provided with the DSP to speed up the program. Here we chose

to use the following:

1. Write the most computationally demanding part in assembly language. As

the wavelet filtering and convolution part is executed on every incoming

data block, the task is heavy and time critical and should thus be written in

assembly language. Other parts of program are still in C to make the whole

project easy to read and manage.

2. Select optimizing parameter. In the compiler provided by TI, there are sev-

eral choices about how to optimize the code. The program is both time-

critical and memory critical and the compiling parameter should be set ac-

41



cordingly.

3. Make use of the parallel processor. On the the Python there are 4 DSP

chips, and each chip has the ability to execute several manipulation con-

currently. Evenly dividing the tasks between several DSPs and performing

matrix computations in parallel can speed up the process a lot.

The high speed memory for each DSP is small compared to the large amount of

data. The strategy is to dynamically allocate and release fast memory inside every

cycle. The shared memory among the DSPs is slow so the data exchange between

DSPs needs to be carefully designed.

4.2.3 Tuning parameters for the best performance

Much research has been done and many different approaches have been proposed.

We have described the reason to choose sub-band ICA with non-holonomic natural

gradient algorithm as the core algorithm. Still there are several variables unde-

cided. The choice is made by balancing computational load and performance, and

considering the characteristic of the original signals.

1. Choice of non-linear function ϕ(y). The optimal choice is

ϕi(yi) = −dlog(pi(yi)))/dyi

which yields the fastest convergence behavior. Convergence still happens

using other functions. For the case of voice a sub-Gaussian signal,

fi(yi) = |yi|2yi

yields adequate separation. For super-Gaussian sources,

fi(yi) = tanh(γyi) with γ > 2

42



produce good result.

2. Choice of µ. The learning process should be fast enough to follow the changes

in mixing matrix resulted by the movement of robot and thus this parameter

cannot be too small. If µ is too large an overflow can result and thus a monitor

should be set in program to reset the learning process without causing error.

3. Choice of block size and filter channels. This needs to be considered with the

constraint of memory size. In our implementation we chose data block with

512 data elements from each sensor, filtered through 16 channels. The ICA

algorithm is applied to four or eight of them with the biggest power intensity.

4.2.4 Smoothing between blocks

The calculation is based on 512 data elements blocks, which corresponds to a

sample of 0.064 second. To produce a consistent output sound with good quality,

the separation matrix used for each block must not change too much in one step,

and must be consistent in scale factor. Two measure were used here to prevent

inconsistency between the learning result of two consecutive blocks. First, the

separation matrix of the last block was used as the start value of the learning

process for the new data block. Second, clustering was used to match the output

channels.

4.3 Performance evaluation criterion

In the case where the mixing matrix is known, the performance can be measured

by the product of mixing matrix and demixing matrix. Defining P = WA, the

43



most commonly used performance index is:

E =
n∑

i=1

(
n∑

j=1

|pij|
maxk|pik| − 1) +

n∑
j=1

(
n∑

i=1

|pij|
maxk|pkj| − 1) (4.1)

It is easily seen that perfectly separated signals will have E equal to zero. The

smaller the value of E, the better the separation is.

When no information about mixing matrix is available the only clue we have is the

output signal. The mixed signals are similar to each other while well separated

signals should be different in shape. However, the effect of scaling and delaying

must not be considered, because the separation algorithm is not controlled in these

two directions. Thus the signals cannot be compared directly in the time domain.

One idea is to calculate the statistical distribution of the output signals by count-

ing histogram and comparing the result. This method completely removes scaling

and delay factors. However, although different sound sources produce signals with

different probability distributions, the distribution functions can be very similar

to each other. For example, two speech sentences from two different male human

speakers have almost the same distribution curve.

Another idea is to consider the frequency domain. Transforming the signal to

the spectral domain can remove most of the delay effect. To remove the scaling

effect and reduce computation, a natural idea is that of Linear Prediction Coeffi-

cients(LPC). LPC are chosen to minimize the squared error between the observed

and predicted signals. The predicted signals tend to be consistent in spectrum

with the original signal at the peak but not at the valleys, giving an envelop of

the spectrum of the original signal. Using higher order coefficient gives more accu-

rate estimation but is computationally more expensive. For the purpose of speech

recognition, a tenth order predictor has the lowest Akaike Information Index(AII).

In this project, we need to judge the separation result of signals with a wider spec-

44



Judged by listening very successful good poor

index E 0.2247 1.3773 3.5344

LPC index 68.6908 0.8948 0.2402

Table 4.1: Comparison of two kind of performance index

trum than speech signal (for example, music), we choose the LPC order to be 20.

The normalized difference between LPC of the original signal and the separated

signal is a good criterion for the two signal case. Here is a comparison between a

commonly used index and a LPC index calculated on separated signals with known

mixing matrix in Table 4.1 . We can see the LPC index well represents the quality

of separation. The bad thing about it is the index may be very large when we have

a very good separation (without noise). That is, it is not normalized, not like the

index E as defined in equation (4.1).

45



Chapter 5

Experimental Results

In this chapter different experiments are described in detail and the results are

displayed and compared with separation result that appear in earlier literature.

From the analysis of these experimental results, some important conclusion about

the ICA model are derived.

5.1 The effect of source type on performance

In the case of two sound sources, we compare the separation results of two male

voices, two female voices, one voice and one instrument, and two instruments. The

performance of the separation algorithm is affected by how similiar the two sound

sources are. The similarities are considered in time domain, frequency domain,

intensity level and time delay. Intensity and time delay are determined by the

source and microphone position and will be discussed in a later section.

Since the separation algorithm is built from the difference based on the statistical

distribution, if the original signals are similar in distribution, the ICA algorithm

does not produce good separation results. Off-line MATLAB experiments already

46



source 1 man’s voice man’s voice man’s voice

source 2 man’s voice women’s voice music

index E 0.7133 0.3364 0.2247

Table 5.1: Simulation result of sub-band ICA algorithm on different type of sources

show that separation between music and voices is better than two different voice

of the same sex (see Table 5.1).

Our work with real-world recordings has produced results consistent with the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1
mixture

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5
Recovered Speech Sentence 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1
Recovered Speech Sentence 2.

Figure 5.1: The separation of two man’s voice

simulations as shown in Table 5.2.

47



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1
mixture

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1
Recovered Speech Sentence 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.1

0

0.1
Recovered Speech Sentence 2.

Figure 5.2: The separation of voice and music

source 1 man’s voice man’s voice man’s voice

source 2 man’s voice women’s voice music

index E 0.6884 0.3028 0.2133

Table 5.2: Simulation result of real-time separation of real-world recording on

different type of sources

48



5.2 The effect of source distance and angle

In this experiment we want to show that the delay in transmission and reflection

can not be omitted for real world signal. That means the instantaneous mixing

model can only produce good result under certain condition. The best results

can be expected when the position of source and alignment of microphone work

together so that both source arrive the two microphone at the same time. This area

is shown in grey in Figure 5.3. Unfortunately since the signal from this area arrive

Figure 5.3: The layout of Experiment

at both microphones via similar paths and distances, the intensities do not have

49



much difference either. Thus the signals are mixed by a ill-conditioned matrix. In

such situations, separation can be performed but the performance and convergence

speed are poor. By comparing the separation output of an instantaneously mixed

signal and the real-world mixed signal in position B (same signal source but in

different time zone) on Figure 5.4, the disadvantage of instantaneously mixing

model can be seen.

0 2 4 6 8 10 12

x 10
4

−1

0

1
x 10

4 original sound source 1

0 2 4 6 8 10 12

x 10
4

−2

0

2
x 10

4 original sound source 2

0 2 4 6 8 10 12

x 10
4

−0.5

0

0.5
output 1 of instentaneous mixing

0 2 4 6 8 10 12

x 10
4

−0.5

0

0.5
output 2 of instantaneous mixing

0 2 4 6 8 10 12

x 10
4

−5000

0

5000
output 1 of real−wrold mixing

0 2 4 6 8 10 12

x 10
4

−5000

0

5000
output 2 of real−world mixing

Figure 5.4: Comparing the instantaneous mixing model and the real-world mixing

model

When the robot is moving around and sources stay in a fixed position, the quality

50



of the separated signal changes dramatically depending to the robot position. The

placement of source and robot are shown in Figure 5.3, and the performance index

at four positions are shown in Table 5.3. The output wave form in position A, C

are showed in Figure 5.5 and 5.6 respectively.

0 2 4 6 8 10 12

x 10
4

−1

0

1
x 10

4

0 2 4 6 8 10 12

x 10
4

−2

0

2
x 10

4 mixture

0 2 4 6 8 10 12

x 10
4

−5000

0

5000
Recovered Speech Sentence 1.

0 2 4 6 8 10 12

x 10
4

−2000

0

2000
Recovered Speech Sentence 2.

Figure 5.5: Separation of real-world mixture in in position A

In all positions, the separation algorithm is still working, that is, the separated

waveforms show the characteristic of a voice signal and a music signal. However,

when played out, the acoustic effect is not ideal. The convolution effect is obvious,

51



0 2 4 6 8 10 12

x 10
4

−1

0

1
x 10

4

0 2 4 6 8 10 12

x 10
4

−2

0

2
x 10

4 mixture

0 2 4 6 8 10 12

x 10
4

−5000

0

5000
Recovered Speech Sentence 1.

0 2 4 6 8 10 12

x 10
4

−5000

0

5000
Recovered Speech Sentence 2.

Figure 5.6: Separation of real-world mixture in position B

position A B C D

LPC index 0.88948 0.0407 0.1953 1.0311

Table 5.3: Performance index of sub-band ICA on real-world recording on different

source angle

52



and the music sounds in a lower tone than it should. Besides the voice signal is

not clear.

Thus we need the convolution model to achieve better and more robust perfor-

mance. With the deconvolution algorithm, separation results show dramatic im-

provement. The following figure 5.7 shows the output from deconvolution algo-

rithm under the same conditions as described before. The performance index of

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1
original sound source 1

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2
original sound source 2

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1
Recovered Speech Sentence 1 at area A

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2
Recovered Speech Sentence 2 at area A

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1
Recovered Speech Sentence 1 at area B

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1
Recovered Speech Sentence 2 at area B

Figure 5.7: Result of deconvolution algorithm in position A and B

sub-band deconvolution algorithm at the same placement of source and robot as

Table 5.3 is shown in Table 5.4.

53



position A B C D

LPC index 5.4293 6.0226 4.9812 5.3354

Table 5.4: Performance index of sub-band deconvolution on real-world recording

on different source angle

5.3 The effect of room acoustics

Even if the experiment is restricted to a closed room and a fixed environment,

the mixing filter still change dramatically with repect to the position of the micro-

phones and sources. Reflection has a large effect on the mixing filter. The following

plots show the impulse responses of the demixing filter at position B in Figure 5.3.

The filter shape is pretty random. It is reasonable since the distance between the

two microphones is approximately 10 cm, corresponding to 140 data samples at

8KHz and a 10 tap filter is just too short to show the convolution process. When

both sensor and source are placed close to the wall the effect of reflection should be

very strong. However, because of the limited computation power and memory, the

filter tap in simulation cannot more than 50 while the delay caused by refection

is generally much more than that and thus the reflection effect does not appear in

the simulations so far.

5.4 Over-complete and under-complete mixtures

In a realistic environment the number of sound sources may change from time to

time. When a voice signal is studied, for example, the pause between words and

sentences may be long enough that the algorithm should consider the signal source

as having been turned off. When there are more sources than microphones, we call

54



0 2 4 6 8 10
−1

−0.5

0

0.5

1
W11(z)

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
W12(z)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
W21(z)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
W22(z)

Figure 5.8: Impulse response of demixing filter

55



it an under-complete situation; when there are more microphones that sources, we

call it an over-complete situation.

Perfect separation in the under-complete case is impossible. In this case, the sep-

aration algorithm will put the two(or more) most similar sources as one. How to

determine the similarity is algorithm dependent. In the Kuicnet method, it means

the sources have the closest kurtosis; in the informax method, it means the sources

have the closest distribution function.

In the over-complete case there is more information available and thus better sepa-

ration results can be expected if the number of sources is known and the algorithm

is adapted to this information [19]. In addition, operations can be added to remove

noise, thus producing a clearer separation result.

In this project, the case of four sensors and two signal sources is studied. The

output contains an estimation of the two original signals and of two channels of

noise. It is interesting to realize that the two channels of noise have about the

same intensity as the estimated source signals.

5.5 Conclusion and future work

In the work I presented here, all current major approaches for BSS/BSD problem

are viewed and compared and a real-time implementation of sub-band natural

gradient method is provided which works well for real-world recorded voice and

music signals. By experimenting with different sensors and source settings, we

learned more about how sound is transmitted in a closed room, how sounds are

mixed and convolved and how to measure the performance of separation.

Several problem still needs further work to achieve better results:

1. Denoising. The real-world signal contains noise from many sources, for ex-

56



ample the noise coming from the microphone, and the motor and fan on the

robot. The noise is significant in the recorded mixture especially when the

robot is moving. Although some wavelet denoising methods are already ap-

plied in the algorithm, the noise is not removed completely. Other methods

must be considered if a clearer output is desired.

2. Speed of computation. For the instantaneous mixing model, the slave DSP

can give an improved demixing matrix for every input and when the robot is

moving or the mixing matrix has changed for some other reason, the output

can follow the change. For the deconvolution model, the learning process

needs more time and cannot follow the change quickly enough. More works

need to be done to increase the speed of the algorithm, by either distributing

the computational load on the DSP chips more evenly, rewriting more code

in assembly, or by employing more advanced algorithms to do the wavelet

filtering job.

3. Signal extraction. It would be ideal if the algorithm could extract certain

kinds of signals, for example the voice of one person, from a mixture. This

requires the use of the signal characteristics in a more thorough way than is

currently done.

4. Sound localization. Currently, the sound separation algorithm can not be

combined with a localization algorithm because the phase information, which

is essential to localization, is damaged in the process of separation. It will

be a interesting topic to try combine the two problems together so that the

separation can provide more information for localization or sound tracking.

57



On the theoretical side of the BSS/BSD problem, many problems remain open,

such as choice of the best non-linear function, convergence and stability analysis,

and adapting the algorithm to different sources and sensor settings. These will

attract more more interest form researchers.

We hope to have provided a good review of the BSS/BSD problem and an im-

plementation that provides robust results so that future workers in this field can

build on our work and achieve even better results.

58



Appendix A

Software Structure

A.1 Connection between Coreco board and NT

Host

The host program have two major part, executable netsrv.exe and dynamic link

library dspsrv.dll. The library dspsrv.dll handles all the requests from DSP board.

Some important functions it provides are: CreateCorecoServer(). Coreco Server is

a program that reside on NT. Figure A.1 describes how the host program netsrv.exe

interact with the code loaded on DSP board natsep.out.

Netsrv.exe call dspsrv.dll behind the scene for all the message handling during

run time.

59



Figure A.1: Host program and server program

60



A.2 Sub-band ICA algorithm

A.2.1 Data structure

To Implement wavelet filter bank, data structure for filterbank and circular buffer

are defined as follows:

1. stereo sound data structure

typedef struct {

WAVE T ch[2];

} WAVE STEREO;

The one sample of sound signal is stored as two 16 bits integer. In

each transaction a block of 512 sound signal samples are transferred

from robot to NT host as an array of WAVE STEREO structure.

Filter structure The information about filter bank is stored in a structure

called

2. FILTER HEAD.

This structure contains the information about filter bank. There

are four fields in this structure. f type is the enumeration of filter

types; depth means the depth of wavelet filter bank tree structure;

order means the order of the tree structure, in this project, the

value is always 2; nDwords mean the length of filter coefficient

vector.

typedef struct {

61



UINT32 f type;

UINT32 depth;

UINT32 order;

UINT32 nDwords;

} FILTER HEAD;

3. Structure COEF

COEF is the filter coefficient structure. It’s have two fields, point-

ing to the high pass filter coefficient array and low pass filter coef-

ficient array separately.

typedef struct {

COEF T *H,*L;

} COEF;

4. Filter Bank

Data structure for filter bank use both structure FILTER HEAD

and COEF.

typedef struct {

FILTER HEAD *hdr;

COEF *coef;

} COEF BANK;

5. Circular buffer

Circular buffer is a very important idea of implementing digital

filter. In this project, to improve performance, we try to implement

62



filtering and down sampling in one step. Thus the circular buffer

is different than standard.

typedef struct {

CIRCULAR T *ptr, *top, *bottom;

UINT32 block leng;

} CIRCULAR;

The structure CIRCULAR allocates a whole trunk of memory

that can be divided into several blocks each has equal length of

block leng. When we go through the tree structure of wavelet

filter-bank, on each level, the original circular buffer is divided

into two block contained down sampled data from high pass filter

and low pass filter separately. Figure A.2 shows the structure of

the sub-band ICA method.

6. Matrix

To implement ICA algorithm, matrix structure is essential. The

structure of matrix is defined as follows

typedef struct {

int row order;

int colunm order;

float** data;

}mymatrix;

Matrix multiplication, addition, inverse, copy and matrix norm

functions are also defined based on this matrix structure.

63



Figure A.2: Circular buffer and wavelet filter bank

64



A.2.2 Algorithm

The structure of sub-band ICA algorithm is described in Chapter 3 of thesis. Here

we will explain how to implement the algorithm on two DSP board. The graph

below describes how two DSP board, the master DSP and slave DSP interact with

each other. Figure A.3 shows the structure of the sub-band ICA method.

A.3 File Structure

Main.c: initialize memory, call function openboard() to set the connection be-

tween Coreco board and NT machine. Then the program goes into an infinite

loop. Inside the loop, stereo sound data is read, and function app() is called to

apply wavelet filtering on the data. For the result, call sort() according to av-

erage power and than call ICA algorithm to separate. Dbbank.c: contains the

wavelet filter bank function app(). Firfilter.c: contains all the functions related

to filtering calculation which will be used by app(). Cluster.c: contains the neu-

ral network clustering algorithm. Matrix.c: contains all the functions related to

matrix structure and matrix operations. Ica.c: contains the ICA learning algo-

rithm. Code with detailed commented is available under project directory /:/de-

partment/isr/labs/isl/Projects/subica/C code/comment

65



Figure A.3: Master DSP program and slave DSP program

66



Appendix B

Project Directory

All the source code, data file and pictures mentioned in the thesis is store under

directory /:/department/isr/labs/isl/Projects/yumao.

Below is a brief description of directory structure and content inside. All the bold

character means directory names.

C code:

Comment:

the commented code to illustrate the basic idea of imple-

menting sub-band ICA on one DSP board.

Working ica:

Netsep m: master DSP code

Netsep s: slave DSP code

Load the two programs into two DSP for a sub-band

ICA implementation The program for master DSP

read data, sub-band filtering and apply separating

67



matrix on data. The program for slave DSP applies

ICA algorithm on filtered data to get the separating

matrix.

Working dec:

Netsep m: master DSP code

Netsep s: slave DSP code

Load the two programs into two DSP boards for a

sub-band deconvolution implementation. The pro-

gram for master DSP read data, sub-band filtering

and apply deconvolution filter on data. The pro-

gram for slave DSP applies deconvolution algorithm

on filtered data to get the deconvolution filter.

Coreco code:

Netsrv.exe and dspsrv.dll: the NT host program

Data:

This sub-directory stores experimental result. All the sound

data is stored as binary file. The MATLAB file datareader.m

provide an example of reading the stereo sound data and

make it acceptable for MATLAB sound function. Note that

for NT and Unix system the file format has a little difference.

Pictures used in the thesis are stored in postscript format.

Playout:

68



An executable to play the output sound signal real time. The

program use socket to get data from host program, then it

write the data directly in to buffer of sound card to enable a

smooth sound playing.

69



BIBLIOGRAPHY

[1] S. Amari. Nature gradient works efficiently in learning. Neural Computation,
Vol. 10:251–276, 1998.

[2] S. Amari, T.P. Chen, and A. Chichocki. Stability analysis of adaptive blind
source separation. Neural Networks, Vol. 10, No. 8:1345–1351, 1997.

[3] S. Amari, T.P. Chen, and A. Chichocki. Nonholonomic orthogonal learning
algorithms for blind source separation. Neural Computation, Vol. 12:1463–
1484, 2000.

[4] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind
signal separation. In Advances in Neural Information Processing System 8,
pages 757–763. MIT Press, 1996.

[5] S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang. Multichannel blind
deconvolution and equalization using the natural gradient. In IEEE Inter-
national Workshop on Wireless Communication, Paris 1997, pages 101–104,
1997.

[6] H. Attias and C. E. Schreiner. Blind source separation and deconvolution: The
dynamic component analysis algorithm. Neural Computation, Vol. 10:1373–
1424, 1998.

[7] J.-F. Cardoso. On the stability of source separation algorithms. Procedings
of the IEEE, vol. 86, No. 10, 1998.

[8] R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best
basis selection. IEEE Transactions on Information Theory, Vol. 38, No. 2,
1992.

[9] T. Cover and J. Thomas, editors. Information Theory. John Wiley and Sons
Inc., 1991.

[10] D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Infor-
mation Theory, Vol. 41, No. 3:613–627, 1995.

70



[11] S. C. Douglas and S. Haykin. On the relationship between blind deconvolution
and blind source separation. In Proc. 31st Asilomar Conf. Signals, Syste.,
Comput., Pacific Grove, CA, volume Vol. 2, pages 1591–1595, 1997.

[12] S. C. Douglas and S.-Y. Kung. Kuicnet algorithms for blind deconvolution. In
Proc. IEEE Workshop on Statistical Signal Array Processing, Portland, OR.,
pages 3–12, 1998.

[13] B. Gold and N. Morgan, editors. Speech and Audio Signal Processing: Pro-
cessing and Perception of Speech and Music. John Wiley and Sons Inc., 2000.

[14] C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive
algorithm based on neuromimetic architecture. Signal Processing, 1-10:24,
1991.

[15] B.U. Koehler, T-W. Lee, and R. Orglmeister. Improving the performance of
infomax using statistical signal processing techniques. In Proceedings Inter-
national Conference on Artificial Neural Networks, pages 535–540, 1997.

[16] D. MacKay. Maximum likelihood and covariant algorithms for independent
component analysis, 1996.

[17] H.-M. Park, H.-Y. Jung, T.-W. Lee, and S.-Y. Lee. On subband-based
blind signal separation for noisy speech recognition. Electronic Letters, Vol.
35(23):2011–2012, 1999.

[18] Y. Qi, P.S. Krishnaprasad, and S. Shamma. The subband- based independent
component analysis. In Proceedings of ICA’2000, pages 19–22, 2000.

[19] L. Zhang, S. Amari, and A. Cichocki. Natural gradient approach to blind
separation of over- and under-complete mixtures. In Proceedings of the ICA’99
Aussois, France, 1999, pages 455–460, 1999.

[20] L. Zhang and A. Cichocki. Blind deconvolution/equalization using state-space
models. In Proceedings of the 1998 IEEE Workshop on Neural Networks for
Signal Processing (NNSP’98), Cambridge,UK, pages 123–131, 1998.

71


