
ABSTRACT

Title of dissertation: INFEASIBLE-START CONSTRAINT-REDUCED
METHODS FOR LINEAR AND
CONVEX QUADRATIC OPTIMIZATION

Meiyun He, Doctor of Philosophy, 2011

Dissertation directed by: Professor André L. Tits
Department of Electrical and Computer Engineering

Constraint-reduction schemes have been proposed in interior-point methods for

linear and convex quadratic programs with many more inequality constraints than

variables in standard dual form. Such schemes have been shown to be provably

convergent and highly efficient in practice. A critical requirement of these schemes,

however, is the availability of a dual-feasible initial point.

The thesis first addresses this requirement for linear optimization. Building on

a general framework (which encompasses several previously proposed approaches)

for dual-feasible constraint-reduced interior-point optimization, for which we prove

convergence to a single point of the sequence of dual iterates, we propose a frame-

work for “infeasible” constraint-reduced interior-point. Central to this framework

is an exact (`1 or `∞) penalty function scheme endowed with a scheme for iterative

adjustment of the penalty parameter aiming to yield, after a finite number of up-

dates, a value that guarantees feasibility (for the original problem) of the minimizers.

Finiteness of the sequence of penalty parameter adjustments is proved under mild

feasibility assumptions for all algorithms that fit within the framework, including

“infeasible” extensions of a “dual” algorithm proposed in the early 1990s and of

two recently recently proposed “primal-dual” algorithms. One of the latter two, a

constraint-reduced variant of Mehrotra’s Predictor Corrector algorithm is then more

specifically considered. Further convergence results are proved for the correspond-

ing infeasible method. Furthermore, such an infeasible method is analyzed without

feasibility assumptions.

Next, the constraint-reduced scheme with arbitrary initial points is extended

for the more general case of convex quadratic optimization. A stronger global con-

vergence result is proven that generalizes the result in the linear case.

Numerical results are reported that demonstrate that the infeasible constraint-

reduced algorithms are of practical interest. In particular, in the application of

model-predictive-control-based rotorcraft control, our algorithms yield a speed-up

of over two times for both altitude control and trajectory following.

INFEASIBLE CONSTRAINT REDUCTION
FOR LINEAR AND CONVEX QUADRATIC OPTIMIZATION

by

Meiyun He

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor André L. Tits, Chair/Advisor
Professor Steve I. Marcus
Professor Nuno C. Martins
Professor William S. Levine
Professor Tobias von Petersdorff, Dean’s Representative

c© Copyright by
Meiyun He

2011

Acknowledgments

I am thankful to all the people who have helped me with this thesis. Because

of them, my graduate study was smooth and has become a very valuable experience

in my life.

First, I’d like to thank my advisor, Professor Andre Tits, for supporting me

and giving me the unlimited guidance on my study over the past five and a half

years. He had been always available when I needed help and advice; I could drop by

his office at any time without an appointment. His brightness always inspired me,

and his kindness and thoughtfulness allowed us work like friends. I feel so lucky to

be his student and have so much to be grateful for what he has taught me.

I would also like to thank Professor Dianne O’Leary. She gave me priceless

advices on the proposal of my work. I am indebted to Professor Steve Marcus,

Professor Nuno Martins, Professor William Levine and Professor Tobias von Peters-

dorff who served on the thesis committee in helping and guiding me finish the Ph.D.

study. Thank them for their insights and suggestions, time and energy spent on the

supervision of my research.

I would like to thank all my colleagues at Department of Electrical and Com-

puter Engineering. There were so many people, even who may not know any op-

timization, having helped me through discussions and the group study. They were

so nice, and always willing to share with me anything they knew. I am grateful to

study together with those nice and smart guys.

My officemates in Room 3181 at A.V.Williams building and roommates are

ii

all nice people. They were so kind that we shared laughters and tears together.

Without them, my graduate life would not be so colorful.

I love my family very much. It is a pity that my father passed away in 2005

and could not say that he was proud of me, as he always did. My father, who

was smart and worked hard, taught me a right attitude towards life which is more

important to me than knowledge. I am always thankful to my mother, who could

not afford much education in her time, has been always trying her best to give me

support, concern and love. Words cannot express my gratitude to them.

While it is impossible to remember all, I would like to thank all the people

who helped me in this or that way. Thank you all!

iii

Table of Contents

List of Tables vi

List of Figures vii

List of Abbreviations x

1 Introduction 1
1.1 Problem statement . 1
1.2 Constraint reduction . 3

1.2.1 Constraint-reduced dual interior-point methods for LPs 4
1.2.2 Constraint-reduced primal-dual interior-point methods for LPs 7

1.2.2.1 Exact directions without constraint reduction 7
1.2.2.2 Inexact directions with constraint reduction 9

1.2.3 Constraint-reduced primal-dual interior-point methods for CQPs 12
1.2.3.1 Exact Newton directions without constraint reduction 12
1.2.3.2 Inexact Newton directions with constraint reduction 13

1.2.4 Motivation: need for a dual-feasible initial point 14

2 Infeasible Constraint Reduction for Linear Optimization 18
2.1 A framework for dual-feasible constraint-reduced IPMs 18
2.2 A framework for infeasible constraint-reduced PDIPs 23

2.2.1 Basic ideas and algorithm statement 23
2.2.2 Computational issues . 29
2.2.3 Convergence analysis . 30
2.2.4 An `∞ version . 41

2.3 Infeasible constraint-reduced MPC: IrMPC 42
2.4 Analysis without primal or dual feasibility 44
2.5 Numerical results . 51

2.5.1 Implementation . 51
2.5.2 Problems from COAP . 52
2.5.3 Randomly generated problems 53

2.6 Conclusion . 58

3 Infeasible Constraint Reduction for Convex Quadratic Optimization 61
3.1 An infeasible constraint-reduced IPM 61

3.1.1 Basic ideas . 61
3.1.2 Algorithm statement . 65
3.1.3 Boundedness of the sequence of penalty parameters 68

3.2 Global convergence . 80
3.3 Analysis without primal or dual feasibility 85
3.4 Numerical results . 91

3.4.1 Implementation . 91
3.4.2 Randomly generated problems 93

iv

3.5 Conclusion . 97

4 Application to Model Predictive Control (RHC) 98
4.1 Introduction . 98
4.2 Linear RHC . 100

4.2.1 Problem setup . 100
4.2.2 Physical model and data . 104
4.2.3 Warm starts and exact penalty function 105
4.2.4 Simulation results . 107

4.3 Quadratic RHC . 109
4.3.1 Altitude control . 110

4.3.1.1 Problem setup . 110
4.3.1.2 Simulation results 112

4.3.2 Trajectory following . 121
4.3.2.1 Problem setup . 121
4.3.2.2 Rotorcraft models 124
4.3.2.3 Optimization details 127
4.3.2.4 Simulation results 129

4.4 Conclusion . 135

5 Future Work 139
5.1 Extension to convex optimization (CO) 139

5.1.1 Feasible constraint reduction for CO 140
5.1.2 Infeasible constraint reduction for CO 142

5.2 Specific applications . 144
5.2.1 q-norm support vector machines 144
5.2.2 Entropy optimization . 145

A Complementary Material 147
A.1 A proposition . 147
A.2 Description of the model used in RHC-based altitude control 148

B An `∞ Version of Iteration IrPDIP 149
B.1 Description of Iteration IrPDIP-`∞ 149
B.2 Convergence Analysis of Iteration IrPDIP-`∞ 151
B.3 Infeasible constraint-reduced MPC: IrMPC-`∞ 161

C An `∞ Version of IrQP 165
C.1 Description of Iteration IrQP-`∞ . 165
C.2 Global convergence . 170

Bibliography 181

v

List of Tables

2.1 Results of the Netlib LP test problems by the `1 version of IrMPC . . 54
2.2 Comparison of the results by the `1 and `∞ versions for the Netlib

LP test problems . 55

4.1 Number of problems with certain properties 110
4.2 Number of time steps (out of 999) at which the total CPU time is

larger than given thresholds . 118
4.3 CPU Time used by several algorithms to solve the 11th CQP (typical)118
4.4 Description of the original model M2 from [58]. States and control

inputs estimated/generated by the controller are marked in boldface. 125
4.5 The total RHC time with different QP solvers in a 10 sec simulation . 134

vi

List of Figures

1.1 An example of constraint reduction: There are n = 13 constraints in a
dual space of m = 2 dimensions. The optimal solution is determined
by only two active constraints (in bold lines). Constraint reduction
tries to guess a good set Q (with |Q| = 5) of constraints and exclude
the rest (in dashed lines on the right figure) from computations. Since
the computational cost is proportional to the number of constraints,
constraint reduction obtains a speedup of n

|Q| = 13
5
. (Drawn by Luke

Winternitz) . 4

2.1 The objective function of problem (2.10) with different penalty pa-
rameter values. When ρ < 1

3
, problem (2.10) is unbounded. When

ρ ∈ [1
3
, 1), it is bounded but the minimizer yρ

∗ = 1 is infeasible for
(2.9). When ρ > ρ∗ = 1, yρ

∗ = 0 solves (2.9) as desired. 25
2.2 CPU time and iterations with the `1 penalty function. 57
2.3 CPU time and iterations with the `∞ penalty function. 57
2.4 The average of CPU time and iterations for 1000 randomly generated

problems. 58
2.5 The average speedup gain of CPU time and iterations for 1000 ran-

domly generated problems. 59
2.6 The worst speedup gain of CPU time and iterations for 1000 randomly

generated problems. 59
2.7 The standard deviation of the speedup gain of CPU time and itera-

tions for 1000 randomly generated problems. 60

3.1 CPU time and iterations with infeasible initial points. 95
3.2 Behaviors for various values of fixed penalty parameters ρ with |Q|

n
=

2%. 95
3.3 The speedup gain of CPU time with different ranks of Hessian H. . . 96
3.4 The speedup gain of iteration counts with different ranks of Hessian H. 96

4.1 CPU time in seconds for |Q| = 300 and |Q| = n = 1180. 108
4.2 CPU time and the number of iterations to solve the problem at 5

sec by IrMPC with varying number |Q| of kept constraints; see blue
circles and red stars. MPC takes much larger to solve this problem;
see the dashed magenta line. 109

4.3 Simulation results: control input. The bounds wmin and wmax are
marked by red dashed lines and the trim value by a magenta dotted
line. 114

4.4 Simulation results: rate of change of control input. The bounds (δwmin

Ts

and δwmax

Ts
inches/sec) are marked by red dashed lines. 115

4.5 Simulation results: states 1 to 4. The bounds on the vertical velocity
are marked by red dashed lines and the trim values by magenta dotted
lines. 116

vii

4.6 Simulation results: states 5 to 8. The bounds on the shaft torque are
marked by red dashed lines and the trim values by magenta dotted
lines. 116

4.7 Effect of constraint reduction on the number of iterations and total
CPU time needed for IrQP to solve the 11th CQP (typical). Each ∗
and o corresponds to a full optimization run, with the cardinality of
the working set Q as specified. The rightmost ∗ and o correspond to
no constraint reduction (|Q| = 520). 117

4.8 Effect of constraint reduction on the number of iterations and to-
tal CPU time needed for IrQP to solve the 374th (and most time-
consuming) CQP. 118

4.9 CPU time for four strategies: the adaptive scheme for ρ with con-
straint reduction (in blue triangles), the adaptive scheme for ρ with-
out constraint reduction (in blue circles), the fixed scheme ρ = 2×107

with constraint reduction (in red triangles) and the fixed scheme
ρ = 2× 107 without constraint reduction (in red circles). 120

4.10 Three control inputs: lateral cyclic, longitudinal cyclic and pedal,
marked by blue circles, a red and magenta line, respectively. 130

4.11 Rates of change of three control inputs. The upper bound 4 inches/sec
and lower bound −4 inches/sec are marked by dashed green lines. . . 130

4.12 Trajectory following of the pitch rate 131
4.13 Trajectory following of the pitch . 131
4.14 Acceleration of roll and pitch. Both have an upper bound 1 inch/sec2

and a lower bound -1 inch/sec2. 131
4.15 Velocity components along the body axes (without bounds) 132
4.16 Load factor of the pitch. 132
4.17 Roll and yaw angles. Bounds are marked by green dashed lines. . . . 132
4.18 Roll and yaw rate (without bounds) 132
4.19 Comparison of CPU time with constraint reduction and no constraint

reduction . 134
4.20 Comparison of iteration counts with constraint reduction and no con-

straint reduction . 134
4.21 Total time and number of iterations with fixed penalty values ρ and

|Q|=120. The magenta dash lines mark the total time and number
of iterations with the adaptive scheme. 135

4.22 Trajectory following of the pitch rate with |Q| = 1360 and a time
limit of 0.012 sec . 136

4.23 Trajectory following of the pitch with |Q| = 1360 and a time limit of
0.012 sec . 136

4.24 Load factor of the pitch with |Q| = 1360 and a time limit of 0.012 sec 136
4.25 Roll and yaw with |Q| = 1360 and a time limit of 0.012 sec 136
4.26 Trajectory following of the pitch rate with |Q| = 120 and a time limit

of 0.012 sec . 137
4.27 Trajectory following of the pitch with |Q| = 120 and a time limit of

0.012 sec . 137

viii

4.28 Load factor of the pitch with |Q| = 120 and a time limit of 0.012 sec . 137
4.29 Roll and yaw with |Q| = 120 and a time limit of 0.012 sec 137

ix

List of Abbreviations

LP Linear Programming (or Linear Optimization)
QP Quadratic Programming (or Quadratic Optimization)
CQP Convex QP
CO Convex Optimization
CR Constraint Reduction
NCR No Constraint Reduction (namely, without Constraint Reduction)
IPM Interior-Point Method
PDIP Primal-Dual Interior-Point
PDIPM Primal-Dual IPM
MPC Mehrotra’s Predictor-Corrector algorithm
RHC Receding Horizon Control (namely, Model Predictive Control)
rIPM Constraint-Reduced Interior-Point method
IrPDIP Infeasible constraint-Reduced Primal-Dual Interior Point method
IrMPC Infeasible constraint-Reduced Mehrotra Predictor-Corrector Method
IrQP Infeasible constraint-Reduced method for Quadratic Programming
LTI Linear Time-Invariant
COAP Computational Optimization and Applications

x

Chapter 1

Introduction

1.1 Problem statement

Linear optimization (LP) is a class of optimization problems involving a linear

objective function and linear constraints. Convex quadratic optimization (CQP),

a more general case of LP, is a class of optimization problems involving a convex

quadratic objective function and linear constraints. Any LP problem can be trans-

formed to the standard (dual) problem

max bT y s.t. AT y ≤ c (D)

with the associated standard primal form

min cT x s.t. Ax = b, x ≥ 0, (P)

where A ∈ Rm×n. More generally, any CQP problem can be transformed to the

standard form with only inequality constraints

max f(y) := bT y − 1

2
yT Hy s.t. AT y ≤ c (Dq)

with the associated Lagrangian dual

min
x, y

cT x +
1

2
yT Hy s.t. Ax + Hy − b = 0, x ≥ 0. (Pq)

where H ∈ Rm×m is symmetric and positive semi-definite. For reasons of consistency

with the LP literature, we will refer to (Dq) as the dual and to (Pq) as the primal.

1

Throughout the paper, we assume that [H A] has full row rank for the quadratic

optimization; accordingly, this indicates that we assume the full rankness of A in

the LP case where H = 0.

The case we consider is n À m; in other words, there are many more con-

straints than variables in the dual (D) and (Dq). Such situations are detrimental

to classical interior-point methods (IPMs),1 whose computational cost per iteration

is typically proportional to n. Starting in the early 1990’s, this has prompted a

number of researchers to propose, analyze, and test constraint-reduced versions of

these methods.

The notation and terminology used in the thesis is mostly standard. We denote

the dual slack variable by s ∈ Rn, i.e.,

s := c− AT y.

A point y0 ∈ Rm is called (dual) feasible if the associated s0 = c − AT y0 has

only nonnegative components, and (dual) strictly feasible if s0 > 0; otherwise, it is

called (dual) infeasible. Note that absolute value, comparison and “max” are meant

componentwise. The set of all strictly dual-feasible points is called the strictly

feasible set of the dual. By e we denote the vector of all ones with dimension by

context. We adopt the Matlab-inspired notation [v1; v2; · · · ; vp] to denote a (vertical)

concatenation of vectors (or matrices) vi, 1 ≤ i ≤ p. We write a certain subset of

n := {1, 2, · · · , n} by Q and its complement by Q = n\Q. Given a vector x, xi is its

1While the simplex method can be a fast iterative method, when n À m, it takes many

more iterations to solve the problems than the interior point methods, and hence is relatively

inefficient [64]; therefore, this method is not considered here.

2

i-th element, x− is defined by xi
− = min{xi, 0} for all i ∈ n, and xQ is a subvector of

x with only those elements of x that are indexed in set Q. Given a diagonal matrix

X := diag(x), XQ := diag(xQ). Except when specified, the norm ‖ · ‖ is arbitrary.

The feasible set of the dual (D) (and (Dq)) is denoted by F , i.e.,

F := {y ∈ Rm : AT y ≤ c},

and the strictly feasible set by F0, i.e.,

F0 := {y ∈ Rm : AT y < c}.

The active set at point y (with y not necessarily in F) of (D) (or (Dq)) is denoted

by I(y), i.e.,

I(y) := {i : (ai)T y = ci}.

1.2 Constraint reduction

In most interior point methods [40, 66, 69, 50] for LPs and CQPs, the dominant

cost per iteration is the formulation of a matrix of the form ADAT with some

diagonal matrix D. The cost is proportional to the number of constraints. In the

case of n À m, i.e., the number of inequality constraints far exceeds that of decision

variables, it is typical that only a small percentage of constraints are active at the

solution, the others being, in a sense, redundant. Constraint reduction computes

search directions based on a judiciously selected subset Q of the constraints that

is updated at each iteration, and thus significantly reduces the work while global

and local quadratic convergence can be provably retained. This idea is shown by a

simple example in Figure 1.1.

3

Ignore many constraints

redundantredundant
active

irrelevant?

active

irrelevant?

Figure 1.1: An example of constraint reduction: There are n = 13 constraints in a

dual space of m = 2 dimensions. The optimal solution is determined by only two

active constraints (in bold lines). Constraint reduction tries to guess a good set Q

(with |Q| = 5) of constraints and exclude the rest (in dashed lines on the right figure)

from computations. Since the computational cost is proportional to the number of

constraints, constraint reduction obtains a speedup of n
|Q| = 13

5
. (Drawn by Luke

Winternitz)

1.2.1 Constraint-reduced dual interior-point methods for LPs

As early as the 1990’s, researchers started to use constraint reduction for LPs

that involved only a small subset of constraints in computing search directions for

dual interior point methods (IPMs).

In paper [15], Dantzig and Ye used constraint reduction within Dikin’s algo-

rithm to solve (D). Dikin’s algorithm [19, 30] starts with a dual interior point yk

and selects the next iterate yk+1 as the solution of the “ellipsoid” problem

max bT y s.t. ‖(y − yk)AS−1
k ‖ ≤ 1, (1.1)

4

where Sk := diag(sk). It can be shown that the solution of (1.1) is

yk+1 = yk + (AS−2
k AT)−1b,

and it stays in the interior of the dual feasible set. The process is then repeated with

iterate yk+1. Based on the original Dikin’s algorithm, constraint reduction in [15]

computes the next iterate yk+1 by solving the reduced “ellipsoid” problem

max bT y s.t. ‖(y − yk)A
Q(SQ

k)−1‖ ≤ 1, (1.2)

where SQ := diag(sQ) and AQ is a submatrix of A with only those columns indexed

in Q. Accordingly,

yk+1 = yk + (AQ(SQ
k)−2(AQ)T)−1b.

An appropriate set Q is selected such that yk+1 is feasible, and with such yk+1, the

process is repeated.

At each iterate, an appropriate set Q is “built up” within a “minor cycle” in

order to ensure that yk+1 is dual-feasible. The minor cycle starts with Q including

m “promising” columns (that are deemed to belong to the optimal basis). If the

solution of the ellipsoid problem with this Q is infeasible, the cardinality of Q is

increased by one. The revised ellipsoid problem, involving m + 1 columns in the

set Q, is re-solved. The columns of A are added to Q like this one by one until

the solution of the “built-up” ellipsoid problem is feasible. (When there are more

constraints involved, the solution is more likely to be feasible.) Although it is proven

in [15] that there always exists a Q with a set of 2m columns of A such that the

solution of the corresponding ellipsoid problem is feasible, the “minor cycle” does

5

not guarantee that the size of Q as constructed is at most 2m. This makes choosing

Q potentially expensive.

In contrast, the algorithm in [68], due to Ye, starts with Q including all n

columns, and deletes the columns from Q during the minor cycle. In the end, Q

is built-down to an optimal basis. This “build-down” scheme is also used within

simplex methods; see [67].

In paper [18], Den Hertog et al. combined “build-up” and “build-down” into

one “build up and down” strategy and applied this strategy into a “dual logarithmic-

barrier interior-point” method. At each iterate, the build-up process adds those

columns to Q, the corresponding constraints of which are violated or almost vio-

lated, while the build-down process deletes those columns from Q, the corresponding

constraint of which has a large slack. This combined strategy is also used within

cutting plane methods for convex optimization [16].

In summary, dual interior-point methods that use constraint reduction have

the following features:

• They work on only dual iterates.

• They require a dual strictly-feasible initial point.

• At each iterate, they use a potentially expensive way of selecting the working

set Q.

6

1.2.2 Constraint-reduced primal-dual interior-point methods for LPs

In recent years, a number of researchers have devoted their efforts to constraint

reduction for primal-dual interior-point methods (PDIPMs) in linear optimization.

At each iteration, PDIPMs compute a search direction and perform a linear search.

The computational cost of the former is reduced by using constraint reduction (while

that of the latter is trivial).

1.2.2.1 Exact directions without constraint reduction

Primal-dual interior-point methods (without constraint reduction) compute a

Newton direction from the perturbed Karush-Kuhn-Tucker (KKT) optimality con-

ditions of (P)–(D)

AT y + s = c, (1.3)

Ax = b, (1.4)

Xs = τe, (1.5)

x ≥ 0, s ≥ 0 (1.6)

with X := diag(x), parameter τ > 0 and e the vector of all ones. (This set of

conditions is called the “perturbed” KKT conditions because system (1.3)–(1.6)

with τ = 0 becomes the set of KKT optimality conditions.) Hence, the Newton

7

direction (∆xN , ∆yN , ∆sN) solves




0 AT I

A 0 0

S 0 X







∆xN

∆yN

∆sN




=




c− AT y − s

b− Ax

τe−Xs




. (1.7)

There are two special cases of the Newton direction. When τ = 0, it is called the

affine-scaling direction2 ∆pa = (∆x, ∆ya, ∆s), i.e.,




0 AT I

A 0 0

S 0 X







∆x

∆ya

∆s




=




c− AT y − s

b− Ax

−Xs




. (1.8)

When τ →∞, it tends to the centering direction (∆xcen, ∆ycen, ∆scen) which satis-

fies



0 AT I

A 0 0

S 0 X







∆xcen

∆ycen

∆scen




=




0

0

e




. (1.9)

Mehrotra’s corrector step is a correction to the affine scaling direction ∆pa, and it

solves the system



0 AT I

A 0 0

S 0 X







∆xcor

∆ycor

∆scor




=




0

0

−∆X∆s




, (1.10)

2Note that for simplicity, we omit the subscript “a” of ∆x and ∆s, but not that of ∆y.

8

where ∆X := diag(∆x). Mehrotra’s centering-corrector direction ∆pc = (∆xc, ∆yc, ∆sc)

is a combination of the centering and corrector direction, and satisfies




0 AT I

A 0 0

S 0 X







∆xc

∆yc

∆sc




=




0

0

σµe−∆X∆s




(1.11)

with parameter σ ∈ (0, 1) and µ = xT s
n

.

Affine-scaling PDIPMs use only the affine-scaling direction ∆pa as the search

direction, and Mehrotra’s predictor-corrector PDIPMs use the direction of ∆pa +

∆pc, which is more efficient in practice. (For details, see Wright’s book [66], Chap-

ter 10.) Both versions can obtain the search direction by first eliminating (∆x, ∆s)

(resp. (∆xc, ∆sc)) and computing ∆y (resp. ∆yc) from a linear system with the

coefficient matrix

AS−1XAT =
n∑

i=1

xi

si
ai(ai)T . (1.12)

The computational work of obtaining the search direction mainly includes two parts:

forming this coefficient matrix and computing its Cholesky factorization. When A

is dense, the former takes m2n operations and the latter takes 1
3
m3 operations. In

the considered case of n À m, the former is the dominant cost at each iteration.

1.2.2.2 Inexact directions with constraint reduction

Constraint-reduced PDIPMs use a direction which is obtained from the con-

tribution of a subset Q of the constraints.

9

Paper [60] is the first one to use constraint reduction within an (affine-scaling)

PDIPM. (The term constraint-reduced PDIPMs was coined there.) The resulting

constraint-reduced PDIPM uses a small subset Q of the constraints to compute the

affine-scaling search direction. This can be viewed as applying primal-dual interior-

point methods to the reduced problem

max bT y s.t. (AQ)T y ≤ cQ, (1.13)

and obtaining the affine-scaling search direction (∆xQ, ∆ya, ∆sQ) by solving the

linear system 


0 (AQ)T I

AQ 0 0

SQ 0 XQ







∆xQ

∆ya

∆sQ




=




0

b− AQxQ

−XQsQ




. (1.14)

Eliminating (∆xQ, ∆sQ) yields the reduced normal equations

AQ(SQ)−1XQ(AQ)T ∆ya = b. (1.15)

It follows that

bT ∆ya > 0 (1.16)

under a full-row-rank assumption on AQ and under the positivity of x and s. In-

equality (1.16) shows that ∆ya is a direction of ascent for the dual objective bT y,

an important property for global convergence.

Paper [65] used constraint reduction schemes within Mehrotra’s predictor-

corrector (MPC) algorithm. The resulting algorithm rMPC? obtains the reduced

affine-scaling direction (∆xQ, ∆ya, ∆sQ) by solving (1.14), and computes the reduced

10

centering-corrector direction (∆xQ
c , ∆yc, ∆sQ

c) from



0 (AQ)T I

AQ 0 0

SQ 0 XQ







∆xQ
c

∆yc

∆sQ
c




=




0

0

σµQe−∆XQ∆sQ




(1.17)

where µQ = (xQ)T sQ

|Q| . The search direction is then set to

(∆xQ
m, ∆ym, ∆sQ

m) = (∆xQ, ∆ya, ∆sQ) + γ(∆xQ
c , ∆yc, ∆sQ

c)

where γ ∈ (0, 1) is carefully chosen to ensure bT ∆ym > 0, the same property as in

inequality (1.16).

In solving either system (1.14) or (1.17), the dominant cost is to form matrix

AQ(SQ)−1XQ(AQ)T , which takes |Q|m2 operations. This cost is much less than

nm2 of (1.12) when |Q| is small. Thus, the essence of constraint reduction can

be summarized as: saving significant cost per iteration by involving much fewer

constraints to obtain search directions.

In the constraint-reduced PDIPMs, either the affine-scaling version [60] or the

MPC version [65], the rule for choosing set Q is quite simple: at each iterate, include

in Q at least q̄ constraints that have the smallest slacks such that AQ has full row

rank, where q̄ is a known upper bound on the number of active constraints at any

solution. Recent work on adaptively choosing Q (see [45] and [32]) satisfies this rule.

In summary, the constraint-reduced PDIPMs of [60] and [65] have the following

feastures:

• They work on primal-dual iterates, which is usually faster than working on

only dual iterates.

11

• As constraint-reduced dual IPMs, they also require a strictly dual-feasible

initial point.

• Unlike constraint-reduced dual IPMs, they use an inexpensive rule to choose

set Q.

1.2.3 Constraint-reduced primal-dual interior-point methods for CQPs

Constraint reduction was extended by Jung et al. in [32] to the general case of

convex quadratic optimization problems which have far more inequality constraints

than decision variables. As in the linear case, the idea is to reduce the cost of

computing the search direction at each iteration.

1.2.3.1 Exact Newton directions without constraint reduction

The KKT conditions for (Pq)–(Dq) are

AT y + s = c,

Ax + Hy = b,

Sx = 0,

s ≥ 0, x ≥ 0.

12

By applying Newton’s method on the KKT conditions, the primal-dual affine-scaling

search direction (∆x, ∆y, ∆s) solves the system




0 AT I

A H 0

S 0 X







∆x

∆y

∆s




=




0

b− Ax−Hy

−Sx




(1.18)

where we have assumed that y is dual feasible. After block Gaussian elimination,

this system is reduced to normal equations

(H + AS−1XAT)∆y = b−Hy, (1.19)

∆s = −AT ∆y, (1.20)

∆x = −x− S−1X∆s. (1.21)

As in the linear case, the dominant cost of computing the direction (∆x, ∆y, ∆s)

is to form AS−1XAT in (1.19), which takes m2n flops. This cost is significantly

reduced by constraint reduction below.

1.2.3.2 Inexact Newton directions with constraint reduction

The constraint-reduced PDIPM [32] for CQPs applies primal-dual interior-

point methods to the reduced problem

max f(y) s.t. (AQ)T y ≤ cQ, (1.22)

13

and computes the affine-scaling search direction (∆xQ, ∆y, ∆sQ) from solving the

system 


0 (AQ)T I

AQ H 0

SQ 0 XQ







∆xQ

∆y

∆sQ




=




0

b− AQxQ −Hy

−SQxQ




. (1.23)

Analogously to (1.19)–(1.21), this system can be rearranged into the normal equa-

tions

(
H + AQ(SQ)−1XQ(AQ)T

)
∆y = b−Hy (1.24)

∆sQ = −(AQ)T ∆y (1.25)

∆xQ = −xQ − (SQ)−1XQ∆sQ. (1.26)

The dominant cost of computing ∆y is to form the matrix in (1.24):

AQ(SQ)−1XQ(AQ)T =
∑
i∈Q

xi

si
ai(ai)T , (1.27)

which takes |Q|m2 operations. These are significantly fewer operations, compared

to nm2 operations in (1.19), when |Q| is as small as a multiple of m. After ∆y is

solved, (∆x, ∆s) can be trivially retrieved from (1.20)–(1.21).

The constraint reduced PDIPM for CQPs enjoys the same features as that for

LPs. In particular, it also requires a strictly dual-feasible initial point.

1.2.4 Motivation: need for a dual-feasible initial point

Though the idea of constraint reduction has been proved successful in previous

work for both linear and quadratic optimization, to the best of our knowledge, all

14

existing constraint-reduced IPMs (see section 1.2.1–1.2.3) are obtained by implant-

ing a constraint-reduction scheme into a dual-feasible method. Accordingly, they all

require a dual feasible initial point. This is an important limitation because such

a point is often unavailable in practice and in other cases it may be available but

poorly centered, resulting in slow progress of the algorithm.

To obtain a feasible initial point, one can solve the feasibility problem of the

dual without considering the objective in a “Phase I” process. With the feasible

initial point from “Phase I”, “Phase II” then solves the problem again with consid-

eration of the objective. One common approach for “Phase I” is to solve a relaxed

dual problem

max
y, η

−η s.t. AT y − ηe ≤ c,

where the scalar variable η relaxes the constraints, so that feasible methods can be

used. While the objective is to maximize the negative of η, feasible algorithms can

be terminated when a negative η is found. Another approach [14] for “Phase I”

finds a feasible point that is on the primal-dual central path. Such a feasible point

is obtained from solving the relaxed perturbed KKT conditions

Ax = b,

AT y + s = c,

Xs = µe,

x ≥ −η1, s ≥ −η2,

where in order to allow feasible points for those conditions, the positivity constraints

are relaxed by parameters η1 and η2. These two parameters are updated at each

15

iterate, and are driven to zero in a finite number of iterations, enforcing the feasi-

bility.

However, solving a “Phase I” problem is equivalent to solving another linear

program of the same dimension in many situations. So the idea of using “Phase I”

to get a feasible initial point for constraint reduction schemes is impractical.

Another idea is to implant constraint-reduction schemes into infeasible PDIPMs.

Such attempts were made in [60] with affine-scaling methods and [45] with Mehro-

tra’s Predictor-Corrector methods [39], and also in [45] with an algorithm from [47].

They have some numerical success, but no supporting analysis was provided. Indeed,

it appears unlikely that these methods enjoy guaranteed global convergence.

In the present thesis, we show how the need to allow for infeasible initial

points can be addressed by making use of exact penalty functions.3 Exact `1/`∞

penalty functions have been used in connection with IPMs in nonlinear programming

[3, 61, 8], in particular on problems with complementarity constraints [9, 35, 54],

and in at least one instance in linear programming [10]. The dearth of instances

of the use of penalty functions in linear and quadratic programming is probably

due to the availability of powerful algorithms, both of the simplex variety and of the

interior-point variety, that accommodate infeasible initial points in a natural fashion,

even guaranteeing polynomial complexity in the case of interior point methods, e.g.,

[46, 47, 41, 17, 1]. Combining such (possibly polynomially convergent) infeasible

3Paper [32] also uses exact penalty functions for infeasible points, but there the penalty pa-

rameter must be given by users. Thus, there is no guarantee that optimization problems will be

solved.

16

interior-point methods with constraint-reduction schemes has so far proved elusive,

and the use of exact penalty functions is a natural avenue to consider. We have

proven global convergence of infeasible constraint-reduced algorithms that use exact

penalty functions and have obtained promising numerical results.

The remainder of this thesis is organized as follows: We develop infeasible

constraint-reduced algorithms for linear optimization in Chapter 2, and for convex

quadratic optimization in Chapter 3. In Chapter 4, these algorithms are applied to

the model predictive control applications for rotorcraft altitude control and trajec-

tory following. Future research is discussed in Chapter 5.

17

Chapter 2

Infeasible Constraint Reduction for Linear Optimization

This chapter focuses mainly on developing an infeasible constraint-reduced

IPM framework for linear optimization. The organization is as follows: Based on

feasible constraint-reduced PDIPMs, our proposed dual-feasible constraint-reduced

IPM (rIPM) framework is layed out and analyzed in section 2.1. In section 2.2,

the framework is extended, by incorporating an exact penalty function, to allow for

infeasible initial points in the case of constraint-reduced primal-dual interior point.

The resulting framework, IrPDIP, is specialized to the case of Algorithm rMPC∗

of [65] (a constraint-reduced variant of Mehrotra’s Predictor Corrector algorithm),

yielding algorithm IrMPC. IrMPC is analyzed in section 2.3, and further studied in

section 2.4 under weaker feasibility assumptions. Numerical results are reported in

section 2.5.

2.1 A framework for dual-feasible constraint-reduced IPMs

Many interior-point methods for the solution of (P)–(D), including the current

“champion”, Mehrotra’s Predictor Corrector [39], and its many variants [71, 53, 66],

make use of an affine scaling direction ∆ya. That is the solution of

ADAT ∆ya = b (2.1)

18

for some diagonal positive-definite matrix D, usually updated from iteration to

iteration. For such methods, when n À m, the main computational cost at each

iteration resides in forming the matrix

ADAT =
n∑

i=1

diai(ai)T (2.2)

where di is the ith diagonal entry of D and ai the ith column of A. Forming ADAT

takes up roughly nm2 multiplications and as many additions. If the sum in the

right-hand side of (2.2) is reduced by dropping all terms except those associated

with a certain small working index set Q, the cost of forming it reduces from nm2

to roughly |Q|m2. Conceivably, the cardinality |Q| of Q could be as small as m

in nondegenerate situations, leading to a potential computational speedup factor

of n/m. Ideas along these lines are explored in [15, 18, 62, 60, 65] where schemes

are proposed that enjoy strong theoretical properties and work well in practice.

(Interestingly, in many cases, it has been observed that using a small working set

does not significantly increase the total number of iterations required to solve the

problem, and sometimes even reduces it.) Several of these methods [15, 60, 65] fit

within the following general iteration framework.

Iteration rIPM

Parameters: θ ∈ (0, 1) and τ > 0.

Data: y ∈ Rm such that s := c − AT y > 0; Q ⊆ n such that AQ is full row rank;

D ∈ R|Q|×|Q|, diagonal and positive definite.

Step 1 : Computation of the dual search direction ∆y

19

(i) Let ∆ya solve

AQD(AQ)T ∆ya = b. (2.3)

(ii) Select ∆y to satisfy

bT ∆y ≥ θbT ∆ya, ‖∆y‖ ≤ τ‖∆ya‖. (2.4)

Step 2 : Updates

(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c− AT y+ > 0

where

y+ := y + t∆y. (2.5)

(ii) Pick Q+ such that AQ+ has full row rank.

(iii) Select D+ ∈ R|Q+|×|Q+|, diagonal and positive definite.

Since AQ has full row rank, the linear system (2.3) has a unique solution. Hence

Iteration rIPM is well defined and, since x+ > 0 and s+ > 0, it can be repeated

indefinitely to generate infinite sequences. We attach subscript k to denote the kth

iterate. Since for all k, xk > 0 and sk > 0, it also follows from (2.3) that

bT ∆ya,k > 0, (2.6)

and further from (2.4) and (2.5) that the sequence {bT yk} is increasing.

An important property of Iteration rIPM, established in Proposition 2.1 below,

is that if the dual-feasible sequence {yk} remains bounded, then it must converge,

20

and if it is unbounded, then bT yk → +∞. The proof makes use of the following

lemma, a direct consequence of results in [52] (see also [51]).

Lemma 2.1. Let G be a full row rank matrix and b be in the range of G. Then, (i)

there exists φ > 0 (depending only on G and b) such that, given any positive-definite

diagonal matrix D, the solution ∆y to

GDGT ∆y = b,

satisfies

‖∆y‖ ≤ φbT ∆y;

and (ii) if a sequence {yk} is such that {bT yk} is bounded and, for some ω > 0,

satisfies

‖yk+1 − yk‖ ≤ ωbT (yk+1 − yk) ∀k, (2.7)

then {yk} converges.

Proof. The first claim immediately follows from Theorem 5 in [52], noting (as in [51],

section 4) that, for some ζ > 0, ζ∆y solves

max{ bT u | uT GDGT u ≤ 1}.

(See also Theorem 7 in [51].) The second claim is proved using the central argument

of the proof of Theorem 9 in [52]:

N−1∑

k=0

‖yk+1 − yk‖ ≤ ω

N−1∑

k=0

bT (yk+1 − yk) = ωbT (yN − y0) ≤ 2ωv ∀N > 0,

where v is a bound on {|bT yk|}, implying that {yk} is Cauchy, and thus converges.

(See also Theorem 9 in [51].)

21

Proposition 2.1. Suppose (D) is strictly feasible. Then, if {yk} generated by It-

eration rIPM is bounded, then yk → y∗ for some y∗ ∈ F , and if it is not, then

bT yk →∞.

Proof. We first show that {yk} satisfies (2.7) for some ω > 0. In view of (2.5), it

suffices to show that, for some ω > 0,1

‖∆yk‖ ≤ ωbT ∆yk ∀k. (2.8)

Now, since ∆ya,k solves (2.3) and since AQk has full row rank, and Qk ⊆ n, a finite

set, it follows from Lemma 2.1 (i) that, for some φ > 0,

‖∆ya,k‖ ≤ φbT ∆ya,k ∀k.

With this in hand, we obtain, for all k, using (2.4),

‖∆yk‖ ≤ τ‖∆ya,k‖ ≤ τφbT ∆ya,k ≤ τ
φ

θ
bT ∆yk ∀k,

so (2.8) holds with ω := τ φ
θ
. Hence (2.7) holds (with the same ω).

To complete the proof, first suppose that {yk} is bounded. Then so is {bT yk}

and, in view of Lemma 2.1 (ii) and of the fact that {yk} is feasible, we have yk → y∗,

for some y∗ ∈ F . On the other hand, if {yk} is unbounded, then {bT yk} is also

unbounded (since, in view of Lemma 2.1 (ii), having {bT yk} bounded together

with (2.7) would lead to the contradiction that the unbounded sequence {yk} con-

verges). Since {bT yk} is nondecreasing, the claim follows.

1Inequality (2.8) is an angle condition: existence of ω > 0 means that the angle between b

and ∆y is bounded away from 90 ◦. This condition, which is weaker than (2.4), is sufficient for

Proposition 2.1 to hold.

22

The “build-up” algorithm in [15], algorithm rPDAS in [60], and rMPC? in

[65] all fit within the rIPM framework. In [15], D is diag(sQ)−2, and in rPDAS

and rMPC?, D is diag
(
(xi/si)i∈Q

)
. In [15] and rPDAS, ∆y is ∆ya, and in rMPC?,

∆y satisfies (2.4) with τ = 1 + ψ, where ψ > 0 is a parameter of rMPC?. Hence,

Proposition 2.1 provides a simpler proof for the convergence of the dual sequence

{yk} of [15] than that used in proving Theorem 3 of that paper; it strengthens the

convergence result for rPDAS (Theorem 12 in [60]) by establishing convergence of

the dual sequence to a single optimal point; and it is used in [65] (provisionally

accepted for publication). Proposition 2.1 is also used in the next section, in the

analysis of the expanded framework IrPDIP (see Proposition 2.2).

2.2 A framework for infeasible constraint-reduced PDIPs

2.2.1 Basic ideas and algorithm statement

As mentioned in chapter 1, previously proposed constraint-reduced interior-

point methods ([15], [68], [18], [60] and [65]) for LPs require a strictly dual-feasible

initial point. Here, we show how the limitation can be circumvented by means of

an `1 or `∞ exact penalty function. Specifically, in the `1 case, we consider relaxing

(D) with

max bT y − ρeT z

s.t. AT y − z ≤ c, z ≥ 0,





(Dρ)

23

where z ∈ Rn, maximization is with respect to (y, z), and ρ > 0 is a scalar penalty

parameter, with “primal”

min cT x

s.t. Ax = b, x + u = ρe,

x ≥ 0, u ≥ 0.





(Pρ)

Strictly feasible initial points for (Dρ) are trivially available, and any of the algo-

rithms just mentioned can be used to solve this primal-dual pair.

It is well known (e.g. Theorem 40 in [23], Theorem 1 in [10]) that the `1

penalty function is “exact”, i.e., there exists a threshold value ρ∗ such that for

any ρ > ρ∗, (yρ
∗ , z

ρ
∗) solves (Dρ), then yρ

∗ solves (D) and zρ
∗ = 0. But such a ρ∗

is not known a priori. We propose a scheme inspired by that used in [61] (in a

nonlinear optimization context) for iteratively identifying an appropriate value for

ρ. A key difference is that, unlike that of [61] (see Lemma 4.1 and Proposition 4.2

in that paper), our scheme requires no a priori assumption on the boundedness of

the sequences of iterates (yk in our case, xk in [61]). As seen from the toy example

max y s.t. y ≤ 0, 2y ≤ 2, (2.9)

when too small a value of ρ is used, such boundedness is not guaranteed. Indeed,

the penalized problem associated to (2.9) is

max y − ρz1 − ρz2 s.t. y − z1 ≤ 0, 2y − z2 ≤ 2, z1 ≥ 0, z2 ≥ 0,

or equivalently,

min
y

{−y + ρ max{0, y}+ 2ρ max{0, y − 1}}. (2.10)

24

As seen from Figure 2.1, when ρ < 1
3
, problem (2.10) is unbounded, even though

problem (2.9) itself is bounded.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

feasible area infeasible area

0 < ρ <
1

3
(unbounded)

1

3
≤ ρ < 1 (infeasible)

ρ > 1 (exact)

y

−y + ρ max{0, y} + 2ρ max{0, y − 1} with different values of ρ

Figure 2.1: The objective function of problem (2.10) with different penalty param-

eter values. When ρ < 1
3
, problem (2.10) is unbounded. When ρ ∈ [1

3
, 1), it is

bounded but the minimizer yρ
∗ = 1 is infeasible for (2.9). When ρ > ρ∗ = 1, yρ

∗ = 0

solves (2.9) as desired.

In the `1 version of our proposed scheme, the penalty parameter ρ is increased

if either

‖z+‖ > γ1
‖z0‖
ρ0

ρ (2.11)

or

‖[∆ya; ∆za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũQ 6≥ γ4e (2.12)

25

is satisfied, where γi > 0, i = 1, 2, 3, 4 are parameters, z+ is the just computed next

value of z, and x̃Q and ũQ (defined in (2.17) and (2.18) below) are the most recently

computed Karush-Kuhn-Tucker (KKT) multipliers for constraints (AQ)T y−zQ ≤ cQ

and zQ ≥ 0 respectively, and where the factor ‖z0‖/ρ0 has been introduced for

scaling purposes. Note that these conditions involve both the dual and primal sets

of variables. As we will see though, the resulting algorithm framework IrPDIP is

proved to behave adequately under rather mild restrictions on how primal variables

are updated.

Condition (2.11) is new. It ensures boundedness of {zk} (which is necessary for

{yk} to be bounded), whenever {ρk} is bounded; with such a condition, the situation

just described where {zk} is unbounded due to {ρk} being too small cannot occur.

Condition (2.12) is adapted from [61] (see Step 1 (ii) in Algorithm A of [61], as well

as the discussion preceding the algorithm). Translated to the present context, the

intuition is that ρ should be increased if a stationary point for (Dρ) is approached

(‖[∆ya; ∆za]‖ small) at which not all components of the constraints z ≥ 0 are binding

(not all components of ũQ are significantly positive), and no component of x̃Q or ũQ

takes a large negative value, which would indicate that the stationary point is not

a dual maximizer. Two adaptations were in order: First, closeness to a stationary

point for (Dρ) is rather related to the size of ρ‖[∆ya; ∆za]‖; in [61], this makes no

difference because the sequence of multiplier estimates ((x, u) in the present context)

is bounded by construction, even when ρ grows without bound; second, the lower

bound on ũQ turns out not to be needed in the present context due to the special

structure of the z ≥ 0 constraints (compared to the general c(x) ≥ 0 in [61]).

26

Iteration IrPDIP, stated next, amounts to rIPM applied to (Dρ), rather than

(D), with ρ updated as just discussed (Step 2 (iv)), as well as a specific D matrix

(primal-dual affine scaling: Step 1 (i)) and rather general bounds on how the primal

variables x and u should be updated (Step 2 (ii)).

Iteration IrPDIP

Parameters: θ ∈ (0, 1), τ > 0, α > 0, χ > 0, σ > 1, γi > 0, for i = 1, 2, 3, 4.

Data: y ∈ Rm and z ∈ Rn such that z > max{0, AT y − c}; x ∈ Rn, u ∈ Rn and

ρ ∈ R such that x > 0, u > 0 and ρ > 0; Q ⊆ n such that AQ has full row rank;

s := c− AT y + z.

Step 1 : Computation of search direction:

(i) Let
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
be the primal-dual affine-scaling direction (see

(1.14)) for problem2

max bT y − ρeT z

s.t. (AQ)T y − zQ ≤ cQ, z ≥ 0.





(DQ
ρ)

(ii) Select (∆y, ∆z) to satisfy

bT ∆y − ρeT ∆z ≥ θ(bT ∆ya − ρeT ∆za), ‖[∆y; ∆z]‖ ≤ τ‖[∆ya; ∆za]‖. (2.13)

Step 2. Updates.

2Constraints z ≥ 0 are not “constraint-reduced” in (DQ
ρ). The reason is that they are known

to be active at the solution, and furthermore their contribution to the normal matrix (2.2) is

computed at no cost.

27

(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c− AT y+ + z+ > 0, z+ > 0 (2.14)

where

y+ := y + t∆y, z+ := z + t∆z. (2.15)

(ii) Select [x+; u+] > 0 to satisfy

‖[x+; u+]‖ ≤ max
{‖[x; u]‖, α‖[x̃Q; ũ]‖, χ}

(2.16)

where

x̃Q := xQ + ∆xQ, (2.17)

ũ := u + ∆u. (2.18)

(iii) Pick Q+ ⊆ n such that AQ+ has full row rank.

(iv) Check the two cases (2.11) and (2.12). If either case is satisfied, set

ρ+ := σρ;

otherwise ρ+ := ρ.

Note that to guarantee that direction
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
(see (2.19) below)

is well defined, it is sufficient that AQ have full row rank (see Step 2 (iii) in Iteration

IrPDIP). Indeed, this makes [AQ 0;−EQ − I] full row rank, so that the solution

(∆ya, ∆za) to (2.20) below is well defined.

28

2.2.2 Computational issues

The main computation in Iteration IrPDIP is the calculation of the affine-

scaling direction in Step 1 (i). The primal-dual affine-scaling direction

(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
for (DQ

ρ) is obtained by solving system (derived from

(1.14))




0 0 0 (AQ)T −I 0 I

AQ 0 0 0 0 0 0

I I 0 0 0 0 0

0 0 I 0 0 0 0

SQ 0 0 0 0 0 XQ

0 ZQ 0 0 UQ 0 0

0 0 ZQ 0 0 UQ 0







∆xQ

∆uQ

∆uQ

∆ya

∆zQ
a

∆zQ
a

∆sQ




=




0

b− AQxQ

ρe− xQ − uQ

ρe− uQ

−XQsQ

−ZQuQ

−ZQuQ




(2.19)

where Z := diag(z) and U := diag(u). Eliminating (∆xQ, ∆u) and ∆sQ in sys-

tem (2.19), we obtain the reduced normal system




AQ 0

−EQ −I







XQ 0

0 U







SQ 0

0 Z




−1 


AQ 0

−EQ −I




T 


∆ya

∆za


 =




b

−ρe


 ,(2.20)

∆sQ = −(AQ)T ∆ya + ∆zQ
a , (2.21)


∆xQ

∆u


 = −




xQ

u


−




XQ 0

0 U







SQ 0

0 Z




−1 


∆sQ

∆za


 (2.22)

29

where EQ is a submatrix of the n×n identity matrix consisting of only those columns

that are indexed in set Q. Further eliminating ∆za, we can reduce (2.20) to

AQD(Q)(AQ)T ∆ya = b− AQXQ(SQ)−1(EQ)T (D
(Q)
2)−1ρe, (2.23)

D
(Q)
2 ∆za = −ρe + EQXQ(SQ)−1(AQ)T ∆ya

where diagonal positive definite matrices D(Q) and D
(Q)
2 are given as

D(Q) := XQ(SQ)−1 −XQ(SQ)−1(EQ)T (D
(Q)
2)−1EQXQ(SQ)−1,

D
(Q)
2 := UZ−1 + EQXQ(SQ)−1(EQ)T . (2.24)

(Since Q is selected such that AQ is full row rank, (2.23) yields a unique ∆ya.) By

using the Sherman-Morrison-Woodbury matrix identity, D(Q) can be simplified to

D(Q) =
(
SQ(XQ)−1 + (EQ)T U−1ZEQ

)−1
=

(
SQ(XQ)−1 + ZQ(UQ)−1

)−1
. (2.25)

The dominant cost in computing
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
is to solve (2.20), with

cost dominated by forming the coefficient matrix AQD(Q)(AQ)T of (2.23). When A

is dense, this operation takes |Q|m2 multiplications. In the case of n À m, this can

be much less than nm2. In particular, the same speedup factor can be obtained as

in the case of the dual-feasible rIPM.

2.2.3 Convergence analysis

Iteration IrPDIP can be repeated indefinitely, generating an infinite sequence

of iterates with the dual sequence {(yk, zk, sk)} feasible for problem (Dρ). In sec-

tion 2.1, the sole assumption on (P)–(D) was that A has full row rank. Below, we

further selectively assume (strict) feasibility of (P)–(D).

30

In this section, we show that under mild assumptions the penalty parameter ρ

in Iteration IrPDIP will be increased no more than a finite number of times. First,

as a direct application of (2.6) transposed to problem (Dρ), and of (2.13), (∆y, ∆z)

is an ascent direction for (Dρ). We state this as a lemma.

Lemma 2.2. Step 1(i) of IrPDIP is well defined and bT ∆y − ρeT ∆z > 0.

In view of (2.11), a necessary condition for ρk to remain bounded is that

{zk} be bounded. The latter does hold, as we show next. A direct consequence is

boundedness of {bT yk} from above.

Lemma 2.3. Suppose (P) is feasible, then sequence {zk} is bounded, and {bT yk} is

bounded from above.

Proof. We first show that {zk} is bounded. If ρk is increased finitely many times

to a finite value, say ρ∞, then condition (2.11) must fail for k large enough, which

implies that ‖zk‖ ≤ γ1
‖z0‖
ρ0

ρ∞ for k large enough, proving the claim. It remains to

prove that {zk} is bounded when ρk is increased infinitely many times, i.e., when

ρk →∞ as k →∞.

By assumption, (P) has a feasible point, say x0, i.e.,

Ax0 = b, x0 ≥ 0. (2.26)

Since ρk →∞ as k →∞, there exists k0 such that

ρk > ‖x0‖∞, ∀k ≥ k0. (2.27)

31

Since (yk, zk) is feasible for (Dρ) for all k, we have

AT yk ≤ zk + c ∀k, (2.28)

zk ≥ 0 ∀k. (2.29)

Left-multiplying by (x0)T ≥ 0 on both sides of (2.28) and using (2.26) yields

bT yk ≤ (x0)T zk + cT x0 ∀k. (2.30)

Adding ρke
T zk to both sides of (2.30), we get

(ρke− x0)T zk ≤ πk + ρke
T zk ∀k, (2.31)

where we have defined

πk := cT x0 − bT yk. (2.32)

In view of (2.27) and (2.29), we conclude that zk satisfies

0 ≤ zi
k ≤

πk + ρke
T zk

ρk − (x0)i
≤ πk + ρke

T zk

ρk − ‖x0‖∞ =: νk, ∀i, ∀k ≥ k0,

so that

‖zk‖∞ ≤ νk. (2.33)

Hence, in order to show that {zk} is bounded, it suffices to prove that {νk} is

bounded. We show next that νk+1 ≤ νk, ∀k ≥ k0. Since in view of (2.27), νk is

positive for all k, this proves the boundness of {νk}.

To this end, first note that for each k, Lemma 2.2 implies that

bT yk+1 − ρke
T zk+1 = bT yk − ρke

T zk + tk(b
T ∆yk − ρke

T ∆zk) ≥ bT yk − ρke
T zk,

32

where we have used (2.15). Together with (2.27), this implies that

νk =
πk + ρke

T zk

ρk − ‖x0‖∞ ≥ πk+1 + ρke
T zk+1

ρk − ‖x0‖∞ , ∀k ≥ k0. (2.34)

Since ρk+1 ≥ ρk and since

νk+1 =
πk+1 + ρk+1e

T zk+1

ρk+1 − ‖x0‖∞ , (2.35)

in order to conclude that vk+1 ≤ vk for k ≥ k0, it is sufficient to verify that the

function g given by

g(ρ) :=
πk+1 + ρeT zk+1

ρ− ‖x0‖∞
has a nonpositive derivative g′(ρ) for all ρ satisfying (2.27). Since

πk+1 + ‖x0‖∞eT zk+1 = cT x0 − bT yk+1 + ‖x0‖∞eT zk+1 (using (2.32))

= (x0)T c− (x0)T AT yk+1 + ‖x0‖∞eT zk+1 (using (2.26))

≥ −(x0)T zk+1 + ‖x0‖∞eT zk+1 (using (2.28) and (2.26))

≥ 0, (using (2.29))

it is readily checked using (2.27) that

g′(ρ) = −πk+1 + ‖x0‖∞eT zk+1

(ρ− ‖x0‖∞)2
≤ 0.

Hence {zk} is bounded, proving the first claim. It follows immediately from (2.30)

that {bT yk} is bounded above, proving the second claim.

With boundedness of {zk} in hand, the possibility that {ρk} be unbounded

will be ruled out by a contradiction argument. But first, we prove that the primal

variables are bounded by a linear function of ρk.

33

Lemma 2.4. There exists a constant C > 0 such that

∥∥∥[x̃Qk

k ; ũk; xk; uk]
∥∥∥ ≤ Cρk. (2.36)

Proof. By the triangle inequality, it suffices to show that there exist C1 and C2 such

that

‖[x̃Qk

k ; ũk]‖ ≤ C1ρk, ‖[xk; uk]‖ ≤ C2ρk. (2.37)

Substituting (2.21) into (2.22), and using (2.17) and (2.18), we have




x̃Qk

k

ũk


 =




XQk

k

(
SQk

k

)−1

0

0 Uk(Zk)
−1







AQk 0

−EQk −I




T 


∆ya,k

∆za,k


 . (2.38)

Solving (2.20) for [∆ya,k; ∆za,k] and substituting it into (2.38) yields




x̃Qk

k

ũk


 = Hk




b

−ρke


 (2.39)

with

Hk :=

[
X

Qk
k

(
S

Qk
k

)−1
0

0 Uk(Zk)−1

][
AQk 0

−EQk −I

]T



[
AQk 0

−EQk −I

][
X

Qk
k

(
S

Qk
k

)−1
0

0 Uk(Zk)−1

][
AQk 0

−EQk −I

]T


−1

.

Because diagonal matrices XQk

k , SQk

k , Uk and Zk are positive definite for all k, it

follows from Theorem 1 in [55] that the sequence {Hk} is bounded. Therefore,

(2.39) implies that there exist C ′ > 0 and C1 > 0, both independent of k, such that
∥∥∥∥∥∥∥∥




x̃Qk

k

ũk




∥∥∥∥∥∥∥∥
≤ C ′

∥∥∥∥∥∥∥∥




b

−ρke




∥∥∥∥∥∥∥∥
≤ C1ρk, ∀k, (2.40)

proving the first inequality in (2.37). Now, without loss of generality, suppose

C1 ≥ max(‖[x0; u0]‖, χ)

αρ0

,

34

where α is a parameter in Iteration IrPDIP, and let C2 ≥ αC1. That ‖[xk; uk]‖ ≤

C2ρk follows by induction. Indeed, clearly, it holds at k = 0, and if ‖[xk; uk]‖ ≤ C2ρk

at some iterate k, then since {ρk} is nondecreasing, it follows from (2.16) and (2.40)

that

‖[xk+1; uk+1]‖ ≤ max{C2ρk, αC1ρk, χ} ≤ C2 max {ρk, ρ0} ≤ C2ρk+1.

If (P) is feasible, then Lemma 2.3 rules out the possibility that condition (2.11)

is satisfied on an infinite sequence. Therefore, if, as we will assume by contradiction,

ρk goes to infinity as k goes to infinity, conditions (2.12) must be satisfied on an

infinite subsequence. The next lemma exploits this. From that lemma on, Kρ

denotes the index sequence on which ρk is updated, i.e.,

Kρ = {k : ρk+1 > ρk}. (2.41)

Lemma 2.5. Suppose ρk →∞ and (P) is feasible, then {Zkũk} and {SQk

k x̃Qk

k } are

bounded on Kρ. If in addition (D) is feasible, then zk → 0 as k →∞, k ∈ Kρ, and

if furthermore (P) is strictly feasible, then {yk} is bounded on Kρ.

Proof. Since ρk goes to infinity on Kρ and (P) is feasible, Lemma 2.3 implies that

conditions (2.11) is eventually violated, so condition (2.12) must be satisfied for

k ∈ Kρ large enough. In particular, there exists k0 such that for all k ≥ k0, k ∈ Kρ,

‖[∆ya,k; ∆za,k]‖ ≤ γ2

ρk

, (2.42)

and

x̃Qk

k ≥ −γ3e. (2.43)

35

Since (first block row of (2.19))

∆sQk

k = −(AQk)T ∆ya,k + ∆zQk

a,k ,

it follows from (2.42) that there exists δ > 0 such that

‖∆sQk

k ‖ ≤ δ

ρk

, k ≥ k0, k ∈ Kρ. (2.44)

Using Lemma 2.4, equations (2.42) and (2.44), and the last three block rows of

(2.19), we get

‖Zkũk‖ = ‖Uk∆za,k‖ ≤ Cρk · γ2

ρk

= Cγ2, k ≥ k0, k ∈ Kρ, (2.45)

and

∥∥∥SQk

k x̃Qk

k

∥∥∥ =
∥∥∥XQk

k ∆sQk

k

∥∥∥ ≤ Cρk · δ

ρk

= Cδ, k ≥ k0, k ∈ Kρ, (2.46)

which proves the first claim. Now, without loss of generality, assume that ρk0 >

‖x0‖∞ with x0 a feasible point of (P), so that

u0
k := ρke− x0 > 0, for k ≥ k0. (2.47)

Then, by our assumption in the second claim that (P)–(D) is feasible, there exist y0

and s0 ≥ 0 which, together with x0, satisfy

AQk(x0)Qk + AQk(x0)Qk = Ax0 = b,

x0 + u0
k = ρke,

AT y0 + s0 = c.

36

On the hand other, from the second, third and fourth block rows of (2.19), and

definitions (2.17), (2.18) and (2.14), we get

AQk x̃Qk

k = b,

(x̃k + ũk)
Qk = ρke, ũ

Qk
k = ρke,

AT yk + sk − zk = c. (2.48)

These two groups of equations yield




AQk AQk 0 0

I 0 I 0

0 I 0 I







(x̃k − x0)Qk

−(x0)Qk

(ũk − u0
k)

Qk

(ũk − u0
k)

Qk




=




0

0

0




,

and




AQk AQk 0 0

I 0 I 0

0 I 0 I




T 


y0 − yk

zQk

k

z
Qk
k




=




(sk − s0)Qk

(sk − s0)Qk

zQk

k

z
Qk
k




.

This implies that

[(x̃k − x0)Qk ;−(x0)Qk ; (ũk − u0
k)] ⊥ [(sk − s0)Qk ; (sk − s0)Qk ; zk],

i.e.,

(x̃Qk

k)T (sk − s0)Qk − (x0)T (sk − s0) + (ũk − u0
k)

T zk = 0. (2.49)

Hence, for C ′ large enough, we obtain

(u0
k)

T zk + (x0)T sk = (x0)T s0 + (x̃Qk

k)T sQk

k − (x̃Qk

k)T (s0)Qk + ũT
k zk

≤ (x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2 (2.50)

37

where the equality comes from the expansion of (2.49), and the inequality from

(2.46), (2.43), and (2.45). Since u0
k, zk, x0 and sk are nonnegative for k ≥ k0, we get

zi
k ≤

(x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2

(u0
k)

i
, ∀i, k ≥ k0, k ∈ Kρ.

Since (see (2.47)) (u0
k)

i →∞, i ∈ n as k →∞ on Kρ, this proves that

lim
k→∞,k∈Kρ

zk = 0,

proving the second claim. Finally, if in addition (P) is strictly feasible, then we can

select x0 > 0, and (2.50) yields

si
k ≤

(x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2

(x0)i
, ∀i, k ≥ k0, k ∈ Kρ,

proving that {sk} is bounded on Kρ. Boundednesses of {sk} and {zk}, together with

equation (2.48) and full-rankness of A, imply that {yk} is bounded on Kρ.

We are now ready to prove that ρk is increased at most finitely many times.

The proof uses the fact that if (D) has a strictly feasible point, then for all y ∈ F ,

{ai : i ∈ I(y)} is a positively linearly independent set of vectors.

Proposition 2.2. If (P)–(D) is strictly feasible, then ρk is increased at most finitely

many times, i.e., Kρ is finite. Furthermore, {yk} and {zk} converge to some y∗ and

z∗.

Proof. If the first claim holds, then after finitely many iterations, IrPDIP reduces

to rIPM applied to (Dρ), so the second claim follows by Proposition 2.1. It remains

to prove the first claim. Proceeding by contradiction, suppose Kρ is infinite. Then

38

there exists an infinite index set K and some Q ⊆ n such that Qk = Q, for all

k ∈ K. In view of Lemma 2.3, since K ⊆ Kρ, there must exist k0 > 0 such that

conditions (2.12) are satisfied for k ≥ k0, k ∈ K; in particular,

x̃Q
k ≥ −γ3e, k ≥ k0, k ∈ K. (2.51)

ũQ
k 6≥ γ4e, k ≥ k0, k ∈ K, (2.52)

Since limk→∞ ρk = ∞, it follows from (2.17), (2.18), the third block row of (2.19),

and (2.52) that

λk := ‖x̃Q
k ‖∞ = ‖ρke− ũQ

k ‖∞ →∞, as k →∞, k ∈ K. (2.53)

Hence

‖x̂Q
k ‖∞ = 1, k ≥ k0, k ∈ K (2.54)

where we have defined

x̂Q
k :=

x̃Q
k

λk

, k ≥ k0,∀k ∈ K. (2.55)

(Without loss of generality, we have assumed that λk 6= 0, ∀k ≥ k0, k ∈ K.) Now,

in view of Lemma 2.5, we have for certain constant C > 0 large enough,

‖SQ
k x̃Q

k ‖ ≤ C, ∀k ∈ K, (2.56)

‖yk‖ ≤ C, ∀k ∈ K, (2.57)

lim
k→∞

zk = 0, k ∈ K. (2.58)

Note that by (2.57) and (2.54), {yk} and {x̂Q
k } are bounded on K, so in view of

(2.54) and (2.58), there exists an infinite index set K ′ ⊆ K such that

x̂Q
k → x̂Q

∗ 6= 0, yk → y∗, zk → z∗ = 0, as k →∞, k ∈ K ′, (2.59)

39

for some x̂Q
∗ and some y∗ ∈ F (since z∗ = 0). Dividing by λk and taking the limit

on both sides of (2.56), we obtain

SQ
k x̂Q

k → 0, as k →∞, k ∈ K ′

which implies that

x̂i
∗ = 0, ∀i ∈ Q\I(y∗). (2.60)

On the other hand, the second block equation in (2.19) and equation (2.17) give

AQx̃Q
k = b ∀k.

Dividing by λk and taking the limit of both sides, and using (2.60), we obtain

∑

i∈I(y∗)∩Q

x̂i
∗a

i = 0. (2.61)

Now note from (2.51), (2.55) and (2.53) that

x̂Q
∗ = lim

k→∞,k∈K′

x̃Q
k

λk

≥ lim
k→∞,k∈K′

−γ3e

λk

= 0. (2.62)

Since the strict feasibility of (D) implies positive linear independence of vectors

{ai : i ∈ I(y∗) ∩Q, y∗ ∈ F}, it follows from (2.61) and (2.62) that

x̂i
∗ = 0, ∀i ∈ I(y∗) ∩Q.

Together with (2.60), we therefore have

x̂Q
∗ = 0,

which is a contradiction to (2.59).

40

2.2.4 An `∞ version

Instead of the `1 exact penalty function used in (Pρ)–(Dρ), we can use an `∞

exact penalty function and consider the problem

max bT y − ρz

s.t. AT y − ze ≤ c, z ≥ 0





(2.63)

with its associated primal

min cT x

s.t. Ax = b, eT x + u = ρ,

x ≥ 0, u ≥ 0





(2.64)

where z ∈ R and u ∈ R. Again, strictly feasible points for (2.63) are readily

available. Conditions akin to (2.11)–(2.12) can again be used to iteratively obtain

an appropriate value of ρ. Since both z and u are scalar variables, the scheme can

be slightly simplified: Increase ρ if either

z+ > γ1
z0

ρ0

ρ, (2.65)

or

(i) ‖[∆ya; ∆za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũ < γ4. (2.66)

An analysis very similar to that of section 2.2.3 shows that the resulting `∞ variant

IrPDIP-`∞ enjoys the same theoretical properties as the `1 version IrPDIP; see

Appendix B. Minor changes includes substitution of the `∞-dual norm ‖ · ‖1 for the

`1-dual norm ‖ · ‖∞.

41

2.3 Infeasible constraint-reduced MPC: IrMPC

As an instance of IrPDIP, we apply rMPC? of [65] to (Pρ)–(Dρ), and dub

the resulting full algorithm IrMPC. (Indeed the search direction in rMPC? satisfies

condition (2.4) of rIPM and condition (2.16) of IrPDIP.) In view of Proposition 2.2,

subject to strict feasibility of (P)–(D), after finitely many iterations, IrMPC reduced

to rMPC? applied to problem (Dρ) with ρ equal to a fixed value ρ̄. Thus, we can

invoke results from [65] under appropriate assumptions.

Proposition 2.3. Suppose (P)-(D) is strictly feasible. Then {(yk, zk)} converges to

a stationary point (y∗, z∗) of problem (Dρ) with ρ = ρ̄.

Proof. It follows from Theorem 3.8 in [65] that {(yk, zk)} converges to a stationary

point of problem (Dρ) if and only if the penalized dual objective function is bounded.

To conclude the proof, we now establish that {bT yk − ρke
T zk} is bounded indeed.

Lemma 2.2 implies that {bT yk−ρke
T zk} is increasing for k large enough that ρk = ρ̄,

so it is sufficient to prove that {bT yk − ρke
T zk} is bounded above. Since Lemma 2.3

implies that {bT yk} is bounded above, this claim follows from boundedness of {zk}

and {ρk} (from Lemma 2.3 and Proposition 2.2 respectively).

Under a non-degeneracy assumption,3 {zk} converges to zero, and thus {yk}

converges to an optimal solution of (D). The proof of the following lemma is routine

3The question of whether Theorem 3.8 and Proposition 3.9 in [65] hold without assuming linear

independence of gradients of active constraints is open. If the answer is positive, then the results

established in our Theorem 1 will hold under the sole assumption that (P)–(D) is strictly feasible.

42

and hence omitted.

Lemma 2.6. The gradients of active constraints of problem (Dρ) are linearly inde-

pendent for all (y, z) if and only if {ai : (ai)T y = ci} is a linearly independent set of

vectors for all y ∈ Rm.

Theorem 2.1. Suppose (P)-(D) is strictly feasible, and for all y ∈ Rm, {ai : i ∈

I(y)} is a linearly independent set of vectors. Then zk → 0 and {yk} converges to

an optimal solution of problem (D).

Proof. Lemma 2.6 implies that the gradients of active constraints of problem (Dρ)

are linearly independent for all feasible (y, z). Applying the latter portion of Theo-

rem 3.8 in [65], we conclude that (yk, zk) converges to a maximizer (y∗, z∗) of problem

(Dρ̄). Next, Proposition 3.9 of [65] implies that there exists an infinite subsequence

K on which [x̃k; ũk] converges to an optimal solution [x̃∗; ũ∗] of problem (Pρ̄) and

on which

[∆ya,k; ∆za,k] → 0, as k →∞, k ∈ K.

Thus conditions (i) and (ii) of (2.12) are satisfied on K. On the other hand, since

ρk = ρ̄ for k ∈ K large enough, one condition in (2.12) must fail. It follows that

ũQk

k ≥ γ4e for k ∈ K large enough. Since ũ
Qk
k = ρke, from the fourth block row of

(2.19) and definition (2.18), we conclude that

ũk ≥ min(γ4, ρ̄)e, k ∈ K large enough.

It follows that

ũ∗ ≥ min(γ4, ρ̄)e.

43

Hence, complementary slackness implies that z∗ = 0, and as a consequence, y∗ is an

optimal solution of problem (D).

2.4 Analysis without primal or dual feasibility

In practice it is often hard, even impossible, to ascertain a priori the (strict)

feasibility of the primal and dual problems. This motivates the present section. In

this section, we study the behavior of Iteration IrMPC without feasibility assump-

tions. Our first result deals with the case when {ρk} is bounded.

Theorem 2.2. Suppose that, at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly

independent set. If ρk is increased finitely many times, then either of the following

occurs

(a) {yk} is unbounded. In this case, (P) is infeasible.

(b) {yk} is bounded. In this case, every limit point of {yk} is optimal for (D); and

(P) is feasible and (D) strictly feasible.

Proof. We show case (a) by contradiction. Suppose (P) is feasible, then it is im-

plied from Lemma 2.3 that {zk} is bounded and {bT yk} is bounded from above.

Because {ρk} is increased finitely many times to ρ̄, it follows that {bT yk − ρ̄eT zk}

is bounded from above. Since Lemma 2.2 implies that {bT yk − ρ̄eT zk} is increasing

for k large enough, it follows that {bT yk − ρ̄eT zk} is bounded. By noting that with

ρ̄, Iteration IrMPC is a special case of Iteration rIPM applied to problem (Dρ), it

follows from Lemma 2.1 (ii) that [yk; zk] converges, contradicting to the assumption

of unboundedness of {yk}.

44

In case (b), since ρk is increased only finitely many times, condition (2.11)

must be violated, implying that {zk} is bounded. Note that the assumption that

(P)–(D) is strictly feasible is used to show that [yk; zk] is bounded (see Lemma 2.5)

and that ρk is increased only finitely many times (see Proposition 2.2), all of which

are satisfied in the present claim. Hence, by a similar argument as Proposition 2.3

and Theorem 2.1, we can have that any limit point of {yk} solves (D). It then implies

that both (P) and (D) are feasible. To show (D) is strictly feasible, it is equivalent

to show there exists y0 and ξ > 0 such that AT y0−cξ < 0. From Motzkin’s theorem

(page 28, [37]), it suffices to show that there does not exist x0 6= 0 such that Ax0 = 0,

cT x0 ≤ 0 and x0 ≥ 0, for which a sufficient condition is that the solution set of (P) is

nonempty and bounded. Since the feasibility of (P)–(D) implies the non-emptiness

of the solution set of (P), we will next show the solution set of (P) is bounded

indeed. Given any solution x∗ of (P), there exists y∗ as a solution of (D) such that

X∗(c− AT y∗) = 0 and Ax∗ = b, which implies that

AI(y∗)xI(y∗)
∗ = b.

Because {ai : I(y∗)} is a linearly independent set, it follows that

‖x∗‖ = ‖xI(y∗)
∗ ‖ ≤ ‖(AI(y∗))T AI(y∗)‖−1‖(AI(y∗))T b‖. (2.67)

Since there are finitely many possible sets of active constraints, and since (2.67)

holds for arbitrary primal solution x∗, this proves the boundedness of the solution

set of (P).

Sequence {ρk} can tend to infinity, i.e., Kρ can be infinite, due to infeasibility

45

or the lack of the constraint qualification. This case is studied in the following

lemma and theorem.

Lemma 2.7. Suppose {zk} is bounded, and {yk} has a limit point y∗ on Kρ. If

ρk →∞, as k →∞, then for any limit point [y∗, z∗] of {[yk; zk]}, there exists x̄∗ 6= 0

with s∗ = c− AT y∗ + z∗ such that

Ax̄∗ = 0, (2.68)

Z∗(e− x̄∗) = 0, (2.69)

S∗x̄∗ = 0, (2.70)

x̄∗ ≥ 0. (2.71)

Proof. Since {zk} is bounded, condition (2.11) will be violated eventually. Hence,

since ρk → ∞ as k → ∞, without loss of generality, conditions (2.12) must be

satisfied for all k ∈ Kρ, i.e.,

‖[∆yk; ∆zk]‖ ≤ γ2

ρk

, k ∈ Kρ, (2.72)

x̃Qk

k ≥ −γ3e, k ∈ Kρ, (2.73)

ũQk

k 6≥ γ4e, k ∈ Kρ. (2.74)

Now, for each k, xk and uk is bounded by Cρk for some C > 0 (see Lemma 2.4),

and by construction (see Step 2(ii) of IrMPC),

x̃i
k = 0 ∀i 6∈ Qk. (2.75)

46

It follows from (2.22) and (2.72) that there exists C > 0 such that

‖Zkũk‖ = ‖Uk∆zk‖ ≤ Cρk
γ2

ρk

= Cγ2, k ∈ Kρ, (2.76)

‖Skx̃k‖ = ‖SQk

k x̃Qk

k ‖ = ‖XQk

k ∆sQk

k ‖ ≤ Cρk
γ2

ρk

= Cγ2, k ∈ Kρ, (2.77)

and from (2.19) and (2.17) that

Ax̃k = AQk x̃Qk

k = b, (2.78)

x̃k + ũk = ρke. (2.79)

Define

x̄k =
x̃k

ρk

, and ūk =
ũk

ρk

.

Lemma 2.4 then implies that {x̄k} and {ūk} are bounded. Noting that by assump-

tion, zk is also bounded, let [y∗, z∗, s∗, x̄∗, ū∗] be a limit point of [yk, zk, sk, x̄k, ūk] on

Kρ. Dividing ρk on both sides of (2.73)–(2.79), and taking limit, we derive

x̄∗ ≥ 0,

ū∗ 6≥ 0, (2.80)

‖Z∗ū∗‖ = 0,

‖S∗x̄∗‖ = 0,

Ax̄∗ = 0,

x̄∗ + ū∗ = e, (2.81)

proving the claim. (Note that (2.80) and (2.81) imply x∗ 6= 0.)

Theorem 2.3. Suppose ρk →∞ as k →∞, then one of the cases must occur:

47

(a) {‖yk‖} → ∞ as k → ∞, k ∈ Kρ. In this case, (P) is not strictly feasible or

(D) is infeasible.

(b) {yk} has a limit point on Kρ and {zk} is unbounded. In this case, (P) is

infeasible.

(c) {yk} has a limit point on Kρ, {zk} is bounded, and there exists an infinite set

K ⊆ Kρ such that limk∈K,k→∞{yk} = y∗ for some x∗ and limk→∞ infk∈K ‖zk‖ =

0. In this case, (D) is feasible but not strictly feasible.

(d) {yk} has a limit point on Kρ, {zk} is bounded, and for any infinite set K ⊆ Kρ

such that limk→∞,k∈K yk = y∗ for some y∗ ∈ Rm, it satisfies that limk→∞ supk∈K ‖zk‖ >

0. In this case, (D) is infeasible.

Proof. Claim (a) follows from last claim of Lemma 2.5 and claim (b) follows from

the inverse negative proposition of Lemma 2.3.

We next prove (c) and (d), for which we mainly use Lemma 2.7. We first show

(c). Let [y∗; z∗; s∗] be any limit point of {[yk; zk; sk]} on K such that z∗ = 0. Since

for all k, sk ≥ 0, we have from the dual feasibility of [yk; zk],

c− AT y∗ = s∗ − z∗ = s∗ ≥ 0, (2.82)

i.e., y∗ is a feasible point of (D). To show (D) is not strictly feasible, given any

y ∈ Rm, we obtain from (2.82)

s∗ + AT (y∗ − y) = c− AT y. (2.83)

From Lemma 2.7, there exists x̄∗ 6= 0 satisfying (2.68)–(2.71). Left-multiplying

48

(2.83) by x̄T
∗ yields

x̄T
∗ (c− AT y) = 0 ∀y ∈ Rm,

where we have used equation (2.70) and (2.68). Since x̄∗ ≥ 0 from (2.71), and since

x̄∗ 6= 0, it follows that the set {y : AT y ≤ c} has no strictly point, proving the

claim.

Next, we show (d). Let [y∗; z∗; s∗] be any limit point of {[yk; zk; sk]} on K, so

(since zk ≥ 0, ∀k)

z∗ 6= 0 with z∗ ≥ 0. (2.84)

To show that (D) is infeasible, i.e., there does not exist y such that AT y ≥ c, by

Farkas’ Lemma, it suffices to show that there exists x̄∗ satisfying

Ax̄∗ = 0, x̄∗ ≥ 0, cT x̄∗ < 0.

Again, let x̄∗ satisfy (2.68)–(2.71). It remains to show cT x̄∗ < 0, which can be

derived as

cT x̄∗ = (AT y∗ + s∗ − z∗)T x̄∗ = −zT
∗ x̄∗ = −eT z∗ < 0,

where the first equality comes from dual feasibility of [yk; zk], the second one from

(2.68) and (2.70), the last one from (2.69), and the inequality from (2.84).

Theorem 2.3 summarizes the feasibility of (P)–(D) with respect to the behavior

of Iteration IrMPC. On the other direction, the following result gives the behavior

of Iteration IrMPC with respect to the feasibility of (P)–(D).

49

Theorem 2.4. Suppose for every y ∈ Rm, {ai : i ∈ I(y)} is a linearly independent

set, then the following properties hold

(a) If (P) is feasible, then {zk} is bounded.

(b) If (P) and (D) are both strictly feasible, then ρk is increased only finitely many

times and zk → 0 as k → ∞, k ∈ Kρ, and every limit point of the bounded

sequence {yk} is optimal for (D).

(c) If (P) is infeasible or (D) is not strictly feasible, then {[yk; zk]} is unbounded.

(d) If (P) is feasible and (D) is not strictly feasible, then {yk} is unbounded.

Proof. Claim (a) is a restatement of Lemma 2.3, and claim (b) is a restatement of

Theorem 2.1.

We show claim (c) by contradiction. Suppose {[yk; zk]} is bounded. Note that

the strict feasibility of (P)–(D) is used to show that [yk; zk] is bounded in Proposition

2.2, and note that linear independence of active constraints at any point is a stronger

condition than positive linear independence of active constraints at feasible points

of (D), thus a similar argument as Proposition 2.2 can show that ρk is increased

finitely many times. It then follows from Theorem 2.2 (b) that (D) is strictly feasible

and (P) is feasible, contradicting to the assumption. In view of claim (a), claim (d)

follows immediately from claim (c).

50

2.5 Numerical results

2.5.1 Implementation

IrMPC was implemented in MATLAB R2009a. All tests were run on a laptop

machine (Intel R / 1.83G Hz, 1GB of RAM, Windows XP professional 2002). To

eliminate random errors in measured CPU time, we report averages over 10 repeated

runs.

The initial points were set as follows. we adopted (typical infeasible) initial

conditions (x0, y0, s0) from [39] for problems (P)–(D). Namely, we first computed

ỹ := (AAT)−1Ac, s̃ := c− AT ỹ, x̃ := AT (AAT)−1b,

δx := max(−1.5 ∗min(x̃), 0), δs := max(−1.5 ∗min(s̃), 0),

δ̃x := δx + 0.5 ∗ (x̃ + δxe)
T (s̃ + δse)∑n

i=1(x̃
i + δx)

, δ̃s := δs + 0.5 ∗ (x̃ + δxe)
T (s̃ + δse)∑n

i=1(s̃
i + δs)

and selected (x0, y0, s0) to be

x0 := x̃ + δ̃xe, y0 := ỹ, s0 := s̃ + δ̃se. (2.85)

The vector z0 (for the penalized problem) was set to be

z0 := AT y0 − c + s0

and under the idea of centrality, initial point u0 was computed as

(u0)i :=
µ0

(z0)i

, i ∈ n

where µ0 := (x0)T s0

n
. The penalty parameter was initialized with ρ0 := ‖x0 + u0‖∞

for the version with the `1 exact penalty function, and with ρ0 := eT x0 + u0 for the

`∞ version.

51

The parameters for rMPC? (in Step 1 (ii) and Step 2 (i)-(iii) of IrMPC) were

set to the same values as in section 5 (“Numerical Experiments”) of [65]. As for the

adaptive scheme (2.11)–(2.12), parameters were set to σ := 10, γ1 := 10, γ2 := 1,

γ3 := 100, γ4 := 100, and the Euclidean norm was used in (2.11) and (2.12). We

chose Q according to the most active rule (Rule 2.1 in [65] with ε = ∞), which selects

the constraints that have smallest slacks s. Analogously to [65], we terminated when

max

{‖[b− Ax; ρe− x− u]‖
1 + ‖[x; u]‖ ,

cT x− bT y + ρeT z

1 + |bT y − ρeT z|
}

< tol

where we used tol = 10−8.

We applied IrMPC on problems from the Netlib LP test problem set collection

and randomly generated problems.

2.5.2 Problems from COAP

We applied IrMPC to the selected LP problems (those in standard forms)

from the Netlib LP test problem set [56]. The Matlab-data format version of this

problem set, needed in our Matlab environment to save data conversion, is available

at the COAP collection [57]. This problem set was solved because they have known

solutions, and hence, provided us benchmark references.

We have verified that IrMPC generates correct solutions as listed in [57]. Fur-

thermore, Table 2.1 shows certain specific properties of results by the `1 version of

IrMPC for |Q| = n. The first column lists the names of selected problems, and the

next two columns their sizes: number of variables (m) and number of constraints

(n). The fourth column shows the feasibility of point y0 initialized as (2.85) for

52

corresponding problems: feasible (F) and infeasible (IF). In the last two columns,

x∗ denotes the primal optimal solution, and ρ̄ the final value of the penalty pa-

rameter. As can be seen from the table, ρ̄ is greater than ‖x∗‖∞, consistent with

our analysis. These benchmark tests demonstrate that IrMPC obtains the optimal

solutions for those test programs with either dual feasible or infeasible initial points.

Similar behaviors are exhibited by the `∞ version, and hence omitted. Comparison

of the CPU time and the number of iterations between these two versions is shown

in Table 2.2. They have not much difference in the number of iterations. In terms of

the CPU time, the `∞ version is slightly faster. This is because it has less overhead,

resulting from less variables and hence, less time in the line searches and variable

updates.

2.5.3 Randomly generated problems

We generated standard linear problems of size m = 100 and n = 20000. Entries

of matrix A and vectors b are independently normally distributed. We set vector

c := AT y + s with a normally distributed vector y ∼ N (0, 1) and with a vector

s uniformly generated on [0, 1], which guarantees that the dual problem is strictly

feasible. We generated 10 random problems. The average CPU time and iteration

counts for solving those 10 problems are shown in Figures 2.2 and 2.3 for various

values of |Q| for the `1 and `∞ versions, respectively. Point y0 initialized in (2.85) was

infeasible for (D) for all generated problems. The fraction of kept constraints, defined

by |Q|/n, is showed in the horizontal axis with a logarithmic scale. The rightmost

53

Table 2.1: Results of the Netlib LP test problems by the `1 version of IrMPC

Problem m n Initial Feasibility ‖x∗‖∞ ρ̄

SCRS8 491 1169 IF 286.2776 350.5974

SCSD1 78 760 F 0.7073 2.9960

SCSD6 148 1350 F 0.9488 2.5005

SCSD8 398 2750 F 22.5000 42.5128

SHIP04L 403 2118 IF 187.3789 213.8128

SHIP04S 403 1458 IF 190.9176 213.7949

SHIP08L 779 4283 IF 126.0000 196.6515

SHIP08S 779 2387 IF 126.0000 196.6692

SHIP12L 1152 5427 IF 135.9453 223.9894

SHIP12S 1152 2763 IF 134.2941 224.7715

TRUSS 334 587 F 725.6492 1222.8

WOODW 1099 8405 IF 0.6234 5.9225

WOOD1P 245 2594 IF 1.4429 2.7623

54

Table 2.2: Comparison of the results by the `1 and `∞ versions for the Netlib LP

test problems

Problem Iter (`∞) CPU Time (`∞) Iter (`1) CPU time (`1)

SCRS8 23 0.4250 51 1.3391

SCSD1 9 0.1063 11 0.1500

SCSD6 11 0.1375 11 0.2328

SCSD8 10 0.2250 10 0.3719

SHIP04L 14 1.3938 14 1.7172

SHIP04S 15 1.0547 15 1.3539

SHIP08L 16 8.5594 16 9.0609

SHIP08S 15 4.5297 15 4.7188

SHIP12L 18 20.1750 18 23.0625

SHIP12S 17 7.9234 17 8.0672

TRUSS 20 10.2016 20 11.3250

WOODW 31 1.5300 31 1.8204

WOOD1P 29 6.3563 29 10.1047

55

point, corresponding to |Q| = n, is the result without constraint reduction. As can

be seen from both Figures 2.2 and 2.3, CPU time decreases as |Q|/n decreases, till

as little as 1% of constraints. As was already observed in [60] and [65], the number

of iterations remains constant for a large range of fractions |Q|/n. Note that the

CPU time at |Q| = n in the `∞ version is less than that in the `1 version. While the

cost per iteration for these two exact penalty functions is about the same, as seen

in Figure 2.3, that difference comes from the fewer iterations the `∞ version takes.

We compared the result with the infeasible Mehrotra’s predictor-corrector

(MPC) method in [66]. Initial points for MPC were set the same as in (2.85).

Figure 2.2 and 2.3 denote the CPU time and the number of iterations obtained from

MPC by a dashed magenta line. It shows that for a large range of fractions |Q|/n

(from 0.7% to 99% in the `1 version, and nearly 0 to 100% in the `∞ version), al-

gorithm IrMPC takes less time to solve the problem than algorithm MPC does. In

particular, the time obtained by IrMPC using fractions from 1% to 10% is reduced

to approximately one sixth of that by MPC.

Furthermore, we give the statistical data by the `1 penalty function for 1000

randomly generated problems. Figure 2.4 show the average of the CPU time and

number of iterations, and Figure 2.5 shows the corresponding average of speedup

gain. Note that the speedup gain for CPU time (resp. number of iterations) is

defined as the ratio of time (resp. number of iterations) with n constraints and |Q|

constraints. As we can see, with more than 1% constraints, constraint reduction

is better than no constraint reduction. In particular, using 1% ∼ 10% constraints

yields an average of more than 8 times speed-up. Figure 2.6 and 2.7 give the worst

56

10
−2

10
−1

10
0

0

10

20

30

to
ta

l t
im

e
(s

ec
)

norm−1 exact penalty function

10
−2

10
−1

10
0

0

20

40

60

80

100

fraction of constraints kept

ite
ra

tio
ns

Figure 2.2: CPU time and iterations with the `1 penalty function.

10
−2

10
−1

10
0

0

10

20

30

to
ta

l t
im

e
(s

ec
)

norm−infinity exact penalty fucntion

10
−2

10
−1

10
0

0

20

40

60

80

100

fraction of constraints kept

ite
ra

tio
ns

Figure 2.3: CPU time and iterations with the `∞ penalty function.

57

case and standard deviation of the speedup gain, respectively. As can be seen in the

worst case, constraint reduction takes less time than no constraint reduction with

1% ∼ 8% constraints, even when the corresponding number of iterations is about

four times of that without constraint reduction. The standard deviation of CPU

time is less than 1.4, and that of number of iterations is rather small.

10
−2

10
−1

10
0

0

10

20

30

to
ta

l t
im

e
(s

ec
)

`1 exact penalty function

10
−2

10
−1

10
0

0

20

40

60

80

100

fraction of constraints kept

ite
ra

tio
ns

Figure 2.4: The average of CPU time and iterations for 1000 randomly generated

problems.

2.6 Conclusion

We have two contributions in constraint reduction for linear optimization (see

a published version [27]). At first, we have outlined a general framework (rIPM)

for a class of constraint-reduced, dual-feasible interior-point methods that encom-

passes several previously proposed algorithms, and proved, for all methods in that

class, that the dual sequence converges to a single point. In order to accommodate

important classes of problems for which an initial dual-feasible point is not read-

58

10
−2

10
−1

10
0

0

5

10

15

to
ta

l t
im

e
(s

ec
)

Average of speedup gain

10
−2

10
−1

10
0

0

0.5

1

1.5

2

fraction of constraints kept

ite
ra

tio
ns

Figure 2.5: The average speedup gain of CPU time and iterations for 1000 randomly

generated problems.

10
−2

10
−1

10
0

0

1

2

3

4

5

to
ta

l t
im

e
(s

ec
)

Worst case of speedup gain

10
−2

10
−1

10
0

0

2

4

6

8

10

fraction of constraints kept

ite
ra

tio
ns

Figure 2.6: The worst speedup gain of CPU time and iterations for 1000 randomly

generated problems.

59

10
−2

10
−1

10
0

0

1

2

3

4

5

to
ta

l t
im

e
(s

ec
)

Standard deviation of speedup gain

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

fraction of constraints kept
ite

ra
tio

ns

Figure 2.7: The standard deviation of the speedup gain of CPU time and iterations

for 1000 randomly generated problems.

ily available, we have then proposed an `1/`∞ penalty-based extension (IrPDIP)

of this framework for infeasible constraint-reduced primal-dual interior point. We

have shown that the penalty adjustment scheme in IrPDIP has the property that,

under the sole assumption that the primal-dual pair is strictly feasible, the penalty

parameter remains bounded.

An infeasible constraint-reduced variant of Mehrotra’s Predictor Corrector

(specifically, an infeasible variant of rMPC? from [65]), dubbed IrMPC, was then

considered, as an instance of IrPDIP. IrMPC was analyzed, and tested on the Netlib

problem set of linear problems and randomly generated problems. The results show

promise that IrMPC obtains major speed-ups while handling infeasible initial points.

It is an open problem about the time complexity of IrPDIP and IrMPC. Time

complexity is a hard problem here because the algorithms here don’t force strict

restrictions on the step-size.

60

Chapter 3

Infeasible Constraint Reduction for Convex Quadratic Optimization

In this chapter, we extend the infeasible constraint-reduced algorithm to con-

vex quadratic optimization, and derive the results that generalize those in linear

optimization. Previous work of Jung et al. [32] used exact penalty functions to al-

low for infeasible initial points in the constraint-reduced algorithm. The unsolved

issue, about how to choose an appropriate penalty parameter, is addressed here.

3.1 An infeasible constraint-reduced IPM

3.1.1 Basic ideas

The constraint reduction PDIPM (see section 1.2.3) for CQPs requires a

strictly dual-feasible initial point. To address this limitation, as in the linear pro-

gramming problems, we introduce an `1 or `∞ exact penalty function. Specifically

in the `1 case, as in [32], we consider the relaxed problem of (Dq)

maxy,z bT y − ρeT z − 1
2
yT Hy

s.t. AT y − z ≤ c, z ≥ 0,





(Dqρ)

61

with its associated primal problem

min cT x + 1
2
yT Hy

s.t. Ax + Hy = b,

x + u = ρe,

x ≥ 0, u ≥ 0.





(Pqρ)

Strictly feasible points are readily available for the penalized problem (Dqρ): Given

any y, feasible or infeasible for (Dq), selecting z > max{0, AT y − c} makes (y, z)

strictly feasible for (Dqρ).

Following [32], applying constraint reduction schemes to problem (Dqρ) yields

the reduced penalized problem1

max
y,z

bT y − ρeT z − 1

2
yT Hy (3.1)

s.t. (AQ)T y − zQ ≤ cQ, z ≥ 0. (3.2)

By applying primal-dual interior-point methods to problem (3.1)–(3.2), the reduced

affine-scaling direction (∆xQ, ∆u, ∆y, ∆z, ∆sQ) can be obtained by solving the sys-

1Note that, once again, we don’t use constraint-reduction to constraints z ≥ 0; see the reason

in footnote 5 of Chapter 2.

62

tem



0 0 0 (AQ)T −I 0 I

AQ 0 0 H 0 0 0

I I 0 0 0 0 0

0 0 I 0 0 0 0

SQ 0 0 0 0 0 XQ

0 ZQ 0 0 UQ 0 0

0 0 ZQ 0 0 UQ 0







∆xQ

∆uQ

∆uQ

∆y

∆zQ

∆zQ

∆sQ




=




0

b− AQxQ −Hy

ρe− xQ − uQ

ρe− uQ

−XQsQ

−ZQuQ

−ZQuQ




. (3.3)

After block Gaussian elimination, this system can be derived into normal equations

M (Q)




∆y

∆z


 =




b−Hy

−ρe


 , (3.4)

∆sQ = −(AQ)T ∆y + ∆zQ, (3.5)


∆xQ

∆u


 = −




xQ

u


−




(SQ)−1XQ 0

0 Z−1U







∆sQ

∆z


 , (3.6)

where

M (Q) =




H 0

0 0


 +




AQ 0

−EQ −I







(SQ)−1XQ 0

0 Z−1U







AQ 0

−EQ −I




T

. (3.7)

As in [32], further eliminating ∆z, we can reduce (3.4) to

(H + AQD(Q)(AQ)T)∆y = b−Hy − AQXQ(SQ)−1(EQ)T (D
(Q)
2)−1ρe, (3.8)

D
(Q)
2 ∆z = −ρe + EQXQ(SQ)−1(AQ)T ∆y, (3.9)

where diagonal positive-definite matrices D(Q) and D
(Q)
2 are respectively defined in

(2.25) and (2.24). The dominant cost of computing
(
∆xQ, ∆u, ∆y, ∆z, ∆sQ

)
is to

63

solve (3.8), which mainly needs to form the matrix

AQD(Q)(AQ)T =
∑
i∈Q

diai(ai)T .

It takes |Q|m2 flops, enjoying the same speed-up as feasible constraint-reduced IPMs.

(see (1.27).)

The `1 penalty function is “exact” (see the definition on page 23, section 2.2.1),

so that an appropriate value of ρ is needed. Such a value, as in the linear case, can be

obtained by the scheme for nonlinear optimization in [61]. Once again, our scheme

does not require the assumption on the boundedness of the sequences of iterates yk.

Since quadratic optimization is more general than linear optimization, obviously,

boundedness of yk can not be guaranteed. To illustrate this, a toy example (based

on the linear example (2.9)) is constructed as

max
y1, y2

y1 +
1

2




y1

y2




T 


0 0

0 1







y1

y2


 s.t. y1 ≤ 0, 2y1 ≤ 2. (3.10)

This example has no constraints on variable y2, so y2
∗ = 0 at the solution. Substi-

tuting y2
∗ reduces (3.10) to the linear program (2.9) with the only variable y1. The

penalized problem of (2.9) is unbounded when ρ < 1
3
; see Figure 2.1. Therefore, the

scheme is: at the end of each iteration, increase ρ when either

‖z‖∞ ≥ γ1
‖z0‖∞

ρ0

ρ (3.11)

OR

(i) ‖[∆y; ∆z]‖ ≤ γ2, AND (ii) x̃Q ≥ −γ3e, AND (iii) ũQ 6≥ γ4e (3.12)

64

is satisfied. This scheme is the same as in the linear case (2.11)–(2.12) except the

first condition of (3.12). The difference arises because algorithm IrQP forces the

boundedness of primal variables (see (3.21) and (3.22) below), so the first condition

in (3.12) is enough to indicate that the current iterate is close to a stationary point.

(Such closeness is measured by the product of primal variables [x; u] and dual di-

rection [∆y; ∆z].) But in the linear case, the primal variables are only bounded by

a linear function of ρk (see Lemma 2.4) where ρk might be unbounded.

3.1.2 Algorithm statement

We are now ready to state Iteration IrQP, an infeasible constraint-reduced

interior-point algorithm for quadratic program (Dq). It is identical to the iterations

considered in [32] except for Step 2 (iii). Besides updating ρ, Step 2 (iii) also forces

the dual variables to be centralized when ρ is increased (see (3.23)–(3.24)), which is

shown to be much more efficient in our implementation. The updates (3.21)–(3.22)

for primal variables are from [32] because [32] is what our convergence analysis is

based on. Another method for updates in linear optimization [65] is also suitable.

65

Iteration IrQP

Parameters: β ∈ (0, 1), σ > 1, γi > 0, for i = 1, 2, 3, 4; wmin > 0 and χ > 0.

Data: y ∈ Rm and z ∈ Rn such that z > max{0, AT y−c}; s := c−AT y+z; x ∈ Rn,

u ∈ Rn and ρ ∈ R such that x > 0, u > 0 and ρ > 0; Q ⊆ n such that [H AQ] has

full rank.

Step 1 : Computation of the search direction.

(i). Obtain
(
∆xQ, ∆u, ∆y, ∆z, ∆sQ

)
by solving (3.4)–(3.6). Compute

∆sQ := −(AQ)T ∆y + ∆zQ. (3.13)

Set

x̃i :=





xi + ∆xi, i ∈ Q,

0, i 6∈ Q,

(3.14)

ũ := u + ∆u, (3.15)

ỹ := y + ∆y, (3.16)

and set

x̃− := min{x̃, 0}, ũ− := min{ũ, 0}. (3.17)

(ii). Compute

t̂ := arg max{t̄ ∈ [0, 1] | s + t̄∆s ≥ 0, z + t̄∆z ≥ 0}; (3.18)

Set step sizes

t := max{βt̂, t̂− ‖[∆y; ∆z]‖}; (3.19)

66

Step 2. Updates.

(i). Dual variables: set

(y+, s+, z+) := (y, s, z) + t(∆y, ∆s, ∆z). (3.20)

(ii). Primal variables: set

xi
+ := max{max{min{‖[∆y; ∆z]‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, x̃i}, χ} i ∈ n;

(3.21)

ui
+ := max{max{min{‖[∆y; ∆z]‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, ũi}, χ} i ∈ n.

(3.22)

(iii). The penalty parameter: If either (3.11) or (3.12) is satisfied, set

ρ+ := σρ (3.23)

and

µ :=
xT s + uT z

2n
, xi :=

µ

si
, ui :=

µ

zi
∀i ∈ n; (3.24)

otherwise set ρ+ := ρ.

(iv). The working set: select Q+ such that [H AQ+] has full row rank.

It is clear from Iteration IrQP that x+ > 0, u+ > 0, z+ > max{0, AT y+ − c}, and

(see (3.26) below) s+ = c−AT y+ + z+. Further, since [H AQ] has full row rank and

(x, u, s, z) > 0, M (Q) (see (3.7)) is positive definite, so the search direction (∆y, ∆z)

67

in Step 1 (i) of IrQP is well defined. Hence, Iteration IrQP can be repeated in-

definitely, generating an infinite sequence of iterates. Once again, k is attached to

denote the kth iterate.

Also, note that equations (3.5) and (3.13) imply

AT ∆yk −∆zk + ∆sk = 0 ∀k. (3.25)

Since s0 = c − AT y0 + z0 (see Data section of Iteration IrQP), in view of (3.20), it

follows that

AT yk − zk + sk = c, sk > 0, zk > 0, ∀k, (3.26)

i.e., for all k, the primal iterate (yk, zk) is strictly feasible for (Dqρ).

3.1.3 Boundedness of the sequence of penalty parameters

In this section, we show that ρk (generated by Iteration IrQP) is increased

only finitely many times under the assumption that the primal and dual problems

are both strictly feasible. This is the same result that can be proven with the same

procedure as in linear optimization, but is more complicated to derive because of the

difficulties caused by the nonzero Hessian matrix. We will point out the differences

from the LP case and explain the resulting difficulties throughout the analysis.

The following lemma states that the objective function of (Dqρ) increases when

parameter ρ is not changed.

Lemma 3.1. (Corresponds to Lemma 2.2) For all k, f(yk+1)− ρke
T zk+1 ≥ f(yk)−

ρke
T zk.

68

Proof. At each iterate k, the update of dual iterates can be viewed as applying to

(Dqρk
) one iteration of Algorithm A of [32] without increasing the parameter ρk.

Thus, the claim follows from Proposition A. 4 (i) of [32] with α there substituted

by t with 0 ≤ t ≤ 1 (see (3.18) and (3.19)).

Remark: Because the value of ρk might increase at some iteration due to the

scheme (3.11)–(3.12), it is not necessarily true that for all k, f(yk+1)−ρk+1e
T zk+1 ≥

f(yk)− ρke
T zk.

For future reference, note that because H is positive semidefinite, given any

p ∈ Rm and y ∈ Rm, it holds that (y − p)T H(y − p) ≥ 0, or equivalently

yT Hy − 2pT Hy ≥ −pT Hp. (3.27)

The following lemma shows the boundedness of sequence {zk}. Unlike the

corresponding Lemma 2.3 of linear optimization, the difficulty is to find a decreasing

sequence {νk} that satisfies the boundedness property νk ≤ zk for all k; see (3.36)

below. Such a sequence {νk} is hard to construct because we lack the information

about the boundedness of sequences {yT
k Hyk} and {(y0)T Hyk} with the given y0

(see the right hand side of (3.35) below), both of which simply vanish in linear

optimization.

Lemma 3.2. (Corresponds to Lemma 2.3) Suppose (Pq) is feasible, then sequence

{zk} is bounded.

Proof. If ρk is increased finitely many times to a finite value, say ρ∞, then condi-

tion (3.11) must fail for k large enough, i.e., ‖zk‖∞ ≤ γ1
‖z0‖∞

ρ0 ρ∞ for k large enough,

69

proving the claim. It remains to prove that {zk} is bounded when ρk is increased

infinitely many times, i.e., when ρk →∞ as k →∞.

By assumption that (Pq) has a feasible point, say (x0, y0), we have

Ax0 + Hy0 = b, x0 ≥ 0. (3.28)

Since ρk →∞ as k →∞, there exists k0 such that

ρk > ‖x0‖∞, ∀k ≥ k0. (3.29)

Since (yk, zk) is dual feasible for (Dqρk
) for all k (see (3.26)), we have

AT yk ≤ zk + c, (3.30)

zk ≥ 0. (3.31)

Left-multiplying by (x0)T ≥ 0 on both sides of (3.30), using (3.28), yields

(b−Hy0)T yk ≤ zT
k x0 + cT x0. (3.32)

Adding ρke
T zk to both sides of (3.32), after simple reorganization, we get

(ρke− x0)T zk ≤ cT x0 − (b−Hy0)T yk + ρke
T zk. (3.33)

Next, inequality (3.27) implies that

−1

2
yT

k Hyk + (y0)T Hyk + cT x0 ≤ 1

2
(y0)T Hy0 + cT x0 =: M, ∀k. (3.34)

In view of (3.29) and (3.31), it follows from (3.33) and (3.34) that, for all i,

0 ≤ zi
k ≤ cT x0 − (b−Hy0)T yk + ρke

T zk

ρk − (x0)i
(3.35)

≤ cT x0 − (b−Hy0)T yk + ρke
T zk

ρk − ‖x0‖∞
=

(cT x0 + (y0)T Hyk − 1
2
yT

k Hyk)− (bT yk − 1
2
yT

k Hyk) + ρke
T zk

ρk − ‖x0‖∞
≤ M − f(yk) + ρke

T zk

ρk − ‖x0‖∞ =: νk, (3.36)

70

so that

‖zk‖∞ ≤ νk.

Hence, in order to show that {zk} is bounded, it suffices to prove that {νk} is

bounded. We show next that νk+1 ≤ νk, ∀k ≥ k0. Since νk is nonnegative for all k,

this proves the boundedness of {νk}.

In view of (3.29) and (3.36), it is implied from Lemma 3.1 that

νk =
M − f(yk) + ρke

T zk

ρk − ‖x0‖∞ ≥ M − f(yk+1) + ρke
T zk+1

ρk − ‖x0‖∞ , ∀k ≥ k0. (3.37)

On the other hand,

νk+1 =
M − f(yk+1) + ρk+1e

T zk+1

ρk+1 − ‖x0‖∞ .

Since ρk+1 ≥ ρk, in order to conclude that νk ≥ νk+1 for k ≥ k0, it is sufficient to

verify that the function g given by

g(ρ) :=
M − f(yk+1) + ρeT zk+1

ρ− ‖x0‖∞

has a nonpositive derivative g′(ρ) for all ρ satisfying (3.29). Note that

M − f(yk+1) + ‖x0‖∞eT zk+1 ≥ cT x0 + (y0)T Hyk+1 − 1

2
yT

k+1Hyk+1 − f(yk+1) + ‖x0‖∞eT zk+1

= cT x0 + (y0)T Hyk+1 − bT yk+1 + ‖x0‖∞eT zk+1

= (x0)T c− (x0)T AT yk+1 + ‖x0‖∞eT zk+1

≥ −(x0)T zk+1 + ‖x0‖∞eT zk+1

≥ 0,

where the first inequality comes from (3.34) with k replaced by k + 1, the first

equality from the substitution of f(yk+1) by bT yk+1 − 1
2
yT

k+1Hyk+1, the second one

71

from (3.28), the second inequality from (3.30) and the non-negativeness of x0, and

the last one from (3.31). It follows from (3.29) that

g′(ρ) = −M − f(yk+1) + ‖x0‖∞eT zk+1

(ρ− ‖x0‖∞)2
≤ 0,

proving νk ≥ νk+1 and hence the boundedness of {zk}.

Hence, if ρk goes to infinity as k goes to infinity, (3.12) must happen in-

finitely many times. The following lemma (corresponding to Lemma 2.5) studies

the boundedness property of iterate sequences on Kρ. (Recall that Kρ denotes the

index sequence on which ρk is updated; see (2.41).) Compared to Lemma 2.5, this

lemma additionally shows the boundedness of sequence ψk := (y0 − yk)
T H(y0 − ỹk)

for the given vector y0, without which it is impossible to derive the boundedness of

dual sequences {sk} and {zk}; see (3.49) below. The sequence ψk, again, vanishes

in linear optimization because H = 0.

Lemma 3.3. (Corresponds to Lemma 2.5) Suppose (Pq) is feasible. If ρk → ∞,

then {Zkũk} and {Skx̃k} are bounded on Kρ. If additionally, (Dq) is feasible, then

zk → 0 as k → ∞, k ∈ Kρ, and if, moreover, (Pq) is strictly feasible, then {yk} is

bounded on Kρ.

Proof. Since (Pq) is feasible, and since ρk goes to infinity on Kρ, Lemma 3.2 implies

that (3.12) must be satisfied for all k ∈ Kρ large enough. In particular, there exists

an integer k0 such that for all k ≥ k0, k ∈ Kρ,

‖[∆yk; ∆zk]‖ ≤ γ2, (3.38)

72

and

x̃Qk

k ≥ −γ3e. (3.39)

In view of (3.25), inequality (3.38) implies that {∆sk} is bounded on Kρ. Thus,

with boundedness of xk and uk (enforced by Iteration IrQP) and boundedness of

∆zk and ∆sk on Kρ, it follows from (3.6) and definitions (3.14)–(3.15) that for some

C > 0 large enough,

‖Zkũk‖ = ‖Uk∆zk‖ ≤ C, k ≥ k0, k ∈ Kρ, (3.40)

and

∥∥∥SQk

k x̃Qk

k

∥∥∥ =
∥∥∥XQk

k ∆sQk

k

∥∥∥ ≤ C, k ≥ k0, k ∈ Kρ, (3.41)

which proves the first claim that {Zkũk} on Kρ and from (3.14) that {Skx̃k} are

bounded on Kρ.

Now, by assumption that (Pq)–(Dq) is primal-dual feasible, there exist (x0, y0, s0)

such that

AT y0 + s0 = c, Ax0 = b−Hy0, [x0; s0] ≥ 0. (3.42)

Without loss of generality, we assume that ρk0 > ‖x0‖∞, so that

u0
k := ρke− x0 > 0, for k ≥ k0. (3.43)

On the other hand, in view of definitions (3.14), (3.15) and (3.16), equation (3.26)

and the second to fourth block equations of (3.3) imply that, for all k,

AT yk − zk + sk = c, Ax̃k = b−Hỹk, x̃k + ũk = ρke. (3.44)

73

Equations (3.42)–(3.44) yield that

AT (y0 − yk) + zk + s0 − sk = 0, (3.45)

A(x0 − x̃k) = −H(y0 − ỹk), (3.46)

(x0 − x̃k) + (u0
k − ũk) = 0. (3.47)

It follows that, for all k,

(s0 − sk)
T (x0 − x̃k)− zT

k (u0
k − ũk) = (s0 − sk + zk)

T (x0 − x̃k)

= −(y0 − yk)
T A(x0 − x̃k)

where the first equality comes from (3.47) and the second one from (3.45). Hence,

from (3.46), we obtain

(s0 − sk)
T (x0 − x̃k)− zT

k (u0
k − ũk) = (y0 − yk)

T H(y0 − ỹk). (3.48)

It follows that

(y0 − yk)
T H(y0 − ỹk) + sT

k x0 + zT
k u0

k

= sT
k x̃k + zT

k ũk − x̃T
k s0 + (x0)T s0

≤ 2nC + γ3e
T s0 + (x0)T s0, ∀k ∈ Kρ, (3.49)

where the equality comes from the expansion of (3.48), and the inequality from

(3.40), (3.41) and (3.39). Now, inequality (3.27) with y := y0 − yk and p := 1
2
∆yk

implies that

ψk := (y0−yk)
T H(y0−ỹk) = (y0−yk)

T H(y0−yk)−(y0−yk)
T H∆yk ≥ −1

4
∆yT

k H∆yk

74

where the equality is from (3.16). Note from (3.38) that ∆yT
k H∆yk is bounded, so

ψk is bounded from below. Hence, it follows from (3.49) that there exists π > 0

large enough such that

sT
k x0 ≤ π ∀k ∈ Kρ, (3.50)

and

zi
k(u

0
k)

i ≤ zT
k u0

k ≤ π ∀i, ∀k ∈ Kρ.

Using (3.43) and the fact that ρk →∞ as k →∞, it follows from positiveness of zk

and u0
k that

lim
k→∞

sup
k∈Kρ

zi
k ≤

π

limk→∞ infk∈Kρ(u
0
k)

i
= 0 ∀i,

proving that zk converges to zero on Kρ.

Next, since H is a symmetric, semi-positive definite matrix, there exists a

matrix L such that

H = LT L,

so ψk can be written as

ψk = ‖L(yk +
∆yk

2
− y0)‖2 − 1

4
∆yT

k H∆yk. (3.51)

Since with [u0
k; x

0; zk; sk] ≥ 0 for k ≥ k0, we obtain from (3.49) that ψk is bounded

from above, it follows from (3.51) and (3.38) that {Lyk} is bounded on Kρ, and hence

so is {Hyk}. If (Pq) is strictly feasible, we can select x0 > 0, and thus boundedness

of {sk} on Kρ follows from (3.50). In view of (3.26), together with boundedness of

{zk} and {sk} on Kρ, we have that {AT yk} is bounded on Kρ. With boundedness

of {Hyk} and {AT yk} on Kρ in hand, full-rankness of [H A] implies that {yk} is

bounded on Kρ, proving the last claim.

75

We next state a useful lemma (corresponding to Lemma 2.7) about the case

when the sequence {ρk} is unbounded. The proof procedure is similar to Lemma 2.7,

but it is more complicated to show in Proposition A.1 that {[x̃k; ũk]} is bounded

by some sequence (see (3.65) below). This cannot be proven in the same way as

Lemma 2.4 because such lemma there implicitly requires the full rankness of A. The

full rankness of A is not necessarily true for the quadratic optimization since we only

assume the full-rankness of [H A].

Lemma 3.4. (Corresponds to Lemma 2.7) Suppose ρk →∞ as k →∞. If {yk} has

a limit point on Kρ and {zk} is bounded on Kρ, then for any limit point {[y∗; z∗]}

of {[yk; zk]} on Kρ, there exists x̄∗ 6= 0 with s∗ = c−AT y∗ + z∗ ≥ 0 and z∗ ≥ 0 such

that

Ax̄∗ = 0, (3.52)

Z∗(e− x̄∗) = 0, (3.53)

S∗x̄∗ = 0, (3.54)

x̄∗ ≥ 0. (3.55)

Proof. Since {zk} is bounded on Kρ, condition (3.11) will be violated eventually,

and conditions (3.12) must be satisfied for all k ∈ Kρ large enough, i.e.,

‖[∆yk; ∆zk]‖ ≤ γ2, k ∈ Kρ (3.56)

x̃Qk

k ≥ −γ3e, k ∈ Kρ, (3.57)

ũQk

k 6≥ γ4e, k ∈ Kρ. (3.58)

76

Moreover, we have from (3.3) and (3.14)–(3.15) that for all k,

Ax̃k = AQk x̃Qk

k = b−H(yk + ∆yk), (3.59)

x̃Qk

k + ũQk

k = ρke, (3.60)

x̃i
k = 0, ũi

k = ρk, ∀i 6∈ Qk (3.61)

AT ∆yk −∆zk + ∆sk = 0, (3.62)

SQk

k x̃Qk

k = −XQk

k ∆sQk

k , (3.63)

Zkũk = −Uk∆zk. (3.64)

Because Qk can take only finitely many values, it follows from Proposition A.1 (see

Appendix A) with

G :=




AQk 0

I I


 , D :=




SQk

k (XQk

k)−1 0

0 ZQk

k (UQk

k)−1


 ,

and

v :=




x̃Qk

k

ũQk

k


 , g :=




b−H(yk + ∆yk)

ρke


 , w :=




∆sQk

k

∆zQk

k




that there exists C > 0 such that

‖[x̃Qk

k ; ũQk

k]‖ ≤ C‖[b−H(yk + ∆yk); ρke]‖ ∀k. (3.65)

Since by assumption, there exists an infinite sequence K ⊆ Kρ such that {yk} is

bounded on K, and since {∆yk} is bounded on Kρ in view of (3.56), we have for

some C ′ large enough

‖[x̃Qk

k ; ũQk

k]‖ ≤ C ′ρk, k ∈ K.

Together with (3.61), we get that {[x̄k; ūk]} is bounded on K, where we have defined

x̄k =
x̃k

ρk

, ūk =
ũk

ρk

. (3.66)

77

Since both {yk} and {zk} are bounded on K, let {(y∗, z∗, s∗, x̄∗, ū∗)} be any limit

point of {(yk, zk, sk, x̄k, ūk)} on K with z∗ ≥ 0, s∗ = c− AT y∗ + z∗ ≥ 0, and

‖x̄∗‖∞ = ‖e− ū∗‖∞ ≥ 1, (3.67)

where the equality comes from (3.60)–(3.61) and (3.66), and the inequality from (3.58).

Next, since {xk} and {uk} are bounded by construction (Step 2 (ii) of Iteration IrQP),

equations (3.61)–(3.64) imply from (3.62) and (3.56) that there exists C ′′ > 0 such

that

si
kx̃

i
k = 0, i 6∈ Q (3.68)

‖SQk

k x̃Qk

k ‖ = ‖XQk

k ∆sQk

k ‖ ≤ C ′′ k ∈ K, (3.69)

‖Zkũk‖ = ‖Uk∆zk‖ ≤ C ′′ k ∈ K. (3.70)

Dividing both sides of (3.59)–(3.61), (3.68)–(3.70) and (3.57) by ρk and taking limits

on K, we conclude that x̄∗ 6= 0 (as for (3.67)) satisfies

Ax̄∗ = 0,

x̄∗ + ū∗ = e,

Z∗ū∗ = 0,

S∗x̄∗ = 0,

x̄∗ ≥ 0,

proving the claim.

The following theorem establishes that under the strict primal-dual feasibility,

78

ρk is increased at most finitely many time. The proof procedure is similar to and

not harder than Proposition 2.2.

Theorem 3.1. (Corresponds to Proposition 2.2) Suppose (Pq)–(Dq) is strictly fea-

sible,2 then ρk is increased at most finitely many times, i.e., Kρ is finite.

Proof. By contradiction, suppose Kρ is infinite, i.e., ρk → ∞ as k → ∞. In view

of Lemma 3.3, {yk} is bounded, and {zk} → 0 as k → ∞, k ∈ Kρ. Let y∗ and z∗

be the limit points of {yk} and {zk} on Kρ, so z∗ = 0, i.e., y∗ ∈ F . It follows from

Lemma 3.4 that there exists x̄∗ 6= 0 that satisfies (3.52)–(3.55). In view of (3.54),

x̄∗ = 0, ∀i 6∈ I(y∗). (3.71)

Together with (3.52), we get

∑

i∈I(y∗)

x̄i
∗a

i = 0.

Since the strict feasibility of (Dq) implies positive linear independence of vectors

{ai : i ∈ I(y∗), y∗ ∈ F}, it follows from (3.55) that

x̄∗ = 0, ∀i ∈ I(y∗).

Together with (3.71), we have

x̄∗ = 0,

contradicting to that x̄∗ is nonzero.

Finally, if positive linear independence of {ai : i ∈ I(y∗), y ∈ F} is replaced

with the much stronger assumption of linear independence of {ai : i ∈ I(y), y ∈ Rm},
2That (Pq) is strictly feasible is equivalent to that the solution set of problem (Dq) is nonempty

and bounded (see Theorem 2.1 in [20]). Thus, our assumptions are the same as those in [32].

79

then boundedness of ρk follows without any feasibility assumption, as we state next.

(In linear case, we used a similar result in Theorem 2.2, but we did not make it a

proposition.)

Proposition 3.1. Suppose that, at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly

independent set. If {yk} has a limit point on Kρ and {zk} is bounded on Kρ, then

ρk is increased at most finitely many times.

Proof. By contradiction, suppose ρk → ∞ as k → ∞. Lemma 3.4 then implies

that for any limit point z∗ ≥ 0, s∗ ≥ 0 and y∗ of sequences {zk}, {sk} and {yk}

with s∗ = c − AT y∗ + z∗, there exists x̄∗ 6= 0 that satisfies (3.52)–(3.55). We

can then conclude the proof with a contradiction argument, exactly as is in the

proof of Theorem 3.1, except that the requirement of positive linear independence

of {ai : i ∈ I(y∗), y∗ ∈ F} is replaced by the assumption of linear independence of

{ai : i ∈ I(y∗), y ∈ Rm}.

As in IrPDIP, if ρk is increased finitely many times, we denote the final value

of ρk by ρ̄.

3.2 Global convergence

In this section, we prove that, under the assumption that (Pq)–(Dq) is strictly

feasible, any limit point of {yk} is an optimal solution of (Dq). To that end, we first

show that {yk} is bounded when {ρk} is bounded. In the linear case, the bound-

edness of {yk} directly follows from Proposition 2.1. Unfortunately, Proposition 2.1

does not hold for the more general algorithm IrQP. Such boundedness is then proven

80

by mainly using a result of [23]; see Lemma 3.5 through Lemma 3.7. The remaining

part shows the optimality of any limit point of the bounded sequence {yk}, and its

proof procedure is similar to the linear case (see section 2.3).

Lemma 3.5. (Corollary 20, Page 94, [23]) If g0, −g1, · · · , −gn are convex func-

tions, and if the set of minima of problem

min g0(y) s.t. gi(y) ≥ 0, i = 1, · · · , n (3.72)

is a nonempty bounded set, then for every finite ξ0, ξ1, · · · , ξn, the set

Sk = {y| g0(y) ≤ ξ0, gi(y) ≥ ξi, i = 1, · · · , n}

is a compact set (possibly empty).

To show the boundedness of {yk}, we apply Lemma 3.5 to problem (Dq). Thus

we need to show that the solution set of (Dq) is nonempty and bounded, so that

the assumption of Lemma 3.5 is satisfied.

Lemma 3.6. Suppose (Dq) is feasible. If (Pq) is feasible, then the solution set of

(Dq) is nonempty; If (Pq) is strictly feasible, then it is also bounded.

Proof. Since (Pq) is feasible, the objective function f(y) of (Dq) is bounded from

above by the weak duality theorem (see e.g. Proposition 6.2.2 of [11]). In view of the

feasibility of (Dq), it follows from a 1956 result of Frank and Wolfe (see Appendix (i)

in [25]) that (Dq) has a solution (see also Proposition 6.5.6 of [11]), proving the first

claim. Next, we show the second claim. By assumption, (Pq) is strictly feasible,

i.e., there exist x0 > 0, ξ > 0 and y0 such that Hy0 + Ax0 − bξ = 0. It follows from

81

Tucker’s theorem of the alternative (see e.g., section 2.4 in [37], with B := [−A b]T ,

C := 0 and D := H) that there does not exist d such that

AT d ≤ 0, Hd = 0, bT d ≤ 0 with [A b]T d 6= 0.

Hence, every d that satisfies the first three conditions must satisfy [A b]T d = 0

which, since [H A] is full rank, implies that d = 0. So the solution set of (Dq) has

no recession direction, proving that it is bounded.

Lemma 3.7. Suppose (Pq) is strictly feasible and (Dq) is feasible. If ρk is increased

only finitely many times, then {yk} is bounded.

Proof. Since ρk is increased only finitely many times, i.e., ρk = ρ̄ for k large enough,

Lemma 3.1 implies that {f(yk) − ρ̄eT zk} is increasing for k large enough. Fur-

thermore, Lemma 3.2 implies that {zk} is bounded. Thus, it follows that f(yk) is

bounded below by some f . In view of (3.25), boundedness of {zk} implies that the

components of {c−AT yk} are also bounded below by some vi for i = 1, · · · , n. More-

over, Lemma 3.6 implies that the solution set of (Dq) is nonempty and bounded.

With all these in hand, it follows from Lemma 3.5 that the set

S := {y : f(y) ≥ f, c− AT y ≥ v}

is bounded. Since yk ∈ S for all k, {yk} is bounded.

Lemma 3.8. Suppose at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly indepen-

dent set of vectors. If {[yk; zk]} and {ρk} are bounded, then every limit point of the

bounded sequence {[yk; zk]} is optimal for problem (Dqρ̄).

82

Proof. Since ρk is increased only finitely many times, after finitely many iterates,

IrQP reduces to Algorithm A of [32] applied to (Dqρ̄). We next check that all

assumptions are satisfied that are needed in [32] on problem (Dqρ̄), so that the

claim follows by applying Theorem 2.2 of [32] to problem (Dqρ̄).

The first two assumptions, that




H 0 A 0

0 0 −I −I


 is full rank (Assumption 2.1

of [32]) and that (Dqρ̄) is strictly feasible (Assumption 2.2 of [32]), are trivially

satisfied. Assumption 2.3 of [32] that the solution set of (Dqρ̄) is nonempty and

bounded is used only to get boundedness of {[yk; zk]} (see Corollary A.5 in [32]),

which is assumed in the statement of the present claim. Assumption 2.4 of [32] is

equivalent to that at every point y ∈ Rm, {ai : i ∈ I(y)} is a linear independent set

of vectors.

Lemma 3.9. Suppose at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly indepen-

dent set of vectors. If {[yk; zk]} and {ρk} are bounded, then there exists an infinite

index set K on which [∆yk; ∆zk] → 0 as k ∈ K →∞, and limk→∞ infk∈K x̃k ≥ 0.

Proof. Proceeding by contradiction, suppose that

inf{‖[∆yk; ∆zk]‖2 + ‖[min(x̃k, 0); min(ũk, 0)]‖2 : ∀k} > 0. (3.73)

Under our assumptions that {ρk} and {[yk; zk]} are bounded, it follows from Lemma A. 8

of [32] applied to (Dqρ̄) that

[∆yk; ∆zk] → 0, as k →∞. (3.74)

In view of Lemma A. 7 of [32], (3.73) and (3.74) imply that any limit point of

83

the bounded sequence [yk; zk] is a non-optimal stationary point for problem (Dqρ̄),

contradicting to Lemma 3.8.

Proposition 3.2. Suppose at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly

independent set of vectors. If {[yk; zk]} and {ρk} are bounded, every limit point of

the bounded sequence {yk} is optimal for (Dq).

Proof. Since ρk is constant for k large enough, conditions (3.12) must be violated

eventually. In view of Lemma 3.9, there exists an infinite index set K on which

[∆yk; ∆zk] → 0 as k ∈ K →∞, (3.75)

and limk∈K→∞ x̃k ≥ 0, thus conditions (i) and (ii) in conditions (3.12) are satisfied

on K. It follows that it must be condition (iii) of (3.12) that is eventually violated

on K, i.e.,

ũQk

k ≥ γ4e for k ∈ K large enough.

Note from the fourth row of (3.3) and from (3.15) that ũ
Qk
k = ρ̄ when k is large

enough, thus,

ũk ≥ min(γ4, ρ̄)e for k ∈ K large enough. (3.76)

Since {uk} is bounded as established in IrQP, and since for all k,

Zkũk = −Uk∆zk,

it follows from (3.75) and (3.76) that

zk → 0, as k →∞, k ∈ K. (3.77)

84

In view of Lemma 3.8, this implies that every limit point of {f(yk) − ρke
T zk} on

K is an optimal value of (Dq). Since Lemma 3.1 implies that {f(yk) − ρke
T zk} is

monotonically increasing when ρk = ρ̄ for k large enough, it follows that {f(yk) −

ρke
T zk} converges to the optimal value of (Dq). Hence, any limit point of {yk} is

an optimal solution of (Dq).

Theorem 3.2. Suppose at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly in-

dependent set of vectors. If (Pq)–(Dq) is strictly feasible, then ρk is increased at

most finitely many times, zk → 0 as k → ∞, and every limit point of the bounded

sequence {yk} is optimal for (Dq).

Proof. Under the assumption that (Pq)–(Dq) is strictly feasible, Theorem 3.1 and

Lemma 3.2 imply that {ρk} and {zk} are bounded, respectively. It follows from

Lemma 3.7 that {yk} is also bounded. The claim then follows immediately from

Proposition 3.2.

3.3 Analysis without primal or dual feasibility

This section provides an analysis result for Iteration IrQP without assuming

the feasibility of (Pq) or (Dq). Such result can be shown with a similar proof

procedure to that in linear optimization (see section 2.4), except for the additional

Lemma 3.10 below (which is trivially true in the linear case because H = 0).

Let SD denote the set

SD := {y : ∃x such that Ax + Hy = b and X(c− AT y) = 0},

85

where x and c− AT y are not necessarily nonnegative. Both the stationary set and

optimal set of (Dq) are subsets of SD.

Lemma 3.10. {Hy : y ∈ SD} is bounded.

Proof. We show that Hy is constant for all y that have the same active constraints.

Since there are finitely many possible sets of active constraints, the claim will follow.

To show that, suppose y1 ∈ SD and y2 ∈ SD associated with multipliers x1 and x2

respectively, have the same active constraints, i.e., I(y1) = I(y2) = I. By definition

of SD, y1 and y2 satisfy

Ax1 + Hy1 = b, X1(c− AT y1) = 0

and

Ax2 + Hy2 = b, X2(c− AT y2) = 0.

It follows that

AI(y1)x
I(y1)
1 + Hy1 = b, (AI(y1))T y1 = cI(y1)

and

AI(y2)x
I(y2)
2 + Hy2 = b, (AI(y2))T y2 = cI(y2).

Since I(y1) = I(y2) = I, substraction of the above two groups of equations yields

AI(x1 − x2)
I + H(y1 − y2) = 0, (AI)T (y1 − y2) = 0.

Left-multiplying (y1−y2)
T to the first equation, using the second equation, we obtain

(y1 − y2)
T H(y1 − y2) = 0.

86

Since H is positive semi-definite, it follows that H(y1−y2) = 0, proving the constant

of Hy for all y with the same active constraints.

Theorem 3.3. (Corresponds to Theorem 2.2) Suppose at every point y ∈ Rm,

{ai : i ∈ I(y)} is a linear independent set of vectors. If ρk is increased finitely many

times, then either of the following occurs:

(a) {yk} is unbounded. In this case, (Pq) is not strictly feasible or (Dq) is infeasible.

(b) {yk} is bounded. In this case, every limit point of {yk} is optimal for (Dq); and

(Pq) is feasible and (Dq) is strictly feasible.

Proof. Case (a) follows from Lemma 3.7. In the case (b), since {ρk} is increased

finitely many times, condition (3.11) must be violated eventually, thus {zk} is

bounded. It follows from Proposition 3.2 that every limit of the bounded sequence

{yk} is an optimal solution of (Dq), implying both (Pq) and (Dq) are feasible. To

show (Dq) is strictly feasible, it is equivalent to show there exists y0 and ξ > 0 such

that cξ−AT y0 > 0. From Motzkin’s theorem (page 29, [37]), it suffices to show that

there doesnot exist x0 6= 0 such that Ax0 = 0, cT x0 = 0 and x0 ≥ 0, for which the

sufficient condition is that the solution set of (Pq) is bounded. We will next show

the solution set of (Pq) is bounded indeed. Given any solution (x∗, y∗) of (Pq) with

y∗ as a solution of (Dq), from KKT conditions, it satisfies that X∗(c − AT y∗) = 0

and Ax∗ + Hy∗ = b, which follows that

AI(y∗)xI(y∗)
∗ = b−Hy∗.

87

Because {ai : I(y∗)} is a linear independent set of vectors, it follows that

‖x∗‖ = ‖xI(y∗)
∗ ‖ ≤ ‖(AI(y∗))T AI(y∗)‖−1‖(AI(y∗))T (b−Hy∗)‖. (3.78)

Since from Lemma 3.10, Hy is bounded for all the optimal solutions y of (Dq), it

follows that x∗ must be bounded by some value independent of y∗. Because x∗ is

arbitrary, this proves the boundedness of the solution set of (Pq).

The following lemma and theorem study this case when {ρk} tends to infinity.

Theorem 3.4. (Corresponds to Theorem 2.3) Suppose ρk → ∞ as k → ∞, then

one of the cases must occur:

(a) ‖yk‖ → ∞ as k → ∞, k ∈ Kρ. In this case, (Pq) is not strictly feasible or

(Dq) is infeasible.

(b) {yk} has a limit point on Kρ and {zk} is unbounded on Kρ. In this case, (Pq)

is infeasible.

(c) {yk} has a limit point on Kρ, {zk} is bounded on Kρ, and there exists an

infinite set K ⊆ Kρ such that limk→∞,k∈K yk = y∗ for some y∗ ∈ Rm and

lim
k→∞

infk∈K ‖zk‖ = 0. In this case, (Dq) is feasible but not strictly feasible.

(d) {yk} has a limit point on Kρ, {zk} is bounded on Kρ, and for any infinite

set K ⊆ Kρ such that limk→∞,k∈K yk = y∗ for some y∗ ∈ Rm, it satisfies that

lim
k→∞

infk∈K ‖zk‖ > 0. In this case, (Dq) is infeasible.

Proof. Claim (a) follows from Lemma 3.3 and claim (b) from Lemma 3.2.

88

We next prove (c) and (d), for which we mainly use Lemma 3.4. We first show

(c). Let [y∗; z∗; s∗] be any limit point of {[yk; zk; sk]} on K with z∗ = 0. Since for

all k, sk ≥ 0, we have, using (3.26),

c− AT y∗ = s∗ − z∗ = s∗ ≥ 0, (3.79)

i.e., y∗ is a feasible point of (Dq). To show (Dq) is not strictly feasible, given any

y ∈ Rm, we have from (3.79)

−s∗ + AT (y − y∗) = AT y − c. (3.80)

From Lemma 3.4, there exists x̄∗ 6= 0 satisfying (3.52)–(3.55). Left-multiplying

(3.80) by x̄T
∗ yields

x̄T
∗ (AT y − c) = 0 ∀y ∈ Rm,

where we have used equation (3.54) and (3.52). Since x̄∗ ≥ 0 from (3.55), and since

x̄∗ 6= 0, it follows that the set {y : AT y ≤ c} has no strictly feasible point, proving

the claim.

Next, we show (d). Let [y∗; z∗; s∗] be any limit point of {[yk; zk; sk]}, so (since

zk ≥ 0, ∀k)

z∗ 6= 0 with z∗ ≥ 0. (3.81)

To show (Dq) is infeasible, i.e., there does not exist y such that AT y ≤ c, by

Farkas’ Lemma, it suffices to show that there exists x̄∗ satisfying

Ax̄∗ = 0, x̄∗ ≥ 0, cT x̄∗ < 0.

89

Let x̄∗ as guaranteed by Lemma 3.4 satisfy (3.52)–(3.55), then it remains to show

cT x̄∗ < 0, which can be derived as

cT x̄∗ = (AT y∗ − z∗ + s∗)T x̄∗ = −zT
∗ x̄∗ = −eT z∗ < 0,

where the first equality comes from (3.25), the second one from (3.52) and (3.54),

the last one from (3.53), and the inequality from (3.81).

Theorem 3.4 summarizes the feasibility of (Pq)–(Dq) with respect to the be-

havior of Iteration IrQP. On the other direction, the following result gives the be-

havior of Iteration IrQP with respect to the feasibility of (Pq)–(Dq).

Theorem 3.5. (Corresponding to Theorem 2.4) If for every y ∈ Rm, {ai : i ∈ I(y)}

is a linearly independent set of vectors, then the following properties hold

(a) If (Pq) is feasible, then {zk} is bounded.

(b) If (Dq) and (Pq) are both strictly feasible, then {ρk} is bounded, and every

limit point of the bounded sequence {yk} is optimal for (Dq).

(c) If (Dq) is not strictly feasible or (Pq) is infeasible, then {[yk; zk]} is un-

bounded.

(d) If (Dq) is not strictly feasible and (Pq) is feasible, then {yk} is unbounded.

Proof. Claim (a) is a restatement of Lemma 3.2, and claim (b) is a restatement of

Theorem 3.2.

90

We show claim (c) by contradiction. Suppose {[yk; zk]} is bounded. It follows

from Proposition 3.1 that ρk is increased finitely many times. This implies from

Theorem 3.3 (b) that (Dq) is strictly feasible and (Pq) is feasible, contradicting to

the present assumption. In view of claim (a), claim (d) follows immediately from

claim (c).

Remarks:

(1) The result of the quadratic optimization in section 3.1-3.3 is stronger than that

of the linear case in section 2.3-2.4.

(2) See an `∞ version in Appendix C.

3.4 Numerical results

3.4.1 Implementation

Iteration IrQP was implemented in MATLAB R2009a for the tests in this

chapter. All tests were run on a laptop machine (Intel R / 1.83G Hz, 1GB of RAM,

Windows XP Professional 2002).

Parameters in the adaptive scheme (3.11)–(3.12) were set as σ = 10, γ1 = 100,

γ2 = 1, γ3 = 100, γ4 = 1. We selected (typically infeasible) initial conditions y0 for

original problem (Dq) to be

y0 := (AAT)−1Ac. (3.82)

To force the strict feasibility for the penalized problem (Dqρ), the initial point z0

91

was set to be

z0 := max(0, AT y0 − c) + δ

where δ := 0.01. Thus, the initial value of s0, computed by

s0 := c− AT y0 + z0,

was strictly positive. The remaining components of x0 and u0 were selected so as to

achieve perfect balance. First, we select the complementary measure µ0 as

µ0 := g(s̃0)
T g(x̃0)/n

where

s̃0 := c− AT y0, x̃0 := AT (AAT)−1(b−Hy0), g(v) := v −min(min(v), 0)e.

The initial conditions of x0 and u0 were then computed by

xi
0 :=

µ0

si
0

, i = 1, · · · , n

and

ui
0 :=

µ0

zi
0

, i = 1, · · · , n.

The penalty parameter was initialized with

ρ0 := ‖x0‖∞. (3.83)

We chose Q according to the most active rule, which selects the constraints that have

smallest slacks. Analogously to [32], we terminated when the maximum number of

iteration 100 is reached or the dual residual and the dual gap for (Pqρ)-(Dqρ)was

less than a specific tolerance, i.e.,

max

{ ‖b−Hy − Ax‖
max(‖H‖∞, ‖A‖∞, ‖b‖∞)

,
‖ρe− x− u]‖

max(1, ρ)
,
sT x + zT u

2n

}
< tol (3.84)

92

where we used tol = 10−6. (Because, by construction, all iterates are primal-feasible,

the primal residual is always zero.)

We applied Iteration IrQP on randomly generated problems.

3.4.2 Randomly generated problems

We generated the standard linear problem of size m = 50000 and n = 100.

Entries of matrix A are normally distributed with a zero mean and 0.01 covariance,

denoted by A ∼ N (0, 0.01), and vectors b ∼ N (0, 1). Vector c := AT ξ + η where

vector ξ ∼ N (0, 0.01) and where vector η uniformly generated on [0.05, 1.05] (η ∼

U [0.05, 1.05]), guaranteeing the dual (Dqρ) is strictly feasible. Let H̃ ∼ U [0, 10κ]

where κ is some randomly generated number on [−1, 4] so the dual solution can

have a large range, matrix H was then set to be H = H̃H̃T to make it positive

semi-definite.

The average of CPU time and the number of iterations for 10 random prob-

lems are showed in Figure 3.1 with points y0 (see (3.82)) infeasible for (Dq). For

each random problem, we completely solved the same random problem many times

with different fractions |Q|/n of constraints that were kept. The rightmost point,

corresponding to the fraction 1, is the result with all constraints (|Q| = n). As can

be seen from Figure 3.1, the CPU time decreases as fractions |Q|/n decreases, down

to as little as 2% of constraints, while the number of iteration remains constant for

a large range of fractions.

The initial penalty parameter by (3.83) was always too small to force feasibility

93

of the iterates, so we observed it was always increased. The final values ρ̄ were large

enough from noting that the final values of z were zero.

We further compare the results by the adaptive penalty adjustment scheme

and by the fixed -penalty scheme where the penalty parameter is not changed dur-

ing the optimization process, with |Q| = 10m (2% constraints) for both schemes.

Figure 3.2 shows the average ratios of 20 problems between the CPU time and it-

erations obtained by different fixed values and those by the adaptive adjustment

scheme. The value of fixed penalty values ranged from 100.8ρ∗ to 1010ρ∗, where the

threshold value ρ∗ := ‖x∗‖∞ and x∗ is the solution of (Pq). (With a fixed penalty

value greater than ρ∗1010, algorithm IrQP reached its limit iteration, so the cor-

responding result was not showed.) The blue (vertical) line corresponds the fixed

value set to ρ∗ (log10(
ρ∗
ρ∗

) = 0), and the red (vertical) line corresponds to the final

value ρ̄. At those fixed penalty values that have ratios above the horizontal magenta

line (denoting value 1), the corresponding CPU time and iterations were more than

those by the adaptive scheme. We can see that the adaptive scheme was faster than

the fixed scheme with most penalty values.

Figure 3.3 and 3.4 respectively show the average speedup gain of CPU time

and iteration counts of 100 problems with different nonzero ranks rH of the Hessian

matrix H, where H̃ ∼ N (m, rH). As can be seen, constraint reduction gains a

speed-up with almost all sizes of |Q| for those problems. Moreover, problems with

a higher rank of H obtain a larger speed-up, which might due to the less number of

active constraints at the solution. It is interesting that with 10% more constraints,

the speedup gain seems independent of the rank rH of the Hessian matrix H.

94

10
−2

10
−1

10
0

0

20

40

60
Constraint reduction with infeasible initial points

T
ot

al
 ti

m
e

(s
ec

)

10
−2

10
−1

10
0

0

20

40

60

Fraction of constraints kept

Ite
ra

tio
ns

Figure 3.1: CPU time and iterations with infeasible initial points.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time and iteration count with various fixed penalty parameters

T
o
ta

l
ti

m
e

(s
ec

)

0 2 4 6 8 10
0

0.5

1

1.5

2

log10(
ρ

ρ∗
)

It
er

a
ti

o
n
s

Figure 3.2: Behaviors for various values of fixed penalty parameters ρ with |Q|
n

= 2%.

95

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

16

18
Constraint reduction with 100 variables and 20000 constraints

fraction of constraints kept

S
pe

ed
 g

ai
n

of
 C

P
U

 ti
m

e

r
H

=10

r
H

=20

r
H

=40

r
H

=50

r
H

=70

r
H

=80

r
H

=100

Figure 3.3: The speedup gain of CPU time with different ranks of Hessian H.

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

fraction of constraints kept

S
pe

ed
 g

ai
n

of
 it

er
at

io
ns

Constraint reduction with 100 variables and 20000 constraints

r
H

=10

r
H

=20

r
H

=40

r
H

=50

r
H

=70

r
H

=80

r
H

=100

Figure 3.4: The speedup gain of iteration counts with different ranks of Hessian H.

96

3.5 Conclusion

Our contribution for constraint reduction in convex quadratic optimization

allows for the use of infeasible initial points. In most cases, feasible initial points

are not readily available. To address that, we extended the adaptation scheme pro-

posed in Chapter 2 for the penalty parameter. We have shown that under the sole

assumption of the strict feasibility of the primal-dual pair, the penalty parameter

is increased only finitely many times. We have further proven that under a fur-

ther non-degeneracy assumption, the algorithm is convergent to an optimal KKT

point. Numerical results on randomly generated problems show that the proposed

algorithm has obtained a major speed-up.

97

Chapter 4

Application to Model Predictive Control (RHC)

The work in this chapter is joint with Aaron Greenfield and Vineet Sahasrabudhe

from Sikorsky Aircraft Corporation.

4.1 Introduction

Model Predictive Control (also known as Receding Horizon Control (RHC))1

has been highly successful in process control applications; see, e.g., [13, 34, 48]. Its

broader use has been hindered by its high computational requirements: determina-

tion of the control value to be applied at the next sample time involves the solution

of an optimization problem with many practical constraints, which is slightly differ-

ent from time step to time step. (See, e.g. [26, 36], for background on constrained

model-predictive control.) In particular, few studies of the possible use of RHC in

aerospace applications have been conducted. Exceptions include [38], where RHC-

based control for spacecraft formation keeping and attitude control is studied, [63]

where RHC is used in conjunction with a neural network feedback controller, to

1We will mostly refrain from using the acronym MPC, ubiquitous in the model predictive control

literature. This is because, by an unfortunate coincidence, that same acronym is commonly used

with a different meaning—Mehrotra’s Predictor Corrector algorithm, also briefly considered in the

present paper—in the interior-point optimization literature. Indeed the present thesis is targeted

at both audiences.

98

control a six-degree-of-freedom model of an autonomous helicopter, and [33] where

RHC is successfully applied in flight tests on unmanned aerial vehicles.

Here we consider model predictive control of a rotorcraft, based on a linear

time-invariant model of the rotorcraft and on the minimization of a linear or con-

vex quadratic cost function subject to bound constraints on the control and state

variables and their derivatives. Thus, following much of the RHC literature, the

optimization problem to be solved on-line at every time step is an LP or a CQP.

Accordingly, it requires the online solution of LPs or CQPs. While this can be ob-

tained by evaluating the associated explicit solution [6, 4, 2, 28, 5], we focus in this

chapter on using an online LP-solver or CQP-solver.

The optimization problem in RHC as a practical example has two special

properties. First, constraints far outnumber decision variables. Second, a difficulty

is that constraint reduction requires the availability, for each optimization problem

(to be solved on-line), of an initial strictly feasible point. But such points may not

be readily available in the model-predictive control context. These two properties

make model-predictive control particularly suitable for our algorithms. We solve this

optimization problem by means of IrMPC in linear RHC and by IrQP in quadratic

RHC. The novelty of our contribution lies in our speeding up the optimization by

exploiting the structure of the problem in two ways: (i) we incorporate a “constraint

reduction” scheme, which takes advantage of the much larger number of inequality

constraints than optimization variables; and (ii) we use an exact penalty function

technique to address the need of a strictly feasible “warm start” at each time step.

The remainder of this chapter is organized as follows. In section 4.2, we

99

consider linear RHC, and report numerical results obtained by Iteration IrMPC for

the altitude control of a rotorcraft. Section 4.3 is devoted to quadratic RHC, which is

applied to both altitude control and trajectory following for rotorcrafts. Numerical

results are shown that demonstrate the efficiency of IrQP. Some conclusions are

given in section 4.4.

All algorithms were implemented in Matlab. Tests in section 4.2 and 4.3.1 were

run on a laptop (Intel (R) / 1.83G Hz, 1GB of RAM, Windows XP Professional 2002)

with Matlab R2009a. Tests in section 4.3.2 that involved a larger model were run

on a faster desktop machine (Intel(R) Core(TM)i5-2400 CPU @ 3.10G Hz, 4GB of

RAM, Windows 7 Enterprise 2009) with Matlab R2010b.

4.2 Linear RHC

Linear model predictive control, consisting of linear constraints and a linear

objective function, is popular since the ‘70s. Solving linear optimization problems

for RHC has been previously considered in [44, 49, 21]. In this section, we apply

Iteration IrMPC to reduce constraints and hence speed up the LP optimization

solving in RHC process.

4.2.1 Problem setup

Given the measured state of the system at every (discrete) time t, (`∞) linear

RHC solves an optimization problem during time interval (t − 1, t) such as the

100

following:

min
w,θ

M−1∑

k=0

‖Rwk‖∞ +
N∑

k=1

‖Pθk‖∞ (4.1)

s.t.

θk+1 = Asθk + Bswk, (4.2)

θ0 = θ(t− 1), (4.3)

θmin ≤ θk ≤ θmax, for k = 1, · · · , N (4.4)

wmin ≤ wk ≤ wmax, for k = 0, · · · ,M − 1 (4.5)

δwmin ≤ wk − wk−1 ≤ δwmax, for k = 0, · · · ,M − 1 (4.6)

wk = 0, for k = M, · · · , N − 1 (4.7)

with R ∈ Rr×r, P ∈ Rp×p, As ∈ Rp×p and Bs ∈ Rp×r; vectors θk ∈ Rp, wk ∈ Rr

respectively denote the state and the control input at time step k ahead of the current

time. Positive integers M and N are respectively control horizons and prediction

horizons, with usually M < N . Equation (4.2) is a simplified, LTI physical system

being controlled, not accounting for the (unknown) future perturbations, such as

wind gusts; θ(t − 1), the measured state of the rotorcraft at time t − 1, does of

course reflect past perturbations, and is factored in by means of (4.3). Parameters

θmin, θmax, wmin, wmax, δwmin and δwmax are given bounds,2 and some of them can

be set to ±∞. Constraints (4.6) restrict the rate of change of w. The optimization

2In general, wmin and wmax can change over time due to hardware failures or externally caused

damage. Such a situation can be accounted for with no difficulties; this is one of the payoffs of

model predictive control.

101

variables are the control sequence and state sequence, respectively denoted by

w = [w0; · · · ; wM−1] ∈ RMr, θ = [θ1; · · · ; θN] ∈ RNp. (4.8)

After problem (4.1)–(4.7) is solved, yielding the optimal control sequence [w∗
0; · · · ; w∗

M−1],

only the first step w∗
0 =: w(t − 1) of the sequence is applied as control input (at

time t). The main computational task is to solve (4.1)–(4.7).

We can convert problem (4.1)–(4.7) into a standard dual linear program. First,

introduce additional nonnegative optimization variables [εw0 , · · · , εwM−1
, εθ1 , · · · , εθN

]T ∈

RM+N such that

Rwk − εwk
e ≤ 0, −Rwk − εwk

e ≤ 0, k = 0, · · · ,M − 1, (4.9)

Pθk − εθk
e ≤ 0, −Pθk − εθk

e ≤ 0, k = 1, · · · , N. (4.10)

Hence, minimizing the objective function of (4.1) is equivalent to minimizing εw0 +

· · ·+ εwM−1
+ εθ1 + · · ·+ εθN

with additional constraints (4.9)–(4.10). Second, states

θk can be expressed explicitly in terms of wk from constraints (4.2)–(4.3) as

θk = Ak
sθ0 +

k−1∑
i=0

Ai
sBswk−1−i, k = 1, · · · , N,

or equivalently in the matrix form

θ = Γw + Ωθ0, (4.11)

102

where

Γ :=




Bs 0 · · · 0 0

AsBs Bs · · · 0 0

...
...

. . .
...

...

AM−1
s Bs AM−2

s Bs · · · AsBs Bs

AM
s Bs AM−1

s Bs · · · A2
sBs AsBs

...
...

. . .
...

...

AN−1
s Bs AN−2

s Bs · · · · · · AN−M
s Bs




, Ω :=




As

A2
s

· · ·

AN
s




.

Hence, problem (4.1)-(4.7) can be rewritten into the following standard dual linear

program

max
w, εw, εθ

−(εw0 + · · ·+ εwM−1
+ εθ1 + · · ·+ εθN

) (4.12)

s.t. wmine ≤ w ≤ wmaxe (4.13)

θmine− Ωθ0 ≤ Γw ≤ θmaxe− Ωθ0 (4.14)

δwmin ≤ wk − wk−1 ≤ δwmax for k = 0, · · · ,M − 1 (4.15)

Rw − εw ≤ 0, (4.16)

Rw + εw ≥ 0, (4.17)

PΓw − εθ ≤ −PΩθ0, (4.18)

PΓw + εθ ≥ −PΩθ0 (4.19)

where

εw := [εw0e; · · · ; εwM−1
e] ∈ RMr, εθ := [εθ1e; · · · ; εθN

e] ∈ RNp

103

and

R := diag{R,R, · · · , R} ∈ RMr×Mr, P := diag{P, P, · · · , P} ∈ RNp×Np.

When all states and control inputs are constrained by bounds, problem (4.12)–

(4.19) has Mr + M + N variables and 6Mr + 4Np constraints. Since usually p > r

and N > M , the number of constraints is many more than that of variables, and

hence, constraint reduction is likely to be beneficial.

4.2.2 Physical model and data

We use the model described in [24], an eight-state LTI model of the vertical

axis dynamics of a rotorcraft, including engine states, which allows for a reasonably

accurate simulation, and includes fuel flow and rotor speed. The eight states (all in

delta coordinates, i.e., difference from trim values) are the rotor speed (27 rad/sec),

yaw rate (1.7 deg/sec), body-axis vertical velocity measured positively downwards

(−1.7 ft/sec), inflow velocity (0 rad/sec), shaft torque (33000 ft×lb), engine fuel flow

(0.11 lb/sec), integral of the delta-coordinate rotor speed, and altitude (difference

from the target altitude) measured positively upwards.3 The values listed within

parentheses are the trim values. We use only one input, the collective control, with

a trim value of 6.5 inches. For simulation purpose, we discretize the model with

sample period Ts = 0.01 sec, yielding the discrete-time model

θ(t) = Asθ(t− 1) + Bsw(t− 1), (4.20)

3Hence the vertical velocity is the negative of the derivative of the altitude. This follows standard

practice in the rotorcraft industry.

104

where As and Bs are given in Appendix A.2.

In our data setting, the weights R and Q in the RHC cost function (4.1)

are taken to be R = 0.1 and Q = diag(0, 0, 1, 0, 0, 0, 0, 1). We choose M = 30

and N = 100. Further, we set wmax = 3.5 inches, wmin = −6.5 inches (in delta

coordinates, corresponding to a range of [0, 10] inches in absolute coordinates),

δwmax = −δwmin = 0.02 inches (corresponding to 2 inches per sec),

θmax = [∞;∞; 21.7 ft/sec;∞; 22000 ft×lb;∞;∞;∞],

and θmin = −[∞;∞; 33.3 ft/sec;∞; 16000 ft×lb;∞;∞;∞]; the listed bounds on the

body-axis vertical velocity and shaft torque, both in delta coordinates, correspond

to the ranges [−35, 20] ft/sec and [17000, 55000] ft×lb, respectively, in absolute co-

ordinates. The bounds on w are collective stick input limits, those on δw and on

the body-axis vertical velocity reflect pilot preference, and those on shaft torque are

notional gearbox limits.

4.2.3 Warm starts and exact penalty function

Because, clearly, the optimization problem to be solved at a given time step

is typically closely related to that solved at the previous time step, use of a “warm

start” is called for. We chose warm starts as follows. Given a vector v = [v1; · · · ; vn],

define v̄ := [v2; · · · ; vn; vn]. Suppose at time t− 1, the solution for program (4.12)–

(4.19) is

[w; εw; εθ] := [w0
∗; · · · ; wM−1

∗ ; εw0∗ ; · · · ; εwM−1∗ ; εθ1∗ ; · · · ; εθN∗],

105

then the initial points we used for the problem (4.12)–(4.19) at time t is

[w̄; ε̄w + 0.01; ε̄θ + 0.01].

The initial penalty parameter ρ was set to 2‖xt
∗‖∞, where xt

∗ is the solution for the

dual of (4.12)–(4.19). As for the next state θ(t), we generated it using the dynamics

θ(t) = Asθ(t− 1) + Bsw(t− 1),

i.e., we assume for simplicity that the model used in the optimization is exact,

and there are no perturbation. (Hence, the only possible cause for infeasibility of

problem (4.12)–(4.19) is from the last element of w̄, ε̄w and ε̄θ in warm starts.)

Aside from the possible issue with setting the last block-component of the

initial guess, in practice, strict feasibility is likely to fail due to modeling errors and

exogenous perturbations (e.g., wind gusts), both of which will cause the new initial

state at time t, to be different from that predicted at time t − 1. Thus, the exact

penalty function, allowing for infeasible warm starts, is necessary.

Even when the warm start given by the solution of the previous LP remains

strictly feasible for the current problem (D), substituting problem (Dρ) may speed

up convergence. This is because the “old” solution may be close to the boundary

of the feasible set and badly centered for the new problem (D). In such a situation,

the interior-point method (e.g. [65]) may take many short steps, hindered by the

proximity of constraint boundaries, before reaching the new solution. This difficulty

is avoided with problem (Dρ), which however, allows you to move outside the original

feasible area, and thus increases the step-size. Hence, even with a strictly feasible

106

initial point, the exact penalty problem can behave better than the original problem.

See a closer discussion about this phenomenon in [10].

4.2.4 Simulation results

In the numerical tests reported below, we used the `1 version of IrMPC with

parameters σ = 10, γ1 = 0.1, γ2 = 100 and γ4 = 100 in (2.11)–(2.12). (The results

obtained by the `∞ version are not much different, and hence omitted. In particular,

the overhead difference in the CPU time between these two versions can be hardly

observed for the problems solved here.)

We used a 10 second simulation window and assume that perturbations (in

particular, wind gusts) occur only before the start of the simulation window and

are reflected in the initial state θ(0) = [0; 0; 0; 0; 0; 0; 0;−40 ft], which indicates a

deviation from the target altitude. The control objective is to bring the rotorcraft’s

altitude back to nominal, under bound constraints on the collective control and its

one-step variation as well as on the body-axis vertical velocity and shaft torque.

As the sample time is set to be Ts = 0.01 sec, there are 1000 time steps (the

first one at 0.0 sec (t− 1 = 0), the last one at 9.99 sec (t− 1 = 999)), corresponding

to 1000 LPs to solve. With M = 30 and N = 100, each LP has 160 variables and

1180 inequality constraints. Figure 4.9 shows the CPU time to solve the 10 sec

(RHC) process (corresponding to 1000 LPs) with |Q| = 300 and |Q| = n = 1180

(corresponding to the case without constraint reduction). In order to keep figures

readable, only every 10th time step is showed. Note that solving every LP with

107

constraint reduction (in red circles) takes nearly or less than half of the time it takes

without constraint reduction (in magenta triangles). Because not all constraints of

(4.13)–(4.19) are dense, constraint reduction did not afford a full fourfold (1180
300

)

speedup factor.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (sec)

C
P

U
 ti

m
e

(s
ec

)

Comparison of CPU time With and Without Constraint Reduction

|Q|=300
|Q|=n=1180

Figure 4.1: CPU time in seconds for |Q| = 300 and |Q| = n = 1180.

In particular, we show in Figure 4.2 the effect of constraint reduction on the

single LP at time 5 sec (t − 1 = 499), which is a typical case. The CPU time to

completely solve this problem is decreasing as the number of constraints is decreas-

ing, all the way from 1180 till |Q| is as small as 200, approximately 17% of the total

constraints. For this LP, MPC takes much more time and iterations than Iteration

IrMPC.

Table 4.1 shows that 516 of the 1000 LPs begin with warm starts that are not

strictly feasible points (NFIPs), the remaining 484 start with strictly feasible initial

points (FIPs). Because we used a warm start for the initial penalty parameter, only

108

200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

number of constraints kept

ite
ra

tio
ns

CPU time and iterations for the LP at t=5 sec

200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

number of constraints kept

to
ta

l t
im

e
(s

ec
)

Figure 4.2: CPU time and the number of iterations to solve the problem at 5 sec by

IrMPC with varying number |Q| of kept constraints; see blue circles and red stars.

MPC takes much larger to solve this problem; see the dashed magenta line.

5 problems start with too small initial penalty parameters (SIPPs), and we observed

an increase of penalty parameter for those 5 problems only. For those 484 problems

with feasible initial points, rMPC? in [65] is applicable, so we compared the time of

algorithm IrMPC and rMPC? with |Q| = 300. It turned out that 95% of them (that

is, 461 problems out of total 484 problems) take less time using IrMPC than using

rMPC?, presumably due to the better ability of IrMPC to handle initial points close

to the constraint boundaries.

4.3 Quadratic RHC

Quadratic model predictive control consists of linear constraints and a convex

quadratic objective function. In this section, we apply Iteration IrQP in Chapter 3

109

Table 4.1: Number of problems with certain properties

NFIPs FIPs SIPPs IrMPC < rMPC?

516 484 5 461 out of 484

to the quadratic RHC for rotorcraft altitude control and for rotorcraft trajectory

following.

4.3.1 Altitude control

4.3.1.1 Problem setup

Suppose we have the initial state θ(t−1), usually measured by on-line sensors.

In RHC-based altitude control, during time interval (t − 1, t), model predictive

control solves the minimization problem below

min
w,θ

M−1∑

k=0

wT
k Rwk +

N∑

k=1

θT
k Pθk (4.21)

s.t.

θk+1 = Asθk + Bswk, (4.22)

θ0 = θ(t− 1), (4.23)

wmin ≤ wk ≤ wmax, for k = 0, · · · ,M − 1 (4.24)

θmin ≤ θk ≤ θmax, for k = 1, · · · , N (4.25)

δwmin ≤ wk − wk−1 ≤ δwmax, for k = 0, · · · ,M − 1 (4.26)

wk = 0, for k = M, · · · , N − 1. (4.27)

110

It is the same to the linear RHC problem (4.1)–(4.7) except that a quadratic cost

function is used.

Define the matrix

Er :=




Ir 0 · · · 0

−Ir Ir · · · 0

.

0 · · · −Ir Ir




∈ RMr×Mr,

and the vectors

θmax := [θmax; . . . ; θmax] ∈ RNp,

θmin := [θmin; . . . ; θmin] ∈ RNp,

wmax := [wmax; . . . ; wmax] ∈ RMr,

wmin := [wmin; . . . ; wmin] ∈ RMr,

δwmax := [δwmax; . . . ; δwmax] ∈ RMr,

δwmin := [δwmin; . . . ; δwmin] ∈ RMr.

Variables θ (see definition (4.8)) can be similarly eliminated by substituting (4.11)

into (4.21) and (4.25), thus, the RHC problem can be transformed into a CQP

problem in the standard form (Dq) with only w as variables where

b := −ΓTPΩθ(t− 1), H := R + ΓTPΓ

111

and

A := −




−IMm

IMm

−Γ

Γ

−Er

Er




T

, c := −




−wmax

wmin

−θmax + Ωθ(t− 1)

θmin − Ωθ(t− 1)

−(δwmax + E1
rw(t− 1))

δwmin + E1
rw(t− 1)




(4.28)

where E1
r := [Ir; 0; . . . ; 0] ∈ RMr×r.

The number of variables in the transformed CQP is Mr and, when all the state

and input variables are constrained (all components of θmin, θmax, wmin, wmax, δwmin, δwmax

are finite), the total number of constraints is 4Mr+2Np; i.e., the size of A in (4.28)

is Mr × (4Mr + 2Np). In our numerical example, many state variables are uncon-

strained; still, the number of constraints is significantly (at least four times) larger

than that of variables.

4.3.1.2 Simulation results

We use a 10 second simulation window on the same model and data as in

section 4.2.2. The initial state is θ(0) = [0; 0; 0; 0; 0; 0; 0;−80 ft], indicating an 80-

foot deviation from the target altitude. The control objective is the same: bring

the rotorcraft’s altitude back to nominal. As in linear RHC, we assume the model

in theonline CQP (see (4.22)) is “exact”, i.e., RHC uses the same matrices As, Bs

as in the optimization problem.

With a single scalar control input (r = 1), the CQP problem solved at each

112

iteration has M variables. Only two of eight state variables have finite prescribed

upper and lower bounds, which gives us 4N constraints from (4.25), 2N for each

state variable. Given that there are also 4 constraints at every time step on the

control input from (4.24) and (4.26), the total number of constraints in the CQP

problem is 4M + 4N . With our current choice of M = 30 and N = 100, we thus

have 30 optimization variables and 520 constraints.

As the sample time is set to be Ts = 0.01 sec, there are 1000 time steps,

corresponding to 1000 QPs to solve. (Each node corresponds to one QP.) For the

first CQP, which produces w(1), the initial value w0 of w is set to zero, as is w−1.

For all other CQPs, w0 is set to be the warm start w̄∗ := [w∗
1; w

∗
2; · · · ; w∗

M−1; w
∗
M−1]

derived from the solution w∗ of the previous CQP. The initial value of z of IrQP

is always chosen to be max{AT w0 − c, 0} + 0.001. At each iteration, the working

set Q consists of the indices of |Q| smallest slack variables s. Parameters in (3.11)–

(3.12) were set as σ = 10, γ1 = 0.1, γ2 = 100 and γ4 = 100. Algorithm IrQP was

terminated when stopping criterion (3.84) is satisfied with tol = 10−4.

We next show the performance of control inputs and states in Figures 4.3

to 4.6. (In practice, it is more typical to use a quadratic objective in RHC-based

control problems. Thus, we analyze the control behavior here but in the linear

RHC.) Figures 4.3 and 4.4 show the evolution of the control input w(t) and of the

“input rate” δw(t) = w(t)−w(t−1), respectively. Constraints on the input rate are

seen to be active for the CQPs during the first few seconds; see Figure 4.4. In fact,

the lower bound constraint on δw(t) is violated at times 1.20 sec to 1.22 sec. This

means that the original problem (Dq) was infeasible at those time steps and that,

113

accordingly, the optimal z∗ for problem (Dqρ) was not zero. If the lower bound on

δw(t) is deemed to be a hard constraint indeed, then one option would be to keep

it as-is in (Dqρ), i.e., not incorporate it in the penalization scheme. (A variation on

this idea would be to leave such hard constraints as-is only for k = 0, since only w0
∗

is actually applied as a control input w(t).)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

time (sec)

collective input (inches)

Figure 4.3: Simulation results: control input. The bounds wmin and wmax are marked

by red dashed lines and the trim value by a magenta dotted line.

Figures 4.5 and 4.6 show the evolution of the states (in absolute coordinates).

Feasibility of the CQPs (except for times 1.20 sec to 1.22 sec) insures that the

prescribed bounds on the state variables are never overstepped. Still, as seen on the

figures, some of these bounds are reached occasionally: (i) the vertical velocity (3rd

state variable) meets its lower bound at times 2.17 sec to 2.21 sec, and (ii) a bound

on the shaft torque (5th state variable) is attained during two time intervals, the

upper bound at times 1.52 sec and 1.53 sec, and the lower bound at times 3.38 sec

114

0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

time (sec)

change of collective input (inches/sec)

Figure 4.4: Simulation results: rate of change of control input. The bounds (δwmin

Ts

and δwmax

Ts
inches/sec) are marked by red dashed lines.

to 4.02 sec; see Figure 4.6.

Figures 4.7 and 4.8 and Tables 4.2 and 4.3 illustrate the performance of IrQP

in terms of time to solution. Figure 4.7 shows the number of iterations and total time

to solution of the 11th CQP (the one which produces w(11)), versus the cardinality

of the working set Q (not counting the z ≥ 0 constraints which, as we indicated, were

always included in Q); the behavior is typical. The same information is displayed

on Figure 4.8 for the 374th CQP, whose solution took the longest time.4 Note that,

interestingly, the total number of iterations to solution remains essentially constant

as |Q| is decreased, down to |Q| = 80 or even less. (Related observations were

made in linear RHC (see section 4.2) and in [60], [65] and [32] on other classes of

4We discounted the very first CQP, solved during time interval (0, 1), for which a warm start

was not available.

115

0 5 10
0

10

20

30

time (sec)

1. rotor speed (rad/sec)

0 5 10
0

10

20

30

40

time (sec)

2. yaw rate (deg/sec)

0 5 10

−30

−20

−10

0

10

20

30

time (sec)

3. body−axis vertical velocity (ft/sec)

0 5 10
−30

−20

−10

0

10

time (sec)

4. inflow velocity (ft/sec)

Figure 4.5: Simulation results: states 1 to 4. The bounds on the vertical velocity

are marked by red dashed lines and the trim values by magenta dotted lines.

0 5 10
0

2

4

6
x 10

4

time (sec)

5. shaft torque (ft×lb)

0 5 10
0

0.05

0.1

0.15

0.2

0.25

time (sec)

6. engine fuel flow (lbs/sec)

0 5 10
−0.5

0

0.5

time (sec)

7. integrated rotor speed (rad)

0 5 10
−80

−60

−40

−20

0

time (sec)

8. altitude (ft)

Figure 4.6: Simulation results: states 5 to 8. The bounds on the shaft torque are

marked by red dashed lines and the trim values by magenta dotted lines.

116

applications.)

0 100 200 300 400 500
0

1

2

3

4

5

number of constraints kept

ite
ra

tio
ns

PCRCQP

0 100 200 300 400 500
0

0.005

0.01

0.015

number of constraints kept

C
P

U
 ti

m
e

(s
ec

)

Figure 4.7: Effect of constraint reduction on the number of iterations and total CPU

time needed for IrQP to solve the 11th CQP (typical). Each ∗ and o corresponds to

a full optimization run, with the cardinality of the working set Q as specified. The

rightmost ∗ and o correspond to no constraint reduction (|Q| = 520).

Table 4.2 reports the number of sample points at which solving the CQP

takes more than a certain time, ranging from 0.01 sec to 0.05 sec, with constraint

reduction at level |Q| = 50 and without constraint reduction (i.e., |Q| = 520).5 It

shows that most (more than 80%) of the CQPs are solved within 0.01 sec using

constraint reduction, while all of them need more than 0.01 sec without constraint

reduction. Finally, in Table 4.3, we compare the CPU time for three algorithms:

Matlab commands qpdantz and quadprog; and IrQP with |Q| = 50 and |Q| = 520

(no constraint reduction). Default parameter values were used for qpdantz and

5See footnote 4.

117

0 100 200 300 400 500
0

10

20

30

40

50

number of constraints kept

ite
ra

tio
ns

PCRCQP

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

number of constraints kept

C
P

U
 ti

m
e

(s
ec

)

Figure 4.8: Effect of constraint reduction on the number of iterations and total CPU

time needed for IrQP to solve the 374th (and most time-consuming) CQP.

Table 4.2: Number of time steps (out of 999) at which the total CPU time is larger

than given thresholds

time (sec) > 0.01 > 0.02 > 0.03 > 0.04 > 0.05

|Q| = 50 136 28 13 8 7

|Q| = 520 999 192 88 60 25

Table 4.3: CPU Time used by several algorithms to solve the 11th CQP (typical)

qpdantz quadprog IrQP (|Q| = 50) IrQP (|Q| = 520)

0.3812 0.1383 0.0060 0.0132

118

quadprog.

We also compare IrQP (using the adaptive scheme for ρ) with Algorithm

A of [32] (using the fixed scheme for ρ) which is the same as IrQP but without

penalty parameter updates. We choose the fixed penalty parameter ρ = 2× 107 for

Algorithm A of [32], because it is large enough that all 1000 CQPs are guaranteed

to be solved. (The smallest such value is 2 × 105. In practice, a much larger value

than the smallest value is used.) Figure 4.9 shows the CPU time to solve the 10 sec

(RHC) process in four cases: with either the adaptive scheme for ρ or a fixed value

ρ = 2 × 107, and with either constraint reduction (CR) or no constraint reduction

(NCR). Since we have 1000 CQPs to solve, to reduce clutter, only every 10th time

step is showed. It is noticeable that the time to solve CQPs by IrQP takes less time

than Algorithm A of [32] with the fixed value ρ = 2×107, and the time by constraint

reduction is much less than that by no constraint reduction. Thus, the combination

of constraint reduction and the adaptive scheme, as we did in algorithm IrQP, is the

best of four schemes.

119

100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

nodes

tim
e

(s
ec

)
Comparison of time with the adaptive and fixed penalty parameter

Adaptive & CR
Adaptive & NCR
Fixed rho=2e7 & CR
Fixed rho=2e7 & NCR

Figure 4.9: CPU time for four strategies: the adaptive scheme for ρ with constraint

reduction (in blue triangles), the adaptive scheme for ρ without constraint reduction

(in blue circles), the fixed scheme ρ = 2 × 107 with constraint reduction (in red

triangles) and the fixed scheme ρ = 2 × 107 without constraint reduction (in red

circles).

120

4.3.2 Trajectory following

4.3.2.1 Problem setup

In RHC-based trajectory following, during the time interval between sample

times t− 1 and t, the convex quadratic program to be solved online is

min
M−1∑

k=0

wT
k Rwk +

N∑

k=1

(θk − θr
k)

T P (θk − θr
k) (4.29)

s.t.

θk+1 = Asθk + Bswk, k = 0, . . . , N − 1, (4.30)

θ0 := Asθ(t− 1) + Bsw(t− 1), (4.31)

wk = wM−1, k = M, . . . , N − 1, (4.32)

wmin ≤ wk ≤ wmax, k = 0, . . . , M − 1, (4.33)

δwmin ≤ wk − wk−1 ≤ δwmax, k = 1, . . . , M − 1 (4.34)

δwmin ≤ w0 − w(t− 1) ≤ δwmax, (4.35)

θmin ≤ θk ≤ θmax, k = 1, . . . , N, (4.36)

δθmin ≤ θk − θk−1 ≤ δθmax, k = 1, · · · , N, (4.37)

where R is positive-definite and P is semi-positive definite. Path θr is a known

reference trajectory; the objective is to find a control law w such that the rotorcraft

closely tracks the specified trajectory subject to the dynamic system and constraints

involving states and control inputs. Compared to the constraints of the RHC prob-

lem in section 4.3.1, constraints (4.37) on rates of change of the states are newly

added and, following the Matlab Model-Predictive-Control Toolbox [42], control val-

121

ues beyond the control horizon are constrained to be the value at the control horizon

(see (4.32)).

Define matrices

F :=




Ip 0 · · · 0

−Ip Ip · · · 0

.

0 · · · −Ip Ip




∈ RNp×Np,

and vectors

δθmax := [δθmax; . . . ; δθmax] ∈ RNp,

δθmin := [δθmin; . . . ; δθmin] ∈ RNp,

θr := [θr
1; · · · , θr

N] ∈ RNp.

Then from (4.30)-(4.32), the state sequence θ can be expressed in terms of the

control input sequence w:

θ = Γbw + Ωθ0, (4.38)

where

Γb =




Bs 0 · · · 0 0

AsBs Bs · · · 0 0

...
...

. . .
...

...

AM−1
s Bs AM−2

s Bs · · · AsBs Bs

AM
s Bs AM−1

s Bs · · · A2
sBs AsBs + Bs

...
...

. . .
...

...

AN−1
s Bs AN−2

s Bs · · · AN−M+1
s Bs

∑N−M
i=0 Ai

sBs




,

122

and Ω is defined as in equation (4.11). Substituting (4.38) into (4.29) and (4.36),

the RHC problem can be transformed into a CQP problem of the standard form

(Dq) with

b := −ΓT
b P(Ωθ0 − θr), H := R + ΓT

b PΓb

and

A := −




−IMm

IMm

−Γb

Γb

−Er

Er

−FΓb

FΓb




T

, c := −




−wmax

wmin

−θmax + Ωθ0

θmin − Ωθ0

−(δwmax + E1
rw(t− 1))

δwmin + E1
rw(t− 1)

−δθmax + (FΩ− F1)θ0

δθmin − (FΩ− F1)θ0




where wmax, wmin, δwmax, δwmin, θmax, θmin and Er
1 were defined in section 4.3.1,

and F1 := [Ip; 0; . . . ; 0] ∈ RNp×p. Because H is positive definite, the transformed

CQP has a unique solution w∗ = [w∗
0; . . . ; w

∗
M−1] whenever it is feasible. In the

spirit of model predictive control, control input w(t) = w∗
0 is applied at sample time

t. The other components of w∗ are discarded but used as a “warm-start” towards

solving the next CQP.

The number of variables in transformed standard CQP (Dq) is Mr and,

when all the state and control input variables are constrained (all components of

wmin, wmax, δwmin, δwmax, θmin, θmax, δθmin, δθmax are finite), the total number of con-

straints is 4Mr + 4Np. Thus, the number of constraints is significantly larger than

123

that of variables, making constraint reduction beneficial.

4.3.2.2 Rotorcraft models

We started from model M2,6 a linear time-invariant, continuous-time model

of the UH60 Blackhawk, of the form

θ̇ = Actθ + Bctw. (4.39)

This model was provided to us by R. Celi, who generated it as described in [58]. It

has 37 states and 10 control inputs; see Table 4.4. (Only the first four control inputs

are shown; the others have a moderate effect and were set to zero throughout.) This

model, rather than the classic model used in the previous sections 4.2.2 and 4.3.1,

was used because it is larger and more complicated, thus, can further demonstrate

the efficiency of our algorithm. For the purpose of the present section, model M2 was

assumed to be exact and appropriate components θ(·) of its states were substituted

in (4.31) for the measured state of the rotorcraft.

The model (As, Bs) used in the RHC controller was obtained from model M2

as follows. First, a glance at the data shows that, with the initial state set to zero

(as we did in our simulations: see section 4.3.2.3 below), the last six components

(32 to 37) of the states remain at zero throughout, regardless of the value of the

control inputs; in particular, the last six—indeed, eight— rows of Bct are zero.

Accordingly, the trajectories of the first 31 states remain unaffected if the last six

6The name reflects the fact that the model accounts for two flexible-blade modes (rigid body

flap and drag).

124

Table 4.4: Description of the original model M2 from [58]. States and control inputs

estimated/generated by the controller are marked in boldface.

States 1-3 (û, v̂, ŵ) Velocity components along the body axes

States 4-6 (p̂, q̂, r̂) Roll, pitch and yaw rates

States 7-9 (φ̂, θ̂, ψ̂) Roll, pitch and yaw angles

States 10-17 Flexible mode: Blade rigid body flap

States 18-25 Flexible mode: Blade drag

States 26, 27 Torsion, torsion rate

State 28 Constant portion of main rotor inflow

States 29-30 First harmonic (cos and sin) of main rotor inflow

State 31 Tail rotor inflow

State 32 Down wash on tail

State 33 Side wash on tail

States 34-37 Engine/rotor speed dynamics

Control inputs 1-4 Lateral cyclic, longitudinal cyclic, collective and pedal

125

rows and columns of Act and the last six rows of Bct are deleted, which we did. Next,

to keep the RHC controller reasonably simple and fast, we decided to only simulate

the first nine states (the “classic nine”) in the built-in simulator (4.30)-(4.31).

The reduction from 31 to nine states was effected as follows. Denote by Act
α,β

the submatrix of Act that consists of only those rows in set α and only those columns

in set β. Let subscript r indicate the kept states in the reduced model, and d be

the deleted states. By setting the derivatives of the deleted states to zero, system

(4.39) becomes

θ̇r = Act
r,rθr + Act

r,dθd + Bct
r w, (4.40)

0 = θ̇d = Act
d,rθr + Act

d,dθd + Bct
d w. (4.41)

Noting that Act
d,d in M2 is non-singular, we can solve (4.41) for θd and substitute

into (4.40), yielding

θ̇r = Actθr + Bctw (4.42)

where

Act = Act
r,r − Act

r,d(A
ct
d,d)

−1Act
d,r, Bct = Bct

r − Act
r,d(A

ct
d,d)

−1Bct
d .

Our objective is to track a reference trajectory consisting of a nose-down fol-

lowed by an aggressive nose-up maneuver (see Figure 4.13), subject to actuator and

other limitations. One limitation is from the load factor associated to pitch, namely,

Nz :=
V

g

Zw

s + Zw

q (s is the Laplace variable)

which satisfies the differentiable equation (after taking the inverse Laplace trans-

126

form)

Ṅz =
V

g
Zwq − ZwNz. (4.43)

Here, g is the acceleration of gravity, V is the forward speed of the helicopter

and Zw is the negative of the (3, 3) entry of Act (associated with state w) in the

reduced model. According to the model M2 data, V = 80 kts = 134.96 ft/sec and

Zw = 0.6920 sec−1.

We augmented both (4.39) and (4.42) with (4.43), yielding a 38-state model

considered below as an exact representation of the rotorcraft, and a 10-state model

to be used by the controller. Both models have 10 control inputs. Discrete-time

models were then generated from both (using Matlab command c2d). The first one

was fed the sequence u(·) generated by the controller, and appropriate components

x(·) of its state were fed back (see (4.31)). The second one was used in controller’s

estimator (4.30)–(4.31).

4.3.2.3 Optimization details

The desired pitch trajectory was set as shown by the solid lines on Figure 4.12

(pitch rate) and Figure 4.13 (pitch attitude), the former being the derivative of

the latter. All other components of the desired trajectories were set to zero. Be-

cause use of the collective is not essential for tracking such a trajectory, and for

sake of controller simplicity, we decided to set to zero all but three control in-

puts: lateral cyclic, longitudinal cyclic and pedal. Values R = diag(1, 1, 1) and

Q = diag(0, 0, 0, 103, 104, 10, 10, 104, 10, 0) were found to be appropriate for the cost

127

function (no tracking is attempted for û, v̂, ŵ and Nz). Constraint bounds were

set to ŵmax = −ŵmin = [5, 5, 5]T inches, δŵmax = −δŵmin = [4, 4, 4]T inches/sec,

φ̂max = −φ̂min = 5 degrees, ψ̂max = −ψ̂min = 4 degrees, Nmax
z = −Nmin

z = 1 g,

δp̂max = −δp̂min = 1 inch/sec2 and δq̂max = −δq̂min = 1 inch/sec2. Bound con-

straints on all control inputs and their rates of change were set to be “hard”,7 while

all other constraints were made “soft”.

With three control inputs (r = 3), the CQP problem in the form (Dq) has 3M

variables. Only three of ten state variables have finite prescribed upper and lower

bounds, which gives us 6N constraints from (4.36). Also, there are two of ten state

variables have finite upper and lower bounds on their change rate, giving another

4N constraints from (4.37). In addition, all bounds on control inputs and their rates

of change are finite, which are 4 × 3M . Hence, the total number of constraints in

the CQP is 12M + 10N . With our current choice of M = 30 and N = 100, we thus

have 90 optimization variables and 1360 constraints.

Note that global convergence of IrQP is proved in Chapter 3 under general

guidelines on how to select Q; much freedom is left to be exploited based on the

application. In the present implementation, during the first few (10 in our exper-

iments) iterations in the optimization process of current problem, we forced the

set Q to always contain (as a subset) the active set at the solution of the previous

problem. Indeed, active constraints at the solution of two successive problems do

not change much, so this strategy is much more efficient from our experiments than

that Q includes purely Q most active constraints.

7Hard constraints must be satisfied, even when there is no feasible point for all constraints.

128

For the first CQP (where t = 0), initial values of control inputs and initial

states were all zeros. For all other CQPs, the way of setting warm starts and

initial values is the same as in section 4.3.1.2. Additionally, the initial value of

the penalty parameter was set to 2 × 107 for the first CQP, and for all others, it

was set to min(2 × 107, 10‖λ∗‖∞) where λ∗ is the dual solution at previous time

step. Parameters in (3.11)–(3.12) were set as σ = 10, γ1 = 0.1, γ2 = 100 and

γ4 = 100. The penalty parameter was allowed to increase at most five times because

too large a value slows down the optimization process. The optimization runs were

terminated when (3.84) was satisfied with tol = 10−4 or when a maximum iterate

count IterMax = 100 was reached. In one of our tests (see the end of section 4.3.2.4),

they were terminated on elapsed time.

4.3.2.4 Simulation results

As already mentioned, our RHC controller was applied to the full 37-state

model in lieu of the actual rotorcraft. The initial state was set to zero. We simulated

the system for 10 sec with a sample time Ts = 0.01 sec, so that 1000 CQPs were

solved.

Figures 4.10 and 4.11 show the evolution of three control inputs ŵ(t) and their

rates of change (defined by (ŵ(t)−ŵ(t−1))/Ts). It can be seen from Figure 4.11 that

the upper or lower bounds on the rates of change were reached at most time steps.

Figures 4.12 and 4.13 show the comparison of the actual and reference trajectories

for the pitch rate and pitch, respectively. From about 5 sec to 7 sec, the reference

129

trajectory of pitch was not followed well. This is due to the bound limitation on

rates of change of control inputs and to the upper bound limitation of the load factor

of pitch; see Figures 4.11 and 4.16. Figure 4.14 shows the rates of change of the roll

and pitch rates, which are defined by (p̂(t)− p̂(t− 1))/Ts and (q̂(t)− q̂(t− 1))/Ts,

respectively. Evolution of other states is shown in Figures 4.15–4.18.8

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

three control inputs (inches)

als
bls
pedal

Figure 4.10: Three control inputs: lat-

eral cyclic, longitudinal cyclic and pedal,

marked by blue circles, a red and magenta

line, respectively.

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

time (sec)

change rate of control inputs (inches/sec)

als
bls
pedal

Figure 4.11: Rates of change of three

control inputs. The upper bound 4

inches/sec and lower bound −4 inches/sec

are marked by dashed green lines.

We compared in Figures 4.19 and 4.20 the CPU time and iterations to solve

those 1000 CQPs with |Q| = 120 and with no constraint reduction (corresponding

to |Q| = 1360). To reduce clutter, the results of only every tenth CQP are showed.

It can be seen from Figure 4.19 that for each CQP, constraint reduction takes much

less time than no constraint reduction does. We also observed from Figure 4.20 that

8The control inputs in Figure 4.10 would go into the actuator, which is as a second order filter,

so a much smoother control input goes into to physical aircraft, yielding a much smoother state

evolution than shown in the thesis.

130

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

time (sec)

5th state: pitch rate (deg/sec)

actual pitch rate
command pitch rate trajectory

Figure 4.12: Trajectory following of the

pitch rate

0 2 4 6 8 10
−20

−10

0

10

20

30

40

50

time (sec)

8th state: pitch attitude (deg)

actual pitch
command pitch trajectory

Figure 4.13: Trajectory following of the

pitch

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

derivatives of p and q (inches/sec2)

acceleration of roll
acceleration of pitch

Figure 4.14: Acceleration of roll and pitch. Both have an upper bound 1 inch/sec2

and a lower bound -1 inch/sec2.

131

0 2 4 6 8 10
−100

0

100

time (sec)

1st state: v
x
 (ft/s)

0 2 4 6 8 10
−20

0

20

time (sec)

2nd state: v
y
 (ft/s)

0 2 4 6 8 10
−50

0

50

time (sec)

3rd state: v
z
 (ft/s)

Figure 4.15: Velocity components along

the body axes (without bounds)

0 2 4 6 8 10
−0.5

0

0.5

1

time (sec)

10th state: load factor of the pitch (g′s)

Figure 4.16: Load factor of the pitch.

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

time (sec)

7th state: roll (deg)

0 2 4 6 8 10
−5

0

5

time (sec)

9th state: yaw (deg)

Figure 4.17: Roll and yaw angles. Bounds

are marked by green dashed lines.

0 2 4 6 8 10
−2

−1

0

1

2

time (sec)

4th state: roll rate (deg/sec)

0 2 4 6 8 10
−10

−5

0

5

10

time (sec)

6th state: yaw rate (deg/sec)

Figure 4.18: Roll and yaw rate (without

bounds)

132

constraint reduction does not increase the number of iterations compared with no

constraint reduction.

Table 4.5 shows a comparison of total time for solving all 1000 CQPs with

four methods: function qpdantz and quadprog in Matlab, and IrQP with |Q| = 120

and |Q| = 1360. While function qpdantz (the solver used in the Matlab Model-

Predictive-Control Toolbox) takes the longest time, constraint reduction takes the

least time.

Figure 4.21 shows the total time and number of iterations to solve all 1000

CQPs with constraint reduction for various fixed values of the penalty parameter,

i.e, with the adaptation scheme (3.11)–(3.12) turned off. (Algorithm IrQP then

becomes Algorithm A of [32].) We recorded the total time and number of iterations

for solving the 1000 problems using various values of ρ, from 2 × 106 to 109. (The

value ρ = 2×106 turns out to be the smallest value that is large enough for all 1000

CQPs, as was determined by trial and error. Of course, for other trajectories to be

tracked, a larger value may be needed, so a robust fixed-ρ controller would have to

use a value much larger than 2 × 106.) Magenta dashed lines denote the result by

IrQP with the adaptive scheme where warm starts for the penalty parameter were

used. It can been seen from the figure that the adaptive penalty scheme performs

better than the scheme with fixed penalty values for most values, and much better

for large penalty values.

When an RHC-based controller is implemented, the optimization process must

be stopped when the next stopping time is reached, at which time the best control

value obtained so far is applied to the system being controlled. We compared the

133

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (sec)

C
P

U
 ti

m
e

effect of constraint reduction

|Q| = 1360

|Q| = 120

Figure 4.19: Comparison of CPU time

with constraint reduction and no con-

straint reduction

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

time (sec)

ite
ra

tio
ns

effect of constraint reduction

|Q| = 1360

|Q| = 120

Figure 4.20: Comparison of iteration

counts with constraint reduction and no

constraint reduction

Table 4.5: The total RHC time with different QP solvers in a 10 sec simulation

Methods qpdantz quadprog |Q| = 1360 |Q| = 120

time (sec) 5243.2 235.7 45.4 13.3

134

6.5 7 7.5 8 8.5 9
0

10

20

30

log10(ρ)

C
P

U
 T

im
e

Time and Iterations with various fixed penalty parameters

6.5 7 7.5 8 8.5 9
0

1

2

3

x 10
4

log10(ρ)
Ite

ra
tio

ns

Figure 4.21: Total time and number of iterations with fixed penalty values ρ and

|Q|=120. The magenta dash lines mark the total time and number of iterations

with the adaptive scheme.

performances of IrQP on our trajectory following problem with |Q| = 1360 (in

Figures 4.22–4.25) and |Q| = 120 (in Figures 4.26–4.29), with the optimization

stopped after 0.012 sec (0.010 sec was a little too short a time for our controller

with the computer we used for our runs). It can be seen that the trajectories

were followed much better in the latter case than the former (Figures 4.22–4.23

vs. Figures 4.26–4.27), and the associated constraint violations were much smaller

(Figures 4.24–4.25 vs. Figures 4.28–4.29).

4.4 Conclusion

We applied the algorithms IrMPC and IrQP to solve the optimization in RHC-

based control problems. Numerical simulations, which were implemented for differ-

ent control purposes (altitude control and trajectory following) and for different

135

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

25

30

35

time (sec)

5th state: pitch rate (deg/sec)

actual pitch rate
command pitch rate trajectory

Figure 4.22: Trajectory following of the

pitch rate with |Q| = 1360 and a time

limit of 0.012 sec

0 2 4 6 8 10
−20

−10

0

10

20

30

40

50

time (sec)

8th state: pitch attitude (deg)

actual pitch
command pitch trajectory

Figure 4.23: Trajectory following of the

pitch with |Q| = 1360 and a time limit of

0.012 sec

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

10th state: load factor of the pitch (g′s)

Figure 4.24: Load factor of the pitch with

|Q| = 1360 and a time limit of 0.012 sec

0 2 4 6 8 10

−20

−10

0

10

20

time (sec)

7th state: roll (deg)

0 2 4 6 8 10
−20

−10

0

10

time (sec)

9th state: yaw (deg)

Figure 4.25: Roll and yaw with |Q| = 1360

and a time limit of 0.012 sec

136

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

25

time (sec)

5th state: pitch rate (deg/sec)

actual pitch rate
command pitch rate trajectory

Figure 4.26: Trajectory following of the

pitch rate with |Q| = 120 and a time limit

of 0.012 sec

0 2 4 6 8 10
−20

−10

0

10

20

30

40

50

time (sec)

8th state: pitch attitude (deg)

actual pitch
command pitch trajectory

Figure 4.27: Trajectory following of the

pitch with |Q| = 120 and a time limit of

0.012 sec

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

10th state: load factor of the pitch (g′s)

Figure 4.28: Load factor of the pitch with

|Q| = 120 and a time limit of 0.012 sec

0 2 4 6 8 10
−10

−5

0

5

10

time (sec)

7th state: roll (deg)

0 2 4 6 8 10
−5

0

5

10

time (sec)

9th state: yaw (deg)

Figure 4.29: Roll and yaw with |Q| = 120

and a time limit of 0.012 sec

137

models (the classic eight-state model and 37-state model M2), suggest that our

proposed algorithms are of practical interests.

While the “on-line” optimization problem was not always solved within the

0.01 second sample time interval, we expect that this should be overcome when a

faster, multicore processor is used. Also, because algorithm IrQP is an affine-scaling

version, a Mehrotra’s Predictor-Corrector version can also be developed, which is

likely to be faster than the former. Furthermore, we have the expectation that this

infeasible constraint-reduced approach can be extended to solve the optimization

problems in nonlinear model predictive control.

138

Chapter 5

Future Work

In this chapter, future work is discussed that includes the extensions of both

feasible and infeasible constraint reduction algorithms to general convex optimiza-

tion. For the former, the idea is to use constraint reduction schemes by extending

the algorithms of linear optimization [60] and convex quadratic optimization [32].

For the latter, one would apply exact penalty functions to allow for arbitrary initial

points and extend the penalty adaptation scheme in Chapter 2 and 3. In the end,

several problems are discussed as potential applications of the proposed algorithms.

5.1 Extension to convex optimization (CO)

Consider the convex optimization (CO) in the form

min f(y) s.t. hi(y) ≤ 0, i = 1, · · · , n (5.1)

where f(y) and hi(y) for all i = 1, · · · , n are convex and their second derivatives are

continuous. Convex optimization is special, because every local minimum is a global

minimum, and because of the convexity of the cost function, its Newton direction

is always descent.

Again, the case we consider is n À m; i.e., there are many more convex

constraints than variables, which is the case when constraint reduction should be

beneficial.

139

5.1.1 Feasible constraint reduction for CO

It is natural to extend the constraint-reduced algorithms of linear and quadratic

optimization in [60, 65, 32] to the more general convex optimization. Such exten-

sion is based on the fact that the Newton direction ∆y obtained in PDIPMs is a

direction of descent [61]. This fact plays an important role in the analysis of global

convergence and as is shown next, is preserved in the constraint-reduced versions of

PDIPMs. Applying constraint reduction on (5.1) yields

min f(y) s.t. hQ(y) ≤ 0. (5.2)

The affine-scaling search direction (∆xQ, ∆y, ∆sQ) for (5.2) can be obtained by

solving




0 AQ(y)T I

AQ(y) H(Q)(x, y) 0

SQ 0 XQ







∆xQ

∆y

∆sQ




=




0

−AQ(y)xQ −∇f(y)

−XQsQ




(5.3)

where A(y) are the gradients of h(y) at point y, and

H(Q)(x, y) := ∇2f(y) +
∑
i∈Q

xi∇2hi(y).

Eliminating ∆xQ and ∆sQ in (5.3), we derive the normal equations

M (Q)∆y = −∇f(y) (5.4)

where the reduced normal matrix is

M (Q) := AQ(y)XQ(SQ)−1(AQ(y))T + H(Q)(x, y).

140

Notice that [AQ(y) H(Q)(x, y)], rather than AQ(y), can be chosen to be full rank,

so M (Q) is positive-definite. (The implicit assumption is that [A(y) H(x, y)] has full

rank for any x and y.) Thus, (5.4) implies that

∇f(y)T ∆y = −∆yT M (Q)∆y < 0,

showing that direction ∆y is a descent direction when constraint reduction is used.

Constraint reduction in convex programming can save the computation cost

per iteration in many respects. First, only partial gradients AQ(y) and partial

Hessians of constraints are needed for the two summation terms in M(Q). Computing

gradients and Hessians of all constraints, which might be expensive, will be reduced

to those of only |Q| constraints. Second, as in the LP and CQP cases, only a subset

of constraints is involved in forming M (Q). This reduces the two n-term summations

to two |Q|-term summations. Furthermore, old gradients and Hessians can be reused

for direction ∆xQ or ∆sQ without losing global convergence: One idea is then to

recompute only the gradients and Hessians of the constraints that are included in

Q and fill the remaining with those computed in previous iterates. For instance,

computing ∆sQ
k at iterate k can use the old gradients AQ(yj) at iterate j ahead of

k, i.e.,

∆sQ
k = −AQ(yj)

T ∆yk, j < k.

141

5.1.2 Infeasible constraint reduction for CO

To allow for infeasible initial points in constraint reduction schemes, we can

relax (5.1) with an `1 (or `∞) penalty function, and solve the penalized problem

min f(y) + ρeT z s.t. hQ(y) ≤ zQ, z ≥ 0 (5.5)

with feasible algorithms discussed in the previous section. There are two main

reasons for using the exact penalty function: Strictly feasible points are trivially

available for problem (5.5), and according to Theorem 40 in [23], this `1 penalty

function is “exact” as in the case of LPs and CQPs. An extra advantage of problem

(5.5) over problem (5.1) is that the strong duality holds for problem (5.5), but not

necessarily for (5.1). This is because in convex programming, strong duality does

not always hold, even when the primal is feasible [12]. However, problem (5.5) is

strictly feasible, satisfying the Slater condition, so it has both the property of strong

duality and an optimal solution.

For (5.5), the challenge would be how to choose an appropriate penalty param-

eter, for which we need to design an automatic adjustment scheme. A scheme can

be proposed as the same for LPs and QPs except for a significant modification in

condition (i) of (2.12) and (3.12). Suppose there exists an integer ko and a positive

constant C such that for all k,

max{[xk; uk]} ≤ Cρko ,

where x and u are the dual variables associated with constraints h(y) ≤ z and z ≥ 0,

respectively. (This assumption is mild and satisfied in many cases. Indeed, ko = 1

142

in the LP case of Chapter 2, and ko is set to be zero for nonlinear programming

[61] and for convex quadratic programming [32].) Accordingly, the iterates of primal

variables xk and uk can be established to be bounded by Cρko , unlike the fixed bound

χ in IrQP, and wmax in [32]. Then the adjustment scheme for ρ can be proposed as

follows: increase ρ when either

‖z‖ ≥ γ1ρ

OR

‖[∆y; ∆z]‖ ≤ γ2

ρko
, AND x̃Q ≥ −γ3e, AND ũQ ≥ γ4e (5.6)

is satisfied, where condition (i) of (5.6) has been modified to indicate the closeness

to a stationary point. Indeed, condition (i) of (5.6), together with x and u bounded

by Cρko , implies that [y; z] is close to a stationary point of (5.5).

The main part of theoretical analysis is to show the boundedness of ρk, which

can be proven similarly to the analysis in Chapter 3. A challenge is that in convex

optimization, both the Hessian of objective function and the gradients of constraints

depend on the variables, rather than being constants as for CQPs. This might lead

to the unboundedness of the Hessian and gradients due to the unboundedness of the

variable, causing theoretical difficulty. The effort would then be devoted to show the

boundedness of the penalty parameter without any assumption on the sequence of

{yk} and {zk}, as in the LP and CQP cases. Since Lemma 3.2 (see also Corollary 20

in [23]) suggests that {zk} might be bounded if {yk} is bounded, it is likely to be

sufficient to assume only the boundedness of {yk}, which is still weaker than the

assumption in nonlinear programming of [61].

143

5.2 Specific applications

The following are some potential application candidates of the infeasible constraint-

reduced interior point method for convex optimization.

5.2.1 q-norm support vector machines

Consider the q-norm support vector machines (SVMs) [29, 59] as follows:

min
w,γ

1

q
‖w‖q

q s.t. C(BT w − eγ) ≥ e

where B ∈ Rm×n with n À m. The ith column bi of B denotes the ith given point.

C is a diagonal matrix whose diagonal entry Cii ∈ {−1, 1} labels the class the ith

point belongs to. When q = 1 or q = ∞, it is a linear problem; When q = 2, it

is classical 2-norm SVM [31, 32]. The objective of SVMs is to find the separating

hyperplane

xT w = γ

that maximizes the margin between the points tagged by 1 and those tagged by

−1. Due to n À m (more cases than attributes), this problem has many more

constraints than variables; see the classification data sets at UCI Machine Learning

Repository [43] from real examples.

However, such a hyperplane may not exist. “Soft-margin” methods choose

the hyperplane that splits the points as cleanly as possible while maximizing the

margin of those points that can be split. That is exactly the functionality of exact

penalty functions. Specifically, using an `1 exact penalty function in (5.5) yields the

144

“soft-margin” problem

min
w,γ

1

q
‖w‖q

q + ρeT z s.t. C(BT w − eγ) + z ≥ e, z ≥ 0.

5.2.2 Entropy optimization

Consider the problem to choose a probability distribution given the informa-

tion about some moments of the distribution. Out of all possible distributions that

satisfy the moments, we can choose the one that maximizes the entropy. Entropy is a

measure of the uncertainty and maximizing the entropy tries to avoid any judgement

about unknown information.

In particular, one entropy optimization problem with m variables and infinitely

many linear constraints can be stated as

inf f(x) =
m∑

j=1

xj ln xj

s.t.
m∑

j=1

gj(t)xj ≥ h(t), ∀t ∈ T, (5.7)

xj ≥ 0, j = 1, · · · ,m

with a compact set T and real valued continuous functions h(t) and gj(t), j =

1, · · · ,m. Note that the negative entropy function in the objective is convex on the

set xj ≥ 0 for j = 1, · · · ,m.

This model has many potential applications, such as transportation planning,

medication, image construction [22], especially with a continuous temporal or spatial

domain. For example, in dosage distribution, many medications consist of a mixture

of several drugs. Suppose there are m drugs and the concentration of drug j can be

145

described by a function of time gj(t). Define xj ≥ 0 the proportion of drug j used in

the mixture. To guarantee the effectiveness, the total concentration of the mixture

must be above a level h(t) all through the time interval T , yielding constraints (5.7).

Meanwhile, each drug may have side effects. Hence, the mixing of these drugs must

be as even as possible, resulting in the objective to maximize the entropy function

−∑m
j=1 xj ln xj, or equivalently, to minimize

∑m
j=1 xj ln xj.

Constraints (5.7) can be discretized at a finite set of points {t1, · · · , tn} on T .

Hence, the problem can be approximated as a convex program with m variables and

n linear inequality constraints:

inf f(x) =
m∑

j=1

xj ln xj (5.8)

s.t.
m∑

j=1

gj(ti)xj ≥ h(ti), i = 1, · · · , n, (5.9)

xj ≥ 0, j = 1, · · · ,m. (5.10)

Obviously, the finer the discretization of T is, the more accurate the approximation

is. Thus, to get a reasonably accurate approximation, usually n À m. Moreover,

rather than beling linear in (5.7), constraints can be quadratic (e.g., [70]) and convex

(e.g., [7]). These make a convex problem that is a potential candidate as a practical

application for our constraint-reduced algorithms. It is worthwhile to mention that

the solution of problem (5.8)–(5.10) has an exponential form which is strictly positive

[22], implying that constraints (5.10) would not be active at the solution, and hence,

can be excluded from the working set Q.

146

Appendix A

Complementary Material

A.1 A proposition

The following proposition was used in Lemma 3.4.

Proposition A.1. Let g ∈ Range(G) where G ∈ Rp×l and g ∈ Rp, then there

exists a constant C > 0 such that for every diagonal matrix D > 0, any solution of

equations

Gv = g, (A.1)

D−1v = GT w (A.2)

satisfies ‖v‖ ≤ C‖g‖.

Proof. With QR factorization, G can be written into the form

G = Q




R1

0


 (A.3)

where Q ∈ Rp×p is orthogonal, and R1 ∈ RRg×l with Rg = rank(G) has full row

rank. Left-multiplying QT on both sides of (A.1), we get

R1v = g1. (A.4)

where g1 is the first Rg elements of QT g. Denote w1 the first l elements of QT w,

then left-multiplying D on both sides of (A.2) and substituting (A.3) yields

v = D[RT
1 0]QT w = DRT

1 w1. (A.5)

147

Substituting (A.5) into (A.4) and solving w1, we obtain

w1 = (R1DRT
1)−1g1.

It follows from (A.5) that

v = DRT
1 (R1DRT

1)−1g1.

Since D > 0, the claim follows from Theorem 1 of [55].

A.2 Description of the model used in RHC-based altitude control

In the rotorcraft altitude control problem (section 4.2 and section 4.3.1), we

used the discretized linear model as follows:

As =




0.9950 −0.0044 −0.0004 0.0002 0.0010 0.0156 −0.0001 0

−0.0000 0.9956 −0.0001 −0.0000 0.0002 0.0031 −0.0000 0

−0.0613 0.0229 0.9896 0.0103 −0.0000 −0.0003 0.0000 0

0.3322 0.0003 0.0872 0.8995 0.0002 0.0018 −0.0000 0

−0.1283 0.0002 0.0000 −0.0000 0.9245 27.7228 −0.1954 0

−0.0083 0.0000 0.0000 −0.0000 −0.0000 0.8613 −0.0126 0

0.0100 −0.0000 −0.0000 0.0000 0.0000 0.0001 1.0000 0

0.0003 −0.0001 −0.0099 −0.0001 0.0000 0.0000 −0.0000 1.0




,

Bs =

[
−0.0108; −0.0012; −0.1626; 0.0687; 0.0483; 0.0000; −0.0001; 0.0008

]
.

148

Appendix B

An `∞ Version of Iteration IrPDIP

Iteration IrPDIP-`∞ is the same as Iteration IrPDIP but with an `∞ exact

penalty function. Its analysis is similar to that of Iteration IrPDIP in section 2.2.

B.1 Description of Iteration IrPDIP-`∞

Applying constraint reduction to problem (2.63), we solve the pair

min (cQ)T xQ s.t. AQxQ = b, eT xQ + u = ρe,

and xQ ≥ 0, u ≥ 0.

and

max bT y − ρz s.t. z ≥ 0,

and (AQ)T y − ze ≤ cQ.

Based on this pair, the affine-scaling search direction
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)

obtained by PDIPMs solves



0 0 (AQ)T −e I

AQ 0 0 0 0

eT 1 0 0 0

SQ 0 0 0 XQ

0 z 0 u 0







∆xQ

∆u

∆ya

∆za

∆sQ




=




0

b− AQxQ

ρ− eT xQ − u

−XQsQ

−zu




, (B.1)

149

where (y, z) is assumed feasible. Eliminating ∆xQ, ∆u and ∆sQ in system (B.1),

we get normal equations




AQ 0

−eT −1







XQ 0

0 u







SQ 0

0 z




−1 


AQ 0

−eT −1




T 


∆ya

∆za


 =




b

−ρ


 . (B.2)

∆sQ = −(AQ)T ∆ya + ∆zae, (B.3)


∆xQ

∆u


 = −




xQ

u


−




SQ 0

0 z




−1 


XQ 0

0 u







∆sQ

∆za


 (B.4)

The infeasible constraint-reduced IPM for LPs with an `∞ penalty function is stated

below.

Iteration IrPDIP-`∞

Parameters: θ > 0, τ > 0, α > 0, χ > 0, σ > 1, γi > 0, for i = 1, 2, 3, 4.

Data: Any initial value y; pick an initial value z > max{0, max{AT y − c}}; and

initial values x > 0, u > 0 and ρ > 0; Q ⊆ n such that AQ has full row rank;

s := c− AT y + ze.

Step 1 : Computation of search direction:

(i) Obtain the primal-dual affine-scaling direction
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
from (B.1).

(ii) Select (∆y, ∆z) to satisfy

bT ∆y − ρ∆z ≥ θ(bT ∆ya − ρ∆za), ‖[∆y; ∆z]‖ ≤ τ‖[∆ya; ∆za]‖. (B.5)

Step 2. Updates.

(i) Update dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ = c− AT y+ + z+e > 0, z+ > 0 (B.6)

150

where

y+ = y + t∆y, z+ = z + t∆z. (B.7)

(ii) Select [x+; u+] > 0 to satisfy

‖[x+; u+]‖ ≤ max
(‖[x; u]‖, α‖[x̃Q; ũ]‖, χ)

(B.8)

where

x̃Q := xQ + ∆xQ, (B.9)

ũ := u + ∆u. (B.10)

(iii) Pick Q+ ⊆ n such that AQ+ is full row rank.

(iv) The penalty parameter: check the two cases (2.65)–(2.66). If either case is

satisfied, set

ρ+ = σρ; (B.11)

otherwise ρ+ = ρ.

B.2 Convergence Analysis of Iteration IrPDIP-`∞

In this section, we show that the penalty parameter in algorithm IrPDIP-`∞

will be increased at a finite number of iterations under same assumptions as in `1

version.

Lemma B.1. Step 1 (i) of IrPDIP-`∞ is well defined and bT ∆y − ρ∆z > 0.

151

Proof. In view of the full-rankness of AQ specified in IrPDIP-`∞, matrix




AQ 0

−eT −1




has full row rank. Therefore, we have from (B.2) that

bT ∆ya − ρ∆za > 0.

The claim then follows immediately from (B.5).

Hence, Iterate IrPDIP-`∞ can be repeated indefinitely, generating an infinite

sequence of iterates with the dual sequence feasible for problem (2.63).

Our goal is to show that ρ is increased finitely many times. First, Lemma B.2

shows that sequence {zk} is bounded.

Lemma B.2. Suppose (P) is feasible, then the sequence {zk} is bounded, and {bT yk}

is bounded above.

Proof. We first show that {zk} is bounded. If ρk is increased finitely many times

to a finite value, say ρ∞, then condition (2.65) must fail for k large enough, which

implies that zk ≤ γ1
z0

ρ0
ρ∞ for k large enough, proving the claim. It remains to prove

that {zk} is bounded when ρk is increased infinitely many times, i.e., when ρk →∞

as k →∞.

By assumption that (P) has a feasible point, say x0, it follows that

Ax0 = b, x0 ≥ 0. (B.12)

Since ρk →∞ as k →∞, there exists k0 such that

ρk − ‖x0‖1 > 0, ∀k ≥ k0. (B.13)

152

Since (yk, zk) is dual feasible for all k, we have

AT yk ≤ zke + c, (B.14)

zk ≥ 0. (B.15)

Left-multiplying by (x0)T ≥ 0 on both sides of (B.14) yields

(x0)T AT yk ≤ zk‖x0‖1 + cT x0.

It follows from (B.12) that

bT yk ≤ zk‖x0‖1 + cT x0. (B.16)

Adding ρkzk to both sides of (B.16), we get

(ρk − ‖x0‖1)zk ≤ πk + ρkzk, (B.17)

where we have defined

πk = cT x0 − bT yk. (B.18)

In view of (B.13) and (B.15), zk is upper bounded from (B.17) by

0 ≤ zk ≤ πk + ρkzk

ρk − ‖x0‖1

=: νk, ∀i,

Hence, in order to show that {zk} is bounded, it is sufficient to prove that {νk} is

bounded above. We show next that νk+1 ≤ νk, ∀k ≥ k0, proving the boundedness

of {νk}.

Note that for each k, Lemma B.1 implies from (B.7) that

bT yk+1 − ρkzk+1 = bT yk − ρkzk + tk(b
T ∆yk − ρk∆zk) ≥ bT yk − ρkzk.

153

It follows from (B.13) that

νk =
πk + ρkzk

ρk − ‖x0‖1

≥ πk+1 + ρkzk+1

ρk − ‖x0‖1

, ∀k ≥ k0. (B.19)

Since

νk+1 =
πk+1 + ρk+1zk+1

ρk+1 − ‖x0‖1

, ∀k ≥ k0,

and ρk+1 > ρk, in order to prove that νk is decreasing for k ≥ k0, it is sufficient to

show that the function g given by

g(ρ) :=
πk+1 + ρzk+1

ρ− ‖x0‖1

has a nonpositive derivative g′(ρ). Indeed, since

πk+1 + zk+1‖x0‖1 = cT x0 − bT yk+1 + zk+1‖x0‖1 (using (B.18))

= (x0)T c− (x0)T AT yk+1 + zk+1‖x0‖1 (using (B.12))

≥ −(x0)T zk+1e + zk+1‖x0‖1 (using (B.12) and (B.14))

= 0,

it is readily checked using (B.13) that

g′(ρ) = −πk+1 + zk+1‖x0‖1

(ρ− ‖x0‖1)2
≤ 0,

proving the first claim. The second claim follows immediately from (B.16).

Lemma B.3. There exists a constant C > 0 such that

∥∥∥[x̃Qk

k ; ũk; xk; uk]
∥∥∥ ≤ Cρk. (B.20)

Proof. It suffices to show the divided two parts

‖[x̃Qk

k ; ũk]‖ ≤ C

2
ρk, ‖[xk; uk]‖ ≤ C

2
ρk. (B.21)

154

With the definition in (B.9) and (B.10), substituting (B.3) into (B.4), we have




x̃Qk

k

ũk


 =




XQk

k

(
SQk

k

)−1

0

0 uk

zk







AQk 0

−eT −1




T 


∆ya,k

∆za,k


 . (B.22)

Solving (B.2) and substituting its solution [∆ya,k; ∆za,k] into (B.22), we get




x̃Qk

k

ũk


 = Hk




b

−ρk


 (B.23)

where

Hk =




XQk

k

(
SQk

k

)−1

0

0 uk

zk







AQk 0

−eT −1




T 





AQk 0

−eT −1







XQk

k

(
SQk

k

)−1

0

0 uk

zk







AQk 0

−eT −1




T 


−1

.

Because diagonal matrices XQk

k and SQk

k are positive definite, and uk and zk are

positive for all k, it follows from [55] that the sequence Hk is bounded. Therefore,

(B.23) implies that there must exist C ′ > 0, C ′′ > 0 and C > 0, all of which are

independent of k, such that
∥∥∥∥∥∥∥∥




x̃Qk

k

ũk




∥∥∥∥∥∥∥∥
≤ C ′

∥∥∥∥∥∥∥∥




b

−ρk




∥∥∥∥∥∥∥∥
≤ C ′′ρk ≤ C

2
ρk, ∀k, (B.24)

proving part of (B.21). Now without loss of generality, we suppose C
2
≥ max{1, α}C ′′ ≥

max(‖[x0;u0]‖,χ)
ρ0

, where α is a parameter in iteration IrPDIP-`∞. To show that ‖[xk; uk]‖ ≤
C
2
ρk, it suffices to show ‖[xk; uk]‖ ≤ αC ′′ρk, which follows by induction. Clearly, it

holds at k = 0. Suppose ‖[xk; uk]‖ ≤ αC ′′ρk at some iterate k. With {ρk} nonde-

creasing, we have from (B.8) that

‖[xk+1; uk+1]‖ ≤ max{αC ′′ρk, αC ′′ρk, χ} ≤ αC ′′ max {ρk, ρ0} ≤ αC ′′ρk+1,

finishing the induction.

155

If ρk goes to infinity as k goes to infinity and (P) is feasible, then Lemma B.2

rules out the possibility that condition (2.65) is satisfied infinitely many times.

Therefore, condition (2.66) must happen infinitely many times. The following lemma

studies the boundedness property on Kρ in this case.

Lemma B.4. Suppose ρk → ∞ and (P) is feasible, then {zkũk} and {SQk

k x̃Qk

k }

are bounded on Kρ. If in addition, (P)–(D) is primal-dual feasible, then zk → 0 as

k → ∞, k ∈ Kρ, and if furthermore, (P) is strictly feasible, then {yk} is bounded

on Kρ.

Proof. Since ρk goes to infinity on Kρ, and since Lemma B.2 implies that condi-

tion (2.65) is eventually violated, condition (2.66) must be satisfied for k ∈ Kρ large

enough. In particular, there exists k0 such that for all k ≥ k0, k ∈ Kρ,

‖[∆ya,k; ∆za,k]‖ ≤ γ2

ρk

, (B.25)

x̃Qk

k ≥ −γ3e. (B.26)

Note from the first block row of (B.1) that

∆sQk

k = −(AQk)T ∆ya,k + ∆zQk

a,ke.

Since AQk can only take finitely many values, it follows from (B.25) that there exists

certain δ > 0 such that

‖∆sQk

k ‖ ≤ δ

ρk

, k ≥ k0, k ∈ Kρ. (B.27)

In view of (B.20) in Lemma B.3, (B.25) and (B.27), we have from the last two block

156

rows in (B.1) that

‖zkũk‖ = ‖uk∆za,k‖ ≤ Cρk · γ2

ρk

= Cγ2, k ≥ k0, k ∈ Kρ, (B.28)

and
∥∥∥SQk

k x̃Qk

k

∥∥∥ =
∥∥∥XQk

k ∆sQk

k

∥∥∥ ≤ Cρk · δ

ρk

= Cδ, k ≥ k0, k ∈ Kρ (B.29)

proving the first claim. Next, without loss of generality, assuming ρk0 > ‖x0‖1 where

x0 is a feasible point of (P), we have

u0
k := ρk − eT x0 > 0, for k ≥ k0. (B.30)

Since by assumption of that (P)–(D) is feasible, there exist y0 and s0 ≥ 0 associated

with x0 ≥ 0 and u0
k ≥ 0 such that, for all k ≥ k0,

AQk

(x0)Qk + AQk(x0)Qk = Ax0 = b,

eT x0 + u0
k = ρk,

AT y0 + s0 = c,

On the hand other, in view of the second and third rows of (B.1), definitions (B.9)

and (B.10), and (B.6), we get

AQk x̃Qk

k = b,

eT x̃Qk

k + ũk = ρk,

AT yk + sk − zke = c. (B.31)

157

The two groups of equations above yield that




AQk AQk 0

eT eT 1







(x̃k − x0)Qk

−(x0)Qk

ũk − u0
k




=




0

0


 , (B.32)




AQk AQk 0

eT eT 1




T 


y0 − yk

zk


 =




(sk − s0)Qk

(sk − s0)Qk

zk




. (B.33)

This implies that [(x̃k−x0)Qk ;−(x0)Qk ; (ũk−u0
k)] is orthogonal to [(sk−s0)Qk ; (sk−

s0)Qk ; zk], i.e.,

(x̃Qk

k)T (sk − s0)Qk − (x0)T (sk − s0) + (ũk − u0
k)zk = 0. (B.34)

Hence, we have for C ′ large enough

u0
kzk + (x0)T sk = (x0)T s0 + (x̃Qk

k)T sQk

k − (x̃Qk

k)T (s0)Qk + ũkzk (B.35)

≤ (x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2 (B.36)

where equality (B.35) comes from the expansion of (B.34), and the inequality uses

(B.29), (B.26), and (B.28). Noting that u0
k, zk, x

0 and sk are all nonnegative for

k ≥ k0, we get

zk ≤
(
(x0)T s0 + C ′δ + γ3e

T s0 + C ′γ2

)
/u0

k, ∀i, k ≥ k0, k ∈ Kρ. (B.37)

Since u0
k →∞ as k →∞ on Kρ from definition (B.30), this proves that

lim
k→∞,k∈Kρ

zk → 0.

158

Furthermore, if (P) is strictly feasible, then we can select x0 > 0 and

si
k ≤

(
(x0)T s0 + C ′δ + γ3e

T s0 + C ′γ2

)
/(x0)i, ∀i, k ≥ k0, k ∈ Kρ, (B.38)

proving that {sk} is bounded on Kρ. Boundednesses of {sk} and {zk}, together with

(B.31) and full-rankness of A, imply that {yk} is bounded on Kρ.

The following proposition proves that ρk is increased at most finitely many

times.

Proposition B.1. Suppose (P)–(D) is strictly feasible, then ρk is increased at most

finitely many times, i.e., Kρ is finite.

Proof. By contradiction, suppose Kρ is infinite. Then in view of Lemma B.2, there

must exist k0 > 0 and an infinite index set K ⊆ Kρ such that condition (2.66) is

satisfied for k ≥ k0, k ∈ K; in particular,

x̃Q
k ≥ −γ3e, k ≥ k0, k ∈ K. (B.39)

ũk ≤ γ4, k ≥ k0, k ∈ K, (B.40)

where without loss of generality, we assume Qk = Q, ∀k ∈ K for some Q. Moreover,

we have from Lemma B.4, for certain constant C > 0,

‖SQ
k x̃Q

k ‖ ≤ C, ∀k ∈ K, (B.41)

‖yk‖ ≤ C, ∀k ∈ K, (B.42)

lim
k→∞

zk = 0, k ∈ K. (B.43)

159

Now, since limk→∞ ρk = ∞, we have from the third block row of (B.1) and inequal-

ity (B.40) that

λk := eT x̃Q
k = ρk − ũk →∞, as k →∞, k ∈ K.

It follows that

eT x̄Q
k = 1, k ≥ k0, k ∈ K (B.44)

where we define

x̄Q
k =

x̃Q
k

λk

, ∀k ∈ K. (B.45)

Thus, (B.44) and (B.39) imply that x̄Q
k is bounded below on K. This further implies

from (B.44) that x̄Q
k is bounded on K. So in view of (B.44), (B.42) and (B.43), there

exists an infinite index set K ′ ⊆ K such that

x̄Q
k → x̄Q

∗ 6= 0, yk → y∗, zk → z∗ = 0, as k →∞, k ∈ K ′ (B.46)

Next, dividing by λk and taking the limit on both sides of (B.41), we have from (B.45)

SQ
k x̄Q

k → 0, as k →∞, k ∈ K ′

which implies that

x̄i
∗ = 0, ∀i ∈ Q\I(y∗).1 (B.47)

On the other hand, the second block equation in (B.1) and (B.9) give

AQx̃Q
k = b, ∀k.

Dividing by λk and taking the limit of both sides, using (B.47), we have

∑

i∈I(y∗)∩Q

x̄i
∗a

i = 0. (B.48)

1Since z∗ = 0, I(y∗, z∗) = I(y∗) and y∗ ∈ F .

160

Now note from (B.39) and (B.45) that

x̄Q
∗ = lim

k→∞,k∈K′

x̃Q
k

λk

≥ lim
k→∞,k∈K′

−γ3e

λk

= 0. (B.49)

Since the strict feasibility of (D) implies positively linear independence of vectors

{ai : i ∈ I(y∗) ∩Q, y∗ ∈ F}, it follows from (B.48) and (B.49) that

x̄i
∗ = 0, ∀i ∈ I(y∗) ∩Q.

Together with (B.47), we therefore have

x̄Q
∗ = 0,

which is a contradiction to (B.46).

B.3 Infeasible constraint-reduced MPC: IrMPC-`∞

To give a simple example of IrPDIP-`∞, we do the following specifications

of [65] for algorithm IrPDIP-`∞ and name the resulting full algorithm by IrMPC-`∞.

Iteration IrMPC-`∞

• Perform Step 1 (i) in algorithm IrPDIP-`∞.

• Computation of search direction (corresponding to Step 1 (ii) in IrPDIP-`∞)

(∆y, ∆z) = (∆ya, ∆za).

• Updates (corresponding to Step 2 (i) and (ii) in IrPDIP-`∞)

161

Compute

∆sQ = −(AQ)T ∆y + ∆ze,

t̂d = arg max{t ∈ [0, 1] | s + t∆s ≥ 0, z + t∆z ≥ 0};

t̂p = arg max{t ∈ [0, 1] |xQ + t∆xQ ≥ 0, u + t∆u ≥ 0}.

Set step sizes

td = max{βt̂d, t̂d − ‖[∆ya; ∆za]‖};

tp = max{βt̂p, t̂p − ‖[∆ya; ∆za]‖}.

(i) Dual variables: set

(x̂Q, û) = (xQ, u) + tp(∆xQ, ∆u);

(y+, s+, z+) = (y, s, z) + td(∆y, ∆s, ∆z).

(ii) Primal variables: set

u+ = max{min{‖ [∆ya; ∆za] ‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, û};

xi
+ = max{min{‖ [∆ya; ∆za] ‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, x̂i}, i ∈ Q,

and

xi
+ = min

{
µQ

+

si
+

, χ

}
, i 6∈ Q

where

µQ
+ =

(xQ
+)T sQ

+ + u+z+

|Q|+ 1
.

• Select Q as in section 2.2 of [65].

162

• Perform (iv) in algorithm IrPDIP-`∞.

With those specifications above, after finitely many iterations, IrMPC-`∞ reduced

to rMPC? of [65] with ψ = 0 applied to problem (2.63) with ρ = ρ̄. Thus, we can

have the results directly from [65] under necessary assumptions.

Proposition B.2. Suppose (P)-(D) is strictly feasible. Then {(yk, zk)} converges

to a stationary point (y∗, z∗) of problem (2.63) with ρ = ρ̄.

Proof. Proposition B.1 implies that ρk = ρ̄ for sufficiently large k. When ρk is

constant, IrMPC-`∞ reduces to algorithm rMPC? of [65] with ψ = 0. Hence, it

follows from Theorem 3.8 in [65] that {(yk, zk)} converges to a stationary point of

problem (2.63) if and only if the penalized dual objective function is bounded. We

next show the dual penalized function is bounded indeed. Since Lemma B.1 implies

that {bT yk − ρkzk} is increasing for k large enough such that ρk = ρ̄, it suffices to

show that {bT yk − ρkzk} is bounded above. Indeed, since {bT yk} is bounded above

by Lemma B.2, this claim follows from the boundedness of {zk} and {ρk} from

Lemma B.2 and Proposition B.1 respectively.

We next establish that {zk} converges to zero, and thus that {yk} converges

to an optimal solution of (2.63). To that end, we need the following lemma whose

proof is trivial and hence omitted.

Lemma B.5. Suppose for all y ∈ Rm, {ai : (ai)T y = ci} is a linearly independent

set of vectors. Then for all (y, z) ∈ Fρ, the gradients of the active constraints of

problem (2.63) are linearly independent vectors.

163

Theorem B.1. Suppose (P)-(D) is strictly feasible and, for all y ∈ Rm, {ai :

(ai)T y = ci} is a linearly independent set of vectors. Then Kρ is finite, zk → 0 and

{yk} converges to an optimal solution of problem (D).

Proof. Proposition B.1 proved ρk is increased finitely many time to ρ̄, so Kρ is fi-

nite. Lemma B.5 implies the gradients of the active constraints of problem (2.63)

are linearly independent. With these in hand, applying the second part of Theo-

rem 3.8 in [65], we conclude that (yk, zk) converges to an optimal value (y∗, z∗) of

problem (2.63) where ρ = ρ̄. Next, Proposition 3.9 of [65] states that there exists

an infinite subsequence K on which [x̃k; ũk] converges to an optimal solution [x̃∗; ũ∗]

of problem (2.64) with ρ = ρ̄ and on which

[∆ya,k; ∆za,k] → 0, as k →∞, k ∈ K.

Thus the conditions (i) and (ii) in condition (2.66) are satisfied on K. On the other

hand, since ρk = ρ̄ for k ∈ K large enough, one condition in condition (2.66) must

fail, and thus we have ũk ≥ γ4 for k ∈ K large enough. Hence

ũ∗ ≥ γ4.

Complementary slackness implies that z∗ = 0. It follows that y∗ is an optimal

solution of problem (D).

164

Appendix C

An `∞ Version of IrQP

For problem (Pq)–(Dq), Iteration IrQP-`∞ is the same as Iteration IrQP but

with an `∞ exact penalty function. Its analysis is similar to that of Iteration IrQP

in chapter 3.

C.1 Description of Iteration IrQP-`∞

Instead of the `1 exact penalty function used in (Pqρ)–(Dqρ), we can use an

`∞ exact penalty function and consider the relaxed problem

max
y,z

f(y)− ρz

s.t. AT y − ze ≤ c, z ≥ 0





(Dqρoo)

with its associated primal problem

max
y,x,u

cT x + 1
2
yT Hy

s.t. Hy + Ax− b = 0,

eT x + u = ρ,

x ≥ 0, u ≥ 0,





(Pqρoo)

where z and u are both scalars. Strictly feasible points are readily available for

penalized problem (Dqρoo) by selecting z large enough with any given y.

The scheme of choosing the penalty parameter for this `∞ version is akin

to scheme (3.11)–(3.12) in the `1 version. As z and u are scalar variables, the

165

adjustment scheme can be slightly simplified as: Increase ρ at each iteration when

either

z ≥ γ1
z0

ρ0

ρ (C.1)

OR

(i) ‖[∆y; ∆z]‖ ≤ γ2, AND (ii) x̃Q ≥ −γ3e, AND (iii) ũQ < γ4 (C.2)

is satisfied, where again, γi, i = 1, 2, 3, 4 are positive parameters.

Applying constraint reduction schemes to problem (Dqρoo), we solve the re-

duced problem

max
y,z

f(y)− ρz (C.3)

s.t. (AQ)T y − ze ≤ bQ, z ≥ 0. (C.4)

The affine-scaling direction (∆xQ, ∆u, ∆y, ∆z, ∆sQ) can be obtained by solving the

linear system




0 0 (AQ)T −e 0 I

AQ 0 H 0 0 0

eT 1 0 0 0 0

SQ 0 0 0 0 XQ

0 z 0 u 0 0







∆xQ

∆u

∆y

∆z

∆sQ




=




0

b− AQxQ −Hy

ρ− eT xQ − u

−XQsQ

−zu




. (C.5)

166

After block Gaussian elimination, this system can be written to normal equations

M (Q)




∆y

∆z


 =




b−Hy

−ρ


 , (C.6)

∆sQ = −(AQ)T ∆y + ∆ze, (C.7)


∆xQ

∆u


 = −




xQ

u


−




(SQ)−1XQ 0

0 z−1u







∆sQ

∆z


 (C.8)

where

M (Q) =




H 0

0 0


 +




AQ 0

−eT −1







(SQ)−1ΛQ 0

0 z−1u







AQ 0

−eT −1




T

. (C.9)

The dominant cost of computing
(
∆xQ, ∆u, ∆y, ∆z, ∆sQ

)
is to solve (C.6), which

is dominated by forming matrix M (Q), taking |Q|(m + 1)2 flops, enjoying the same

speed up in feasible constraint-reduced IPMs.

We are now ready to state Iteration IrQP-`∞, an `∞ version of Iteration IrQP.

Iteration IrQP-`∞

Parameters: β ∈ (0, 1), σ > 1, γi > 0, for i = 1, 2, 3, 4; wmin > 0 and χ > 0.

Data: y ∈ Rm and z ∈ R such that z > max{max{0, AT y − c}}; s := c− AT + ze;

x ∈ Rn, u ∈ R and ρ ∈ R such that x > 0, u > 0 and ρ > 0; Q ⊆ n such that

[H AQ] is full rank.

Step 1 : Computation of the search direction.

(i). Obtain
(
∆xQ, ∆u, ∆y, ∆z, ∆sQ

)
by solving (C.6)–(C.8). Compute

∆sQ = −(AQ)T ∆y + e∆z. (C.10)

167

Set

x̃i =





xi + ∆xi, i ∈ Q,

0, i 6∈ Q.

(C.11)

ũ = u + ∆u, (C.12)

ỹ = y + ∆y. (C.13)

and set

x̃− := min{x̃, 0}, ũ− := min{ũ, 0}. (C.14)

(ii). Compute

t̂ = arg max{t̄ ∈ [0, 1] | s + t̄∆s ≥ 0, z + t̄∆z ≥ 0}; (C.15)

Set step sizes

t = max{βt̂, t̂− ‖[∆y; ∆z]‖}; (C.16)

Step 2. Updates.

(i). Dual variables: set

(y+, s+, z+) = (y, s, z) + t(∆y, ∆s, ∆z). (C.17)

(ii). Primal variables: set

ui
+ = max{max{min{‖[∆y; ∆z]‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, ũi}, χ} i ∈ n;

(C.18)

xi
+ = max{max{min{‖[∆y; ∆z]‖2 + ‖ [ũ−; x̃−] ‖2, wmin}, x̃i}, χ} i ∈ n.

(C.19)

168

(iii). The penalty parameter: If either (C.1) or (C.2) is satisfied, set

ρ+ = σρ (C.20)

and

µ =
xT s + uT z

2n
, xi =

µ

si
, ui =

µ

zi
∀i ∈ n;

otherwise set ρ+ = ρ.

(iv) The working set: select Q+ such that [H AQ+] has full rank.

It is clear from Iteration IrQP-`∞ that x+ > 0, u+ > 0, z+ > max{max{0, Ay+−

c}}, and (see (C.22) below) s+ = c − AT y+ + z+e. Further, since [H AQ] has full

rank and (x, u, s, z) > 0, M (Q) (see (C.9)) is positive definite, so the search direction

(∆y, ∆z) in step 1 (i) of IrQP-`∞ is well defined. Hence, Iteration IrQP can be

repeated indefinitely, generating an infinite sequence of iterates.

Also, note that equations (C.7) and (C.10) imply

AT ∆yk − e∆zk + ∆sk = 0 ∀k. (C.21)

Since s0 = c−AT y0 +z0e (see Data section of Iteration IrQP-`∞), in view of (C.17),

it follows that

AT yk − zke + sk = c, sk > 0, zk > 0, ∀k, (C.22)

i.e., the primal sequence {(yk, zk)} is strictly feasible for (Dqρoo).

169

C.2 Global convergence

In this section, we show that ρk generated by Iteration IrQP-`∞ is increased

only finitely many times under mild assumptions. The following lemma states that

the objective function of (Dqρoo) is decreasing when parameter ρ is not updated.

Lemma C.1. For all k, f(yk+1)− ρkzk+1 ≥ f(yk)− ρkzk.

Proof. At each iteration k, the update of primal iterates can be viewed as applying

on (Dqρk
oo) one iteration of Algorithm A of [32]. Thus, the claim follows from

Proposition A. 4 (i) of [32] where α ∈ (0, 2) is substituted by t ∈ [0, 1] here (see

(C.15) and (C.16)).

Lemma C.2. Suppose (Pq) is feasible, then sequence {zk} is bounded.

Proof. If ρk is increased finitely many times to a finite value, say ρ∞, then condi-

tion (C.1) must fail for k large enough, i.e., zk ≤ γ1
z0

ρ0
ρ∞ for k large enough, proving

the claim. It remains to prove that {zk} is bounded when ρk is increased infinitely

many times, i.e., when ρk →∞ as k →∞.

By assumption that (Pq) has a feasible point, say (x0, y0), we have

Hy0 + Ax0 = b, x0 ≥ 0. (C.23)

Since ρk →∞ as k →∞, there exists k0 such that

ρk > ‖x0‖1, ∀k ≥ k0. (C.24)

Since (yk, zk) is dual feasible for (Pqρk
oo) for all k, we have

AT yk ≤ c + ezk, (C.25)

zk ≥ 0. (C.26)

170

Left-multiplying by (x0)T ≥ 0 on both sides of (C.25), using (C.23), yields

(b−Hy0)T yk ≤ cT x0 + zk‖x0‖1. (C.27)

Adding ρkzk to both sides of (C.27), after simple reorganization, we get

(ρk − ‖x0‖1)zk ≤ cT x0 − (b−Hy0)T yk + ρkzk. (C.28)

Next, inequality (3.27) implies that

−(
1

2
yT

k Hyk − (y0)T Hyk − cT x0) ≤ 1

2
(y0)T Hy0 + cT x0 := M, ∀k. (C.29)

In view of (C.24) and (C.26), inequality (C.28) implies

0 ≤ zk ≤ cT x0 − (b−Hy0)
T yk + ρkzk

ρk − ‖x0‖1

=
(cT x0 + (y0)T Hyk − 1

2
yT

k Hyk)− (bT yk − 1
2
yT

k Hyk) + ρkzk

ρk − ‖x0‖1

≤ M − f(yk) + ρkzk

ρk − ‖x0‖1

=: νk, (C.30)

Hence, in order to show that {zk} is bounded, it suffices to prove that {νk} is

bounded. We show next that νk+1 ≤ νk, ∀k ≥ k0. Since νk is nonnegative for all k,

this proves the boundedness of {νk}.

In view of (C.24) and (C.30), it is implied from Lemma C.1 that

νk =
M − f(yk) + ρkzk

ρk − ‖x0‖1

≥ M − f(yk+1) + ρkzk+1

ρk − ‖x0‖1

, ∀k ≥ k0. (C.31)

On the other hand,

νk+1 =
M − f(yk+1) + ρk+1zk+1

ρk+1 − ‖x0‖1

.

Since ρk+1 ≥ ρk, in order to conclude that νk ≥ νk+1 for k ≥ k0, it is sufficient to

verify that the function g given by

g(ρ) :=
M − f(yk+1) + ρzk+1

ρ− ‖x0‖1

171

has a nonpositive derivative g′(ρ) for all ρ satisfying (C.24). Note that

M − f(yk+1) + ‖x0‖1zk+1 ≥ cT x0 + (y0)T Hyk+1 − 1

2
yT

k+1Hyk+1 − f(yk+1) + ‖x0‖1zk+1

= cT x0 + (y0)T Hyk+1 − bT yk+1 + ‖x0‖1zk+1

= (x0)T c− (x0)T AT yk+1 + ‖x0‖1zk+1

≥ −(x0)T zk+1 + ‖x0‖1zk+1

≥ 0,

where the first inequality comes from (C.29) with k replaced by k + 1, the first

equality from the substitution of f(yk+1) by bT yk+1 − 1
2
yT

k+1Hyk+1, the second one

from (C.23), the second inequality from (C.25) and the non-negativeness of x0, and

the last one from (C.26). It follows from (C.24) that

g′(ρ) = −M − f(yk+1) + ‖x0‖1zk+1

(ρ− ‖x0‖1)2
≤ 0,

proving νk ≥ νk+1 and hence the boundedness of {zk}.

The following lemma studies the boundedness property of iterates sequences

on Kρ.

Lemma C.3. Suppose (Pq) is feasible. If ρk → ∞, then {zkũk} and {Skx̃k} are

bounded on Kρ. If additionally, (Dq) is feasible, then zk → 0 as k → ∞, k ∈ Kρ,

and if, moreover, (Pq) is strictly feasible, then {yk} is bounded on Kρ.

Proof. Since (Pq) is feasible, and since ρk goes to infinity on Kρ, Lemma C.2 implies

that condition (C.2) must be satisfied for all k ∈ Kρ large enough. In particular,

172

there exists an integer k0 such that for all k ≥ k0, k ∈ Kρ,

‖[∆yk; ∆zk]‖ ≤ γ2, (C.32)

and

x̃Qk

k ≥ −γ3e. (C.33)

In view of (C.21), inequality (C.32) implies that {∆sk} is bounded on Kρ. Thus,

with boundedness of xk and uk (enforced by Iteration IrQP-`∞) and boundedness

of ∆zk and ∆sk on Kρ, it follows from (C.8) and definitions (C.11)–(C.12) that for

C large enough,

|zkũk| = |uk∆zk| ≤ C, k ≥ k0, k ∈ Kρ, (C.34)

and

∥∥∥SQk

k x̃Qk

k

∥∥∥ =
∥∥∥XQk

k ∆sQk

k

∥∥∥ ≤ C, k ≥ k0, k ∈ Kρ, (C.35)

which proves the first claim that {zkũk} on Kρ and from (C.11) that {Skx̃k} are

bounded on Kρ.

Now, by assumption that (Pq)–(Dq) is primal-dual feasible, there exist (x0, y0, s0)

such that

AT y0 + s0 = c, Ax0 = b−Hy0, [x0; s0] ≥ 0. (C.36)

Without loss of generality, we assume that ρk0 > ‖x0‖1, so that

u0
k := ρk − eT x0 > 0, for k ≥ k0. (C.37)

On the other hand, in view of definitions (C.11), (C.12) and (C.13), equation (C.21)

and the first four block equations (C.5) imply that, for all k,

AT yk − zke + sk = c, Ax̃k = b−Hỹk, eT x̃k + ũk = ρk. (C.38)

173

Equations (C.36)–(C.38) yield that

AT (y0 − yk) + zke + s0 − sk = 0, (C.39)

A(x0 − x̃k) = −H(y0 − ỹk), (C.40)

eT (x0 − x̃k) + (u0
k − ũk) = 0. (C.41)

It follows that, for all k,

(s0 − sk)
T (x0 − x̃k)− zk(u

0
k − ũk) = (s0 − sk + zke)

T (x0 − x̃k)

= −(y0 − yk)
T A(x0 − x̃k)

where the first equality comes from (C.41) and the second one from (C.39). Hence,

from (C.40), we obtain

(s0 − sk)
T (x0 − x̃k)− zk(u

0
k − ũk) = (y0 − yk)

T H(y0 − ỹk). (C.42)

It follows that

(y0 − yk)
T H(y0 − ỹk) + sT

k x0 + zku
0
k

= sT
k x̃k + zkũk − x̃T

k s0 + (x0)T s0

≤ 2nC + γ3e
T s0 + (x0)T s0, ∀k ∈ Kρ, (C.43)

where the equality comes from the expansion of (C.42), and the inequality from

(C.34), (C.35) and (C.33). Now, inequality (3.27) with y := y0 − yk and p := 1
2
∆yk

implies that

ψk := (y0−yk)
T H(y0−ỹk) = (y0−yk)

T H(y0−yk)−(y0−yk)
T H∆yk ≥ −1

4
∆yT

k H∆yk

174

where the equality is from (C.13). Note from (C.32) that ∆yT
k H∆yk is bounded, so

ψk is bounded from below. Hence, it follows from (C.43) that there exists π > 0

large enough such that

sT
k x0 ≤ π, ∀k ∈ Kρ, (C.44)

and

zku
0
k ≤ π.

Using (C.37) and the fact that ρk → ∞ as k → ∞, it follows from positiveness of

zk and u0
k that

lim
k→∞

sup
k∈Kρ

zk ≤ π

limk→∞ infk∈Kρ u0
k

= 0 ∀i, k ≥ k0,

proving that zk converges to zero on Kρ.

Next, since H is a symmetric, semi-positive definite matrix, there exists a

matrix L such that

H = LT L,

so ψk can be written as

ψk = ‖L(yk +
∆yk

2
− y0)‖2 − 1

4
∆yT

k ∆yk. (C.45)

Since [u0
k; x

0; zk; sk] ≥ 0 for k ≥ k0, we obtain from (C.43) that ψk is bounded from

above. It follows from (C.45) and (C.32) that {Lyk} is bounded on Kρ, and hence

so is {Hyk}. If (Pq) is strictly feasible, we can select x0 > 0, and thus boundedness

of {sk} on Kρ follows from (C.44). In view of (C.22), together with boundedness of

{zk} and {sk} on Kρ, {AT yk} is bounded on Kρ. With boundedness of {Hyk} and

175

{AT yk} on Kρ in hand, full-rankness of [H A] implies that {yk} is bounded on Kρ,

proving the last claim.

Lemma C.4. Suppose ρk → ∞ as k → ∞. If {yk} has a limit point on Kρ and

{zk} is bounded on Kρ, then for any limit point {[y∗; z∗]} of {[yk; zk]} on Kρ, there

exists x̄∗ 6= 0 with s∗ = c− AT y∗ + z∗e ≥ 0 and z∗ ≥ 0 such that

Ax̄∗ = 0, (C.46)

z∗(1− eT x̄∗) = 0, (C.47)

S∗x̄∗ = 0, (C.48)

x̄∗ ≥ 0. (C.49)

Proof. Since {zk} is bounded on Kρ, condition (C.1) will be violated eventually, and

conditions (C.2) must be satisfied for all k ∈ Kρ large enough, i.e.,

‖[∆yk; ∆zk]‖ ≤ γ2, k ∈ Kρ (C.50)

x̃Qk

k ≥ −γ3e, k ∈ Kρ, (C.51)

ũQk

k < γ4e, k ∈ Kρ. (C.52)

176

Moreover, we have from (C.5) and (C.11)–(C.12) that for all k,

Ax̃k = AQk x̃Qk

k = b−H(yk + ∆yk), (C.53)

eT x̃Qk

k + ũk = ρk, (C.54)

x̃i
k = 0, ∀i 6∈ Qk (C.55)

AT ∆yk −∆zke + ∆sk = 0, (C.56)

SQk

k x̃Qk

k = −XQk

k ∆sQk

k , (C.57)

zkũk = −uk∆zk. (C.58)

Because Qk can take only finitely many values, it follows from Proposition A.1 (see

Appendix A) with

G :=




AQk 0

eT 1


 , D :=




SQk

k (XQk

k)−1 0

0 zu−1


 ,

and

v :=




x̃Qk

k

ũk


 , g :=




b−H(yk + ∆yk)

ρk


 , w :=




∆sQk

k

∆zk




that there exists C > 0 such that

‖[x̃Qk

k ; ũk]‖ ≤ C‖[b−H(yk + ∆yk); ρk]‖ ∀k.

Since by assumption, there exists an infinite sequence K ⊆ Kρ such that {yk} is

bounded on K, and since {∆yk} is bounded on Kρ in view of (C.50), we have for

some C ′ large enough

‖[x̃Qk

k ; ũk]‖ ≤ C ′ρk, k ∈ K.

Together with (C.55), we get that {[x̄k; ūk]} is bounded on K, where we have defined

x̄k =
x̃k

ρk

, ūk =
ũk

ρk

. (C.59)

177

Since both {yk} and {zk} are bounded on K, let {(y∗, z∗, s∗, x̄∗, ū∗)} be any limit

point of {(yk, zk, sk, x̄k, ūk)} on K with z∗ ≥ 0, s∗ = c− AT y∗ + z∗e ≥ 0, and

eT x̄∗ = 1− ū∗ = 1, (C.60)

where the equality comes from (C.54)–(C.55) and (C.59), and the inequality from (C.52).

Next, since {xk} and {uk} are bounded by construction (Step 2 (ii) of IrQP-`∞),

equations (C.56) and (C.50) imply from (C.55)–(C.58) that there exists C ′′ > 0 such

that

si
kx̃

i
k = 0, i 6∈ Q (C.61)

‖SQk

k x̃Qk

k ‖ = ‖XQk

k ∆sQk

k ‖ ≤ C ′′ k ∈ K, (C.62)

‖zkũk‖ = ‖uk∆zk‖ ≤ C ′′ k ∈ K. (C.63)

Dividing both sides of (C.53)–(C.55), (C.61)–(C.63) and (C.51) by ρk and taking

limits on K, we conclude that x̄∗ 6= 0 (as for (C.60)) satisfies

Ax̄∗ = 0,

eT x̄∗ + ū∗ = 1,

z∗ū∗ = 0,

S∗x̄∗ = 0,

x̄∗ ≥ 0,

proving the claim.

The following theorem establishes that ρk is increased at most finitely many

times.

178

Theorem C.1. Suppose (Pq)–(Dq) is strictly feasible,1 then ρk is increased at most

finitely many times, i.e., Kρ is finite.

Proof. By contradiction, suppose Kρ is infinite, i.e., ρk → ∞ as k → ∞. In view

of Lemma C.3, {yk} is bounded, and {zk} → 0 as k → ∞, k ∈ Kρ. Let y∗ and z∗

be the limit points of {yk} and {zk} on Kρ, so z∗ = 0, i.e., y∗ ∈ F . It follows from

Lemma C.4 that there exists x̄∗ 6= 0 that satisfies (C.46)–(C.49). In view of (C.48),

x̄∗ = 0, ∀i 6∈ I(y∗). (C.64)

Together with (C.46), we get

∑

i∈I(y∗)

x̄i
∗a

i = 0.

Since the strict feasibility of (Dq) implies positive linear independence of vectors

{ai : i ∈ I(y∗), y∗ ∈ F}, it follows from (C.49) that

x̄∗ = 0, ∀i ∈ I(y∗).

Together with (C.64), we have

x̄∗ = 0,

contradicting to that x̄∗ is nonzero.

Finally, if positive linear independence of {ai : i ∈ I(y∗)} at feasible limit

points y∗ of {yk} is replaced with the much stronger assumption of linear indepen-

dence of {ai : i ∈ I(y)} at all y ∈ Rm, then boundedness of ρk follows without any

feasibility assumption, as we state next.

1That (Pq) is strictly feasible is equivalent to that the solution set of problem (Dq) is nonempty

and bounded (see Theorem 2.1 in [20]). So our assumptions are the same as that in [32].

179

Proposition C.1. Suppose that, at every point y ∈ Rm, {ai : i ∈ I(y)} is a linearly

independent set. If {yk} has a limit point on Kρ and {zk} is bounded on Kρ, then

ρk is increased at most finitely many times.

Proof. By contradiction, suppose ρk → ∞ as k → ∞. Lemma 3.4 then implies

that for any limit point z∗ ≥ 0, s∗ ≥ 0 and y∗ of sequences {zk}, {sk} and {yk}

with s∗ = c − AT y∗ + z∗e, there exists x̄∗ 6= 0 that satisfies (C.46)–(3.55). We

can then conclude the proof with a contradiction argument, exactly as is in the

proof of Theorem C.1, except that the requirement of positive linear independence

of {ai : i ∈ I(y∗), y∗ ∈ F} is replaced by the assumption of linear independence of

{ai : i ∈ I(y∗), y ∈ Rm}.

180

Bibliography

[1] M. Achache. A new primal-dual path-following method for convex quadratic
programming. Computational and Applied Mathematics, 25(1):97–110, 2006.

[2] A. Alessio and A. Bemporad. A survey on explicit model predictive control.
In Proc. int. workshop on assessment and future directions of nonlinear model
predictive control.

[3] P. Armand. A quasi-Newton penalty barrier method for convex minimization
problems. Computational Optimization and Applications, 26(1):5–34, 2003.

[4] A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based on
linear programming-the explicit solution. IEEE Transactions on Automatic
Control, 47(12):1974–1985, 2002.

[5] A. Bemporad, F. Borrelli, and M. Morari. Using interpolation to improve
efficiency of multiparametric predictive control. Automatica, 41:637–643, 2005.

[6] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit solu-
tion of model predictive control via multiparametric quadratic programming.
American Control Conference, pages 872–876, 2000.

[7] A. Ben-Tal and A. Charnes. A dual optimization framework for some problems
of information theory and statistics. Problems of Control and Information
Theory, (8):387–401, 1979.

[8] H. Y. Benson, A. Sen, and D. F. Shanno. interior-point methods for nonconvex
nonlinear programming: Convergence analysis and computational performance.
http://rutcor.rutgers.edu/˜shanno/converge5.pdf, 2009.

[9] H. Y. Benson, A. Sen, D. F. Shanno, and R. J. Vanderbei. Interior-point
algorithms, penalty methods and equilibrium problems. Computational Opti-
mization and Applications, 34(2):155–182, 2006.

[10] H. Y. Benson and D. F. Shanno. An exact primal–dual penalty method ap-
proach to warmstarting interior-point methods for linear programming. Com-
putational Optimization and Applications, 38(3):371–399, 2007.

[11] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimiza-
tion. Athena Scientific, 2003.

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[13] E. F. Camacho and C. Bordons. Model Predictive Control. 2nd Edition,
Springer, 2004.

181

[14] C. Cartis and N. I. M. Gould. Finding a point in the relative interior of a
polyhedron. Technical report, 2006.

[15] G. Dantzig and Y. Ye. A build-up interior-point method for linear program-
ming: Affine scaling form. Working paper, Department of Management Science,
University of Iowa, 1991.

[16] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic barrier
cutting plane method for convex programming. the Faculty of Technical Math-
ematics and Informatics, Delft, The Netherlands, 1993.

[17] D. den Hertog, C. Roos, and T. Terlaky. A polynomial method of weighted
centers for convex quadratic programming. Journal of Information and Opti-
mization Science, 12:187–205, 1991.

[18] D. den Hertog, C. Roos, and T. Terlaky. Adding and deleting constraints
in logarithmic barrier method for linear programming problems. Shell report,
AMER 92-001, 1992.

[19] I. I. Dikin. Iterative solution of problems of linear and quadratic programming.
Soviet Mathematics, 8:674–675, 1967.

[20] L. M. Grana Drummond and B. F. Svaiter. On well definedness of the central
path. Journal of Optimization Theory and Application, 102(2):223–237, 1999.

[21] K. Edlund, L. E. Sokoler, and J. B. Jorgensen. A primal-dual interior-point lin-
ear programming algorithm for MPC. In Conference on Decision and Control,
pages 351–356. IEEE, 2009.

[22] S. Fang, J. R. Rajasekera, and H. J. Tsao. Entropy optimization and mathe-
matical programming. Springer, 1997.

[23] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Un-
constrained Minimization Techniques. Society for Industrial and Applied Math-
matics, 1990.

[24] J. W. Fletcher. Identification of UH-60 stability derivative models in hover
from flight test data. Journal of the American Helicopter Society, 40(1):32–46,
1995.

[25] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, (3):95–110, 1956.

[26] G. C. Goodwin, M. M. Seron, and J. A. De Dona. Constrained Control and
Estimation: an Optimisation Approach. Springer, London, 2005.

[27] M. Y. He and A. L. Tits. An infeasible constraint-reduced interior-point method
for linear programming. Optimization Methods and Software, 2010.

182

[28] S. Hovl, J. T. Gravdahl, and K. E. Willcox. MPC for large-scale systems via
model reduction and multiparametric quadratic programming. Proc. 45th IEEE
conference on decision and control, 2006.

[29] K. Ikeda and N. Murata. Learning properties of support vector machines with
p-norm. Circuits and Systems, 3:69–72, 2004.

[30] B. Jansen, B. Jansen, C. Roos, C. Roos, T. Terlaky, and T. Terlaky. A poly-
nomial primal-dual dikin-type algorithm for linear programming. Technical
report, Faculty of Technical Mathematics and Computer Science, Delft Univer-
sity of Technology, 1993.

[31] J. H. Jung, D. P. O’Leary, and A. L. Tits. Adaptive constraint reduction
for training support vector machines. Electronic Transactions on Numerical
Analysis, 31:156–177, 2008.

[32] J. H. Jung, D. P. O’Leary, and A. L. Tits. Adaptive constraint reduction for
convex quadratic programming. Computational Optimization and Applications,
pages DOI: 10.1007/s10589–010–9324–8, published on-line as of March 2010.

[33] T. Keviczky and G. Balas. Software-enabled receding horizon control for au-
tonomous unmanned aerial vehicle guidance. Journal of Guidance, 29(3), 2006.

[34] R. Kulhavy, J. Lu, and T. Samad. Emerging technologies for enterprise opti-
mization in the process industries. Aiche Symposium Series, 98(326):352–363,
2001.

[35] S. Leyffer, G. L. Calva, and J. Nocedal. Interior methods for mathematical
programs with complementarity constraints. SIAM Journal on Optimization,
17(1):52–77, 2006.

[36] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[37] O. L. Mangasarian. Nonlinear Programming. McGraw-Hill, Inc, 1969.

[38] V. Manikonda, P. O. Arambel, M. Gopinathan, R. K. Mehra, and F. Y.
Hadaegh. A model predictive control-based approach for spacecraft forma-
tion keeping and attitude control. In Proceedings of the 1999 American Control
Conference, pages 4258–4262, 1999.

[39] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[40] R. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part
I: Linear programming. Mathematical Programming, 44:27–41, 1989.

[41] R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time primal-
dual affine scaling algorithm for linear and convex quadratic programming and
its power series extension. Mathematics of Operations Research, 15(2):191–214,
1990.

183

[42] M. Morari and N. L. Ricker. Model Predictive Control Toolbox. Natick, MA: The
MathWorks Inc., 1994.

[43] P. M. Murphy and D. W. Aha. UCI machine learning repository.
http://archive.ics.uci.edu/ml/index.html, 1992.

[44] K. R. Muske and J. B. Rawlings. Model predictive control with linear models.
AIChE Journal, 36, 1993.

[45] S. O. Nicholls. Column generation in infeasible predictor-corrector methods for
solving linear programs. Thesis, University of Maryland, 2009.

[46] F. A. Potra. A quadratically convergent predictor-corrector method for solving
linear programs from infeasible starting points. Mathematical Programming:
Series A and B, 67(3):383–406, 1994.

[47] F. A. Potra. An infeasible-interior-point predictor-corrector algorithm for linear
programming. SIAM Journal on Optimization, 6(1):19–32, 1996.

[48] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7):733–764, 2003.

[49] C. V. Rao and J. B. Rawlings. linear programming and model predictive control.
Journal of Process Control, 10, 2000.

[50] C. Roos, T. Terlaky, and J. P. Vial. Interior point methods for linear optimiza-
tion. Springer, 2005.

[51] R. Saigal. On the primal-dual affine scaling method. Technical report, Depart-
ment of Industrial and Operational Engineering, The University of Michigan,
1994.

[52] R. Saigal. A simple proof of a primal affine scaling method. Annals of Opera-
tions Research, 62:303–324, 1996.

[53] M. Salahi and T. Terlaky. On Mehrotra-type predictor-corrector algorithms.
SIAM J. Optim, 18(4):1377–1397, 2007.

[54] A. Sen and D. F. Shanno. Convergence analysis of an interior-
point method for mathematical programs with equilibrium constraints.
http://rutcor.rutgers.edu/˜shanno/IPMPEC2.pdf, 2006.

[55] G. W. Stewart. On scaled projections and pseudo-inverses. Linear Algebra and
its Applications, 112:189–194, 1989.

[56] The Netlib LP test problem set. http://www.numerical.rl.ac.uk/cute/netlib.html.

[57] COAP test problems. http://www.math.ufl.edu/˜hager/coap/format.html.

184

[58] C. Theodore and R. Celi. Helicopter flight dynamic simulation with refined
aerodynamic and flexible blade modeling. Journal of Aircraft, 39(4):577–586,
2002.

[59] Y. Tian, J. Yu, and W. Chen. Lp-norm support vector machine with CCCP.
Fuzzy Systems and Knowledge Discovery, pages 1560–1564, 2010.

[60] A. L. Tits, P. A. Absil, and W. P. Woessner. Constraint reduction for linear
programs with many inequality constraints. SIAM Journal on Optimization,
17(1):119–146, 2006.

[61] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence.
A primal-dual interior-point method for nonlinear programming with strong
global and local convergence properties. SIAM Journal on Optimization,
14(1):173–199, 2003.

[62] K. Tone. An active-set strategy in an interior point method for linear program-
ming. Mathematical Programming, 59:345–360, 1993.

[63] E. A. Wan, A. A. Bogdanov, and E. A. Bogdanov. Model predictive neural
control with applications to a 6 DoF helicopter model. In Proceedings of the
2001 American Control Conference, pages 488–493, 2001.

[64] L. B. Winternitz. Primal-dual interior-point algorithms for linear programs
with many inequality constraints. Thesis, University of Maryland, 2010.

[65] L. B. Winternitz, S. O. Nicholls, A. L. Tits, and D. P. O’Leary. A constraint-
reduced variant of Mehrotra’s predictor-corrector algorithm. Computational
Optimization and Applications, DOI: 10.1007/s10589-010-9389-4, published on-
line as of January 2011.

[66] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

[67] Y. Ye. Eliminating columns in the simplex method for linear programming.
Journal of Optimization Theory and Applications, 63(1):69–77, 1989.

[68] Y. Ye. A “build-down” scheme for linear programming. Mathematical Pro-
gramming, 46(1-3):61–72, 1990.

[69] Y. Ye. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience,
1997.

[70] J. Zhang and P. L. Brockett. Quadratically constrained information theoretic
analysis. SIAM Journal on Applied Mathematics, 47(4):871–885, 1987.

[71] Y. Zhang. Solving large-scale linear programs by interior-point methods under
the MATLAB environment. Technical report, 1998.

185

