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Fast growth rate in broilers comes with welfare concerns and research is needed 

to determine if fast- and slow-growing broilers differ in pathogen resistance. The 

objective of this study was to evaluate differences in fast- (FG) and slow-growing (SG) 

broilers when challenged with Salmonella Typhimurium or broth (control) 14 days post-

hatch. Plasma IgA and IgG, jejunum and ileum histomorphology, and behaviors were 

measured. FG had greater d12 and d24 body weight and d7 jejunum measures, indicating 



 

better absorption, and earlier increases in plasma IgA and IgG, indicating earlier immune 

development. SG had greater d7 IgG, indicating stronger maternal immunity. Post-

challenge, FG gut morphology was more impaired, and SG had greater IgA and reduced 

sham foraging, indicating a stronger immune response to challenge. The results illustrate 

fast- and slow-growing broilers differ in Salmonella resistance, which can help breeders 

make selection decisions to prevent Salmonella transmission into the human food supply. 
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1.1 INTRODUCTION 

The United States has the largest broiler chicken industry in the world (NCC, 

2019), producing 43 billion pounds of chicken in 2019 and 44 billion pounds in 2020 

(NCC, 2021a). Production is predicted to continue to increase beyond 2021 (NCC, 

2021a). In order to meet high consumer demand, broilers are genetically selected for 

increased feed efficiency and greater breast yield (Torrey et al., 2021), resulting in birds 

that reach heavier market weights at incredible growth rates (NCC, 2021b). However, 

genetic selection for fast growth and other production parameters may inadvertently 

negatively affect immune function (Iuspa et al., 2020). This is particularly important 

because unavoidable stressors can occur in modern intensive production systems and 

result in greater risk of disease (Quinteiro-Filho et al., 2012). It is critical to determine if 

growth rate affects how chickens respond to infection and colonization by pathogens, 

such as Salmonella. 

Salmonella is a frequent cause of human foodborne illness around the world 

(Knodler and Elfenbein, 2020) and source of an estimated 1.35 million infections and 420 

deaths per year in the United States (CDC, 2020). Some of the largest meat recalls in the 

United States have been caused by Salmonella contamination (Bearson et al., 2017) and 

many of these recalls were linked to chicken meat and eggs. While eliminating 

Salmonella from chicken products reduces human infection risk, it also reduces the 

economic gains to the poultry industry and bird welfare because it can lead to poor bird 

performance, increased drug costs, and mortality (Janardhana et al., 2007; Yunis et al., 

2000). However, Salmonella enterica, the genus often responsible for human infection by 

Salmonella (called Salmonellosis), rarely induces clinical symptoms in poultry (Barrow 
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et al., 2012). Salmonella enterica serovars (subtypes) S. enterica ser. Enteritidis and S. 

enterica ser. Typhimurium are considered commensal-like members of the microbiome 

in poultry (Oakley et al., 2014; Chambers and Gong, 2011; Humphrey, 2006), and 

chickens serve as persistent, asymptomatic carriers that rarely show behavioral or clinical 

signs of infection by these Salmonella serovars (Shanmugasundaram et al., 2019; 

Bearson et al., 2017). Not all chicken immune responses successfully clear Salmonella, 

either (Humphrey, 2006). This makes Salmonella transmission in flocks and 

contamination of chicken products difficult to control. It is particularly clear in young 

chicks with naive immune systems that are more vulnerable to Salmonella infection and 

disease (Bearson et al., 2017). Salmonella infection may induce immune stress in 

chickens, resulting in an inflammatory response in the intestines (Gomes et al., 2014), 

reduced appetite and growth performance (Liu et al., 2014), depression, lethargy, fever, 

and diarrhea (Xie et al., 2000) in symptomatic birds. Due to the risk chicken Salmonella 

infection poses to human health, broiler welfare, and broiler performance, it is important 

to control Salmonella in broiler flocks. 

Salmonella control measures currently exist, including restricted antibiotic use, 

vaccination programs, sanitation programs, and more recently dietary changes such as 

probiotic and prebiotic supplementation. However, some methods of disease control in 

poultry can be ineffective (Yunis et al., 2000). Even rigorous cleaning and disinfection 

standards cannot completely eliminate Salmonella in broiler flocks (Shanmugasundaram 

et al., 2019). Control measures to mitigate an outbreak can become expensive due to the 

sheer number of birds produced and the presence and rapid spread of Salmonella among 

poultry (Lalsiamthara and Lee, 2017). Since Salmonella spreads horizontally via the 
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fecal-oral route, droppings from a single infected bird may be consumed by dozens of 

other birds, whose droppings may then infect even more birds until an entire house is 

Salmonella positive. Additionally, antibiotic growth promoters (AGP) had previously 

been widely used to improve growth and manage bacteria in broilers (Brisbin, 2011) but 

their usage has contributed to the increasingly critical global issue of antimicrobial 

resistance (AMR) (Montoro-Dasi et al., 2020; Zhou et al., 2012). Some Salmonella 

serovars are already resistant to antimicrobials (Bearson et al., 2017). Global and national 

concerns also exist over antibiotic use regarding human medical efficacy, human allergic 

reactions, and drug residues (Brisbin, 2011; Al-Ankari and Homeida, 1996). So much so 

that in 2017, the Veterinary Food Directive (VFD) made it illegal to include AGPs in 

broiler feed for production purposes, effectively restricting use to health-related 

circumstances that require veterinary approval to treat disease (FDA, 2021). Lastly, 

antibiotics can also reduce gut biodiversity and impair the intestinal microbiota, leading 

to dysbiosis (Cryan and O’Mahoney, 2011), or inhibit the immune system with prolonged 

administration (Al-Ankari and Homeida, 1996). 

Dietary supplementation of prebiotics and probiotics can alter the gut microbial 

community and serve as an alternative method of reducing Salmonella in poultry. 

Modulation of gut microbes improves competitive exclusion, reduces pathogen 

colonization, boosts animal performance, and reduces mortality (Borda-Molina et al., 

2018; Clavijo and Florez, 2018; Oakley et al., 2014). Probiotics have additionally been 

reported to enhance control of Salmonella infection in broilers and improve the immune 

response by introducing beneficial bacteria to the gut (Brisbin, 2011), which compete 

with Salmonella for binding sites and resources. However, knowledge on the application 
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of probiotics and prebiotics as they pertain to chicken disease resistance and immune 

response is limited and their usage remains challenged (Brisbin, 2011; Chambers and 

Gong, 2011). Thus, it is important to validate and utilize alternative, effective methods of 

reducing Salmonella in broilers and preventing its entry into the human food supply. One 

example could be the development of Salmonella- resistant birds through genetic 

selection of birds with higher tolerance to Salmonella (Montoro-Dasi et al., 2020). 

An alternative strategy to combat Salmonella in poultry is through genetic 

selection of broilers for disease resistance, which may in turn improve productivity and 

overall welfare (Schou et al., 2010). There is a need for broiler chickens to be more 

capable of handling stress and challenges that arise from current production standards, 

such as overcrowding and heat stress. Genetics have an influence on several health 

aspects linked to broiler welfare, including development of the immune system and gut 

microbial community (Schokker et al., 2015). Additionally, selective breeding can 

achieve differences in early life coping skills and stress adaptation (Schokker et al., 2015; 

Cheng et al., 2004). Most importantly, differences in pathogen susceptibility between 

breeds have been observed among poultry and other species, which can be utilized to 

improve disease resistance (Schokker et al., 2015; Flock et al., 2005). Genetics have an 

influence on the ability of Salmonella to colonize in the chicken gastrointestinal tract 

(Bearson et al., 2017) and varying degrees of susceptibility to certain bacteria, such as 

Salmonella, can exist across chicken flocks (Li et al., 2018; Cheeseman et al., 2006; 

Bumstead and Barrow, 1988). Chickens from different breeds can differ in their response 

to infection. As a result, genetic selection for broilers with greater resistance is an 

attractive alternative to reduce Salmonella in broiler production. 
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Not only is it important for broilers to have innate Salmonella resistance, but it is 

also important to be capable of identifying subclinical infection in broilers prior to 

harvest and processing. Chickens do not often show clinical signs of Salmonella infection 

until it is too late to treat either the individual bird or the flock. Thus, it is challenging to 

detect sick chickens on the farm, resulting in increased risk of spreading Salmonella. 

Sickness behavior provides a possible solution to this problem, as sickness behaviors also 

arise as an indicator of an immune response (Dantzer, 2004). However, sickness 

behaviors in chickens are muted except in more severe circumstances. Chickens are stoic; 

their nature as a prey species is to hide signs of weakness, especially in the presence of a 

perceived threat such as humans (Tizard, 2008). Domestication has reduced the hiding of 

sickness in some species, including chickens, to an extent (Tizard, 2008). Additionally, 

differences in immune function and disease tolerance could influence the severity of an 

infection, thereby influencing observable sickness behavior. Thus, it is possible that 

different breeds of chickens may display varying degrees of sickness behavior in 

response to the same infection due to their genetic background or immune function. 

However, there is a gap in knowledge to what extent broiler breeds might differ in their 

sickness behavior, if any, in response to Salmonella infection. 

1.2 The Genetic Selection of Broilers 

Broiler chickens have been selectively bred for greater feed efficiency and 

performance to yield more meat products and meet consumer demand. However, 

selection for productivity traits may unintentionally neglect other health and welfare 

traits, such as stress tolerance (Altan et al., 2003), leg health (Mohammadigheisar et al., 

2020), and resistance to disease (Swinkels et al., 2007). So much so that the Global 
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Animal Partnership (GAP) funded research at the University of Guelph, as part of the 

Better Chicken Project, to investigate the effects of breeding for enhanced broiler growth 

rate on a multitude of health and welfare parameters (GAP, 2020). Torrey and colleagues 

(2021) investigated the growth, efficiency, and mortality of 16 broiler breeds that varied 

in growth rate, classified as conventional (fastest-growing), fast-slow, moderate-slow, 

and slow-slow. Conventional birds grew fastest and were most feed efficient compared to 

the other breeds, as expected (Torrey et al., 2021). Mortality did not significantly differ 

between breeds, but there was a greater likelihood for the slowest-growing breeds to have 

fewer culls and more birds found dead (Torrey et al., 2021). Initial reports from the 

project also noted that the fast-growing breeds were less active, more susceptible to 

contact dermatitis and muscle damage, and had poor organ development (Torrey et al., 

2020). Additionally, differences have been investigated between fast- and slow-growing 

breeds regarding gastrointestinal, tibia, and plasma metabolites by Mohammadigheisar 

and colleagues (2020), in which the fast-growing breed had greater concentrations of 

plasma enzymes, greater body weight and numerically greater villus heights, and less 

tibia ash content. These findings suggest that the fast-growing breed was more efficient 

on the same feed and had greater surface area for absorption in the intestine, but that the 

fast-growing breed may have also had impaired hepatic function and poor skeletal 

development relative to body weight (Mohammadigheisar et al., 2020). However, the 

effects of selection for enhanced growth rate on resistance to foodborne pathogens such 

as Salmonella have not been investigated.  

Pathogen immunity is a particularly important trait to consider because disease 

negatively affects both performance and welfare (Xie et al., 2000; Cheng et al., 2004; 
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Marcq et al., 2011). For example, prior research has shown that laying hens bred for 

higher group productivity (egg laying) and survivability were less affected by LPS 

challenge compared to birds from the low group productivity and survivability and 

commercial breeds (Cheng et al., 2004). This was evidenced by less severe reductions in 

body weight gain and little to no increase in organ (spleen, liver, heart, and adrenal gland) 

weight, indicating greater resistance to LPS challenge (Cheng et al., 2004). Multiple 

studies have explored the link between growth rate or body weight and immune function 

(Yunis et al., 2000; Leshchinsky and Klasing, 2001; Humphrey and Klasing, 2004; 

Parmentier et al., 2010; van der Most et al., 2011), often noting an inverse relationship. 

This may be due to prioritizing the allocation of bodily energy and resources to growth as 

opposed to immune function, which compromises the immune system (Humphrey and 

Klasing, 2004). Selecting animals for disease resistance may be a vital tool in restricting 

the spread of foodborne diseases such as Salmonella from the chicken to the table. Thus, 

it is important to evaluate the effect genetic selection for growth rate and body weight 

have had on broiler health, particularly regarding Salmonella resistance. 

1.3 Salmonella in Poultry 

 Gut colonization or infection by Salmonella enterica serovars (S. enterica ser. 

Enteritidis and S. enterica ser. Typhimurium) in broilers can prompt an immune 

response, induce morphological changes in the gut, and influence behavior. When 

injected intravenously, S. Typhimurium and S. Enteritidis have caused an observed 

inflammatory response, depression, fever, diarrhea, reduced feed intake, and reduced 

body weights in broiler chickens (Xie et al., 2000; Quinteiro-Filho et al., 2012). Cobb 

chicks orally challenged with S. Typhimurium at 1 week of age had reduced body 
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weights and increased mortality rates, incidences of lameness, and diarrhea (Dar et al., 

2019). Additionally, intensive broiler production and poor welfare can heighten the risk, 

prevalence, and severity of Salmonella infection. Heat stress, a common and extensively 

studied issue in broiler production, increases S. Enteritidis counts in the spleens of 

infected broilers (Quinteiro-Filho et al., 2012) and increases broiler intestinal 

permeability to S. Enteritidis and endotoxins through impairment of intestinal structure 

(Burkholder et al., 2008; Alhenaky et al., 2013). Feed deprivation also increases S. 

Enteritidis attachment in the broiler gut (Burkholder et al., 2008), and overcrowding 

stress induces immunosuppression, reducing broiler S. Enteritidis resistance (Gomes et 

al., 2014). Furthermore, Salmonella infection of broilers can cause reductions in body 

weight gain and death with severe infection (Fasina et al., 2010). Given these welfare 

concerns and the effect Salmonella infection can have on broilers, further research is 

needed to understand the impact of selective breeding on broiler pathogen resistance. 

1.3.1 Effect of Breed on Pathogen Resistance and Salmonella Infection 

 Susceptibility and resistance to pathogens and the effect of infection on welfare 

and performance can differ between chicken breeds. When male broilers from two 

commercial breeds were challenged with coccidial pathogen Eimeria acervulina, Iuspa 

and colleagues (2020) found that birds from one commercial broiler breed had greater 

fecal oocyst counts and intestinal lesion scores, reduced feed intake and body weight, and 

a greater increase in feed conversion ratio after challenge compared with the other 

commercial breed. In a study that evaluated Salmonella Pullorum resistance between 

Rhode Island Red, local Chinese breed Beijing You, and a synthetic layer breed, birds 

were challenged at 4 d and evaluated for mortality and Salmonella carriage (or presence) 
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in the spleen post-inoculation (Li et al., 2018). Breeds varied significantly in mortality 

and carriage rates, in which the Beijing You had the lowest mortality rate (8.3%) and 

Salmonella Pullorum carriage rate (0.6%) compared to other breeds (Li et al., 2018). 

Williams and colleagues (2013) reported no differences in Campylobacter carriage 

between Ross and Hubbard broilers orally infected at 21 days of age, but Ross displayed 

more incidences of contact dermatitis than Hubbard broilers. Additionally, Han and 

Smyth (1972) studied the development of Marek’s disease in sub-breeds of White 

Plymouth Rock divergently selected for multiple generations for increased growth rate 

(Massachusetts High Growth and Virginia High Growth) versus one generation of 

breeding for faster growth (Massachusetts Low Growth and Virginia Low Growth) 

following abdominal injection of the virus at 1 day post-hatch. The high growth breeds 

exhibited greater mortality and lesions in the liver, gonads, and spleen than the slow 

growing breeds (Han and Smyth, 1972). 

Differences in susceptibility and infectivity of S. Enteritidis have also been 

observed across breeds, with greater potential resistance in breeds less heavily selected 

for productivity traits. Schou and colleagues (2010) reported greater S. Enteritidis 

resistance in the indigenous Vietnamese Ri chickens compared to the commercial Luong 

Phuong breed, inclusive of a stronger total mixed-antibody response to infection and less 

severe reductions in body weight gain compared with controls. In another study, newly 

hatched Rhode Island Red chicks orally inoculated with different strains of S. Enteritidis 

had lower mortality following infection with any of the S. Enteritidis strains than a 

commercial broiler breed, with mortalities between 2% and 30% (pending strain 

virulence) compared to 20% to 96% mortality rate in the broiler breed (Barrow, 1991). 
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Lastly, Li and colleagues (2017) evaluated differences in the TLR4 (toll-like receptor) 

gene involved in resistance to S. Enteritidis in 10 chicken breeds, including specific-

pathogen-free (SPF) White Leghorns and Chinese native breeds. The White Leghorns 

had a strong association between the locus G247A on the TLR4 gene and increased S. 

Enteritidis resistance when compared with the native breeds (Li et al., 2017). 

Genetic selection impacts chicken resistance to pathogens, such as Salmonella, 

but it is unknown if selection specifically for growth rate in broilers affects pathogen 

susceptibility. Research is needed to identify differences in pathogen resistance between 

fast- and slow-growing breeds of broilers, which may be elucidated through studying gut 

morphology, immune response, and sickness behavior in response to infection. 

1.4 Gut Integrity 

 The gut microbiome is linked to gut health, morphology, and physiology. Direct 

fed microbial (DFM) feed supplements provide beneficial gut microbes and have been 

found to increase villus height and crypt depth in broiler chicks (Lee et al., 2010). On the 

other hand, infection by pathogens may induce dysbiosis and impair nutrient absorption 

and broiler performance. Cobb broiler chicks co-infected with Eimeria and Clostridium 

perfringens had reduced intestinal villus heights (Golder et al., 2011), which may 

correspond to reduced performance (Yamauchi et al., 2010). Salmonella colonization also 

negatively impacts gut integrity. Prior studies have shown that broilers infected with S. 

Typhimurium exhibited intestinal inflammation and damage to the epithelium (Kaiser et 

al., 2000; Dar et al., 2019). S. Enteritidis infection additionally alters gut physiology by 

reducing intestinal ion permeability, a possible reason for why diarrhea is often not 

observed in infected broilers (Awad et al., 2012). In contrast, Quinteiro-Filho and 
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colleagues (2012) reported no effect of S. Enteritidis infection on intestinal histology 

across all segments of the small intestine in broilers despite signs of enteritis. However, 

enteritis could indicate Salmonella invasion of epithelial cells, which is often associated 

with damage to the intestinal structure (Clark et al., 1998). A link exists between 

intestinal structure and function (Yamauchi et al., 2010), and as such, breed-related 

differences may exist that improve intestinal structure strength and resilience to 

pathogens in broilers selected for increased growth.  

1.4.1 Effect of Breed on Gut Integrity 

 Gut integrity and morphology are important to animal health and nutrition, and as 

a result, performance and welfare. Thus, decades of selective breeding for increased 

performance in broilers has resulted in heavier and more efficient birds. Havenstein and 

colleagues (2003) compared the growth rate of commercial broiler breeds from 2001 

(Ross) and 1957 (Arbor Acres), in which the 2001 Ross breed required 3x less time and 

3x less feed to reach 1,815 g than the Arbor Acres breed. This change in growth and 

efficiency may reflect changes in gut morphology (Yamauchi et al., 2010). Broilers with 

well-developed intestines are more efficient at utilizing energy from feed and perform 

better than birds with poorly developed or damaged intestines. As a result, it makes sense 

that broilers genetically selected for fast growth rates, greater feed efficiency, and higher 

mature body weights might have better developed intestinal morphology for the 

absorption of nutrients. Yamauchi and Isshiki (1991) studied the intestinal villi of the 

duodenum, jejunum, and ileum in White Leghorns and broilers between days 1 and 30 of 

age and reported that broilers had further developed and larger villi than White Leghorns 

by day 10 post-hatch. These differences suggest that the broiler had more active intestinal 



 

13 
 

function and greater absorptive capacity due to increased surface area, which in 

combination support increased growth rate. However, a comparison of a fast-growing 

broiler breed and 4 slower-growing breeds revealed no significant differences between 

breeds in jejunal villus height and crypt depth (Mohammadigheisar et al., 2020).  

Little is known regarding breed-related differences in intestinal structure 

resilience to gastrointestinal infection, but research by Gao and colleagues (2013) 

involving E. coli infection in Jinhua and Landrace pigs suggests that the Jinhua breed 

may typically have more resilient intestinal structure than Landrace. More resilient gut 

integrity equates to less epithelial damage during infection, resulting in a greater retention 

of intestinal structure and function (Yamauchi et al., 2010). Breeds that are less resilient 

may lose productivity due to reductions in absorptive function. Broiler intestinal function 

is critical to the broiler production industry, and as such it is imperative to ensure broilers 

have both well-developed and resilient gut integrity to avoid economic losses. It is 

unclear if selection for enhanced growth rate in broilers has also resulted in improved 

intestinal structure or intestinal resilience to disease. More research is needed to 

understand the consequences of growth rate on intestinal structure and resilience, as well 

as the influence or intervention of the immune response on gut health in fast- versus 

slow- growing broilers when infected by pathogens such as Salmonella. 

1.5 Immune Response to Salmonella 

The broiler chicken immune response against S. enterica serovars varies from 

little or no response to severe disease and comes with potential welfare and performance 

complications. Severity of infection can be affected by multiple factors such as age (Song 

et al., 2021), genetics (Bumstead and Barrow, 1988; Schou et al., 2010), environment and 
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stress (Burkholder et al., 2008; Gomes et al., 2014), microbiome (Chambers and Gong, 

2011), and nutrition (He et al., 2020). Infection by Salmonella prompts innate and 

adaptive immune responses in chickens, inclusive of both cytokine and antibody 

involvement (Barrow et al., 2012).  

To combat an intracellular bacterium such as Salmonella, the chicken immune 

response utilizes a combination of T cell and B cell responses. The T cell response 

confers cellular immunity and consists of two cellular subsets: cytotoxic T cells and 

helper T cells (Th cells) (Cano and Lopera, 2013). Cytotoxic T cells function to destroy 

infected and damaged cells, while Th cells aid other immune cells in mounting a response 

(Cano and Lopera, 2013). Th cells produce both produce cytokines and induce antibody 

production by B cells (Cano and Lopera, 2013), and Th cell responses can further be 

divided into Th1 and Th2 subtypes which produce Th1- and Th2-type cytokines, 

respectively (Berger, 2000). The Th1 response typically produces pro-inflammatory 

cytokines, such as interferon-gamma (IFN-𝛾), to support the immune response (Berger, 

2000; Wigley and Kaiser, 2003). Pro-inflammatory cytokines contribute to tissue 

inflammation, lymphocyte recruitment, and induction of proteins involved in the 

inflammatory response (Berger, 2000; Wigley and Kaiser, 2003). Other pro-inflammatory 

cytokines include interleukins (IL), such as interleukin-1 (IL-1), interleukin 1-beta (IL-

1β), interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-18 (IL-18), and tumor 

necrosis factor alpha (TNF-α) (Wigley and Kaiser, 2003). IFN-𝛾 production is stimulated 

by Salmonella lipopolysaccharide (LPS) endotoxin, which is a component of the 

Salmonella outer membrane wall, and as such IFN-𝛾 plays a vital role in both the innate 

and adaptive immune responses to Salmonella infection (Barrow et al., 2012; Penha-
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Filho et al., 2012). Brisbin (2011) observed a Th-1 dominant response in commercial 

broilers infected with S. Typhimurium and increased levels of IFN-𝛾 in cecal cells 

associated with clearance. In ISA Brown chicks infected with S. Enteritidis at 1, 4, and 16 

days of age, a Th1 response was observed with increased IFN-𝛾 mRNA expression 

(Crhanova et al., 2011). Dar and colleagues (2019) also reported increased IFN-𝛾, IL-12, 

and IL-18 mRNA expression in the liver, spleen, and ceca of Cobb broiler chicks orally 

challenged with S. Typhimurium at 3 days. External administration of IFN- 𝛾 has 

additionally been shown to support the immune response against Salmonella. When 

recombinant IFN-𝛾 was administered to turkeys, it reduced S. Enteritidis invasion in the 

liver and spleen by up to 38.4% (Farnell et al., 2001). 

The B cell response is also important in the body’s immune response to 

Salmonella infection. B cells confer humoral immunity and are responsible for producing 

antibodies to help fight disease when antigens are detected (Cano and Lopera, 2013). The 

antibodies found in birds consist of immunoglobulin M (IgM), immunoglobulin G (IgG; 

may also be referred to as IgY), and immunoglobulin A (IgA) (Tizard, 2002). IgM is 

found primarily in the serum and supports the primary immune response soon after first 

exposure to an antigen occurs (Tizard, 2002). IgG predominates avian blood and, like 

mammalian IgG, has a role in immunity against pathogens and bacterial toxins and is 

produced following the IgM response (Tizard, 2002). Lastly, IgA is found primarily in 

intestinal and respiratory secretions and is responsible for protecting these epithelial 

surfaces against invasion by pathogens such as Salmonella (Tizard, 2002). IgA may also 

be released into the bloodstream when produced by B cells beneath mucosal surfaces, in 
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which blood IgA responses could be indicative of a humoral response to infection in the 

respiratory or gastrointestinal tracts (Tizard, 2002).  

Given this information, it is expected to see a humoral immune response 

following infection by Salmonella. Cobb broilers orally challenged at 3 days of age with 

S. Typhimurium had significantly greater levels of IgG and IgM antibodies in the blood 

serum (Dar et al., 2019). Hassan and colleagues also reported increased blood serum 

concentrations of IgG, IgM, and IgA in Sussex chickens inoculated with S. Typhimurium 

4 days post-hatch (Hassan et al., 1991). While increased IgA can be associated with 

pathogen clearance, it does not necessarily indicate an efficient or effective immune 

response. Research by Holt and colleagues (1999) reported most White Leghorn chicks 

challenged with a sublethal dost of S. Enteritidis at day 1 did not appear to have a plasma 

IgA or IgG response. In the White Leghorn chicks that did have an IgA response to 

challenge, high counts of Salmonella in the intestine indicated that the IgA response was 

insufficient to clear S. Enteritidis (Holt et al., 1999). However, both vaccination and 

direct antibody administration have been shown to reduce or inhibit S. Enteritidis. A 

Salmonella chitosan-nanoparticle (CNP) vaccine administered to Cobb chicks at day 1 of 

age and challenged with S. Enteritidis at day 14 resulted in increased IgA levels in bile 

and serum, increased IgG levels in serum, and reduced S. Enteritidis in the ceca 

(Acevedo-Villanueva et al., 2020). When Lee and colleagues (2002) introduced 

Salmonella-specific IgY (IgG) to S. Enteritidis and S. Typhimurium in liquid medium in 

vitro, Salmonella growth was successfully inhibited. 

It is evident that Salmonella infection in broilers elicits an immune response that 

may involve both T cell and B cell involvement, and as such it is important to understand 
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how this immune response might differ between different breeds. Broiler breeds selected 

for different growth rates may have also undergone changes in immune development or 

function, but the consequences of this selection on the immune system is unclear. 

1.5.1 Effect of Breed on Immune Response 

Genetics influence immune response, which can be modulated by the gut 

microbiome resulting in variances in susceptibility and resistance to pathogens (Pan and 

Yu, 2013; Humphrey, 2006). The gut microbial communities significantly differed 

between two breeds of chickens divergently selected from the same ancestor for high and 

low mature body weights and provided the same diets and management, varying by up to 

68 of 190 bacterial species (Zhao et al., 2013). Schokker and colleagues (2015) observed 

significant differences in microbiota composition between two broiler breeds divergently 

bred for their immune response to pathogenic infection, although the breeds showed no 

difference in body weight or feed conversion ratio.  

Chicken breeds can also differ in their response to stressors, such as heat or 

immune stress. Layers from four breeds that differed in their humoral immune response 

and survival rate were challenged to chronic heat stress (23⁰C for 23 days) and short-term 

hygienic stress (LPS challenge) to determine the effect on performance such as egg 

production, egg quality, feed intake, and body weight (Star et al., 2008). While breeds 

responded similarly to stressors regarding production measures (greater weight loss, 

reduced feed intake, and reduced egg weight and shell thickness), they differed in degree 

of response (Star et al., 2008). Rhode Island Reds had the greatest reductions in body 

weight, feed intake, and egg production in response to heat stress, whereas the White 

Leghorn breeds had less severe reductions in the same parameters (Star et al., 2008). The 
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contrast in response levels may be attributed to the ability of each bird’s immune system 

to adapt to stressors. Additionally, Leghorns bred for high group productivity and 

survival have shown a greater stronger cell-mediated immune response when 

administered an LPS challenge compared to those selected for low group productivity 

and survival. (Cheng et al., 2004).  

Prior research has studied differences in immune response between broiler breeds. 

Swaggerty and colleagues (2003) investigated two breeds of commercial broilers and 

their crosses for biomarkers indicating S. Enteritidis resistance by isolating white blood 

cells and recording their protective actions against S. Enteritidis, including phagocytosis 

(consumption of the bacteria) and degranulation (release of antimicrobial molecules). The 

heterophils (white blood cells) of one pure breed and a related cross breed phagocytized 

more S. Enteritidis and were more capable of degranulating when exposed to S. 

Enteritidis, indicating greater immunocompetence than the other pure and cross breeds 

(Swaggerty et al., 2003). Additionally, broilers with known resistance to extra-intestinal 

S. Enteritidis infection have been reported to have greater mRNA expression of pro-

inflammatory cytokines following oral challenge with S. Enteritidis at 1-day-old than 

known susceptible breeds (Ferro et al., 2004). Differences in immune function have also 

been observed between broiler breeds that differ in growth rate. Swinkels and colleagues 

(2007) orally inoculated fast-growing (Ross 308) and slow-growing (Hubbard) broiler 

chicks 7 days post-hatch with Eimeria acervulina. The fast-growing breed displayed a 

rapid increase in cytotoxic T cells in the duodenum paired with a lower Eimeria 

acervulina parasite load, suggesting that the fast-growing breed had a stronger and more 

successful immune response to challenge (Swinkels et al., 2007). However, research by 
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Cheema and colleagues (2003) comparing the immune responses of commercial 2001 

(Ross) and 1957 (Arbor Acres) broiler breeds reported greater lymphoid organ weight 

relative to body weight and greater total serum antibody response in the 1957 breed 

compared to the 2001 breed, suggesting that selection for enhanced growth in broilers 

may have instead impaired adaptive immune function. Lastly, recent work by Rothschild 

(2019) compared antibody responses to an Infectious Bronchitis Virus vaccine between 

one fast-growing broiler breed and 3 slow-growing breeds, recording greater serum 

antibody levels indicating greater short-term humoral immune responses in the 

conventional fast-growing breed than in the slow-growing breeds. 

Despite these known differences, it is unclear if differences exist between modern 

fast- and slow-growing broiler breeds regarding immune response to Salmonella. More 

research is needed to evaluate the effect of growth rate on immune system development 

and function as they pertain to food pathogen resistance. Such differences may also 

produce variability between fast and slow-growing breeds regarding sickness behavior in 

response to infection, as sickness behavior is symptomatic of an immune response. 

1.6 Salmonella and Chicken Sickness Behavior 

As a prey species, chickens are stoic, hiding signs of illness that may identify the 

animal as an easy meal to predators. Birds are adept at hiding sickness until a point at 

which it is too late to treat, particularly when a potential threat such as a human is present 

(Tizard, 2008). In this case, it may be beneficial to observe comfort behaviors and other 

behaviors that can indicate an animal’s welfare. Poultry comfort behaviors include 

walking, stretching, wing flapping, dustbathing, preening, and scratching the ground 

(Mauldin, 1991). When these behaviors are performed at greater intensities, for longer 
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durations, and with high frequency, it may indicate better welfare (Costa et al., 2012), 

and reductions in comfort and exploratory behaviors could precede clinical signs of 

illness (Abeyesinghe et al., 2021). 

Sickness behavior is an observable indicator of an immune response in action. It 

occurs as a motivational state and adaptive response to a disease, encouraging distinct 

behavioral patterns that support recovery from the disease, such as lethargy, decreased 

appetite, and reduced social behaviors (Johnson, 2002; Dantzer, 2004; Tizard, 2008). 

Behaviors that promote long term health (e.g., play, sexual, and learning behaviors) are 

reduced, while those that support short term fitness (e.g., resting and anorexia) increase in 

frequency (Weary et al., 2014). Sickness behavior can be affected directly by pathogens, 

but the immune system is largely responsible for what animals experience as sickness 

(Tizard, 2008; Millman, 2006). More specifically, it is a result of the onset of an acute 

phase immune response due to pro-inflammatory cytokine signaling, including IL-1, IL-

6, and TNF-α (Tizard, 2008; Millman, 2006; Dantzer, 2004, Johnson, 2002). Cytokines 

have been shown to influence specific sickness behaviors. For example, TNF- α can 

mitigate animal weight loss (Tizard, 2008) and pro-inflammatory IL-1β has been 

observed to reduce appetite in rats, as evidenced by reduced feed intake (Finck and 

Johnson, 1997). While the link between pro-inflammatory cytokine response and sickness 

behavior has been studied (Kelley et al., 2003; Dantzer, 2004; Dantzer and Kelley, 2007), 

it is unclear if there is any relationship between antibody (immunoglobulin) response and 

sickness behavior. 

 Behavioral and physiological signs of sickness in chickens include changes in 

body temperature (and as a result, changes in thermoregulatory behavior), activity levels, 
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thirst, feed consumption, weight loss, and social and reproductive behaviors. A study by 

Cheng and colleagues (2004) reported fever as well as reduced standing, moving, eating, 

and drinking behaviors and increased time sitting in White Leghorns following LPS 

injection at 6 weeks of age. In broiler chicks experimentally infected with E. coli at 8 

days of age, it was determined that birds who failed to respond to a hand clap for 

attention as an indicator of lethargy also had reduced body temperature, reduced heart 

rate, reduced respiratory rate, and even dyspnea (Matthijs et al., 2017).  

 The effect of S. Typhimurium on sickness behavior in broilers has been studied 

previously. Following oral challenge 1-week old Cobb chicks with S. Typhimurium, the 

broilers displayed clinical symptoms of illness including depression, dullness, anorexia, 

inactivity, weakness, and closing of the eyes (Dar et al., 2019). Xie and colleagues (2000) 

reported that intravenous LPS injection in 3-week-old broilers caused behavioral changes 

such as depression and feed avoidance within 48 hours of injection. However, broilers 

may be even less prone to display behavioral changes from sickness than other birds, due 

to their selection for faster growth (Berghman, 2016). When a broiler breed and a Brown 

Nick layer breed were injected with LPS 1-day post-hatch, the broilers had lower mRNA 

expression of IL-1β and IFN-𝛾 and a reduced febrile response compared to the layer line 

(Leshchinsky and Klasing, 2001). Reductions in pro-inflammatory cytokine response 

may reduce the intensity of sickness behaviors in broilers compared to other breeds 

which might even be observed between broiler breeds that vary in growth rate. More 

research is needed to evaluate the differences between fast- and slow- growing broiler 

breeds regarding sickness behavior following infection by a pathogen such as Salmonella.  
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1.6.1 Effect of Breed on Sickness Behavior 

Behavioral differences between breeds of chickens can be indicative of their 

welfare. Notably, there are clear differences between breeds that differ in their production 

purpose and growth rate. The University of Guelph studied 16 different breeds of broiler 

chickens varying in growth rate for differences in behavior, performance, mortality, and 

mobility at the (GAP, 2020). The conventional breed (fastest growth rate) spent the most 

time sitting (73.6%) compared to the rest, which averaged 63%, and almost half as much 

time standing (4.2%) and moving (2.3%) as all slower growing breeds (Torrey et al., 

2020). Additionally, the breeds with the slowest growth rates spent more time engaging 

with enrichments than faster growing breeds throughout the study and crossed a physical 

barrier more times to access feed and water (Torrey et al., 2020). A different study by 

Dixon (2020) compared the behavior of fast- and slow-growing broilers and reported 

comparatively greater engagement in active behaviors such as standing, locomoting, 

foraging, and preening in a slow-growing Hubbard breed than 3 commercial breeds 

(Ross, Cobb, and Hubbard). Additionally, exploratory behaviors such as foraging activity 

can vary between genotypes of broilers, in which slow-growing broilers tend to engage in 

exploratory behaviors more than medium (Almeida et al., 2012) and fast-growing breeds 

(Yan et al., 2021). In another study, no differences were reported between a fast- and 

slow-growing hybrid broiler breed regarding foraging behavior (Wallenbeck et al., 2016). 

Differences in activity can be key to identifying where welfare or health concerns 

may arise, for example, reduced mobility may signal an inability of birds to move, and 

sitting can increase the risk of contact dermatitis and leg health. These behavioral 

changes, alongside reductions in normal behaviors such as preening and foraging, could 
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additionally signal disease. While breed-related behavioral differences exist between fast- 

and slow- growing broiler breeds, it is unknown if they differ in sickness behavior.  

Differences in sickness behavior between fast- and slow- growing broilers could 

signify the severity of infection and resulting presence or strength of an immune 

response. Increased sickness behavior may indicate a stronger immune response, and thus 

greater resilience to pathogenic infection by bacteria such as Salmonella (Hart, 1988; 

Johnson, 2002; Cheng et al., 2004). Sickness behavior may additionally serve as an 

indicator of disease, which can aid producers in identifying illness within flocks and 

either treat or cull ill birds. 

1.7 SUMMARY, OBJECTIVE, AND HYPOTHESIS 

Genetic selection for a specific set of traits, such as performance characteristics in 

broilers, can inadvertently affect other traits of importance, such as pathogen resistance, 

gut health, immune function, and behavior. The implications of selection for fast growth 

in broilers is already a hot topic in animal welfare for its impact on broiler health. 

However, pathogen resistance is highly important as well, particularly as broilers serve as 

a major reservoir for Salmonella transmission into the human supply. Salmonella enterica 

serovars Typhimurium and Enteritidis are frequent causes for human foodborne illness 

around the globe, and while they are less harmful to poultry, they cause issues for the 

broiler industry. Salmonella infection can cause reduced body weight gain and increased 

mortalities, resulting in economic losses. However, little is known if differences exist 

between modern fast- and slow-growing broiler lines relative to Salmonella infection, 

making it increasingly important to understand if selective breeding for a faster-growing, 

heavier broiler has also resulted in a more (or less) Salmonella-resistant broiler. 
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To evaluate and understand these differences, fast-growing Ross 308 and slow-

growing Redbro broiler chicks were orally challenged with either S. Typhimurium or 

Tryptic Soy Broth control at 14 days of age and sampled up until 24 days of age (10 days 

post-challenge). Differences in body weight, immune function, and gut morphology can 

elucidate the effect of Salmonella challenge, so birds were weighed and blood and 

intestinal samples were collected throughout the study to evaluate for challenge-induced 

body weight losses, damage to intestinal structure, and changes in plasma IgA and IgG 

antibodies indicative of a humoral immune response. Changes in behavior can also reflect 

sickness as a symptom of an immune response in action, so video recordings were taken 

of 8 isolators on multiple days to evaluate breed differences and the effect of S. 

Typhimurium challenge on behavior.  

The objective of this study was to evaluate differences in body weight, immune 

response, gut morphology, and sickness behavior between fast- and slow-growing broiler 

chickens when challenged with Salmonella Typhimurium. The first hypothesis of this 

study was that fast-growing broilers would have greater body weight, greater intestinal 

morphology measures, lower plasma immunoglobulin concentrations, and reduced 

behavioral repertoire when compared to the slow-growing breed independent of 

challenge. The second hypothesis was that post-challenge, the challenged fast-growing 

broilers would be less negatively impacted than the slow-growing broilers with regard to 

body weight and gut morphology, but the slow-growing breed would have greater plasma 

IgA and IgG responses to challenge paired with more significant behavioral signs of 

sickness.  
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2.1 ABSTRACT 

Fast growth rate in broilers comes with welfare concerns and research is needed 

to determine if fast- and slow-growing broilers differ in pathogen resistance. The 

objective of this study was to evaluate differences in fast- (FG) and slow-growing (SG) 

male broilers when challenged with Salmonella Typhimurium (ST) or broth (control; 

CON) 14 days post-hatch. FG (N=156) and SG (N=156) were raised in the same pen with 

litter shavings until d7, when they were transferred to 24 isolators. On d7, 13, 17, 21, and 

24 body weights, plasma IgA and IgG, and jejunum and ileum histomorphology were 

measured (N=48 birds/sampling). FG were 70g heavier (P=0.03) on d21 and 140g 

heavier (P=0.007) on d24 than SG. On d7, FG jejunum villus height and crypt depth were 

22 μm and 7 μm greater (P≤0.001) than SG, which can mean better nutrient absorption. 

SG IgG at d7 was 344 μg/mL higher than FG IgG, which may indicate greater maternal 

antibody protection. FG plasma IgA was 38 μg/mL higher (P=0.01) than SG at d21, and 

FG plasma IgG increased with age (P<0.0001) and were higher (P≤0.03) than SG at d21 

and d24 by 689 μg/mL and 1,474 μg/mL, respectively, but SG IgG did not increase after 

d13, which may mean earlier humoral immune development in FG. Day 24 ST ileum 

villus height was reduced (P=0.009) by 95 μm, but FG-ST were more impaired than SG-

ST. Challenge increased (P=0.03) IgG in ST at d21 by 44 μg/mL, but the difference was 

only significant in SG-ST, indicating a stronger SG-ST IgA response. The results 

illustrate fast- and slow-growing broilers differ in Salmonella resistance, which can help 

breeders make selection decisions to prevent Salmonella transmission into the human 

food supply. 

Keywords: broiler, growth rate, Salmonella, immune response, gut morphology 
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2.2 INTRODUCTION 

In order to meet the high consumer demand for chicken, broilers are genetically 

selected for increased feed efficiency and greater breast yield, resulting in birds that reach 

heavier market weights at incredible growth rates (NCC, 2021). However, selection for 

productivity traits may unintentionally neglect other health and welfare traits, such as 

pathogen resistance. Pathogen immunity is a particularly important trait to consider 

because disease negatively affects broiler performance, health, and welfare (Xie et al., 

2000; Marcq et al., 2011). Despite this, the effect of selection for enhanced growth rate 

on resistance to foodborne pathogens such as Salmonella has not been investigated.  

Gut colonization by Salmonella enterica serovars in broilers can prompt an 

immune response and induce morphological changes in the gut. When injected 

intravenously, S. Typhimurium and S. Enteritidis can cause an inflammatory response, 

fever, diarrhea, reduced feed intake, and reduced body weights in broiler chickens (Xie et 

al., 2000; Quinteiro-Filho et al., 2012). Additionally, Fasina and colleagues (2010) 

reported reduced body weight and gut morphology in broilers orally challenged with S. 

Typhimurium. Furthermore, infection by S. Typhimurium can cause intestinal 

inflammation or enteritis in broilers (Kaiser et al., 2000; Dar et al., 2019). Little is known 

regarding broiler breed-related differences in intestinal structure resilience to 

gastrointestinal infection, but research by Gao and colleagues (2013) involving E. coli 

infection in Jinhua and Landrace pigs suggests that the Jinhua breed may typically have 

more resilient intestinal structure than Landrace. Resilient gut integrity equates to less 

epithelial damage during infection, resulting in a greater retention of intestinal structure 

and function and better nutrient absorption and productivity (Yamauchi et al., 2010).  
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Salmonella infection prompts innate and adaptive immune responses in chickens 

inclusive of cytokine and antibody involvement (Barrow et al., 2012). In Cobb broilers 

orally challenged with S. Typhimurium at 3 days, mRNA expression of pro-inflammatory 

cytokines IFN-𝛾, IL-12, and IL-18 were increased in the liver, spleen, and ceca (Dar et 

al., 2019). Increased circulating concentrations of antibodies IgG, IgM, and IgA have also 

been observed in both Cobb broilers and dual-purpose Sussex chickens challenged with 

S. Typhimurium 3-4 days post-hatch (Hassan et al., 1991; Dar et al, 2019).  

Prior research has studied differences in immune response between broiler breeds. 

Swaggerty and colleagues (2003) investigated two breeds of commercial broilers and 

their crosses for biomarkers indicating S. Enteritidis resistance by isolating white blood 

cells and recording their protective actions against S. Enteritidis, including phagocytosis 

(consumption of the bacteria) and degranulation (release of antimicrobial molecules). The 

heterophils (white blood cells) of one pure breed and a related cross breed phagocytized 

more S. Enteritidis and were more capable of degranulating when exposed to S. 

Enteritidis, indicating a greater immunocompetence than the other pure and cross breeds 

(Swaggerty et al., 2003). Additionally, multiple studies have explored the link between 

growth rate or body weight and immune function (Yunis et al., 2000; Leshchinsky and 

Klasing, 2001; Humphrey and Klasing, 2004; Parmentier et al., 2010; van der Most et al., 

2011), often noting an inverse relationship in which selection for fast growth reduces 

immune function. This may be due to the allocation of bodily energy and resources to 

growth as opposed to immune function, compromising the immune system (Humphrey 

and Klasing, 2004). However, it is unclear if fast- and slow-growing broilers differ in 

their immune response to Salmonella infection. 



 

38 
 

It is unknown if differences exist between modern fast- and slow-growing broiler 

lines relative to Salmonella infection, making it increasingly important to understand if 

selective breeding for a faster-growing, heavier broiler has also resulted in a more or less 

Salmonella-resistant broiler. To evaluate and understand these differences, fast-growing 

Ross 308 and slow-growing Redbro broiler chicks were orally challenged with either S. 

Typhimurium or Tryptic Soy Broth control at 14 days of age and sampled up until 24 

days of age (10 days post-challenge). Birds were weighed and blood and intestinal 

samples were collected throughout the study to evaluate for challenge-induced body 

weight losses, damage to intestinal structure, and changes in plasma IgA and IgG 

antibodies indicative of a humoral immune response following S. Typhimurium infection. 

The objective of this study was to evaluate differences in body weight, immune response, 

and gut morphology between fast- and slow-growing broiler chickens when challenged 

with Salmonella Typhimurium. The hypotheses were that fast-growing broilers would 

have greater body weight, greater intestinal morphology measures, and lower plasma 

immunoglobulin concentrations, and that challenged fast-growing broilers would be less 

impaired than slow-growing regarding body weight and gut morphology, but the slow-

growing breed would have greater plasma IgA and IgG responses to challenge.  

2.3 MATERIALS AND METHODS 

2.3.1 Animals and Housing 

All procedures and protocols were approved by the University of Maryland 

(UMD) Animal Care and Use Committee (IACUC#: R-NOV-19-55). Three-hundred and 

twelve male day-of-hatch chicks from two breeds, Ross 308 (Aviagen) (N=156) and 

Redbro (Hubbard) (N=156), were transported from a local hatchery (Freedom Ranger 
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Hatchery, Reinholds, PA) to the University of Maryland Animal and Avian Sciences 

Animal Wing. Chicks were placed together in a single 3 m by 6 m pen with wood 

shavings litter (d0) (Figure 2.1). This encouraged commingling and permitted 

consumption of pen-mate fecal material to establish a similar gut microbiome. Three 

brooder lamps were hung above the pen to provide supplemental heat and were removed 

on d3. Water was provided ad libitum through a nipple water line. Chicks were provided 

Purina Start and Grow Non-Medicated crumbles ad libitum in 3 gravity-fed hanging 

feeders. Temperature was maintained at 32.2°C for d0-1 and gradually reduced by 0.6°C 

daily until 17.8°C at d13. Ambient temperature, humidity, and photoperiod was 

maintained according to the Ross Broiler Management Handbook (Aviagen, 2018) 

throughout the study. Photoperiod was 23h light and 1h dark on d0 and light hours were 

gradually decreased to 20h light with 4h dark on d7. Ambient temperature was also 

checked at the floor level inside the pen using an infrared temperature gun (Lasergrip 

1080, Etekcity, Anaheim, CA). Chicks were housed in the UMD ANSC Animal Wing 

from d0-7.  

On d7, a total of 264 birds (N=132 per breed) were moved into isolators in BSL-2 

rooms at the University of Maryland Avrum Gudelsky Veterinary Medical Center 

(Figure 2.2). Eleven birds from each breed were exclusively placed into 24 isolators 

(Model 934-1, Federal Designs Inc., Comer, GA) within 4 ABSL-2 rooms (N=6 isolators 

per room). There were 3 isolators that contained birds from each breed per room. 

Isolators were 5,195 cm2 and stocking density did not exceed the minimum space 

allowance outlined in the Ag Guide (FASS, 2010) throughout the study. Isolator floors 

consisted of a metal grate with a bin below to collect fecal matter, and isolator lights were 
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left off for the duration of the study as it was observed to increase aggression (Figure 

2.2). Each isolator had separate airflow and HEPA filters that were replaced once weekly. 

Air flow pressure (negative) was monitored twice daily through an attached gauge 

(Model 25 Manometer, Dwyer Instruments, Inc., Michigan City, IN) to ensure that air 

pressure fell within an acceptable range (Figure 2.2). Chick paper was placed in isolators 

over the metal grating prior to bird placement to prevent leg injury, then later removed at 

d10 (Figure 2.2). Fecal collection bins were emptied every other day to maintain good air 

quality. Commercially available feed (Purina Start and Grow Non-Medicated pellets) and 

water were provided ad libitum via a metal gravity-fed trough and a plastic gravity 

waterer, respectively. Birds were checked for wellness, isolator temperature and humidity 

were monitored and recorded, and waterers were cleaned and refilled with fresh water 

twice daily. Individual isolator heaters were on from d7- 10 to maintain temperature. The 

temperature and humidity of each room was also monitored and recorded once daily. 

Light hours were 20h light and 4h dark (20:4) at d7 and gradually shifted to 18h light and 

6h dark (18:6) until d14, then they were maintained at 18:6 for the remainder of the 

experiment. Exterior room windows were covered for the duration of the study. 

2.3.2 Experimental Design and Procedures 

The experimental design was a 2 x 2 split plot design, in which all Ross 308 (FG) 

and Redbro (SG) birds were raised together in a single pen for the first week (d0-7) and 

then randomly assigned and split between 24 isolators across 4 rooms by breed and 

designated challenge treatment group at d7 (Figure 2.3). The experimental unit was the 

isolator (N=24). Each room held 6 isolators total, split into 3 isolators/breed/room, and 

each room was assigned a challenge treatment (N=2 rooms per treatment) (Figure 2.3). 
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Challenge treatments were given on d14, in which 2 rooms of birds (rooms 3 and 4) 

received 1 mL of 108 CFU/mL Salmonella Typhimurium challenge culture (ST) (N=108 

birds, 54 per breed) and 2 rooms (rooms 1 and 2) received 1 mL Tryptic Soy Broth 

control (CON) (N=108 birds, 54 per breed) via oral gavage. Quantitative bacteriology of 

Salmonella spp. presence or absence were collected on d0 and d13 via vent swabs. 

Sampling was performed on d7, 13, 17, 21, and 24. At each sampling event, 2 birds per 

isolator were randomly selected and body weight (BW), blood samples, gut histology 

samples (jejunum and ileum segments), and microbiome samples (ileal and cecal 

contents) were collected from each bird. Table 2.1 outlines a brief summary of events. 

2.3.3 Culture and Challenge 

A lab-cultured nalidixic acid (NAL)-resistant culture of Salmonella Typhimurium 

(Strain #289-1; Cox and Blankenship, 1975) was received one month prior to challenge 

day. To determine the growth curve of the challenge culture in advance of challenge 

culture preparation, the culture was transferred to a 10 mL Tryptic Soy Broth (TSB) tube 

and incubated at 37°C at a shaking speed of 148 rpm for 24 hours. Beginning at 6 hours 

post-inoculation and every 2 hours thereafter until 14 hours of growth, 2 mL of the 

culture was removed for serial dilutions (Figure 2.4a) and measured at 450 nm for 

dilutions of 1:1, 1:10, and 1:20 against a blank for optical density (OD). Throughout 

culture growth, negative and positive controls were used to confirm appropriate microbial 

growth and verify that there was no contamination during culturing of the NAL-resistant 

S. Typhimurium culture (Figure 2.4b). The negative control consisted of TSB and mock 

inoculation using a sterile pipette, and the positive control consisted of TSB + NAL 

inoculated with the S. Typhimurium culture. The ideal growth time was determined to be 
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7 hours at 37°C and shaking speed of 148 rpm to achieve a 1.0 x 108 colony forming 

units (CFU)/mL culture of S. Typhimurium (Figure 2.5). 

On d13, the challenge culture was prepared in 20 mL TSB (no NAL) and 

incubated at 37°C at a shaking speed of 148 rpm in the incubator for 14 hours alongside a 

negative (TSB) control (Figure 2.6). NAL was not included when growing the challenge 

culture to avoid disruption of the gut microbiome by the antibiotic. On day 14, the 

challenge culture was diluted six-fold via addition of 100 mL sterile TSB in order to 

achieve the goal challenge concentration of 1 x 108 CFU/mL S. Typhimurium, and 2 mL 

were removed for serial dilution plating and measuring OD using the same procedures 

described on d13. Challenge culture purity was verified through use of a negative control 

flask during incubation and plating of growth challenge onto both NAL-resistant Tryptic 

Soy Agar (TSA) media plates and regular TSA plates. 

On d14, half of FG birds (N=6 isolators) and half of SG birds (N=6 isolators) 

were challenged with 1 mL of 1.3 x 108 CFU/mL S. Typhimurium (ST) via oral gavage, 

while the controls received 1 mL sterile TSB (CON). 

2.3.4 Qualitative Bacteriology for Salmonella spp. Presence/Absence 

Qualitative bacteriology was performed on d0 and d13 to ensure the birds were 

negative for Salmonella spp. prior to challenge. On d0, 30 birds (N=15 per breed) were 

randomly selected and their vents aseptically swabbed. Swabs were individually placed in 

15 mL conical tubes with 10 mL TSB diluted with phosphate-buffered saline (PBS) and 

incubated 24 hours at 37°C. Each swab was plated on a half-plate section of bismuth 

sulfite agar (BSA) plates (N=2 swabs per plate) with care taken for samples not to touch 

and then incubated at 37°C for 24 hours. Qualitative bacteriology for Salmonella spp. 
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was repeated on d13 with 48 birds (N=24 per breed) using the same protocol for 

collection, storage, and incubation of swab samples as on d0. Each swab from d13 was 

plated on regular BSA as well as BSA + NAL control plates in quarter-plate sections 

(N=4 swabs per plate, 16 plates per media). BSA + NAL plates were utilized to confirm 

birds were negative for NAL-resistant S. Typhimurium.  

2.3.5 Sampling 

Birds were aseptically sampled in the University of Maryland ANSC Animal 

Wing prior to being moved on d7, and on d13, 17, 21, and 24 they were sampled in room 

1416M in the 1494 ASBL-B2 Corridor of the UMD Avrum Gudelsky Veterinary Medical 

Center. On sampling days, birds were weighed and then euthanized via cervical 

dislocation. Blood samples were collected immediately via cardiac puncture and stored in 

plasma separation tubes immediately following euthanasia. Tubes were refrigerated and 

centrifuged within 24 hours of collection for 10 minutes at 2000 x g and 15°C to separate 

plasma.  

Ileal and cecal contents and tissue sections were collected in a biosafety cabinet 

using aseptic technique. Ileal and cecal contents were expressed into separate tubes, put 

on ice, and then shipped to collaborators at Purdue University to determine alpha- and 

beta- diversity of the microbial communities. In challenged birds, one of the two ceca per 

bird was expressed into a separate tube with 40% glycerol solution, put on ice, and 

shipped to collaborators at Purdue University to assess Salmonella Typhimurium 

enumeration. A 2 cm segment was removed from the jejunum (2 cm anterior to Meckel’s 

diverticulum) and the ileum (2 cm anterior to the ileocecal junction), carefully cut 
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longitudinally, and ends stapled to bibulous paper. Jejunum and ileum samples were 

stored in tubes containing 70% buffered formalin.  

2.3.6 Immune Markers 

 Plasma samples were stored at -80°C until analysis. Commercial ELISA kits 

were utilized to determine IgA (E33-103 Bethyl Laboratories Inc., Montgomery, TX) and 

IgG (E33-104, Bethyl Laboratories Inc., Montgomery, TX) concentrations and 

manufacturer protocol was followed. A practice plate was run for each kit to determine 

appropriate sample dilution for IgA and IgG concentrations. IgA concentrations were 

examined at sample dilutions of 1:100, 1:500, 1:1,000, and 1:2,000 using the provided 

dilution buffer, and the recommended dilution (1:1000) was determined appropriate. IgG 

concentrations were examined at sample dilutions of 1:100, 1:10,000, 1:100,000, and 

1:200,000 using the provided dilution buffer, and the recommended dilution (1:100,000) 

was determined appropriate. 

Briefly, 100 uL of standard or diluted plasma sample were added to wells in 

duplicate on pre-coated plates, then incubated at 23°C for 1 hour. Plates were then 

washed 4 times during the wash step using the provided wash buffer, 100 uL of detection 

antibody was added to each well, and the plates were incubated at 23⁰C for 1 hour. Plates 

were washed 4 times, 100 uL of HRP solution was added to each well, and then plates 

were incubated at 23°C for 30 minutes. Plates were washed 4 times, then 100 uL of TMB 

substrate was added to each well, and plates were incubated in the dark at 23°C for 30 

minutes. After, 100 uL of stop solution was added to each well and absorbance was 

measured on a plate reader at 450nm. A standard curve was generated for each plate 
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using MyCurveFit software (MyAssays Ltd.) and sample IgA and IgG concentrations 

were calculated using the generated curve and reported in μg/mL. 

 

2.3.7 Gut Morphology 

 Histological preparation was performed by Histoserv, Inc. (Germantown, MD). 

Fixed tissues were rinsed using tap water and later dehydrated with graded alcohol. 

Samples were cleared in xylene and infiltrated with paraffin before being embedded in 

paraffin. Block samples were sectioned on a microtome at 5 µm thickness per section. 

Unstained slides were deparaffinized using xylene and hydrated with graded alcohols up 

to water. Slides were stained with Crazzi’s hematoxylin, washed in tap water and 95% 

ethanol, placed in an eosin-phloxine staining solution, and ran through graded alcohols to 

xylene. Stained slides were coverslipped with permount as the mounting media. 

Slide images were taken at 40x magnification with a camera-mounted microscope 

and stored on an external hard drive. SVS slide images were loaded into Qupath 

Quantitative Pathology & Bioimage Analysis software and 5-10 paired villus and crypt 

measurements per intestinal segment (jejunum and ileum) per bird were recorded 

electronically for villus height and crypt depth (Burkholder et al., 2008) (Figure 2.7). 

Villi were measured from the tip of the villus to the base at the villi-crypt junction, and 

crypts were measured from the villi-crypt junction to the crypt base at the basolateral 

membrane (Golder et al., 2011). Only well-oriented, untorn villi and their paired crypt 

were measured. Villus-crypt ratio (VCR) was calculated by dividing the villus height by 

its corresponding crypt depth for each villus-crypt pair measured.  
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2.3.8 Statistical Analysis 

 The isolator (N=24) was the experimental unit for all data except d7. Day 7 body 

weight, histology, and immune marker data were run in JMP using 1-way ANOVA for 

the fixed effect of breed. Day 13, 17, 21, and 24 body weight, histology, and immune 

marker data were all run in JMP (SAS Institute, Inc., Cary, NC) using 2-way ANOVA 

tests for the fixed effects of breed, challenge, and their interaction. The random effect of 

isolator nested within room was not included for d7 data, but it was included for all other 

days. Immune marker data was also run using two across age models for the fixed effects 

of age, breed or challenge, and their interaction with the random effect of isolator nested 

within room. Additionally, immune marker data was run in an age by breed analysis 

independent of challenge for the fixed effects of age, breed, and their interaction without 

the random effect of isolator nested within room. Due to collection issues at sampling, 

several histology sample villi were torn. As a result, there were major imbalances 

between breed and challenge treatments for d13, d17, and d21 and several birds were 

excluded. The data was determined to be unsuitable for analysis and only d7 and 24 

histology results were analyzed. Pearson’s pairwise correlations were compared for body 

weight, immune markers, and histology data. Multiple comparisons of means were 

separated with LSMeans and were considered significant at a P≤0.05 and a tendency at 

P≤0.10. 

2.4 RESULTS 

Results figures are color coded by treatment to aid in the visualization of 

treatment differences and changes over time. Table 2.2 describes each color and 

represented treatment. Only significant results are presented and discussed. 
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2.4.1 Mortality 

More birds were received (N=339) than ordered and required for the study 

(N=312) and the birds were raised together until d7. Day 7 mortality was 6 FG and 1 SG 

and mortality after d7 (N=312) was 0.32% (0.96% adjusted mortality). After d7 there 

were no SG mortalities, and all mortality was from the FG-CON group (2 birds) between 

d19 and d24.  

2.4.2 Qualitative Bacteriology for Salmonella spp. Presence/Absence 

On d0, all birds were negative for Salmonella spp. growth and 5 (33%) FG birds 

and 3 (20%) SG birds were positive for bacterial growth on BSA plates. Twenty-two 

(92%) FG and 22 (92%) SG were positive for bacterial plate growth on d13 on BSA 

plates. All birds were negative for Salmonella spp. growth on BSA as well as NAL-

resistant S. Typhimurium growth on BSA + NAL plates on d13.  

2.4.3 Production 

There was no effect of challenge on BW, but breed had an effect as the birds 

aged. The effect of breed was trending at d13 and d17 and was significant at d21 and d24 

(Table 2.3). FG birds (297 g) tended to weigh more (P=0.09) than SG birds (273 g) by 

24g on d13 (Table 2.3). On d17, FG (451 g) tended to weight more (P=0.06) than SG 

(406 g) by 45g (Table 2.3). On d21, FG (695 g) weighed 70 g more (P=0.03) than SG 

(625 g; Figure 2.8). Day 24 FG birds (891 g) weighed 140 g more (P=0.007) than SG 

birds (751 g; Figure 2.8). 
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2.4.4 Immune Response 

Three models were used to analyze the effects of age (d), breed, and challenge on 

broiler plasma immunoglobulin A and G (IgA and IgG) concentrations: 1) effects of age, 

breed, and their interaction independent of challenge (Table 2.4), 2) effect of age, 

challenge, and their interaction, within each breed (Table 2.5), and 3) across age for the 

effects of age, breed, and their interaction on plasma immunoglobulin concentrations 

within each challenge treatment (Table 2.6). Additionally, a model was run independent 

of challenge to evaluate the effects of age, breed, and their interaction across all ages. 

IgA 

Within age, the effect of challenge on plasma IgA concentration was significant at 

d13 and d21, and the effect of breed was significant at d24 (Table 2.4; Figure 2.9a). At 

d13, CON bird plasma IgA (72 μg/mL) was 20 μg/mL higher (P=0.009) than ST (52 

μg/mL) (Figure 2.9b). Plasma IgA was higher (P=0.03) for ST birds at d21 (166 μg/mL) 

than CON (122 μg/mL) by 44 μg/mL (Figure 2.9c). At d24, FG bird plasma IgA (118 

μg/mL) was 38 μg/mL higher (P=0.01) than SG (80 μg/mL) (Figure 2.9d). 

The effect of age was significant (Tables 2.5 and 2.6). Independent of breed and 

challenge, IgA concentrations were similar between d7 (47 μg/mL), d13 (62 μg/mL), and 

d17 (59 μg/mL), then increased (P<0.0001) to 144 μg/mL at d21 and later decreased to 

99 μg/mL at d24 (Figure 2.10a). Additionally, the effect of breed was significant. FG 

plasma IgA was generally greater (P=0.005) than SG at any age by 15 μg/mL (Figure 

2.10b). The interaction of breed and age was not significant, and FG was only 

numerically greater than SG from d7 to d21 but statistically greater (P=0.005) at d24 by 

38 μg/mL (Figure 2.10c).  
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Within breed, the effect of age was significant for both FG and SG broilers, but 

there was no effect of challenge (Table 2.5). FG plasma IgA concentrations were similar 

at d13 (67 μg/mL) and d17 (62 μg/mL), increased (P<0.0001) to 153 μg/mL at d21, then 

decreased to 118 μg/mL at d24 (Figure 2.11a). SG followed a similar pattern: IgA 

concentrations were similar at d13 and d17 (56 μg/mL at both days), increased 

(P<0.0001) at d21 to 136 μg/mL, then decreased to 80 μg/mL at d24 (Figure 2.11b). The 

effect of age was significant on CON birds. CON plasma IgA concentrations were 72 

μg/mL and 56 μg/mL at d13 and d17 respectively, then increased to 122 μg/mL at d21 

and decreased to 97 μg/mL at d24 (Figure 2.12a). Additionally, there was a breed effect 

within CON (Table 2.6). Independent of age, FG-CON birds had greater (P=0.008) IgA 

than SG-CON birds by 24 μg/mL (Figure 2.12b). The effect of age was also significant 

on ST birds and followed a similar pattern as CON: plasma IgA concentrations were 

similar between d13 (52 μg/mL) and d17 (63 μg/mL), increased at d21 (166 μg/mL), and 

reduced at d24 (102 μg/mL) (Figure 2.12c). 

IgG 

In the within age analysis, the effect of breed on plasma IgG concentrations was 

significant at d17, d21, and d24, but the main effect of challenge was not significant 

within any age (Table 2.4; Figure 2.13a). At d7, FG birds (2,693 μg/mL) had lower 

(P=0.05) plasma IgG than SG (3,037 μg/mL) by 344 μg/mL (Figure 2.13b). However, 

on d21 FG birds (1,859 μg/mL) had greater (P=0.03) plasma IgG than SG (1,170 μg/mL) 

by 688 μg/mL (Figure 2.13c). FG birds (2863 μg/mL) also had greater (P=0.0003) 

plasma IgG at d24 than SG (1,389 μg/mL) by 1,473 μg/mL (Figure 2.13d). 
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The effect of age on IgG concentrations was significant (Tables 2.5 and 2.6). 

Independent of challenge, the effects of breed and the interaction of breed and age were 

also significant (Figure 2.14). From d7-d17, the plasma IgG of both FG and SG birds 

were similar and decreased (P<0.0001) from 2,865 μg/mL at d7 to 1,719 μg/mL and 

1,201 μg/mL at d13 and d17, respectively, after which the FG and SG values diverged 

(P<0.0001) (Figure 2.14). FG plasma IgG increased to 1,859 μg/mL at d21 and 2,863 

μg/mL at d24, while SG plasma IgG remained lower (P<0.0001) than FG and remained 

lower with concentrations of 1,170 μg/mL at d21 and 1,389 μg/mL at d24 (Figure 2.14).  

Within breed, only the effect of age was significant on FG and SG plasma IgG, 

and there was no effect of challenge (Table 2.5). FG plasma IgG was 1,838 μg/mL at 

d13, decreased (P<0.0001) to 1,280 μg/mL at d17, then increased to 1,859 μg/mL at d21 

and 2,863 μg/mL at d24 (Figure 2.15a). SG plasma IgG was greatest at d13 (1,584 

μg/mL), then decreased (P=0.04) and remained similar between d17 (1,122 μg/mL) and 

d21 (1,171 μg/mL) before rising to an intermediate level at d24 (1,390 μg/mL) that was 

similar to both d13 and d17-d21 (Figure 2.15b). Within challenge, the main effects of 

age, breed, and their interaction on plasma IgG concentrations were significant but only 

among CON birds. FG-CON plasma IgG decreased (P=0.003) from 1,991 μg/mL at d13 

to 1,341 μg/mL at d17 before increasing to 2,120 μg/mL at d21 and 3,051 μg/mL at d24 

(Figure 2.16a). SG-CON plasma IgG was similar to FG-CON at d13 and d17 (1,589 

μg/mL and 1,281 μg/mL, respectively) and remained lower (P=0.0004) than FG-CON 

and unchanging across age to d21 (985 μg/mL) and d24 (1,199 μg/mL) (Figure 2.16a). 

Among ST birds, only the effect of age was significant, in which IgG decreased 
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(P=0.0001) between d13 (1,630 μg/mL) and d17 (1,090 μg/mL) then increased to 1,477 

μg/mL at d21 and 2,127 μg/mL at d24 (Figure 2.16b). 

2.4.5 Gut Morphology 

Due to collection errors at sampling, several sample villi were torn, and many 

samples did not have enough viable villi (>5 intact villi) to be measured for analysis. As a 

result, there were major imbalances in the data for d13, 17, and 21 (Table 2.7) and data 

for those days were determined to be unsuitable for analysis. Thus, histology results are 

only reported for d7 and d24 (Table 2.8). 

On d7, all histological measures were significant (P≤0.04) for the main effect of 

breed (Table 2.8). FG jejunum villus (JV) height (508 μm) and jejunum crypt (JC) depth 

(104 μm) were both greater (P≤0.001) than SG JV height (486 μm) and JC depth (97 μm) 

by 22 μm and 7 μm, respectively (Figures 2.17a-b). FG ileum villus (IV) height (344 

μm) was shorter (P=0.008) than SG IV height (358 μm) by 14 μm (Figure 2.17a). 

However, FG ileum crypt (IC) depth (91 μm) was greater (P=0.007) than SG IC (87 μm) 

by 4 μm (Figure 2.17b). The jejunum villus-crypt ratio (JVCR) of FG (5.0) was lower 

(P=0.003) than SG JVCR (5.2) by 0.2, and FG ileum villus-crypt ratio (IVCR; 3.9) was 

lower (P<0.0001) than SG IVCR (4.3) by 0.4 (Figure 2.17c). 

On d24, there was a main effect of challenge on IV height but not JV height 

(Table 2.8). CON IV height (517 μm) was greater (P=0.009) than ST IV (422 μm) by 95 

μm (Figure 2.18a). The effect of challenge was also significant for JC depth among FG 

birds but not SG on d24 (Table 2.8). FG-CON JC depth (119 μm) was greater (P=0.05) 

than FG-ST JC (142 μm) by 23 μm (Figure 2.18b). The main effect of challenge on 
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IVCR was significant on d24 in which CON IVCR (5.2) was greater (P=0.007) than ST 

IVCR (4.1) by 1.1 (Figure 2.18c). 

2.5.6 Correlations 

Overall, plasma IgA concentrations correlated with several measures, but all 

correlations were moderate or weak in strength (Table 2.9). There were positive 

correlations between IgA and BW (r=0.43; P≤0.01), JV (r=0.41; P≤0.01), JVCR (r=0.35; 

P≤0.01), and IV (r=0.32; P≤0.01). IgG did not correlate with any measure independent of 

breed. Within FG, IgA was positively correlated with BW (r=0.46; P≤0.01), JV (r=0.35; 

P≤0.05), JVCR (r=0.33; P≤0.05), IV (r=0.31; P≤0.05), and IgG (r=0.21; P≤0.05). Within 

SG, plasma IgA positively correlated with BW (r=0.34; P≤0.01), JV (r=0.45: P≤0.01), 

and IC (r=0.43; P≤0.05). SG plasma IgG, correlated negatively with BW (r=-0.38; 

P≤0.01), IV (r=-0.54; P≤0.01), and IVCR (r=-0.42; P≤0.05). 

2.5 DISCUSSION 

The objective of this study was to evaluate differences in body weight, immune 

response, and gut morphology between fast- and slow-growing broiler chickens when 

challenged with Salmonella Typhimurium. Chicks from fast- (Ross 308) and slow-

growing (Redbro) breeds of broiler chicken were housed together between day of hatch 

and day 7, when they were randomly assigned and exclusively placed into BSL-2 

isolators. At day 14, half of the birds were orally gavaged with the S. Typhimurium 

challenge and half received Tryptic Soy Broth control. Throughout the 24-day study, 

birds were weighed and sampled for blood and intestinal segments to evaluate differences 

in weights, plasma IgA and IgG, and jejunal and ileal gut morphology (villus height, 

crypt depth, and villus height to crypt depth ratio). The first hypothesis was that fast-
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growing broilers would have greater body weight, greater intestinal morphology 

measures, and lower plasma immunoglobulin concentrations when compared to the slow-

growing breed independent of challenge. The second hypothesis was that after challenge, 

challenged fast-growing broilers would be less negatively impacted than the slow-

growing broilers with regard to body weight and gut morphology, but the slow-growing 

breed would have greater plasma IgA and IgG responses to challenge.  

2.6.1 Qualitative Bacteriology for Salmonella spp. Presence/Absence 

While no Salmonella spp. was detected prior to challenge, by day 13 all birds 

were positive for non-Salmonella bacterial growth. BSA agar is a selective and 

differential media commonly used to identify Salmonella spp. growth, but other species 

of bacteria can grow on BSA despite inhibition, such as coliforms (Rijal, 2021). Based on 

the low overall mortality and lack of clinical symptoms of disease and sickness 

behaviors, it is likely that these species of bacteria were commensal or otherwise had no 

detectable negative impact on broiler health throughout the study. 

2.6.2 Mortality 

Day 7 mortality was below the industry average expected mortality of 0.7% 

(Aviagen, 2018), indicating that the birds were in good health. Most mortalities belonged 

to the fast-growing breed, while only one slow-growing breed mortality occurred, which 

might indicate breed-related differences in survivability particularly prior to day 7. Such 

differences in mortality between fast- and slow-growing breeds has been reported 

previously, in which conventional fast-growing breeds have had greater mortality than 

slower-growing breeds (Yunis et al., 2000; Fanatico et al., 2008; Abeyesinghe et al., 

2021). However, Torrey and colleagues (2021) noted fewer culls but more birds found 
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dead among slow-growing breeds compared to moderate- and fast- growing broiler 

breeds. Other research has observed no differences in mortality between fast- and slow-

growing broiler breeds (Fanatico et al., 2005; Weimer et al., 2020). 

Throughout the rest of the study, only 1 mortality and 1 cull (lameness) occurred, 

both among the fast-growing control group. No mortalities were associated with the 

challenge treatment, which is consistent with findings from Marcq and colleagues (2011). 

However, breed-specific differences in mortality can exist between fast- and slow-

growing breeds when challenged with other pathogens. For example, Han and Smyth 

(1972) recorded 30.8% mortality in a fast-growing breed when infected with Marek’s 

Disease compared to 5.7% in a slow-growing breed. 

2.6.3 Body Weight 

In this study, birds of both breeds and treatments were below their projected body 

weights by day 24 of age when compared with other research using the same breeds 

(Kazemi et al., 2018; Weimer et al., 2020). The fast- and slow-growing breeds in this 

study were 891 g and 751 g on day 24, respectively, while Weimer and colleagues (2020) 

reported body weights of approximately 1,200 and 900 g at the same age. When 

compared to the Aviagen Ross 308 Performance Objectives handbook (2019), the fast-

growing Rosses in this study were 334 g lighter than expected at day 24. It is possible 

these differences occurred as a result of using a commercial feed as opposed to a feed 

specifically formulated for either of the breeds used in this study. Feed composition can 

greatly impact body weight gain of broilers (Havenstein et al., 2003). For example, 

methionine is an amino acid known for its role in increasing broiler body weight 

(Mirzaaghatabat et al., 2010). The Purina feed used in this study had a methionine ratio of 
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0.34%, which meets the minimum NRC recommendation for meat chickens (NRC, 

1994). Additionally, research by Torrey and colleagues (2021) involving a comparison 

between 16 broiler breeds varying in growth rate used a feed formulated for a moderate 

slow-growing breed, which reduced the growth of the fast-growing conventional breeds 

in the study. 

Beginning at day 13, the fast-growing breed was heavier than the slow-growing 

breed, for which this difference was significant at days 21 and 24. This divergence in 

body weight is expected, as the breeds used are reported to grow similarly for about two 

weeks after hatch, after which the fast-growing breed should gain weight at a faster rate 

than the slow-growing breed (Weimer et al., 2020). At day 24, challenged fast-growing 

birds had numerically (but not significantly) lower body weight than control fast-growing 

birds, while slow-growing body weights did not differ between challenge and controls. It 

is possible that prolonged infection with S. Typhimurium was beginning to cause 

reductions in body weight gain or feed efficiency. Marcq and colleagues (2011) reported 

a body weight gain reduction of 14.5% in broilers at 42 days when challenged with S. 

Typhimurium at 21 days of age.  

Other research involving S. Enteritidis or S. Typhimurium infection, LPS 

challenge, or Eimeria spp. have also reported reduced body weight gain (Xie et al., 2000; 

Liu et al., 2014; Sakkas et al., 2018; Iuspa et al., 2020). Infections require a diversion of 

bodily energy and resources from growth and maintenance functions towards mounting 

an immune response, which then results in reduced body weight (Greer, 2008). Reduced 

body weight in challenged compared to control birds could also result from increased 

levels of proinflammatory cytokines, which induce anorexia or reduced feed consumption 
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(Finck and Johnson, 1997). Though the difference was merely numerical in the current 

study, it is possible that beyond day 24 (10 days post-infection), the fast-growing 

challenged birds may have had greater body weight reductions in compared to controls 

due to S. Typhimurium infection. On the other hand, the body weight of the slow-

growing breed did not appear to be impacted by challenge, indicating that the slow-

growing breed may be more resistant to prolonged S. Typhimurium infection at day 24 

(10 days post-challenge) than the fast-growing breed. 

2.6.4 Immune Response 

IgA 

Expected levels of IgA in the plasma of an adult chicken are 600 μg/mL, while 

IgG (IgY) levels can be between 4,500 and 5,000 μg/mL (Tizard, 2002). The plasma 

immunoglobulin concentrations recorded in this study at 24 days (IgA 99 μg/mL; IgG 

2,127 μg/mL) appear consistent with these findings, given that broilers are not fully 

matured at 24 days of age. However, across multiple studies there is a wide variance in 

plasma immunoglobulin levels in broilers, even with use of the same commercial ELISA 

kit as the present study (Chaudhari et al., 2012; Li et al., 2012; Gomes et al., 2014). Li 

and colleagues (2012) found 330 μg/mL of IgA and 630 μg/mL of IgG in the plasma of 

broilers at day 21 days, while in the current study broiler IgA and IgG levels at 21 days 

were 192 μg/mL and 1,553 μg/mL, respectively. Differences in immunoglobulin levels 

could have resulted from degradation over time, as samples were stored in either -20⁰C (4 

months) or-80⁰C (10 months) for a total of 14 months in storage prior to, and some were 

partially or fully thawed once or twice prior to assay use (Abcam). However, it is also 
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noted that antibodies, including IgG, can remain stable through multiple freeze-thaw 

cycles (Rastawicki et al., 2012; Castejon et al., 2017; Maelegheer et al., 2018). 

 Baseline plasma IgA concentrations were elevated for both breeds within the 

control group at day 13, the day just prior to challenge. This difference could be 

attributed to randomly sampled individual control birds naturally that had a greater 

concentration of plasma IgA, but it is also possible that this difference resulted from the 

time of day that which birds were sampled. Due to biosecurity protocol and consistency 

across sampling days, all assigned control birds were sampled prior to assigned challenge 

birds at each sampling. Sampling began in the morning and lasted several hours, resulting 

in the first sampling of challenge birds occurring between 2-3 hours after the first control 

bird. As a result, circulating levels of immunoglobulins may have dropped prior to 

challenge bird sampling. Prior research has reported that levels of white blood cells 

differed throughout the day in broiler chicken blood (Makeri et al., 2017). However, 

Cernysiov and colleagues (2009) reported an effect of melatonin on serum IgM and IgG 

production in mice by using light modulation to influence melatonin production, noting 

that increased lighting (and therefore, reduced melatonin) increased levels of IgM and 

IgG in the serum. Melatonin plays a role in regulating the circadian rhythm and is 

produced in response to darkness and suppressed by the presence of light (Cernysiov et 

al., 2009). If plasma antibody levels were affected by melatonin in response to lighting, 

we would have expected the control birds to have lower immunoglobulin levels during 

sampling than challenge birds, as they were sampled temporally closer to the end of dark 

hours. Additionally, this pattern of increased plasma IgA was not observed any other day 

within the present study, nor was it observed in IgG levels on any sampling day. 
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 Plasma IgA levels remained similar from days 7 to 17 in both breeds, increased at 

day 21 in both challenge and control treatments, then decreased to an intermediate 

concentration at day 24. These general increases in concentration with age may reflect 

development of the immune system and immune organs (Fellah et al., 2014). On day 21, 

plasma IgA concentrations peaked in both challenge and control treatments but were 

greater in challenge birds than in control birds. This can indicate a potential humoral 

immune response to the S. Typhimurium challenge within the intestines. Avian IgA 

predominates in intestinal secretions and protects intestinal surfaces from invasion by 

pathogens (Tizard, 2002). Since IgA is produced by B-cells located under intestinal 

mucosal surfaces, IgA can also enter the bloodstream from the intestines (Tizard, 2002). 

In one study, broilers were orally challenged with S. Typhimurium at 21 days, resulting 

in an increase in intestinal IgA antibody titers 8 days following infection which was later 

associated with apparent clearance by 22 days post-infection (Marcq et al., 2011). 

Research by Hassan and colleagues (1991) involving dual-purpose chickens supports the 

finding that S. enterica serovars can elicit a strong humoral immune response in serum, 

inclusive of IgA, when orally challenged. In another study, White Leghorns injected 

intramuscularly at 1 day post-hatch with S. Enteritidis had elevated serum IgA levels 

(Sheela et al., 2003).  

Though challenge birds had greater IgA levels at day 21 (7 days post-challenge), 

it is important to note that IgA also peaked in control birds. In the present study, control 

birds were gavaged with TSB, rather than saline, to control for the effects of the 

challenge culture media. TSB is a medium that supports the growth of a multitude of 

microbes and its sudden introduction into the chicken gut could have great potential for 
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causing imbalances in the gut microbiome, otherwise known as dysbiosis (Kogut, 2013). 

As the predominant antibody secreted in the intestines (Tizard, 2002), IgA has dual roles 

in protecting the intestinal epithelium from pathogens as well as regulating the gut 

microbial community (Yang and Palm, 2020). Thus, it is possible that IgA production 

was increased at day 21 in control birds due to gut microbial disturbance from gavaging 

TSB at 14 days. Brown and colleagues (2000) reported increased plasma corticosterone 

levels in rats gavaged with lipids (such as corn oil, soybean oil, and peanut oil) but not in 

rats gavaged with water, indicating that gavaging with non-saline liquids causes stress. 

The link between stress and gastrointestinal issues, including microbiome imbalances or 

dysbiosis, has been thoroughly studied, especially in humans (Hawrelak and Myers, 

2004). A negative control (no gavage) or a gavage control of saline might have elucidated 

the potential effects of TSB on the IgA response in broilers in the present study. More 

research is needed to clarify the effects of gavage use and liquid type on the gut 

microbiome and intestinal humoral immune response of chickens. 

 Holt and colleagues (1991) noted that in White Leghorn chicks infected 1 day 

post-hatch with S. Enteritidis, birds that had an increased IgA response in the intestine 

were unable to clear S. Enteritidis. Though both the fast- and slow-growing breeds in this 

study exhibited numerical increases in plasma IgA concentration within the challenge 

groups at day 21, the difference between challenge and control birds was only significant 

in the fast-growing breed. A greater magnitude of a difference in IgA concentration in 

response to challenge could be indicative of a stronger humoral immune response to S. 

Typhimurium in the fast-growing breed compared to the slow-growing breed (Kramer et 

al., 2003). Alternatively, it has been noted by Humphrey and Klasing (2004) that the 
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adaptive immune response and growth rate are inversely related due to the competition 

for nutrients between the immune response and metabolism.  

 Peaks in antibody levels are generally associated with clearance of a pathogen, 

but a strong humoral immune response may not be effective or indicative of strong 

immune function (van der Most, 2010; Barrow et al., 2012). By day 24, plasma IgA 

concentrations in challenged birds of both breeds were similar to controls. However, IgA 

levels remained numerically higher in slow-growing challenged birds than slow-growing 

controls, potentially indicating a less effective humoral response to S. Typhimurium and 

reduced likelihood of clearance compared to fast-growing (Holt et al., 1999; Barrow et 

al., 2012). At day 24, the fast-growing breed had higher plasma IgA concentration than 

the slow-growing breed, and all treatments had lower plasma IgA at day 24 than day 21. 

The effect was only significant among the control birds due to the elevated plasma IgA 

concentration in the slow-growing challenged birds compared to controls.  

 Natural antibodies increase with age in the chicken (Parmentier et al., 2004). In 

this study, plasma IgA and IgG generally both increased with age. Exceptions to this 

trend were the greater levels of IgA at day 21 compared to day 24 in both challenge and 

control birds (which may signal an intestinal humoral response to both challenge and 

control treatments), the lack of change in slow-growing IgG levels after day 13 (which 

may signal delayed immune development), and the high levels of IgG in both breeds at 

day 7 (which may be due to remnant maternal antibody). 

IgG 

 Plasma IgG levels were highest at day 7 in both breeds compared to all other ages 

except day 24, which may be remnant maternal antibody (Gharaibeh and Mahmoud, 
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2013; Fellah et al., 2014). IgG, also termed IgY (or immunoglobulin of the yolk), is 

transferred to chicks through the egg yolk and lasts up to 10 days post-hatch, providing 

critical early life immune protection to chicks (Carlander et al., 1999; Gharaibeh and 

Mahmoud, 2013). Maternal IgG is especially important in broiler health due to their 

relative short lifespan on-farm (Gharaibeh and Mahmoud, 2013). The slow-growing 

breed had greater plasma IgG concentrations than the fast-growing breed at day 7, 

reflecting greater circulating concentrations of maternal antibodies. The secondary 

immune organs – such as the spleen and cecal tonsils – and the resulting humoral 

immune response in chicks are not mature enough to mount an immune response until 

approximately 12 days (Mast and Goddeeris, 1999) and not fully developed until 

approximately 30 days of age in broilers (Song et al., 2021). Thus, the slow-growing 

breed in the current study may have been better protected by maternal antibodies than the 

fast-growing breed prior to immune system maturation. 

 At days 21 and 24, the fast-growing breed had higher levels of plasma IgG than 

the slow-growing breed. This magnitude of difference was even greater at day 24. 

Interestingly, IgG concentrations in both breeds decreased between days 7 and 17, 

concentrations were at their lowest on day 17, then diverged thereafter. The fast-growing 

breed plasma IgG increased greatly between days 17 and 24, whereas the slow-growing 

breed plasma IgG plateaued. These differences could be attributed to differences in 

overall growth rate and organ development. Nitsan and colleagues (1991) found breed-

related differences between a commercial broiler breeder and two Plymouth Rock breeds 

selected for either high or low body weight. The commercial broiler had the greatest 

absolute weight for all organs measured at day 15 except the residual yolk, including the 
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lung, heart, liver, pancreas, crop, proventriculus, gizzard, duodenum, jejunum, and ileum 

(Nitsan et al., 1991). The broiler breed also had the greatest relative organ weight to body 

weight in the heart, pancreas, crop, proventriculus, gizzard, and all components of the 

small intestine (Nitsan et al., 1991). Should lymphoid organ growth also correlate with 

body weight, it is possible that selection for fast-growing broilers may have inadvertently 

selected for broilers whose lymphoid organs–and as a result, immune system–develop 

earlier in life, resulting in higher natural antibody levels at an earlier age. However, 

research by Cheema and colleagues (2003) compared a 1957 broiler breed (Arbor Acres) 

and a 2001 broiler breed (Ross 308) and noted that the slower-growing Arbor Acres 

broiler had greater Bursa of Fabricius, spleen, and cecal tonsil weights at 24 days than the 

Ross 308 broilers, potentially due to resource allocation towards muscle development 

rather than organ development. On the other hand, the Ross 308 broilers had a greater 

thymus weight (Cheema et al., 2003). Alternatively, Rothschild (2019) found no 

differences in Bursa of Fabricius weight between a conventional fast-growing broiler 

breed and 3 slower-growing breeds. 

There was no effect of challenge on plasma IgG concentration. However, 

challenged slow-growing birds had numerically greater IgG concentrations than controls 

at days 21 and 24, indicating a potential muted IgG response to infection. Prior research 

by Hassan and colleagues (1991) noted a plasma IgG response in response to S. 

Typhimurium infection in Sussex chickens. IgG is the most prominent immunoglobulin 

in the blood (Tizard, 2002), and due to its high prevalence, any effect of challenge on 

plasma IgG levels might have been hidden as a result of a low magnitude of an increase 

in antigen-specific IgG to S. Typhimurium compared to the high levels of natural IgG. 
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The commercial IgG kit used in the present study (Bethyl Laboratories Inc., 

Montgomery, TX) did not detect S. Typhimurium-specific IgG and only measured total 

plasma IgG concentration. Some researchers developed IgG-specific assay antibodies and 

have reported differences in serum IgG in response to S. Typhimurium infection (Hassan 

et al., 1991; Dar et al., 2019). Dar and colleagues (2019) reported greater optical densities 

(492 nm) in Cobb broilers orally challenged with S. Typhimurium 4 days post-hatch by 

approximately 0.025 to 0.05 between 1- and 13-days post-challenge using an assay 

previously developed by Holt and colleagues (1999). The present study would have 

benefitted from utilizing a S. Typhimurium specific IgG assay to measure the 

concentrations of circulating IgG antibodies in response to the S. Typhimurium 

challenge. 

The lack of a significant response could also have been influenced by feed 

composition. Arginine and vitamin E in feed have been shown to improve broiler 

immune response to S. Typhimurium challenge, evidenced by increased antibody titers 

compared to controls (Liu et al., 2014). Broilers need 1.25% arginine and 10 IU/kg of 

vitamin E to meet their minimal nutritional requirements (NRC, 1994). Muted differences 

in IgG response could have also been affected by the use of TSB to gavage control birds. 

TSB may have induced dysbiosis in the gut (Kogut, 2013) and resulted in increased 

plasma IgG production in addition to increased plasma IgA. 

 The IgA and IgG results of this study suggest that the fast-growing breed might 

also mature more quickly with regard to the humoral immune response. Though the slow-

growing breed had potentially greater maternal antibody early in the study, supporting its 

survival early life, the fast-growing breed ultimately had higher plasma antibody 



 

64 
 

concentrations at days 21 (IgG only) and 24 (IgA and IgA) in addition to a stronger IgA 

response to challenge at day 21 followed by a return to control levels at day 24. A 

relationship between growth rate and humoral immunocompetence might be revealed 

through mortality. Dixon (2020) recorded mortality in a slow-growing Hubbard broiler 

versus 3 faster-growing commercial breeds and found the faster growing breeds had an 

overall greater proportion of culls but only 1 fast-growing breed had more birds found 

dead after 3 weeks of age when compared to the slow-growing breed. Additionally, fewer 

slow-growing birds were found dead in the first 2 weeks than any of the fast-growing 

breeds (Dixon, 2020). 

 Multiple studies have explored the relationship between selection for growth or 

body weight in relation to immune function (Yunis et al., 2000; Leshchinsky and Klasing, 

2001; Humphrey and Klasing, 2004; Parmentier et al., 2010; van der Most et al., 2011). 

Several have observed an inverse relationship between growth and immune function. 

Humphrey and Klasing (2004) discussed that an elevated immune response impairs 

growth due to alterations in nutrient needs by different bodily functions (metabolic versus 

immune). As a result, it could be that broilers genetically selected for enhanced growth 

rate may have a weaker immune system. When a broiler breed and a laying breed (Brown 

Nick) were injected with LPS, a weaker febrile (innate immune) response was observed 

in the broilers than the layers (Leschinsky and Klasing, 2001). Van der Most and 

colleagues (2011) also noted that selection for increased growth in broilers greatly 

impairs immune function in response to infection, agreeing that selection for growth 

comes with an energy cost that can compromise the immune system. However, it should 

be noted that differences may exist between the relationship of growth rate and innate 
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immune response and the relationship of growth rate and adaptive or humoral immune 

response. The innate immune response, inclusive of fever and inflammation, requires a 

greater amount of energy than the adaptive immune response (Iseri and Klasing, 2013), 

meaning that selection for increased growth rate may not negatively impact the humoral 

immune response as it does the innate immune response. Selection for increased growth 

rate may simply only increase the rate at which lymphoid organs and immunocompetency 

are developed independent of immune function or strength and efficacy of the immune 

response. More research is needed to explore the effect of growth rate on the 

development of lymphoid organs and immunocompetence in broilers. 

2.6.5 Gut Morphology 

The birds in this study had shorter villi and crypt measures than broilers of the 

same or younger age in other studies (Fasina et al., 2010; Lee et al., 2010; Golder et al., 

2011). Fasina and Colleagues (2010) reported jejunum villus heights and crypt depths in 

14-day-old broiler chicks approximately 392 μm and 58 μm greater, respectively, than 

those of the 24-day-old broilers in the present study. Additionally, Lee and colleagues 

(2010) reported ileum villus heights and crypt depths in 21-day-old broilers that were 243 

μm and 64 μm greater, respectively, than those of the broilers in the present study.  

It is possible that feed composition may have also impacted gut morphology 

measures as it did body weight, as it was a commercial feed not specifically formulated 

for either breed used in the present study. In rats, added dietary methionine increased 

villus heights and villus height to crypt depth ratios throughout all sections of the small 

intestine (Seyyedin and Nazem, 2017), so it may be expected that reduced methionine 

may limit intestinal morphological growth in broilers. The methionine ratio of the Purina 
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feed used in this study (0.34%) met the minimum NRC recommendation for methionine 

ratio for broilers (NRC, 1994). Additionally, gavaging the control birds with TSB may 

have impacted gut morphological measures. Since TSB supports the growth of wide 

variety of microbes, it may be capable of causing imbalances (or dysbiosis) in the 

gastrointestinal tract (Kogut, 2013). Prior research by Li and Colleagues (2020) observed 

impaired jejunal and ileal intestinal structure in rhesus macaques following antibiotic-

induced dysbiosis. On the other hand, the provision of probiotics and direct-fed 

microbials can increase intestinal morphological measures in broilers (Kazemi et al., 

2018). Thus, it is possible that the use of TSB as the control group liquid in the present 

study caused dysbiosis, therefore impacting gut morphology in the control birds and 

possibly muting any differences between breeds or challenge treatments. A negative 

control (no gavage) or gavaging saline solution instead of TSB might have given clarity 

as to the effect TSB might have had on gut morphology. As such, more research is 

needed to understand how TSB influences the gut microbiome and gut morphology in 

chickens.  

At day 7, the fast- and slow-growing breeds differed in all histomorphological 

measures. The fast-growing breed had greater jejunal villus height and crypt depth than 

the slow-growing breed, which may suggest greater absorptive capacity in the jejunum of 

birds bred for faster growth (Yamauchi et al., 2010; Kiela and Ghishan, 2016). The slow-

growing breed, on the other hand, had greater ileum villus height but shallower crypts 

than the fast-growing breed. Growth-related differences in gut morphological measures, 

specifically villus height, have been documented, noting that selection for growth in 

broilers has resulted in villi that are larger than those in White Leghorns (Yamauchi and 
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Isshiki, 1991). Between both intestinal segments, however, the slow-growing breed had 

greater villus height to crypt depth ratios than the fast-growing breed, which indicates 

reduced cellular turnover in the jejunum and ileum of the slow-growing breed (Seyyedin 

and Nazem, 2017). Gut morphology measures at the intermediate days might have 

provided further insight on the development of intestinal structure as each breed aged.  

These aforementioned breed differences disappeared by day 24 (10 days post-

infection), but challenge impacted gut morphology, particularly in the fast-growing 

breed. Within the jejunum, the challenged fast-growing birds had deeper crypts than the 

fast-growing controls and the slow-growing birds, which may be indicative of increased 

enterocyte production in the crypts to compensate for enterocyte loss at villi tips due to 

infection. Fernando and McCraw (1973) found that Eimeria acervulina infection in 14-

week-old male White Leghorn chicks reduced jejunal villus heights and caused increased 

crypt depths, which then returned to normal or greater lengths or depths 5-6 days post-

infection. However, the effect of challenge had no impact on jejunum villus height in 

either breed, a finding which is supported by Gomes and colleagues (2014) who 

challenged 1-day-old male Ross chicks with Salmonella Enteritidis and noted no 

significant differences in any gut morphology measures. On the other hand, Shao and 

colleagues (2013) noted reductions in jejunum villus height and villus height to crypt 

depth ratio in broilers challenged with S. Typhimurium at 7 days of age. Other research 

has found differences in jejunal gut morphological measures in response to other 

challenges, such as necrotic enteritis (Golder et al., 2011; Xue et al., 2018). The lack of 

difference in jejunum villus height between the fast-growing control and challenged 

birds, paired with the increased crypt depths in the challenge group, could signal 
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increased enterocyte turnover and regeneration by the crypts in response to infection and 

villus damage. At day 24, the jejunum villi of the challenged fast-growing birds might 

have regenerated enough to be comparable to control birds while the jejunum crypts had 

yet to return to normal depths. Viable gut morphology measures at days 17 and 21 (3 and 

7 days post-challenge) might have provided insight as to if the fast-growing birds in the 

challenge treatment had reduced jejunum villus height prior to day 24. 

Within the ileum, challenged fast-growing birds had reduced villus heights and as 

a result, was reflected in the reduced villus height to crypt depth ratio, when compared to 

controls. Reduced villus height and villus height to crypt depth ratio can result from 

bacterial infection in the small intestine (Fasina et al., 2010). The slow-growing breed 

displayed similar numerical reductions, but they were not statistically significant. Thus, 

the magnitude of the difference between control and challenged birds was greater in the 

fast-growing breed than the slow-growing breed. Combined with the increased jejunum 

crypt depth, it is possible that the fast-growing breed intestinal structure may be less 

resilient to infection than the slow-growing breed. Gao and colleagues (2013) found that, 

in two breeds of pigs (Jinhua and Landrace) challenged with E. coli, the Jinhua breed’s 

intestinal villi heights and villus height to crypt depth ratio were less impacted than the 

Landrace breed, suggesting that Jinhua pigs had stronger intestinal structure. The 

difference in magnitude between the fast- and slow-growing broiler breeds in the present 

study may result in reduced absorptive capacity of nutrients and ultimately impact feed 

efficiency and body weight gain (Yamauchi et al., 2010). 

Data from the intermediate sampling days following challenge at day 14 (days 17 and 

21) might have provided further insight on the effect of challenge on intestinal 
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morphology, especially early in infection. The increased crypt depth in the jejunum of 

challenged fast-growing birds but lack of a difference in jejunum villus height might 

indicate that the fast-growing breed experienced villus damage in the jejunum but 

increases in crypt depth allowed for heightened enterocyte production to replace lost cells 

(Williams et al, 2014). As a result, fast-growing breed jejunum villus height may have 

been restored following challenge, but the jejunum crypts did not yet return to normal 

(control) depth (Fernando and McCraw, 1973). If the study had been carried out past day 

24, we hypothesize that a return to control jejunum crypt depth may have occurred in the 

challenged fast-growing birds. Although Mohammadigheisar and colleagues (2020) 

found no difference in jejunum villus height and crypt depth in 48-day-old fast- and slow-

growing mixed sex broilers, measures from older ages might have also provided insight 

to the development of intestinal structure in fast- versus slow-growing broilers. 

2.6.6 Correlations 

In this study, correlations were only reported for the relationships between plasma 

IgA and IgG concentrations and all other variables, as the relationship between gut 

morphologies and body weight are already known (Yamauchi and Isshiki, 1991; 

Yamauchi et al., 2010). There was a positive correlation between IgA concentration and 

body weight among both breeds, which was slightly stronger in the fast-growing breed. 

Additionally, the correlation between IgG and body weight was negative in the slow-

growing breed, but a very weak and insignificant positive correlation was detected in the 

fast-growing breed. IgA and IgG concentrations positively correlated with one another in 

the fast-growing breed, but not the slow-growing breed. Combined, these support the 

possibility that selection for increased growth rate in the fast-growing breed may 
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unintentionally select for earlier development of immunocompetence. Plasma IgG 

concentrations little to no significant relation to gut morphological measures, except in 

the slow-growing breed where IgA and ileum villus height (and ileum villus height to 

crypt depth ratio) negatively correlated. On the other hand, plasma IgA concentration 

positively correlated with multiple gut morphology measures, such as jejunum villus 

height. This may reflect a relationship between intestinal morphology and intestinal 

humoral secretions, as plasma IgA concentration can be representative of intestinal IgA 

concentration (Tizard, 2002). 
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Table 2.1. Summary of events from start (d0) to end (d24) of the study, including a 

timeline of events and the number of birds involved at each event. 

Age (d) DPC Event 

0 DPC 0 312 chicks placed in a single pen (N=156/breed). 

7 DPC -7 BW, blood, jejunal and ileal segments, and cecal contents 

collected from 48 birds (N=24/breed). Remaining birds (N=264 

birds, 132/breed) moved into isolators after sampling. 

12 DPC -2 Video of 8 isolators (N=4/breed, 2/room) recorded for 1 hour. 

13 DPC -1 BW, blood, jejunal and ileal segments, and cecal contents 

collected from 48 birds (N=24/breed, 2/isolator). 

14 DPC 0 

Challenge 

Treatments administered via oral gavage to 216 birds. 

     Challenge: 1 mL 108 CFU/mL S. Typhimurium given to 108  

                    birds (N=54/breed). 

     Control: 1 mL Tryptic Soy Broth given to 108 birds    

                   (N=54/breed). 

16 DPC 2 Video of 8 isolators (N=4/breed, 2/room) recorded for 1 hour. 

17 DPC 3 BW, blood, jejunal and ileal segments, and cecal contents 

collected from 48 birds (N=24/breed, 2/isolator). 

20 DPC 6 Video of 8 isolators (N=4/breed, 2/room) recorded for 1 hour. 

21 DPC 7 BW, blood, jejunal and ileal segments, and cecal contents 

collected from 48 birds (N=24/breed, 2/isolator). 

23 DPC 9 Video of 8 isolators (N=4/breed, 2/room) recorded for 1 hour. 

24 DPC 10 BW, blood, jejunal and ileal segments, and cecal contents 

collected from 48 birds (N=24/breed, 2/isolator). 
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Table 2.2. Orientation to figure color coding and representative treatments. 

Color Treatment/Effect 

Light blue Slow-Growing Control (SG-CON) 

Dark blue1 Slow-Growing Challenge (SG-ST) and Slow-Growing (SG) 

Light red Fast-Growing Control (FG-CON) 

Dark red Fast-Growing Challenge (FG-ST) and Fast-Growing (FG) 

Gray All Birds and Treatments 

Green Control (CON) 

Purple Challenge (ST) 
1Dark blue and dark red are used to represent both their respective breed and challenge 

interaction as well as breed independent of challenge.
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Table 2.3. Effect of breed and challenge on broiler body weight (BW, g) at d7, 13, 17, 

21, and 24. Data shown as mean BW (± SEM) of male broilers from fast- (FG) and slow-

growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) on d14. 

  Treatment  P-Value2 

Age (d) FG-CON1  FG-ST SG-CON SG-ST SEM Br. Chal. Int. 

7 129 - 127 - 4.0 0.69 - - 

13 279 316 271 276 9.8 0.08 0.12 0.23 

17 441 461 399 413 22.7 0.06 0.45 0.91 

21 682a 709a 625b 626b 31.3 0.04 0.66 0.69 

24 906a 876a 754b 747b 47.0 0.007 0.70 0.80 
1FG = fast-growing (Ross), SG = slow-growing (Redbro), ST = 1 mL 1.3x108 CFU/mL S. 

Typhimurium challenge, CON = control (TSB). 
2P-values represent the main effect of breed (Br.; FG or SG), challenge (Chal.; ST or 

CON), and the interaction of breed and challenge (Int.). 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 2.4. Effect of breed and challenge on broiler plasma IgA and IgG concentrations (μg/mL) at d7, 13, 17, 21, and 24. Data 

shown as mean concentration (± SEM) of immunoglobulin in the plasma of male broilers from fast- (FG) and slow-growing 

(SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) on d14. 

  Treatment  P-Value2 

Age (d) FG-CON1 FG-ST SG-CON SG-ST SEM Br. Chal. Int. 

IgA            

7 47 - 47 - 5 0.93 - - 

13 74a 59b 69a 44b 7 0.13 0.009 0.47 

17 61 64 51 61 7 0.41 0.37 0.64 

21 138b 168a 107b 164a 19 0.36 0.03 0.49 

24 121a 115a 72b 88b 14 0.01 0.73 0.4 

IgG           

7 2693b - 3037a - 120 0.05 - - 

133 1991 1709 1589 1578 189 0.19 0.44 0.47 

17 1341 1218 1281 962 157 0.33 0.18 0.54 

21 2120a 1597a 985b 1356b 284 0.03 0.79 0.13 

24 3051a 2675a 1199b 1580b 334 0.0003 0.99 0.27 
1FG = fast-growing (Ross), SG = slow-growing (Redbro), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge, CON = 

control (TSB). 
2P-values represent the main effect of breed (Br.; FG or SG), challenge (Chal.; ST or CON), and the interaction of breed and 

challenge (Int.). 
3d13 FG-ST SEM (IgG) = 205 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 2.5. Effect of age (d) and challenge on broiler plasma IgA and IgG concentrations (μg/mL) at d7, 13, 17, 21, and 24, 

within breed. Data shown as mean concentration (± SEM) of immunoglobulin in the plasma of male broilers from fast- (FG) 

and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) on d14. 

  d13 d17 d21  d24  P-Value3  

Br.1 CON2 ST CON ST CON ST CON ST SEM Age Chal. Int. 

IgA 
        

 
   

FG3 74c 60c 61c 64c 138a 168a 121b 115b 12 0.0001 0.74 0.24 

SG 69c 44c 51c 61c 107a 164a 72b 88b 12 0.0001 0.17 0.009 

IgG   
      

   
  

  

FG4 1991b 1686b 1341c 1218c 2120b 1597b 3051a 2675a 289 0.0001 0.23 0.89 

SG 1589a 1281a 985b 1199b 1578b 962b 1356ab 1580ab 179 0.04 0.46 0.14 
1Br. = breed; FG = fast-growing (Ross), SG = slow-growing (Redbro) 
2CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
3P0-values represent the main effect of age (d), challenge (Chal.; ST or CON), and the interaction of age and challenge (Int). 
3d13 FG-ST SEM (IgA) = 13 
4 d13 FG-ST SEM (IgG) = 312 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05. 
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Table 2.6. Effect of age (d) and breed on broiler plasma IgA and IgG concentrations (μg/mL) at d7, 13, 17, 21, and 24, within 

challenge. Data shown as mean concentration (± SEM) of immunoglobulin in the plasma of male broilers from fast- (FG) and 

slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) on d14. 

  d13  d17 d21 d24  P-Value3 

Chal.1 FG2 SG FG SG FG SG FG SG SEM Age (d) Br. Int. 

IgA 
        

 
  

  

CON 74b 69b 61b 51b 138a 107a 121a 72b 11 0.0001 0.008 0.23 

ST3 60c 44c 64c 61c 16a 164a 115b 88b 13 0.0001 0.31 0.71 

IgG   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

       

CON 1991b 1589bc 1341c 1281c 2120b 985c 3051a 1199c 221 0.003 0.0004 0.0004 

ST4 1682b 1578bc 1218c 962c 1597bc 1356bc 2675a 1580a 258 0.0001 0.13 0.08 
1Chal. = challenge; CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
2FG = fast-growing (Ross), SG = slow-growing (Redbro). 
3P-values represent the main effect of age (d), breed (Br.; FG or SG), and the interaction of age and breed (Int). 
3d13 FG-ST SEM (IgA) = 14 
4 d13 FG-ST SEM (IgG) = 277 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05. 



 

86 
 

Table 2.7. Counts (N) and mean proportions (%) of individual birds with viable histological samples. Counts and means (μm) 

of viable intestinal measures of male broilers from fast- (FG) and slow-growing (SG) breeds at d7, 13, 17, 21, and 24 when 

challenged with S. Typhimurium (ST) or TSB (CON) at d14.  
  

Birds  Jejunum  Ileum 

Age (d) 
 

N1 %  N JV2 JC JVCR  N IV IC IVCR 

7 FG3 23 95.8  228 508 104 5.0  230 344 91 3.9  
SG 20 83.3  197 486 97 5.2  198 358 87 4.3 

13 FG-CON 9 75.0  79 548 84 6.8  90 351 75 4.9  
FG-ST 0 0.0  0 - - -  0 - - -  
SG-CON 8 66.7  78 524 88 6.3  79 330 62 5.6  
SG-ST 0 0.0  0 - - -  0 - - - 

17 FG-CON 4 33.3  33 688 95 7.5  40 466 80 6.1  
FG-ST 4 33.3  40 684 103 6.9  40 414 90 4.7  
SG-CON 4 33.3  39 683 86 8.4  38 449 75 6.4  
SG-ST 0 0.0  0 - - -  0 - - - 

21 FG-CON 1 8.33  10 471 115 4.2  6 331 70 4.8  
FG-ST 5 41.7  45 767 105 7.7  41 404 78 5.5  
SG-CON 2 16.7  20 716 127 5.9  17 485 112 4.6  
SG-ST 3 25.0  20 783 98 8.4  20 543 87 6.7 

24 FG-CON 10 83.3  99 820 119 7.3  100 519 104 5.2  
FG-ST 8 66.7  79 837 141 6.2  75 406 110 3.9  
SG-CON 8 66.7  77 803 127 6.5  79 523 107 5.1  
SG-ST 6 50.0  56 826 123 6.9 60 442 106 4.3 

1Counts of birds are those with 5-10 measurable villi. Intestinal measures include jejunum villi height (μm), jejunum crypt 

depth (μm), jejunum villus-crypt ratio, ileum villi height (μm), ileum crypt depth (μm), and ileum villus-crypt ratio. 

2JV = jejunum villus height, JC = jejunum crypt depth, JVCR = jejunum villus-crypt ratio, IV = ileum villus height, IC = ileum 

crypt depth, IVCR = ileum villus crypt ratio. 

3FG = fast-growing (Ross), SG = slow-growing (Redbro), CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium 

challenge. 
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Table 2.8. Effect of breed and challenge on broiler intestinal histology. Data shown as mean (± SEM) jejunum villi height 

(μm), jejunum crypt depth (μm), jejunum villus-crypt ratio, ileum villi height (μm), ileum crypt depth (μm), and ileum villus-

crypt ratio of male broilers from fast- (FG) and slow-growing (SG) breeds at d7 and 24 when challenged with Salmonella 

typhimurium (ST) or TSB (CON) at d 14. 
  

Treatment P-Value3 

Age 
 

FG-CON2 FG-ST SG-CON SG-ST Br. Chal. Int. 

7 JV1 508 ± 5a - 486 ± 5b - 0.001 - -  
JC 104 ± 1a -   97 ± 1b - 0.0001 - -  
JVCR  5.0 ± 0.1b -  5.2 ± 0.1a - 0.03 - -  
IV 344 ± 4b - 358 ± 4a - 0.008 - -  
IC   91 ± 1a -   87 ± 1b - 0.007 - -  
IVCR  3.9 ± 0.1b -  4.3 ± 0.1a - 0.0001 - - 

24 JV 822 ± 42 836 ± 51 806 ± 46 838 ± 47 0.88 0.62 0.85  
JC 119 ± 4b 142 ± 5a 126 ± 5b 123 ± 5b 0.24 0.05 0.01  
JVCR  7.2 ± 0.5  6.2 ± 0.5  6.6 ± 0.5  7.0 ± 0.5 0.89 0.54 0.16  
IV 518 ± 29a 404 ± 35b 515 ± 32a 440 ± 32b 0.61 0.01 0.55  
IC 102 ± 6 110 ± 7 107 ± 6 107 ± 6 0.87 0.52 0.54  
IVCR  5.3 ± 0.3a  3.9 ± 0.4b  5.0 ± 0.4a  4.3 ± 0.4b 0.88 0.008 0.37 

1JV = jejunum villus height, JC = jejunum crypt depth, JVCR = jejunum villus-crypt ratio, IV = ileum villus height, IC = ileum 

crypt depth, IVCR = ileum villus crypt ratio. 
2FG = fast-growing (Ross), SG = slow-growing (Redbro), CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium 

challenge. 
3P-values represent the main effect of breed (Br.; FG or SG), challenge (Chal.; ST or CON), and the interaction of breed and 

challenge (Int.). 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 2.9. Correlations (r) between plasma IgA and IgG concentrations (µg/mL) and body weight (BW; g), jejunum villus 

height (μm), jejunum crypt depth (μm), jejunum villus-crypt ratio, ileum villus height (μm), ileum crypt depth (μm), ileum 

villus-crypt ratio, and plasma IgA and IgG concentrations of male broilers from fast- (FG) and slow-growing (SG) breeds at d7 

and 24 when challenged with Salmonella typhimurium (ST) or TSB (CON) at d 14. 
 

BW1 JV JC JVCR IV IC IVCR IgA IgG 

Overall 
         

IgA  0.43**  0.41**  0.21  0.35**  0.32**  0.28  0.12  1.00**  0.05 

IgG -0.08 -0.14 -0.02 -0.12 -0.14  0.01 -0.15  0.05  1.00** 

FG 
         

IgA  0.46**  0.35*  0.17  0.33*  0.31*  0.14  0.23  1.00**  0.21* 

IgG  0.10  0.06  0.12  0.01  0.10  0.18 -0.01  0.21*  1.00** 

SG 
         

IgA  0.34**  0.45**  0.22  0.33  0.32  0.43* -0.06  1.00** -0.17 

IgG -0.38** -0.34 -0.15 -0.31 -0.54** -0.17 -0.42* -0.17  1.00** 
1BW = body weight, JV = jejunum villus height, JC = jejunum crypt depth, JVCR = jejunum villus-crypt ratio, IV = ileum 

villus height, IC = ileum crypt depth, IVCR = ileum villus crypt ratio. 

*P≤0.05 

**P≤0.01
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Figure 2.1. Ross 308 and Redbro chicks in a single pen.
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Figure 2.2. A BSL-2 isolator prior to movement of birds on DPC -7, with lights on to 

show the interior. The isolator is prepared with chick paper and a gravity waterer and 

equipped with a gravity feed trough. Below the flooring is the feces collection bin. Above 

the isolator are monitors for temperature and pressure.
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Figure 2.3. Simple depiction of room treatments (CON and ST), isolator set-up, breed 

assignments (FG and SG), and designated isolators for behavior video recording. Rooms 

1 and 2 were assigned the control treatment, while rooms 2 and 4 received the challenge 

treatment.
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a)  

b)  

Figure 2.4. Determination of the culture’s growth curve. a) Negative (left) and positive 

(right) controls were incubated alongside the S. Typhimurium culture (center). b) Serial 

dilutions were used to determine S. Typhimurium concentrations every 6 hours.
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a)  

b)  

Figure 2.5. Growth curves of the challenge culture of S. Typhimurium from hours 0-14 

of growth. a) Concentration of S. Typhimurium. b) Optical density of S. Typhimurium.
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Figure 2.6. Negative control (left) and undiluted challenge S. Typhimurium culture 

(right) after 14 hours of growth.  
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a)  

b)  

Figure 2.7. Measurement of villi heights and crypt depts. a) Measurement of a jejunum 

sample, with green lines measuring villi heights and yellow lines measuring crypt depths. 

b) Measurement of an ileum sample, with cyan lines measuring villi heights and yellow 

lines measuring crypt depths. 
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Figure 2.8. Effect of breed and challenge on broiler body weight (BW, g) at d13, 17, 21, 

and 24. Data shown as mean BW of male broilers from fast- (FG) and slow-growing (SG) 

breeds challenged with S. Typhimurium (ST) or TSB (CON) on d14. ABColumns within 

each age not sharing the same letters are significantly different.
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a)  

 

b)  c)  d)  

Figure 2.9. Effect of breed and challenge on broiler plasma IgA concentrations (μg/mL) 

at d7, 13, 17, 21, and 24. Data shown as mean IgA concentration of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) on d14. a) The interaction of breed and challenge at each age. b) Challenge effect 

at d13. c) Challenge effect at d21. d) Breed effect at d24. ABColumns within each age not 

sharing the same letters are significantly different.
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a)  b)  

c)  

Figure 2.10. Effect of age (d), breed, and their interaction on plasma IgA concentrations 

(μg/mL) of birds at d7, 13, 17, 21, and 24. Data shown as mean IgA concentration of 

male broilers from fast- (FG) and slow-growing (SG) breeds challenged with S. 

Typhimurium (ST) or TSB (CON) at d14. a) Age effect on IgA. b) Breed effect on IgA. 

c) Interaction of age and breed effects on IgA.  ABCDColumns not sharing the same letters 

are significantly different.
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a)  

b)  

Figure 2.11. Effect of age (d) on plasma IgA concentrations (μg/mL) of birds at d13, 17, 

21, and 24. Data shown as mean IgA concentration of male broilers from fast- (FG) and 

slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

a) IgA within FG. b) IgA within SG.  ABCColumns not sharing the same letters are 

significantly different.

C C

A

B

0

50

100

150

200

13 17 21 24

Ig
A

 (
μ

g
/m

L
)

Age (d)

C C

A

B

0

50

100

150

200

13 17 21 24

Ig
A

 (
μ

g
/m

L
)

Age (d)



 

100 
 

a)  b)  

c)  

 

Figure 2.12. Effect of age (d) and breed on plasma IgA concentration (μg/mL) of birds at 

d13, 17, 21, and 24. Data shown as mean IgA concentration of male broilers from fast- 

(FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) at d14. a) Age effect within CON. b) Breed effect within CON. c) Age effect 

within ST. ABCColumns not sharing the same letters are significantly different.
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a)  

b)  c)  d)  

Figure 2.13. Effect of breed and challenge on broiler plasma IgG concentration (μg/mL) 

at d7, 13, 17, 21, and 24. Data shown as mean IgG concentration of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) on d14. a) Within age interaction of breed and challenge at each age. b) Breed 

effect at d7. c) Breed effect at d21. d) Breed effect at d24. ABColumns within each age 

not sharing the same letters are significantly different.
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Figure 2.14. Effect of age (d), breed, and their interaction on plasma IgG concentrations 

(μg/mL) of birds at d7, 13, 17, 21, and 24. Data shown as mean immunoglobulin 

concentration of male broilers from fast- (FG) and slow-growing (SG) breeds challenged 

with S. Typhimurium (ST) or TSB (CON) at d14. ABCDColumns not sharing the same 

letters are significantly different.
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a)  

b)  

Figure 2.15. Effect of age (d) on plasma IgG concentrations (μg/mL) of birds at d13, 17, 

21, and 24. Data shown as mean IgG concentration of male broilers from fast- (FG) and 

slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

a) IgG within FG. b) IgG within SG. ABCColumns not sharing the same letters are 

significantly different.
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a)  

b)  

Figure 2.16. Effect of age (d), breed, and their interaction on plasma IgG concentration (μg/mL) 

of birds at d13, 17, 21, and 24. Data shown as mean IgG concentration of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) 

at d14. a) Interaction of age and breed effects within CON. b) Age effect within ST. ABCColumns 

not sharing the same letters are significantly different.
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a)  b)  

c)  

Figure 2.17. Effect of breed on broiler intestinal measures at d7. Data shown as mean 

jejunum villi height (JV; μm), jejunum crypt depth (JC; μm), jejunum villus-crypt ratio 

(JVCR), ileum villi height (IV; μm), ileum crypt depth (IC; μm), and ileum villus-crypt 

ratio (IVCR) of male broilers from fast- (FG) and slow-growing (SG) breeds when 

challenged with Salmonella typhimurium (ST) or TSB (CON) at d 14. a) Villi height by 

breed at d7. b) Crypt depth by breed at d7. c) VCR by breed at d7. ABColumns within 

each morphology measure not sharing the same letters are significantly different.
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a)  b)  

c)  

Figure 2.18. Effect of breed and challenge on broiler intestinal measures at d24. Data 

shown as mean jejunum villi height (JV; μm), jejunum crypt depth (JC; μm), jejunum 

villus-crypt ratio (JVCR), ileum villi height (IV; μm), ileum crypt depth (IC; μm), and 

ileum villus-crypt ratio (IVCR) of male broilers from fast- (FG) and slow-growing (SG) 

breeds challenged with Salmonella typhimurium (ST) or TSB (CON) at d14. a) Villi 

height by breed at d24. b) Crypt depth by breed at d24. c) VCR by breed at d24. 
ABColumns within each morphology measure not sharing the same letters are 

significantly different.
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CHAPTER 3 Evaluating differences in sickness behavior in fast- and slow- growing 

broiler chickens when infected with Salmonella enterica serovar Typhimurium
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3.1 ABSTRACT 

Fast growth rate in broilers comes with welfare concerns and research is needed 

to determine if fast- and slow-growing broilers differ in pathogen resistance and sickness 

behavior. The objective of this study was to evaluate behavioral differences in fast- (FG) 

and slow-growing (SG) broilers when challenged with Salmonella Typhimurium or broth 

(control; CON) 14 days post-hatch. FG (N=156) and SG (N=156) were raised in the same 

pen with litter shavings until d7, when they were transferred to 24 isolators. On d12, 16, 

21, and 23 video was recorded for 8 isolators and postures (sitting, standing, or 

locomoting) and behaviors (eating, drinking, preening, stretching, sham foraging, 

allopreening, and aggression) were analyzed. Generally, more FG sat (P=0.03) and fewer 

locomoted than SG with age by 5.2-11.9% and 1.6-2.7%, respectively. More birds sham 

foraged as they aged (P<0.0001), but on d23 SG-CON sham foraged more (P<0.02) than 

SG-ST and FG by 2%, indicating both that SG may be more naturally motivated to forage 

and challenge may have reduced sham foraging in SG-ST. The effect of breed on 

aggression was trending, in which SG tended to be more aggressive than FG by 0.1%, 

which could indicate that SG are generally more aggressive than FG. The results show 

that fast- and slow-growing breeds differ behaviorally as they age, and that slow-growing 

birds are more active and show greater behavioral signs of sickness but may generally be 

more aggressive. This information can help breeders make selection decisions to improve 

broiler welfare and prevent Salmonella transmission into the human food supply. 

Keywords: broiler, breed, growth rate, Salmonella, behavior 
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3.2 INTRODUCTION 

In order to meet high consumer demand, broilers are genetically selected for 

increased efficiency and greater breast yield, resulting in birds that reach heavier market 

weights at incredible growth rates (NCC, 2021). However, selection for productivity 

traits may unintentionally neglect other health and welfare traits, such as pathogen 

resistance. Multiple studies have explored the link between growth rate or body weight 

and immune function (Yunis et al., 2000; Leshchinsky and Klasing, 2001; Humphrey and 

Klasing, 2004; Parmentier et al., 2010; van der Most et al., 2011), often noting an inverse 

relationship. This may be due to prioritizing the allocation of bodily energy and resources 

to growth as opposed to immune function, compromising the immune system (Humphrey 

and Klasing, 2004). Despite this, the effect of selection for enhanced growth rate on 

resistance to foodborne pathogens such as Salmonella and sickness behaviors has not 

been investigated.  

General behavioral differences exist between fast- and slow-growing broilers 

which may indicate welfare status. The University of Guelph studied 16 different breeds 

of broiler chickens varying in growth rate for differences in behavior, performance, 

mortality, and mobility at the (GAP, 2020). The conventional breed (fastest growth rate) 

spent the most time sitting almost half as much time standing and moving compared with 

the slower growing breeds (Torrey et al., 2020). Dixon (2020) compared the behavior of 

fast- and slow-growing broilers and reported less engagement in active behaviors 

(standing, locomoting, foraging, and preening) in 3 commercial breeds (Ross, Cobb, and 

Hubbard) than a slow-growing Hubbard breed. Other studies have also reported less 

engagement in exploratory behaviors among medium (Almeida et al., 2012) and fast-
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growing breeds (Yan et al., 2021) than slow-growing breeds. It may additionally be 

possible to detect differences between fast- and slow-growing breeds by observing 

comfort behaviors and exploratory behaviors, which can also indicate health and welfare 

status (Costa et al., 2012). Reductions in these behaviors may even predict illness clinical 

signs of disease (Abeyesinghe et al., 2021) as a form of sickness behavior.  

Sickness is a motivational state and sign of an immune response in action, causing 

distinct behavioral patterns that support recovery from the disease, such as lethargy, 

decreased appetite, and reduced social behaviors (Johnson, 2002; Dantzer, 2004; Tizard, 

2008). Sickness behaviors can occur as a result of an acute phase immune response 

involving pro-inflammatory cytokine signaling (Kelley et al., 2003; Tizard, 2008; 

Millman, 2006; Dantzer, 2004; Dantzer and Kelley, 2007; Johnson, 2002). As such, 

increased sickness behavior may indicate a stronger immune response, and thus greater 

resilience to pathogenic infection by bacteria such as Salmonella (Hart, 1988; Johnson, 

2002; Cheng et al., 2004). 

 Infection by Salmonella enterica serovars in broilers can prompt an immune 

response and influence behavior. Broilers injected intravenously with S. Typhimurium 

and S. Enteritidis have been observed to exhibit an inflammatory response, depression, 

fever, diarrhea, reduced feed intake, and reduced body weights (Xie et al., 2000; 

Quinteiro-Filho et al., 2012). Cobb chicks challenged with S. Typhimurium at 1 week of 

age experienced reduced body weights and increased mortality rates, incidences of 

lameness, and diarrhea, as well as dullness, inappetence, inactivity, weakness, and 

anorexia (Dar et al., 2019).  
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Prior research has found differences between chicken breeds regarding pathogen 

resistance and immune response to infection (Barrow, 1991; Cheng et al., 2004; Schou et 

al., 2010; Li et al, 2017). Leshchinsky and Klasing (2001) reported that in broilers and 

Brown Nick Layers injected with LPS 1 day post-hatch, broilers had had lower mRNA 

expression of IL-1β and IFN-𝛾 and a reduced febrile response. As such, broilers selected 

for faster growth may be less prone to display sickness behaviors (Berghman, 2016).  

Little is known if differences exist between modern fast- and slow-growing 

broilers relative to Salmonella infection, making it increasingly important to understand if 

selective breeding for a faster-growing, heavier broiler has also resulted in a more (or 

less) Salmonella-resistant broiler. To evaluate and understand these differences, fast-

growing Ross 308 and slow-growing Redbro broiler chicks were orally challenged with 

either S. Typhimurium or Tryptic Soy Broth control at 14 days of age and sampled up 

until 24 days of age (10 days post-challenge). Video was recorded of 8 isolators on 

multiple days to evaluate breed differences and the effect of S. Typhimurium challenge 

on behavior. The objective of this study was to evaluate differences in sickness behavior 

between fast- and slow-growing broiler chickens when challenged with Salmonella 

Typhimurium. The hypotheses were that fast-growing broilers would have reduced 

behavioral repertoire when compared with the slow-growing breed independent of 

challenge, and that challenged slow-growing broilers would have more significant 

behavioral signs of sickness than fast-growing broilers, indicating a stronger immune 

response to the S. Typhimurium challenge.  

 



 

112 
 

3.3 MATERIALS AND METHODS 

3.3.1 Animals and Housing 

All procedures and protocols were approved by the University of Maryland 

(UMD) Animal Care and Use Committee (IACUC#: R-NOV-19-55). Three-hundred and 

twelve male day-of-hatch chicks from two breeds, Ross 308 (N=156) and Redbro 

(Hubbard) (N=156), were transported from a local hatchery (Freedom Ranger Hatchery, 

Reinholds, PA) to the University of Maryland Animal and Avian Sciences Animal Wing. 

Chicks were placed together in a single 3 m by 6 m pen with wood shavings litter (d0) 

(Figure 2.1). This encouraged commingling and permitted consumption of pen-mate 

fecal material to establish a similar gut microbiome. Three brooder lamps were hung 

above the pen to provide supplemental heat and were removed on d3. Water was 

provided ad libitum through a nipple water line. Chicks were provided Purina Start and 

Grow Non-Medicated crumbles ad libitum in 3 gravity-fed hanging feeders. Temperature 

was maintained at 32.2°C for d0-1 and gradually reduced by 0.6°C daily until 17.8°C at 

d13. Ambient temperature, humidity, and photoperiod was maintained according to the 

Ross Broiler Management Handbook (Aviagen, 2018) throughout the study. Photoperiod 

was 23h light and 1h dark on d0 and light hours were gradually decreased to 20h light 

with 4h dark on d7. Ambient temperature was also checked at the floor level inside the 

pen using an infrared temperature gun (Lasergrip 1080, Etekcity, Anaheim, CA). Chicks 

were housed in the UMD ANSC Animal Wing from d0-7.  

On d7, a total of 264 birds (N=132 per breed) were moved into isolators in BSL-2 

rooms at the University of Maryland Avrum Gudelsky Veterinary Medical Center 

(Figure 2.2). Eleven birds from each breed were exclusively placed into 24 isolators 
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(Model 934-1, Federal Designs Inc., Comer, GA) within 4 ABSL-2 rooms (N=6 isolators 

per room). There were 3 isolators that contained birds from each breed per room. 

Isolators were 5,195 cm2 and stocking density did not exceed the minimum space 

allowance outlined in the Ag Guide (FASS, 2010) throughout the study. Isolator floors 

consisted of a metal grate with a bin below to collect fecal matter, and isolator lights were 

left off for the duration of the study as it was observed to increase aggression (Figure 

2.2). Each isolator had separate airflow and HEPA filters that were replaced once weekly. 

Air flow pressure (negative) was monitored twice daily through an attached gauge 

(Model 25 Manometer, Dwyer Instruments, Inc., Michigan City, IN) to ensure that air 

pressure fell within an acceptable range (Figure 2.2). Chick paper was placed in isolators 

over the metal grating prior to bird placement to prevent leg injury, then later removed at 

d10 (Figure 2.2). Fecal collection bins were emptied every other day to maintain good air 

quality. Commercially available feed (Purina Start and Grow Non-Medicated pellets) and 

water were provided ad libitum via a metal gravity-fed trough and a plastic gravity 

waterer, respectively. Birds were checked for wellness, isolator temperature and humidity 

were monitored and recorded, and waterers were cleaned and refilled with fresh water 

twice daily. Individual isolator heaters were on from d7- 10 to maintain temperature. The 

temperature and humidity of each room was also monitored and recorded once daily. 

Light hours were 20h light and 4h dark (20:4) at d7 and gradually shifted to 18h light and 

6h dark (18:6) until d14, then they were maintained at 18:6 for the remainder of the 

experiment. Exterior room windows were covered for the duration of the study. 
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3.3.2 Experimental Design and Procedures 

The experimental design was a 2 x 2 split plot design, in which all Ross 308 (FG) 

and Redbro (SG) birds were raised together in a single pen for the first week (d0-7) and 

then randomly assigned and split between 24 isolators across 4 rooms by breed and 

designated challenge treatment group at d7 (Figure 2.3). Each room held 6 isolators total, 

split into 3 isolators per breed per room, and each room was assigned a challenge 

treatment (N=2 rooms per treatment) (Figure 2.3). Challenge treatments were given on 

d14, in which 2 rooms of birds (rooms 3 and 4) received 1 mL of 108 CFU/mL 

Salmonella Typhimurium challenge culture (ST) (N=108 birds, 54 per breed) and 2 

rooms (rooms 1 and 2) received 1 mL Tryptic Soy Broth (CON) (N=108 birds, 54 per 

breed) via oral gavage (Figure 2.3). S. Typhimurium culture was prepared as outlined in 

Chapter 2.3.3. Videos were recorded for an hour on d12, 16, 20, and 23 for behavior 

analysis. Table 2.1 outlines a brief summary of events. 

3.3.4 Video Recording 

GoPro cameras (GoPro Hero7 Black, GoPro Inc., San Mateo, CA), were mounted 

to tripods (Figure 3.1) and positioned to record 2 isolators per room (one per breed per 

room; isolators #2, 4, 10, 12, 14, 16, 22, and 24) for 1 hour on d12, d16, d20, and d23 

from 14:00-15:00 (Figure 2.3). Days selected for recording video preceded each 

sampling day by 24 hours to avoid the interference of any stressful events such as 

handling with the accuracy of the behavior data recorded.
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3.3.5 Behavior Coding 

Video recordings were coded for mobility, production, comfort, exploratory, and 

social behaviors in the laboratory by 3 students using instantaneous scan sampling every 

15 seconds for an hour of recorded time, beginning 5 minutes after the researcher started 

the camera and left the room (N=241 scans/video) (Figure 3.2). During each scan, first 

the total number of birds performing each posture (sit, stand, locomotion), then each 

behavior (eat, drink, preen, stretch, sham forage, allopreen, aggression) were recorded 

using the ethogram (Table 3.1) for reference. Thus, all birds were coded for posture but 

only those exhibiting behaviors were also coded for behavior. If a bird was obstructed 

from view for any reason and its posture could not be determined, it was coded as not 

visible and could not be coded for a behavior. Birds could be recorded for both a posture 

and behavior, a posture and no behavior, or not visible. Counts were later transformed 

into proportions of birds performing a posture and/or behavior out of the total number of 

birds in the isolator for statistical analysis. The 3 observers coded between 6 and 15 

videos each out of 32 videos total. Interobserver agreement was determined to be over 

95% in total for all behaviors. 

Postures and behaviors were mutually exclusive within themselves but not to each 

other (Table 3.2). Birds could be coded for one posture and one behavior, just one 

posture and no behavior, or not visible. All birds were coded for a posture or Not Visible, 

but not all were coded for a behavior. For example, a bird could be coded for both sitting 

and preening, while another bird may be coded for standing but not performing any 

behavior listed in the ethogram. 
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3.3.6 Statistical Analysis 

 The isolator (N=8) was the experimental unit for all behavior data. Behavior 

proportion data was analyzed using the GLIMMIX procedure in SAS (v9.4, SAS 

Institute, Inc., Cary, NC). Data were tested for normality. The combined total counts of 

behaviors (eating, drinking, preening, stretching, sham foraging, allopreening, and 

aggression) were summed and calculated as proportions to create a total behavior 

category of behaviors for analysis. Behavior data were analyzed using a within-age 

model including the fixed effects of breed, challenge, and their interaction, as well as 

using two across-age models including the fixed effects of age, either breed or challenge, 

and their interaction, organized by either breed or challenge. The random effect of 

isolator nested within room was included in the analysis of all models. Additionally, 

behavior data were analyzed using an age by breed model independent of challenge for 

the fixed effects of age, breed, and their interaction including the random effect of 

isolator nested within room. Multiple comparisons of means were separated using 

LSMEANS and differences between measures were detected using PDIFF. Aggression 

behavior had very low frequency and there was insufficient data for statistical analysis of 

aggression in the across age models including the main effect of challenge, but it was 

able to be run in the age by breed model independent of challenge. Aggression is instead 

reported as raw means in the across age analyses involving challenge and preening at d16 

is reported using raw means in the within age analysis. Data were considered significant 

at a P≤0.05 and a tendency at P≤0.10.  
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3.4 RESULTS 

Results figures are color coded by treatment to aid in the visualization of 

treatment differences and changes over time. Table 2.2 describes each color and 

represented treatment. Only significant results are presented and discussed. 

First, as a reminder, all birds in each isolator were coded for a posture (sitting, 

standing, and locomoting [changing location]). Next, only birds displaying a behavior 

defined in the ethogram were coded for a behavior (eating, drinking, preening, stretching, 

sham foraging, allopreening, or aggression). A total behavior category was calculated by 

summing the behaviors at each scan. Thus, postures and behaviors were mutually 

exclusive within their own respective categories, but not to each other, and birds were 

either coded once (for a posture only) or twice (for both a posture and a behavior). 

Three GLIMMIX models were used to analyze the effects of age (d) breed, and 

challenge on the proportion of birds performing each posture or behavior, with each 

model split into two tables for postures and behavior, respectively: 1) across age for the 

effects of age, breed, and their interaction within challenge on postures (Table 3.3) and 

behaviors (Table 3.4), 2) across age for the effects of age, challenge, and their interaction 

within breed on postures (Table 3.5) and behaviors (Table 3.6), and 3) within age for the 

effects of breed, challenge, and their interaction on postures (Table 3.7) and behaviors 

(Table 3.8). Additionally, challenge had minimal effects on postures and behaviors, and a 

model was run independent of challenge to evaluate the effects of age, breed, and their 

interaction across all ages. There was insufficient data for statistical analysis of preening 

at d16 in the within age analysis (Table 3.8), as well as aggression in the across age 

analyses inclusive of challenge, and only the raw means are reported (Tables 3.4 and 
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3.6). Aggression was able to be run in the age by breed analysis independent of 

challenge. There was no effect of challenge independent of breed on any behavior in the 

across age analyses (Tables 3.4 and 3.6). 

The effect of age on the proportion of birds sitting, standing, and locomoting was 

significant for all treatments and tended to increase for sitting and decrease for standing 

across age except at d16 and d20 (Tables 3.3 and 3.5). More (P<0.0001) birds were 

sitting at d16 (65.9%) and d20 (66.3%) than at d12 (53.9%) and d23 (59.6%) (Figure 

3.3a). Fewer (P<0.0001) birds were standing at d16 (29.7%) and d20 (28.3%) compared 

with d12 (39.2%) and d23 (33.7%) (Figure 3.3b). Fewer (P<0.0001) birds locomoted at 

d16 (3.9%) and d20 (4.5%) than d12 and d23 (6.1%) (Figure 3.3c). 

There was no effect of challenge on proportion of birds sitting over time, but the 

effect of breed independent of challenge was trending, in which more (P=0.09) FG birds 

sat than SG by 9.1% and 7.0% at d20 and d23, respectively (Figure 3.4). The effect of 

breed across age was more pronounced when analyzed within challenge in the CON 

treatment, in which generally more (P=0.03) FG-CON sat than SG-CON by 5.2%-11.9% 

over time, particularly at d12 and d20 (Figure 3.5a). The effect of breed across age was 

not observed within the ST treatment (Figure 3.5b). Within age, there was no effect of 

breed or challenge on the proportion of birds sitting (Table 3.7). 

There was no effect of breed or challenge on the proportion of birds standing over 

time (Tables 3.3 and 3.5). Only the effect of age was significant on the proportion of 

birds standing, in which generally fewer (P<0.0001) birds stood at d23 (39.2%) 

compared to d12 (33.7%) except in the SG-ST treatment, where a similar proportion of 
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SG-ST were standing at d12 (36.3%) as at d23 (38.6%) (Figure 3.6). Within age, there 

was no effect of breed or challenge on the proportion of birds standing (Table 3.7). 

The main effect of age and breed and their interaction on the proportion of birds 

locomoting was significant (Tables 3.3 and 3.5). Fewer (P<0.0001) FG birds locomoted 

than SG at d12, 20, and 23 by 2.7%, 1.6%, and 2.6%, respectively, but at d16 the 

proportion of birds locomoting was similar between breeds (Figure 3.7). Within age, 

there was no effect of breed or challenge on the proportion of birds locomoting (Table 

3.7). 

The effect of age was significant on the proportion of birds eating, drinking, 

preening, and sham foraging, as well as on total behavior (the cumulative proportion of 

birds coded for eating, drinking, preening, stretching, sham foraging, allopreening, and 

aggression) (Tables 3.4 and 3.6). The proportion of birds eating increased (P<0.0001) 

with age from 21.2% at d12 to 25.9% at d23 (Figure 3.8a). A similar proportion of birds 

drank at d12 (1.9%), d16 (2.1%), and d20 (1.8%), but increased (P=0.01) to 2.5% at d23 

(Figure 3.8b). The proportion of birds drinking at d16 was also similar to d23 (Figure 

3.8b). The proportion of birds preening was similar between d12 (5.8%), d16 (6.1%), and 

d20 (6.4%) and was the greatest (P<0.0001) at d23 (7.4%) (Figure 3.8c). The proportion 

of birds sham foraging was similar between d12 (1.1%) and d16 (1.2%) but increased 

(P<0.0001) to 1.8% at d20 and 2.6% at d23 (Figure 3.8d). Additionally, the proportion 

of total behavior was similar between d12 (32.1%) and d16 (32.8%) but increased 

(P<0.0001) to 37.2% at d20 and 40.1% at d23 (Figure 3.8e). 

The effects of breed and challenge on the proportion of birds eating across age 

were not significant (Tables 3.4 and 3.6). However, the proportion of birds eating 
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increased with age within FG and SG-ST but not SG-CON (Figures 3.9a-b). Fewer 

(P<0.0001) SG-CON (5.0%) were eating at d23 than at d12 (Figure 3.9b). Additionally, 

at d12 the effects of breed, challenge, and their interaction were significant (Table 3.8). 

More (P=0.004) SG-CON birds (27.0%) were eating at d12 than any other treatment 

(19.3%) by 7.7% (Figure 3.10). 

The effects of breed and challenge on the proportion of birds sham foraging over 

time were significant, but only within CON and SG, respectively (Tables 3.4 and 3.6). 

There was no effect of challenge on FG birds (Figure 3.11a) but more (P=0.01) SG-CON 

birds (4.1%) sham foraged than SG-ST (2.5%) at d23 (Figure 3.11b). Additionally, more 

(P<0.0001) SG-CON were sham foraging than FG-CON on all days except d16 by 0.7% 

(d12), 1.0% (d20), and 2.3% (d23) (Figure 3.11c). The proportion of ST birds sham 

foraging did not differ between breeds across age (Figure 3.11d). Within d23, the effects 

of breed, challenge, and their interaction were significant (Table 3.8). More (P=0.02) 

SG-CON sham foraged (4.1%) than any other treatment (2.1%) on d23 (Figure 3.12). 

There was no effect of breed or challenge on total behavior across age (Tables 3.4 

and 3.6). Within d12, the effects of breed and challenge were significant, but not their 

interaction (Table 3.8). The proportion of SG-CON total behavior (39.5%) was greater 

(P≤0.05) than all other treatments (29.7%) by 9.8% (Figure 3.13). 

There was no effect of challenge on the proportion of aggressive birds across age 

independent of breed. Independent of challenge, fewer (P=0.09) FG birds tended to 

exhibit aggression than SG at each age by 0.1% (Figure 3.14). Within d12, the effects of 

breed and challenge were significant but not their interaction (Table 3.8). Fewer 
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(P=0.008) FG birds displayed aggression than SG birds by 0.2%, and more (P=0.03) 

CON birds displayed aggression than ST birds by 0.1% (Figure 3.15). 

3.5 DISCUSSION 

 The objective of this study was to evaluate differences in sickness behavior 

between fast- and slow-growing broiler chickens when challenged with Salmonella 

Typhimurium. Chicks from fast- (Ross 308) and slow-growing (Redbro) broiler breeds 

were housed together between day of hatch and day 7, when they were randomly 

assigned and exclusively placed into BSL-2 isolators. At day 14, half of the birds were 

orally gavaged with either the S. Typhimurium challenge or a Tryptic Soy Broth control. 

Throughout the study, 2 isolators per room (1 per breed per room) were recorded and 

coded for postures (sitting, standing, or locomoting) and behaviors, (eating, drinking, 

preening, stretching, sham foraging, allopreening, or aggression). Total behavior was also 

calculated as the sum of all behaviors. The first hypothesis of this study was that fast-

growing broilers would have a reduced behavioral repertoire when compared to the slow-

growing breed independent of challenge. The second hypothesis was that post-challenge, 

challenged slow-growing broilers would have greater behavioral signs of sickness.  

 In this study, there were few differences between breeds in the proportion of birds 

performing each posture (sitting, standing, or locomoting) and no differences between 

control and challenged birds. When comparing the first (day 12) and last (day 23) 

recording days, more birds sat and fewer stood as they aged. This finding is typical and 

expected among broilers as they grow (Bokkers and Koene, 2003; Sultana et al., 2013; 

Wallenbeck et al., 2016; Dixon, 2020). However, the proportion of birds locomoting was 

similar between the first and last day. Generally, locomotion-type behaviors, such as 
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walking or running, also become less frequent as broilers age (Bokkers and Koene, 2003; 

Sultana et al., 2013; Dixon, 2020). The birds in this study were housed in BSL-2 isolators 

with appropriate space allowance and stocking density according to the Ag Guide (FASS, 

2010), but isolator space still restricted opportunities for movement. It is possible that due 

to space limitations and resulting inability or need to locomote greater distances, birds 

were observed locomoting less often, therefore restricting any ability to capture 

differences across age. When comparing breeds, generally fewer slow-growing birds sat 

and more slow-growing birds locomoted than the fast-growing breed. These differences 

in activity have also been reported in previous research (Bokkers and Koene, 2002; 

Wallenbeck et al., 2016; Dixon, 2020; Yan et al., 2021).  

 A unique finding in this study was that at the two recording days following 

challenge (days 16 and 20), more birds of both breeds and treatments sat and fewer stood 

and locomoted. There was no effect of challenge on the proportion of birds sitting, 

standing, or locomoting, so these changes cannot be attributed to challenge. A likely 

cause for the increase in birds sitting and reduction in birds standing or locomoting is the 

behavioral stress response following gavage use at day 14, though this pattern in postures 

was not observed in any other behaviors. Orally gavaging animals is an invasive and 

stressful event, as evidenced by increases in the plasma corticosterone of rats orally 

gavaged with corn oil (Brown et al., 2000). Stressful events may cause long-term 

behavioral consequences, resulting in reduced activity manifested through increased 

sitting and reduced standing and locomoting.  

The inclusion of a negative (no gavage) control group would have been beneficial 

to this study to determine if the gavage process caused stress. A study by Walker and 
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colleagues (2012) reported that mice orally gavaged with water had increased fecal 

corticosterone metabolites paired with increased mean arterial pressure and heart rate up 

to 5 hours after the gavage when compared to mice provided an oral pill or no pill or 

gavage (control). However, another study found no differences in fecal corticoid 

metabolite levels in rats gavaged with water 4 weeks after gavaging compared to rats that 

received no handling, restraint handling, or dry gavaging (no liquid) (Turner et al., 2012). 

It is unknown to what extent the gavage causes stress in chickens and research is needed 

to investigate these effects.  

Additionally, stress could be caused by the gavage liquid. Findings by Brown and 

colleagues (2000) noted that plasma corticosterone increased in rats gavaged with corn 

oil, but not rats gavaged with water, indicating that stress in response to gavage may be 

dependent on the liquid being administered. TSB was administered to the control birds in 

this study as opposed to saline solution to control for the effect the broth in the challenge 

treatment might have had on physiological, microbial, and behavioral measures. The use 

of TSB versus saline may have thus caused more stress due to the composition of the 

liquid, or otherwise altered broiler gut microbiome, causing dysbiosis (Kogut, 2013). The 

microbiome-gut-brain axis (MGBA) defines the relationship between the gut microbiome 

and behavior, in which gut microbes transmit signals to the brain that can influence 

social, feeding, learning, and anxiety behaviors (Kraimi et al., 2019). Alterations of the 

microbiome can result from dietary changes, such as the provision of TSB in this study, 

and cause anxiety or stress (Kraimi et al., 2019), which might lead to increased sitting 

and reduced standing and locomoting. Further research is needed to investigate the 
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differences between administering saline versus other liquids through oral gavage and 

their effects on broiler physiological measures and behavior.  

While more of the slow-growing birds generally locomoted than fast-growing 

throughout the study, the proportion of fast- and slow-growing broilers locomoting was 

similar at day 16. The proportion of slow-growing birds locomoting greatly decreased 

from day 12 to day 16 but increased thereafter. The reduction in slow-growing broilers 

locomoting at this age may also have been caused by stress from the gavage. As the 

reduction was much greater in slow-growing birds than in fast-growing birds, it may 

indicate greater levels of stress in the slow-growing breed 2 days after gavaging followed 

by successful coping or recovery. 

The proportion of birds eating, drinking, and preening increased, as did total 

behavior. Increases in eating across age are consistent with findings from Dixon (2020), 

though other studies report no change in time spent feeding possibly due to a combination 

of reduced visits (Weeks et al., 2000) or increased consumption (Bokkers and Koene, 

2003) paired with increased duration at the feeder. In the present study, there was less 

distance for broilers to move to reach the feed compared to other research and 

commercial settings, which may have resulted in a greater likelihood of birds being coded 

at the feeder as eating. Increases in proportion of birds drinking across age are also 

consistent with findings from Dixon (2020). Several studies have reported increased 

preening with age, which is speculated to serve as a displacement behavior as a result of 

frustration from the inability to move as much at heavier weights (Bokkers and Koene, 

2003; Dixon, 2020). Though compliant with the Ag Guide (FASS, 2010), limited space 

in the isolators could have impacted this finding. Lastly, increased total behavior across 
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age was observed. Though broilers are less mobile with age their overall activity of other 

behaviors, such as foraging or preening, increase (Weeks et al., 2000; Dixon, 2020; 

Almeida et al., 2021). 

 The proportion of birds eating over time increased in all groups except the slow-

growing control group, where the proportion of slow-growing control birds eating 

decreased between day 12 and day 23. Additionally, more slow-growing control birds 

were eating on day 12 than any other treatment. This difference might suggest that the 

slow-growing breed may consume more while remaining less feed efficient, or consume 

less feed per bite, resulting in increased likelihood of a slow-growing bird eating at the 

feeder than a fast-growing bird. However, feed consumption was not measured in this 

study, and actual differences in feed consumption cannot be concluded. Differences in 

proportion of birds eating could also be related to the proportion of birds sham foraging 

because both are appetitive behaviors (Weeks et al., 2000). 

 The proportion of birds sham foraging generally increased with age, but further 

analysis revealed this to be most significant among slow-growing birds. On the other 

hand, the proportion of fast-growing birds sham foraging generally remained low with 

little to no change over time. The slow-growing breed sham foraged more than the fast-

growing breed over time except at days 12 and 16, where a similar proportion of each 

breed sham foraged. Dixon (2020) noted in a comparison between fast- and slow-

growing broiler breeds that the breeds differed more greatly in their observed behaviors 

later in life and the fast-growing breed allocated more time to sitting than to other 

behaviors. Foraging is observed to have some variance between genotypes of broilers, 

with a tendency for slower-growing broiler breeds to forage or engage in exploratory 
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behaviors more than medium (Almeida et al., 2012) and fast-growing breeds (Yan et al., 

2021). Breed differences in chicken foraging behavior are especially prominent between 

broilers and layers. When a Cobb/Ross hybrid broiler breed and Calder Ranger layer 

breed were provided free access feed and feed mixed in wood shavings, the broilers 

showed less interest in foraging in the wood shavings and greater inactivity than the 

layers (Lindqvist et al., 2006). However, Wallenbeck and colleagues reported no 

differences between fast- and slow-growing broiler breed foraging behavior, as well as 

decreased foraging behavior over time (Wallenbeck et al., 2016).  

Within the slow growing breed, the control birds sham foraged significantly more 

than the challenge birds, but there was no difference between control and challenge birds 

among the fast-growing breed. These results suggest that foraging behavior in the slow-

growing, but not the fast-growing breed, may have been reduced by S. Typhimurium 

infection. Abeyesinghe and colleagues (2021) observed that engagement in exploratory 

behaviors such as foraging can indicate better welfare, and that the reduction in these 

behaviors might precede clinical signs of poor health, as evidenced by negative 

associations with poor gait and leg abnormalities. The reduction of sham foraging 

behavior among challenged slow-growing birds could be symptomatic of a stronger 

immune response to the challenge. Alternatively, in this study the proportion of slow-

growing control birds sham foraging increased significantly over time compared to all 

other groups, but unlike all other groups, the proportion of slow-growing birds eating 

decreased. It is possible the heightened sham foraging and reduced eating may be related, 

though correlations between behaviors were not run. Lastly, the proportion of slow-

growing birds sham foraging might have been affected by lighting. Kristenson and 
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colleagues (2007) reported an increase in foraging behavior in broilers housed in dim 

lighting than in bright lighting. The BSL-2 rooms used in this study had notable 

differences in rom overhead light intensity, but these differences were not recorded. 

Additionally, the isolator location in the room relative to the location of the room lights 

might have altered light exposure. Isolators were stacked 2 high, with an upper and lower 

isolator per unit, and not all isolators in each room were able to be arranged to face the 

same direction. Thus, light exposure may have varied between isolator based on stack 

(upper or lower) or direction faced. It is possible that differences in lighting between 

isolators and rooms accounted for differences in sham foraging between breeds and 

challenge treatments. However, random assignment of birds into isolators should have 

eliminated the possibility of isolator location affecting behavior. 

 Total behavior increased with age in this study and a similar proportion of birds 

exhibited total behaviors between days 12 and 16 but increased thereafter. Although 

broilers may allocate more time to sitting or resting as they age (Weeks et al., 2000; 

Dixon, 2020), it is also observed that the overall repertoire of behaviors increases with 

age (Almeida et al., 2012). At day 12, numerically more slow-growing birds were coded 

for a behavior than the fast-growing breed. The slow-growing breed, as a result, may 

utilize more diverse behavioral repertoire than the fast-growing breed at this age. In a 

study by Almeida and colleagues (2012), slow-growing broilers were more active 

throughout the day than a medium-growth broiler breed. 

 Across age, more slow-growing birds tended to be aggressive than fast-growing 

birds. Additionally, the proportion of aggressive birds differed at day 12, in which the 

slow-growing breed was observably more aggressive than the fast-growing breed, and the 
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assigned control birds were more aggressive than the assigned challenge birds. Previous 

research has reported breed-related differences in aggression in laying breeds (Cheng et 

al., 2001), mice (Sandnabba, 1996), and canines (Duffy et al., 2008). There was 

insufficient data to analyze aggression across age inclusive of the effect of challenge and 

aggression occurred with very low frequency (<0.5%). Challenge did not affect challenge 

across age independent of breed, but evaluation of the raw means revealed numerical 

differences between challenge treatments in which challenge birds were less aggressive 

than control birds. Prior research reports that aggression can either increase or decrease in 

animals in response to a pathogenic infection (Weary et al., 2014). However, the 

proportion of aggressive challenge assigned birds was similar both before and after 

challenge. A larger study involving more birds might have resulted in more observations 

of aggressive behavior and would have provided sufficient data to statistically analyze 

differences in the occurrence of aggressive behavior. Further research is needed to 

investigate differences between fast- and slow-growing broiler breeds regarding 

aggression, as well as to determine the effect of S. Typhimurium infection on the 

frequency of aggressive behaviors.  

On the other hand, differences in lighting between rooms and isolators as 

discussed previously might have affected the frequency of observations of aggressive 

birds. Prior research shows that increased light intensity can increase aggression in 

broilers (Prayitno et al., 1997; Mahmood et al., 2014). The potential effect of light 

intensity on aggression conflicts with the effect on sham foraging, because the slow-

growing breed and control treatment had the greatest proportion of birds performing each 

behavior. If differences in lighting intensity existed, we would expect an inverse 
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relationship between the proportion of birds engaging in sham foraging and proportion of 

birds engaging in aggression, as increases in sham foraging are associated with dim 

lighting (Kristenson et al., 2007) but increases in aggression are associated with bright 

lighting (Prayitno et al., 1997; Mahmood et al., 2014). As light intensity was not recorded 

in this study, it is unknown if differences in lighting impacted behavior, particularly 

aggression or sham foraging, or if there was any interaction of lighting and challenge on 

behavior.  

 In this study, breed and age differences were apparent regarding behavior, but 

there was little to no effect of challenge on broiler behavior. Differences were observed 

between challenge and control birds in sham foraging behavior (slow-growing only) and 

the raw means of aggressive behavior, but these differences could be explained by 

confounding factors sigh as light intensity. Berghman noted that due to their genetic 

background and selection, broilers are less prone to respond behaviorally to sickness 

(Berghman, 2016). Thus, it is possible that the S. Typhimurium challenge in this study 

induced no observable behavioral consequences. 
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Table 3.1. Ethogram of postures and behaviors. 

Type Behavior Description 

Posture 

 

Sitting 

 

Resting, hocks on the ground, or lying on the side. Head may 

or may not be visible. Eyes may be open or closed. Not 

changing location. 

Posture 

 

Standing 

 

One or both feet on floor. Immobile, not changing location. If 

in between movement, feet are together. 

Posture 

 

Locomotion 

 

Mobile and changing location. Includes taking steps in any 

direction at any speed, and jumping, hopping, or lunging. Also 

includes moving while hocks are resting on the ground. 

Not 

Visible 

Not Visible Obstructed from view. Posture cannot be accurately 

determined. 

Behavior 

 

Eating 

 

Adjacent to the feeder with head over or in trough. May or may 

not be actively pecking feed.  

Behavior 

 

Drinking 

 

Adjacent to the waterer and actively dipping beak in water or 

raising beak to swallow. 

Behavior 

 

Preening 

 

Self-grooming by running beak through feathers, pecking self, 

or scratching self with feet. 

Behavior Stretching Extending one leg and/or wing away from the body while 

standing. Not mobile. 

Behavior Sham 

Foraging 

Physically investigating the environment, but not other birds, 

by pecking or scratching. 

Behavior Allopreening Preening directed at conspecifics. Includes light, non-forceful 

and brief pecking. Contact cannot be defined as aggression. 

Behavior Aggression Vigorous pecking or kicking at a conspecific with intent of 

injurious physical contact, or threats (no contact; erect necks, 

raised neck feathers, intentional movement). Interaction 

establishes pecking order. Only the aggressor bird is coded for 

aggression. 

Behavior Total 

Behavior 

The sum of all behaviors (eating, drinking, preening, 

stretching, sham foraging, allopreening, and aggression). 

Ethogram adapted from: Baxter et al., 2019; Bailie et al., 2013; Bokkers and Koene, 

2003; Bizeray et al., 2002; Bizeray et al., 2000; Prayitno et al., 1997. 
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Table 3.2. Table of possible combinations of coded postures and behaviors for a single 

bird. 

 Sitting Standing Locomotion Not Visible 

Eating ✔ ✔ ✔ ✖ 

Drinking ✔ ✔ ✖ ✖ 

Preening ✔ ✔ ✖ ✖ 

Stretching ✔ ✔ ✖ ✖ 

Sham Foraging ✔ ✔ ✔ ✖ 

Allopreening ✔ ✔ ✖ ✖ 

Aggression ✔ ✔ ✔ ✖ 

No Behavior ✔ ✔ ✔ ✔ 
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Table 3.3. Across age (d) analysis of the effect of age, breed, and their interaction on proportion (%) of birds performing a 

posture (sitting, standing, or locomoting) or not visible, within challenge (CON or ST), at d12, 16, 20, and 23. Data shown as 

mean proportion (± SEM) of male broilers from fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium 

(ST) or TSB (CON) at d14. 

  d12 d16 d20 d23  P-Value4 

Beh.1 Chal.2 FG3 SG FG SG FG SG FG SG SEM Age Br. Int. 

SIT CON 57.8c 46.5d 68.2a 62.9abc 70.9a 59.0bc 64.4ab 58.3bc 3.0 0.0001 0.03 0.005 

  ST 54.8b 56.3b 65.5a 67.1a 70.9a 64.6a 61.7b 53.8b 4.7 0.0001 0.67 0.0001 

STD CON 37.4a 43.5b 28.0b 33.1b 25.7b 35.5b 29.9b 33.4b 2.9 0.0001 0.11 0.03 

  ST 39.5a 36.3a 29.3c 28.4c 24.5d 27.4d 32.9b 38.5b 4.3 0.0001 0.85 0.0001 

LOC CON 4.3bcd 7.8a 3.6cd 3.6d 3.1d 5.2bc 5.3b 7.5a 0.6 0.0001 0.001 0.001 

  ST 4.4c 6.3ab 4.4c 4.2c 4.2c 5.4bc 4.4c 7.3a 0.5 0.002 0.0002 0.004 

NVS CON 0.4bc 2.1a 0.2c 0.4bc 0.3c 0.4c 0.5bc 0.7b 0.2 0.0001 0.0002 0.0001 

  ST 1.4b 1.1b 0.9c 0.3c 0.5a 2.7a 1.0c 0.4c 0.3 0.0001 0.47 0.0001 
1Beh. = behavior; SIT = sitting, STD = standing, LOC = locomoting, NVS = not visible. 
2Chal. = challenge; CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
3FG = fast-growing (Ross), SG = slow-growing (Redbro). 
4P-values represent the main effect of age (d), breed (Br.; FG or SG), and the interaction of age and breed (Int.). 
abcd Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 3.4. Across age (d) analysis of the effect of age, breed, and their interaction on proportion (%) of birds performing a 

behavior (eating, drinking, preening, stretching, sham foraging, allopreening, or aggression) and total coded behavior (total 

behavior), within challenge, at d12, 16, 20, and 23. Data shown as mean proportion (± SEM) of male broilers from fast- (FG) 

and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

  d12 d16 d20 d23  P-Value4 

Beh.1 Chal.2 FG3 SG FG SG FG SG FG SG SEM Age Br. Int. 

EAT CON 19.7ab 27.0ab 22.3b 21.2b 26.6a 22.6a 26.8a 21.9a 1.3 0.004 0.67 0.0001 

  ST 18.7c 19.4c 21.0c 19.4c 25.2b 25.5b 26.8a 28.0a 2.0 0.0001 0.96 0.27 

DRK CON 1.7b 1.9b 2.8a 2.1a 2.0b 1.4b 2.6a 2.7a 0.3 0.007 0.30 0.32 

  ST 1.6 2.5 1.9 1.5 1.8 2.0 2.6 2.0 0.4 0.17 0.94 0.03 

PRN CON 5.5b 6.1b 6.1b 5.6b 5.5b 6.7b 7.2a 7.6a 0.6 0.0005 0.51 0.31 

  ST 5.1c 6.6c 6.3bc 6.2bc 7.6ab 6.0ab 8.0a 6.8a 0.8 0.005 0.77 0.003 

STR CON 0.7 0.9 0.7 0.9 0.7 0.7 0.8 0.9 0.2 0.78 0.24 0.93 

  ST 0.3b 0.9a 0.9b 0.9a 0.5b 1.3a 0.6b 0.7a 0.2 0.13 0.03 0.01 

SHF CON 1.0cd 1.7bc 1.0cd 0.8d 1.1cd 2.1b 1.8b 4.1a 0.3 0.0001 0.0003 0.0001 

  ST 0.8c 0.9c 1.8b 1.1b 1.9a 2.0a 1.8a 2.5a 0.3 0.0001 0.81 0.05 

ALP CON 0.8b 1.6a 1.3b 0.9a 0.6b 2.3a 1.1b 1.5a 0.2 0.25 0.001 0.0001 

  ST 1.2b 1.4b 2.4a 1.6a 1.0b 1.2b 1.2a 2.4a 0.5 0.0001 0.75 0.0003 

AGR5 CON 0.1 0.3 0.1 0.1 0.1 0.3 0.0 0.3 - - - - 

  ST 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 - - - - 

TBEH CON 29.5bc 39.5bc 34.3c 31.6c 36.6b 36.2b 40.4a 39.0a 2.1 0.0001 0.61 0.0001 

  ST 27.8d 31.8d 34.3c 30.8c 38.0b 38.0b 41.0a 42.5a 2.4 0.0001 0.87 0.0006 
1Beh. = behavior; EAT = eating, DRK = drinking, PRN = preening, STR = stretching, SHF = sham foraging, ALP = 

allopreening, AGR = aggression, TBEH = total behavior. 
2Chal. = challenge; CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
3FG = fast-growing (Ross), SG = slow-growing (Redbro). 
4P-values represent the main effect of age (d), breed (Br.; FG or SG), and the interaction of age and breed (Int.). 
5Only raw means are reported for aggression in the across age analyses due to insufficient data for the statistics software. 
abcd Rows not sharing the same letters indicate a significant difference at P≤0.05.



 

140 
 

Table 3.5. Across age (d) analysis of the effect of age, challenge, and their interaction on proportion (%) of birds performing a 

posture (sitting, standing, or locomoting) or not visible, within breed, at d12, 16, 20, and 23. Data shown as mean proportion (± 

SEM) of male broilers from fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at 

d14. 

  d12 d16 d20 d23  P-Value4 

Beh.1 Br.2 CON3 ST CON ST CON ST CON ST SEM Age Chal. Int. 

SIT FG 57.8d 54.8d 68.2b 65.5b 70.9a 70.9a 64.4c 61.7c 3.1 0.0001 0.61 0.53 

  SG 46.5d 56.3d 62.9a 67.1a 59.0b 64.6b 58.3c 53.8c 4.7 0.0001 0.56 0.0001 

STD FG 37.4a 39.5a 28.0c 29.3c 25.7d 24.5d 29.9b 32.9b 3.0 0.0001 0.76 0.19 

  SG 43.5a 36.3a 33.1c 28.4c 35.5c 27.4c 33.4b 38.5b 4.2 0.0001 0.52 0.0001 

LOC FG 4.3ab 4.4ab 3.6b 4.4b 3.1b 4.2b 5.3a 4.4a 0.5 0.01 0.58 0.05 

  SG 7.8a 6.3a 3.6c 4.2c 5.2b 5.4b 7.5a 7.3a 0.6 0.0001 0.67 0.17 

NVS FG 0.4cd 1.4a 0.2d 0.9bc 0.3d 0.5cd 0.5cd 1.0b 0.2 0.004 0.0002 0.12 

  SG 2.1a 1.1a 0.4b 0.3b 0.4a 2.7a 0.7b 0.4b 0.2 0.0001 0.42 0.0001 
1Beh. = behavior; SIT = sitting, STD = standing, LOC = locomoting, NVS = not visible. 
2Br. = breed; FG = fast-growing (Ross), SG = slow-growing (Redbro). 
3CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
4P-values represent the main effect of age (d), challenge (Chal.; CON or ST), and the interaction of age and challenge (Int.). 
abcd Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 3.6. Across age (d) analysis of the effect of age, challenge, and their interaction on proportion (%) of birds performing a 

behavior (eating, drinking, preening, stretching, sham foraging, allopreening, aggression, or aggression) and total coded 

behavior (total behavior), within breed, at d12, 16, 20, and 23. Data shown as mean proportion (± SEM) of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

  d12 d16 d20 d23  P-Value4 

Beh.1 Br.2 CON3 ST CON ST CON ST CON ST SEM Age Chal. Int. 

EAT FG 19.7c 18.7c 22.3b 21.1b 26.6a 25.2a 26.8a 26.8a 2.0 0.0001 0.73 0.82 

  SG 27.0b 19.4b 21.2c 19.4c 22.6ab 25.5ab 21.9a 28.0a 1.3 0.0001 0.94 0.0001 

DRK FG 1.7c 1.6c 2.8ab 1.9ab 2.0bc 1.8bc 2.6a 2.6a 0.4 0.005 0.50 0.33 

  SG 1.9 2.5 2.1 1.5 1.4 2.0 2.7 2.0 0.3 0.11 0.80 0.05 

PRN FG 5.5c 5.1c 6.1b 6.3b 5.5b 7.6b 7.2a 8.0a 0.8 0.0001 0.49 0.04 

  SG 6.1ab 6.6ab 5.6b 6.3b 6.7b 6.0b 7.6a 6.8a 0.7 0.03 0.92 0.22 

STR FG 0.7 0.3 0.7 0.9 0.7 0.5 0.8 0.6 0.2 0.16 0.45 0.17 

  SG 0.9 0.9 0.9 0.9 0.7 1.3 0.9 0.7 0.2 0.63 0.30 0.11 

SHF FG 1.0c 0.8c 1.0b 1.8b 1.1ab 1.9ab 1.8a 1.8a 0.3 0.0002 0.32 0.03 

  SG 1.7cd 0.9de 0.8e 1.1de 2.1bc 2.0bc 4.1a 2.5b 0.3 0.0001 0.02 0.002 

ALP FG 0.8bc 1.2bc 1.3a 2.4a 0.6c 1.0c 1.1b 1.2b 0.5 0.0001 0.45 0.06 

  SG 1.6ab 1.4ab 0.9b 1.6b 2.3a 1.2a 1.5a 2.4a 0.2 0.02 0.71 0.0001 

AGR5 FG 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 - - - - 

  SG 0.3 0.1 0.1 0.1 0.3 0.0 0.3 0.0 - - - - 

TBEH FG 29.5d 27.8d 34.3c 34.3c 36.6b 38.0b 40.4a 41.0a 2.6 0.0001 0.98 0.41 

  SG 39.5b 31.8b 31.6c 30.8c 36.2b 38.0b 39.0a 42.5a 2.0 0.0001 0.76 0.0001 
1Beh. = behavior; EAT = eating, DRK = drinking, PRN = preening, STR = stretching, SHF = sham foraging, ALP = 

allopreening, AGR = aggression, TBEH = total behavior. 
2Br. = breed; FG = fast-growing (Ross), SG = slow-growing (Redbro). 
3CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium challenge. 
4P-values represent the main effect of age (d), challenge (Chal.; CON or ST), and the interaction of age and challenge (Int.). 
5Only raw means are reported for aggression in the across age analyses due to insufficient data for the statistics software. 
abcd Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Table 3.7. Within age (d) analysis of the effect of breed, challenge, and their interaction on proportion (%) of birds performing 

a posture (sitting, standing, locomoting, or not visible) at d12, 16, 20, and 23. Data shown as mean proportion (± SE) of male 

broilers from fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

  Treatment  P-Value3 

Beh.1 Age FG-CON2 FG-ST SG-CON SG-ST  Br. Chal. Int. 

SIT 12 57.8 ± 3.5 54.8 ± 3.5 46.5 ± 3.5 56.3 ± 3.5  0.17 0.34 0.07  
16 68.2 ± 4.3 65.5 ± 4.3 62.9 ± 4.3 67.1 ± 4.3  0.67 0.86 0.43  
20 70.9 ± 5.7 70.9 ± 5.7 59.0 ± 5.7 64.6 ± 5.7  0.11 0.63 0.62  
23 64.4 ± 5.8 61.7 ± 5.8 58.3 ± 5.8 53.8 ± 5.8  0.23 0.54 0.87 

STD 12 37.4 ± 2.5 39.5 ± 2.5 43.5 ± 2.5 36.3 ± 2.5  0.55 0.29 0.06  
16 28.0 ± 3.3 29.3 ± 3.3 33.1 ± 3.3 28.4 ± 3.3  0.52 0.61 0.37  
20 25.7 ± 5.9 24.5 ± 5.9 35.5 ± 5.9 27.4 ± 5.9  0.28 0.42 0.56  
23 29.9 ± 3.8 32.9 ± 3.8 33.4 ± 3.8 38.5 ± 3.8  0.23 0.28 0.79 

LOC 12   4.3 ± 2.1   4.4 ± 2.1   7.8 ± 2.1   6.3 ± 2.1  0.19 0.73 0.69  
16   3.6 ± 1.0   4.4 ± 1.0   3.6 ± 1.0   4.2 ± 1.0  0.91 0.51 0.94  
20   3.1 ± 0.9   4.2 ± 0.9   5.2 ± 0.9   5.4 ± 0.9  0.08 0.50 0.63  
23   5.3 ± 1.8   4.4 ± 1.8   7.5 ± 1.8   7.3 ± 1.8  0.17 0.76 0.83 

NVS 12   0.4 ± 0.9   1.4 ± 0.9   2.1 ± 0.9   1.1 ± 0.9  0.43 0.97 0.27  
16   0.2 ± 0.3   0.9 ± 0.3   0.4 ± 0.3   0.3 ± 0.3  0.58 0.36 0.20  
20   0.3 ± 0.9   0.5 ± 0.9   0.4 ± 0.9   2.7 ± 0.9  0.20 0.15 0.24  
23   0.5 ± 0.5   1.0 ± 0.5   0.7 ± 0.5   0.4 ± 0.5  0.76 0.90 0.37 

1Beh. = behavior; SIT = sitting, STD = standing, LOC = locomoting, NVS = not visible. 
2FG = fast-growing (Ross), SG = slow-growing (Redbro), CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium 

challenge. 
3P-values represent the main effect of breed (Br.; FG or SG), challenge (Chal.; CON or ST), and the interaction of breed and 

challenge (Int.). 
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Table 3.8. Within age (d) analysis of the effect of breed, challenge, and their interaction on proportion (%) of birds performing 

a behavior (eating, drinking, preening, stretching, sham foraging, allopreening, or aggression) and total coded behavior (total 

behavior) at d12, 16, 20, and 23. Data shown as mean proportion (± SEM) of male broilers from fast- (FG) and slow-growing 

(SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

  Treatment P-Value3 

Beh.1 Age FG-CON2 FG-ST SG-CON SG-ST Br. Chal. Int. 

EAT 12 19.7 ± 1.2b 18.7 ± 1.2b 27.0 ± 1.2a 19.4 ± 1.2b 0.0006 0.0003 0.004  
16 22.3 ± 2.6 21.0 ± 2.6 21.2 ± 2.6 19.4 ± 2.6 0.60 0.55 0.92  
20 26.6 ± 1.9 25.2 ± 1.9 22.6 ± 1.9 25.5 ± 1.9 0.36 0.71 0.27  
23 26.8 ± 3.9 26.8 ± 3.9 21.9 ± 3.9 28.0 ± 3.9 0.63 0.44 0.43 

DRK 12   1.7 ± 0.4   1.6 ± 0.4   1.9 ± 0.4   2.5 ± 0.4 0.16 0.50 0.44  
16   2.8 ± 0.3a   1.9 ± 0.3b   2.1 ± 0.3a   1.5 ± 0.3b 0.05 0.009 0.60  
20   2.0 ± 0.4   1.8 ± 0.4   1.4 ± 0.4   2.0 ± 0.4 0.48 0.59 0.30  
23   2.6 ± 0.4   2.6 ± 0.4   2.7 ± 0.4   2.0 ± 0.4 0.50 0.38 0.31 

PRN4 12   5.4 ± 0.8   5.1 ± 0.7   6.0 ± 0.8   6.6 ± 0.9 0.20 0.91 0.53  
16   6.1   6.3   5.6   6.2 - - -  
20   5.5 ± 0.8   7.6 ± 1.1   6.6 ± 1.0   5.9 ± 0.9 0.83 0.49 0.13  
23   7.2 ± 1.6   7.5 ± 1.6   7.5 ± 1.7   6.8 ± 1.5 0.91 0.90 0.76 

STR 12   0.7 ± 0.2b   0.3 ± 0.2b   0.9 ± 0.2a   0.9 ± 0.2a 0.02 0.31 0.26  
16   0.7 ± 0.3   0.9 ± 0.3   0.9 ± 0.3   0.9 ± 0.3 0.76 0.69 0.63  
20   0.7 ± 0. 2 b   0.5 ± 0.2b   0.7 ± 0.2a   1.3 ± 0.2a 0.006 0.18 0.02  
23   0.8 ± 0.3   0.6 ± 0.3   0.9 ± 0.3   0.7 ± 0.3 0.68 0.49 0.83 

SHF 12   1.0 ± 0.6   0.8 ± 0.6   1.7 ± 0.6   0.9 ± 0.6 0.48 0.42 0.61  
16   1.0 ± 0.4   1.8 ± 0.4   0.8 ± 0.4   1.1 ± 0.4 0.35 0.19 0.61  
20   1.1 ± 0.3b   1.9 ± 0.3b   2.1 ± 0.3a   2.0 ± 0.3a 0.03 0.15 0.09  
23   1.8 ± 0.4b   1.8 ± 0.4b   4.1 ± 0.4a   2.5 ± 0.4a 0.0001 0.02 0.02 
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Table 3.9. cont. 

  Treatment P-Value3 

Beh.1 Age FG-CON2 FG-ST SG-CON SG-ST Br. Chal. Int. 

ALP 12   0.8 ± 0.6   1.2 ± 0.6   1.6 ± 0.6   1.4 ± 0.6 0.41 0.89 0.59  
16   1.3 ± 0.7   2.4 ± 0.7   0.9 ± 0.7   1.6 ± 0.7 0.38 0.18 0.83  
20   0.6 ± 0.3b   1.0 ± 0.3b   2.3 ± 0.3a   1.2 ± 0.3a 0.0003 0.11 0.003  
23   1.1 ± 0.6   1.2 ± 0.6   1.5 ± 0.6   2.4 ± 0.6 0.24 0.43 0.51 

AGR 12   0.1 ± 0.1b   0.0 ± 0.1b   0.3 ± 0.1a   0.1 ± 0.1b 0.008 0.03 0.43  
16   0.1 ± 0.1   0.0 ± 0.1   0.1 ± 0.1   0.1 ± 0.1 0.43 0.43 0.69  
20   0.1 ± 0.1   0.0 ± 0.1   0.3 ± 0.1   0.0 ± 0.1 0.33 0.07 0.21  
23   0.0 ± 0.2   0.0 ± 0.2   0.3 ± 0.2   0.1 ± 0.2 0.22 0.46 0.62 

TBEH 12 29.5 ± 2.4b 27.8 ± 2.4b 39.5 ± 2.4a 31.8 ± 2.4b 0.003 0.05 0.21  
16 34.3 ± 3.2 34.3 ± 3.2 31.6 ± 3.2 30.8 ± 3.2 0.33 0.90 0.89  
20 36.6 ± 1.9 38.0 ± 1.9 36.2 ± 1.9 38.0 ± 1.9 0.93 0.40 0.90  
23 40.4 ± 3.2 41.0 ± 3.2 39.0 ± 3.2 42.5 ± 3.2 0.98 0.52 0.66 

1Beh. = behavior; EAT = eating, DRK = drinking, PRN = preening, STR = stretching, SHF = sham foraging, ALP = 

allopreening, AGR = aggression, TBEH = total behavior. 
2FG = fast-growing (Ross), SG = slow-growing (Redbro), CON = control (TSB), ST = 1 mL 1.3x108 CFU/mL S. Typhimurium 

challenge. 
3P-values represent the main effect of breed (Br.; FG or SG), challenge (Chal.; CON or ST), and the interaction of breed and 

challenge (Int.). 
4Only raw means are reported for preening on d16 in the within age analysis due to insufficient data for the statistics software. 
ab Rows not sharing the same letters indicate a significant difference at P≤0.05.
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Figure 3.1. GoPro camera set-up facing an isolator. On the isolator door is a hanging 

clock displaying real time. 
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Figure 3.2. View of an isolator within a video recording which observers used to code 

behavior. Observers were able to adjust brightness settings accordingly within each video 

recording to improve vision of the birds. 
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a)  b)  

c)  

 

 

Figure 3.3. Effect of age (d) on mean proportion (%) of birds performing a posture at 

d12, 16, 20, and 23. Data shown as mean proportion of male broilers from fast- (FG) and 

slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

a) Sitting. b) Standing. c) Locomoting. ABCColumns not sharing the same letters are 

significantly different.
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Figure 3.4. Effect of age (d), breed, and their interaction on mean proportion (%) of birds 

sitting at d12, 16, 20, and 23. Data shown as mean proportion of male broilers from fast- 

(FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) at d14. ABCDColumns not sharing the same letters are significantly different.
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a)  

b)  

Figure 3.5. Effect of age (d), breed, and their interaction on mean proportion (%) of birds 

sitting at d12, 16, 20, and 23. Data shown as mean proportion of male broilers from fast- 

(FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) at d14 on a) CON birds, b) ST birds. ABCDColumns not sharing the same letters 

are significantly different.
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Figure 3.6. Effect of age (d), challenge, and their interaction on mean proportion (%) of 

birds standing at d12, 16, 20, and 23. Data shown as mean proportion of male broilers 

from fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or 

TSB (CON) at d14 on SG birds. ABCColumns not sharing the same letters are 

significantly different.
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Figure 3.7. Effect of age (d), breed, and their interaction on mean proportion (%) of birds 

locomoting at d12, 16, 20, and 23. Data shown as mean proportion of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) at d14. ABCDColumns not sharing the same letters are significantly different.
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a)  b)  

c)  d)  

e)  

 

Figure 3.8. Effect of age (d) on mean proportion (%) of birds performing a behavior at 

d12, 16, 20, and 23. Data shown as mean proportion of male broilers from fast- (FG) and 

slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB (CON) at d14. 

a) Eating. b) Drinking. c) Preening. d) Sham foraging. e) Total Behavior. ABCColumns 

not sharing the same letters are significantly different.
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a)  

b)  

Figure 3.9. Effect of age (d), challenge, and their interaction on mean proportion (%) of 

birds eating at d12, 16, 20, and 23. Data shown as mean proportion of male broilers from 

fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or TSB 

(CON) at d14 on a) FG birds, and b) SG birds. ABCDEColumns not sharing the same 

letters are significantly different.
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Figure 3.10. Effect of breed, challenge, and their interaction on the mean proportion (%) 

of birds eating at d12. Data shown as mean proportion of male broilers from fast- (FG) 

and slow-growing (SG) breeds prior to challenge with S. Typhimurium (ST) or TSB 

(CON) at d14. ABCColumns not sharing the same letters are significantly different.
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a)  b)  

c)  d)  

Figure 3.11. Effect of age (d), breed, challenge, and their interaction on mean proportion 

(%) of birds sham foraging at d12, 16, 20, and 23. Data shown as mean proportion of 

male broilers from fast- (FG) and slow-growing (SG) breeds challenged with S. 

Typhimurium (ST) or TSB (CON) at d14 on a) FG birds, b) SG birds, c) CON birds, and 

d) ST birds.  ABCDEColumns not sharing the same letters are significantly different.
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Figure 3.12. Within age (d) analysis of the effect of breed, challenge, and their 

interaction on the proportion (%) of birds sham foraging at d23. Data shown as mean 

proportion of male broilers from fast- (FG) and slow-growing (SG) breeds challenged 

with S. Typhimurium (ST) or TSB (CON) at d14. ABColumns not sharing the same letters 

are significantly different.
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Figure 3.13. Within age (d) analysis of the effect of breed, challenge, and their 

interaction on the proportion (%) of total behavior at d12. Data shown as mean 

proportion of male broilers from fast- (FG) and slow-growing (SG) breeds challenged 

with S. Typhimurium (ST) or TSB (CON) at d14. ABColumns not sharing the same letters 

are significantly different.
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Figure 3.14. Effect of age (d), breed, and their interaction on mean proportion (%) of 

aggressive birds at d12, 16, 20, and 23. Data shown as mean proportion of male broilers 

from fast- (FG) and slow-growing (SG) breeds challenged with S. Typhimurium (ST) or 

TSB (CON) at d14. ABColumns not sharing the same letters are significantly different.
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Figure 3.15. Within age (d) analysis of the effects of breed and challenge on proportion 

(%) of aggressive birds at d12. Data shown as mean proportion of male broilers from 

fast- (FG) and slow-growing (SG) breeds prior to challenge with S. Typhimurium (ST) or 

TSB (CON) at d14. ABColumns not sharing the same letters are significantly different.
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CHAPTER 4 Conclusion
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4.1 Summary and Implications 

Due to present public concerns regarding the welfare of conventional fast-

growing broilers, the increasing use of slower-growing broiler breeds has become a hot 

topic in animal welfare. Additionally, the ever-present threat of Salmonella to the broiler 

industry and human food supply remains an animal welfare and public health issue that 

must be faced. The results of this study indicate that meaningful differences exist 

between fast- and slow-growing broiler breeds regarding body weight, immune response, 

gut morphology, and behavior when challenged with S. Typhimurium and independent of 

challenge. The objectives of this study were to evaluate differences between fast- and 

slow-growing broiler breeds when challenged with S. Typhimurium and to identify signs 

of Salmonella infection in broilers. 

The fast-growing breed was numerically heavier at days 13 and 17 and 

significantly heavier at days 21 and 24, but challenged birds had numerically lower body 

weight at day 24 (10 days post-challenge) compared to controls. There is the possibility 

that challenged fast-growing broilers might have continued to have reductions in body 

weight compared to controls after day 24. In this case, reduced body weight gain would 

have been a more pronounced symptom of S. Typhimurium infection in the fast-growing 

breed. On the other hand, slow-growing broiler body weight did not appear to be affected 

by the challenge, indicating S. Typhimurium infection might have caused the fast-

growing breed to suffer greater performance losses beyond day 24. 

 Immune response differed between breeds. Both breeds had an elevated plasma 

IgA response to challenge 1 week following challenge, but by day 24 the fast-growing 

breed had higher plasma IgA concentration than the slow-growing breed. While no 
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plasma IgG response was detected in either breed, fast-growing broiler plasma IgG 

increased after day 17, while slow-growing broiler IgG did not change. Selection for 

increased growth may have additionally resulted in faster development of lymphoid 

organs or earlier maturation of the immune system in the fast-growing breed, though the 

rate of development or heightened antibody levels do not necessarily indicate a stronger 

or more efficient immune response (van der Most, 2010; Barrow et al., 2012). Further 

research is needed to investigate the relationship between growth rate and the 

development of immunocompetence in broilers. Another unique finding in this study was 

the slow-growing breed had greater plasma IgG at day 7 which may be remnant maternal 

antibody conferred from the yolk (Gharaibeh and Mahmoud, 2013). Higher 

concentrations of maternal antibody improve immune protection early life until 

immunocompetence is attained (Marcq et al., 2011). 

The results suggest that the fast-growing breed had greater jejunum intestinal 

morphology at day 7, implying greater nutrient absorption. The fast-growing breed’s gut 

morphology was more impaired by challenge than the slow-growing breed in both the 

jejunum and ileum at day 24 but appeared to recover in the jejunum. The slow-growing 

breed had a more resilient intestinal morphology in both segments and thus could better 

maintain normal intestinal function. Less resilient intestinal morphology, as observed in 

the fast-growing breed, causes reduced nutrient absorption and as a result, reductions in 

performance. 

 Lastly, select behaviors differed between breeds. Generally, more fast-growing 

birds sat and fewer locomoted than the slow-growing breed. The proportion of slow-

growing birds sham foraging increased over time, in which fewer challenged slow-
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growing broilers sham foraged than the controls. The fast-growing breed, however, 

showed little to no difference in sham foraging behavior over time nor between challenge 

and control treatments. Though the frequency of aggression was low, the slow-growing 

breed was more aggressive than the fast-growing breed.  

4.2 Limitations 

 In the present study, several limitations were encountered. First, we were limited 

by facility use and animal housing options, which in turn limited the length of the study. 

Originally, the trial was to last until both breeds reached market weight (42 days for the 

fast-growing breed, and 62 days for the slow-growing breed) with challenge occurring on 

day 22. Due to limited availability of BSL-2 rooms and isolators for animal housing, we 

were only able to house birds in isolators smaller than those planned for the original trial. 

Thus, to avoid exceeding appropriate stocking density within the available isolators, the 

study was shortened to 24 days. Shortening of the study reduced our ability to collect 

samples that might reflect breed differences at greater ages or weights as well as long 

term effects of S. Typhimurium challenge in either breed. Based on the data in the present 

study, it is quite possible that differences in body weight, gut morphology, immune 

response, and behavior would have been observed after day 24. Future studies should 

investigate these differences beyond day 24 or 10 days post-challenge. 

 Secondly, limitations existed regarding sampling methods and times. In this 

study, we followed methods that resulted in extreme damage to histological samples 

collected on days 13, 17, and 21, and they were thus excluded from the study. An attempt 

was made to analyze the remaining good samples from these sampling days, but 

imbalances between treatment groups made the data unsuitable for statistical analysis. 



 

164 
 

Gut morphology data from days 13, 17, and 21 would have been highly beneficial in 

elucidating breed differences in gut morphology as well as the more immediate effect of 

S. Typhimurium challenge on morphological measures. The gut morphology results from 

day 7 suggest that further breed differences might have been observed, and the results 

from day 24 suggest that challenge impacted the gut much earlier. Future studies should 

take histological samples at these days to better illustrate these differences and changes in 

the gut morphology of fast- and slow-growing birds when infected with S. Typhimurium. 

Sampling time and duration, in conjunction with limited availability of BSL-2 

trained lab members, may have impacted data. Since few trained individuals were 

available on some sampling days and the number of birds sampled and samples collected, 

each sampling day lasted several hours. Additionally, due to biosecurity and facility 

protocol, control birds had to be sampled prior to challenge birds. Time of day can affect 

biological functions, particularly circulating concentrations of molecules and white blood 

cells in the blood, and it is possible this led to the challenge effect observed at day 13. 

Several immune markers of the innate immune response, such as proinflammatory 

cytokine IL-6, respond acutely to infection in which the response may not be observed 

longer than 48 hours post-infection (Xie et al., 2000). Thus, there were few options to 

study the innate immune response, and of which, fewer commercial kits available. There 

was an attempt to study plasma IFN-y concentrations using a do-it-yourself ELISA kit, 

but issues with both the reliability of the kit and stability of IFN-y in the plasma 

following storage and freeze-thaw cycles limited our ability to do so. Future research 

should consider having shorter but more frequent collection days, particularly post-

challenge, to allow for further investigation and a more accurate understanding of 
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differences between the breeds in innate and adaptive immune responses to S. 

Typhimurium challenge. This is particularly important as clearance of a gastrointestinal 

bacterial pathogen such as S. Typhimurium can occur without a B-cell or antibody 

response (Barrow et al., 2012). 

Another limitation of the study was the failure to have a negative control group 

for the effects of the gavage, or to have a saline control for the effects of TSB. TSB may 

have induced dysbiosis in the present study, therefore causing reductions in gut 

morphology and increasing the IgA response in control broilers and possibly muting any 

differences that might have been observed between breeds and challenge treatments. 

Reductions in gut morphology could have further caused reductions in body weight. 

Additionally, stress from orally gavaging birds may have also hindered our ability to 

observe behavior differences due to challenge or breed at days 16 and 20 of behavior 

recording.  

This study was limited in available materials for recording. Only 8 cameras were 

able to be used to record videos for behavior analysis across merely 4 days, which could 

have limited the number of observations of each behavior (particularly aggression and 

preening) and therefore reducing statistical power. In the future, studies should record the 

behavior of all birds to account for a greater number of recordings for behavioral 

observations. This would result in a greater number of birds recorded, and as a result, 

permit successful statistical analysis and more accurate representation of the effects of 

breed and challenge on behavior. 

 The broilers in this study had lower body weights and intestinal morphology 

measures when compared to birds of similar breeds and ages reported in the scientific 
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literature and management guides. As this study was not directly focused on nutrition, a 

commercial Purina Start & Grow feed was used throughout the duration of the trial that 

was presumed to meet the minimum nutritional needs of both breeds. Often, 

experimentally formulated diets are used to both meet broiler nutritional requirements 

and supplement their needs beyond baseline requirements when used in research. The 

disparity between these measures observed in the study and those of other studies might 

reflect differences in feed formulation. As a result, limitations on these measures could 

additionally have muted breed and challenge effects that might have otherwise been 

significant.  

Lastly, the COVID-19 pandemic posed as a limitation on the present study. 

Fortunately, the animal experiment had ended in February 2020, which was prior to the 

temporary shutdown of university animal research facilities, but lab access was not 

permitted for several months. Once lab access was restored, orders for several needed lab 

materials were on back-order due to their demand regarding COVID-19 testing and 

research, such as pipette tips, which delayed the ability to run ELISAs for months after 

the study was completed. This reduced the options for plasma immune markers because 

some degrade with time during storage. 

4.3 Impact 

Overall, the fast-growing breed had better performance, jejunum gut morphology, 

and immune development and was observed to be less aggressive and remained relatively 

unaffected behaviorally by S. Typhimurium challenge. The slow-growing breed appeared 

more resilient to challenge regarding body weight and gut morphology, and had greater 

plasma IgG concentration in life, indicating greater early life immune protection. 
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Additionally, S. Typhimurium induced a small variety of responses, including impaired 

intestinal morphology, elevated IgA 1-week post-challenge, reduced exploratory behavior 

in the slow-growing breed, and an apparent reduction in aggression in both breeds. This 

information can be used by broiler breeders to make genetic selection decisions that may 

improve flock welfare, boost Salmonella resistance among their birds, reduce the risk of 

Salmonella transmission into the human food supply, and prevent economic losses due to 

Salmonella infection. 
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